
Benchmarking Super Computers
Benchmarks of Clustis3 and Numascale

Elisabeth Solheim

Master of Science in Informatics

Supervisor: Anne Cathrine Elster, IDI

Department of Computer and Information Science

Submission date: Januar 2015

Norwegian University of Science and Technology

Problem definition

Benchmark the two supercomputers Clustis3 and Numascale using a 2D heat
equation.

Assignment given: 30. January 2013
Advisor: Anne C. Elster, IDI, NTNU

i

Abstract

In this thesis I will benchmark NTNUs cluster "Clustis 3" and "Numascale", two
of IDI NTNUs super computers using the heat equation as a workload. The work-
load will be changed in size to see how the performance changes. The workload
will also be run with different border thicknesses to change how it acts and how
that affect the performance on the different computers. Discussion on how to in-
terpret results and optimize node and process layouts can also be found.

iii

Acknowledgment

First I would like to thank my fiancé and family for supporting me and helping
me through this master thesis.

Also, many thanks to my supervisor Anne C. Elster for all her help.

Thanks to Malik Khan and Rune Jensen helping me with the super computers. An
extra thanks to Malik for commenting on my thesis.

v

Contents

Problem definition i

Abstract iii

Acknowledgments v

Contents vii

List of Figures xiii

1 Super computers 1
1.1 Why super computers exist? . 1
1.2 Performance limitations for computers 1

1.2.1 Pattersons Three Walls . 1
1.3 Performance measurement . 3

1.3.1 Speedup and efficiency . 3
1.3.2 Amdahl’s law . 3
1.3.3 Gustafson’s law . 5

1.4 Flynn’s taxonomy . 6
1.4.1 SISD . 6
1.4.2 SIMD . 6
1.4.3 MISD . 6
1.4.4 MIMD . 6

1.5 Software categorizations . 7
1.5.1 SPMD . 7
1.5.2 MPMD . 7

1.6 Message Passing Interface (MPI) . 8
1.6.1 Send and Receive . 8
1.6.2 Functionality . 8
1.6.3 Structure . 8
1.6.4 Master / slave . 9

vii

viii CONTENTS

1.6.5 Common pitfalls . 9

2 Benchmarking 11
2.1 Workload Efforts . 11

2.1.1 the High-Performance Linpack Benchmark 11
2.1.2 GigaTEPS . 12

3 Heat Equation by FTCS 15
3.1 Heat equation . 15

3.1.1 Boundary conditions . 15
3.1.2 Calculate the constant c . 16

3.2 Numerical solution the heat equation by FTCS 16
3.3 Implement the numerical solution for a single processor 17

3.3.1 Dirichlet Problem . 17
3.3.2 Neumann Problem . 18

4 Heat Equation solution in parallel 19
4.1 The timed_heat code . 19

4.1.1 Global variables . 20
4.2 Methods . 21

4.2.1 Main method . 21
4.2.2 Border exchange . 22
4.2.3 FTCS solver . 23
4.2.4 Border update . 23
4.2.5 Boundaries . 23

4.3 Visual results . 24
4.3.1 Correct output for size 256 . 24
4.3.2 Error examples . 28

4.4 Process layout . 30
4.5 Changing global variables . 34

4.5.1 Changing size of the system 34
4.5.2 Changing border thickness 34
4.5.3 Writing to file . 34
4.5.4 NSTEPS and CUTOFF . 34

4.6 Other examples of implementations on multiple processors 35
4.6.1 HEAT2D Example - Parallelized C Version 35
4.6.2 Horak and Gruber -

Parallel Numerical Solution of 2D Heat Equation 35
4.7 Parallelized Versions Compared . 36

5 The Clustis3 and Numascale 37
5.1 Clustis3 . 37

CONTENTS ix

5.2 Numascale . 38

6 Running Heat Equation on Clustis3 and Numascale 41
6.1 Running heat equation on Clustis3 with different Sizes 41

6.1.1 The Node Layout . 45
6.1.2 Using rankfiles . 46

6.2 Running heat on Numascale with different sizes 48
6.2.1 Compared to Clustis3 . 49
6.2.2 Splitting the workload into striped partitions on Numascale 50

6.3 Changing size of Border . 52
6.3.1 Without using rankfiles on Clustis3 52
6.3.2 With Rankfile on Clustis3 . 54
6.3.3 Numascale . 56

6.4 Writing to file . 58
6.4.1 Numascale . 58
6.4.2 Clustis3 . 58
6.4.3 Write time compared . 58

6.5 Max min and runtimestabilty . 59

7 Conclusions and future work 61
7.1 Conclusions . 61
7.2 Future work . 62

7.2.1 Testing without SMT . 62
7.2.2 Different benchmarking . 62
7.2.3 Measuring communication 62
7.2.4 Benchmark power usage . 62
7.2.5 Comparing MPI to P-threads or OpenMP on Numascale . . 62
7.2.6 Optimizations . 62
7.2.7 Striped partitions . 62
7.2.8 Optimizing for L cache . 63

References 65

Appendices 69

A MPI functions 71
A.1 Structure functions . 71

A.1.1 MPI_Init . 71
A.1.2 MPI_Finalize . 71

A.2 Send and receive . 71
A.2.1 Modes . 72
A.2.2 MPI_Send . 72
A.2.3 MPI_Recv . 73

x CONTENTS

A.2.4 MPI_Sendrecv . 73
A.2.5 Communicator . 74
A.2.6 Collective Communication 75

A.3 Other functionality used . 76
A.3.1 Data-types . 76
A.3.2 Setting up dimensions . 76
A.3.3 Time measurement . 77

B Pseudo Code 79

C Source Code 85
C.1 Benchmarkingexample: Heat equation solved by FTCS 85
C.2 Heat equation solved by FTCS serial version 95

D Node Layouts for Clustis3 101
D.1 Node Layout First Run . 101

D.1.1 9 Processes . 101
D.1.2 10 Processes . 102
D.1.3 11 Processes . 102
D.1.4 12 Processes . 102
D.1.5 13 Processes . 102
D.1.6 14 Processes . 102
D.1.7 15 Processes . 103
D.1.8 16 Processes . 103
D.1.9 17 Processes . 103
D.1.10 18 Processes . 103
D.1.11 19 Processes . 103
D.1.12 20 Processes . 104
D.1.13 21 Processes . 104
D.1.14 22 Processes . 104
D.1.15 23 Processes . 104
D.1.16 24 Processes . 105
D.1.17 25 Processes . 105
D.1.18 26 Processes . 105
D.1.19 27 Processes . 106
D.1.20 28 Processes . 106
D.1.21 29 Processes . 106
D.1.22 30 Processes . 106
D.1.23 31 Processes . 107
D.1.24 32 Processes . 107
D.1.25 33 Processes . 107
D.1.26 34 Processes . 108

CONTENTS xi

D.1.27 35 Processes . 108
D.1.28 36 Processes . 108
D.1.29 37 Processes . 109
D.1.30 38 Processes . 109
D.1.31 39 Processes . 109
D.1.32 40 Processes . 110

D.2 Node Layout Using Rankfiles . 110
D.2.1 9 Processes . 110
D.2.2 10 Processes . 111
D.2.3 11 Processes . 111
D.2.4 12 Processes . 111
D.2.5 13 Processes . 111
D.2.6 14 Processes . 111
D.2.7 15 Processes . 112
D.2.8 16 Processes . 112
D.2.9 17 Processes . 112
D.2.10 18 Processes . 112
D.2.11 19 Processes . 112
D.2.12 20 Processes . 113
D.2.13 21 Processes . 113
D.2.14 22 Processes . 113
D.2.15 23 Processes . 113
D.2.16 24 Processes . 114
D.2.17 25 Processes . 114
D.2.18 26 Processes . 114
D.2.19 27 Processes . 115
D.2.20 28 Processes . 115
D.2.21 29 Processes . 115
D.2.22 30 Processes . 115
D.2.23 31 Processes . 116
D.2.24 32 Processes . 116
D.2.25 33 Processes . 116
D.2.26 34 Processes . 117
D.2.27 35 Processes . 117
D.2.28 36 Processes . 117
D.2.29 37 Processes . 118
D.2.30 38 Processes . 118
D.2.31 39 Processes . 118
D.2.32 40 Processes . 119

E Runtime results in seconds 121
E.1 Runtime for size 256 on Clustis3 with border-thickness 1-5 121

xii CONTENTS

E.2 Runtime for size 512 on Clustis3 with border-thickness 1-5 122
E.3 Runtime for size 512 on Clustis3 with border-thickness 1-5 123
E.4 Runtime for size 256 on Clustis3 with border-thickness 1-5 using

rankfile . 124
E.5 Runtime for size 512 on Clustis3 with border-thickness 1-5 using

rankfile . 126
E.6 Runtime for size 1024 on Clustis3 with border-thickness 1-5 using

rankfile . 127
E.7 Runtime size 256 on Numascale with border-thickness 1-5 128
E.8 Runtime size 512 on Numascale with border-thickness 1-5 129
E.9 Runtime size 1024 on Numascale with border-thickness 1-5 131
E.10 Runtime for dense layout on Numascale 132
E.11 Runtime for horzontal striped layout on Numascale 132
E.12 Runtime for vertical striped layouts on Numscale 133
E.13 Write to file runtime Numascale . 133
E.14 Write to file runtime Clustis3 . 133
E.15 Avg, min and max runtime for size 1024 on Clustis3 134
E.16 Avg, min and max runtime for size 1024 on Numascale 135

List of Figures

1.1 The speedup defined by Amdahl’s law as the number of processes
grow from 1 to 100 . 4

1.2 The limit of speedup by Amdahl’s law from 90 to 99.8% parallelization 4
1.3 The speedup defined by Gustafson’s law as the number of processes

grow from 1 to 100 for different percentages of TSerial 5

3.1 The stencil . 17

4.1 The heat system . 19
4.2 East border with border thickness 2 after calling border_exchange. . . 22
4.3 The heat system at step 0: Mercury is the black field. The copper is at

the left and the tin is at the right. The Aluminum is at the back. 24
4.4 The heat system at step 1280: Here you can see that the copper is a

better heat conductor than tin. The Aluminum is kept at 100 degrees
Celsius. The mercury is receiving heat from the other metals. 25

4.5 The heat system at step 5280: Here is the temperature for the copper
and tin almost the same as for the mercury. 26

4.6 The heat system at step 22400: The aluminum is still kept at 100 degrees
Celsius. 26

4.7 The heat system at step 75360: Here the aluminum is now longer kept
at 100 degrees celsius . 27

4.8 The heat system at step 87200: The system has almost found equilibrium. 27
4.9 Row 256 not computed or sent to rank 0 for writing to file for 3 pro-

cesses. See the sudden drop in the back 28
4.10 Row 256 and column 256 not computed or sent to rank 0 for writing to

file for 9 processes . 29
4.11 Error in the update_border method for step no. 1280, size 256 and

border thickness 2. 29
4.12 Process layout for 1 to 50 processes with MPI where y is height and x

is width . 30

xiii

xiv LIST OF FIGURES

4.13 Layout with 3 processes. 31
4.14 Layout with 8 processes. 32
4.15 Layout with 16 processes. 33

5.1 Clustis3 architecture the computing part 37
5.2 Numascale architecture . 38

6.1 The runtime of different sizes on Clustis3 42
6.2 The runtime with size 256 on Clustis3 using 1 to 5 nodes 43
6.3 The runtime with size 512 on Clustis3 43
6.4 The speedup of different sizes on Clustis3 44
6.5 The efficiency of Different Sizes on Clustis3 45
6.6 The runtime without and with using rankfile on Clustis3 46
6.7 The runtime without and with using rankfile on Clustis3 47
6.8 The runtime without and with using rankfile on Clustis3 47
6.9 The runtime of different sizes on Numascale 48
6.10 The runtime of different sizes on Numascale 48
6.11 The speedup and efficiency of running different sizes on Numascale . 49
6.12 The speedup of running different sizes with horizontal and vertical

striped partitions on Numascale . 50
6.13 The efficiency of running different sizes with horizontal and vertical

striped partitions on Numascale . 51
6.14 The speedup and efficiency with different border thicknesses and size

256 on Clustis3 without using rankfiles 52
6.15 The speedup with different border thicknesses and size 512 on Clustis3 52
6.16 The speedup with different border thicknesses and size 1024 on Clustis3 53
6.17 The speedup with different border thicknesses and size 256 on Clustis3 54
6.18 The speedup with different border thicknesses and size 512 on Clustis3 54
6.19 The speedup with different border thicknesses and size 1024 on Clustis3 55
6.20 Average difference between border thicknesses for 9 to 40 processes . 55
6.21 The speedup and efficiency with different border thicknesses and size

256 on Numascale . 56
6.22 The speedup and efficiency with different border thicknesses and size

512 on Numascale . 56
6.23 The speedup and efficiency with different border thicknesses and size

1024 on Numascale . 57
6.24 Average difference between border thicknesses for 33 to 50 processes . 57
6.25 Min, max and average runtimes for size 1024 on Clustis3 59
6.26 Min, max and average runtimes for size 1024 on Numascale 59

Chapter 1

Super computers

1.1 Why super computers exist?

Traditionally computation was done serially, one instruction at a time. In many
situations this was and still is adequate. In example when doing simple algo-
rithms on small datasets. However, scientific project and businesses often have
complex algorithms with large datasets, taking forever to calculate serially on one
CPU. Algorithms and data is often dependent on other data, however large parts
of the data and algorithms may be independent, not demanding a specific order
of execution, making it ideal to be executed at the same time [14].

By making multiple parallel processors cooperate you increase the throughput
solving larger problem in a shorter time. Done right, the problem can be solved
linearly faster divided on the number of processor, making a near linear speedup
(see Chapter 1.3.1).

1.2 Performance limitations for computers

Parallel computing also is one way to solve the performance limitations proces-
sors have. For many years the CPU makers made PCs faster by increasing the
clock rate, and therefor the number of calculations per second. However, around
2004 Intel hit the "Power Wall" (see Chapter 1.2.1) making it impractical to draw
more calculation power out of a single CPU. Intel was forced to start making
multi-core CPUs (CPUs with multiple cores).

1.2.1 Pattersons Three Walls

There are limitations in how high performance a computer can have. David Pat-
terson called the limitations for walls[15]. Memory, instruction level parallelism

1

2 CHAPTER 1. SUPER COMPUTERS

(ILP) and Power. All connected,so if an engineer optimizes one wall (limitation)
he aggravates the other two walls. Together making Patterson’s "brick wall":
"Power Wall + Memory Wall + ILP Wall = Brick Wall" [7].

The Power Wall

The Power Wall is the limit where the clock rate for a single computer get so high
that it get difficult to cool the processor. Either you have to use a material that
can withstand higher temperatures or you have to separate the components mak-
ing the heat. However separating components can make delays by the increased
distance between the compontents.

Intel broke the power wall in 2004 with the Teja processor that was supposed to
run at 7 Ghz, but never reached that speed, because the microprocessors got to hot
and quit working[7]. They then had to change their approach, releasing multi-core
processors. The first multi-core processor was a chip with two slower processors
connected together.

The Memory Wall

The Memory Wall is the gap between the processor speed and the speed of the
memory. That gap grows since the processor speed increases more rapidly than
the memory speed. One solution to this problem was the computer cache. The
cache temporarily stores copies of data from the most frequently used memory
locations. But are of limited use for large data applications since only a part of the
dataset can fit in the cache. Having a larger cache will increase both the physical
size of the CPU and the power consumption[7].

The ILP wall

ILP (instruction level parallelism) means to run several instructions on different
parts of the processor(functional units) at the same time to increase efficiency.
Pipelining and multiple issue are the main approaches. In pipelining individ-
ual pieces of hardware or functional units processes in sequence. In multiple is-
sue functional units are replicated to execute different instructions at the same
time[14].

"ILP Wall means a deeper instruction pipeline really means digging a deeper
power hole"[7]

1.3. PERFORMANCE MEASUREMENT 3

1.3 Performance measurement

1.3.1 Speedup and efficiency

Speedup (S) is defined to be

S =
Tserial
Tparallel

Where Tserial is the time used by the serial version of the program to run and
Tparallel is the time used by the parallel version on the program to run. The best
speedup possible is linear Speedup. Where S = p and p is no of processes. That
means that the time used to run the parallel version of the program is the time for
the serial divided on the number of processors used.

Tparallel =
Tserial
p

Efficiency of the parallel program tells how close to linear speedup the program
is.

E =
S

p
=

Tserial

Tparallel

p
=

Tserial
p× Tparallel

1.3.2 Amdahl’s law

Gene Amdahl observed in the 1960s that speedup is limited since not all of the
serial program can be parallelized.

If x% of the serial program can be parallelized then runtime of the parallelized
part with p processors will be x

100 ×
Tserial

p . The unparallelizable part will take
(1− x

100)× Tserial. The speedup S will then be

S =
Tserial

x
100 ×

Tserial

p + (1− x
100)× Tserial

=
1

x
100×p + 1− x

100

lim
p→∞

1
x

100×p + 1− x
100

=
1

1− x
100

This means that when the parallelized part is 50 % then the speedup can be no
bigger than 2. For x = 75 the max speedup is 4. For x = 90 it is 10 and for x = 95 it
is 20.

This means that bigger the percentage that is parallelized, the bigger speedup.
When the percent goes towards 100 the curve goes toward infinity as seen in Fig-
ure 1.2

This gives that very few problems will experience the larger speedups.

4 CHAPTER 1. SUPER COMPUTERS

Figure 1.1: The speedup defined by Amdahl’s law as the number of processes
grow from 1 to 100

Figure 1.2: The limit of speedup by Amdahl’s law from 90 to 99.8% parallelization

1.3. PERFORMANCE MEASUREMENT 5

1.3.3 Gustafson’s law

In 1988 Gustafson came with a reevaluation of Amdahl’s law after experiencing
several speedups bigger that what the Amdahl’s law claimed he would get. [8]

Gustafson thinks that the parallel or vector part scales with the problem size. For
example by doubling the number of processors when adding degrees of freedom
in a physical simulation. In Amdahl’s law the problem is fixed, and the parallel
part time is dependent on the number of processors used.

Gustafson’s law:
S= Speedup
Tserial = Serial time spent on the parallel system
Tparallel = Parallel time spent on the parallel system
p = number of processors

S = (Tserial + Tparallel × p)/(TSerial + Tparallel)

= Tserial + Tparallel × p
= p+ (1− p)× Tserial

This speedup is linear and with different percentages of TSerial the graph look
like:

Figure 1.3: The speedup defined by Gustafson’s law as the number of processes
grow from 1 to 100 for different percentages of TSerial

lim
p→∞

p+ (1− p)× Tserial =∞

The Speedup has no limitations by Gustafson’s law.

6 CHAPTER 1. SUPER COMPUTERS

1.4 Flynn’s taxonomy

Flynn’s taxonomy is a way to classify computer architectures.[14] Flynn divides
the computer architectures into 4 classifications.

1.4.1 SISD

SISD, or Single Instruction, Single Data stream, is a sequential computer with no
parallelism. The architecture does one single type of instruction on one single data
at a time. One example of SISD is add 1 to variable A.

1.4.2 SIMD

SIMD (Single Instruction, Multiple Data stream) is the second architecture with
the simplest type of parallelism. With one single type of instruction run on multi-
ple data at a time. One example of SIMD is add 1 to variable A, B and C.

1.4.3 MISD

MISD (Multiple Instruction, Single data) is a less common architecture, applying
multiple instructions to one single data at a time. One example of MISD is to add
1 to variable A, Subtract 3 to variable A, Multiply variable A with 4. All at the
same time.

1.4.4 MIMD

The last of Flynn’s architectures is MIMD (Multiple Instructions, Multiple Data).
This is now the most common architecture, making it possible to run multiple
instructions on different multiple data. This is the typical multi core super scale
system.

There are two types of MIMD systems, shared-memory and distributed-memory
systems.

Shared-memory systems

In a shared-memory system each processor can access any memory location through
the interconnect.

Distributed-memory systems

In a distributed-memory system each processor has its own private memory. All
the processor-memory must be paired through messaging like MPI(see Chapter
1.6).

1.5. SOFTWARE CATEGORIZATIONS 7

1.5 Software categorizations

Flynn’s taxonomy did not fit perfect with the real world, requiring two new sub-
category of MIMD: SPMD and MPMD[14].

1.5.1 SPMD

Single Program, Multiple Data is a software category where a single program runs
on multiple data. This single program behaves different on what data it gets.
MPI(Chapter 1.6) is typically SPMD, running the same program on different data.
An example of an SPMD code is timed_heat found in Appendix C.1.

1.5.2 MPMD

The last software category is Multiple Program, Multiple Data which is multiple
programs on multiple data.

MPI has the possibility to run MPMD, but SPMD is the most used way to run
MPI[12].

8 CHAPTER 1. SUPER COMPUTERS

1.6 Message Passing Interface (MPI)

MPI, or Message Passing Interface is a API for message passing on distributed
memory systems. [14, p. 83][13]

In this thesis MPI is used to make it possible for different processes to talk between
them, making it possible to divide the problem into parallel parts.

MPI is available for multiple programming languages, but here it is used with C.
An example of MPI code is shown in Chapter C.1.

A common problem when dividing problems into a grid is when some of the
needed information is in the neighbor grid. Luckily this is quite easy in MPI.

MPI uses the SPMD (single program multiple data, Chapter 1.5.1) approach to
parallel programming.[14, p. 83]

1.6.1 Send and Receive

All communication between nodes are done through messages. There are a num-
ber of different send and receive methods for different purposes. MPI_Send,
MPI_Recv, MPI_Sendrecv and MPI_Isend are the ones used by the timed_heat
code in Chapter C.1.

1.6.2 Functionality

MPI does not try to solve every parallel programming problem, but rather only
the problem of synchronizing data.[13]

1.6.3 Structure

MPI is just a library. However it requires some structure. MPI calls should only
be written between the MPI_Init and the MPI_Finalize calls. Also the mpi.h file
has to be included. All of the functions, types, macros and constants in MPI start
with MPI_ and a capital letter after the underscore, and the whole name in capital
letters for the macros and constants. This makes it easier to differentiate between
user and MPI stuff.

After the initialization MPI_Comm_size and MPI_Comm_rank are called to get
the size and rank for the processes. Size is the total number of processes and rank
is the process number that are unique for each process and is a number from 0 to
size-1. The rank is the identification of each process. The rank and size is used for
messaging purposes.

1.6. MESSAGE PASSING INTERFACE (MPI) 9

1.6.4 Master / slave

When dividing data between nodes (processes) in MPI, it is common to use the
master / slave strategy, with one master node that controls the data flow. The
master divides the original problem into multiple data grids and sends one grid
to each slave.

A slave can talk to another slave, but it is that master who receives the end result
and stitches it all together.

1.6.5 Common pitfalls

A common pitfall in MPI is that every send and receive must match[14], or the
process will hang, waiting for a matching message. Matching means that the pa-
rameters like datatype, tag and rank numbers(source and dest) must be identical.
The MPI_Send method must also be posted before the MPI_Recv method which
can lead to cyclic dependencies. There are several solutions to solve this problem
like different sending modes and the MPI_Sendrecv method.

Chapter 2

Benchmarking

Benchmarking is to assess the relative performance of an object. It can be used to
tell if a program is effective. Benchmarking has nothing to do with the correctness
of a program, only how well it performs.

A example of benchmarking is FLOPs of CPU (floating-point operation per sec-
ond). It tells how many linear algebra problems a supercomputer can solve in a
second.

The difference in architecture and complexity of modern CPUs and compilers
makes it hard unpredictable and hard to write useful benchmarks.

Benchmarking efforts 3 inter-related elements: workload, metrics and methodol-
ogy. Workload is the application or benchmark software for testing the HPC sys-
tem. Metrics is the basis for comparison that are used as a measure. Methodology
is the system of methods that make out the measurement procedure [17].

2.1 Workload Efforts

2.1.1 the High-Performance Linpack Benchmark

The first “LINPACK Benchmark” appeared in the appendix of th LINPACK Users
Guide in 1979. It was originally designed for the users of the LINPACK package
for estimating execution time. The Workload was a single 100 by 100 system of
linear equations of the form

Y (I) = Y (I) + T ∗X(I)

This was done on a 23 of the most used computers. They used a 75 by 75 system
for the computers that was not big enough to handle a 100 by 100 system and used
extrapolation to obtain the results. [10] This Benchmark is called LINPACK 100.

11

12 CHAPTER 2. BENCHMARKING

Due to the use of scalable computers with distributed memory in the HPC field
they made the Highly-Performance Linpack NxN Benchmark. [4] HPL is the
portable implementation of the benchmark. It generate and solves a random
dense linear system

Ax = b; A ∈ Rn×n; x, b ∈ Rn

HPL then use first LU factorization then backward elimination to solve the system
before it checks for correctness of the solution.

The performance given by HPL is not reflect the overall performance of the given
system but reflect the performance of solving dense systems of linear equations
on the system. [18] Linear equations is a regular problem for hpc.

The Top500 List

The Top500 supercomputers list ranks all commercial accessible supercomputers
using HPL as a measure. [18]

The measurements for each of the supercomputers in list are:
Rmax - Maximal LINPACK performance achieved
Rpeak - Theoretical peak performance
Nmax - Problem size for achieving Rmax
N1/2 - Problem size for achieving half of Rmax

The NTNU computer Vilje scored 82th place on this list November 2013.

The Green500 List

The Green500 list ranks the most energy-efficient supercomputers in MegaFLOP-
S/Watt using TOP500 performance results and wattage use given from the man-
ufacture.

Vilje scored 105th place on this list in November 2013, and 154th place in June
2014 with 738.73 MFLOPS/watt and total power of 537 kW.

2.1.2 GigaTEPS

GigaTEPS was developed as a counterweight to FLOPS.

FLOPS(floating-point operation per second) are raw number-crunching power
and tell how many linear algebra problems a supercomputer can solve in a sec-
ond. GigaTEPS(billions of traversed edges per second) tells how fast the computer
can search in large datasets. An Edge is a connection between two data points. An
example of two data points is how many that buys book number 1 also buy book
number 2.

2.1. WORKLOAD EFFORTS 13

The hope is that GigaTEPS will spur both researchers and industry toward mas-
tering architectural problems to develop the next generation supercomputers.

Current cluster implementation suffer from high latency data communication witch
leads to inefficiency in performance and energy consumption. Scaling graph traver-
sal to multi-node cluster is challenging, w‘seq 1 20‘;hich has led to the creation of
alternative metric of supercomputer performance like the Graph500. To achieve
better GigaTEPS memory accessibility for CPUs is important since big machines
with a high FLOP result gets bad GigaTEPS results. [16].

Graph 500 Benchmark

The Graph 500 benchmark was created by Richard Murphy at the Sandia National
Laboratory. The Graph500 uses Breadth-First Search for their Benchmark [16].

The creator of Linpack Jack Dongarra has said that the Graph500 may add to the
list of metrics for rating supercomputers but it can not be seen as a definitive
number of performance any more than the Linpack is today [1].

HPC Challenge

HPC Challenge is a new benchmark-group that test both computing and widespread
memory accessibility. HPC Challenge is under The Defense Advanced Research
Projects Agency, the U.S. Department of Energy, and the U.S. National Science

SPEC

SPEC set of computing benchmarks(aimed at better measuring the performance of
more everyday components like Web servers) Standard Performance Evaluation
Corp. [17]

Green computing

Energy-Aware Big Data Computing is becoming more important [2]. One of the
largest problems with computer farms in the heat they produce and have to went
away to avoid melting.

Chapter 3

Heat Equation by FTCS

The reason for using the FTCS heat equation in this thesis is that I knew this algo-
rithm well from an exercise in the course "TDT4240 - Paralell computing". Know-
ing that it fit well to run on a super computer and has its practical uses in the real
world.

3.1 Heat equation

The heat equation describes the distribution of heat in a given region over time. It
is a partial differential equation that is a equation with one or more partial deriva-
tives of an function u [11, p. 535]. Where u is a function that describes the tem-
perature. The heat equation in two dimensions can be seen as a cut of the three
dimensional space.

The two dimensional heat equation is[9]:

ut = c (uxx + uyy) , 0 ≤ x, y ≤ 1, t ≥ 0 (3.1)

3.1.1 Boundary conditions

For the heat equation the boundary conditions describe the heat on the edges.
There are three types of boundary conditions or so called Boundary Value prob-
lems for partial differential equations [11, p. 558]:

Dirichlet Problem u is prescribed on C (boundary) meaning that f(x) is a known
function on the boundary.

Neumann Problem un = ∂u/∂n meaning that f’(x) is a known function on the
boundary.

15

16 CHAPTER 3. HEAT EQUATION BY FTCS

Mixed Boundary Value Problem or Robin Problem if u is prescribed on a por-
tion of C and un on the rest of C(boundary)

3.1.2 Calculate the constant c

In heat transfer the constant c is alpha that is the thermal diffusivity[5]:

α =
k

ρcp
(3.2)

where

• α is the thermal diffusivity (the rate at which heat diffuces through a body)
measured in meter2

seconds

• k is the thermal conductivity that describes the rate at which heat flows
within a body for a given temperature difference measured in Watt

meterKelvin

• cp is the specific heat capasity that is the amount of energy a body stores for
each degree increase in temperature measured in kJ

kgKelvin

• and ρ is the density tha amount of mass per unit volume measured in kg
meter3

3.2 Numerical solution the heat equation by FTCS

Forward Time and Central Space(FTCS) is a Finite Difference Method for solving
partial differential equations numerically. To solve a equation numerically means
to approximate it.

u(t, x, y) can be approximated by replacing any derivative by finite differences.
Then for any discreet points (tk, xi, yj):

ut ≈
uk+1
i,j − uki,j

∆t
(3.3)

and

uxx ≈
uki+1,j − 2uki,j + uki−1,j

(∆s)2
, uyy ≈

uki,j+1 − 2uki,j + uki,j−1

(∆s)2
, (3.4)

Then the heat equation ut = c (uxx + uyy) becomes:

uk+1
i,j − uki,j

∆t
= c

(
uki+1,j − 2uki,j + uki−1,j

(∆s)2
+
uki,j+1 − 2uki,j + uki,j−1

(∆s)2

)
(3.5)

witch gives:

uk+1
i,j = uki,j + c · ∆t

(∆s)2

(
uki+1,j + uki−1,j + uki,j+1 + uki,j−1 − 4uki,j

)
(3.6)

3.3. IMPLEMENT THE NUMERICAL SOLUTION FOR A SINGLE PROCESSOR 17

Where the spatial mesh points are:
(xi, yj) = (i ·∆s, j ·∆s), i, j = 0, 1, 2..., n+ 1 where ∆s = 1

n+1

Where the temporal mesh points are:
tk = k ·∆t, k = 0, 1, 2, ..., for suitably chosen ∆t

Where ∆t ≤ (∆s)2

2c for the solution to be stable. [9]

3.3 Implement the numerical solution for a single processor

The serial version is straight forward from Equation 3.6 [9] The serial version is
basically to first initialize the u_k+1 and u_k matrixes and then for all i and j ∈
[1, n] u_k + 1 = u_k + c × ∆t

(∆s)2 × (u_k[i + 1, j] + u_k[i − 1, j] + u_k[i, j + 1] +

u_k[i, j − 1]− 4× u_k[i, j]). The pseudocode can be seen in Appendix 1.

u_k[i+ 1, j] + u_k[i− 1, j] + u_k[i, j + 1] + u_k[i, j − 1]− 4× u_k[i, j] can be seen
as a stencil that is applied along the u_k matrix. The stencil is seen in Figure 3.1.

Figure 3.1: The stencil

The border condition must be implemented as well. But since there are three
types of border conditions there are different ways the border condition must be
implemented.

3.3.1 Dirichlet Problem

This is easy to implement. The matrix is allocated n+2 by n+2 such that it has a
border of thickness 1 around itself where the values of the given function is stored.

18 CHAPTER 3. HEAT EQUATION BY FTCS

3.3.2 Neumann Problem

For the Neumann Problem the relation between the values are calculated for each
step. For example the code "timed_heat" in Appendix C.1 is an implementation
with the Neumann Problem that results in a perfect insulated border the heat is
mirrored such that one arm in the opposite side of the stencil in Figure 3.1 is used
twice instead of the one on the outside of the matrix.

Chapter 4

Heat Equation solution in parallel

4.1 The timed_heat code

The code found in Appendix C.1 simulates a heat equation solution using the
FTCS(Forward-Time Central-Space) method. The simulated system is a piece of
copper, tin and aluminum emerged in mercury as shown in Figure 4.1. At the
beginning, the copper and tin is at 60 degrees Celsius, the mercury is at 20 degrees
Celsius, while the Aluminum is at a 100 degrees Celsius.

Figure 4.1: The heat system

19

20 CHAPTER 4. HEAT EQUATION SOLUTION IN PARALLEL

The system consists of a n times n floats matrix. Each float uses its neighbors to
calculate the next step with by applying a stencil. There are 125 000 steps in total.

Snapshots are taken every 160 step. The aluminum is kept at the same tempera-
ture at first part of the simulation, and is turned of at step 75000.

The n by n floats are split into smaller areas that are computed by one process
or rank. The local area has a border surrounding it that are used for storing data
sent from the neighbor. The neighbors send the borders to each other within the
border exchange function.

4.1.1 Global variables

• SIZE is number of floats. The system is nxn floats big where n is SIZE.

• WRITETOFILE is if the program should write to file or not

• NSTEPS is number of steps. I have used 125000 for the benchmarking

• CUTOFF is when to cut of the heat. Meaning when to stop setting the alu-
minum to 100 degrees. I have used 75000 for the benchmarking

• BORDER is the thickness of the border

• temperature is the matrix that rank 0 uses to store all temperature data in
before writing to file

• local_material is the local matrix for storing the material constants

• local_temp is the local matrices for storing temperatures. Swaps between
two for odd and even numbered steps.

4.2. METHODS 21

4.2 Methods

4.2.1 Main method

The main method is the core of the program. All other methods are called from the
main method. Here the MPI is initialized and finalized, time measures is taken,
the heat system is set up and the steps are executed.

Initialization

As explained in Chapter 1.6.3 every MPI needs to have a MPI_Init and MPI_Finalize
call. Initialization in timed_heat[C.1] also includes finding rank and process count.

Splitting the workload

Splitting the workload is done by creating a layout of processes by creating di-
mensions out of the number of processes that are used. Different layouts can be
seen in Chapter 4.4.

The dimensions are then set up using MPI_Dims_create before cart communi-
cation is set up. The dimensions are then used to calculate the local dimen-
sions(local_dims) by dividing SIZE on the dimensions. If the SIZE is not equally
divided on the dimension not all of the numbers will be calculated or sent to rank
0 for writing to file. This error is shown in Chapter 4.3.2.

Solving the non-evenly dividable size problem

One solution to the problem of size being non-evenly divided is to pad the lo-
cal_dims in the direction that the problem occur such that all the local areas are
the same size. This makes it possible for all the processes to use the same data-
type for sending their areas to rank 0 for collection data. This also makes the load
balance as equal as possible for small grid x and y values but do not fully utilize
all the threads for larger dimensions like 31 times 1. The result is sent to rank 0
that only write the first SIZE numbers in each row and the first SIZE rows to file.

Allocate space

When the space needed for local matrices and the temperature matrix are found
the space for them are allocated. The local matrices are initialized right before the
vector types for border exchange is created and committed.

Execute the steps

The steps are iterated NSTEPS time and consist of:

22 CHAPTER 4. HEAT EQUATION SOLUTION IN PARALLEL

• If the step is smaller than the CUTOFF constant the external_heat method
are called resulting that the area of the aluminum are set to 100 ◦Celsius

• The border_exchange method(Chapter 4.2.2) is called on every nth step,
where n is BORDER.

• On the remaining steps the update_border method(Chapter 4.2.4) is called.

• The ftcs_solver method are then called(see Chapter 4.2.3).

• The boundaries method are called(see Chapter 4.2.5)

• The Filename is created and the collect_area method is called for every nth
step, where n is SNAPSHOT.

The time measure are then ended before the space matrices are freed up, the
MPI_Finalize method are called and the result are printed to screen or logged.

4.2.2 Border exchange

In the border_exchange method the content in the local data of BORDER size of
one rank is sent to another ranks border so that rank can use the border to compute
their local areas.

Figure 4.2: East border with border thickness 2 after calling border_exchange.

4.2. METHODS 23

4.2.3 FTCS solver

The FTCS solver method takes the step as an argument and calculates the local
temperature matrix for the next step. This is the same equation as Equation 3.6 in
Chapter 3.2 where local_temp[step+ 1][y][x] = uk+1

x,y .

local_temp[step+ 1][y][x] = local_temp[step][y][x] + local_material[y][x]×
(local_temp[step][y − 1][x] + local_temp[step][y + 1][x]+

local_temp[step][y][x− 1] + local_temp[step][y][x+ 1]

−4 ∗ local_temp[step][y][x])

(4.1)

4.2.4 Border update

The border update is a method for applying the FTCS stencil in the borders instead
of using the border update.

The border updated is called on steps that has a rest-value of 1 to BORDER-1
when divided on BORDER. For step with rest-value of 1 the BORDER-1 rows
or columns closest to the local area is calculated. For step with rest-value 2 the
BORDER-2 rows or columns closest the local area are calculated... For step with
rest-value BORDER-1 the row or column closest to the local area are calculated.
This is an optimization since it is the column or row closest to the local area that
are needed for the FTCS solver but that takes its values from the column that are
one column or row further from the local area.

4.2.5 Boundaries

The boundaries method implements the Neumann boundary condition.

24 CHAPTER 4. HEAT EQUATION SOLUTION IN PARALLEL

4.3 Visual results

Visual result are very useful for error-checking. When you know how it should
look like it is easy to see if something is not correctly computed.

4.3.1 Correct output for size 256

Figure 4.3: The heat system at step 0: Mercury is the black field. The copper is at
the left and the tin is at the right. The Aluminum is at the back.

4.3. VISUAL RESULTS 25

Figure 4.4: The heat system at step 1280: Here you can see that the copper is a
better heat conductor than tin. The Aluminum is kept at 100 degrees Celsius. The
mercury is receiving heat from the other metals.

26 CHAPTER 4. HEAT EQUATION SOLUTION IN PARALLEL

Figure 4.5: The heat system at step 5280: Here is the temperature for the copper
and tin almost the same as for the mercury.

Figure 4.6: The heat system at step 22400: The aluminum is still kept at 100 degrees
Celsius.

4.3. VISUAL RESULTS 27

Figure 4.7: The heat system at step 75360: Here the aluminum is now longer kept
at 100 degrees celsius

Figure 4.8: The heat system at step 87200: The system has almost found equilib-
rium.

28 CHAPTER 4. HEAT EQUATION SOLUTION IN PARALLEL

4.3.2 Error examples

Here are some errors, and how the visualization gives clue of what is wrong. The
sizes 256, 512 and 1024 are not evenly divided into the grid sizes(see Chapter 4.4
Figure 4.12). This can be seen in Figure 4.9, where not all the rows or columns
are computed and sent to rank. Here you can see how the problem looks for 3
processes when only the y directions is affected. In figure 4.10 you see both y and
x direction is affected. The local area is shifted one left for each line and there
is zero-values in the end of where the areas should go. Changing the number of
processor used will often change how data is distributed, giving some headache
if you haven’t though of all the corner cases.

Figure 4.9: Row 256 not computed or sent to rank 0 for writing to file for 3 pro-
cesses. See the sudden drop in the back

In Figure 4.11 there is a problem with update_border method resulting in valleys
in the heat-distribution, where the borders are. This error was a result of using
the wrong local_temp buffers. The stencil was applied for local_temp[step+1]
using local_temp[step] when the correct buffers are to apply the stencil to lo-
cal_temp[step] using the data in local_temp[step-1]. Since the border thickness
was 2, the border_update method overwrote the results in the next step, decreas-
ing the shared border temperatures rapidly.

4.3. VISUAL RESULTS 29

Figure 4.10: Row 256 and column 256 not computed or sent to rank 0 for writing
to file for 9 processes

Figure 4.11: Error in the update_border method for step no. 1280, size 256 and
border thickness 2.

30 CHAPTER 4. HEAT EQUATION SOLUTION IN PARALLEL

4.4 Process layout

MPI are used to set up the dimensions using MPI_Dims_create as explained in
Chapter A.3.2. The Cartesian grid in the code is two-dimensional. The grids for
no of processes from 1 to 50 can be seen in Figure 4.12. Here you can see that the
processes are grouped as closely together as possible and still make an rectangle.
Therefore are grids with no processes that are prime numbers only 1 process wide.

no. of Processes y x no. of processes y x
1 1 1 26 13 2
2 2 1 27 9 3
3 3 1 28 7 4
4 2 2 29 29 1
5 5 1 30 6 5
6 3 2 31 31 1
7 7 1 32 8 4
8 4 2 33 11 3
9 3 3 34 17 2

10 5 2 35 7 5
11 11 1 36 6 6
12 4 3 37 37 1
13 17 1 38 19 2
14 7 2 39 13 3
15 5 3 40 8 5
16 4 4 41 41 1
17 17 1 42 7 6
18 6 3 43 43 1
19 19 1 44 11 4
20 5 4 45 9 5
21 7 3 46 23 2
22 11 1 47 47 1
23 23 1 48 8 6
24 6 4 49 7 7
25 5 5 50 10 5

Figure 4.12: Process layout for 1 to 50 processes with MPI where y is height and x
is width

4.4. PROCESS LAYOUT 31

In Figure 4.13 you can see a layout for 3 processes. The grid chosen for the 3
processes is a 3 by 1 grid. For 3 processes all the processes have boundaries in the
west and east with coords[1] = dims[1]-1 = 1-1 = 0.
Rank 0 have a north border with coords[0] = 0 and rank 2 have a south border with
coords[1] = dims[0] - 1 = 3-1 = 2 This means that borders are sent over north and
south borders. For a 256 times 256 system with border thickness 1 each local_temp
is 258 x 87 (SIZE + 2*BORDER)x(SIZE/3 + 1 +2*BORDER).

Figure 4.13: Layout with 3 processes.

32 CHAPTER 4. HEAT EQUATION SOLUTION IN PARALLEL

In Figure 4.14 you can see a layout for 8 processes. The grid chosen for 8 processes
is a 4 by 2 grid. Here borders are sent bought west/east and north/south. Here
rank 0, rank 2, rank 4 and rank 6 has coords[1] = 0 and therefore has a boundary
in the west. Rank 1, 3, 5 and 7 has coords[1] = dims[1]-1 = 2-1 = 1 and a boundary
in the east. Here the local area is 32 by 128 floats large with local_temp 34 by 130
floats large for BORDER 1 and SIZE 256.

Figure 4.14: Layout with 8 processes.

4.4. PROCESS LAYOUT 33

The grid for 16 processes is 4 by 4 as seen in Figure 4.15. Here we have 4 processes
that have 4 borders(rank 5,6,9 and 10) they need to send receive for each border
exchange.

Figure 4.15: Layout with 16 processes.

34 CHAPTER 4. HEAT EQUATION SOLUTION IN PARALLEL

4.5 Changing global variables

4.5.1 Changing size of the system

Changing the SIZE variable gives a bigger problem to solve since there are more
numbers to compute for each step. For example by changing the size from 256
to 512 are there four times more numbers to compute for each step. In a serial
version this would mean that the program would take four times more time to
solve the program with size 256 than with 512. The results for the parallel version
can be seen in Chapter 6.

4.5.2 Changing border thickness

Changing the border thickness means that the borders exchange method are called
fewer times but more data are sent each times. The values in the border are calcu-
lated on the steps where the borders exchange method are not called. This means
that the same amount of data are sent, but more numbers are calculated. The
results can be seen in 6.3.

4.5.3 Writing to file

Changing the WRITETOFILE constant makes the program create a file with the
given filename and write the content of the temperature matrix to that file.

4.5.4 NSTEPS and CUTOFF

Changing NSTEPS changes the number of steps the program executes. The more
steps are executed, the more time passes.

CUTOFF is the when to cut of the heat to the aluminum. Bigger size of CUTOFF
leads to that the external heat method being called more times.

4.6. OTHER EXAMPLES OF IMPLEMENTATIONS ON MULTIPLE PROCESSORS 35

4.6 Other examples of implementations on multiple processors

Parallelizing the serial version can be done by splitting the area into a grid or
strips. Here two examples of parallelization of heat solution with stripe-partition
is discussed.

4.6.1 HEAT2D Example - Parallelized C Version

One example is using a master / slave strategy to split the work up among the
slave processes [3]. This example is for a Dirichlet Problem where the edges are
kept at value 0.

The main matrix is split into strips of size n/slave-count by the master process
where slave-count is the number of slaves that is the number of processes minus
one (p-1). It the size is not evenly dividable the first n mod (p-1) get one extra row.
Then the neighbors (left and right) are sent to the slaves by the master together
with start and end point to compute, numbers of rows to compute, where those
rows start (offset) and initial values for u. The master process then waits until
the slaves are finished with the step and gets the result back by using standard
blocking MPI_Recv. When the result is received at the end and written to disk.

After that the slaves receive the data sent to them set up the start and end row
to compute out from the offset before it starts the steps. Each step starts with
exchanging boundaries before updating the local u matrix. When the steps are
done the result are returned to the master.

4.6.2 Horak and Gruber -
Parallel Numerical Solution of 2D Heat Equation

The paper by Horak and Gruber [9] splits the matrix into strips that are (n+2)/(number
of processes) high and n+2 wide, where n is the size of the matrix with border-
thickness 1. The borders are used for storing the border condition in, adding an
extra border where the row from the neighbor border is stored, so the stencil can
use the values locally, decreasing the need for message passing.

36 CHAPTER 4. HEAT EQUATION SOLUTION IN PARALLEL

4.7 Parallelized Versions Compared

The timed_heat version uses the MPI_Dims_create method discussed in Appendix
A.3.2 to create a grid that is as dense as possible. This makes it possible to test
with both gridded and striped partitions since dims can be preset before calling
the MPI_Dims_create method. For striped partitions only it is probably better to
do it like in the examples in Chapter 4.6 since the smaller code is faster to run.

The timed also uses a different solution to the system size not being evenly divid-
able by padding the local areas. This was done to ensure that the Data-type was
equal for all the processes but it is probably not necessary for them to be equal.
It seemed like a good idea at the time when the code was written. This does
probably not affect the runtime since the fastest process must wait on the slowest
anyway. But this does affect the use of memory so this a optimization problem
that should be fixed in the future.

Like the Horak and Gruber version[9] the timed_heat uses a border. But the
border in timed_heat can be changed. This is discusses in Chapter 4.5.2. The
timed_heat also uses a offset as in the form of the world coordinates local_origin
and rows as local area variable in the form of local_dims.

Like the "HEAT2D Example" the timed_heat as a sort of master slave strategy
where rank 0 collect the results and write them to file but rank 0 also does as
much work as the others.

Chapter 5

The Clustis3 and Numascale

The computers used in this thesis is named Clustis3 and Numascale and belongs
to NTNU IDI (Department of Computer Information Science).

5.1 Clustis3

Clustis3 is a cluster. Clusters are supercomputers that are a system of computers
connected together by a network. [14, p. 35]

Clusters have distributed memory so all communication must be done by mes-
saging. MPI (Message Passing Interface see Chapter 1.6) is made for distributed
memory systems like clusters.

Figure 5.1: Clustis3 architecture the computing part

Clustis3 was installed in 2009 so it is old in computer years and consist of 9 nodes
where 8 of them are used for computing and the last one is used for logging into
the computer. Each of the nodes is a ProLiant DL160GS Server with two E5405 2.0
GHz Quad-Core , 9GB FB-DIMM memory, 160GB SATA harddrive and two GbE

37

38 CHAPTER 5. THE CLUSTIS3 AND NUMASCALE

network cards. [6] This gives that Clustis has 8 cores times 8 nodes equals to 64
cores altogether, but only 5 of the nodes worked at the time of my testing which
resulted in only 40 cores being available. The architecture of the computing part
of Clustis3 can be seen in Figure 5.1.

In Chapter 6.1 you can see the run times at Clustis3.

5.2 Numascale

The Numascale is a mainframe computer meaning that the hardware is created
specifically for to be used for this. It is a shared memory system, but it also can be
used with MPI.

The Numascale has 5 nodes connected together with a hypertransport network.
Each node has two sockets with a AMD processor connected to it. Each processor
has 8 cores. Each node has 128GB of memory and a NVIDIA GTX980 Graphics
card. Each of these has 4GB of GDDR5 and uses PCI-E 3.0.

Figure 5.2: Numascale architecture

5.2. NUMASCALE 39

Numascale has two virtual CPUs per core by using SMT(simultaneous multi-
threading). With SMT threads switches after each instruction to make use of the
multiple functional units of the processor [14, p. 29]. This can give better or worse
runtimes depending on the program.

Chapter 6

Running Heat Equation on Clustis3 and
Numascale

The code used in these benchmark runnings on the two super computers Clustis3
and Numascale is discussed in this chapter. The code ran on multiple processors
can be found in Appendix C.1. For one process the heat.c code found in Appendix
C.2 is used.

6.1 Running heat equation on Clustis3 with different Sizes

On Clustis3 the code is run best with one process per core. This because of the
process context switch who is too slow, only making processes wait on each other.
This is common for older systems that doesn’t support rapid threadswitching[14,
p. 29]. To guarantee one processor per rank, I used one node for 1 to 8 processes,
two nodes for 9 to 16 processes, three for 17 to 24, four for 25 to 32 and five nodes
for 33 to 40 processes.

41

42 CHAPTER 6. RUNNING HEAT EQUATION ON CLUSTIS3 AND NUMASCALE

Figure 6.1: The runtime of different sizes on Clustis3

In Figure 6.1 the runtimes for one to forty processes for every sizes are compared.
You can see the runtime slowly decreases from one to eight processes and then
increases for higher number of processes with a lot of peaks and valleys.

When the size is doubled the amount of numbers to compute are quadrupled since
the system is of size n by n. However, even if the data set is quadrupled, the time
is only doubled between 256 and 512, and some more than doubled between 512
and 1024. This may be a sign that the processors aren’t using 100% of each CPU.

Node layouts with width of 2 (10, 14 and 18 processes) are typically faster. This is
explained in section 6.1.1.

One reason for 256 having higher runtimes for more than one node, can be that
the size is too small to benefit from using more processes on several nodes. The
communication costs are probably larger than the computational.

See figure 6.2 and 6.3 for more details.

6.1. RUNNING HEAT EQUATION ON CLUSTIS3 WITH DIFFERENT SIZES 43

Figure 6.2: The runtime with size 256 on Clustis3 using 1 to 5 nodes

Figure 6.3: The runtime with size 512 on Clustis3

44 CHAPTER 6. RUNNING HEAT EQUATION ON CLUSTIS3 AND NUMASCALE

Figure 6.4: The speedup of different sizes on Clustis3

In Figure 6.4 the speedup(TSerial

TParallel

1) for different sizes are posted. Here you can
see that size 1024 benefits more than one node.

In Figure 6.5 the efficiency (TSerial

TParallel×p
1
) of different sizes is posted. An efficiency

of 100% would be linear speedup. The speedup is almost linear for 1 node, but
when communication comes into the picture, the speedup staggers. It is clear
that the processors aren’t fully utilized for the smaller sizes. On the larger sizes
the CPU is utilized better, making the communication cost a smaller part of the
runtime, as seen as speedup gaps between the sizes.

1 where TSerial is runtime for 1 processor and TParallel is runtime for p processors

6.1. RUNNING HEAT EQUATION ON CLUSTIS3 WITH DIFFERENT SIZES 45

Figure 6.5: The efficiency of Different Sizes on Clustis3

6.1.1 The Node Layout

At first the results when using more than one node were slow. I decided to check
which node each of the processes ran on. This can be seen in Appendix D.1: "Node
Layout First Run".

I found out that for most layouts the processors all had neighbors on another
node. This was the worst possible layout, since all the traffic went from one node
to another, no internal node communication. Only the layouts with a width same
as the number of nodes, had neighbors on the same node. This explains why 10,
14, 16, 18, 21, 28, 32 35 and 40 processes had faster runtimes.

46 CHAPTER 6. RUNNING HEAT EQUATION ON CLUSTIS3 AND NUMASCALE

6.1.2 Using rankfiles

To decide the process layout, which node each process is located, one may use a
rankfile. There also exists execution flags for mpirun, but none of those gave the
desired effect for Clustis3.

The rankfile maps each processes to a node, a slot and a core that they run on.
The new layout is listed in Appendix D.2 "Node Layout Using Rankfiles". In the
rankfiles the processes is distributed in a way, such that the first 8 processes runs
on the first node, the next 8 on the second and so on. For number of processes that
are 3 wide like 9, 12 and 18 the first 6 goes on the first node and the next 6 on the
seconds. This way you minimize the messaging between the node.

Figure 6.6: The runtime without and with using rankfile on Clustis3

The runtime is seen in Figure 6.6. Here you see that the curve is smoother for the
runs marked "256 rf", "512 rf" and "1024 rf" (where rf is rankfile).

8 processes still got the fastest runtime for size 256. For size 512 the fastest runtime
is for 37 processes and for size 1024 there is a decrease for up to 28 processes with
23 as the fastest. The speedup in Figure 6.7 and the efficiency in Figure 6.8 give a
better picture of this.

15, 21, 25, 27, 30, 33, 35, 36, 39 and 40 processes has a bad layout with the rank-
files because of corners that make the process send two borders between different
nodes. This is easy to see as valleys for size 256 and 512 in the speedup graph in
Figure 6.7. Size 1024 is different. There is a large speedup for up to 24 processes.
Above 24 processors the speedup drops suddenly. This is most likely because the
cost of communication is higher than the benefit of more computational nodes.

6.1. RUNNING HEAT EQUATION ON CLUSTIS3 WITH DIFFERENT SIZES 47

Figure 6.7: The runtime without and with using rankfile on Clustis3

Figure 6.8: The runtime without and with using rankfile on Clustis3

48 CHAPTER 6. RUNNING HEAT EQUATION ON CLUSTIS3 AND NUMASCALE

6.2 Running heat on Numascale with different sizes

On Numascale the code is run with the "bind-to core"-flag for mpirun. The "bind-
to core"-flag binds each process to a core. I.e. rank 0 runs on CPU 0, rank 1 runs on
CPU 1, ..., rank n-1 runs on CPU n-1 and rank n runs on CPU n. Each CPU is a vir-
tual CPU, where each physical CPU has 2 virtual CPUs using SMT (simultaneous
multithreading, see Chapter 5.2).

Figure 6.9: The runtime of different sizes on Numascale

Figure 6.10: The runtime of different sizes on Numascale

The Figure 6.9 and 6.10 shows the results of running the heat system with size 256
to 1024 on Numascale. Here there is a decrease in time from 1 to 32 processes with
higher runtimes for processes that have a dense layout like 25 and a low for the
striped ones with odd-numbered processor count. The lowest runtime is for 29
processes. For more than 32 processes there is are higher runtimes because more
than 1 node is used. The difference is largest for size 256 since the cost of com-
municating over more than 1 node is much larger than the benefit of getting more

6.2. RUNNING HEAT ON NUMASCALE WITH DIFFERENT SIZES 49

computer power. The largest speedup can be seen around 32 processes Figure
6.13.

29 is a prime number. There is a small decrease for prime-numbered processes
that have a striped partition (y by 1 grid). There is also lower runtimes for prime-
numbered processes over 32. This is probably because some most send data to 2 to
4 other processes for each step while for the odd-numbered there is 1 to 2 processes
with a larger amount of data instead. The processes that are communicated with
are also closer for striped than dense because of the distribution of processes to
CPUs.

Figure 6.11: The speedup and efficiency of running different sizes on Numascale

The efficiency in Figure 6.11 also show that size 1024 is the most efficient with
better than linear speedup (efficiency is over 100% compared to the serial version).
Size 512 also have near 100% efficiency with 1 node. This probably comes from
that the serial times for size 512 and 1024 being a bit big since size 512 is 4.3 times
larger than size 256 and size 1024 is 7.5 times larger when both should be 4. But
general it is still that the bigger the size is the bigger the efficiency is.

6.2.1 Compared to Clustis3

The Numascale is newer and has faster hardware, making it the fastest of the two
computers. Clustis3 uses about twice the time on the serial version than Numas-
cale. The fastest time for each size is also 5 times slower with size 256 and 512. For
size 1024 it is about 4 times slower.

Both the Clustis3 runs and Numascale runs with different sizes shows that run-
ning on 1 node gives the best time if the size is not big as size 1024 on Clustis3 is.
In that way Numascale is better since it has 16 cores on each node while Clustis3
has 8.

The curve for Numascale is smooth like for the rankfiles on Clustis3(see Chapter
6.1.2) since the distribution of processes among cores is more favorable. Numas-

50 CHAPTER 6. RUNNING HEAT EQUATION ON CLUSTIS3 AND NUMASCALE

cale however favors striped partitions more than Clustis3 does.

It is visible that the network between the node is faster since there is a smaller drop
in the efficiency graph in Figure 6.11 after 32 than for 8 with Clustis3 in Figure 6.5.
For the smallest size 256 at Clustis3 there is a 60% drop after 8 processes, but for
Numascale there is only a 20% drop after 32 processes.

6.2.2 Splitting the workload into striped partitions on Numascale

When testing partition types, it looked like Numascale favored the striped parti-
tions best with different sizes. I also tested striped partitions with different sizes,
using number of processes that create a evenly dividable local area. The evenly
dividable numbers are 1, 2, 4, 8, 16, 32, 64 and 128.

The layout is changed for each runs with setting dims[0] to 1 or setting dims[1]
to 1. For 256 1*p, 512 1*p and 1024 1*p (vertical striped partitions) the layout is
with dims[0] = 1 meaning that the grid is 1 process high and p processes wide,
where p is no of processes. For 256 p*1, 512 p*1 and 1024 p*1 (horizontal striped
partitions) the layout is with dims[1] = 1 meaning that the grid is 1 process wide
and p processes high.

Figure 6.12: The speedup of running different sizes with horizontal and vertical
striped partitions on Numascale

In Figure 6.12 the speedup for a run with number of processes that create a evenly
dividable local areas are posted. The speedup shows that 32 processors that only
use 1 node gives the best speedup. Using 64 processes is really bad, even the
largest size. To get a better speedup, some of the tricks discussed in future work
(see Chapter 7.2) has to be used.

The horizontal striped has the best speedup overall for size 512 and 1024. For size

6.2. RUNNING HEAT ON NUMASCALE WITH DIFFERENT SIZES 51

256 the horizontal striped grids have the best for up to 32. The horizontal stripes
are the easiest to send computing wise, that is probably why it got the best results.
This is because the messages is of a simultaneous part of the local memory area.
32 processors for size 512 and 1024 got better time than 29 processors in the earlier
runs.

The vertical has the worst speedup for all sizes, except for 128 processes where it
is the same as for horizontal striped. The vertical stripes are the most complex to
send computing wise since the message consists of floats that are strided in the
local memory area.

The dense grid has a average speedup for all sizes, except for size 256 at 64 and 128
processes. The dense grid has both vertical and horizontal messages, explaining
the average speedup.

Figure 6.13: The efficiency of running different sizes with horizontal and vertical
striped partitions on Numascale

The efficiency in Figure 6.13 show what the largest sizes are most efficient with
the horizontal striped partition towards 32 processes, when the efficiency drops.

52 CHAPTER 6. RUNNING HEAT EQUATION ON CLUSTIS3 AND NUMASCALE

6.3 Changing size of Border

6.3.1 Without using rankfiles on Clustis3

Figure 6.14: The speedup and efficiency with different border thicknesses and size
256 on Clustis3 without using rankfiles

In Figure 6.14 you see the speedup(T _Serial
T _Parallel) and efficiency(Speedup

p) for size 256
on Clustis3. For up to 8 threads there is almost none difference in using borders
or not. For processes using more than one node there is a increase in speedup and
efficiency. Those of the processes that have neighbor processes on the same node
has a increase in speedup (that is for 10, 14, 16, 18, 21, 28, 32, 35 and 40). The
bigger the border, the bester the speedup is.

Border thickness 2 saves in average 10,35 seconds while 3 saves 3.45, 4 saves 1.7
and border thickness 5 saves 1.01 seconds in average for process 9 to 40 between
itself and the border thickness that is one narrower. This shows that border thick-
ness 2 is the most effective for this setup.

Figure 6.15: The speedup with different border thicknesses and size 512 on
Clustis3

6.3. CHANGING SIZE OF BORDER 53

Most of result for size 256 can also be seen for size 512 in Figure 6.14. 10, 14, 16,
18 and 32 has a large increase in speedup but 38 and 40 doesn’t have this large
increase the larger the borders are.

Figure 6.16: The speedup with different border thicknesses and size 1024 on
Clustis3

In Chapter 6.1 we saw that the graph for size 1024 was different. 21 has still the
highest speedup except from with border thickness .

54 CHAPTER 6. RUNNING HEAT EQUATION ON CLUSTIS3 AND NUMASCALE

6.3.2 With Rankfile on Clustis3

Figure 6.17 shows the border use gives a higher speedup with the rankfiles as
well. For size 256 and border thickness 4 and 5 a higher speedup than for 8 is
achieved. It is smoother with thicker borders. It is also lesser speedup increase to
achieve the thicker the borders get. By example is 4 and 5 very close but 1 and 2
is far apart.

Figure 6.17: The speedup with different border thicknesses and size 256 on
Clustis3

For size 512 seen in Figure 6.17 there is the same results as for size 256. The curve
is even more smooth since layout becomes less important for bigger border thick-
nesses.

For most of the results that good results in 6.3.1 there is a valley because of the
rankfile creating worse layouts. For example 35 processors has a big valley since
it has a corner where it has to send to another node two times.

Figure 6.18: The speedup with different border thicknesses and size 512 on
Clustis3

Size 1024 in Figure 6.19 has a visible increase in speedup with border thickness 2
but for each increase in border thickness the increase is reduces. The graphs are

6.3. CHANGING SIZE OF BORDER 55

similar as for the border thickness 1 but gets a bit smoother as for size 256 and 512.

There is one exception with border thickness 3 on 21 processors that may be a
disturbance since the rest of the border thicknesses has an improvement for 21
processes.

Figure 6.19: The speedup with different border thicknesses and size 1024 on
Clustis3

Size Average 1 to 2 Average 2 to 3 Average 3 to 4 Average 4 to 5
256 10.35 sec 3.45 sec 1.70 sec 1.01 sec
512 10.60 sec 4.18 sec 0.57 sec 1.61 sec

1024 11.20 sec 0.17 sec 4.12 sec 1.76 sec

Figure 6.20: Average difference between border thicknesses for 9 to 40 processes

Figure 6.20 shows that border thickness 2 is the most effective and that the time
saved decreases for each increase in border thickness. The timed saved is about
the same for all the sizes witch gives that the time saved is not directly related to
size.

56 CHAPTER 6. RUNNING HEAT EQUATION ON CLUSTIS3 AND NUMASCALE

6.3.3 Numascale

For size 256 seen in Figure 6.21 the border thickness 2 and 3 is an improvement
for all number of processes. With border thickness 4 there is an improvement for
dense layouts and decline in speedup for the ones that are one wide witch create a
more smooth graph since the layout gets less important. Border thickness 5 is even
slower for up to 32 processes. For over 33 processes the border thicknesses 4 and
5 is slower for the layouts that are 1 wide but gives a higher speedup elsewhere.
5 has the highest speedup most of the time.

Figure 6.21: The speedup and efficiency with different border thicknesses and size
256 on Numascale

For size 512 the border with thickness 2 gives increase in speedup for most number
of processes. Higher border thickness gives decreasing or small speedups.

Number of Processes that are prime-numbered and that are 23 or higher has a
decrease or very small increase in speedup with border thickness over 1.

Figure 6.22: The speedup and efficiency with different border thicknesses and size
512 on Numascale

6.3. CHANGING SIZE OF BORDER 57

For size 1024 gives border thickness 2 an increase in the speedup while 3 gives a
worsening. Border thickness 4 gives the best speedup for some of the number of
processes while border thickness 5 is worse than 4 for all number of processes.

Using thicker borders have a better effect for over 32 processes on Numascale with
size 1024.

Figure 6.23: The speedup and efficiency with different border thicknesses and size
1024 on Numascale

Size Average 1 to 2 Average 2 to 3 Average 3 to 4 Average 4 to 5
256 3.35 sec 1.88 sec 1.70 sec 1.01 sec
512 0.38 sec -0.09 sec 0.81 sec -0.87 sec

1024 2.92 sec 0.17 sec 0.96 sec -1.74 sec

Figure 6.24: Average difference between border thicknesses for 33 to 50 processes

Figure 6.24 shows that the time saved on using border with different sizes. Size
256 saved the most time in using borders on more than 32 processes.

Compared to Clustis3

Borders on Numascale doesn’t make such a big difference as on Clustis3. That is
probably because the cores on Numascale is already well utilized with the multi-
threading(see Chapter 5.2).

58 CHAPTER 6. RUNNING HEAT EQUATION ON CLUSTIS3 AND NUMASCALE

6.4 Writing to file

The number of processes run should not impact writing to file times since writing
to file is done by rank 0. All the is sent to rank 0 for all the runs so the extra time
needed is actually the time rank 0 uses to write to file since the rest of the processes
must wait on rank 0 to finish the task.

6.4.1 Numascale

For Numascale there is used 29 threads.
Size Time 29 processes with write to file Time 29 processes Difference
256 3.88 sec 3.00 sec 0.88 sec
512 11.60 sec 9.50 sec 2.10 sec

1024 44.96 sec 36.42 sec 8.55 sec

The difference in time between size 256 and 512 is 2,4 times slower and between
512 and 1024 it is 4 times slower. The 4x between 512 and 1024 indicates that this
can be linear but more data is needed for determining that.

6.4.2 Clustis3

For Clustis3 there is used 8 processes.

Size Time 8 processes with write to file Time 8 processes Difference
256 27.57 sec 14.81 sec 12.76 sec
512 90.86 sec 54.85 sec 36.02 sec

1024 256.03 sec 213.94 sec 42.09 sec

The difference in time between size 256 is 2.82 times bigger than for 512 and the
time between size 512 and 1024 is 1.17 times bigger. This indicates that the differ-
ences in time is not linear.

6.4.3 Write time compared

The differences in time between Numascale and Clustis3 are large. The Clustis3
uses 5 to 17 more time to store than Numascale. This is because of the storing
device for Clustis3 is farther away since Clustis3 is a cluster and Numascale is a
mainframe.

6.5. MAX MIN AND RUNTIMESTABILTY 59

6.5 Max min and runtimestabilty

All results are a mean of at least 20 runs. This amount is kept as low as possible
to have time to run the code with as many different changes as possible and high
enough to avoid that single runs make a big impact on the results. The parts with
the large differences gives runtimes that are the least trustworthy timings.

Figure 6.25: Min, max and average runtimes for size 1024 on Clustis3

Figure 6.26: Min, max and average runtimes for size 1024 on Numascale

Size 1024 had the biggest time differences for both the computers with the larger
number of processes seen in Figure 6.25 for Clustis3 and Figure 6.26 for Numas-
cale. For Numascale is there is also some runs with the smaller number of pro-
cesses that created a small dent in the average graph.

Chapter 7

Conclusions and future work

7.1 Conclusions

Comparing Numascale and Clustis3, you can see that larger and newer computers
are faster, however the design of the parallel program is also important to achieve
effective and low runtimes. An example can be seen in Chapter 6.1, where the
the distribution of processes among cores was important for the best runtime for
Clustis3. Numascale gets the best results with horizontal striped partitions us-
ing one node, as discussed in Chapter 6.2.2. Increasing the border thickness on
Clustis3 gives faster runs, but does not work well for Numascale, probably be-
cause of simultaneous multithreading (SMT), see Chapter 6.3.

When calculating small samples (heat equation sizes) of data, both Clustis3 and
Numascale does a lot better only using one node with maximum CPUs on that
node. This is because of the communication cost has a higher time penalty than
doing the calculations locally. Keeping communication low between nodes is cru-
cial, optimizing and minimizing the exchanged data. On larger data sets the dis-
tribution costs grows short compared to the calculations. Distribute the data in
such a way that every node and core has an equal amount of work, is another
way to decreasing communication.

Benchmarking is hard. A lot of variables makes it difficult to find what is re-
ally interesting. The difference computer architectures makes it hard to compare
different computers. However there are many good benchmarking tools, but all
require optimization to get the best results.

61

62 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Future work

7.2.1 Testing without SMT

Turning SMT (simultaneous multithreading) off on Numascale might give bet-
ter runtimes since SMT depends on the problem [14, p. 29]. Increasing border-
thickness probably gets better results on Numascale with the SMT off.

7.2.2 Different benchmarking

Using different benchmarking techniques and comparing the results between the
to computers. Other benchmarking could be FLOPS (Floating points per second),
Linpack and many more. It is important to remember that different super com-
puters have different architecture, making a direct number compare between two
computers wrong.

7.2.3 Measuring communication

Optimize memory and communication usage. By focusing on the memory usage
and how much time is spent communicating, you could find how effective the
programs are in those terms, and most likely get more power out of the computers.

7.2.4 Benchmark power usage

Green computing is on the rise and energy usage is now more critical than ever.
The effectiveness of a super computer per Watt is increasingly important to help
with the worlds pollution problems. It can also be an economical initiative to keep
the power consumption lower.

7.2.5 Comparing MPI to P-threads or OpenMP on Numascale

Since Numascale has a shared memory architecture, it would be interesting to
compare the MPI version with a P-thread version. Most likely the P-thread and
OpenMP versions would be faster, since they are made for shared memory.

7.2.6 Optimizations

Here are some suggested optimizations for the code.

7.2.7 Striped partitions

The code tested uses different dimension for splitting up the workload. A pro-
gram that only splits the area in horizontal stripes is much easier to compute since
it is easier to write and does less in the set up phase. It would probably therefore

7.2. FUTURE WORK 63

take less time to compute. This was also the split up that gave the best result for
Numascale, see Chapter 6.2.2.

Non-even dividable areas solution

The size of the system is only evenly dividable on a few numbers (1, 2, 4, 8, 16,
32, 64, ...). Therefore there is some rows or columns that are leftover. This can be
solved by adding one more row or column to the local area. To get equal size for
the local areas the local area can be padded.

A solution that may be better, and is easy to implement with the striped partitions,
is to start with the first processor and give one more row until there are no more
leftovers left so the processors have different local areas. This would be nice to
compare with the padded solution.

7.2.8 Optimizing for L cache

Optimizing for the different L1-L3 caches may increase the performance of the
program and give you a better speedup.

References

[1] M. Anderson, “Better Benchmarking for Supercomputers,” IEEE Spectrum,
vol. 48, no. 1, pp. 12 – 14, 2011. [Online]. Available: http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?arnumber=5676366

In this article Mark Anderson arguments why gigateps also should
be a benchmark.

[cited at p. 13]

[2] S. Balaji and W. Feng, “Understanding Power Measurement Implications in
the Green500 List,” 2010, pp. 245 – 251.

Article about measuring power(FLOPS/watt) for supercomputers

[cited at p. 13]

[3] B. Barney and G. L. Gusciora, “Heat2d example - parallelized c
version,” 2013. [Online]. Available: https://computing.llnl.gov/tutorials/
mpi/samples/C/mpi_heat2D.c

Heat parallized 2D example

[cited at p. 35]

[4] J. J. Dongarra, P. Luszczek, and A. Petitet. (2001) The LINPACK Benchmark:
Past Present and Future. [Online]. Available: http://www.netlib.org/utk/
people/JackDongarra/PAPERS/hpl.pdf

Paper about LINPACK and the different variations of the LIN-
PACK benchmark.

[cited at p. 12]

[5] eFunda, “Heat equation (temperature determination),” 2015. [Online].
Available: http://www.efunda.com/formulae/heat_transfer/conduction/
overview_cond.cfm

65

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5676366
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5676366
https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_heat2D.c
https://computing.llnl.gov/tutorials/mpi/samples/C/mpi_heat2D.c
http://www.netlib.org/utk/people/JackDongarra/PAPERS/hpl.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/hpl.pdf
http://www.efunda.com/formulae/heat_transfer/conduction/overview_cond.cfm
http://www.efunda.com/formulae/heat_transfer/conduction/overview_cond.cfm

66 REFERENCES

This webpage tells how to find the thermal diffusivity

[cited at p. 16]

[6] A. C. Elster. (2011). [Online]. Available: http://www.idi.ntnu.no/~elster/
tdt4200/f2011/tdt4200-f2011-lec01-02.pdf/

Lecture about the computers at IDI NTNU

[cited at p. 38]

[7] R. Fish, “The future of computers - Part 1:
Multicore and the Memory Wall,” 2011. [Online].
Available: http://www.edn.com/design/systems-design/4368705/
The-future-of-computers--Part-1-Multicore-and-the-Memory-Wall

Article about the history of processors which explain the limits in
different ways to solve memory wall.

[cited at p. 2]

[8] J. L. Gustafson. (1988) Reevaluating Amdahl’s law. [Online].
Available: http://mprc.pku.edu.cn/courses/architecture/autumn2005/
reevaluating-Amdahls-law.pdf

In this paper Gustafson suggest a new law for speedup instead of
Amdahls law.

[cited at p. 5]

[9] V. Horak and P. Gruber, “Parallel Numerical Solu-
tion of 2-D Heat Equation,” in Parallel Numberics ’05,
https://www.cosy.sbg.ac.at/events/parnum05/book/horak1.pdf, 2005,
pp. 47 – 56.

This paper suggest a numerical solution of the two dimensional
heat equation for both single processor and parallel processors.

[cited at p. 15, 17, 35, 36]

[10] J. J. D. jr, J. R. Bunch, and G. W. Stewart, LINPACK Users’ Guide. SIAM, 1979.

User Guide for LINPACK. Tells the history about the LINPACK
benchmark

[cited at p. 11]

[11] E. Kreyszig, Advanced Engineering Mathematics 9th. Wiley, 2006.

http://www.idi.ntnu.no/~elster/tdt4200/f2011/tdt4200-f2011-lec01-02.pdf/
http://www.idi.ntnu.no/~elster/tdt4200/f2011/tdt4200-f2011-lec01-02.pdf/
http://www.edn.com/design/systems-design/4368705/The-future-of-computers--Part-1-Multicore-and-the-Memory-Wall
http://www.edn.com/design/systems-design/4368705/The-future-of-computers--Part-1-Multicore-and-the-Memory-Wall
http://mprc.pku.edu.cn/courses/architecture/autumn2005/reevaluating-Amdahls-law.pdf
http://mprc.pku.edu.cn/courses/architecture/autumn2005/reevaluating-Amdahls-law.pdf

REFERENCES 67

Math book

[cited at p. 15]

[12] OpenMPI. (2015). [Online]. Available: http://www.open-mpi.org/doc/

Documentation for Open MPI. Open MPI version 1.3 and 1.8 is the
MPI software installed in Clustis3 and Numascale

[cited at p. 7, 71, 72, 73, 74, 75, 76, 77]

[13] P. Pacheco, Parallel programming with MPI. Morgan Kaufmann, 1997.

Book about the fundamentals in parallel programming with MPI
examples

[cited at p. 8]

[14] ——, An Introduction to Parallel Programming. Morgan Kaufmann, 2011, iSBN
978-0-12-374260-5.

Book about the fundamentals in parallel programming.

[cited at p. 1, 2, 6, 7, 8, 9, 37, 39, 41, 62, 71, 72, 73, 74, 75, 76, 77]

[15] D. A. Patterson. (2006) Future of Computer Architecture. [Online]. Avail-
able: http://www.slidefinder.net/f/future_computer_architecture_david_
patterson/patterson/6912680

Slides from a talk David A. Patterson held in February 2006 talk-
ing about the change in Computer Architecture over time and new
limitation (or so called walls) in architecture

[cited at p. 1]

[16] N. Satish, C. Kim, J. Chhugani, and P. Dubey, “Large-Scale Energy-Efficient
Graph Traversal: A Path to Efficient Data-Intensive Supercomputing,” in
2012 International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC). IEEE, November 2012, pp. 1 – 11. [Online]. Available:
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6468457

This paper is about gigaTEPS and the Graph500 benchmark. It
talkes about why the gigaTEPS exist and how to implement it

[cited at p. 13]

[17] T. R. Scogland, C. P. Steffen, T. Wilde, P. Florent, S. Coghlan, N. Bates, W.-c.
Feng, and E. Strohmaier, “A Power-Measurement Methodology for Large-
Scale, High-Performance Computing,” 2014, pp. 149 – 159.

http://www.open-mpi.org/doc/
http://www.slidefinder.net/f/future_computer_architecture_david_patterson/patterson/6912680
http://www.slidefinder.net/f/future_computer_architecture_david_patterson/patterson/6912680
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6468457

68 REFERENCES

This paper talks about how to measure power and benchmarking
in general.

[cited at p. 11, 13]

[18] Top500. (2014) Linpack Benchmark. [Online]. Available: http://www.
top500.org/project/linpack/

About the Linpack Benchmark and why it was choosen for the
Top500 list

[cited at p. 12]

http://www.top500.org/project/linpack/
http://www.top500.org/project/linpack/

Appendices

69

Appendix A

MPI functions

A.1 Structure functions

A.1.1 MPI_Init

MPI_Init takes in pointers to argc and argv and initializes MPI.[12] No MPI rou-
tines should be called before MPI_Init. (tells the MPI system to do all of the nec-
essary setup[14, p. 86] like define MPI_COMM_WORLD)

After the initialization MPI_Comm_size and MPI_Comm_rank are called to get
the size and rank for the processes. Size is the total number of processes and rank
is the process number that are unique for each process and is a number from 0 to
size-1. The rank is the identification of each process. The rank and size is used for
messaging purposes.

A.1.2 MPI_Finalize

MPI_Finalize cleans up all the MPI states and must be called by all processes be-
fore exit.[12] No MPI routines should be called after MPI_Finalize.

A.2 Send and receive

All communication between nodes are done through messages. There are a num-
ber of different send and receive methods for different purposes. MPI_Send,
MPI_Recv, MPI_Sendrecv and MPI_Isend are the ones used by the timed_heat
code in Chapter C.1.

71

72 APPENDIX A. MPI FUNCTIONS

A.2.1 Modes

There are four modes for MPI sends. Standard, synchronous, ready and buffered.
[14, p. 323]

Standard

In standard mode the MPI implementation chooses between blocking or copy the
message to its own storage[14, p. 323]. MPI_Send is a standard send and is block-
ing in open-mpi[12].

Synchronous

Blocks until a matching receive is posted[14, p. 323]. MPI_Ssend is a synchronous
send.

Ready

Recieve must be posted before the send[14, p. 323]. MPI_Rsend is a ready send.

Buffered

A copy of the message is buffered if a matching receive hasn’t been posted[14,
p. 323]. The buffer is provided by the user not the MPI implementation. MPI_Bsend
is a blocking send.

A.2.2 MPI_Send

MPI_Send is a blocking send. [12]. With blocking means that the program will
hang until receive is posted. This method has six parameters: buf, count, datatype,
dest, tag and comm.

• buf is the address to the buffer you are sending from

• count is the number of elements you are sending

• datatype is the MPI data-type of the elements you are sending

• dest is process you are sending to

• tag is an integer message tag

• comm is the communicator (see chap A.2.5)

A.2. SEND AND RECEIVE 73

A.2.3 MPI_Recv

MPI_Recv is a standard mode blocking receive[12]. With blocking means that the
program will hang until the receive has a matching send(see 1.6.5). This method
has seven parameters: count, datatype, source, tag, comm, buf and status

• count is the maximum number of element to receive

• datatype is the data-type of the elements you are receiving

• source is the process you are receiving from

• tag is a integer message tag

• comm is the communicator (see chap A.2.5)

• buf is the buffer to save the elements in

• status is a structure explained in chap A.2.3.

MPI_Status

The MPI Status is a structure with at least three variables: MPI_SOURCE, MPI_TAG
and MPI_ERROR. MPI_SOURCE is the rank that sent the message and MPI_TAG
is the tag sent. MPI_ERROR is an code for identifying errors. MPI_Get_count
method can be used to get the count of elements received.[14, p. 92-93] With
the MPI_STATUS_IGNORE argument this part of functionality of the MPI_Recv
method is ignored.

A.2.4 MPI_Sendrecv

MPI_Sendrecv is method that is a combination of MPI_Send and MPI_Recv and
prevents deadlocks when dealing with cyclic dependencies since the subsystem
deals with instead of the user [12]. MPI_Sendrecv has ten parameters: send-
buf, sendcount, sendtype, dest, sendtag, recvcount, recvtype, source, recvtag and
comm.

• sendbuf is the buffer to send from

• sendcount is number of elements to send

• sendtype is the send MPI datatype

• dest is the destination rank

• sendtag is the integer message tag for sending

• recvcount is the max number of elements to receive

74 APPENDIX A. MPI FUNCTIONS

• recvtype is the datatype of the elements to be received

• source is rank that you are receiving from

• recvtag is the integer receive message tag

• comm is the communicator (see chap A.2.5)

A.2.5 Communicator

MPI_Comm_size and MPI_Comm_rank uses a communicator as an argument.
A communicator is a a collection of processes that can send messages to each
other[14, p. 87]. MPI_COMM_WORLD is the communicator used for all the pro-
cess and is set up by MPI_Init.

MPI_Cart_create

Set up a new communicator for Cartesian topology with information for the topol-
ogy attached.[12] Takes in six parameters: old_comm, ndims, dims, periods, re-
order and comm_cart:

• old_comm is the old communicator

• ndims is the number of dimensions in the Cartesian grid

• dims is the size of the dimensions in the grid

• periods is a array with booleans of ndims size to specify if the grid is periodic
or not

• reorder is a boolean to tell if the ranks can be reordered or false if the new
group is identical to the old one.

• comm_cart is the new communicator

The MPI_Cart_create method is used in timed_heat to create a communicator
called cart that is used in the MPI_Sendrecv methods in border_exchange and to
get information about the topology through using the MPI_Cart_coords method
that is used to store the data in the right place in the collect_area method.

MPI_Cart_coords

MPI_Cart_coords returns the coordinates for a process in a Cartesian topology
communicator. [12] Has four parameters: comm, rank, maxdims and coords

• comm is the communicator for the Cartesian topology

A.2. SEND AND RECEIVE 75

• rank is the process number

• maxdims is the length of vector coordinate in the calling program

• coords is the out-parameter and is a integer array of size ndims(as created
with MPI_Cart_create)

MPI_Cart_shift

MPI_Cart_shift returns the shifted source and destination ranks and is often used
together with MPI_Sendrecv in a Cartesian process topology. [12] Has five param-
eters: comm, direction, disp, rank_source and rank_dest

• comm is a communicator with an Cartesian structure

• direction is the direction the shift is performed and is a coordinate dimen-
sion

• disp is the displacement. Negative numbers gives upward shift and positive
downward shift.

• rank_source is the rank of the source process

• rank_dest is the rank of the destination process

MPI_Cart_shift is used in timed_heat to get the north, south, west and east rank
by shifting downward in both directions.

A.2.6 Collective Communication

Collective communication is when more than two processes are involved in the
same communication function.

MPI_Reduce

Perform a global reduce operation on all members on a communicator and stores
the result on the root specific rank[12]. Exists also a MPI_Allreduce that stores the
result on all the processes[14, p. 106].

MPI_Bcast

Broadcast data from one process to all the other processes in the communicator
[14, p. 106].

76 APPENDIX A. MPI FUNCTIONS

MPI_Scatter

Split a vector into pieces and scatter them among the processes starting with pro-
cess 0[14, p. 111].

MPI_Gather

Gather pieces of vector on one process[14, p. 112]. Opposite of MPI_Scatter. Exist
also a Allgather method that gathers from all processes and distributes it to all
processes[12].

MPI_Alltoall

All processors send same type and amount to each other[12].

A.3 Other functionality used

A.3.1 Data-types

Datatypes is used to make it easier to send areas of data between processes.

MPI_Type_vector

MPI_Type_vector takes in five parameters: count, blocklength, stride, oldtype and
create a vector data-type. A vector data-type means a data-type that are blocks of
equal data-type in strides. [12]

• count is number blocks in the new datatype

• blocklength is number of elements in each block

• stride is the number of elements between start of each block

• oldtype is the datatype of the elements

• newtype is the handle to the datatype

MPI_Type_commit

MPI_Type_commit takes in a data-type as a parameter and is called so that data-
type can be used to communicate the the content of the matrices in timed_heat(Chapter
C.1) with different addresses.[12]

A.3.2 Setting up dimensions

MPI_Dims_create are used to set up the dimensions in the code.

A.3. OTHER FUNCTIONALITY USED 77

MPI_Dims_create

MPI_Dims_create takes in three parameters: nnodes, ndims and dims.

• nnodes is an integer and is the number of nodes in a grid.

• ndimes is an integer and is the number of Cartesian dimensions.

• dims is an integer array of size ndimes that specifies the number of nodes in
each dimension

MPI_Dims_create helps to select a balanced distribution of processes in Cartesian
grid there the dimensions are set to be as close to each other as possible. If a
number in ndimes are set to be a positive integer before calling MPI_Dims_create
that number will not be changed. Negative numbers will cause an error. [12]

A.3.3 Time measurement

Time measurement is taken using MPI_Wtime. MPI_Wtime is called right after
initiation of MPI and right before finalization of MPI to create a time measure that
include as much of the program as possible. MPI_Barrier(MPI_COMM_WORLD)
is called before each MPI_Wtime call to ensure that all the ranks are at place in the
program. Time from rank 0 is used in measurements since rank 0 is used as the
master(see Chapter 1.6.4)

MPI_Wtime

Has no parameters and return the time since an arbitrary time in seconds as a
floating-point number. Times returned are local to the different nodes that called
them[12].

MPI_Barrier

MPI_Barrier takes in a communicator as a parameter and blocks until all processes
in the communicator has called it[14, p. 122].

Appendix B

Pseudo Code

Algorithm 1 Serial version of the numerical solution

double[n+2][n+2] u_k1, u_k;
double c, delta_t, delta_s;
Initalize u_k1, u_k with initial values
for all steps do

for i=0;i<n;i++ do
for j=0;j<n;j++ do

u_k1 = u_k + c× ∆t
(∆s)2 × (u_k[i+ 1, j] + u_k[i− 1, j]+

u_k[i, j + 1] + u_k[i, j − 1]− 4× u_k[i, j])
end for

end for
Update boundary conditions
Swap u_k and u_k1

end for

79

80 APPENDIX B. PSEUDO CODE

Algorithm 2 main method

1: function MAIN(argc argv)
2: Initialize MPI
3: Start Timing
4: Set up dimension
5: Set up cart communication
6: Find local_dims
7: if SIZE is not evenly divided into dims[0] then
8: Increment local_dims[0] for all ranks
9: Find new SIZE for height

10: Find computing area for ranks at the bottom for all the padding
11: end if
12: if SIZE is not evenly divided into dims[1] then
13: Increment local_dims[1] for all ranks
14: Find new SIZE for width
15: Find computing area for ranks at the rightmost side for all the padding
16: end if
17: Set up and Initialize matrices
18: Initialize values for local matrices
19: Commit Vector types for border exchange
20: for all steps do
21: if step < CutOff then
22: Set heated area to 100 degrees Celsius on local matrix
23: end if
24: if step%BORDER == 0 then
25: BORDER_EXCHANGE(step)
26: else
27: BORDER_UPDATE(step)
28: end if
29: FTCS_SOLVER(step)
30: BOUNDARIES(step)
31: if step%SHAPSHOT == 0 then
32: Create Filename for file to be printed
33: COLLECT_AREA(step, filename)
34: end if
35: end for
36: End Timing
37: Free up memory
38: Finalize MPI
39: print out the result of the timing to screen
40: end function

81

Algorithm 3 Border exchange

1: function BORDER_EXCHANGE(step)
2: Send my content of border size to the west and receive from the east
3: Send my content of border size to the east and receive from the west
4: Send my content of border size to the north and receive from the south
5: Send my content of border size to the south and receive from the north
6: end function

Algorithm 4 FTCS_solver

1: function FTCS_SOLVER(step)
2: for y = 0→ largest local y do
3: for x = 0→ largest local x do
4: Apply stencil for local_temp[step+1][y][x]
5: end for
6: end for
7: end function

82 APPENDIX B. PSEUDO CODE

Algorithm 5 Border update

1: function BORDER_UPDATE(step)
2: my = largest local y and mx = largest local x
3: if has neighbor in the west then
4: for x = step%BORDER−BORDER→ x = −1 do
5: for all y do
6: Apply stencil for local_temp[step][y][x]
7: end for
8: end for
9: end if

10: if has neighbor in the west then
11: for x = mx+BORDER− step%BORDER→ mx+ 1 do
12: for all y do
13: Apply stencil for local_temp[step][y][x]
14: end for
15: end for
16: end if
17: if has neighbor in the north then
18: for y = step%BORDER−BORDER→ −1 do
19: for all x do
20: Apply stencil for local_temp[step][y][x]
21: end for
22: end for
23: end if
24: if has neighbor in the north then
25: for y = my +BORDER− step%BORDER→ my + 1 do
26: for all x do
27: Apply stencil for local_temp[step][y][x]
28: end for
29: end for
30: end if
31: end function

83

Algorithm 6 Collect Area

1: function COLLECT_AREA(step, filename)
2: Send local_temp data to rank 0
3: if rank == 0 then
4: receive and store data in temperature matrix
5: if (thenWRITETOFILE)
6: open new out file with name filename
7: write content of temperature matrix to out file
8: close file
9: end if

10: end if
11: Wait for rank 0 to finish
12: end function

84 APPENDIX B. PSEUDO CODE

Algorithm 7 Boundaries

1: function BOUNDARIES(step)
2: if Rank has a west boundary then
3: Apply stencil for local_temp[step+1][y][0] using local_temp[step][y][1]
4: twice instead of local_temp[step][y][-1]
5: end if
6: if Rank has a east boundary then
7: Apply stencil for local_temp[step+1][y][largest local x] using
8: local_temp[step][y][largest local x - 1] twice instead of
9: local_temp[step][y][largest local x + 1]

10: end if
11: if Rank has a north boundary then
12: Apply stencil for local_temp[step+1][0][x] using local_temp[step][1][x]
13: twice instead of local_temp[step][-1][x]
14: end if
15: if Rank has a south boundary then
16: Apply stencil for local_temp[step+1][largest local y][x] using
17: local_temp[step][largest local y - 1][x] twice instead of
18: local_temp[step][largest local y + 1][x]
19: end if
20:
21: if my local_temp contains the 0, 0 corner of the whole system then
22: Apply stencil for that corner using local_temp[step][1][0] and
23: local_temp[step][0][1] twice
24: end if
25: if my local_temp contains the 0, SIZE-1 corner of the whole system then
26: Apply stencil for that corner using local_temp[step][1][largest local x]
27: and local_temp[step][0][largest local x - 1] twice
28: end if
29: if my local_temp contains the SIZE-1, 0 corner of the whole system then
30: Apply stencil for that corner using local_temp[step][largest local y][1]
31: and local_temp[step][largest local y - 1][0] twice
32: end if
33: if my local_temp contains the SIZE-1, SIZE-1 corner of the whole system

then
34: Apply stencil for that corner using
35: local_temp[step][largest local y - 1][largest local x] and
36: local_temp[step][largest local y][largest x - 1] twice
37: end if
38: end function

Appendix C

Source Code

The following chapter includes the most important source code files.

C.1 Benchmarkingexample: Heat equation solved by FTCS

The Code is from TDT4200 Parallel Programming course fall 2010 and is writ-
ten by Jan Christian Meyer with exception of methods that I have added that are
update_border and logTime plus line 437 to 458 for reading arguments for the
program and starting timing, 468 to 515 for padding the local areas, 561 to 563 for
end time measuring and 570 to 574 for calling logTime method.

Listing C.1: Heat
1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <stdbool . h>
4 # include <tgmath . h>
5 # include <mpi . h>
6
7 /∗
8 ∗ P h y s i c a l q u a n t i t i e s :
9 ∗ k : t h e r m a l c o n d u c t i v i t y [Watt / (met e r K e l v i n)]

10 ∗ rho : d e n s i t y [kg / met e r ^3]
11 ∗ cp : s p e c i f i c h e a t c a p a c i t y [k J / (kg K e l v i n)]
12 ∗ rho ∗ cp : v o l u m e t r i c h e a t c a p a c i t y [J o u l e / (me t e r ^3 K e l v i n)]
13 ∗ a l p h a = k / (rho∗cp) : t h e r m a l d i f f u s i v i t y [met e r ^2 / s e c o n d]
14 ∗
15 ∗ Mercury :
16 ∗ cp = 0 . 1 4 0 , rho = 13506 , k = 8 . 6 9
17 ∗ a l p h a = 8 . 6 9 / (0 .140∗13506) =~ 0 .0619
18 ∗
19 ∗ Copper :
20 ∗ cp = 0 . 3 8 5 , rho = 8960 , k = 401
21 ∗ a l p h a = 401 .0 / (0 . 3 8 5 ∗ 8960) =~ 0 . 1 2 [0 . 1 1 6 2 4 5 3 6 1 8]
22 ∗
23 ∗ Tin :
24 ∗ cp = 0 . 2 2 7 , k = 67 , rho = 7300
25 ∗ a l p h a = 6 7 . 0 / (0 . 2 2 7 ∗ 7300) =~ 0 .040
26 ∗
27 ∗ Aluminium :

85

86 APPENDIX C. SOURCE CODE

28 ∗ cp = 0 . 8 9 7 , rho = 2700 , k = 237
29 ∗ a l p h a = 237 / (0 . 8 9 7 ∗ 2700) =~ 0 .098 [0 . 0 9 7 8 5 7 0 5 4]
30 ∗/
31 # define MERCURY 0.0619
32 # define COPPER 0 .116
33 # define TIN 0 .040
34 # define ALUMINIUM 0.098
35
36
37 /∗ S i z e o f t h e c o m p u t a t i o n a l g r i d − 256 x256 s q u a r e ∗/
38 # define SIZE 256
39
40 /∗ Write t o F i l e 1= t r u e and 0= f a l s e ∗/
41 # define WRITETOFILE 0
42
43 /∗ P a r a m e t e r s o f t h e s i m u l a t i o n : how many s t e p s , and when t o c u t o f f t h e h e a t ∗/
44 # define NSTEPS 125000
45 # define CUTOFF 75000
46
47 /∗ How o f t e n t o dump s t a t e t o f i l e (s t e p s) .
48 ∗ 16 i s r e a l t i m e a t 25 f p s , t h i s i s in 10x t ime
49 ∗/
50 # define SNAPSHOT 160
51
52 /∗ I n d e x i n g macros f o r t h e g l o b a l view on rank 0 ∗/
53 # define TEMP(i , j) temperature [(i)∗widthSIZE +(j)]
54
55 /∗ T e s t c o n d i t i o n t o s e e i f a g l o b a l c o o r d i n a t e i s in my l o c a l a r e a
56 ∗ BOX i s w i t h i n main a r e a
57 ∗ BORBOX i s whole l o c a l a r e a
58 ∗/
59 # define BOX(y , x) (\
60 (y)>= l o c a l _ o r i g i n [0] && \
61 (y) < l o c a l _ o r i g i n [0]+ local_dims [0] && \
62 (x)>= l o c a l _ o r i g i n [1] && \
63 (x) < l o c a l _ o r i g i n [1]+ local_dims [1] \
64)
65 # define BORBOX(y , x) (\
66 (y) >=(l o c a l _ o r i g i n [0]−border) && \
67 (y) <(l o c a l _ o r i g i n [0]+ local_dims [0]+ border) && \
68 (x) >=(l o c a l _ o r i g i n [1]− border) && \
69 (x) <(l o c a l _ o r i g i n [1]+ local_dims [1]+ border) \
70)
71
72 /∗ L o c a l m a t e r i a l c o n s t a n t (LMAT) and t e m p e r a t u r e (LTEMP) i n d e x i n g macros ∗/
73 # define LMAT(i , j) l o c a l _ m a t e r i a l [\
74 ((i)+ border)∗ (local_dims [1]+2∗ border) + (j)+ border \
75]
76
77 # define LTEMP(s , i , j) local_temp [((s) % 2)] [\
78 ((i)+ border)∗ (local_dims [1]+2∗ border) + (j)+ border \
79]
80
81 /∗ Arrays f o r t h e s i m u l a t i o n d a t a ∗/
82 f l o a t
83 ∗temperature , / / Tempera ture f i e l d (in g l o b a l domain on rank 0)
84 ∗ l o c a l _ m a t e r i a l , / / L o c a l p a r t o f t h e m a t e r i a l c o n s t a n t s
85 ∗local_temp [2] ; / / L o c a l p a r t o f t h e t e m p e r a t u r e (2 b u f f e r s)
86
87 /∗ V a r i a b l e s f o r t ime measurement ∗/
88 double s t a r t , end ;
89
90 /∗ D i s c r e t i z a t i o n : 5cm s q u a r e c e l l s , 2 . 5 ms t ime i n t e r v a l s ∗/
91 const f l o a t
92 h = 5e−2, / / was 5e−2
93 dt = 2 . 5 e−3;
94
95 /∗ L o c a l s t a t e ∗/
96 i n t
97 s ize , rank , / / World s i z e , my rank
98 dims [2] , / / S i z e o f t h e c a r t e s i a n

C.1. BENCHMARKINGEXAMPLE: HEAT EQUATION SOLVED BY FTCS 87

99 periods [2] = { f a l s e , f a l s e } , / / P e r i o d i c i t y o f t h e c a r t e s i a n
100 coords [2] , / / My c o o r d i n a t e s in t h e c a r t e s i a n
101 north , south , east , west , / / N e i g h b o r s in t h e c a r t e s i a n
102 local_dims [2] , / / S i z e o f l o c a l subdomain
103 l o c a l _ o r i g i n [2] , / / World c o o r d i n a t e s o f (0 , 0) l o c a l
104 l o c a l _ r e a l d i m s [2] , / / Computing a r e a
105 padding [2] = { 0 , 0 } , / / S i z e o f padd ing added
106 border = 1 ,
107 systemSIZE = SIZE ,
108 widthSIZE = SIZE ,
109 heightSIZE = SIZE ;
110
111 MPI_Comm c a r t ;
112 MPI_Datatype
113 global_area , l o c a l _ a r e a , / / V e c t o r s f o r c o l l e c t i n g subdomains
114 border_row , border_col ; / / V e c t o r s f o r b o r d e r exchange
115
116 void logTime (void) ;
117 void f t c s _ s o l v e r (i n t s tep) ;
118 void update_border (i n t s tep) ;
119 void boundaries (i n t s tep) ;
120 void border_exchange (i n t s tep) ;
121 void commit_vector_types (void) ;
122 void e x t e r n a l _ h e a t (i n t s tep) ;
123 void configure_geometry (void) ;
124 void c o l l e c t _ a r e a (i n t step , char ∗f i lename) ;
125 void write_matr ix (FILE ∗out , f l o a t ∗data) ;
126
127
128 void
129 f t c s _ s o l v e r (i n t s tep)
130 {
131 /∗ The FTCS s o l u t i o n ∗/
132 for (i n t y =0; y< l o c a l _ r e a l d i m s [0] ; y++)
133 for (i n t x =0; x< l o c a l _ r e a l d i m s [1] ; x++)
134 LTEMP(step +1 ,y , x) = LTEMP(step , y , x) + LMAT(y , x) ∗ (
135 (LTEMP(step , y−1,x) + LTEMP(step , y+1 , x) +
136 LTEMP(step , y , x−1) + LTEMP(step , y , x +1)) − 4.0∗LTEMP(step , y , x)
137) ;
138 }
139
140
141 void
142 boundaries (i n t s tep)
143 {
144 /∗ The Neumann boundary c o n d i t i o n ∗/
145
146 /∗ my and mx a r e t h e l a r g e s t y and x numbers in t h e main a r e a o f t h e l o c a l _ t e m p
147 and l o c a l _ m a t e r i a l m a t r i c e s ∗/
148 i n t my = l o c a l _ r e a l d i m s [0]−1 , mx = l o c a l _ r e a l d i m s [1]−1;
149
150 / / I have a west boundary
151 i f (coords [1] == 0) {
152 / / Apply t h e s t e n c i l f o r t h e west column
153 for (i n t i =0 ; i < l o c a l _ r e a l d i m s [0] ; i ++)
154 LTEMP(step +1 , i , 0) = LTEMP(step , i , 0) + LMAT(i , 0) ∗ (
155 (2∗LTEMP(step , i , 1) + LTEMP(step , i −1 ,0) + LTEMP(step , i + 1 , 0))
156 − 4.0∗LTEMP(step , i , 0)
157) ;
158 }
159
160 / / I have an e a s t boundary
161 i f (coords [1] == dims[1]−1) {
162 / / Apply t h e s t e n c i l f o r t h e e a s t column
163 for (i n t i =0 ; i < l o c a l _ r e a l d i m s [0] ; i ++)
164 LTEMP(step +1 , i ,mx) = LTEMP(step , i ,mx) + LMAT(i ,mx) ∗ (
165 (2∗LTEMP(step , i ,mx−1) + LTEMP(step , i −1,mx) + LTEMP(step , i +1 ,mx))
166 − 4.0∗LTEMP(step , i ,mx)
167) ;
168 }
169

88 APPENDIX C. SOURCE CODE

170 / / I have a n o r t h boundary
171 i f (coords [0] == 0) {
172 / / Apply t h e s t e n c i l f o r t h e n o r t h e r n row
173 for (i n t i =0 ; i < l o c a l _ r e a l d i m s [1] ; i ++)
174 LTEMP(step +1 ,0 , i) = LTEMP(step , 0 , i) + LMAT(0 , i) ∗ (
175 2∗LTEMP(step , 1 , i) + LTEMP(step , 0 , i −1) + LTEMP(step , 0 , i +1)
176 − 4 . 0 ∗ LTEMP(step , 0 , i)
177) ;
178 }
179
180 / / I have a s o u t h boundary
181 i f (coords [0] == dims[0]−1) {
182 / / Apply t h e s t e n c i l f o r t h e s o u t h e r n row
183 for (i n t i =0 ; i < l o c a l _ r e a l d i m s [1] ; i ++)
184 LTEMP(step +1 ,my, i) = LTEMP(step ,my, i) + LMAT(my, i) ∗ (
185 2∗LTEMP(step ,my−1, i) + LTEMP(step ,my, i −1) + LTEMP(step ,my, i +1)
186 − 4 . 0 ∗ LTEMP(step ,my, i)
187) ;
188 }
189
190 / / Apply t h e s t e n c i l f o r t h e c o r n e r s
191 i f (BOX(0 , 0))
192 LTEMP(step + 1 , 0 , 0) = LTEMP(step , 0 , 0) + LMAT(0 , 0) ∗ (
193 2∗LTEMP(step , 1 , 0) + 2∗LTEMP(step , 0 , 1) − 4 . 0 ∗ LTEMP(step , 0 , 0)
194) ;
195 i f (BOX(0 , systemSIZE−1))
196 LTEMP(step +1 ,0 ,mx) = LTEMP(step , 0 ,mx) + LMAT(0 ,mx) ∗ (
197 2∗LTEMP(step , 1 ,mx) + 2∗LTEMP(step , 0 ,mx−1) − 4 . 0 ∗ LTEMP(step , 0 ,mx)
198) ;
199 i f (BOX(systemSIZE −1 ,0))
200 LTEMP(step +1 ,my, 0) = LTEMP(step ,my, 0) + LMAT(my, 0) ∗ (
201 2∗LTEMP(step ,my, 1) + 2∗LTEMP(step ,my−1 ,0) − 4 . 0 ∗ LTEMP(step ,my, 0)
202) ;
203 i f (BOX(systemSIZE−1,systemSIZE−1))
204 LTEMP(step +1 ,my,mx) = LTEMP(step ,my,mx) + LMAT(my,mx) ∗ (
205 2∗LTEMP(step ,my−1,mx)+2∗LTEMP(step ,my,mx−1) − 4.0∗LTEMP(step ,my,mx)
206) ;
207 }
208
209 void
210 update_border (i n t s tep) {
211 /∗ my and mx a r e t h e l a r g e s t y and x numbers in t h e main a r e a o f
212 t h e l o c a l _ t e m p and l o c a l _ m a t e r i a l m a t r i c e s ∗/
213 i n t my = l o c a l _ r e a l d i m s [0]−1 , mx = l o c a l _ r e a l d i m s [1]−1;
214 i n t s t a r t P o s = (s tep%border)−border ;
215 / / Update west b o r d e r i f t h e r e i s a n e i g h b o r in west
216 i f (coords [1] != 0) {
217 / / a p p l y t h e s t e n c i l f o r t h e numbers in t h e b o r d e r t h i s must be done f o r
218 / / t h e one columns c l o s e s t t o main a r e a
219 for (i n t x= s t a r t P o s ; x <0; x ++){
220 i f (coords [0] == 0) {
221 / / can not use n o r t h b o r d e r f o r y=0
222 LTEMP(step , 0 , x) = LTEMP(step −1 ,0 ,x) + LMAT(0 , x) ∗ (
223 (2 . 0∗LTEMP(step −1 ,1 ,x) + LTEMP(step −1 ,0 ,x−1) +
224 LTEMP(step −1 ,0 ,x + 1)) − 4.0∗LTEMP(step −1 ,0 ,x)
225) ;
226 } e lse {
227 LTEMP(step , 0 , x) = LTEMP(step , 0 , x) = LTEMP(step −1 ,0 ,x) + LMAT(0 , x) ∗ (
228 (LTEMP(step −1,−1,x) + LTEMP(step −1 ,1 ,x) +
229 LTEMP(step −1 ,0 ,x−1) + LTEMP(step −1 ,0 ,x + 1)) − 4.0∗LTEMP(step −1 ,0 ,x)
230) ;
231 }
232 i f (coords [0] == (dims [0] −1)) {
233 / / can not use s o u t h b o r d e r f o r y=my s i n c e my+1 i s wrong
234 LTEMP(step , my, x) = LTEMP(step −1,my, x) + LMAT(my, x) ∗ (
235 (2 . 0∗LTEMP(step −1,my−1,x) +
236 LTEMP(step −1,my, x−1) + LTEMP(step −1,my, x +1)) − 4.0∗LTEMP(step −1,my, x)
237) ;
238 } e lse {
239 LTEMP(step ,my, x) = LTEMP(step −1,my, x) + LMAT(my, x) ∗ (
240 (LTEMP(step −1,my−1,x) + LTEMP(step −1,my+1 , x) +

C.1. BENCHMARKINGEXAMPLE: HEAT EQUATION SOLVED BY FTCS 89

241 LTEMP(step −1,my, x−1) + LTEMP(step −1,my, x +1)) − 4.0∗LTEMP(step −1,my, x)
242) ;
243 }
244 for (i n t y =1; y<my; y++) {
245 LTEMP(step , y , x) = LTEMP(step −1,y , x) + LMAT(y , x) ∗ (
246 (LTEMP(step −1,y−1,x) + LTEMP(step −1,y+1 , x) +
247 LTEMP(step −1,y , x−1) + LTEMP(step −1,y , x + 1)) − 4.0∗LTEMP(step −1,y , x)
248) ;
249 }
250 }
251
252 }
253
254
255 / / Update e a s t b o r d e r i f t h e r e i s a n e i g h b o o r in e a s t
256 i f (coords [1] != (dims [1] −1)) {
257 for (i n t x =(mx−s t a r t P o s) ; x>mx; x−−){
258 i f (coords [0] == 0) {
259 / / can not use n o r t h b o r d e r f o r y=0
260 LTEMP(step , 0 , x) = LTEMP(step −1 ,0 ,x) + LMAT(0 , x) ∗ (
261 (2 . 0∗LTEMP(step −1 ,1 ,x) + LTEMP(step −1 ,0 ,x−1) +
262 LTEMP(step −1 ,0 ,x + 1)) − 4.0∗LTEMP(step −1 ,0 ,x)
263) ;
264 } e lse {
265 LTEMP(step , 0 , x) = LTEMP(step , 0 , x) = LTEMP(step −1 ,0 ,x) + LMAT(0 , x) ∗ (
266 (LTEMP(step −1,−1,x) + LTEMP(step −1 ,1 ,x) +
267 LTEMP(step −1 ,0 ,x−1) + LTEMP(step −1 ,0 ,x + 1)) − 4.0∗LTEMP(step −1 ,0 ,x)
268) ;
269 }
270 i f (coords [0] == (dims [0] −1)) {
271 / / can not use s o u t h b o r d e r f o r y=my s i n c e my+1 i s wrong
272 LTEMP(step , my, x) = LTEMP(step −1,my, x) + LMAT(my, x) ∗ (
273 (2 . 0∗LTEMP(step −1,my−1,x) +
274 LTEMP(step −1,my, x−1) + LTEMP(step −1,my, x +1)) − 4.0∗LTEMP(step −1,my, x)
275) ;
276 } e lse {
277 LTEMP(step ,my, x) = LTEMP(step −1,my, x) + LMAT(my, x) ∗ (
278 (LTEMP(step −1,my−1,x) + LTEMP(step −1,my+1 , x) +
279 LTEMP(step −1,my, x−1) + LTEMP(step −1,my, x +1)) − 4.0∗LTEMP(step −1,my, x)
280) ;
281 }
282 for (i n t y =1; y<my; y++)
283 LTEMP(step , y , x) = LTEMP(step −1,y , x) + LMAT(y , x) ∗ (
284 (LTEMP(step −1,y−1,x) + LTEMP(step −1,y+1 , x) +
285 LTEMP(step −1,y , x−1) + LTEMP(step −1,y , x +1)) − 4.0∗LTEMP(step −1,y , x)
286) ;
287 }
288
289 }
290
291
292 / / Update n o r t h b o r d e r i f t h e r e i s a n e i g h b o o r in n o r t h
293 i f (coords [0] != 0) {
294 for (i n t y= s t a r t P o s ; y <0; y ++){
295 i f (coords [1] == 0) {
296 / / can not use w e s t b o r d e r f o r x=0
297 LTEMP(step , y , 0) = LTEMP(step −1,y , 0) + LMAT(y , 0) ∗ (
298 (LTEMP(step −1,y−1 ,0) + LTEMP(step −1,y +1 ,0) +
299 2.0∗LTEMP(step −1,y , 1)) − 4.0∗LTEMP(step −1,y , 0)
300) ;
301 } e lse {
302 LTEMP(step , y , 0) = LTEMP(step −1,y , 0) + LMAT(y , 0) ∗ (
303 (LTEMP(step −1,y−1 ,0) + LTEMP(step −1,y +1 ,0) +
304 LTEMP(step −1,y,−1) + LTEMP(step −1,y , 1)) − 4.0∗LTEMP(step −1,y , 0)
305) ;
306 }
307 i f (coords [1] == (dims [1] −1)) {
308 / / can not use e a s t b o r d e r f o r x=mx
309 LTEMP(step , y ,mx) = LTEMP(step −1,y ,mx) + LMAT(y ,mx) ∗ (
310 (LTEMP(step −1,y−1,mx) + LTEMP(step −1,y+1 ,mx) +
311 2.0∗LTEMP(step −1,y , mx−1)) − 4.0∗LTEMP(step −1,y ,mx)

90 APPENDIX C. SOURCE CODE

312) ;
313 } e lse {
314 LTEMP(step , y ,mx) = LTEMP(step −1,y ,mx) + LMAT(y ,mx) ∗ (
315 (LTEMP(step −1,y−1,mx) + LTEMP(step −1,y+1 ,mx) +
316 LTEMP(step −1,y , mx−1) + LTEMP(step −1,y ,mx+1)) − 4.0∗LTEMP(step −1,y ,mx)
317) ;
318 }
319 for (i n t x =1; x<mx; x ++){
320 LTEMP(step , y , x) = LTEMP(step −1,y , x) + LMAT(y , x) ∗ (
321 (LTEMP(step −1,y−1,x) + LTEMP(step −1,y+1 , x) +
322 LTEMP(step −1,y , x−1) + LTEMP(step −1,y , x +1)) − 4.0∗LTEMP(step −1,y , x)
323) ;
324 }
325 }
326 }
327
328
329 / / Update s o u t h b o r d e r i f t h e r e i s a n e i g h b o o r in s o u t h
330 i f (coords [0] != (dims [0] −1)) {
331 for (i n t y=(my−s t a r t P o s) ; y>my; y−−){
332 i f (coords [1] == 0) {
333 / / can not use w e s t b o r d e r f o r x=0
334 LTEMP(step , y , 0) = LTEMP(step −1,y , 0) + LMAT(y , 0) ∗ (
335 (LTEMP(step −1,y−1 ,0) + LTEMP(step −1,y +1 ,0) +
336 2.0∗LTEMP(step −1,y , 1)) − 4.0∗LTEMP(step −1,y , 0)
337) ;
338 } e lse {
339 LTEMP(step , y , 0) = LTEMP(step −1,y , 0) + LMAT(y , 0) ∗ (
340 (LTEMP(step −1,y−1 ,0) + LTEMP(step −1,y +1 ,0) +
341 LTEMP(step −1,y,−1) + LTEMP(step −1,y , 1)) − 4.0∗LTEMP(step −1,y , 0)
342) ;
343 }
344 i f (coords [1] == (dims [1] −1)) {
345 / / can not use e a s t b o r d e r f o r x=mx
346 LTEMP(step , y ,mx) = LTEMP(step −1,y ,mx) + LMAT(y ,mx) ∗ (
347 (LTEMP(step −1,y−1,mx) + LTEMP(step −1,y+1 ,mx) +
348 2.0∗LTEMP(step −1,y ,mx−1)) − 4.0∗LTEMP(step −1,y ,mx)
349) ;
350 } e lse {
351 LTEMP(step , y ,mx) = LTEMP(step −1,y ,mx) + LMAT(y ,mx) ∗ (
352 (LTEMP(step −1,y−1,mx) + LTEMP(step −1,y+1 ,mx) +
353 LTEMP(step −1,y , mx−1) + LTEMP(step −1,y ,mx+1)) − 4.0∗LTEMP(step −1,y ,mx)
354) ;
355 }
356 for (i n t x =1; x<mx; x ++){
357 LTEMP(step , y , x) = LTEMP(step −1,y , x) + LMAT(y , x) ∗ (
358 (LTEMP(step −1,y−1,x) + LTEMP(step −1,y+1 , x) +
359 LTEMP(step −1,y , x−1) + LTEMP(step −1,y , x +1)) − 4.0∗LTEMP(step −1,y , x)
360) ;
361 }
362
363 }
364 }
365 }
366
367 void
368 commit_vector_types (void)
369 {
370 MPI_Type_vector (heightSIZE/dims [0] , local_dims [1] , dims [1]∗ local_dims [1] ,
371 MPI_FLOAT, &globa l_area
372) ;
373 MPI_Type_vector (heightSIZE/dims [0] , local_dims [1] , local_dims [1]+2∗ border ,
374 MPI_FLOAT, &l o c a l _ a r e a
375) ;
376 MPI_Type_commit (&l o c a l _ a r e a) ;
377 MPI_Type_commit (&globa l_area) ;
378
379 /∗ Commit t h e t y p e s f o r t h e b o r d e r exchange ∗/
380 MPI_Type_vector (border , local_dims [1]+2∗ border , local_dims [1]+2∗ border ,
381 MPI_FLOAT, &border_row
382) ;

C.1. BENCHMARKINGEXAMPLE: HEAT EQUATION SOLVED BY FTCS 91

383 MPI_Type_vector (local_dims [0] , border , local_dims [1]+2∗ border ,
384 MPI_FLOAT, &border_col
385) ;
386 MPI_Type_commit (&border_row) ;
387 MPI_Type_commit (&border_col) ;
388 }
389
390
391 void
392 border_exchange (i n t s tep)
393 {
394 /∗ e a s t −> me −> west ∗/
395 MPI_Sendrecv (
396 <EMP(step , 0 , 0) , 1 , border_col , west , 0 ,
397 <EMP(step , 0 , local_dims [1]) , 1 , border_col , east , 0 ,
398 car t , MPI_STATUS_IGNORE
399) ;
400 /∗ west −> me −> e a s t ∗/
401 MPI_Sendrecv (
402 <EMP(step , 0 , local_dims [1]−border) , 1 , border_col , east , 0 ,
403 <EMP(step ,0 ,−border) , 1 , border_col , west , 0 ,
404 car t , MPI_STATUS_IGNORE
405) ;
406 /∗ s o u t h −> me −> n o r t h ∗/
407 MPI_Sendrecv (
408 <EMP(step ,0 ,−border) , 1 , border_row , north , 0 ,
409 <EMP(step , local_dims [0] ,− border) , 1 , border_row , south , 0 ,
410 car t , MPI_STATUS_IGNORE
411) ;
412 /∗ n o r t h −> me −> s o u t h ∗/
413 MPI_Sendrecv (
414 <EMP(step , local_dims [0]−border ,−border) , 1 , border_row , south , 0 ,
415 <EMP(step ,−border ,−border) , 1 , border_row , north , 0 ,
416 car t , MPI_STATUS_IGNORE
417) ;
418 }
419
420 void logTime (void) {
421 char∗ f i lename= " log . t x t " ;
422 FILE ∗out = fopen (fi lename , " a ") ;
423 i f (out == NULL)
424 {
425 p r i n t f (" Error opening f i l e !\n") ;
426 e x i t (1) ;
427 }
428 f p r i n t f (out , "%f ;%d;%d;%d;%d;%d;%d;%d;%d;\n" , end−s t a r t , systemSIZE ,
429 border , NSTEPS , CUTOFF, s ize , dims [0] , dims [1] , WRITETOFILE) ;
430 f c l o s e (out) ;
431
432 }
433
434 i n t
435 main (i n t argc , char ∗∗argv)
436 {
437 MPI_Init (&argc , &argv) ;
438 MPI_Comm_size (MPI_COMM_WORLD, &s i z e) ;
439 MPI_Comm_rank (MPI_COMM_WORLD, &rank) ;
440
441 i f (argc > 1) {
442 i f ((a t o i (argv [1])%256)==0) {
443 systemSIZE = a t o i (argv [1]) ;
444 widthSIZE = systemSIZE ;
445 heightSIZE = systemSIZE ;
446 } e lse {
447 i f (rank == 0)
448 p r i n t f (" S ize e r r o r %s i s not d i v i a b l e by 256\n" , argv [1]) ;
449 }
450 i f (a t o i (argv [2]) < = 1 0) {
451 border = a t o i (argv [2]) ;
452 } e lse {
453 i f (rank == 0)

92 APPENDIX C. SOURCE CODE

454 p r i n t f ("%s i s too l a r g e as a border \n" , argv [2]) ;
455 }
456
457 }
458 /∗ S t a r t t im ing ∗/
459 MPI_Barrier (MPI_COMM_WORLD) ;
460 s t a r t = MPI_Wtime () ;
461
462
463 MPI_Dims_create (s ize , 2 , dims) ;
464 MPI_Cart_create (MPI_COMM_WORLD, 2 , dims , periods , 0 , &c a r t) ;
465 MPI_Cart_coords (car t , rank , 2 , coords) ;
466 MPI_Cart_shif t (car t , 0 , 1 , &north , &south) ;
467 MPI_Cart_shif t (car t , 1 , 1 , &west , &e a s t) ;
468
469 local_dims [0] = l o c a l _ r e a l d i m s [0] = systemSIZE / dims [0] ;
470 local_dims [1] = l o c a l _ r e a l d i m s [1] = systemSIZE / dims [1] ;
471
472 / / Pad t h e m a t r i x e s so t h e y a r e d i v i a b l e by t h e d i m e n s i o n s
473 i f ((local_dims [0]∗dims [0]) ! = systemSIZE) {
474 / / padd ing t o make i t b i g g e r
475 l o c a l _ r e a l d i m s [0] += 1 ;
476 local_dims [0] += 1 ;
477
478 heightSIZE = local_dims [0]∗dims [0] ;
479
480 padding [0] = heightSIZE − systemSIZE ;
481
482 i f (coords [0] == (dims [0] −1)) {
483 / / t h r e a d s a t t h e bot tom s h o u l d not compute t h e padd ing
484 l o c a l _ r e a l d i m s [0] −= padding [0] ;
485 i f (padding [0] > local_dims [0]) {
486 l o c a l _ r e a l d i m s [0] = 0 ;
487 }
488 }
489 i f (padding [0] > local_dims [0]) {
490 / / f i x padd ing b i g g e r than l o c a l _ d i m s [0] prob l em
491 i f ((padding [0]−(local_dims [0]∗ (dims[0]− coords [0]))) > 0) {
492 l o c a l _ r e a l d i m s [0] −= padding [0]−(local_dims [0]∗ (dims[0]− coords [0])) ;
493 i f (l o c a l _ r e a l d i m s [0] <0)
494 l o c a l _ r e a l d i m s [0] = 0 ;
495 }
496 }
497 }
498 i f ((local_dims [1]∗dims [1]) ! = systemSIZE) {
499 / / padd ing t o make i t b i g g e r
500 l o c a l _ r e a l d i m s [1] += 1 ;
501 local_dims [1] += 1 ;
502
503 widthSIZE = local_dims [1]∗dims [1] ;
504
505 padding [1] = widthSIZE − systemSIZE ;
506
507 i f (coords [1] == (dims [1] −1)) {
508 / / r i g h t m o s t t h r e a d s s h o u l d not compute t h e padd ing
509 l o c a l _ r e a l d i m s [1] −= padding [1] ;
510 }
511 i f (padding [1] > local_dims [1]) {
512 / / f i x padd ing b i g g e r than l o c a l _ d i m s [0] prob l em
513 i f ((padding [1]−(local_dims [1]∗ (dims[1]− coords [1]))) > 0) {
514 l o c a l _ r e a l d i m s [1] −= padding [1]−(local_dims [1]∗ (dims[1]− coords [1])) ;
515 i f (l o c a l _ r e a l d i m s [1] <0)
516 l o c a l _ r e a l d i m s [1] = 0 ;
517 }
518 }
519 }
520
521 l o c a l _ o r i g i n [0] = coords [0]∗ local_dims [0] ;
522 l o c a l _ o r i g i n [1] = coords [1]∗ local_dims [1] ;
523
524 s i z e _ t l s i z e _ f u l l = (local_dims [0]+2∗ border)∗ (local_dims [1]+2∗ border) ;

C.1. BENCHMARKINGEXAMPLE: HEAT EQUATION SOLVED BY FTCS 93

525 l o c a l _ m a t e r i a l = malloc (l s i z e _ f u l l ∗ s i ze of (f l o a t)) ;
526 local_temp [0] = malloc (l s i z e _ f u l l ∗ s i ze of (f l o a t)) ;
527 local_temp [1] = malloc (l s i z e _ f u l l ∗ s i ze of (f l o a t)) ;
528
529 i f (rank == 0) {
530 temperature = c a l l o c (widthSIZE∗heightSIZE , s i ze of (f l o a t)) ;
531 }
532
533 commit_vector_types () ; / / Commit V e c t o r t y p e s f o r b o r d e r e x c h a n g e
534 configure_geometry () ; / / S e t up t h e LMAT and LTEMP
535
536 /∗ Main i n t e g r a t i o n l o o p : NSTEPS i t e r a t i o n s , impose e x t e r n a l h e a t
537 ∗ u n t i l CUTOFF i t e r a t i o n s have p a s s e d
538 ∗/
539 MPI_Barrier (MPI_COMM_WORLD) ;
540 /∗ Imposed t e m p e r a t u r e from o u t s i d e ∗/
541 for (i n t s tep =0; step <NSTEPS ; s tep++)
542 {
543 i f (s tep < CUTOFF)
544 e x t e r n a l _ h e a t (s tep) ;
545
546 i f ((s tep%border) = = 0) {
547 / / Exchange t h e b o r d e r e v e r y b o r d e r t h s t e p
548 border_exchange (s tep) ;
549 } e lse {
550 / / Need t o be upda t ed so t h e FTCS s o l v e r can use t h e row or column c l o s e s t t o i t s e l f
551 update_border (s tep) ;
552 }
553 f t c s _ s o l v e r (s tep) ;
554 boundaries (s tep) ;
555
556 i f ((s tep % SNAPSHOT) == 0)
557 {
558 char f i lename [1 5] ;
559 s p r i n t f (f i lename , " data /%.4d . dat " , s tep/SNAPSHOT) ;
560 c o l l e c t _ a r e a (step , f i lename) ;
561 }
562
563 }
564
565 /∗ End t i ming ∗/
566 MPI_Barrier (MPI_COMM_WORLD) ;
567 end = MPI_Wtime () ;
568
569 i f (rank == 0)
570 f r e e (temperature) ;
571 f r e e (l o c a l _ m a t e r i a l) , f r e e (local_temp [0]) , f r e e (local_temp [1]) ;
572 MPI_Finalize () ;
573
574 /∗ P r i n t out t im i ng ∗/
575 i f (rank == 0) {
576 p r i n t f ("RUNTIME %4.6 f SIZE %d NSTEPS %d CUTOFF%d THREADS %d in y %d x %d\n" ,
577 end−s t a r t , systemSIZE , NSTEPS , CUTOFF, s ize , dims [0] , dims [1]) ;
578 logTime () ;
579 }
580
581 e x i t (EXIT_SUCCESS) ;
582 }
583
584
585 void
586 e x t e r n a l _ h e a t (i n t s tep)
587 {
588 /∗ Imposed t e m p e r a t u r e from o u t s i d e ∗/
589 for (i n t y=(systemSIZE/2)−(systemSIZE / 1 6) ; y<=(systemSIZE /2)+(systemSIZE / 1 6) ; y++)
590 for (i n t x =(systemSIZE / 4) ; x<=(3∗systemSIZE / 4) ; x++)
591 {
592 i f (BORBOX(y , x))
593 LTEMP (step , y−l o c a l _ o r i g i n [0] , x−l o c a l _ o r i g i n [1]) = 1 0 0 . 0 ;
594 }
595 }

94 APPENDIX C. SOURCE CODE

596
597
598 void
599 configure_geometry (void)
600 {
601 /∗ I n i t i a l i z a t i o n : f i l l t h e p o o l wi th mercury ∗/
602 for (i n t y=−border ; y<(local_dims [0] + border) ; y++)
603 {
604 for (i n t x=−border ; x <(local_dims [1] + border) ; x++)
605 {
606 LMAT(y , x) = MERCURY ∗ (dt /(h∗h)) ;
607 LTEMP(1 , y , x) = LTEMP(0 , y , x) = 2 0 . 0 ;
608 }
609 }
610
611 /∗ S e t up t h e two b l o c k s o f c o p p e r and t i n ∗/
612 for (i n t y=(systemSIZE / 8) ; y<(3∗ systemSIZE / 8) ; y++)
613 for (i n t x =(systemSIZE / 8) ; x <(systemSIZE/2)−(systemSIZE / 8) ; x++)
614 {
615 i f (BORBOX(y , x))
616 {
617 LMAT(y−l o c a l _ o r i g i n [0] , x−l o c a l _ o r i g i n [1]) =
618 COPPER ∗ (dt /(h∗h)) ;
619 LTEMP(0 , y−l o c a l _ o r i g i n [0] , x−l o c a l _ o r i g i n [1]) = 6 0 . 0 ;
620 }
621 i f (BORBOX(y , systemSIZE−x))
622 {
623 LMAT(y−l o c a l _ o r i g i n [0] , (systemSIZE−x)− l o c a l _ o r i g i n [1]) =
624 TIN ∗ (dt /(h∗h)) ;
625 LTEMP(0 , y−l o c a l _ o r i g i n [0] , (systemSIZE−x)− l o c a l _ o r i g i n [1]) = 6 0 . 0 ;
626 }
627
628 }
629 /∗ S e t up t h e h e a t i n g e l e m e n t in t h e mi dd l e ∗/
630 for (i n t y=(systemSIZE/2)−(systemSIZE / 1 6) ; y<=(systemSIZE /2)+(systemSIZE / 1 6) ; y++)
631 for (i n t x =(systemSIZE / 4) ; x<=(3∗systemSIZE / 4) ; x++)
632 {
633 i f (BORBOX(y , x))
634 LMAT(y−l o c a l _ o r i g i n [0] , x−l o c a l _ o r i g i n [1]) =
635 ALUMINIUM ∗ (dt /(h∗h)) ;
636 }
637 }
638
639
640 void
641 c o l l e c t _ a r e a (i n t step , char ∗f i lename)
642 {
643 MPI_Request req ;
644 MPI_Isend (<EMP((s tep%SNAPSHOT) , 0 , 0) , 1 , l o c a l _ a r e a , 0 , 0 , car t , &req) ;
645 i f (rank == 0)
646 {
647 i n t co [2] ;
648 for (i n t r =0; r < s i z e ; r++)
649 {
650 MPI_Cart_coords (car t , r , 2 , co) ;
651 MPI_Recv (
652 &TEMP(co [0]∗ local_dims [0] , co [1]∗ local_dims [1]) ,
653 1 , g lobal_area , r , 0 , car t , MPI_STATUS_IGNORE
654) ;
655 }
656 i f (WRITETOFILE) {
657 FILE ∗out = fopen (fi lename , "w") ;
658 wri te_matr ix (out , temperature) ;
659 f c l o s e (out) ;
660 p r i n t f (" Snapshot a t s tep %d\n" , s tep) ;
661 }
662 }
663 MPI_Wait (&req , MPI_STATUS_IGNORE) ;
664 }
665
666

C.2. HEAT EQUATION SOLVED BY FTCS SERIAL VERSION 95

667 void
668 wri te_matr ix (FILE ∗out , f l o a t ∗data)
669 {
670 f l o a t s i z e = (f l o a t) systemSIZE ;
671 f w r i t e (&size , s i ze of (f l o a t) , 1 , out) ;
672 for (f l o a t x =0; x<systemSIZE ; x +=1.0)
673 f w r i t e (&x , s i ze of (f l o a t) , 1 , out) ;
674 for (i n t y =0; y<systemSIZE ; y++)
675 {
676 f l o a t len = (f l o a t) y ;
677 f w r i t e (&len , s ize of (f l o a t) , 1 , out) ;
678 f w r i t e (&data [y∗widthSIZE] , s i ze of (f l o a t) , systemSIZE , out) ;
679 }
680 }

C.2 Heat equation solved by FTCS serial version

This code is a simplification of timed_heat (Appendix C.1) this is run on the sys-
tems to get the timing with 1 process.

Listing C.2: Serial Heat
1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include <stdbool . h>
4 # include <tgmath . h>
5 # include <mpi . h>
6
7 /∗
8 ∗ P h y s i c a l q u a n t i t i e s :
9 ∗ k : t h e r m a l c o n d u c t i v i t y [Watt / (met e r K e l v i n)]

10 ∗ rho : d e n s i t y [kg / met e r ^3]
11 ∗ cp : s p e c i f i c h e a t c a p a c i t y [k J / (kg K e l v i n)]
12 ∗ rho ∗ cp : v o l u m e t r i c h e a t c a p a c i t y [J o u l e / (me t e r ^3 K e l v i n)]
13 ∗ a l p h a = k / (rho∗cp) : t h e r m a l d i f f u s i v i t y [met e r ^2 / s e c o n d]
14 ∗
15 ∗ Mercury :
16 ∗ cp = 0 . 1 4 0 , rho = 13506 , k = 8 . 6 9
17 ∗ a l p h a = 8 . 6 9 / (0 .140∗13506) =~ 0 .0619
18 ∗
19 ∗ Copper :
20 ∗ cp = 0 . 3 8 5 , rho = 8960 , k = 401
21 ∗ a l p h a = 401 .0 / (0 . 3 8 5 ∗ 8960) =~ 0 . 1 2 [0 . 1 1 6 2 4 5 3 6 1 8]
22 ∗
23 ∗ Tin :
24 ∗ cp = 0 . 2 2 7 , k = 67 , rho = 7300
25 ∗ a l p h a = 6 7 . 0 / (0 . 2 2 7 ∗ 7300) =~ 0 .040
26 ∗
27 ∗ Aluminium :
28 ∗ cp = 0 . 8 9 7 , rho = 2700 , k = 237
29 ∗ a l p h a = 237 / (0 . 8 9 7 ∗ 2700) =~ 0 .098 [0 . 0 9 7 8 5 7 0 5 4]
30 ∗/
31 # define MERCURY 0.0619
32 # define COPPER 0 .116
33 # define TIN 0 .040
34 # define ALUMINIUM 0.098
35
36
37 /∗ S i z e o f t h e c o m p u t a t i o n a l g r i d − 256 x256 s q u a r e ∗/
38 # define SIZE 256 / / was 256
39
40 /∗ Write t o F i l e 1= t r u e and 0= f a l s e ∗/
41 # define WRITETOFILE 0
42
43 /∗ P a r a m e t e r s o f t h e s i m u l a t i o n : how many s t e p s , and when t o c u t o f f t h e h e a t ∗/
44 # define NSTEPS 125000 / / was 125000

96 APPENDIX C. SOURCE CODE

45 # define CUTOFF 75000 / / was 75000
46
47 /∗ How o f t e n t o dump s t a t e t o f i l e (s t e p s) .
48 ∗ 16 i s r e a l t i m e a t 25 f p s , t h i s i s in 10x t ime
49 ∗/
50 # define SNAPSHOT 160 / / was 160
51
52 /∗ L o c a l m a t e r i a l c o n s t a n t (LMAT) and t e m p e r a t u r e (LTEMP) i n d e x i n g macros ∗/
53 # define MAT(i , j) m a t e r i a l [\
54 ((i)∗ systemSIZE) + (j) \
55]
56
57 # define TEMP(s , i , j) temperature [((s) % 2)] [((i)∗ systemSIZE) + (j)]
58
59 /∗ Arrays f o r t h e s i m u l a t i o n d a t a ∗/
60 f l o a t
61 ∗temperature [2] , / / Tempera ture f i e l d (in g l o b a l domain on rank 0)
62 ∗m a t e r i a l ; / / L o c a l p a r t o f t h e m a t e r i a l c o n s t a n t s
63
64 /∗ V a r i a b l e s f o r t ime measurement ∗/
65 double s t a r t , end ;
66
67 i n t systemSIZE = SIZE ;
68
69 /∗ D i s c r e t i z a t i o n : 5cm s q u a r e c e l l s , 2 . 5 ms t ime i n t e r v a l s ∗/
70 const f l o a t
71 h = 5e−2,
72 dt = 2 . 5 e−3;
73
74 void logTime (void) ;
75 void f t c s _ s o l v e r (i n t s tep) ;
76 void e x t e r n a l _ h e a t (i n t s tep) ;
77 void configure_geometry (void) ;
78 void c o l l e c t _ a r e a (i n t step , char ∗f i lename) ;
79 void write_matr ix (FILE ∗out , f l o a t ∗data) ;
80
81
82 void
83 f t c s _ s o l v e r (i n t s tep)
84 {
85 /∗ my and mx a r e t h e l a r g e s t y and x numbers in t h e main a r e a o f t h e l o c a l _ t e m p and l o c a l _ m a t e r i a l m a t r i c e s ∗/
86 i n t my = systemSIZE−1, mx = systemSIZE−1;
87
88 /∗ The FTCS s o l u t i o n ∗/
89 for (i n t y =1; y<my; y++) {
90 for (i n t x =1; x<mx; x++) {
91 TEMP(step +1 ,y , x) = TEMP(step , y , x) + MAT(y , x) ∗ (
92 (TEMP(step , y−1,x) + TEMP(step , y+1 , x) +
93 TEMP(step , y , x−1) + TEMP(step , y , x +1)) − 4.0∗TEMP(step , y , x)
94) ;
95 }
96 }
97 for (i n t i =1 ; i <my; i ++)
98 TEMP(step +1 , i , 0) = TEMP(step , i , 0) + MAT(i , 0) ∗ (
99 (2∗TEMP(step , i , 1) + TEMP(step , i −1 ,0) + TEMP(step , i + 1 , 0))

100 − 4.0∗TEMP(step , i , 0)
101) ;
102 for (i n t i =1 ; i <my; i ++)
103 TEMP(step +1 , i ,mx) = TEMP(step , i ,mx) + MAT(i ,mx) ∗ (
104 (2∗TEMP(step , i ,mx−1) + TEMP(step , i −1,mx) + TEMP(step , i +1 ,mx))
105 − 4.0∗TEMP(step , i ,mx)
106) ;
107 for (i n t i =1 ; i <mx; i ++)
108 TEMP(step +1 ,0 , i) = TEMP(step , 0 , i) + MAT(0 , i) ∗ (
109 2∗TEMP(step , 1 , i) + TEMP(step , 0 , i −1) + TEMP(step , 0 , i +1)
110 − 4 . 0 ∗ TEMP(step , 0 , i)
111) ;
112 for (i n t i =1 ; i <mx; i ++)
113 TEMP(step +1 ,my, i) = TEMP(step ,my, i) + MAT(my, i) ∗ (
114 2∗TEMP(step ,my−1, i) + TEMP(step ,my, i −1) + TEMP(step ,my, i +1)
115 − 4 . 0 ∗ TEMP(step ,my, i)

C.2. HEAT EQUATION SOLVED BY FTCS SERIAL VERSION 97

116) ;
117
118 TEMP(step + 1 , 0 , 0) = TEMP(step , 0 , 0) + MAT(0 , 0) ∗ (
119 2∗TEMP(step , 1 , 0) + 2∗TEMP(step , 0 , 1) − 4 . 0 ∗ TEMP(step , 0 , 0)
120) ;
121 TEMP(step +1 ,0 ,mx) = TEMP(step , 0 ,mx) + MAT(0 ,mx) ∗ (
122 2∗TEMP(step , 1 ,mx) + 2∗TEMP(step , 0 ,mx−1) − 4 . 0 ∗ TEMP(step , 0 ,mx)
123) ;
124 TEMP(step +1 ,my, 0) = TEMP(step ,my, 0) + MAT(my, 0) ∗ (
125 2∗TEMP(step ,my, 1) + 2∗TEMP(step ,my−1 ,0) − 4 . 0 ∗ TEMP(step ,my, 0)
126) ;
127 TEMP(step +1 ,my,mx) = TEMP(step ,my,mx) + MAT(my,mx) ∗ (
128 2∗TEMP(step ,my−1,mx)+2∗TEMP(step ,my,mx−1) − 4.0∗TEMP(step ,my,mx)
129) ;
130 }
131
132 void logTime (void) {
133 char∗ f i lename= " log . t x t " ;
134 FILE ∗out = fopen (fi lename , " a ") ;
135 i f (out == NULL)
136 {
137 p r i n t f (" Error opening f i l e !\n") ;
138 e x i t (1) ;
139 }
140 f p r i n t f (out , " Runtime = %f systemSIZE %d NSTEPS %d CUTOFF%d THREADS %d in " +
141 " y=%d , x=%d W r i t e T o f i l e (%d)\n" , end−s t a r t , systemSIZE , NSTEPS ,
142 CUTOFF, 1 , 1 , 1 , WRITETOFILE) ;
143 f c l o s e (out) ;
144
145 }
146
147 i n t
148 main (i n t argc , char ∗∗argv)
149 {
150 MPI_Init (&argc , &argv) ;
151 i f (argc > 1) {
152 i n t argv1 = a t o i (argv [1]) ;
153 i f ((argv1 %256) == 0) {
154 systemSIZE = argv1 ;
155 }
156 }
157
158 s t a r t = MPI_Wtime () ;
159 m a t e r i a l = malloc (systemSIZE ∗ systemSIZE ∗ s i ze of (f l o a t)) ;
160 temperature [0] = malloc (systemSIZE∗systemSIZE ∗ s i ze of (f l o a t)) ;
161 temperature [1] = malloc (systemSIZE∗systemSIZE ∗ s i ze of (f l o a t)) ;
162
163 configure_geometry () ; / / S e t up t h e LMAT and LTEMP
164
165 /∗ Main i n t e g r a t i o n l o o p : NSTEPS i t e r a t i o n s , impose e x t e r n a l h e a t
166 ∗ u n t i l CUTOFF i t e r a t i o n s have p a s s e d
167 ∗/
168 /∗ Imposed t e m p e r a t u r e from o u t s i d e ∗/
169 for (i n t s tep =0; step <NSTEPS ; s tep++)
170 {
171 i f (s tep < CUTOFF)
172 e x t e r n a l _ h e a t (s tep) ;
173 f t c s _ s o l v e r (s tep) ;
174 i f ((s tep % SNAPSHOT) == 0)
175 {
176 char f i lename [1 5] ;
177 s p r i n t f (f i lename , " data /%.4d . dat " , s tep/SNAPSHOT) ;
178 c o l l e c t _ a r e a (step , f i lename) ;
179 }
180 }
181
182 /∗ End t i ming ∗/
183 end = MPI_Wtime () ;
184
185 f r e e (temperature [0]) ;
186 f r e e (temperature [1]) ;

98 APPENDIX C. SOURCE CODE

187 f r e e (m a t e r i a l) ;
188
189 p r i n t f ("RUNTIME %4.6 f systemSIZE %d NSTEPS %d CUTOFF%d THREADS %d in y %d x %d\n" ,
190 end−s t a r t , systemSIZE , NSTEPS , CUTOFF, 1 , 1 , 1) ;
191 / / l ogTime () ;
192 MPI_Finalize () ;
193 e x i t (EXIT_SUCCESS) ;
194 }
195
196
197 void
198 e x t e r n a l _ h e a t (i n t s tep)
199 {
200 /∗ Imposed t e m p e r a t u r e from o u t s i d e ∗/
201 for (i n t y=(systemSIZE/2)−(systemSIZE / 1 6) ; y<=(systemSIZE /2)+(systemSIZE / 1 6) ; y++)
202 for (i n t x =(systemSIZE / 4) ; x<=(3∗systemSIZE / 4) ; x++)
203 {
204 TEMP (step , y , x) = 1 0 0 . 0 ;
205 }
206 }
207
208
209 void
210 configure_geometry (void)
211 {
212 /∗ I n i t i a l i z a t i o n : f i l l t h e p o o l wi th mercury ∗/
213 for (i n t y =0; y<systemSIZE ; y++)
214 {
215 for (i n t x =0; x<systemSIZE ; x++)
216 {
217 MAT(y , x) = MERCURY ∗ (dt /(h∗h)) ;
218 TEMP(1 , y , x) = TEMP(0 , y , x) = 2 0 . 0 ;
219 }
220 }
221
222 /∗ S e t up t h e two b l o c k s o f c o p p e r and t i n ∗/
223 for (i n t y=(systemSIZE / 8) ; y<(3∗ systemSIZE / 8) ; y++)
224 for (i n t x =(systemSIZE / 8) ; x <(systemSIZE/2)−(systemSIZE / 8) ; x++)
225 {
226 MAT(y , x) = COPPER ∗ (dt /(h∗h)) ;
227 TEMP(0 , y , x) = 6 0 . 0 ;
228
229 MAT(y , (systemSIZE−x)) = TIN ∗ (dt /(h∗h)) ;
230 TEMP(0 , y , (systemSIZE−x)) = 6 0 . 0 ;
231 }
232 /∗ S e t up t h e h e a t i n g e l e m e n t in t h e mi dd l e ∗/
233 for (i n t y=(systemSIZE/2)−(systemSIZE / 1 6) ; y<=(systemSIZE /2)+(systemSIZE / 1 6) ; y++)
234 for (i n t x =(systemSIZE / 4) ; x<=(3∗systemSIZE / 4) ; x++)
235 {
236 MAT(y , x) = ALUMINIUM ∗ (dt /(h∗h)) ;
237 }
238 }
239
240
241 void
242 c o l l e c t _ a r e a (i n t step , char ∗f i lename)
243 {
244 i f ((WRITETOFILE == 1)) {
245 / / FILE ∗out = f o p e n (f i l e n a m e , "w") ;
246 FILE ∗out = fopen (" t e s t w r i t e . dat " , "w") ;
247 wri te_matr ix (out , temperature [((s tep)%2)]) ;
248 f c l o s e (out) ;
249 p r i n t f (" Snapshot a t s tep %d\n" , s tep) ;
250 }
251 }
252
253
254 void
255 wri te_matr ix (FILE ∗out , f l o a t ∗data)
256 {
257 f l o a t s i z e = (f l o a t) systemSIZE ;

C.2. HEAT EQUATION SOLVED BY FTCS SERIAL VERSION 99

258 f w r i t e (&size , s i ze of (f l o a t) , 1 , out) ;
259 for (f l o a t x =0; x<systemSIZE ; x +=1.0)
260 f w r i t e (&x , s i ze of (f l o a t) , 1 , out) ;
261 for (i n t y =0; y<systemSIZE ; y++)
262 {
263 f l o a t len = (f l o a t) y ;
264 f w r i t e (&len , s i ze of (f l o a t) , 1 , out) ;
265 f w r i t e (&data [y∗systemSIZE] , s i ze of (f l o a t) , systemSIZE , out) ;
266 }
267 }

Appendix D

Node Layouts for Clustis3

In this chapter which node each of the processors used when running on Clustis3
are listed. The ranks are distributed so that the first is rank 0, the next is rank 1
like:

rank 0 rank 1 rank 2 ... rank x-1
rank x rank x+1 rank 2x-1
... ...
rank (y-1)x rank (y-1)x + 1 ... rank n-2 rank n-1

where n is the number of processes, y is the dimension height and x is the dimen-
sion width so that n = x × y.

D.1 Node Layout First Run

D.1.1 9 Processes

9 processes has a layout that are 3 processes high and 3 processes wide.

6 7 6
7 6 7
6 7 6

101

102 APPENDIX D. NODE LAYOUTS FOR CLUSTIS3

D.1.2 10 Processes

10 processes has a layout that are 5 processes high and 2 processes wide.

6 7
6 7
6 7
6 7
6 7

D.1.3 11 Processes

11 processes has a layout that are 11 processes high and 1 processes wide.

6 7 6 7 6 7 6 7 6 7 6

D.1.4 12 Processes

12 processes has a layout that are 4 processes high and 3 processes wide.

6 7 6
7 6 7
6 7 6
7 6 7

D.1.5 13 Processes

13 processes has a layout that are 13 processes high and 1 processes wide.

6 7 6 7 6 7 6 7 6 7 6 7 6

D.1.6 14 Processes

14 processes has a layout that are 7 processes high and 2 processes wide.

6 7
6 7
6 7
6 7
6 7
6 7
6 7

D.1. NODE LAYOUT FIRST RUN 103

D.1.7 15 Processes

15 processes has a layout that are 5 processes high and 3 processes wide.

6 7 6
7 6 7
6 7 6
7 6 7
6 7 6

D.1.8 16 Processes

16 processes has a layout that are 4 processes high and 4 processes wide.

6 7 6 7
6 7 6 7
6 7 6 7
6 7 6 7

D.1.9 17 Processes

17 processes has a layout that are 17 processes high and 1 processes wide.

0 4 5 0 4 5 0 4 5 0 4 5 0 4 5 0 4

D.1.10 18 Processes

18 processes has a layout that are 6 processes high and 3 processes wide.

0 4 5
0 4 5
0 4 5
0 4 5
0 4 5
0 4 5

D.1.11 19 Processes

19 processes has a layout that are 19 processes high and 1 processes wide.

0 4 5 0 4 5 0 4 5 0 4 5 0 4 5 0 4 5 0

104 APPENDIX D. NODE LAYOUTS FOR CLUSTIS3

D.1.12 20 Processes

20 processes has a layout that are 5 processes high and 4 processes wide.

0 4 5 0
4 5 0 4
5 0 4 5
0 4 5 0
4 5 0 4

D.1.13 21 Processes

21 processes has a layout that are 7 processes high and 3 processes wide.

0 4 5
0 4 5
0 4 5
0 4 5
0 4 5
0 4 5
0 4 5

D.1.14 22 Processes

22 processes has a layout that are 11 processes high and 2 processes wide.

0 4
5 0
4 5
0 4
5 0
4 5
0 4
5 0
4 5
0 4
5 0

D.1.15 23 Processes

23 processes has a layout that are 23 processes high and 1 processes wide.

0 4 5 0 4 5 0 4 5 0 4 5 0 4 5 0 4 5 0 4 5 0 4

D.1. NODE LAYOUT FIRST RUN 105

D.1.16 24 Processes

24 processes has a layout that are 6 processes high and 4 processes wide.

0 4 5 0
4 5 0 4
5 0 4 5
0 4 5 0
4 5 0 4
5 0 4 5

D.1.17 25 Processes

25 processes has a layout that are 5 processes high and 5 processes wide.

4 5 6 7 4
5 6 7 4 5
6 7 4 5 6
7 4 5 6 7
4 5 6 7 4

D.1.18 26 Processes

26 processes has a layout that are 13 processes high and 2 processes wide.

4 5
6 7
4 5
6 7
4 5
6 7
4 5
6 7
4 5
6 7
4 5
6 7
4 5

106 APPENDIX D. NODE LAYOUTS FOR CLUSTIS3

D.1.19 27 Processes

27 processes has a layout that are 9 processes high and 3 processes wide.

4 5 6
7 4 5
6 7 4
5 6 7
4 5 6
7 4 5
6 7 4
5 6 7
4 5 6

D.1.20 28 Processes

28 processes has a layout that are 7 processes high and 4 processes wide.

4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7

D.1.21 29 Processes

29 processes has a layout that are 29 processes high and 1 processes wide.

4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 ...

4 5 6 7 4 5 6 7 4

D.1.22 30 Processes

30 processes has a layout that are 6 processes high and 5 processes wide.

4 5 6 7 4
5 6 7 4 5
6 7 4 5 6
7 4 5 6 7
4 5 6 7 4
5 6 7 4 5

D.1. NODE LAYOUT FIRST RUN 107

D.1.23 31 Processes

31 processes has a layout that are 31 processes high and 1 processes wide.

4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 ...

4 5 6 7 4 5 6 7 4 5 6

D.1.24 32 Processes

32 processes has a layout that are 8 processes high and 4 processes wide.

4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7

D.1.25 33 Processes

33 processes has a layout that are 11 processes high and 3 processes wide.

0 4 5
6 7 0
4 5 6
7 0 4
5 6 7
0 4 5
6 7 0
4 5 6
7 0 4
5 6 7
0 4 5

108 APPENDIX D. NODE LAYOUTS FOR CLUSTIS3

D.1.26 34 Processes

34 processes has a layout that are 17 processes high and 2 processes wide.

0 4
5 6
7 0
4 5
6 7
0 4
5 6
7 0
4 5
6 7
0 4
5 6
7 0
4 5
6 7
0 4
5 6

D.1.27 35 Processes

35 processes has a layout that are 7 processes high and 5 processes wide.

0 4 5 6 7
0 4 5 6 7
0 4 5 6 7
0 4 5 6 7
0 4 5 6 7
0 4 5 6 7
0 4 5 6 7

D.1.28 36 Processes

36 processes has a layout that are 6 processes high and 6 processes wide.

0 4 5 6 7 0
4 5 6 7 0 4
5 6 7 0 4 5
6 7 0 4 5 6
7 0 4 5 6 7
0 4 5 6 7 0

D.1. NODE LAYOUT FIRST RUN 109

D.1.29 37 Processes

37 processes has a layout that are 37 processes high and 1 processes wide.

0 4 5 6 7 0 4 5 6 7 0 4 5 6 7 0 4 5 6 7 ...

0 4 5 6 7 0 4 5 6 7 0 4 5 6 7 0 4

D.1.30 38 Processes

38 processes has a layout that are 19 processes high and 2 processes wide.

0 4
5 6
7 0
4 5
6 7
0 4
5 6
7 0
4 5
6 7
0 4
5 6
7 0
4 5
6 7
0 4
5 6
7 0
4 5

D.1.31 39 Processes

39 processes has a layout that are 13 processes high and 3 processes wide.

110 APPENDIX D. NODE LAYOUTS FOR CLUSTIS3

0 4 5
6 7 0
4 5 6
7 0 4
5 6 7
0 4 5
6 7 0
4 5 6
7 0 4
5 6 7
0 4 5
6 7 0
4 5 6

D.1.32 40 Processes

40 processes has a layout that are 8 processes high and 5 processes wide.

0 4 5 6 7
0 4 5 6 7
0 4 5 6 7
0 4 5 6 7
0 4 5 6 7
0 4 5 6 7
0 4 5 6 7
0 4 5 6 7

D.2 Node Layout Using Rankfiles

D.2.1 9 Processes

9 processes has a layout that are 3 processes high and 3 processes wide.

6 6 6
6 6 6
7 7 7

D.2. NODE LAYOUT USING RANKFILES 111

D.2.2 10 Processes

10 processes has a layout that are 5 processes high and 2 processes wide.

6 6
6 6
6 6
6 6
7 7

D.2.3 11 Processes

11 processes has a layout that are 11 processes high and 1 processes wide.

6 6 6 6 6 6 6 6 7 7 7

D.2.4 12 Processes

12 processes has a layout that are 4 processes high and 3 processes wide.

6 6 6
6 6 6
7 7 7
7 7 7

D.2.5 13 Processes

13 processes has a layout that are 13 processes high and 1 processes wide.

6 6 6 6 6 6 6 6 7 7 7 7 7

D.2.6 14 Processes

14 processes has a layout that are 7 processes high and 2 processes wide.

6 6
6 6
6 6
6 6
7 7
7 7
7 7

112 APPENDIX D. NODE LAYOUTS FOR CLUSTIS3

D.2.7 15 Processes

15 processes has a layout that are 5 processes high and 3 processes wide.

6 6 6
6 6 6
6 6 7
7 7 7
7 7 7

D.2.8 16 Processes

16 processes has a layout that are 4 processes high and 4 processes wide.

6 6 6 6
6 6 6 6
7 7 7 7
7 7 7 7

D.2.9 17 Processes

17 processes has a layout that are 17 processes high and 1 processes wide.

0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 5

D.2.10 18 Processes

18 processes has a layout that are 6 processes high and 3 processes wide.

0 0 0
0 0 0
4 4 4
4 4 4
5 5 5
5 5 5

D.2.11 19 Processes

19 processes has a layout that are 19 processes high and 1 processes wide.

0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 5 5 5

D.2. NODE LAYOUT USING RANKFILES 113

D.2.12 20 Processes

20 processes has a layout that are 5 processes high and 4 processes wide.

0 0 0 0
0 0 0 0
4 4 4 4
4 4 4 4
5 5 5 5

D.2.13 21 Processes

21 processes has a layout that are 7 processes high and 3 processes wide.

0 0 0
0 0 0
0 0 4
4 4 4
4 4 4
4 5 5
5 5 5

D.2.14 22 Processes

22 processes has a layout that are 11 processes high and 2 processes wide.

0 0
0 0
0 0
0 0
4 4
4 4
4 4
4 4
5 5
5 5
5 5

D.2.15 23 Processes

23 processes has a layout that are 23 processes high and 1 processes wide.

0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

114 APPENDIX D. NODE LAYOUTS FOR CLUSTIS3

D.2.16 24 Processes

24 processes has a layout that are 6 processes high and 4 processes wide.

0 0 0 0
0 0 0 0
4 4 4 4
4 4 4 4
5 5 5 5
5 5 5 5

D.2.17 25 Processes

25 processes has a layout that are 5 processes high and 5 processes wide.

4 4 4 4 4
4 4 4 5 5
5 5 5 5 5
5 6 6 6 6
6 6 6 6 7

D.2.18 26 Processes

26 processes has a layout that are 13 processes high and 2 processes wide.

4 4
4 4
4 4
4 4
5 5
5 5
5 5
5 5
6 6
6 6
6 6
6 6
7 7

D.2. NODE LAYOUT USING RANKFILES 115

D.2.19 27 Processes

27 processes has a layout that are 9 processes high and 3 processes wide.

4 4 4
4 4 4
4 4 5
5 5 5
5 5 5
5 6 6
6 6 6
6 6 6
7 7 7

D.2.20 28 Processes

28 processes has a layout that are 7 processes high and 4 processes wide.

4 4 4 4
4 4 4 4
5 5 5 5
5 5 5 5
6 6 6 6
6 6 6 6
7 7 7 7

D.2.21 29 Processes

29 processes has a layout that are 29 processes high and 1 processes wide.

4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 ...

6 6 6 6 7 7 7 7 7

D.2.22 30 Processes

30 processes has a layout that are 6 processes high and 5 processes wide.

4 4 4 4 4
4 4 4 5 5
5 5 5 5 5
5 6 6 6 6
6 6 6 6 7
7 7 7 7 7

116 APPENDIX D. NODE LAYOUTS FOR CLUSTIS3

D.2.23 31 Processes

31 processes has a layout that are 31 processes high and 1 processes wide.

4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 ...

6 6 6 6 7 7 7 7 7 7 7

D.2.24 32 Processes

32 processes has a layout that are 8 processes high and 4 processes wide.

4 4 4 4
4 4 4 4
5 5 5 5
5 5 5 5
6 6 6 6
6 6 6 6
7 7 7 7
7 7 7 7

D.2.25 33 Processes

33 processes has a layout that are 11 processes high and 3 processes wide.

0 0 0
0 0 0
0 0 4
4 4 4
4 4 4
4 5 5
5 5 5
5 5 5
6 6 6
6 6 6
6 6 7

D.2. NODE LAYOUT USING RANKFILES 117

D.2.26 34 Processes

34 processes has a layout that are 17 processes high and 2 processes wide.

0 0
0 0
0 0
0 0
4 4
4 4
4 4
4 4
5 5
5 5
5 5
5 5
6 6
6 6
6 6
6 6
7 7

D.2.27 35 Processes

35 processes has a layout that are 7 processes high and 5 processes wide.

0 0 0 0 0
0 0 0 4 4
4 4 4 4 4
4 5 5 5 5
5 5 5 5 6
6 6 6 6 6
6 6 7 7 7

D.2.28 36 Processes

36 processes has a layout that are 6 processes high and 6 processes wide.

0 0 0 0 0 0
0 0 4 4 4 4
4 4 4 4 5 5
5 5 5 5 5 5
6 6 6 6 6 6
6 6 7 7 7 7

118 APPENDIX D. NODE LAYOUTS FOR CLUSTIS3

D.2.29 37 Processes

37 processes has a layout that are 37 processes high and 1 processes wide.

0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 5 5 5 5 ...

5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7

D.2.30 38 Processes

38 processes has a layout that are 19 processes high and 2 processes wide.

0 0
0 0
0 0
0 0
4 4
4 4
4 4
4 4
5 5
5 5
5 5
5 5
6 6
6 6
6 6
6 6
7 7
7 7
7 7

D.2.31 39 Processes

39 processes has a layout that are 13 processes high and 3 processes wide.

D.2. NODE LAYOUT USING RANKFILES 119

0 0 0
0 0 0
0 0 4
4 4 4
4 4 4
4 5 5
5 5 5
5 5 5
6 6 6
6 6 6
6 6 7
7 7 7
7 7 7

D.2.32 40 Processes

40 processes has a layout that are 8 processes high and 5 processes wide.

0 0 0 0 0
0 0 0 4 4
4 4 4 4 4
4 5 5 5 5
5 5 5 5 6
6 6 6 6 6
6 6 7 7 7
7 7 7 7 7

Appendix E

Runtime results in seconds

E.1 Runtime for size 256 on Clustis3 with border-thickness 1-5

256 1 2 3 4 5
1 101.53
2 51.33 51.9 52.44 52.43 52.76
3 35.01 35.5 36.33 36.32 36.79
4 27.36 27.2 27.45 27.45 27.68
5 21.85 22.19 23.04 23.03 23.45
6 19.05 18.97 19.29 19.3 19.53
7 16.04 16.36 17.15 17.17 17.52
8 14.59 14.41 14.75 14.78 14.96
9 53.03 35.79 31.08 28.74 26.85
10 30.78 23.53 20.62 19.37 18.47
11 38.53 30.81 27.08 24.37 23.88
12 53.57 34.52 28.59 25.75 23.49
13 37.69 30.45 26.96 23.92 23.61
14 28.23 19.31 16.59 15.32 14.65
15 52.16 33.62 27.43 24.57 22.34
16 32.25 21.05 17.66 16.05 15.41
17 36.11 29.26 25.52 23.1 22.81
18 28.82 19.01 16.14 14.74 13.97
19 36.06 29.23 25.67 23.18 23.15
20 50.37 30.8 24.64 21.32 20.41
21 28.61 18.69 15.3 13.84 12.99
22 50.49 31.62 27.18 23.42 21.18
23 36.72 31.32 26.96 24.1 24.07

121

122 APPENDIX E. RUNTIME RESULTS IN SECONDS

256 1 2 3 4 5
24 50.76 30.51 23.99 20.8 20.08
25 50.79 30.51 24.02 20.79 19.08
26 48.29 30.77 25.82 21.93 20.03
27 49.91 30.62 23.48 22.02 19.07
28 29.01 17.67 14.23 12.92 11.76
29 34.81 28.84 25.32 22.88 22.89
30 50.48 29.58 22.65 19.49 17.72
31 35.69 30.19 26.76 23.46 23.69
32 28.8 17.57 13.99 12.21 11.32
33 46.75 28.27 22.59 20.82 18.82
34 47.79 29.97 25.73 21.87 19.64
35 28.46 17.48 14.04 12.19 11.14
36 48.7 28.74 21.81 18.67 16.86
37 34.68 28.53 26.04 22.89 22.84
38 48.4 30.04 26.53 22.11 20.14
39 48.39 28.88 22.72 21.46 19.03
40 28.59 17.35 13.5 11.77 10.73

E.2 Runtime for size 512 on Clustis3 with border-thickness 1-5

512 1 2 3 4 5
1 401.31
2 202.19 204 205.4 205.54
3 136.43 138.19 139.47 140.05
4 104.13 104.47 105.13 105.29
5 83.95 85.22 86.38 86.8
6 71.46 71.86 72.48 72.78
7 61.66 62.53 63.55 64.06
8 53.93 54.15 54.73 55.12
9 96.33 81.76 74.55 70.91 68.78
10 69.56 60.2 57.67 57.24 56.24
11 82.85 68.22 63.95 63.21 62.53
12 88.73 69.83 64.7 59.81 57.5
13 79.81 64.89 61.3 59.47 59.08
14 55.67 47.53 45.12 44.57 44.62
15 83.07 64.16 57.64 54.93 52.79
16 57.75 47.26 46.66 43.36 42.05
17 73.62 59.16 55.28 53.06 53.05

E.3. RUNTIME FOR SIZE 512 ON CLUSTIS3 WITH BORDER-THICKNESS 1-5 123

512 1 2 3 4 5
18 52.04 42.97 39.51 38.45 39.02
19 71.55 57.45 54.72 52.16 51.96
20 75.51 54.67 50.19 47.94 44.69
21 49.66 39.91 36.38 35.1 36.64
22 74.08 57.18 50.12 45.7 45.17
23 72.89 56.97 55.19 53.57 52.49
24 75.01 53.26 48.11 43.85 43.25
25 73.79 55.21 49.15 48.5 45.98
26 72.34 54.74 47.26 42.96 41.22
27 71.17 50.24 44.74 41.13 39.31
28 50.54 39.88 36.2 35.85 35.36
29 67.16 52.28 49.79 48.92 48.56
30 70.15 49.04 42.24 40.4 39.35
31 69.17 54.22 51.41 49.71 49.97
32 45.48 33.68 29.99 28.54 27.52
33 72.26 51.3 46.37 42.4 40.61
34 70.47 52.31 46.15 42.59 39.81
35 69.76 61.95 57.56 55.17 53.53
36 74.25 52.97 49.82 42.52 42.47
37 65.33 50.94 48.49 47.42 46.8
38 69.67 52.41 45.4 41.65 39.14
39 70.44 49.48 46.51 41.87 39.8
40 61.88 58.06 53.97 50.22 51.76

E.3 Runtime for size 512 on Clustis3 with border-thickness 1-5

1024 1 2 3 4 5
1 1708.83
2 813.52 828.59 829.28 830.13 831.42
3 544.08 554.53 556.24 557.24 558.99
4 408.86 415.08 416.5 416.65 418.2
5 331.61 338.78 340.75 341.93 343.96
6 280.73 285.45 286.7 287.13 288.65
7 242.15 246.98 248.31 249.87 251.28
8 210.02 213.57 214.9 215.28 216.68
9 262.55 239.56 230.11 227.2 225.14
10 209.65 204.01 200.11 198.58 198.32
11 219.24 206.66 200.7 200.59 200.13

124 APPENDIX E. RUNTIME RESULTS IN SECONDS

1024 1 2 3 4 5
12 215.37 194.83 186.99 182.56 181.32
13 200.25 187.63 182.09 180.04 179.29
14 162.24 155.21 153.87 151.6 151.59
15 190.09 171.98 162.72 158.48 155.98
16 154.64 145.89 141.71 139.62 139.05
17 174.59 161.29 158.15 156.22 155.77
18 143.13 133.87 132.79 130.47 130.52
19 167.22 152.98 149.8 147.72 146.71
20 163.48 149.74 140.61 136.34 134
21 133.49 123.13 160.57 120.52 120.16
22 166.65 139.25 134.53 132.54 131.01
23 161.29 146.36 141.95 139.71 140.22
24 153.91 134.71 129.58 122.34 123.87
25 204.61 188.45 185.51 174.19 171.28
26 178.3 148.7 190.43 134.32 131.57
27 213.15 173.14 186.72 152.75 143.89
28 205.69 193.14 197.49 190.39 194.23
29 157.09 136.82 132.89 129.75 130.06
30 217.93 194.75 191.37 174.05 165.85
31 155.03 138.59 131.81 131.51 131.11
32 209.31 203.5 193.91 192.56 188.77
33 225.48 188.14 195.27 173.16 171.15
34 176.25 160.79 155.46 150.82 134.82
35 213.81 204.65 206.46 195.39 208.71
36 238.11 217.86 205.09 191.84 188.18
37 157.36 139.57 134.93 129.16 127.93
38 175.69 147.36 142.07 142.04 138.79
39 215.25 184.72 187.34 172.91 163.66
40 227.42 207.53 206.63 203.03 204.92

E.4 Runtime for size 256 on Clustis3 with border-thickness 1-5
using rankfile

256 1 2 3 4 5
1 101.53
2 51.33 51.9 52.44 52.43 52.76
3 35.01 35.5 36.33 36.32 36.79
4 27.36 27.2 27.45 27.45 27.68
5 21.85 22.19 23.04 23.03 23.45

E.4. RUNTIME FOR SIZE 256 ON CLUSTIS3 WITH BORDER-THICKNESS 1-5 USING
RANKFILE 125

256 1 2 3 4 5
6 19.05 18.97 19.29 19.3 19.53
7 16.04 16.36 17.15 17.17 17.52
8 14.59 14.41 14.75 14.78 14.96
9 32.95 24.57 21.85 20.67 19.61
10 30.02 22.46 20.93 18.77 17.81
11 30.31 23.41 20.53 19.04 18.43
12 30.83 22.25 19.72 18.55 17.47
13 28.66 21.86 18.99 17.55 16.95
14 27.91 20.47 18.9 16.87 16
15 39.24 26.15 21.29 19.52 17.99
16 30.11 20.51 17.56 16.22 15.34
17 27.7 20.97 18.23 16.44 15.84
18 28.76 19.85 17.09 16.94 16.05
19 27.63 20.12 17.13 15.65 15.27
20 30.08 20.12 16.79 15.21 15.17
21 40.97 23.73 18.8 17.32 15.9
22 27.08 19.02 16.67 15.07 14.43
23 26.09 19.38 16.12 14.84 14.3
24 28.95 18.89 15.7 14.1 14.08
25 38.84 24.27 19.25 16.75 15.32
26 26.07 19.1 16.39 13.94 13.17
27 40.26 22.83 18.57 17.18 14.59
28 27.65 17.96 14.81 13.28 13.46
29 24.75 18.63 14.99 13.99 12.87
30 39.25 24.16 18.67 15.79 14.24
31 24.83 18.61 15.01 13.79 12.93
32 27.14 17.29 14.27 12.87 12.75
33 39.5 21.85 17.87 16.63 14.82
34 24.67 17.98 15.55 13.21 12.32
35 39.2 23.71 18.44 15.41 13.82
36 38.13 22.92 17.54 15.32 13.78
37 24.14 17.7 14.52 13.06 12.1
38 24.13 17.24 15.06 12.82 11.73
39 38.23 21.08 16.94 15.84 13.4
40 39.07 22.97 17.43 14.6 12.94

126 APPENDIX E. RUNTIME RESULTS IN SECONDS

E.5 Runtime for size 512 on Clustis3 with border-thickness 1-5
using rankfile

512 1 2 3 4 5
1 401.31
2 202.19 204 205.4 205.54
3 136.43 138.19 139.47 140.05
4 104.13 104.47 105.13 105.29
5 83.95 85.22 86.38 86.8
6 71.46 71.86 72.48 72.78
7 61.66 62.53 63.55 64.06
8 53.93 54.15 54.73 55.12
9 72.38 64.3 60.64 58.44 59.74
10 66.22 58.5 54.19 52.27 51.22
11 65.09 56.06 52.06 51.3 51.42
12 63.49 55.46 51.94 50.02 49.73
13 60.07 51.2 47.25 46.48 46.83
14 57.07 49.56 45.43 44.04 43.66
15 68.76 54.25 50.14 47.91 45.46
16 56.43 47.09 43.59 41.62 40.43
17 55.27 45.96 42.23 40.95 40.74
18 54.69 46.2 43.05 40.78 40.61
19 52.1 42.54 38.98 37.55 37.48
20 52.35 43.4 41.78 39.05 37.69
21 59.98 45 40.93 38.48 37.35
22 48.66 41.9 36.55 35.82 34.92
23 48.21 39.01 35.54 34.1 33.86
24 48.1 39.59 37.86 35.11 33.7
25 58.39 43.61 38.41 36.31 34.07
26 45.22 39.25 33.86 32.99 32.36
27 54.86 41.07 35.82 33.02 31.79
28 45.25 36.86 34.94 32.06 30.64
29 45.75 35.9 31.25 30.34 30.44
30 55.5 41.3 36.36 33.89 32.01
31 44.96 34.97 30.79 29.77 29.76
32 44.02 35.46 33.78 30.75 29.29
33 56.4 39.27 34.8 31.67 29.57
34 43.26 35.47 31.21 32.78 32.94
35 61.59 44.68 36.14 39.09 33.71
36 63.15 52.17 43.69 53.25 41.71

E.6. RUNTIME FOR SIZE 1024 ON CLUSTIS3 WITH BORDER-THICKNESS 1-5 USING
RANKFILE 127

512 1 2 3 4 5
37 41.56 32.7 28.75 27.3 26.96
38 41.63 33.12 29.67 41.83 29.91
39 53.83 37.18 32.52 29.73 27.3
40 67.46 49.43 44.52 51.63 51.63

E.6 Runtime for size 1024 on Clustis3 with border-thickness 1-5
using rankfile

1024 1 2 3 4 5
1 1708.83
2 813.52 828.59 829.28 830.13 831.42
3 544.08 554.53 556.24 557.24 558.99
4 408.86 415.08 416.5 416.65 418.2
5 331.61 338.78 340.75 341.93 343.96
6 280.73 285.45 286.7 287.13 288.65
7 242.15 246.98 248.31 249.87 251.28
8 210.02 213.57 214.9 215.28 216.68
9 223.01 210.76 211.68 209.97 211.05
10 202.82 189.8 187.26 186.9 187.79
11 189.52 178.09 177 176.17 176.34
12 186.67 174.61 172.49 171.97 172.22
13 168.82 157.86 156.49 155.28 155.09
14 163.04 150.22 147.22 147.13 147.18
15 171.6 158.02 150.7 146.95 145.47
16 153.65 141.84 137.92 138.22 137.7
17 148.93 138.42 136.02 134.8 134.54
18 149.94 138.34 135.33 133.41 132.49
19 138.09 126.18 125.17 124.13 123.92
20 140.78 131.58 126.72 124.61 126.13
21 143.73 130.77 163.02 122.88 121.1
22 131.04 119.67 116.36 115.66 115.08
23 124.67 112.67 111.38 110.16 109.78
24 126.72 117.22 112.44 110.13 109.96
25 136.95 128.84 132.07 133.78 125.72
26 137.68 143.26 170.61 139.1 129.52
27 205.88 177.51 194.88 193.95 192.28
28 187.05 175.43 175.86 198.61 196.32
29 187.13 182.21 174.16 171.47 173.1
30 218.76 199.42 192.64 187.86 187.18

128 APPENDIX E. RUNTIME RESULTS IN SECONDS

1024 1 2 3 4 5
31 200.61 180.75 185.72 169.34 145.65
32 222.89 214.67 207.3 215.83 212.36
33 213.9 192.62 214.11 207.97 206.39
34 205.83 222.52 202.44 194.7 192
35 244.07 228.81 225.49 215.93 225.7
36 251.83 232.29 223.07 219.26 215.96
37 221.56 202.02 195.46 190.85 198.42
38 213.06 219.2 215.61 209.82 204.67
39 226.2 219.88 225.06 211.57 208.79
40 250.87 233.33 221.65 223.22 215.4

E.7 Runtime size 256 on Numascale with border-thickness 1-5

256 1 2 3 4 5
1 47.94 25.23 27.56 25.11
2 23.99 22.73 23.75 23.04 24.03
3 16.97 15.68 16.39 16.12 16.98
4 13.68 12.49 13.07 12.53 13.57
5 11.17 10.33 10.79 10.68 11.27
6 10.59 9.50 9.89 9.46 9.97
7 8.73 7.87 8.39 8.22 8.75
8 8.31 7.38 7.66 7.36 7.79
9 8.94 7.66 7.76 7.15 7.90
10 7.40 6.57 6.78 6.46 6.81
11 6.54 5.56 5.80 5.97 6.30
12 6.72 5.66 5.80 5.52 5.90
13 5.16 4.73 5.03 5.23 5.61
14 5.92 5.18 5.35 5.02 5.33
15 6.81 5.45 5.43 4.98 5.43
16 5.59 4.93 4.72 4.60 4.74
17 4.39 3.92 4.14 4.43 4.82
18 5.23 4.30 4.35 4.12 4.43
19 3.94 3.66 3.97 4.20 4.41
20 5.24 4.36 4.45 4.05 4.35
21 5.43 4.80 4.27 3.91 4.27
22 4.55 3.86 3.94 3.81 4.06
23 3.75 3.35 3.55 3.89 4.15
24 4.63 3.69 3.68 3.43 3.68

E.8. RUNTIME SIZE 512 ON NUMASCALE WITH BORDER-THICKNESS 1-5 129

256 1 2 3 4 5
25 5.70 4.35 4.14 3.76 4.14
26 4.14 3.49 3.78 3.42 3.68
27 5.00 3.80 3.80 3.47 3.84
28 4.54 3.67 3.70 3.36 3.67
29 3.00 2.83 2.90 3.26 3.53
30 4.39 3.48 3.40 3.22 3.46
31 3.25 2.73 2.89 3.26 3.54
32 4.05 3.17 3.10 2.88 3.16
33 9.05 5.19 4.57 3.96 3.86
34 9.43 8.00 5.69 5.22 4.84
35 12.07 7.70 6.32 5.38 4.97
36 13.75 8.74 6.62 5.93 5.30
37 7.28 5.35 6.71 6.78 6.31
38 10.23 10.82 6.21 5.69 5.49
39 16.25 8.62 7.13 7.08 6.04
40 16.28 9.64 8.61 7.06 6.33
41 7.69 5.73 5.07 7.03 6.54
42 16.15 10.79 8.37 9.35 6.57
43 7.63 5.71 5.13 6.67 7.59
44 12.63 9.39 6.79 6.17 5.86
45 10.71 10.23 8.31 8.20 6.90
46 10.45 7.38 6.41 5.93 5.65
47 7.72 5.74 6.43 6.89 6.60
48 17.04 15.18 8.87 10.77 6.89
49 18.47 14.65 9.32 8.18 16.00
50 16.62 10.36 8.75 7.87 6.81

E.8 Runtime size 512 on Numascale with border-thickness 1-5

512 1 2 3 4 5
1 206.74
2 94.26 89.69 92.24 90.43 95.27
3 64.33 61.81 64.41 61.40 64.69
4 50.38 46.93 49.56 47.24 49.90
5 42.05 39.60 41.22 39.30 41.75
6 37.14 34.56 36.06 35.05 36.78
7 32.17 30.04 31.15 29.77 32.17
8 28.27 26.34 27.53 26.97 28.33
9 27.98 26.56 26.64 25.92 32.32
10 24.65 22.99 23.87 23.46 24.60

130 APPENDIX E. RUNTIME RESULTS IN SECONDS

512 1 2 3 4 5
11 21.23 20.45 21.36 20.30 22.20
12 20.58 19.69 20.10 19.56 19.79
13 18.06 17.73 18.51 17.65 20.50
14 19.36 17.74 18.28 18.16 18.99
15 19.07 17.94 17.91 18.30 17.75
16 16.88 15.26 15.92 15.14 15.69
17 14.77 14.44 14.91 14.29 15.52
18 15.27 14.35 14.23 14.21 14.38
19 13.25 12.95 13.32 12.88 13.88
20 15.66 14.22 14.45 13.86 14.19
21 15.65 14.22 15.36 13.41 13.38
22 13.55 12.52 12.84 13.01 13.64
23 11.52 11.83 12.24 12.02 13.14
24 13.12 11.64 11.84 11.40 11.76
25 14.78 13.23 12.85 12.84 12.85
26 12.05 11.09 11.29 11.57 12.30
27 13.46 12.24 11.90 11.76 11.92
28 13.16 11.76 11.78 11.31 11.48
29 9.50 10.22 10.17 9.88 10.67
30 12.05 10.81 10.67 10.61 10.88
31 9.05 9.54 9.80 9.63 10.59
32 11.12 9.71 9.72 9.51 9.68
33 14.00 11.42 10.93 10.42 10.40
34 15.49 12.64 11.94 14.10 14.19
35 17.66 13.57 12.90 12.58 12.86
36 18.37 13.50 12.63 11.88 13.67
37 12.54 14.76 14.76 13.33 13.59
38 16.66 13.88 13.28 16.02 15.73
39 18.70 15.25 14.21 13.69 13.77
40 20.63 17.12 14.79 14.31 14.27
41 12.96 23.89 25.05 23.18 25.10
42 21.89 23.95 25.47 23.41 24.81
43 12.90 22.71 23.72 21.79 23.71
44 24.50 23.62 23.52 21.90 23.94
45 20.83 23.21 24.10 22.11 24.11
46 30.56 23.29 24.26 22.38 23.99
47 13.28 24.69 25.46 24.18 25.39
48 22.58 25.05 25.53 24.28 25.50
49 45.59 25.28 26.31 25.88 25.79
50 21.41 25.87 26.49 25.32 25.60

E.9. RUNTIME SIZE 1024 ON NUMASCALE WITH BORDER-THICKNESS 1-5 131

E.9 Runtime size 1024 on Numascale with border-thickness 1-5

1024 1 2 3 4 5
1 1541.08
2 687.89 532.51 470.75 373.92 391.52
3 343.33 292.98 310.01 265.98 271.75
4 242.37 241.23 261.36 209.29 217.13
5 236.34 177.07 207.58 170.98 174.35
6 190.30 179.73 189.33 144.60 154.73
7 135.86 131.31 129.20 122.84 128.26
8 112.32 109.29 115.66 104.91 109.79
9 104.53 98.63 103.81 97.46 105.08
10 94.87 91.31 95.18 89.30 93.43
11 85.70 81.79 82.26 79.98 81.69
12 75.84 72.29 76.22 73.42 77.44
13 72.23 69.39 69.01 67.52 68.90
14 71.93 69.24 71.92 67.26 69.74
15 68.36 64.93 68.42 64.92 68.19
16 60.87 56.56 58.24 57.19 59.17
17 56.77 54.66 54.19 53.55 55.01
18 53.55 50.85 53.84 51.60 53.84
19 50.34 49.36 49.24 48.17 49.86
20 56.88 52.85 53.56 52.30 53.92
21 53.14 49.48 52.31 48.26 49.43
22 48.56 47.02 48.56 45.84 48.50
23 44.03 43.27 43.39 42.72 44.50
24 44.51 41.50 42.52 40.55 41.93
25 48.45 46.27 45.53 45.18 46.64
26 42.03 40.76 43.04 39.36 41.55
27 44.55 41.81 44.49 42.23 44.27
28 45.81 42.53 42.15 41.70 42.26
29 36.42 35.48 35.58 34.90 36.42
30 37.88 36.73 36.66 36.11 37.63
31 34.81 33.88 34.18 33.72 35.65
32 37.03 34.10 34.41 34.20 34.66
33 39.59 35.86 37.83 35.55 36.67
34 39.23 40.01 39.81 38.03 38.91
35 45.84 43.53 42.78 41.40 43.96
36 41.03 38.67 38.36 37.75 43.19

132 APPENDIX E. RUNTIME RESULTS IN SECONDS

1024 1 2 3 4 5
37 42.58 38.64 38.12 37.79 38.26
38 41.57 44.22 42.67 40.54 40.90
39 44.55 40.51 44.46 42.30 42.43
40 45.24 41.09 40.56 39.69 42.62
41 48.19 39.94 39.51 39.36
42 49.47 46.40 46.42 44.82
43 45.55 42.11 40.58 40.15
44 46.32 43.07 42.86 43.60
45 49.40 46.87 45.04 44.81
46 45.46 46.45 45.67 43.00
47 45.69 41.28 41.17 41.03
48 48.77 44.24 45.71 44.11
49 51.83 49.27 48.79 48.31
50 49.58 45.27 43.98 44.70

E.10 Runtime for dense layout on Numascale

Dense 256 512 1024
1 47.94 206.74 1541.08
2 23.99 94.26 687.89
4 13.68 50.38 242.37
8 8.31 28.27 112.32
16 5.59 16.88 60.87
32 4.05 11.12 37.03
64 20.72 25.65 60.05
128 133.18 183.08 241.18

E.11 Runtime for horzontal striped layout on Numascale

Striped horizontal p 1 256 512 1024
1 47.94 206.74 1541.08
2 23.99 94.26 687.89
4 12.65 48.60 244.04
8 7.39 27.16 111.16
16 4.43 14.93 57.52
32 3.00 8.73 32.66
64 11.29 16.58 53.54
128 44.89 77.87 275.12

E.12. RUNTIME FOR VERTICAL STRIPED LAYOUTS ON NUMSCALE 133

E.12 Runtime for vertical striped layouts on Numscale

Striped vertical 1 p 256 512 1024
1 47.94 206.74 1541.08
2 23.99 94.26 687.89
4 14.37 53.08 231.92
8 9.40 32.12 124.50
16 6.68 20.49 73.48
32 5.64 15.39 50.50
64 10.86 25.99 79.52
128 39.82 96.56 256.87

E.13 Write to file runtime Numascale

size 29 processes write to file 29 not write to file difference
256 3.881135 2.99786 0.883275
512 11.601198 9.504451 2.096747
1024 44.960638 36.4152 8.545438

E.14 Write to file runtime Clustis3

size 8 processes write to file 8 not write to file difference
256 27.569904 14.80545 12.764454
512 90.864921 54.846053 36.018868
1024 256.028561 213.941491 42.08707

134 APPENDIX E. RUNTIME RESULTS IN SECONDS

E.15 Avg, min and max runtime for size 1024 on Clustis3

1024 1024 avg 1024 min 1024 max
1 2422.378979 2421.768586 2422.9345
2 813.519605 812.694452 814.842656
3 544.077871 543.766894 544.681657
4 408.858205 408.523244 409.819141
5 331.613308 331.37566 332.007108
6 280.727989 279.973628 281.767408
7 242.145639 241.919111 242.293015
8 210.024925 209.443913 210.861328
9 262.553683 261.311 264.734173
10 209.648175 208.968582 210.717832
11 219.242048 216.852869 224.759808
12 215.374302 213.079243 220.723745
13 200.253474 198.265569 204.140066
14 162.243683 161.579098 163.663311
15 190.088177 186.713366 196.903126
16 154.643041 153.280083 156.004919
17 174.586739 173.215009 177.279032
18 143.128051 141.615983 144.844975
19 167.221949 165.317552 168.907659
20 163.477 161.21619 168.419689
21 133.486495 131.051969 138.845156
22 166.652463 155.582566 172.933967
23 161.285173 154.28603 164.836688
24 153.910379 148.081592 156.921367
25 204.608912 192.239084 230.120314
26 178.299863 158.574112 195.769827
27 213.145683 198.751118 226.698795
28 205.693586 194.731913 218.791786
29 157.093172 146.914952 177.303474
30 217.930828 200.647688 236.336393
31 155.025522 146.670998 181.533802
32 209.3131 191.120429 225.460724
33 225.48484 201.267986 245.646857
34 176.249794 152.694141 200.727538
35 213.80691 198.262178 236.912395
36 238.107908 222.344429 253.487872

E.16. AVG, MIN AND MAX RUNTIME FOR SIZE 1024 ON NUMASCALE 135

1024 1024 avg 1024 min 1024
37 157.361371 140.935038 185.702443
38 175.691343 146.972283 206.643026
39 215.2497 187.98071 238.478398
40 227.415573 205.080118 243.61974

E.16 Avg, min and max runtime for size 1024 on Numascale

1024 1024 avg 1024 min 1024 max
1 1541.078063 1464.526123 1684.711531
2 687.885181 598.883633 1438.87211
3 343.330976 286.939379 1339.612725
4 242.367617 224.493612 575.330802
5 236.336981 180.109697 346.236028
6 190.297526 159.378185 247.624921
7 135.864616 130.275795 143.953006
8 112.317986 111.561871 114.3686
9 104.532985 104.329174 105.041151
10 94.87049 93.731297 95.333164
11 85.704242 85.527797 85.884439
12 75.839616 75.682307 75.97157
13 72.228493 72.038277 72.544747
14 71.934975 70.959715 72.389219
15 68.35869 68.104127 68.670578
16 60.867865 60.720927 61.166346
17 56.767441 56.69845 56.881022
18 53.54689 53.30568 53.761994
19 50.339546 50.23431 50.462416
20 56.879542 56.790041 56.971877
21 53.13514 52.921525 53.270293
22 48.564998 47.93172 49.12428
23 44.033014 43.961474 44.219269
24 44.5108 44.474359 44.558255
25 48.447748 48.349805 48.61348
26 42.03183 41.236813 42.390491
27 44.553432 44.454208 44.623591
28 45.811985 45.734629 45.935369
29 36.4152 36.367895 36.507541
30 37.880413 37.786346 37.941231

136 APPENDIX E. RUNTIME RESULTS IN SECONDS

1024 1024 avg 1024 min 1024 max
31 34.80898 34.75953 34.876979
32 37.02857 36.922462 37.165665
33 39.594942 39.299406 39.885415
34 39.229388 39.119241 39.361703
35 45.843063 45.099635 46.320982
36 41.026257 40.881199 41.142444
37 42.580639 42.395435 42.913026
38 41.573295 41.40543 42.059404
39 44.549339 44.033859 51.667259
40 45.250978 45.114912 45.486224
64 60.04845 52.397297 118.948531
128 241.179272 95.921863 592.762949

	Problem definition
	Abstract
	Acknowledgments
	Contents
	List of Figures
	1 Super computers
	1.1 Why super computers exist?
	1.2 Performance limitations for computers
	1.2.1 Pattersons Three Walls

	1.3 Performance measurement
	1.3.1 Speedup and efficiency
	1.3.2 Amdahl's law
	1.3.3 Gustafson's law

	1.4 Flynn's taxonomy
	1.4.1 SISD
	1.4.2 SIMD
	1.4.3 MISD
	1.4.4 MIMD

	1.5 Software categorizations
	1.5.1 SPMD
	1.5.2 MPMD

	1.6 Message Passing Interface (MPI)
	1.6.1 Send and Receive
	1.6.2 Functionality
	1.6.3 Structure
	1.6.4 Master / slave
	1.6.5 Common pitfalls

	2 Benchmarking
	2.1 Workload Efforts
	2.1.1 the High-Performance Linpack Benchmark
	2.1.2 GigaTEPS

	3 Heat Equation by FTCS
	3.1 Heat equation
	3.1.1 Boundary conditions
	3.1.2 Calculate the constant c

	3.2 Numerical solution the heat equation by FTCS
	3.3 Implement the numerical solution for a single processor
	3.3.1 Dirichlet Problem
	3.3.2 Neumann Problem

	4 Heat Equation solution in parallel
	4.1 The timed_heat code
	4.1.1 Global variables

	4.2 Methods
	4.2.1 Main method
	4.2.2 Border exchange
	4.2.3 FTCS solver
	4.2.4 Border update
	4.2.5 Boundaries

	4.3 Visual results
	4.3.1 Correct output for size 256
	4.3.2 Error examples

	4.4 Process layout
	4.5 Changing global variables
	4.5.1 Changing size of the system
	4.5.2 Changing border thickness
	4.5.3 Writing to file
	4.5.4 NSTEPS and CUTOFF

	4.6 Other examples of implementations on multiple processors
	4.6.1 HEAT2D Example - Parallelized C Version
	4.6.2 Horak and Gruber - Parallel Numerical Solution of 2D Heat Equation

	4.7 Parallelized Versions Compared

	5 The Clustis3 and Numascale
	5.1 Clustis3
	5.2 Numascale

	6 Running Heat Equation on Clustis3 and Numascale
	6.1 Running heat equation on Clustis3 with different Sizes
	6.1.1 The Node Layout
	6.1.2 Using rankfiles

	6.2 Running heat on Numascale with different sizes
	6.2.1 Compared to Clustis3
	6.2.2 Splitting the workload into striped partitions on Numascale

	6.3 Changing size of Border
	6.3.1 Without using rankfiles on Clustis3
	6.3.2 With Rankfile on Clustis3
	6.3.3 Numascale

	6.4 Writing to file
	6.4.1 Numascale
	6.4.2 Clustis3
	6.4.3 Write time compared

	6.5 Max min and runtimestabilty

	7 Conclusions and future work
	7.1 Conclusions
	7.2 Future work
	7.2.1 Testing without SMT
	7.2.2 Different benchmarking
	7.2.3 Measuring communication
	7.2.4 Benchmark power usage
	7.2.5 Comparing MPI to P-threads or OpenMP on Numascale
	7.2.6 Optimizations
	7.2.7 Striped partitions
	7.2.8 Optimizing for L cache

	References
	Appendices
	A MPI functions
	A.1 Structure functions
	A.1.1 MPI_Init
	A.1.2 MPI_Finalize

	A.2 Send and receive
	A.2.1 Modes
	A.2.2 MPI_Send
	A.2.3 MPI_Recv
	A.2.4 MPI_Sendrecv
	A.2.5 Communicator
	A.2.6 Collective Communication

	A.3 Other functionality used
	A.3.1 Data-types
	A.3.2 Setting up dimensions
	A.3.3 Time measurement

	B Pseudo Code
	C Source Code
	C.1 Benchmarkingexample: Heat equation solved by FTCS
	C.2 Heat equation solved by FTCS serial version

	D Node Layouts for Clustis3
	D.1 Node Layout First Run
	D.1.1 9 Processes
	D.1.2 10 Processes
	D.1.3 11 Processes
	D.1.4 12 Processes
	D.1.5 13 Processes
	D.1.6 14 Processes
	D.1.7 15 Processes
	D.1.8 16 Processes
	D.1.9 17 Processes
	D.1.10 18 Processes
	D.1.11 19 Processes
	D.1.12 20 Processes
	D.1.13 21 Processes
	D.1.14 22 Processes
	D.1.15 23 Processes
	D.1.16 24 Processes
	D.1.17 25 Processes
	D.1.18 26 Processes
	D.1.19 27 Processes
	D.1.20 28 Processes
	D.1.21 29 Processes
	D.1.22 30 Processes
	D.1.23 31 Processes
	D.1.24 32 Processes
	D.1.25 33 Processes
	D.1.26 34 Processes
	D.1.27 35 Processes
	D.1.28 36 Processes
	D.1.29 37 Processes
	D.1.30 38 Processes
	D.1.31 39 Processes
	D.1.32 40 Processes

	D.2 Node Layout Using Rankfiles
	D.2.1 9 Processes
	D.2.2 10 Processes
	D.2.3 11 Processes
	D.2.4 12 Processes
	D.2.5 13 Processes
	D.2.6 14 Processes
	D.2.7 15 Processes
	D.2.8 16 Processes
	D.2.9 17 Processes
	D.2.10 18 Processes
	D.2.11 19 Processes
	D.2.12 20 Processes
	D.2.13 21 Processes
	D.2.14 22 Processes
	D.2.15 23 Processes
	D.2.16 24 Processes
	D.2.17 25 Processes
	D.2.18 26 Processes
	D.2.19 27 Processes
	D.2.20 28 Processes
	D.2.21 29 Processes
	D.2.22 30 Processes
	D.2.23 31 Processes
	D.2.24 32 Processes
	D.2.25 33 Processes
	D.2.26 34 Processes
	D.2.27 35 Processes
	D.2.28 36 Processes
	D.2.29 37 Processes
	D.2.30 38 Processes
	D.2.31 39 Processes
	D.2.32 40 Processes

	E Runtime results in seconds
	E.1 Runtime for size 256 on Clustis3 with border-thickness 1-5
	E.2 Runtime for size 512 on Clustis3 with border-thickness 1-5
	E.3 Runtime for size 512 on Clustis3 with border-thickness 1-5
	E.4 Runtime for size 256 on Clustis3 with border-thickness 1-5 using rankfile
	E.5 Runtime for size 512 on Clustis3 with border-thickness 1-5 using rankfile
	E.6 Runtime for size 1024 on Clustis3 with border-thickness 1-5 using rankfile
	E.7 Runtime size 256 on Numascale with border-thickness 1-5
	E.8 Runtime size 512 on Numascale with border-thickness 1-5
	E.9 Runtime size 1024 on Numascale with border-thickness 1-5
	E.10 Runtime for dense layout on Numascale
	E.11 Runtime for horzontal striped layout on Numascale
	E.12 Runtime for vertical striped layouts on Numscale
	E.13 Write to file runtime Numascale
	E.14 Write to file runtime Clustis3
	E.15 Avg, min and max runtime for size 1024 on Clustis3
	E.16 Avg, min and max runtime for size 1024 on Numascale

