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Robust Identification of Concealed Dangerous
Substances by Spectral Correlation of Terahertz

Transmission Images
Arthur D. van Rheenen and Magnus W. Haakestad, Member, OSA

Abstract—Terahertz images containing spectral information in
each pixel are recorded in transmission mode using a fiber-
coupled time-domain spectroscopy system. The images are ac-
quired by mounting a sample holder on an x–y stage, which
is stepped across the beam in the two transverse directions,
while the transmitted THz waveform is captured. The materials
under investigation consist of uncovered and hidden samples of
an explosive (RDX) and simulants (lactose and tartaric acid).
Spectral angle mapping is used to identify the materials in the
Terahertz images by comparing the spectrum in each pixel with
a library of reference spectra for the different materials. We
test the performance of several spectral characteristics derived
from the measured transmission spectra. Robustness is studied
by investigating the Receiver-Operating-Characteristics (ROCs).
The ROCs are used to find which of the spectral characteristics is
most robust to different sample preparation conditions, without
the need for extensive pre-treatment of the data, such as baseline
correction. Simple theoretical considerations are used to support
the experimental results.

Index Terms—Terahertz, spectroscopy, imaging.

I. INTRODUCTION

ONE of the most promising applications of Terahertz
spectroscopy is detection and identification of dangerous

and/or illegal substances [1]. The ability to penetrate common
materials, such as plastics, cloth, and cardboard, allows for
identification of these substances, even when they are con-
cealed. We here investigate the robustness of a simple spectral
recognition method known as spectral angle mapping (SAM)
[2]. In SAM the measured spectral characteristic of each pixel
in the THz image is compared with a library of spectral
characteristics by representing the characteristic as a vector
and calculating the dot product, yielding the spectral correla-
tion. We test several characteristics derived from the measured
transmission spectra. Robustness is studied by investigating
the Receiver-Operating-Characteristics (ROCs). The ROCs are
generated by sweeping the identification (spectral correlation)
threshold from −1 to 1 and counting the fraction of true-
positive and false-positive pixels in the THz image. Prelim-
inary results of this work have previously been presented in
Ref. [3].

The combination of imaging and spectroscopy in security
applications has the advantage of both being able to detect
objects with a suspected shape as well identifying possibly
harmful or illegal substances. THz imaging and a number of
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applications are reviewed in Ref. [4]. In this work the imaging
capability is used to gather many spectra of the targets and the
emphasis is on the spectral analysis. The object recognition is
left to image processors at this stage. The issue of spectral
identification is not new and has been used in for instance far-
infrared Fourier transform (FTIR) spectroscopy. Localizing an
absorption peak is relatively straight forward when the line is
narrow, a common situation for FTIR spectra of gases. THz
spectra of common simulants and explosives have rather broad
peaks making it harder to pin down peak locations and hence
identify substances. The literature on THz spectroscopy is
growing, a selection of references are listed in Refs. [5]–[18].
The identification process is generally a question of matching
a library spectrum to a measured spectrum and detection is
declared if, in some metric, a threshold is exceeded. As a
first cut at viewing the identification process one can look
at it as a two-dimensional space with the different metrics
(ways to compare spectra) along one axis and the spectral
characteristics (which processed form of the raw spectrum)
along the second axis. Common methods include principal
component analysis (PCA) and spectral angle mapping (SAM)
[5], [7], [9], [14], although also other methods have been used
[12]. As to what to compare, there are several options, the
raw spectrum, the raw spectrum normalized by a reference
spectrum (transmission coefficient), and the absorbance. In
addition, some groups apply preprocessing to their spectrum:
removing water vapor lines and background scattering. Some
authors pointed out that application of THz spectroscopy to
security issues is not without difficulties [16]–[18]. It is the aim
of this paper to quantify the spectral identification process by
comparing several approaches and studying their false alarm
rates.

In this work we have made several choices. (i) As a metric
we chose SAM because of its simplicity and its intuitive
nature. No extensive training of the algorithm is required,
only a single library spectrum suffices. (ii) Preprocessing
is limited to windowing of the time-domain signals. Water
vapor lines and background scattering are not removed to
allow for more realistic performance comparison. (iii) The
different approaches are compared by studying their receiver
operating characteristics (ROC), a simple visualization of their
performance.

II. THEORY

We will here describe how spectral angle mapping can
be used to identify materials based on measured terahertz



IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. XX, NO. XX 2

transmission spectra. From the scalar product of two vectors,
a and b, one can determine the cosine of the angle between
them, according to the relation

cos θ =
a · b
ab

(1)

Similarly, from two spectral vectors, S and Sr, one can form
new spectral characteristics, K(S) and K(Sr), where K is a
vector function of the spectrum, and use the scalar product
to find the cosine of the angle between them, which we
denote as the spectral correlation; a number between −1 and
1, where 1 means perfect correlation. In this way one can
compare a measured spectrum with a reference spectrum. The
typical range of values of the spectral correlation depends
strongly on which spectral characteristic K is used. However, a
good spectral characteristic should yield a spectral correlation
close to zero for two uncorrelated spectra and close to one
for two similar spectra. It is thus important to choose a
suitable spectral characteristic for optimal identification of the
materials. The following expressions for K are tested and
compared here:

• K1 = S, where S is the raw spectrum (spectral ampli-
tude).

• K2 = − lnT, where T (fi) = S(fi)/Sair(fi) and Sair is
the spectrum of a measurement without sample, and f is
the frequency.

• K3 = − d lnT
df .

To estimate the performance of the spectral characteristics
above, we consider the case where a sample is covered by a
barrier material. As a simple approximation, we assume that
the measured THz transmission spectrum is given by

S(fi) = Sair(fi)T0 exp [−α(fi)L] , (2)

where T0 is a constant attenuation factor, α is the absorption
coefficient of the sample, and L is the sample thickness. The
constant factor T0 includes transmission through the barrier, as
well as Fresnel reflection losses at the surfaces of the sample.
A constant T0 gives rise to a baseline in the absorbance K2. In
Eq. (2), we have neglected multiple reflections from the sample
and barrier materials, spectral characteristics of the barrier
material, scattering from sample and barrier inhomogeneities,
and noise.

From Eqs. (1)–(2) one can show that K1 gives a spectral
correlation which is independent of a constant attenuation T0
of the THz signal, but the spectral correlation is dependent on
sample thickness. K2 gives the same spectral correlation for
samples consisting of identical materials, with different sample
thickness, as long as T0 = 1. K3 gives the same spectral
correlation for samples consisting of identical materials, with
different sample thickness, for any constant value of T0. For
example, using Eq. (2), we obtain T = T0 exp (−αL) giving
K3 = dα

df L. Thus

K3

K3
=

dα
df√∫ ( dα
df

)2
df

, (3)

which is independent of L and T0. The last point is especially
important, as it avoids the need of baseline removal, as long

as the baseline is frequency independent. A spectrally varying
baseline, for example due to scattering, will have a negligible
effect on spectral correlations based on K3, as long as the
variation is sufficiently slow. Thus, based on these arguments,
K3 is most robust to variations in measurement conditions.

To illustrate these considerations we generated an example
spectrum with a single absorption line, the black curve in
Fig. 1, and call this our library spectrum. The effect of a
constant attenuation, possibly due to a concealing material, is
modeled by the blue curve in the same figure. A thicker sam-
ple or a higher-concentration sample would yield a stronger
absorption, represented by the red curve. To test the specificity
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Fig. 1. Model spectra illustrating different spectral effects: black - standard
model spectrum, blue - effect of constant attenuation, red - effect of stronger
absorption, green - a different substance. The numbers in the legend show the
spectral correlation with the library spectrum.

a model spectrum with the absorption center displaced by one
line width is represented by the green curve in Fig. 1. The
numbers in the legend indicate how well the different curves
correlate with the library spectrum. Due to the comparatively
small effect of the absorption line, the correlation is very close
to 1 in all three cases.

Next, rather than using the raw spectrum, let us consider
the absorbance, K2, see Fig. 2. It is obvious that the constant
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Fig. 2. Absorbance for the model spectra considered here, as well as their
correlation with the library absorbance. See Fig. 1 for further explanation.

attenuation reduces the correlation significantly (0.46). The
constant background needs to be removed from the spectra
if this characteristic is to be used to identify substances.
This characteristic is not sensitive (red - 1.00) to variations



IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. XX, NO. XX 3

in sample thickness (absorption strength) and shows some
specificity (green - 0.78).

Finally, consider the derivative of the absorbance. The
curves are plotted in Fig. 3. This characteristic is neither
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Fig. 3. Plot of the derivative of the absorbance for the model spectra
considered here. The numbers show the correlation with the library spectrum.
See Fig. 1 for further explanation.

sensitive to a constant attenuation nor to varying absorption
strength: the correlation with the original spectrum is still
perfect. In fact, it can be shown that even a slowly varying
(polynomial of low order) background attenuation does not
significantly hamper identification. In addition, this character-
istic shows good specificity: the correlation for the model with
the displaced absorption peak is significantly reduced (green
- 0.39).

Based on this analysis the derivative of the absorbance
appears to be the most promising spectral characteristic for
identifying unknown spectra: It is both less sensitive to
measurement conditions and more specific than the other
characteristics.

III. SETUP

The THz setup is based on a fiber-coupled time-domain
spectroscopy system pumped by 100-fs pulses at 780 nm
wavelength from a frequency-doubled Er-doped fiber laser
[19]. THz images are acquired by mounting a sample holder
on an x–y stage, which is scanned through the beam, with
step size 1 mm, while the transmitted THz waveform is
captured. In this way a THz spectrum (after Fourier transform)
is acquired for each stage position (pixel). A schematic of the
setup is shown in Fig. 4. The distance between the emitter
and detector modules is 31 cm and the sample holder has
room for 3 × 3 sample pellets, with diameter 32 mm and
thickness up to 4.2 mm. Fig. 4 (inset) shows the labeling of
the sample positions. Teflon (25 µm average particle size) was
used as a binder material, which was mixed with tartaric acid,
lactose, or RDX and then pressed into pellets using a 2 ton
press in two minutes. The bottom row of the sample holder
(position 7–9) was used for reference measurements, using
a metal plate (position 7), no sample (position 8), and a pure
Teflon sample (4 mm thickness, position 9). All measurements
were performed in ambient air (21–26◦C, 10–50% relative
humidity). The signal at each position of the x–y stage (pixel)
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Fig. 4. Experimental setup. Two fiber-coupled photoconductive antennas act
as emitter and detector modules, which are separated by 31 cm. A sample
holder, with transverse dimensions 15 × 15 cm, is scanned through the THz-
beam. Inset: Sample holder with labeling of samples indicated.
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Fig. 5. (a) Reference spectra of air, blocked beam, and an RDX sample
(after windowing of time-domain data). (b) Absorbance for the cloth barrier
and reference samples containing RDX, tartaric acid, and lactose, respectively.

was measured with a time window of 60 ps and a scan speed
of 1 ps/s, with a sample rate of 32 Hz.

Figure 5(a) shows reference spectra for an open beam
(air) and blocked beam (noise). An example spectrum for a
10% (mass percent) RDX sample, with 3.5 mm thickness, is
also shown in the figure. All spectra were calculated from
the time-domain signals by first applying a Blackman-Harris
window with 30 ps half-width, centered in time at the signal
peak, and then calculating the Fourier transform (FFT). The
reference spectra indicate a bandwidth of ∼2.5 THz and a
peak signal-to-noise ratio (SNR) of ∼60 dB. Figure 5(b)
shows the absorbance (K2) for samples containing RDX (10%,
3.5 mm thickness), tartaric acid (10%, 4.0 mm thickness),
and lactose (10%, 4.2 mm thickness). These samples were
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used as reference samples in the spectral library. The part of
the spectrum spanning the frequency range 0.1 to 1.3 THz
was used in the correlation calculations, as the SNR is high
in this frequency range (SNR>40 dB for an open beam).
Although there are several water vapor absorption lines in
this wavelength range [15], we did not perform any numerical
removal of water lines in the data processing. The location
of the water lines was used to verify the calibration of the
frequency axis in our measurements. Also shown in Fig. 5(b)
is the absorbance of the cloth barrier used in some of the
experiments.

IV. RESULTS

THz transmission measurements were carried out for sam-
ples containing tartaric acid, RDX, and lactose, and mixtures
of two of these substances.

A. Uncovered samples

TABLE I
TARTARIC ACID SAMPLES FOR MEASUREMENTS WITHOUT BARRIER

Sample no. Tartaric acid mass fraction Total mass Thickness
(g) (mm)

1 5% 6.1 3.9
2 2% 6.3 4.0
3 1% 6.1 3.9
4 10% 3.1 2.3
5 10% 1.5 1.2
6 5% (unground) 6.2 4.0

Six tartaric acid samples were placed in the two top rows of
the sample holder. The tartaric acid mass percent and sample
thickness is shown in Table I. Sample no. 6 consisted of
unground tartaric acid, while the tartaric acid was ground for
the others. A reference spectrum for tartaric acid was measured
using a 10% tartaric acid sample with 4 mm thickness, and is
shown in Fig. 5(b).

Based on the measured terahertz transmission spectral im-
age, a spectral correlation between each pixel and the reference
sample was calculated. This assigns, in theory, a value between
-1 and 1 to each pixel. Usually, amplitude or power spectra
have only positive values for each frequency and SAM will
then only yield correlation values ≥ 0. Derivatives of spectra
may have negative values and negative correlation values are
possible. All pixels containing tartaric acid (i.e. the same
material as the reference sample) are labeled positive pixels,
the remaining pixels being negative. One can classify a pixel
by comparing its correlation value with a certain threshold.
If the correlation value is larger than the threshold and the
pixel is positive, the outcome is denoted as true positive. If,
on the other hand, the correlation value is larger than the
threshold and the pixel is negative, the outcome is denoted
as false positive. The true positive rate (TPR) is the number
of true positive pixels divided by the number of positive
pixels and the false positive rate (FPR) is the number of
false positive pixels divided by the number of false pixels.
By stepping the threshold from −1 to 1 and calculating the
TPR and FPR for the pixels in the image, we obtain the

(a)

(b)

(c)

Fig. 6. Testing for tartaric acid, uncovered samples. (a) ROC curves for
the three spectral characteristics for a THz image (transmission mode) of six
tartaric acid samples and three reference samples. (b) Identifying the optimal
identification threshold. (c) A spectral correlation image using the spectral
characteristic K3.

ROC curves in Fig. 6(a). The ROC curves are based on
the three spectral characteristics described in Sec. II. We
observe from the ROC curves that the spectral characteristic
K3 gives significantly better performance, compared to more
common characteristics, such as the raw spectrum, K1, and
the absorption spectrum, K2.

In practice, it will usually be desirable to operate in a
regime where the fraction of false positive pixels is very low,
while the fraction of true positive pixels is high, corresponding
to the upper left corner of the ROC curves. The spectral
correlation value corresponding to the upper left corner of the
ROC curves is found by identifying the correlation threshold
which give the largest difference between the fraction of true
positive and false positive pixels (TPR−FPR). The results of
this calculation are shown in Fig. 6(b). We observe from
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the figure that the optimum correlation threshold is about
0.25 for the spectral characteristics K2 and K3, while a
much higher correlation threshold of about 0.85 is optimal
for the spectral characteristic S. We also note that the blue
curve in Fig. 6(b), corresponding to the K3 characteristic, is
broader, suggesting less sensitivity to the choice of the actual
threshold value than for the other characteristics considered
here. Figure 6(c) plots the correlation value in each pixel using
the best spectral characteristic, K3. We observe from the figure
that the correlation is somewhat lower for the (1%, 4 mm)
sample (position 3) and for the sample containing unground
tartaric acid (position 6), compared to the other tartaric acid
samples. This is not unexpected, because a low tartaric acid
fraction (position 3) leads to noisier absorption peaks, while
unground tartaric acid (position 6) leads to more scattering.

B. Covered samples

TABLE II
SAMPLES FOR MEASUREMENTS WITH CLOTH BARRIER

Sample no. Mass fraction Total mass Thickness
(g) (mm)

1 10% tart. acid 6.1 4.0
2 10% lactose 6.4 4.2
3 10% RDX 5.5 3.5
4 5% tart. acid, 5% lactose 6.5 4.2
5 5% RDX, 5% tart. acid 5.7 3.5
6 5% RDX, 5% lactose 5.8 3.5

Measurements of samples covered by a barrier consisting
of one layer of 1.0 mm-thick cloth were also carried out. The
samples in this case contained RDX, lactose, and tartaric acid,
and mixtures of two of these substances, as shown in Table II.
The absorbance of the reference samples for the spectral
correlation calculations are shown in Fig. 5(b), together with
the absorbance of the cloth barrier.

Figure 7 shows application of SAM to identify the samples
containing RDX. Similarly to the case with uncovered sam-
ples, we generate ROC curves for the different spectral charac-
teristics. The results are shown in Fig. 7(a). We observe that in
the limit of low false positive rate, the spectral characteristic
K3 is superior to the two other characteristics, which was
also the result for the measurements on the uncovered tartaric
acid samples in Sec. IV-A. Figure 7(b) shows that the optimal
correlation thresholds are different, compared to Fig. 6, for all
three spectral characteristics. For the spectral characteristic K3

a correlation threshold of about 0.35 is optimal in this case.
The observation that the optimal correlation threshold depends
on measurement conditions means that one must either use a
low correlation threshold to ensure that the fraction of true pos-
itive pixels is high, at the expense of increased false positive
rate, or must use a high correlation threshold to ensure that the
false positive rate remains low, at the expense of decreased true
positive rate. Which of the two strategies is optimal depends
on the application. Figure 7(c) shows a spectral correlation
image produced using the metric K3. The structure of the
cloth appears as the wavy horizontal lines in the image. The
three samples containing RDX distinguish themselves from the

(a)

(b)

(c)

Fig. 7. Testing for RDX, covered samples. (a) ROC curves for the three
spectral characteristics for a THz image (transmission mode) of six samples
containing tartaric acid, lactose, and RDX, and three reference samples. (b)
Identifying the optimal identification threshold. (c) A spectral correlation
image using the spectral characteristic K3.

other samples suggesting both good detectivity and specificity.
Clearly, the sample containing RDX only is best identified,
followed by the one mixed with lactose. The sample mixed
with tartaric acid correlates a bit less with the “pure” RDX
spectrum. Looking at Fig. 5(b) we observe that the spectral
features of RDX and lactose are better separated than the
ones of RDX and tartaric acid. This may explain the observed
differences in correlation: the RDX spectrum is less disturbed
by the lactose than by the tartaric acid.

Figure 8 shows application of SAM to identify tartaric acid
for the covered samples. The figure is based on the same
experimental data as in Fig. 7, but the reference spectrum is
tartaric acid, instead of RDX. From Fig. 8, we note several
points. First, the optimal correlation threshold is lower (about



IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. XX, NO. XX 6

(a)

(b)

(c)

Fig. 8. Testing for tartaric acid, covered samples. a) ROC curves. (b)
Identifying the optimal identification threshold. (c) A spectral correlation
image using the spectral characteristic K3.

0.25) for the spectral characteristic K3, compared to the
spectral characteristic K2 (about 0.65). This is due to the
higher specificity of K3, compared to K2, as discussed in
Sec. II. Second, we observe from Fig. 8(c) that the correlation
is low for some of the positive pixels, especially for sample
no. 4 containing a mixture of tartaric acid and lactose. The
reason for this is that the derivative is sensitive to sharp
spectral features. Thus, the presence of the sharp absorption
feature of lactose reduces the effect of the absorption feature
of tartaric acid when normalizing the spectra. While K2 has
poorer specificity than K3, it is less sensitive to sharp spectral
features, and therefore performs comparable to K3 in this case,
as shown in Fig. 8(b).

V. CONCLUSION

In conclusion, we have used ROC curves to compare three
potential spectral characteristics for use in spectral angle
mapping. By measuring on covered and uncovered samples
of varying thickness, consisting of pure and mixed materials,
we identify the first derivative of the absorption spectrum as a
better overall metric, compared to the absorption spectrum or
the raw transmission spectrum, although the absorption spec-
trum shows comparable performance for some combinations
of samples and barriers. Furthermore, only a single reference
spectrum is needed for each material in the spectral database.
This approach might find uses within application of THz
transmission spectroscopy for identification of dangerous or
illegal substances, for example by assisting a human operator
in the interpretation of THz transmission images.
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