
The Potential of Utilizing BIM Models
With the WebGL Technology for Building
Virtual Environments
A Web-Based Prototype Within the Virtual

Hospital Field

Lars Madsen Hestman

Master of Science in Informatics

Supervisor: Theoharis Theoharis, IDI

Department of Computer and Information Science

Submission date: July 2015

Norwegian University of Science and Technology

Abstract

In 2011 a standard for 3D rendering in web browsers saw the light of day. The We-
bGL technology allows the browsers to utilize the hardware on the device to accomplish
hardware accelerated graphics. As GPUs are constantly getting more powerful, both on
desktops and mobile devices, this opens up a whole new world of possibilities for devel-
oping complex web based 3D application. A large increase in the adoption of Building
Information Modeling (BIM) in the construction industry over the last decade means that
there exist a large amount of 3D models of real buildings. The question is whether these
models can be utilized for other purposes than building planning.

In this thesis a web based prototype was developed using the WebGL technology, with
BIM models of a building at St. Olav’s University Hospital in Trondheim as the foun-
dation for the 3D scene. By testing the prototype on different platforms with a selection
of different web browsers this thesis evaluates to which extent the technology is mature
enough to apply complex BIM models in a game-like environment, and how it can be
utilized in a virtual hospital context.

i

ii

Sammendrag

I 2011 så en standard for 3D-rendering i nettlesere dagens lys. WebGL-teknologien gjør
det mulig for nettlesere å utnytte maskinvaren på enheten til å oppnå hardware akselerert
grafikk. Ettersom GPUer stadig blir kraftigere, både på stasjonære maskiner og mobile
enheter, åpner dette opp en helt ny verden av muligheter for å utvikle komplekse net-
tbaserte 3D-applikasjoner. En stor økning i anvendelse av bygningsinformasjonsmodel-
lering (BIM) i byggebransjen det siste tiåret betyr at det eksisterer en stor mengde 3D-
modeller av virkelige bygninger. Spørsmålet er om disse modellene kan utnyttes for andre
formål enn byggeplanlegging.

I denne avhandlingen ble en web-basert prototype utviklet ved hjelp av WebGL teknolo-
gien, med BIM-modeller av en bygning ved St. Olavs Hospital i Trondheim som grunnlaget
for 3D-scenen. Ved å teste prototypen på ulike plattformer med et utvalg av ulike nettle-
sere vil denne avhandlingen evaluerer i hvilken grad teknologien er moden nok til å an-
vende komplekse BIM-modeller i et spillignende miljø, og hvordan det kan bli utnyttet i
en virtuelt sykehus kontekst.

iii

iv

Preface

This is a master’s thesis in Informatics, within the specialization Game Technology. It
has been written at the Department of Computer and Information Science (IDI) at the
Norwegian University of Science and Technology (NTNU) in Trondheim, during fall of
2014 and spring of 2015.

First of all I would like to thank my supervisor Frank Lindseth, Senior Research Scientist
at SINTEF Medical Technology and associate professor II at IDI, for his guidance and
discussions throughout the process. I would also like to thank Tor Åsmund Evjen, at St.
Olav Eiendom, for his input in the discussion and assistance in acquiring the BIM models.
Lastly I would like to thank Professor Theoharis Theoharis at IDI for assuming the role as
my formal supervisor.

Lars Madsen Hestman
Oslo, June 2015

v

vi

Table of Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents ix

List of Tables xi

List of Figures xiv

List of Listings xv

Abbreviations xvi

1 Introduction 1
1.1 Motivation . 1
1.2 Initial project ideas . 3
1.3 Project description . 3
1.4 Research questions . 4
1.5 Research method . 4
1.6 Report outline . 4

2 Preliminary study 7
2.1 WebGL . 7

2.1.1 Technical definition . 8
2.1.2 Supported browsers . 8

2.2 Building information modeling . 11
2.2.1 History and future of BIM . 13
2.2.2 Use of BIM in this project . 13

vii

2.3 Related work . 14
2.3.1 Existing WebGL applications 14
2.3.2 Related work of integrating BIM and WebGL 16

2.4 WebGL frameworks . 16
2.4.1 Three.js . 16
2.4.2 Babylon.js . 17
2.4.3 Goo Engine . 17
2.4.4 PlayCanvas . 18
2.4.5 Turbulenz . 18
2.4.6 C3DL . 19
2.4.7 CopperLicht . 19
2.4.8 SceneJS . 20
2.4.9 GLGE . 20
2.4.10 Unity . 20

2.5 Framework comparison . 21

3 Development 25
3.1 Prototype description . 25
3.2 Development tools and environment . 26

3.2.1 Sublime Text . 26
3.2.2 Babylon.js . 26
3.2.3 Blender . 27
3.2.4 Server . 27

3.3 Modelling . 27
3.3.1 Supplementary modelling . 29

3.4 Implementation . 30
3.4.1 3D model import . 30
3.4.2 Skybox . 31
3.4.3 Cameras and lightning . 32
3.4.4 Collisions and optimizations . 33
3.4.5 Navigation . 36
3.4.6 Interaction . 37

3.5 Challenges . 38
3.5.1 Stairs and elevation inequities 38
3.5.2 UV mapping . 39
3.5.3 Failed optimizations . 39

4 Results 41
4.1 Prototype . 41

4.1.1 Controls . 42
4.1.2 Features . 42
4.1.3 Issues . 44

4.2 Browser benchmark test . 45
4.2.1 Test procedure . 45
4.2.2 Benchmark test results . 46
4.2.3 Test remarks . 48

viii

4.2.4 Benchmark test discussion . 48
4.3 Test on mobile devices . 50

4.3.1 Mobile test results . 50
4.4 Usability test . 51

4.4.1 Test assignment . 52
4.4.2 Questionnaire results . 52
4.4.3 Response patterns . 55

5 Discussion 57
5.1 WebGL discussion . 57

5.1.1 WebGL on mobile devices . 57
5.1.2 Client based versus server based rendering 59

5.2 Applying BIM models in web-based games 60
5.2.1 BIM models applied in the prototype 61

5.3 Using higher-level WebGL frameworks 62
5.3.1 Babylon.js evaluation . 63

5.4 Potential use . 64
5.4.1 Room finder . 64
5.4.2 Educational arena for kids . 65
5.4.3 Virtual hospital . 65

6 Conclusion and future work 67
6.1 Conclusion . 67
6.2 Future work . 69

6.2.1 Prototype development . 69
6.2.2 Further work utilizing the concept 69

Bibliography 71

Appendix 75

A Screenshots 77

B Questionnaire 83

C Source code 85

ix

x

List of Tables

2.1 Desktop web browsers and WebGL support 9
2.2 Mobile web browsers and WebGL support 10
2.3 Examples of BIM disciplines . 12
2.4 Comparison of high-level WebGL frameworks 22

3.1 Babylon.SceneLoader parameter description 31

4.1 Specifications of machines used in the benchmark test 46
4.2 Browser benchmark test result . 47
4.3 Test results without video textures activated 47
4.4 Specifications of mobile devices tested 50
4.5 Mobile test results . 51

5.1 Excerpt of Table 2.4 . 63

xi

xii

List of Figures

1.1 Virtual operating room, Imperial College London 2
1.2 Virtual operating room, St. Olav’s . 3

2.1 Proportion of visitors with WebGL support 10
2.2 Desktop browser market share . 11
2.3 BIM adoption . 13
2.4 Zygote Body . 14
2.5 The BioDigital Human . 14
2.6 A selection of Babylon.js demos . 15

3.1 Layers of the Blender scene . 28
3.2 Edge collapsing applied to a 3D model 29
3.3 Skybox textures . 32
3.4 Collision check with a complex object 35
3.5 Collision check with a bounding box . 35
3.6 Babylon Scene Optimizer . 39

4.1 The scene seen from the spawn point . 41
4.2 Controls . 42
4.3 Presentation of art information in the prototype 43
4.4 Projection screen in the prototype . 43
4.5 Ultrasound machine from the prototype 44
4.6 Screenshot from test of the prototype on Samsung S4 51
4.7 Questionnaire Q1 . 53
4.8 Questionnaire Q2 . 53
4.9 Questionnaire Q3 . 53
4.10 Questionnaire Q4 . 53
4.11 Questionnaire Q5 . 54
4.12 Questionnaire Q6 . 54
4.13 Questionnaire Q5 . 55

xiii

5.1 Time spent on the web . 58
5.2 Selecting faces of a inner wall in Blender 62

A.1 Building seen from the outside . 77
A.2 First floor . 78
A.3 First floor hallway . 78
A.4 Second floor office space . 79
A.5 Second floor kitchen . 79
A.6 Third floor office space . 80
A.7 Basement hallway . 80
A.8 Basement wardrobe . 81
A.9 Stairway . 81
A.10 Attic . 82

B.1 Questionnaire page 1 . 83
B.2 Questionnaire page 2 . 84

xiv

Listings

3.1 Setting up a canvas in HTML . 30
3.2 Attaching a Babylon scene to the canvas 30
3.3 Import methods in Babylon.js . 30
3.4 Creating a skybox in Babylon.js . 32
3.5 Setting up hemispheric light in Babylon.js 33
3.6 Assigning collision checks for the ARK model 33
3.7 Create or update an octree in Babylon 36
3.8 Creating a first-person camera in Babylon.js 36
3.9 Assigning action to a mesh . 37
C.1 HTML source code . 85
C.2 JavaScript source code . 86

xv

Abbreviations

3D = Three-dimensional space
Add-on = Extension to a software
API = Application Programming Interface
App = Application (mobile application)
ARK = Architectural BIM discipline
BIM = Building Information Modeling
CAD = Computer-aided design
CPU = Central Processing Unit
CSS = Cascading Style Sheets
FPS = Frames per Second
GNU GPL = GNU General Public Licence
GPU = Graphic Processing Unit
HTML = HyperText Markup Language
IARK = Interior design BIM discipline
IDE = Integrated Development Environment
IE = Internet Explorer
IFC = Industry Foundation Classes
JS = JavaScript
JSON = JavaScript Object Notation
Lag = Latency / delay / slow response
MIT = Massachusetts Institute of Technology
NTNU = Norwegian University of Science and Technology
OS = Operating System
Plug-in = Extension to a software
RAM = Random Access Memory
RIE = Electrical BIM discipline
Spec = Technical specification of a machine
WebGL = Web Graphics Library

xvi

Chapter 1
Introduction

1.1 Motivation

”Users can accomplish many tasks on today’s Web, from purchasing products
to interacting in real-time with users throughout the world. However, one key
element has yet to make its mark on the Web: 3D. Today, 3D is primarily used
online in applications such as games and virtual worlds, which are rendered
using powerful computers and specialized software. (..) Users want their
browser-based experiences to be more like those they have on a PC. Con-
sumers are becoming more accustomed to 3D content because of the use of
the technology in movies, videogames, and other types of entertainment.
(..)
There is thus demand for more and easier-to-access 3D content on the Web.
(..) And the better the browser experience, the more potential revenue that
online content could generate for providers and others. However, 3D on the
Web remains primitive today because the complex technology has been dif-
ficult to use with typical PCs and browsers. (..) In fact, browsers generally
cannot natively run complex 3D content or offer either high frame rates or
full-screen graphics.
(..)
Now, though, several organizations are working on technologies that may fi-
nally widen 3D’s presence on the Web by transforming browsers into more
powerful computing platforms that can deliver a PC-like experience, includ-
ing the playing of 3D content. This would enable applications such as product
modeling, presentation, and configuration; 3D online meetings and worker
collaboration; the simulation of processes such as surgery or mechanical pro-
cedures; virtual tours; and augmented reality. Nonetheless, 3D on the Web
will have to clear some obstacles before the technology can become reliable

1

Chapter 1. Introduction

and mainstream.”

These words are from an article (Ortiz, 2010) in IEEE Computer back in 2010. One year
later the world saw the release of WebGL, which became the standard for 3D rendering in
web browsers. Still, 3D content is not something you see all over the web today, and the
most noticeable 3D applications and games are still designed as stand alone applications.
Is there a reason to believe it will stay like this in the future, or will more and more 3D
applications be available in the browser?

Accurately predicting trends in the future is not always easy, and especially in the field
of IT where the next big thing may be just around the corner. Regardless of that, the
probability that web development will only become more popular is something numer-
ous people in the IT sector believe. Glenn Romanelli of Ligthous Design, Inc claims that
native mobile apps are on the decline, and that their clients find it more cost effective de-
veloping website applications that works across platforms (Stangarone, 2013). One of the
main drawbacks of web development historically have been the lack of performance and
robustness of browser applications. With the continuous increase in computer hardware’s
performance, and the release of technology like WebGL, are we finally at a point where
web browsers, both for desktop and mobile, are mature enough to render complex 3D
scenes at an acceptable frame rate?

Figure 1.1: Virtual operating room in Second Life, from Imperial College London’s virtual hospital

Another concept that gets more and more popular and integrated in education and training
is virtual reality. Flight simulators are examples of virtual training that have been around
for ages. In later years use of a virtual environment for training purposes is getting more
and more common in other professions as well. Armed forces, emergency services and the
health sector are examples of fields were the potential of virtual training is looked upon
with great interest. The ever increasing interest for web technology and virtual reality, and
how these can be combined, has been the main motivating factor for this work.

2

1.2 Initial project ideas

1.2 Initial project ideas

The objective of this thesis started out quite loosely, but with a aim of combining WebGL
with actual building data from St. Olav’s University Hospital in Trondheim to create a
recognizable authentic virtual environment playable from the browser. One of the main
ideas in the starting phase was to build on the already existing Virtual Operating Room,
worked on by former and current master students at NTNU (Kleven, 2014), created in the
online virtual world application Second Life. The purpose of Virtual Operating Room is
to provide training for nurse anesthetists through a role-playing game. This solution has
already been put to use at St. Olav’s. For this project the idea was to port this concept to a
browser application, and use real building data from St. Olav’s to get closer to the actual
surroundings than possible in Second Life.

Figure 1.2: Virtual operating room in Second Life, from St. Olav’s Hospital (Kleven, 2014)

Along the way this project had to part from the Virtual Operating Room idea as St. Olav
Eiendom, responsible for exercising the strategic ownership of real property on St. Olav’s,
could not provide 3D models for rooms/buildings related to surgery or other clinical facil-
ities. St. Olav Eiendom were however interested in the project and throughout meetings
it was decided to create an prototype using 3D models of an administrative building at the
hospital.

1.3 Project description

In this thesis the focus is on exploring the possibilities WebGL brings to modern web
development, and how BIM models can be utilized and integrated in this context. The main
goal is to develop a web-based prototype using the WebGL API and use BIM models as the
foundation for the 3D scene. The prototype will work as a proof-of-concept of possibilities
3D WebGL applications can offer in the virtual hospital context. It will include objects to

3

Chapter 1. Introduction

interact with that likely could feature in the virtual hospital arena, either in the category of
logistics, optimization, education, training or simulation.

1.4 Research questions

Besides creating a prototype this thesis will look at a number of research questions related
to WebGL development and the browser technology used to present WebGL applications.

1. In what way is use of BIM models suitable with WebGL?

2. The major web browsers compatibleness with WebGL:

(a) Which support the technology?

(b) How do they compare performance-wise rendering 3D using WebGL?

3. What exists of higher-level WebGL frameworks today, and how do they compare?

4. How does the WebGL technology adapt to the wide range of devices of different
performance capabilities?

1.5 Research method

The work behind this thesis started out with a literature study to get a good understanding
of the technology that were to be used for developing the prototype, and look for related
work. The main sources gathered in the literature study consists of books, articles and
technical reports, and are for the most part located by using Google Scholar. For some of
the more narrow technological facets discussed in the thesis there was not much academic
published work, thus blogs etc. from developers within the field were used.

The next step after the literary study was to develop the prototype. An analysis made
of existing higher-level WebGL frameworks was taken into account when choosing the
development approach and technology for the project. After the development process
was finished the prototype was used to conduct both usability tests of the prototype, and
benchmark testing of desktop browsers. A less comprehensive test for mobile devices was
also carried out. The results from these tests together with the sources gathered in the
literature study formed the basis for the discussion and conclusion.

1.6 Report outline

This report starts with presenting the results of the preliminary study, in chapter 2. The
preliminary study is a literature review which aims to elaborate on WebGL and BIM,
and look at related work. Finally a selection of higher-level WebGL frameworks will be
presented and compared.

4

1.6 Report outline

Chapter 3 will focus of the developmental part of this thesis, describing the purpose of
the prototype, which technology and tools that have been used, how the prototype is im-
plemented, and address topics that needs to be handled when developing a web-based 3D
application.

The results of this thesis will be presented in chapter 4. This chapter will give a descrip-
tion of the prototype developed, and presents the results of a usability test, a benchmark
browser test and a mobile test. The results will also be discussed in this chapter.

Chapter 5 will bring a further discussion with the defined research questions in section 1.4
as the main focus. The results from the previous chapter will also be used to underpin the
statements made.

Finally, chapter 6 will deliver the conclusion of this thesis, and address future work related
to the thesis.

There are three appendices to the thesis. Appendix A presents screenshots from the pro-
totype, the questionnaire from the usability test is presented in Appendix B, while the
source code is provided in Appendix C

5

Chapter 1. Introduction

6

Chapter 2
Preliminary study

As a starting point for this master thesis a preliminary study have been conducted. The
purpose with this study was to get to know the WebGL technology before starting the
development process. This chapter will first examine and define the concepts of WebGL
and BIM, and then look at previous work related to the topic. Finally there will be an
thorough study of high-level WebGL frameworks.

2.1 WebGL

Web Graphics Library, better known as WebGL, is a low-level JavaScript API for rendering
3D and 2D graphics in the web browser. It is developed and maintained by the Khronos
Group who, on their website, defines the technology in this manner:

”WebGL is a cross-platform, royalty-free web standard for a low-level 3D
graphics API based on OpenGL ES 2.0, exposed through the HTML5 Can-
vas element as Document Object Model interfaces. Developers familiar with
OpenGL ES 2.0 will recognize WebGL as a Shader-based API using GLSL,
with constructs that are semantically similar to those of the underlying OpenGL
ES 2.0 API. It stays very close to the OpenGL ES 2.0 specification, with some
concessions made for what developers expect out of memory-managed lan-
guages such as JavaScript.”

The history of WebGL goes back to 2007 when software-engineer Vladimir Vukicevic,
at Mozilla, started working on a prototype, called Canvas 3D, for the upcoming HTML
<canvas> element (Cantor and Jones, 2012). His work led to a project at the Khronos
Group, where the goal was to create a specification for granting web browsers access to
the Graphic Processing Units (GPU), thereby achieve accelerated 3D graphics on the web.

7

Chapter 2. Preliminary study

This project resulted in an initial release of WebGL in March 2011, while the first stable
release came 2 years later, in March 2013.

As the release dates indicates WebGL is a quite modern technology, and it is also most
likely a game changer for web development. But rich graphics and 3D rendering have
been done in web browser way before WebGL came around, so what makes this tech-
nology special? First of all, rich graphics technology prior to WebGL needed the user to
install plug-ins or browser extension to work. According to Vukicevic many users finds
plug-ins inconvenient to install, troubleshoot and manage, and therefore prefer not to use
them (Ortiz, 2010). WebGL does not need any plug-in, it just works! The reason why will
be elaborated in subsection 2.1.2. The graphics capabilities are also a big improvement as
WebGL enables access to hardware accelerated graphics. Marcus Krüger, founder and Ex-
ecutive Chairman of Goo Technologies, argues that WebGL is the largest leap in capability
in the history of the web (Krüger, 2014).

2.1.1 Technical definition

WebGL is a browser version of OpenGL, based on OpenGL ES 2.0. The ES version
is tailored for embedded systems like phones and tablets, and WebGL is built on this
principle to more easily achieve a consistent, cross-platform, cross-browser 3D API for
the web (Parisi, 2012). WebGL is accesses through JavaScript calls, and displayed in the
browser by using the <canvas> element in HTML5. It is therefore easily combined with
other web content, for example by placing it in a <div> tag, using half page to display the
canvas and the other half for other html elements.

Hardware based rendering is keyword when talking about WebGL. Previous 3D rendering
plug-ins to browsers, e.g. Flash, have been using software based rendering, which means
the rendering takes place solely in the CPU (Central Processing Unit). WebGL uses so
called hardware based rendering. What we mean by this is that dedicated hardware, being
the GPU (Graphical Processing Unit), takes responsibility for the rendering. This approach
is in the vast majority of cases much more efficient than software based rendering (Cantor
and Jones, 2012). Client based rendering is another characteristic of WebGL, meaning the
rendering process takes place locally. The 3D model data is downloaded from server, but
the processing required to obtain the image is done by the client’s hardware. The oppo-
site solution is server side rendering where the rendering process takes place remotely, on
dedicated servers, and the resulting image or set of images are transmitted to the client.
From these two properties of WebGL (hardware based and client based rendering) it be-
comes clear that the capabilities of the device running the application is decisive for the
performance. This case will be further discussed later in the thesis (section 5.1).

2.1.2 Supported browsers

WebGL works without installing extra plug-ins or add-ons. This is because WebGL is
regarded as the new standard for rendering 3D graphics on the web (Parisi, 2012), and

8

2.1 WebGL

therefore the browser providers have committed significant resources to develop and sup-
port the technology. As of February 2015 all major web browsers fully or partially support
WebGL. What is understood by partially support is that there might be other factors which
will decide the availability of WebGL as well, for example the client’s GPU or operating
system. Following are two tables, Table 2.1 and Table 2.2, that provides an overview over
WebGL availability on the most used web browsers for desktops and mobiles.

Desktop browsers

Internet Explorer

Internet Explorer had no WebGL support until IE 11. Initially
IE 11 did not even pass half of the tests in WebGL conformance
test suite (McCoy, 2013), but several updates have made IE 11
compatible with WebGL. There also exists third-party plugins to
provide WebGL support for older versions of Internet Explorer.

Google Chrome

WebGL has been partially supported in Chrome since Chrome 8,
and enabled by default with the release of Chrome 9 in February
2013. WebGL has been fully supported since Chrome 18 was
released in March 2012 (Rosenblatt, 2012).

Safari

Safari has partially supported WebGL since Safari 5.1 for OS X
Snow Leopard, and Safari 6.0 for OS X Lion and OS X Mountain
Lion. These versions were relased in respectively July 2011 and
July 2012, but WebGL were disabled by default until the Safari
8 release October 2014. There is only WebGL support for Safari
browsers running OS X operating systems.

Mozilla Firefox Since version 4 of Firefox, launced in March 2011, WebGL has
been enabled on all platforms with capable GPUs.

Opera Opera has partially supported WebGL since release of version 12
in June 2011.

Table 2.1: Desktop web browsers and WebGL support

9

Chapter 2. Preliminary study

Mobile browsers
Internet Explorer Similar to the desktop version WebGL is supported from IE 11

on Windows Phone 8.1

Google Chrome

Chrome for Android has supported WebGL since version 25,
released February 2013, and been enabled by default since ver-
sion 30, October 2013. There are however mostly the newer
phones that support it. As of February 2015 there is still no
WebGL support for the iOS chrome browser.

Android Browser

The Android Browser partially supports WebGL, but only on
some of the Samsung and Sony Ericsson devices. Google
Chrome is also replacing the Android Browser in a long range
of the Android phones.

iOS Safari Safari’s mobile browser for iOS has supported WebGL since
the launch of iOS 8 in September 2014 (Pesce, 2014).

Firefox Mobile
The Firefox browser for mobile is only available for Android,
and has had fully WebGL support since the release of version
4, in March 2011.

Opera Mobile WebGL hva been supported for Android only since Opera Mo-
bile 12 was released in February 2012.

Opera Mini Opera’s microbrowser does not support WebGL.

Blackberry browser The blackberry browser has supported WebGL since the re-
lease of the Blackberry OS 10 in January 2013.

Table 2.2: Mobile web browsers and WebGL support

(a) WebGL for desktop (b) WebGL for mobile devices

Figure 2.1: Proportion of visitors with WebGL support

The website webglstats.com collects data from web users through over 60 other websites,
using a tracker frame embedded on these sites. As of May 2015 their data collection shows

10

2.2 Building information modeling

that nearly 90 % of the visits to theses sites have the ability to run WebGL content. For
desktops the percentage have been high for a long time and was as of May 2015 at 88.5 %
(Figure 2.1a). The evolution for mobile devices is more interesting. In May 2012 only 2
% of the visits by mobile devices had the ability to run WebGL content. Three years later,
as of May 2015, the share was 76.2 % (2.1b).

Looking at the user population Chrome is the most popular desktop browser by a wide mar-
gin, with over 50 % of the share. A complete overview of the worldwide market shares for
desktop browser today (June 2015) is given in Figure 2.2a. Figure 2.2b shows the market
share for Norway. The data are gathered by the web traffic analysis tool StatCounter.

(a) Worldwide (b) Norway

Figure 2.2: Desktop browser market share

2.2 Building information modeling

Building information modeling, better known through the acronym BIM, is naively ex-
plained a process resulting in a 3D representation of an existing building or a building
project. Naively because it is more to it than just a 3D model. Aranda-Mena et al. (2009)
found that BIM is an ambiguous term, that it means different things to different profes-
sionals. For some BIM is a software application, for others a process for designing and
documenting building information. Another group regards it as a whole new approach to
practice and advancing the profession which requires the implementation of new policies,
contracts and relationship among project stakeholders.

The US National Building Information Model Standard Project Committee defines BIM
in this way:

”Building Information Modeling (BIM) is a digital representation of physical
and functional characteristics of a facility. A BIM is a shared knowledge re-
source for information about a facility forming a reliable basis for decisions
during its life-cycle; defined as existing from earliest conception to demoli-
tion.

11

Chapter 2. Preliminary study

A basic premise of BIM is collaboration by different stakeholders at differ-
ent phases of the life cycle of a facility to insert, extract, update or modify
information in the BIM to support and reflect the roles of that stakeholder.

The US National BIM Standard will promote the business requirements that
BIM and BIM interchanges are based on:

• a shared digital representation,

• that the information contained in the model be interoperable (i.e.: allow
computer to computer exchanges), and

• the exchange be based on open standards,

• the requirements for exchange must be capable of defining in contract
language.”

Builing Information Modeling can be seen as the process of developing a complete Build-
ing Information Model (Hergunsel, 2011), that is a shared digital model covering all as-
pects of the construction. What this gives is a common understanding and improved visu-
alization of the project. This can improve coordination and productivity, reduce the risk
of mistakes and discrepancies, and minimize abortive costs. All the structural components
in BIM creates a 3D scene, but BIM itself operates up to as much as 6 dimensions. The
4th dimension projects time allocation and scheduling data, while the 5th dimension adds
cost estimation (infoComm, 2011). The 6th dimension deals with the building data beyond
completion, as for example maintenance cost and energy saving.

A BIM model is composed by data from multiply fields within the building planning and
can be divided into different disciplines. The different disciplines, or roles, identifies what
the sub-model deals with. For example you have a model that represent the architectural
aspect, like walls, doors, windows etc., a model that deals with the plumbing, a model
that represents interior design and so on. Together all these parts constitute the complete
BIM model of the building project. Table 2.3 presents a selection of roles in the BIM pro-
cess. The definitions are retrieved from Statsbygg’s, the Norwegian Directorate of Public
Construction and Property, manual for general guidelines for BIM (Statsbygg, 2009). The
acronyms used to describe the disciplines are the Norwegian, not the international, stan-
dard and these are the ones that will be referred to in this thesis.

Role Description
ARK Architect
RIE Electrical engineering (electricity, Telecom, automation etc.)
RIV HVAC (heating, ventilation and air conditioning)
RIB Building engineering
IARK Interior designer
RIG Geotechnics

Table 2.3: Examples of BIM disciplines

12

2.2 Building information modeling

2.2.1 History and future of BIM

The history of BIM goes centuries back. The term Building Information Model first ap-
peared in a paper in 1992 (van Nederveen and Tolman, 1992), but the concept was devised
in the 60s, and the first BIM-like software to be released was Radar CH, in 1984, later
known as ArchiCAD. However this product or other BIM software to be released were
not in widely use through the 80s and the 90s. A problem encountered in the earlier days
was the variety of programs and file formats used by different architects and engineers,
which made collaboration difficult (Bergin, 2012). This resulted in the development of the
Industry Foundation Class (IFC) file format in 1995, and this file format is the only truly
open standard for BIM today, described by the International Standard ISO 16739:2013.

It was after the millennium that the use of BIM really accelerated, and especially in the
period between 2007 to 2012. In North America the industry-wide adoption of BIM by
architect, engineering and contractor companies increased from 28% in 2007 to 71% in
2012 (McGraw-Hill, 2012). If we restrict it to the bigger companies the adoption is even
greater, as Figure 2.3 shows.

Figure 2.3: BIM adoption from 2009 - 2012 (McGraw-Hill, 2012)

In 2011 Paul Morrell, the United Kingdom government’s chief construction adviser at
the time, gave an interview to Building, the United Kingdom’s largest magazine for the
building industry. In this interview he claimed that BIM would be made mandatory on
virtually all government projects within five years (Withers and Matthews, 2011).

2.2.2 Use of BIM in this project

St. Olav Eiendom has in the later years done a initiative in creating BIM models of their
existing buildings. The level of detail in the models differs from facility to facility. The
building that is represented in this project is the 1930-building, an administrative building
over 5 levels. The modelling is still in progress, but the most part is completed. The 3D
model for this building includes architecture (ARK), electrics (RIE) and HVAC (RIV),
while interior (IARK) is in progress. HVAC will not be used as it will occupy more
resources than it will give back in visible elements. The architectural model is naturally

13

Chapter 2. Preliminary study

the most essential part, while electrics (RIE) and interior will apply details to make the 3D
world richer.

As discussed a BIM model can be as complex as a 6D models. The 4th, 5th and 6th di-
mension are not of any particular interest in this project. It is the physical structures and
objects of the building that are the interesting part. The time scheduling and cost of the
building project have no relevance for the application.

2.3 Related work

This section will introduce work that is related to this thesis’ focus on WebGL development
and integration of BIM models

2.3.1 Existing WebGL applications

2.3.1.1 Zygote Body and The BioDigital Human

There are some examples of WebGL application within the medical field. Two very similar
and well-developed solutions that presents a 3D view of the human body are called Zygote
Body and The BioDigital Human. Both applications presents a human body, either male or
female, with the possibility to display or hide the different systems of the body, being the
integumentary, muscular, skeletal, respiratory, digestive, urinary, endocrine, reproductive,
cardiovascular, lymphatic or nervous system. The BioDigital Human is a little more cus-
tomizable, having a menu with checkboxes for every single element of the body to choose
whether you want it displayed or not. There is also a whole lot information regarding
all these elements in The BioDigital Human, and in addition a tab with illustrations and
animations for different conditions and how they affect the involved organs.

Figure 2.4: Zygote Body Figure 2.5: The BioDigital Human

14

2.3 Related work

Both applications uses a arc rotate camera, a camera where there is a focus point the
camera can rotate around. The focus point can be moved either up or down the body in
Zygote Body, while you can move it more freely in The BioDigital Human. Zoom and
highlighting of body parts by click interactions are supported in both applications.

2.3.1.2 Babylon.js example projects

The higher-level WebGL framework Babylon.js, which will be discussed later, has a bunch
of testable demos available on their website. Most of them are pretty similar feature-wise.
You are spawn into a small, but detailed 3D scene, and can move around the scene in a
first-person perspective. These demos have no support for any form of interaction with the
environment, but a couple of the scenes presents animations of some objects. Texture-wise
the scenes are very detailed.

(a) Espilit (b) Windows Cafe

(c) Mansion (d) Hill Valley

Figure 2.6: A selection of Babylon.js demos

15

Chapter 2. Preliminary study

2.3.2 Related work of integrating BIM and WebGL

One thing this literature study has uncovered is that there is not much published work
that deals with use of BIM models for other purposes than building planning. Kumar
et al. (2011) developed a game application for evaluating healthcare facility designs, and
Lin et al. (2011) created a game for construction safety training. Both these games uses
BIM models, however they are implemented as stand alone applications, i.e. they are
neither browser based nor using a 3D Rendering API like WebGL. Shen et al. (2012)
found that using BIM models to create interactive 3D computer games is still a relatively
new approach, especially for web browser based solutions.

2.4 WebGL frameworks

Drawing primitives directly to the graphics card is a difficult task, and using WebGL could
therefore prove to be a steep learning curve for developers new to the technology (Curran,
2012). Fortunately there exists intermediaries to make the development process easier.
Ever since WebGL’s very beginning high-level frameworks have been developed for the
API. The alternatives range from one-man basement projects to commercial products from
renowned companies. This section will give a brief introduction of some of the options
out there. Only frameworks that support 3D will be taken into account. Some of the most
popular WebGL game creators only offers a 2D engine actually, mentioning frameworks
like Construct 2, pixi.js and Phaser.

2.4.1 Three.js

Three.js was first released to GitHub in April 2010, and ready to use as soon WebGL
was introduced in 2011. It is a cross-browser JavaScript library to create animated 3D
graphics. It runs in all browsers supporting WebGL. The mission of Three.js is to provide
an abstraction layer to hide the detailed WebGL setup, and make it possible to create a 3D
world without much knowledge of WebGL. The framework has a very broad approach,
not focusing on a single niche. It is more a general purpose web animation tool. It is not a
typical game engine.

Pros:

• A lot of features

• Good documentation and community support

• Widely used

• Free and open source under the MIT License

• Exporter for Blender

16

2.4 WebGL frameworks

Cons:

• Still in alpha version and is changing frequently

• ”Jack of all trades, master of none” compared to some of the other frameworks

• No physics engine, nor collision detection

2.4.2 Babylon.js

One of the newer frameworks is called Babylon.js. It was launched in the summer of 2013,
and is built by developers at Microsoft. This framework has a more targeted approach
than Three.js, and focuses on game development with collision detection and anti-aliasing
(Hewitson, 2013). Babylon.js is also open source. The framework supports a complete
scene graph with lights, cameras, materials and meshes. It features engines for collisions,
physics, animation and optimizations.

Pros:

• Free and open-source

• Good community support

• A lot of features

• Backed by a major company

• Exporter for Blender

Cons:

• Imported scenes or meshes needs to be converted to a Babylon file format

2.4.3 Goo Engine

The Goo Engine is a powerful WebGL game engine, and is coupled with Goo Create, a
browser-based editor. The engine is build using the Entity-Component-System, a software
design pattern that favours composition over inheritance. There are tools in the devel-
opment environment, Goo Create, that offers easy “drag and drop” features for adding
interactivity, importing 3D models etc. The engine is compatible with most of the modern
mobile devices.

Pros:

• A well customized development environment

• Physics and collision engines

17

Chapter 2. Preliminary study

Cons:

• Not open source

• Only free to use in a limited period

• Locked to the Goo Create cloud platform

2.4.4 PlayCanvas

PlayCanvas is a 3D game engine written in JavaScript, and runs in all WebGL supported
browsers. It is also a cloud-hosted creation platform, which allows for real-time editing
of multiple developers simultaneously. PlayCanvas offers a powerful and at the same time
simple API for scripting the game behaviour. Since June 2014 PlayCanvas has been open-
source, and exists in both free and non-free versions.

Pros:

• Open source under the MIT Licence

• Physics and collisions engines

• Support for real-time editing

Cons:

• Development and publishing strictly tied to PlayCanvas’ cloud platform

• No private projects in the free version

• Not as active community as some of the others

2.4.5 Turbulenz

Turbulenz is a polished 3D game engine in JavaScript that executes directly in the browser.
The engine has support for rigid bodies, collision primitives and constraints. A large
collection of built in animation controllers are offered as well.

Pros:

• Free and open source under the MIT license

• Easy to combine Turbulenz modules with external technology

Cons:

• Not the most active community

18

2.4 WebGL frameworks

2.4.6 C3DL

Canvas 3D Library, known as C3DL, is a JavaScript library that was designed for the
purpose of simplifying the use of WebGL. It provides a set of math, scene, and 3D object
classes to make the canvas more accessible without dealing with 3D mathematics at a low
level.

Pros:

• Free under the GNU GPL Licence

• Support collision detection

Cons:

• An old project, and not in development any longer

• No support at this time, and not a very active community

• Documentation removed

• No designated physics engine

2.4.7 CopperLicht

CopperLight is a WebGL library and JavaScript 3D engine developed by Ambiera. The
main feature that differs CopperLight from the earlier mentioned frameworks is its binary
compilation. The 3D meshes compiles to small, binary files to reduce the user’s bandwidth
usage. CopperLight also supports over 20 different 3D file formats. For CopperLight you
can create scenes with a 3D editing tool called CopperCube, which was the first full 3D
editor for creating interactive WebGL 3D scenes or games. The CopperLight library can
be used outside CopperCube but is built in regard of this 3D editor.

Pros:

• Free and open source

• A solid 3D editing tool in CopperCube

• Physics engine and built-in collision detection

• Character animation support

• Good documentation

Cons:

• The CopperCube is not free

• Not the most active community

19

Chapter 2. Preliminary study

2.4.8 SceneJS

SceneJS is an extensible WebGL-based engine for high-detail 3D visualization using Java-
Script. It is created by Lindsay Kay, who is also the 3D engine architect on The BioDigital
Human team. This engine provides a JSON-based scene graph API on WebGL. SceneJS
specialization is fast rendering of a vast number of different articulated objects. It is fo-
cused on CAD (Computer-aided design), like medical and engineering visualization, not
on features as shadows, reflections, collisions etc. which are typical in game engines (Xe-
olabs, 2011)

Pros:

• Free and open source

• Used in the BioDigital Human project

• Fast rendering of complex objects.

Cons:

• Not designed as a game-engine

• No physics or collision engines

• Documentation not completed (as of January 2015)

2.4.9 GLGE

GLGE is a JavaScript library with the aim of masking the involvement with WebGL for the
developer. It is a general purpose framework and support features as keyframe animations,
reflections/refractions and parallax mapping.

Pros:

• Free and open source

• Some neat features

• Good documentation

Cons:

• Little community support at this stage

• General purpose framework

• No physics or collision engines

2.4.10 Unity

The Unity game engine is one of the most used in the marked today. It offers a vast number
of platforms, including desktops, consoles, mobile devices, and from April 2014 support

20

2.5 Framework comparison

for WebGL. The technology includes a game engine and an integrated development envi-
ronment (IDE).

Pros:

• Easy to learn and use

• Large community support

• Physics engine and collision detection

Cons:

• Unity Pro is expensive

• Free version lack some neat features

• Not open-source

• Documentation lacking or out of date for some features

2.5 Framework comparison

Table 2.4 gives a comparison of the examined frameworks, given criteria that has a signif-
icance for the choice of framework in this project. The data basis for the table is gathered
through the frameworks own websites and documentation, and from related sites like fo-
rums acting as community support for a specific framework. The assessment criteria and
classifications of them are as following:

Open Source (Open): Whether the project has an open source licence or not. Classifica-
tion:

• Yes/No

Free: Can the framework be used free of cost? Classification:

• Yes/No

• Partial - There exists both free and paid versions.

Community (Com): How good community support is there. This includes forums, blogs
from developers etc. Classification:

• Active - Has a forum where questions are handled within a day, and there is activity
weekly.

• Moderate - A forum with monthly activity, and questions are answered within days.

• Inactive - There are no or very occasional activity on forums, blogs etc.

Documentation (Doc): How well documented is the framework. Includes API documen-
tation, tutorials etc. Classification:

21

Chapter 2. Preliminary study

• Rich - All classes are well documented and there exists tutorials or other examples
of use.

• Fair - The vast majority of the classes are documented, but the documentation could
be more detailed. There are tutorials of some degree.

• Lack - Documentation of classes are either lacking or minimal. Not many tutorials.

Physics (Phy): The framework has a designated physics engine. Classification:

• Yes/No

Collision (Col): The framework has a designated collision engine or collision handling
integrated in the physics engine. Classification:

• Yes/No

Import (Imp): Support for importing external 3D models. Classification:

• Yes/No

Framework: Open Free Com Doc Phy Col Imp
Three.js Yes Yes Active Rich No No Yes
Babylon.js Yes Yes Active Fair Yes Yes Yes
Goo Engine No Partial Moderate Rich Yes Yes Yes
PlayCanvas Yes Partial Moderate Rich Yes Yes Yes
Turbulenz Yes Yes Moderate Fair Yes Yes Yes
C3DL Yes Yes Inactive Lack No Yes Yes
CopperLicht Yes Partial Moderate Rich Yes Yes Yes
SceneJS Yes Yes Inactive Lack No No Yes
GLGE Yes Yes Inactive Rich No No Yes
Unity No Partial Active Fair Yes Yes Yes

Table 2.4: Comparison of high-level WebGL frameworks

Of the examined frameworks only Goo Engine and Unity are not open source. All frame-
works can be used free of charge, but four of them (Goo Engine, PlayCanvas, CopperLicht
and Unity) require a paid version to adopt all functionality/benefits. For Community sup-
port Three.js, Babylon.js and Unity stand out as the most active, while C3DL, SceneJS and
GLGE are on the opposite side of the scale. Most of the framework are well documented,
except C3DL and SceneJS. C3DL is more or less a dead project, while SceneJS has a large
selection of tutorials and examples, but lacks a general API documentation.

When it comes to physics and collision engines it gets clear which of the frameworks are
typical game engines and which are more of a general purpose animation or visualization
tool. Three.js, SceneJS and GLGE do not have support for this, while C3DL only supports
collision detection. All frameworks allows for import of external 3D models, but they vary
in the number of accepted file formats. None of them can import IFC files directly.

22

2.5 Framework comparison

From the criteria set for the comparison Babylon.js seems like the most adequate frame-
work to apply for this project. The best alternatives to Babylon.js are PlayCanvas, Tur-
bulenz and CopperLicht, while the frameworks without physics engine and/or support for
collision detection are ruled out.

23

Chapter 2. Preliminary study

24

Chapter 3
Development

This chapter deals with the developing process of the WebGL prototype. A more accurate
description of the prototype will be given. Elaboration of the development tools used will
follow. Further the modelling and implementation process will be disclosed.

3.1 Prototype description

The prototype will present a scene with a 3D model of the 1930-building, an administrative
building from St. Olav’s Hospital, where the 3D model will originate from the actual BIM
models of the building. This ensures that building measures, room divisions and interior
of the virtual structure corresponds with the real building.

The idea was to create a navigation mode similar to typical first-person shooter games.
What this implies is that the camera represents your eyes, and you alter your viewpoint
by moving the mouse. Your leg movement is controlled with the keyboard. By adding
collision handling and gravity to the scene this will create an illusion of a human walking
around in the virtual world.

What is described above creates the foundation for this prototype, namely a way to walk
around in an authentic building, in a virtual world, and be able to do it from your browser.
The plan from here on was ambiguous at times, but the goal was to support some kind of
interactions with the environment. Since St. Olav’s has a large collection of art it was in
St. Olav Eiendom interests that there was a possible to present the art in the virtual world,
and display info of each item through interaction. Another feature that came to the table
was to play videos of some sort directly on objects in the 3D world.

25

Chapter 3. Development

3.2 Development tools and environment

The following subsection will elaborate on the tools and development environments used
in the process. All text editors, modelling tools, frameworks etc. that have been applied
will be given a brief introduction, and a justification for the choice.

3.2.1 Sublime Text

The HTML, CSS and JavaScript source code is written in Sublime Text, a text editor writ-
ten in C++ and Python. Sublime Text is a cross-platform editor, compatible with Linux,
OS X and Windows, and natively supports over 40 programming languages. Additional
languages might as well be installed via plug-ins. A hotkey focused inteface, rich func-
tionality and customizability are characteristics that applies to Sublime Text.

Sublime Text is widely used text editor, especially for web development. A range of
polls and discussions on the web also shows it is one of the most popular among software
developers (Henry, 2014). The choice of text editor is not as essential for the development
as the rest of the technology listed below. The choice was taken on the basis of personal
preference and experience with the text editor.

3.2.2 Babylon.js

The high-level WebGL framework chosen for this project is already superficially described
in section 2.4, and this subsection will go a little deeper into the framework.

Babylon.js has a rich library of supported features, and the most interesting for this project
were:

• Engines: Collision, physics, animation

• Optimization: Selection octrees, incremental loading, binary compressed format,
frustum clipping, hardware scaling

• Cameras: Free camera, touch camera, oculus rift camera

• Light: Point, directional, spot, hemispheric

• Texture: Dynamic texturing, video texture

• Meshes: Dynamic meshes, skybox

• Fullscreen mode

Section 2.4 shows there is a bunch of adequate higher-level WebGL libraries out there,
and most of them are free and offer approximately the same features. The main factors
for choosing framework in this project were the community support and documentation, a
physics engine with collision detection and flexible import of external 3D models. Flexible
in this context means support for a range of file formats, and the easiness of working with

26

3.3 Modelling

the imported meshes. Babylon.js fulfils all these criteria. The community is one of the
most active of the frameworks examined, and the documentation is, if not excellent, at
least complementary. The only file format that is supported for imported 3D models is
it own Babylon file format. It is a reason for this however as the framework aims to
utilize Blender as intermediary when importing external models. More on this in the next
subsection.

Another reason for going with Babylon.js is due to the competence and resources of the
creators. The Babylon team consists of Microsoft employees, and although it is a stand-
alone project Microsoft backs the initiative. The example work on Babylon.js’ homepage
displays a bunch of demo applications with a similar purpose as this project which also
increased the desire to work with this framework.

3.2.3 Blender

Blender is a free and open-source 3D computer graphics software with a great amount of
functionality. It can be used for a number purposes including 3D modelling, video editing,
creating visual effects, animation films, 3D applications and video games. It even has an
integrated game engine. Blender supports 3D model import and export for 14 different file
formats by default, and several others can be added. The user interface mostly relies on
hotkeys for the modelling process, and is a software that takes time to master due to its
rich set of functionality and possibilities.

The choice of using Blender in this project is based on the use of BIM models and the
Babylon.js framework. To import meshes in Babylon they need to be represented in the
Babylon file format, as mentioned in the previous subsection. Babylon.js is dependant on
a 3D modelling software that can export 3D models to this format. Blender, in addition to
Cheetah3d and 3ds max, can export to the Babylon file format by installing an export plug-
in to the software. An import plug-in that support the IFC file format can also be added to
Blender, which make importing of BIM models possible. Blender therefore worked as an
intermediary point for converting the IFC files, holding the BIM models, to the Babylon
file format in this project. The software was also used for some extra 3D modelling as for
example adding ground outside and other details to enrich the 3D scene.

3.2.4 Server

The project is hosted at NTNU’s Apache servers, and can be accesses from the domain
folk.ntnu.no/hestman

3.3 Modelling

The basis for the 3D scene are the BIM models of the 1930-building at St. Olav’s Hospital.
The BIM models applied are the following:

27

Chapter 3. Development

• ARK: 1262 objects consisting of walls, windows, doors, ceiling, roof, beams, benches,
lockers, shelves, kitchen benches and appliances.

• RIE: 1023 objects consisting of ceiling luminaires, lamps, downlights, emergency
door openers, sockets, card readers, elbow switches, emergency exit signs, fire
alarms, fire detectors, thermostats, surveillance cameras, cable trays and more.

The Blender scene created consists of three layers. Layer 1 represents the ARK model and
layer 2 the RIE model. Layer 3 consists of self-modelled meshes to complete the scene.
There are multiple reason for using this layered approach in the development. First of
all there was a wish from St. Olav Eiendom not to modify the BIM models themselves,
but since this application will be presented in a game fashion, i.e. create an illusion of a
person that can walk around, and not just a building viewer, there needs to be something
that restricts and encloses the world. Layer 3 will handle these parts.

(a) Layer 1 (b) Layer 2

(c) Layer 3

Figure 3.1: Layers of the Blender scene

The idea of separating the BIM models into separate layers is because of two factors. The
BIM models are already separated into different IFC files, and modified and improved
versions of these can be released. By also keeping these separated in the Blender scene
an updated ARK model for example can be imported and then only overwrite the existing
architectural model without having to tamper with the electrical model. If other BIM

28

3.3 Modelling

models were to be added to the scene, for instance an interior design model (IARK), these
would also be placed in separate layers. The other factor for dividing the models are related
to performance.

Rendering 3D graphics in web browsers can be a costly affair, especially if the machine is
rather weak and the 3D scene is complex, which might result in high latency. By separating
the BIM models we can more easily customize the model complexity by not necessarily
import all the models. Since the users’ machines might have completely different pro-
cessing power making the model complexity customizable will help offering a working
product even for the weaker machines and browsers by compromising with the 3D scene
richness.

3.3.1 Supplementary modelling

Apart from the existing BIM models some objects had to be modelled to complete and
enrich the scene. The supplementary modelling is done in layer 3 of the Blender scene.
It consists of some simple structures as an outside ground, a brick wall that encloses the
site and thus limits the area one can navigate. Some walls that fills the defects in BIM
models are also present in this layer. In addition objects that were wanted to enrich the
scene visually and interactively apart from the ones present in the BIM models are placed
in this layer. It includes different screens, paintings and an ultrasound machine. The model
of the ultrasound machine was downloaded from a free 3D model library and imported to
Blender. The problem with this model was the detail level, consisting of more than 40 000
vertices and 80 000 faces. The edge-collapse algorithm were applied for mesh simplifica-
tion where the number of faces were reduced with 80 %. The visual transformation can be
seen in Figure 3.2.

(a) Before (41 346 vertices, 82 396 faces) (b) After (8 387 vertices, 16 478 faces)

Figure 3.2: Edge collapsing applied to a 3D model

29

Chapter 3. Development

3.4 Implementation

The following section will deal with the process of implementing the 3D ”game”. The
complete source code can be found in Appendix C, while this section will in a step-by-
step fashion present the different aspects that have been handled to end up with the working
prototype.

Setting up a Babylon scene is fairly simple. The first step is to create a HTML5 <canvas>
element and define the size of it with CSS, as illustrated in Listing 3.1. The rest is done
in JavaScript. A BABYLON.Engine needs to be connected to the canvas, and a BABY-
LON.Scene attached to the engine, shown in Listing 3.2. From here on the 3D world can
be built by adding objects, cameras, lights etc. to the BABYLON.Scene object.

1 <html>
2 ...
3 <style>
4 #babylonCanvas {
5 width: 100%;
6 height: 100%;
7 touch-action: none;
8 }
9 </style>

10 ...
11 <body>
12 <canvas id="babylonCanvas"></canvas>
13 ...
14 </body>
15 <html>

Listing 3.1: Setting up a canvas in HTML

1 var canvas = document.getElementById(’babylonCanvas’);
2 var engine = new BABYLON.Engine(canvas, true);
3 var scene = new BABYLON.Scene(engine);

Listing 3.2: Attaching a Babylon scene to the canvas

3.4.1 3D model import

Babylon has a straight forward way for importing external 3D models, and the library
defines three different methods for this purpose. You can either load a complete scene
which creates a Babylon scene, import a defined set of meshes to an existing Babylon
scene, or append a complete scene to an existing Babylon scene. A code example and
description is given in Listing 3.3 and Table 3.1.

1 //Loading a complete scene
2 BABYLON.SceneLoader.Load(rootUrl, sceneFilename, engine, onsuccess,

progressCallBack, onerror);
3
4 //Importing a defined set of meshes to an existing Babylon scene

30

3.4 Implementation

5 BABYLON.SceneLoader.ImportMesh(meshesNames, rootUrl, sceneFilename, scene,
onsuccess, progressCallBack, onerror);

6
7 //Appending a scene to an existin Babylon scene
8 BABYLON.SceneLoader.Append(rootUrl, sceneFilename, scene, onsuccess,

progressCallBack, onerror);

Listing 3.3: Import methods in Babylon.js

Parameters Description
rootUrl A string defining the root url of the Babylon file
sceneFilename A string defining the name of the Babylon file

meshesNames
A list of names of meshes from the Babylon file to be imported.
The empty string, ””, imports all meshes from the file

engine The BABYLON.Engine instance used to create the scene

scene
The Babylon.Scene instance the meshes will be imported to or
scene be appended to

onsuccess
(Optional) A callback function triggered after a successful load
/import

progressCallBack (Optional) A function returning the import progress

onerror
(Optional) A callback function triggered if an error occurs during
loading

Table 3.1: Paramenter description for the Babylon.SceneLoader

In this prototype two Babylon files are loaded separately. The first file made up of layer 1
og layer 3 in the Blender scene, while the other file consists of layer 2. As discussed in the
previous section this is done to be able to easily opt out the RIE model if the complexity
of the scene impairs the performance excessively.

3.4.2 Skybox

A 3D world needs to be delimited in some way, i.e. create a final visual background. The
most common approach in video games is to create a skybox. A skybox is simply a cube
that encloses the 3D world. The inside faces of this cube consists of images that overlaps
at the edges, creating an illusion of distant 3D surroundings. Figure 3.3 illustrates a typical
texture to be wrapped around the cube. Creating 3D models of mountains, buildings etc.
and place them far outside the navigable part of the 3D world to create a background would
just have been a waste of computations.

The only JavaScript-generated geometry in this project is actually the skybox, as seen in
Listing 3.4. Notice line 9 where the property infiniteDistance is set to true, which makes
the skybox move according to the movements of the camera. This amplifies the impression
of the skybox being far away. With a static skybox it would be easier for the user to reveal
that the background is actually a cube not that far away as it would approached the camera,
similar to the other objects of the scene, when moving.

31

Chapter 3. Development

Figure 3.3: Skybox textures

1 var skybox = BABYLON.Mesh.CreateBox("skyBox", 150.0, scene);
2 var skyboxMaterial = new BABYLON.StandardMaterial("skyBox", scene);
3 skyboxMaterial.backFaceCulling = false;
4 skybox.material = skyboxMaterial;
5 skyboxMaterial.diffuseColor = new BABYLON.Color3(0, 0, 0);
6 skyboxMaterial.specularColor = new BABYLON.Color3(0, 0, 0);
7 skyboxMaterial.reflectionTexture = new BABYLON.CubeTexture("cubemap/skybox

", scene);
8 skyboxMaterial.reflectionTexture.coordinatesMode = BABYLON.Texture.

SKYBOX_MODE;
9 skybox.infiniteDistance = true;

Listing 3.4: Creating a skybox in Babylon.js

3.4.3 Cameras and lightning

To be able to visualise the 3D objects in the scene a camera and a light source is neces-
sary. The camera represents viewpoint you see the scene from, and the light settings will
determine the diffuse and specular colour received by each pixel and thus decide what will
be possible to see. In this scene a hemispheric light is used, which is a simple way to sim-
ulate a sun as a light source. This light does not actually have a concrete position, only a
direction from where the light is coming from is defined. This means that the pixel colours
are defined by the angle of the mesh surfaces according to the direction of the light. All
rooms of the building are therefore equally illuminated as the light is not coming from
an actual sun where walls blocks for the sunlight. The benefit with this approach is that
you do not have to set up extra light sources all around the building. The downside is the
indoor lighting environment becomes less realistic.

32

3.4 Implementation

1 var light = new BABYLON.HemisphericLight("Hemi", new BABYLON.Vector3(0, 1,
0), scene);

2 light.diffuse = new BABYLON.Color3(1, 1, 1);
3 light.specular = new BABYLON.Color3(1, 1, 1);
4 light.groundColor = new BABYLON.Color3(0, 0, 0);

Listing 3.5: Setting up hemispheric light in Babylon.js

Listing 3.5 shows how the hemispheric light is created with Babylon.js. A vector describes
the direction of the light, which in this case comes straight from above. In addition the
light intensity for diffuse, specular and ground colour. Diffuse represents faces pointing
towards the light, while ground represents faces pointing downward from the light. The
camera setup is further described in subsection 3.4.5.

3.4.4 Collisions and optimizations

Reducing the number of unnecessarily draw calls and other calculations is essential in a
3D scene because of the usually vast dataset. This subsection will describe how this is
handled in the prototype. In addition 3.5.3 addresses some optimizations techniques that
were more or less unsuccessfully.

3.4.4.1 Collision handling

Collision handling can easily become a bottleneck, and it is therefore vital to reduce the
number of meshes to check collisions for. When we look at the two BIM models present
in this application one thing is very apparent. The architectural model consists of walls,
doors, floors etc., all of them objects that the moving camera needs to check collisions for.
The RIE model covers object that mostly are attached to walls and ceilings in the ARK
model, like sockets, door openers, lights etc. If there already is collision handling for the
walls the electrical objects are attached to making collision checks for these objects will
just aggravate the performance without giving you anything in return. In practice you will
not notice that you floats through a door opener if you collide with the wall it is attached
to. By separating the ARK and RIE model we can assign collision checks to the meshes
in the ARK import, while we neglects it in the RIE import.

To be more accurate, not even all of the meshes in the ARK model are assigned colli-
sion checks, actually the minority are. The ARK model consists of over thousand objects,
where the larger portion are objects that don’t need collision checks as for example smaller
windows, ceiling beams, roofing sheets etc. Luckily the naming conventions of the BIM
model makes it possible to categorize the type of object by substrings of it’s name. List-
ing 3.6 shows how collision checks are assigned in this prototype.

1 //Importing the ARK model and assigning collision detection
2 BABYLON.SceneLoader.ImportMesh("", "models/", "ARK.babylon", scene,

function (newMeshes){
3 //...

33

Chapter 3. Development

4 var mName;
5 for(var i=0; i<newMeshes.length; i++){
6 mName=newMeshes[i].name;
7 if((mName.substring(0,4)==="EKS." || mName.substring(0,3)==="Dek" ||

mName.substring(0,2)==="IV") || mName.substring(0,5)==="Trapp" ||
mName==="Elevator wall" || mName==="WallBarrier" || mName==="
Ground" || mName==="ultrasoundBoundingBox" || mName==="Ekran" ||
mName==="Tak-.001" || mName.substring(0,5)==="DI040" || mName==="V
-.006" || mName==="V-.007" || mName==="V-.013"){

8 newMeshes[i].checkCollisions=true;
9 }

10 else if(mName.substring(0,2)==="DB" || mName.substring(0,4)==="EKS_"
|| mName.substring(0,2)==="DI" || mName==="DU001"){

11 newMeshes[i].checkCollisions=true;
12 activateDoorActions(newMeshes[i]);
13 }
14 }
15 //...
16 });
17
18 //Importing the RIE model
19 BABYLON.SceneLoader.ImportMesh("", "models/", "RIE.babylon", scene,

function(newMeshes){
20 //...
21 });

Listing 3.6: Assigning collision checks for the ARK model

Doing collisions handling for the RIE model would have aggravated the performance
greatly. Not just because the number of meshes doing collision checks for would have
been multiplied greatly, but also because of the complexity of the RIE meshes compared
to the ARK meshes. The objects in the ARK model is mostly walls, floors, doors and roofs.
These can be characterized as very simple 3D objects. A wall can in the simplest case be
represented by as little as four vertices, and two triangular faces. The RIE model consists
of much more detailed objects, for example lamps with pebbled surfaces represented by
thousands of faces.

There is a work around for these cases, which is to create an invisible bounding box for
the object and check collisions with this box instead. A bounding box is the smallest box
possible that encloses the whole object. This primitive mesh consists of just 8 vertices and
12 faces, two triangles for each of the 6 sides of the box. When doing collision checks for
the bounding box we can limit the calculations to the maximum and minimum x, y and
z coordinates of the box, and not the enormous amount of coordinates representing the
surface of the actual object. What is even better is to not do any collision checks at all if it
is not necessary for the game’s realism, which is the case for the objects in the RIE model.

A good example of how use of bounding boxes for collision detection increases perfor-
mance can however be found in the prototype. The ultrasound machine is placed in a
room on the second floor. This 3D object originally consisted of over 80 000 faces. Do-
ing collision handling for this complex object is very costly, as illustrated in Figure 3.4.
If an bounding box is created, and collision checks are done for this box instead the re-
sult is completely different, as figure Figure 3.5 shows. When approaching the ultrasound

34

3.4 Implementation

machine in Figure 3.4 the frame rate dropped as low as 13 fps. In Figure 3.5, where the
bounding box is used for collision checks instead, the frame rate is unaffected, and stays
at 60 fps.

Figure 3.4: Collision check with a complex objectFigure 3.5: Collision check with a bounding box

3.4.4.2 Culling

In a 3D scene not all surfaces needs to be drawn at all time. Generally speaking only a
small minority of surfaces in a scene is visible through the virtual camera. To reduce draw
calls culling is used to eliminate non-visible surfaces. There are multiple types of culling:

• Viewing frustum culling is the elimination of objects outside the viewing frustum,
i.e. objects placed outside the camera’s field of view.

• Backface culling is elimination of the surfaces of an object that does not face the
camera. For example removing the backside of a cube.

• Occlusion culling deals with eliminating objects that are entirely hidden behind
other opaque objects seen from the camera’s viewpoint

Viewing frustum culling and backface culling are supported in Babylon.js, though occlu-
sion culling is not. This will result in a variable performance depending on the camera’s
viewpoint. For example looking at the building from the outside will require a whole lot
more draw calls than looking out of the building from the inside. This is because a lot more
meshes will be within the viewing frustum, even though they are hidden and not visible
from the user’s perspective.

For viewing frustum culling in the prototype octrees are used to optimize mesh selection
for rendering. An octree is a tree data structure and is the three-dimensional analogue of a
quadtree. Each internal node of the tree has exactly eight children. When representing a
3D scene with an octree, the world is divided into 8 blocks, each of these block may again
be subdivided into 8 new blocks, and so on. When traversing the three and a node, repre-
senting a block, is considered to be invisible, which means outside the viewing frustum,
then all of its child nodes are invisible too and does not need to be processed. This way all
objects related to leaf nodes of a node found invisible can be eliminated at once.

Using octrees for this purpose is the recommended way of doing it in Babylon.js, and it
only requires one call to the Babylon library to create or update the selection octree for the
3D scene.

35

Chapter 3. Development

1 var octree = scene.createOrUpdateSelectionOctree(capacity, maxDepth);

Listing 3.7: Create or update an octree in Babylon

3.4.5 Navigation

The navigation of the game is as mentioned based on the first-person shooter principle,
that is altering the viewpoint with the mouse, and physically moving the camera with
keyboard buttons. Apart from that artificial gravity is needed to prevent the user from
moving through mid-air. By defining a FreeCamera in Babylon the altering of viewpoint
by mouse interaction will be set up by default. For mobile devices a TouchCamera is being
used instead. With this camera both viewpoint altering and movement is handled by touch
events. In addition a moving speed for the camera is set to mimic walking speed.

Another vital thing is to make to the camera feel like it represents the view of a human
being. This is done by creating an ellipsoid around the camera. Since Babylon uses a
left-handed coordinate system the y-axis value determines the viewpoint’s height above
ground, while the values for the x-axis and z-axis defines the boundary ahead, rearward
and to the sides. For the ellipsoid to have any function collision handling for the camera
has to be activated. or else the camera will be able to move through objects. A gravitational
force must be defined and applied to the camera to limit the cameras movement to solid
ground. Listing 3.8 shows the whole process, using the Babylon library.

1 //setting up camera
2 var startingPos = new BABYLON.Vector3(-2, 2, -35);
3 if(/Android|webOS|iPhone|iPad|iPod|BlackBerry|IEMobile|Opera Mini/i.test(

navigator.userAgent)) {
4 camera = new BABYLON.TouchCamera("TouchCamera", startingPos, scene);
5 }
6 else{
7 camera = new BABYLON.FreeCamera("FreeCamera", startingPos, scene);
8 }
9 camera.setTarget(new BABYLON.Vector3(0, 0, 0));

10 scene.activeCamera.attachControl(container);
11
12 //Defining camera properties
13 camera.speed = 0.2;
14 camera.ellipsoid.y = 1.1;
15 camera.ellipsoid.z = 0.55;
16 camera.ellipsoid.x = 0.55;
17 camera.checkCollisions = true;
18
19 //Defining and applying gravitational force
20 scene.gravity = new BABYLON.Vector3(0, -0.01, 0);
21 camera.applyGravity = true;

Listing 3.8: Creating a first-person camera in Babylon.js

By default the FreeCamera in Babylon can be moved by the arrow keys. In addition W, A,
S, D keys have been assigned to create a more user friendly option, as these keys are better

36

3.4 Implementation

positioned for the left hand. The last modifications done regarding navigation is assigning
some special keys for running and jumping. This is done by altering the camera moving
speed if running button is activated, and creating a jumping animation when the button for
jumping is pushed.

What distinguishes browser applications from stand alone application is the necessity of
the mouse cursor to leave the browser application window if desired. In the typical first-
person shooter the mouse cursor is locked, and Mouse movements alters the target of the
viewpoint instead of moving the pointer across the screen. Even though this is possible to
implement for browser applications there are some issues regarding this approach. First
of all not all browsers allow that. Of the desktop browsers examined in this thesis only
Google Chrome and Mozilla Firefox permits it (McCuthan, 2012). Secondly, it might not
be in the user’s interest usability-wise to loose the ability to leave the browser window
with the pointer.

In this prototype the cursor is visible and altering viewpoint is done by mouse click and
drag, like in Google Street View. In addition a fullscreen mode can be enabled if the user
wants to alter viewpoint just by moving the mouse, like in first person shooters. However
the nature of the fullscreen mode depends on the browser. Not all support pointer lock,
thus the user still have to click and drag to alter viewpoint if he/she uses one of these
browsers.

3.4.6 Interaction

A game with no sort of interaction, besides moving around, will quickly become uninter-
esting. Since the mouse cursor is visible, as discussed in previous subsection, the concept
of click interaction is exploited. The mouse cursor will turn into a hand when moving over
objects in the scene that can be interacted with by clicking. In the Babylon framework this
is done by defining actions to be executed when triggers are fired. The triggers can be for
example clicks on a mesh, moving pointer over a mesh or meshes who intersects. Actions
can be changing of mesh properties, starting or stopping animations etc.

1 function activateDoorActions(mesh){
2 mesh.actionManager = new BABYLON.ActionManager(scene);
3 var child = [new BABYLON.SetValueAction(BABYLON.ActionManager.

NothingTrigger, mesh, "checkCollisions", 0), new BABYLON.
SetValueAction(BABYLON.ActionManager.OnPickTrigger, mesh, "
visibility", 0)];

4 var child2 = [new BABYLON.SetValueAction(BABYLON.ActionManager.
NothingTrigger, mesh, "checkCollisions", 1), new BABYLON.
SetValueAction(BABYLON.ActionManager.OnPickTrigger, mesh, "
visibility", 1)];

5 var action = new BABYLON.CombineAction(BABYLON.ActionManager.
OnPickTrigger, child);

6 var action2 = new BABYLON.CombineAction(BABYLON.ActionManager.
OnPickTrigger, child2);

7 mesh.actionManager.registerAction(action).then(action2);
8 }

Listing 3.9: Function assigning combined actions for a mesh

37

Chapter 3. Development

Listing 3.9 is a function from the source code used to assign actions to the door meshes
in the scene. The function defines two combined action, one that sets collision checks and
visibility to false, and one that sets these properties to true. These actions are assigned
to the mesh in line 10, and will be called every other time when the mesh is clicked.
The reason for these actions are to provide a way of opening and closing the doors in the
building. The original plan was to make door opening animations, but due to the nature of
the door meshes this idea was discarded. First of all double doors were modelled as a single
mesh in the BIM models, so rotating the whole mesh would seem strange. Secondly there
is no way to decide which way the doors should be opened in general, and this could make
them become obstacles if not specifying a direction for every single door independently.

Other objects where click interactions are present includes paintings on the wall, screens
and a ultrasound machine. Actions assigned to these objects use a custom code snippet de-
fined in a callback function, which is run when a trigger is sparked under a condition that is
true. The function ”activateVideoTexture()” in Listing C.2, in Appendix C, is an example
of this. The outcome of these objects’ actions will be described in the next chapter.

3.5 Challenges

3.5.1 Stairs and elevation inequities

A typical challenge when building games with gravitational force and collision is to handle
elevation inequities. In a 3D world there can be a lot of bumps etc. that a real person would
have no trouble passing, but becomes a problem for the virtual person because of collision
detection. Typical examples are stairs and door sills, which also exists in this prototype.
There are two main approaches to this issue.

The first one attacks the bumps. What is meant by this is trying to physically remove the
bumps, but preserve them visually at the same time. This is done by creating extra invisible
meshes to smoothen the bumps. A good example of this is to place an invisible ramp on
top of the stairs. This approach was first commenced in this project, but then discarded
due to the large time consumption the modelling process entailed compared to the other
approach.

The method that was used instead was to tamper with the gravitational force. By setting it
artificially low the moving camera where able to walk stairs and pass other small hurdles
without getting stuck. This method is very quick and easily implemented, but can not be
exploited in every scenario. The drawback is situations where the user is able to jump off a
hill etc. In these scenarios the unrealistic gravitational force will be revealed. However in
this application there is to be no possibilities to end up in free fall, and therefore virtually
impossible to uncover the nature of the gravity.

38

3.5 Challenges

3.5.2 UV mapping

The video textures used in the prototype are applied to meshes at run-time, as they only
will appear when requested/activated by the user. For meshes created with JavaScript,
using the Babylon library, applying video textures is straight forward. It is just to apply a
material containing a video texture. For imported meshes from a Blender scene one more
step has to be conducted, namely UV mapping. UV mapping is the process of defining how
a 2D image is to be mapped onto polygons. The UV mapping was done automatically for
JavaScript generated meshes, this was not the case for the imported meshes from Blender.

3.5.3 Failed optimizations

3.5.3.1 Incremental loading

Instead of loading the complete model at start up another approach is to load meshes and
textures on the fly, when they first are needed, i.e. when they become visible. Babylon.js
offers a service for converting the Babylon file into an incremental file, a folder where all
meshes are seperated into individual files. Each individual file is then loaded on demand.
When the incremental file was applied some objects were being misplaced, and it was
therefore decided to discard the incremental loading method.

3.5.3.2 Babylon Scene Optimizer

The Babylon Scene Optimizer is a tool designed to ensure the application to maintain a
specific frame rate. This is done be degrading rendering quality at runtime if the frame
rate drops beyond the targeted frame rate. The operations the Scene Optimizer conducts
includes downscaling textures, merging meshes, shadow optimizations among others. By
default Babylon.js offers three predefined degradation sets; low, moderate and high. Inde-
pendent of which of these sets that were applied problems with floors and walls becoming
invisible occurred.

(a) Original (b) After applying the Scene Optimizer

Figure 3.6: Problems with the predefined Babylon Scene Optimizer

39

Chapter 3. Development

As a consequence a customized optimizer were implemented. By comparing the scene be-
fore and after the custom scene optimizer were applied it was hard to tell whether the gain
in performance were sufficient enough to defend the level of degradation. The customized
scene optimizer was therefore not applied by default, but it can be activated, by pressing
the ”O”-key, for testing purposes.

40

Chapter 4
Results

4.1 Prototype

The prototype developed in this thesis offers a virtual tour of the 1930-building, an admin-
istrative building at St. Olav’s University Hospital, seen from a first person point of view.
The camera is spawn on the inside of the main entrance, and the user can go wherever
he/she wants in the five floor building, including the basement and the attic. All doors can
be opened, even the outer doors if the user wants to move on the outside of the building.
A collection of screenshots from the prototype can be found in Appendix A.

Figure 4.1: The scene seen from the spawn point

41

Chapter 4. Results

4.1.1 Controls

Figure 4.2: Controls

The game controllers, illustrated in Figure 4.2, are as following:

• Arrow keys: Moves the position of the camera

• W, A, S, D: An alternative to the arrow keys

• Mouse + holding left mouse button: Alters the viewpoint

• Left mouse button click: Interaction with objects

• Shift: Toggle running

• Space: Jump

• F: Toggle fullscreen mode

4.1.2 Features

One of the goals of this thesis was to present a proof-of-concept of how objects and inter-
action could be used in a virtual hospital context, either as an activity that simulate real-life
task, or in an educational or building exploring context.

4.1.2.1 Art information

One of ideas from St. Olav Eiendom was to replicate the collection of art that is present
in the building and let the user explore it and retrieve information about the artwork. Un-
fortunately St. Olav Eiendom were not able to obtain the data necessary to present the
true items. Instead a bunch of example paintings have been placed around the building.
Clicking on these painting will trigger a pane, containing information about the artwork,
to appear. The pane can be closed by clicking the X in the top-right corner.

42

4.1 Prototype

Figure 4.3: Presentation of art information in the prototype

4.1.2.2 Inhouse movies

In the first floor of the building there is projection screen placed in a larger meeting room.
By clicking the screen a video starts playing on the screen. In addition there are two
buttons to the left of the screen. With these button the user can scroll forward or backward
in the list of videos. The videos are published by the National Competence Centre for
Ultrasound and Image-Guided Therapy (USIGT) in Norway, and presents a series of cases
showing how 3D ultrasound can be used in various neurosurgical procedures. A playing
video can be paused by clicking on the screen, and then be continued again by a new click.

Figure 4.4: Projection screen in the prototype

4.1.2.3 Ultrasound machine

There is a ultrasound machine placed on the second floor of the building. By clicking
at the screen of the machine a video stream of ultrasound images will be displayed. By

43

Chapter 4. Results

clicking on buttons on the machine the screen will display other ultrasound images. The
ultrasound image collection derives from different cases, for example pregnancy and liver
observations.

In a wider scope this feature can be used as a virtual training device. By creating a patient
in the virtual environment, and by moving an ultrasonic transducer over the body the screen
could projects images according to the position of the transducer. Here are two different
approaches of how this can be implemented:

1. Dividing the patient’s body into a two-dimensional grid, where for example the
womb and the liver are represented in two separate cells. If the transducer is posi-
tioned over the cell representing the womb an ultrasound video of an infant in the
womb is played on the screen. By moving the transducer over to the field represent-
ing the liver, a ultrasound video of an liver examination is played, and so on

2. Representing the whole body with a large image, created by connecting ultrasound
images from the whole torso. Then let the transducer position represents the centre
with a defined range for the x-axis and y-axis representing the size of the ultrasound
screen. The whole image will be applied as an image texture to the screen polygon,
and by moving the transducer the uv mapping of the image will be shifted accord-
ingly to the position of the transducer.

Figure 4.5: Ultrasound machine from the prototype

4.1.3 Issues

An issue was noticed in Chrome for Windows concerning file transfer requests to the
server. The problem was uncovered when trying to play video on the projecting screen
described in subsubsection 4.1.2.2. When clicking the screen the request for the mp4
video would stay pending infinite if the file already was cached. This problem for chrome
were actually reported through the Chromium project back in 2013, but have still not been
fixed properly. There is a strange workaround for this issue in the prototype. By adjusting
the camera viewpoint to be looking out of the building, and by that reducing the number

44

4.2 Browser benchmark test

of draw calls, as there will be less meshes in the viewing frustum, the requests suddenly
gets handled.

This issue is restricted to Chrome, and there have been no problems with file transfer
requests in the other browsers.

4.2 Browser benchmark test

As this prototype is web-based there are several factors that influences how the applica-
tion performs. Besides the hardware specifications, the web browser is the most deciding
factor. A benchmark test of the major desktop browsers have been conducted to try to
evaluated their WebGL 3D rendering performance. This section will give a description of
the test procedure, present the results, and discuss the test results.

4.2.1 Test procedure

Three different machines were used in this test. Two of them were laptops, one with
a Windows 8 operating system and one which runs Mac OS X. The last machine was
a customized media centre running Ubuntu. The machine specifications can be seen in
Table 4.1. The prototype developed in this project was used as the test application to
measure the performance of the different browsers. Frames-per-second, or fps referred
to from now on, represents the unit of measure in this benchmark test. All the desktop
browser listed in Table 2.1 from subsection 2.1.2 were tested.

A test program was written to calculate the test results. It is a simple program that cal-
culates the average frame rate while the test is in progress. By pressing the T-key on the
keyboard the test program starts running. A counter variable, and a variable for summing
the frame rate resets. For each render loop the counter increments and the current frame
rate is added to the summing variable. When the counter reaches 1500 the average fps for
the test is calculated and displayed, and the test is finished. The time each test run takes
depends on the frame rate. With a high frame rate the test takes less time than if the frame
rate is low. With a frame rate at 40 fps one test run would take around 30 seconds.

The test was conducted by starting the application, and pressing the T-key on the keyboard,
which activates the test program. Then move towards the front door of the building, open
it and move inside. Then walk down the corridor, click on the first painting, which makes
the pop-up window with art information appear. After closing the pop-up window the trip
continues down to the room with the projecting screen. After entering this room the test
person clicks to start the video texture on the screen, then move across the room to the
stairway and head to the second floor. From here on the test person will just move around
the second floor until the test comes to an end, which is likely to happen very soon if the
frame rate is not really low.

As mentioned the test was executed on three different machines, with three different oper-
ating systems. It was also conducted for two different versions of the prototype. We will

45

Chapter 4. Results

call the first version full model, where the complete 3D scene is rendered. In the other,
called light model, the BIM model covering all the electric devices (RIE) is not present.
The light model is therefore less complex. Every single test was conducted three times,
and the fullscreen feature was activated in the last test run for each of the browsers. The
reason for doing it three times was to make sure every single observation was reliable and
similar results therefore could be replicated. For the observations to be considered reliable
in this test the highest and lowest observation of the three had to be maximum 10 fps apart.
A calculation of an average of the three test runs was considered as the final score.

Machine: ASUS S56CB Macbook Pro Custom
OS: Windows 8.1 OS X Yosemite Ubuntu 14.04 LTS
Architecture: 64-bit 64-bit 64-bit
CPU: Intel Core i5 1.8 GHz Intel Core i7 2 GHz Intel Core i5 3 GHz
RAM: 8 GB 8 GB 16 GB
GPU producer: Nvidia Intel Intel
GPU model: GeForce GT 740M Iris Pro Graphics HD Graphics 4600
GPU memory: 2 GB 1536 MB 1.7 GB

Table 4.1: Specifications of machines used in the benchmark test

4.2.2 Benchmark test results

The results from the benchmark tests i presented in Table 4.2. For each browser there are
registered six observations for every machine/OS, three for each of the two application ver-
sions. The first three white columns represents these three observations. The fourth, blue
column, is the concluding result, which is the calculated average of the three observations.
All observations are rounded to the nearest integer since fractions of fps are insignificant
in this context.

46

4.2 Browser benchmark test

Windows
Browser: Light model Full model

Internet Explorer 40 43 39 41 25 27 27 26
Google Chrome 53 52 50 52 48 47 48 48

Safari Unsupported
Mozilla Firefox 42 40 39 40 31 33 29 31

Opera 52 53 52 52 49 46 49 48
OS X

Browser: Light model Full model
Internet Explorer Unsupported
Google Chrome 38 39 39 39 38 37 35 37

Safari 23 24 22 23 17 16 16 16
Mozilla Firefox 39 38 33 37 32 30 28 30

Opera 52 54 51 52 44 44 39 42
Ubuntu

Browser: Light model Full model
Internet Explorer Unsupported
Google Chrome 55 56 56 56 54 53 49 52

Safari Unsupported
Mozilla Firefox 39 38 34 37 30 32 29 30

Opera 56 55 56 56 50 54 51 52

Table 4.2: Browser benchmark test result

During the testing of Safari for OS X it became clear that the performance got consider-
able worse at the moment the video texture was activated. This observation was not as
noticeable in other browsers. Anyhow an extra test was conducted where the video texture
were not activated to compare this to the original results. Table 4.3 shows the original
test results, in the blue column, compared to the result when the video texture was not
activated, in the white column. These tests were conducted on the full model.

Browser: Windows OS X Ubuntu
Internet Explorer 26 26
Google Chrome 48 48 37 47 52 52

Safari 16 21
Mozilla Firefox 30 32 30 34 27 30

Opera 48 50 42 46 52 53

Table 4.3: Test results without video textures activated

47

Chapter 4. Results

4.2.3 Test remarks

Safari have discontinued their support for Windows. The latest release for Windows dates
back to May 2012. Safari have therefore not been tested for Windows. The same goes
for Internet Explorer for OS X, which discontinued the support as long back as in 2005.
Internet Explorer and Safari does not exist natively for the Ubuntu operating system. These
browser are therefore not included in the tests for Ubuntu.

Activating fullscreen mode was not possible in Internet Explorer for Windows. When
activating fullscreen in Safari for OS X the keyboard keys would not work. The image
was also stretched in the y-direction, given a left-handed coordinate system.

The observations registered seems reliable as all the three test runs for every unique
browser, for each operating system, replicated similar values. At most 5 fps distinguished
the highest and lowest observation within a test group.

4.2.4 Benchmark test discussion

First of all the results (Table 4.2) can not be used to determine the browsers performance
across the platforms, i.e. conclude that Windows browsers in general performs better than
OS X browsers. We have to keep in mind that WebGL, as described in section 2.1, utilizes
hardware accelerated graphics. The machines specifications, and the GPU in particular,
are crucial for the result. Since different machines, with different specifications, were used
for each of the operating systems we can only compare results within the same operating
system. The Macbook was the machine with the least powerful GPU so there should be
no surprise that this machine also delivered slightly poorer results than the two machines
used for the other operating systems.

For Windows Internet Explorer, Google Chrome, Mozilla Firefox and Opera were tested.
The observations indicates that Google Chrome and Opera performs far better than IE and
Firefox. These test results correlates with the subjective impression during testing. In
Chrome and Opera it never felt particular laggy regardless of the model complexity. In
Firefox and IE however there were moments of latency, especially for IE running the full
model. As Table 4.3 indicates activating video textures did not lower the performance for
this platform.

The browsers tested in OS X were Google Chrome, Safari, Mozilla Firefox and Opera.
Opera measured the superiorly highest average frame rate for the light model, while the
Chrome and Firefox scored more even. Running the full model however Chrome and
Opera came closer, while Firefox waned. Safari delivered the far lowest results for both
the model complexities. The subjective impression during testing does correlate quite well
with the test results, except for Chrome which felt closer to Opera’s performance than
Firefox’ with the light model applied. Safari’s result reflects the impression during testing,
very laggy compared to the others, and nearly unplayable running the full complexity
model with video textures activated.

48

4.2 Browser benchmark test

In contrast to Windows, Table 4.3 shows that performance fell when video textures were
activated in the OS X tests. However this is more likely due to the variety of GPU in the
testing machines than the browser software itself. A indication of this is that all the OS
X browsers encountered a significant drop in frame rate, while this was not the case for
Windows and Ubuntu.

In the tests for Ubuntu only 3 browser were tested, Chrome, Firefox and Opera. Opera and
Chrome performed best here as well, while Firefox scored somewhat lower. The results
match the impression while conducting the test. The playability was acceptable for all the
browser, but Chrome and Opera gave a noticeable smoother experience. What stands out
for these test results is the consistency the browsers delivers across the different platforms.
Chrome and Opera performs very well in all contexts. Firefox delivers an acceptable result
across the board, but performs considerably worse than Chrome and Opera. IE and Safari,
which only are tested for one operating system each, are struggling. Especially when the
complexity increases.

Finally, what does these test scores tell us? What is an acceptable frame rate? There is a
quite clear consensus in the gaming community that 30 fps is the baseline for playability.
Anything over 30 fps is acceptable, but the higher the better of course. Felix Turner, CEO
of SimpleViewer Inc, puts it this way (Turner, 2015):

”The higher the frame rate, the smoother your content will be. Stutter and lag
kills the brain’s flow state. For a game it is especially important that motion
is smooth and controls are responsive. Computer screens typically refresh at
60Hz, so this is the maximum bound we aim for. Note that 60FPS is the ideal
target, but anything above 30FPS will still look pretty good.”

Looking at Table 4.2 again we see that Internet Explorer for Windows and Safari for OS X
were the only browsers who did not reach the 30 fps bar, while Firefox landed just above
the 30 fps for all the platforms.

4.2.4.1 Viewing frustum depended frame rate

Even though the average fps is pretty good for most of the browsers the test result do not
show the whole picture. The frame rate actually dropped considerably at some points.
Even though the decline was bearable, especially in Opera and Chrome, it was certainly
noticeable. The points we are talking about are when the viewing frustum covers the larger
part of the building, hence contains a great amount of meshes. Recall that Babylon does
support view frustum culling, but not occlusion culling. An example where the fps drops
significantly is when the camera is position outside and the whole building is covered in
the viewing frustum. This problem will be further discussed in the next chapter.

49

Chapter 4. Results

4.3 Test on mobile devices

For mobile devices a less quantifiable test have been conducted, meaning that there was no
test assignment with a specific route with tasks to be conducted and recording of average
frame rates. While the Browser benchmark test from previous section tries to give an
answer of how well the different desktop browsers performs, the purpose of this test is
only to get an idea if today’s smartphones are mature enough for WebGL.

The tests were conducted on two different devices, Samsung Galaxy S4 and iPhone 6 Plus.
Specifications of the devices can be seen in Table 4.4. An important aspect to take note of
is that the S4 is two years old and far from a top-notch phone today, while iPhone 6 Plus is
Apple’s latest and greatest. Google Chrome was the browser used for the Samsung phone,
while Safari was used for the iPhone.

In addition two of the Babylon.js demos presented in 2.3.1.2, ”Mansion” and ”Espilit”,
were tested on the Samsung S4 for a comparison. Since a fps meter have been implemented
both in the Babylon.js demos and for the prototype a general overview of the frame rates
will be presented.

Device: Samsung Galaxy S4 I9505 iPhone 6 Plus
Released: April 2013 September 2014
OS: Android 4.4.2 iOS 8.3
Architecture: 32-bit 64-bit
CPU: Qualcomm Krait 300 1.9 GHz ARMv8-A Cyclone 1.4 GHz
RAM: 2 GB 1 GB
GPU: Qualcomm Adreno 320 PowerVR Series 6 GX6450

Table 4.4: Specifications of mobile devices tested

4.3.1 Mobile test results

With the full model applied the application was barely playable on the S4. The scene
was loaded, but the response from touch events were a little slow, making manoeuvring
difficult. With only the light model applied it was considerable easier to navigate, even
though the latency was certainly visible. Trying to activate the video texture would force
the application to crash. The frame rate only occasionally exceeded 10 fps with the full
model applied, and was as low as 2 fps at its lowest. Most of the time the frame rate were
just above 5 fps.

On the iPhone the application was definitely playable, even with the full model applied,
and in contrast to the S4 there were no problems with video textures. Still the experience
were not as smooth as in the tests conducted on laptop/desktop. At maximum a frame rate
of 30 fps was recorded, and at it lowest it dropped to 9 fps.

For the Babylon.js demos tested on the S4 the results were quite shifting. The scene called
”Espilit” worked pretty well. Despite a low frame rate the game was easily manageable

50

4.4 Usability test

Figure 4.6: Screenshot from test of the prototype on Samsung S4

with quick responses to touch events. Compared to the this thesis’ prototype the ”Es-
pilit” scene performed better. The ”Mansion” scene however were barely playable, and
performed slightly worse than the prototype. These two demo scenes are quite similar re-
garding the number of meshes. However the ”Mansion” scene consists of a larger amount
of textures, but also more advanced and costly texturing, e.g. moving clouds.

The frame rate for the ”Espilit” demo was usually just above 10 fps, with a minimum and
maximum frame rate of respectively 7 and 16 fps. In the ”Mansion” demo the frame rate
never exceeded 5 fps, and hit 2 fps on its lowest. Table 4.5 provides an overview of the
test observations. The observations listed are the minimum (min) and maximum (max)
frame rate observed, together with the expected (exp) frame rate, i.e. the range of the most
common observed values in the tests.

Scene Test phone Browser Min Max Exp
1930 building iPhone 6 Plus Safari 9 30 13 - 17
1930 building Samsung S4 Chrome 2 14 5 - 7
Espilit Samsung S4 Chrome 7 16 10 - 12
Mansion Samsung S4 Chrome 2 5 3 - 4

Table 4.5: Mobile test results

4.4 Usability test

When testing self-developed applications one can quickly be blinded of which aspects are
challenging and what needs improvement. Things can feel very easy and intuitive for
the developers as they have designed it and knows how everything works, but this does not
necessarily translate to the people that are going to use the application. Outside feedback is
therefore very important to highlight the problems and difficulties. To get feedback on this

51

Chapter 4. Results

prototype a test assignment was written, accompanied by a questionnaire with questions
related to usability and improvements of the prototype. The complete test assignment
introduction and questionnaire can be found in Appendix B

4.4.1 Test assignment

The task of the test assignment was described to the test candidate in the introduction of
the questionnaire. In addition the navigation system and controls were explained. The task
was defined by a number of instructions to be carried out:

1. Open the first door and move down the hallway. Here are some pictures that you
can click on.

2. Go to the room with the projector screen. Click on the screen to play a movie.

3. Click on the screen again to stop/pause the video.

4. Go to the second floor.

5. Find the ultrasound machine and click on its screen.

After conducting the test the test candidate was asked to answer the questionnaire. The
questionnaire was short, only seven multiple choice questions, with a focus on how the
user mastered the navigation system, and which aspects he/she found troubling. The ques-
tionnaire was distributed to a number of people working at St. Olav’s to target an audience
this type of application may be designed for. A total of 17 people answered the ques-
tionnaire, including one who only answered the first four questions. The questions in the
survey were:

1. Which browser did you use?

2. How much experience do you have with playing video games?

3. How easy/intuitive did you find the navigation system?

4. Did you manage to accomplish all the tasks?

5. Which aspects did you find problematic?

6. Which changes/improvements do you find most important for improving the user
experience?

7. For which purposes do you see a value in a web-based 3D applications?

4.4.2 Questionnaire results

Not surprisingly Google Chrome was the browser most people used with 65 % of the
share. Mozilla Firefox and Opera were used by receptively 20 % and 7 %. None of the
respondents used Internet Explorer, Safari, or any other browser.

52

4.4 Usability test

Figure 4.7: Q1: Which browser did you use?
Figure 4.8: Q2: How much experience do you
have with playing video games?

41 %, of the respondents answered they had much experience with video games. The rest
where distributed over reasonable, some and litte experience, respectively 12 %, 29 % and
18 %. No one answered they had no experience with video gaming. Most people found it
easy to navigate with 53 % answering it was easy and 29 % answering it was very easy.
28 % thought it was a bit difficult, while nobody found it very difficult.

Figure 4.9: Q3: How easy/intuitive did you find
the navigation system?

Figure 4.10: Q4: Did you manage to accom-
plish all the tasks?

By far the largest part, 65 %, managed to execute all the task described in the instruction.
24 % said they did not manage to accomplish all tasks, while 12 % did not try to do all.

53

Chapter 4. Results

Figure 4.11: Q5: Which aspects did you find problematic?

For the last three questions, that deals with problems and improvements, multiple answers
were accepted. The aspects people found problematic were quite evenly distributed. The
problem most frequently selected was combining altering the viewpoint and moving, with
38 %. Opening and closing doors were the least problematic aspect according to the
respondents, with only 6 %. 31 % did not find anything problematic, and was the second
most chosen alternative, together with ”moving up/down stairs”.

Figure 4.12: Q6: Which changes/improvements do you find most important for improving the user
experience?

The most wanted improvement was to increase the visual detail level, with a majority of
63 % pointing this out. Use of animation, for instance when opening doors, were also
frequently noted, by 38 %. Other ways to interact were the least wanted improvement
with 6 % requesting this. The same amount of respondents answered that they did not
see anything that needed improvement. 31 % submitted suggestions of other types of
improvements. However all of these beside one could actually pass under the selectable
alternatives, which they also had selected. The last suggestion pointed to improvements of
lighting.

54

4.4 Usability test

Figure 4.13: Q7: For which purposes do you see a value in a web-based 3D applications?

Of the questions accepting multiple answer the question related to utility value was the one
getting the most response. Respectively 88 % and 69 % answered that they saw a value in
these types of application for familiarize themselves in real buildings and as a room-finder.
69 % also thought web-based 3D applications have a potential in virtual training scenarios.
Nobody answered that they did not see any utility value in web-based 3D applications, nor
did any submit an area of use in addition to those listed.

4.4.3 Response patterns

The answers were examined individually to look for patterns based on the respondents
choice of browser, and their experience with video games. The patterns mainly looked for
were whether video game experience reflects how the way of navigating were perceived,
and if choice of browser had an impact on which aspects were regarded problematic.

The Examination showed that there is a connection between experience with video games
and how intuitive they found the navigation method. For those who answered they had
much or reasonable experience with video games four found the navigation very easy,
the same amount answered it was easy, and only one found it a bit difficult. For those
with some or little experience only one found it very easy, five said it was easy, and two
found it a bit difficult. Apart from this discovery there were no other patterns to be found.
The choice of browser for instance did not show any trends in what was perceived as
problematic.

55

Chapter 4. Results

56

Chapter 5
Discussion

In this chapter the test results discussion will be taken further by trying to drag the research
questions into the mix.

5.1 WebGL discussion

Subsection 2.1.1 introduces the concepts of hardware based and client based rendering,
which are properties of WebGL, as opposed to software based and server based rendering.
This section will discuss the strength and weaknesses with this approach.

Where can WebGL’s client based rendering approach prove challenging? You always have
the machines with weak processing power. However all technology can’t be based on
supporting the whole spectre of machines regardless of their specification. Actually the
best selling 3D games only targets high-end computers, i.e. you can not expect to run
the most recent first-person shooter games on the average laptop. You have to invest in
an expensive gaming PC. Some of the same can be transferred to WebGL. By utilizing
hardware accelerated graphics and client based rendering WebGL makes it possible to
render pretty complex 3D scenes in the browser, but the client’s hardware has to be of a
certain level to fully exploit this technology.

5.1.1 WebGL on mobile devices

There is however a clear difference between the targeted devices for the most advanced
3D games on the marked and the WebGL technology. The WebGL has a wider scope
of course as it is an API for developing 3D applications with a variety of complexity.
For web use there is especially one platform that has had an explosive growth, namely
mobile devices. As Figure 5.1 illustrates the web in the US today is more often accessed

57

Chapter 5. Discussion

through mobile devices than through desktops (comScore, 2014). The data is gathered
by comScore, a company who analyses what people do in the digital world. There are
apps that stands for the greater part of web use from mobile devices, which still makes
the desktop browser more used than the mobile browsers. However the mobile browsers
account for a reasonable share.

Figure 5.1: Growth in time spent on web in the US from June 2013 to June 2014, divided by mobile
app, mobile browser and desktop browser

As with desktops, the specifications of smartphones and tablets can vary a lot. Nevertheless
desktops will in general have higher performance than mobile devices. The results from
the desktop browser and mobile device tests from previous chapter underpin this statement.
What this means is if you want to make an WebGL application to run seamlessly on the
average smartphone the complexity might have to be reduced for this platform although
it runs seamless on the average desktop. One way this principle easily can be carried out
in the prototype is by not importing the RIE model if the client is a mobile device. Since
these models are imported separately it is easy to define which should be loaded to the
scene, basing the decision on the type of device accessing the website.

Daniel Isaksson, technical director at North Kingdom and contributor at the HTML5 de-
veloper community HTML5 Rocks, delivers in an case study (Isaksson, 2014) a list of
seven recommendations for WebGL application development to mobile devices and low-
spec computers:

• Use low-poly models

• Use low-res textures

• Reduce the number of drawcalls as much as possible by merging geometry

• Simplify materials and lighting

• Remove post effects and turn off antialiasing

• Optimise Javascript performance

58

5.1 WebGL discussion

• Render the WebGL canvas at half size and scale up with CSS

It can seem like only the newest top-notch mobile devices are up the task of rendering
large complex 3D scenes today. Well, that might be true for the WebGL technology alone.
Here we come back to client based versus server based rendering. Döllner et al. (2012)
published a paper where they presented a server based rendering solution for large 3D city
models on mobile devices. They describe the solution this way:

Our approach uses a different strategy that relies on server-based 3D scene
rendering and client-based 3D scene reconstruction based on virtual panora-
mas, technically represented by G-buffer cube maps. This way, we can avoid
streaming 3D scene data to clients and, therefore, decouple 3D scene com-
plexity from data transmission complexity. In addition, the server can use
advanced 3D rendering technology, while only moderate 3D graphics capa-
bilities on the clients are required.

What this tells us is that by making use of server based rendering low-spec devices can
render more complex 3D scenes than they would have been able to by only using a client
based rendering technology, as for example WebGL. This does not mean that the WebGL
technology cannot be a part of the solution since it is a client-side renderer. Actually the
client implementation in Döllner et al.’s work uses WebGL-enabled browsers. The WebGL
API is used as in other WebGL applications to display a 3D scene through the HTML5
<canvas> element, but the costly rendering process is ”outsourced” to the server.

5.1.2 Client based versus server based rendering

What the example in the previous subsection, 5.1.1, proves is that server based rendering
might offer a better service for low-spec machines than client based rendering. So is there
any reason to use client based rendering instead? As just pointed out, Döllner et al.’s solu-
tion addresses a problem for low-spec devices. What about clients with better processing
power, will they benefit from a server based rendering approach? This question is impossi-
ble to answer on a general basis. There are multiple factors involved. However two criteria
must be met for server based rendering theoretically can perform better.

1. The server-side hardware must have greater processing power than the client-side
hardware.

2. Server-side computational latency and network latency combined must be lower
than the client-side computational latency.

In addition there are other factors involved, for example server demand and overhead.
Martin (2000) argues that the main tradeoff with server-side rendering is loss of real-time
interaction due to network latency and that the rendered images are delivered to clients
at non-interactive rates. This is not wrong, but we have to keep in mind that Martin’s
paper is from 2000, and much have happened technology-wise since this time, including
growth in bandwidth rates, which is very relevant for Martin’s argument. Nilsen’s Law
of Internet Bandwith states that ”a high-end user’s connection speed grows by 50 % per
year” (Nielsen, 1998). We have examples from recent times of server based 3D rendering

59

Chapter 5. Discussion

services where real-time interaction is essential. One example is OnLive, a cloud gaming
service, where the client handles the input, transmits it to OnLive’s servers which renders
the game and provides a streaming video back to the client. The main purpose with this
service is, as already pointed out in this section, allowing games to run on machines that
have insufficient hardware to run it locally.

Another approach is to combine client based and server based rendering where the model
is partitioned into different parts, assigning some parts to be rendered on the server, while
other is rendered on the client. The main challenge with this approach is the task of
deciding the partitioning, which is not trivial.

Server based rendering:

+ Might achieve higher performance than the client originally can achieve

+ A more unambiguous result by reducing the importance of client hardware

− Development complexity increases

− Introduces network latency

− The cost of server hardware

− Heavy server demand may decrease performance

Client based rendering:

+ Can utilize powerful client hardware

+ Excluding the network latency factor

− Performance very dependent on the client’s hardware

− Harder to target a large range of devices

5.2 Applying BIM models in web-based games

The whole idea behind using BIM models in this project was to replicate an authentic
environment, without having to do a huge modelling job. This section will discuss whether
this goal was accomplished through this solution, and how well BIM models integrates for
this purpose.

What cannot be argued is the fact that BIM models provide a model that is true to a
structure’s real measures. The building that is being rendered is identical to the real-life
building when it comes to form, shape, room division and position of the components.
section 2.2 has already addressed how the use of BIM has accelerated the last 15 years,
and how common it is in larger building projects today. It therefore exists a great amount
of 3D models over various real-life buildings. In addition the demand for virtual reality
software is increasing, with a significant adoption in the training and infotainment sectors
(MarketsandMarkets, 2014). For these types of systems BIM models have a potential as

60

5.2 Applying BIM models in web-based games

a great share of them aims for replicating existing buildings and structures in the virtual
environment.

The drawbacks of using BIM models in a game-like environment originates from the fact
that the models are made for a another specific purpose, namely building planning. The
model complexity is a central point. When modelling a 3D scene for a video game only
visible, or in somehow intractable objects are of interests. The designer will not model the
water pipes inside a wall etc. if these under no circumstances will come into sight. It is not
just a waste of time for the modeller, it also increases the size and complexity of the model,
without bringing any benefits. For a BIM model however all parts of the building, visible
for the audience or not, is necessary to fulfil its purpose, providing a complete model that
describes every single detail relevant to the building project.

5.2.1 BIM models applied in the prototype

As explained in section 2.2 BIM models are usually divided into different disciplines, and
only the ARK and RIE models were applied in the prototype, which mean you can discard
parts of the model you don’t find necessary. Still the ARK model and the RIE model
combined contains well above 2000 meshes. If we compare this to the Babylon.js demos
presented in section 2.3, and tested in section 4.3, none of these scenes consist of more
than 150 meshes. The scene from this prototype does admittedly require a greater amount
of meshes as the building is considerable larger with a lot of smaller rooms etc. compared
to the structures present in the Babylon demo scenes. However the amount of meshes
could have been dramatically reduced, without damaging the visual appearance, if it was
modelled exclusively for a game purpose.

Another important remark is the lack of texturing in the BIM models of the 1930 building.
Most objects in the RIE model had at least been painted in their true colours, but only a
few materials in the ARK model have a different colour than the default grey tone that is
repeated throughout the 3D scene. Nor are any textures used besides those added to the
self-modelled objects. The result of this is that the scene looks quite naked, which also
were pointed out in the usability test questionnaire.

This problem could of course be solved manually by adding textures and colours to the
objects in Blender, although this would be a major job, especially if the textures were to
reflect the authentic appearance of the building. It was considered starting on this job, but
it was put on hold, as it would be a time consuming operation and not vital regarding the
focus area of the thesis. One factor that would add to the workload is the nature of how the
faces of the meshes are structured, and the fact that some walls represents both the inside
and the outside of the building. The whole wall cannot therefore be assigned a common
texture, but each individual face making up the inside wall needs to be selected manually
to not apply the same texture or color on the exterior wall. Figure 5.2 illustrated how this
gets a little messy due to the structure of the face division.

61

Chapter 5. Discussion

Figure 5.2: Selecting faces of a inner wall in Blender

5.3 Using higher-level WebGL frameworks

Use of higher-level framework to improve or simplify the work is something that applies
to most software development projects. There are several good reason to use them. Mike
Baker, cluster tool control practice manager at Cimetrix, advocates it this way (Baker,
2009):

”The purpose of a framework is to improve the efficiency of creating new
software. Frameworks can improve developer productivity and improve the
quality, reliability and robustness of new software. Developer productivity is
improved by allowing developers to focus on the unique requirements of their
application instead of spending time on application infrastructure (”plumb-
ing”).”

Especially for a low-level API like WebGL a high-level frameworks can come in handy.
The main advantages of using these are to abstract away the complex WebGL setup and
graphics pipeline. WebGL is actually even harder to get started with than OpenGL. This
is because WebGL inherits from OpenGL ES 2.0, which is a stripped down version of
OpenGL, where the collection of beginner-friendly functions among others are removed
to make the system smaller and simpler. What you get from these high-level frameworks
or libraries is a layer of defined functions that will do the WebGL API calls for you. The
developer will have a simpler interface to deal with, it will require a lot less code and
conducting error handling will be easier, given that the error is not within the framework.

Brandon Jones, a Chrome WebGL implementer at Google, wrote a blog post back in Au-
gust 2011 with the title ”WebGL Frameworks are awesome, here’s why I don’t use them”
(Jones, 2011). In this post he mentions one, and one reason only why he prefer to do with-
out a higher-level framework, which is performance. By adding an extra layer you obvi-
ously get overhead, the question is to what extent. Jones argues that in the vast majority
of cases the overhead is not decisive for the result, but he questions if a high-performance

62

5.3 Using higher-level WebGL frameworks

WebGL app can afford it. It is uncertain what qualifies as high-performance WebGL app
according to Jones, but the main point is that by discarding a higher-level framework you
can exploit WebGL to the fullest performance-wise.

Another sensitive point is the limitations the framework creates. When applying a frame-
work you are dependant on what it has to offer. How clamped you are to a single frame-
work can differ. Some frameworks gives more freedom and are easier to combine with
native code than others. What is important is to do a thoroughly study when deciding on
a framework to use, making sure it actually will benefit your project and will not create
limitations for your system’s requirements.

5.3.1 Babylon.js evaluation

In the preliminary study an analysis of a bunch of WebGL frameworks was conducted,
and the Babylon.js framework were chosen on this basis. Table 5.1 shows an excerpt of
Babylon.js’ notations from the comparison in Table 2.4. As the frameworks examined in
the preliminary study were not tested in practice this subsection will evaluate how accurate
the assessments were for Babylon.js.

Framework: OS Free Com Doc Phy Col Imp
Babylon.js Yes Yes Active Fair Yes Yes Yes

Table 5.1: Excerpt of the WebGL framework comparison in Table 2.4

The project is still free and open source and there is no plans of making changes here.
The repository is available from GitHub, and is continuously under development. New
contributions or improvements are pushed weekly. One of the main factors for choosing to
work with Babylon was the activity level in the community. The main discussion forum for
the framework is located at www.html5gamedevs.com. There is non-stop activity on the
forum and major contributors to the framework sacrifice a lot of time to answer questions.

The only criteria that did not get top grade in the framework assessment in the preliminary
study was the documentation. Even though there are a lot of good tutorials describing how
to master the different aspects of creating a 3D world with Babylon.js the API documen-
tation is a little incomplete. All classes and methods are accounted for, but the detail level
could be better. There were times in the project were the application of methods were not
completely understood due to the less detailed documentation, and the forums were used
instead to clarify.

The physics and collision engines were simple to work with, and are already described
in the development chapter. What stands out the most with Babylon.js is the richness of
the library and how easy the setup is. Large snippets WebGL code is done with a simple
method call to the Babylon library.

The biggest downside encountered with the framework were the lack of support for oc-
clusion culling. This shortage became extra apparent due to the high complexity level in

63

Chapter 5. Discussion

the BIM models, i.e. the great amount of meshes. As addressed in the browser bench-
mark testing, section 4.2, the frame rate varied depending on the direction of the viewing
frustum

In a scenario where the application for instance would be directly connected to a BIM
model server to be able to automatically present models with the latest modifications, using
the Babylon framework would not be ideal. As the framework only imports Babylon-files
the IFC-files needs to be opened and converted to the Babylon file format with Blender or
one of the other 3D modelling software supporting the Babylon export plug-in.

5.4 Potential use

The great thing about web-based applications is that they are available everywhere, at any
time. All the user needs is a computer and a web browser. There is no need to install
any additional software. The results of the questionnaire, presented in subsection 4.4.2,
indicated that people see great utility value in web-based 3D applications. This section
will discuss types of solutions where a more refined/modified version of this prototyped
could be applied. The following example solutions were alternatives frequently checked
by the respondents.

5.4.1 Room finder

For services that assists in navigating and locating things there have and there always will
be a demand for. To emphasize this Google Maps usally ranges between the 1st and the
5th most popular smartphone app on the planet, depending on sources. According to the
GlobalWebIndex the app was used by 54 % of the global smartphone population during
July 2013 (Mari, 2013). However other services are needed for finding the way on the
inside of buildings. MazeMap is a service that provides interactive indoor maps to help
users to find their way in larger public facilities like universities, hospitals etc.

What can be a challenge with maps is that you are looking at them from another perspective
than the first-person perspective a human inside a building has. If the building is very
large, with many corridors and small rooms, you can easily lose track. Nor are there any
recognizable visually objects that reminds you that you are on the right track. For instance
a scenario most people, if not all, have experienced is walking around in an area they only
have been in a couple of times before and are unsure if they are walking the right way.
Suddenly they see this statue etc. that reminds them that they are on right track. With a
3D room finder, like an inside building version of Google Street View, people visiting a
unknown building can find the way to their objective in advance in the virtual world and
then easier find their way in real life.

By taking advantage of existing BIM models buildings can be authentically replicated
without the development team having to do a massive modelling job, not to mention gath-
ering all the building information laying the foundation for the modelling.

64

5.4 Potential use

5.4.2 Educational arena for kids

In later years use of IT have been more and more common to integrate in the education
in primary schools. Apart from exploiting IT for efficient learning, using it as motivation,
by making the learning process more fun for the pupils, is another factor. Almost every
kid in the western world play video games, and a study published in the Journal of Adole-
cent Health shows that kids like to play mature rated games, like for instance first-person
shooters (Gitlin, 2007). The navigation form in this prototype is therefore something most
kids recognizes from their gaming experience.

Creating a virtual classroom or school building where the user can move around and acti-
vate different tasks is an example of a solution. By using WebGL and have it available from
a website means that pupils can access the application at home and might be something
that tempts pupils to do extra work outside of school.

5.4.3 Virtual hospital

In the introduction of this thesis the idea of creating a role-playing virtual training environ-
ment for nurse anaesthetists was brought in. Virtual training methods are getting more and
more integrated in the education in various fields, mentioning armed forces, emergency
services and healthcare.

As the hospitals increase their effectiveness e.g. by lean patient pathways, there is dramat-
ically less time with the patients for learning purposes. There are also clinical situations
where students can not be present. There is thus a need for solutions that give students
more time on the tasks, as well as possibilities to train and interact together across pro-
fessions. One solution is to provide students with flexible online educational applications
that must be embedded in a holistic system to be usable. Therefore the idea of an online
virtual university hospital has emerged, to be used as a venue for learning, research and
development.

Use of BIM models in the virtual reality training in the health sector can prove particularly
suitable as the user will be familiar with the environment, given that the models used
are from their own hospital. Everything can be evaluated in its right environment, from
simple tasks like testing new equipment that is delivered with a virtual training program, to
complex operations and patient pathways. The virtual hospital can be used as an arena for
virtual education and simulation independent of time and space throughout the lifetime
of the physical hospital and physical changes to the real environment can be assessed
virtually first. Patients are explained where the examination will take place and how it is
conducted using virtual models. A virtual patient can be used to explain medical students
anatomy and physiology. A virtual representation of the knowledge portal or for instance
an ultrasound museum can be visited at any time from anywhere in the world.

65

Chapter 5. Discussion

66

Chapter 6
Conclusion and future work

6.1 Conclusion

In the introduction these four research question were raised:

1. In what way is use of BIM models suitable with WebGL?

2. The major web browsers compatibleness with WebGL

(a) Which support the technology?

(b) How do they compare performance-wise rendering 3D using WebGL?

3. What exists of higher-level WebGL frameworks today, and how do they compare?

4. How does the WebGL technology adapt to the wide range of devices of different
performance capabilities?

Topics regarding these questions have already been discussed throughout this thesis and
this chapter will try to form a conclusion to the research questions based on these discus-
sion and the results presented.

1. In what way is use of BIM models suitable with WebGL?

As demonstrated with the prototype and the results from the browser benchmark test fairly
complex BIM models can be applied in a WebGL application and perform acceptable.
There are however some sensitivity points related to the use. The complexity in the BIM
models are for most game-like purposes unnecessarily large, and a similar structure could
have been modelled much more efficient. The biggest problem encountered in this project
were how the combination of a complex model and a WebGL framework without support
for occlusion culling resulted in an variable frame rate.

67

Chapter 6. Conclusion and future work

The best reason for using BIM models in a game-like application would be in a setting
where replication of real buildings are desired, without having the time or resources to do
the modelling job yourself.

2. The major web browsers compatibleness with WebGL

All of the five most used desktop web browser supports WebGL, in addition to all of the
most popular mobile browsers. Their performance are on the other hand very variable.
Frame rate-wise the browser benchmark test uncovered that Opera and Chrome were su-
perior regardless of platform. Safari and Internet Explorer performed rather poor, while
Mozilla Firefox positioned itself between these groups. In Chrome there was a problem
with file requests to the server in situations with a large amount of draw calls, which prob-
lem was not present in the other browsers. This Chrome issue is not exclusively a WebGL
problem. Based on the results in this thesis a ranking of the desktop browser WebGL
capabilities would look like this:

1. Opera

2. Google Chrome

3. Mozilla Firefox

4. Internet Explorer

5. Safari

3. What exists of higher-level WebGL frameworks today, and how do
they compare?

This question were examined already in the preliminary study, to create a basis for decid-
ing framework in the development process. There are numerous of higher-level WebGL
framework, and only a handful of them were presented in this thesis. The study uncov-
ers that most of the frameworks have the same approach and offer essentially the same
features. Of the examined framework in this thesis Goo Enginge, PlayCanvas, Turbulenz,
CopperLicht and Unity were the frameworks most similar to Babylon.js, the framework
used in the development of the prototype. Three.js and SceneJS are framework that dif-
fers from these by not being designated game creator frameworks. Three.js is a general
purpose 3D animation framework, and SceneJS focus on engineering visualization etc.

Doing a thorough examination of the various frameworks before deciding technology can
prove valuable later in the development phase. In hindsight choosing framework with
support for occlusion culling might have been a better solution in this project due to the
nature of the BIM models.

68

6.2 Future work

4. How does the WebGL technology adapt to the wide range of devices
of different performance capabilities?

Being a client side hardware based rendering technology the performance of WebGL ap-
plications are highly dependant on the specifications of the machine running it. The results
show that the prototype developed, consisting of a relative complex scene, perform ade-
quate on the average laptop. For mobile phones rendering complex 3D scenes with WebGL
can be a challenge, especially for the phones that are not among the newest and most pow-
erful. In a future perspective there are no reason to believe that this challenge will prevail,
as the GPU in mobile only will get more powerful. Still, as mobile hardware gets better
the same goes for the hardware in desktops, and developers need to keep that in mind the
performance gap when developing resource demanding WebGL application targeting both
platforms. A good approach is to create scalable applications where the complexity can be
downgraded for mobile devices or low-spec computers.

6.2 Future work

6.2.1 Prototype development

The idea for the prototype was to replicate the 1930 building at St. Olav’s Hospital, and be
able to roam it freely. The most important works that remains to make the prototype more
fully fledged is to increase the detail level. The results of the usability test also implied
this. The main problem was the lack of textures in the BIM models, and that the model for
the interior design (IARK) was not completed within the time this thesis was delivered.

When the IARK model becomes complete it can be imported in the same fashion as the
ARK and RIE model. Textures for the ARK model will probably not be included in
the nearest time. Here a manual texturing job in Blender can be conducted to give the
environment more life and colour, and preferable gather information about the building
first to recreating it as similar as possible. The same can be done for the paintings. I.e.
gather information about the actual artwork and their positions in the building, and then
replace the current sample paintings.

6.2.2 Further work utilizing the concept

Supervisor for this thesis, Frank Lindseth, and Tor Åsmund Evjan at St. Olav Eiendom
plans to work further with the concept in this thesis in future projects/master’s theses.
The goal in a longer perspective is to combine the interests of Lindseth, to create a web-
based virtual training environment for health professionals at St. Olav’s (described in
subsection 5.4.3), and St. Olav Eiendom’s interests, which is to use the BIM model data
directly from their model server.

69

Chapter 6. Conclusion and future work

The main challenge with this approach is that we are dependant on the detail level of
the BIM models on the model server to be fulfilling, since they will be loaded directly,
hence no opportunities of manually doing modifications in Blender etc. Secondly if the
Babylon.js framework is to be used a server side script that converts the IFC files to the
Babylon file format is needed, as this is the only file format the framework can import.

70

Bibliography

Aranda-Mena, G., Crawford, J., Chevez, A., Froese, T., 2009. Building information mod-
elling demystified: does it make business sense to adopt bim? International Journal of
Managing Projects in Business 2 (3), 419–434.

Baker, M., 2009. What is a software framework? and why should you like
’em? Available: http://info.cimetrix.com/blog/bid/22339/
What-is-a-Software-Framework-And-why-should-you-like-em,
(Accessed: 02.06.2015).

Bergin, M., 2012. History of bim. Available: http://www.
architectureresearchlab.com/arl/2011/08/21/bim-history/,
(Accessed: 09.04.2015).

Cantor, D., Jones, B., 2012. WebGL Beginner’s Guide. PACKT publishing.

comScore, 2014. Media metrix multi-platform ands mobile metrix, u.s., june 2013 to june
2014.

Curran, K., 2012. The future of web and mobile game development. International Journal
of Cloud Computing and Services Science 1, 25–34.

Döllner, J., Hagedorn, B., Klimke, J., 2012. Server-based rendering of large 3d scenes for
mobile devices using g-buffer cube maps. In: Mouton, C., Posada, J., Jung, Y., Cabral,
M. (Eds.), The 17th International Symposium on Web3D Technology, Web3D ’12, Los
Angeles, CA, USA, August 4-5, 2012. ACM, pp. 97–100.
URL http://dl.acm.org/citation.cfm?id=2338714

Gitlin, J. M., 2007. New survey shows that kids like games rated m for ma-
ture. Available: http://arstechnica.com/science/2007/07/
new-survey-shows-that-kids-like-games-rated-m-for-mature/,
(Accessed: 02.06.2015).

Henry, A., 2014. Most popular text editor: Notepad++. Available: http:

71

http://info.cimetrix.com/blog/bid/22339/What-is-a-Software-Framework-And-why-should-you-like-em
http://info.cimetrix.com/blog/bid/22339/What-is-a-Software-Framework-And-why-should-you-like-em
http://www.architectureresearchlab.com/arl/2011/08/21/bim-history/
http://www.architectureresearchlab.com/arl/2011/08/21/bim-history/
http://dl.acm.org/citation.cfm?id=2338714
http://arstechnica.com/science/2007/07/new-survey-shows-that-kids-like-games-rated-m-for-mature/
http://arstechnica.com/science/2007/07/new-survey-shows-that-kids-like-games-rated-m-for-mature/
http://lifehacker.com/five-best-text-editors-1564907215/1567287033
http://lifehacker.com/five-best-text-editors-1564907215/1567287033

//lifehacker.com/five-best-text-editors-1564907215/
1567287033, (Accessed: 23.04.2015).

Hergunsel, M. F., 2011. Benefits of building information modeling for construction man-
agers and bim based scheduling. Master’s thesis, Worcester Polytechnic Institute.

Hewitson, J., 2013. Three.js and babylon.js: a comparison of we-
bgl frameworks. Available: http://www.sitepoint.com/
three-js-babylon-js-comparison-webgl-frameworks/, (Accessed:
28.01.2015).

infoComm, 2011. Building information modeling (bim) guide. Tech. rep., infoComm In-
ternational.

Isaksson, D., 2014. The hobbit experience, bringing middle-earth to life with
mobile webgl. Available: http://www.html5rocks.com/en/tutorials/
casestudies/hobbit/, (Accessed: 13.05.2015).

Jones, B., 2011. Webgl frameworks are awesome, here’s why i don’t
use them. Available: http://blog.tojicode.com/2011/08/
frameworks-are-awesome-heres-why-i-dont.html, (Accessed:
03.06.2015).

Kleven, N. F., 2014. Virtual university hospital as an arena for medical training and health
education. Master’s thesis, Norwegian University of Science and Technology.

Krüger, M., 2014. Flash is dead ... long live webgl. Available: http://insights.
wired.com/profiles/blogs/flash-is-dead-long-live-webgl#
axzz3S6S4gx6u, (Accessed: 18.02.2015).

Kumar, S., Hedrick, M., Wiacek, C., Messner, J. I., 2011. Developing an experienced-
based design review application for healthcare facilities using a 3d game engine. Journal
of Information Technology in Construction 16 (85).

Lin, K.-Y., Son, J., Rojas, E. M., 2011. A pilot study of a 3d game environment for con-
struction safety education. Journal of Information Technology in Construction 16 (69).

Mari, M., 2013. Top global smartphone apps, who’s in the top 10. Available: http://
www.globalwebindex.net/blog/top-global-smartphone-apps, (Ac-
cessed: 02.06.2015).

MarketsandMarkets, 2014. Augmented reality & virtual reality market by technology
types, sensors (accelerometer, gyroscope, haptics), components (camera, controller,
gloves, hmd), applications (automotive, education, medical, gaming, military) & by
geography - global forecast and analysis to 2013 - 2018. Tech. rep., MarketsandMar-
kets.

Martin, I. M., 2000. Adaptive rendering of 3d models over networks using multiple modal-
ities. Tech. rep., IBM T.J. Watson Research Center.

McCoy, R., 2013. Ie11 fails more than half tests in official webgl conformance test suite.

72

http://lifehacker.com/five-best-text-editors-1564907215/1567287033
http://lifehacker.com/five-best-text-editors-1564907215/1567287033
http://lifehacker.com/five-best-text-editors-1564907215/1567287033
http://www.sitepoint.com/three-js-babylon-js-comparison-webgl-frameworks/
http://www.sitepoint.com/three-js-babylon-js-comparison-webgl-frameworks/
http://www.html5rocks.com/en/tutorials/casestudies/hobbit/
http://www.html5rocks.com/en/tutorials/casestudies/hobbit/
http://blog.tojicode.com/2011/08/frameworks-are-awesome-heres-why-i-dont.html
http://blog.tojicode.com/2011/08/frameworks-are-awesome-heres-why-i-dont.html
http://insights.wired.com/profiles/blogs/flash-is-dead-long-live-webgl#axzz3S6S4gx6u
http://insights.wired.com/profiles/blogs/flash-is-dead-long-live-webgl#axzz3S6S4gx6u
http://insights.wired.com/profiles/blogs/flash-is-dead-long-live-webgl#axzz3S6S4gx6u
http://www.globalwebindex.net/blog/top-global-smartphone-apps
http://www.globalwebindex.net/blog/top-global-smartphone-apps

Available: https://connect.microsoft.com/IE/feedback/details/
795172, (Accessed: 17.02.2015).

McCuthan, J., 2012. Pointer lock and first person shooter controls. Available: http://
www.html5rocks.com/en/tutorials/pointerlock/intro/, (Accessed:
22.05.2015).

McGraw-Hill, 2012. The business value of bim in north america: Multi-year trend analysis
and user rating smartmarket report. Tech. rep., McGraw-Hill Construction.

Nielsen, J., 1998. Nielsen’s law of internet bandwidth. Available: http://www.
nngroup.com/articles/law-of-bandwidth/, (Accessed: 14.05.2015).

Ortiz, S., 2010. Is 3d finaly ready for the web? IEEE Computer 43, 14–16.

Parisi, T., 2012. WebGL Up and Running. O’Reilly Media, Inc.

Pesce, M., 2014. ios 8 release: Webgl now runs everywhere. hurrah for 3d graph-
ics! Available: http://www.theregister.co.uk/2014/09/17/after_
20_years_apple_finally_enters_the_third_dimension/, (Accessed:
17.02.2015).

Rosenblatt, S., 2012. Faster graphics for older pcs in chrome 18. Available:
www.http://download.cnet.com/8301-2007_4-57405953-12/
faster-graphics-for-older-pcs-in-chrome-18/, (Accessed:
17.02.2015).

Shen, Z., Jiang, L., Grosskopf, K., Berryman, C., 2012. Creating 3d web-based game
environment using bim models for virtual on-site visiting of building hvac systems. In:
Cai, H., Kandil, A., Hastak, M., Dunston, P. S. (Eds.), Construction Research Congress
2012: Construction Challenges in a Flat World. American Society of Civil Engineers,
pp. 1212–1221.

Stangarone, J., 2013. 7 major web development trends of the next 5 years.
Available: http://www.mrc-productivity.com/blog/2013/04/
7-major-web-development-trends-of-the-next-5-years/, (Ac-
cessed: 03.06.2015).

Statsbygg, 2009. Statsbyggs generelle retningslinjer for bygningsinformasjonsmodellering
(BIM). Norwegian Directorate of Public Construction and Property.

Turner, F., 2015. Building a 60fps webgl game on mobile. Avail-
able: http://www.airtightinteractive.com/2015/01/
building-a-60fps-webgl-game-on-mobile/, (Accessed: 12.05.2015).

van Nederveen, G., Tolman, F., 1992. Modelling multiple views on buildings. In: Automa-
tion in Construction. Elsevier, pp. 215–224.

Withers, I., Matthews, D., 2011. All government projects to use bim
within five years. Available: http://www.building.co.uk/
all-government-projects-to-use-bim-within-five-years/
5018349.article, (Accessed: 14.05.2015).

73

https://connect.microsoft.com/IE/feedback/details/795172
https://connect.microsoft.com/IE/feedback/details/795172
http://www.html5rocks.com/en/tutorials/pointerlock/intro/
http://www.html5rocks.com/en/tutorials/pointerlock/intro/
http://www.nngroup.com/articles/law-of-bandwidth/
http://www.nngroup.com/articles/law-of-bandwidth/
http://www.theregister.co.uk/2014/09/17/after_20_years_apple_finally_enters_the_third_dimension/
http://www.theregister.co.uk/2014/09/17/after_20_years_apple_finally_enters_the_third_dimension/
www.http://download.cnet.com/8301-2007_4-57405953-12/faster-graphics-for-older-pcs-in-chrome-18/
www.http://download.cnet.com/8301-2007_4-57405953-12/faster-graphics-for-older-pcs-in-chrome-18/
http://www.mrc-productivity.com/blog/2013/04/7-major-web-development-trends-of-the-next-5-years/
http://www.mrc-productivity.com/blog/2013/04/7-major-web-development-trends-of-the-next-5-years/
http://www.airtightinteractive.com/2015/01/building-a-60fps-webgl-game-on-mobile/
http://www.airtightinteractive.com/2015/01/building-a-60fps-webgl-game-on-mobile/
http://www.building.co.uk/all-government-projects-to-use-bim-within-five-years/5018349.article
http://www.building.co.uk/all-government-projects-to-use-bim-within-five-years/5018349.article
http://www.building.co.uk/all-government-projects-to-use-bim-within-five-years/5018349.article

Xeolabs, 2011. Scenejs vs three.js vs others. Available: http:
//www.stackoverflow.com/questions/6762726/
scenejs-vs-three-js-vs-others, (Accessed: 12.02.2015).

74

http://www.stackoverflow.com/questions/6762726/scenejs-vs-three-js-vs-others
http://www.stackoverflow.com/questions/6762726/scenejs-vs-three-js-vs-others
http://www.stackoverflow.com/questions/6762726/scenejs-vs-three-js-vs-others

Appendix

75

76

Appendix A
Screenshots

Following is a collection of screenshots from various locations of the scene.

Figure A.1: Building seen from the outside

77

Figure A.2: First floor

Figure A.3: First floor hallway

78

Figure A.4: Second floor office space

Figure A.5: Second floor kitchen

79

Figure A.6: Third floor office space

Figure A.7: Basement hallway

80

Figure A.8: Basement wardrobe

Figure A.9: Stairway

81

Figure A.10: Attic

82

Appendix B
Questionnaire

This appendix chapter shows the usability test questionnaire presented to the test group.
Figure B.1 is the introduction page, while Figure B.2 contains the questions.

Figure B.1: Questionnaire page 1

83

Figure B.2: Questionnaire page 2

84

Appendix C
Source code

The HTML and CSS source code is given in Listing C.1, while Listing C.2 shows the
JavaScript code for the prototype

1 <!DOCTYPE html>
2 <html xmlns="http://www.w3.org/1999/xhtml">
3 <head>
4 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
5 <title>St. Olavs 1930</title>
6
7 <style>
8 html, body {
9 overflow: hidden;

10 width: 100%;
11 height: 100%;
12 margin: 0;
13 padding: 0;
14 }
15
16 #babylonCanvas {
17 width: 100%;
18 height: 100%;
19 touch-action: none;
20 }
21
22 #fps{
23 position: absolute;
24 right: 20px;
25 top: 5em;
26 font-size: 20px;
27 color: white;
28 text-shadow: 2px 2px 0 black;
29 }
30 #infoWindow{
31 display: none;
32 position: absolute;

85

33 top: 5%;
34 right: 5%;
35 width: 35%;
36 height: auto;
37 padding: 16px;
38 border: 2px solid black;
39 background-color: white;
40 z-index:1002;
41 overflow: auto;
42 }
43 #closebtn{
44 position:absolute;
45 right:0%;
46 top:0%;
47 width: 25px;
48 height: 25px;
49 padding: 0;
50 margin: 0;
51 border: 0;
52 }
53
54 </style>
55
56 <script src="http://www.babylonjs.com/babylon.js"></script>
57 <script src="http://www.babylonjs.com/cannon.js"></script>
58 <script src="http://www.babylonjs.com/oimo.js"></script>
59 <script src="http://www.babylonjs.com/hand.minified-1.2.js"></script>
60 <script src="index.js"></script>
61 </head>
62 <body>
63 <div id="babylon">
64 <canvas id="babylonCanvas"></canvas>
65 <div id="fps">50 fps</div>
66 <div id="infoWindow">
67 <div id="infoWindowImg"></div>
68 <div id="artText"></div>
69 <button type="submit" id="closebtn" onclick="document.

getElementById(’infoWindow’).style.display=’none’;"><img src="
closeicon.png"/></button>

70 </div>
71 </div>
72 <script>
73 var container = document.getElementById(’babylonCanvas’);
74 var engine, scene, camera, octree;
75 var artData, videoList, usVideoList, currentVideo;
76 var fpsTest, counter;
77 var testingMode=false;
78 var debug=false;
79
80 document.addEventListener("keydown", keydown, false);
81 createScene();
82 </script>
83 </body>
84 </html>

Listing C.1: HTML source code

86

1 //Jump animation
2 var cameraJump = function() {
3 var cam = scene.cameras[0];
4
5 cam.animations = [];
6
7 var a = new BABYLON.Animation(
8 "a",
9 "position.y", 20,

10 BABYLON.Animation.ANIMATIONTYPE_FLOAT,
11 BABYLON.Animation.ANIMATIONLOOPMODE_CYCLE);
12
13 // Animation keys
14 var keys = [];
15 keys.push({ frame: 0, value: cam.position.y });
16 keys.push({ frame: 10, value: cam.position.y + 1.2 });
17 keys.push({ frame: 20, value: cam.position.y});
18 a.setKeys(keys);
19
20 var easingFunction = new BABYLON.CircleEase();
21 easingFunction.setEasingMode(BABYLON.EasingFunction.EASINGMODE_EASEINOUT

);
22 a.setEasingFunction(easingFunction);
23
24 cam.animations.push(a);
25
26 scene.beginAnimation(cam, 0, 20, false);
27 }
28
29 //Toggle running mode
30 function toggleRun(){
31 if(camera.speed==0.2)
32 camera.speed=0.4;
33 else
34 camera.speed=0.2;
35 }
36
37 //Assiging click actions that makes mesh invisible/visible
38 function activateDoorActions(mesh){
39 mesh.actionManager = new BABYLON.ActionManager(scene);
40 var child = [new BABYLON.SetValueAction(BABYLON.ActionManager.

NothingTrigger, mesh, "checkCollisions", 0),
41 new BABYLON.SetValueAction(BABYLON.ActionManager.OnPickTrigger, mesh, "

visibility", 0)];
42 var child2 = [new BABYLON.SetValueAction(BABYLON.ActionManager.

NothingTrigger, mesh, "checkCollisions", 1),
43 new BABYLON.SetValueAction(BABYLON.ActionManager.OnPickTrigger, mesh, "

visibility", 1)];
44 var action = new BABYLON.CombineAction(BABYLON.ActionManager.

OnPickTrigger, child);
45 var action2 = new BABYLON.CombineAction(BABYLON.ActionManager.

OnPickTrigger, child2);
46 mesh.actionManager.registerAction(action).then(action2);
47 }
48
49 //Assigning click actions that displays information about about a mesh
50 function activateInfoObject(mesh){

87

51 mesh.actionManager = new BABYLON.ActionManager(scene);
52 var action = new BABYLON.ExecuteCodeAction(BABYLON.ActionManager.

OnPickTrigger, function(){
53 var i = parseInt(mesh.name.substring(8,10));
54 document.getElementById("infoWindowImg").innerHTML=’<img src="scenes/

painting’+i+’.jpg" alt="fail" style="widtg:auto;max-width:100%";
height:auto;>’;

55 document.getElementById("artText").innerHTML=’

Tittel: ’ + artData[i][0] + ’
Kunstner: ’ + artData[
i][1] +’
År: ’

56 + artData[i][2] + ’
Maling: ’ + artData[i][3] + ’’;
57 document.getElementById("infoWindow").style.display=’block’;
58 });
59 mesh.actionManager.registerAction(action);
60
61 }
62
63 //Applying VideoTexture to a mesh
64 function setUpVideo(mesh, videos, current){
65 mesh.material = new BABYLON.StandardMaterial("textVid", scene);
66 mesh.material.diffuseTexture = new BABYLON.VideoTexture("video", videos[

current], scene);
67 mesh.material.emissiveColor = new BABYLON.Color3(1,1,1);
68 }
69
70 //Assigning click action to play/pause video
71 function activateVideoTexture(mesh, videos, type){
72 mesh.actionManager = new BABYLON.ActionManager(scene);
73 var action = new BABYLON.ExecuteCodeAction(BABYLON.ActionManager.

OnPickTrigger, function(){
74 if(currentVideo[type]==-1){
75 currentVideo[type]=0;
76 setUpVideo(mesh, videos, currentVideo[type]);
77 }
78 else{
79 mesh.material.diffuseTexture.video.play();
80 }
81 });
82 var action2 = new BABYLON.ExecuteCodeAction(BABYLON.ActionManager.

OnPickTrigger, function(){
83 mesh.material.diffuseTexture.video.pause();
84 });
85 mesh.actionManager.registerAction(action).then(action2);
86 }
87
88 //Assigning click actions for changing video
89 function previousVideo(mesh, screen, videos, type){
90 mesh.actionManager = new BABYLON.ActionManager(scene);
91 var action = new BABYLON.ExecuteCodeAction(BABYLON.ActionManager.

OnPickTrigger, function(){
92 if(currentVideo[type]===-1)
93 return;
94 if(currentVideo[type]<=0)
95 currentVideo[type]=videos.length-1;
96 else
97 currentVideo[type]--;
98 screen.material.diffuseTexture.video.pause();

88

99 setUpVideo(screen, videos, currentVideo[type]);
100 });
101 mesh.actionManager.registerAction(action);
102 }
103 function nextVideo(mesh, screen, videos, type){
104 mesh.actionManager = new BABYLON.ActionManager(scene);
105 var action = new BABYLON.ExecuteCodeAction(BABYLON.ActionManager.

OnPickTrigger, function(){
106 if(currentVideo[type]===-1)
107 return;
108 if(currentVideo[type]>=videos.length-1)
109 currentVideo[type]=0;
110 else
111 currentVideo[type]++;
112 screen.material.diffuseTexture.video.pause();
113 setUpVideo(screen, videos, currentVideo[type]);
114 });
115 mesh.actionManager.registerAction(action);
116 }
117
118 //Setting up navigation puttons
119 function addNavigationButtons(){
120 scene.activeCamera.keysUp.push(87); // W
121 scene.activeCamera.keysDown.push(83); // S
122 scene.activeCamera.keysLeft.push(65); // A
123 scene.activeCamera.keysRight.push(68); // D
124 }
125
126 //Setting up test program
127 function runTestProgram(){
128 if(!testingMode){
129 fpsTest=0;
130 counter=0;
131 testingMode=true;
132 console.log("Test started")
133 }
134 }
135
136 function conductTest(){
137 fpsTest+=engine.getFps();
138 counter++;
139 if(counter===800){
140 testingMode=false;
141 alert(fpsTest/counter);
142 }
143 }
144
145 //Custom Scene Optimizer
146 function customOptimizer() {
147 var result = new BABYLON.SceneOptimizerOptions(40, 3000);
148 result.optimizations.push(new BABYLON.TextureOptimization(0, 256));
149 result.optimizations.push(new BABYLON.PostProcessesOptimization(1));
150 result.optimizations.push(new BABYLON.LensFlaresOptimization(2));
151 result.optimizations.push(new BABYLON.ShadowsOptimization(3));
152 result.optimizations.push(new BABYLON.RenderTargetsOptimization(4));
153 result.optimizations.push(new BABYLON.ParticlesOptimization(5));
154 result.optimizations.push(new BABYLON.RenderTargetsOptimization(6));

89

155 result.optimizations.push(new BABYLON.HardwareScalingOptimization(7, 4));
156 return result;
157 }
158
159 //Applying Scene Optimizer
160 function optimizeScene(){
161 BABYLON.SceneOptimizer.OptimizeAsync(scene, customOptimizer());
162 console.log("optimized");
163 }
164
165 //Show/hide debug layer
166 function toggleDebugLayer(){
167 if(!debug){
168 scene.debugLayer.show();
169 debug=true;
170 }
171 else{
172 scene.debugLayer.hide();
173 debug=false;
174 }
175 }
176
177 //Setting up scene
178 function createScene(){
179 engine = new BABYLON.Engine(container, true);
180 scene = new BABYLON.Scene(engine);
181
182 //Arrays holding art informations and video urls
183 artData = [["Die Antitheoretische Schutzmauer", "Hilde Vemren", "", ""],

["Winter Sparkle", "Megan Duncanson", "2012", "Akryl på lerret"], [
"Rœd Gul Blå 3", "Martin Fasting", "2010", "Akryl på lerret"]];

184 videoList = [["media/01_Tumor-Glioblastoma.mp4"], ["media/02_Tumor-
Glioblastoma_USOnly.mp4"], ["media/03_Tumor-Glioblastoma_Biopsy1.mp4
"], ["media/04_Tumor_LGG_Biopsy2.mp4"]];

185 usVideoList = [["media/ultrasoundsample.mp4"], ["media/ultrasoundsample2
.mp4"], ["media/ultrasoundsample3.mp4"]];

186 currentVideo = [-1, -1];
187
188 //Importing ARK model
189 BABYLON.SceneLoader.ImportMesh("", "scenes/", "ark2.babylon", scene,

function (newMeshes, particleSystems, skeletons)
190 {
191 octree = scene.createOrUpdateSelectionOctree();
192 var mName;
193 for(var i=0; i<newMeshes.length; i++){
194 //newMeshes[i].createOrUpdateSubmeshesOctree();
195 //newMeshes[i].useOctreeForCollisions(octree);
196 mName=newMeshes[i].name;
197
198 //Assigning collision checks and actions to subgroups of meshes
199 if((mName.substring(0,4)==="EKS." || mName.substring(0,3)==="Dek" ||

mName.substring(0,2)==="IV") || mName.substring(0,5)==="Trapp"
200 || mName==="Elevator wall" || mName==="WallBarrier" || mName==="

Ground" || mName==="ultrasoundBoundingBox" || mName==="Ekran"
201 || mName==="Tak-.001" || mName.substring(0,5)==="DI040" || mName

==="V-.006" || mName==="V-.007" || mName==="V-.013"){
202 newMeshes[i].checkCollisions=true;

90

203 }
204 else if(mName.substring(0,2)==="DB" || mName.substring(0,4)==="EKS_"

|| mName.substring(0,2)==="DI" || mName==="DU001"){
205 newMeshes[i].checkCollisions=true;
206 activateDoorActions(newMeshes[i]);
207 }
208 else if(mName.substring(0,8)==="backFace")
209 activateInfoObject(newMeshes[i]);
210 }
211
212 //Assigning actions to screens and buttons
213 var screen1 = scene.getMeshByName("Lerret");
214 screen1.setVerticesData("uv", [1,0,1,1,0,1,0,0], true);
215 activateVideoTexture(screen1, videoList, 0);
216 var screen2 = scene.getMeshByName("Ultrasoundscreen");
217 screen2.setVerticesData("uv", [0,1,0,0,1,0,1,1], true);
218 activateVideoTexture(screen2, usVideoList, 1);
219 var button1 = scene.getMeshByName("screenButton1");
220 previousVideo(button1, screen1, videoList, 0);
221 var button2 = scene.getMeshByName("screenButton2");
222 nextVideo(button2, screen1, videoList, 0);
223 var button3 = scene.getMeshByName("usButton1");
224 previousVideo(button3, screen2, usVideoList, 1);
225 var button4 = scene.getMeshByName("usButton2");
226 nextVideo(button4, screen2, usVideoList, 1);
227
228 });
229
230 //Import RIE model
231 BABYLON.SceneLoader.ImportMesh("", "scenes/", "rie2.babylon", scene,

function (newMeshes, particleSystems, skeletons)
232 {
233 //Update octree
234 octree = scene.createOrUpdateSelectionOctree();
235 });
236
237 //Creating skybox
238 var skybox = BABYLON.Mesh.CreateBox("skyBox", 150.0, scene);
239 var skyboxMaterial = new BABYLON.StandardMaterial("skyBox", scene);
240 skyboxMaterial.backFaceCulling = false;
241 skybox.material = skyboxMaterial;
242 skyboxMaterial.diffuseColor = new BABYLON.Color3(0, 0, 0);
243 skyboxMaterial.specularColor = new BABYLON.Color3(0, 0, 0);
244 skyboxMaterial.reflectionTexture = new BABYLON.CubeTexture("cubemap/

skybox", scene);
245 skyboxMaterial.reflectionTexture.coordinatesMode = BABYLON.Texture.

SKYBOX_MODE;
246 skybox.infiniteDistance = true;
247
248 //Setting up camera
249 var startingPos = new BABYLON.Vector3(-6, 2.5, -6);
250 if(/Android|webOS|iPhone|iPad|iPod|BlackBerry|IEMobile|Opera Mini/i.

test(navigator.userAgent)) {
251 camera = new BABYLON.TouchCamera("TouchCamera", startingPos, scene);
252 }
253 else{
254 camera = new BABYLON.FreeCamera("FreeCamera", startingPos, scene);

91

255 }
256
257 camera.speed=0.2;
258 camera.setTarget(new BABYLON.Vector3(-8, 2.5, 0));
259 camera.ellipsoid.y=1.1;
260 camera.ellipsoid.z=0.6;
261 camera.ellipsoid.x=0.6;
262 camera.checkCollisions = true;
263 scene.activeCamera.attachControl(container);
264 //scene.enablePhysics(null, new BABYLON.OimoJSPlugin());
265
266 //Defining gravitational force
267 scene.gravity = new BABYLON.Vector3(0, -0.01, 0);
268 camera.applyGravity = true;
269
270
271 //Setting up light
272 var light = new BABYLON.HemisphericLight("Hemi0", new BABYLON.Vector3(0,

1, 0), scene);
273 light.diffuse = new BABYLON.Color3(1, 1, 1);
274 light.specular = new BABYLON.Color3(1, 1, 1);
275 light.groundColor = new BABYLON.Color3(0, 0, 0);
276
277 addNavigationButtons();
278 var fps = document.getElementById("fps");
279
280 //Render loop
281 engine.runRenderLoop(function() {
282 fps.innerHTML=engine.getFps().toFixed() + " fps";
283 /*if(testingMode){
284 conductTest();
285 }*/
286 scene.render();
287 });
288
289 //Resize engine
290 window.addEventListener("resize", function () { engine.resize(); });
291 }
292
293 //Handle input from keyboard
294 function keydown(e){
295 if(e.keyCode==32)
296 cameraJump();
297 else if(e.shiftKey)
298 toggleRun();
299 else if(e.keyCode==70)
300 engine.switchFullscreen(true);
301 else if(e.keyCode==84)
302 runTestProgram();
303 else if(e.keyCode==79)
304 optimizeScene();
305 else if(e.keyCode==76)
306 toggleDebugLayer();
307 }

Listing C.2: JavaScript source code

92

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Abbreviations
	Introduction
	Motivation
	Initial project ideas
	Project description
	Research questions
	Research method
	Report outline

	Preliminary study
	WebGL
	Technical definition
	Supported browsers

	Building information modeling
	History and future of BIM
	Use of BIM in this project

	Related work
	Existing WebGL applications
	Related work of integrating BIM and WebGL

	WebGL frameworks
	Three.js
	Babylon.js
	Goo Engine
	PlayCanvas
	Turbulenz
	C3DL
	CopperLicht
	SceneJS
	GLGE
	Unity

	Framework comparison

	Development
	Prototype description
	Development tools and environment
	Sublime Text
	Babylon.js
	Blender
	Server

	Modelling
	Supplementary modelling

	Implementation
	3D model import
	Skybox
	Cameras and lightning
	Collisions and optimizations
	Navigation
	Interaction

	Challenges
	Stairs and elevation inequities
	UV mapping
	Failed optimizations

	Results
	Prototype
	Controls
	Features
	Issues

	Browser benchmark test
	Test procedure
	Benchmark test results
	Test remarks
	Benchmark test discussion

	Test on mobile devices
	Mobile test results

	Usability test
	Test assignment
	Questionnaire results
	Response patterns

	Discussion
	WebGL discussion
	WebGL on mobile devices
	Client based versus server based rendering

	Applying BIM models in web-based games
	BIM models applied in the prototype

	Using higher-level WebGL frameworks
	Babylon.js evaluation

	Potential use
	Room finder
	Educational arena for kids
	Virtual hospital

	Conclusion and future work
	Conclusion
	Future work
	Prototype development
	Further work utilizing the concept

	Bibliography
	Appendix
	Screenshots
	Questionnaire
	Source code

