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Abstract

Background: Mutations in LRRK2 gene represent the most common known genetic cause of Parkinson’s disease (PD).

Methodology/Principal Findings: We used metabolomic profiling to identify biomarkers that are associated with idiopathic
and LRRK2 PD. We compared plasma metabolomic profiles of patients with PD due to the G2019S LRRK2 mutation, to
asymptomatic family members of these patients either with or without G2019S LRRK2 mutations, and to patients with
idiopathic PD, as well as non-related control subjects. We found that metabolomic profiles of both idiopathic PD and LRRK2
PD subjects were clearly separated from controls. LRRK2 PD patients had metabolomic profiles distinguishable from those
with idiopathic PD, and the profiles could predict whether the PD was secondary to LRRK2 mutations or idiopathic.
Metabolomic profiles of LRRK2 PD patients were well separated from their family members, but there was a slight overlap
between family members with and without LRRK2 mutations. Both LRRK2 and idiopathic PD patients showed significantly
reduced uric acid levels. We also found a significant decrease in levels of hypoxanthine and in the ratios of major
metabolites of the purine pathway in plasma of PD patients.

Conclusions/Significance: These findings show that LRRK2 patients with the G2019S mutation have unique metabolomic
profiles that distinguish them from patients with idiopathic PD. Furthermore, asymptomatic LRRK2 carriers can be separated
from gene negative family members, which raises the possibility that metabolomic profiles could be useful in predicting
which LRRK2 carriers will eventually develop PD. The results also suggest that there are aberrations in the purine pathway in
PD which may occur upstream from uric acid.
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Introduction

Parkinson’s disease (PD) was long considered to be largely

idiopathic, but several genetic factors have been reported during

the last decade. LRRK2, Parkin and PINK1 genes have the most

clinical relevance because of their comparatively high frequency

[1–4]. The 6055G .A mutation in the LRRK2 gene, resulting in a

G2019S substitution in the LRRK2 protein is common, though the

frequency varies dependent on ethnic group [5–7]. In central

Norway, about 3% of all PD cases have been found to carry this

mutation, although the penetrance in affected families is

incomplete [8].

The discovery of PD genes has greatly improved our

understanding of PD and could possibly provide new strategies

for treatment. The diagnosis of PD is still mainly based on clinical

features, and a definitive diagnosis can only be confirmed by

autopsy findings. Disease progression can be followed with

functional neuroimaging techniques such as PET and SPECT

[9,10], but these techniques have limited availability, are

expensive, and are not used in daily clinical practice.

Several biochemical markers have been assessed as potential

biomarkers, such as dopamine metabolites in the CSF of PD

patients, but do not correlate with PD severity [11]. Decreased

levels of a-synuclein in CSF, and an elevated level of the

oligomeric protein in plasma have been reported [12,13], but

neither is recognized as a diagnostic marker. Several studies are

currently in progress to find biomarkers using genomic, proteomic

or metabolomic approaches [14,15].

Metabolomics is the comprehensive analysis of low molecular

weight molecules within a particular biological sample, followed by

organization for data mining and bioinformatics [16], and has been

used to study several illnesses, including heart disease [17], type 2

diabetes [18], cancer [19], and nervous system diseases such as

schizophrenia [20], amyotrophic lateral sclerosis [21], and Hunting-

ton’s disease [22]. We recently found that idiopathic PD patients have

metabolomic phenotypes which differ from control subjects [14].
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Clinically, LRRK2 PD patients are indistinguishable from

idiopathic PD patients [8,23,24]. Genotyping can differentiate

between LRRK2 and idiopathic PD patients after onset of clinical

symptoms. However, it provides incomplete information about

possible development of PD in asymptomatic gene carriers, due to

incomplete penetrance. Therefore, it is important to find

biomarkers in mutation carriers which may predict the develop-

ment of the clinical symptoms.

In the present study we used a metabolomics approach to define

plasma metabolomes associated with LRRK2 PD, idiopathic PD,

asymptomatic LRRK2 G2019S carriers, and normal control

subjects. Both untargeted and targeted (including 34 major known

metabolites of the purines, tyrosine, and tryptophan pathways)

approaches were performed to thoroughly investigate the

differences between LRRK2 and idiopathic PD, as well as between

controls and all PD patients.

Methods

Patients
A total of 99 subjects were enrolled in this study: PD patients

without any known mutations (idiopathic, n = 41) and PD patients

carrying the G2019S mutation in LRRK2 gene (n = 12). The

healthy family members from the mutation carrier PD cases were

invited to participate in this study and 21 of them tested positive

for the mutation (mut+) and 10 of them were negative (mut2).

Additionally, 15 control subjects who were healthy with no signs of

any movement disorder, and were not in the family or a spouse of

the LRRK2 G2019S cases, were recruited from the same area.

Table 1 presents the demographic data. All the PD patients were

examined and followed up by one neurologist (J.O.A.). Clinical

criteria for diagnosis required the presence of at least two cardinal

motor signs: asymmetric resting tremor, bradykinesia and rigidity,

as well as a good response to levodopa and absence of other

atypical features and causes of parkinsonism [25]. A complete

neurological examination was performed on the healthy family

members without any clinical signs of parkinsonism.

All the patients included in this study were tested for known PD-

related mutations and none of the patients with idiopathic PD

were found to have any such mutations. The 12 LRRK2 PD

patients were heterozygous carriers for the G2019S mutation, from

9 unrelated families. The treatment of the two PD groups

consisted for the most part of a combination of levodopa and

dopamine agonists, but 8 idiopathic patients used selegiline, and 3

used antipsychotic medicines. No patients with the mutation were

treated with the latter two types of medication. Table 2 shows a list

of the medications used by the patients. The family members of

LRRK2 PD patients were screened specifically for the G2019S

mutation, as were the healthy control subjects. The mutation was

not found in any of the controls, but was found in twenty one

family members.

Ethics statement
Written informed consent was acquired from all subjects

participating in this study, according to the declaration of Helsinki.

The study was approved by the Regional Committee for Medical

Research Ethics, Central Norway. The protocol for analysis of the

samples at the Bedford VAMC was approved by the Bedford

VAMC IRB.

Sample preparation and analysis
Plasma samples were prepared for analysis by extraction in

acidified acetonitrile and analyzed by LCECA as previously

described [14,21,26–28]. During the sample preparation, pools

were created from equal volumes of subaliquots of all samples in

the study. Pools and duplicates were used to assess the precision of

the entire data set and to control the overall performance of the

analytical method. The pools also served as references for time

normalization (peak stretching) and were used to express the

concentrations of each peak in the samples as a percentage of the

concentration of those peaks in the averaged pool. The replicate

analyses of the pool also provided an estimate of the coefficient of

variation associated with each peak, that is, the standard deviation

of the peak height across pool replicates normalized to mean peak

height. Peaks included in the further data analysis were those that

had good precision in the replicate analyses of the pool. 712 were

judged to meet this criterion and used for the further data analysis.

These 712 analytes included both unknown and known com-

pounds, comprising metabolites of tyrosine, tryptophan and purine

pathways, and some redox active markers of oxidative stress,

antioxidants and vitamins [26,29].

Table 1. The clinical data of the enrolled subjects.

N Age Sex (M/F) AAO Duration

Idiopathic PD 41 64.8 (45–77) 25/16 53.4 (30–71) 11.2 (2–33)

LRRK2 PD 12 72.8 (53–88) 5/7 61.1 (43–75) 11.7 (2–27)

Mut+ 21 55.7 (28–81) 15/6 - -

Mut2 10 54.6 (41–78) 7/3 - -

Control 15 66.4 (54–88) 8/7 - -

Idiopathic PD: patients without any known mutations; LRRK2 PD: patients
carrying the G2019S mutation in LRRK2; Mut+: healthy family members with
G2019S mutation in LRRK2; Mut2: healthy family members without mutation;
Controls: healthy subjects without any sign of neurological diseases; AAO: age
at disease onset.
doi:10.1371/journal.pone.0007551.t001

Table 2. The medication of PD patients.

Idiopathic PD LRRK2 PD

N Dosage (mg) N Dosage (mg) P value

Levodopa monotherapy 13 5216387 8 337674 0.151

Dopamine agonist monotherapy, LEDD. 3 30060 0

Combination of levodopa and dopamine agonist, LEDD 24 8426326 4 10726687 0.869

Total dose, LEDD. 40 6976380 12 5836513 0.104

Dosages of dopamine agonist are calculated in levodopa equivalent dosages, LEDD. One de novo idiopathic patient was without any medication; total number of
idiopathic patient is 41.
doi:10.1371/journal.pone.0007551.t002
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Data analysis
All chromatograms in the study were processed as previously

described [14]. The levels of all analytes were normalized to the

averaged pool and expressed as the percentage of those analytes in

the pool. Conventional statistical methods and projection to latent

structures- discriminant analysis (PLS-DA) [30], were used for the

data analysis. Both unprocessed and preprocessed datasets were

used for PLS-DA. To avoid possible statistical artifacts, and to find

the analytes (potential biomarkers) which can be used to build PLS-

DA models for class discrimination and class membership

prediction, we used a preprocessing approach. For this, Student’s

t-tests followed by the area under the Receiver Operating

Characteristic (ROC) curve were used. The ROC curve is a plot

of the sensitivity (or true-positive rate) to the false-positive rate [31].

Using this approach, values of the analytes in each subgroup were

compared to another, e.g., controls vs. LRRK2 PD patients. The

criteria for inclusion of analytes into further analysis were set at: p

value less than 0.01 and area under the ROC curve larger than 0.8.

To build and validate PLS-DA models for class discrimination

and class membership prediction, data for the subjects from

different subgroups were randomly divided into the training (,2/3

of all subjects in a given subgroup) and test (,1/3 of the subjects)

sets. Test sets were excluded from the data pre-processing and

model construction. Following construction of PLS-DA models

using training sets, the models were then used to predict class

membership of the subjects in the test sets. This procedure was

repeated four times, different subjects in training and test sets were

included and a new PLS-DA model was constructed each time.

Results

In the initial analysis we analyzed the data from control subjects

and idiopathic and LRRK2 PD patients to determine if there were

any differences in the metabolomic profiles between these groups.

Since healthy family members of LRRK2 PD patients without the

mutation could be considered as controls, the data from them were

also included in this analysis, either separately, or together with

control subjects. All peaks detected (unprocessed datasets) were

used for the initial analysis. Using PLS-DA we found complete

separation between both groups of PD patients and controls. PLS-

DA scores plots showing separation between controls and

idiopathic PD patients, and between controls and LRRK2 PD

patients, are shown in Figure 1 (panels A and B, respectively).

Complete separation was also found when the data from control

subjects and from healthy family members of LRRK2 PD patients

without the mutation were combined (Figure 1, panels C and D).

In order to determine if there were differences in metabolomic

profiles associated with the G2019S mutation with and without

PD, we next analyzed unprocessed data sets from LRRK2 PD

patients and from their family members with and without the

mutation. A PLS-DA score plot showing separation between

Figure 1. PLS-DA scores plots of control subjects and PD patients. PLS-DA scores plots showing a separation between control subjects
(n = 15) and idiopathic Parkinson’s Disease (IPD) patients (n = 41), and between control subjects (n = 15) and LRRK2 PD patients (n = 12). All peaks (no
pre-processing) were used for these analyses. The data from control subjects and from the healthy family members of LRRK2 PD patients without the
mutation (n = 10) were used for the analysis either separately (panels A and B), or were combined (panels C and D).
doi:10.1371/journal.pone.0007551.g001
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LRRK2 PD patients and family members is shown in Figure 2.

PLS-DA showed complete separation between LRRK2 patients

and their family members; there was, however, some overlap

between family members with and without the mutation. LRRK2

PD patients participating in this study were significantly older than

their healthy family members with the mutation (72.8611.2 vs.

55.2614.1 years old, respectively, mean6SD, p,0.05). These age

differences had no apparent effect on the observed differences in

metabolomic profiles, since PLS-DA scores plot didn’t show

significant separation based on the age of individual subjects

(Fig. 2). However, additional studies involving older healthy family

members of LRRK2 PD patients, who carry the mutation, are

necessary to validate these findings.

In order to find the analytes which could be used to discriminate

between idiopathic and LRRK2 PD patients, we then built PLS-

DA models, which were used for class separation and membership

prediction, using both unprocessed and pre-processed datasets.

The PLS-DA model built using unprocessed datasets showed a

complete separation between the two groups. Caution should be

exercised to avoid potential overfitting of PLS-DA models for

finding separation between different groups. Some concerns

related to possible overfitting of PLS-DA models when using

datasets, which have the number of variables higher than the

number of observations, have been published in recent years

[32,33]. Therefore, we pre-processed our datasets using Student’s

t-test (p value cutoff set at ,0.01) followed by the area under the

ROC curve (cutoff set at .0.8).Subjects in each group were

randomly divided into training and test sets (,2/3 and ,1/3 of all

subjects in a given subgroup, respectively). This procedure was

carried out four times with different subjects included in the test set

each time, 12 analytes (Table 3) were used to build the models. A

representative PLS-DA separation plot is shown in Figure 3; the

individual prediction plots for all four analyses are shown in

Figure 4 (panels A to D). Sensitivity and specificity of this approach

were found to be 87.567.2 and 97.762.3 (n = 4, mean6SEM),

respectively. There were significant age differences between

LRRK2 and idiopathic PD patients participating in this study;

LRRK2 patients were older than the idiopathic PD patients

(72.8611.2 vs. 64.868.4 years old, respectively, mean6SD,

p,0.02). Therefore, it is possible that the observed separation

between metabolomic profiles of LRRK2 and idiopathic PD

patients may be attributed to the age differences. To address this

possibility we separated idiopathic PD patients into older and

younger groups, with age of the older group matching the age of

LRRK2 patients (71.463.3 and 72.8611.2 years old, respectively,

mean6SD). No separation between the older and the younger

groups of idiopathic PD patients was found (Figure 5A). We also

analyzed the data for LRRK2 patients and older idiopathic PD

patients separately (the younger group of idiopathic PD patients

was excluded from the analysis) and found complete separation

Figure 2. PLS-DA scores plots of LRRK2 PD patients and their
family members. PLS-DA scores plot showing a separation between
LRRK2 PD patients (n = 12) and their healthy family member with
(n = 21) or without (n = 10) the gene mutation. All peaks (no pre-
processing) were used for this analysis. Ages of the individual subjects
are shown next to their symbols.
doi:10.1371/journal.pone.0007551.g002

Figure 3. PLS-DA scores plots of IPD and LRRK2 PD patients.
PLS-DA scores plot showing a significant separation between IPD
patients (n = 30) and LRRK2 PD patients (n = 8) using preprocessed
datasets (see methods for details). Eleven IPD patients and 4 LRRK2 PD
patients were randomly chosen as the test set and were not used in
PLS-DA model construction. Class membership of the subjects in the
test set was then predicted using this PLS-DA model shown in Figure 4.
doi:10.1371/journal.pone.0007551.g003

Table 3. Analytes discriminating between idiopathic and
LRRK2 PD.

Retention time Dominant channel Change % of change

19.7 16 2 45

25.9 6 2 87

42.3 13 2 61

67.1 15 2 27

67.4 16 2 19

80.1 4 + 10

91.1 12 2 51

91.7 12 2 21

91.7 16 2 39

93.2 16 + 47

94.2 16 2 42

100.2 10 + 11

Analytes are defined by their retention time and dominant channel in LCECA
profiles. + up-regulated in LRRK2 PD; 2 down-regulated in LRRK2 PD.
doi:10.1371/journal.pone.0007551.t003

Metabolomics of LRRK2 PD
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Figure 4. PLS-DA prediction plots of IPD patients and LRRK2 PD patients. Twelve analytes (Table 3) were used to build PLS-DA separation
model, based on randomly selected 30 IPD and 8 LRRK2 PD patients (a representative plot is shown in Figure 3). The resulting models were used to
predict class membership of the remaining 11 IPD and 4 LRRK2 PD patients. This procedure was carried out 4 times with different IPD and LRRK2 PD
patients included in the test and training sets each time; the results are presented in panels A–D for all four individual models. Predictions were made
with a cutoff of 0.5 for class membership. Numbers next to the symbols refer to the sample codes of the subjects.
doi:10.1371/journal.pone.0007551.g004

Figure 5. Age effects on metabolomic profiles of IPD patients and LRRK2 PD patients. (A) PLS-DA scores plot showing lack of separation
between younger (57.365.6 years old, n = 19, mean6SD) and older (71.463.3 years old, n = 22, mean6SD) idiopathic PD patients. (B) PLS-DA scores
plot showing a significant separation between older idiopathic PD patients (71.463.3 years old, n = 22, mean6SD) and LRRK2 patients (72.8611.2
years old, n = 12, mean6SD). The analytes discriminating between all IPD patients and LRRK2 patients (Figure 4 and Table 3) were used to for the
analysis.
doi:10.1371/journal.pone.0007551.g005
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between these two groups (Figure 5B). These results indicate that

differences in metabolomes of LRRK2 and idiopathic PD patients

are not affected by age.

We also analyzed the data from control subjects and from

asymptomatic LRRK2 mutation carriers to determine if there are

specific metabolomic signatures associated with the mutation.

Similar to the analysis of idiopathic and LRRK2 PD patients, we

used preprocessed datasets to build PLS-DA models for class

separation and membership prediction. Subjects in each group

were randomly divided into training and test sets. This procedure

was repeated four times with different subjects used each time,

with 9 analytes (Table 4) used for model building. Interestingly,

two of the analytes (80.1-4 and 42.3-13) were found in the groups

of peaks discriminating between idiopathic and LRRK2 PD

patients and between asymptomatic LRRK2 mutation carriers

and controls. A representative PLS-DA separation plot is shown in

Figure 6; the prediction plots for asymptomatic mutation carriers

and controls are shown in Figure 7 (panels A to D). Sensitivity and

specificity of this approach were found to be 85.761.5 and

70.065.8 (n = 4, mean6SEM), respectively.

Although the majority of the analytes driving categorical

separations between the groups were not known, there were

differences in the levels of some known compounds. Similar to our

previous report, uric acid (UA) levels were lower in PD patients

(both idiopathic and LRRK2) compared to controls (18% decrease,

p,0.01). There was a slight non-significant ,10% decrease in UA

levels in asymptomatic mutation carriers, compared to controls;

more samples from the asymptomatic mutation carriers should be

analyzed to determine whether UA levels are significantly

decreased in these subjects. Hypoxanthine levels were significantly

decreased in the asymptomatic mutation carriers by 25%

(p,0.05), but not in the idiopathic or LRRK2 PD patients, when

compared to control subjects. We also found that xanthine levels

were significantly decreased by 18% (p,0.05) in LRRK2 PD

patients compared to controls. Since all PD patients participating

in this study were on antiparkinsonian medications, it is possible

that in these PD patients, levels of purine metabolites could be

affected by the antiparkinsonian treatments. To address this

possibility, we reanalyzed part of the samples from our previous

study [14], which involved unmedicated PD patients, and found a

significant decrease in hypoxanthine levels in unmedicated PD

patients, compared to control subjects (45% decrease, p,0.05;

n = 15 and n = 20, respectively). Levels and ratios of some other

purine metabolites were also significantly decreased in unmedi-

cated PD patients (Table 5). Analysis of the data from the patients

on different antiparkinsonian medications showed normalization

of plasma hypoxanthine levels with levodopa and with combina-

tion of levodopa with dopamine receptor agonists.

Discussion

The role of genetic factors in the pathogenesis of PD has been

proven during the last several years, and several mutations have

been implicated in familial PD [1–4]. Although these may account

for a relatively small percentage of all PD cases, analysis of the

pathogenetic mechanisms involving these mutations may provide

insights into the pathogenesis of idiopathic PD, it is also possible

that different mutations could cause PD via different mechanisms.

The autosomal dominant 6055G.A mutation in the LRRK2 gene,

which causes a G2019S substitution, is one of the most frequent

mutations in familial PD [34]. LRRK2 PD patients are indistin-

guishable from idiopathic PD, both clinically and in their response

to medication [8,23,24]. In central Norway about 3% of PD cases

have been found to carry the G2019S substitution [8]. In this study

we used metabolomic profiling to determine if there are specific

metabolomic signatures associated with LRRK2 PD, compared to

idiopathic PD. We also addressed the question whether the

asymptomatic G2019S mutation carriers could be distinguished by

metabolomic analysis from control subjects.

Similar to our previous study [14], we found that metabolomic

profiles of idiopathic PD are different from those of age matched

control subjects. In this study we demonstrated that PD patients

with LRRK2 mutations are also different from the control subjects.

The separation between PD patients and controls raised the

question of whether PD medications caused the distinction. Both

idiopathic and LRRK2 PD subjects involved in this study were

taking antiparkinsonian medications, and no samples from the

unmedicated patients were available. Therefore, it is possible that

Figure 6. PLS-DA score plots of controls and subjects with
G2019S LRRK2 gene mutation. PLS-DA scores plot showing a
significant separation between controls (n = 10) and asymptomatic
subjects with G2019S LRRK2 gene mutation (n = 14) using preprocessed
datasets. Five controls subjects and seven mutation carriers were
randomly selected as the test set and were not used in PLS-DA model
construction. Class membership of the subjects in the test set was
predicted using this PLS-DA model shown in Figure 7.
doi:10.1371/journal.pone.0007551.g006

Table 4. Analytes discriminating between LRRK2 mutation
carriers and Controls.

Retention time Dominant channel Change % of change

5.0 6 2 52

5.1 12 2 22

15.1 16 2 50

20.7 14 2 36

30.6 14 2 40

42.3 13 2 39

59.4 12 2 43

80.1 4 + 5

82.7 16 2 77

Analytes are defined by their retention time and dominant channel in LCECA
profiles.
+ up-regulated in LRRK2 mutation carriers; 2 down-regulated in LRRK2
mutation carriers.
doi:10.1371/journal.pone.0007551.t004

Metabolomics of LRRK2 PD
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the observed separation could be related to drug effects, which

could involve unknown drug metabolites and drug-induced

changes in metabolism. However, we previously demonstrated

that metabolomic profiles can differentiate between the medicated

PD patients and controls, and this separation is not attributable to

drug effects [14]. Additional studies involving a larger population

of both medicated and unmedicated LRRK2 PD patients are

necessary to address these issues.

We also found that the genetically determined groups could be

separated from the non-genetic groups. There was a clear

separation between metabolomic profiles of idiopathic and LRRK2

PD patients, and this separation was not attributed to the age

differences. Based on the limited number of analytes from plasma

we were able to predict whether the patients were from idiopathic

PD or from LRRK2 PD groups. PLS-DA models for prediction of

the class membership (LRRK2 PD vs. idiopathic PD) were built

four times with different subjects from the groups randomly

selected for training and prediction sets each time. Although the

number of subjects involved in the study was small, the PLS-DA

models were able to accurately predict the class membership.

Nevertheless, additional experiments with a larger study size are

necessary to confirm these findings.

Analysis of metabolomic profiles of the subjects harboring

LRRK2 G2019S showed that there were differences dependent on

the clinical phenotype: LRRK2 PD patients were partially

separated from their healthy family members carrying the

Table 5. Purine metabolites in PD.

Controls (n = 25) Unmed PD (n = 15) % change (p value)

HX 177638 103621 241.91 (0.046)

X 9666 8266 214.15 (0.054)

XAN 7966 105620 32.16 (0.123)

UA 9764 8365 214.31 (0.050)

G 9165 8465 28.08 (0.164)

HX/XAN 200635 116627 241.83 (0.033)

X/XAN 136612 101612 226.04 (0.021)

HX/UA 183638 124621 232.32 (0.041)

Data are represented as mean6SEM of percentage of plasma pool value.
Control group includes both normal control subjects and healthy family
members from LRRK2 PD patients who did not have G2019S mutation. HX–
hypoxanthine, X–xanthosine, XAN–xanthine, UA–uric acid, G- guanosine.
doi:10.1371/journal.pone.0007551.t005

Figure 7. PLS-DA prediction plots of controls and subjects with G2019S LRRK2 gene mutation. Nine analytes (Table 4) were used to build
PLS-DA separation model, based on randomly selected 10 controls and 14 LRRK2 gene carriers (a representative plot is shown in Figure 6). The
resulting models were used to predict class membership of the remaining 5 controls and 7 LRRK2 gene carriers. This procedure was carried out 4
times with different controls and gene carriers included in the test and training sets each time; the results are presented in panels A–D for all four
individual models. Predictions were made with a cutoff of 0.5 for class membership. Numbers next to the symbols refer to the sample codes of the
subjects.
doi:10.1371/journal.pone.0007551.g007
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mutation. The observation that there is some overlap between the

subjects carrying the mutation with LRRK2 PD patients suggests

the possibility of developing predictive biomarkers for this group,

i.e., who amongst the mutation carriers will develop PD in the

future. Longitudinal studies should provide more evidence for this

possibility.

The majority of the analytes driving separations between the

groups were not known. However, the results on known

compounds strongly suggest that abnormalities in the purine

pathway may be implicated in PD. Similar to the previous studies

[14,35,36], UA levels were found to be decreased in plasma of PD

patients. Several studies provide evidence that UA is involved in

the development and progression of PD. Prospective epidemio-

logical studies showed that healthy individuals with higher blood

UA levels are at reduced risk for developing PD [37]. A lower risk

of PD has been reported among individuals consuming diets that

increase serum UA [38]. Higher blood levels of UA in patients

recently diagnosed with PD predict a slower rate of disease

progression, assessed by both clinical and neuroimaging measures

[39]. The mechanisms leading to decreased UA in PD are not

known. UA is a major antioxidant, and in humans is the final

product of purine metabolism. It is possible that aberrations in the

purine pathway in PD could occur upstream from UA. The results

of this study support this hypothesis. We found for the first time

significant changes in major metabolites of the purine pathway in

plasma of PD patients. Notably, hypoxanthine levels were

significantly decreased in unmedicated PD patients, as well as in

asymptomatic LRRK2 mutation carriers, compared to controls.

Xanthine levels were lower in LRRK2 PD patients (but not in IPD

patients) as compared to controls. These findings suggest a

potential role of the purine pathway in the pathogenesis of PD.

In this study LCECA was used for metabolomic profiling. We

are currently working on the structural elucidation of unknown

biomarkers using different mass spectrometry (MS) approaches

[40]. Identification of the individual analytes (potential biomark-

ers) is crucial since they may play a central role in pathogenesis of

the disease. The G2019S substitution in LRRK2 may lead to

biochemical changes that are common to PD pathophysiology

irrespective of etiology.

An important aspect of this study was to distinguish asymp-

tomatic G2019S carriers, representing a group at risk to develop

PD, from controls. Obviously, a genetic test provides complete

separation of the mutation carriers from non-carriers. The results

of this study do not provide direct evidence for the subsets among

the G2019S mutation carriers. Whether metabolomics approach

could be used to predict development of PD in a subset of the

G2019S carriers remains to be determined. Future longitudinal

studies are needed to determine whether one can predict disease

penetrance in these subjects. The ability to recognize this group

prior to onset of disease indicates the possibility of developing an

early diagnostic tool using metabolomics. One could then screen

individuals with increased risk of PD including first degree

relatives, patients with hyposmia and patients carrying genetic

risk factors. Metabolomic profiles could be screened to warn of

impending PD symptom onset, and thus allow earlier institution of

neuroprotective therapy in presymptomatic patients to slow or

prevent nigral cell loss before PD symptomatology becomes

evident. Although the present results are promising, this study

needs to be repeated in a larger population due to our limitation of

a low numbers of cases.
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