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Abstract

Medical imaging plays an important role in patients’ care and is continuously being used in managing health and disease.
To obtain the maximum benefit from this rapidly developing technology, further research is needed. Ideally, this research
should be done in a patient-safe and environment-friendly manner; for example, on phantoms. The goal of this work was to
develop a protocol and manufacture a multimodal liver phantom that is suitable for ultrasound, computed tomography,
and magnetic resonance imaging modalities. The proposed phantom consists of three types of mimicked soft tissues: liver
parenchyma, tumors, and portal veins, that are made of six ingredients: candle gel, sephadexH, agarose, glycerol, distilled
water, and silicone string. The entire procedure is advantageous, since preparation of the phantom is simple, rather cost-
effective, and reasonably quick – it takes around 2 days. Besides, most of the phantom’s parts can be reused to manufacture
a new phantom. Comparison of ultrasound images of real patient’s liver and the developed phantom shows that the
phantom’s liver tissue and its structures are well simulated.
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Introduction

Currently, one of the fastest developing areas within medicine,

both in clinical settings and in research and development, is

medical imaging [1]. Medical imaging can be defined as a set of

techniques that, in most of the cases, provide images of the internal

parts of the body in a noninvasive manner. The term ‘‘noninva-

sive’’ means here that imaging modalities do not penetrate the skin

physically. Medical imaging covers various imaging modalities,

including ultrasound (US), x-ray-based methods (e.g. radiography

and computed tomography (CT)), magnetic resonance (MR),

nuclear medicine (e.g. positron emission tomography (PET) and

single photon emission computed tomography (SPECT)), and

other methods in optical imaging [1].

Medical imaging plays an important role in patients’ care and is

continuously being used in managing health and disease [2], [3].

For example, it is used in prevention, early detection of disease,

choosing an optimal treatment, during surgical interventions,

monitoring of treatment effects, etc. [3]. During surgical interven-

tions, the imaging modality has to be readily available and

preferably provide images in real-time for optimal guidance. To

allow further development of image-guided therapeutic interven-

tions and diagnostic imaging techniques and systems, phantoms

that simulate human or animal tissue are needed.

Most of the commercially available phantoms are adapted for a

broad market and are designed for particular applications [4].

Those phantoms are rather expensive and they are not meant to

be modified or custom-fitted by the users [4]. To customize design

and fabrication of the phantoms, and to overcome the above-

mentioned disadvantages, various studies focus on development of

techniques and ingredients to prepare tissue-mimicking materials

[4–9].

In the literature, a multitude of techniques and tissue-mimicking

materials have been proposed to prepare phantoms. The most

often-used bulk matrix materials for mimicking soft tissue are

based on: aqueous suspensions, agarose, gelatin, magnesium-

silicate, oil gel, polyacrylamide gel, polyurethane resin, polyvinyl

alcohol (PVA), polyester resin, epoxy resin, polysaccharide gels

TX-150 and TX-151, polyacrylamide, and Room-Temperature-

Vulcanizing (RTV) silicone [4], [5], [10]. Aqueous suspensions are

the simplest tissue substitutes, in which water is used as a substitute

of a tissue. Agarose- and gelatin-based tissue substitutes (also called

hydrogels) are the most widely used alternatives of soft tissue that

are described in the literature [4], [5]. The reasons for that are:

well-characterized performance, ease of fabrication, and flexibility

provided by the process that allows achieving a range of acoustic

properties [4]. Reported main disadvantages of using both

agarose- and gelatin-based phantoms are their lack of longevity

(often limited to less than one month because of microbial

invasion), and delicate structure that can easily be damaged [10].

Inclusion of biochemically toxic species prevents bacterial growth

in these two tissue-mimicking materials. Oil gel-based substitutes

consist of a propylene glycol, a gelatinizer, and 10 mm polymethyl

methacrylate microspheres [11]. Their main advantages are:

resistance to bacterial infection, and linear increase of speed of

sound and attenuation with the proportion of propylene glycerol.

Ethylene glycol-based oil gels, however, are not perfect substitutes

of soft tissue for multimodal phantoms, because of their US
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characteristics; i.e. speed of sound and density are too high, and

attenuation is too low. Polyurethane, polyester and epoxy resins

have been reported to have good characteristics for mimicking soft

tissue, including low Young’s modulus, elastic recovery and

immunity to bacterial infection [11]. The standardization of the

polyurethane gel-based phantoms production, however, is prob-

lematic due to complex molecular design of the gels. PVA-based

tissue substitutes (also referred as cryogels) have indefinite

longevity, are low cost, and require a smaller amount of

ingredients than the agarose- and gelatin-based tissue substitutes

[12], [13]. Preparation of the PVA-based phantoms requires

multiple 12-h freeze-thaw cycles and precise control of the

temperature. Polysaccharide gels are used to prepare an inexpen-

sive, conveniently moldable, and temporally stable tissue equiva-

lent [14]. Using polysaccharide gels requires controlling gelling

time by means of temperature and the ratio of the polysaccharide

gel to water. Often encountered problem when making this gel

mixture is incorporation of bubbles, which is a problem for US

imaging. Polyacrylamide gel-based tissue substitutes are made by

polymerization of the acrylamide monomer [15]. Since polyacryl-

amide is highly toxic, special precautions during its preparations

are needed. The advantage of using RTV silicone is that the

phantoms can be quickly produced [16]. Besides, RTV silicone

provides a soft rubber texture similar to that of stiff tissue. The

major two shortcomings of using this material are cost and

hardening time.

Next to choosing bulk matrix materials, scattering particles need

to be selected for optical phantoms. Often, this selection is made

separately from the choice of the matrix structure. The four most

common choices of scattering agents are: lipid microparticles,

polymer microparticles, white metal oxide powders (including

TiO2 and Al2O3 powders), and quartz glass microspheres. Lipid

microparticles of 10 to 500 nm are biologically analogous to

bilipid membranes of cells and organelles, which are believed to

cause scattering in tissue. Commercially available lipid-based

scatterers are milk [17], [18], fat/oil/lipid [19] and Intralipid/

Nultralipid [20–22]. Polymer microspheres of 50 to 100 mm are

produced in regular sizes, which means that repeatability and

predictions of spectra are good due to well-controlled size and

index of refraction [10], [23]. Wide availability of TiO2 powder,

20 to 70 nm, makes titanium dioxide one of the most commonly

used scatterers. The key drawback of the TiO2 powder is that it

settles when not stirred, which is a problem when fabricating

aqueous suspensions. Therefore, TiO2 powders should be used for

manufacturing gelatin- or agarose-based, RTV, and resin phan-

toms. The use of quartz glass microspheres (250 nm) is less

established [10].

The goal of this work was to develop a protocol and

manufacture a multimodal liver phantom. The main requirements

for the phantom were: suitability for US, CT, and MR imaging

modalities; easy production; standardized fabrication; low cost;

and life-cycle environment friendliness, including re-usability of

phantom’s parts and materials, and avoidance of using toxic

resources.

The developed protocol is a combination and modification of

procedures proposed by Fredfeldt [24] and Schweiger et al. [25].

The phantom consists of three types of mimicked soft tissues: liver

parenchyma, tumors, and portal veins. The main ingredient of the

liver parenchyma is candle gel. To obtain homogeneous and

adequate echogenicity of the parenchyma, sephadexH has been

equally distributed in it. The tumors have been made of a mixture

of agarose, sephadex, glycerol, and distilled water. Agarose has

been chosen for its low attenuation of US beams, and to obtain a

bulk-like substance. Besides, agarose is a good T2-relaxation

modifier in MR imaging. Sephadex allows for obtaining homo-

geneous and adequate background US scattering, whereas glycerol

helps to obtain adequate speed of US. Distilled water makes up the

remaining volume needed for tumor tissue. Star shape cross-

sectioned silicone cords have been chosen to mimic the portal

veins.

Materials and Methods

The compositions of the materials used for mimicking those soft

tissues and the whole equipment needed to manufacture

multimodal phantom are described below. In the section Reagents,

essential materials used to produce the phantom are split into

reagents. In Reagent Setup, details of composition of buffers are

given. Section Equipment provides the reader with a description of

all equipment needed. In the section Protocol, a detailed method to

manufacture the phantom is described together with timing,

critical steps, pause points, and troubleshooting.

A choice of concentrations of ingredients in both liver

parenchyma and tumor tissue was obtained after a series of

iterations that involved varying the concentrations of all the

ingredients and assessing obtained US, CT, and MR images.

Reagents

N Candle gel (www.panduro.com)

N Sephadex (Fine, 20–80 mm, Sephadex G2580, Sigma-Aldrich,

www.sigmaaldrich.com)Figure 1. Silicone molds for manufacturing tumors.
doi:10.1371/journal.pone.0064180.g001
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‘CAUTION’ The toxicological properties of this material have

not been fully investigated. May cause eye, skin, and respiratory

tract irritation.

N Agarose (Type I-A, low EEO, Agarose A0169, Sigma-Aldrich,

www.sigmaaldrich.com)

N Glycerol (99% GC, Sigma-Aldrich, www.sigmaaldrich.com)

‘CAUTION’ Avoid contact and inhalation: Target organ(s):

Kidneys. Hygroscopic.

N Distilled water

N If required: pigments for candle gel (www.panduro.com) and/

or food dyes for agarose-based mixture (http://www.wilton.

com)

‘CRITICAL’ Use pigments for candle gel or food dyes for

agarose-based mixture if coloration of liver parenchyma or tumors

is needed. Note, adding a higher amount of pigments to candle gel

will decrease the transparency of the liver parenchyma.

Reagent Setup
Carpet. Cut the carpet in the form of the bottom of the

phantom container.

Tumor tissue. The tumor tissue is made of 7.5 g of agarose,

30 ml of glycerol, 200 ml of distilled water, and 4 g of sephadex.

The tumor tissue can be prepared in one week in advance and

stored in the fridge.

Liver parenchyma. Liver parenchyma is made of 1000 g of

candle gel and 4.2 g of sephadex. The parenchyma can be made

months in advance and stored in congealed form at a room

temperature. Before preparing a phantom, the parenchyma should

be heated up (while gently stirring) until it becomes liquid. Then, it

should be placed in the vacuum drying oven.

Equipment
Note that the equipment described below is the one available in

our laboratory. Nevertheless, all this equipment can be modified

according to needs and preferences of the reader.

N Graduated cylinder

N Erlenmeyer (conical) flask

N Beaker

N Spatulas

N Silicone molds for making tumors (tumor diameter = 10 mm,

prepared at the Dept. Medical Techniques at St. Olavs

Hospital, Trondheim) (Fig. 1)

N Lab scale (readability 1 mg, Sartorius, http://www.sartorius.

com)

N Lab scale (readability 1 g, Sartorius, http://www.sartorius.

com)

N Laboratory hot plate magnetic stirrer (MR Hei-Standard,

Heidolph Instruments, http://www.heidolph-instruments.

com)

N Magnetic stirrer bars

N Vacuum drying oven (B8000, Termaks, http://www.termaks.

com)

N Phantom container (Lékué duo loaf spring form with

removable base, duo rectangular, 24 cm, Lékué, www.lekue.

es) (Fig. 2)

We recommend using a silicone mold if the phantom should

easily be removed from the phantom container. Use a plastic box

if the phantom should be kept in the phantom container and if it is

required to, for example, apply CT or MR fiducial markers on it.

N Silicone string (internal diameter = 2 mm, outside diame-

ter = 2.9 mm, Master Class Silicone Kitchen Twine, Kitchen

Craft, www.kitchencraft.co.uk) (Fig. 3).

Figure 2. Silicone phantom container with carpet. Left: open container; Right: closed container.
doi:10.1371/journal.pone.0064180.g002

Figure 3. Silicone string for mimicking portal veins.
doi:10.1371/journal.pone.0064180.g003
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To mimic portal veins, we recommend using silicone string with

a star-shaped cross-section.

N Carpet

We recommend using carpet to avoid specular reflections from

the bottom of the phantom container and the surface on which the

phantom container is placed.

Procedure

Preparation of the Phantom Container

TIMING,1 day.

1. Place the carpet in the phantom container (Fig. 2).

2. Pour hot water onto the carpet (just to cover the whole carpet),

cover the phantom container, and leave it for approximately

24 hours.

‘CRITICAL STEP’ Air bubbles left in the carpet cause

reflections in the ultrasound images. They also cause development

of air bubbles in the phantom’s parenchyma. Remove all air

bubbles from the wet carpet by gently wiping carpet’s surface with

fingers.

Preparation of the Tumor Tissue
TIMING,2 h.

1. Place agarose, distilled water and glycerol in a conical flask

together with a stirring magnetic bar.

2. Place the conical flask on the hot plate magnetic stirrer and

heat it up under magnetic steering at the maximum speed of

250 rotations/minute.

‘CRITICAL STEP’ Ensure that stirring the mixture does not

promote development of air bubbles.

1. Boil the agarose mixture for around 2 minutes.

2. Add sephadex (while stirring).

‘CRITICAL STEP’ Distribute sephadex in a small quantity of

the agarose mixture first. Once the sephadex is equally distributed,

pour the mixture to the rest of the agarose mixture.

Table 1. Troubleshooting.

Step Problem Possible reason Solution

11 The shape of tumor does not
resemble mold’s cavity

Too thick agarose-based mixture Repeat the preparation of the tumor tissue. In step 8, pour the
mixture into the molds when it has a higher temperature than
40uC

20 Big air bubbles Air bubbles left in the carpet Use spatula to gently move the air bubbles towards phantom
container’s walls

Air bubbles introduced during preparing
candle gel mixture

Use spatula to gently move the air bubbles towards phantom
container’s walls. Place remaining candle gel mix in the
vacuum drying oven for 0,5 h

Air bubbles introduced during pouring
candle gel mixture

Use spatula to gently move the air bubbles towards phantom
container’s walls. Reduce the speed of pouring the gel in the
phantom container

24 Big air bubbles Air bubbles introduced during preparing
candle gel mixture

Use spatula to gently move the air bubbles towards phantom
container’s walls. Place remaining candle gel mix in the
vacuum drying oven for 0,5 h

Air bubbles introduced during pouring
candle gel mixture

Use spatula to gently move the air bubbles towards phantom
container’s walls. Pour successive candle gel layers via the
surface of the phantom container’s wall. Reduce the speed of
pouring the gel in the phantom container

Air bubbles from the surface of the tumors Use spatula to gently move the air bubbles towards phantom
container’s walls. Consider making new tumors

Small air bubbles Air bubbles introduced during pouring
candle gel mixture

Use spatula to gently move the air bubbles towards phantom
container’s walls. Pour successive candle gel layers via the
surface of the phantom container’s wall

Air bubbles from the surface of the tumors Use spatula to gently move the air bubbles towards phantom
container’s walls. Consider making new tumors

doi:10.1371/journal.pone.0064180.t001

Figure 4. Manufacturing multimodal phantom. Left: step 19 of the protocol; Middle: step 22 of the protocol; Right: the end result of the
protocol – multimodal phantom mimicking liver tissue.
doi:10.1371/journal.pone.0064180.g004
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‘CRITICAL STEP’ Ensure that stirring the mixture does not

promote development of air bubbles. The stirring speed, however,

should be sufficiently high to ensure that high-density sephadex

does not settle.

1. If required: add pigments while gently stirring the mixture.

2. Cool the agarose mixture to around 40uC while continuously

stirring.

3. Pour the agarose mixture into the tumor molds.

4. Place the tumor molds in the fridge for at least 0.5 hour.

‘PAUSE POINT’ Can be left up to one week in the fridge.

1. Remove the agarose-based tumors from the tumor molds.

‘CRITICAL STEP’ It is recommended not to keep the agarose-

based tumors for longer than one hour in the room temperature.

‘TROUBLESHOOTING’ Troubleshooting advice can be

found in Table 1.

Preparation of the Liver Parenchyma

TIMING,3.5 h.

1. Place candle gel together with a magnetic stirring bar in a

beaker.

2. Place the beaker on the hot plate magnetic stirrer and heat it

up until candle gel becomes liquid (around 80–90uC).

3. Distribute sephadex in the liquid candle gel.

‘CRITICAL STEP’ Distribute sephadex in a small quantity of

the candle gel first. Once the sephadex is equally distributed, pour

the mixture to the rest of the candle gel. Use magnetic stirring to

equally distribute the mixture in the candle gel.

1. Place the candle gel mixture in the vacuum drying oven (at

around 80–90uC) for at least 2 hours.

‘CRITICAL STEP’ This step is recommended in order to

remove air bubbles from the candle gel mixture.

‘PAUSE POINT’ Candle gel mixture can be left overnight in

the vacuum drying oven (at around 80–90uC).

1. Place the candle gel mixture on the hot plate magnetic stirrer

and gently stir it (at maximum speed of 250 rotations/minute)

for about 1 minute.

‘CRITICAL STEP’ High-density sephadex settles down when

the candle gel mixture is kept in the vacuum drying oven. Stir

gently the mixture to equally distribute sephadex in it.

1. If required: add pigments while gently stirring the mixture.

Preparation of the Phantom

TIMING,12 h.

1. Remove the excessive amount of water from the phantom

container.

2. Pour a thin layer of the candle gel mixture into the phantom

container.

‘CRITICAL STEP’ Cover the whole carpet with the candle gel

mixture (Fig. 4). This will lock the remaining air bubbles in the

Figure 5. Visualization of CT and MR images of the phantom. Left: 3D volume rendering of the CT data with low-level threshold to remove
the ‘‘parenchyma’’ (candle gel component). Middle column: Orthogonal slices through the CT volume at the position indicated by the yellow cross in
the 3D rendering, axial, coronal and sagittal slices (top to bottom). Right column: Corresponding MR slices from the MR volume data at the same
position in the phantom. No thresholding has been applied to the MR data.
doi:10.1371/journal.pone.0064180.g005
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carpet and will avoid their distribution into the next layers of the

candle gel mixture.

‘CRITICAL STEP’ Gently pour the candle gel mixture into the

phantom container from one corner. The candle gel mixture will

spread itself on the surface without introducing additional air

bubbles.

1. Use a spatula to remove any air bubbles that have been

introduced during step 19.

‘CRITICAL STEP’ Remove the air bubbles when the candle

gel mixture (liver parenchyma) is still liquid. It is not recom-

mended to remove air bubbles when the candle gel mixture is half-

congealed, as in most of the cases it will result in expanding the air

bubbles.

‘CRITICAL STEP’ Remove the air bubbles by gently moving

them towards phantom container’s walls.

‘TROUBLESHOOTING’ Troubleshooting advice can be

found in Table 1.

1. Place the phantom in the fridge for around 15 minutes.

2. Remove the phantom from the fridge and place agarose-based

tumors and/or silicone blood vessels on the liver parenchyma

(Fig. 4).

3. Pour a layer of the liver parenchyma carefully, trying not to

introduce air bubbles.

‘CRITICAL STEP’ Pour the candle gel mixture into the

phantom container from one corner. The candle gel mixture will

spread itself on the surface without introducing additional air

bubbles.

‘CRITICAL STEP’ Do not make too thick layers, as they will

cause longer congelation time and will keep higher temperature of

the phantom for a longer time. This might cause changes in forms

of the agarose-based tumors. The best results are obtained with the

layers’ thickness of 1–2 cm.

1. Use a spatula to remove the air bubbles that have been

introduced during step 22.

Figure 6. Orthogonal slicing through a 3D ultrasound volume and the MR volume data. From top to bottom: axial, coronal and sagittal
slices. The tumor model has a silicone string going into it, representing a portal vein, as can be seen in the coronal slice in both ultrasound and MR.
doi:10.1371/journal.pone.0064180.g006
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Figure 7. The original MR, CT, and US images from the phantom and patients along with the cropped regions.
doi:10.1371/journal.pone.0064180.g007
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‘CRITICAL STEP’ Remove the air bubbles when the candle

gel mixture (liver parenchyma) is still liquid. It is not recom-

mended to remove air bubbles when the candle gel mixture is half-

congealed, as in most of the cases it will result in expanding the air

bubbles.

‘CRITICAL STEP’ Remove the air bubbles by gently moving

them towards phantom container’s walls.

‘TROUBLESHOOTING’ Troubleshooting advice can be

found in Table 1.

1. Place the phantom in the fridge for about 15–30 minutes.

2. Repeat steps 22 to 25 as long as needed, depending on the

design of the phantom, e.g. the position (height) of the tumors

and blood vessels in the parenchyma.

3. Place the phantom in the fridge for at least 6 hours.

Results and Discussion

Figure 4 presents a phantom developed using above described

procedure. The US, CT and MR images of the phantom are

shown in Fig. 5 and Fig. 6. The following protocols were used to

scan the phantom:

N CT: liver, slice thickness 1 mm, distance between slices

0.5 mm

N MR: T1, slice thickness 1 mm, distance between slices 1 mm.

Ultrasound images were obtained using a laparoscopic ultra-

sound probe (OL531, Hitachi, Japan). As seen in the figure,

sephadex is equally distributed in the candle gel. Besides, there are

no visible borders between the layers of the liver parenchyma.

The liver model has been positively evaluated by four expert

surgeons who have done a high number of liver resection, both

open and laparoscopically, radiologists, and engineers who work

on medical imaging. Comparison of ultrasound images of real

patient’s liver [26] and the developed phantom shows that the

phantom’s liver tissue and its structures are well simulated. Also

CT and MR images show that simulated tissues are similar to

those of a real patient [26]. The original images from the phantom

and patient data along with cropped regions are shown in Fig. 7.

The patient sample images (MR, CT, and US) are from a patient

with a metastasis in the liver. The MR imaging protocol used was

a T1 weighted liver protocol.

The proposed protocol allows manufacturing multimodal

phantoms that have reusable parts. Apart from tumors, both liver

parenchyma and portal veins can be reused to fabricate a new

phantom. For that, the ‘‘old’’ phantom needs to be disassembled.

Disassembling of the phantom is rather easy, since removing of the

agarose-based tumors and silicone portal veins is an effortless

process.

Removed silicone portal veins should be cleaned before using

them in a new phantom. For that, hot water can be used. The

candle gel based liver parenchyma can be stored in the congealed

form at a room temperature. To reuse the liver parenchyma, it is

necessary to heat it up until it is liquefied.

The protocol has been developed such that it permits

modifications of the phantom’s content. For example, manufac-

turing phantoms for developing methods to identify micro-

calcifications in healthy tissues requires replacement of the

agarose-based tumors and silicone portal veins by calcium particles

of 40–190 mm. This is useful for research on ultrasound-based

diagnostics in breast.

The limitations of our protocol are related to the challenges of

incorporating exact representations of vessels as different types,

e.g. portal and hepatic veins, are portrayed slightly different in US

images. Further research is required to refine and enable the

representation of various lesions in organs in our phantom/

protocol. Our protocol can be used to represent some typical

lesions, but not all of them.

The developed protocol was meant for manufacturing phan-

toms for research purposes that include work on early diagnoses of

diseases (including new methods for identifying micro-calcifica-

tions in healthy tissue [27]), evaluation of and work on navigation

system (CustusX [28]), development of training setups for

acquiring US skills and training and validation of navigated

ultrasound in laparoscopic surgery. The advantage of using

phantoms is that they are designed to mimic tissue characteristics

that include acoustic properties, dimensions, and internal features.

As a consequence, the phantoms can provide users with a

simplified and standardized environment. There are, therefore,

various purposes for which multimodal phantoms can be used.

Those include:

N Initial tests of designed imaging systems

N Characterization and optimization of existing imaging systems

N Calibration and routine quality control of imaging systems

N Comparison of performance between imaging systems

N Establishment of appropriate training for translation of new

imaging technologies in the clinical practice

N Training means for surgeons before performing live surgery

such as US-guided puncture of lesions (e.g. biopsy or

placement of radio frequency needle)

N Training means for surgeons to learn to navigate in 3D

volumes

N Training means for novices to learn US tissue characterization

and US anatomy

N Optimization of existing imaging technologies for clinical

practice

N Testing in development of navigation systems targeted for

various clinical applications, where the phantom can be

tailored to fit the target organ(s)

N Assessment of 3D US acquisition and reconstruction based on

knowledge about sizes and shapes of the phantom constituents

both from the production and from CT and/or MR images.
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