

Design configurations of the methanol synthesis loop

Kristian Bøhn

Chemical Engineering and Biotechnology Submission date: June 2011 Supervisor: Magne Hillestad, IKP

Norwegian University of Science and Technology Department of Chemical Engineering

Preface

This master thesis was written in the subject TKP4900, environmental engineering and reactor technology, at the Department of Chemical Engineering (NTNU), in the spring of 2011. The project used Honeywell's general purpose process simulator UniSim Design (R380 Build 14027) combined with MathWorks programming language MATLAB to evaluate different design considerations of the methanol synthesis loop.

Supervisor for the thesis was prof. Magne Hillestad. I greatly appreciate Magne Hillestad for his guidance and good advices during this project.

Kristian Bøhn (Sign.)

Trondheim 11.06.2011

Abstract

In recent years the chemical industry has undergone considerable changes due to increased environmental regulations and energy costs. This master thesis has evaluated three different design considerations of the methanol synthesis loop using Honeywell's general purpose process simulator UniSim Design (R380 Build 14027) combined with MathWorks programming language MATLAB. The three configurations are Lurgis methanol reactor loop as built on Tjeldbergodden, the use of interstage methanol removal by the means of condensation and Lurgis MegaMethanol configuration. It was shown that the base case simulation of Lurgis reactor loop, using kinetics from Vanden Bussche and Froment (1996), gave reasonable results compared to Tjeldbergodden methanol plant.

For the interstage methanol removal configuration it was found that the two reactors should be of equal length, 7.25 m, and that a cooling water temperature of 250°C in the first reactor and 255°C in the second reactor produced the highest amount of methanol. When operating with a recycle ratio of 2, this configuration had the potential of a net present worth of 47 million dollars compared to the base case over a 10 year horizon.

The addition of a gas cooled reactor for the MegaMethanol process only increased the methanol production by 0.2 tonne/h, making the project unfeasible.

Contents

Preface

Abstract

1	Intr	oduction	7
	1.1	Design	7
	1.2	Methanol Properties	8
	1.3	Objective	9
2	The	eory	11
	2.1	Methanol Production	11
		2.1.1 Reforming	12
		2.1.2 Reactor Loop	13
	2.2	PFR simulation	15
	2.3	Reaction Kinetics	16
		2.3.1 Activity	17
		2.3.2 Internal Effectiveness Factor	18
	G •		10
3	51m	ulation of Different Reactor Loop Configurations	10
	3.1 2.0		19
	3.Z	mterstage Methanol Removal	21
	3.3	MegaMethanol	22
4	Res	ults and Discussion	25
	4.1	Base Case	25
	4.2	Interstage Methanol Removal	27
		4.2.1 Length	28
		4.2.2 Cooling Water Temperature	29
		4.2.3 Recycle Ratio	32
		4.2.4 Economic Comparison With Base Case	34
		4.2.5 Pinch Analysis	36
	4.3	MegaMethanol	38

Bi	bliography	50
\mathbf{A}	Interchanger pressure drop	I
в	Reaction Kinetics	\mathbf{V}
\mathbf{C}	MATLAB and UniSim comparison script	IX
D	MATLAB PFR	XI
\mathbf{E}	Mega Methanol	XV
F	Interstage Methanol Removal	XXIII
\mathbf{G}	UniSim Base Case	XXIX
н	Pinch Analysis	XXXIII
Ι	Economy	XXXV
J	HSE	XLI

Chapter 1 Introduction

In recent years the chemical industry has undergone considerable changes due to increased environmental regulations and energy costs. Adaptations of both design procedures and operation conditions have been carried out to decrease costs, and to meet regulations. The main goal in plant design has always been to reduce operational and investment cost, while maximising sales income.

Methanol was first isolated by Robert Boyle in 1661 by distillation of boxwood. The first large scale methanol plant was build in Germany by BASF in 1923. The catalyst used in this plant (ZnO/Cr₂O₃) produced methanol at 240-300 bar and 350-400 °C. It also produced by-products like methane and other light hydrocarbons with 2–5 wt.% selectivity (Lange, 2001). More active and selective catalysts were known, but they were not resistant to impurities like sulphur. In the 1960s a major improvement was conducted by the production of a sulphur free synthesis gas. This synthesis gas led to the use of a more active catalyst (Cu/ZnO/Al₂O₃), and a new generation of methanol plants called Low-Pressure Plants (50-100 bar and 250-280 °C). The Cu/ZnO/Al₂O₃ catalyst, operating at the reduced temperature, has over 99 % selectivity resulting in very little by-product formation (Moulijn et al., 2008).

This thesis uses information based on Tjeldbergodden methanol plant, which started operation June 5th 1997. Tjeldbergodden methanol plant is the largest in Europe, and produces around 900.000 tonnes of methanol each year. The methanol plant receives its raw material (natural gas) from the Heidrun field at Haltenbanken. The volume of methanol produced at Tjeldbergodden equals 25 % of Europe's methanol production, and 13 % of its consumption. Statoil's stake in the plant is 81.7 percent, while ConocoPhillips has the remaining 18.3 percent (Statoil, 2010).

1.1 Design

The methanol synthesis is characterised by the reforming of natural gas to synthesis gas, which is further reacted to methanol. This thesis focuses primarily on the methanol reactor loop, where synthesis gas is used to make methanol. The methanol reactor loop as used on Tjeldbergodden consists of a multitube reactor cooled with boiling water, a heat exchanger, a condenser and a recycle. It is called a loop due to the large recycle stream needed for an acceptable methanol yield and carbon efficiency. Attempts to make a once-through process with e.g. interstage methanol removal by condensation, absorption by a liquid or reactive chromatography have not produced satisfactory results (Lange, 2001).

1.2 Methanol Properties

Methanol (often abbreviated as MeOH) is the simplest alcohol. Methanol at room temperature is a clear, colourless liquid that is both flammable and toxic. It is soluble in water and in most organic solvents. Methanol is generally considered non-corrosive. Its physical data is summarised in Table 1.1. Methanol is solely produced synthetic, and by either of two methods (Aschehoug and Gyldendal, 2006):

- Hydrogenation of carbon monoxide under high pressure in the presence of a catalyst
- Partial oxidation of hydrocarbons from natural gas

Property	Value	Unit
Freezing point	-97.8	°C
Boiling point	64.7	$^{\circ}\mathrm{C}$
Critical temperature	239.4	$^{\circ}\mathrm{C}$
Flash point	11	$^{\circ}\mathrm{C}$
Auto ignition temperature	385	$^{\circ}\mathrm{C}$
Vapour pressure	12.8	kPa [20 °C]
Vapour density	1.354	kg m ^{−3} [15 °C]
Density	787	$\rm kg \ m^{-3}$
Molar mass	32.04	$\mathrm{g} \mathrm{mol}^{-1}$
$\Delta_f H^0$ (gas)	-201	$kJ mol^{-1}$
$\Delta_f G^0$ (gas)	-163	$kJ mol^{-1}$
$\Delta_{vap}H^{0}$	38	$kJ mol^{-1}$
S^0 (gas)	240	$\rm J~K^{-1}~mol^{-1}$
C_p^0 (gas)	44	$\rm J~K^{-1}~mol^{-1}$
LD_{50}	5628	$\mathrm{mg} \mathrm{kg}^{-1}$ [oral, rat]

Table 1.1: Methanol properties (Methanex, 2010b), (Aylward and Findlay, 2002)

Methanol is primarily used to make other chemical components, but it can also be used as a solvent, as engine fuel and for fuel in fuel cells (Hogarth and Hards, 1996). Formalaldehyde, acetic acid and MTBE are the main chemical components made from methanol. Examples of secondary derivates made from methanol are plywood, particleboard, foams, resins and plastics (Methanex, 2010a).

1.3 Objective

The objective of this project is to find the best configuration of the methanol reactor loop out of three different options. These are:

- Lurgis methanol design as used on Tjeldbergodden.
- Use of methanol removal between the methanol reactors by the means of condensation.
- Lurgis MegaMethanol process.

The first design will serve as the base case for this thesis, and the two other designs will be compared to this.

The reason for studying different design configurations of the methanol synthesis is to increase profit. This can be done by maximizing the methanol yield while minimizing the operational and investment costs. One way of doing this is to simulate the plant and find out if one design has higher or lower profit. For the second process, where methanol is removed by interstage condensation, there are several different operational and design parameters to specify. To find the optimal value for these parameters, one can simulate the process and see what a change in an operational parameter results in. This is done in UniSim by a case study, which will be explained later.

Chapter 2

Theory

2.1 Methanol Production

Methanol is most commonly produced from natural gas. A typical block diagram of such process is shown in Figure 2.1.

Figure 2.1: Block diagram of a methanol plant

2.1.1 Reforming

The natural gas is first fed to a sulphur removal unit. This is to avoid poisoning of the catalyst used in the following reforming step, which is reforming. Several different reactor layouts can be used for synthesis gas (syngas) production, but today the most common configuration is the combination of a steam reformer and an auto thermal reformer (ATR). This layout is commonly referred to as 'twostep' reforming and is developed by Lurgi and Haldor-Topsøe (Lange, 2001). If the natural gas also contains parts of higher hydrocarbons it is necessary to include a pre-reformer. In the pre-reformer higher hydrocarbons are converted to methane according to Reaction 2.1.

$$C_n H_{2n+2} + \frac{1}{2}(n-1)H_2 O \rightarrow \frac{1}{4}(3n+1)CH_4 + \frac{1}{4}(n-1)CO_2$$
 (2.1)

Reactions occurring in the reformers are listed below. The steam reformer produces syngas with a stoichiometric number around 3 (Reaction 2.2-2.4), but the gas contains considerable amounts of methane. In the ATR light hydrocarbons are reformed in a mixture of steam and oxygen to achieve close to total conversion of methane. The endothermic reforming duty is provided by the exothermic oxidation reaction happening in the combustion zone of the reactor. The ATR produces syngas with a lower stoichiometric number (Moulijn et al., 2008), which is regulated by the amount of oxygen and steam fed to the ATR.

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2 \qquad \qquad \Delta H_{298}^0 = 206 \text{ kJ/mol} \qquad (2.2)$$

$$CH_4 + CO_2 \rightleftharpoons 2CO + 2H_2 \qquad \qquad \Delta H_{298}^2 = -41 \text{ kJ/mol} \qquad (2.3)$$
$$CH_4 + CO_2 \rightleftharpoons 2CO + 2H_2 \qquad \qquad \Delta H_{208}^0 = 247 \text{ kJ/mol} \qquad (2.4)$$

$$CH_4 + 1/2 O_2 \to CO + 2 H_2 \qquad \qquad \Delta H_{298}^0 = -36 \text{ kJ/mol} \qquad (2.5)$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 $\Delta H^0_{298} = -803 \text{ kJ/mol}$ (2.6)

$$CO + 1/2 O_2 \to CO_2$$
 $\Delta H^0_{298} = -284 \text{ kJ/mol}$ (2.7)

$$H_2 + 1/2 O_2 \rightarrow H_2 O$$
 $\Delta H_{298}^0 = -242 \text{ kJ/mol}$ (2.8)

In addition to these reactions some coking takes place.

 $CO + H O \rightarrow CO + H$

One of the main characteristics of syngas is the stoichiometric number (SN), which is calculated as:

$$SN = \frac{F_{H_2} - F_{CO_2}}{F_{CO} + F_{CO_2}}$$
(2.9)

 $\Lambda H^0 = 41 \text{ kJ/mol}$

(9.2)

Where F_i is the molar flow of component i. According to the stoichiometry in Reaction 2.17 and 2.18 the ideal theoretical stoichiometric number for methanol production is 2. A small amount of CO_2 (~5%) increases the catalyst activity, so for practical reasons the stoichiometric number for methanol production is slightly higher than 2.

2.1.2 Reactor Loop

As described in Chapter 1 there are three different reactor loop configurations of interest. Lurgis configuration at Tjeldbergodden is shown in Figure 2.2, and involve two reactors in parallel (simulated as one), a heat exchanger, condenser, separator and a recycle. The reactors used are multitube PFR reactors which transfers the heat generated by the reaction to the boiling water outside the tubes (Boiling Water Reactor, BWR). A heat exchanger called the interchanger heats the cold feed stream against the hot product stream from the reactors. This is the same configuration as used at Tjeldbergodden and will serve as a base case for the other methods.

Figure 2.2: The reactor loop

Some of the disadvantages with this configuration is the large recycle stream. This stream has to be recompressed back to the feed pressure resulting in increased compressor duty. It also contributes to larger equipment due to the big gas volume circulating in the loop, and the large volume of gas causes low residence times in the reactors. It was then suggested to set the methanol reactors in series and remove methanol between the reactors by condensation (Figure 2.3). The idea behind this configuration is that the methanol formed in the first reactor is condensed out before entering the second reactor and therefore reducing the volume of the stream entering the second reactor. This will increase the residence time in the second reactor leading to additional methanol production. The disadvantage with this configuration is the extra heating and cooling duty that is needed to condense out the methanol together with the increased pressure drop. The hypothesis is that the advantages of increased methanol production, and the reduced volume of the recycle stream will outweigh the extra duties.

Figure 2.3: PFD of the methanol reactor loop with interstage methanol removal

The MegaMethanol process seen in Figure 2.4 utilised the fact that the methanol reactor and the interchanger are of similar design. Instead of using the interchanger just to transfer heat duty between the feed and product stream, the interchanger is filled with catalyst on the shell side allowing the products from the BWR to continue reacting. The heat generated by the reaction is removed by the counter currant flow of the feed gas to the BWR, and thus called a Gas Cooled Reactor, GCR. In theory this configuration will produce more methanol.

Figure 2.4: MegaMethanol

For other configurations Lange (2001) is recommended.

An important parameter for the reactor loop is the carbon efficiency. The carbon efficiency is a measure of how much of the carbon that enters the loop as CO and CO_2 that leaves the loop as carbon in methanol. The carbon efficiency is therefore an indirect measure of the amount of carbon that is purged. The carbon efficiency is defined as:

Carbon Efficiency =
$$\frac{(F_{\rm CH_3OH})_{out}}{(F_{\rm CO} + F_{\rm CO_2})_{inn}}$$
(2.10)

In addition to the carbon efficiency, the recycle ratio is also of importance. The recycle ratio is defined in Equation 2.11.

$$R = \frac{\text{Molar flow in recycle stream}}{\text{Molar flow in feed stream}}$$
(2.11)

It can be seen here that the recycle ratio is a parameter showing how large the recycled stream is compared to the feed stream. The recycle ratio has a large influence in many parameters, such as total methanol production, purge flow, inert concentration in the reactor loop and others.

2.2 PFR simulation

The reactors used for methanol production are simulated as a plug flow reactor, PFR, with a catalyst bed. The equations for solving a PFR with constant cooling temperature are given in Equation 2.13-2.15 (Scott Fogler, 2006).

$$\frac{dw}{dV} = \frac{\tilde{R}}{W} \tag{2.12}$$

$$\frac{dT}{dV} = \frac{r_A \Delta H_{rx} - U\frac{4}{D} \left(T - T_c\right)}{W\overline{C_p}}$$
(2.13)

$$\frac{dT_c}{dV} = \frac{U\frac{4}{D}(T_c - T)}{W_c C_{p_c}}$$
(2.14)

$$\frac{dP}{dV} = \frac{1.75\rho\left(v'\right)^2}{D_p\psi}\frac{1-\epsilon}{\epsilon^3}A\tag{2.15}$$

Equation 2.15 is the turbulent part of Erguns equation, which calculates pressure drop through packed beds.

As described above, the GCR is cooled by a counter current flow of cold syngas. Since UniSim is only able to utilise co-current cooling of the PFR, the simulation of the GCR had to be done in MATLAB. The situation for a countercurrent cooled reactor is that both inlet temperatures are known, but neither of the outlet temperatures. To solve this two point boundary value problem, orthogonal collocation in MATLAB was used (Eaton, 1997). The method of orthogonal collocation is to divide the reactor into 2 boundary condition points, and n internal collocation points. Each collocation point is represented as a residual that are to be zero. The chosen independent variable, in this case the reactor volume, must be normalized:

$$\xi = \frac{V}{V_{tot}}$$

The solution in each internal point is calculated by the Lagrange polynomial:

$$y(\xi) = \sum_{i=0}^{n} y_i \varphi_i(\xi)$$
$$\varphi_i(\xi) = \prod_{k=0, k \neq i}^{n} \frac{(\xi - \xi_k)}{(\xi_i - \xi_k)}$$

The orthogonal collocation method also yields discrete approximations to differential operators:

$$\left(\frac{dy}{d\xi}\right)_{\xi_i} = \sum_j A_{i,j} y_j$$

To force the residuals to zero, MATLABs optimizer follow is used. Follow solves a system of nonlinear equation by finding the root (zero) of the problem. The problem must be specified by:

$$F(x) = 0 \tag{2.16}$$

Where x is a vector and F(x) is a function that returns a vector value (Math-Works, 2011).

2.3 Reaction Kinetics

Independent of the reactor loop configurations, the reactions occurring in any of the methanol reactors are:

$$CO + 2H_2 \rightleftharpoons CH_3OH$$
 $\Delta H_{298}^0 = -90.8 \text{ kJ/mol}$ (2.17)

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$
 $\Delta H^0_{298} = 41 \text{ kJ/mol}$ (2.18)

$$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O \qquad \qquad \Delta H_{298}^0 = -49.6 \text{ kJ/mol} \qquad (2.19)$$

Out of the three reactions above, only two are independent. Reaction 2.17 is the hydrogenation of CO, Reaction 2.18 is the reverse water gas shift reaction (RWGS) and Reaction 2.19 is the hydrogenation of CO_2 . The conversion of CO and CO_2 at equilibrium is shown in Table 2.1. As seen in this table, and since the methanol reactions are exothermic, low temperatures are favourable (the CO_2 conversion increases with temperature due to the reverse water gas shift reaction).

	CO conversion			CO_2	$_2$ conver	sion
Tomp [°C]	Pressure [bar]		Pre	Pressure [bar]		
Temp [C]	50	100	300	50	100	300
252	0.524	0.769	0.951	0.035	0.052	0.189
302	0.174	0.440	0.825	0.064	0.081	0.187
352	0.027	0.145	0.600	0.100	0.127	0.223
402	0.015	0.017	0.310	0.168	0.186	0.260

Table 2.1: Equilibrium data for CO and CO_2 conversion (Moulijn et al., 2008)

The rates of the reactions occurring in the methanol reactor are found from both Graaf et al. (1988) and Vanden Bussche and Froment (1996). The main difference between these two articles is which of the reactants that serves as carbon source for the methanol formation. Graaf et al. (1988) compares previously published articles, and concludes that the safest way is to include both CO and CO₂ as the source, while Vanden Bussche and Froment (1996) only includes CO_2 . The reason for this is studies performed with labelled C^{14} isotopes which Vanden Bussche and Froment (1996) used to eliminate CO as a carbon source. Based on previous simulations where kinetics from Graaf and Vanden Bussche were used, it was concluded that Vanden Bussche kinetics describes the methanol production best and is thus used in this thesis. The kinetics from Vanden Bussche and Froment (1996) is tested at pressures up to 50 bar, but it is assumed that it provides acceptable results at 80 bar.

These reaction rates are developed using a fresh, pulverized catalyst, and in a bench scale set up. When simulating a large industrial reactor with catalyst pellets, one has to take account for the activity of the catalyst, a, and the internal effectiveness factor, η . The correlation between the reaction rate, activity and effectiveness factor is given in Equation 2.20.

$$r_{Actual}(t) = a(t) \cdot \eta \cdot r \tag{2.20}$$

2.3.1 Activity

The activity of the catalyst is 1 when the catalyst is fresh, but deactivates over time as a result of sintering (aging), fouling and poisoning (Scott Fogler, 2006). The activity is defined as:

$$a(t) = \frac{r(t)}{r(t=0)}$$
(2.21)

As indicated by Equation 2.21, the activity of the catalyst is decreasing over time. A common way to counteract this phenomenon is to increase the temperature, or the pressure. The temperature must not exceed the operating temperature of the catalyst, (\sim 300 °C) because at this temperature unacceptable sintering of the catalyst will take place (Ertl et al., 1997). For the new MK-121 methanol catalyst

from Haldor-Topsøe the operating temperature is between 200-310 $^{\circ}$ C (Haldor-Topsøe, 2011). It is assumed that the catalyst used in this thesis is fresh.

2.3.2 Internal Effectiveness Factor

The effectiveness factor has a magnitude ranging from 0 to 1, and implies the relative importance of diffusion and reaction limitations inside the catalyst pellet (Scott Fogler, 2006). The internal effectiveness factor is defined as

Actual overall rate of reaction

 $\eta = -$ Rate of reaction that would result if entire interior surface were exposed to the external pellet surface conditions

And is in symbols described as

$$\eta = \frac{-r}{-r_s}$$

Where the subscript s indicates the reaction rate evaluated at the surface conditions.

The internal efficiency factor is greatly dependent on the dimensions of the catalyst particle. Smaller particles will have a larger factor but also create a larger pressure drop through the reactor, due to the more dense packing. The efficiency factor is assumed to be the same for all of the reactions that takes place in the methanol reactor. Hillestad (1995) performed a simulation of the internal effectiveness factor for the catalyst used in methanol synthesis, and found that η would typically have a value of 0.7.

Chapter 3

Simulation of Different Reactor Loop Configurations

The three different reactor loop configurations described in Chapter 2.1.2 where simulated. Lurgis methanol synthesis as built on Tjeldbergodden served as the base case.

3.1 Base Case

Lurgis methanol reactor loop was simulated using Honeywell's process simulator UniSim. Peng-Robinson was selected as the property package for the simulation because it is a well known package, and has been enhanced to yield accurate phase equilibrium calculations for systems containing CH_3OH . The SRK property package would be the second choice, but this package should not be used for systems including CH_3OH (Aspen Technology, 2005). A sketch of the base case is given in Figure 2.2.

The make up gas (MUG) composition is meant to resemble the conditions at Tjeldbergodden methanol plant and is given in Table 3.1.

Component	Molar flow [kmol h^{-1}]	Composition $[mol\%]$
СО	2377	21
CO_2	931	8.2
H_2	7825	69.1
H_2O	10	0.1
CH_3OH	0	0
CH_4	180	1.6
Total	11323	100

Table 3.1: Make up gas composition

The MUG enters the loop at 25°C and 30 bar. It is compressed to 80.3 bar, and mixed with the recycle stream. This stream enters the tube side of the interchanger, where it is heated against the hot products from the reactor. The heat exchanger has a specified cold outlet temperature of 210°C, and a pressure drop of 0.3 bar on each side (Appendix A). The reactor is a multitube PFR with the catalyst pellet inside the tubes. The reactor specifications and the catalyst specifications are given in Table 3.2.

	Parameter	Value	Unit
Design	Tube length Number of tubes Wall thickness Total volume	$7.25 \\ 11030 \\ 0.002 \\ 103$	m m m ³
Cooling	Heat transfer coefficient Mole flow Heat capacity Inlet temperature	$ \begin{array}{c} 1000 \\ 10^{20} \ [1] \\ 870000 \\ 250 \end{array} $	$ \begin{array}{c} W\ m^{-2}\ ^\circ C^{-1} \\ kmol\ h^{-1} \\ J\ mol^{-1}\ ^\circ C^{-1} \\ ^\circ C \end{array} $
Catalyst	Particle diameter Particle sphericity Solid density Bulk density Solid heat capacity Void fraction	$\begin{array}{c} 0.006 \\ 0.857 \\ 1950 \\ 1170 \\ 250000 \\ 0.40 \end{array}$	m kg m ⁻³ kg m ⁻³ kJ kg ⁻¹ °C ⁻¹

Table 3.2: PFR specifications

The reactor and the catalyst information are collected from the already constructed reactor at Tjeldbergodden (Hillestad, 1995; Haldor-Topsøe, 2011). The boiling water used as a cooling medium will have the same inlet and outlet temperature of 250°C. This is achieved by simulating the cooling medium with a large flow of water (See [1] in Table 3.2).

The interchanger does not provide sufficient cooling duty to condense out the methanol, so this is done in a separate condenser. The condenser has a specified pressure drop of 0.2 bar and an outlet temperature specified to 20 $^{\circ}$ C. The methanol and water is separated from the recycle stream in a gas-liquid separator, and sent to a temporary storage tank. The stream leaving the top of the separator is split into a purge stream and a recycle stream, where the recycle stream is recompressed back to the feed pressure of 80.3 bar. The reaction set associated with the PFR is given in Appendix B.

3.2 Interstage Methanol Removal

The simulation basis used for the base case was also used for this simulation. The layout of the heat exchanger network was constructed using pinch technology (4.2.5).

After the MUG stream and the recycle stream are mixed it enters the shell side of a heat exchanger. On the tube side the hot products from the second PFR heats the feed to the first PFR. The heat exchanger has a pressure drop of 0.2 bar on each side (See Appendix A), and a specified cold stream outlet temperature of 210 °C. The PFR reactors are constructed with the same specifications as the one in the base case (Table 3.2) except that the number of tubes in each PFR is 5515. The products leaving the first reactor are cooled in a heat exchanger against the cold gas leaving the first separator. The heat exchanger has a pressure drop of 0.2bar on each side, and a specified outlet temperature of 240 °C. The heat exchanger does not have sufficient cooling to condense out the methanol, so an additional condenser is placed between the heat exchanger and the separator. The condenser uses cooling water at 15 °C and has a specified hot product outlet temperature of 30 °C. After the gas leaves the separator it is reheated in the heat exchanger, and sent to the second PFR. The products from the second PFR are cooled in the first heat exchanger. The gas is passed through another condenser similar to the first, where methanol and water is removed. The gas leaving the second separator is split into a purge stream and a recycle stream. The recycle stream is recompressed, and mixed with the MUG stream.

Figure 3.1: Interstage methanol removal

3.3 MegaMethanol

The already built interchanger at Tjeldbergodden was used as basis for the GCR. The design specifications for the interchanger are shown in Table 3.3.

Parameter	Value	Unit
Length	18	m
Tubes	5412	
Inner diameter	19	mm
Shell diameter	2.50	m
Heat transfer coefficient	150	$\mathrm{W}~\mathrm{m}^{-2}~\mathrm{^{\circ}C^{-1}}$
Tube volume	27	m^3
Shell volume	24	m^3

Table 3.3: GCR specifications

The gas cooled reactor used in the MegaMethanol system was not possible to simulate in UniSim due to the limitation to co currant cooling. It was therefore simulated using Mathworks computing software MATLAB. To be able to simulate the process in MATLAB some assumptions were made. These assumptions are:

- The heat of reaction is independent upon temperature.
- Fugacity coefficients for the components are equal to 1.
- Constant component heat capacities.
- No pressure drop in the GCR.

The three first assumptions are shown to be valid in Hillestad (1995). The assumption of no pressure drop in the GCR was made to make it simpler to solve the GCR. The pressure drop would only have negligible impact on the methanol production.

First it was important to see that MATLAB and UniSim produce the same results. Inlet values from the base case BWR in UniSim was implemented in a MATLAB script, and values calculated by both MATLAB and UniSim were compared. To simulate the BWR, MATLABS ODE45 solver was used. The scripts made to do this can be found in Appendix C.

The next step in simulating the process was to use MATLAB to open an interface between itself and UniSim, so that MATLAB could read information from UniSim, and write the calculated values back. Since this is a reactor loop MAT-LAB would also have to handle the recycle iteration. The commands written in Table 3.4 opens a ActiveX/COM interface between MATLAB and UniSim, allowing MATLAB to retrieve information from the simulation run in UniSim.

Creates an ActiveX server
Call the active simulation
Call the current flowsheet
Call a material stream
Call the UniSim solver
Turn on the UniSim solver

Table 3.4: Commands to open MATLAB/UniSim interface

To get the temperature in stream 2 one would have to write everything in Table 3.4 and then "g.Item('2').TemperatureValue".

The script for simulating the MegaMethanol process was then developed step by step. First the GCR was modelled, without the recycle, using orthogonal collocation as described in Chapter 2.2. Then the recycle iteration was modelled. The recycle was modelled by a fsolve where the component mass flows, pressure and temperature at point 2' in Figure 3.2 were guessed, without the GCR, and comparing these to the values in 2 after calculating the BWR and returning the values to UniSim. This way UniSim does all the thermo dynamical calculations, but the recycle and BWR are lifted out to MATLAB. Finally these scripts were combined. In the MegaMethanol script fsolve has to guess the values at 2' and 4 to solve the GCR and BWR simultaneously. The MATLAB script for simulating the MegaMethanol process can be found in Appendix E.

Figure 3.2: Sketch of the MegaMethanol process

Chapter 4 Results and Discussion

The simulations were constructed as explained in Chapter 3. All results were generated using kinetics from Vanden Bussche and Froment (1996) with $a\eta$ equal to 0.7. The compressors used had an adiabatic efficiency of 85 %.

4.1 Base Case

The base case was simulated as described in Chapter 3.1. The base case represents the standard, which the other designs will be compared against, since this configuration is well known and is currently in use by Statoil at Tjeldbergodden. The setup of the simulation is presented in Figure 4.1. The temperature profile and weight fractions in the PFR are presented in Figure 4.2 and 4.1. Data generated from the simulation can be found in Appendix G. Key results are presented in Table 4.1

Figure 4.1: Temperature profile in the base case PFR

Figure 4.2: Weight fractions in the base case PFR

Figure 4.3: Base case simulation

Variable	Value	Unit
SN	2.08	-
Recycle ratio	3	-
Recycle power	572	kW
Inert concentration	11.83	%
Carbon efficiency	94.06	%
Methanol production	$3\ 112$	$\rm kmol \ h^{-1}$
Purge flow	$1 \ 076$	$\rm kmol \ h^{-1}$
Purge energy	378	${ m GJ}~{ m h}^{-1}$
MP steam production	127	tonne h^{-1}

Table 4.1: Key values from the base case simulation

To find the energy of the purge stream, a Gibbs reactor was connected to the purge. The Gibbs reactor minimizes the Gibbs free energy, so when oxygen was sent into the reactor the reactive components in the purge stream, CO,H_2,CH_3OH and CH_4 , were reacted to CO_2 and H_2O . The temperature in the outlet stream was set so there were no liquids present. The medium pressure steam production was calculated by routing the energy from the reactor into a heater. The inlet stream was water at 250 °C with a vapour fraction of 0, while the outlet stream was specified with 250 °C and a vapour fraction of 1.

A methanol production of 3112 kmol/h corresponds to approximately 800 000 tonnes annually with the assumption of 8000 working hours per year. In Chapter 1 it is stated that Tjeldbergodden produces 900 000 tonnes annually. The reason for this deviation can be a slightly different reactor layout, more than 8000 working hours, fluctuations in the MUG stream or imperfections in the simulation kinetics.

4.2 Interstage Methanol Removal

The same simulation basis as in the base case was used in this simulation. Several case studies were performed with the system simulated in UniSim. A case study in UniSim varies a chosen parameter, while tabulating the response in the parameters of interest. The only difference between the base case and the case study is the chosen variable. All other inputs are kept constant, if not otherwise specified. The simulation is shown in Figure 4.4, and data from the simulation can be found in Appendix F.

Figure 4.4: Interstage methanol removal simulation

4.2.1 Length

One of the first encountered design issues with the new design was the individual length of the two reactors. The reactors used in the base case have an individual length of 7.25 m, but these are set parallel to each other. If the reactors are placed in series instead the first reactor will have a larger volume flow than the second, due to methanol and water are removed in between, and it may be beneficiary with a shorter reactor first. A case study was conducted where the length of the first reactor was changed. The length of the second reactor was set to 14.5 m minus the length of the first reactor. Both methanol production and pressure drop was recorded, and the results are shown in Figure 4.5.

Figure 4.5: Length of the first PFR

From Figure 4.5 it can be conducted that a configuration where both of the reactors are of equal length yields the largest methanol production. On the other hand the combined reactor pressure drop is lowest when the first reactor is shorter than the second, due to the higher gas velocity in the first reactor. It is desirable to build two identical reactors rather than two with different length due to the decreased construction cost. Since the difference in pressure drop at the minimum and where the two reactors are of the same length is less than 0.2 bar it is likely that the reactors should be constructed with the same length.

4.2.2 Cooling Water Temperature

As explained in Chapter 2.1.2 low temperatures are favourable for high equilibrium conversion, however higher temperatures are needed for larger reaction rates. To find the optimum operating temperatures, a case study varied the cooling water temperatures, and the resulting methanol production was recorded. The resulting contour plot is shown in Figure 4.6.

Figure 4.6: Methanol production at different cooling water temperatures

Figure 4.6 shows that the maximum methanol production is attained when the temperature in the first PFR is between 245 and 265°C and between 240 and 260°C in the second. The area between these temperatures is a bit flat, making the highest methanol production hard to find. A closer view of this area is found in Figure 4.7

Figure 4.7: Close up of Figure 4.6

In Figure 4.7 it is shown that the optimum cooling water temperature is 250° C in the first reactor and 255° C in the second reactor. As explained in Chapter 2.3.1 the temperature in the reactor must never exceed 300° C because of unacceptable sintering of the catalyst. As Figure 4.8 shows, the highest temperature in the reactor is about 10–15°C above the cooling water temperature, resulting in a max temperature of about 265°C in the reactor when the cooling water temperature is around 250°C.

Figure 4.8: Cooling water temperatures and reactor temperatures

4.2.3 Recycle Ratio

Increasing the recycle ratio to achieve an increased methanol production is an important operational parameter. The recycle is limited by the cost of recompressing the recycle stream, and the cost of larger equipment due to the increased gas volume in the loop. The previous figures where all made with a recycle ratio equal to 2. To check if this value is appropriate a new case study was made. The results of this study are viewed in Figure 4.9 and Figure 4.10.

Figure 4.9: Methanol production

Figure 4.10: Inert concentration and pressure drop

Considering that Figure 4.9 and Figure 4.10 does not have a maximum point it can be difficult to find the ideal recycle ratio. Considering this a recycle ratio of 2 seems reasonable.

4.2.4 Economic Comparison With Base Case

Some key values from the two simulations are given in Table 4.2.

Variable	Base Case	Interstage removal	Change	Unit
Recycle ratio	3.0	2	$-33 \ \%$	-
Recycle power	572	997	74~%	kW
Inert concentration	11.83	14.36	21~%	%
Carbon efficiency	94.06	96.71	3~%	%
Methanol production	$3 \ 112$	$3\ 199$	3~%	$\rm kmol \ h^{-1}$
Methanol production	99.71	102.51	3~%	tonne h^{-1}
Purge flow	$1 \ 076$	770	-28 %	$\rm kmol \ h^{-1}$
Purge energy	378	292	-23 %	${ m GJ}~{ m h}^{-1}$
MP steam production	127	129	2~%	tonne h^{-1}

Table 4.2: Comparison of key values from the methanol removal and base case configuration

From Table 4.2 it is clear that the interstage methanol removal configuration produce a greater amount of methanol. To find out if this increase in production is enough to compensate for the extra investment and recycle cost, an economical analysis was made. This analysis compares the difference in investment cost, operating cost and income between the base case and the interstage methanol removal configuration. This difference is used in a rentability study where the net present worth and the discounted cash flow rate of return are calculated. It is assumed that there are no extra operational problems for the interstage configuration due to the similarity with the base case. Trends produced from the rentability analysis are viewed in Figure 4.11, and key values from the economy comparison are listed in Table 4.3. Both analysis were done in Microsoft Excel and can be found in Appendix I.

Table 4.3: Key values from the economy comparison

	Base Case	Two PFR	Difference	Unit
Investment cost Operating cost Income	$\begin{array}{c} 8 \ 400 \ 000 \\ 180 \ 000 \\ 387 \ 360 \ 000 \end{array}$	$\begin{array}{c} 12 \ 340 \ 000 \\ 310 \ 000 \\ 396 \ 520 \ 000 \end{array}$	$\begin{array}{c} 3 \ 940 \ 000 \\ 130 \ 000 \\ 9 \ 160 \ 000 \end{array}$	\$ \$ year ⁻¹ \$ year ⁻¹

Figure 4.11: Interstage methanol removal cash flow

Parameter	Value	Unit
Rate of return (ROR)	229	%
Discounted cash-flow ROR	170	%
Net present worth (NPW)	$47 \ 055 \ 000$	\$
Payback time	0.5	Years
Project horizon	10	Years

Table 4.4: Important economic parameters

From Table 4.3 it is shown that the increased methanol production yields over 9 million dollars each year, and the investment cost difference is only approximately 4 million dollars. This clearly shows that the increased investment cost for the interstage methanol removal configuration is recouped before a year has passed. This is also viewed in Figure 4.11 as the intersection between the x-axis and the net cash flow line. Table 4.4 presents results of the analysis and predicts a net present worth of over 47 million dollars over a 10 year horizon.

The numbers produced from the economical analysis can be very sensitive in certain parameters. To find out which, a sensitivity analysis was made. This analysis changes the value of a parameter by a specified percentage, and plots the resulting response in the net present worth of the project. The result from the analysis can be seen in Figure 4.12

Figure 4.12: Sensitivity analysis

It is shown in Figure 4.12 that the methanol price has the largest influence on the net present worth of the project. Still, a 50 % reduction in the methanol price yields slightly below 20 MUSD in NPW over a 10 year horizon. Other parameters like investment cost, el. price, purge and steam price have little influence in the net present worth.

4.2.5 Pinch Analysis

To find the optimum configuration for the heat exchanger network, a pinch analysis was conducted (Gundersen, 2001). A pinch analysis is based on composite curves for the hot and cold streams in the facility, and uses these to find the pinch point in the process. The data was extracted from the simulation shown in Figure 4.13. The results from this analysis is found in Figure 4.14 and in Appendix 4.2.5.

Figure 4.13: UniSim layout

Figure 4.14: Composite curves

In Figure 4.14 it is shown that the pinch point is at the top of the graph. This means that it is not possible to transfer energy through the pinch point, and that ΔT_{min} is equal to the temperature difference at the top of the curve. ΔT_{min} is then equal to

$$\Delta T_{min} = (256 - 240)^{\circ} \mathrm{C} = 16^{\circ} \mathrm{C}$$
(4.1)

The design criteria below the pinch point is

$$mCp_H \ge mCp_C \tag{4.2}$$

$$n_H \ge n_C \tag{4.3}$$

Where n is the number of hot and cold streams. Since the criteria in Equation 4.3 were valid for both possible heat exchanger configurations, the heat exchanger network with the least total heat exchanging area would be the best. The two possible configurations were both tested in UniSim, and the optimal network is shown in Figure 4.15 and Figure 3.1.

Figure 4.15: Proposed optimum heat exchanger network

4.3 MegaMethanol

As explained in Chapter 3.3 it was important to see that MATLAB and UniSim would yield the same results for the BWR. The script for simulating the BWR in MATLAB, and comparing these values with UniSim is found in Appendix C and D. The results are seen in Figure 4.16 and 4.17.

Figure 4.16: Weight fractions in the BWR from UniSim and MATLAB

Figure 4.17: Temperatures in the BWR from UniSim and MATLAB

From Figure 4.16 and 4.17 it can be concluded that MATLAB and UniSim calculates approximately the same values.

Collocation was used to simulate the GCR. The MegaMethanol process was then simulated by combining the simulation of the recycle loop with the simulation of the GCR. The resulting script is found in Appendix E together with the UniSim flowsheet and databook. Results from this simulation is seen in Figure 4.18–4.21.

Figure 4.18: Temperature profile in the BWR

Figure 4.19: Weight fractions in the BWR

Figure 4.20: Temperature profile in the GCR

Figure 4.21: Weight fractions in the GCR

Figure 4.18 and 4.19 corresponds to Figure 4.17 and 4.16 meaning that there are little change in the BWR from the base case to the MegaMethanol process. The temperature profile in the GCR, shown in Figure 4.20, demonstrate that the shell side temperature has a steep decline from the start of the reactor. This indicates that little heat is produced from the reaction in the GCR. This is also seen as the small changes in weight fractions in Figure 4.21. When the shell side temperature in the GCR is below 250 °C the reaction kinetics decreases rapidly and limits the methanol production. This is demonstrated in Figure 4.22 where the cooling water for the BWR in the base case is varied, and the resulting methanol production is mapped. It becomes clear from this figure that the GCR temperatures are far from ideal for methanol production. From the simulation it is calculated that the GCR produces 0.69 tonne/h while the BWR produces 98.83 tonne/h. Compared to the base case, this is a total increase of 0.2 tonne/h. The small amount of extra methanol produced will not be enough to make the MegaMethanol process profitable.

Figure 4.22: Methanol production as a function of cooling water temperature

Chapter 5 Conclusion

Simulations of the three different methanol reactor loop layouts was performed and it was concluded that:

- The base case simulation using kinetics from Vanden Bussche and Froment (1996) gave reasonable results compared to Tjeldbergodden methanol plant.
- An equal reactor length of 7.25 m produced the most methanol for the interstage methanol removal configuration.
- A case study of the cooling water temperatures for the two reactors in series showed that a temperature of 250°C in the first reactor and 255°C in the second reactor resulted in the largest methanol production.
- A recycle ratio of 2 seems to be a reasonable value for the interstage methanol removal configuration.
- The interstage methanol removal configuration produced 2.8 tonne/h (87 kmol/h) more methanol than the base case, resulting in a net present worth of over 47 million dollars over a 10 year horizon.
- It was proven that the addition of a GCR only increased the methanol production by 0.2 tonne/h. This will not be enough to make the MegaMethanol process profitable

List of symbols

a	Activity
А	Area
C_p^0 (gas)	Standard molar heat capacity at constant pressure
D	Diameter
LD_{50}	Lethal Dose 50%
M_w	Molecular weight
R	Recycle ratio
\tilde{R}	Mass reaction rate
r	Weight based reaction rate
r'	Volume based reaction rate
\mathbf{r}_{Actual}	Actual (Observed) reaction rate
\mathbf{r}_s	Reaction rate at surface conditions
S^0 (gas)	Standard entropy
SN	Stoichiometric number
\mathbf{t}	Time
Т	Temperature
T_c	Cooling water temperature
U	Overall heat transfer coefficient
v'	Superficial velocity
V	Volume
w	Weight fraction
W	Mass flow
ΔP	Pressure drop
$\Delta_{vap}H^0$	Molar enthalpy of vaporisation
$\Delta_f G^0$ (gas)	Standard Gibbs energy of formation
$\Delta_f H^0$ (gas)	Standard enthalpy of formation
ΔH_{rx}	Heat of reaction
ϵ	Void fraction
η	Internal efficiency factor
ψ	Sphericity

Bibliography

- Aschehoug, H. and Gyldendal (2006). Store Norske Leksikon, Volume 10, 352–353. Oslo: Hendriksen, P.
- Aspen Technology, I. (2005). Simulation basis.
- Aylward, G. H. and T. J. V. Findlay (2002). SI Chemical Data (5th ed.). John Wiley & Sons.
- Eaton, J. W. (1997). Collocation. Free Software Foundation 59 Temple Place Boston, MA.
- Ertl, G., H. Knözinger, and J. Weitkamp (1997). Methanol Synthesis. Wiley-VCH.
- Graaf, G., P. Sijtsema, E. Stamhuis, and G. Joosten (1986). Chemical equilibria in methanol synthesis. *Chemical Engineering Science* 41(11), 2883–2890.
- Graaf, G., E. Stamhuis, and A. Beenackers (1988). Kinetics of low-pressure methanol synthesis. *Chemical Engineering Science* 43(12), 3185–3195.
- Gundersen, T. (2001). Pinch analyser for kontinuerlige prosesser.
- Haldor-Topsøe (2011). High activity methanol synthesis catalyst mk-121. http:// www.topsoe.com/business_areas/methanol/Processes/MethanolSynthesis.aspx.
- Hillestad, M. (1995). Modell av "Fixed Bed"' reaktor, Metanolsyntesen. Statoil.
- Hogarth, M. F. and G. A. Hards (1996). Direct methanol fuel cells, technological advances and further requirements. *PlatinumMetals Rev* 40(4), 50–159.
- Lange, J. P. (2001). Methanol synthesis: a short review of technology improvements. *Catalysis Today* 64, 3–8.
- MathWorks (2011). fsolve. http://www.mathworks.com/help/toolbox/optim/ug /fsolve.html.
- Methanex (2010a, February). MeOH Uses. http://www.methanex.com/ products/documents/TISH_english.pdf.
- Methanex (2010b, February). MSDS . http://www.methanex.com/products/ documents/MSDS_USenglish.pdf.

- Moulijn, J., M. Makkee, and A. Van Diepen (2008). *Chemical Process Theorology*. West Sussex, England: John Wiley & Sons Ltd.
- Scott Fogler, H. (2006). Elements of Chemical Reaction Engineering. Westford, Massachusetts: Prentice Hall.
- Sinnott, R. and G. Towler (2009). *Chemical Engineering Design* (5 ed.). Jordan Hill Oxford: Elsevier.
- Statoil (2010, February). Informasjon om tjeldbergodden industrianlegg. http://www.statoil.com/no/ouroperations/terminalsrefining/tjeldbergodden/pages/default.aspx.
- Vanden Bussche, K. and G. Froment (1996). A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a comercial Cu/ ZnO/Al₂O₃ catalyst. *Journal of Catalysys 161* (0156), 1–10.

Appendix A Interchanger pressure drop

To calculate the pressure drop on the tube side in the heat exchanger the following equation was used (Sinnott and Towler, 2009):

$$\Delta P_t = N_p \left[8j_f \left(\frac{L}{d_i}\right) \left(\frac{\mu}{\mu_w}\right)^{-m} + 2.5 \right] \frac{\rho u_t^2}{2} \tag{A.1}$$

For the shell side:

$$\Delta P_s = 8j_f \left(\frac{D_s}{d_e}\right) \left(\frac{L}{l_b}\right) \frac{\rho u_s^2}{2} \left(\frac{\mu}{\mu_w}\right)^{-0.14} \tag{A.2}$$

The following assumptions where made:

- 1.5 velocity head pressure drop for nozzles
- Square pitch
- 35% bafflecut
- neglected viscosity correction at wall
- 2.5 velocity heads per pass
- 2.5 m baffle spacing

Values produced from excel for the base case:

	Value	Unit
Number of tube side passes	1	
Number of tubes	$5 \ 412$	
Tube length	18.00	m
Tube inner diameter	0.019	m
Fluid viscosity	$1.74 \cdot 10^{-5}$	Pa s
Fluid viscosity at wall	$1.74 \cdot 10^{-5}$	Pa s
jf	0.027	
m	0.14	
Average density	23.10	${ m kg}~{ m m}^{-3}$
Vol stream 4	$22\ 110$	$\mathrm{m}^3~\mathrm{h}^{-1}$
Vol stream 5	$15 \ 976$	$\mathrm{m}^3~\mathrm{h}^{-1}$
Average vol flow	19 043	$\mathrm{m}^3~\mathrm{h}^{-1}$
Average vol flow	5.29	$\mathrm{m}^3~\mathrm{h}^{-1}$
Velocity	3.45	${\rm m~s^{-1}}$
Re	$87\ 048$	
pressure drop	28 641	Pa
pressure drop	0.286	bar

Table A.1: Tube side values

Table A.2: Shell side values

-

	Value	Unit
Tube pitch	0.04	
Tube outside diameter	0.02	m
Shell inside diameter	2.50	m
Baffle spacing	2.25	m
Cross flow area	2.47	m^2
Mass flow	119.34	$\rm kg~s^{-1}$
Mass velocity	48.37	${\rm kg}~{\rm s}^{-1}~{\rm m}^{-2}$
Density	22.73	${ m kg}~{ m m}^{-3}$
Linear velocity	2.13	${\rm m~s^{-1}}$
Hydraulic diameter	0.07	m
Viscosity	$1.41 \cdot 10^{-5}$	Pa s
Fluid viscosity at wall	$1.41 \cdot 10^{-5}$	
Re	248 846	
jf	0.25	
Pressure drop	$28 \ 281$	Pa
Pressure drop	0.283	bar

For the interstage methanol removal the following values were obtained for HE-1:

	Value	Unit
Number of tube side passes	1	
Number of tubes	$5\ 412$	
Tube length	18.00	m
Tube inner diameter	0.019	m
Fluid viscosity	1.26E-05	Pa s
Fluid viscosity at wall	1.26E-05	Pa s
jf	0.032	
m	0.14	
Average density	19.92	${ m kg}~{ m m}^{-3}$
Vol stream 8	11666	$\mathrm{m}^3 \mathrm{h}^{-1}$
Vol stream 9	8194	$\mathrm{m}^3~\mathrm{h}^{-1}$
Average vol flow	9930	$\mathrm{m}^3 \mathrm{h}^{-1}$
Average vol flow	2.76	$\mathrm{m}^3 \mathrm{h}^{-1}$
Velocity	1.80	${\rm m~s^{-1}}$
Re	53 861	
pressure drop	7 933	Pa
pressure drop	0.079	bar

Table A.3: Tube side values

Table A.4: Shell side values

	Value	Unit
Tube pitch	0.04	m
Tube outside diameter	0.02	m
Shell inside diameter	2.50	m
Baffle spacing	2.25	m^2
Cross flow area	2.47	$\rm kg~s^{-1}$
Mass flow	73.15	$\rm kg~s^{-1}~m^{-2}$
Mass velocity	29.65	${ m kg}~{ m m}^{-3}$
Density	22.15	${\rm m~s^{-1}}$
Linear velocity	1.34	m
Hydraulic diameter	0.07	Pa s
Viscosity	1.45E-05	
Fluid viscosity at wall	1.45E-05	
Re	$149 \ 316$	
jf	0.27	Pa
Pressure drop	$11 \ 777$	bar
Pressure drop	0.118	bar

A pressure drop of 0.2 bar was used in both heat exchangers, because it was concluded to simulate the worst case scenario.

Appendix B Reaction Kinetics

In the basis environment in UniSim under the reaction tab, all the reactions of interest must be implemented. There are different ways of specifying these reactions, such as equilibrium reaction, kinetic reaction, conversion reaction or as in this case a heterogeneous catalytic reaction. Since there are many different ways of setting up the reaction rate for a heterogeneous catalytic reaction, the reaction rate expression has been generalized in UniSim. The general reaction rate expression is

Reaction rate =
$$\frac{k \cdot f \left(Basis\right) - k' \cdot f' \left(Basis\right)}{\left(1 + K_1 \cdot f_1 \left(Basis\right) + K_2 \cdot f_2 \left(Basis\right) + \ldots\right)^n}$$
(B.1)

Where

$$k = A \cdot \exp(-E/RT) \cdot T^{\beta}$$
$$k' = A' \cdot \exp(-E'/RT) \cdot T^{\beta}$$
$$K_{1} = A_{1} \cdot \exp(-E_{1}/RT)$$
$$\vdots$$
$$K_{5} = A_{5} \cdot \exp(-E_{5}/RT)$$

The functions f(Basis), f'(Basis), $f_1(Basis)$, $f_2(Basis)$, ... are the product of the concentrations (fugacity, partial pressure, ...) to the power of the exponent given by the kinetic model.

The relevant reactions for methanol synthesis are:

- Reaction A $CO + 2H_2 \rightleftharpoons CH_3OH$ (B.2)
- Reaction B $CO_2 + H_2 \rightleftharpoons CO + H_2O$ (B.3)
- Reaction C $CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$ (B.4)

In the article of Vanden Bussche and Froment (1996) the reaction rate for methanol production is derived from the hydrogenation of CO_2 (Reaction B.4) and

the reverse water gas shift reaction (Reaction B.3). The reason for this is studies performed with labelled 14 C isotopes and Vanden Bussche and Froment (1996) used these results to eliminate CO as a carbon source. The developed intrinsic reaction rates are

$$r_{C} = \frac{k_{a}p_{CO_{2}}p_{H_{2}}\left[1 - (1/K_{1}^{*})\left(p_{H_{2}O}p_{CH_{3}OH}/p_{H_{2}}^{3}p_{CO_{2}}\right)\right]}{\left(1 + k_{c}\left(p_{H_{2}O}/p_{H_{2}}\right) + \sqrt{k_{d}p_{H_{2}}} + k_{e}p_{H_{2}O}\right)^{3}}$$
$$r_{B} = \frac{k_{b}p_{CO_{2}}\left[1 - K_{3}^{*}\left(p_{H_{2}O}p_{CO_{2}}p_{H_{2}}\right)\right]}{\left(1 + k_{c}\left(p_{H_{2}O}/p_{H_{2}}\right) + \sqrt{k_{d}p_{H_{2}}} + k_{e}p_{H_{2}O}\right)}$$

Since the reaction rates must be on the form of Equation B.1, these expressions are manipulated to

$$r_{C} = \frac{k_{a}p_{CO_{2}}p_{H_{2}} - \frac{k_{a}}{K_{1}^{*}} \frac{p_{H_{2}OPCH_{3}OH}}{p_{H_{2}}^{2}}}{\left(1 + k_{c}\left(p_{H_{2}O}/p_{H_{2}}\right) + \sqrt{k_{d}p_{H_{2}}} + k_{e}p_{H_{2}O}\right)^{3}}$$
$$r_{B} = \frac{k_{b}p_{CO_{2}} - k_{b}K_{3}^{*} \frac{p_{H_{2}OPCO}}{p_{H_{2}}}}{\left(1 + k_{c}\left(p_{H_{2}O}/p_{H_{2}}\right) + \sqrt{k_{d}p_{H_{2}}} + k_{e}p_{H_{2}O}\right)}$$

Hydrogenation of Carbon Dioxide

The equilibrium constant for Reaction B.4 is found in Graaf et al. (1986) and is

$$\log (K_1^*) = \frac{3066}{T} - 10.592$$
$$\ln (K_1^*) = \frac{3066 \cdot \ln (10)}{T} - 10.592 \cdot \ln (10) = \frac{7060}{T} - 24.39$$
$$K_1^* = 2.56 \cdot 10^{-11} exp\left(\frac{58695}{RT}\right)$$

$$\frac{k_a}{K_1^*} = \frac{1.07 \exp\left(\frac{36696}{RT}\right)}{2.56 \cdot 10^{-11} \exp\left(\frac{58695}{RT}\right)} = 4.18 \cdot 10^{10} \exp\left(\frac{-21999}{RT}\right)$$

$$r_{C} = \frac{1.07 \exp\left(\frac{36696}{RT}\right) p_{CO_2} p_{H_2} - 4.18 \cdot 10^{10} \exp\left(\frac{-21999}{RT}\right) p_{H_2O} p_{CH_3OH} p_{H_2}^{-2}}{\left(1 + 3453.38 p_{H_2O} p_{H_2}^{-1} + 0.499 \exp\left(\frac{17197}{RT}\right) p_{H_2}^{-0.5} + 6.62 \cdot 10^{-11} \exp\left(\frac{124119}{RT}\right) p_{H_2O}\right)^3}$$

UniSim allows different units for the reaction rate, but they are all on volume basis. The unit kmol· s⁻¹· m⁻³ was chosen, and it was discovered that m⁻³ means void volume of the reactor. The reaction rates from Vanden Bussche and Froment (1996) have the units mol· s⁻¹· kg⁻¹ and therefore must be multiplied with the solid density of the catalyst, multiplied by the catalyst volume over the void volume and divided by 1000 (Since UniSim uses kmol instead of mol).

$$\begin{split} r_{C}[=]\frac{mol}{kgcat \cdot s} \\ r_{C}' = r_{C} \cdot \rho_{c} \cdot \frac{1-\epsilon}{\epsilon} \cdot \frac{1 \text{kmol}}{1000 \text{mol}} \\ r_{C}'[=]\frac{kmol}{m_{v}^{3} \cdot s} \end{split}$$

Where $\rho_C = 1950$ is the density of the catalyst, ϵ is the void fraction and m_v^3 is the void volume.

$$r_{C} = \frac{3.13 \exp\left(\frac{36696}{RT}\right) p_{CO_2} p_{H_2} - 1.22 \cdot 10^{11} \exp\left(\frac{-21999}{RT}\right) p_{H_2O} p_{CH_3OH} p_{H_2}^{-2}}{\left(1 + 3453.38 p_{H_2O} p_{H_2}^{-1} + 0.499 \exp\left(\frac{17197}{RT}\right) p_{H_2}^{0.5} + 6.62 \cdot 10^{-11} \exp\left(\frac{124119}{RT}\right) p_{H_2O}\right)^3}$$

Reverse Water Gas Shift Reaction

The equilibrium constant for the reverse of Reaction B.3 is found in Graaf et al. $\left(1986\right)$ and is

$$\log\left(\frac{1}{K_3^*}\right) = \frac{-2073}{T} + 2.029$$
$$\ln\left(K_3^*\right) = \frac{2073 \cdot \ln\left(10\right)}{T} - 2.029 \ln\left(10\right) = \frac{4773}{T} - 4.672$$
$$K_3^* = 9.35 \cdot 10^{-3} exp\left(\frac{39685}{RT}\right)$$

$$k_b K_3^* = 1.22 \cdot 10^{10} \exp\left(\frac{-94765}{RT}\right) \cdot 9.35 \cdot 10^{-3} \exp\left(\frac{39685}{RT}\right) = 1.14 \cdot 10^8 \exp\left(\frac{-55080}{RT}\right)$$

$$r_B = \frac{1.22 \cdot 10^{10} \exp\left(\frac{-94765}{RT}\right) p_{CO_2} - 1.14 \cdot 10^8 \exp\left(\frac{-55080}{RT}\right) p_{H_2OPCO} p_{H_2}^{-1}}{1 + 3453.38 p_{H_2O} p_{H_2}^{-1} + 0.499 \exp\left(\frac{17197}{RT}\right) p_{H_2}^{0.5} + 6.62 \cdot 10^{-11} \exp\left(\frac{124119}{RT}\right) p_{H_2O}}$$

$$r_{B}[=]\frac{mol}{kgcat \cdot s}$$

$$r'_{B} = \cdot \rho_{c} \cdot \frac{1-\epsilon}{\epsilon} \cdot \frac{1 \text{ kmol}}{1000 \text{ mol}}$$

$$r'_{B}[=]\frac{kmol}{m_{v}^{3} \cdot s}$$

Where ρ_C is the density of the catalyst, ϵ is the void fraction and m_v^3 is the reactor volume.

$$r'_{B} = \frac{3.57 \cdot 10^{10} \exp\left(\frac{-94765}{RT}\right) p_{CO_{2}} - 3.34 \cdot 10^{8} \exp\left(\frac{-55080}{RT}\right) p_{H_{2}O} p_{CO} p_{H_{2}}^{-1}}{1 + 3453.38 p_{H_{2}O} p_{H_{2}}^{-1} + 0.499 \exp\left(\frac{17197}{RT}\right) p_{H_{2}}^{0.5} + 6.62 \cdot 10^{-11} \exp\left(\frac{124119}{RT}\right) p_{H_{2}O}}$$

UniSim Input Values

The input values for the nominator is multiplied by the value of $a\eta = 0.7$ in Reaction B.3 and Reaction B.4. The input values then becomes

Constant	Value	Components	Forward Order	Reverse Order
А	2.19	СО	0	0
E	-36696	$\rm CO_2$	1	0
A'	$8.56\cdot10^{10}$	H_2	1	-2
\mathbf{E}	21999	H_2O	0	1
eta , eta'	0	CH_3OH	0	1

Table B.1: Nominator values for reaction B.3

Table B.2: Nominator values for reaction B.4

Constant	Value	Components	Forward Order	Reverse Order
А	$2.50\cdot 10^{10}$	СО	0	1
E	94765	$\rm CO_2$	1	0
A'	$2.34\cdot 10^8$	H_2	0	-1
E'	55080	H_2O	0	1
eta , eta^{\prime}	0	CH_3OH	0	0

The denominator values are

	Table B.3: Denominator values								
i	A_i	$E_i \; [Jmol^{-1}]$	CO	CO_2	H_2	$\rm H_2O$	$\mathrm{CH}_3\mathrm{OH}$		
1	3453.38	0	0	0	-1	1	0		
2	0.499	-17197	0	0	0.5	0	0		
3	$6.62 \cdot 10^{-11}$	-124119	0	0	0	1	0		

The denominator exponent is 3 for CO_2 hydrogenation and 1 for the RWGS reaction.

Appendix C MATLAB and UniSim comparison script

clear all clc global a Pfeed = 80;%[bar] Tfeed = 210.0134; %[C] myfeed = 1.566e - 05;%[Pa*s] a.Wcomp = [25.89,38.41,18.67,0.0683,1.0037,23.89]; a.Wcomp = a.Wcomp(1:6);% CO CO2 H2 H2O MeOH CH4 a.M = [28.010 44.010 2.016 18.016 32.042 16.042];%[kg/kmol] a.n = 6; % # components a.cpm = [1.073 1.025 14.51 1.975 1.9 3]; % cp [kJ/kg-K] a.Wflow = sum(a.Wcomp); % feed flow [kg/s] a.w0 = a.Wcomp'/a.Wflow; % mass frac at inlet [-] a.TOBWR = Tfeed; % temp at inlet [C] a.P0 = Pfeed; % pres at inlet [bara] a.Tw0 = 250; % cooling water T [C] x0 = [a.w0; a.TOBWR; a.P0; a.Tw0]; % initial conditions ~ 1 a.dHr = [-49.6 41.0] *1e3; % Heat of reac [kJ/kmol] a.d = 40.5e-3; a.S = pi*(a.d/2.0)^2; % inner diam [m] % cross section [m2] a.Vtube = a.S*7.25;% tube volume [m3] a.Ntubes= 5515*2; % Number of tubes [-] a.Vreact= a.Vtube*a.Ntubes; % Reactor volume [m3] a.ph = 4e-3;% pellet height [m] a.dp = 6e-3; % pellet diam [m] a.eps = 0.40; % void fraction [-] a.my = myfeed; a.U = 1000; % gas viscosity [Pa*s] % over heat trans [W/m2*K] a.rhoC = 1950; % cat solid dens [kg/m3] a.rhoB = a.rhoC*(1-a.eps); % bulk solid dens [kg/m3] a.Vp = pi*(a.dp/2)^2*a.ph; % Pellet vol [m3]

```
= (2*pi*(a.dp/2)^2)+(2*pi*(a.dp/2)*a.ph);% surf area [m2]
a.Ap
a.spheri= (pi^(1/3)*(6*a.Vp)^(2/3))/(a.Ap); % sphericity [-]
a.Fc = 1e9;
                                             %Coolant mol flow [kmol/s]
a.Cpc = 87.76;
                                             % Coolant Cp [kJ/kmol*C]
opt=odeset('AbsTol',1e-5,'RelTol',1.e-5);
[V X]=ode45(@pfr,[0 a.Vreact],x0,opt);
w = X(:, 1:a.n);
y = mass2mol(w,a.M');
L=V/(a.S*a.Ntubes);
P=X(:,a.n+2);
T=X(:,(a.n+1));
Tc=round(X(:,a.n+3));
load UniSim
                                             % Values from the BWR in ...
    UniSim
LU=UniSim(:,1);
wUniSim=UniSim(:,2:7);
TUniSim=UniSim(:,8);
% Plot weight fractions from UniSim and MATLAB
figure(1)
plot(L,w(:,1),L,w(:,2),L,w(:,3),L,w(:,4),L,w(:,5),L,w(:,6),'y')
hold on
plot(LU,wUniSim(:,1),'.',LU,wUniSim(:,2),'.',LU,wUniSim(:,3),'.',...
    LU, wUniSim(:,4),'.',LU, wUniSim(:,5),'.',LU, wUniSim(:,6),...
    'y.', 'MarkerSize',15)
hold off
xlabel('Reactor Length [m]')
ylabel('Weight fraction')
legend('CO','CO_2','H_2','H_2O','MeOH','CH_4','UniSim')
grid on
xlim([0 7.25])
% Save the figure as pgf
matfig2pgf...
('C:\...\Grafer\matlabwf')
% Plot the temperature profile from UniSim and MATLAB
figure(2)
plot(L,T,'r',L,Tc,'b',LU,TUniSim,'.r','MarkerSize',15)
xlabel('Reactor Length [m]')
ylabel('Temperature [^{\circ}C]')
legend('Matlab reactor', 'Cooling water', 'UniSim reactor')
grid on
xlim([0 7.25])
% Save the figure as pqf
matfig2pgf...
('C:\...\Grafer\matlabT')
```

Appendix D

MATLAB PFR

```
function [f]=pfr(V,x)
<u>e</u>____
% name
             : Calculating the derivatives for the PFR reactor.
         : Kristian Bøhn
% author
% date
             : 08.03.2011
% last time rev : 25.05.2011
% input:
8 V
              : Reactor volume
                                        [m3]
% x(1:n)
             : Gas composition
                                        [mass frac]
% x(n+1)
             : Temperature
% x(n+2)
             : Pressure
                                        [bar]
             : Cooling water temp [C]
% x(n+3)
% a
              : Struct with parameters given in the main program
% output:
% dwdV
             : Weight fraction change per reactor volume
                                                           [1/m3]
             : Temperature change per reactor volume
% dTdV
                                                          [K/m3]
% dPdV
             : Pressure change per reactor volume
                                                          [bar/m3]
% dTcdV
             : Cooling medium temp change per reac volume [K/m3]
8____
qlobal a
n = a.n;
w = x(1:n);
T = x(n+1);
P = x(n+2);
Tc = x(n+3);
% Call function to calculate pressure drop
[dPdL]=pressdrop(x);
% Call function giving the reaction rates
[R r]=reactionrates(x); % R reaction rates [kg/m3*s]
dwdV = R/a.Wflow;
dTdV = (-a.dHr*r - a.U/1000 * 4/a.d * (T-Tc))/(a.Wflow*a.cpm*w);
dPdV = (dPdL/(a.S*a.Ntubes));
dTcdV = (a.U/1000 * 4/a.d*(Tc-T))/(a.Fc*a.Cpc);
```

```
f = [dwdV;
    dTdV
    dPdV
    dTcdV];
```

end

8_

```
function dPdL = pressdrop(x)
```

```
% name : Calculating turbulent pressure drop using Erguns Eq.
% author
              : Kristian Bøhn
% date
              : 21.03.2011
% last time rev : 25.05.2011
% input:
           : Weight fractions
% x(1:n)
% x(n+1)
              : Temperature
             : Pressure
% x(n+2)
                                     [bar]
% a.M(1:6) : Molecular weight
                                     [kg/kmol]
% TO
              : Start temperature
8
  ΡO
              : Start pressure
                                     [bar]
÷
  w0
              : Start mass fractions [-]
% output:
          : Pressure drop per length
% dPdL
2
global a
n = a.n;
w = x(1:n);
T = x(n+1);
P = x(n+2);
R=8.314;
                                                     % [J/(K*mol)]
T0 = a.T0BWR;
Wflow = a.Wflow;
      = inv(sum(w./a.M'));
Μw
FO
      = Wflow*sum(a.w0./a.M');
F
       = Wflow./Mw;
      = (P*1e5.*(Mw))./(R.*(T+273.15));
                                                     % [g/m3]
rhog
rhog
      = rhog/1000;
                                                     % [kg/m3]
VFlow = Wflow./rhog;
                                                     % [m3/s]
% Calculate superficial velocity
v = (VFlow/(a.S*a.Ntubes))*(F/F0)*(a.P0./P)*((T+273)/(T0+273));
% Turbulent pressure drop [bar]
dPturb=((1.75*rhog.*(v^2)*(1-a.eps))/(a.dp*a.spheri*(a.eps^3)))/1e5;
      = -(dPturb);
dPdT.
                                                     %[bar]
end
```

```
function [R r]=reactionrates(x)
```

8____

```
% name : Vanden Bussche and Froment Reaction Kinetics
% author : Kristian Bøhn
% date : 18.03.2011
```

```
% last time rev : 25.05.2011
% input:
8
  x(1)
               : Mass fraction of CO
  x(2)
               : Mass fraction of CO2
8
               : Mass fraction of H2
8
  x(3)
               : Mass fraction of H2O
: Mass fraction of CH3OH
2
   x(4)
8
   x(5)
8
   x(6)
               : Mass fraction of CH4
8
   x(7)
               : Temperature [C]
8
   x(8)
               : Pressure
                                   [bar]
2
   a.M(1:6)
              : Molecular weight [kg/kmol]
% output:
8
  r(1)
           : rate of reaction 1 [kmol/(m3*s)] CO2 + 3H2 = CH3OH + H2O
           : rate of reaction 2 [kmol/(m3*s)] CO2 + H2 = CO + H2O
8
   r(2)
  R(i) : component reaction rates [kg/(m3*s)] (i=1..6)
2
2
global a
sumMol = sum(x(1:a.n)./a.M(1:a.n)');
xCO = x(1)/a.M(1)/sumMol;
xCO2 = x(2)/a.M(2)/sumMol;
xH2
      = x(3)/a.M(3)/sumMol;
xH2O
      = x(4)/a.M(4)/sumMol;
xMeOH = x(5)/a.M(5)/sumMol;
Т
      = x(a.n+1)+273;
                                           %[K]
Pres
      = x(a.n+2);
                                            %[bar]
      = 8.314;
R
                                           %[J/(K*mol)]
рCO
      = Pres*xCO;
pCO2 = Pres*xCO2;
pH2
      = Pres*xH2;
pH20 = Pres*xH20;
pMeOH = Pres*xMeOH;
% Rate constants
K1=1.07*exp(36696/(R*T));
K2=4.18e10*exp(-21999/(R*T));
K3=1.22e10*exp(-94765/(R*T));
K4=1.14e8*exp(-55080/(R*T));
% Compute the denominator
denom1=1+(3453.38*pH2O*pH2^(-1));
denom2=(0.499*exp(17197/(R*T))*pH2^(0.5));
denom3=(6.62e-11*exp(124119/(R*T))*pH2O);
denom=denom1+denom2+denom3;
% Compute the reaction rates [mol/(kg cat*s)]
r=zeros(2,1);
r(1) = (K1*pCO2*pH2 - K2*pH2O*pMeOH*pH2^(-2))/(denom^3);
r(2)
      = (K3*pC02 - K4*pH20*pC0*pH2^(-1))/denom;
% Internal efficiency factor * activity = ua = 0.7;
r=r*0.7*(a.rhoB/1000);
                                         % now [r] is kmol/(m3*s)
% component rates
g = [r(2);
                           % CO 1
     -r(1)-r(2);
                           % CO2 2
```

XIII

	-3*r(1)−r(2);	8 I	H2	3							
	r(1)+r(2);	8 I	H20	4							
	r(1);	8 1	MeOH	5							
	0];	응 (CH4	6							
R end	= g.*a.M';	00	[kg/m	3*s]	where	m3	is	for	empty	reactor	

Appendix E

Mega Methanol

If the commando for the material stream property is unknown, the fieldnames commando is very practical. E.g. writing fieldnames(g.Item('2')) in MATLAB yields every possible command for stream 2.

```
clear all
clc
global a b g
h
             = actxserver('UnisimDesign.Application');
hvCase
            = h.Activedocument;
sol
            = hyCase.Solver;
f
            = hyCase.Flowsheet;
            = f.MaterialStreams;
q
sol.CanSolve = 1;
% CO CO2 H2 H2O MeOH CH4
a.M = [28.010 44.010 2.016 18.016 32.042 16.042]; % [kg/kmol]
a.cpm = [1.064 1.014 14.51 1.954 1.9 2.889];%mass Cp at 500 K [kJ/kgK]
a.n = 6;
                                    % number of components
a.dHr = [-49.6 41.0] *1e3;
                                     % heat of reac [kJ/kmol]
a.my = q.Item('2').ViscosityValue*0.001; % gas viscosity [Pa*s]
%%%%%%%%%% Water cooled reactor specifications %%%%%%%%%%%%%%%%%%%%%%
a.d = 40.5e-3;
a.S = pi*(a.d/2.0)^2;
                                     % inner diam [m]
                                     % cross section [m2]
a.Vtube = a.S*7.25;
                                     % tube volume [m3]
a.Ntubes= 5515*2;
                                     % number of tubes [-]
a.Vreact= a.Vtube*a.Ntubes;
                                      % reactor volume [m3]
a.ph = 4e-3;
                                     % pellet height [m]
      = 6e-3;
a.dp
                                     % pellet diam [m]
a.eps = 0.40;
                                     % void fraction [-]
a.U = 1000;
                                     % over heat trans [W/m2*K]
% bulk solid dens [kq/m3]
                                     % pellet vol [m3]
a.Ap = (2*pi*(a.dp/2)^2)+(2*pi*(a.dp/2)*a.ph); % surf area [m2]
```

```
a.spheri= (pi^(1/3)*(6*a.Vp)^(2/3))/(a.Ap); % sphericity [-]
a.Tw0 = 250;
                                          % cooling water T [C]
      = 1e9;
a.Fc
                                          % cool. mol flow [kmol/s]
a.Cpc = 87.76;
                                          % coolant Cp [kJ/kmol*C]
%%%%%%%%%%% Gas cooled reactor specifications %%%%%%%%%%%%%%%%%%%%%%%%%%%%
b.z = 18;
                                          % length of reactor [m]
b.Ntubes = 5412;
                                         % number of tubes [-]
b.d
        = 19e-3;
                                         % tube inner diameter[m]
         = b.Ntubes*pi*(b.d/2)^2*b.z;
b.Vc
                                         % tube volume [m3]
b.do
        = 29e-3;
                                         % tube outer diameter [m]
         = b.Ntubes*pi*(b.do/2)^2*b.z;
b.Vco
                                         % tube outer volume [m3]
b.Dshell = 2.7 - 0.2;
                                         % shell diameter [m]
        = pi*(b.Dshell/2)^2*b.z;
b.Vtot
                                         % total shell vol [m3]
        = b.Vtot-b.Vco;
b.Vr
                                         % reactor volume [m3]
\ Over heat trans [W/m2*K] from p.821 in Sinnott 5th ed.
b.U
        = 200;
                                         % over heat trans [W/m2*K]
[r, A, B, q] = colloc( n [,'left'] [,'right'])
2
% inputs:
8
         n - number of interior node points
응
         'left' - include left boundary
         'right' - include right bounary also
8
% outputs:
          r - vector of roots
8
8
          A - Matrix of first derivative weights
          B - Matrix of second derivative weights
2
8
          q - Quadrature weights.
n=8;
[xq, A, \neg, \neg] = colloc(n, 1, 1);
load tipp
                         % Previously saved initial conditions
opt=optimset('Display','iter','TolFun',1e-5,'TolX',...
    1e-5 , 'MaxFunEvals', 100000, 'MaxIter ', 20);
[x fval]=fsolve(@(x) residmega(x,A,n),tipp,opt);
x=sqrt(x.^2);
       = xq*b.z;
                                    % [m]
L
Tgh
       = x(((n+2) * 6) + 1: (n+2) * 7);
                                    % [C]
                                    % [C]
       = x(((n+2)*7)+1:(n+2)*8);
Tgc
wh
       = x(1:(n+2)*6);
                                    8 [-]
whCO
       = wh(1:n+2);
whCO2
       = wh((n+2)+1:(n+2)*2);
whH2
       = wh(((n+2)*2)+1:(n+2)*3);
      = wh((((n+2) \times 3)+1:(n+2) \times 4);
whH20
whMeOH = wh(((n+2) *4) +1:(n+2) *5);
whCH4 = wh(((n+2) \star 5) +1: (n+2) \star 6);
figure(1)
plot(L,Tgh,'r',L,Tgc,'b')
```

```
legend('Shell side','Tube side')
```

```
xlabel('GCR Length [m]')
ylabel('Temperature [^{\circ}C]')
grid on
xlim([0 18])
matfig2pgf('C:\...\Grafer\GCRtemp')
figure(2)
plot(L,whCO,L,whCO2,L,whH2,L,whH2O,L,whMeOH,L,whCH4)
legend('CO','CO_2','H_2','H_2O','MeOH','CH_4')
xlabel('GCR Length [m]')
ylabel('Mass fraction')
grid on
xlim([0 18])
matfig2pgf('C:\...\Grafer\GCRwf')
LBWR = a.V/(a.S*a.Ntubes);
                                            % [m]
  = a.X(:,1:a.n);
                                            % [−]
W
  = a.X(:,a.n+2);
                                            % [bar]
Ρ
T = a.X(:,a.n+1);
                                            % [C]
Tc = a.X(:,a.n+3);
                                            % [C]
figure(3)
plot(LBWR,w)
xlabel('Reactor Length [m]')
ylabel('Mass fraction')
legend('CO','CO_2','H_2','H_2O','MeOH','CH_4')
grid on
xlim([0 7.25])
matfig2pgf('C:\...\Grafer\GCRBWRwf')
figure(4)
plot(LBWR,T,'r',LBWR,Tc,'b')
xlabel('Reactor Length [m]')
ylabel('Temperature [^{\circ}C]')
legend('Reactor', 'Cooling water')
grid on
xlim([0 7.25])
matfig2pgf('C:\...\Grafer\GCRBWRtemp')
Wcomp = x(((n+2) * 8) + 1:((n+2) * 8) + 6);
a.Wflow = sum( Wcomp );
   = Wcomp./a.Wflow;
wΟ
MeOHBWR = ((a.X(end, 5) *a.Wflow) - (w0(5) *a.Wflow))*3.600;
MeOHGCR = (wh((n+2)*5)*a.Wflow - (a.X(end, 5)*a.Wflow))*3.600;
function res=residmega(x,A,n)
global a b g
% None of the values can be negative
      = sqrt(x.^2);
Х
wh
      = x(1:(n+2)*6);
                                   % [−]
```

```
XVII
```

```
= x(((n+2)*6)+1:(n+2)*7); % [C]
= v(((n+2)*7)+1:(n+2)*8); % [C]
Tgh
       = x(((n+2)*7)+1:(n+2)*8);
Tqc
Wcomp = x(((n+2)*8)+1:((n+2)*8)+6); % [kg/s]
a.Wflow = sum( Wcomp );
a.w0
         = Wcomp./a.Wflow;
         = x(((n+2) * 8) + 7);
a.P0
       = x(((n+2) * 8) + 8);
ТΟ
res=ones(length(x),1);
a.TOBWR = Tgc(1);
       = [a.w0; a.TOBWR; a.PO; a.Tw0];% initial conditions for the BWR
хO
opt=odeset('AbsTol',1e-6,'RelTol',1.e-3);
[V X]=ode45(@pfr,[0 a.Vreact],x0,opt);
a.V=V;
a.X=X;
Ρh
        = zeros(n+2,1)+X(end,8); %[bar]
res(1:(n+2):(n+2)*6) = ...
    wh(1:(n+2):(n+2)*6) - X(end,1:6)';% left comp flow boundary cond
res(((n+2)*6)+1) = Tgh(1) - X(end,7);% left temperature boundary cond
% n internal collocation points
for i = 2:n+2
    % reaction rates at each internal collocation point
     [R r]=reactionrates([wh(i:(n+2):(n+2)*6);Tgh(i);Ph(i)]);
    for k = 1:6
        % weight fraction at each internal collocation point
        res((n+2)*(k-1)+i) = ...
            A(i,:) *wh((n+2) * (k-1)+1: (n+2) *k)-R(k) * (b.Vr/a.Wflow);
    end
    % shell side temperature at each internal collocation point
    res(((n+2)*6)+(i):(n+2)*7) = A(i,:)*Tgh + ...
        (a.dHr*r*1000+ b.U*(4/b.d)*(Tgh(i)-Tgc(i)))*...
        (b.Vr/(a.Wflow*1000*a.cpm*(wh(i:(n+2):(n+2)*6))));
end
for i = 1:n+1
    % Tube side temperature at each internal collocation point
    res(((n+2)*7)+i:(n+2)*8) = A(i,:)*Tgc + ...
       (b.U*(4/b.d)*(Tqh(i)-Tqc(i)))*(b.Vc/(a.Wflow*1000*a.cpm*a.w0));
end
res((n+2)*8) = Tgc(n+2)-T0;% temperature at right boundary cond (Tube)
Whout=wh(n+2:n+2:(n+2)*6)*a.Wflow;
a.Whout=Whout;
% return values to UniSim
g.Item('5').PressureValue
                               = Ph(end) *100; % [kPa]
g.Item('5').TemperatureValue = Tgh(end);
                                            % [C]
g.Item('CO').MassFlowValue
                               = Whout (1);
                               = Whout(2);
q.Item('CO2').MassFlowValue
g.Item('H2').MassFlowValue
                               = Whout(3);
g.Item('H2O').MassFlowValue
                               = Whout (4);
g.Item('MeOH').MassFlowValue
                              = Whout(5);
```

```
g.Item('CH4').MassFlowValue = Whout(6);
% get values from UniSim after recycle
Wci = g.Item('2').ComponentMassFlowValue;
Pci = g.Item('2').PressureValue/100;
Tci = g.Item('2').TemperatureValue;
% calculate recycle residual
res(((n+2)*8)+1:((n+2)*8)+8)=...
[Wci Pci Tci]'-x(((n+2)*8)+1:((n+2)*8)+8);
end
```

The MegaMethanol simulation in UniSim is shown in Figure E, with the corresponding woorkbook below.

Figure E.1: UniSim simulation

1			Case Name: C:\Users\\UniSim\MegaMethanol Matlab.usc			
2	Compar Calgary	y Name Not Available Alberta	Unit Set:	SI		
4	CANAD	A	Date/Time:	Monday Jun 6 201	1 11:21:28	
5			Bato, fino.	monady carro 201	.,	
0 7 8	Work	book: Case	(Main)			
9 10			Streams		Fluid Pk	ig: All
11	Name	MUG others	1	2	6	Raw methanol
12	Vapour Fraction	0.9987	1.0000	1.0000	0.8976	0.0000
13	Temperature (C)	25.00 *	146.8	59.82	30.00 *	30.00
14	Pressure (kPa)	3000 *	8000 *	8000	7903	7903
15	Molar Flow (kgmole/h)	3498 *	1.132e+004	4.529e+004	3.908e+004	4001
16	Mass Flow (kg/h)	1.106e+005	1.264e+005	3.890e+005	3.890e+005	1.178e+005
17	Std Ideal Liq Vol Flow (m3/h)	142.8	368.6	1537	1352	145.3
18	Heat Flow (kJ/h)	-6.472e+008	-6.049e+008	-2.016e+009	-2.469e+009	-1.010e+009
19	Molar Enthalpy (kJ/kgmole)	-1.850e+005	-5.342e+004	-4.451e+004	-6.317e+004	-2.525e+005
20	Comp Mass Frac (CO)	0.6019 ^	0.5268	0.2334	0.0644	0.0002
21	Comp Mass Frac (CO2)	0.3704	0.3242	0.3685	0.2827	0.0362
22	Comp Mass Frac (Hydrogen)	0.0000 *	0.1248	0.1734	0.1373	0.0003
23	Comp Mass Frac (H2O)	0.0016	0.0014	0.0006	0.0357	0.1174
24	Comp Mass Frac (Methano)	0.0000	0.0000	0.0093	0.2651	0.0438
26	Name	7	Purce	0.2140	8	5
27	Vapour Fraction	1 0000	1 0000	1 0000	1 0000	0.9673
28	Temperature (C)	30.00	30.00	31.64	30.00	117.5 *
29	Pressure (kPa)	7903	7903	8020 *	7903	7923 *
30	Molar Flow (kgmole/h)	3.508e+004	1110	3.397e+004	3.397e+004 *	3.908e+004
31	Mass Flow (kg/h)	2.712e+005	8585	2.626e+005	2.626e+005	3.890e+005
32	Std Ideal Liq Vol Flow (m3/h)	1206	38.18	1168	1168	1352
33	Heat Flow (kJ/h)	-1.459e+009	-4.618e+007	-1.411e+009	-1.413e+009	-2.248e+009
34	Molar Enthalpy (kJ/kgmole)	-4.158e+004	-4.158e+004	-4.153e+004	-4.158e+004	-5.751e+004
35	Comp Mass Frac (CO)	0.0923	0.0923	0.0923	0.0923	0.0644
36	Comp Mass Frac (CO2)	0.3898	0.3898	0.3898	0.3898	0.2827
37	Comp Mass Frac (Hydrogen)	0.1967	0.1967	0.1967	0.1967	0.1373
38	Comp Mass Frac (H2O)	0.0002	0.0002	0.0002	0.0002	0.0357
39	Comp Mass Frac (Methanol)	0.0137	0.0137	0.0137	0.0137	0.2651
40	Comp Mass Frac (Methane)	0.3072	0.3072	0.3072	0.3072	0.2148
41	Name	H2 MUG	MUG	CW-1	CW-2	MeOH
42	Vapour Fraction	1.0000	1.0000	0.0000	0.0000	1.0000
43	Temperature (C)	25.00 *	22.20	15.00 *	50.00 *	250.0 *
44	Pressure (kPa)	3000 *	3000	100.0 ^	80.00	8000 ^
45	Molar Flow (kgmole/h)	/825	1.132e+004	8.136e+004	8.136e+004	3219
40	Mass Flow (kg/n)	1.5780+004	1.2640+005	1.4660	1.4660+006	1.0310+005
47	Host Flow (k1/b)	1 1640+004	6 4720+009	2 2250+010	2 2120+010	6.44501008
40	Molar Enthaloy (k l/kamola)	-1.1048	-5.716e+004	-2.870e+010	-2.843e+005	-2.002e+005
50	Comp Mass Frac (CO)	0.0000 *	0.5268	0.0000 *	0.0000	0.0000 *
51	Comp Mass Frac (CO2)	0.0000 *	0.3242	0.0000 *	0.0000	0.0000 *
52	Comp Mass Frac (Hydrogen)	1.0000 *	0.1248	0.0000 *	0.0000	0.0000 *
53	Comp Mass Frac (H2O)	0.0000 *	0.0014	1.0000 *	1.0000	0.0000 *
54	Comp Mass Frac (Methanol)	0.0000 *	0.0000	0.0000 *	0.0000	1.0000 *
55	Comp Mass Frac (Methane)	0.0000 *	0.0228	0.0000 *	0.0000	0.0000 *
56						
57		11-101	Decign (D200 D	id 14027)		Dogo 1 of 0
28	noneyweii international inc.	UNISIN	i Desigii (R380 BU	iiu 14027)		Fage 1013

Licensed to: Company Name Not Available

Printed by: Kristian

* Specified by user.
| 1 | | | | Case Name: | C:\Users\\UniSi | m\MegaMethanol Matlab. | usc | |
|----------|-------------------------------|-----------------------|-------------------------------|-------------------|-----------------------------|------------------------|---------------|--|
| 3 | oneywe | Company
Calgary, A | Name Not Available
Alberta | Unit Set: | SI | | | |
| 4 | • | CANADA | | Date/Time: | Monday Jun 6 2011, 11:21:28 | | | |
| 6 | | | | | | | | |
| 7 | | Work | book: Ca | se (Main) (co | ntinued) | | | |
| 8 | | | | | | | | |
| 10 | | | | Streams (continu | ied) | Fluid Pk | g: All | |
| 11 | Name | | CH4 | H2 | со | CO2 | H2O | |
| 12 | Vapour Fraction | | 1.000 | 0 1.0000 | 1.0000 | 1.0000 | 0.0000 | |
| 13 | Temperature | (C) | 250. | 250.0 | 250.0 * | 250.0 * | 250.0 * | |
| 14 | Pressure (/ | (KPa) | 800 | 2 640 - 1004 | 8000 - | 8000 - | 8000 - | |
| 15 | Mass Flow (F | (kg/b) | 9 2590+00 | 1 * 5 2400+004 | 2 50501004 * | 2499 | 1 2000 004 * | |
| 17 | Std Ideal Lig Vol Flow | (m3/h) | 279 | 764.4 | 31.34 | 133.3 | 13 93 | |
| 18 | Heat Flow | (kJ/h) | -3.440e+00 | 3 1.728e+008 | -9.304e+007 | -9.636e+008 | -2.064e+008 | |
| 19 | Molar Enthalpy (k. | J/kgmole) | -6.604e+00 | 4 6523 | -1.040e+005 | -3.856e+005 | -2.674e+005 | |
| 20 | Comp Mass Frac (CO) | <u> </u> | 0.000 | 0.0000 * | 1.0000 * | 0.0000 * | 0.0000 * | |
| 21 | Comp Mass Frac (CO2) | | 0.000 | 0.0000 * | 0.0000 * | 1.0000 * | 0.0000 * | |
| 22 | Comp Mass Frac (Hydrogen) | | 0.000 | 0 * 1.0000 * | 0.0000 * | 0.0000 * | 0.0000 * | |
| 23 | Comp Mass Frac (H2O) | | 0.000 | 0.0000 * | 0.0000 * | 0.0000 * | 1.0000 * | |
| 24 | Comp Mass Frac (Methanol) | | 0.000 | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 * | |
| 25 | Comp Mass Frac (Methane) | | 1.000 | 0.0000 * | 0.0000 * | 0.0000 * | 0.0000 * | |
| 26 | Name | | 4-Vir | Duty MUG Comp | Duty Recycle Comp | | | |
| 27 | Vapour Fraction | | 1.000 |) | | | | |
| 28 | Temperature | (C) | 209. | 1 | | | | |
| 29 | Pressure | (kPa) | 800 |) | | | | |
| 30 | Molar Flow (H | gmole/h) | 3.908e+00 | 1 | | | | |
| 31 | Mass Flow | (kg/h) | 3.890e+00 | 5 | | | | |
| 32 | Std Ideal Liq Vol Flow | (m3/h) | 135 | 2 | | | | |
| 33 | Heat Flow | (kJ/h) | -2.079e+00 | 9 4.239e+007 | 1.697e+006 | | | |
| 34 | Molar Enthalpy (k. | l/kgmole) | -5.319e+00 | 4 | | | | |
| 35 | Comp Mass Frac (CO) | | 0.064 | 1 | | | | |
| 36 | Comp Mass Frac (CO2) | | 0.282 | | | | | |
| 37 | Comp Mass Frac (Hydrogen) | | 0.137 | | | | | |
| 38 | Comp Mass Frac (H2O) | | 0.035 | | | | | |
| 39 | Comp Mass Frac (Methanol) | | 0.265 | | | | | |
| 40 | Comp Mass Frac (Methane) | | 0.214 | | | | | |
| 42 | | | | Unit Ops | | | | |
| 43 | Operation Name | Ope | eration Type | Feeds | Products | Ignored | Calc Level | |
| 44 | | | | MUG | 1 | | | |
| 45 | MUG Comp | Compres | isor | Duty MUG Comp | | No | 500.0 * | |
| 46 | Recycle Comp | Compres | sor | 8 | 9 | No | 500.0 * | |
| 47 | | | | Duty Recycle Comp | | | | |
| 48
49 | MIX Recycle | Mixer | | 9 | 2 | No | 500.0 * | |
| 50 | MIX MUO | Missa | | MUG others | MUG | | 500.0.4 | |
| 51 | WITA MIDG | wixer | | H2 MUG | | NO | 500.0 " | |
| 52 | | | | MeOH | 4-Vir | | | |
| 53 | | | | CH4 | | | | |
| 54 | MIX-100 | Mixer | | H2 | | No | 500.0 * | |
| 55 | | | | CO | | | | |
| 56 | | | | CO2 | | | | |
| 57 | | | 1 | | | | | |
| 50 | Linear well between the state | laa | | H2O | | | Des : 0 : (0 | |

XXI

Specified by user.

Appendix F

Interstage Methanol Removal

1				Case Name:	C:\Users\\New E	esign\Interstage Methar	ol Removal.usc	
3	loneywe	Company Calgary, /	Name Not Available Alberta	Unit Set:	SI			
4 5	-	CANADA		Date/Time:	Friday Jun 3 2011	Friday Jun 3 2011, 15:07:11		
6								
7	V	Vork	book: Case	(Main)				
8								
9				Streams		Fluid Pl	kg: All	
10	Nome		Boot MUC	MUCHE	1	2	10	
12	Name		Rest MUG	MUG HP 1 0000	1 0000	2 1.0000	10 0.0400	
12	Tomporeture	(0)	0.9967	1.0000	1.0000	1.0000	0.9400	
14	Proceuro	(C) (kRa)	2000 *	132.9	8020	210.0	30.00	
14	Melos Elour (kas	(KPa)	3000	1 1220+004	2 2070+004	2 2070 +004	2 4010-004	
10	Meas Flow (Kgr	(ka/b)	1 1000 0005 *	1.1320+004	3.3970+004	3.3970+004	2.4910+004	
10	Std Ideal Lig Val Flow	(Kg/n)	1.1060+005	1.2640+005	2.8480+005	2.8480+005	2.0510+005	
10	Stu ideal Liq Voi Flow	(113/11)	6 4720 1008	6.0070+008	1 2280 1000	1 1820 1000	1 1 400 + 000	
10	Melas Esthelau (k. l/k	(KJ/II)	-6.4720+005	-6.0970+008	-1.3360+009	-1.1820+009	-1.1400+009	
19	Molar Enthalpy (kJ/k)	(gmole)	-1.8500+005	-5.3850+004	-3.9390+004	-3.4800+004	-4.577e+004	
20	Comp Mass Frac (CO)		0.6019	0.5268	0.2740	0.2740	0.0577	
21	Comp Mass Frac (CO2)		0.3704	0.3242	0.2697	0.2697	0.1836	
22	Comp Mass Frac (Hydrogen)		0.0000	0.1248	0.1733	0.1733	0.1693	
23	Comp Mass Frac (H2O)		0.0018	0.0014	0.0009	0.0009	0.0412	
24	Comp Mass Frac (Methanol)		0.0000	0.0000	0.0074	0.0074	0.1882	
20	Comp Mass Frac (Methane)		0.0201	0.0228	0.2747	0.2747	0.3800	
20	Nomo		Bow MoOH 2	11	Burgo	14	12	
28	Vapour Fraction		0.0000	1 0000	1 0000	14 1.0000	12	
20	Temperature	(C)	30.00	30.00	30.00	35.19	30.00	
30	Pressure	(U) (kPa)	7611	7611	7611	8020	7611	
31	Molar Flow (kar	mole/h)	1/05	2 3420+004	769.9	2 265e+004	2 2650+004	
32	Mass Flow	(ka/b)	4 1380+004	1.637e+005	5384	1 5840+005	1 5840+005	
33	Std Ideal Lin Vol Flow	(m3/h)	50.05	819.7	26.95	702.8	792.8	
34	Heat Flow	(k l/b)	-3.833e+008	-7 567e+008	-2 4880±007	-7 2820+008	-7 3180+008	
35	Molar Enthalov (k.l/k	(Ro/II)	-2 564e+005	-3 232e+004	-3 232e+004	-3 216e+004	-3 232e+004	
36	Comp Mass Erac (CO)	iginioio)	0.0001	0.0723	0.0723	0.0723	0.0723	
37	Comp Mass Frac (CO2)		0.0149	0.2262	0.2262	0.2262	0.2262	
38	Comp Mass Frac (Hydrogen)		0.0002	0.2121	0.2121	0.2121	0.2121	
39	Comp Mass Frac (H2O)		0.2022	0.0005	0.0005	0.0005	0.0005	
40	Comp Mass Frac (Methanol)		0.7813	0.0132	0.0132	0.0132	0.0132	
41	Comp Mass Frac (Methane)		0.0012	0.4758	0.4758	0.4758	0.4758	
42	Comp Mass Frac (Oxygen)		0.0000	0.0000	0.0000	0.0000	0.0000	
43								
44								
45								
46								
47								
48								
49								
50								
51								
52								
53								
54								
55								
56								
50								

57 58 Honeywell International Inc.

UniSim Design (R380 Build 14027)

Page 1 of 5

Licensed to: Company Name Not Available

Printed by: Kristian

* Specified by user.

1			Case Name:	C:\Users\\New D	esign\Interstage Methan	ol Removal.usc			
3	Company Calgary, J	Name Not Available Alberta	Unit Set:	SI					
4	CANADA		Date/Time:	Friday Jun 3 2011	Friday Jun 3 2011, 15:07:11				
6									
7	Workbook: Case (Main) (continued)								
9 10		s	Streams (continue	ed)	Fluid Pk	:g: All			
11	Name	9	13	H2 MUG	MUG	3			
12	Vapour Fraction	0.9753	1.0000	1.0000	1.0000	1.0000			
13	Temperature (C)	100.7	30.00 *	25.00 *	22.20	253.5			
14	Pressure (kPa)	7631	7611 *	3000 *	3000	7821			
15	Molar Flow (kgmole/h)	2.491e+004	2.265e+004 *	7825 *	1.132e+004	2.952e+004			
16	Mass Flow (kg/h)	2.051e+005	1.584e+005	1.578e+004	1.264e+005	2.848e+005			
17	Std Ideal Liq Vol Flow (m3/h)	869.8	792.8	225.8	368.6	1034			
18	Heat Flow (kJ/h)	-1.046e+009	-7.318e+008	-1.164e+004	-6.472e+008	-1.342e+009			
19	Molar Enthalpy (kJ/kgmole)	-4.200e+004	-3.232e+004	-1.488	-5.716e+004	-4.546e+004			
20	Comp Mass Frac (CO)	0.0577	0.0723 *	0.0000 *	0.5268	0.0921			
21	Comp Mass Frac (CO2)	0.1836	0.2262 *	0.0000 *	0.3242	0.2121			
22	Comp Mass Frac (Hydrogen)	0.1693	0.2121 *	1.0000 *	0.1248	0.1392			
23	Comp Mass Frac (H2O)	0.0412	0.0005 *	0.0000 *	0.0014	0.0245			
24	Comp Mass Frac (Methanol)	0.1682	0.0132 *	0.0000 *	0.0000	0.2574			
25	Comp Mass Frac (Methane)	0.3800	0.4758 *	0.0000 *	0.0228	0.2747			
20	Comp Mass Frac (Oxygen)	0.0000	0.0000 -	0.0000 -	0.0000	0.0000			
27	Name	4	Raw MeOH-1	6	/	8			
20	Vapour Fraction	0.9680	0.0000	1.0000	1.0000	1.0000			
29	Prossure (kPa)	7901	7791	7791	240.0	230.2			
31	Molar Flow (kamole/b)	2 9520+004	2655	2 687e+004	2 687e+004	2 4910+004			
32	Mass Flow (kg/hb)	2.848e+005	7 963e+004	2.051e+005	2.051e+005	2.051e+005			
33	Std Ideal Lig Vol Flow (m3/b)	1034	99.11	934.8	934.8	869.8			
34	Heat Flow (kJ/b)	-1.526e+009	-6.607e+008	-1.009e+009	-8.253e+008	-8.906e+008			
35	Molar Enthalpy (kJ/kgmole)	-5.167e+004	-2.488e+005	-3.754e+004	-3.071e+004	-3.575e+004			
36	Comp Mass Frac (CO)	0.0921	0.0003	0.1278	0.1278	0.0577			
37	Comp Mass Frac (CO2)	0.2121	0.0276	0.2837	0.2837	0.1836			
38	Comp Mass Frac (Hydrogen)	0.1392	0.0003	0.1932	0.1932	0.1693			
39	Comp Mass Frac (H2O)	0.0245	0.0870	0.0002	0.0002	0.0412			
40	Comp Mass Frac (Methanol)	0.2574	0.8813	0.0152	0.0152	0.1682			
41	Comp Mass Frac (Methane)	0.2747	0.0034	0.3800	0.3800	0.3800			
42	Comp Mass Frac (Oxygen)	0.0000	0.0000	0.0000	0.0000	0.0000			
43									
44									
45									
46									
47									
48									
49									
50									
51									
52									
53									
55									
56									
57									
58	Honevwell International Inc	UniSim	Design (R380 Bui	ild 14027)		Page 2 of 5			
30	Linear day Oregon News New Alex	00	Delate d has Keistian	,					

* Specified by user.

1	_		Case Name:	C:\Users\\New D	esign\Interstage Methan	ol Removal.usc
3	Calgary,	/ Name Not Available Alberta	Unit Set:	SI		
4 5	CANADA		Date/Time:	Friday Jun 3 2011	, 15:07:11	
6						
7 8	Work	book: Case	(Main) (cor	ntinued)		
9			Streams (continue	ed)	Fluid Pk	g: All
10	Nama	5	CW 2	CW 1	CW 2	CW 4
12	Vanour Fraction	0 9101	0.0000	0.0000	0.0000	0.0000
13	Temperature (C)	30.00 *	50.00 *	15.00 *	15.00 *	50.00 *
14	Pressure (kPa)	7781	80.00	100.0 *	100.0 *	80.00
15	Molar Flow (kgmole/h)	2.952e+004	5.286e+004	5.286e+004	3.447e+004	3.447e+004
16	Mass Flow (kg/h)	2.848e+005	9.522e+005	9.522e+005	6.209e+005	6.209e+005
17	Std Ideal Liq Vol Flow (m3/h)	1034	954.2	954.2	622.2	622.2
18	Heat Flow (kJ/h)	-1.669e+009	-1.503e+010	-1.517e+010	-9.892e+009	-9.798e+009
19	Molar Enthalpy (kJ/kgmole)	-5.654e+004	-2.843e+005	-2.870e+005	-2.870e+005	-2.843e+005
20	Comp Mass Frac (CO)	0.0921	0.0000	0.0000 *	0.0000 *	0.0000
21	Comp Mass Frac (CO2)	0.2121	0.0000	0.0000 *	0.0000 *	0.0000
22	Comp Mass Frac (Hydrogen)	0.1392	0.0000	0.0000 *	0.0000 *	0.0000
23	Comp Mass Frac (H2O)	0.0245	1.0000	1.0000 *	1.0000 *	1.0000
24	Comp Mass Frac (Methanol)	0.2574	0.0000	0.0000 *	0.0000 *	0.0000
25	Comp Mass Frac (Methane)	0.2747	0.0000	0.0000 *	0.0000 *	0.0000
26	Comp Mass Frac (Oxygen)	0.0000	0.0000	0.0000 *	0.0000 *	0.0000
27	Name	15	16	17	18	19
28	Vapour Fraction	0.0000 *	1.0000 *	0.0000 *	1.0000 *	1.0000
29	Temperature (C)	250.0 *	250.0	255.0 *	255.0	30.00 *
30	Pressure (kPa)	3913	3913	4250	4250	101.3 *
31	Molar Flow (kgmole/h)	5077	5077	2104	2104	674.0 *
32	Mass Flow (kg/h)	9.147e+004	9.147e+004	3.791e+004	3.791e+004	2.157e+004
33	Std Ideal Liq Vol Flow (m3/h)	91.66	91.66	37.99	37.99	18.96
34	Heat Flow (kJ/h)	-1.358e+009	-1.198e+009	-5.617e+008	-4.964e+008	9.212e+004
35	Molar Enthalpy (kJ/kgmole)	-2.674e+005	-2.359e+005	-2.669e+005	-2.359e+005	136.7
36	Comp Mass Frac (CO)	0.0000 *	0.0000	0.0000 *	0.0000	0.0000 *
37	Comp Mass Frac (CO2)	0.0000 *	0.0000	0.0000 *	0.0000	0.0000 *
38	Comp Mass Frac (Hydrogen)	0.0000	0.0000	0.0000	0.0000	0.0000
39	Comp Mass Frac (H2O)	1.0000 *	1.0000	1.0000	1.0000	0.0000 *
40	Comp Mass Frac (Methanol)	0.0000	0.0000	0.0000	0.0000	0.0000
41	Comp Mass Frac (Methane)	0.0000	0.0000	0.0000	0.0000	0.0000
42	Comp Mass Frac (Oxygen)	0.0000	0.0000	0.0000	0.0000	1.0000
43						
45						
46						
47						
48						
49						
50						
51						
52						
53						
54						
55						
56						
57						
58	Honeywell International Inc.	UniSim	Design (R380 Bu	ild 14027)		Page 3 of 5

Licensed to: Company Name Not Available

Printed by: Kristian

* Specified by user.

1										
2		Compon	Nome Not Available		Case Name:	C:\Users\	New De	esign\Inter	stage Methan	ol Removal.usc
3	loneywe	Calgary,	Alberta		Unit Set:	SI				
4	-	CANADA			Date/Time: Friday Jun 3 2011, 15:07:11					
6										
7 8	Vorkbook: Case (Main) (continued)									
9 10				St	reams (continue	ed)			Fluid Pk	g: All
11	Name		20	2	1	22		Duty fee	ed comp	Duty Recycle Comp
12	Vapour Fraction		1.000	0	1.0000	0.0	0000			
13	Temperature	(C)	27.1	6	100.0	1	00.0 *			
14	Pressure	(kPa)	101.	3	101.3	1	01.3			
15	Molar Flow (I	kgmole/h)	144	4	1155	0.0	0000			
16	Mass Flow	(kg/h)	2.695e+00	4	2.695e+004	0.0	0000			
17	Std Ideal Liq Vol Flow	(m3/h)	45.9	1	28.64	0.0	0000			
18	Heat Flow	(kJ/h)	-2.479e+00	7	-2.925e+008	0.0	0000	3	.752e+007	3.588e+006
19	Molar Enthalpy (k.	J/kgmole)	-1.717e+00	4	-2.532e+005	-2.804e-	+005			
20	Comp Mass Frac (CO)		0.014	4	0.0000	0.0	0000			
21	Comp Mass Frac (CO2)		0.045	2	0.3322	0.0	0001			
22	Comp Mass Frac (Hydrogen))	0.042	4	0.0000	0.0	0000			
23	Comp Mass Frac (H2O)		0.000	1	0.5951	0.9	9999			
24	Comp Mass Frac (Methanol)		0.002	6	0.0000	0.0	0000			
25	Comp Mass Frac (Methane)		0.095	0	0.0000	0.0	0000			
26	Comp Mass Frac (Oxygen)		0.800	2	0.0727	0.0	0000			
27	Name		Duty PFR-2	0	Duty PFR-1	Q-100				
28	Vapour Fraction									
29	Temperature	(C)								
30	Pressure	(kPa)								
31	Molar Flow (I	kgmole/h)	-							
32	Mass Flow	(kg/h)	-							
33	Std Ideal Liq Vol Flow	(m3/h)	-							
34	Heat Flow	(kJ/h)	6.528e+00	7	1.599e+008	-2.677e-	+008			
35	Molar Enthalpy (k.	J/kgmole)	-							
36	Comp Mass Frac (CO)		-							
37	Comp Mass Frac (CO2)		-							
38	Comp Mass Frac (Hydrogen))	-							
39	Comp Mass Frac (H2O)		-							
40	Comp Mass Frac (Methanol)		-							
41	Comp Mass Frac (Methane)		-							
42	Comp Mass Frac (Oxygen)		-							
43					Unit Ops					
44					· · · · · · · · · · · · · · · · · · ·					
45	Operation Name	Ор	eration Type		Feeds	Pr	oducts		Ignored	Calc Level
46	Feed comp	Compres	isor	MUG		MUG HP			No	500.0 *
4/				Duty f	reed comp					
48	Recycle comp	Compres	isor	13		14			No	500.0 *
49				Duty	Recycle Comp					
50	MIX 2	Mixer		MUG	HP	1			No	500.0 *
52				14	MUG	MUC				
52	MIX 1	Mixer		rest l		WUG			No	500.0 *
54					<u>.</u>	20				
55	MIX-100	Mixer		r-urge	5	20			No	500.0 *
56				2		3				
57	PFR-1	Plug Flo	w Reactor	4		Duty PEP	1		No	500.0 *
58	Honeywell International	l Inc.	11	niSim F	Design (R380 Bui	ld 14027)				Page 4 of 5
00	Licensed to: Company Nan	ne Not Ava	ilable	Pi	rinted by: Kristian				* S	pecified by user.

Appendix G UniSim Base Case

1						
2	Company	/Name Not Available	Case Name:	C:\Users\\UniSim\Sim	ulering Case Studies Bu	ssche .usc
3	Honeywell Calgary,	Alberta	Unit Set:	SI		
4	CANADA		Date/Time:	Tuesday Dec 7 2010, 2	1:59:42	
6			•			
7	Workbook	: Case (Mai	n)			
9			Streams		Fluid Pkg	q: All
10	Name	MUG others	1	2	3	6
12	Vapour Fraction	0.9987	1.0000	1.0000	1.0000	0.9026
13	Temperature (C)	25.00 *	147.2	52.94	210.0 *	20.00 *
14	Pressure (kPa)	3000 *	8020 *	8020	8000	7860
15	Molar Flow (kgmole/h)	3498 *	1.132e+004	4.529e+004	4.529e+004	3.932e+004
16	Mass Flow (kg/h)	1.106e+005 *	1.264e+005	4.051e+005	4.051e+005	4.051e+005
17	Std Ideal Liq Vol Flow (m3/h)	142.8	368.6	1519	1519	1343
18	Heat Flow (kJ/h)	-6.472e+008	-6.047e+008	-2.161e+009	-1.936e+009	-2.604e+009
19	Molar Enthalpy (kJ/kgmole)	-1.850e+005	-5.341e+004	-4.772e+004	-4.274e+004	-6.623e+004
20	Comp Mole Frac (CO)	0.6795*	0.2099	0.0865	0.0865	0.0410
21	Comp Mole Frac (CO2)	0.2662	0.0822	0.0812	0.0812	0.0762
22	Comp Mole Frac (H2O)	0.0000	0.0000	0.0003	0.0002	0.0071
24	Comp Mole Frac (Mothanol)	0.0023	0.0009	0.0005	0.0005	0.0170
25	Comp Mole Frac (Methano)	0.0000	0.0000	0.0013	0.0013	0.0777
26	Name	Raw methanol	7	Purge	9	8-R1
27	Vapour Fraction	0.0000	1.0000	1.0000	1.0000	1.0000
28	Temperature (C)	20.00	20.00	20.00	22.19	20.00
29	Pressure (kPa)	7860	7860	7860	8020	7860
30	Molar Flow (kgmole/h)	3830	3.549e+004	1519	3.397e+004	3.397e+004 *
31	Mass Flow (kg/h)	1.139e+005	2.912e+005	1.247e+004	2.787e+005	2.787e+005
32	Std Ideal Liq Vol Flow (m3/h)	140.5	1202	51.47	1151	1151
33	Heat Flow (kJ/h)	-9.755e+008	-1.629e+009	-6.972e+007	-1.557e+009	-1.559e+009
34	Molar Enthalpy (kJ/kgmole)	-2.547e+005	-4.589e+004	-4.589e+004	-4.583e+004	-4.589e+004
35	Comp Mole Frac (CO)	0.0004	0.0453	0.0453	0.0453	0.0453
36	Comp Mole Frac (CO2)	0.0334	0.0808	0.0808	0.0808	0.0808
37	Comp Mole Frac (Hydrogen)	0.0039	0.7608	0.7608	0.7608	0.7608
38	Comp Mole Frac (H2O)	0.1802	0.0001	0.0001	0.0001	0.0001
39	Comp Mole Frac (Methanol)	0.7792	0.0020	0.0020	0.0020	0.0020
40	Comp Mole Frac (Methane)	0.0030	0.1109	0.1109	0.1109	0.1109
41	Name	5	4	8-R2	H2 MUG	MUG
42	Vapour Fraction	0.9721	1.0000	1.0000	1.0000	1.0000
43	Temperature (C)	7000	253.4	20.00	25.00	22.20
44	Molor Flow (kamolo/b)	2 0220±004	2 0220+004	2 2070±004 *	3000	1 1220+004
46	Mass Flow (kg/h0ie/h)	4.051e+005	4.051e+005	2 787e+004	1 578+004	1.1520+004
47	Std Ideal Lig Vol Flow (m3/b)	1343	1343	1151	225.8	368.6
48	Heat Flow (k.l/h)	-2.371e+009	-2.146e+009	-1.559e+009	-1.164e+004	-6.472e+008
49	Molar Enthalpy (kJ/kgmole)	-6.031e+004	-5.457e+004	-4.589e+004	-1.488	-5.716e+004
50	Comp Mole Frac (CO)	0.0410	0.0410	0.0453 *	0.0000 *	0.2099
51	Comp Mole Frac (CO2)	0.0762	0.0762	0.0808 *	0.0000 *	0.0822
52	Comp Mole Frac (Hydrogen)	0.6871	0.6871	0.7608 *	1.0000 *	0.6911
53	Comp Mole Frac (H2O)	0.0176	0.0176	0.0001 *	0.0000 *	0.0009
54	Comp Mole Frac (Methanol)	0.0777	0.0777	0.0020 *	0.0000 *	0.0000
55	Comp Mole Frac (Methane)	0.1004	0.1004	0.1109 *	0.0000 *	0.0159
56						
57						
58						
59						
60						
61						
62						
63						
64						
65						
66						
67						
68			D : (D000 D)	1 4 4 4 9 9 7 1		D 4 43
69	Honeywell International Inc.	UniSi	m Design (R380 Bu	ld 14027)		Page 1 of 2
	Licensed to: Company Name Not Available		Printed by: Kristian			Specified by user.

1					Case Name:	C:\Lleare\ \LlniSim\Sim	ulering Ca	eo Studios Bus	sche uso
2	Honovwoll	Company	Name Not Available		Case Name.	0.105615110111311113111	Iulenny Ca	se studies bus	Sche Jusc
3	noneywen	Calgary, A CANADA	lberta		Unit Set:	SI			
5					Date/Time:	Tuesday Dec 7 2010, 2	1:59:42		
6	Worl	chook	Caso (N	lain) (continuo	d)			
8	WOII	NUOUK	. Case (IV	am) (continue	u)			
9				Si	treams (continue	ed)		Fluid Pkg	: All
10	Name		Duty Reactor Cod	oling	Duty Condenser	Duty MUG Comp	Duty Red	cycle Comp	
12	Vapour Fraction								
13	Temperature	(C)							
14	Molar Flow	(kpmole/h)							
16	Mass Flow	(kg/h)							
17	Std Ideal Liq Vol Flow	(m3/h)	2 008 - 10			4.2526+007.*			
19	Molar Enthalpy (k	(KJ/Kgmole)	2.096640		2.3290+008	4.2520+007	2		
20	Comp Mole Frac (CO)								
21	Comp Mole Frac (CO2)								
22	Comp Mole Frac (Hydrogen) Comp Mole Frac (H2O)								
24	Comp Mole Frac (Methanol)								
25	Comp Mole Frac (Methane)								
26					Unit Ops				
28	Operation Name	Ope	eration Type		Feeds	Products		Ignored	Calc Level
29	MUG Comp	Compress	sor	MUG	;	1		No	500.0 *
30				Duty 8-R2	MUG Comp	9			
32	Recycle Comp	Compress	sor	Duty	Recycle Comp			No	500.0 *
33 34	MIX Recycle	Mixer		1 9		2		No	500.0 *
35 36	MIX MUG	Mixer		MUG H2 M	others	MUG		No	500.0 *
37 38	PFR Reactor	Plug Flow	Reactor	3		4 Duty Reactor Cooli		No	500.0 *
39 40	Condenser	Cooler		5		6 Duty Condenser		No	500.0 *
41 42	Separator	Separator		6	Raw methanol			No	500.0 *
43 44	S-1	Tee		7	Purge 8-R1			No	500.0 *
45 46	Heatx	Heat Excl	nanger	4		5 3		No	500.0 *
47	Parameters	Spreadsh	eet					No	500.0 *
48 49	Massebal	Spreadsh	eet					No	500.0 *
50	ADJ-UA	Adjust	661					No	3500 *
51	RCY-1	Recycle		8-R1		8-R2		No	3500 *
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	Image: Second state Image: Second state Imag								
	Licensed to: Company Name Not	Available			Printed by: Kristian				* Specified by user.

XXXII

Appendix H

Pinch Analysis

To find the optimum configuration for the heat exchanger network, a pinch analysis was conducted (Gundersen, 2001). A pinch analysis is based on composite curves for the hot and cold streams in the facility, and uses these to find the pinch point in the process. Table H.1 and Table H.2 is generated from the values obtained from the simulation shown in Figure H.1.

Figure H.1: UniSim layout

Since methanol and water is condensing it was desirable to divide the condenser into three parts since the C_p values changes drastically when the stream is condensed.

XXXIII

Stream to	Temp.	interval [°C]	$\dot{m}C_p$	$\rm Q \; [kJ \; t^{-1}]$	Q_{tot}
Sep-2	256	255	865 685	865 685	865 685
Sep-1	255	126	$1 \ 039 \ 969$	$134\ 156\ 054$	
Sep-2	255	126	865 685	$111\ 673\ 374$	$245 \ 829 \ 428$
Sep-1	126	122	2 670 631	$10 \ 682 \ 524$	
Sep-2	126	122	865 685	$3\ 462\ 740$	$14 \ 145 \ 265$
Sep-1	122	100	2 670 631	$58\ 753\ 883$	
Sep-2	122	100	1 858 937	$40 \ 896 \ 615$	$99\ 650\ 499$
Sep-1	100	30	1 767 181	123 702 674	
Sep-2	100	30	$1 \ 323 \ 105$	$92\ 617\ 348$	$216 \ 320 \ 023$

Table H.1: Data for the hot curve

Table H.2: Data for the cold curve

Stream to	Temp.	interval [°C]	$\dot{m}C_p$	$Q \; [kJ \; t^{-1}]$	Q_{tot}
PFR-1	30	67	873 638	32 324 620	32 324 620
PFR-2 PFR-1	67 67	210 210	$\begin{array}{c} 873 \ 638 \\ 1 \ 088 \ 923 \end{array}$	$\begin{array}{c} 124 \ 930 \ 287 \\ 155 \ 715 \ 974 \end{array}$	280 646 261
PFR-2	210	240	873 638	26 209 151	26 209 151

The composition curves were drawn from the data in Table H.1 and Table H.2, and can be seen in Figure 4.14. To localize the pinch point the cold curve was moved to the right. This is valid because it is the enthalpy change, and not the absolute value of the enthalpy that is of interest.

Appendix I

Economy

To find the price of the various equipment the following formula was used:

$$C_e = a + bS^n$$

Where C_e is the equipment price, S is a caracteristic size and a, b and n are constants from Table 6.6 is Sinnott and Towler (2009).

S for the separators was the shell mass. To find this mass the design procedure on page 638 in Sinnott and Towler (2009) was used.

Index oct 2010	556,30	
Pressure factor	1,30	
Base case separator		
Rho liq	809,53	kg/m3
Rho vap	23,82	kg/m3
Setteling velocity	0,40	Ut m/s
Vapour flow rate	3,15	m3/s Vv
Liquid flow rate m3/h	145,87	m3/h VI
Dmin	3,16	
H liq	3,10	10 min recidense time
Hmin	8,24	
Wall thickness	0,166	tw m
Metal density	8 000	kg/m3
Shell mass	108 799	
Price oct 10	615 593	\$

Two PFR

Sep 1

Two PFR Sep cost	769 273.04	\$
	320 671	Э
Shell mass	49 529	•
Metal density	8 000,00	kg/m3
Wall thickness	0,133	tw m
Hmin	5,86	
H liq	1,67	10 min recidense
Dmin	2,53	
Liquid flow rate m3/h	50,26	m3/h VI
Vapour flow rate	2,18	m3/s Vv
Setteling velocity	0,43	Ut m/s
Rho vap	20,87	kg/m3
Rho liq	823,29	kg/m3
Sep 2		
Price oct 10	448 602	\$
Shell mass	74 387	
Metal density	8 000	kg/m3
Wall thickness	0,15	tw m
Hmin	7,31	
H lia	2.74	10 min recidense
Dmin	2,78	
Liquid flow rate m3/h	99.54	m3/h VI
Vapour flow rate	2.45	m3/s Vv
Setteling velocity	0.40	Ut m/s
Rho van	23.31	ka/m3

Two PFR Sep cost	769 273,04	\$

Heatx

	Base Case	Two PFR		
UA	4 314 837	3 931 435	4 980 409	kJ C^-1 h^-1
UA	1 198 566	1 092 065	1 383 447	W K^-1
U	500	500	500	W m^2 K
A	2 397	2 184	2 767	m^2
Price oct 10	697 685	634 763	809 553	\$
Price oct 10	697 685	1 444 316		\$

Condenser

Price oct 10	883 396	1 044 451		\$
Price oct 10	883 396	608 032	436 419	\$
A	3 006	2 092	1 481	m^2
U	600	600	600	W m^2 K
UA	1 803 342	1 255 435	888 853	W K^-1
UA	6 492 032	4 519 566	3 199 870	kJ/(C*h)
	Base Case	Two PFR		

Recycle Comp				
	Base Case	Two PFR		
Duty	572	997	kW	
Price oct 10	161 824	222 222	\$	_
Op Price oct 10	23	39	\$ /h	22 øre/kWh
				-
Methanol prod				
	Base Case	Two PFR		
MeOH prod	99 705	102 510	kg h^-1	
Income	32 404	33 316	€ h^-1	325 €/MT
Income	45 560	46 842	\$/h	
				-
Purge				
-	Base Case	Two PFR		
Purge heat flow	-334 562 988	-292 451 788	kJ h^-1	
Purge heat flow	335	292	GJ h^-1	
Income	1 338	1 170	\$/h	4 \$/GJ
				•
MP steam				
	Base Case	Two PFR		
Steam	126 798	129 381	kg h^-1	
Income	1 522	1 553	\$/h	12 \$/MT

Investment cost

		Base Case	I WO PER	Installation
	Sep cost	615 593	769 273	4
	Heat exchanger cost	697 685	1 444 316	3,5
Purchased cost	Condenser cost	883 396	1 044 451	3,5
	Recycle comp cost	161 824	222 222	2,5
	Sum	2 358 498	3 480 262	
	Sep cost	2 462 371	3 077 092	
	Heat exchanger cost	2 441 897	5 055 107	
Installed cost	Condenser cost	3 091 886	3 655 577	
	Recycle comp cost	404 560	555 556	_
	Sum	8 400 714	12 343 332	_
Operating cost				
Operating cost	Base Case	Two PFR		
Operating cost Recycle comp	Base Case 177 861	Two PFR 310 009	\$ / year	
Operating cost Recycle comp	Base Case 177 861	Two PFR 310 009	\$ / year	
Operating cost Recycle comp Income	Base Case 177 861	Two PFR 310 009	\$ / year	
Operating cost Recycle comp Income	Base Case 177 861 Base Case	Two PFR 310 009 Two PFR	\$ / year	
Operating cost Recycle comp Income Methanol	Base Case 177 861 Base Case 364 480 211	Two PFR 310 009 Two PFR 374 736 345	\$ / year \$ / year	
Operating cost Recycle comp Income Methanol Purge	Base Case 177 861 Base Case 364 480 211 10 706 016	Two PFR 310 009 Two PFR 374 736 345 9 358 457	\$ / year \$ / year \$ / year	
Operating cost Recycle comp Income Methanol Purge MP steam	Base Case 177 861 Base Case 364 480 211 10 706 016 12 172 652	Two PFR 310 009 Two PFR 374 736 345 9 358 457 12 420 597	\$ / year \$ / year \$ / year \$ / year	
Operating cost Recycle comp Income Methanol Purge MP steam	Base Case 177 861 Base Case 364 480 211 10 706 016 12 172 652 387 358 879	Two PFR 310 009 Two PFR 374 736 345 9 358 457 12 420 597 396 515 399	\$ / year \$ / year \$ / year \$ / year \$ / year	
Operating cost Recycle comp Income Methanol Purge MP steam	Base Case 177 861 Base Case 364 480 211 10 706 016 12 172 652 387 358 879	Two PFR 310 009 Two PFR 374 736 345 9 358 457 12 420 597 396 515 399	\$ / year \$ / year \$ / year \$ / year \$ / year	
Operating cost Recycle comp Income Methanol Purge MP steam	Base Case 177 861 Base Case 364 480 211 10 706 016 12 172 652 387 358 879	Two PFR 310 009 Two PFR 374 736 345 9 358 457 12 420 597 396 515 399	\$ / year \$ / year \$ / year \$ / year \$ / year	
Operating cost Recycle comp Income Methanol Purge MP steam	Base Case 177 861 Base Case 364 480 211 10 706 016 12 172 652 387 358 879 Base Case	Two PFR 310 009 Two PFR 374 736 345 9 358 457 12 420 597 396 515 399 Two PFR	\$ / year \$ / year \$ / year \$ / year \$ / year Difference	Unit
Operating cost Recycle comp Income Methanol Purge MP steam	Base Case 177 861 Base Case 364 480 211 10 706 016 12 172 652 387 358 879 Base Case 8 400 714	Two PFR 310 009 Two PFR 374 736 345 9 358 457 12 420 597 396 515 399 Two PFR 12 343 332	\$ / year \$ / year \$ / year \$ / year \$ / year Difference 3 942 618	Unit \$
Operating cost Recycle comp Income Methanol Purge MP steam Investment cost Operating cost	Base Case 177 861 Base Case 364 480 211 10 706 016 12 172 652 387 358 879 Base Case 8 400 714 177 861	Two PFR 310 009 Two PFR 374 736 345 9 358 457 12 420 597 396 515 399 Two PFR 12 343 332 310 009	\$ / year \$ / year \$ / year \$ / year \$ / year Difference 3 942 618 132 148	Unit \$ \$/year

All values are in 1000\$														
	Basis	-1	0	1	2	3	4	5	9	7	8	6	10	
Fixed capital investment Working capital	3 943													
Declining balance 20 %	20													
Depreciation factor		a*(1-a)^(i-1)		0,2 0	,1600 0	,1280 0	,1024 (0,0819 (0,0655 (0,0524	0,0419 (0,0336 (,0268	
Fixed investment Working capital Beturn of working capital			-3942,6 0										c	
Annual Operating revenue	9 157			9157	9157	9157	9157	9157	9157	9157	9157	9157	9157	
Annual operating costs, fixed Annual operating costs_variable	132			132	132	132	132	132	132	132	132	132	132	
Total annual operating costs	132													
Gross operating result				9024	9024	9024	9024	9024	9024	9024	9024	9024	9024	
Depreciation				789	631	505	404	323	258	207	165	132	106	
Pre tax results Tax_nercentage 28%	36			8236 2306	8394 2350	8520 2386	8621 2414	8701 2436	8766 2454	8818 2469	8859 2481	8892 2490	8919 2497	
Net profit				5930	6043	6134	6207	6265	6312	6349	6378	6402	6421	
Amortisation				789	631	505	404	323	258	207	165	132	106	
Net cash flow Accumulated NCF (Net cash flow)		0	-3942,6 -3942,6	6718 2776	6674 9450	6639 16089	6611 22699	6588 29287	6570 35857	6555 42413	6544 48956	6535 55491	6527 62018	
Rate of interest (%) Discounted NCF Accumulated discounted NCF Internal interest Net present worth (NPV)	5,00 5,0	0	1,00 -3942,6 -3942,6	0,95 6398 2456	0,91 6054 8509	0,86 5735 14244	0,82 5439 19683	0,78 5162 24845	0,75 4903 29747	0,71 4659 34406	0,68 4429 38835	0,64 4212 43048	0,61 4007 47055	

Appendix J

HSE

	100 C	en'	utarbeidet av	Nr.	dato
	Handlingsplan for HMS		HMS-avd.	HMSRV12/24	04.03.2010
	nanulingsplan for hivio		Godkjent av	side	Erstatter
HMS			Rektor	1 av 1	01.12.2006
Enhet:	IKP				
Hand	lingsplan		La	1	
		Ansvarli	g Innen	Gjen	nomført/
ID.nr	Beskrivelse av tiltaket		date	Kont	rollert, dato
1	Ingen tiltak nødvendig	-	-		-
			-		
				-	

NTNU	SMH

Kartlegging av risikofylt aktivitet

14	ŝ	2	2	
Dato	05.03.2010	Erstatter	01.12.2006	
Nummer	HMSRV2601	Side	1 av 2	
Utarbeidet av	HMS-avd.	Godkjent av	Rektor	

Dato: 06.06.2011

Enhet: IKP Deltakere ved kartleggingen (m/ funksjon): Kristian Bøhn (Utførende) Kort beskrivelse av hovedaktivitet/hovedprosess: Datasimulering kun på lesesal

Dnr. Attivitet/proses Ansvarilg Lov, forskrift Eksisterende Eksisterende Keingstittak 1 •o. •o. NTVU HMS håndbok • • • hgen risko 1 •o. • • • • NTVU HMS håndbok • • • hgen risko 1 • • • • • • • • • • • • • • • • • • • • • hgen risko 1 • • • • • • • • • • • • • • • • • • •					
ID nr. Aktivitet/prosess Ansvarig Lov, forskrift Eksisterende Eksisterende 1 Datasimulering NTNU HMS håndbok -	Kommentar	Ingen risiko			
ID nr. Aktivitet/prosess Ansvarig Lov, forskrift Eksisterende 1 Datasimulering - NTNU HMS håndbok 1 - - - - NTNU HMS håndbok 1 - - - - - NTNU HMS håndbok 1 - - - - - NTNU HMS håndbok 1 -	Eksisterende sikringstiltak				
ID nr. Aktivitet/prosess Ansvarlig Lov, forskrift 1 Datasimulering - -	Eksisterende dokumentasjon	NTNU HMS håndbok			
ID nr. Aktivitet/prosess Ansvarlig 1 Datasimulering -	Lov, forskrift o.l.				
ID nr. Aktivitet/prosess Datasimulering	Ansvarlig	-			
	Aktivitet/prosess	Datasimulering			
	ID nr.	٢			

		Utarbeidet av	Nummer	Dato	1.1
	Kartlaacina av risikofyt aktivitat	HMS-avd.	HMSRV2601	05.03.2010	5
נ		Godkjent av	Side	Erstatter	2
HMS		Rektor	2 av 2	01.12.2006	MI
Hva					
Aktivitet/pros Kartlegging av være maskine	sess / aktiviteter/prosesser som inngår i risikovurderingen og som kan inneha risiko for skade ar, labaktivitet, verkstedarbeid, bruk av visse kjernikalier osv. Bryt ned <u>hele</u> aktiviteten/pr	e på menne osessen i e	ske eller mi	iljø. Dette ka beskriv kort	n f.eks. hver del.
Aktivitetene ve aktiviteter som	elges enten som gjennomgang av en prosess (aktivitet fra f.eks. innkjøp av materiale, vi n oppleves mulig risikofylte i et gitt område. Deltagerne må bli enige om omfanget av akt	a bearbeid iivitetene s	ing til ferdig om skal risil	g produkt), e kovurderes,	ler alle
Man må ta stil • "Risiko for • "For hvilke	ling til hvem" - for ansatte, for nabomiljø, for enkeltindivider eller en gruppe, for bedriften, for s. hva" - hvilket anlegg, hvilken aktivitet, fra hvilke ulykkeskategorier t tidsrom"- risikonivået kan variere over tid	amfunnet			
Risiko er et pc under gitte forl	stensielt tap, ikke et oppstått tap. Aktiviteter/prosesser som i utgangspunktet blir vurdert hold.	som lite ris	ikofylte, kar	n medføre øl	tt risiko
Ansvarlig Hvem er ansv Organisasjons	arlig for de enkelte aktiviteter/prosesser? Er det noen andre enheter som har ansvar elle skart kan brukes for å avklare ansvarsforhold	er oppgave	r for å redu	sere risiko?	
Lov, forskrift Hvilke lover, fr <u>www.arbeidsti</u>	o.I. orskrifter og andre myndighetskrav gjelder for aktiviteten/prosessen? Se HMS-håndbok <u>lsynet.no, www.hmsetatene.no</u> , kommunale bestemmelser (<u>www.trondheim.kommune.</u>	a, <u>HMSRV</u> <u>no</u>)	<u>-20/01</u> , <u>ww</u>	<u>w.lovdata.no</u>	
Eksisterende Enheten skal 1 opplæring, ser NTNUs stoffke	• dokumentasjon finne fram eksisterende sentrale og lokale retningslinjer, tegningsunderlag, sertifikater, k rviceavtaler, bruksanvisninger, sjekklister osv. Se også tidligere risikovurderinger og HM <u>artotek</u> osv.	kranførerbe IS-runder, I	vis, truckføi okalt HMS-	rerbevis, gje hefte, labhår	nomført Idbok,
Sikringstiltak Hva finnes av	t eksisterende sikringstiltak for området/utstyret? Feks. ventilasjon, personlig verneutstyr	, nødstopp	, merking/ilt	ing, skilleve	gger osv.

11	Ś		101
Dato	4.3.2010	Erstatter	9.2.2010
Nummer	HMSRV2603	side	1 av 2
utarbeidet av	HMS-avd.	godkjent av	Rektor
	Dicilian indening		
NTNU		נ	HMS/KS

Dato: 06.06.2011

Enhet:IKP Linjeleder: Professor Magne Hillestad Deltakere ved risikovurderingen (m/ funksjon): Kristian Bøhn

siko- Kommentarer/status di Forslag til tiltak		- Ingen risiko knyttet til oppgaven			tenneske te mijø kvens Øk/matriell Dndømme
.: Ve	Dm- dømme A-E)				seg): consekvens I onsekvens Y dighet x Konsi Konsekvens
sekvens:	Øk/ 0 materiell 0 (A-E) ((·			es hver for /nlighet x K nlighet x Kc = Sannsynli ynlighet x I
av kor	Ytre miljø (A-E)				(beregr = Sanns) Sannsy ateriell : = Sanns
Vurdering	Menneske (A-E)				Risikoverdi Menneske = Ytre miljø = Økonomi/m Omdømme
Vurdering av sannsyn- lighet	(1-5)				
Mulig uønsket hendelse/ belastning	,	Ingen			Konsekvens A. Svært liten B. Liten C. Moderat D. Alvorlig E. Svært alvorlig
Aktivitet fra kartleggings- skjemaet		Datasimulering			Sannsynlighet 1. Svært liten 2. Liten 4. Stor 5. Svært stor
		-			

141	É	1	111
Dato	4.3.2010	Erstatter	9.2.2010
Nummer	HMSRV2603	side	2 av 2
utarbeidet av	HMS-avd.	godkjent av	Rektor
	Dicibating		
NTNU	C	נ	HMS/KS

Sannsynlighet vurderes etter følgende kriterier:

Svært stor 5	Skjer ukentlig
Stor 4	1 gang pr måned eller oftere
Middels 3	1 gang prår eller sjeldnere
Liten 2	1 gang pr 10 år eller sjeldnere
Svært liten 1	1 gang pr 50 år eller sjeldnere

Konsekvens vurderes etter følgende kriterier:

Gradering	Menneske	Ytre miljø Vann, jord og luft	Øk/materiell	Omdømme
E Svært Alvorlig	Død	Svært langvarig og ikke reversibel skade	Drifts- eller aktivitetsstans >1 år.	Troverdighet og respekt betydelig og varig svekket
D Alvorlig	Alvorlig personskade. Mulig uførhet.	Langvarig skade. Lang restitusjonstid	Driftsstans > ½ år Aktivitetsstans i opp til 1 år	Troverdighet og respekt betydelig svekket
C Moderat	Alvorlig personskade.	Mindre skade og lang restitusjonstid	Drifts- eller aktivitetsstans < 1 mnd	Troverdighet og respekt svekket
B Liten	Skade som krever medisinsk behandling	Mindre skade og kort restitusjonstid	Drifts- eller aktivitetsstans < 1uke	Negativ påvirkning på troverdighet og respekt
A Svært liten	Skade som krever førstehjelp	Ubetydelig skade og kort restitusjonstid	Drifts- eller aktivitetsstans < 1dag	Liten påvirkning på troverdighet og respekt

Risikoverdi = Sannsynlighet x Konsekvens Beregn risikoverdi for Menneske. Enheten vurderer selv om de i tillegg vil beregne risikoverdi for Ytre miljø, Økonomi/materiell og Omdømme. I så fall beregnes disse hver for seg.

Til kolonnen "Kommentarer/status, forslag til forebyggende og korrigerende tiltak": Tiltak kan påvirke både sannsynlighet og konsekvens. Prioriter tiltak som kan forhindre at hendelsen inntreffer, dvs. sannsynlighetsreduserende tiltak foran skjerpet beredskap, dvs. konsekvensreduserende tiltak.