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Abstract 

This thesis discusses wind-induced dynamic response of slender cable-supported 
bridges. The focus has been on prediction of the flutter stability limit and the buffeting 
response in strong winds.  The thesis consists of journal papers that are either submitted 
or published. 
 
Multimode flutter has recently been shown to be the governing phenomenon for the 
aeroelastic stability limit of long-span cable-supported bridges. In this thesis the 
multimode flutter phenomenon is thoroughly studied. It is concluded that the most 
important indicator of possible multimode effects is the shape-wise similarity of the 
vertical and torsional vibration modes since flutter will not occur if the still-air vibration 
modes are shape-wise dissimilar. When the stability limit of a long-span bridge is 
assessed, the shape-wise similarity of all possible mode combinations should be 
evaluated first. Then the system should be grouped into uncoupled subsystems. The 
subsystem involving the still-air torsional vibration mode with the lowest natural 
frequency will most likely provide the lowest stability limit. If this subsystem consists 
of more than two vibration modes, multimode effects will occur. The reduction of the 
stability limit will be small if the shape-wise similarities of the vibration modes are not 
of the same order of magnitude, or if the system consists of two torsional and one 
vertical mode, and the torsional modes are well separated. If these conditions are not 
fulfilled, the flutter stability limit should be assessed using a multimode approach. 
 
The self-excited forces are particularly important when the wind-induced dynamic 
response or the flutter stability limit is assessed for slender bridges. The self-excited 
forces can be modelled simply using quasi-steady theory. Since the quasi-steady theory 
is frequency independent, the model may be used in both the time and frequency 
domains. However, it is well known that the traditional quasi-steady theory may 
severely underestimate the flutter stability limit since no aerodynamic torsional damping 
is introduced into the model. In this thesis a novel modified quasi-steady theory is 
suggested. The method takes advantage of that the self-excited forces are most 
important at the natural frequencies of the combined structure and flow system. This 
implies that curves providing a frequency-independent description of the self-excited 
forces can be fitted to the experimental data in the important reduced-frequency range 
corresponding to the natural frequencies of the system. The suggested model has been 
applied for the Hardanger Bridge in a comprehensive case study, and it is concluded 
that the model provides wind-induced response and flutter stability limits of good 
accuracy. 
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Simplified methods for assessment of the flutter stability limit are still considered 
important in preliminary designs and when designing medium-span bridges where 
multimode effects will not reduce the flutter stability limit significantly. The most 
popular approach is still Selberg’s formula, published almost 50 years ago. Selberg’s 
formula provides the flutter stability limit with reasonable accuracy if the aerodynamic 
properties of the cross section are similar to those of a flat plate, and the vertical and 
torsional modes have an identical shape. In this thesis an alternative analytical approach 
to Selberg’s formula is suggested. The formulae presented are based on the fundamental 
flutter equations, and the simplified solution is developed by introducing two 
assumptions. (i) The quasi-steady model for the self-excited forces outlined above is 
introduced in the equations of motion. (ii) The critical frequency is assumed to be on the 
torsional branch of the solution system and can be approximated by the uncoupled 
system of equations. It is demonstrated that by introducing these two approximations, 
the complexity of the flutter equations is significantly reduced, and if the still-air 
damping is neglected, a closed-form solution of the flutter stability limit may be 
obtained. The formula presented is very similar to Selberg’s formula, but contains 
coefficients taking into account the actual aerodynamic properties of the cross section 
and the possible imperfect shape-wise similarity of the vibration modes. The formulae 
presented are tested for a range of hypothetical structural configurations, in addition to 
the properties of a few well-known bridges, considering the aerodynamic properties of 
two cross sections. It is concluded that the proposed formulae provide results of 
adequate accuracy, and that they can be regarded as engineering approximations of the 
critical flutter velocity. 
 
This thesis also discusses unsteady modelling of the self-excited forces in the time 
domain. A comprehensive case study, where the wind-induced dynamic response of a 
slender suspension bridge is assessed in the time domain, is presented. Here, the self-
excited forces have been modelled, using rational functions, indicial functions, a novel 
modified rational function approach explained and introduced in this thesis, and a 
further developed modified quasi-steady theory. The quasi-steady model is a further 
development of the model outlined above. As explained above, in the modified quasi-
steady theory suggested in this thesis, the experimental results of the aerodynamic 
derivatives are approximated with curves providing a frequency-independent 
description of the self-excited forces in the important reduced-frequency range. This 
implies that the self-excited forces may be accurately modelled at frequencies 
corresponding to one horizontal, one vertical, and one torsional vibration mode. The 
further development presented here is to uncouple the aeroelastic system utilizing the 
right- and left-hand eigenvectors. This implies that the experimental results for the 
aerodynamic derivatives may be accurately approximated for all the natural frequencies 
of the aeroelastic system. It is concluded that all the unsteady models evaluated provide 
an adequate description of the self-excited forces, but that the unsteady models may be 
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challenging to fit to the experimental data since the same coefficients are used in the 
expressions for the imaginary and real part of the transfer functions, which implies that 
two sets of data have to be approximated using the same coefficients. It is also seen that 
the quasi-steady model presented provides satisfying results. The results are in fact of 
higher accuracy than when some of the unsteady models are applied. 
 
As modern bridges become longer, slenderer and lighter, the use of nonlinear methods 
to evaluate the dynamic response may become necessary. This implies that time domain 
assessment of the wind-induced dynamic response will become more important in the 
future. When nonlinearities are introduced into the model, it is an advantage to use the 
degrees of freedom of the element model directly and not use still-air vibration modes 
as generalized degrees of freedom. This can be done modelling the self-excited forces at 
distinct points along the girder, but this will imply that a huge amount of convolution 
integrals have to be evaluated at each time step. Another approach is suggested in this 
thesis. The starting point is a traditional beam element with twelve degrees of freedom, 
where the convolution integrals are added as aerodynamic degrees of freedom in each 
node. This implies that the convolution integrals do not need to be evaluated explicitly, 
since their value is calculated just like the response of the structure. Four different 
aeroelastic beam elements have been developed and tested. It is concluded that the 
elements provide wind-induced dynamic response and flutter stability limits that 
correspond very well to results predicted by the traditional multimode approach in the 
frequency domain.  
 
Accurate modelling of the wind field is a crucial issue when predicting the dynamic 
response of long-span bridges. The wind field is most commonly modelled as a 
multivariate Gaussian stationary and homogeneous stochastic process, where the 
turbulence components are assumed independent. Since the wind field is affected by the 
roughness at the site, the turbulence components will become correlated, since three-
dimensional eddies are generated by the roughness elements, but this effect is normally 
neglected. In this thesis the measurements of the fluctuating wind carried out at the 
Sotra Bride in 1975 are reinvestigated. The cross-spectral densities of all the turbulence 
components have been determined using auto regressive (AR) models. It is concluded 
that the cross-spectral density of the u and w components may have a significant 
influence on the dynamic response, in particular for structures with low natural 
frequencies. However for the bridge considered, reasonable estimates of the wind-
induced dynamic response will still be obtained if the cross-spectral density of the u and 
w components is neglected, but the accuracy of the modelling will be improved if it is 
included.   
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Introduction  

Since the infamous Tacoma Narrows Bridge collapse in 1940 [1, 2], wind-induced 
dynamic response has been a crucial issue when designing slender bridges. This 
incident made bridge engineers all over the world realize that cable-supported bridges 
may collapse during moderate winds, due to fluid-structure interaction. As a 
consequence, wind tunnel tests became a natural part of bridge design [3, 4]. As modern 
bridge design gets slenderer, lighter, and longer, the demand for more accurate and 
reliable methods to predict wind-induced dynamic response is increasing. This is the 
reason that wind-induced dynamic response of bridges is still an interesting research 
subject today, over 70 years after the collapse of the Tacoma Narrows Bridge.   
 
Prediction of wind-induced dynamic response is summarized in Figure 1. 

 
Figure 1: Prediction of wind-induced dynamic response, [5] 
      
Since wind fluctuations are random in nature, prediction of wind-induced dynamic 
response implies that the statistical properties of the response have to be obtained from 
the known statistical properties of the wind field. The statistical properties of the wind 
field are represented by spectral densities in the frequency domain. When assessing the 
wind-induced response for civil engineering structures, one often relies on existing 
spectral densities that may be calibrated such that they become suitable for the site in 
question; for instance, see [6, 7]. There are several expressions for spectral densities, 
and perhaps the most well known is the Von Karman spectral density that was 
developed for laboratory turbulence by Von Kármán [8] and suggested by Harris in 
1968 for wind engineering applications, see [9]. Another well-known expression for the 
spectral density of longitudinal turbulence has been suggested by Davenport [10]. The 
expression is empirical, and it is well known that this spectral density does not give 
satisfying results when the frequency tends to zero. Kaimal [11] has also suggested an 
expression for spectral density that has very frequently been used. Solari and Piccardo 
[12] have done a comprehensive review of existing expressions for spectral densities. 
They have gathered 14 expressions for the power spectral density of the u component 
(along the mean wind direction), 9 expressions for the w component (across wind 
vertically) and 6 expressions for the v component (across wind horizontally). When it 
comes to the cross-spectral density of the u and w components, only four cross-spectral 
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densities have been found. The main reason for this is that the spectral density of the u 
component is most frequently used in response analysis, and there is therefore more 
information in the literature on this spectral density than, for instance, for the cross-
spectral density of the u and w components. Only the u and w components are usually 
considered for bridges, assuming the cross-spectral density of the components is 
negligible, e.g., [13-17], but there are some analysis where the cross-spectral density has 
been included [18-20]. It is stated by Simiu and Scanlan [16] that limited data presently 
suggest that this is a conservative assumption, but that knowledge of these quantities in 
applications can improve accuracy. Minh et.al [20] conclude that for the particular case 
evaluated, the vertical response is overestimated; the torsional response is 
underestimated, while the horizontal response remains unchanged if the cross-spectral 
density of the u and w components is neglected.  
 
In addition to the spectral and cross-spectral densities of the u and w components at one 
point, the spatial properties of the wind field must be considered. On an empirical basis 
Davenport [21] suggested an exponential expression for the normalized co-spectral 
density and a zero-phase spectrum 
 

 � � ,, expn n m
mm C
V

�� � �� �� 	 
� �

 �

 (1) 

 
Here, n�{u, v, w}, m�{x, y, z}. This expression is very simple, but it contains two well-
known inconsistencies [22-24]. (1) The normalized co-spectral density is positive for all 
separations, which conflicts with the definition of the turbulence components with a 
zero mean value. (2) When the frequency tends to zero, the co-spectral density tends to 
unity. This implies that the turbulence components at two distinct points become fully 
coherent, which in reality is impossible. Krenk [23] has suggested a modified 
exponential format assuming locally isotropic turbulence, where the inconsistencies 
mentioned above are avoided. There are also other alternatives; see [12], where several 
papers on this matter have been cited. In the time domain, the spectral densities are used 
to generate time series of the fluctuating wind. The time series can for instance be 
obtained using Monte Carlo methods, e.g., [25-33] or ARMA methods e.g., [34, 35]. 
 
When the properties of the wind field are established, either in terms of cross-spectral 
densities in the frequency domain or in the time domain in terms of simulated time 
series of the fluctuating wind at distinct points in space, the aerodynamic load must be 
obtained.  This is usually done through wind tunnel testing with a scaled model. The 
most popular approach is to use a section model [4], which is a rigid scaled model of the 
girder supported by a system of springs at each end. The section model may move 
horizontally, vertically, and rotate. Another alternative is to use a taut strip model [36-
38]. This is basically two tensioned strings that cross the wind tunnel. A flexible scaled 
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model of the bridge deck is attached to these strings, which implies that the strings 
introduce stiffness, while the mass comes mainly from the flexible model of the girder. 
The third option is to use a scale model of the whole bridge [36, 39, 40]. The wind 
loading normally considered for a horizontal girder is shown in Figure 2 

 
Figure 2: Wind loading acting on a cross section of the bridge deck 
 
As can be seen from the figure, there are three load components acting on the girder. 
Since the girder is horizontal, only the u and w components of the wind field are 
relevant to the wind loading. The transfer function outlined in Figure 1 can be defined in 
both the frequency domain and the time domain. In the frequency domain the cross-
spectral density matrix of the wind loading may be expressed as 
 
 � � � � � � � �*

q q, x , x� � � � � �	q uS B S B  (2) 

 
Here, the matrix Su contains the auto and cross-spectral densities of the u and w 
components. The matrix Bq contains the aerodynamic transfer functions that are 
functions of frequency and dependent on the mean wind velocity and the dimensions 
and aerodynamic properties of the girder. The contents in matrix Bq can be obtained 
from wind tunnel tests using one of the approaches outlined above. If the aerodynamic 
model has been linearized, the time domain counterpart of Eq. (2) can, be written as. 
 

 � � � � � �
t

qt t d� � �

�

	 
�q b u  (3) 

 
Here, q is the distributed action; bq contains the aerodynamic impulse response 
functions, and u contains the velocity components. The matrices bq and Bq constitute a 
pair of Fourier transforms.  
 
After establishing the aerodynamic loading, either in terms of a cross-spectral density 
matrix in the frequency domain or in the time domain as time series of the aerodynamic 
loading at distinct points along the structure, the dynamic response may be determined 
using the finite element method [41-43]. The response can be obtained using the degrees 
of freedom of the element model directly, but presently, the most popular approach 
seems to be using selected still-air vibration modes as generalized degrees of freedom in 
the assessment of the wind-induced dynamic response. 
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As can be seen in Figure 1, the aerodynamic loading may be dependent on the response 
of the structure. This effect is due to self-excited forces that are generated by the 
structure's motion. The most popular unsteady model for the self-excited forces, 
suggested by Scanlan and Tomko [44]  reads:  
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Here, V is the mean wind velocity; rn, n�{y, z, �} symbolizes the horizontal, vertical 
and torsional response; � is the air density; B is the width of the girder, and  �����	 is 
the reduced frequency of motion. Pn

*, Hn
*, An

* n�{1,2,…6} are dimensionless 
aerodynamic derivatives, which are treated as cross-sectional properties that are 
functions of the reduced frequency of motion. The response is positive in the same 
directions as the forces displayed in Figure 2. The expression presented in (4) has not 
been developed from a theoretical point of view, since it is not possible to develop 
expressions for the self-excited forces for a general cross section. There are expressions 
for the self-excited forces for an airfoil developed by Theodorsen [45]. The expressions 
displayed in (4) can be viewed as an extension of the airfoil theory, and numerous 
studies have demonstrated the adequacy of the concept. Since the flow around the airfoil 
is fully attached and not separated, the accuracy of the definition shown in Eg. (4) will 
be questionable for very bluff cross sections. The aerodynamic derivatives are in most 
cases determined from wind tunnel tests, e.g., [44, 46, 47], but attempts have also been 
made to determine them from fluid structure interaction analysis, using computational 
fluid dynamics software, e.g., [48-50]. 
 
The expression presented in Eq.(4) is, strictly speaking, only valid for a single harmonic 
motion, but the expression can be used to predict the self-excited loading for a more 
general motion, applying the principle of superposition. When this assumption is 
introduced, it is possible to develop expressions for the self-excited forces in both the 
time and frequency domains. The results for the aerodynamic derivatives are known in 
the frequency domain. To obtain a time domain description of the self-excited forces, 
curves providing expressions for the transfer functions possible to Fourier transform are 
therefore used to approximate the experimental data. There are two branches of methods, 
the rational functions approach, e.g., [14, 51-53], or the indicial functions approach [54-
57]. In reality the two methods are almost identical. The rational function formulation 
has its starting point in the frequency domain, while the indicial function formulation 
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considers the downwash on the cross section in the time domain. Nevertheless, an 
expression suitable for Fourier transforming must be selected in both cases, which 
implies that the expressions used to model the self-excited forces are very similar.  
 
The aeroelastic stability limit is also extremely important when designing slender 
bridges. The self-excited forces may change the properties of the combined structure 
and flow system, either such that the system has no total stiffness (the aeroelastic 
stiffness is negative and equal to the structural stiffness), or such that the system is not 
able to dissipate energy. A brief historical review of research on flutter instability is 
given by Matsumoto et al. [58]. The flutter phenomenon was originally investigated in 
the aeronautical field [59, 60], but the collapse of the Tacoma Narrows Bridge brought 
the attention of bridge engineers to the phenomenon. Arne Selberg [3] developed an 
empirical  formula for the flutter stability limit, based on work published by Bleich in 
1949 and 1950. This empirical formula is well known and is still being widely used 
today [19]. However, since the formula does not take into account the actual 
aerodynamic properties of the cross section and the shape-wise similarity of the 
vibration modes, it may produce seriously inaccurate results. A more accurate approach 
is to study the properties of the equations of motions for a two-degree-of-freedom 
system including self-excited forces, where one vertical and torsional still-air vibration 
modes are used as generalized degrees of freedom. The critical velocity may then be 
obtained by solving the flutter equations [16, 22]. However, recent bridge projects, e.g., 
[18, 61], have shown that flutter where several modes interact may provide a lower 
stability limit than the two-mode case, which implies that the flutter stability limit must 
be assessed using a multimode approach [18, 62, 63].          
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Objectives and limitations 

The research objectives of this thesis may be summarized as follows: 
 
To improve current understanding of multimode flutter 
Since the collapse of the Tacoma Narrows Bridge, bridge designers have learned how to 
predict the flutter stability limit by using wind tunnel tests with a section model. This 
approach can only represent a case where two still-air vibration modes couple into the 
flutter motion.  In recent bridge projects multimode effects have reduced the stability 
limit significantly. One of the research objectives in this work is therefore to improve 
the current understanding of when a multimode approach should be used to predict the 
flutter stability limit, and when a bimodal approach is sufficient. 
 
To develop a simple frequency-independent self-excited load model 
The quasi-steady theory is frequently used for simplified modelling of self-excited 
forces. Since the load coefficients are frequency independent, the quasi-steady theory 
can be used in both the frequency and time domains. The quasi-steady theory is perhaps 
most convenient in the time domain since no convolution integrals have to be evaluated. 
However, it is well known that the quasi-steady theory may severely underestimate the 
flutter stability limit since no aerodynamic torsional damping is introduced. One of the 
research objectives is therefore to develop a more accurate modified quasi-steady theory 
to provide adequate estimates of both the stability limit and the wind-induced response. 
 
To develop an alternative analytical expression for the flutter stability limit, 
including aerodynamic properties and mode shape similarity 
Selberg’s formula is frequently used to estimate the bimodal flutter stability limit of 
cable-supported bridges. However, Selberg’s formula may provide results that are 
seriously inaccurate since it does not take the actual aerodynamic properties of the cross 
section and the shape-wise similarity of the vibration modes into account. One of the 
research objectives is therefore to develop an alternative analytical solution for the 
flutter stability limit taking into account the aerodynamic properties and the shape-wise 
similarity without compromising the accuracy and simplicity that Selberg’s formula is 
well known for. 
 
To compare and improve the current methods for time domain modelling of self-
excited forces 
There are several methods for modelling self-excited forces in the time domain. One of 
the objectives of this work is therefore to compare the existing methods and suggest 
improvements to the modelling to make the calculations more accurate and efficient. 
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To investigate the importance of the cross-spectral density of the turbulence 
components for prediction of wind-induced dynamic response of bridges 
The wind-induced dynamic response of bridges is most commonly predicted taking into 
account the along-wind and vertical turbulence components, assuming that the two 
components are uncorrelated. Some studies have taken the cross-spectral density of u 
and w components into account. The studies indicate that this effect may influence the 
dynamic response. One of the objectives of this work is to investigate the possible 
influence of the cross-spectral density of the turbulence components on the wind-
induced dynamic response of cable-supported bridges.  
  
This work's limitations 
Vortex-shedding induced vibrations that are typically important at low mean wind 
velocities will not be dealt with in this thesis. The cross-sectional admittance of the 
wind loading is not discussed. The response predicted in this thesis has not been 
compared with experimental data from wind tunnel tests or full-scale measurements. 
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 Present Investigations  

The work undertaken during this PhD study is presented as independent journal papers, 
which are either published or submitted. The three accepted journal papers have been 
published in Journal of Wind Engineering and Industrial Aerodynamics, Journal of 
Sound and Vibration and Computers and Structures. The journal paper titles are 
summarized in Table 1. 
 
Table 1: Citations of the papers included in the thesis 
Part Journal papers 
1 Øiseth O, Rönnquist A, Sigbjörnsson R. Simplified prediction of wind-induced response and 

stability limit of slender long-span suspension bridges, based on modified quasi-steady theory: A 
case study. Journal of Wind Engineering and Industrial Aerodynamics. (2010) 
 

2 Øiseth O, Sigbjörnsson R. An alternative analytical approach to prediction of flutter stability 
limits of cable supported bridges. Journal of Sound and Vibration. (2011) 
 

3 Øiseth O, Rönnquist A, Sigbjörnsson R. Time domain modelling of self-excited aerodynamic 
forces for cable-supported bridges: A comparative study. Computers & Structures. (2011) 
 

4 Øiseth O, Rönnquist A, Sigbjörnsson R. Finite element formulation of the self-excited forces for 
time-domain assessment of wind-induced dynamic response and flutter stability limit of cable-
supported bridges. Submitted for journal publication (2011) 
 

5 Øiseth O, Rönnquist A, Sigbjörnsson R. Effects of cross-spectral densities of atmospheric 
turbulence on the dynamic response of cable-supported bridges: A case study. Submitted for 
journal publication (2011)  

 

Declaration of authorship for papers 1-5 

In papers 1, 2, 3 and 4, Ole Øiseth implemented the theory and performed all the 
numerical simulations presented. He also wrote the manuscripts. The co-authors 
contributed constructive criticism that increased the scientific quality of the papers. In 
Paper 5 Ole Øiseth performed most of the numerical analysis and wrote the main part of 
the manuscript. Ragnar Sigbjörnsson drafted the initial outline of the manuscript and 
performed some initial numerical analysis, which Ole Øiseth further developed. Anders 
Rönnquist contributed constructive criticism that increased the scientific quality of the 
paper.  
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Paper 1 
Simplified prediction of wind-induced response and stability limit of slender long-span 
suspension bridges, based on modified quasi-steady theory: A case study 
 
Øiseth O, Rönnquist A, Sigbjörnsson R 
 

Background 
Wind-induced vibration is one of the most important concerns when designing long-
span suspension bridges. Most bridge engineers consider prediction of the flutter 
stability limit particularly important. Bimodal flutter, where two still-air vibration 
modes interact, has become well known. However, in recent long-span bridge projects, 
e.g., [18, 61], a reduction of the bimodal stability limit due to interactions between 
several vibration modes has been observed. A full understanding of multimode flutter 
has not been achieved, and this paper aims at providing further insight into this 
phenomenon. When modern bridges become slenderer and lighter, time domain 
assessment of the dynamic response may become necessary. A model describing self-
excited forces in the time domain will therefore become necessary. This can be achieved 
using indicial or rational functions or quasi-steady theory. The quasi-steady theory is 
attractive because of its simplicity, but it is well known that the traditional quasi-steady 
theory may severely underestimate the flutter stability limit since no aerodynamic 
torsional damping is introduced into the system. This paper therefore aims at developing 
a modified quasi-steady model with improved accuracy. 
 

Main findings 
The bimodal and multimodal stability limits of the Hardanger Bridge are carefully 
studied in this paper. It is concluded that multimode flutter, where three still-air 
vibration modes participate, provides the lowest stability limit for the structure. It is also 
concluded that this is because two still-air vertical modes are shape-wise similar to the 
same torsion mode, implying that these three still-air vibration modes are coupled when 
the mean wind velocity is different from zero. The paper illustrates the importance of 
the shape-wise similarity of the vertical and torsional still-air vibration modes when the 
still-air vibration modes for flutter assessment are selected. The stability limit is 
evaluated using quasi-steady theory and aerodynamic derivatives obtained from wind 
tunnel measurements of a scaled section model. It is concluded that quasi-steady theory 
severely underestimates the stability limit since no aerodynamic torsional damping is 
introduced. A novel approximate frequency-independent model is suggested, where 
curves providing a frequency-independent approximation of the self-excited forces are 
fitted to the experimental data in the important frequency range. It is concluded that this 
aerodynamic model provides adequate estimates of both the stability limit and the wind-
induced dynamic response for the case considered.  
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Paper 2 
An alternative analytical approach to prediction of flutter stability limits of cable-
supported bridges 
 
Øiseth O, Sigbjörnsson R 

Background 
Selberg’s formula [3]  is well known to bridge engineers that are designing long-span 
bridges. It predicts the bimodal flutter stability limit with reasonably accuracy if the 
vibration modes have a perfect shape-wise similarity and the aerodynamic properties of 
the cross section are similar to those of a flat plate. This paper aims at developing an 
alternative to Selberg’s formula taking into account the actual shape-wise similarity of 
the vibration modes and the aerodynamic properties of the cross section. If a simplified 
bimodal approach is supposed to be useful, multimode effects have to be negligible. 
Multimode effects are therefore studied carefully in this paper 

Main findings 
In this paper it has been shown that the flutter equations may be greatly simplified by 
introducing two approximations. (i) It is assumed that the critical frequency is on the 
torsional branch of the solution system and that the critical frequency may be 
approximated by the uncoupled system of equations. (ii) The aerodynamic derivatives 
may be approximated by expressions providing a frequency-independent description of 
the self-excited forces in the important frequency range. It is shown that when these 
approximations are introduced, the critical velocity may be determined by solving a 
simple cubic equation, and it is further shown that by neglecting the contribution from 
still-sir damping, a closed-form solution is achieved. The presented equation is equal to 
Selberg’s formula for a certain combination of coefficients, but provides for including 
the effects of the cross section's aerodynamic properties and the shape-wise similarity of 
the vibration modes. The formulae presented have been tested for two different cross 
sections for a wide range of structural configurations. It is concluded that the formulae 
provide results of sufficient accuracy for all the cases evaluated and may be used to 
obtain an engineering approximation of the critical flutter velocity. 
 
Multimode effects have been carefully studied. It is concluded that that the flutter 
velocity for a pair of modes is not affected by the presence of another pair of shape-wise 
similar vibration modes if the two pairs are shape-wise dissimilar. This implies that the 
most important factor for possible multimode effects is the shape-wise similarity of the 
vibration modes. It is also seen that for a combination of one vertical and two torsional 
modes, the reduction due to multimode effects is decreasing when the frequency ratio of 
the torsional modes is increasing. For a combination of two vertical and one torsional 
vibration modes, a reduction due to multimode effects cannot be neglected even if the 
two vertical vibration modes are well separated. 
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Paper 3 
Time domain modelling of self-excited aerodynamic forces for cable-supported bridges: 
A comparative study. 
  
Øiseth O, Rönnquist A, Sigbjörnsson R. 

Background 
As modern bridges become slenderer and lighter, a nonlinear assessment of the dynamic 
response may become necessary. Since nonlinearities may be taken into account more 
easily in the time domain than in the frequency domain, this implies that time domain 
modelling of the self-excited forces will become more important in the future. There are 
studies of modelling self-excited forces in time domain, e.g., [13, 14, 51, 54, 55, 57, 64-
66], but these studies focus mainly on the fitting of expressions to the experimental data 
or/and prediction of the flutter stability limit. There are also several different 
expressions for self-excited forces in the time domain, but there are very few studies 
comparing the performance of the different approaches. 

Main findings 
In this paper the wind-induced dynamic response and flutter stability limit of the 
Hardanger Bridge have been assessed in the time domain. The self-excited forces have 
been modelled by rational functions, indicial functions, a suggested modified rational 
function approach and a suggested modified quasi-steady approach. The modified 
quasi-steady approach has been further developed from the version presented in Papers 
1 and 2. An integration scheme, where larger time steps may be used and still avoid 
amplitude and phase distortion of the self-excited forces, has been suggested and 
applied successfully in a comprehensive case study. It is concluded that the self-excited 
load models used provide wind-induced response and stability limit of sufficient 
accuracy. The unsteady load models provided a poorer least squares fit to the 
experimental results than the curves used to represent the aerodynamic derivatives in the 
frequency domain. This is because the unsteady approach requires that two sets of data, 
representing the real and the imaginary part of the complex transfer functions, are 
approximated using the same coefficients. The suggested modified rational function 
approach makes it easier to introduce quasi-steady asymptotes for the self-excited forces 
outside the reduced velocity range covered by the experimental data. Since the self-
excited forces are most important at the natural frequencies of the system, the modified 
quasi-steady approach suggested in this article provides an accurate representation of 
the self-excited forces since the self-excited forces corresponding to each natural 
frequency can be approximated separately. The modified quasi-steady approach 
presented in this paper actually performs better than some of the unsteady models tested. 
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Paper 4 
Finite element formulation of the self-excited forces for time-domain assessment of 
wind-induced dynamic response and flutter stability limit of cable-supported bridges. 
 
Øiseth O, Rönnquist A, Sigbjörnsson R. 

Background 
In most papers discussing modelling self-excited forces by means of indicial or rational 
functions, the still-air vibration modes are used as generalized coordinates when the 
wind-induced dynamic response and the stability limit of the aeroelastic system are 
assessed. This may be a disadvantage when material or geometric nonlinearities are 
introduced in the model. The dynamic response may be obtained by direct numerical 
integration if the self-excited forces are modelled at distinct points along the girder. The 
convolution integrals providing the self-excited forces must then be evaluated 
numerically for each time step. This requires a huge amount of computational effort. 
The aim of this paper is therefore to develop an aeroelastic beam element where the 
self-excited forces are added as unknowns in terms of aerodynamic degrees of freedom 
such that the convolution integrals do not need to be evaluated explicitly. 

Main findings 
Four different aeroelastic beam elements have been developed and tested in this paper. 
The starting point is a two-node beam element with 12 degrees of freedom (three 
translations and three rotations in each node). The self-excited forces are modelled with 
rational functions, and the convolution integrals are added as additional variables in the 
system of equations by means of aerodynamic degrees of freedom. The difference of the 
four elements is that different shape functions have been used to derive the coefficients 
in the element matrices related to the aerodynamic degrees of freedom. All the elements 
developed and tested have provided a converged stability limit that corresponds very 
well to results provided by a traditional multimode approach. The wind-induced 
dynamic response has also been obtained using one of the presented elements. The 
response corresponds very well to results obtained in the frequency domain using still-
air vibration modes as generalized coordinates. It may be concluded that, for the current 
case study, the elements presented provide accurate results for both the stability limit 
and the wind-induced response. The computational effort required is far less than 
evaluating the convolution integrals numerically for each time step. The required 
computational effort is, in fact, much less than was required during the calculations 
presented in Paper 3, where still-air vibration modes are used as generalized degrees of 
freedom. This illustrates the effectiveness of the method since the number of degrees of 
freedom for the finite element model is several times higher than the number of selected 
still-air vibration modes used in Paper 3.   
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Paper 5 
Effects of cross-spectral densities of wind velocities on the wind-induced dynamic 
response of cable-supported bridges: A case study 
 
Øiseth O, Rönnquist A, Sigbjörnsson R. 

Background 
Accurate modelling of the wind field is a crucial issue when predicting the wind-
induced dynamic response of long-span cable-supported bridges. The wind field is most 
commonly modelled as a multivariate Gaussian stationary stochastic process, where the 
along-wind, across-wind, and vertical velocity components are assumed independent. 
Since the roughness at the site will influence the wind field, there may be significant 
correlation of the velocity components. Little information exists on the possible 
influence of the correlation of the wind velocity components on the dynamic response 
of bridges. 

Main findings 
The measurements of the wind velocity components along the Sotra Bridge carried out 
in 1975 are reinvestigated in this paper. Different from previously published results 
where the data have been used, this paper focuses mainly on the spectral density of all 
three velocity components, including the cross-spectral densities of the components. 
The spatial properties of the wind field considering large separations are also studied. 
The Sotra Bridge is located in a narrow sound, which is roughly 600 m wide. From the 
measurements it is clearly seen that the wind field is influenced by the sound. The mean 
wind velocity is largest at the mid-span of the bridge, while the mean wind velocity is 
significantly lower closer to the shore. It is also seen that the turbulence intensities are 
higher at the shore than at the mid-span. The spectral and cross-spectral densities of the 
wind field have been successfully estimated using auto regressive (AR) models. From 
the estimated spectral and cross-spectral densities, it is seen that the covariance of the u 
and w and the u and v components is significant and cannot be disregarded even for 
large separations along the girder. The wind-induced dynamic response of a simplified 
model of a suspension bridge has been assessed to investigate the sensitivity of the 
dynamic response with respect to the modelling of the wind field. It is seen from the 
results that for the particular case considered the horizontal response is underestimated 
by 6%; the vertical response is overestimated by 4%, while the torsional response 
remains unchanged if the cross-spectral density of the u and w components is neglected. 
The expressions for the spectral densities of the along-wind and vertical turbulence 
component suggested by von Kármán are fitted to the experimental data from each of 
the anemometers. It is concluded that reasonable estimates of the dynamic response can 
be obtained using the average value of the parameters involved for the whole bridge, but 
that improved accuracy will be achieved if the inhomogeneity of the wind field and the 
cross-spectral density of the u and w components are taken into account. 
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Concluding remarks 

Several aspects of wind-induced dynamic response of long-span bridges have been dealt 
with in this thesis. The focus has been on prediction of the flutter stability limit and the 
buffeting response in strong winds. Neither response due to vortex shedding, nor the 
effect of aerodynamic admittance functions has been dealt with. 

Multimode flutter 
It has become well known that flutter where several still-air vibration modes participate 
may occur, and that the multimode effects may reduce the flutter stability limit of the 
structure. Multimode effects have been discussed in Papers 1 and 2 of this thesis. It may 
be concluded that the most fundamental indicator of possible multimode effects is the 
shape-wise similarity of the torsional and vertical vibration modes since flutter will not 
occur if the vibration modes are shape-wise dissimilar. If a torsional mode is shape-wise 
similar to two vertical modes, multimode effects will occur. The reduction will be small 
if the shape-wise similarities are not of the same order of magnitude. If two torsional 
modes are shape-wise similar to one vertical mode, multimode effects will occur. The 
reduction of the stability limit will be small if the two torsional modes are well 
separated, or the shape-wise similarities of the mode combinations are not of the same 
order of magnitude. 

Frequency-independent modelling of self-excited forces 
A frequency-independent model for self-excited forces is convenient since it can be 
used in both the time and frequency domains. As explained in Paper 1 of this thesis, the 
traditional quasi-steady theory may be used for this purpose, but since the model does 
not introduce any aerodynamic torsional damping, the flutter threshold will in most 
cases be underestimated. In Paper 1 of this thesis, a novel frequency-independent 
description of the self-excited forces has been suggested. It is demonstrated that the self- 
excited forces are most important in the frequency range close to the natural frequencies. 
This implies that curves providing a frequency-independent description of the self-
excited forces may be fitted to the experimental results of the aerodynamic derivatives 
in the important frequency range.  It is demonstrated in the case study presented in 
Paper 1 that this simplified aerodynamic model provides stability limits and wind-
induced dynamic response of adequate accuracy for the Hardanger Bridge. Similar 
results may be expected for other bridges where a reasonably streamlined girder is used. 

Simplified prediction of the flutter stability limit 
Simplified prediction of the flutter stability limit is still considered important in bridge 
design. In Paper 2 of this thesis, the frequency-independent aerodynamic model 
presented in Paper 1 is introduced into the fundamental flutter equations. It is further 



16 
 

shown that by assuming that the critical frequency is on the torsional solution branch of 
the system of equations, and assuming that it may be approximated by the uncoupled 
system of equations, an analytical expression for the stability limit may be developed. It 
is also shown that by neglecting still-air damping, a closed-form solution of the flutter 
stability limit very similar to Selberg’s formula may be developed. The formula 
includes parameters taking into account the actual aerodynamic properties of the cross 
section and the shape-wise similarity of the vibration modes. The formulae presented in 
Paper 2 have been tested for two different cross sections, for a range of hypothetical 
structural configurations in additional to the structural configurations of a few well-
known bridges. It can be concluded that the formulae provide results of good accuracy 
for all the cases considered, and that they may be used to obtain an engineering 
approximation of the flutter stability limit of cable-supported bridges if multimode 
effects does not occur. 

Unsteady modelling of self-excited forces in the time domain 
Unsteady modelling of self-excited forces in the time domain by means of rational or 
indicial functions has been studied in Papers 3 and 4 of this thesis. The expressions for 
the unsteady models may be challenging to fit to experimental data of the aerodynamic 
derivatives since the same coefficients have to be used to fit the data representing the 
imaginary and the real part of the complex transfer functions. The indicial or impulse 
response functions used to model self-excited forces in the time domain correspond to 
the Fourier transform of the expressions curve fitted to the experimental data of the 
aerodynamic derivatives. Since experimental results are commonly known only in a 
very limited frequency range, there will be several combinations of coefficients that 
provide an acceptable fit to the experimental data, at least for an approximation with 
several exponential filters. Since the behaviour of the transfer function outside the range 
covered by experimental data will be different, the indicial or impulse response 
functions will also have strongly different characteristics. To improve the overall 
behaviour of the transfer function, it is possible to use quasi-steady theory as an 
asymptotic value when the frequency goes to zero. A transfer function facilitating 
introduction of these asymptotes has been suggested in Paper 3. Since the rise time of 
the indicial or aerodynamic impulse response functions may be much shorter than the 
shortest period of interest, time steps much smaller than what is usually necessary when 
calculating the dynamic response of slender structures need to be used to avoid 
amplitude and phase distortion of the self-excited forces. An integration method, where 
the time steps can be kept as usual, is therefore suggested and applied successfully in a 
comprehensive case study. 
 
Even when the integration scheme presented in Paper 3 is introduced, the computational 
effort required to calculate the dynamic response for a relatively small number of still-
air vibration modes is large. In Paper 4 of this thesis a different approach is considered. 
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Here, the convolution integrals providing the self-excited forces in the time domain are 
added as additional unknowns in the system of equations in terms of aerodynamic 
degrees of freedom in each node of traditional beam elements. This approach has 
provided accurate stability limits and wind-induced dynamic response and requires far 
less computational effort than evaluating the convolution integrals numerically at each 
time step. Since the displacement degrees of freedom of the element model are used 
directly in the calculations, geometric and material nonlinearities can be much more 
easily introduced into the calculations than when still-air vibration modes are used as 
generalized coordinates. 

Effects of cross-spectral densities of turbulence components on wind-
induced response 
The influence of the cross-spectral densities of turbulence components on the wind-
induced dynamic response is studied in paper 5 of this thesis. The measurements of the 
fluctuating wind along the Sotra Bridge carried out in 1975 are reinvestigated. It is seen 
from the results that there is a significant correlation of the turbulence components. The 
identified spectral and cross-spectral densities of the turbulence components are used to 
predict the spectral densities of the cross-sectional actions acting on a wedge-shaped 
box girder. It is seen that for the considered cross section, the cross-spectral density of 
the vertical and along-wind component may have a significant influence on the 
horizontal and vertical actions, in particular at low frequencies, while the influence on 
the torsional action seems to be negligible. The identified cross-spectral densities of the 
atmospheric turbulence are used to predict the wind-induced dynamic response of a 
simplified model of a suspension bridge. From the result it is seen that the horizontal 
response is underestimated by 6%; the vertical response is underestimated by 4%, while 
the torsional response remains unchanged if the cross-spectral density of the u and w 
components is neglected. It is concluded that the cross-spectral density of the u and w 
components has little effect on the wind-induced dynamic response of the bridge 
considered, but that improved accuracy will be achieved if this is included. The 
aerodynamic admittance functions may have an effect on the result, and it is therefore 
recommended that this is investigated further.    
 
  
   
 





19 
 

Suggestions for further work 

Multimode flutter has been thoroughly discussed in this thesis. Since aerodynamic 
derivatives related to the horizontal motion for the cross sections considered have not 
been available, possible interaction of horizontal modes with the flutter motion has only 
been briefly discussed. This can therefore be further investigated. It is also possible to 
carry out a study where a more direct connection between the flutter performance and 
the design of the suspension bridge is considered. For instance, the shape-wise 
similarity of the vertical and torsional vibration modes may depend on the position of 
the towers along the bridge, the sag of the main cables, and if there are one or two main 
cables. As pointed out in this thesis, significant multimode effects are present for the 
Hardanger Bridge [67], while it is reported that for the Messina Strait Bridge no 
significant multimode effects are present [68]. Although some of the parameters 
mentioned above will be given by the landscape at the site, an insight into how the basic 
geometry of the suspension bridge can affect the flutter performance may be useful in 
the initial design. 
 
The modified quasi-steady theory suggested in this thesis has only been tested for 
relatively streamlined girders. How the load model will perform for more bluff cross 
sections and twin- deck cross sections should be investigated.      
 
The aeroelastic beam elements developed in this thesis have been used successfully to 
predict the wind-induced dynamic response and the stability limit of a simplified model 
of a suspension bridge. It is recommended to test the elements on a more realistic 
structure where material and geometrical nonlinearities are included. It is also 
recommended that the robustness and the accuracy of the elements are tested, 
considering several structural and aerodynamic configurations. 
 
It is shown in this thesis that the cross-spectral density of the horizontal along-wind and 
vertical across-wind turbulence components may have influence on the cross-sectional 
actions in the low-frequency range. Taking measurements of the fluctuating wind is 
therefore recommended to evaluate how this cross-spectral density is affected by the 
separation of the two points considered. The possible influence of the aerodynamic 
admittance functions has not been taken into account in this thesis. A Study of the effect 
of the cross-spectral densities of the turbulence components on the cross-sectional 
actions when the aerodynamic admittance is taken into account is therefore 
recommended. 
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Probabilistic modelling of wind-induced dynamic response and the flutter stability limit 
may become an important topic in the future. The parameters used in the modelling of 
the wind field, buffeting actions, self-excited actions and the structural properties are in 
reality uncertain, both in terms of scatter in the experimental results and possible model 
errors when the bridge is scaled for wind tunnel testing. Study is therefore 
recommended of how uncertainty in the parameters used will affect the uncertainty in 
the final results. Furthermore, a comparison is recommended of the predicted response 
with measurements of the dynamic response of a long-span bridge to evaluate overall 
model uncertainty.  
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a b s t r a c t

The Hardanger Bridge is currently under construction in Norway. It will have a main span of 1310 m

and a girder that is only 18.3 m wide, which implies that wind-induced vibration is a major concern in

the design. Buffeting response and flutter analysis of the Hardanger Bridge are treated in this paper. The

self-excited forces are modelled using aerodynamic derivatives obtained from free vibration tests,

quasi-steady theory, and a suggested modified quasi-steady theory. The stability limit predicted using

aerodynamic derivatives corresponded well with the wind tunnel results, while the quasi-steady theory

severely underestimated the critical mean wind velocity for the section model used in the wind tunnel

tests. A new set of modified quasi-steady coefficients are suggested, where the experimental results of

the aerodynamic derivatives are used to obtain frequency-independent model coefficients. The critical

velocities predicted by the modified quasi-steady coefficients differ only by 4–5% from estimates based

on the aerodynamic derivatives. The response predicted by the suggested simplified aerodynamic

model is also presented, and the results indicate that adequate estimates are achieved.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

One of the essential tasks in modern bridge design is to avoid
excessive levels of wind-induced vibration. Self-excited vibration,
such as galloping and flutter, are of particular interest, since these
phenomena may cause devastating effects, leading to structural
collapse like the infamous Tacoma Narrows bridge failure. Since
cable-supported bridges can be vulnerable to flutter, this
instability phenomenon has been the subject of intensive research
efforts in bridge engineering. The present state of the art is the
multimode approach, in which coupling effects from several still-
air vibration modes are considered (Agar, 1989; Chen et al., 2000;
Jain et al., 1996b). It is widely recognized that coupled flutter,
where several vibration modes interact may occur, and that the
multimode effects may be stabilizing or destabilizing, as shown,
among others, by Chen and Kareem (2008) and Katsuchi et al.
(1999). Crucial questions are: Which of the still-air vibration
modes are involved? Which of the aerodynamic derivatives are
most influential? How can an effective flutter control be

achieved? These issues have been addressed in several papers
(Bartoli and Mannini, 2008; Chen and Kareem, 2008; Chen, 2007;
Larsen et al., 1995; Matsumoto et al., 2007; Matsumoto et al.,
2008).

The question regarding the effective flutter control is of
growing interest as the span length of suspension bridges
increases. This has resulted in a variety of techniques to reduce
or suppress the aeroelastic response, which is a key issue, with
respect to traffic safety, structural fatigue, and related main-
tenance, as well as prevention of collapse under extreme
conditions. The most common control methods applied can
roughly be divided into: (a) flow pattern control and (b) vibration
mode control. Flow pattern control is dealing with aerodynamic
optimisation of the shape of the cross section, application of guide
vanes, a central slot or central stabilizer (see, for instance, Yang
and Ge, 2009, for further details). Moreover the application of
moving control surfaces, which may be either active or passive,
has also been discussed in the literature (Omenzetter et al., 2000;
Wilde and Fujino, 1998; Wilde et al., 1999). Vibration mode
control, on the other hand, is primarily based on the application of
mechanical devices (e.g., tuned mass dampers) that may be either
passive or active (Gu et al., 2002; Kwon and Park, 2004; Körlin and
Starossek, 2007; Larsen et al., 1995).

In some applications, e.g., in order to study how structural
nonlinearities affect the response, time domain analyses may
be the most effective approach. Since the description of the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jweia

Journal of Wind Engineering
and Industrial Aerodynamics

0167-6105/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jweia.2010.06.009

n Corresponding author.

E-mail addresses: ole.oiseth@ntnu.no (O. Øiseth), anders.ronnquist@ntnu.no
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self-excited forces suggested by Scanlan and Tomko (1971)
contains frequency-dependent coefficients, frequency depen-
dency has to be transformed into time dependency before the
experimental results can be used in the time domain. This can be
achieved by using indicial functions (Borri et al., 2002; Scanlan
et al., 1974) or rational functions (Chen et al., 2000; Chen and
Kareem, 2001). Another and perhaps simpler approach is to use
quasi-steady theory, since it is valid in both time and frequency
domain. To explore the possibility of using quasi-steady theory for
multimodal response and stability prediction of narrow long-span
suspension bridges, we have selected the Hardanger Bridge
(Fig. 1), which is currently entering the construction phase in
Norway.

The Hardanger Bridge will be the longest suspension bridge in
Norway and among the top 10 longest suspension bridges in the

world, with a total length of 1380 m, including a main span of
1310 m. The bridge towers are 186 m high, and the headroom
under the girder is 55 m. Since the bridge will have only two
traffic lanes and one lane for bicycles and pedestrians, it is
unusually narrow; the width of the girder is 18.3 m and the
distance between the two cables is only 14.5 m. This implies that
the bridge will be one of the slenderest long-span suspension
bridges in the world (see Table 1). The geometry of the girder is
shown in Fig. 2. To improve its aerodynamic performance, guide
vanes are applied. The 10-min design mean wind velocity is
38 m/s, corresponding to a mean return period of 50 years.

Extensive analysis of the buffeting response and stability limits
is presented as follows. However, vortex shedding that typically
dominates the response at low mean wind velocities will not be
dealt with herein. The quasi-steady approach is simpler than

Fig. 1. Artist’s view of the Hardanger Bridge across the Hardanger Fjord in the

western part of Norway (www.vegvesen.no, 2009).

Table 1
Main span and width of some well-known bridges (www.wikipedia.org, 2009).

Bridge name Main span (m) Width (m) Country

Akashi-Kaikyō Bridge 1991 35.5 Japan

Xihoumen Bridge 1650 36 China

Great Belt Bridge 1624 31 Denmark

Runyang Bridge 1490 39.2 China

Humber Bridge 1410 28.5 United Kingdom

Jiangyin Suspension Bridge 1385 – China

Tsing Ma Bridge 1377 41 China

The Hardanger bridge 1310 18.3 Norway

Nomenclature

Am aerodynamic admittance function
A*n, H*

n, P*n aerodynamic derivatives
An coefficient, rational functions
an, hn, pn modified quasi-steady coefficients
Bq buffeting load coefficient matrix
B, D width and height of the girder
dl coefficient, rational functions
M, C, K mass, damping, and stiffness matrices
CD, CL, CM force coefficients
En impedance matrix
Gn, Gn the Fourier transform of variable n, a vector

containing Fourier transforms
i the imaginary unit
K reduced frequency
k roughness coefficient
L span length
~mz, ~my modal equivalent and evenly distributed mass and

mass moment of inertia
q cross sectional load vector
~Q , ~Q i modal load vector or modal load
r, _r, €r displacement, velocity, and acceleration vector
S or S auto or cross-spectral density, cross-spectral density

matrix
t time
V mean wind velocity
x, Dx, xr span-wise coordinate, span-wise separation, position
z height above ground or water
Z, g generalized coordinate or vector containing all

generalized coordinates
xn still-air damping ratio

r air density
un, / vibration mode or matrix containing all selected

vibration modes
fy, fz, fy components in the vibration mode vector
o, on circular frequency and natural circular frequency

Subscripts/superscripts

ae aerodynamic
buff buffeting
D, L, M drag, lift, moment
r response, position
Se self-excited
tot total
T transpose
u, w along-wind, across-wind vertically
y, z, y horizontal, vertical, rotation
V wind property
0 still-air
– mean value
� modal property
0 derivative
� time derivative
n complex conjugate
�1 matrix inverse

Abbreviations

AD aerodynamic derivatives
MQSC modified quasi-steady coefficients
QST quasi-steady theory
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unsteady models, but the traditional quasi-steady theory under-
estimates the stability limit of the Hardanger Bridge severely,
compared with the results when aerodynamic derivatives are used.
In the case at hand, the traditional quasi-steady theory is therefore
judged inadequate to model the self-excited forces in coupled
flutter or buffeting response analysis. In the following, a modified
set of quasi-steady coefficients is introduced, where the frequency
dependency is accounted for in an average sense. This is achieved
by assuming the damping terms and the stiffness terms of the
aerodynamic derivatives to be proportional to the reduced wind
velocity and to the squared reduced mean wind velocity, respec-
tively. A general polynomial expression will obviously give a more
accurate fit to the experimental data than the constraints
introduced. However, the approximation suggested is found to give
fairly good fits to the important aerodynamic derivatives for the
Hardanger Bridge. Similar results may be expected for other
bridges, which have a girder with similar aerodynamic properties.
The new modified quasi-steady coefficients are not intended to
replace frequency-dependent force coefficients, but may serve as an
approximation giving adequate accuracy for engineering purposes.

2. General relations

The equations used in the present case study, comprising the
classical multimode theory, are summarised in this section. A
comprehensive detailed overview can be found in the literature
(e.g., Chen et al., 2000; Jain et al., 1996a; Katsuchi et al., 1998)
along with notable textbooks (Dyrbye and Hansen, 1997; Simiu
and Miyata, 2006; Simiu and Scanlan, 1996; Strømmen, 2006). It
is assumed that the bridge may be treated as a line-like structure.
It is taken for granted that the wind field can be approximated as
locally stationary and homogenous; furthermore that the wind
action and displacements, all referred to the shear centre of the
cross section, can be divided into a time invariant mean and a
randomly fluctuating part. The displacement components and the
distributed forces are defined as (see Fig. 2).

rtotð x,tÞ ¼ rðxÞþrðx,tÞ,rðxÞ ¼ ry rz ry
h iT

,rðx,tÞ ¼ ry rz ry
h iT

qtotðx,tÞ ¼ qðxÞþqðx,tÞ,qðxÞ ¼ qy qz qy
h iT

,qðx,tÞ ¼ qy qz qy
h iT

ð1Þ

where rn and rn, nA{y, z, y} symbolises the mean and fluctuating
part of the displacement components, respectively, and qn and qn,
nA{y, z, y} represents the mean and fluctuating part of the
distributed action. The displacements are positive in the same
directions as the wind action is displayed in Fig. 2.

In the following, we focus on the variance of the randomly
fluctuating displacement components. The solution is based on a
straightforward modal superposition approach introducing the
mode shapes as generalized coordinates. Thus, an adequate
number of natural modes and corresponding undamped natural
frequencies are required. Axial displacements in the span-wise
direction of the girder are disregarded. Hence, the structural

displacements in a Cartesian coordinate system are represented
by the sum of the products of selected natural mode shapes, ui,
and the corresponding generalized coordinates,Zi

rðx,tÞ ¼UðxÞgðtÞ, UðxÞ ¼ u1 . . . ui � � � uNmod

h i
gðtÞ ¼ Z1 . . . Zi � � � ZNmod

h iT
, ui ¼ fy fz fy

h iT
ð2Þ

where fn, nA{y, z, y} symbolises the horizontal, vertical, and
torsional deformation along the girder. The modal wind action
vector is expressed as

~Q tot ¼ ~Q 1 � � � ~Q i � � � ~QNmod

h iT
tot

where ~Q i ¼
Z
L
uT
i ðqBuff þqSeÞ

� �
dx

ð3Þ

Here L is the span length. The cross sectional action,
qtot¼qBuff+qse, is divided into a buffeting part, qBuff, and a self-
excited part, qse, containing the total drag, lift, and moment action
per unit length of the structure. The aeroelastic self-excited forces
may be represented by aeroelastic derivatives introduced by
Scanlan and Tomko (1971). Using matrix notation, this can be
expressed as follows in the frequency domain

GqSe ðx,V ,oÞ ¼ CaeðV ,oÞG_r ðx,oÞþKaeðV ,oÞGrðx,oÞ

Cae ¼ rB2

2
o

P*1 P*5 BP*2

H*
5 H*

1 BH*
2

BA*5 BA*1 B2A*2

2
664

3
775, Kae ¼ rB2

2
o2

P*4 P*6 BP*3

H*
6 H*

4 BH*
3

BA*6 BA*4 B2A*3

2
664

3
775
ð4Þ

where G _r ðx,oÞ and Gr(x,o) are the Fourier transforms of the
velocity and displacement response, respectively, r is air density,
o is the circular frequency of motion, B is the width of the girder,
and P*n, H*

n, A*n, nA{1,2, y, 6} are the dimensionless aerodynamic
derivatives that are functions of the reduced frequency defined as
K¼(Bo)/V, where V is the mean wind velocity. Thus, the dynamic
equilibrium conditions expressed in the modal coordinates can be
expressed in the frequency domain as follows:

~M0G €g ðoÞþð ~C0� ~CaeðV ,oÞÞG _g ðoÞþð ~K0� ~KaeðV ,oÞÞGgðoÞ ¼G ~Q Buff
ðoÞ
ð5Þ

Here, Gg is the Fourier transform of the displacement response
in modal coordinates; ~M0 is the modal mass matrix; ~C0 represents
the modal damping matrix; ~K0 symbolises the stiffness matrix;
~CaeðV ,oÞ is the modal aerodynamic damping matrix, and ~KaeðV ,oÞ
represents the modal aerodynamic stiffness matrix. A matrix with
a zero index indicates that the properties are referred to still air
conditions. The elements of the modal aerodynamic stiffness and
damping matrices may then be calculated by

~K
ðaeÞ
nm ðV ,oÞ ¼

Z
L
ðuT

nKaeðV ,oÞumÞdx

~C
ðaeÞ
nm ðV ,oÞ ¼

Z
L
ðuT

nCaeðV ,oÞumÞdx ð6Þ

where L is the span length. GQ Buff (o) is the complex buffeting
wind action defined by

G ~Q Buff ðoÞ ¼ ½� � �G ~Q Buffi
� � ��T , G ~Q Buffi

ðoÞ ¼
Z
L
uT
i ðxÞBqðoÞGvðx,oÞdx

Gvðx,oÞ ¼ Gu Gw
� �T

Fig. 2. Aerodynamic forces acting on a cross section of the bridge deck. The section

shown is that one of the Hardanger Bridge.
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BqðoÞ ¼ rVB
2

2ðD=BÞCDAyu ððD=BÞCuD�CLÞAyw
2CL Azu ðCuLþðD=BÞCDÞAzw
2BCM Ayu BCuMUAyw

2
664

3
775 ð7Þ

where Gu, nA{u, w} are the Fourier transforms of the turbulence
components in the vertical and horizontal direction, respectively;
Amn, mA{y, z, y} nA{u, w} symbolizes the cross sectional
admittance functions; D denotes the height of the girder and
Cn,Cun, nA{D (drag), L (Lift), M, (Moment)} are the mean value and
the derivative of the static force coefficients, respectively. The
elements in the modal wind action spectral matrix may then be
defined as follows:

Sþ~Q Buffij
ðoÞ ¼

Z
L

Z
L
uT
i ðx1ÞBqðoÞSþ

V ðDx,oÞBTq ðoÞujðx2Þdx1dx2

Sþ
V ðDx,oÞ ¼

SþuuðDx,oÞ SþuwðDx,oÞ
SþuwðDx,oÞ SþwwðDx,oÞ

" #
ð8Þ

Here, Sþ
V ðDx,oÞ contains the cross-spectral densities of the

velocity components of the wind field at two points with
separation Dx; Sþuurepresents the cross-spectral density of the
horizontal along-wind component; Sþww symbolizes the cross-
spectral density of the vertical component, and Sþuw is the cross-
spectral density of the horizontal and vertical components. The
spectral response matrix, containing the auto- and cross-spectra
of the response components, is given by

Sþ
R ðo,xrÞ ¼UðxrÞ E�1

Z ðoÞSþ
~Q Buff

ðoÞE�1*
Z ðoÞ

h i
UT ðxrÞ

EZðV ,oÞ ¼ � ~M0o2þð ~C0� ~CaeðV ,oÞÞioþð ~K0� ~KaeðV ,oÞÞ
h i

ð9Þ

where EZ(V,o) is the impedance matrix. Applying this equation,
the variances and covariance of the response components at the
point xr may be obtained by frequency domain integration.

The stability limit of an aeroelastic system may be defined by
the combination of frequency and mean wind velocity that gives a
singular impedance matrix (sometimes referred to as complex
dynamic stiffness matrix). The flutter equations have been
developed on this basis (Dyrbye and Hansen, 1997), and the
criterion has been used for multimode calculations in Jain et al.
(1996a) and Katsuchi et al. (1999). Since the impedance matrix is
complex, it is convenient to use the modulus of its determinant as
the stability indicator. Thus, the stability limit may be obtained by
the following complex polynomial

9detðEZðo,VÞÞ9¼ 0 ð10Þ

Hence, the instability condition may be identified by an
iterative search for the singular values. The determinant value is
calculated for a sequence of velocities and frequencies rendering
results similar to those shown in Fig. 3, where it is the
determinant of the frequency response matrix that has been
plotted producing a more illustrative representation. The search
procedure is to identify the position of the peak in Fig. 3 and
recalculate a small area around it with a denser grid on both axes,
which will provide a lower determinant value. The procedure may
be repeated until the determinant reaches a specified low value
providing the required accuracy of the critical wind speed.

3. Modified quasi-steady modelling

Wind force coefficients, represented by their averages and
derivatives, obtained from static wind tunnel tests may be used to
quantify the self-excited forces. This is done by expressing the
force coefficients as functions of the effective angle of attack,
taking the motion of the cross section into account. The self-
excited forces can then be approximated as follows (Davenport,
1962), see also for instance (Strømmen, 2006)

qy SeðtÞ ¼
1

2
rV2B �2ðD=BÞCD

_ry
V

�ððD=BÞCuD�CLÞ
_rz
V

þðD=BÞCuDry
� �

qz SeðtÞ ¼
1

2
rV2B �2CL

_ry
V

�ðCuLþðD=BÞCDÞ
_rz
V

þCuLry
� �

qy SeðtÞ ¼
1

2
rV2B2 �2CM

_ry
V

�CuM
_rz
V

þCuMry
� �

ð11Þ

Since the force coefficients are frequency-independent, the
quasi-steady theory may be used to estimate the self-excited
forces, both in time and frequency domain. However, since the
measurements are carried out on a fixed section model, the theory
is only valid when the oscillation period of the structure is high,
relative to the time it takes, for a parcel of air, to travel past the
cross section (which implies high reduced velocities). As pointed
out by Hjorth-Hansen (1993), the quasi-steady theory does not
provide any damping contribution related to the torsional motion,
which is a weakness of this approach for cross sections, where
experiments indicate the opposite. The torsional damping can,
however, be included in the model by selecting a velocity
reference point different from the shear centre. In the airfoil
theory, the 3/4 point is traditionally used (see for instance Fung
(1955)), but as pointed out by Scanlan et al. (1974), this is a
consequence of the simplicity of the airfoil, and cannot be used
directly for a bluff body. Borri and Costa (2004) have introduced
torsional damping by using the leading edge of the profile as a
reference point, assuming that the action is driven by phenomena
occurring at the edge. However, according to Borri and Costa
(2004), this assumption is considered valid only when the shape
of the profile is fairly ‘‘aerodynamic’’, and the flow separation does
not affect the section aerodynamics significantly.

An alternative approach is suggested below, where the
experimental results obtained for the aerodynamic derivatives
are used to estimate frequency-independent aerodynamic coeffi-
cients. The self-excited forces, expressed in the frequency domain,
using the aerodynamic derivatives, can generally be written as
follows (Scanlan and Tomko, 1971)

qy ¼
1

2
rV2B KP*1

_ry
V

þKP*2
B_ry
V

þK2P*3ryþK2P*4
ry
B
þKP*5

_rz
V

þK2P*6
rz
B

� �

qz ¼ 1

2
rV2B KH*

1

_rz
V

þKH*
2

B_ry
V

þK2H*
3ryþK2H*

4

rz
B
þKH*

5

_ry
V

þK2H*
6

ry
B

� �
Fig. 3. The modulus of the determinant of the complex frequency response matrix,

expressed as a function of frequency and mean wind speed.
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qy ¼
1

2
rV2B2 KA*1

_rz
V

þKA*2
B_ry
V

þK2A*3ryþK2A*4
rz
B
þKA*5

_ry
V

þK2A*6
ry
B

� �
ð12Þ

Here, K¼(oB)/V is the reduced frequency. During the present
case study, the authors observed that the frequency dependency
of some of the load coefficients (e.g., K2H*

3) is weak for the
bridge deck section considered. Hence, the self-excited forces can
be modelled as frequency-independent, if the aerodynamic
derivatives are approximated by the following expressions:

X*
i ðKÞ ¼ xið1=KÞ when i¼ 1,2,5 and X*

i ðKÞ ¼ xið1=KÞ2 when i¼ 3,4,6

ð13Þ

where XA{P,H,A} and xA{p,h,a}. This approximation is in fact
similar to a rational function approach, but without the unsteady
terms; see for instance Eq. (12a) in (Borri et al., 2002) or Eq. (9) in
(Chen et al., 2000). A general polynomial expression obviously
gives a more accurate fit to the experimental data than the
constraints introduced in Eq. (13), but as will be shown in the
numerical case study, these simplified expressions give fairly
accurate results for a partially streamlined bridge deck cross
section in wide reduced frequency ranges. The accuracy depends
on the characteristics of the aerodynamic derivatives. If the
important aerodynamic derivatives related to the velocities (H*

1,
H*

2, A*1, A*2) and displacements (H*
3, H*

4, A*3, A*4) do not have an
approximately linear or quadratic trend in an important reduced
velocity range, the approximation becomes less accurate. How-
ever, most streamlined or partially streamlined cross sections fulfil
these requirements. The validity of the approximation depends on
how well the suggested expressions fit the experimental data. This
is an advantage, since it enables the accuracy of the approximation
to be assessed computationally. Based on these approximations,

the self-excited forces can be estimated as follows:

qy Se ¼
1

2
rV2B p1

_ry
V

þp2
B_ry
V

þp3ryþp4
ry
B
þp5

_rz
V

þp6
rz
B

� �

qz Se ¼
1

2
rV2B h1

_rz
V

þh2
B_ry
V

þh3ryþh4
rz
B
þh5

_ry
V

þh6
ry
B

� �
qy Se ¼

1

2
rV2B2 a1

_rz
V

þa2
B_ry
V

þa3ryþa4
rz
B
þa5

_ry
V

þa*6
ry
B

� �
ð14Þ

Here, the parameters pi, hi and ai are defined by Eq. (13) and
derived applying experimentally defined aerodynamic derivatives
and an appropriate measure of goodness-of-fit for the velocity
range under consideration. It is seen that this model has more
terms than the expressions of the buffeting theory given by
Eq. (11). In particular, the additional coupling terms and the
torsional damping term will give a more accurate description of
the coupled flutter instability phenomenon.

4. Case study: the Hardanger Bridge

An eigenvalue analysis is carried out for the Hardanger Bridge
subjected to dead loads, applying the computer program ALVSAT
(Sintef, 1996). A total of 24 (the first 8 horizontal, 8 vertical and 8
torsional) vibration modes and corresponding undamped natural
frequencies in still-air conditions were extracted. The vertical and
torsional vibration modes are plotted in Fig. 4, and the basic
properties of the 24 modes are summarised in Table 2. Since the
main cables and the sides of the girder are coupled in the vertical
direction, and the contribution from the mass of the two towers is
negligible, the evenly distributed modal equivalent mass and
mass moment of inertia are equal for all the vertical and torsional
vibration modes, respectively. The mode shapes, however, are

-2
0
2

φ 3

Vertical mode shapes

-2
0
2

φ 13

Torsional mode shapes

-2
0

-2

φ 4

-2
0
2

φ 18

-2
0
2

φ 6

-2
0
2

φ 19

-2
0
2

φ 7

-2
0
2

φ 20

-2
0
2

φ 10

-2
0
2

φ 21

-2
0
2

φ 12

-2
0
2

φ 22

-2

-2

0
2

φ 14

-2
0
2

φ 23

0 0.2 0.4 0.6 0.8 1

0
2

φ 17

Fraction of span length x/L
0 0.2 0.4 0.6 0.8 1

-2
0
2

φ 24

Fraction of span length x/L
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different (see Fig. 4). The span length is L¼1310 m, the width and
height of the partially streamlined girder displayed in Fig. 2 are
B¼18.3 m and D¼3.33 m, respectively. The density of the air is
assumed to be r¼1.25 kg/m3, and the cross-spectral densities of
the wind field are assumed to be given by

SþuuðoÞ ¼ 40:58Vzk
ð1þ9:74oz=VÞ5=3

exp �1:4
Dxo
V

� �

SþwwðoÞ ¼ 0:82Vzk
ð1þ0:79oz=VÞ5=3

exp � Dxo
V

� �

SþuwðoÞ ¼� 2:23Vzk
ð1þ1:67oz=VÞ7=3

exp � Dxo
V

� �
ð15Þ

Here, k is the roughness coefficient at the site that is assumed
to be 0.0031. The spectral densities have been adjusted to predict
the turbulence intensities, given by Statens-vegvesen (2006). The
aerodynamic derivatives for the Hardanger Bridge are obtained by
the procedure described by Jakobsen and Hjorth-Hansen (1995)
and are given by Hansen et al. (2006) by a second-order
polynomial expression. Since experimental data related to the
horizontal motion are not available, the quasi-steady aerody-
namic derivatives are used for the following terms:

P*1 ¼�2CD
D

B

1

K

� �
P*5 ¼ CL�CuD

D

B

� �
1

K

� �
P*3 ¼ CuD

D

B

1

K

� �2

H*
5 ¼�2CL

1

K

� �
A*5 ¼�2CM

1

K

� �
P*2 ¼ P*4 ¼ P*6 ¼H*

6 ¼ A*6 ¼ 0

ð16Þ

where the static force coefficients from Hansen et al. (2006) are
CD ¼ 0:70, CuD ¼ 0, CL ¼�0:25, CuL ¼ 2:4, CM ¼ 0:01 and CuM ¼ 0:74.

Two factors are found to greatly influence which of the modes
are most likely to couple into a flutter motion: (1) the degree of
shape-wise similarity and (2) the separation of the natural
frequencies of the shape-wise similar vertical and torsional
vibration modes. The critical mean wind velocity for a selection

of shape-wise similar mode combinations are given in Table 3,
together with the critical flutter frequencies and the
corresponding critical reduced velocities. Usually, it is the first
vertical and torsional vibration modes that provide the lowest
critical velocity, but as can be seen from the results, this is not the
case for the Hardanger Bridge. The mode shape integrals,
where perfect shape-wise similarity will obviously give 1, are
estimated for combinations of modes 4 and 13 and modes 6 and
13 below.R
Lf4f13dxR
Lf

2
4dx

R
Lf13f4dxR
Lf

2
13dx

¼ 0:41

R
Lf6f13dxR
Lf

2
6dx

U

R
Lf13f6dxR
Lf

2
y13dx

¼ 0:57

ð17Þ

As can be seen, modes 6 and 13 are significantly more shape-
wise similar than modes 4 and 13. In addition, the natural
frequencies of modes 6 and 13 are less separated than the natural
frequencies of modes 4 and 13, and will therefore give a lower
critical mean wind velocity. Since the stability limit converges
when modes 4, 6 and 13 are used in the calculations, the results
given in Table 3 indicate that the instability phenomenon is
multimode-coupled flutter, where three still-air vibration modes
give significant contributions. When all the modes presented in
Fig. 4 are considered, the critical mean wind velocity increases by
1 m/s, which is probably because mode 13 is weakly shape-wise
similar to mode 10. When the horizontal still-air vibration modes
are included in the analysis, the critical mean wind velocity
remains unchanged. The critical reduced velocity ranges 2.5–4.7,
implying that the experimental data available for the aerody-
namic derivatives must be extrapolated for some of the mode
combinations.

The stability limits obtained for a selection of mode combina-
tions, when the traditional quasi-steady theory is used to model
the self-excited forces are shown in Table 4. Compared with the
results presented in Table 3, the quasi-steady theory
underestimates the critical velocity by over 40%, providing a
stability limit that is very close to the design velocity, which is
considered unacceptable. The main reason for this is as pointed
out in Section 3, that the quasi-steady theory does not provide any
torsional damping to the system. In our case study, the
aerodynamic torsional damping is positive, for the considered
cross section of the Hardanger Bridge, and will therefore increase
the stability limit. This might not be the case for other types of
cross sections.

To be able to determine frequency-independent force coeffi-
cients from the experimental results of the aerodynamic deriva-
tives, it is important to know which of the aerodynamic
derivatives are most important for an accurate prediction of the

Table 3
Critical mean wind velocities, frequencies and reduced velocities for a selection of

mode combinations for the Hardanger Bridge when the aerodynamic derivatives

are used to describe the self-excited forces.

Mode combination Critical

velocity VCR
(m/s)

Critical

frequency oCR

(rad/s)

Reduced

critical velocity

VCR/(BoCR)

4 and 13 98 1.18 4.5

6 and 13 84 1.54 3.0

3 and 18 138 1.95 3.9

4 and 19 229 2.31 5.4

7 and 20 281 3.82 4.0

4, 6, 13 78 1.63 2.6

3, 4, 6, 13, 18 78 1.63 2.6

8 vert.+8 torsional 79 1.63 2.7

24 modes. 79 1.63 2.7

Table 2
Natural frequencies, damping ratios and modal equivalent evenly distributed mass

or mass moment of inertia for the first 24 vibration modes of the Hardanger

Bridge.

Mode no. Natural

frequency

oi (rad/s)

Damping

ratio x
Modal equivalent evenly

distributed mass/mass

moment of inertia ~mn

1 0.32 0.005 10,470 (kg/m)

2 0.62 0.006 9400 (kg/m)

3 0.69 0.005 12,820 (kg/m)

4 0.89 0.006 12,820 (kg/m)

5 1.06 0.007 9510 (kg/m)

6 1.27 0.007 12,820 (kg/m)

7 1.34 0.007 12,820 (kg/m)

8 1.49 0.009 34,550 (kg/m)

9 1.57 0.010 34,190 (kg/m)

10 1.74 0.010 12,820 (kg/m)

11 1.86 0.015 9710 (kg/m)

12 2.10 0.015 12,820 (kg/m)

13 2.23 0.005 426,000 (kg/m m2)

14 2.53 0.020 12,820 (kg/m)

15 2.49 0.020 12,480 (kg/m)

16 2.63 0.025 11,020 (kg/m)

17 2.97 0.025 12,820 (kg/m)

18 3.37 0.006 426,000 (kg/m m2)

19 5.10 0.009 426,000 (kg/m m2)

20 6.76 0.012 426,000 (kg/m m2)

21 8.45 0.015 426,000 (kg/m m2)

22 10.14 0.020 426,000 (kg/m m2)

23 11.83 0.025 426,000 (kg/m m2)

24 13.515 0.030 426,000 (kg/m m2)
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self-excited forces. A study is carried out of how the stability limit
for modes 4, 6 and 13 changes when the aerodynamic derivatives
for the Hardanger Bridge are scaled separately by a factor l. The
results concerning H*

n and A*n, nA{1,2, ..., 4} are given in Table 5,
and, as can be seen, it is A*1, A*2, A*3, H*

3 and, to some extent, H*
1 that

significantly influence the stability limit, while the other
aerodynamic derivatives have a very little or minor influence.
The importance of A*1, A*2, A*3 and H*

3 in flutter stabilisation has
also been pointed out by Matsumoto et al. (2007), Chen and
Kareem (2008), and Chen (2007).

Least square fits of the expressions suggested in Eq. (13) are
performed on the experimental results of the aerodynamic
derivatives for the Hardanger Bridge given in (Hansen et al.,
2006). The results plotted in Fig. 5 show that the approximate
expressions represent the experimental results for the important
aerodynamic derivatives with apparently fair accuracy. The
largest discrepancy is for A*2, for which a second-order
expression would give a better fit to the data. This implies that
the approximation overestimates the torsional damping at low
reduced velocities, while it underestimates the damping at higher
reduced velocities. It is important to notice that low values of the
aerodynamic derivatives H*

1 and A*2 give conservative results,
while high values of the other aerodynamic derivatives give a
lower stability limit. The resulting force coefficients are given
below

h1 ¼�2:734 h2 ¼ 0:206 h3 ¼ 2:271 h4 ¼�0:208

a1 ¼�0:823 a2 ¼�0:258 a3 ¼ 0:726 a4 ¼�0:037 ð18Þ

To investigate how well the modified quasi-steady coefficients
describe the self-excited forces, the critical mean wind velocity is
recalculated. The results given in Table 6 confirm that the
approximate expressions give an accurate description of the
self-excited forces, since the calculated critical mean wind
velocities differ only by about 3% from the results presented in
Table 3, where the frequency-dependent model with the
aerodynamic derivatives have been used. The accuracy of the

critical frequency is within 5% for the combinations of modes 4
and 13 and the combination of modes 6 and 13, while the
prediction of the critical frequency for the combination of modes
4 and 13 is less accurate. This is because the critical flutter

Table 4
Critical mean wind velocities, frequencies and reduced velocities for a selection of

mode combinations for the Hardanger Bridge when the traditional quasi-steady

theory is used to describe the self-excited forces.

Mode

combination

Critical

velocity VCR
(m/s)

Critical

frequency oCR

(rad/s)

Reduced critical

velocity, VCR/

(BoCR)

4 and 13 59 1.93 1.7

6 and 13 50 2.02 1.4

4, 6 and 13 44 2.07 1.2

Table 5
Percentage change of the stability limit for the Hardanger Bridge for a combination of modes 4, 6 and 13 when each flutter derivative has been scaled separately by the

factor l.

Scaling factor l Aerodynamic derivatives

H*
1 H*

2 H*
3 H*

4 A*1 A*2 A*3 A*4

0.0 �4% 2% – 1% – �37% 114% 0%

0.2 �4% – – – – �26% 62% –

0.4 �3% – – – – �16% 36% 0%

0.6 �2% – 9% – 14% �9% 20% 0%

0.8 �1% – 4% – 4% �4% 8% 0%

1.0 0% 0% 0% 0% 0% 0% 0% 0%

1.2 2% – �3% 0% �3% 4% �7% 0%

1.4 4% – �6% – �6% 8% �12% 0%

1.6 8% �1% �9% �1% �9% 13% �17% 0%
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Fig. 5. The aerodynamic derivatives for the cross section of the Hardanger Bridge.

Open circles refer to data obtained in wind tunnel tests, and dashed lines

represents constraint curves (see Eq. (14)) fitted to the data.

Table 6
Critical mean wind velocities, frequencies and reduced velocities for a selection of

mode combinations for the Hardanger Bridge when the modified quasi-steady

coefficients are used to describe the self-excited forces.

Mode

combination

Critical

velocity VCR
(m/s)

Critical

frequency oCR

(rad/s)

Reduced critical

velocity VCR/

(BoCR)

4 and 13 93 1.40 3.6

6 and 13 80 1.66 2.6

4, 6 and 13 74 1.75 2.3
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velocity for this combination is close to the divergence velocity,
which implies that the frequency is reduced rapidly at increasing
velocities. The critical reduced velocities range 2.3–3.6, which
indicate that the approximation is not sensitive to changes of the
critical reduced velocity.

To ensure computationally stable behaviour of the bridge, all
complex eigenvalues of the system equation must, as outlined in
Section 2, have a negative real part (representing positive
damping). If the modified quasi-steady coefficients are used to
model the self-excited forces, the response may be estimated by
direct numerical integration. Since only the stability limit is of
interest, the modal buffeting forces are set to zero. The numerical
integration is performed with the well-known Newmark method,
applying b¼1/6 and g¼0.5 (see, for instance, Zienkiewicz and
Taylor, 2000). The responses for the critical mean wind velocity at
V¼74 m/s, and higher than the critical mean wind velocity at
V¼77 m/s, for a combination of modes 4, 6 and 13 given in
Table 6, are plotted in Fig. 6. The free vibration response at the
critical mean wind velocity clearly appears as an un-damped

response. The Fourier amplitude spectra of the time series at
mean wind velocities of 60 and 74.5 m/s are plotted in Fig. 7. For
the case at 60 m/s, only small coupling effects are present, while a
common frequency of 1.75 rad/s dominates both the vertical and
torsional response at the onset of coupled flutter. The time
domain simulations correspond well with the results presented
in Table 6.

Since it is only the flutter vibration mode that has zero
damping when the aeroelastic system becomes unstable, all the
complex vibration modes other than the flutter vibration mode
will be damped out during free vibration, as displayed in Fig. 6.
This makes it possible to visualise the flutter vibration mode by
calculating the free vibration response for the whole system. The
flutter vibration modes (FVM) are shown for a selection of mode
combinations in Fig. 8. The FVM are complex and will thus be
time-dependent, but the time dependency seems low for the
flutter modes in our case. As shown in Fig. 8 and Table 3, mode 13
can couple with both modes 4 and 6, which means that it can
participate in two different bimodal flutter phenomena. The
flutter vibration modes for the two cases are noticeably different
as the combination of modes 4 and 13 gives the largest
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Fig. 6. Free vibration response of modes 4, 6 and 13 at the critical velocity
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Fig. 8. The flutter vibration mode for combinations of still-air vibration modes (a)

4 and 13; (b) 6 and 13; and (c) 4, 6 and 13.
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displacements at the mid-span of the girder, while the
combination of 6 and 13 gives the largest displacements at the
quarter points of the span. The flutter vibration mode for modes 4,
6 and 13 is quite different from the bimodal combinations as a
larger part of the span moves up and down, providing a smaller
curvature of the girder with respect to the horizontal axis. When
more modes are included, the critical mean wind velocity does
not change significantly, and neither does the flutter vibration
mode. The time domain simulation of the flutter motion
illustrates the possibilities of using the modified quasi-steady
theory for response prediction in the time domain.

The effect of modal coupling on the response is illustrated in
Fig. 9, where the buffeting response is assessed using a multimode
and a mode-by-mode approach. The results indicate that the
difference between a multimode and a mode-by-mode calculation
is negligible when the mean wind velocity is lower than roughly
half the stability limit, and that the difference increases with
increasing mean wind velocity. The cross-spectral density of the
horizontal and vertical component has negligible influence on the
torsional response, while the response in the vertical direction is
underestimated by 10% at the design mean wind velocity, if this
cross-spectral density is not included.

The buffeting response when the aerodynamic derivatives, the
quasi-steady theory, and the suggested modified quasi-steady
coefficients are used to model the self-excited forces is shown in
Fig. 10. As can be seen, the vertical response when the aero-
dynamic derivatives and the modified quasi-steady coefficients
are used is nearly identical, while the response when the quasi-
steady theory is used is larger than the two other alternatives
until the system becomes unstable at a velocity that is much

lower than the critical velocity provided by the other models
considered. The torsional response when the modified quasi-
steady coefficients are used to describe the self-excited forces is
slightly lower than when the aerodynamic derivatives have been
used. The inaccuracy is 13% at a velocity of 40 m/s, while the
quasi-steady theory overestimates the response by 200% at the
same velocity. Fig. 11 shows the modal damping and frequencies
for a combination of still-air modes 6 and 13. The modified quasi-
steady coefficients provide frequencies of good accuracy
compared with the aerodynamic derivatives. The damping ratio
for the vertical branch is also well captured, but the damping ratio
for the torsional branch is not. The figure illustrates that the
reason for the inaccuracy of the torsional response provided by
the modified quasi-steady coefficients is poor modelling of the
torsional damping provided by A*2.

The response spectral densities for the torsional and vertical
response at a mean wind velocity of 40 m/s are shown in Fig. 12.
As expected, the vertical response spectral density is captured
with good accuracy, while the torsional response spectral density
has a lower peak value, since the modified quasi-steady
coefficients provide larger damping to the system than the
aerodynamic derivative model. The figure also illustrates that
the self-excited forces are most important near the peak in the
power spectral density, since the differences are negligible
elsewhere. The response provided by the modified quasi-steady
coefficients underestimated the torsional response. The reason is
that the values of A*2 in the linear approximation are larger than
the experimental data for low reduced velocities, which are
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important when the velocity ranges 30–60 m/s. As pointed out
above, it is conservative to assume lower values for A*2, and a more
reasonable fit to the experimental data would be obtained by
assuming a smaller a2. A better approach is to first estimate the
torsional in-wind frequency and further calculate the
corresponding reduced velocity. The a2 coefficient may then be
adjusted so that better accuracy at this reduced velocity is
achieved. As explained above, the approximation of A*2 must be
linear to achieve a frequency-independent description of the self-
excited forces. This implies that this aerodynamic derivative may
be approximated by a straight line starting in the origin and
intersecting the experimental data curve, corresponding to the
dominating reduced velocity, at hand (a secant approximation). In
Fig. 13, the torsional response and the power spectral density of
the torsional response are shown when the secant approximation
outlined above has been used for a2. As can be seen from the
figure, the torsional response predicted by this alternative is
nearly, exactly the same as the response provided by the
aerodynamic derivatives, and the peak in the power spectral
density is well captured. The damping predicted by the secant
model is shown in Fig. 11, and, as can be seen, the damping of the
torsional branch is well captured for all interesting velocities

It is interesting to compare the above-described results
obtained using aerodynamic derivatives, quasi-steady theory,
and modified quasi-steady theory with results derived by a time
domain technique applying the Fourier transformation of the
frequency-dependent aerodynamic derivatives, described by
smooth curves, fitted to the experimental data. The applied time
domain technique is based on a rational function approximation
(see, for instance, Bucher and Lin, 1988, for details). This gives the
following approximations for the aerodynamic derivatives related
to velocities (H*

1, H*
2 , A*1, A*2) and displacements (H*

3, H*
4, A*3, A*4),

herein represented by H*
4 and H*

1.

H*
4 ¼ V̂2

AðzzÞ1 þ
XL
l ¼ 1

AðzzÞlþ3

ðdðzzÞl V̂Þ2þ1
h i

0
@

1
A, H*

1 ¼ V̂ AðzzÞ2 þ V̂2 XL
l ¼ 1

AðzzÞlþ3d
ðzzÞ
l

ðdðzzÞl V̂Þ2þ1
h i

0
@

1
A

ð19Þ

Here An, nA{1, y, l +3}, and dl are coefficients determined by
least squares fit to the experimental data. The index (zz) indicates
that the coefficients are related to the vertical force caused by the
vertical motion. The response obtained using rational functions
with 1 and 4 exponential filters for the aerodynamic derivatives
related to vertical and torsional motion, respectively, is shown in
Fig. 10. The outcome is almost identical to the response obtained
using frequency domain technique with aerodynamic derivatives
(identified by AD in Fig. 10).

The various vibration modes may contribute differently to the
response at different points along the girder. This implies that it is
possible that the spectral density has more than one peak or has a
peak with a different frequency than, for instance, the situation at
the mid-span. However, it is common that the response is
dominated by one mode in each direction for the entire structure.
To illustrate this, the standard deviation of the torsional and
vertical response along the girder at a mean wind velocity of
40 m/s is shown in Fig. 14. As can be seen, the modified quasi-
steady coefficients capture the response well, especially when a
secant approximation is used for A*2. It may be concluded that the
modified quasi-steady coefficients can produce results with
greatly improved accuracy, compared with the traditional quasi-
steady approach, and it can provide results with good accuracy,
compared with the aerodynamic derivatives, depending on how
well the approximation fits the experimental results.
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Fig. 14. Comparison of the standard deviations of the vertical and torsional response along the girder at a mean wind velocity of 40 m/s when the aerodynamic derivatives

(AD), the modified quasi-steady coefficients (MQSC) and the improved modified quasi-steady coefficients, where a secant approximation has been used for A*2 (MQSC

secant a2). All the vibration modes presented in Fig. 4 have been included.

Table 7
Comparison of the critical mean wind velocities, frequencies and reduced mean wind velocities provided by the aerodynamic derivatives, the quasi-steady theory, the

modified quasi-steady coefficients theory and the critical velocity measured in turbulent flow.

Method of analysis Critical velocity

VCR (m/s)

Critical

frequency oCR (rad/s)

Reduced critical

velocity VCR/(BoCR)

Aerodynamic derivatives Eq. (12) 6.83 7.79 2.40

Quasi-steady theory Eq. (11) 3.70 9.50 1.06

Modified quasi-steady theory Eq. (14) 6.52 8.20 2.17

Measured in turbulent flow (wind tunnel experiment) 6.47 – –
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It is also interesting to compare the results provided by the
aerodynamic models discussed in this article with the observa-
tions in wind tunnel experiments. Numerical stability analyses
are therefore carried out on the section model used in wind
tunnel experiments (Hansen et al., 2006). The mass of the section
model is ~mz ¼ 8793g, and the mass moment of inertia is
~my ¼ 1:23gmm2. The natural frequency and damping ratio of the

vertical vibration mode are oz¼5.8 rad/s and xz¼0.004 and for
the torsional vibration mode oy¼10.1 rad/s and xy¼0.003

The stability limits are calculated using the aerodynamic
derivatives, the quasi-steady theory and the modified quasi-steady
coefficients. The results are given in Table 7. Two of the three
approaches provide results with acceptable accuracy. The quasi-
steady theory underestimates the stability limit by more than 40%,
which is unacceptable for practical purposes. The stability limit
obtained by the modified quasi-steady coefficients differs from the
results predicted by the aerodynamic derivatives by only 4–5%.
Both the aerodynamic derivatives and the modified quasi-steady
coefficients overestimate the stability limit, compared with the
wind tunnel measurements. The main reason for this is perhaps
that the stability limit in the wind tunnel tests is defined as the
mean wind velocity, where the vibrations become large, which
implies that the experiment will be stopped before the actual
theoretical stability limit is reached. Furthermore, the response is
large near the stability limit, which implies that the assumption of
linearity in Eq. (12) is questionable.

5. Concluding remarks

The critical mean wind velocities have been calculated for
several mode combinations for the Hardanger Bridge and the
section model used in the wind tunnel tests. The self-excited
forces have been modelled using aerodynamic derivatives and the
quasi-steady theory, and furthermore by applying a modified
quasi-steady approach introduced and explained above. The
results presented show that the governing instability phenomen-
on for the Hardanger Bridge is multimodal coupled flutter, where
three still-air vibration modes participate. The multimode effects
are accurately captured by the aerodynamic derivatives and the
suggested modified quasi-steady theory. The classical quasi-
steady theory on the other hand severely underestimated the
critical velocity for both the section model and the full-scale
bridge, and should not be used to model the self-excited forces
unless the design mean wind velocity is well below half the
critical mean wind velocity. The modified quasi-steady approach,
where the experimental results of the aerodynamic derivatives
are used to obtain frequency-independent force coefficients,
provided stability limits for both the full-scale bridge and the
section model that differ by only 4–5% from the results obtained
when the frequency-dependent model with the aerodynamic
derivatives are used. The analyses showed that the approximation
of torsional damping was more important for the response
estimates than the stability limit. However, it has been shown
that this uncertainty can be eliminated by adjusting the modified
quasi-steady coefficients, so that the important range of reduced
velocities is accurately represented. It may be concluded that the
modified quasi-steady approach suggested in this study provides
adequate estimates for engineering purposes of both the response
and the stability limit for the case dealt with here.

The flutter vibration modes have been visualized, and the
results clearly illustrate the flutter vibration mode, where the
three modes interact, result in a smaller curvature of the girder
with respect to the horizontal axis. This provides a motion that is
more shape-wise similar in the twisting and vertical directions,
relative to the bimodal flutter behaviour. The time domain

simulations of the flutter motion illustrate the possibilities of
using the modified quasi-steady theory for time domain simula-
tions of the wind-induced response.
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a b s t r a c t

This paper presents a simplified analytical formulation, including closed-form algebraic

expressions, for determining the critical flutter velocity of cable supported bridges. The

formulae have been developed from the fundamental aeroelastic equations by introdu-

cing two assumptions: (1) Flutter derivatives may be approximated by expressions

providing a frequency-independent description of self-excited forces. (2) The critical

frequency is on the torsional branch of the solution and may be approximated by an

uncoupled system of equations. The formulae have been tested for two typical cross

sections, for a wide range of hypothetical structural configurations and the structural

configurations of some well-known bridges. The numerical results produced by the

formulae have been compared with results obtained by complex eigenvalue analysis,

and it is concluded that the formulae give satisfactory results for all the cases

considered. It is well known that multimodal effects may reduce the stability limits

of an aeroelastic system. Hence, multimodal effects have been carefully studied to

provide new insight into when a bimodal approach is sufficient, and when a more

comprehensive multimodal approach is needed.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Despite great progress in recent years in predicting the flutter stability limit of cable supported bridges, simplified
methods are still considered important in the preliminary design of long-span bridges and in the design of medium-span
bridges, in particular when approximate methods, e.g. [1–3], are used to evaluate the structural properties. Simplified
methods are also convenient when assessing the reliability of cable-supported bridges against flutter failure [4]. Selberg’s
formula [1,5,34] has been widely used for this purpose since its publication almost 50 years ago. It predicts the stability
limit of a bimodal system with reasonable accuracy if the still-air torsional and vertical vibration modes have a perfect
shapewise similarity, and the aerodynamic properties of the cross section are similar to those of an ideal flat plate.
Selberg’s formula may also be combined with an aerodynamic performance index obtained from wind tunnel tests with a
scaled section model to enhance its predictability. Independently Rocard developed a formula published in 1963 that is
similar to Selberg’s formula. The flutter velocity predicted by the two formulae have been compared in [6], and the results
deviate from each other by only a few percent. Another formula has been suggested by Nakamura [7], which is identical to
Selberg’s formula if specific load coefficients are introduced. The simplified solution has been developed by studying the
harmonic solution of the bimodal system of equations. Simplified expressions have been developed for the frequency ratio,
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the ratio of the complex amplitudes of the vertical and torsional motion, the modal damping ratio and the phase angle
between the vertical and torsional motion by neglecting terms of less importance. Gimsing [8] has also suggested a
formula, which has been developed using the expression for the aerostatic pressure on the cross section. The formula
agrees reasonably well with Selberg’s formula. More recently Bartoli and Mannini [9] have developed a simplified
approach based on the flutter equations. The importance of each term in the equations has been studied for a range of
configurations, and the least significant terms have been neglected to provide the simplified solution. Chen [10] has also
contributed an approximate closed-form solution of the flutter stability limit that is similar to Selberg’s formula, but with
an analytical basis for the aerodynamic performance index. The index depends on the flutter derivatives H3

n
, A1

n
, A2

n
, A3

n
, the

torsional damping ratio and the shapewise similarity of the still-air vibration modes. The index is a function of reduced
frequency, but the frequency dependency is low for some cross sections, which implies that it may be approximated as a
constant. All the simplified solutions mentioned above are more or less related to each other since they have been
developed from the same fundamental aeroelastic equilibrium conditions, but with different approximations to provide
the simplified solution.

In this paper an alternative analytical approach to simplified flutter prediction is presented. The formulae presented
have been developed from the fundamental flutter equations [11,12]. Further, it has been assumed that the critical
frequency is on the torsion branch of the solution system, to produce a simplified expression. Nakamura [7] has developed
a formula for the critical frequency, assuming that the modal frequencies may be approximated by the uncoupled system
of equations. This assumption has been confirmed by Chen and Kareem [13], and is adopted in this paper, but with a
different expression for the critical frequency. The authors have discovered that the flutter derivatives for some common
cross sections may be locally approximated by expressions providing a frequency-independent description of self-excited
forces [14]. This implies that the stiffness and damping terms are assumed to be proportional to the squared reduced
velocity and the reduced velocity, respectively. This paper shows how this assumption may further simplify the governing
equations, making it possible to develop closed-form solutions of the flutter stability limit of cable-supported bridges. The
formulae presented are more detailed than the formulae developed by Selberg and Rocard since the effect of imperfect
shapewise similarity and the actual aerodynamic properties of the cross section have been included, but simpler than the
expressions provided by Chen [10] and Bartoli and Mannini [9], since the simplified aerodynamic model presented above
has been introduced in the fundamental aeroelastic equations. The mean wind direction is assumed perpendicular to the
bridge, but the theory can be extended for cases with skew wind. In [15,16] it has been shown how the system matrices
may be developed for skew winds, and, as can be seen, the flutter derivatives must then be measured at the relevant yaw
angle. Further, the influence of the self-excited forces associated with the horizontal degree of freedom has been neglected.
In [17] it is shown that for one particular case, the flutter derivatives related to the horizontal motion have a stabilizing
effect, but that it is not necessarily conservative to obtain the flutter derivatives with a section model with only two
degrees of freedom. On the other hand, it has also been observed, for instance by Katsuchi et al. [18], that the flutter
derivatives related to the horizontal motion have a destabilising effect. However, in most cases flutter is generated by a
main pair of vertical and torsional modes, with secondary contributions from other modes. This implies that a bimodal
consideration with the relevant torsional and vertical vibration modes may serve as an approximation of the critical flutter
velocity.

In the formulae presented in this study, the flutter derivatives for the cross section are needed to derive the frequency-
independent load coefficients. Experimental results for the flutter derivatives for numerous cross sections have been
reported in the literature, and it is common to use girders that are similar to the ones that have been used before when
designing cable-supported bridges. This implies that a good estimate of the load coefficients can be found in the published
literature; thus, formulae may be used in preliminary designs and when designing medium-span bridges without
experimental results of the flutter derivatives. The accuracy of the simplified aerodynamic model presented above is
obviously a crucial issue, but most commonly used streamlined or partially streamlined cross sections have flutter
derivatives that have a shape where the simplified aerodynamic model presented above gives a satisfying fit to the
experimental data in the important reduced-frequency range, see, for instance, the flutter derivatives presented in
[19–21]. Su et al. [22] proposed a modified time domain approach, where the traditional quasi-steady theory using static
load coefficients, is modified introducing correction coefficients. It is further pointed out by Su et al. [22] that these
coefficients do not change significantly with variation in frequency, which supports the suggestion presented above.

The flutter equations provide the stability limit for two still-air vibration modes, but as has been seen in some bridge
projects, e.g. [18], flutter where several modes participate may occur, making a multimodal approach necessary. A full
understanding of the multimodal flutter phenomenon has not been achieved. Therefore, multimodal effects have been
carefully studied in this paper, more specifically, how the shapewise similarity and separation on the frequency axis affects
possible reduction of the stability limit. The results presented may be used to evaluate whether a simple bimodal
consideration is sufficient or not.

2. Modelling of aeroelastic systems

The dynamic equilibrium condition is defined in still-air modal generalised coordinates. The vibration modes and
natural frequencies are obtained using expected (mean) load conditions, such that the geometric stiffness of the structure
is properly represented. The self-excited forces are assumed to be given by flutter derivatives obtained from wind tunnel
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tests with a section model [5,23]. It is assumed that the flutter derivatives are valid for the (static) deformation of the
structure. The definition of the axis system is shown in Fig. 1, and the displacement components ry, rz, ry are positive in the
same directions as the forces qy, qz, qy.

The forces acting on a girder can be divided into four parts: (1) a mean value of wind forces, (2) buffeting forces induced
by turbulence in the wind field, (3) forces generated by vortex shedding, and (4) self-excited forces generated by the
motion of the structure. The focus of the present study is on the self-excited forces defined by the following equations:

qSey ¼ 1

2
rV2B KP1

� _ry
V

þKP2
� B_ry
V

þK2P3
�ryþK2P�

4

ry
B
þKP5

� _rz
V

þK2P�
6

rz
B

� �

qSez ¼ 1

2
rV2B KH�

1

_rz
V

þKH�
2

B_ry
V

þK2H�
3ryþK2H�

4

rz
B
þKH5

� _ry
V

þK2H�
6

ry
B

� �
qSey ¼ 1

2
rV2B2 KA�

1

_rz
V

þKA�
2

B_ry
V

þK2A�
3ryþK2A�

4

rz
B
þKA5

� _ry
V

þK2A�
6

ry
B

� �
(1)

where V is the mean wind velocity, r is the air density, B is the width of the girder, K=Bo/V is the reduced frequency of
motion, and Pn

n
, Hn

n
, An

n
, nA{1,2,y,6} are the dimensionless flutter derivatives, which are treated as cross sectional

properties that are functions of the reduced frequency of motion. In the following it is assumed that the self-excited forces
can be treated separately from the other wind-related forces mentioned above.

The flutter equations, [11,12,24] (see also Appendix A), may be used to estimate the critical mean wind velocity. The
starting point is a bimodal system, where each mode is restricted to vertical or torsional motion. The modal equilibrium
conditions, considering only the self-excited forces, are given as

½�o2 ~Mzþ2xzoz
~Mzioþ ~Mzo2

z �GzðoÞ ¼ ½ ~Czzioþ ~Kzz�GzðoÞþ½ ~Czyioþ ~Kzy�GyðoÞ
½�o2 ~Myþ2xyoz

~Myioþ ~Myo2
y�GyðoÞ ¼ ½ ~Cyzioþ ~K yz�GzðoÞþ½ ~Cyyioþ ~K yy�GyðoÞ (2)

where o is the circular frequency of motion, xn, nA{z,y} represents the critical damping ratios of the structure in still air,
on, nA{z, y} symbolises the still-air natural frequencies (rad/s) of the structure, Gn(o), nA{z, y}, denotes the complex
Fourier spectrum of the response, i¼

ffiffiffiffiffiffiffiffiffiffi
ð�1Þ

p
represents the imaginary unit, and ~Mn, nA{z,y}, is the modal mass and the

mass moment of inertia of the vertical and torsional still-air vibration modes, respectively. The remaining coefficients are
given by
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The stability of the aeroelastic system outlined above is conventionally studied by applying the characteristic equation
obtained by expanding the determinant of Eq. (2). This results in a complex polynomial expression of the 4th degree. The
roots are in general complex and may hence imply the following three conditions: (1) stable solution resulting in decaying
response (positive damping), (2) stable solution describing a steady-state response, setting the limits for stable behaviour
(zero damping), and (3) unstable solution characterising a divergent response (negative damping). The following
dimensionless coefficients wn, nA{z,y} czy, g and V̂ are introduced to make the expressions simpler:

czy ¼
R
Lexp

fzfydxR
Lf

2
z dx

R
Lexp

fzfydxR
Lf

2
y dx

wz ¼
rB2

~mz
wy ¼

rB4

~my
g¼ oy

oz
V̂ ¼ V

Boy
ôCR ¼ oCR

oy
(5)

Here, the coefficient czy, is a measure of the shapewise similarity of the vertical and torsional mode shapes, where the value
zero, on the one hand, indicates that the modes are shapewise dissimilar, and the value one, on the other hand, implies that they
match perfectly. If the modes are dissimilar shapewise, the off-diagonal contributions ~Kzy, ~K yz, ~Czy, and ~Cyz will become zero,

Fig. 1. Aerodynamic forces acting on a cross section of the bridge deck.
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which implies that coupled flutter will not occur. The normalised unstable frequency is denoted as ôCR, and since the critical
frequency is real, the characteristic equation can be separated into two parts, real and purely imaginary, that each must be equal
to zero. This results in the following two expressions:

R4ô
4
CR þR3ô

3
CR þR2ô

2
CR þ1 ¼ 0 (6)

I3ô
3
CR þ I2ô

2
CR þ I1ôCR þxzgþxy ¼ 0 (7)

where the coefficients can be expressed as

R4 ¼ 1=4g2ð4þ2wzH
�
4þ2wyA�

3þwzwyðczyA
�
1H

�
2�czyA

�
4H

�
3�A�

2H
�
1þA�

3H
�
4ÞÞ

R3 ¼ gðxywzgH�
1þxzwyA�

2ÞR2 ¼ 1=2ð2þ2g2þ8gxzxyþwzg2H�
4þwyA�

3Þ (8)

I3 ¼ 1=8g2ðwzwyðH�
1A

�
3�czyH

�
2A

�
4�czyH

�
3A

�
1þH�

4A
�
2Þþ2ðwzH

�
1þwyA�

2ÞÞ
I2 ¼�1=2ðxzgðwyA�

3þ2Þþxyg2ðwzH
�
4þ2ÞÞI1 ¼�1=4ðwzg2H�

1þwyA�
2Þ (9)

Since the flutter derivatives are functions of reduced frequency, Eqs. (6) and (7) in fact represent a system of equations with two
unknowns. It is common to solve these equations graphically. Further details may be found in [11].

The flutter equations are then further developed by assuming that the important flutter derivatives may be
approximated by polynomial expressions that provide a frequency-independent description of self-excited forces. This
is achieved by assuming flutter derivatives of the following form:

X�
i ðKÞ ¼ xið1=KÞ when i¼ 1,2,5 and X�

i ðKÞ ¼ xið1=KÞ2 when i¼ 3,4,6 (10)

where XA{P,H,A} and xA{p,h,a}. If this assumption is introduced in Eq. (3), the flutter equations can be expressed as
follows:

R4ô
4
CR þR2ô

2
CR þR0 ¼ 0 (11)

I2ô
2
CR þ I0 ¼ 0 (12)

where the coefficients are

R4 ¼ g2 (13)

R2 ¼ 1=4g2wzwyðczyh2a1þ2 h4=wyþ2a3=wz�h1a2ÞV̂CR
2

þðgwyxza2þg2wzh1xyÞV̂CR�ðg2þ4 g xzxyþ1Þ (14)

R0 ¼ 1=4 g2wzwyðh4a3�czyh3a4ÞV̂CR
4�1=2ð wya3þg2wzh4ÞV̂CR

2þ1 (15)

I2 ¼ 1=4g2ðwya2þwzh1ÞV̂CR�ðg xzþg2xyÞ (16)

I0 ¼ 1=8 g2wzwyðh1a3�czyh2a4�czyh3a1þh4a2ÞV̂CR
3

�1=2ðgwyxza3þg2wzh4xyÞV̂CR
2�1=4ðg2wzh1þwya2ÞV̂CR þxyþg xz (17)

Eqs. (11) and (12) are simpler than Eqs. (6) and (7), in particular, since Eq. (11) can be solved as a second degree equation
by simple substitution. The reduced critical frequency may be calculated directly from Eq. (12), and in principle this result
may be inserted into Eq. (11) to estimate the reduced velocity, but this renders an expression too complicated for our aim.
However, the natural frequencies of the coupled system are, with few exceptions, very close to the natural frequencies of
the uncoupled system, where the off-diagonal terms, ~Kzy, ~K yz, ~Czy, and ~Cyz, have been neglected. This is because the
frequencies of a light to moderately damped system are mainly given by the mass and stiffness properties. In addition, the
overturning moment related to vertical displacements given by ~K yzrz is, from a physical point of view, close to zero. This
implies that the product of the off-diagonal elements in the stiffness matrix is far less than the product of the elements on
the diagonal, which contains both aerodynamic and still-air stiffness. This implies that the modal frequencies can be
approximated by the uncoupled system of equations as suggested by Nakamura [7]. The frequency of the torsional and
vertical branch of the solution may then be calculated by

oTB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1

2
wy

oTB

oy

� �2

A�
3

 !vuut oy and oVB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1

2
wz

oVB

oz

� �2

H�
4

 !vuut oz (18)

These expressions have to be solved in an iterative manner since the flutter derivatives are functions of the frequency of
motion (oTB for the torsional branch and oVB for the vertical branch). The expression vertical branch is here used for the
velocity-dependent in-wind frequency corresponding to pure vertical motion in still air; similarly, the term torsional
branch corresponds to the torsional vibration mode. The approximation presented in Eq. (18) have been used by Dyrbye
and Hansen [11] to approximate the frequencies of uncoupled systems and the expression for the frequency of the
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torsional branch is slightly different from the expression used by Nakamura [7]. The eigenvalue solution presented in
Appendix A, together with the results from Eq. (18), is shown in Fig. 2a for a frequency ratio g=1.5 and shapewise
similarity czy=1.0, and in Fig. 2b with a frequency ratio g=1.2 and a shapewise similarity czy=0.5. For the case presented
in Fig. 2a, the approximation gives accurate results, while the results are less accurate in Fig. 2b. This is because the
frequencies are not well separated; in addition, the off-diagonal terms have been reduced by low shapewise similarity. In
the eigenvalue solution the frequencies clearly change path when they are approaching each other, while the frequencies
actually cross in the approximate solution, which is not physically correct in this case.

For coupled flutter, the torsion motion is very important since it generates large coupling forces, compared with the
vertical motion. This implies that the torsion branch will become unstable at the flutter onset, and when the definition of
A3
n

from Eq. (10) is introduced in Eq. (18), the reduced critical frequency may be approximated by

ôCR ¼
ffiffiffiffiffiffiffiffiffi
o2

CR

o2
y

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Myo2

y� ~K yy

o2
y
~My

vuut ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2wya3V̂CR

2
q

(19)

When this expression is inserted into Eq. (12), the following 3rd degree algebraic equation for the critical velocity emerges:

g2wzwy
8

h4a2�czyh2a4�czyh3a1�
wy
wz

a2a3

� �
V̂

3

CR þ
1

2
xyg2ðwya3�wzh4ÞV̂

2

CR þ
1

4
wya2ðg2�1ÞV̂CR þxyð1�g2Þ ¼ 0 (20)

Two approximations were introduced to develop this Equation (a) It has been assumed that the critical frequency may
be approximated by equation (19). (b) The second assumption was that the flutter derivatives may be approximated by
expressions that give a frequency-independent description of the self-excited forces. The accuracy of this assumption may
easily be inspected by investigating the quality of the least squares fit to the experimental data. Since it is only the values
of the flutter derivatives at the critical reduced velocity that are used in flutter calculations, the result may be improved if
the least squares fit is adjusted to provide better accuracy at the critical reduced velocity. This implies that Eq. (20) must be
solved in an iterative manner. However, this has not been necessary for any of the cases in this study, but this approach
may be used when dealing with cross sections, where the transfer functions defining the self-excited forces have a more
pronounced frequency-dependent characteristic, as is the case for more bluff sections and for twin-deck cross sections.
Simplified flutter assessment is not recommended if several of the flutter derivatives have a shape differing strongly from
the approximations suggested in Eq. (10).

The formula presented has been developed to describe coupled flutter, and it cannot be expected to give reliable results
when the shapewise similarity is close to zero. When the shapewise similarity is zero, there are three aeroelastic instability
phenomena that may occur, namely (1) static divergence, (2) torsional flutter, and (3) galloping. Static divergence has a
critical frequency equal to zero, which implies that the approximation introduced in Eq. (19) is not valid. The frequency of
galloping does not equal the frequency of the torsional branch of the solution system. Theoretically the formula can
represent torsional flutter correctly, but this has not been tested in this study since the cross sections dealt with are not
suspected to create this instability phenomenon. However, one degree of freedom instability phenomenon may be more
easily studied by considering only the relevant equation, and the formula is therefore only relevant for coupled flutter.
It is well known that when the frequency ratio g is approaching unity, the flutter velocity increases dramatically.
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Fig. 2. Comparison of the presented simplified method with an eigenvalue solution: (a) frequency ratio g=1.5 and shapewise similarity czy=1.0 and

(b) g=1.2 and shapewise similarity czy=0.5.
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This phenomenon will not be taken into account in the flutter formula since, as shown in Fig. 2b, the approximation
introduced in Eq. (19) becomes inaccurate.

The formula given in Eq. (20) may be simplified further if the terms h4 and a4 are assumed close to zero and negligible.
These terms were not included in the original definition of self-excited forces [23], but have been added later for
completeness e.g. [12]. Applying the trigonometric solution of the cubic equation, it is possible to develop a closed-form
solution based on the reduced equation x3þc1x

2þc2xþc3 (see [25] for details). When h4 and a4 have been neglected, the
positive real root for Eq. (20) may then be expressed as

O¼ ðwzczyh3a1þwya2a3Þ

a¼ cos�1 g
ffiffiffi
2

p
xyð�16xy

2a3
3g2wyþ9ðg2�1Þððwya2a3ð5O�3wya2a3ÞÞþ3wz

2czy
2h3

2a1
2ÞÞ

wy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8xy2a3

2g2þ3a2ðg2�1ÞOÞ3
q

0
B@

1
CA

VCR

Boy
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16xy

2a3
2g2þ6a2ðg2�1ÞO

9g2O2

vuut cos
1

3
a

� �
þ 4

3

xya3

O
(21)

The parameter a will become complex when the expression in parentheses exceeds unity. This is not supported by
some computer programs, but when this occurs, the problem may be circumvented utilising the trigonometric identity
cosðncos�1ðxÞÞ ¼ coshðncosh�1ðxÞÞ. All cubic equations cannot be solved applying the trigonometric solution, but if the
expression in the denominator in the parentheses is not equal zero, the trigonometric solution may be used. The torsion
damping is also often very low, and when this assumption is introduced in Eq. (20) or (21), the following closed-form
solution of the reduced critical velocity emerges

VCR

Boy
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2ðg2�1Þ

g2O

s
(22)

This formula will in general give a slightly lower critical velocity than Eqs. (20) and (21) since torsion damping has a
positive effect on the critical velocity. The similarity and relation of this formula to Selberg’s flutter formula is discussed in
Appendix B since Selberg’s formula is perhaps the most well known simplified solution. The main reason for the popularity
of Selberg’s formula is its simplicity. Only few structural parameters are needed to provide an estimate of the critical
velocity. However, since Selberg’s formula does not account for the aerodynamic properties of bridge sections it may
produce a critical velocity that is seriously inaccurate. Therefore it has been recommended to combine Selberg’s formula
with an aerodynamic performance index accounting for the discrepancy of the aerodynamics of an ideal flat plate and the
actual cross section [26]. This aerodynamic performance index is commonly obtained from wind tunnel measurements
with a section model and is rarely reported in the literature. It is suggested that Eqs. (20)–(22) may be a realistic
alternative to Selberg’s formula. In the case of Eq. (22) only four aerodynamic parameters a1, a2, a3 and h3, and optionally
the shapewise similarity factor czy, are needed in addition to the parameters used in Selberg’s formula. These aerodynamic
parameters can be obtained from published experimental data of flutter derivatives for a cross section similar to the one in
question, while the shapewise similarity may be conservatively assumed perfect. However, the shape wise similarity of the
vibration modes is rarely perfect, which implies that evaluation of the shapewise similarity will provide a more accurate
and higher critical velocity. Closed form equations for the critical velocity increase the understanding of the influences of
the structural and aerodynamic parameters on the critical velocity. This implies that Eq. (21) or (22) may be useful in
assessing how an effective flutter control may be achieved.

3. Comparative numerical results

The approximate solutions presented in this study will be tested in this section for a wide range of configurations. There
are many factors influencing the stability limit, and it is of course not possible to test the formulae for all possible
situations. Therefore, only a few representative cases are tested. In the first two sections, the formula presented in Eq. (21)
is evaluated for a range of structural configurations, and two different cross sections have been considered. In the third
section, both formulae (Eqs. (21) and (22)) and Selberg’s formula are applied to the structural configurations of some well-
known cable supported bridges, but with the aerodynamic properties of one of the two cross sections presented below.

3.1. A wedge-shaped box section

A wedge-shaped box section has frequently been used for suspension bridges in recent years, for example, the Severn
Bridge (England/Wales), the Humber Bridge (England), and the Askøy Bridge (Norway). Experimental results of the flutter
derivatives for the section shown in Fig. 3, which will be referred to as cross section 1 below, are given in [27].

The load coefficients defined in Eq. (10) are calculated by least squares fits to the experimental data, rendering
the following results: h1=�2.734, h2=0.206, h3=2.271, h4= �0.208, a1=�0.823, a2=�0.258, a3=0.726, a4=�0.037. The
approximation and the experimental results of the flutter derivatives are shown in Fig. 4. As pointed out in [28,29], it is
A�

1, A�
2, A�

3, H�
3 and, to some extent, H�

1 that are the most important flutter derivatives. As can be seen, the approximate
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expressions provide least squares fits of good accuracy for the important flutter derivatives. The largest discrepancy is for
A�

2 for which a second-order expression would give a more optimal fit to the data than the linear one. However, in flutter
calculations the functional value of the approximation for the reduced velocity corresponding to the critical velocity is of
primary importance but not the overall functional shape. Low values of A�

2 will give conservative results since this will
provide less aerodynamic torsional damping. The line representing A�

2 in Fig. 4 provides a reasonable fit to the
experimental data in the reduced velocity range V̂ 2 ½1,. . .,3�, and improved results may be obtained if the stability limit
is calculated iteratively. The still-air dynamic properties of the structure are assumed to be B=18.3 m, oy=2.23 rad/s,
oy=goz rad/s, xz=0.005, xy=0.005, mz=12,820 kg/m and my=426,000 kg2/m. (The structural properties are deemed to be
similar to those of the Hardanger Bridge.) The still-air vibration modes are defined by fzðxÞ and fyðxÞ and are related by the
shapewise similarity czy, defined in Eq. (5). The critical velocities provided by the flutter formula are presented at the top
of each row in Table 1, and the results from an eigenvalue solution when the flutter derivatives are used to describe the
self-excited forces are presented in parentheses. The accuracy of the approximation is given at the bottom of each row.
Similarly, the critical frequencies are shown in Table 2, but with the critical frequency given by Eq. (18) when the critical
velocity provided by the eigenvalue solution is used. As can be seen, the flutter formula provides results of good accuracy.
The results are less accurate at low frequency ratios and shapewise similarities, but the inaccuracy is still within 10 per
cent. The critical frequencies are less accurate, but the critical velocities do not seem to be sensitive to this. The main
reason for the inaccuracy is that the torsional frequency is reduced rapidly at high velocities. The small discrepancy in the
results provided by the eigenvalue solution and those predicted by the uncoupled system of equations given at the bottom
of each cell confirms that the frequencies of the uncoupled system are generally very close to the frequencies of the

Fig. 3. Wedge-shaped box cross section (cross section 1).
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coupled system. To investigate the influence of the fit to the experimental data for A�
2, the case czy ¼ 1:0 and g¼ 2:0 is

recalculated with a2=�0.367, which represents the experimental data at the critical velocity more accurately. This
provides a critical velocity of 80 m/s, which is very close to the eigenvalue solution. Nevertheless, the results are not very
sensitive to the approximation of A�

2, but an improvement of the results can be achieved if the approximation suggested
in Eq. (18) is adjusted such that the experimental data at the critical reduced velocity are more accurately represented. If
Eq. (22) is used to predict the critical velocity, it is possible to derive a simple expression for the derivative of VCR with
respect to a2:

@VCR

@a2
¼ VCR

2a2 1þ wya2a3

wzch3a1

� � (23)

The derivative with respect to a2 at the point defined by the coefficients provided above assuming a2= �0.258 is
@VCR=@a2 ¼�69:9. This implies that a 70.05 change of a2 will introduce a 73.5 m/s change of the critical velocity.
Furthermore, this indicates that it is possible to cover a wide reduced velocity range and still get results with fair
engineering accuracy.

Table 1

Critical velocities in m/s for cross section no. 1, expressed as a function of shapewise similarity, czy, and frequency ratio, g. The result obtained applying

the presented flutter formula, Eq. (21), is presented at the top of each cell, the stability limit calculated by the eigenvalue solution is presented in

parentheses, and the percentage difference between the two methods is given at the bottom of each cell.

Shapewise

similarity czy
Frequency ratio, g

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 3.0 4.0

1.0 65 67 70 72 73 75 76 77 78 78 79 81 83

(67) (70) (73) (76) (77) (79) (80) (82) (83) (84) (84) (87) (90)

�4% �4% �5% �5% �5% �6% �6% �6% �6% �6% �7% �7% �8%

0.8 68 71 73 75 77 78 79 80 81 82 83 85 87

(71) (74) (77) (79) (81) (83) (84) (85) (86) (87) (88) (91) (94)

�4% �5% �5% �5% �5% �5% �6% �6% �6% �6% �6% �6% �7%

0.6 71 75 77 79 81 83 84 85 86 87 87 90 92

(75) (79) (81) (84) (86) (87) (89) (90) (91) (92) (92) (95) (98)

�5% �5% �5% �5% �5% �5% �5% �5% �5% �5% �5% �6% �6%

0.4 76 79 82 84 86 88 89 90 91 92 93 95 98

(84) (86) (89) (91) (92) (94) (95) (96) (97) (97) (98) (100) (103)

�10% �8% �7% �7% �6% �6% �6% �6% �6% �5% �5% �5% �5%

Table 2

Critical frequencies in rad/s for cross section no. 1, expressed as a function of shapewise similarity, czy, and frequency ratio, g. The result obtained

applying the presented formula, Eq. (19), is presented at the top of each cell; the stability limit calculated by the eigenvalue solution is presented in

parentheses, and the percentage difference between the two methods is given in the third row in each cell, while the result predicted by Eq. (18) at the

critical velocity given by the eigenvalue solution is given at the bottom of each cell.

Shapewise

similarity czy
Frequency ratio, g

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 3.0 4.0

1.0 1.87 1.83 1.80 1.77 1.75 1.73 1.71 1.70 1.68 1.67 1.66 1.62 1.58

(1.83) (1.78) (1.73) (1.68) (1.65) (1.61) (1.58) (1.55) (1.53) (1.51) (1.49) (1.41) (1.33)

2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 11% 15% 19%

1.83 1.78 1.73 1.69 1.65 1.61 1.58 1.56 1.53 1.51 1.49 1.42 1.34

0.8 1.83 1.79 1.75 1.72 1.69 1.67 1.65 1.63 1.62 1.60 1.59 1.55 1.50

(1.78) (1.72) (1.66) (1.62) (1.58) (1.54) (1.50) (1.47) (1.45) (1.42) (1.40) (1.32) (1.23)

3% 4% 5% 6% 7% 9% 10% 11% 12% 13% 13% 17% 22%

1.77 1.71 1.66 1.61 1.57 1.53 1.50 1.47 1.44 1.41 1.39 1.31 1.21

0.6 1.78 1.73 1.69 1.65 1.62 1.59 1.57 1.55 1.53 1.51 1.50 1.45 1.39

(1.72) (1.65) (1.59) (1.54) (1.49) (1.45) (1.41) (1.38) (1.35) (1.32) (1.30) (1.21) (1.10)

4% 5% 6% 7% 9% 10% 11% 12% 13% 14% 16% 20% 26%

1.69 1.62 1.56 1.51 1.46 1.42 1.38 1.34 1.31 1.29 1.26 1.16 1.05

0.4 1.71 1.65 1.60 1.56 1.52 1.49 1.46 1.44 1.42 1.40 1.38 1.31 1.24

(1.61) (1.55) (1.49) (1.43) (1.38) (1.34) (1.30) (1.26) (1.23) (1.20) (1.17) (1.07) (0.95)

6% 7% 8% 9% 10% 12% 13% 14% 15% 16% 18% 23% 30%

1.50 1.44 1.38 1.32 1.27 1.22 1.18 1.14 1.11 1.07 1.04 0.93 0.79
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3.2. A rectangular cross section

The formula developed in this study is also tested on a rectangular cross section with a height to width ratio of 18.
A drawing of the cross section, which will be referred to as cross section 2 in the following, is shown in Fig. 5. The
experimental data of the flutter derivatives are taken from [30], and a least squares fit of the expressions defined in Eq. (10)
renders the following load coefficients h1=�4.468, h2=0.332, h3=5.168, h4=�0.203, a1=�0.486 a2=�0.176, a3=0.753,
and a4= �0.061. The approximation and the experimental results of the flutter derivatives are shown in Fig. 6. As can be
seen, the approximate expressions provide least squares fits of good accuracy for the important flutter derivatives.

The still-air dynamic properties of the system are assumed to be oz=1.00 rad/s, oy=goz rad/s, xz=0.005, xy=0.005,
mz=12820 kg/m and my=426,000 kg2/m. The still-air vibration modes are defined by fzðxÞ and fyðxÞ and are related by the
shapewise similarity czy. The width of the girder is taken as B=20 m. The approximation provided by the flutter formula is
given at the top of each row in Table 3 while the exact solution is given in parentheses, and the accuracy of the
approximation is given at the bottom of each row. The critical frequencies are presented in the same manner in Table 4,
but with the critical frequency given by Eq. (18) when the critical velocity provided by the eigenvalue solution is used. The
results show that the formula provides critical velocities of good accuracy, and the results become more accurate when
the frequency ratio is increasing. The critical frequencies shown in Table 4 are more accurate than those shown in Table 2.
The discrepancies of the results predicted by Eq. (18) and the eigenvalue solution are also very small, confirming that the
frequencies of the coupled system are very close to the frequencies of the uncoupled system.

To test whether the formula gives accurate results for different mass ratios, a new structural configuration is defined.
The damping ratios of the structure in still air xn, nA{z, y} are set to 0.005 of critical damping, and the natural frequencies

Fig. 5. Rectangular cross section (cross section 2).
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in still air are assumed to be oz=1.0 rad/s and oy=goz, where g is the frequency ratio. The mass of the bridge deck,
hangers and cables are set to mz=1000 kg/m, and the mass moment of inertia is defined as my=mzRg

2
kg, where Rg is the

radius of gyration. The radius of gyration is assumed to be between 0.3B and 0.5B, where 0.3, on the one hand, implies that
the mass is evenly distributed, and 0.5, on the other hand, implies that the mass is concentrated at the left- and right-hand
sides of the girder. The width of the girder is set to B=20 m, and the shapewise similarity of the still-air torsional and
vertical vibration modes is assumed perfect, which implies that czy=1.0. The critical velocities are calculated for a range of
frequency ratios by increasing the still-air torsional natural frequency. The results are shown in Table 5, and the critical
frequencies are given in Table 6. As can be seen, the formula provides critical velocities of good accuracy for all the cases
evaluated. The critical frequencies shown in Table 6 are also very satisfying.

3.3. Examples of some well-known long-span bridges

It is well known that structural properties, such as frequencies, mass properties, and mode shapes, are just as important
to the critical velocity as the aerodynamic properties of the cross section. In [9], structural properties of a few well-known
bridges are given. The critical velocity for imaginary bridges having the same structural properties as these bridges, but

Table 3

Critical velocities in m/s for cross section no. 2, expressed as a function of shapewise similarity, czy, and frequency ratio, g. The result obtained applying

the presented flutter formula, Eq. (21), is presented at the top of each cell; the stability limit calculated by the eigenvalue solution is presented in

parentheses, and the percentage difference between the two methods is given at the bottom of each cell.

Shapewise

similarity czy
Frequency ratio, g

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 3.0 4.0

1.0 35 39 43 47 50 54 57 61 64 68 71 88 120

(38) (41) (45) (49) (52) (56) (59) (63) (66) (70) (73) (90) (122)

�7% �6% �5% �4% �4% �3% �3% �3% �3% �3% �3% �2% �2%

0.8 37 41 45 49 53 57 61 65 68 72 75 93 127

(40) (44) (48) (51) (55) (59) (63) (66) (70) (73) (77) (94) (129)

�6% �5% �4% �4% �3% �3% �3% �2% �2% �2% �2% �1% �1%

0.6 40 44 49 53 57 61 65 69 73 77 81 100 136

(42) (47) (51) (55) (59) (63) (66) (70) (74) (78) (82) (100) (137)

�6% �5% �4% �3% �3% �2% �2% �2% �1% �1% �1% �1% 0%

0.4 43 48 53 57 62 66 71 75 79 83 87 108 148

(46) (50) (55) (59) (63) (67) (71) (75) (80) (84) (88) (107) (146)

�7% �5% �4% �3% �2% �2% �1% �1% �1% 0% 0% 0% 1%

Table 4

Critical frequencies in rad/s for cross section no. 2 expressed as a function of shapewise similarity, czy, and frequency ratio, g. The result obtained

applying the presented formula, Eq. (19), is presented at the top of each cell; the stability limit calculated by the eigenvalue solution is presented in

parentheses, and the percentage difference between the two methods is given in the third row in each cell, while the result predicted by Eq. (18) at the

critical velocity given by the eigenvalue solution is given at the bottom of each cell.

Shapewise

similarity czy
Frequency ratio, g

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 3.0 4.0

1.0 1.31 1.37 1.44 1.51 1.58 1.65 1.72 1.79 1.86 1.93 2.00 2.37 3.10

(1.29) (1.36) (1.42) (1.49) (1.56) (1.62) (1.69) (1.76) (1.83) (1.90) (1.97) (2.32) (3.05)

1% 1% 1% 1% 1% 1% 1% 2% 2% 2% 2% 2% 2%

1.30 1.37 1.44 1.50 1.57 1.64 1.71 1.78 1.86 1.93 2.00 2.36 3.09

0.8 1.28 1.34 1.41 1.47 1.53 1.60 1.66 1.73 1.80 1.86 1.93 2.27 2.97

(1.26) (1.32) (1.38) (1.45) (1.51) (1.57) (1.64) (1.70) (1.77) (1.83) (1.90) (2.23) (2.91)

1% 1% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%

1.27 1.33 1.40 1.46 1.53 1.59 1.66 1.72 1.79 1.86 1.92 2.26 2.96

0.6 1.25 1.30 1.36 1.42 1.47 1.53 1.59 1.65 1.71 1.77 1.84 2.15 2.79

(1.22) (1.28) (1.33) (1.39) (1.45) (1.50) (1.56) (1.62) (1.68) (1.74) (1.80) (2.10) (2.73)

2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%

1.23 1.28 1.34 1.40 1.46 1.52 1.58 1.64 1.70 1.76 1.82 2.13 2.77

0.4 1.20 1.24 1.29 1.34 1.39 1.44 1.49 1.54 1.59 1.64 1.69 1.96 2.52

(1.17) (1.21) (1.26) (1.31) (1.36) (1.41) (1.46) (1.51) (1.56) (1.61) (1.66) (1.92) (2.47)

3% 3% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%

1.15 1.21 1.26 1.31 1.36 1.41 1.46 1.51 1.56 1.62 1.67 1.94 2.49

O. Øiseth, R. Sigbjörnsson / Journal of Sound and Vibration 330 (2011) 2784–2800 2793



Author's personal copy

Table 5
Critical velocities in m/s for cross section no. 2, expressed as function of radius of gyration, Rg, compared to the width of the girder, B, (Rg/B). The result

obtained applying the presented flutter formula, Eq. (21), is presented at the top of each cell; the stability limit calculated by the eigenvalue solution is

presented in parentheses, and the percentage difference between the two methods is given at the bottom of each cell.

Radius of

gyration/width Rg/B

Frequency ratio, g

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 3.0 4.0

0.30 31 35 38 42 45 48 51 55 58 61 64 79 108

(34) (38) (41) (44) (48) (51) (54) (57) (60) (63) (66) (81) (111)

�9% �8% �7% �6% �5% �5% �5% �5% �4% �4% �4% �3% �3%

0.35 34 38 41 45 48 52 55 59 62 65 68 84 115

(37) (41) (44) (48) (51) (55) (58) (61) (65) (68) (71) (87) (119)

�9% �7% �6% �6% �5% �5% �5% �4% �4% �4% �4% �3% �3%

0.40 36 40 44 47 51 55 58 62 65 69 72 89 122

(39) (43) (47) (50) (54) (58) (61) (65) (68) (72) (75) (92) (125)

�8% �7% �6% �6% �5% �5% �5% �4% �4% �4% �4% �3% �3%

0.5 39 44 48 52 56 60 64 68 71 75 79 97 133

(42) (47) (51) (55) (59) (63) (67) (71) (74) (78) (82) (100) (137)

�8% �7% �6% �5% �5% �5% �4% �4% �4% �4% �4% �3% �3%

Table 6
Critical frequencies in rad/s for cross section no. 2, expressed as function of radius of gyration, Rg, compared to the width of the girder, B, (Rg/B). The result

obtained applying the presented formula, Eq. (19) is presented at the top of each cell; the critical frequency calculated by the eigenvalue solution is

presented in parentheses, and the percentage difference between the two methods is given in the third row in each cell, while the result predicted by

Eq. (18) at the critical velocity given by the eigenvalue solution is given at the bottom of each cell.

Radius of

gyration/width Rg/B

Frequency ratio, g

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 3.0 4.0

0.30 1,32 1,39 1,45 1,53 1,60 1,67 1,74 1,81 1,88 1,96 2,03 2,40 3,15

(1,30) (1,37) (1,43) (1,50) (1,57) (1,64) (1,71) (1,78) (1,85) (1,93) (2,00) (2,36) (3,10)

1% 1% 1% 1% 1% 2% 2% 2% 2% 2% 2% 2% 2%

1,31 1,38 1,45 1,52 1,59 1,66 1,73 1,81 1,88 1,95 2,02 2,40 3,15

0.35 1,35 1,42 1,50 1,57 1,65 1,72 1,80 1,88 1,96 2,03 2,11 2,51 3,30

(1,33) (1,40) (1,48) (1,55) (1,63) (1,70) (1,78) (1,85) (1,93) (2,01) (2,08) (2,47) (3,25)

1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 2%

1,34 1,41 1,49 1,56 1,64 1,72 1,79 1,87 1,95 2,03 2,10 2,50 3,29

0.40 1,37 1,45 1,53 1,61 1,69 1,77 1,85 1,93 2,01 2,09 2,17 2,58 3,41

(1,36) (1,43) (1,51) (1,59) (1,67) (1,75) (1,83) (1,91) (1,99) (2,07) (2,15) (2,55) (3,37)

1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%

1,36 1,44 1,52 1,60 1,68 1,76 1,84 1,92 2,00 2,08 2,16 2,57 3,40

0.50 1,40 1,48 1,57 1,65 1,74 1,82 1,91 1,99 2,08 2,17 2,25 2,69 3,56

(1,39) (1,47) (1,56) (1,64) (1,73) (1,81) (1,89) (1,98) (2,06) (2,15) (2,24) (2,67) (3,53)

1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%

1,39 1,48 1,56 1,65 1,73 1,82 1,90 1,99 2,07 2,16 2,25 2,68 3,55

Table 7
Structural properties of well-known bridges together with the critical wind velocity calculated by an eigenvalue solution (EVS), the presented flutter

formula (FF) defined in Eq. (21), the undamped version of the flutter formula (UFF) defined in Eq. (22) and Selberg’s formula. It has been assumed that the

bridges have girders with the same aerodynamic properties as the cross section of the Hardanger Bridge.

Length L

(m)

Width B

(m)

Vertical frequency

oz (rad/s)

Torsional

frequency oy

(rad/s)

Shapewise

similarity czy
Mass mz

(kg/m)

Moment of inertia,

my (kg2/m)

Critical wind velocity VCR

(m/s)

EVS FF UFF SF

Tacoma 854 12 0.817 1.257 1 4250 177,730 29.6 27.7 25.2 24.5

Bosporus 1074 28 1.018 2.331 1 13,550 1,351,645 91.0 88.1 85.8 78.2

Akashi 1991 35.5 0.402 0.942 1 43,790 9,826,000 77.8 70.6 67 62.1

Normandy 856 23.8 1.382 3.142 1 13,700 633,488 109.7 105.9 104 94.7

Hardanger 1310 18.3 1.270 2.23 0.57 12,820 426,000 84 79 78 62.5
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with a cross section with the same aerodynamic properties as the girder of the Hardanger Bridge, is shown in Table 7, in
addition to one mode combination for the Hardanger Bridge. The torsional still-air damping ratio xy has been assumed to
be 0.005 of critical damping.

The flutter formulae give accurate results within 3–9% of the complex eigenvalue results for all the cases considered.
The undamped version of the flutter formula (Eq. (22)) also provides satisfactory results that are, as expected, lower than
the eigenvalue solution. Selberg’s formula provides less accurate results than the formulae presented in this paper, and the
difference is, as expected, largest where the shapewise similarity is below 1, since it does not take into account imperfect
shapewise similarity.

4. Multimodal effects

If a flutter formula, based on a bimodal consideration, is to be useful, a criterion for when a bimodal consideration is
sufficient must be developed. The torsional and vertical vibration modes of cable supported bridges often come in
shapewise similar pairs, and which of the shapewise similar pairs will give the lowest critical velocity depends on the
degree of shapewise similarity, the torsional frequency and the frequency ratio. Three questions regarding the coupling
effects will be addressed in this study: (1) Will multimodal effects occur if two bimodal pairs provide nearly the same
critical velocities, but are shapewise dissimilar? (2) Will multimodal effects occur if one vertical mode is shapewise similar
to two torsional modes? (3) How well separated must two vertical modes that are shapewise similar to the same torsional
mode be to avoid multimodal effects?

The damping ratios have been assumed as xn=0.005 of critical damping for all vibration modes; the width of the girder
has been assumed B=20 m, and the aerodynamic properties of cross section 2 are used in the calculations.

4.1. Two vertical and two torsional modes

To answer question one, two pairs of shapewise similar modes, where the pairs are shapewise dissimilar, are defined by
fz1ðxÞ, fy1ðxÞ, fz2ðxÞ and fy2ðxÞ. This implies that the still-air vibration modes are related by the following shapewise
similarities: cz1y1=1.0, cz1y2=0, cz2y1=0, and cz2y2=1.0. The still-air natural frequencies of pair one are set to oz1=2.5 rad/s,
oy1=3.5 rad/s, and the natural frequency of pair two is in the range oy2=[2,y,5] rad/s and oz2=oy2�1 rad/s. This implies that
the distance between the modes on the frequency axis in each pair is equal, and when oy2=3.5, the frequencies coincide.
The mass of the system is set to mz=15,000 kg/m, and the mass moment of inertia is set to my=500,000 kg2/m. The stability
limits are calculated separately for each pair, and both pairs are combined to evaluate possible multimodal effects. The results
are shown in Fig. 7.

Since the still-air natural frequencies of pair one are not changed, the bimodal stability limit (dashed line) is constant
90 m/s, while the bimodal stability limit of pair two is increasing from 60 to 117 m/s. The same pattern can be seen on the
plot of the critical frequencies. The multimodal calculations perfectly follow the result provided by the bimodal
calculations. The stability limit is not affected by the presence of another shapewise similar pair, even when the torsional
and vertical frequencies for both pairs are identical oz1=oz2=2.5 rad/s and oy1=oy2=3.5 rad/s, which implies that both
pairs provide the same stability limit. This could also be proved if the system of equations is studied. If none of the
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vibration modes in pair one is shapewise similar to any of the vibration modes in pair two, the two subsystems will be
uncoupled, which implies that they may be solved separately.

4.2. One vertical and two torsional modes

To answer question two, an aeroelastic system, consisting of one vertical and two torsional vibration modes
fzðxÞ,fy1ðxÞ, and fy2ðxÞ is defined. The still-air natural frequencies are assumed to be oz1=2.0 rad/s, oy1A{3.0 5.0
8.0} rad/s, and oy2=oy1 �D rad/s, where D is in the range [1,y,10]. The mass of the system is set to mz=15,000 kg/m, while
the mass moment of inertia is taken as my=500,000 kg2/m. The stability limit of the vertical, fzðxÞ, and the first torsional
mode, fy1ðxÞ, is calculated first, then the second torsional vibration mode, fy2ðxÞ, is added to the system, and the
percentage change of the stability limit is calculated. The results are shown in Fig. 8. All cases evaluated give similar
results: the reduction of the stability limits decreases when the frequency ratio D increases. Three separations between the
vertical and torsional vibration modes were studied, and all of them followed the same pattern, but the closest separation,
when oy1 is 3 rad/s, seems to decrease faster than the two other cases, which follow each other’s pattern nearly perfectly.
The case shown in Fig. 8a, where the shapewise similarities are czy1=1.0 and czy2=1.0, is in reality impossible since this
situation implies that the structure has two still-air torsional vibration modes that are identical, but it theoretically
represents the upper bound for the reduction of the stability limit. However, the shapewise similarity of the vertical and
torsional vibration modes is often not perfect, and when the vertical mode matches the first torsional mode perfectly, and
where the same vertical mode is in some degree shapewise similar to the second torsional mode, more specifically
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czy1=1.0, czy2=0.5, is shown in Fig. 8b. The reduction of the stability limit is much lower for this case, compared with the
case shown in Fig. 8a and this indicates that the shapewise similarity ratio czy1/czy2 of the two bimodal combinations has
great influence on the reduction of the stability limit. Fig. 8c shows results where the shapewise similarities have been
assumed to be czy1=0.8, czy2=0.8. The results clearly follow the same pattern as those shown in Fig. 8a, but some small
differences can be observed since the reduction of the stability limit when the two torsional still-air natural frequencies
are identical is a fraction smaller in this case. A situation where the shapewise similarities are czy1=0.8 and czy2=0.4
is shown in Fig. 8d. The reduction of the stability limit cannot be directly calculated from the shapewise similarity ratio
czy1/czy2 since the results in Fig. 8b and d are not identical, but an estimate can be made.

To investigate how different mass properties affect the results, the same aeroelastic system as outlined above is used,
but with a total mass of mz=25,000 kg/m and a mass moment of inertia of my=1,500,000 kg2/m. The reduction of the
stability limit when the shapewise similarities are czy1=1.0, and czy2=1.0 is shown in Fig. 8e, and when this is compared
with the results shown in Fig. 8a the results seem to have low sensitivity to changes in the mass properties of the
structure. A situation where the shapewise similarities are czy1=1.0 and czy2=0.5 is shown in Fig. 8f, and when this figure
is compared to the results shown in Fig. 8b, some small differences can be observed.

It may be concluded that reduction of the stability limit caused by multimodal effects is possible if one vertical mode is
shapewise similar to two torsional modes. The reduction greatly depends on the separation of the torsional vibration
modes on the frequency axis and the shapewise similarity ratio czy1/czy2. Several different structural configurations have
been tested, and the results indicate that a reduction below 5% may be expected, for the particular cases tested, if the
frequency ratio of the torsional modes is greater than two.
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4.3. One torsional and two vertical modes

To answer question three stated above, another aeroelastic system is defined. It consists of three still-air vibration
modes, two vertical and one torsional, defined by fz1ðxÞ,fz2ðxÞ and fyðxÞ. The still-air natural frequencies are assumed to be
oz2=2.0 rad/s, oyA{3.0 5.0 8.0 12.0} rad/s, and oz2=oz1 �D rad/s, where D is in the range [1,y,10]. The mass of the system
is set to mz=15,000 kg/m, while the mass moment of inertia is taken as my=500,000 kg2/m. The stability limit of the
second vertical, fz2ðxÞ and the torsional mode, fyðxÞ is calculated first; the first vertical mode is then added to the system,
and the percentage change of the stability limit is calculated. The results when the shapewise similarities have been
assumed as cz2y=1.0, cz1y=1.0 are shown in Fig. 9a. As can be seen, the reduction of the stability limit due to multimodal
effects among one torsional and two vertical modes is somewhat more complicated than where one vertical and two
torsional vibration modes are shapewise similar. The frequency ratio D is of minor importance when the torsional natural
frequency is high, while some dependency of the frequency ratio can be observed when the torsional frequency is low.
The reduction of the stability limit converges to a constant value for all situations evaluated, and this implies that a
reduction of the stability limit must be expected even when the frequency ratio D of the two vertical vibration modes is
high. The magnitude of the reduction depends strongly on the torsional natural frequency. The reduction increases with
increasing torsional frequency, but as can be seen in the figure, it converges to a constant value. The reduction of the
stability limit when the shapewise similarities are cz2y=1.0 and cz1y=0.5 is shown in Fig. 9b. The same pattern as shown in
Fig. 9a can be recognised, but the reduction of the stability limit, as expected, strongly depends on the shapewise similarity
ratio cz2y/cz1y of the still-air vibration modes.

The results when shapewise similarities have been assumed as cz2y=0.8, cz1y=0.8 are shown in Fig. 9c, and, as can be
seen, the results follow the same pattern as those shown in Fig. 9a, but the shapewise similarities evaluated here result in
less reduction of the stability limit. However, the differences are only one to three percent, which is rather low. A situation
where the shapewise similarities are cz2y=0.8, cz1y=0.4 is presented in Fig. 9d, and when this is compared with the curves
in Fig. 9b, the results indicate that the reduction of the stability limit cannot be calculated directly from the shapewise
similarity ratio cz2y/cz1y.

To study how a change in the vertical frequency oz2 affects the result, the same aeroelastic system as defined above is
used, but with still-air vertical frequencies oz2=5 rad/s, oz2=oz1 �D rad/s, and ozyA{8, 12}. The results when the
shapewise similarities have been assumed to be cz2y=1.0, cz1y=1.0 are shown in Fig. 9e, and, as can be seen, the
reduction of the stability limit also depends on the still-air natural frequency oz2 since the curves shown in Fig. 9a are
fairly different. A situation where the shapewise similarities have been assumed to be cz2y=1.0, cz1y=0.5 is shown in
Fig. 9f. When these results are compared with the curves presented in Fig. 9b, the dependency of the frequency oz2 is also
observed here.

It can be concluded that the reduction of the stability limit caused by multimodal effects when one torsional and two
vertical still-air vibration modes participate in the flutter motion is more complicated than when one vertical and two
torsional modes participate. The reduction depends on the frequency ratio oz2/oz1, the torsional frequency oy, the vertical
frequency, oz2, and the shapewise similarities. Different from the case with one vertical and two torsional still-air
vibration modes, multimodal effects cannot be excluded at high oz2/oz1 ratios.

5. Concluding remarks

Simplified prediction of flutter stability limits is discussed in this paper emphasising closed form solutions. It has been
shown that the established bimodal approach, commonly referred to as the flutter equations, can be greatly simplified if
the load coefficients presented in this paper are introduced. The expressions can be further simplified if the critical
frequency is assumed to be on the torsional solution branch of the system and can be calculated by the uncoupled system
of equations. This results in a simple expression which may be regarded as an engineering approximation of the critical
flutter velocity. The expression has been tested for two typical cross sections for a wide range of hypothetical structural
configurations, in addition to the structural configurations of a few well-known bridges. The results have been compared
with results obtained by a complex eigenvalue analysis. The accuracy of the results has been satisfactory for all the cases
evaluated. The presented formulae can be regarded as alternatives to Selberg’s formula in preliminary designs of long-span
bridges and in the design of medium-span bridges since Selberg’s formula does not take into account possible imperfect
shapewise similarity and the actual aerodynamic properties of the cross section. Further it has been shown that the
expression presented may be simplified further if the contribution from damping is neglected. This results in a formula
equal to Selberg’s formula if the coefficients are given specific values. The estimate of the stability limit of the bridge may
then be improved by using flutter derivatives available in the literature for a cross section similar to the girder of the
bridge. It is also possible to use the formulae to study which of the parameters can be adjusted to achieve better
aerodynamic performance.

Flutter where several vibration modes participate has been reported in the literature. It is therefore important to make
sure that multimodal effects will not reduce the stability limit significantly before a simplified solution based on a bimodal
consideration is used. The shapewise similarity is, as shown in this paper, the most important indicator of possible
multimodal effects. To evaluate which of the still-air vibration modes participate in the flutter motion, the shapewise
similarity of all possible combinations should be evaluated first. Then the vibration modes should be grouped in uncoupled
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subsystems. The subsystem containing the still-air torsional vibration mode with the lowest natural frequency will most
likely provide the lowest critical velocity. If this subsystem consists of more than two vibration modes, multimodal effects
will occur. The reduction will be small if (1) the shapewise similarities are not of the same order of magnitude, which
implies that the flutter motion is generated by a main pair of modes, and that the contribution from the secondary modes
is small and (2) the subsystem consists of one vertical and two torsional vibration modes, and the two torsional vibration
modes are well separated. If there are more than three shapewise similar vibration modes, multimodal calculations should
be carried out.

An example where multimodal effects can be neglected, based on the shapewise similarity criterion, is the Messina
Strait Bridge. Multimodal calculations of the stability limit of the bridge are presented in [31]. The results presented show
that the stability limit remains unchanged when more than one vertical and one torsional still-air vibration mode is
included. This is because the vibration modes come in shapewise similar pairs, resulting in uncoupled subsystems
consisting of one vertical and one torsional vibration mode. However, the vibration modes are not well separated on the
frequency axis, which implies that simplified methods are not recommended.

Participation of horizontal modes in the flutter motion has not been discussed in this study since experimental results
of the flutter derivatives associated with horizontal motion are not available for the two cross sections dealt with.
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Appendix A. The general flutter equation

The stability of an aeroelastic second-order system, where N still-air vibration modes are used as generalised degrees-
of-freedom (see Fig. 1), can be predicted considering the following quadratic eigenvalue problem:

ðS2
n
~M0þSnð ~C0� ~CaeðV ,oÞÞþð ~K0� ~KaeðV ,oÞÞÞZn ¼ 0, n¼ 1,2,. . .,2N (A.1)

Here, ~M0 represents the generalised structural mass matrix, ~C0 denotes the generalised damping matrix, and ~K0

represents the generalised structural stiffness matrix, where the subscript 0 indicates that the matrices contain properties
obtained in still air. The function ~CaeðV ,onÞ stands for aerodynamic forces proportional to the velocity of the system,
commonly referred to as the aerodynamic damping matrix, while ~KaeðV ,onÞ symbolises aerodynamics forces proportional
to the displacement of the system, sometimes referred to as the aerodynamic stiffness matrix. These two matrices are a
function of the oscillation frequency, o, and the wind velocity, V. Furthermore, they also depend on the flutter derivatives
(see Eq. (1)). The oscillation frequency, o, and the wind velocity, V, are treated as continuous and independent variables in
the following analysis.

The solution of Eq. (A.1) gives 2N eigenvalues, Sn, and corresponding eigenvectors Zn, where N is the number of degrees-
of-freedom. Real roots imply that the system behaviour is non-periodic. When the root Sn is real and positive, the solution
reveals exponential divergence; if it is real and negative, the solution exhibits exponential convergence. On the other hand,
complex roots result in system behaviour of periodic or oscillatory nature. These roots appear in complex conjugated pairs
of the form Sn=mn+ion and Sn+1=Sn

n
=mn� ion. The quantity on is the damped natural frequency of the aeroelastic system,

while mn is a measure of the damping or diverging behaviour of free oscillations. If mn is negative, the solution shows
exponential convergence corresponding to positive damping of the aeroelastic system. On the other hand, if mn is positive,
the solution exhibits exponential divergence, which is sometimes interpreted as negative damping of the aeroelastic
system. Hence, the stability limit of the aeroelastic system can be defined in terms of the natural frequency, on, and the
wind velocity, V, that result in positive real parts of two of the eigenvalues (Sn and Sn+1). The lowest wind velocity leading
to indifferent behaviour (which corresponds to mn=0) is termed the critical velocity.

The eigenvalue problem, Eq. (A.1), has to be solved by an iterative procedure since the flutter derivatives are functions
of the frequency of motion as well as the wind velocity. Further details of the problem formulation and the solution
procedure applied herein can be found in [32,33].

Appendix B. Selberg’s flutter formula

The widely applied flutter formula, proposed by Selberg, is still used and is referred to in the guidelines of the
Norwegian Public Roads Administration [26]. The formula can be expressed as follows, using the notation applied herein:

V̂CR ¼ 0:6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

g

� �2
" #

Rg

wzB

vuut (B.1)
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By comparing this equation to the proposed closed-form flutter formula, Eq. (22), it is seen that the formulae become
identical if the aerodynamic coefficients are selected such that the following equation is fulfilled:

50a2wzB�9Rgðwzh3a1þwya2a3Þ ¼ 0 (B.2)

where Rg is the radius of gyration. Similar relations to the other formulae outlined in the introduction can be developed if
the approximations suggested in Eq. (10) are introduced:
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a b s t r a c t

Prediction of the wind-induced dynamic response of suspension bridges, emphasizing self-excited forces,
is discussed in this paper. The self-excited forces have been modeled by two commonly applied unsteady
models and an unsteady model introduced and explained in this article. A novel frequency-independent
approximation of the self-excited forces, which for the suspension bridge considered provides results as
accurate as those from the unsteady models, is also presented. An integration method that may reduce
the number of time steps necessary to avoid amplitude and phase distortion of the self-excited forces
has been introduced and applied successfully in a comprehensive case study.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

When designing long-span cable-supported bridges, time do-
main assessment of the dynamic response is convenient, since
structural nonlinearities may be taken more easily into account
in the time domain than in the frequency domain. One of the main
concerns for long-span bridges is wind-induced dynamic response,
which is most commonly predicted using frequency domain meth-
ods, where the aeroelastic effects are introduced in terms of exper-
imentally determined aerodynamic derivatives [1–12]. This
approach is an extension of classical airfoil theory [13], where The-
odorsen’s function provides the self-excited forces that are actions
generated by the motion of the cross section in the fluid flow. An-
other well-known aerodynamic function has been developed by
Wagner [14]. While Theodorsen’s function describes the lift due
to circulation about an airfoil oscillating and moving horizontally
with constant velocity, the Wagner function describes the growth
of circulation or lift on the airfoil at a small, fixed angle of attack,
starting impulsively from rest to a uniform velocity. Garrick [15]
showed that Theodorsen’s function and Wagner’s function consti-
tute a pair of Fourier transforms. Likewise, Scanlan et al. [2] sug-
gested that there may be a similar relation between indicial
functions in the time domain and aerodynamic derivatives in the
frequency domain. The aerodynamic derivatives can be deter-

mined by wind tunnel measurements using a scaled section model
of the bridge deck, see e.g., [9,16]. Some attempts have also been
made to determine the aerodynamic derivatives from fluid–struc-
ture interaction models [17–19], where the main challenge is to
model the flow around non-structural details like hand rails and
guide vanes accurately, since these effects may have a significant
influence on the results.

Several methods exist for unsteady modeling of self-excited
forces in the time domain. Many of the methods have their origin
in the Laplace domain, or equivalent, in the frequency domain
when the effect of exponential decay or divergence is assumed to
be negligible. A complex transfer function suitable for Fourier
transforming is curve-fitted to the experimental data, such that
the time domain formulation may be obtained using the Fourier
transform applying the convolution theorem. Several transfer func-
tions have been suggested that may be suitable. Yagi [20] applied
Roger’s approximation and the matrix padé approximation to
model the self-excited forces for a bridge deck, but Roger’s approx-
imation was more successful. Roger’s approximation has also been
applied in [21,22]. Roger’s approximation is a sum of rational func-
tions, where the denominator is the same for all the transfer func-
tions. Bucher and Lin [23] have used a slightly different approach,
where the coefficients in the denominators are determined sepa-
rately for each transfer function. It is also possible to develop
expressions for the self-excited forces considering the downwash
on the cross section [14,24]. This results in a formulation that
has a more physical basis than the rational function approxima-
tions discussed above. However, the indicial functions must also
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be approximated by functions suitable for Fourier transforming;
thus, the main difference of the two methods is the different start-
ing points.

An alternative to unsteady self-excited force models is to use
quasi-steady theory [5,6,25,26] to quantify the self-excited forces.
In the quasi-steady theory, force coefficients from static wind tun-
nel measurements are used to quantify the self-excited forces. This
implies that the quasi-steady theory may be used in both the time
and frequency domains. However, it is well known that the quasi-
steady theory may provide inaccurate results for some cross
sections, in particular, since no aerodynamic torsional damping is
provided. Øiseth et al. [6] propose a modified quasi-steady
approach, where curves providing a frequency-independent
description of the self-excited forces are fitted to the experimen-
tally determined aerodynamic derivatives in the important
frequency range. This approach has also been used to develop
simplified expressions for the critical flutter velocity of cable sup-
ported bridges [27]. Other approaches have also been suggested in
the literature. Borri and Costa [28] have introduced torsional
aerodynamic damping by using the leading edge of the profile as
reference point, assuming that the action is driven by the phenom-
ena occurring at this edge. Diana et al. [29] have developed a

corrected quasi-steady theory that takes aerodynamic nonlineari-
ties into account. The approach has been developed further in two
recent papers [30,31]. In this paper themethod suggested by Øiseth
et al. [6], focusing on the frequency dependency, has been further
developed making it possible to model the self-excited forces accu-
rately at all the natural frequencies of the aeroelastic system.

The unsteady load models discussed above need to be curve-
fitted to the experimental data using a nonlinear approach. Since
the transfer functions are complex, two sets of data must be
curve-fitted to the same coefficients. This implies that the unstea-
dy time domain methods will most likely provide a least squares fit
of lower accuracy than the curves used to represent the aerody-
namic derivatives in the frequency domain. In this article unsteady
and quasi-steady self-excited force models are used to predict the
buffeting response of a long-span suspension bridge. Two of the
unsteady models discussed above, in addition to an unsteady mod-
el suggested in this paper, where quasi-steady asymptotes may be
more easily introduced, have been compared. We also present a
novel approximate approach, which, when applied to the suspen-
sion bridge, provides results as accurate as those produced by
the unsteady models. The unsteady self-excited force models give
the self-excited forces in terms of convolution integrals in the time

Nomenclature

AðnmÞ
x coefficient number x in the rational function formula-

tion
A�

n; H�
n; P�

n aerodynamic derivatives
an, hn, pn modified quasi-steady coefficients
ah distance from the center of the airfoil to the shear center
ainm, binm coefficients in the indicial function formulation
A, B state space system matrices
b, c constants that define the properties of Newmark’s

method
B, D width and height of the girder
dðnmÞ
x coefficient number x in the rational function formula-

tion
d Dirac delta function
M number of subdivision of the time step
M, C, K mass, damping and stiffness matrix
CD, CL, CM force coefficients
F aerodynamic transfer function
Fae a vector that contains the time dependent part of the

self-excited forces
Gn, Gn the Fourier transform of variable n, a vector containing

Fourier transforms
Gij mode shape integrals
i the imaginary unit
I aerodynamic impulse response function
K reduced frequency
j roughness coefficient
L, Lnm lower triangular matrix obtained by Cholesky decompo-

sition of the cross spectral density matrix
L span length
N number of exponential filters
P, P cross sectional action, vector containing cross sectional

actions
w indicial function
q, q cross sectional load
~Q ; ~Qi modal load vector, modal load
r; _r; €r displacement, velocity and response acceleration
S or S auto or cross-spectral density, cross-spectral density

matrix
Sk eigenvalue number k
t time

s integration variable
u fluctuating horizontal wind velocity
V mean wind velocity
w downwash, fluctuating vertical wind velocity
x, Dx span-wise coordinate, span-wise separation
xm time series of the fluctuating wind velocities
Xk right hand eigenvector number k
Yk left hand eigenvector number k
z height above ground or sea level
Z state variable
g, g generalized coordinate or vector containing all general-

ized coordinates
nn still-air damping ratio for mode no. n
q air density
U Wagner function, or indicial function
/y; /z; /h components in the vibration mode vector
x, xn circular frequency and natural circular frequency
1 infinity

Subscripts/superscripts
ae aerodynamic
buff buffeting
D, L, M drag, lift, moment
Se self-excited
T transpose
u, w along-wind velocity, across-wind velocity in vertical

direction
y, z, h horizontal displacement, vertical displacement, rotation
0 still-air
� modal property
0 derivative with respect to angle of attack or s
� time derivative
⁄ complex conjugate

Abbreviations
AD aerodynamic derivatives
FD frequency domain
QST quasi-steady theory
QSA quasi-steady asymptotes
TD time domain
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domain. It has been shown in several papers that a time step much
smaller than what is usually applied in the dynamic time domain
analysis may become necessary to evaluate the convolution inte-
grals with sufficient accuracy to avoid phase and amplitude distor-
tion of the self-excited forces, e.g., [32–34]. In this article an
integration scheme that solves this problem has been suggested.
When using this integration method, time steps as small as nor-
mally recommended in dynamic response calculations are
sufficient.

2. Modeling self-excited forces

Self-excited forces are generated by the motion of the structure.
Two approaches are currently being used for bridges, namely (1)
unsteady models, which take into account how the motion of the
structure will affect the flow around it and (2) steady models,
where force coefficients measured on a fixed model are used to
quantify the self-excited forces. The most common representation
of unsteady self-excited aerodynamic forces is given by Scanlan
and Tomko [9] as follows (see Fig. 1):
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Here, V is the mean wind velocity; q is the air density; B is the width
of the cross section; K = Bx/V is the reduced circular frequency of
motion, and rn, n e {y, z, h} represents the horizontal, vertical and
torsional responses that are positive in the same direction as the
forces displayed in Fig. 1. P�

n; H�
n; A�

n; n 2 f1;2; . . . ;6g are the
dimensionless aerodynamic derivatives, which are characteristic
cross-sectional properties given as functions of the reduced-
frequency of motion. The aerodynamic derivatives are in practice
obtained at discrete harmonic frequencies (commonly presented
as reduced frequencies) from wind tunnel experiments applying a
scaled section model. Hence, the above equations are strictly only
valid for single harmonic motion. However, within the framework
of harmonic analysis applying the principle of superposition, Eq.
(1) can be extended to any harmonic motion or aperiodic motion
applying Fourier integral representation. Consequently, taking the
Fourier transform of Eq. (1), the following frequency domain
description of the self-excited aerodynamic forces emerges,
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4ÞGzðxÞ�

þBðiH�
2 þ H�

3rhÞGhðxÞ�
GqSe

h
ðxÞ ¼ 1

2
qB2x2 BðA�

5iþ A�
6ÞGyðxÞ þ BðA�

1iþ A�
4ÞGzðxÞ�

þB2ðA�
2iþ A�

3ÞGhðxÞ
i

ð2Þ

which can be further simplified to

GqSe
n
ðxÞ ¼ FnyðxÞGyðxÞ þ FnzðxÞGzðxÞ þ FnhðxÞGhðxÞ ð3Þ

Here, n e {y, z, h}; i is the imaginary unit, and GX(x) is the Fourier
transform of X(t), where X(t) e {ry, rz, rh, qy, qz, qh}, and Fnm(x) symb-
olises the transfer functions defined in terms of the aerodynamic
derivatives, which in this representation are treated as continuous
functions of frequency. As shown by Bucher and Lin [23], the time
domain description of the self-excited forces can be obtained apply-

ing the inverse Fourier transform and the convolution theorem. This
results in the following equations:

qðSeÞ
n ðV ; tÞ ¼

Z t

�1
Inyðt � sÞryðsÞdsþ

Z t

�1
Inzðt � sÞrzðsÞds

þ
Z t

�1
Inhðt � sÞrhðsÞds ð4Þ

Here, n e {y, z, h}. The aerodynamic impulse response functions are
defined by the inverse Fourier transform of the transfer functions as
follows:

InmðtÞ ¼ 1
2p

Z 1

�1
FnmðxÞeixt dx ð5Þ

Here it is assumed that the system is causal, i.e. Inm(t) = 0 for t < 0.
Hence, the upper bounds in the integrals in Eq. (4) can be changed
from t to infinity, 1.

2.1. Unsteady force model 1

The transfer functions are in general only known from experi-
ments at discrete reduced-frequencies. A rational function approx-
imation is frequently used to interpolate the experimental data
[20,21,23]; the self-excited lift force related to the vertical motion
can then be defined by the following rational function approxima-
tion, which will be referred to as force model 1

FzzðV ;xÞ ¼ 1
2
qV2 AðzzÞ

1 þ AðzzÞ
2

ixB
V

þ AðzzÞ
3

ixB
V

� �2

þ
Xm
l¼1

AðzzÞ
lþ3 ixB=V

ixB=V þ dðzzÞ
l

 !

ð6Þ

An, n e {1, . . . , N} are coefficients determined from a nonlinear least
squares fit to experimental data. The corresponding impulse re-
sponse function is given by the inverse Fourier transform of Eq. (6).

IzzðtÞ ¼ 1
2
qV2 AðzzÞ

1 dðtÞ þ AðzzÞ
2

_dðtÞ B
V
þ AðzzÞ

3
€dðtÞ B

V

� �2
 

þ
Xm
l¼1

AðzzÞ
lþ3 dðtÞ � dðzzÞ

l V
B

e
�

dðzzÞ
l

V

B t

� �0
B@

1
CA
1
CA ð7Þ

Here, d(t) is the Dirac delta function. Comparing Eqs. (2) and (6), and
neglecting added mass effects ðAðnmÞ

3 ¼ 0Þ, it is seen that the real
and imaginary parts of the transfer function, here represented by
H�

4 and H�
1, can be written as:

H�
4 ¼ V̂2 AðzzÞ

1 þ
XL

l¼1

AðzzÞ
lþ3

dðzzÞ
l V̂

� �2
þ 1

	 

0
BB@

1
CCA;

H�
1 ¼ V̂ AðzzÞ

2 þ V̂2
XL

l¼1

AðzzÞ
lþ3d

ðzzÞ
l

dðzzÞ
l V̂

� �2
þ 1

	 

0
BB@

1
CCA ð8Þ

Fig. 1. Aerodynamic forces acting on a cross section of the bridge deck. The
structural displacements are positive in the same direction as the forces.
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The lift force related to vertical motion may then be expressed
as:

qzzðtÞ ¼
1
2
qV2 AðzzÞ

1 rzðtÞ þ AðzzÞ
2

B
V
_rzðtÞ

�

þ
Xm
l¼1

AðzzÞ
lþ3 rzðtÞ � dðzzÞ

l V
B

Z t

�1
e

�
dðzzÞ
l

V

B ðt�sÞ

� �
rzðsÞds

0
B@

1
CA
1
CA ð9Þ

The self-excited forces should tend to quasi-steady values when the
reduced-frequency approaches zero [3]. This is a reduced-frequency
range where experimental data for the aerodynamic derivatives
may not be available, especially if the aerodynamic derivatives have
been obtained by the commonly applied free vibration test. The
quasi-steady asymptotes of the transfer function derived from Eq.
(8) are

lim
K!0

ðK2H�
4Þ ¼ AðzzÞ

1 ; lim
K!0

ðKH�
1Þ ¼ AðzzÞ

2 þ
XL

l¼1

AðzzÞ
lþ3

dðzzÞ
l

ð10Þ

and, as can be seen, both the imaginary and real part of the transfer
function goes to quasi-steady values when the reduced-frequency
goes to zero. The imaginary part is dependent on both the constant
AðnmÞ
2 and the constants in the exponential filters. This implies that

AðnmÞ
2 cannot be directly related to the asymptotic quasi-steady con-

tribution related to the structural velocity, which is a disadvantage
since a direct comparison with, for instance, the traditional quasi-
steady theory becomes more complicated.

2.2. Unsteady force model 2

To derive a force model with simpler quasi-steady asymptotes,
the following transfer function is suggested in this article, which
will be referred to as force model 2:

FzzðV ;xÞ ¼ 1
2
qV2 AðzzÞ

1 þ AðzzÞ
2

ixB
V

þ
Xm
l¼1

AðzzÞ
lþ3ðixB=VÞ2

ixB=V þ dðzzÞ
l

 !
ð11Þ

Here, added mass effects have been assumed negligible ðAðnmÞ
3 ¼ 0Þ.

This transfer function model provides the following expression for
the real and the imaginary part, here represented by H�

4 and H�
1,

respectively:

H�
4 ¼ V̂2 AðzzÞ

1 �
XL

l¼1

AðzzÞ
lþ3d

ðzzÞ
l

dðzzÞ
l V̂

� �2
þ 1

	 

0
BB@

1
CCA;

H�
1 ¼ V̂ AðzzÞ

2 þ
XL

l¼1

AðzzÞ
lþ3

dðzzÞ
l V̂

� �2
þ 1

	 

0
BB@

1
CCA ð12Þ

and the quasi-steady asymptotes become:

lim
K!0

ðK2H�
4Þ ¼ AðzzÞ

1 ; lim
K!0

ðKH�
1Þ ¼ AðzzÞ

2 ð13Þ

Taking the inverse Fourier transform of the transfer function, the
impulse response function is given by:

IzzðtÞ ¼ AðzzÞ
1 dðtÞ þ AðzzÞ

2
B
V
_dðtÞ

þ
XN
n¼1

AðzzÞ
nþ3 dðzzÞ

n

� �2
edðzzÞn

V
BtHðtÞ þ B

V
_dðtÞ þ dðzzÞ

n dðtÞ
� �

ð14Þ

The self-excited forces may then be written as:

qzzðtÞ ¼
1
2
qV2 AðzzÞ

2 þ
XN
n¼1

AðzzÞ
nþ3

 !
B_rðtÞ
V

 

þ
XN
n¼1

AðzzÞ
nþ3d

ðzzÞ
n þ AðzzÞ

1

 !
rðtÞ

þ V
B

Z t

�1

XN
n¼1

AðzzÞ
nþ3ðdðzzÞ

n Þ2edn
V
Bðt�sÞ

 !
rðsÞds

!
ð15Þ

which may be further simplified through integrating twice by parts:

qðtÞ ¼ 1
2
qV2 A1rðtÞ þ A2

B_rðtÞ
V|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Quasi-steady

þ
Z t

�1

XN

n¼1Anþ3edn
V
Bðt�sÞ Br

00ðsÞ
V

ds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Unsteady contribution

0
BBB@

1
CCCA

ð16Þ
This implies that AðnmÞ

1 and AðnmÞ
2 are the quasi-steady force coeffi-

cients, while the exponential filters take the discrepancy of the qua-
si-steady theory and the experimental results into account.

2.3. Unsteady force model 3

An alternative approach to the rational function formulation,
where a function suitable for Fourier transformation is chosen to
interpolate the experimental results, is to consider the downwash
on the cross section. For the case of an airfoil, the downwash at the
3/4 point may be used to characterize the self-excited forces from
circulatory origin [14]:

wiðsÞ ¼ V � rhðsÞ � r0zðsÞ þ r0hðsÞ
1
2
� ah

� �
B
2

qLðtÞ ¼
1
2
qVBC0

L

Z t

�1
Uðt � sÞdwðsÞ

ds
ds; qMðtÞ ¼

B
4
ð1þ ahÞqLðsÞ

ð17Þ
where U is the well-known Wagner function, and ah is the distance
from the center of the airfoil to the shear center. Several authors,
e.g. [2,24], have pointed out that the simple expression outlined
above, where only one indicial function is necessary to describe
the self-excited forces, is not directly applicable to a bluff section.
Bisplinghoff and Ashley [24] suggested a model with two indicial
functions, one for the effective angle of attack and one for the angu-
lar velocity, and since the aerodynamic center is not as clearly de-
fined as for an airfoil, separate indicial functions are necessary for
the lift and overturning moment. Bucher and Lin [23] have pointed
out that there may be some redundancy in Eq. (17) since the tor-
sional motion history also contains information on the angular
velocity. Costa and Borri [33] and Caracoglia and Jones [35] have
used the first two terms in Eq. (17), rendering self-excited aerody-
namic forces defined by the following equations, which will be re-
ferred to as force model 3,

qLðtÞ ¼
1
2
qV2BC0

L

Z t

�1
UZhðt � sÞr0hðsÞds�

1
V

Z t

�1
UZZðt � sÞr00z ðsÞds

	 


qIF
MðtÞ ¼

1
2
qV2B2C0

M

Z t

�1
Uhhðt � sÞr0hðsÞds�

1
V

Z t

�1
UhZðt � sÞr00z ðsÞds

	 

ð18Þ

where only the vertical and horizontal components are considered
for brevity. The indicial functions are approximated as:

UnmðtÞ ¼ a0nm �PN
i¼1

ainm exp½�binm
V
B t�; t P 0

0; t < 0

8><
>: ð19Þ
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The transfer functions may then be obtained by the Fourier
transform:

FðxÞ ¼
Z 1

�1
UðtÞe�ixtdt ¼

Z 1

0
UðtÞe�ixtdt ¼ a0nm

ix
�
XN
i¼1

ainm

binm
V
B þ ix

ð20Þ
which renders the following equivalence scheme, here represented
by H�

1; H�
2; H�

3 and H�
4:

H�
1 ¼ �C 0

LV̂ a0zz �
XN
i¼1

aizz

bizzV̂
� �2

þ 1
	 


2
664

3
775

H�
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LV̂
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aizhbizhV̂2

bizhV̂
� �2

þ 1
	 


2
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3
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H�
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LV̂
2 a0zh �
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i¼1

aizh

bizhV̂
� �2

þ 1
	 


2
664

3
775

H�
4 ¼ �C 0

LV̂
2
XN
i¼1

aizzbizz

bizzV̂
� �2

þ 1
	 


2
664

3
775

ð21Þ

An identical equivalence scheme may be obtained for the aerody-
namic derivatives related to the self-excited overturning moment,
replacing C0

L with C0
M and the first sub index z with h. The quasi-stea-

dy asymptotes of this model are

lim
K!0

ðKH�
1Þ ¼ �C 0

La0zz lim
K!0

ðKH�
2Þ ¼ �C0

L

XN
i¼1

aizh

bizh

lim
K!0

ðK2H�
3Þ ¼ C 0

La0zh lim
K!0

ðK2H�
4Þ ¼ 0

ð22Þ

The steady-state values associated with the vertical response (H�
4

and A�
4) become zero. This is reasonable since the vertical position

(displacement) should not affect the load in a steady-state situation.
The steady-state values for A�

2 and H�
2 have somewhat more compli-

cated behavior since constraints must be added in the optimization
process, while the steady-state values for H�

1; H�
3; A�

1 and A�
3 can be

easily assigned to one parameter, which is the value that the indi-
cial function tends to.

2.4. Numerical evaluation of the convolution integrals

One of the main problems of using the models presented above
to represent the self-excited aerodynamic forces in the time do-
main is that the time steps must be kept small to be able to eval-
uate the integral expressions with sufficient accuracy. This is
because the indicial or impulse-response functions often have a
considerably shorter rise time than the period corresponding to

the highest natural frequency of interest. Furthermore, the self-
excited forces depend on the motion history, but as has been
demonstrated by Borri et al. [32], only the recent part of the motion
history is important. Another approach that has been demon-
strated in [21,23,36] is to express the dynamic equilibrium in
state-space and introduce the integrals as state variables, which
implies that the integrals do not have to be evaluated explicitly,
but are solved by the numerical integration of the equilibrium
equations. In this section an alternative integration approach will
be presented. The approach utilizes the fact that additional time
steps will only be necessary when the indicial functions have a
shorter rise time than the shortest natural period of interest. This
implies that the response may be linearly interpolated into an axis
with a denser separation before the integrals are evaluated. The re-
sponse r is known in N points in the interval 0 6 s 6 t; each inter-
val, Ds, is subdivided into (M � 1) intervals, rendering the
following summation formula:Z t

tStart

Uðt � sÞrðsÞds ¼ Ds
2ðM � 1Þ

XN�1

n¼nStart

XM�1

m¼1
½rmUm þ rmþ1Umþ1�

rm ¼ Dr
m� 1
M � 1

� �
þ rn; Um ¼ U t � sn þ m� 1

M � 1
Ds

� �� �
Ds ¼ snþ1 � sn; Dr ¼ rnþ1 � rn; nStart � ðtStart=Dsþ 1Þ

ð23Þ
The efficiency of this approach clearly depends on the ratio of the
rise time of the indicial function and the period of the response.
When the rise time is shorter than the shortest natural period of
interest, the procedure is found to be very effective, while the pro-
cedure will be less effective when the rise time is longer than the
period of the response. Two examples are shown below, where
the same indicial function is used in both examples. A harmonic re-
sponse with a frequency of 0.5 rad/s is used in example one, while a
frequency of 2 rad/s is used in example two. The percentage differ-
ence of the exact solution and the numerical results obtained by the
trapezoidal rule and Eq. (23) is shown in Table 1

UðsÞ ¼ expð�10sÞ r1ðsÞ ¼ cosð0:5sÞ r2ðsÞ ¼ cosð2sÞ

In ¼
Z 10

0
UðsÞrnðsÞds ð24Þ

The results indicate that the approach suggested in Eq. (23) gives a
significant reduction of the necessary number of time steps and is
hence more computationally efficient than the trapezoidal rule. If
an error less than one percent is required, the number of time steps
may be reduced by a factor of 80 in example 1 and by a factor of 11
in example 2. In numerical calculations of the dynamic response of
structures it is frequently assumed that the necessary time step is
the period of the highest significant vibration mode divided by a
factor of 10. In [32–34] time steps of Ds = 0.001 s have been used.
This is a much smaller time step than is usually necessary in dy-
namic analyses of slender bridges with low natural frequencies.
The formulae presented above will result in that the time step does
not have to be reduced to evaluate the convolution integrals with
accuracy sufficient to avoid amplitude and phase distortion of the
self-excited forces.

2.5. A novel approximate method

An alternative to the unsteady models presented above is to use
quasi-steady theory to model the self-excited aerodynamic forces.
The traditional quasi-steady theory does not provide any aerody-
namic torsional damping, which, for some cross sections, will re-
sult in a significant underestimation of the flutter threshold [6].
However, it is shown in [6] that modified quasi-steady theory,
where curve fits providing a frequency-independent description

Table 1
Percentage difference of the exact solution and numerical results obtained by the
trapezoidal rule and Eq. (23).

Time step, Ds Example 1 Example 2

Trapezoidal (%) Eq. (23) (%) Trapezoidal (%) Eq. (23) (%)

0.5 400.3565 0.2486 405.0248 3.6431
0.2 107.5532 0.0671 108.9107 1.0614
0.1 31.3262 0.0195 31.6664 0.3122
0.05 8.2030 0.0051 8.2835 0.0819
0.02 1.3306 0.0007 1.3432 0.0133
0.001 0.0033 0.00003 0.3364 0.0033
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of the self-excited forces may approximate the experimental data
in the important reduced-frequency range with sufficient accuracy.
This is achieved if the experimental data for the aerodynamic
derivatives are locally approximated by the following expressions:

X�
i ðKÞ ¼ xið1=KÞ when i ¼ 1;2;5 and

X�
i ðKÞ ¼ xið1=KÞ2 when i ¼ 3;4;6 ð25Þ

where X e {P, H, A} and x e {p h a}. Inserting these expressions into
Eq. (1) provides the following frequency-independent definition of
the self-excited forces that may be used in both the time and fre-
quency domain.

qðSeÞ
y ¼ 1

2
qV2B p1

_ry
V
þ p2

B_rh
V

þ p3rh þ p4
ry
B
þ p5

_rz
V
þ p6

rz
B

� �

qðSeÞ
z ¼ 1

2
qV2B h1

_rz
V
þ h2

B_rh
V

þ h3rh þ h4
rz
B
þ h5

_ry
V
þ h6

ry
B

� �

qðSeÞ
h ¼ 1

2
qV2B2 a1

_rz
V
þ a2

B_rh
V

þ a3rh þ a4
rz
B
þ a5

_ry
V
þ a�

6
ry
B

� � ð26Þ

Here, pn, hn, an, n e {1, . . . , 6} are coefficients determined by fitting
the expressions defined in Eq. (26) to the experimental results in
the important frequency range. The disadvantage with the modified
quasi-steady approach presented in [6] and summarized above is
that it is only possible to approximate the aerodynamic derivatives
in one reduced-frequency range, which implies that some of the
natural frequencies of the aeroelastic system will not be properly
covered. Here, as a novel approach utilizing the left and right eigen-
vectors, it is suggested to uncouple the system of equations. This
implies that curves representing the experimental data can be fitted
at the reduced velocities corresponding to the natural frequencies
of the one degree of freedom system one by one. To uncouple the
system it is necessary to reduce the order of the differential equa-

tion. Introducing a state variable [37], ZðtÞ ¼ ½ _g g �T , the dynamic
equilibrium may be rewritten as

A _Z ¼ BZ

A ¼ 0 � ~M0

� ~M0 �ð~C� ~CaeðV ;xkÞÞ

" #
; B ¼ �M0 0

0 ð~K0 � ~KaeðV ;xkÞÞ

	 

ð27Þ

Here, ~M0; ~C0 and ~K0 represent the still-air modal mass, damping
and stiffness matrices, while ~Kae and ~Cae represent the aerodynamic
stiffness and damping matrices, respectively. The eigenvalue prob-
lem can then be expressed as follows:

BXk ¼ SkAXk; YkB ¼ SkYkA ð28Þ
Here, Xk is the right-hand eigenvector; Yk is the left-hand eigenvec-
tor, and Sk = ak + ixk is the eigenvalue. As can be seen from Eq. (27),
the aerodynamic damping and stiffness matrices are in general fre-
quency-dependent, which implies that the eigenvalue problem
must be solved by an iterative approach. If it is assumed that the
self-excited forces are most important for the resonant part of the
response, the system of equations may be uncoupled. This implies
that the aerodynamic stiffness and damping coefficients are as-
sumed constant at varying frequency and equal to the value at
the natural frequency of the corresponding one-degree-of-freedom
system. The approximation used for the aerodynamic derivatives A�

2

and A�
3 for the natural frequencies xk e {2, 3, 4} at a mean wind

velocity of 50 m/s corresponding to the reduced velocities
V̂ 2 f1:4;0:9;0:7g are shown in Fig. 2. As can be seen from the fig-
ure, the aerodynamic derivatives provide a model that is strictly
speaking frequency-dependent, which implies that apparently large
discrepancies between the frequency-independent approximation
and the aerodynamic derivatives may arise. However, the forces
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Fig. 2. Illustration of the approximations of the aerodynamic coefficients for three vibration modes. Each solid marker represents a reduced velocity or frequency
corresponding to the natural frequency of one of the vibration modes. The blue lines are curves representing the aerodynamic derivatives in the frequency domain, and the
black lines represent the approximations used for each complex vibration mode. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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proportional to the velocity are commonly most important in a fre-
quency range around the natural frequency for a single-degree-of-
freedom system, which indicates that the aerodynamic derivatives
associated to the structural velocities will not affect the background
turbulence part of the response significantly. The aerodynamic
derivatives linked to the displacements of the structure may, on
the other hand, affect the background turbulence part of the re-
sponse; but as will be demonstrated in the present case study, aero-
dynamic stiffness is for certain structural categories lower than the
structural stiffness, in particular for the high natural frequencies,
and may in that case result in insignificant inaccuracies. The sug-
gested method will therefore provide fairly accurate numerical re-
sults if the difference between the aerodynamic stiffness provided
by the frequency-independent approximation and the full fre-
quency-dependent model is smaller than the structural stiffness.
The equation of motion may hence be approximated as

~Ann ¼ YnAXn; ~Bnn ¼ YnBXn; ~Pn ¼ YnPðtÞ
~Ann _ynðtÞ ¼ ~BnnynðtÞ � ~PnðtÞ

ZðtÞ ¼
XN
n¼1

Xnyn

ð29Þ

This implies that a time domain solution is possible without the use
of convolution integrals to define the self-excited forces. The evalu-
ation of the convolution integrals is computationally demanding. A
case with 10 vibration modes implies that 100 combinations of
mode shapes have to be evaluated. Each combination involves nine
integral expressions, similar to the expression given in Eq. (9), for
each exponential filter. Compared to this the approach suggested
in this section requires much less computational effort.

3. Case study: The Hardanger Bridge

To evaluate the self-excited force models presented above, we
have selected the Hardanger Bridge displayed in Fig. 3, which is
currently under construction in Norway. The Hardanger Bridge will
become the longest suspension bridge in Norway and among the
top 10 longest suspension bridges in the world, with its total
length of 1380 m, including a main span of 1310 m. Since the
bridge will only have two traffic lanes and one lane for bicycles
and pedestrians, it is unusually narrow; the width of the girder is
18.3 m and the distance between the two cables only 14.5 m. An
eigenvalue analysis is carried out for the bridge subjected to dead
loads, applying the computer program ALVSAT [38]. A total of 24
(the first 8 horizontal, 8 vertical and 8 torsional) vibration modes
and corresponding undamped natural frequencies were extracted
(see [6] for further details).

3.1. Simulation of the wind field

The density of the air is assumed to be q = 1.25 kg/m3, and the
co-spectral densities of the wind field are assumed to be given by:

SþuuðxÞ ¼ 40:58Vzj
ð1þ 9:74xz=VÞ5=3

exp �1:4Dxx
V

� �

SþwwðxÞ ¼ 0:82Vzj
ð1þ 0:79xz=VÞ5=3

exp �Dxx
V

� �

SþuwðxÞ ¼ � 2:23Vzj
ð1þ 1:67xz=VÞ7=3

exp �Dxx
V

� � ð30Þ

Here, j is the roughness coefficient at the site, assumed to be
0.0031; z is the height above the ground, and Dx is the distance be-
tween the two points considered. The fluctuating wind velocities
have been simulated at 101 points along the girder by the use of
Monte Carlo simulations [39–41], with a cut-off frequency of
xu = 5 rad/s and Dx = 0.0002 rad/s. The time series at point m can
then be obtained by

xmðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Dx

p
Re

Xm
l¼1

XN
k¼1

LmlðxkÞ expðiðxk þ /lkÞÞ
 !

ð31Þ

Here, Lml(xk) is the elements in the factorised cross spectral density
matrix fulfilling the relation

SðxkÞ ¼ LðxkÞL�ðxkÞ ð32Þ
where the elements in S(xk) represent the cross spectral densities
of the fluctuating velocity components at the M points along the gir-
der. The time series of the fluctuating wind velocities at two points
with a separation of 117.9 m are shown in Fig. 4, and the average
co-spectral densities of 20 time domain simulations and the target
co-spectral densities defined in Eq. (30) are shown in Fig. 5. As can
be seen from the figure, the time domain simulations correspond
very well with the initial co-spectral densities.

3.2. The dynamic equilibrium

The vibration modes from still air are used as generalized coor-
dinates, which implies that the modal dynamic equilibrium condi-
tions may be defined by:

~M0€gþ ~C0 _gþ ~K0g ¼ ~Cae _gþ ~Kaegþ ~Fae þ ~Q Buff ð33Þ
Here, ~M0; ~C0 and ~K0 represent the modal mass damping and stiff-
ness matrices, and the vector g contains the generalized degrees
of freedom, gi. A matrix with a zero index indicates that the matrix
contains properties from still air, while the index ae implies that the
matrix contains aerodynamic properties. The vector ~Fae symbolizes

Fig. 3. Artist’s view of the Hardanger Bridge across the Hardanger Fjord (www.vegvesen.no, 2010).
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the history-dependent part of the self-excited forces, and the vector
~Q Buff represents the modal buffeting load vector. The elements in
the modal aerodynamic damping and stiffness matrices are given
by:

~CðaeÞ
ij ¼ 1

2
qV2 B

V
AðyyÞ
2 GðyyÞ

ij þ AðyzÞ
2 GðyzÞ

ij þ AðyhÞ
2 GðyhÞ

ij þ AðzyÞ
2 GðzyÞ

ij þ AðzzÞ
2 GðzzÞ

ij

�
þ BAðzhÞ

2 GðzhÞ
ij þ BAðhyÞ

2 GðhyÞ
ij þ BAðhzÞ

2 GðhzÞ
ij þ B2AðzyÞ

2 GðhzÞ
ij

�
ð34Þ

~KðaeÞ
ij ¼ 1

2
qV2 AðyyÞ

1 GðyyÞ
ij þ AðyzÞ

1 GðyzÞ
ij þ BAðyhÞ

1 GðyhÞ
ij þ AðzyÞ

1 GðzyÞ
ij þ AðzzÞ

1 GðzzÞ
ij

�
þ BAðzhÞ

1 GðzhÞ
ij þ BAðhyÞ

1 GðhyÞ
ij þ BAðhzÞ

1 GðhzÞ
ij þ B2AðzyÞ

1 GðhzÞ
ij

�
ð35Þ

respectively, while the elements in the vector ~Fae are defined by:

Fi ¼ 1
2
qV2

XNmod

i¼1

Z t

�1
GðyyÞ

ij wyyðt � sÞgn
i ðsÞ þ GðyzÞ

ij wyzðt � sÞgn
i ðsÞ

�
þ BGðyhÞ

ij wyhðt � sÞgn
i ðsÞ þ GðzyÞ

ij wzyðt � sÞgn
i ðsÞ

þ GðzzÞ
ij wzzðt � sÞgn

i ðsÞ
þ BGðzhÞ

ij wzhðt � sÞgn
i ðsÞ þ BGðhyÞ

ij whyðt � sÞgn
i ðsÞ

þ BGðhzÞ
ij whzðt � sÞgn

i ðsÞ þ B2GðhhÞ
ij whhðt � sÞgn

i ðsÞ
�
ds ð36Þ

Here, wnm, n, m e {y, z, h}, represents the indicial functions; gn
i sym-

bolizes the nth derivative of the response for generalized coordinate
i, and the mode shape integral GðnmÞ

ij is defined as

GðnmÞ
ij ¼

Z L

0
/ðnÞ

i ðxÞ/ðmÞ
j ðxÞdx ð37Þ

where / symbolises the vibration modes. Finally the elements in
the modal buffeting load vector can be expressed as:

~Qi ¼ qVB
2

Z L

0
/ðyÞ

i ðxÞ 2
D
B
CDuðx; tÞ þ D

B
C 0

D � CL

� �
wðx; tÞ

� �
dx

�

þ
Z L

0
/ðzÞ

i ðxÞ 2CLuðx; tÞ þ C 0
L þ

D
B
CD

� �
wðx; tÞ

� �
dx

þ
Z L

0
/ðhÞ

i ðxÞ 2BCMuðx; tÞ þ BC0
Mwðx; tÞ

� �
dx
�

ð38Þ

Here, u(x, t) and w(x, t) are the fluctuating velocity in the horizontal
and vertical direction, respectively.

3.3. Nonlinear curve fitting to the experimental data

Curve fits to the experimental data [42] when force models 1, 2
and 3 are used to model the self-excited forces are shown in Fig. 6
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Fig. 4. Time series of the fluctuating velocities at two points along the girder with a separation of 117.9 m; u is the along wind component, while w is the vertical component.
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The coefficient of determination, R2, for each of the models, in addi-
tion to the second-order polynomials representing the aerody-
namic derivatives in the frequency domain, are given in Table 2.
The curves representing H�

1 and H�
4 represent the experimental data

with apparently fair accuracy. Force models 1 and 2 presented in

Eqs. (8) and (12) provide fits to the data that are identical, and bet-
ter than those of force model 3 presented in Eq. (21). As can be seen
from the central figure, the force coefficients KH�

1 and K2H�
4 are al-

most frequency-independent for force models 1 and 2, providing
indicial functions with short rise time, while some frequency
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Fig. 6. Curve fits to the experimental data for force model 1 defined in Eq. (6), force model 2 defined in Eq.(11), force model 3 defined in Eq.(18) and force model 2 with quasi-
steady asymptotes provided by traditional quasi-steady theory.
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dependency can be seen for force model 3. Force model 3 provides
a less accurate fit to the data than models 1 and 2 since the optimal
fit is close to frequency-independent. This is difficult to model with
force model 3 since there is no ‘‘frequency-independent term’’ in
the expression for H�

4, which implies that low values of bizz and
high values of aizz provide the optimal least squares fit for a fre-
quency-independent case. This will result in an indicial function
with a long rise time, such that a very long time series has to be
considered before a steady-state solution of the self-excited forces
is achieved. All the models considered provide acceptable fits in
the range covered by the experimental data, but large discrepan-
cies can be seen in the low reduced-frequency range where exper-
imental data are not available. The traditional quasi-steady theory
[25], see also [5], is valid in the low reduced-frequency range. A
version of the force model suggested in this article (force model
2) is therefore added, where the coefficients A1 and A2 are provided
by traditional quasi-steady theory: AðzzÞ

1 ¼ 0 and AðzzÞ
2 ¼ �ðC0

Lþ
CDD=BÞ ¼ �2:53. This makes the curve fitting slightly more
complicated, in particular, since Azz

1 ¼ 0, which implies that the
coefficients in the exponential filters must represent H�

4. As can
be seen from Table 2, force model 2 with quasi-steady asymptotes
represents the experimental data for H�

1 with apparently fair accu-
racy, while the fitting of H�

4 is less accurate. All the curves repre-
senting H�

2 and H�
3 are acceptable. The force models considered

provide an equally good fit to H�
3, but as can be seen from the

curves representing K2H�
3, there are some differences at low re-

duced frequencies and in the range K e {1.4, . . . , 2}. The quality of
the fit to the experimental data of H�

2 is also satisfying. Force model
3 provides the highest coefficient of determination of the time do-
main models. The curves representing KH�

2 are very similar, but
force model 2 has a different quasi-steady asymptote than the
other models. A version of force model 2 with quasi-steady asymp-
totes predicted by traditional quasi-steady theory is also pre-
sented, assuming AðzhÞ

2 ¼ 0 and AðzhÞ
1 ¼ C0

L ¼ 2:4. As can be seen
from the coefficients of determination presented in Table 2, this
alternative provides a very good fit to the experimental data for
H�

3, while the coefficient of determination is lower than the other
alternatives for H�

2. The curves representing A�
1 and A�

4 are accept-
able. As can be seen from the figure, the curves are notably differ-
ent at low reduced velocities, and the quasi-steady asymptotes are,
in particular for KA�

1, clearly different. Also, for these load coeffi-
cients, a version of force model 2 with quasi-steady asymptotes
given by traditional quasi-steady theory has been investigated,
assuming AðhzÞ

2 ¼ 0; AðhzÞ
1 ¼ �C0

M ¼ �0:74. As can be seen from Table
2, this alternative provides a coefficient of determination for A�

1

that is higher than the other alternatives, while the coefficient of
determination for A�

4, is lower than when the coefficients AðhzÞ
2

and AðhzÞ
1 are determined by the least squares fit. The self-excited

force models considered provide very good fits to the experimental
data for A�

2 and A�
3. The coefficient of determination is almost as

high as the results achieved by the curves representing the aerody-
namic derivatives in the frequency domain. Force model 3 provides
results with slightly lower accuracy for A�

2 than the other alterna-
tives, and in the case of A�

3 all models are apparently equally

accurate. As can be seen from the curves representing KA�
2 and

K2A�
3, the quasi-steady asymptotes are fairly different, in particular

for KA�
2. When traditional quasi-steady theory has been used with

quasi-steady asymptotes assuming AðhhÞ
2 ¼ 0 and AðhzÞ

1 ¼ C0
M ¼ 0:74 a

least squares fit as accurate as the other alternatives is achieved.
The least squares fit for the different self-excited force models

can be summarized as follows: Force model 3 does not have ‘‘qua-
si-steady’’ terms in all the expressions for the aerodynamic deriv-
atives, which, as has been seen for H�

1, may be a disadvantage in
cases where the experimental data of the aerodynamic derivatives
provide a self-excited force model that is close to frequency-inde-
pendent. Force model 1 is robust and provides fits of good accuracy
for all the cases considered, but as has been shown in Eq. (10), the
quasi-steady asymptotes are dependent on the coefficients in the
exponential filters, which may be a disadvantage. The alternative
formulation suggested in Eq. (11) (force model 2) has provided
good fits for all the cases considered, and it has been shown that
the quasi-steady asymptotes may be easily assigned to values pre-
dicted by traditional quasi-steady theory. In most cases this will
give a least squares fit with slightly less accuracy since AðnmÞ

2 and
AðnmÞ
1 are fixed. The main problem with all the unsteady load mod-

els discussed in this section is that the curves representing the
experimental data are rather complicated, and since the same coef-
ficients are used for both the real and imaginary part of the transfer
functions, two sets of experimental data have to be curve-fitted
with the same coefficients. This implies that the least squares fit
of the time domain models will become less accurate than the fre-
quency domain approach with the aerodynamic derivatives, since
simple polynomial expressions may be used for each aerodynamic
derivative separately.

3.4. Dynamic response

The wind-induced dynamic response has been obtained using
the well-known Newmark’s integration method, applying b = 1/4
and c = 1/2; see, for instance, [43] for further details. The time step
Dt has been taken as 0.1 s, and the length of the considered time
series is 6000 s. In Fig. 7 the first 600 s of the wind-induced dy-
namic response at the mid-span of the Hardanger Bridge at a mean
wind velocity of 50 m/s is shown. Force model 3 is used to repre-
sent the self-excited forces. In Fig. 8 the standard deviations of
the horizontal, vertical and torsional responses at several mean
wind velocities are shown. The open circles represent the average
standard deviation from 20 time domain simulations; the solid
lines represent results calculated in the frequency domain using
force model 3. The dashed lines represent results obtained in the
frequency domain with the aerodynamic derivatives. As can be
seen from the figure, the Monte Carlo simulations have converged
since the standard deviations predicted by the time domain simu-
lations are very close to the frequency domain results. The results
for horizontal and vertical motions are very close to those pre-
dicted by the aerodynamic derivatives, while the torsional re-
sponse is underestimated, compared with the aerodynamic
derivatives. The average standard deviations of 20 time domain

Table 2
Coefficient of determination, R2, for the force models fitted to the experimental data.

Formulation zz zh hz hh

H�
1 H�

4 H�
2 H�

3 A�
1 A�

4 A�
2 A�

3

Aerodynamic derivatives 0.893 0.489 0.502 0.998 0.968 0.148 0.969 0.999
Force model 3, Eq. (21) 0.767 0.405 0.445 0.997 0.953 0.124 0.957 0.999
Force model 1, Eq. (8) 0.818 0.426 0.420 0.997 0.949 0.185 0.963 0.999
Force model 2, Eq. (12) 0.818 0.426 0.297 0.997 0.947 0.196 0.963 0.999
Force model 2 with quasi-steady asymptotes 0.789 �0.042 0.314 0.997 0.954 0.138 0.962 0.999
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simulations, considering all the self-excited force models pre-
sented in this article, are presented in Table 3. The response
predicted in the frequency domain using the aerodynamic deriva-
tives has been used as a benchmark since the aerodynamic deriv-
atives represent the experimental data with higher accuracy than
the other models. Force model 3 provides results with fair accuracy
with one exception, which is the torsional response at 20 m/s. The
formulation generally underestimates the response slightly. The
covariance coefficients of the response components estimated as
the mean value of 20 time domain simulations are presented in
Table 5, and the covariance coefficients obtained in the frequency
domain are provided in Table 6. Force model 3 provides covariance
coefficients with acceptable accuracy. When the time domain and
frequency domain results are compared, some discrepancies can be
observed, indicating that the Monte Carlo simulations have not en-
tirely converged. The co-spectral densities of the response compo-
nents at a mean wind velocity of 50 m/s are shown in Fig. 9 and as
can be seen from the figure; force model 3 captures the co-spectral
density of the horizontal and vertical components in good agree-
ment with the results predicted by the aerodynamic derivatives.
The estimate of the co-spectral density of the time domain simula-
tions has been obtained by the Welch algorithm and is in good
agreement with the frequency domain results. For the co-spectral

density of the vertical and torsional components, the estimate ob-
tained from the time domain simulations contains more scatter
than the other estimates, and as can be seen from the frequency
domain results, there are some discrepancies at low frequencies,
in particular. This is a frequency range that is not covered by the
experimental data, which implies that the covariance coefficient
of the horizontal and vertical response is uncertain. The estimated
co-spectral density of the vertical and torsional components corre-
sponds very well with the results obtained in the frequency do-
main using force model 3. There are some discrepancies in the
results from force model 3 and the aerodynamic derivatives at
the peak near 2 rad/s. This is the main source of the discrepancies
of the covariance estimates for the vertical and torsional response
at 50 m/s.

The standard deviation estimated using force model 1 agrees
well with the results predicted using the aerodynamic derivatives.
The time domain estimates presented in Table 3 are very close to
the corresponding frequency domain results given in Table 4,
which implies that the Monte Carlo simulation has converged.
The spectral densities of the response components at a mean wind
velocity of 50 m/s are shown in Fig. 10. The spectral densities of the
time domain simulations have been estimated by the Burg method.
As can be seen from the figure, force model 1 captures the spectral
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Fig. 7. Wind-induced dynamic response at the mid-span of the Hardanger Bridge at 50 m/s. The self-excited forces have been represented by force model 3.
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Table 3
Calculated standard deviation of the horizontal, vertical, and torsional response, using different self-excited force models. The standard deviation of the response predicted by the
aerodynamic derivatives in the frequency domain is given in the first cell. The mean values of the standard deviation of 20 time domain simulations are given in the next cells
together with the percentage difference in the results predicted by the aerodynamic derivatives in the frequency domain.

Mean wind velocity, V (m/s) 20 30 40 50 60 70

Aerodynamic derivatives Horizontal 0.17 0.39 0.73 1.19 1.76 2.44
Vertical 0.086 0.200 0.361 0.566 0.823 1.158
Torsional 0.0019 0.0046 0.0088 0.0152 0.0253 0.0454

Force model 3. Eq. (21) Horizontal 0.16 0.38 0.72 1.16 1.73 2.42
�3% �3% �1% �2% �2% �1%

Vertical 0.092 0.212 0.376 0.578 0.830 1.172
7% 6% 4% 2% 1% 1%

Torsional 0.0023 0.0046 0.0083 0.0137 0.0229 0.0460
25% 1% �7% �10% �10% 1%

Force model 1. Eq. (8) Horizontal 0.16 0.38 0.69 1.15 1.75 2.39
�1% �4% �6% �3% 0% �2%

Vertical 0.088 0.203 0.365 0.565 0.821 1.161
2% 1% 1% 0% 0% 0%

Torsional 0.0020 0.0044 0.0084 0.0143 0.0236 0.0426
6% �4% �5% �6% �7% �6%

Force model 2. Eq. (12) Horizontal 0.16 0.38 0.69 1.15 1.75 2.39
�1% �4% �6% �3% 0% �2%

Vertical 0.088 0.203 0.366 0.566 0.821 1.160
2% 1% 1% 0% 0% 0%

Torsional 0.0019 0.0044 0.0083 0.0140 0.0231 0.0418
5% �5% �7% �8% �9% �8%

Force model 2 with QSA Horizontal 0.16 0.38 0.69 1.15 1.75 2.39
�1% �4% �6% �3% 0% �2%

Vertical 0.097 0.215 0.380 0.586 0.840 1.199
13% 7% 5% 3% 2% 4%

Torsional 0.0019 0.0044 0.0083 0.0142 0.0239 0.0481
4% �4% �6% �7% �6% 6%

Decoupled system of equations. Eq. (28) Horizontal 0.16 0.38 0.74 1.16 1.71 2.43
�5% �3% 1% �3% �3% �1%

Vertical 0.085 0.198 0.357 0.560 0.813 1.143
�1% �1% �1% �1% �1% �1%

Torsional 0.0018 0.0044 0.0085 0.0146 0.0239 0.0429
�1% �5% �4% �4% �6% �5%

Table 4
Calculated standard deviation of the horizontal, vertical, and torsional response in the frequency domain, using the aerodynamic derivatives, force models 1, 2 and 3 and force
model 3 with quasi-steady asymptotes given by traditional quasi-steady theory.

Mean wind velocity, V (m/s) 20 30 40 50 60 70

Aerodynamic derivatives Horizontal 0.17 0.39 0.73 1.19 1.76 2,44
Vertical 0.09 0.20 0.36 0.57 0.82 1.16
Torsional 0.0019 0.0046 0.0088 0.0152 0.0253 0.0454

Force model 3. Eq. (21) Horizontal 0.17 0.40 0.74 1.20 1.77 2,46
1% 1% 1% 1% 1% 1%

Vertical 0.093 0.214 0.379 0.584 0.837 1.177
8% 7% 5% 3% 2% 2%

Torsional 0.0023 0.0047 0.0082 0.0137 0.0230 0.0457
23% 2% �7% �10% �9% 1%

Force model 1. Eq. (8) Horizontal 0.17 0.39 0.73 1.19 1.76 2,45
0% 0% 0% 0% 0% 0%

Vertical 0.089 0.206 0.367 0.573 0.830 1.170
3% 3% 2% 1% 1% 1%

Torsional 0.0020 0.0045 0.0085 0.0146 0.0243 0.0432
7% �2% �4% �4% �4% �5%

Force model 2. Eq. (12) Horizontal 0.17 0.39 0.73 1.19 1.76 2,44
0% 0% 0% 0% 0% 0%

Vertical 0.089 0.205 0.367 0.573 0.829 1.169
3% 2% 2% 1% 1% 1%

Torsional 0.0020 0.0045 0.0084 0.0143 0.0238 0.0430
7% �2% �5% �6% �6% �5%

Force model 2 with QSA Horizontal 0.17 0.39 0.73 1.19 1.76 2,44
0% 0% 0% 0% 0% 0%

Vertical 0.097 0.215 0.377 0.585 0.849 1.208
13% 7% 5% 3% 3% 4%

Torsional 0.0020 0.0045 0.0084 0.0144 0.0244 0.0483
5% �2% �4% �5% �4% 6%

O. Øiseth et al. / Computers and Structures 89 (2011) 1306–1322 1317



Table 5
Calculated covariance coefficients, using different self-excited force models. The covariance coefficients predicted using the aerodynamic derivatives in the frequency domain are
given in the first cell. The mean values of the covariance coefficients of 20 time domain simulations are given in the next cells together with the percentage difference in the
results predicted by the aerodynamic derivatives in the frequency domain.

Mean wind velocity, V (m/s) 20 30 40 50 60 70

Aerodynamic derivatives yz �0.18 �0.17 �0.17 �0.16 �0.16 �0.16
yh �0.051 �0.052 �0.053 �0.053 �0.052 �0.047
zh 0.2298 0.1998 0.1820 0.1643 0.1297 0.0728

Force model 3. Eq. (21) yz �0.17 �0.16 �0.16 �0.17 �0.18 �0.18
�7% �8% �4% 5% 10% 11%

yh �0.043 �0.045 �0.049 �0.059 �0.055 �0.042
�16% �15% �7% 11% 6% �10%

zh 0.1756 0.1831 0.1893 0.1843 0.1446 0.0415
�24% �8% 4% 12% 11% �43%

Force model 1. Eq. (8) yz �0.18 �0.16 �0.16 �0.17 �0.18 �0.18
�3% �5% �2% 5% 9% 11%

yh �0.052 �0.049 �0.053 �0.064 �0.065 �0.063
2% �5% 0% 22% 26% 34%

zh 0.2156 0.2028 0.1962 0.1891 0.1657 0.1362
�6% 2% 8% 15% 28% 87%

Force model 2. Eq. (12) yz �0.18 �0.16 �0.16 �0.17 �0.18 �0.18
�3% �5% �2% 5% 9% 11%

yh �0.053 �0.050 �0.053 �0.064 �0.064 �0.060
3% �5% 0% 21% 24% 28%

zh 0.2209 0.2061 0.1986 0.1918 0.1666 0.1297
�4% 3% 9% 17% 28% 78%

Force model 2 with QSA yz �0.16 �0.16 �0.16 �0.17 �0.17 �0.17
�12% �9% �4% 3% 9% 8%

yh �0.052 �0.047 �0.049 �0.057 �0.052 �0.040
2% �9% �7% 8% 1% �14%

zh 0.1948 0.1884 0.1837 0.1703 0.1305 0.0442
�15% �6% 1% 4% 1% �39%

Decoupled system of equations. Eq. (28) yz �0.18 �0.17 �0.17 �0.17 �0.17 �0.17
�1% �3% �1% 5% 8% 7%

yh �0.051 �0.042 �0.041 �0.048 �0.044 �0.037
0% �20% �22% �10% �15% �21%

zh 0.2256 0.1866 0.1670 0.1453 0.1001 0.0348
�2% �7% �8% �12% �23% �52%

Table 6
Calculated covariance coefficients in the frequency domain using the aerodynamic derivatives, force models 1. 2 and 3 and force model 3 with quasi-steady asymptotes given by
traditional quasi-steady theory.

Mean wind velocity, V (m/s) 20 30 40 50 60 70

Aerodynamic derivatives yz �0.18 �0.17 �0.17 �0.16 �0.16 �0.16
yh �0.05 �0.05 �0.05 �0.05 �0.05 �0.05
zh 0.23 0.20 0.18 0.16 0.13 0.07

Force model 3. Eq. (21) yz �0.17 �0.16 �0.16 �0.16 �0.16 �0.16
7% 6% 4% 2% �1% �1%

yh �0.041 �0.049 �0.053 �0.052 �0.048 �0.037
�21% �6% �1% �2% �8% �22%

zh 0.1785 0.1862 0.1895 0.1819 0.1466 0.0464
�22% �7% 4% 11% 13% �36%

Force model 1. Eq. (8) yz �0.18 �0.17 �0.16 �0.16 �0.16 �0.16
�3% �3% �2% �1% 0% 1%

yh �0.048 �0.054 �0.056 �0.056 �0.056 �0.054
�6% 3% 5% 7% 9% 16%

zh 0.2113 0.2028 0.1916 0.1796 0.1584 0.1265
�8% 2% 5% 9% 22% 74%

Force model 2. Eq. (12) yz �0.18 �0.17 �0.17 �0.16 �0.16 �0.16
�3% �2% �2% �1% 0% 1%

yh �0.048 �0.054 �0.056 �0.056 �0.055 �0.051
�6% 2% 5% 6% 7% 9%

zh 0.2149 0.2049 0.1943 0.1841 0.1616 0.1173
�6% 3% 7% 12% 25% 61%

Force model 2 with QSA yz �0.16 �0.16 �0.16 �0.16 �0.16 �0.15
�11% �6% �3% �1% �1% �2%

yh �0.048 �0.051 �0.052 �0.050 �0.045 �0.034
�7% �2% �2% �6% �13% �27%

zh 0.1928 0.1901 0.1826 0.1681 0.1276 0.0415
�16% �5% 0% 2% �2% �43%
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density of the horizontal and vertical response very well. The spec-
tral densities estimated from the time domain simulations corre-
sponds very well with the spectral densities for the horizontal

and vertical response obtained in the frequency domain with force
model 1, while some discrepancies can be seen for the peak of the
spectral density of the torsional response. Force model 1 provides
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Fig. 9. Comparison of the co-spectral densities of the response components at a mean wind velocity of 50 m/s, using the aerodynamic derivatives and force model 3 in the
frequency domain and force model 3 in the time domain. The time domain estimate has been obtained using the Welch algorithm.
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Fig. 10. Comparison of the spectral densities of the response components at a mean wind velocity of 50 m/s, using the aerodynamic derivatives and force model 1 in the
frequency domain and force model 1 in the time domain. The time domain estimate has been obtained using the Burg algorithm.
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Fig. 11. Comparison of the co-spectral densities of the response components at a mean wind velocity of 50 m/s, using the aerodynamic derivatives and force model 1 in the
frequency domain and force model 1 in the time domain. The time domain estimate has been obtained using the Welch algorithm.
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higher torsional damping than the aerodynamic derivatives, which
is the main reason for the discrepancies of the torsional response
presented in Table 3. The covariance coefficients obtained in the
time domain are presented in Table 5, and as can be seen, there
are some differences between the results predicted using the aero-
dynamic derivatives and force model 1. The co-spectral densities of
the response components at the mid-span at a mean wind velocity
of 60 m/s are shown in Fig. 11. The spectral densities estimated
from the time series correspond well with the spectral density ob-
tained in the frequency domain when force model 1 is used to
model the self-excited forces. The results in the tables indicate that
the estimates of the covariance coefficients are less accurate than
the estimates of the standard deviations. This is mainly because
the correlation of the response components is rather low, and as
can be seen from the co-spectral density of the vertical and the tor-
sional components, small differences of the co-spectral densities
will result in a large error in the estimate.

Force model 2 provides response estimates of satisfying accu-
racy. The standard deviation estimated from the time domain sim-
ulations in Table 3 corresponds well to the frequency domain
results provided in Table 4 and is also in good agreement with
the results predicted by the aerodynamic derivatives. The same
inaccuracies of the estimates of the covariance coefficients can also

be observed for this force model. When the quasi-steady asymp-
totes from traditional quasi-steady theory are introduced, it can
be seen from Table 3 and Table 4 that results of good accuracy
are also achieved for this force model.

To further compare the unsteady time domain models used in
this article, the spectral densities of the response components pre-
dicted by the unsteady models at a mean wind velocity of 50 m/s is
shown in Fig. 12. As can be seen from the figure, the spectral den-
sities do not seem to be sensitive to the discrepancies of the self-
excited force models observed in the low reduced frequency range
in Fig. 6. The differences are at the peaks of the spectral densities
where the curves representing the experimental results are actu-
ally more consistent than in the high and low reduced-frequency
range. The co-spectral densities of the response components are
shown in Fig. 13. The co-spectral density of the horizontal and ver-
tical components are identical for all of the self-excited force mod-
els, while some discrepancies can be observed at low frequencies
for the co-spectral densities of the horizontal and torsional compo-
nents. The co-spectral density of the vertical and torsional motion
is consistent for all of the self-excited force models considered, but
some discrepancies can be observed at the peak near 2 rad/s.

The standard deviation estimated as the average of twenty time
domain simulations when the frequency-independent description
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Fig. 12. Comparison of the spectral densities of the response components obtained in the frequency domain at mean wind velocity of 50 m/s using force models 1, 2 and 3
and force model 2 with quasi-steady asymptotes provided by traditional quasi-steady theory.
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Fig. 13. Comparison of the co-spectral densities of the response components obtained in the frequency domain at mean wind velocity of 50 m/s, using force model 1, 2 and 3
and force model 2 with quasi-steady asymptotes provided by traditional quasi-steady theory.
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of the self-excited forces outlined in Eqs. (27) and (29) is used to
model the self-excited forces is also shown in Table 3. As can be
seen from the results, this simplified method provides results as
accurate as the more complicated models outlined above. The
spectral densities of the response components at the mid-span at
a mean wind velocity of 50 m/s are shown in Fig. 14. The results
predicted by this method provide spectral densities that are very

similar to the frequency domain results using the aerodynamic
derivatives. The peaks where the load coefficients have been ob-
tained are accurately captured. For the torsional response small
discrepancies in the results may be observed at low frequencies.
The co-spectral density of the response components are shown in
Fig. 15. The peaks in the co-spectral densities are accurately
captured except for the peak at about 3 rad/s for the co-spectral
density of the horizontal and torsional components. Some discrep-
ancies of the co-spectral densities at low frequencies can also be
seen.

It is also interesting to investigate the stability limit predicted
by the different self-excited force models discussed in this article.
The multimode stability limits for the Hardanger Bridge given by
the different self-excited force models are presented in Table 7.
As can be seen from the results, all the self-excited force models
provide stability limits consistent with the results predicted using
the aerodynamic derivatives.

4. Concluding remarks

The wind-induced dynamic response of the Hardanger Bridge,
emphasizing time domain modeling of self-excited forces, has been
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Fig. 14. Comparison of the spectral densities of the response components at mean wind velocity of 50 m/s obtained in the frequency domain, using the aerodynamic
derivatives, and in the time domain, using the uncoupled frequency-independent method presented in Eqs. (27) and (29).
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Fig. 15. Comparison of the co-spectral densities of the response components at mean wind velocity of 50 m/s obtained in the frequency domain, using the aerodynamic
derivatives, and in the time domain using the uncoupled frequency-independent method presented in Eqs. (27) and (29).

Table 7
Calculated critical frequencies and mean wind velocities when the different load
formulations discussed in this article have been used to model the self-excited forces.

Formulation Critical velocity
VCR (m/s)

Critical frequency
xCR (rad/s)

Aerodynamic derivatives 79 1.63
Force model 3 Eq. (21) 77 1.68

�3% 3%
Force model 1, Eq. (8) 79 1.62

0% 0%
Force model 2. Eq. (12) 79 1.63

�1% 0%
Force model 2 with

quasi-steady asymptotes
76 1.68
�3% 3%

Decoupled system of
equations. Eq. (28)

79 1.63
0% 0%
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carefully evaluated in this paper. The self-excited forces have been
modeled by two commonly applied unsteady force models, an un-
steady model suggested in this article and a novel approximate
method introduced and explained herein. The unsteady models
may be considered as merely a Fourier transform of curves repre-
senting the aerodynamic derivatives in the frequency domain and
do not introduce any inaccuracies, compared with a frequency do-
main solution. However, since the nature of the unsteady models
implies that two sets of data, representing the imaginary and the
real part, have to be curve fitted using the same coefficients, the
unsteady time domain methods will normally provide fits to the
experimental data of lower accuracy than the curves used in the
frequency domain. Significant differences in the results predicted
by the considered unsteady models have been observed. The un-
steady force model suggested in this article provided results of
good accuracy, and it has been shown that the quasi-steady
asymptotes provided by traditional quasi-steady theory may easily
be introduced in this model. The results presented illustrate that
the response spectra are very sensitive to changes in the curves
representing the experimental data of the aerodynamic derivatives
in the reduced-frequency ranges corresponding to natural frequen-
cies, in particular for H�

1 and A�
2, while the response spectra seem to

have very low sensitivity to changes in the curves in the low re-
duced-frequency range. For the co-spectral densities of the re-
sponse components, the same sensitivity at reduced velocities
corresponding to the natural frequencies is observed, in addition
to an apparently high sensitivity of the co-spectral density of the
horizontal and torsional response in the low reduced-frequency
range. The integration method suggested for the unsteady models
significantly reduced the number of time steps necessary to evalu-
ate the convolution integrals with sufficient accuracy to avoid
phase and amplitude distortion of the self-excited forces.

The approximate approach introduced and explained in this
article provided standard deviations of very high accuracy. The re-
sults are better than some of the unsteady models used in this arti-
cle. The main reason for this is that the coefficients used to
describe the self-excited forces are determined such that self-ex-
cited forces related to each natural frequency are accurately mod-
eled. Since the spectral densities of the response components have
low sensitivity to the quasi-steady asymptotes, the spectral densi-
ties of the response components are accurately captured for the en-
tire frequency range.
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Abstract 
In this paper it is shown how unsteady self-excited aerodynamic forces modelled by 
rational functions can be introduced into a finite element beam model, using the nodal 
displacement degrees of freedom of the element to characterize the aeroelastic system. 
The time-dependent part of the self-excited forces is obtained introducing additional 
degrees of freedom in each node, so-called aerodynamic degrees of freedom. The 
stability limit and buffeting response obtained in the time domain, using different shape 
functions to discretise the self-excited forces, are compared with results predicted by a 
traditional multimode approach. It is concluded that both the stability limit and the 
buffeting response can be obtained using this aeroelastic element, which implies that 
structural nonlinearities may be more easily introduced in time-domain analysis of the 
wind-induced buffeting response.  
 
Key words: Cable-supported bridges, wind loading, aerodynamic derivatives, flutter, 
FEM 
 

1 Introduction 
Wind-induced dynamic response is one of the major concerns when designing long-
span bridges. The wind loading may cause unfavourable vibration of the girder, cables, 
and towers and has to be taken into account in both the ultimate- and serviceability limit 
states. The wind-induced vibration phenomena of bridges are commonly divided into (i) 
vortex-shedding-induced vibration, (ii) buffeting vibration and (iii) flutter vibration. 
Vortex shedding typically occurs at low mean wind velocities, while buffeting and 
flutter vibration occurs in strong winds. The present state of the art assumes that vortex-
induced vibration may be treated separately from the buffeting and flutter vibration, 
which is a reasonable assumption for common bridges since these phenomena occur at 
quite different mean wind velocities. [1-7] 
 
The self-excited forces in bridge engineering are commonly modelled by experimentally 
determined aerodynamic derivatives, as suggested by Scanlan and Tomoko [8]. The 
experimental data can be conveniently used directly in the frequency domain to obtain 
the buffeting response and stability limit of the aeroelastic system. The present state of 
the art is the multimode approach, where selected still-air vibration modes are used as 
generalized coordinates to characterize the aeroelastic system. [6, 9-12]. Since long-
span cable-supported structures are highly nonlinear in nature, a nonlinear approach has 
to be used in the analysis. In the frequency domain this can be circumvented by 



2 
 

performing the static analyses using a nonlinear approach, and performing a linear 
dynamic analysis around the dead load equilibrium condition. However, as cable-
supported bridges become slenderer, a nonlinear dynamic approach may become 
necessary. Structural nonlinearities may be taken more easily into account in the time 
domain than in the frequency domain, which implies that time-domain modelling of 
self-excited forces will become more important in the future. Several papers on 
modelling self-excited forces using rational or indicial functions in time domain have 
been published, e.g., [13-18]. However, it is still common to obtain the dynamic 
response or the stability limit using still-air vibration modes as generalized coordinates. 
When material and geometric nonlinearities are considered, it is a clear advantage to 
perform the calculations using the degrees of freedom of the finite element model 
directly. There are studies where the element degrees of freedom have been used when 
assessing the wind-induced dynamic response, e.g., [19-24], but in these articles quasi-
steady models have been used to quantify the self-excited forces. There are also 
examples where the element degrees of freedom have been used to obtain the flutter 
stability limit, e.g., [25-27]. Here the traditional complex eigenvalue approach has been 
used for the full system, and the self-excited forces have been modelled directly with 
experimentally determined aerodynamic derivatives. 
 
In this paper it is shown how self-excited forces may be modelled in time-domain 
buffeting response analysis using the nodal displacement degrees of freedom instead of 
using the still-air vibration modes as generalized coordinates. The self-excited forces 
have been modelled using rational functions, and the time-dependent part of the self-
excited forces have been modelled by introducing additional degrees of freedom, termed 
in the following aerodynamic degrees of freedom, at each end of traditional beam 
elements. Several alternative element models have been considered, including a 
consistent model where the same shape functions have been used to characterize the 
structural and aerodynamic properties of the beam element and hybrid models, where 
different shape functions have been used to characterize the structural and aerodynamic 
properties. The stability limit of an idealized model of the Hardanger Bridge has been 
calculated using the approach suggested in this paper, and the predicted values are 
compared with the result provided by a traditional multimode approach. The damping at 
varying mean wind velocities has also been carefully studied and compared with results 
from the multimodal analysis. Furthermore, the buffeting response at several mean wind 
velocities has been obtained in time domain, and the results have been compared with 
the traditional frequency domain multimode approach. 
 
The approach suggested in this paper implies that it is possible to model the time 
dependency of self-excited forces using the nodal degrees of freedom of a finite element 
model of a cable-supported bridge. This implies that structural nonlinearities may be 
taken easily into account. However, the aerodynamic model must be linear, since the 
self-excited forces have been obtained using the principle of superposition. As long as 
the mean value of the torsional deformation is taken into account when the aerodynamic 
derivatives are obtained, and the response is within the limits of linearised aerodynamic 
theory, structural nonlinearities can be accurately modelled using the approach 
suggested in this paper. The linear aerodynamic model will provide accurate results 
during large horizontal and vertical motions, but should be used with care if torsional 
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deformations become larger than the values considered in wind tunnel experiments. 
Models exist for large angles of attack, see for instance [28, 29], but only linear 
aerodynamic models will be discussed in this paper since linear theory is most 
commonly used. 

2 Theory 

2.1 Modelling of self-excited forces – a review 
The self-excited forces acting on a bridge deck section are commonly represented by 
aerodynamic derivatives introduced in bridge engineering by Scanlan and Tomoko [8]. 
For a two-dimensional bridge deck section (see Figure 1) this can be expressed as: 
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Here, V is the mean wind velocity; � is the air density; B is the width of the cross 
section; K=B�/V is the reduced circular frequency of motion, and rn, n�{y, z, 
} 
represents the horizontal, vertical and torsional displacements that are positive in the 
same direction as the forces displayed in Figure 1.  Pn

*, Hn
*, An

* n�{1, 2,…6} are the 
dimensionless aerodynamic derivatives, which are characteristic cross-sectional 
properties given as functions of the reduced-frequency of motion.  Eq. (1) is only valid 
for a single-frequency harmonic motion. However, by introducing the principle of 
superposition Eq. (1) can be extended to any periodic or aperiodic motion applying 
Fourier integral representation: 
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which may be further simplified to: 
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Figure 1: Aerodynamic forces acting on the cross section of the study bridge deck. 
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Here, n�{y, z, 
}; i is the imaginary unit, and GX(�) is the Fourier transform of X(t), 
where X(t) � {ry, rz, r
, qy, qz, q
}, and Fnm(�) symbolizes the transfer functions defined 
in terms of the aerodynamic derivatives, which in this representation are treated as 
continuous functions of frequency. As shown for instance by [30], the time-domain 
description of self-excited forces can be obtained applying the inverse Fourier 
transform. This results in the following equation: 
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Here, n�{y, z, 
}. The aerodynamic impulse-response functions can be obtained by the 
inverse Fourier transform of the aerodynamic transfer functions defined in terms of the 
aerodynamic derivatives in Eq. (2). The aerodynamic derivatives are commonly known 
at discrete reduced frequencies and hence must be approximated with a curve fit. To be 
able to develop a time-domain representation of self-excited forces, the selected 
expression must be suitable for inverse Fourier transforming. The following expression 
has frequently been used in the literature, e.g., [6, 18, 30, 31], here exemplified by the 
vertical self-excited force due to the vertical motion: 
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This expression provides the following relation between the transfer function and the 
experimental data of the aerodynamic derivatives, here exemplified by, H1

* and H4
*  
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Taking the inverse Fourier transform of the transfer function defined in Eq.(5) and 
inserting the resulting expression into Eq. (4) renders the following expression for the 
vertical self-excited force induced by vertical motion: 
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2.2 Finite element representation of self-excited forces 
The starting point is the beam element displayed in Figure 2. The element has two 
nodes, each with six degrees of freedom. This implies that the displacements along the 
element are defined by the following displacement field: 
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Figure 2: A three-dimensional structural beam element with 6 degrees of freedom at each end node 
 
Here, t is time; x is the (local) element coordinate (see, for instance, [32]), and the 
vector u(x,t) contains the displacements along the beam element, where ux symbolizes 
the longitudinal displacement, uy, the transverse horizontal displacement uz, the 
transverse vertical displacement and, u�, the rotation of the beam element. The matrix 
N(x) contains the shape functions, and the vector v contains the nodal displacement 
degrees of freedom. The derivation of the mass, damping and stiffness matrices and the 
load vector is well established and will not be dealt with here, but may be found in 
several textbooks, e.g., [32-34].  However, it is necessary to explain how the self-
excited forces may be introduced into the finite element formulation. The self-excited 
nodal forces, Fse, may be obtained by the principle of virtual work:  
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Here, � v symbolizes the virtual nodal displacements, and the vector q(x,t) contains the 
self-excited forces along the element, i.e.: 
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Since the self-excited load in, for instance, the vertical direction is dependent on the 
horizontal vertical and torsional response, each element in the vector is given by 

( ) ( ) ( ) ( )( , )Se Se Se Se
n ny nz nq x t q q q �	 � � , where n�{y, z, 
}. The self-excited forces may be 

approximated by the following expression (see Eq. (7)): 
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The content of the matrices A1, A2 A1 and �l is given in Appendix A. The self-excited 
force acting in each degree of freedom may then be expressed as follows: 
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The expression can be rewritten as: 
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The matrices aeK  and aeC  are referred to as aerodynamic stiffness and aerodynamic 
damping matrices, respectively. The vector Z contains the time-history-dependent 
terms. It is time-consuming to evaluate the convolution integrals numerically. However, 
this can be avoided by introducing the convolution integrals as unknown in the system 
of equations. Considering the two-node beam element displayed in Figure 2, the 
expression for Z may be rewritten as follows: 
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Here, N is the number of exponential filters used in Eq. (5) to model the self-excited 
forces. The contents of the matrices Wn and the vector xn are given in Appendix A. The 
vector xn contains convolution integrals, which can be generalized as: 
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Here, n�{y,z,�}, m�{y,z,�} and o�{1,2…,12}. Additional equations are needed if the 
elements in the vector X are introduced as unknowns in the system of equations. These 
equations can be obtained by taking the derivative of Eq. (15): 
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In Figure 3 the aerodynamic degrees of freedom needed to model the self-excited forces 
for one exponential filter are shown. Self-excited forces related to axial displacements 
of the element have been neglected. This implies that the equations of motion for the 
aeroelastic beam element may be written as: 
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Figure 3: The aerodynamic degrees of freedom needed for a consistent aeroelasic beam element when 
using one exponential filter to model the self-excited forces in the vertical and horizontal direction and in 
torsion. The self-excited forces due to axial motion have been neglected. 
 
The total number of degrees of freedom for the element is the sum of the displacement 
degrees of freedom displayed in Figure 2 and the aerodynamic degrees of freedom 
related to the self-excited forces displayed in Figure 3, multiplied by the number of 
exponential filters. This implies that if the self-excited forces related to horizontal, 
vertical, and torsional motion are approximated using two exponential filters in Eq. (5), 
the total number of degrees of freedom will become 12 30 2 72dofN 	 �  	 . This number of 
degrees of freedom may seem high, but this approach requires far less computational 
effort than solving the 60 convolution integrals numerically in each time step. The 
element model displayed in Figure 3 is consistent, which implies that the same shape 
functions are used to develop all the terms in the equation of motion for the element. 
 

 
Figure 4: Three types of shape functions used in this paper. The shape functions in the first column are 
the ones used to obtain the mass and stiffness matrix. The two other columns contain shape functions that 
have been used to obtain the coefficients related to the self-excited forces if the Hermittian shape 
functions have not been used. 
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The shape functions often used to develop the equation of motion for beam elements 
related to the degrees of freedom in the left node of the element are displayed in the left 
column in Figure 4. The number of degrees of freedom necessary to model the time 
history-dependent part of the self-excited forces can be effectively reduced by 
simplifying the displacement field defined in Eq.(8). If the displacements along the 
element are assumed to be given only by the displacement degrees of freedom in 
addition to the torsional degree of freedom in each node, the number of degrees of 
freedom for the example above will become 12 18 2 48dofN 	 �  	 . This assumption implies 
that a linear variation along the element, as displayed in column 2 in Figure 4 or a 
lumped variation as displayed in column 3 in Figure 4, can be modelled. The  
aerodynamic degrees of freedom must be taken into account when the system of 
equations for the global model is established. The displacements at a node that two 
beam elements have in common are equal. When the aerodynamic degrees of freedom 
displayed in Figure 3 and defined in Eq.(15) are considered, it is seen that if the two 
neighbour elements have the same aerodynamic properties, the degrees of freedom will 
have the same values for both elements. This implies that the commonly applied 
assembly technique may be used for the aerodynamic degrees of freedom related to the 
self-excited forces. 

3 Numerical results and verification 
 The simply supported beam shown in Figure 5 is used as a benchmark in the following 
case study. The properties of the beam are taken such that the beam represents an  
idealized model of the Hardanger Bridge [6]. The length of the beam L is taken as 1310 
m, and the width B is assumed to be 18.3 m. The distributed mass is taken as 

12820kg / mm 	 , and the moment of inertia about the longitudinal axis is assumed
2426000 kgm / mPI 	 . The elastic properties are taken as 1110EA N	 , 14 23.9 10yEI Nm	  , 

13 26.2 10zEI Nm	  , 11 23.6 10xGI Nm	  , where E is the modulus of elasticity; G is the shear 
modulus; A is the cross sectional area, and In is the second moment of area about the n 
axis, where n�{y, z}. The undamped horizontal, vertical and torsional vibration modes 
are given by: 

 ( ) sin( )m
nx x
L
!" 	  (19) 

 

 
 

Figure 5: Idealized model of the Hardanger Bridge. The mass and stiffness properties have been taken 
such that the natural frequencies of the first horizontal, vertical and torsional vibration modes correspond 
to those of the Hardanger Bridge. The length of the beam is assumed to be 1310 m. 
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Table 1: Natural frequencies and damping ratios for the five first horizontal (H), vertical (V), and 
torsional (T) vibration modes of the idealized model of the Hardanger Bridge.  
 

Mode: Type: Frequency  
� rad/s 

Damping ratio 
#  

1 H 0,40 0,005 
2 V 1,00 0,004 
3 H 1,60 0,004 
4 T 2,20 0,005 
5 H 3,60 0,008 
6 V 4,00 0,008 
7 T 4,40 0,009 
8 H 6,41 0,013 
9 T 6,60 0,013 
10 T 8,80 0,018 
11 V 9,01 0,018 
12 H 10,01 0,020 
13 T 11,01 0,022 
14 V 16,02 0,032 
15 V 25,03 0,050 

 
Here, m�{y,z,�} , n�{1,2,3…}. The natural frequencies and damping ratios of the first 
five horizontal, vertical and torsional vibration modes are given in Table 1. The mass 
and stiffness matrices of the elements are obtained using Euler-Bernoulli beam theory 
[32, 33]. This implies that the shape functions for the structural element are third degree 
Hermittian polynomials, which have been plotted in the left column in Figure 4. Four 
different elements have been developed and tested (see Table 2). Element 1 uses the 
Hermittian shape functions to obtain the aerodynamic elemental matrices aeK , aeC  and Q . 
For element 2, a linear approximation has been used to develop Q , and for element 3 a 
linear approximation has been used to develop aeK , aeC  and Q , while a lumped 
approach has been used to develop aeK , aeC  and Q  in the case of element 4. The 
approximation introduced to develop element 4 actually indicates that the self-excited 
forces are lumped in the nodal points at each element end. As can be seen in Figure 4 
the displacements along half the element length are then assumed to be equal to the 
response at the corresponding node. 
 
The aerodynamic properties of the cross section of the Hardanger Bridge displayed in 
Figure 1 have been assumed in the current study. The experimental results of the 
 
Table 2: The four elements tested in this paper. HP stands for Hermittian polynomials; LIN represents 
linear shape functions, while LUMP implies that the self-excited forces have been “lumped” to each 
element end. Rayleigh damping has been used to represent still-air damping. 
 

Element 1 2 3 4 
Mass and stiffness matrices HP HP HP HP 
Aerodynamic mass and 
stiffness matrices HP HP LIN LUMP 

Additional state variables HP LIN LIN LUMP 
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Figure 6: Curve fits of the rational functions defined in Eq.(5) to the experimentally determined 
aerodynamic derivatives. The wind tunnel data, marked by circles and dots, are from [35]. 
 
aerodynamic derivatives have been obtained by free vibration tests with a scaled section 
model [35]. Curve fits of the rational functions to the experimental data of the 
aerodynamic derivatives using four exponential filters are displayed in Figure 6. Since 
aerodynamic derivatives related to horizontal motion are not available, quasi-steady 
values have been assumed for the following aerodynamic derivatives: 
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where the static force coefficients from [35] are 0.70DC 	 , 0DC$ 	 , 0.25LC 	 
 ,                            

2.4LC$ 	 , 0.01MC 	  and 0.74MC$ 	 . For simplicity the still-air damping of the structure has 
been modelled by Rayleigh damping, assuming a still-air damping matrix given by

� �410 34 40
	  �  C M K . 

3.1 Stability limit 
The stability of the aeroelastic system can be studied by considering its eigenvalues, 
(see for instance [6, 7, 36, 37]). The eigenvalue problem may be solved by linearization 
of the aeroelastic system defined below 
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The eigenvalues of the system will in general be of the form n n nS i% �	 � . A zero 
imaginary part, 0n� 	  , implies that the response is non-periodic in nature, while a 
nonzero imaginary part indicates that the response has an oscillatory nature. A positive 
real part implies that the system is unstable, while a negative real part implies that the 
system is stable. This implies that the flutter stability limit can be defined as the velocity 
providing a zero real part for one of the eigenvalues.  
 
The stability limit is evaluated using varying element lengths. Each finer mesh is a 
regular subdivision of the preceding mesh, implying that the nodes of the coarser mesh 
are preserved while new nodes and elements are added. The calculated stability limits 
provided by the element models presented in Table 2, considering different element 
lengths, have been plotted in Figure 7. As can be seen from the results, all the elements, 
except element 4, overestimate the stability limit when a coarse mesh is used. This is 
because few elements result in an overestimated torsional frequency and thus a larger 
stability limit. However, the results converge to the same solution when the number of 
elements is increased, and the converged solution corresponds very well with the results 
obtained using the still-air vibration modes as generalized coordinates to characterize 
the aeroelastic system. A result that might seem surprising is that the lumped 
formulation (element 4) seems to provide results that are more accurate than the more 
comprehensive alternatives where more aerodynamic degrees of freedom are used to 
model the self-excited forces. The stability limit obtained using element 4 does not 
provide monotonic convergence. The stability limit is underestimated using a very 
 

 
Figure 7: Calculated critical velocities considering different element formulations and element lengths. 



12 
 

coarse mesh (only two or four elements), while it is overestimated using denser element 
nets (eight or sixteen elements). This is because the lumped formulation overestimates 
the self-excited forces, and the torsional stiffness is overestimated using a coarse mesh, 
which implies that the two inaccuracies partially cancel each other out. This implies that 
it is possible that the lumped alternative will underestimate or overestimate the stability 
limit for some combinations of aerodynamic and structural properties. However, the 
result will converge to the “exact” solution when the number of elements is increased. 
Element 3 provides the results with lowest accuracy. This is because the self-excited 
forces are underestimated. Elements 1 and 2 provide almost the same results, implying 
that the additional aerodynamic degrees of freedom applied in element 1, compared 
with element 2, may seem unnecessary.  However, this will not be the case if the time-
dependent part of the self-excited forces is larger relative to the quasi-steady part than 
the case tested in this paper. 
 
The critical frequencies obtained considering different element lengths have been 
plotted in Figure 8. As can be seen from the results, the critical frequency is 
overestimated for all the cases considered, except element 4, which underestimates the 
critical frequency using only two elements. However, element 4 provides results of best 
accuracy for the critical frequencies using a coarse mesh. The critical frequencies 
provided by element 1 and 2 are almost equally accurate. Elements 3 and 4 also provide 
results of almost equal accuracy. It can be concluded that all the alternatives tested in 
this section provide critical velocities and frequencies of good accuracy using rather few 
elements to model the structure. The converged critical velocities and frequencies 
correspond very well to the results obtained using the first 15 still-air vibration modes 
as generalized coordinates. The in-wind frequencies corresponding to the first 
horizontal, vertical and torsional still-air vibration modes provided using element 2 are 
shown in Figure 9. The structure has been modelled using 64 elements. The results 
obtained using the first five horizontal, vertical and torsional vibration modes as 
generalized coordinates are also given in the figure. Likewise, the total damping of the 
 

 
Figure 8: Calculated critical frequencies considering different element formulations and element lengths. 
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Figure 9: The in-wind frequencies of the vibration modes corresponding to the first horizontal (H), 
vertical (V) and torsional (T) still-air vibration modes. The circles represent results obtained by the finite 
element solution (Element 2), while the solid lines represent results obtained using the 15 first still-air 
vibration modes as generalized coordinates to characterize the aeroelastic system. 

 
Figure 10: Total damping for the vibration modes corresponding to the first horizontal (H), vertical (V) 
and torsional (T) still-air vibration modes. The circles represent results obtained by the finite element 
solution (Element 2) while the solid lines are the solution obtained using the first 15 still-air vibration 
modes as generalized coordinates. 
 
vibration modes are displayed in Figure 10.  As can be seen from the figures, the results 
obtained using the finite element approach correspond very well to the results obtained 
by the multimode approach. Excellent results are obtained for the in-wind frequencies 
corresponding to the horizontal, vertical and torsional vibration modes from still air. 
The total damping ratios of the first horizontal, vertical and torsional vibration modes 
provided by the element model correspond very well to the results obtained using still-
air vibration modes from still air as generalized coordinates. However, some 
discrepancies can be seen for the vertical branch close to the stability limit. 
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3.2 Wind-induced buffeting response 
The cross-spectral densities of the wind field are assumed to be given by: 
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 (23) 

 
Here, ( )uuS �� is the cross-spectral density of the along-wind component u(t) at two points 
along the beam with separation x� ; likewise ( )wwS ��  is the cross-spectral density of the 
vertical across-wind component w(t), while ( )uwS �� is the cross-spectral density of u(t) 
and w(t) at the two points. The height above ground is denoted z and is taken as 50 m, 
while &  is the roughness coefficient at the site, which is assumed to be 0.0031. Time 
series of the fluctuating turbulence components at 101 points along the beam are 
obtained by Monte Carlo simulations [22, 38, 39], with a cut-off frequency of �u=5 
rad/s and ��=0.0002 rad/s. The time series at point m can then be obtained by 
 

 � �
1 1

( ) 2 Re ( ) exp ( )
m N

m ml k k lk
l k

x t L i� � � "
	 	

� �	 � �� �

 �
��  (24)  

 
Here, Lml(�k) denotes the elements of the lower triangular matrix obtained by 
factorising the cross-spectral density matrix according to the relation  
 
 *( ) ( ) ( )k k k� � �	S L L  (25) 
 
where the elements in S(�k) represent the cross-spectral densities of the fluctuating 
velocity components at the 101 points along the girder. An example of simulated time 
series is shown in Figure 11. The average co-spectral densities of the turbulence 
components at two points 131m apart, estimated from 20 time series of length 6000s, 
are shown in Figure 12 together with the target spectral density. As can be seen from the 
figure, the simulated time series corresponds very well to the assumed spectral densities 
given in Eq.(23). A contour plot of the fluctuating velocities in the along direction V+u, 
where V is the mean value, and u is the fluctuating component, is shown in Figure 13. 
The mean wind velocity is 40 m/s. Likewise, the fluctuating vertical turbulence 
component, w, is displayed in Figure 14. As can be seen from the figures, the 101 points 
represent the velocity fluctuations along the girder rather well. As expected, the along-
wind component is dominated by harmonic components with low frequencies, while the 
harmonic components with a slightly higher frequency have a stronger influence on the 
vertical fluctuations. Since the main focus in the current study is modelling of the self- 
excited forces, the cross sectional admittance functions' influence on the response has 
been assumed negligible. This implies that the buffeting action at point n is given by [4, 
5, 40]: 
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Figure 11: Simulated fluctuating wind velocities at two points 131 m apart; u is the along-wind turbulence 
component, while w is the vertical turbulence component. 
 
 

 
 
Figure 12: Comparison of the average co-spectral density of 20 simulated times series and the target co-
spectral densities at two points with a separation of 1310m. The mean wind velocity is 40 m/s. Left 
figure: The co-spectral density of the u component. Middle figure: The co-spectral density of the w 
components. Right figure: The co-spectral density of the u and w components. 
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Here, qn n�{x, y, z, 
} is the buffeting action in the coordinate system of the element; D 
is the height of the girder, and B symbolizes the width of the girder. Cn , n�{D, L, M} 
symbolizes the drag lift and overturning moment force coefficient, where a bar 
represents the mean value, while a prime denotes a derivative with respect to the angle 
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Figure 13: Contour plot of the along-wind component, V+u, at a mean wind velocity of 40 m/s. Here, V is 
the mean wind velocity, while u is the fluctuating component. 
 
 

 
Figure 14: Contour plot of the vertical turbulence component, w, at a mean wind velocity of 40 m/s. 
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of attack. The nodal load vector for the element may then be obtained as: 
 

 
0

( ) ( ) ( , )
L

Tt x x t dx	 �P N q  (27) 

 
Since the fluctuating velocities are only known at discrete points along the girder, the 
distributed loading on half the distance between the points is assumed uniform and 
equal to the value at the points where the time series have been obtained. The response 
may be obtained by solving Eq. (22) or (21) by numerical integration. In this study the 
response will be obtained using the well-known Newmark’s method, applying 0.5' 	

and 1/ 4( 	 ; see [33, 41] for further details.  Since the matrix related to the double 
derivative of the dependent variables, nv��  and nX�� ,  is singular, the initial double 
derivatives cannot be calculated as usual. This problem may be circumvented by taking 
the derivative of Eq.(15) twice instead of once. The dynamic equilibrium conditions for 
the aeroelastic element may then be written as:  
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 (28) 

 
The system of equations generally has a different structure than usual in structural 
dynamics analysis, and it is therefore not certain that sufficiently accurate results are 
obtained by the commonly used integration schemes. The free vibration response at the 
mid-span of the bridge at a mean wind velocity equal to the stability limit and a mean 
wind velocity slightly higher than the stability limit is displayed in Figure 15. As can be 
seen from the figure, the structure behaves as expected. At the stability limit the 
response seems to be undamped, while negative damping is clearly present when the 
 

 
Figure 15: Free vibration response at the mid-span of the bridge at the stability limit (V=77.72 m/s) and 
slightly higher than the stability limit (V=80 m/s). 20 finite elements (Element 2) have been used in the 
analysis. 
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mean wind velocity is higher than the stability limit. It is also seen that the vertical and 
torsional motion of the structure is close to 180 degrees out of phase in the flutter 
motion. The horizontal, vertical and torsional buffeting response at the mid-span of the 
beam at a mean wind velocity of 40 m/s is shown in Figure 16. Element 2 has been used 
in the calculations, and the structure has been modelled using 20 elements. The mean 
values of the standard deviations of 20 response time series at each considered mean 
wind velocity are shown in Figure 17 together with results obtained in the frequency 
domain, using the vibration modes presented in Table 1 as generalized coordinates. As 
can be seen from the results, the finite element formulation developed in this paper 
provides results that correspond very well with the frequency domain results. The 
response is accurately captured for all the mean wind velocities considered. The spectral 
densities estimated as the mean value of the spectral density of 20 time series of the 
horizontal, vertical and torsional response at the mid-span at a mean wind velocity of 40 
m/s are shown in Figure 18 together with the multimode frequency domain results. As 
can be seen from the results, the spectral density corresponds very well to the spectral 
density obtained in the frequency domain in the entire frequency range for all the 
response components. This implies that the properties of the wind field have been 
captured accurately for the relevant frequency range by the Monte Carlo simulations, 
and that the finite element model suggested in this paper provides an accurate 
representation of the self-excited forces. The co-spectral densities of the response 
components are shown in Figure 19. The co-spectral density of the horizontal and 
vertical response estimated from the time-domain simulations corresponds very well to 
the results obtained by the multimode approach in the frequency domain. The co-
spectral density of the horizontal and torsional response obtained from the times series 
corresponds well to the frequency domain results for most of the frequency range, 
except for the peak at about 0.4 rad/s. The discrepancy observed here may result from 
the covariance of the horizontal and torsional response being rather low, resulting in 
uncertainty in the co-spectral estimate. The co-spectral density of the vertical and 
 

 
Figure 16: Wind-induced dynamic response at the mid-span of the beam displayed in Figure 5. Upper 
figure: Horizontal response. Middle figure: Vertical response. Lower figure: Torsional response. The 
mean wind velocity is V=40 m/s. The length of the obtained time series is 6000 s, but only the first 600 s 
are displayed in this figure. 
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Figure 17: Comparison of the standard deviation of the wind-induced dynamic response obtained in the 
frequency domain, using still-air vibration modes as generalized coordinates (MFD), and in the time 
domain, using the finite element formulation introduced in this article. Left figure: Horizontal response. 
Middle figure: Vertical response. Right figure: Torsional response. 
 

 
Figure 18 Spectral densities of the response components at a mean wind velocity of V=40 m/s. Left 
figure: Spectral density of the horizontal response. Middle figure: Spectral density of the vertical 
response. Right figure: Spectral density of the torsional response. 
 

 
Figure 19: Co-spectral density of the response components at the mid-span of the bridge at a mean wind 
velocity of 50 m/s. Left figure: Co-spectral density of the horizontal and vertical response. Middle figure: 
Co-spectral density of the horizontal and torsional response. Right figure: Co-spectral density of the 
vertical and torsional response. 
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torsional response is accurately captured for the entire frequency range; both the peak 
corresponding to the vertical motion at 1 rad/s and the peak corresponding to torsional 
motion at 2.2 rad/s are accurately captured. 

4 Concluding remarks  
Four different aeroelastic beam elements for assessment of the buffeting response and 
flutter stability limit of cable-supported bridges have been developed and tested in this 
paper. All the alternatives tested have provided results of good accuracy, compared with 
a traditional multimode approach, where selected still-air vibration modes are used to 
characterize the aeroelastic system. The stability limit was overestimated for all the 
element models, except the lumped alternative, when using a coarse mesh, and all the 
element models tested provided the same stability limit when the number of elements 
was increased. The converged solution corresponded very well to the stability limit 
provided by the multimode approach. The consistent model provided results of very 
good accuracy, but the lumped formulation, where the displacement along half the 
element length is assumed equal to the displacement at the node for the self-excited 
forces, seems to provide more accurate results when using a coarse mesh. However, the 
results provided by the consistent formulation are more reliable than the results 
provided by the lumped formulation since the lumped formulation overestimates the 
self-excited forces, and this reduces the effect of a higher torsional frequency, which 
will increase the predicted critical velocity when using a coarse mesh. The predicted 
buffeting response corresponded very well to the results obtained in the frequency 
domain using rather few beam elements. The spectral densities of the horizontal vertical 
and torsional response corresponded very well with results obtained by the multimode 
approach in the frequency domain for the entire frequency range. It can be concluded 
that the elements developed in this paper perform satisfactorily for all the cases 
considered, and that the modelling technique is convenient when modelling structural 
nonlinearities in buffeting response analysis of cable-supported bridges. 
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Appendix A 
In this appendix the matrices used to obtain the equations of motions is presented. The 
matrices introduced in Eq.(11) are defined by 
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The matrix W introduced in Eq. (14) is given by 
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The vector xn introduced in Eq. (14) is defined by 
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Here, each element is given by the expression 
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The matrix D introduced in Eq. (17) is a diagonal matrix and defined by the following 
expression. 
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The sub-matrix d is defined as 
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The matrix B introduced in Eq. (17) is diagonal 
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The matrix A introduced in Eq. (17) is defined as 
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Here the submatrices al are defined by 
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