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Chapter 1

Introduction

This introductory chapter begins by giving the reader a notion of what subsea
production systems are, why we have them, and how we operate them. Following
this introduction, is a discussion on the information technologies that support the
daily decision processes facing an operator of a subsea production system. This
discussion is focused on technology for real-time optimization, which is the topic
of this thesis. Next, a research objective is given, together with a motivation for
spending resources towards reaching this objective. At the end of this chapter, the
layout of the remainder of this thesis is given.

1.1. Subsea production systems

Norway has been in the forefront of the technological development of subsea produc-
tion systems, together with other leading subsea nations like the USA and Brazil.
In the following section, the history of subsea technology on the Norwegian conti-
nental shelf is briefly summarized. Then, the common components and structure of
a modern subsea production system is presented. Following this is a short descrip-
tion of how a subsea production system is controlled. This introduction does not
attempt to give a complete picture of subsea production systems, but will provide
the abstractions needed to understand the rest of this thesis.

1.1.1. History of subsea technology on the Norwegian continental shelf

In June 1971, the Norwegian oil adventure began as the first barrels of oil were pro-
duced from the Ekofisk field. The following year, the Norwegian oil company Statoil
was created to ensure Norway’s participation in the production licenses on the Nor-
wegian continental shelf (NCS). During the 1960-70s, several major oil fields were
discovered on the NCS and investments to develop new fields accelerated quickly.
Statoil became the first Norwegian oil company to be given operator responsibility
in 1981 for the Gullfaks field in the North Sea (Statoil, 2015). During the 1980s
and 1990s many of the major and easily accessible oil fields were developed, includ-
ing the Oseberg, Statfjord, and the Troll natural gas and oil field. These giants
contributed significantly to positioning Norway as Europe’s largest producer and
exporter of oil with a peak daily production of more than 3.4 million barrels in
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Chapter 1. Introduction

2001 (Nedregaard, 2003; Norwegian Petroleum Directorate, 2015).
At shallow water depths up to 300 meters, the first major oil fields on the NCS

were developed using concrete production platforms standing on the sea bed. These
large and rigid structures did not, however, allow for an economically sensible de-
velopment of smaller fields, satellite wells, and fields at deeper waters. Thus to
increase the production on the NCS new technologies were needed that could ad-
dress the challenges related to deeper waters. This came with the development of
subsea technology – structures that could be placed and operated on the seabed.
The idea dated back to the 1960s, and the first subsea well on the NCS was actually
tested in the 1970s. Statoil’s first subsea well started producing from Gullfaks in
1986 (Statoil, 2015). One year later, Tommeliten, the first field to use a subsea
template structure, started to produce through a tie-in to Ekofisk (Norsk Oljemu-
seum, 2015; Solheim et al., 1989). The subsea technology was attractive because it
allowed for flexibility in the layout of the production system, with satellite wells,
tie-ins to existing fields, and production to floating production, storage and offload-
ing vessels (FPSOs). It could also alleviate operational constraints, such as water
and gas handling capacities on platforms with many wells.
The second generation of subsea technology, dated to the early 1990s, focused on

cost-effective solutions to allow expansions of current fields – in particular Statfjord
– by drilling wells previously out of reach for platform drilling. The next, third gen-
eration, dated to the late 1990s, moved subsea production systems to deeper waters
and was an enabler for using dynamically positioned FPSOs. One development us-
ing third generation subsea technology was that of the Norne oil field, located at a
water depth of 380 meters. Production from Norne to the Norne FPSO began in
1997.
During the 2000s, the fourth generation of subsea technology addressed difficult

development projects with high pressure and high temperature gas reservoirs and
long tie-ins to shore. Two especially challenging developments were those of the
gas fields Ormen Lange and Snøhvit; the former residing on water depths ranging
from 850 to 1,100 meters (Bernt, 2004), and the latter with a 160 km tie-back
to processing facilities on shore (Witting, 2006). This generation also introduced
the first subsea processing systems. The Tordis subsea separation, boosting, and
injection system was developed by Statoil to pursue the ambition of a subsea factory
(Statoil, 2015). The increasingly difficult operating conditions and remote wells
accelerated what is often referred to as the digitization of the offshore petroleum
industry. Digitization meant better control and sensing in so-called smart wells,
fiber optic cables, and remote control technologies, to mention a few innovations.
It lay the foundation for increased operational awareness – despite a higher system
complexity.
Since 2007-2008, the fifth and current generation of subsea technology has focused

on improving cost-efficiency through standardization and modularization. This
has made fast-track subsea tie-back projects possible. Subsea processing has also
become increasingly common with projects like the Tyrihans development, where
raw seawater is injected into the reservoir by using pumps on the seabed (Grynning

2



1.1. Subsea production systems

et al., 2009). The current generation has also started to embrace the opportunities
catered for by the digitization, with an extensive use of remote operations and
software monitoring systems.
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Figure 1.1.: Investements in oil and gas on the Norwegian continental shelf. Numbers from the
Norwegian Petroleum Directorate (2015).

The future subsea technologies will certainly make use of instrumentation and
software to allow operation of more advanced subsea factories. The subsea factory
may enable developments at deeper waters and longer step-out distances. The next
generation is expected to prepare the petroleum industry for the harsh environment
of the arctic – the arctic challenge (Allen, 2011). Before this happens, however,
the oil industry has to recover from the current economic slump caused by high
supply and low oil price. Today, 14 years after Norway had its peak production in
2001, investments in new developments on the NCS are predicted to decline (DNB
Markets, 2015; Norwegian Petroleum Directorate, 2015). As Figure 1.1 shows,
increased investments in subsea facilities are predicted for the years that follow the
current slump.

1.1.2. Subsea production system architecture

The purpose of a subsea production system is to produce hydrocarbons from and/or
inject water or gas to a reservoir in a controllable, cost-efficient and safe manner.
A subsea production system consists of several components which are configured
and combined to serve this purpose. The system architecture must be designed
to strict regulations and specifications, with future production and extensions in
mind. On the NCS, compliance to regulations is commonly ensured by following the
ISO and NORSOK standards (Standards Norway, 2015). Next, the most common
components of a modern subsea production system are introduced.

3



Chapter 1. Introduction

Figure 1.2.: Illustration of a subsea production system with six wells producing to a floating
production storage and offloading vessel.

Wells. A well may have a single or multiple branches drilled vertically or di-
rectionally to reach areas of the reservoir most likely to yield high hydrocarbon
production (the productive zone). After a well is drilled, it is completed with pro-
duction tubing to isolate the produced fluids as they travel from the reservoir to the
topside facilities. Several valves are installed in the well to control the flow from
the reservoir. The valves ensure a safe operation during production and makes
it possible to close the well for maintenance operations. In particular, a surface
controlled subsurface safety valve (SCSSV) is installed down in the well, with a
safety mechanism that automatically shuts in the well in case of accidents. The
Christmas tree, located in the wellhead, houses multiple valves as illustrated in
Figure 1.3. The well has at least one master valve for shutting in the well in case of
emergencies or if the well is to be permanently shut. The Wing valve is a fail-safe
valve for temporarily shutting in the well, for example during maintenance. The
oppositely positioned Kill Wing valve – also known as the Non-Active Side Arm
valve – is used for injection of fluids such as corrosion inhibitors and methanol. The
top valve in the Christmas tree is called the Swab valve and is opened to allow well
interventions like wireline operations. The choke or choke valve is located down-
stream the Christmas tree. It is a robust and adjustable valve used to control the
flow from the well.

All the above-mentioned valves are controlled mechanically by a remotely op-
erated vehicle or hydraulically by the control module. The control module, also
residing in the wellhead, is a computer that collects the sensor readings from all
the sensors in the well and communicates them to the control system topside. It
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1.1. Subsea production systems
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Figure 1.3.: Illustration of a subsea well and Christmas tree. Inspired by Nedregaard (2003).

may also relay control commands from the topside control system to the valves.
Installed sensors typically include pressure and temperature sensors located before
and after the choke, in the annulus of the well, and sometimes down-hole the well.
In multi-branched wells, control valves may also be installed downhole to control
the flow from each branch.

In addition to downhole sensors, some modern “smart wells” have installed arti-
ficial lift – such as an electrical submersible pump (ESP) or lift gas injection – that
may increase production.

Manifolds. Often, it is economically sensible to commingle multiple well flows in
fewer pipelines leading the fluid to the topside processing facilities – this is especially
the case for subsea systems in deep waters or with long tie-ins. This commingling
and routing of flow is done in the manifold, which essentially is a collection of
pipes and on/off valves serving this purpose. Sometimes the manifold resides in a
structure called a subsea template, which also may house several wellheads. Subsea
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Chapter 1. Introduction

templates can have as much as 6 or 8 well slots. Often, some of the slots are left
empty to accommodate future wells. Wells that do not sit in a template are referred
to as satellite wells.
Pipelines and Risers. The fluid is transported in pipelines/flowlines between

fields (tie-ins) or to shore (tie-backs). Pipelines leading the fluid topside are re-
ferred to as risers. The transported fluid is subject to hydrostatic and frictional
pressure loss, as well as temperature loss. Some pipelines induce an unstable flow
regime called slug flow, in which the gas phase exists as large bubbles separated by
liquids. Risers, especially, are prone to severe/terrain slugging which may damage
the production system if not handled properly. Hydrate forming is another issue
related to hydrocarbon transportation in long pipelines; it can be prevented by in-
jecting monoethylene glycol (MEG) in the production stream. Other issues related
to flow assurance include the forming of solids such as wax and scale, and erosion
due to sand production.
Subsea processing equipment. The catalogue of subsea processing technology

has grown over the last years. Today, a wide range of passive and active subsea
equipment is available for cost-efficient development of new fields.
Separation is an important function in the subsea factory. Subsea separation

may be performed using the conventional gravitational principle, where a tank
with sufficient volume is used for separation. It may also be performed by smaller,
inline separators that establish a hydrocyclone in line with the flow, temporarily
separating the fluid phases. Inline separation is based on exploiting the centripetal
force and different fluid resistances of liquids and gas to separate the phases. In-
line separators require less space, but generally offers a lower separation degree
than gravitational tanks (Orlowski et al., 2012). For this reason, multiple inline
separators are sometimes used in addition to a gravitational tank to obtain a high
separation degree.
Active components such as subsea pumps and compressors (Lima et al., 2011) are

also available in the subsea equipment catalogue; subsea pumps were for example
installed in the Tordis IOR project (Gruehagen and Lim, 2009). Subsea pumping
and gas compression enables production from low-pressure reservoirs, transporta-
tion of fluids over long pipelines, and injection of fluids to reservoirs. In so-called
boosting stations, separation is combined with pumps and/or compressors to en-
able production from fields in deeper waters and more remote areas. By separating
the phases, single-phase pumps with a high hydraulic efficiency may be utilized
(H̊aheim and Gaillard, 2009; Gruehagen and Lim, 2009). Single-phase pumps and
compressors require sufficient de-gassing and de-liquidizing, respectively, to operate
efficiently. To maintain a sufficient separation degree is one of the biggest challenges
with boosting stations.
The subsea factory introduces many challenges that have to be addressed by aux-

iliary systems. For example, sand production may degrade separator performance
and quickly wear out pumps. This issue is addressed by installing a sand handling
system (Vu et al., 2009). Another example is slugging, which may greatly affect
the control of a subsea system. Slugging may be dampened and the flow stabilized
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by installing a buffer tank at the inlet of a subsea factory.
Another, less used technology is subsea storage (Eie, 2015). The technology may

become important as the arctic areas are developed.
Topside facilities. Located topside on a platform, FPSO, or on shore, are the

facilities for treating the produced fluids. The topside facilities have equipment
for separation, gas scrubbing, water filtration and cleaning, and many auxiliary
functions such as safety systems, pneumatic and hydraulic system for operating
valves. After treatment, the oil and gas is exported, while water is released or
injected to the reservoir.
The subsea system is operated mainly by adjusting mechanically, hydraulically,

or electrically operated valves. Many, but not all of the valves are located in the
wells. Operations that are performed by adjusting valves include: shutting in wells
(wing valve), adjusting the choke, injecting lift gas (kill wing valve), routing well
flows (manifold valves), and injecting MEG (dedicated valve).
To measure key operational variables, sensors are placed throughout the produc-

tion system. Subsea sensors that measure pressure and temperature are commonly
installed. More advanced sensors for rate measurement, sand detection, etc., are
less frequently installed due to high cost. Real-time data from the sensors is usu-
ally sent to a subsea control module, which forwards the information to the topside
control system. By fetching real-time and historical data from the control system,
the operator may monitor the production system and plan operation accordingly.
Next, we discuss how people and computer systems make use of the real-time

data to control a subsea system.

1.1.3. Operating a subsea production system

Figure 1.4 illustrates the control loop for daily production optimization. Real-
time data is collected and stored by the supervisory control and data acquisition
(SCADA) system. The data is made available to operators and productions engi-
neers who monitor the system. Control actions are given by the operators to the
SCADA system, usually after having consulted with the production engineers. The
control actions are often valve opening set-points that the control system delegates
to the subsea control module responsible for the valve to be adjusted.
The production engineers make use of real-time optimization (RTO) technology,

which may advice them on how to control the asset. Notice the “feedback” loop
back to the RTO system, which symbolises that engineering knowledge is guiding
the optimization advice. This is an effort towards increasing the probability of a
good advice/prediction, and ultimately to providing better services to the operators
of the field. Engineering knowledge may in this context be operational conditions
which are not captured by the real-time data or RTO system, such as planned
maintenance events that require well intervention. This information may invali-
date advice from the RTO; hence, the production engineers must guide or prevent
the RTO from making such advice, for instance by altering or adding operational
constraints to the optimization problem being solved. Furthermore, at certain times
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Figure 1.4.: Illustration of the control loop for daily production optimization of a subsea produc-
tion system.

the production engineers must calibrate the models used by the RTO. Model cali-
bration may be required when the operating point has moved significantly spatially
(e.g. if valve settings have changed significantly) or temporally (e.g. if reservoir
conditions have changed significantly with time).
JPT (2008) provides the following list of work tasks related to daily production

management, typically performed by the production engineers on an asset.

• Monitor well performance

• Manage problem wells (control injection, stimulation, etc.)

• Execute and validate well tests

• Monitor and manage surface facility performance

• Manage daily operations

• Manage real-time lift, pressure, temperature, and flow control

• Update daily/monthly plan and forecast and take actions

These tasks are supported by a host of different information technologies for visu-
alizing and analysing real-time data, predicting system behaviour during planning,
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supporting communication and information sharing between onshore and offshore
teams, alerting operators of safety critical events and trends, and so on. Some of
the tools involved in real-time monitoring and optimization are discussed next.

1.2. Simulation and optimization technologies

The recent technological innovations in subsea sensing, communication (e.g. fiber
optics), and electrification, often collectively referred to as the digital oil field, have
made RTO solutions more viable than ever before.1 Successful applications of
simulation and optimization technologies have been documented by all the large
E&P companies in numerous publications. The trend towards a higher quantity
and quality of real-time measurements in digital oil fields may only have a positive
effect on technologies reliant on extensive sensing, like RTO. Furthermore, the
retrofitting and deployment of new technology on older fields opens for a wider use
of decision support tools in the future.
The use of decision support tools such as RTO is motivated by field cases that

document a positive correlation between the sophistication of the decision analysis
in an oil company and its financial performance. Furthermore, any underestimation
of the impact on reservoir uncertainties on future performance indicators can result
in sub-optimal decision making and financial under-performance (Nicotra et al.,
2005).
Below, some of the technologies related to control, simulation, and optimization

of offshore production systems are grouped.
Asset management. These are technologies that facilitate analyses of strategic

and economic long-term goals during development of the asset. Asset management
is often performed using a coarse reservoir model to analyse: well and equipment
investments (Tarhan et al., 2009), well placement (Güyagüler and Horne, 2004; Oz-
dogan and Horne, 2006; Bellout et al., 2012), field development and export (Akeze
et al., 2009), and other life-of-field investments.
Reservoir management. These are technologies that aim to control operations to

obtain the maximum possible economic recovery from a reservoir (Thakur, 1996).
Reservoir management considers drainage, injection (e.g. water-flooding), and
other EOR strategies to increase the total production over a horizon of several
years. It is usually performed using several realisations of a high-fidelity reservoir
model. Consequently, reservoir management is a time-consuming and computation-
ally intensive technology often performed in batches. However, since it considers
a horizon of months to years it can be run in real-time; it is then referred to as
closed-loop reservoir management (Jansen et al., 2009).
Real-time Optimization (RTO). This is a broad class of technologies for estima-

tion and prediction of states to improve upon economic goals such as increased
production or reduced down-time. RTO is based on optimizing some objective

1For some reason, the E&P companies use different names for the digital oil field, including
Intelligent Field, Smart Field, e-Field, i-Field, and Field of the Future.
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subject to a representative model with predictive capabilities. The model may in-
clude the whole or parts of the production system, but must in any case represent
the objective with sufficient accuracy. The most widely employed RTO technolo-
gies are virtual flow metering (VFM) systems, flow assurance systems (FAS), and
more recently condition and performance monitoring (CPM) systems. These are
real-time monitoring systems that have in common that they attempt to increase
the operational awareness of the operator. RTO can also be used more actively to
suggest operational moves that may increase production and/or lower operational
cost. RTO with this capability is often referred to as production optimization (PO)
systems.
Advanced Process Control (APC). Advanced control is used to maximize produc-

tion, minimize energy consumption and other operational costs, and to minimize
process variability. APC is usually implemented in the control system, in addition
to regulatory control. APC technologies include model predictive control (MPC)
and advanced regulatory control such as adaptive control. APC may require state
and parameter estimation using, for example, Kalman filtering or moving-horizon
estimation.
Regulatory control. Set-point (PID) control for simple control loops, usually

implemented in a programmable logic controller (PLC). Commonly controlled vari-
ables are valve positions, pressures, liquid levels, pump and compressor speeds. The
purpose of regulatory control is to ensure a safe and robust operation by automa-
tizing the control of safety-critical equipment.
The scopes of the above technologies are illustrated in Figure 1.5 – the figure

reflects the scopes of commercially available products. Note that there are some
exceptions to the figure; for example, anti-slug control operates on wells with a
sampling time of seconds (Aamo et al., 2005). Below, we attempt to outline the
interrelations and a few of the major differences between the technologies.
Both APC and regulatory control are implemented as closed control loops. As

already mentioned in Section 1.1.3, RTO (and reservoir and asset management)
is performed with humans in the loop. RTO technologies are often classified as
model-based decision support tools since they act as advisory systems in the decision
processes of the operator. This makes RTO fundamentally different from APC,
where the loop is closed. In the downstream industry, RTO is usually performed in
a layer “on top” of APC. This may in many cases justify simplifications in the RTO
model due to the linearizing effect of the lower level APC and regulatory control
(Skogestad and Postlethwaite, 2005). Unfortunately, APC is infrequently utilized
in offshore systems due to difficult operating conditions, namely: highly transient
behaviour during shut-ins and start-ups which is difficult to model, many disruptive
operations such as well interventions, significant disturbances (slugs), high degree of
uncertainty (lack of measurements and low signal-to-noise ratios), and few or none
advanced control specialists available offshore to ensure that the APC is working
properly (Campos et al., 2013). The lack of APC in upstream production systems
may have increased the scope, responsibilities, and expectations of current RTO
technologies. Of course, the same set of difficulties apply to RTO, but perhaps to
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Figure 1.5.: Illustration of the scopes of different control and optimization technologies related to
production. Note that the size of the ellipses do not reflect the extent to which the
technology is used since it is highly variable between fields/systems.

a lesser extent due to an offloading of responsibility to the humans in the loop –
the operators.

Except for regulatory control, the above technologies make extensive use of ad-
vanced models. In particular, asset and reservoir management make use of reservoir
models; RTO make use of highly nonlinear multiphase flow models; and APC de-
pends on dynamic models describing the topside process facilities. Next, we expand
on some of the RTO technologies that are available today and their use of models.

Simulation – with data-driven and/or first-principle models – is combined with
real-time measurements in VFM systems that estimate unmeasured states in the
production system. VFM has been successfully and widely applied by the upstream
industry in recent years – the application on the greater Ekofisk area is one of the
success stories (Denney, 2012). Today, most offshore production systems have some
form of VFM system installed. The high costs of subsea wells and the facilities that
support them necessitates a high level of well-performance monitoring to protect
the investments (Oberwinkler et al., 2006). In a primitive VFM system, each
well is modelled by curve-fitting polynomials to well tests.2 More advanced VFM
systems model the whole production system with a combination of empirical and
first-principle models; this makes it possible to include measurements from different

2Linear and quadratic inflow equations, sometimes combined with lift-curves, are commonly used
to represent the relation between pressure and flow rate in wells.
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parts of the production system in a large data reconciliation problem. CPM systems
are similar to VFM systems, but include models for predicting equipment wear
and tear. The positive impact of using CPM in daily operations on the Gjøa
field is discussed by Roald et al. (2013). FAS is another specialization of VFM
systems that focuses on predicting fluid-related flow issues such as wax and hydrate
formation. To obtain trust-worthy predictions of flow assurance issues, accurate
fluid and temperature models are required. A FAS has been used with success
on the Ormen Lange subsea production and pipeline system to prevent hydrate
formation and detect possible leakage and blockage (Holmås et al., 2013).
In addition to being used for estimation and assurance of flow during produc-

tion, an important avenue for simulation is case studies: for example in FEED
studies to unveil problems with subsea infrastructure designs, or in what-if studies
to plan future operation by simulating different operational scenarios. Next, we
discuss its use in what-if studies, which will lead us to technologies for production
optimization.
Since the number of scenarios may be large, even infinite when continuous pa-

rameters are considered, a what-if study is limited to explore only a small subset of
possible scenarios. Thus, a what-if study is likely to produce a suboptimal solution.
By automatizing the what-if study, a much larger set of scenarios may be explored
under structured constraints on which scenarios to consider. This automation is
known as production optimization: it is the automated simulation and evaluation
of different scenarios in search for a scenario that in some sense is best. Compared
to flow estimation, which simulates one operating point at the time, production
optimization explores many possible operating points. Hence, PO systems gener-
ally require better predictive capabilities of the model than VFM systems. This
is perhaps the reason that real-time PO systems are used to a lesser extent than
VFM systems. It is not trivial, and sometimes impossible, to obtain a model with
sufficiently good predictive capabilities for production systems with limited sensing.
However, PO systems are highly motivated from a financial point of view. Use of
PO on subsea production systems is reported to achieve production increases in the
range of 1-4% (McKie et al., 2001; Denney, 2008; Stenhouse et al., 2010; Teixeira
et al., 2013). Similar gains are reported for real-time monitoring (Richardson et al.,
2004). The opportunities and challenges related to RTO in the upstream industry
are discussed by Foss (2012). The challenges are further elaborated on by Grimstad
et al. (2014).

1.2.1. Modelling and simulation

Norway has in recent decades been leading in the development of technologies
for multiphase flow simulation. Huge investments have been made to research
and develop simulation models that may accurately predict multiphase flow in
pipes. Several multiphase flow laboratories have been built to gain experience
and empirical data, and to test different models. Emerging from this research
are leading simulation technologies like the OLGA (Bendiksen et al., 1991) and
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LedaFlow (Kongsberg Oil & Gas Technologies, 2015) multiphase flow simulators.
The multiphase flow simulator is a crucial component in the surveillance of subsea

production systems; since only a fraction of the system states are measured, many
states must be estimated from a model. Unfortunately, obtaining and maintaining
an accurate model for multiphase flow simulation is a time-consuming task that
requires some insight in the topic of multiphase flow.
A complex process hides behind every parameter in a production system model;

the parameters in a slip model, for example, attempts to describe the relative ve-
locities of gas and liquids as they travel together in the turmoil of slug flow. The
above observation is testified by the significant investments in multiphase flow re-
search. For a medium-sized production system, there are typically tens to hundreds
of model parameters that must be tuned to obtain a useful model response. To cal-
ibrate the model parameters, experiments must be performed on the system to
obtain information about the unknown states. The most common experiment is
well testing, in which individual wells are routed to a test separator or multiphase
flow meter that measures the flow rate at certain flow conditions. Since well testing
is an expensive and disruptive operation, it is performed relatively seldom (Zenith
et al., 2015). In general, the amount of useful information available for model
calibration is very low.
To address the issues related to model maintenance, several oil companies have

attempted to develop and use data-driven models (Goh et al., 2007). These are
models that do not require insight into multiphase flow modelling, and that may be
simpler to maintain in that regard. The use of data-driven models in the upstream
business is still new, compared to physics-based models. It will be interesting to
see how they compete with physics-based models in the future, as the number of
subsea sensors and amount of information increase.
An advantage with physics-based models is that they may have valuable predic-

tive capabilities, even without calibration – their predictive capability then stems
from physical laws and flow correlations. Uncalibrated models are, for example,
often used in the design phase to screen and make a preliminary sorting of different
designs. Similarly, optimization may be performed with poorly calibrated models to
provide a list of promising operating points, which the user may evaluate. Clearly,
perfect model calibration is not a prerequisite for value. However, in some cases
poor calibration may render an application worthless.
Next, we present some of the existing software products for RTO technologies

such as VFM, FA, CPM, and PO.

1.2.2. Existing software products

Several software products exist for RTO of subsea production systems; be it real-
time flow metering, condition and performance monitoring, flow assurance or pro-
duction optimization. Some of the products are developed by software vendors and
are commercially available, while others are in-house products used only by the
owning oil company. A partial list of available products is provided in Table 1.1
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(please note that this is an incomplete account of existing products).

Table 1.1.: Some commercial and in-house software products for simulation and optimization.

Company Software products

ABB OptimizeIT Enhanced Oil Production Suite (ABB, 2015): real-time
monitoring, flow assurance and production optimization.

Baker Hughes Neuraflow VFM (Baker Hughes, 2015): real-time flow measurement us-
ing neural networks.

Belsim VALI (Belsim, 2015): flow metering and sensors monitoring solution.

BP ISIS – Integrated Surveillance Information System (BP, 2015a; Foot
et al., 2006). MBOS – Model-Based Operational Support (BP, 2015b).

Emerson Roxar FieldWatch (Emerson, 2015): simulation and field monitoring
system for flow assurance and production optimization, including the
thermo-hydraulic calculator METTE.

FMC Technologies FlowManager (FMC Technologies, 2015): steady-state and dynamic sim-
ulation for use in real-time multiphase metering, flow analysis, and oil
and gas production optimization.

KBC Petro-SIM for process simulation, Infochem Multiflash for flow assur-
ance, and FEESA Maximus for integration and optimization of subsur-
face and surface models (KBC, 2015).

Kongsberg Oil &
Gas Technologies

K-Spice and LedaFlow (Kongsberg Oil & Gas Technologies, 2015): dy-
namic multiphase flow simulation.

Petroleum Experts
and Landmark,
Halliburton

IPM (Petroleum Experts Ltd., 2014): including GAP for steady-state
multiphase flow simulation, PROSPER for well performance modelling,
and RESOLVE for model integration and production optimization.

Schlumberger ECLIPSE (Schlumberger, 2014a): industry-reference reservoir simula-
tor. OLGA (Schlumberger, 2014b): dynamic multiphase flow simulator.
PIPESIM (Schlumberger, 2014c): steady-state multiphase flow simula-
tion.

Shell FieldWare Production Universe (Shell, 2015): real-time production
surveillance and optimization.

Weatherford Weatherford Field Office (Weatherford, 2015): a platform for real-time
well and field optimization and operations.

Wood Group Virtuoso (Wood Group, 2015): real-time monitoring and model-based
virtual metering, advanced control, asset optimization, and advisory sys-
tem.

In general, these products combine real-time measurements with simulation to
estimate the current system state and to optimize production by predicting fu-
ture states. Different technologies are taking advantage of this to obtain the best
possible RTO solutions. Shell’s FieldWare Production Universe, for instance, use
model identification techniques to generate data-driven models for flow allocation
and production optimization (Poulisse et al., 2006; Goh et al., 2007). Neuraflow
from Baker Hughes also use a data-driven approach by employing artificial neural
networks to model the complex behaviours seen in upstream production systems
(Baker Hughes, 2015).
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A more traditional approach, used by the majority of software in Table 1.1, is to
combine first-principle and empirical models with real-time data. FlowManager, for
example, models the whole production system by combining empirical and physics-
based steady-state and dynamic models. This model is used to perform both real-
time monitoring and optimization.

There are many flavours to the software in Table 1.1; some focus on very accu-
rate modelling using dynamic multiphase flow simulation with advanced fluid and
thermodynamic descriptions, while others use simplified models which are easier to
optimize. Schlumberger offers a OLGA for dynamic multiphase flow simulation and
PIPESIM for steady-state multiphase flow simulation. The latter is able to optimize
flow for vast production networks over the complete lifecycle. Many of the prod-
ucts in Table 1.1 work by the principle: calibrate, then estimate. One exception
is ABB’s Well Monitoring System, which takes advantage of historical data when
allocating rates by solving a combined allocation and calibration problem (Melbø
et al., 2003). Regardless of modelling approach, products for real-time estimation
and production optimization must serve several purposes, including: handling and
storing real-time data, modelling and simulating (which requires a library of first-
principal or data-driven models), calibrating models, optimizing production, and
visualizing results, to mention a few.

Before we focus the discussion and review methods for daily production opti-
mization, we would like to point out that multiphase flow simulation is an enabler
for modern RTO solutions. Furthermore, model maintenance activities are crucial
to achieving value from decision support systems like RTO. As the list in Section
1.1.3 portrays, the production engineers have limited time to perform all of the
tasks related to RTO. This may be why Weatherford’s sales pitch for the Field Of-
fice software (Weatherford, 2015) emphasizes on the automation of tasks: “Many
of the repetitive and time-consuming processes of daily field operations can be dis-
tilled to automated functions. Our technology gives you a daily full-field analysis
to predict potential issues and address existing optimization opportunities such as
production problems, inefficient designs, and aging field equipment.”

1.3. Methods for daily production optimization

In this section we discuss methods for daily production optimization using the
framework of mathematical programming. Mathematical programming, or mathe-
matical optimization, is a class of problem-solving techniques that is used in almost
all scientific disciplines today. Its roots can be followed back to the beginning of op-
erations research, which deals with the application of advanced analytical methods
to help make better decisions. Mathematical programming formalizes the solution
process of difficult maximization (or minimization) problems and decision problems
such as the famous, NP-hard travelling salesman problem. The field of mathemati-
cal programming has been actively researched since Dantzig in 1947 developed the
simplex algorithm for solving linear programming problems (Dantzig, 1987).
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Operations-research concepts were adopted by the petroleum industry in the
early 1950s (Carroll and Horne, 1992). Lee and Aronofsky (1958), for example,
used linear programming to schedule crude oil production. From the 1950s to the
1980s, linear programming techniques were applied to macro level reservoir manage-
ment and production system optimization. During this time, algorithms for integer
programming emerged, allowing the inclusion of discrete decision variables in the
problem formulation. In his early work, Bohannon (1970) used a MILP model to
find an optimal way to develop a multi-reservoir pipeline system. Aronofsky (1983)
provides an overview of optimization methods used in oil and gas development. The
riveting development of mathematical programming methods in recent decades, es-
pecially in the subtopics of nonlinear programming and integer programming, has
spawned a wide body of works on optimization applied to various production op-
timization problems; e.g. decisions problems related to all stages of a field’s life,
from development through tail production.
In the following, we discuss some of the methods used for (daily) production

optimization in the lingo of mathematical programming. We will try to outline the
evolution in the application of various methods as the needs, requirements, and
expectations for accuracy and speed has increased with time.
First, we consider the unconstrained optimization problem

min.
x∈Rn

f(x), (1.1)

where the objective function f : Rn → R maps a point x ∈ Rn to a real num-
ber. f is used to measure to which degree the objective is reached at x. In a
production optimization setting, f would typically be specified so that profit (pro-
duction of hydrocarbons) is maximized and cost (e.g. use of power and equipment
wear-and-tear) is minimized. In this setting, x would be the operating point of
the production system; that is, the valve settings and the corresponding states:
pressures, temperatures, rates, and so on; and f would for instance be the daily oil
production from the field. In practice, the objective function cannot be evaluated
for different x without changing the actual valve settings and moving the operating
point. This could result in a costly loss of production as many suboptimal oper-
ating points must be explored in order to identify a near-optimal solution. This
process can be thought of as a mapping of the operational landscape by evaluating
different operating points. To avoid this costly mapping process, and to account
for the time-variance of the process/reservoir, engineers use process and reservoir
simulators to evaluate different operating points.
To illustrate the use of simulation, let us consider two functions: f1 and f2. Let

f1(x) = y denote a simulation evaluated at x with outputs y. Let f2(y) = z denote
an objective measure where a cost z is computed from the simulation outputs y.
Then, the objective f in (1.1) may be given by the function composition f(x) =
(f2 ◦ f1)(x). There may be a considerable time cost related to an evaluation of f1,
that is, to one simulation. The expense of simulation is usually attributed to the
numerical convergence of the simulation model. However, simulation calls may also
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be costly due to software initialization, data communication, and other auxiliary
functions.
Several optimization methods exist for the unconstrained problem in (1.1). The

methods are often categorized as being derivative-free or derivative-based. When
the function f is a known, analytical function with (first- and second-order) deriva-
tives readily available, derivative-based methods are usually appropriate for solving
(1.1). The most famous derivative-based method for unconstrained optimization
is Newton’s method (Nocedal and Wright, 2006). A Newton method handling
multiple variables simultaneously was applied by Carroll and Horne (1992) to the
optimization of production systems.
When using a derivative-based method, derivatives must be supplied by the user

or by software such as an automatic differentiation scheme. Derivatives can also
be approximated; for example by using a finite-difference scheme, or the BFGS
method for approximation of the Hessian (Liu and Nocedal, 1989). However, when
f is unknown, expensive to evaluate, or noisy, derivative-based methods may be-
come impractical. For instance, f can be considered unknown it is implemented in
legacy or proprietary software; the latter often being the case when optimizing a
multiphase flow simulator. The various difficulties with simulation-based optimiza-
tion, such as hidden constraints and simulation failure, is discussed by Digabel and
Wild (2015). In these cases derivative-free methods may be utilized to solve (1.1).
Some derivative-free methods are similar to derivative-based methods with ap-

proximated derivatives. Examples include the trust-region methods, which iter-
atively solve analytical subproblems that are fitted locally to f , for example us-
ing regression or interpolation of polynomials (Conn et al., 2009) or radial-basis
functions (Wild and Shoemaker, 2011). There is also a rich flora of derivative-
free methods that do not compute nor explicitly approximate derivatives of f .
Examples include direct-search methods and genetic algorithms. Two subclasses
of direct-search methods are the directional direct-search methods, including the
Mesh-Adaptive Direct Search (MADS) methods (Kolda et al., 2003), and the simpli-
cial direct-search methods, including the simplex (Nelder-Mead) method by Nelder
and Mead (1965). Fujii and Horne (1995) applied the Nelder-Mead method and
a genetic algorithm for black-box optimization of networked production systems.
Alternative methods referred to as data-driven methods, models f as an input-
output relation by fitting a (nonlinear) function to available input-output pairs.
These methods are attractive due to their simplicity, but require a sufficiently large
amount of data to be useful. Oberwinkler and Stundner (2005) discusses a case
where a neural network is used to model and optimize the oil production from a
field based on historical data.
In their daily practice, the production engineers and operators perform a sim-

ilar type of optimization as (1.1); that is, they change the operating point x to
achieve their production targets. However, they do this while honouring operating
constraints, such as the gas handling capacity of the processing facilities. As dis-
cussed in Sec. 1.1.3, the operational constraints ensure that the production system
is operated in a safe manner. Thus, for an optimization method to produce mean-
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ingful advice to the production engineer, all significant operating constraints must
be included in the problem formulation. This leads to a constrained optimization
problem, which can be written as

min. f(x)

s.t. gi(x) ≤ 0, for i = 1, . . . ,m

x ∈ Rn,

(1.2)

where m operating constraints gi(x) ≤ 0 are included in the problem formulation.
Assuming f and g are known, analytical functions, different solvers can be used
under conditions on the linearity and convexity of (1.2). In the simplest case, f and
g are linear functions, and (1.2) is an linear programming (LP) problem. Large-
scale LP problems can be efficiently solved by a simplex or interior-point (IP)
algorithm. When f and g are nonlinear, (1.2) is a nonlinear programming (NLP)
problem. Nonlinear problems can be solved by a sequential quadratic programming
(SQP) or IP method. These methods are only guaranteed to converge to a global
optimum if f and g are convex functions; if not, only local convergence can be
guaranteed. Convexity is an important property also for speed and scalability
since polynomial-time solution algorithms exist for convex problems (Nesterov and
Nemirovskii, 1994). Nonconvex problems, however, are NP-hard and one should
not expect low solution times for the general case. Solvers for global optimization
can solve nonconvex problems to global optimality, as long as convex relaxations
of f and g are available to the solver. Naturally, under the same conditions on f ,
a global solvers can solve the unconstrained problem in (1.1) to global optimality.
Today, all publicly available global solvers implement what is known as spatial
branching, in which continuous variables are branched upon until all local minima
have been discovered or discarded. This technique is similar to the common branch-
and-bound used to solve integer programming problems.
Wang et al. (2002) used a automatic differentiation to compute derivatives for an

SQP method that optimized the production operations in petroleum fields. This
approach is not possible when Problem (1.1) contains black-box functions without
derivatives – as often is the case when some of the functions are implemented in
a process simulator. Derivatives must then be approximated or a derivative-free
method must be used. When derivatives are approximated, an inexact trust-region
SQP algorithm may, for instance, be applied (Heinkenschloss and Vicente, 2002).
There are several recent contributions to the topic of derivative-free methods for
constrained optimization, including an extension of the MADS method, proposed
by Audet and Dennis (2006). However, derivative-free methods have not been
widely used to solve constrained optimization problems, and may in that regard
be considered less suitable for (1.2) in all but some specific cases, including prob-
lems riddled with noise or where simulations are exceptionally expensive (Rios and
Nikolaos V. Sahinidis, 2013). In the latter case, a radial basis function method has
been successfully applied by Regis and Shoemaker (2005).
Now, let us bring the discussion back to the production optimization setting
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1.3. Methods for daily production optimization

and consider the production engineers’ daily practice again. Let us imagine the
following scenario: A set of wells produce to two pipelines in a fixed, but adjustable
configuration until one of the pipelines must be closed for maintenance. Which wells
should the production engineers route to the open pipeline and which wells should
they shut in? These are exclusive or decisions: a well must produce to the open
pipeline or be shut-in. As it turns out, it is likely impossible to pose the problem in
the form of (1.2) due to these disjunctions. The above well scheduling problem is a
discrete decision problem – a class of problems commonly encountered in operations
research. Discrete decisions problems are usually posed as mixed-integer problems,
which allow integer variables to be included in the problem formulation. In the
above scenario, one could assign a binary (0-1) variable to each well and state that
the well is shut in if the variable is zero, or producing if it is 1. Allowing integer
variables in the problem formulation makes it possible to model all types of discrete
decisions. Well routing and shutting in of wells are perhaps the two most common
discrete decisions in daily production optimization. But, integer variables have been
used to model the well placement problem (Lizon et al., 2014), well scheduling in
shale gas systems (Knudsen et al., 2014), planning of future field developments
(Sullivan, 1982), and many other decision problems.
With discrete decision added to the problem we obtain the following mixed-

integer problem:
min. f(x, y)

s.t. gi(x, y) ≤ 0, for i = 1, . . . ,m

x ∈ Rn, y ∈ Zq,

(1.3)

where y are integer variables. Problem (1.3) is generally in the NP-hard class of
nonconvex MINLP problems; the intersection of integer problems and nonconvex
problems, which both are NP-hard. Problems in this class have great modelling
versatility, but do not scale very well due to the combinatorial nature of integer pro-
gramming. For example, a problem with 40 binary variables have 240 > 1012 possi-
ble enumerations. The situation is not improved when the objective and constraint
functions are represented by a process simulator that may be time-consuming to
evaluate. To achieve lower solution times, global optimality is often abandoned and
a primal heuristic applied to obtain a satisfactory local solution. One example of
a primal heuristic is the objective feasibility pump of Sharma et al. (2015), which
was successfully applied to a well scheduling case. A common approach is to solve
(1.3) using a two-level programming approach, where integer variables are handled
by the upper level and the continuous variables are optimized in the lower level.
Wang (2003) used the following two-level approach: the upper level, handling well
connections (integer variables), was solved by the partial enumeration heuristic; the
lower level, handling flow allocations (continuous variables), was solved by an SQP
method.
The well-known Branch-and-Bound (BB) framework for solving mixed-integer

programming problems is similar to a two-level approach. While integer variables
are fixed in the two-level approach, they are relaxed by removing the integrality
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condition and included as continuous variables in the “lower-level” subproblems of
the BB algorithm. When f and gi are convex functions, the BB algorithm may
correctly discard branches that contain suboptimal solutions, and hence reduce the
solution time considerable compared to a full enumeration. When f and gi are
nonconvex, the BB algorithm may be extended with spatial branching, to give a
spatial BB (sBB) algorithm for global optimization. Several variations of the sBB
algorithm exist in the literature and have been implemented in commercial solvers:
for example, the Branch-and-Reduce algorithm by Ryoo and Sahinidis (1996) is
implemented in the global solver BARON.
In addition to the problem with scalability due to the exponential growth in the

number of enumerations in integer programming, there is a less obvious obstacle to
solving (1.3). It is the assumption that f and gi can be evaluated with integer vari-
ables as parameters. In particular, that we can evaluate, say, a pressure constraint
gi for two different routing combinations. Or in case BB is utilized, that we can
evaluate gi for a relaxed routing variable, which physically would mean a splitting
of the flow. Unfortunately, this is seldom the case when the functions are imple-
mented in a process simulator. Although there are some process simulators, like
FlowManager from FMC Technologies (FMC Technologies, 2015), that do support
this.
The problem with integer variable parameters, as discussed above, can be solved

by disaggregating Problem (1.3). To disaggregate a problem here means to divide
the (black-box) simulation into a set of smaller (black-box) simulation units, which
are connected so that they represent the original problem. A common example
would be the disaggregation of a production system into a network of pipes and
equipment, where each individual pipe or equipment is represented by a simulation
unit. By utilizing the structural information to disaggregate the network, connec-
tivity logic, such as routing, can be kept separate from the simulation units. There
are several advantages to disaggregation that we will address, but first consider the
following disaggregated problem.

min. f(x)

s.t. ḡi(x) ≤ 0, for i = 1, . . . , m̄

Ax+ By ≤ c,

x ∈ Rn, y ∈ Zq.

(1.4)

In (1.4), connectivity information and operational constraints are represented by
the linear inequalities Ax + By ≤ c. The nonlinear constraints ḡi(x) ≤ 0 repre-
sent m̄ (black-box) simulation units resulting from disaggregation. The number of
simulation units m̄ is not directly related to the number of operating constraints
m. However, a disaggregation necessarily introduces new variables to represent the
connectivity of the simulation units, causing the dimension of x in (1.4) to be higher
than in (1.3). The connectivity variables can be thought of as the input and output
variables of the simulation units. In most cases, the introduction of connectivity
variables allows the user to specify operational constraints with linear constraints
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1.3. Methods for daily production optimization

and variable bounds. Notice that the integer variables y participate only in linear
constraints and not as parameters in the (black-box) simulation units.
The disaggregated problem in (1.4) removes the issue with integer variable param-

eters, but introduces a new issue related to the evaluation of the process simulator.
In (1.3), the process simulator, representing the whole production system, has to
be evaluated; typically requiring several internal iterations to converge. In (1.4),
each simulation unit ḡi has to be evaluated separately. Assuming that all simulation
units reside in one process simulator, this requires an extended machine-to-machine
interface between the optimization algorithm and process simulator. Process sim-
ulators that lack this flexibility in their interface, may prevent disaggregation or
complicate it significantly. A possible upside to disaggregation, however, is that
each simulation unit is smaller and more robust to simulate than the complete pro-
duction network. This brings us to another common issue with simulation-based
optimization. Namely, that reliability of simulation is a requirement for dependable
optimization results. In practice, as simulators become more complex, the reliabil-
ity of the simulations degrade – that is, the simulator may experience convergence
issues. This will cause problems for the optimization algorithm, unless specialized
recovery measures are taken. Even with recovery measures in place, some regions of
the operational space may be out of reach for optimization due to poor reliability,
ultimately resulting in suboptimal solutions.
To address the above issues regarding reliability and speed of simulation, and in-

flexibility in the process simulator interface, we will in the next sections introduce
the concept of surrogate modelling. Surrogate models will replace the simulation
units, decoupling the optimization from the simulation during the solution pro-
cess. As will become clear, this approach has several advantages in addition to
accelerating solution times.
Before moving on, we emphasize that several difficult challenges related to

simulation-based optimization were identified above. We are fortunate to have
such a great toolbox as mathematical programming in hand for solving these prob-
lems; we will likely need more than one tool to solve the decision problems that
the production engineers face in their daily operation. The hurdles are set high
and the finish line seem to be receding – there is always an opportunity to improve
the quality of advised decisions by increasing complexity: either by using more
accurate and nonlinear models, or by adding more realistic operational constraints,
or by considering more discrete decisions, or by integrating models. The preced-
ing discussion on the different tools available in the framework of mathematical
programming is summarized by Table 1.2.

1.3.1. Surrogate models for production optimization

In this section, the concept of surrogate modelling is introduced and its use in
production optimization is motivated. A list of methods for surrogate modelling
and their resulting model types, is provided. A few of the methods are elaborated
on, but a thorough comparison is left for future research.
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Table 1.2.: Comparison of methods for daily production optimization. Favourable characteristics
are coloured gray.

Character-
istics

DFO LP NLP
(Nonconvex)

MILP MINLP

Objective Any Linear Nonlinear (Piecewise)
Linear

(Piecewise)
Nonlinear

Constraints Possible for
some DFO
methods

Linear Nonlinear (Piecewise)
Linear

(Piecewise)
Nonlinear

Achievable
accuracy

High Low Intermediate–
High

Intermediate–
High

High

Discrete deci-
sions

Possible for
some DFO
methods***

No No Yes Yes

Derivatives
required

No Yes Yes Yes Yes

Complexity
class

– P P (NP-hard) NP-hard NP-hard

Expected
speed

Fast Fast Fast (Slow) Slow Slow

Convergence Local* Global Global** Global Global**

* Not guaranteed for all DFO methods; for example Nelder-Mead.
** Global solver required for nonconvex problems.
*** The literature on DFO methods for MINLP problems is limited (Liuzzi et al., 2015).

Surrogate models – also known in various contexts as proxy models, metamod-
els, response surface models, emulators, and reduced-order models – have been
extensively studied and applied to overcome the challenges of simulation-based op-
timization (Jones, 2001). A surrogate model is an approximative model that mimics
the input-output characteristic of a complex or unknown system. In this definition,
a system may refer to a real system or a simulation – we are concerned with the lat-
ter in this thesis. A surrogate model is constructed from input-output data using a
data-driven method, such as linear regression. Sometimes, the model is augmented
with known first principles or relational information to improve the approximation.
A surrogate model may, however, represent the input-output characteristic with
high accuracy without an explicit statement of the underlying physics. For this rea-
son, surrogate modelling is often referred to as black-box modelling. Furthermore,
surrogate modelling can be used to obtain a computationally cheaper alternative to
an expensive simulation. Reduced-order modelling, for example, aims at identify-
ing a low-dimensional model with similar response characteristic as the high-fidelity
model (Overschee and Moor, 1996). In general, surrogate modelling is concerned
with the trade-off between model accuracy and computation/optimization tractabil-
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ity.

Sampling Building model Evaluating accuracy

Yes

No

Start Stop

Figure 1.6.: Flowchart for building of a surrogate model f̃ that approximates f .

When simulations are expensive, a goal with surrogate modelling is to gener-
ate a sufficiently accurate model using as few samples as possible. The process
of generating surrogate models can be separated into the following three steps,
possibly carried out iteratively: sampling, model construction, and appraisal of
model accuracy. The iterative process is illustrated by Figure 1.6. An initial design
of experiments is generated, for instance using Latin hypercube sampling (Cozad
et al., 2014). From the resulting samples a surrogate model is built. The surrogate
model accuracy is then appraised by cross-validation or by performing additional
sampling. If the estimated model error is sufficiently low, the process terminates;
otherwise, the process is repeated.
High-fidelity reservoir simulations are particularly computationally expensive and

may prevent timely optimization. The following quote from (Lerlertpakdee et al.,
2014) motivates the use of surrogate models in optimization of multiphase-flow
simulations:

Automating model calibration and production optimization is computa-
tionally demanding because of the intensive multiphase-flow-simulation
runs that are needed to predict the response of real reservoirs under
proposed changes in model inputs.

Examples from the literature on the use of surrogate modelling for optimization
include: Kriging response surfaces (Ahmed et al., 2013), neural networks and fuzzy
logic (Sengul and Bekkousha, 2002), and piecewise linear models (Silva and Cam-
ponogara, 2014), to mention but a few.
In our mathematical programming framework, we replace the simulation units ḡi

with surrogate models g̃i to obtain:

min. f̃(x)

s.t. g̃i(x) ≤ 0, for i = 1, . . . , m̃

Ax+ By ≤ 0

x ∈ Rn, y ∈ Zq

(1.5)

To simplify the following discussion we assume that each simulation unit is replaced
by one surrogate model, i.e. g̃i ≈ ḡi and m̃ = m̄. Note that the objective function
in (1.5) is modelled with a surrogate model f̃ .
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A general requirement is that the error g̃i − ḡi introduced by using a surrogate
model, must be much smaller than the error by which ḡi models the real system.
This is however only relevant within the operating envelope of the system. Many
methods exist for constructing accurate approximations that can be used as sur-
rogate models. Table 1.3 lists some of these methods, which stem from disciplines
including statistics, machine learning, approximation theory, signal processing, and
system identification. Notice that several of these methods are related to each other.
For example, several of the methods, including radial basis function approximation
and ordinary least squares, can be viewed as approximation with a single-layered
artificial neural network.

In addition to accuracy, there are several other properties that are desirable in
surrogate models meant for optimization. We identify the most important proper-
ties as:

1. approximation accuracy,

2. computational cost of construction and evaluation,

3. smoothness,

4. analytical derivatives,

5. convexity or the availability of a convex hull.

Properties 2 to 5 determine if the surrogate model is tractable for (global) op-
timization. Analytical derivatives, preferably first- and second-order derivatives,
may accelerate the optimization for several reasons. Firstly, the computation time
required by analytical derivatives is generally significantly lower than that required
to approximate derivatives. In optimization involving reservoir simulations, ana-
lytical derivatives are efficiently obtained by using the adjoint equation (Jansen,
2011). Secondly, the required number of iterations of the optimization algorithm
may reduced due to the accuracy of analytical derivatives3 – resulting in better
search directions than those obtained with approximated derivatives. Property 5,
convexity or availability of a convex hull, is related to global optimization and will
be discussed later in this thesis.

Next, we consider a motivating example where disaggregation and surrogate mod-
elling is used to lower the Jacobian computation effort.

Example 1 (Structural information and Jacobian computation). Consider the sys-
tem

z1 = f1(x1),

z2 = f1(x1) + f2(x2),
(1.6)

3As with any computation on a digital computer, the computation of analytical derivatives will
have some round-off error.
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Table 1.3.: Some surrogate models characterized by approximation method.

Type Short description

Ordinary least
squares

Also known as linear least squares. It can be used with linear basis
functions, as in (generalized) linear regression, or with nonlinear basis
functions. Common nonlinear basis functions include polynomials, ex-
ponentials, and logarithms; mixed bases can also be used. Evaluation
cost is O(N). Construction involves solving a linear system of equations
at cost O(N3).

Radial basis
function
approximation

Approximation using ordinary least squares fitting with special basis
functions. Several radial basis function forms exist, including Gaussian,
multiquadric, inverse multiquadric, and thin plate spline. Radial basis
function approximation can be viewed as a simple, single-layer artificial
neural network. Evaluation cost is O(N). Construction involves solving
a linear system at cost O(N3) – however, the linear system generally
requires preconditioning to avoid ill-conditioning.

Kriging Also known as Gaussian process regression. A family of surrogate models
with an embedded uncertainty model. RBF with Gaussian basis func-
tions is a special case of Kriging. Kriging models are usually constructed
by solving a nonconvex programming problem, which is expensive. Eval-
uation cost is O(N).

Artificial neural
networks

Can be used to approximate unknown functions with a large number of
inputs. Generally, it requires a large amount of data and computational
power for training. Uses a composition of basis functions in the form of
nonlinear weighted sums. Construction cost can be very high.

Piecewise linear
interpolation

Interpolates points locally with a piecewise linear function. It is more
flexible than linear regression, but may require a large number of samples
to achieve high accuracy. Supports triangulation of scattered points; but
is not practical for dimensions n higher than 3 or 4 due to a factorial
increase in number of simplices. Like piecewise regression it results in a
piecewise linear model.

Spline
interpolation or
smoothing

Built from piecewise polynomial basis functions and offers a high degree
of smoothness. Like piecewise linear models, splines have compact sup-
port. The evaluation cost is O(p2), where p is the spline degree (p < N
and usually p ≤ 3). Construction involves solving a linear system of
equations at O(N3).

Wavelets and
sinusoidal models

Built from sinusoidal basis functions and are mostly used to approximate
time-series data. A disadvantage with sinusoidal models regarding op-
timization is that they are naturally oscillating (Pina and Jacob, 2013;
Pereira et al., 2015). Evaluation cost is O(N). Construction cost is
O(N log(N)) when the coefficients are calculated using the Fast Fourier
transform.

* In this table, N refers to the number of basis functions used in the surrogate model.

where x1, x2 ∈ R and z1, z2 ∈ R may be considered inputs and outputs, respectively.
When optimizing this system using a gradient-based solver, the following Jacobian
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matrix must be evaluated at each iteration

J =
dz

dx
=

[
∂z1/∂x1 ∂z1/∂x2

∂z2/∂x1 ∂z2/∂x2

]
. (1.7)

If the system is considered to be black-box – i.e. the map f : x → z is considered
unknown – the Jacobian must be approximated. Using central differences the Ja-
cobian can be approximated at a point x by performing a total of nz × (2nx + 1)
evaluations, where nx = 2 and nz = 2 are the number of inputs and outputs respec-
tively. By utilizing the fact that z1 is independent of x2 we have that ∂z1/∂x2 = 0,
which saves us 2 evaluations each time J is approximated. That is, the single piece
of structural information makes the Jacobian computation 20% faster.
Now, assume that f1 and f2 are surrogate models that have analytical derivatives.

This would speed up the optimization considerable since the evaluation of the Jaco-
bian would require nz ×nx = 4 evaluations. In this case, the structural information
saves one iteration. Thus, only three evaluations are required for the Jacobian. A
similar reduction in computational effort can be obtained for the Hessian matrix.

The choice of surrogate model determines the problem class of (1.5). Except for
ordinary least squares with linear basis functions, the methods in Table 1.3 produce
nonlinear surrogate models. In most cases, nonlinearity is necessary to achieve high
approximation accuracy. With nonlinear surrogate models, (1.5) is an NLP, or a
MINLP if q > 0.
Some of the simplest nonlinear surrogate models are obtained by polynomial

interpolation. By increasing the degree of the polynomial, highly nonlinear func-
tions can be approximated. However, polynomial interpolation is prone to Runge’s
phenomenon, where oscillations between the interpolation points occur. If many
sample points are available, the situation can be improved by using polynomial
fitting using ordinary least squares. However, the degree of polynomials is limited
by round-off errors in the computer.
With radial basis function approximation, Kriging, and artificial neural networks,

a flexible function form is obtained by including many basis functions. Radial basis
functions, for example, is usually a sum of spatially dispersed functions that have
the same function form. These surrogate models generally have a large number of
parameters and may be prone to overfitting (Hawkins, 2004). The problem with
overfitting can be handled easily by reducing the number of basis functions – the
practitioner must however be aware of this concern.
Another way to obtain flexibility is to allow for piecewise-defined basis functions

to achieve a property called local support. Splines, piecewise linear functions, and
wavelets enjoy the flexibility derived from local support. Piecewise functions are
used to model complex behaviour such as inflow performance relationship (IPR)
curves (Guo et al., 2007) – see Figure 1.7 for an example. A piecewise linear
function may in fact approximate any nonlinear function accurately, provided it
consists of enough pieces. Piecewise linear surrogate models have been widely used
for production optimization (Silva and Camponogara, 2014). A drawback with
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piecewise functions is that they require logic for “selecting” the active piece – that
is, the optimization solver must handle disjunctive constraints. With piecewise
linear surrogate models this disadvantage is lessened since the resulting problem
(1.5) can be formulated as a MILP, which can be efficiently solved by a MILP
solver.

Straight line

Vogel's 

equation

Bubble 

point

P
re

ss
u
re

Rate

Figure 1.7.: A composite IPR curve consisting of a straight line and Vogel’s quadratic equation.

In the novel work by Cozad et al. (2014), flexible surrogate models are obtained
by solving a best subset problem; in which an optimal subset of a set of various
basis functions is sought using integer programming.

In this thesis, a different approach is taken. Instead of addressing the issue
with accuracy and flexibility as a best subset problem, we will resort to piecewise
polynomial basis functions – also known as splines. We argue for this choice of
surrogate model in the next section.

1.3.2. Spline surrogate models

This section provides a glance at splines and some of their remarkable properties.
Splines, and in particular the B-spline, will be properly introduced in the next
chapter of this thesis.

A spline is a function that is piecewise-defined by polynomial functions. The
polynomial pieces are joined at points known as knots – which are similar to the
breakpoints of piecewise linear functions. Put simply, the B-spline is a spline con-
structed to obtain a maximum degree of smoothness at the knots. Mathematically,
a B-spline with N pieces can be expressed as

f(x) =
N−1∑
j=0

cjBj(x),
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where cj ∈ R are coefficients and Bj,p(x) are B-spline basis functions of degree p.
The B-spline basis functions are piecewise polynomials of degree p, defined by a
recursive convex combination of polynomial pieces.
The B-spline has local support, meaning that at most p + 1 basis functions are

nonzero at any given point. This feature is exploited to obtain fast algorithms for
evaluating the B-spline and its derivatives. Furthermore, since the basis functions
are defined by convex combinations, these algorithms are numerically stable.
The coefficients {cj}N−1

j=0 of the B-spline are usually computed by solving a linear
system of equations; most popular is the method of cubic B-spline interpolation.
B-spline interpolation is not prone to Runge’s phenomenon due to the flexibility
from being piecewise-defined. Furthermore, round-off errors are minimal due to the
numerical stability of the B-spline. Overfitting may occur, but can easily be handled
by using a penalized B-spline (P-spline) that smooths the sample points (Eilers and
Marx, 1996). The power of B-spline interpolation is most easily demonstrated with
an example. In the following motivating example cubic B-spline interpolation is
used to approximate the Rosenbrock function.

Example 2 (Approximation of the Rosenbrock function). To illustrate the accuracy
of B-spline approximation, we consider the Rosenbrock function:

f(x, y) = (1− x)2 + 100(y − x2)2,

on the domain (x, y) ∈ X = [−2, 2] × [−1, 3]. In this example, f is queried at
25 points on a regular 5-by-5 grid, as plotted in Figure 1.8. From these sample
points a bilinear and bicubic interpolating B-spline is built using the SPLINTER

function approximation library (Grimstad et al., 2015b). The resulting splines are
shown in Figure 1.9. The absolute and relative approximation errors on the domain
X are measured as: eX,abs = ||f − f̃ ||X,∞ and eX,rel = eX,abs/(supX f − infX f).
The approximation errors for the two B-splines are given in Table 1.4. From 25
samples the bicubic B-spline approximates the nonlinear Rosenbrock function with
a maximum error of 2.5% on the domain. As will become clear later in this thesis,
a biquartic B-spline would have approximated the Rosenbrock function with zero
error.

Table 1.4.: B-spline approximation errors.

eX,abs eX,rel

Bilinear B-spline 403.84 0.161
Bicubic B-spline 61.96 0.025

In addition to being accurate, cheap to evaluate, smooth, and having analytical
derivatives, the B-spline offers a convex hull without any significant computational
effort – the vertices of the convex hull is basically given by the coefficients {cj}N−1

j=0
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Figure 1.8.: The Rosenbrock function sampled at 25 points.

due to the convex combination construction of the B-spline. This property can be
used to devise a global optimization algorithm for splines.
The B-spline may sound like the perfect surrogate model based on the one-sided

discussion above. There are, of course, some drawbacks with using B-splines as
surrogate models. The biggest challenge is the fact that B-splines are nontrivial to
input in algebraic form to an optimization solver. As will be discussed, this mo-
tivated the development and implementation of a theoretical framework for spline
optimization, to be presented in this thesis. Another drawback is that the B-spline
does not inherently handle uncertainty like Kriging surrogate models.

1.4. Research objective and scope

Consider the following quote from an article in the Journal of Petroleum Technology
titled Holistic production optimization achieved one workflow at a time (JPT, 2008).

Sustained production optimization, a longstanding objective within
the exploration and production sector, has witnessed only incremental
and sporadic advances. Obstacles to adoption of a holistic approach
seem intransigent – an apparently daunting challenge to individual
stakeholder groups. Yet, within the industry, there is a renewed sense of
drive toward consistency, and growing consensus, on key components.
Effective production-data management, model management, and real-

time production-optimization systems are necessary but not sufficient.
Integration of these components by means of orchestrating critical work-
flows – to provide a human/system interface for efficient organizational,
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(a) Bilinear B-spline
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(b) Bicubic B-spline
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(c) Approximation error of bilinear B-
spline
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(d) Approximation error of bicubic B-
spline

Figure 1.9.: A bilinear (a) and bicubic (b) interpolating B-spline, and their corresponding absolute
approximation errors in (c) and (d).

operational, and technological collaboration—is required. To overcome
inertia requires a reductionist approach to the problem. As the adage
goes, we eat the elephant one bite at a time.

This quote aligns nicely with the industrial experiences of the supervisors and
author of this thesis, and motivates the following research objective.

Research objective

To develop fast and reliable formulations and algorithms for daily production
optimization, with the purpose of enhancing current model-based decision
support tools.

To increase the chance for significant contributions, the scope of this thesis is
limited to consider subsea production systems: from bottom hole of the wells to
the separator topside. Thus, the reservoir and topside facilities are included in
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the modelling only as boundary constraints. From a modelling point of view, this
limitation is justified by the time scale argument given in (Grimstad et al., 2016).
Furthermore, only steady-state models will be considered. The majority of daily
production optimization problems fall within this scope. However, systems with
significant short-term transients – such as production systems experiencing severe
slug flow – cannot be modelled under these assumptions. These systems demand
the application of a dynamic control scheme like nonlinear model predictive control
(Willersrud et al., 2013).
Within the confinement of the scope there is a host of interesting and challenging

problems related to production optimization. On the premise that existing mul-
tiphase simulation technology must be used, focus will be on building surrogate
models that preserve sufficient simulation fidelity while attaining properties ben-
eficial for optimization. The developed methods can then be used for real-time
monitoring and optimization to improve current decision support tools.
Referring to the quote above, this will be the bite of the elephant that the author

hopes to digest.

1.5. Outline and contributions of thesis

Outline and main contributions.

• Chapter 2 contains the main result of a long trial-and-error process where
the author, together with several supervised MSc students, attempted to use
various surrogate models for production optimization. Some preliminary re-
sults from this work are documented in a conference paper by Grimstad
(2012b) and the Master’s theses of Ausen (2012); Sandnes (2013); Robert-
son (2014). Interpolation using linear, polynomial, piecewise polynomial, and
finally spline surrogate models were tested. From this experimentation a novel
branch-and-bound method for optimization with spline constraints emerged.
The method, and its implementation in the code named CENSO, is presented
in the paper by Grimstad and Sandnes (2015), which this chapter is solely
based on.

• Chapter 3 presents the first application of CENSO on real production op-
timization problems. The challenges related to solving real cases drove the
initial two-year long development of CENSO. In cooperation with the oil
company BP, in particular Dr. Malcolm Woodman and Mr. Richard Heddle,
two production optimization cases were defined and attempted solved. Initial
results showed that further development was necessary to bring down solu-
tion times for global optimization problems. This led to the implementation
of bounds tightening techniques, node selection rules, branching rules, and
various convex relaxations. Furthermore, the model had to be extended to
include temperatures; a challenge that had not been addressed thoroughly by
previous literature on oil and gas production optimization. The extension of
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the model with temperatures allowed for modelling of temperature-dependant
operational constraints. In particular, it allowed the inclusion of constraints
on mixed in-situ velocity in the risers, to limit erosion of inner tube coating
(corrosion inhibition layer). The in-situ velocity is highly sensitive to temper-
ature; a change of only 1 degree Celsius could correspond to several hundreds
standard barrels (STB) of oil per day. Thus, it was crucial that the temper-
atures were modelled accurately. The modelling efforts led to the modelling
framework and ultimately the results presented by Grimstad et al. (2016),
which is reproduced in this chapter.

• Chapter 4 discusses the application of the method developed in (Grimstad
and Sandnes, 2015; Grimstad et al., 2016) for real-time virtual flow metering.
Specifically, the estimation problem is formulated as an optimization prob-
lem with B-spline surrogate models representing the pressure drop simulation
units. This chapter is based entirely on the work by Grimstad et al. (2015c).4

• Chapter 5 gathers and discusses the difficulties related to implementation
of software for production optimization in the upstream oil and gas industry.
The discussion is based on experience and several interviews with people
working with production optimization in the upstream industry. The chapter
is based entirely on the IO center report by Grimstad et al. (2014).

Note that each chapter listed above is self-contained and based on a single work.

Two appendices are attached to this thesis. Appendix A contains some notes by
the author on optimization with B-spline constraints that has not been published.
A description of the software developed by the author during the thesis work can
be found in Appendix B.

1.5.1. Selected publications

The following publications were selected to form the basis of this thesis.

• Grimstad, B. and Sandnes, A. (2015). Global optimization with spline con-
straints: a new branch-and-bound method based on B-splines. Journal of
Global Optimization.

• Grimstad, B., Foss, B., Heddle, R., and Woodman, M. (2016). Global opti-
mization of multiphase flow networks using spline surrogate models. Com-
puters & Chemical Engineering, 84:237 – 254.

4This work has sparked an ongoing effort by the author to investigate how state and parameter
estimation for oil and gas production systems can be combined with statistical methods – such
as the Generalized Likehood Ratio (GLR) method for hypothesis testing – to detect badly
calibrated or uncertain models. In this regard, the author recently initiated and supervised
the Master’s thesis by Skibeli (2015) on this topic.
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• Grimstad, B., Robertson, P., and Foss, B. (2015c). Virtual flow metering using
B-spline surrogate models. In 2nd IFAC Workshop on Automatic Control in
Offshore Oil and Gas Production, Florianópolis, Brazil.

The author has been the main contributor to these works.

1.5.2. Additional publications

The following peer-reviewed and relevant contributions by the author are not in-
cluded in this thesis.

• Grimstad, B., Ausen, H., Lervik, V., Gunnerud, V., and Ljungquist, D. (2012).
Optimization of a simulated well cluster using surrogate models. In 1st IFAC
Workshop on Automatic Control in Offshore Oil and Gas Production, Trond-
heim, Norway.

• Grimstad, B. and Foss, B. (2014). A nonlinear, adaptive observer for gas-lift
wells operating under slowly varying reservoir pressure. In World Congress,
volume 19, pages 2824–2829, Cape Town, South Africa.

• Sharma, S., Knudsen, B., and Grimstad, B. (2015). Towards an objective
feasibility pump for convex MINLPs. Computational Optimization and Ap-
plications.

• Foss, B., Grimstad, B., and Gunnerud, V. (2015). Production optimization
– facilitated by divide and conquer strategies. In 2nd IFAC Workshop on
Automatic Control in Offshore Oil and Gas Production, Florianópolis, Brazil.

• Jahanshahi, E., Grimstad, B., and Foss, B. (2015). Spline fluid models for
optimization. Submitted for publication.

The author’s contribution to the work by Sharma et al. (2015) was to help with
the theoretic and algorithmic development of the objective feasibility pump (OFP).
The author’s contribution to the work by Foss et al. (2015) was to develop the

daily production optimization problem description and to construct an example
problem on which different optimization approaches were compared.

1.5.3. Additional works

The author has also initiated and contributed to the following reports published
within the intellectual property regime of the IO Center (2014). Note that these
reports have not been peer-reviewed.

• Grimstad, B., Almklov, P., Foss, B., and Gunnerud, V. (2014). On why
model-based production optimization is difficult in the upstream industry.
Published as a report in the IO center.
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• Jahanshahi, E. and Grimstad, B. (2014). Energy balance of three-phase mix-
ing processes with standard conditions information. Technical report, IO
center and Norwegian University of Science and Technology.

The report by Grimstad et al. (2014) is included to form a chapter of this thesis.

1.5.4. Dissemination

Throughout his PhD work, the author has shared his thoughts in many meetings
and events, including the following.

• Grimstad, B. (2012e). Trustworthy production optimization. Stand. IO
conference, Trondheim, Norway.

• Grimstad, B. (2012b). Optimization of a simulated well cluster using surro-
gate models. Presentation. The 8th International Conference on Integrated
Operations in the Petroleum Industry, Trondheim, Norway.

• Grimstad, B. (2012c). Production optimization. Presentation. IBM, Oslo,
Norway.

• Several workshops at FMC Technologies in Asker, Norway (Grimstad, 2014e,c).

• Several workshops at BP Exploration Operating Company Limited in Sun-
bury, UK (Grimstad, 2012d,a, 2013a,d,c,b,e, 2014d, 2015c). The author also
stayed in London for 8 months during January–September, 2013.

• Presentations at the IO Center Technical Committee Meetings (Grimstad,
2014f,b).

• Grimstad, B. (2014a). A nonlinear, adaptive observer for gas-lift wells oper-
ating under slowly varying reservoir pressure. Presentation. The 19th IFAC
World Congress, Cape Town, South Africa.

• Grimstad, B. (2014g). Short-term simulation-based production optimization.
Presentation. BP, Imperial College, NTNU joint workshop at Imperial Col-
lege, London, UK.

• Grimstad, B. (2015b). Daily production optimization. Presentation. IOC and
BP workshop on daily production optimization, Rio de Janeiro, Brazil.

• Grimstad, B. (2015a). Black-box optimization with spline surrogate models.
Seminar and lecture. Santa Catarina Federal University, Florianópolis, Brazil.

Together with Prof. Bjarne Foss, the author has defined and supervised the
following MSc theses throughout 2011-2015: Ausen (2012); Sharma (2013); Sandnes
(2013); Robertson (2014); Skibeli (2015).
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Chapter 2

Global optimization with spline constraints

Grimstad, B. and Sandnes, A. (2015). Global optimization with spline constraints: a
new branch-and-bound method based on B-splines. Journal of Global Optimization.

Summary

This paper discusses the use of splines as constraints in mathemati-
cal programming. By combining the mature theory of the B-spline and
the widely used branch-and-bound framework a novel spatial branch-
and-bound (sBB) method is obtained. The method solves nonconvex
mixed-integer nonlinear programming (MINLP) problems with spline
constraints to global optimality. A broad applicability follows from the
fact that a spline may represent any (piecewise) polynomial and ac-
curately approximate other nonlinear functions. The method relies on
a reformulation-convexification technique which results in lifted polyhe-
dral relaxations that are efficiently solved by an LP solver. The method
has been implemented in the sBB solver CENSO (Convex ENvelopes
for Spline Optimization). In this paper CENSO is compared to sev-
eral state-of-the-art MINLP solvers on a set of polynomially constrained
NLP problems. To further display the versatility of the method a real-
istic pump synthesis problem of class MINLP is solved with exact and
approximated pump characteristics.

2.1. Introduction

Consider the mixed-integer nonlinear programming (MINLP) problem:

minimize
x

f(x)

subject to g(x) ≤ 0,

x ∈ X ′ ∩ (Znd × Rn−nd)

(P′)

where f : Rn → R and g : Rn → Rm are multivariate functions, and X ′ is a convex
polyhedron bounding the nd discrete variables and n − nd continuous variables.
Solving P′ to global optimality is generally an NP-hard problem. Due to the hard-
ness and generality of the problem, the majority of existing solution methods have
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been developed to solve more tractable subclasses of P′. For example, the suc-
cessful Branch-and-Cut method solves mixed-integer linear programming (MILP)
problems – for which f and g are affine functions (Nemhauser and Wolsey, 1999;
Pochet and Wolsey, 2006; Padberg and Rinaldi, 1991). Other examples are the
families of Branch-and-Bound, Branch-and-Cut, and Outer Approximation meth-
ods that solve convex MINLP problems – where f and g are convex (possibly
nonlinear) functions (Bonami et al., 2008). Although MILPs and convex MINLPs
are NP-hard, they have the beneficial property of reducing to convex problems
when the integrality constraints on the variables are removed. In particular, a
MILP is relaxed to an LP problem, and a convex MINLP is relaxed to a convex
NLP problem. This greatly simplifies the computation of a lower bound on the
optimal value. There is an added complexity to nonconvex MINLP problems –
where some of f and g are nonconvex. For nonconvex problems it is not enough to
relax only the integrality constraints to obtain a convex lower bounding problem.
In addition, any nonconvex function must be identified and replaced by a valid
convex relaxation.
It is safe to say that a main concern in global optimization of nonconvex problems

is to find convex relaxations that are tight, fast to compute, and that have favorable
convergence properties under bisection/branching. Adding to this concern is the
(probably contradictory) desire to obtain general convex relaxations, i.e., that are
valid for a large class of functions. This has arguably been the motive of many
works in global optimization. For instance, McCormick (1976) considered symbolic
reformulations to generate convex relaxations of factorable nonconvex functions in
his pioneering work. His idea has later been reused extensively, often in combina-
tion with spatial branching (branching on continuous variables). Today, derived
approaches can be found in all commercially available spatial Branch-and-Bound
(sBB) solvers for global optimization. A short review of the developments in non-
convex programming over the last two decades illustrates the widespread use of
these two techniques.
The first method that was able to deal with the generic MINLP in P′ came in

1996 with the Branch-and-Reduce of Ryoo and Sahinidis (1996). The method
is characterized by its optimality- and feasibility-based domain reduction tech-
niques. Although not a requirement, the factorable programming technique of
McCormick was preferred to compute lower bounding problems. Shortly after, the
αBB method for solving a subclass of nonconvex NLP (and later MINLP) problems
was published (Adjiman et al., 1997, 1998b,a, 2000). The method introduced a new
approach to generate convex relaxations of any function in C2 – the large class of
twice-differentiable functions. The αBB-relaxations were combined with the tighter
relaxations of McCormick to improve the lower bounding problems. Since then a
range of different sBB methods for solving P′ have been published, including: the
Branch-and-Contract method of Zamora and Grossmann (1999) (for NLPs with
univariate, bilinear, and fractional functions), the Symbolic Reformulation sBB
approach of Smith and Pantelides (1997, 1999), the Generalized Branch-and-Cut
of Kesavan and Barton (2000), and various interval-analysis-based sBB methods
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(Hansen, 2003; Vaidyanathan and El-Halwagi, 1996).
There is a wide literature on convex relaxations past those of simple nonlinear

terms (e.g., bilinear, fractional, and concave quadratic terms) and functions (e.g.,
exponential, logarithmic, and sine functions). A couple of examples include the
convex relaxation of functions on polytopes (Locatelli and Schoen, 2014) and edge-
concave functions (Meyer and Floudas, 2005a). A notable observation is that there
seems to be a trade-off between the generality and tightness of a convex relaxation.
This can be illustrated with the αBB relaxation which is general, but in many
cases poor (see for instance Gatzke et al. 2002 where a hybrid reformulation is
proposed). This may explain the popularity of the combination of symbolic refor-
mulation and relatively simple convex relaxations. Realizing that the tightness of
a convex relaxation is largely influenced by the variable bounds, the majority of
the above-mentioned works have focused on domain reduction techniques. Indeed,
this focus has yielded implementations, such as BARON (Tawarmalani and Sahini-
dis, 2002, 2004), LINDO (Lin and Schrage, 2009), and COUENNE (Belotti et al.,
2009), which have documented an impressive performance.
In their recent survey, Burer and Letchford (2012) advocate to pursue develop-

ment of algorithms for special cases of nonconvex MINLPs. They believe this may
generate new techniques that later progress to general nonconvex programming
techniques. In this spirit, the authors have considered the special case of non-
convex MINLPs with spline constraints – that is, where the functions f and g are
spline functions. Splines are an important class of functions with wide applicability.
They illusively appear as polynomials in most engineering optimization problems,
typically as bilinear and quadratic functions. The class also covers piecewise lin-
ear functions, which traditionally have been handled with binary variables, special
order sets, or special branching rules (Vielma et al., 2010; Keha et al., 2006). The
ability of piecewise linear functions to approximate nonlinear functions has led to
many applications, including: operations planning for oil and gas networks (Kos-
midis et al., 2005; Martin et al., 2006; Gunnerud and Foss, 2010), process network
synthesis (Bergamini et al., 2005), pooling problems (Misener et al., 2011), and
merge-in-transit (Croxton et al., 2003), to mention a few. The same areas of appli-
cation apply to splines.
To consider optimization with spline constraints the authors have chosen to use

the mature B-spline framework – which is reviewed in the next section of this pa-
per. The B-spline has many properties interesting for global optimization and have
inspired a novel reformulation-convexification approach which covers polynomial,
piecewise polynomial, and spline functions. The convexification results in a lifted
polyhedral relaxation that can be solved by an LP solver. The new approach has
been implemented in the sBB solver CENSO and compared with the three above-
mentioned state-of-the-art solvers on a set of polynomially constrained problems.
The use of splines in optimization is not new. Meyer and Floudas (2005b) ap-

plied piecewise quadratic perturbation functions to improve the αBB convex un-
derestimators. Dias et al. (2010) used the B-spline and nonlinear optimization for
stochastic path planning. Functions similar to splines have been used in various
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forms in stochastic and approximative (black-box) global optimization. For exam-
ple, global (unconstrained) optimization methods based on response surfaces use
linear, cubic, thin plate, multiquadric, or Kriging basis functions; cf. the works by
Jones et al. (1998); Jones (2001) and the references therein. Response surface based
methods have been applied also to black-box problems with constraints, but to a
lesser extent (Sasena, 2002; Sasena et al., 2002; Regis, 2014). Examples of other
works related to optimization with splines are: the global optimization method
of McDonald et al. (2007) which uses radial basis function response surface mod-
els, and the blending function method of Meyer et al. (2002) for approximative
optimization of nonfactorable functions.

In recent years, specialized BB methods based on the Bernstein coefficients have
emerged and proved efficient in globally solving optimization problems with mul-
tivariate polynomial constraints (Garloff et al., 2003; Garloff and Smith, 2001;
Nataraj and Arounassalame, 2007, 2011; Smith, 2009). The approach used by
these methods is to first reformulate the problem by writing all multivariate poly-
nomials in Bernstein form. Next, they perform a branch-and-bound search where
bounding is done purely based on the Bernstein coefficients, thus avoiding any
function evaluation. The method presented in this paper resembles the Bernstein
methods in many ways – e.g. in that a reformulation is done before a BB search
solves convex lower bounding problems based on the B-spline coefficients. How-
ever, the Bernstein form is a special case of the B-spline, which may represent any
piecewise polynomial. Except from the related Bernstein approach for polynomial
optimization, and a recent attempt on unconstrained global optimization using the
multivariate B-spline (Park, 2012), the literature is scarce on optimization with
B-splines.

The remainder of this paper is organized as follows. First, the B-spline and
its relevant properties are presented in Sec. 2.2. This section also treats some
important concepts and procedures for manipulating a B-spline. Next, Sec. 2.3
brings the B-spline into an optimization setting by showing how B-spline constraints
can be handled. Sec. 2.4 presents a novel sBB algorithm for optimization of MINLP
problems with spline constraints. A computational study of the algorithm follows
in Sec. 2.5. The paper is concluded in Sec. 2.6, where some suggestions for further
research are given.

2.2. Background on B-splines

In 1946 Schöenberg mathematically described the piecewise polynomial functions
known as splines (Schönberg, 1946). Since then the theory of splines has been devel-
oped and explored thoroughly in many directions. It has seen numerous industrial
applications; ranging from modelling of automobile bodies in the 1960s, to its use
in modern computer-aided design (CAD) tools. The popularity of the spline is
usually attributed to its versatility to model and approximate complex shapes and
functions, and its excellent numerical properties. As the literature reveals, these
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characteristics are aggregated from the mathematical construction of the spline.
The well-established B-spline is one such construction – and the preferred spline
representation in this paper. In the forthcoming sections, the B-spline and some of
its properties will be highlighted from a mathematical programming point of view.
It will then become clear to the reader that the B-spline has properties that make
it suitable for global optimization. For example, its convex hull property allows for
a straightforward construction of a relatively tight (convex) polyhedral relaxation.

To avoid referring the reader to other works most of the basic and relevant prop-
erties are covered here. These properties, and many more, can be found in any
textbook on B-splines, e.g. Schumaker (2007); Piegl and Tiller (1997). The uni-
variate B-spline is introduced before the multivariate B-spline, which will be used in
subsequent sections. A remark is that the multivariate B-spline is presented using
the Kronecker product and vectorized coefficients – a format suitable for implemen-
tation in computer code. After presenting the properties of the B-spline relevant
for optimization, the very useful knot insertion algorithm is given. This algorithm
is a keystone in the B-spline subdivision procedure given later. A supplementary
discussion on how to obtain a B-spline form of a polynomial is given in Sec. 2.2.5.

2.2.1. Univariate B-splines

A univariate, degree p B-spline f : R → R is constructed from n B-spline coefficients
c = [cj]

n−1
j=0 and n+ p+ 1 knots t = [tj]

n+p
j=0 as

f(x; c, p, t) =
n−1∑
j=0

cjBj,p,t(x) = cTBp,t(x). (2.1)

When the parameters c, p, and t are given by the context f(x; c, p, t) is simply
denoted f(x). In (2.1), Bp,t(x) = [Bj,p,t(x)]

n−1
j=0 is a column vector of pth-degree

B-spline basis functions, defined by the recurrence relation

Bj,p,t(x) =
x− tj

tj+p − tj
Bj,p−1,t(x) +

tj+1+p − x

tj+1+p − tj+1

Bj+1,p−1,t(x),
1

Bj,0,t(x) =

{
1, tj ≤ x < tj+1,
0, otherwise.

(2.2)

The B-spline basis functions are (overlapping) piecewise polynomials defined on
the entire real line. However, the domain of the B-spline in (2.1) is considered to
be X = [t0, tn+p] since all basis functions are identically zero outside X. For the
definition of the basis functions to make sense it is required that the knot vector t
contains a nondecreasing sequence of real numbers (knots). Throughout this paper
the knot vector is assumed to be regular in the following sense.

1Division by zero is handled by a ‘0/0 = 0’ convention.
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Definition 2.1 (Regular knot vector). A knot vector t is said to be regular if
t0 = tp, tn = tn+p, and ti ≤ ti+1 < ti+p+1 for i = 0, . . . , n− 2.2

A regular knot vector ensures many important properties of the basis functions.
For that reason a key aspect of procedures that manipulate the knot vector is to
maintain regularity. Since some readers may be unfamiliar with the B-spline basis
functions a few important properties are summarized below.

Property 2.1 (Nonnegativity). Bj,p,t(x) ≥ 0 for all j, p, and x.

Property 2.2 (Local support). Bj,p,t(x) = 0 for all x /∈ [tj, tj+p+1).

Property 2.3 (Partition of unity).
i∑

j=i−p

Bj,p,t(x) = 1 for all x ∈ [ti, ti+1).

As seen from the properties of the basis functions, the B-spline in (2.1) is a
convex combination of the coefficients c. It is also worth noting that it has local
support, meaning that at most p+1 basis functions are nonzero at a point x. These
properties allow fast and numerically stable schemes for evaluating the B-spline.
The most popular among these is the recursive DeBoor-Cox algorithm (De Boor,
1972; Cox, 1972).
All derivatives of f(x) exist in the interior of a knot span (where it is a polyno-

mial). At a knot with multiplicity r, f(x) is p− r times continuously differentiable.
With distinct knots – all knots having a multiplicity of one – f(x) belongs to Cp−1

on its domain X. In fact, its kth derivative is another B-spline of degree p − k
(Schumaker, 2007).
The linear vector space (or spline space) spanned by the basis functions is denoted

Sp,t. Put informally, the Curry-Schoenberg theorem (Curry and Schoenberg, 1966)
states that: any space of piecewise polynomials of degree ≤ p is a subset of Sp,t

on X, given an appropriate knot vector. An obvious consequence of this is that
Pp ⊆ Sp,t on X, where Pp is the space of polynomials of degree ≤ p and t is an
appropriate knot vector. To illustrate this consider the single segment [0, 1] with
no internal knots. On this segment a degree p B-spline has p + 1 basis functions
that correspond to the Bernstein polynomials. Hence it is a basis for all degree
p polynomials on this segment. The relation between the B-spline basis functions
and Bernstein polynomials is given below.

Property 2.4 (Bernstein polynomials). The regular knot vector

t = {a, . . . , a︸ ︷︷ ︸
p+1

, b, . . . , b︸ ︷︷ ︸
p+1

} (2.3)

yields the basis functions

Bj,p,t(x) =

(
p

j

)(
x− a

b− a

)j (
b− x

b− a

)p−j

, (2.4)

2A knot vector satisfying the conditions in Definition 2.1 is also said to be (p + 1)-regular or
clamped.
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for j = 0, . . . , p and x ∈ [a, b]. When a = 0 and b = 1, (2.4) gives the Bernstein
polynomials used to represent the famous Bézier curve.

2.2.2. Multivariate B-splines

In the multivariate case a B-spline may be expressed as the tensor product of
univariate basis functions. For this reason a multivariate B-spline is often called
a tensor product B-spline. Let x ∈ Rd and {Bp1,t1(x1), . . . ,Bpd,td(xd)} be the
univariate basis function (column) vectors of sizes {n1, . . . , nd} with corresponding
degrees p = {p1, . . . , pd} and knot vectors T = {t1, . . . , td}. Then the multivariate
B-spline basis can be written as

Bp,T(x) = Bp1,t1(x1)⊗ . . .⊗Bpd,td(xd) =
d⊗

i=1

Bpi,ti(xi), (2.5)

where ⊗ denotes the Kronecker product. The size of Bp,T, that is, the number of
basis functions, is

N =
d∏

i=1

ni. (2.6)

With this basis a multivariate B-spline may be compactly written as

f(x; c,p,T) = cTBp,T(x), (2.7)

where the B-spline coefficients are collected in the column vector c ∈ RN . The
domain of f(x) is considered to be X = [t0,1, tn1+p1,1] × · · · × [t0,d, tnd+pd,d], where
{tj,i}ni+pi

j=0 are the knots in ti. Furthermore, f(x) ∈ Sp,T, where Sp,T denotes the
space of tensor product splines with degree ≤ p and knot vectors T.3 Given
appropriate knot vectors, it follows from the univariate case that Pp ⊆ Sp,T, where
Pp is the space of multivariate polynomials with degree ≤ p.
Since the multivariate B-spline consists of products of univariate basis functions

it inherits many of the nice properties of the univariate B-spline. The algorithms
for evaluating the univariate B-spline and its derivatives can be reused in the mul-
tivariate case.
A useful property of (univariate and multivariate) B-splines is that they possess

affine invariance, meaning that affine transformations can be applied to the coeffi-
cients alone. In the multivariate case, affine transformations must operate on the
vectorized coefficients c. For example, let Ai ∈ Rni×ni be a linear transformation of
the univariate basis in variable xi. Then, a linear transformation of the multivariate
basis can be written as

ĉ =

(
d⊗

i=1

Ai

)
c, (2.8)

3≤ p is here meant as element-wise inequality. Note that a multivariate spline or polynomial of
degree p may have terms like xp1

1 · · ·xpd

d , so in the conventional sense its degree is
∑

j pj .
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where ĉ is the new vector of B-spline coefficients. For a transformation in only one
variable, say xk, Ai = Ii, ∀i �= k, where Ii ∈ Rni×ni is an identity matrix. This
property is extensively used in the spline procedures presented later in this work.
Note that in the univariate case, (2.8) simplifies to ĉ = Ac.

2.2.3. The control points and control structure of a B-spline

The control points are a key feature of B-splines. They are best described by writing
the B-spline in parametric form. Let y = cTBp,T(x). Then, the parametric form
is obtained by introducing independent parameters η and representing x and y as
explicit functions of these parameters, i.e. x = x(η) = µTBp,T(η) and y = y(η) =
cTBp,T(η), using the same knot vector T and degree p. The new coefficients are
called knot averages, and are here denoted by µi ∈ RN , for i = 1, . . . , d. To leave y
unaltered µ is calculated so that x(η) = η, that is

x(η) = [µ1, . . . , µd]
TBp,T(η) = η. (2.9)

The knot averages may be computed explicitly from the knot vectors, or implicitly
by evaluating Bp,T at d · N points and solving a linear system of (2.9). In the
univariate case, d = 1, the knot averages are simply µj = (tj+1 + . . .+ tj+p)/p.
With the knot averages computed, the parametric form of (2.7) can be written

as [
x(η)
y(η)

]
= [µ1, . . . , µd, c]

TBp,T(η) = PBp,T(η). (2.10)

The control points of the B-spline in (2.7) are the N points with (x, y)-coordinates
equal to the columns {Pj}N−1

j=0 of P ∈ Rd+1×N .
Recalling the basis function properties of nonnegativity and partition of unity, it

follows from (2.10) that any point (x, y) on the B-spline surface is given as a convex
combination of the control points {Pj}. Consequently, the B-spline must be in the
convex hull of the control points. This property of the B-spline is summarized in
the next lemma and illustrated in Fig. 2.1a.

Lemma 2.1 (Convex hull property). Let C = conv ({Pj | j = 0, . . . , N − 1}) and
D = {(x, f(x)) | x ∈ X}, then D ⊆ C.

The convex hull of a set of points is contained inside the axis-aligned minimum
bounding box of the points. The minimum bounding box of a set of points is the
smallest (by some metric) hyperrectangle that contains all points. It is said to
be axis-aligned if its edges are parallel to the coordinate axis. Let the (d + 1)-
dimensional points of the set be given as Pj = [p1,j, . . . , pd+1,j]

T, and the minimum
and maximum element in each dimension be given as p

i
= min{pi,0, . . . , pi,N−1} and

pi = max{pi,0, . . . , pi,N−1}. The axis-aligned minimum bounding box is then the
hyperrectangle H = [p

1
, p1]× · · · × [p

d+1
, pd+1]. The next corollary follows directly

from Lemma 2.1.
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Figure 2.1.: The convex hull (a) and bounding box (b) property illustrated with a univariate,
cubic B-spline.

Corollary 2.1 (Minimum bounding box property). From Lemma 2.1 it follows
that D ⊆ C ⊆ H, where H is the axis-aligned minimum bounding box of the control
points {Pj | j = 0, . . . , N − 1}.

Closely related to the control points is the B-spline control structure. It is the
linear interpolant of the control points and may itself be written as a B-spline of
degree one (p = 1). For d = 1 it is called the control polygon since it is the polygon
formed by the control points {Pj}. The control polygon of a cubic spline is shown
in Fig. 2.2.
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Figure 2.2.: A univariate, cubic B-spline with 18 knots (a) and 28 knots (b). The two splines are
geometrically identical, but have different knot spacing. Notably, the control polygon
of (b) is closer to the spline than the control polygon of (a).

For x in the interval X = X1 × . . .×Xd, let h(x) = cTB1,T(x) be the piecewise
linear function that interpolates the control points {Pj}. Furthermore, let ∆i =
max{tj,i − tj−1,i | j = 1, . . . , ni + pi} be the largest knot span in the knot vector ti,
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Chapter 2. Global optimization with spline constraints

and let D2
i f be the ith-directional second derivative of f . Then, it can be shown

that (cf. Schumaker 2007; Cohen and Schumaker 1985; Prautzsch and Kobbelt
1994; Reif 2000)

||f(x)− h(x)||X,∞ ≤
d∑

i=1

Ci∆
2
i ||D2

i f ||Xi,∞, (2.11)

where Ci are constants and || · ||I,∞ denotes the L∞-norm on the interval I. Because
of the factors ∆2

i in (2.11) the control structure is said to converge quadratically to
the spline. Degree elevation and knot refinement are two methods that increase the
number of knots (shorten the knot spans), and effectively lower the upper bound
in (2.11). Knot refinement is the preferred method in this paper (see Cohen and
Schumaker 1985 for a comparison of the two methods). Before presenting the knot
insertion and knot refinement method, consider the following comments to (2.11):

• As the largest knot span of all knot vectors goes to zero, so does the upper
bound.

• Decreasing the largest knot span of a knot vector will lower the upper bound.
This motivates knot refinement on a largest span first basis. However, the
upper bound does not guarantee that this approach is optimal. Reif (2000)
discusses a lower bound that may be better suited to device an efficient re-
finement procedure.

• As the knot spacing goes to zero the control structure converges to the spline,
and the convex hull of Lemma 2.1 approaches the convex envelope of the
spline.

2.2.4. Knot insertion

Knot insertion is the procedure of augmenting the knot vector with new knots. It
is one of the most important B-spline algorithms and has many applications; one
of them being subdivision. In essence, knot insertion is a change of vector space
basis, e.g. the curve is not changed geometrically or parametrically (Boehm, 1980;
Lyche et al., 1985; Piegl and Tiller, 1997).

Definition 2.2 (Refinement). A knot vector τ is said to be a refinement of a knot
vector t if any real number occurs at least as many times in τ as in t.

Lemma 2.2. Let p be a positive integer and let t be a knot vector with at least p+2
knots. If τ is a refinement of t then Sp,t ⊆ Sp,τ .

Let τ = [τi]
ñ+p
i=0 be a refinement of t = [ti]

n+p
i=0 , so that n ≤ ñ. In practice τ is a

knot vector obtained by adding knots to t. Let

Sp,t = span{Bj,p,t}n−1
j=0 and Sp,τ = span{Nj,p,τ}ñ−1

j=0
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2.2. Background on B-splines

be the spline spaces of degree p spanned by the basis functions defined by t and τ ,
respectively. From Lemma 2.2, Sp,t ⊆ Sp,τ and there exists an ñ × n matrix A so
that

Bp,t = ATNp,τ ,

i.e. Sp,t is invariant to the linear transformation of knot insertion. The change of
basis from Bp,t to Np,τ is given by the knot insertion matrix A. A can be efficiently
calculated using the Oslo algorithm 1 (Cohen et al., 1980; Lyche et al., 1985).
Selecting the new coefficients as d = Ac gives

f(x) = cTBp,t(x) = cTATNp,τ (x) = dTNp,τ (x),

where the last term is called the B-spline expansion of f on τ .
In the multivariate case, consider the B-spline

f(x) = cT (Bp1,t1(x1)⊗ . . .⊗Bpd,td(xd))

with knot vectors {t1, . . . , td}. A B-spline expansion f̃(x) of f(x) can be written
as

f̃(x) = dT (Np1,τ1(x1)⊗ . . .⊗Npd,τd(xd)) ,

where the knot vector τi is a refinement of ti for i = 1, . . . , d. Let the matrices
{Ai}di=1 be the corresponding univariate knot insertion matrices such that

Bpi,ti(xi) = AT
i Npi,τi(xi), for i = 1, . . . , d.

Note that Ai = I when τi = ti, that is, when there is no refinement of ti. The
transformation

d = (A1 ⊗ . . .⊗ Ad) c (2.12)

then gives

f̃(x) = dT (Np1,τ1(x1)⊗ . . .⊗Npd,τd(xd))

= cT
(
AT
1 ⊗ . . .⊗ AT

d

)
(Np1,τ1(x1)⊗ . . .⊗Npd,τd(xd))

= cT
(
AT
1Np1,τ1(x1)⊗ . . .⊗ AT

dNpd,τd(xd)
)

= cT (Bp1,t1(x1)⊗ . . .⊗Bpd,td(xd))

= f(x),

and f(x) is left unaltered by the change of basis. Eq. (2.12) is utilized in the
following procedure for knot insertion.
The knot insertion procedure in Algorithm 1 has many applications. In the

following knot refinement procedure (see Algorithm 2) it is used to refine the knot
vectors to a desired number of knots. The procedure inserts knots iteratively at
the midpoint of the largest knot span of a knot vector ti until a desired number of
knots ri is achieved.
An important note to the knot refinement procedure is that, because it always in-

serts knots at the midpoint of a knot span, it will never break knot vector regularity
(see Definition 2.1).
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Chapter 2. Global optimization with spline constraints

Algorithm 1 Knot insertion

Require: Coefficients c, knot vectors {t1, . . . , td}, and refined knot vectors
{τ1, . . . , τd}

Ensure: New B-spline coefficients d
1: Compute univariate knot insertion matrices {Ai}di=1

2: Compute new B-spline coefficients as d = (A1 ⊗ . . .⊗ Ad) c

Algorithm 2 Knot refinement

Require: Coefficients c, knot vectors {t1, . . . , td}, and desired number of knots
{r1, . . . , rd}

Ensure: Refined knot vectors {τ1, . . . , τd} and coefficients d
1: Initialize new knot vectors as τi ← ti, for i = 1, . . . , d
2: for i = 1 to d do
3: while number of knots in τi is less than ri do
4: j ← index of largest knot interval [τj, τj+1] in τi
5: s ← (τj + τj+1) /2
6: Insert s in τi
7: end while
8: end for
9: With the refined knot vectors {τ1, . . . , τd} compute new B-spline coefficients d

using the knot insertion procedure in Algorithm 1

2.2.5. Representing polynomials with B-splines

Consider a univariate polynomial

pp(x) = λ0 + λ1x+ . . .+ λpx
p = λTxp (2.13)

defined on x ∈ [a, b], where xp = [xi]pi=0 is the power basis to degree p, and λ =
[λi]

p
i=0 are the coefficients. It is well known that any polynomial can be expressed by

the Bernstein polynomials. Furthermore, the Bernstein polynomials are a B-spline
basis with a special knot vector, as described by Property 2.4. Thus, it is clear
that any polynomial can be expressed by a B-spline, as expected from the fact that
Pp ⊆ Sp. With degree p and a knot vector defined as in Property 2.4, a B-spline is
defined on the segment [a, b] as

f(x) =

p∑
j=0

cjBj,p,t(x) = cTBp,t(x) = cTTT
pxp. (2.14)

The last term in (2.14) states that the B-spline basis can be written as a linear trans-
formation of the power basis, i.e., Bp = TT

pxp. Following Piegl and Tiller (1997),
the linear transformation is considered in two operations; by letting Tp = RpMp,
so that Bp = MT

pR
T
pxp. The first transformation, given by Rp, is a reparameteriza-

tion of the polynomial from the interval [a, b] to [0, 1], as required by the Bernstein
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2.2. Background on B-splines

polynomial. With c = 1/(b− a) and d = −a/(b− a) the reparameterization matrix
Rp ∈ R(p+1)×(p+1) is given as

Rp(i, j) =

{
0 , for i > j,(
j
i

)
cidj−i , for i ≤ j.

(2.15)

The second transformation matrix, Mp ∈ R(p+1)×(p+1), takes the reparameterized
power basis to the Bernstein polynomials and is given as

Mp(i, j) =

{
0 , for i < j,
(−1)i−j

(
p
j

)(
p−j
i−j

)
, for i ≥ j.

(2.16)

In the constructions above, zero-indexed matrices are assumed. As seen by com-
paring (2.13) and (2.14), a degree p B-spline with coefficients c calculated as

RpMpc = λ =⇒ c = (RpMp)
−1λ, (2.17)

is equal to the polynomial in (2.13). That is, f(x; c, p, t) = pp(x), for x ∈ [a, b].
The above procedure for taking a polynomial to a B-spline form can be used in the

multivariate case with only a few adjustments. Consider a multivariate polynomial
in Pp, here written as the Kronecker products of univariate power basis vectors:

pp(x) = λT
d⊗

i=1

xi,pi , (2.18)

where x ∈ [a1, b1]× · · · × [ad, bd] = X. Here xi,pi denotes the power basis vector to
degree pi in the variable xi. Let Ti = (RpiMpi)

−1 be the inverse of the transforma-
tion matrix that takes a univariate, degree pi power basis on [ai, bi] to a B-spline
basis. Then, the p-th degree multivariate B-spline f(x; c,p,T), with knot vectors
T defined as in Property 2.4, and coefficients

c =

(
d⊗

i=1

Ti

)
λ, (2.19)

is equal to (2.18) on X. That is, f(x; c,p,T) = pp(x), for x ∈ X.

2.2.6. Function approximation with B-splines

In this section we briefly introduce the widely used approximation scheme known
as cubic spline interpolation. The cubic spline offers great flexibility and may fit
difficult shapes without suffering from Runge’s phenomenon – the oscillation that
may occur in high-degree polynomial interpolation.
Let any function f : Rd → R be sampled on a regular grid to yield M data points

{xi, yi}Mi=1, where f(xi) = yi. A B-spline that approximates f by interpolating the
M data points is obtained by solving the following linear system:

[
Bp(x

1) Bp(x
2) . . . Bp(x

M)
]T

︸ ︷︷ ︸
Bc

c = y (2.20)

47



Chapter 2. Global optimization with spline constraints

where y = [yi]Mi=1 and Bc ∈ RM×N is called the B-spline collocation matrix. It is
customary to select a knot vector that gives a square collocation matrix (M = N).
An example of such a knot vector is the free end conditions knot vector for cubic
spline interpolation (p = 3):

tF = { x1, . . . , x1

︸ ︷︷ ︸
p+1 repititions

, x3, . . . , xM−2, xM , . . . , xM

︸ ︷︷ ︸
p+1 repititions

}.

Notice that the second and second last knot is omitted from tF to obtain M = N .
For square Bc, the conditions under which Bc is invertible are known as the
Schoenberg-Whitney nesting conditions : ti < xi < ti+p+1 for i = 1, 2, . . . ,M , al-
lowing xi = ti only if ti = ti+p < ti+p+1. These conditions are fulfilled for t = tF ,
and the B-spline coefficients can readily be computed by solving Bcc = y.
TheM×M linear system in (2.20) can be solved efficiently by a sparse solver on a

modern desktop computer forM ≤ 100, 000. This is sufficient to achieve reasonably
accurate approximations of most functions of 5 or less variables. The approximation
error of a spline can be made arbitrarily small for continuous functions by increasing
the sampling density. Furthermore, when the system in (3.20) is augmented with
natural boundary conditions, the resulting spline is the interpolating C2-function
that minimizes the second derivative.

Example 3. Consider the Michalewicz function

fm(x) = −
d∑

i=1

sin(xi) sin
2m

(
ix2

i

π

)
,

on x ∈ X = [0, π]2. The function is plotted in Fig. 2.3a for d = 2 and m = 10. An
interpolating cubic spline f̃m is constructed by sampling fm on a 50 × 50 grid and
solving (2.20). The absolute error |fm − f̃m| is plotted in Fig. 2.3b.

2.3. Global optimization with B-spline constraints

Methods for solving P′, such as the spatial branch-and-bound, generate a sequence
of lower bounding problems that measure the progress towards closing the optimal-
ity gap. A lower bounding problem is required to be a convex relaxation of P′ to
assure that it can be solved to (global) optimality and give a valid lower bound. A
convex relaxation of P′ is here constructed in two steps: reformulation and convex-
ification. The reformulation translates the problem to an equivalent form, mapping
all local and global optima of the original problem. Reformulation is done only
once with the purpose of obtaining a formulation suitable for convexification. The
convexification step subsequently replaces all nonconvex constraints with convex
outer-estimating constraints, producing a convex lower bounding problem.
A subclass of P′ are problems where the objective and constraint functions are

splines. The remainder of this section treats this subclass of problems using the
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(a) Michalewicz function (b) Approximation error

Figure 2.3.: In (a), the Michalewicz function and a 50× 50 regular grid of equidistant points. In
(b), the cubic spline approximation error |fm − f̃m|, which coincide with the grooves
in the Michalewicz function. The maximum absolute error on X is ||fm − f̃m||X,∞ =
7.6 · 10−3.

spline theory in Sec. 2.2. The proposed reformulation-convexification is put into
an sBB setting in Sec. 2.4.
Reformulation of P′ begins by renaming the constraint and objective functions

to vn+i(x) = gi(x), for i = 1, . . . ,m, and vn+m+1(x) = f(x). By introducing m+ 1
auxiliary variables, P′ is recast into the equivalent MINLP problem:

minimize
x

xn+m+1

subject to xi = vi(x), i = n+ 1, . . . , n+m+ 1

x ∈ X ∩ Znd × Rn+m+1−nd = Xd

(P)

where, for i = n+1, . . . , n+m+1, vi : Rn → R is a B-spline function in a respective
spline space Si of appropriate degree (larger than zero). If vi is a polynomial
it is brought to B-spline form (2.7) as described in Sec. 2.2.5. The set X is
a convex polyhedron that bounds all complicating variables (variables that are
discrete and/or participate in non-convex constraints). In the reformulation P,
X incorporates the right hand side of the inequality constraints in P′, i.e. X =
X ′ ∪ {xi ≤ 0, i = n+ 1, . . . , n+m}. In the rest of this paper it is assumed that X
includes box constraints on the variables, denoted as xl ≤ x ≤ xu.

Remark 2.1. In the reformulation P there is one auxiliary variable for each of
the objective and constraint functions, and a total of m + 1 auxiliary variables.
However, if a function is additively separable it may be advantageous to separate it
by introducing additional auxiliary variables. In particular, separation can reduce
the dimension of the B-spline(-s) affiliated with the constraint.

In the convexification step a convex relaxation of P is obtained by removing the
integrality constraints on x and replacing all nonconvex constraints with convex
outer-estimating functions. A nonconvex constraint vi(x) = xi can be relaxed
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Chapter 2. Global optimization with spline constraints

by introducing a convex function vli(x) and a concave function vui (x), such that
vli(x) ≤ xi ≤ vui (x). The constraints vli(x)− xi ≤ 0 and −vui (x) + xi ≤ 0 will then
serve as a convex relaxation of vi(x) = xi (cf. Boyd and Vandenberghe 2004).
The relaxation can generally be strengthened by introducing new variables λ,

lifting the problem to a higher-dimensional space, and allowing vl and vu to be
functions of x and λ. The relaxed problem can be written in the following form:

minimize
x,λ

xn+m+1

subject to ṽi(x, λ) ≤ 0, i = 1, . . . , m̃,

x ∈ X, λ ∈ Λ,

(R)

where ṽi, for i = 1, . . . , m̃, are convex functions, and λ are auxiliary variables
constrained to the convex set Λ. Note that there is no restriction on m̃; a convex
relaxation of P can be obtained by either removing a nonconvex constraint or
replacing it with one or more convex constraints. When all ṽi are affine, R is an
LP problem. This is the case for the convex relaxations of B-spline constraints
presented in the following subsection.
For later reference, let GP and GR denote the constraint feasible sets of P and

R in the variables x, i.e.,

GP = {x | vi(x) = xi, i = 1, . . . ,m} and

GR = {x | ṽi(x, λ) ≤ 0, i = 1, . . . , m̃; λ ∈ Λ} . (2.21)

The feasible sets of x in P and R are then FP = Xd ∩ GP and FR = X ∩ GR,
respectively. A convex relaxation of the constraints is said to be valid if GP ⊆ GR.
A consequence of a valid constraint relaxation is that FP ⊆ FR, since X

d ⊆ X, and
the relaxed problem in R gives a lower bound on P.

Remark 2.2. Many different reformulation-convexification approaches can be found
in the literature (Sherali and Tuncbilek, 1995; Smith and Pantelides, 1999; Gatzke
et al., 2002; Liberti and Pantelides, 2006). One approach is the reformulation-
linearization technique (RLT) described by Belotti et al. (2009), among others.
RLT follows a two-step construction with similarities to the one described above.
In particular, the reformulation in RLT expands non-convex functions by replacing
all nonlinear operators with auxiliary variables. The auxiliary variables are then
linked to the original variables through simple constraints with the replaced (unary
or binary) nonlinear operators. The convexification/linearization step relaxes these
constraints using known linear, outer-estimating functions of the nonlinear opera-
tors, such as McCormick’s linear outer-estimators of bilinear terms (McCormick,
1976).
The RLT reformulation of a nonlinear function is often represented by a binary

tree of nonlinear operations. It resembles the reformulation obtained by writing the
function in B-spline form. Recalling (2.1) and (2.2), the B-spline basis functions
are constructed from recursive convex combinations. This reformulation can also
be represented as a tree structure of convex combinations, with the leaf nodes being
the piecewise constant basis functions of degree zero.
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2.3.1. Convex relaxations of B-spline constraints

A B-spline constraint in P is written as

vi(x) = xi, (2.22)

where vi(x) is a B-spline function in the form of (2.7). Since vi(x) in general is
a nonlinear function the equality constraint in (2.22) is nonconvex. Two possible
valid, convex relaxations of (2.22) are described next.

Bounding box relaxation a B-spline constraint

From the bounding box property in Corollary 2.1 it follows that

cmin = min{ci}N−1
i=0 ≤ xi ≤ max{ci}N−1

i=0 = cmax (2.23)

is a valid convex relaxation of (2.22). Eq. (2.23) describes a simple box constraint
on xi. Note that no auxiliary variables are required in this relaxation and (2.23)
can therefore serve as a lightweight convex relaxation of the B-spline constraint in
(2.22).

Convex hull relaxation of a B-spline constraint

From Lemma 2.1 it follows that (x, vi(x)) is in the convex hull of the control points
{Pi}N−1

i=0 . In other words, a pair (x, xi) can be expressed as a convex combination
of the control points, which makes the B-spline surface a subset of the possible
convex combinations. A convex relaxation can be made by allowing all possible
convex combinations. By introducing N new variables {λi}N−1

i=0 , a lifted polyhedral
relaxation is obtained as:

N−1∑
i=0

Piλi =

[
x
xi

]
,

N−1∑
i=0

λi = 1, and λi ≥ 0 for i = 0, . . . , N − 1. (2.24)

The convex set C in Lemma 2.1 is expressed by the equations in (2.24). Since
D ⊆ C it is a valid convex relaxation of (2.22). Obviously, this is the tightest
convex relaxation that can be obtained from the control points alone.
As shown in Appendix 2.B, the relaxation in (2.24) of a B-spline representing a

bilinear term x1x2 is equivalent to the McCormick relaxation.

Remark 2.3. The convex relaxation in (2.24) may be computationally heavy since
it introduces a total of N auxiliary variables to the relaxed problem. Recalling that
N grows exponentially with the dimension of the B-spline, see (2.6), it is clear
that the relaxation is unsuited for high-dimensional B-splines. For example, with d
dimensions and 10 basis functions in each dimension N = 10d. Three remedies to
lessen the computation load are suggested below:
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1. As pointed out in Remark 2.1, if a constraint is additively separable it can be
separated and represented by several B-splines. This can reduce the dimension
of the related B-splines and the total number of auxiliary variables needed to
relax the constraint.

2. When N is prohibitively large the bounding box relaxation in (2.23) can be
used at the cost of a looser relaxation.

3. The number of auxiliary variables in (2.24) can be reduced by realizing that
many of the points in {Pi} may be in the interior of the convex hull and
are thus redundant. The latter approach may be implemented by computing
the convex hull of the points {Pi} and then introducing auxiliary variables as
in (2.24) only for the points that participate as vertices in the convex hull.
Since it is expensive to calculate the convex hull of a large number of points
(especially in higher dimensions) an alternative approach is to apply the Akl-
Toussaint heuristic (Akl and Toussaint, 1978) to quickly exclude points that
are in the interior of the convex hull.

Example 4 (Convex relaxations of monomials of odd degree). In this example a
B-spline is configured to represent a monomial of odd degree 2k+ 1 on the interval
x ∈ [a, b]. The convex relaxation of the B-spline is then compared with two other
relaxation methods: the general αBB relaxation (Adjiman et al., 1997) which can be
applied to any twice differentiable functions, and the (tight) convex envelope of odd-
degree monomials by Liberti and Pantelides (2003). For simplicity, the monomial
with k = 1 on the interval [−1, 1] is used in the example.
First, consider the monomial and its convex envelope: lk(x) ≤ x2k+1 ≤ uk(x).

Liberti and Pantelides show that the convex envelope is given by the functions:

lk(x) =




{
a2k+1(1 +Rk(x/a− 1)) , if x < c
x2k+1 , if x ≥ c

}
, if c < b

a2k+1 + b2k+1−a2k+1

b−a
(x− a) , otherwise

uk(x) =




{
x2k+1 , if x ≤ d
b2k+1(1 +Rk(x/b− 1)) , if x > d

}
, if d > a

a2k+1 + b2k+1−a2k+1

b−a
(x− a) , otherwise

where Rk ≡ (r2k+1
k − 1)/(rk − 1), c = rka, d = rkb, and rk is a root of a (2k − 1)-

degree polynomial. For the case k = 1, they provide rk = r1 = −0.5. Next, consider
the relaxation Lk(x) ≤ x2k+1 ≤ Uk(x) of the αBB method. The upper and lower
bounding functions are on the form:

Lk(x) = x2k+1 + αk(x− a)(x− b),

Uk(x) = x2k+1 − βk(x− a)(x− b),

where αk is a positive constant that is sufficiently large to render the second deriva-
tive d2L/dx2 positive, and βk is sufficiently large to render d2U/dx2 negative, for all
x ∈ [a, b]. For the monomial x2k+1, αk = k(2k+1)|a|2k+1 and βk = k(2k+1)b2k+1.
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2.3. Global optimization with B-spline constraints

Last, the B-spline relaxation is constructed by writing the monomial as a p =
2k + 1 degree B-spline using (2.18). For k = 1 and x ∈ [−1, 1], the resulting
B-spline has the following knots, knot averages, and coefficients:

t = [−1,−1,−1,−1, 1, 1, 1, 1],

µ = [−1,−0.333, 0.333, 1]T, and

c = [−1, 1,−1, 1]T.

The convex hull of the control points, Ck = conv({(µi, ci)}pi=0), can then be expressed
as in (2.24). In Figure 2.4 the boundary of Ck, denoted ∂Ck, is plotted with the
other relaxations. The figure also shows the improvement of the B-spline relaxation
when inserting a single knot at x = 0, giving

t = [−1,−1,−1,−1, 0, 1, 1, 1, 1],

µ = [−1,−0.667, 0, 0.667, 1]T, and

c = [−1, 0, 0, 0, 1]T.
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Figure 2.4.: Comparison of convex relaxations of the monomial x3 for x ∈ [−1, 1]. Control points
are marked with filled circles. The B-spline relaxation with a minimal number of knots
is shown in (a). In (b) a single knot is inserted at x = 0 to improve the relaxation.

Example 5 (Convex relaxation of the six-hump camelback function). This example
studies how the number of variables in a B-spline relaxation, which can be increased
by knot insertion, is related to the tightness of the relaxation. To measure this
relation the minimization of the six-hump camelback function is considered:

minimize
x

f(x) = (4− 2.1x2
1 +

1

3
x4
1)x

2
1 + x1x2 + (−4 + 4x2

2)x
2
2

= 4x2
1 − 2.1x4

1 +
1

3
x6
1 + x1x2 − 4x2

2 + 4x4
2,

(2.25)
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on the domain x ∈ [−3, 3] × [−3, 3]. The problem has a total of six local min-
ima, two of them being the global minima: x∗ = (−0.0898, 0.7126) and x∗ =
(0.0898,−0.7126), at which f ∗ = f(x∗) = −1.0316.
With degrees p1 = 6 and p2 = 4, a bivariate B-spline representing f(x) is con-

structed as outlined in Sec. 2.2.5. The resulting B-spline has a total of (p1+1)(p2+
1) = 35 control points (and basis functions). Using the convex hull relaxation in
(2.24) the problem in (2.25) is relaxed to an LP problem with ñ = 38 variables
and m̃ = 4 constraints. The 38 variables are: the original variables x1 and x2;
the auxiliary variable x3 resulting from the reformulation x3 = f(x1, x2); and, the
35 auxiliary variables related to the control points. The 4 constraints are given in
(2.24). The relaxation is improved by refining the regular knot vectors with Alg.
2. The desired number of knots, r1 and r2, are calculated as: r1 = 2(p1 + 1) + s
and r2 = 2(p2 + 1) + s, where s is the number of knots to insert into the knot
vectors. With s = 0, zero knots are inserted. With s = 1, one knot is inserted at
the midpoint of the largest knot span of each knot vector. And so on.
The B-spline relaxation is compared with the relaxation that results from a sym-

bolic reformulation. The problem is brought to standard form by a binary tree
function expansion (Smith and Pantelides, 1999), giving:

minimize
w

f(w) = 4w3 − 2.1w4 +
1

3
w5 + w6 − 4w7 + 4w8

subject to w3 = w2
1, w4 = w2

3, w5 = w3w4

w6 = w1w2, w7 = w2
2, w8 = w2

7

w1 ∈ [−3, 3], w2 ∈ [−3, 3]

(2.26)

The variable bounds on w3, . . . , w8 are inferred from the bounds on w1 = x1 and
w2 = x2 during the reformulation procedure – no further domain reduction is ap-
plied. The reformulated problem in (2.26) is relaxed to a convex NLP using Mc-
Cormick’s relaxation of bilinear terms and the nonlinear convex envelope of uni-
variate quadratic terms.
The relaxations are compared by computing the optimality gap f ∗ − f̄ , where

f̄ is the optimal objective function value of the relaxed problem. The results are
plotted in Figure 2.5 and listed in Table 2.1 for various knot refinement values s.
As expected the B-spline relaxation improves as the number of knots is increased,
but at the cost of introducing more variables.
Several observations can be made from the reported results for problem (2.25).

First of all, it is clear that with no knot refinement the B-spline relaxation gives a
larger optimality gap than the standard form relaxation. However, it surpasses the
latter when 4 or more knots are inserted. Further knot refinement yields diminishing
returns in closing the optimality gap. This is not surprising since the effect of knot
insertion becomes increasingly local as more knots are added: i.e., it will only affect
neighbours in a condensing set of control points. This is illustrated in Fig. 2.5
where the reader can observe a constant optimality gap for s = 14 to s = 20. This
happens because the additional knots are being placed too far away from the global
optimum to affect the lower bound.
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Figure 2.5.: Comparison of different convex relaxations of the six-hump camelback function.

Table 2.1.: Comparison of standard form relaxation and refined B-spline relaxations

Refined B-spline relaxation

Relaxation Std.
form

s = 0 s = 1 s = 2 s = 5 s =
10

s =
20

s =
50

ñ 8 38 51 66 123 258 678 3138
m̃ 16 4 4 4 4 4 4 4
N - 35 48 63 120 255 675 3135
f ∗ − f̄ 27.87 607.2 55.29 48.36 21.87 4.46 0.73 0.08

ñ: number of variables, m̃: number of constraints, N : number of control points,
f∗ − f̄ : optimality gap

In unconstrained programming successive knot refinement (increasing s) is suf-
ficient to close the optimality gap. This is a direct consequence of the fact that
the control structure will converge to the B-spline as the largest knot interval goes
towards zero. Thus, in the limit the control points with the lowest B-spline coeffi-
cient, i.e. {Pi | ci ≤ cj, ∀i, j = 0, . . . , N − 1}, will coincide with the global minima
{(x∗, f(x∗))}. Unfortunately, as Table 2.1 shows, the number of variables quickly
rises as knots are inserted, and, it is questionable if knot refinement alone is an ef-
ficient way to close the gap. In constrained nonlinear programming knot refinement
alone is not enough to close the optimality gap and spatial branching is required.
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2.4. A spatial branch-and-bound for spline-constrained

MINLP problems

An algorithm that solves problem P using the reformulation-convexification in Sec.
2.3 is presented here. The algorithm is inspired by the prototypical spatial branch-
and-bound framework by Belotti et al. (2009), which was implemented and pre-
sented as the global MINLP solver COUENNE in the same paper. The algorithmic
framework is reproduced in Algorithm 3. Since the spatial branch-and-bound and
its components have been examined in a great number of publications (see Belotti
et al. 2009; Smith and Pantelides 1999 and the references therein), it is briefly
described here to introduce the necessary terminology.
The sBB algorithm maintains a list of nodes that represents the sBB tree. Ini-

tially, the list only contains the root node P, also denoted P0. At iteration k
a problem Pk is selected for processing. The processing begins with an optional
bounds tightening procedure that attempts reduce the variable ranges. Next, a
convex, lower bounding problem Rk is generated from Pk and solved. The optimal
solution of Rk is denoted x̄k at which z̄k is the objective function value. The cur-
rent upper bound on P, denoted zu, is updated if x̄k is a feasible solution to Pk

and z̄k < zu. Pk is then fathomed (deleted) if: the lower bound has surpassed the
upper bound (z̄k > zu); or the node has converged (zu− z̄k < ε); or Rk is infeasible.
Otherwise, the node requires further processing. Pk can then be locally solved to
possibly improve the upper bound zu. Finally, a branching procedure subdivides
Pk into two subproblems Pk− and Pk+ which are added to the list for later pro-
cessing. The algorithm continues in the same fashion by selecting a new problem
for processing until the list is empty. Upon termination the global optimum can be
certified with ε-precision.
Algorithm 3 has been implemented in CENSO (Convex ENvelopes for Spline

Optimization), a publicly available C++ code for global optimization of spline-
constrained MINLP problems (Grimstad et al., 2015a). CENSO contains a simple
sBB implementation which make use of three different solvers: GUROBI (Gurobi
Optimization, Inc., 2014) to solve lower bounding LP problems; and, IPOPT

(Wächter and Biegler, 2006) and BONMIN (Bonami et al., 2008) to solve upper
bounding NLP and MINLP problems, respectively. All spline related computations
are handled by SPLINTER (Grimstad et al., 2015b), a spline library which imple-
ments the theory presented in Sec. 2.2 using the linear algebra library EIGEN

(Guennebaud et al., 2010). The library is used in four steps of the algorithm to:

• reformulate the problem to the form in P,

• generate the lower bounding problems Rk,

• perform the subdivision that creates subproblems Pk− and Pk+, and

• evaluate the splines and their derivatives when solving the upper bounding
problems Pk.
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2.4. A spatial branch-and-bound for spline-constrained MINLP problems

Algorithm 3 Spatial branch-and-bound

Require: Problem P
Ensure: The value zopt of an optimal solution of P
Initialize list of subproblems: L ← {P}
Set initial upper bound on P: zu ← ∞
while L �= ∅ do

Select and remove problem Pk from L � (Sec. 2.4.1)
(Optional) Apply bounds tightening to Pk � (Sec. 2.4.4)
if bounds tightening proved Pk infeasible then

continue (subproblem is fathomed)
end if
Generate a convex relaxation Rk of Pk � (Sec. 2.3)
Solve Rk; let x̄

k be an optimum and z̄k its objective value
if x̄k is feasible for Pk then

Let zu ← min{zu, z̄k}
end if
if z̄k ≥ zu or zu − z̄k ≤ ε or Rk infeasible then

continue (subproblem is fathomed)
else

(Optional) Solve Pk for possible ẑk � (Sec. 2.4.5)
zu ← min{zu, ẑk}
Choose a branching variable xi and a branching point xb

i � (Sec. 2.4.2)
Create subproblems: Pk− (xi ≤ xb

i) and Pk+ (xi ≥ xb
i) � (Sec. 2.4.3)

L ← L ∪ {Pk−,Pk+}
end if

end while
Output zopt = zu

The two first steps above have already been discussed in Sec. 2.3. A description
of the two last steps can be found in the subsequent Sec. 2.4.3 and Sec. 2.4.5,
respectively. Note that these, and the other steps of algorithm, are labelled in Alg.
3 with the sections that treat them.

Remark 2.4 (Default relaxation). The default convex relaxation in CENSO is the
convex hull relaxation in Sec. 2.3.1.

Remark 2.5. The B-spline module does not require any user input unless knot
refinement is turned on (the desired number of knots in Alg. 2 is then required).

2.4.1. Selection operation

A subproblem is selected with a best-bound-first policy:

Select a subproblem Pk with k ∈ argmin
j:Pj∈L

{z̄j}. (2.27)
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Chapter 2. Global optimization with spline constraints

With this selection policy the subproblem with the lowest lower bound is selected
for processing in the hope of maximizing the reduction of the optimality gap. Due
to its simplicity and bound improving property it is a popular selection policy in
sBB algorithms.

2.4.2. Branching procedure

Branching-variable selection. Branching variables are selected by prioritizing in-
teger variables over continuous variables. When all integer variables have been
fixed spatial branching begins. Among all continuous variables that participate in
non-convex constraints, the variable with the largest bound range is selected for
branching. The branching rule can be expressed as:

Select a branching variable xi with i = argmax
i∈Ic

{xu
i − xl

i}, (2.28)

where Ic denotes the index set of continuous variables that participate in non-convex
constraints (and require branching). This simple branching rule is motivated by
the comments to the B-spline control structure convergence given in Sec. 2.2.3.

Branching-point selection. After a variable xi has been selected for branching one
has to decide a branching point xb

i ∈ (xl
i, x

u
i ). To improve the lower bounds on the

subproblems it is desirable to branch at a point that makes x̄k infeasible. This is
usually done by branching at a point near x̄k

i . In some cases this point may be close
to the variable bounds and branching is likely to create a very easy subproblem and
a very hard one. To prevent this and keep the BB tree balanced, the branching point
may be selected as a convex combination of x̄k

i and the midpoint xm
i = (xl

i+xu
i )/2.

The following strategy is adopted from (Belotti et al., 2009) and guarantees a
minimum distance from the variable bounds:

xb
i = max

{
xl
i + b,min{xu

i − b, αx̄k
i + (1 + α)xm

i }
}
, (2.29)

where 0 < α < 1 and b = β(xu
i − xl

i)/2 for 0 < β < 1/2. In CENSO, the default
value for α and β is 0.25 and 0.2, respectively.
Branching at a point close to x̄i is advantageous when xi participates in a B-spline

constraint. In the subdivision of a B-spline the control structure will interpolate
the constraint at the branching point. The relaxation will also improve in the
neighbourhood of xb

i due to the local support of B-splines. If knot refinement is
applied the relaxation tighten at points away from xb

i . These notions are described
in the following section on B-spline subdivision.

2.4.3. B-spline subdivision

This section will shed light on how B-splines are affected by subdivision and how
they should be treated to ensure properties required for a consistent bounding
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procedure. A consistent bounding procedure requires a non-decreasing sequence of
lower bounds. This translates into a requirement on the convex relaxations: they
must get tighter as subdivision shrinks the search space. Two B-spline relaxations
were introduced in Sec. 2.3.1. This section will focus on the convex hull based
relaxation in Sec. 2.3.1, but the arguments are valid for the bounding box relaxation
as well.
Throughout this section all steps are illustrated on a quadratic, univariate B-

spline with knots t = [0 0 0 1 1 1] and coefficients c = [1 −1 1], which is a B-spline
expansion of 4x2 − 4x + 1 on x ∈ [0, 1]. The B-spline, with its control points and
convex hull relaxation, is illustrated in Fig. 2.6. Bisection at xb = 0.5 gives two
subproblems: Child A with x ∈ [0, xb] and Child B with x ∈ [xb, 1].
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Figure 2.6.: A quadratic B-spline representing 4x2 − 4x + 1, its control points and convex hull
relaxation. It can easily be verified that the knot averages, the x-coordinates of the
control points, are t∗ = [0 0.5 1].

To make a convex hull relaxation tighter the control points must either be moved
(to lie closer to the relaxed function) or simply removed. As stated in Property
2.2, a B-spline basis function Bj,p,t(x) evaluates to zero if x is outside the interval
[tj, tj+p+1). If a subproblem k is created such thatXk∩[tj, tj+p+1) = ∅, then Bj,p,t(x)
is unsupported inside the search space of the problem and can be ignored during
function evaluation. The control points associated with unsupported basis functions
are not part of the convex combination that creates the function surface. Thus,
they are not needed in the relaxation and can be removed. As the search space is
partitioned the convex relaxations will shrink until a minimum number of supported
basis functions is reached (a B-spline of degree p will have p + 1 supported basis
functions at any given point in its domain). Because of this, it is not possible to
achieve complete convergence of the convex relaxations by removal of unsupported
basis functions alone. This is illustrated in Figure 2.6, where all basis functions
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are supported over the entire domain (this is the case with all polynomials created
by the procedure given in section 2.2.5). The result of subdivision is illustrated
in Figure 2.7a; the union of the child node relaxations is equal to the parent node
relaxation.
Knot insertion can be used to ensure tighter relaxations. Inserting knots creates

new basis functions with new control points. It will also reduce the support for
existing basis functions and draw existing control points closer to the function
surface according to (2.11). Figure 2.7b illustrates the effect of inserting additional
knots at the bisection point. The adjusted control points are closer to the curve, and
the convex relaxation is improved. In addition, since the new basis functions have
reduced support, they become susceptible to the removal argument in the previous
paragraph. This is illustrated in Figure 2.7c, where, after increasing the number
of basis functions from three to six, the first three basis functions are supported in
Child A and unsupported in Child B, and the other way around for the last three
basis functions. When this is accounted for, the relaxations are improved yet again.
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Figure 2.7.: The quadratic B-spline is divided into two subproblems A and B at the bisection
point xb = 0.5. (a) Each subproblem holds a copy of the parent B-spline, but with a
reduced domain. The union of the two convex relaxations is identical to the original
convex relaxation, because all basis functions are supported in both subproblems. (b)
Three knots are inserted at the bisection point xb = 0.5. The knot vectors become
tA = tB = [0 0 0 0.5 0.5 0.5 1 1 1]. (c) After unsupported basis functions and
corresponding control points are removed, the knot vectors of the two subproblems
become tA = [0 0 0 0.5 0.5 0.5] and tB = [0.5 0.5 0.5 1 1 1].

Knot insertion is used to guarantee improvement of the convex relaxations by
subdivision. The subdivision procedure presented here inserts knots at the branch-
ing point in order to maintain regular knot sequences for all subspaces. With regular
knot vectors, the control points associated with the first and last basis function will
coincide with the function surface, which makes the convex relaxation as tight as
possible at the subspace boundaries. Additional knots can be inserted in between
the remaining knots to improve the convex relaxation even further. Inserting addi-
tional knots will increase the computational load because it will increase the number
of variables in the lower bounding problem. It also takes a small computational
effort to produce the new control points. The number of additional knots is there-
fore a trade-off between the quality of the relaxation and the computational time,
which in a branch and bound setting translates to the number of nodes processed
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and the time spent processing each individual node. Figure 2.8 illustrates the ef-
fect of inserting a knot at the midpoint of each knot vector. The control points are
drawn closer to the function and the relaxation is improved. It is however worth
noting that it is only the part of the relaxation that lies below the function that
is affected by knot refinement in this particular case. The reason being that the
part above the function is governed by the control points that already interpolate
the function. The region above the function can only be dealt with by further
subdivision (followed by knot insertion).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f
(x
)

 

 

B−spline

Control points

Child A
Child B

Parent

Figure 2.8.: Convex relaxations after knot refinement. Knots added at x = 0.25 and x = 0.75 so
that tA = [0 0 0 0.25 0.5 0.5 0.5] and tB = [0.5 0.5 0.5 0.75 1 1 1]. The convex hull
relaxation of the parent problem is included for comparison.

To summarize, B-splines affected by the subdivision of branching will have knots
inserted at the branching point until the knot multiplicity equals the spline order.
Each subproblem then receives a “copy” of the B-splines and removes the basis
functions that are unsupported inside the subspace. The knot sequences can then
be further refined by inserting additional knots to maintain a minimum number
of basis functions inside each subspace. This B-spline subdivision procedure is
described by Algorithm 4.

2.4.4. Bounds tightening

Bounds tightening (BT) are techniques that reduce the variable intervals [xl,xu]
of a problem without removing its optimal point. A BT method that does this is
said to produce valid inequalities. BT may expedite the BB search by shrinking
the feasible set of the subproblems and, consequently, strengthening their convex
relaxations. It may also prove a subproblem infeasible so that it can be fathomed.
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Algorithm 4 B-spline subdivision

Require: Branching point xb
i , spline degree pi, knot vector ti

1: Split range of variable xi ∈
[
xl
i, x

u
i

]
at xb

i to produce XA =
[
xl
i, x

b
i

]
and XB =[

xb
i , x

u
i

]
2: for subproblem A and B do
3: repeat
4: Insert xb

i in ti using knot insertion procedure in Algorithm 1
5: until xb

i occurs pi + 1 times in ti
6: Remove unsupported basis functions
7: (Optional) Refine knot vectors using Algorithm 2
8: end for

CENSO employs a simple BT method known as reduced-cost bounds tightening
(RCBT). It was originally introduced for MILP problems, but is applicable also
to MINLPs (Ryoo and Sahinidis, 1996; Belotti et al., 2009). RCBT utilizes the
following optimality argument, relating the reduced costs of a relaxed problem Rk

to the upper and lower bound on Pk, to tighten the variable bounds.

x̄i = xl
i and di > 0 ⇒ xi ≤ xl

i + (ẑ − z̄)/di

x̄i = xu
i and di > 0 ⇒ xi ≥ xu

i + (ẑ − z̄)/di
(2.30)

In addition to RCBT, CENSO use another type of computationally cheap tech-
niques known as feasibility-based BT (FBBT) (Hansen, 2003; Carrizosa et al., 2004;
Messine, 2004; Belotti et al., 2009; Hooker, 2000). FBBT is a form of interval analy-
sis where the variable intervals are propagated through the constraints. In CENSO,
both linear and B-spline constraints are used in FBBT with the purpose of shrinking
the variable intervals as much as possible.

Remark 2.6. RCBT seldom produces deep cuts and FBBT will not always find the
minimal variable intervals (since it is performed on one variable interval and one
constraints at a time). More efficient BT methods can be found in the literature,
such as the optimality-based BT (Zamora and Grossmann, 1999; Sahinidis, 2003).
This particular technique is, however, more computationally demanding than the
BT techniques used by CENSO. Also worth noting are the box and hull consistency
BT techniques developed by Nataraj and Arounassalame (2011). These methods
exploit the properties of the Bernstein coefficients related to a polynomial constraint
to tighten the variable bounds.

2.4.5. Upper bounding problems

If an optimal solution x̄k to Rk is infeasible for Pk, a local solver can be initiated to
search for a feasible solution to Pk. The motivation for doing a local search is that
finding a good upper bound on P early in the BB tree may result in fathoming of
branches – and hence reduce the tree size. In CENSO a local search is performed
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at every node down to depth LNLP = 2, and then at every Lth depth after that.
When the subproblem has free integer variables the convex MINLP solver BONMIN

(Bonami et al., 2008) is used to perform a heuristical search. The maximum number
of iterations is then restricted to avoid an exhaustive search. When all integer
variables have been fixed to integer values the local search is performed by the
NLP solver IPOPT (Wächter and Biegler, 2006).
As discussed in Sec. 2.2, the B-spline functions in P, and their derivatives, can

be evaluated efficiently. A small issue that should be considered however, is that
some loss of smoothness can occur. E.g., a B-spline with degree p ≤ 2 will have
discontinuous second derivatives at the knots, even when all knots are distinct. If
p = 1 its first derivative is discontinuous at the knots. This may fool the NLP
solver to search in poor directions, degrading the performance of the local search.

2.4.6. Convergence of the sBB algorithm

An (infinite) sBB algorithm is said to be convergent if limk→∞ |zuk − zlk| = 0, where
zuk and zlk is the upper and lower bound on P at iteration k. According to Horst
and Tuy (1996) the convergence can be asserted by checking the following criteria:

1. The selection operation is bound improving.

2. The bounding operation is consistent. That is, at any step in the algorithm, a
non-decreasing sequence of lower bounds can be generated for any unfathomed
partition. Consistency of a partition i is implied by convergence of the lower
bound to the upper bound under further partitioning: limq→∞ |ẑiq − z̄iq | = 0
(Ryoo and Sahinidis, 1996).

3. The bounds tightening must produce valid inequalities. That is, it may only
eliminate feasible solutions which are not optimal.

The selection operation in Sec. 2.4.1 is bound improving by definition. The BT
methods in Sec. 2.4.4 produce valid inequalities. Thus, requirement 1 and 3 are
fulfilled. Requirement 2, on the consistency of the bounding operation follows from:

1. The branching procedure in Sec. 2.4.2 guarantees that Xiq ⊂ Xi for all q,
where Xiq are subsequent partitions of Xi.

2. The convex relaxation of the B-spline is valid according to Lemma 2.1. To-
gether with the relaxation of the integer constraints it follows that FPk

=
GPk

∩Xd
Pk

⊆ GRk
∩XRk

= FRk
(see Sec. 2.3).

3. Finally, it follows from the convergence of the control structure to the spline
(2.11), and the subdivision procedure in Algorithm 4, that FRkq

⊆ FRk
for

all q descendants of Rk. Furthermore, ẑk = z̄k at a terminal node Pk with
xu
j = xl

j for all variables xj participating in spline constraints.
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Chapter 2. Global optimization with spline constraints

2.5. Computational results

A computational study comparing CENSO with three state-of-the-art global solvers
is presented here. The purpose of the study is to investigate the performance and
display the versatility of a spline-based branch-and-bound algorithm. The following
three global solvers were selected for comparison:

• BARON version 12.7.3 (Tawarmalani and Sahinidis, 2005),

• COUENNE version 0.4 (Belotti et al., 2009), and

• LINDO (LINDOGLOBAL) version 8.0 (Lin and Schrage, 2009).

The selected solvers handle the general class of non-convex MINLPs with few
restrictions on the nonlinear terms in the problems. Common for all three solvers
is that they are BB-based reformulation-convexification algorithms that rely on
symbolic operations on the problem. They employ advanced linearization and
branching techniques, as well as various domain reduction techniques, to accelerate
convergence. The three solvers were run from the General Algebraic Modelling Sys-
tem, GAMS, of version 24.2.1 (GAMS Development Corporation, 2013). (CENSO

does not presently have an interface to GAMS.)
All solvers were run with an absolute ε-convergence termination criteria of ε =

1 · 10−6 and a feasibility tolerance of 1 · 10−6. Otherwise all settings were left on
default values. The tests were run on a machine equipped with a 2.7 GHz processor
and 8 GB of RAM memory.

2.5.1. Small-sized polynomial problems

The solvers were benchmarked on a set of non-convex, polynomially constrained
NLP problems. The test problems are given in Appendix 2.A and summarized in
Table 2.2. The same problem set was used to test the Bernstein branch-and-prune
algorithm in (Nataraj and Arounassalame, 2011). This specialized set of relatively
small continuous problems was deemed appropriate for several reasons: 1) polyno-
mially constrained problems are easily reformulated to spline constrained problems;
2) problems with few constraints were considered because CENSO does not exploit
the domain reduction, constraint and variable elimination techniques made possible
by an algebraic modelling system such as GAMS. Thus, the benchmark should be
interpreted only as an indicator of the performance one could expect from CENSO

on the aforementioned type of problems.
Several specialized solvers exist for the special class of polynomially constrained

problems, e.g. GloptiPoly (Lasserre, 2001) and SparsePOP (Waki et al., 2006).
We included SparsePOP in our study to assess how the speed of a specialized solver
would compare to the aforementioned solvers. In particular, we ran SparsePOP

version 300, configured to use SeDuMi version 1.3 to solve the resulting semidefinite
programming problems (Sturm, 1999). Note that GloptiPoly was not included in
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this study due to its inferior performance on optimization problems with multivari-
ate polynomials (see Henrion et al. 2009).

Table 2.2.: Overview of the non-convex NLP test problems.

Problem n m Np p̄ d̄

P1 2 2 2 4 1
P2 2 2 3 3 2
P3 2 2 2 3 2
P4 3 3 1 2 3
P5 3 4 4 3 3
P6 4 4 2 3 4
P7 4 7 1 8 3
P8 4 7 4 5 4
P9 5 1 1 2 5
P10 6 2 1 2 6
P11 6 6 3 2 6
P12 7 6 4 2 7
P13 7 11 10 8 7

n: number of variables, m: number of constraints, Np: number of polynomial functions,
p̄: highest polynomial order, d̄: highest polynomial dimension
(p̄ and d̄ may be related to different polynomials)

The computational results are recorded in Table 2.3. The reported numbers are
the solvers’ CPU times in milliseconds, averaged over 10 runs for each problem. The
number of iterations is not reported since some of the solvers run subroutines (e.g.
preprocessing and bounds tightening) that does a lot of work without incrementing
the branch-and-bound iteration counter.
As reported, CENSO has the lowest CPU time on 8 of the 13 problems. On these

problems CENSO needs only a handful of iterations – in particular, on problems
P6 and P10 it converges in one iteration. The explanation to this is that the B-
spline relaxation is tight at the global solution. For example, B-spline constraints
are interpolated by the B-spline convex hull relaxation at points in the corners of
the bounding box [xl,xu].
The reported results are inadequate to evaluate the performance of CENSO on

larger problems. However, the results from P12 and P13 do suggest that it becomes
less competitive as the number of variables and constraints grow. This is expected
since CENSO lacks some of the preprocessing and domain reduction techniques
that accelerate the other solvers.

2.5.2. Pump network synthesis problem

The following pump network synthesis problem from (Westerlund et al., 1994) is
solved. The same problem is used by Adjiman et al. (2000) to test the GMIN-αBB
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Table 2.3.: Comparison of solvers on nonconvex NLP problems.

CPU time (ms)

Problem SparsePOP BARON COUENNE LINDO CENSO

P1 505 79 122 644 33
P2 771 61 61 445 53
P3 × 57 58 437 29
P4 821 67 192 493 69
P5 1261 45 52 501 37
P6 1269 43 51 502 2*
P7 41978 57 67 519 136
P8 3264 104 87 1172 199
P9 1323 68 108 599 15
P10 896 55 54 1183 1*
P11 1156 59 71 477 39
P12 2765 88 509 633 573
P13 × 58 86 1051 261

× Failed to solve to global optimality within 1 minute
* CENSO converged after one iteration

algorithm. The problem belongs to the class of nonconvex MINLP problems, where
integer variables participate in nonlinear terms.

The problem is to find the least costly configuration of pumps that provide the
required pressure rise and total flow. The pump configuration is restricted to an
L level superstructure, where pumps may be installed in series and/or parallel at
each level. The existence of each level i ∈ 1, . . . , L is decided by a binary variable
zi. On a given level i there are Np

i parallel pumping lines with N s
i pumps of the

same type in series. The pumps at level i operate with rotational speed ωi and
power Pi to supply a pressure rise of ∆pi and a fraction xi of the total flow vtot.
The problem is described by the following MINLP formulation with data in Table
2.4.
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min.
L∑
i=1

(Ci + C ′
iPi)N

p
i N

s
i zi

s.t.
L∑
i=1

xi = 1,

Pi − f1,i(ωi, vi) = 0,
∆pi − f2,i(ωi, vi) = 0,
viN

p
i − xivtot = 0,

∆ptotzi −∆piN
s
i = 0,

Pi − Pmax
i zi ≤ 0,

∆pi −∆ptotzi ≤ 0,
vi − vtotzi ≤ 0,
xi − zi ≤ 0,
ωi − ωmaxzi ≤ 0,
Np

i −Npzi ≤ 0,
N s

i −N szi ≤ 0,
0 ≤ xi ≤ 1,
0 ≤ vi ≤ vtot,
0 ≤ ωi ≤ ωmax,
0 ≤ Pi ≤ Pmax

i ,
0 ≤ ∆pi ≤ ∆ptot,
Np

i ∈ {1, . . . , Np},
N s

i ∈ {1, . . . , N s},
zi ∈ {0, 1},




i = 1, . . . , L

(PNSP)

where

f1,i(ωi, vi) = αi

(
ωi

ωmax

)3

+ βi

(
ωi

ωmax

)2

vi + γi

(
ωi

ωmax

)
v2i , (2.31)

f2,i(ωi, vi) = ai

(
ωi

ωmax

)2

+ bi

(
ωi

ωmax

)
vi + civ

2
i , (2.32)

are the power and pressure drop characteristics of the pumps, respectively. As
pointed out by Westerlund et al. (1994), these functions are usually not known
explicitly. They are typically given by the pump manufacturer in the form of
lookup tables. (The lookup tables may be the results from running the pump in a
test loop using water.)
The pump characteristics are polynomial functions of degree deg(f1,i) = (3, 2)

and deg(f2,i) = (2, 2). These, and all bilinear terms in PNSP, may be represented
as B-splines. However, assuming that f1,i and f2,i are unknown, the B-spline could
be used to approximate the functions. Consider the approximation errors in Table
2.5 obtained by sampling the functions on regular grids. The errors are given in
terms of e(x) = f(x) − f̃(x), where f̃ is the B-spline approximation of f . The
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Table 2.4.: Data for PNSP.

Pump 1 Pump 2 Pump 3

Fixed cost (FIM) 38,900 15,300 20,700
Ci (FIM) 6,329.3 2,489.31 3,270.27
C ′

i (FIM/kW) 1,800 1,800 1,800

αi 19.9 1.21 6.52
βi 0.161 0.0644 0.102
γi -0.000561 -0.000564 -0.000232

ai 629.0 215.0 361.0
bi 0.696 2.950 0.530
ci -0.0116 -0.115 -0.00946

Pmax
i (kW) 80 25 45

vtot = 350 m3/h, ∆ptot = 400 kPa, ωmax = 2, 950 rpm

interpolating bicubic B-spline has degree (3, 3), which is sufficient to approximate
both functions without error, even on the coarsest grid. Similarly, the biquadratic
B-spline has degree (2, 2), and may approximate f2,i without error, but not f1,i
which is approximated with small errors. The degree of the bilinear B-spline, (1, 1),
is insufficient to represent any of the functions. Even so, the approximation errors
are small on the finest grid. On the coarser grids the errors of the bilinear B-spline
become relevant.
PNSP was solved with BARON, COUENNE, LINDO, and CENSO. For CENSO,

the pump characteristics were represented by exact and approximative B-splines on
the various grids in Table 2.5. When using B-spline approximations, we configured
CENSO to use the returned global optimum as the starting point of a local NLP
search on the exact problem to obtain a feasible optimum. The results for PNSP
with L = 3 are reported in Table 2.6. Note that the optimal solution is 128, 894
FIM (FIM stands for the now relinquished currency Finnish markka).

CENSO is able to solve PNSP in 34 seconds using exact B-spline representations
of the pump characteristics. Both BARON and COUENNE are able to converge
faster. The bicubic B-splines approximate the pump characteristics without error
and, consequently, CENSO is able to locate the global optimum. The biquadratic B-
splines are not exact, but accurate enough to guide CENSO to the global optimum.
With bilinear B-splines CENSO finds the global optimum only when using the finer
grids. On the 5× 5 and 10× 10 grids CENSO locates a suboptimal point with an
optimality gap of 1.73%.
The solution times do not follow a clear pattern. However, there is a trade-

off related to the number of samples (knots). Many samples (knots) give many
auxiliary variables in the relaxation which demotes speed; but it also gives a tighter
relaxation which promotes speed. A certain pattern, however, is that the solution
time increases if the number of samples (knots) become too high. For example,
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Table 2.5.: B-spline approximation errors for pump characteristics.

Function Degree (p) Grid e1 e∞

f1,1 (3, 3) 5× 5 0 0
(3, 3) 10× 10 0 0
(3, 3) 20× 20 0 0
(3, 3) 30× 30 0 0

(2, 2) 5× 5 4.72 · 10−3 7.28 · 10−3

(2, 2) 10× 10 4.14 · 10−4 6.39 · 10−4

(2, 2) 20× 20 4.40 · 10−5 6.79 · 10−5

(2, 2) 30× 30 1.24 · 10−5 1.91 · 10−5

(1, 1) 5× 5 2.75 · 10−1 1.08 · 10+0

(1, 1) 10× 10 5.44 · 10−2 2.13 · 10−1

(1, 1) 20× 20 1.22 · 10−2 4.78 · 10−2

(1, 1) 30× 30 5.23 · 10−3 2.05 · 10−2

f2,1 (3, 3) 5× 5 0 0
(3, 3) 10× 10 0 0
(3, 3) 20× 20 0 0
(3, 3) 30× 30 0 0

(2, 2) 5× 5 0 0
(2, 2) 10× 10 0 0
(2, 2) 20× 20 0 0
(2, 2) 30× 30 0 0

(1, 1) 5× 5 1.44× 10+2 2.20 · 10+2

(1, 1) 10× 10 2.85 · 10+1 4.35 · 10+1

(1, 1) 20× 20 6.39 · 10+0 9.76 · 10+0

(1, 1) 30× 30 2.74 · 10+0 4.19 · 10+0

Error measures: e1 =
∫
X
|e(x)|dx/Vol(X), e∞ = supx∈X |e(x)|, where e = f − f̃ .

when we approximated with bicubic B-splines on 50 × 50 grids, CENSO required
211 seconds to converge.

2.6. Conclusion

A novel algorithm based on B-splines has been presented for global optimization of
spline constrained MINLP problems. Various theoretical aspects of the algorithm
have been analysed in discussions and examples throughout this paper. Further-
more, the algorithm has been implemented in the sBB solver CENSO, described in
Sec. 2.4.
In Sec. 2.5 CENSO was compared to three state-of-the-art global solvers, and one

specialized polynomial solver, with promising results. With the alternative refor-
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Table 2.6.: Results for PNSP.

Solver Degree (p) Grid Time (sec) Gap (%)

COUENNE exact – 7 0
BARON exact – 18 1.73
LINDO exact – 101 0
CENSO exact – 34 0

CENSO (3, 3) 5× 5 53 0
CENSO (3, 3) 10× 10 108 0
CENSO (3, 3) 20× 20 84 0
CENSO (3, 3) 30× 30 75 0

CENSO (2, 2) 5× 5 43 0
CENSO (2, 2) 10× 10 97 0
CENSO (2, 2) 20× 20 73 0
CENSO (2, 2) 30× 30 90 0

CENSO (1, 1) 5× 5 21 1.73
CENSO (1, 1) 10× 10 62 1.73
CENSO (1, 1) 20× 20 44 0
CENSO (1, 1) 30× 30 71 0

mulation based on B-splines, and the convex relaxations that follow, the algorithm
performed well on the polynomially constrained test problems. This is exciting, re-
membering that CENSO lacks some of the sophisticated preprocessing and domain
reduction techniques employed by the other solvers. It is expected that, in combi-
nation with these techniques, the B-spline-based reformulation-convexification can
be competitive also on large-scale problems.

The versatility of spline constraints was displayed in Sec. 2.5.2 where a pump
network synthesis MINLP problem was solved by approximating several pump char-
acteristics with B-splines. The effect of sample density and spline degree on the
results was investigated. The example shows that the B-spline is a powerful tool
for approximating nonlinear functions. For this very reason, modelling with splines
has a wide range of applications and may be considered an alternative to the often
used piecewise linear functions. Arguably, the biggest contribution of this paper is a
convenient and sBB-compatible framework for optimization with spline constraints.

The authors would like to conclude by suggesting a few directions in which the
proposed algorithm could be developed:

• A B-spline can be used to approximate any black-box function by sampling.
If the upper bound in (2.11) can be calculated, it can be used to measure the
optimality gap in the BB algorithm. By requiring the black-box function to be
Lipschitz with a known Lipschitz coefficient, the unknown second derivatives
in the upper bound (2.11) could be removed. This approach would require
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additional sampling of the black-box function during optimizing to ensure
ε-convergence. The algorithm outlined above resembles the existing response
surface methods used in global, black-box optimization (Jones, 2001). Note
that several works on Lipschitz optimization can be found in the literature
(Pinter, 1997).

• Several bounds tightening techniques can be imagined for the B-spline con-
straints. For example, by exploiting the non-negativity of the basis functions,
it is straightforward to check the negativity of a spline in a given domain
since it must come from the control points alone. Two other techniques could
come from generalizing the Bernstein hull and box consistency algorithms to
spline constraints (Nataraj and Arounassalame, 2011).

• A fundamental disadvantage of the presented method is that the number
of auxiliary variables in the relaxation grows exponentially with number of
dimensions/variables of a spline function. For high-dimensional functions
it would be useful to use decomposition to reduce the number of auxiliary
variables.
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2.A. Test problems

This appendix holds a collection of nonconvex NLP problems used in the computa-
tional study in this paper. Most of the problems can be found in the GLOBALLib
library Meeraus, A. (2013) and in the test problem handbooks of Floudas Floudas
and Pardalos (1990); Floudas et al. (1999). The same problem set was used in
Nataraj and Arounassalame (2011).

Problem 1 (Floudas et al., 1999, Ch. 4.10).

minimize
x

f(x) = −x1 − x2

subject to x2 ≤ 2 + 8x2
1 − 8x3

1 + 2x4
1

x2 ≤ 36− 96x1 + 88x2
1 − 32x3

1 + 4x4
1

x1 ∈ [0, 3], x2 ∈ [0, 4]

(P1)

The global optimum of (P1) is at x∗ = [2.3295, 3.1785]T with f(x∗) = −5.5080.
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Problem 2. Problem G6 in Koziel and Michalewicz (1999).

minimize
x

f(x) = (x1 − 10)3 + (x2 − 20)3

subject to 100− (x1 − 5)2 − (x2 − 5)2 ≤ 0

− 82.81 + (x1 − 6)2 + (x2 − 5)2 ≤ 0

x1 ∈ [13, 100], x2 ∈ [0, 100]

(P2)

Global optimum at x∗ = [14.0950, 0.8430]T with f(x∗) = −6961.815.

Problem 3 Lebbah et al. (2007).

minimize
x

f(x) = x1

subject to x2
1 − x2 ≤ 0

x2 − x2
1(x1 − 2) + 10−5 ≤ 0

x ∈ [−10, 10]2

(P3)

Global optimum at x∗ = [3.0, 9.00001]T with f(x∗) = 3.

Problem 4 (Floudas et al., 1999, Ch. 3.5). Problem ex3.1.4 in GlobalLib.

minimize
x

f(x) = −2x1 + x2 − x3

subject to xTATAx− 2yTAx+ ||y||2 − 0.25||b− z||2 ≥ 0

x1 + x2 + x3 − 4 ≤ 0

3x2 + x3 − 6 ≤ 0

x1 ∈ [0, 2], x2 ∈ [0, 10], x3 ∈ [0, 3]

with data

A =




0 0 1
0 −1 0
−2 1 −1




b = [3, 0,−4]T

y = [1.5,−0.5,−5]T

z = [0,−1,−6]T

(P4)

The global optimum of P4 is at x∗ = [0.5, 0, 3]T with f(x∗) = −4.
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Problem 5. Himmelblau problem from Floudas et al. (1999). Problem ex14.1.1 in
GlobalLib.

minimize
x

f(x) = x3

subject to 2x2
1 + 4x1x2 − 42x1 + 4x3

1 − x3 ≤ 14

− 2x2
1 − 4x1x2 + 42x1 − 4x3

1 − x3 ≤ −14

2x2
1 + 4x1x2 − 26x2 + 4x3

2 − x3 ≤ 22

− 2x2
1 − 4x1x2 + 26x2 − 4x3

2 − x3 ≤ −22

x ∈ [−5, 5]3

(P5)

This is a root finding problem with f(x∗) = 0. x∗ = [−0.3050690,−0.9133455, 0]T

is a known solution to P5.

Problem 6. An optimal design problem for a pressure vessel Li and Chang (1998);
Nataraj and Arounassalame (2011).

minimize
x

0.6224x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

subject to − x1 + 0.0193x3 ≤ 0

− x2 + 0.00954x3 ≤ 0

− πx2
3x4 − (4/3)πx3

3 + 750.1728 ≤ 0

− 240 + x4 ≤ 0

x1 ∈ [1, 1.375], x2 ∈ [0.625, 1],

x3 ∈ [47.5, 52.5], x4 ∈ [90, 112]

(P6)

Best known solution is x∗ = [1, 0.625, 47.5, 90]T with f(x∗) = 6395.5.

Problem 7 Floudas et al. (1999). Problem ex7.3.2 in GlobalLib.

minimize
x

f(x) = x4

subject to x4
1x

4
2 − x4

1 − x4
2x3 = 0

1.4− x1 − 0.25x4 ≤ 0

− 1.4 + x1 − 0.25x4 ≤ 0

1.5− x2 − 0.2x4 ≤ 0

− 1.5 + x2 − 0.2x4 ≤ 0

0.8− x3 − 0.2x4 ≤ 0

− 0.8 + x3 − 0.2x4 ≤ 0

x ∈ [0, 5]4

(P7)

The global optimum of P7 is at x∗ = [1.1275, 1.2820, 1.0179, 1.0899]T with f(x∗) =
1.0899.
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Problem 8. Mechanical design problem from Venkataraman (2009).

minimize
x

f(x) = 27.264(2x2x4 + x1x3 − 2x3x4)

subject to 61.01627586− I(x) ≤ 0

8x1 − I(x) ≤ 0

x1x2x4 − x2x
2
4 + x2

1x3 + x3x
2
4 − 2x1x3x4 − 3.5x3I(x) ≤ 0

x1 − 3x2 ≤ 0

2x2 − x1 ≤ 0

x3 − 1.5x4 ≤ 0

0.5x4 − x3 ≤ 0

x1 ∈ [3, 20], x2 ∈ [2, 15], x3 ∈ [0.125, 0.75], x4 ∈ [0.25, 1.25]

(P8)

where I(x) = 6x2
1x2x3−12x1x2x

2
3+8x2x

3
3+x3

1x4−6x2
1x3x4+12x1x

2
3x4−8x3

3x4. The
global optimum is attained at x∗ = [4.9542, 2, 0.125, 0.25]T with f(x∗) = 42.444.

Problem 9. Test problem 1 in (Floudas and Pardalos, 1990, Ch. 2.2.1). Problem
ex2.1.1 in GlobalLib.

minimize
x

f(x) = cTx− xTQx

subject to 20x1 + 12x2 + 11x3 + 7x4 + 4x5 ≤ 40

x ∈ [0, 1]5

(P9)

where c = [42, 44, 45, 47, 47.5]T and Q = 50I (I is the identity matrix). The global
optimum is attained at x∗ = [1, 1, 0, 1, 0]T with f(x∗) = −17.

Problem 10. Test problem 2 in (Floudas and Pardalos, 1990, Ch. 2.2.1). Problem
ex2.1.2 in GlobalLib

minimize
x,y

f(x, y) = cTx− 0.5xTQx− 10y

subject to 6x1 + 3x2 + 3x3 + 2x4 + x5 ≤ 6.5

10x1 + 10x3 + y ≤ 20

y ≥ 0

x ∈ [0, 1]5

(P10)

where c = −[10.5, 7.5, 3.5, 2.5, 1.5]T andQ = I (I is the identity matrix). The global
optimum is attained at x∗ = [0, 1, 0, 1, 1]T and y∗ = 20 with f(x∗, y∗) = −213.
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Problem 11 (Floudas and Pardalos, 1990, Ch. 3.3.1).

minimize
x

f(x) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2

− (x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2

subject to (x3 − 3)2 + x4 ≥ 4

(x5 − 3)2 + x6 ≥ 4

x1 − 3x2 ≤ 2

− x1 + x2 ≤ 2

x1 + x2 ≤ 6

x1 + x2 ≥ 2

x1 ∈ [0, 6], x2 ∈ [0, 6], x3 ∈ [1, 5],

x4 ∈ [0, 6], x5 ∈ [1, 5], x6 ∈ [0, 10]

(P11)

The global optimum of P11 is at x∗ = [5, 1, 5, 0, 5, 10]T with f(x∗) = −310.

Problem 12 (Floudas et al., 1999, Ch. 5.2.4).

minimize
x

f(x) = −x4(9− 6x1 − 16x2 − 15x3)

− x5(15− 6x1 − 16x2 − 15x3) + x6 − 5x7

subject to x3x4 + x3x5 ≤ 50

x4 + x6 ≤ 100

x5 + x7 ≤ 200

x4(3x1 + x2 + x3 − 2.5)− 0.5x6 ≤ 0

x5(3x1 + x2 + x3 − 1.5) + 0.5x7 ≤ 0

x1 + x2 + x3 = 1

x1 ∈ [0, 1], x2 ∈ [0, 1], x3 ∈ [0, 1],

x4 ∈ [0, 100], x5 ∈ [0, 200],

x6 ∈ [0, 100], x7 ∈ [0, 200]

(P12)

The global optimum of P12 is at x∗ = [0, 0.5, 0.5, 0, 100, 0, 100]T with f(x∗) = −450.
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Problem 13 (Floudas and Pardalos, 1990, Ch. 11.3.1).

minimize
x

f(x) = 0.7854x1x
2
2(3.3333x

2
3 + 14.9334x3 − 43.0934)

− 1.508x1(x
2
6 + x2

7) + 7.477(x3
6 + x3

7)

+ 0.7854(x4x
2
6 + x5x

2
7)

subject to x1x
2
2x3 ≥ 27

x1x
2
2x

2
3 ≥ 397.5

x2x
4
6x3x

−3
4 ≥ 1.93

x2x
4
7x3x

−3
5 ≥ 1.93

[(745x4x
−1
2 x−1

3 )2 + 16.911 · 106]0.5/(0.1x3
6) ≤ 1100

[(745x5x
−1
2 x−1

3 )2 + 157.51 · 106]0.5/(0.1x3
7) ≤ 850

x2x3 ≤ 40

x1/x2 ≥ 5

x1/x2 ≤ 12

1.5x6 − x4 ≤ −1.9

1.1x7 − x5 ≤ −1.9

x1 ∈ [2.6, 3.6], x2 ∈ [0.7, 0.8], x3 ∈ [17, 28],

x4 ∈ [7.3, 8.3], x5 ∈ [7.3, 8.3], x6 ∈ [2.9, 3.9]

x7 ∈ [5, 5.5]

(P13)

The best known solution for P13 is the point x∗ = [3.5, 0.7, 17, 7.3, 7.71, 3.35, 5.287]T

with f(x∗) = 2994.47. The problem can be written as a polynomially constrained
problem by multiplying to remove all fractional terms in the constraints. This is
possible because all variables are positively bounded.

2.B. Proofs

Proposition 2.1 (Relaxation of bilinear terms). Consider the bilinear term y =
x1x2, for x1 ∈ [xl

1, x
u
1 ] and x2 ∈ [xl

2, x
u
2 ]. Let f be a B-spline representing the bilinear

term, i.e. f = y. Then, the convex combination relaxation (2.24) of f is equivalent
to McCormick’s linear relaxation of bilinear terms (see McCormick 1976; Adjiman
et al. 1998b).

Proposition 2.1. Let x1,1 = [1, x1]
T and x2,1 = [1, x2]

T be the first degree power
bases of x1 and x2. The the bilinear term can be written as y = λT(x1,1 ⊗ x2,1) =
λT[1, x1, x2, x1x2]

T = x1x2, for λT = [0, 0, 0, 1]. Using the procedure in Sec. 2.2.5
one obtains the B-spline form f of y, which has four control points

P =




xl
1 xl

1 xu
1 xu

1

xl
2 xu

2 xl
2 xu

2

xl
1x

l
2 xl

1x
u
2 xu

1x
l
2 xu

1x
u
2


 . (2.33)
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2.B. Proofs

The relaxation in (2.24) requires four variables λ = [λ1, λ2, λ3, λ4]
T, and is given by

the equations 


xl
1 xl

1 xu
1 xu

1

xl
2 xu

2 xl
2 xu

2

xl
1x

l
2 xl

1x
u
2 xu

1x
l
2 xu

1x
u
2

1 1 1 1




︸ ︷︷ ︸
A

λ =



x1

x2

y
1




︸ ︷︷ ︸
b

, λ ≥ 0. (2.34)

A is a square matrix of full rank as long as xl
1 < xu

1 and xl
2 < xu

2 , and it is possible
to solve λ = A−1b analytically. This yields

λ1 =
1

γ
(y − xu

2x1 − xu
1x2 + xu

1x
u
2) ,

λ2 =
1

γ

(
−y + xl

2x1 + xu
1x2 − xu

1x
l
2

)
,

λ3 =
1

γ

(
−y + xu

2x1 + xl
1x2 − xl

1x
u
2

)
,

λ4 =
1

γ

(
y − xl

2x1 − xl
1x2 + xl

1x
l
2

)
,

(2.35)

where γ = (xu
1 −xl

1)(x
u
2 −xl

2). Utilizing λ ≥ 0, and the fact that γ > 0, one obtains

y ≥ xu
2x1 + xu

1x2 − xu
1x

u
2 ,

y ≤ xl
2x1 + xu

1x2 − xu
1x

l
2,

y ≤ xu
2x1 + xl

1x2 − xl
1x

u
2 ,

y ≥ xl
2x1 + xl

1x2 − xl
1x

l
2,

(2.36)

which are precisely the linear constraints of the McCormick relaxation of y =
x1x2.
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Chapter 3

Global optimization of multiphase flow networks
using spline surrogate models

Grimstad, B., Foss, B., Heddle, R., and Woodman, M. (2016). Global optimization
of multiphase flow networks using spline surrogate models. Computers & Chemical
Engineering, 84:237 – 254.

Summary

A general modelling framework for optimization of multiphase flow
networks with discrete decision variables is presented. The framework is
expressed with the graph and special attention is given to the convexity
properties of the mathematical programming formulation that follows.
Nonlinear pressure and temperature relations are modelled using mul-
tivariate splines, resulting in a mixed-integer nonlinear programming
(MINLP) formulation with spline constraints. A global solution method
is devised by combining the framework with a spline-compatible MINLP
solver, recently presented in the literature. The solver is able to globally
solve the nonconvex optimization problems. The new solution method is
benchmarked with several local optimization methods on a set of three re-
alistic subsea production optimization cases provided by the oil company
BP.

3.1. Introduction

Multiphase flow networks appear in many application areas. In this paper we are
particularly interested in multiphase flow networks for subsea oil and gas produc-
tion. Such networks consist of wells, collection systems, pipelines, and in some cases
processing units such as pumps and separators. In recent years real-time data cap-
ture and storage capabilities have become an industry standard, thus paving the
way for the use of model-based techniques to improve operations. In practice,
the use of model-based methods translates into advisory systems for production
engineers. Such systems use real-time data in combination with calibrated mathe-
matical models and optimization to improve economics of an oil field by increasing
oil throughput. It can be hard to measure the true value of model-based advisory
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systems since they have impact on profit, cost of operating, HSE and operating risk,
and possibly other non-economic values. This may explain why operators tend to
prefer maximization of hydrocarbons (oil and gas): hydrocarbon production can
be measured, and sometimes must be measured to conform with legislation and
fiscal systems. Some claims to a production increase of up to 4% due to use of
model-based tools can be found in the literature (Stenhouse et al., 2010; Teixeira
et al., 2013). In the latter testimonial, a 1.2% production increase on a medium size
offshore production vessel is claimed, amounting to $35 mill per year. Thus, the
economic potential is clearly significant. Despite this, real-time decision support
tools as alluded to above are rarely used in the upstream petroleum industries.
Two key reasons for limited use are lack of tools for model maintenance, and ro-

bust and efficient solvers, respectively. First, models must be updated periodically
due to the time-varying nature of the production system; in particular, reservoir
conditions change with time due to reservoir pressure decline and changing fluid
compositions. Second, the optimization problem itself is hard to solve since models
are nonlinear and often available only as black box calculators. In fact, oil and gas
production systems are typically modelled in proprietary process simulators, not
offering gradient information. Thus, there are several factors that contribute to
long solution times, including the following: a lack of analytical derivatives, com-
putational expensive evaluations of the process simulator, and slow IO operations
in the communication between process simulator and optimization solver. It may
be added that different parts of the flow network, in particular well models and
pipeline models, may be available in different simulator applications, thus compli-
cating matters even more. Moreover, decision variables are both continuous and
discrete. Thus, we are faced with mixed-integer nonlinear (MINLP) problems that
may include black-box constraints. Long solution times prevent efficient use of de-
cision support tools and break the natural workflow of the production engineers.
When it takes several hours to arrive at an optimization the result is often “out of
date” before it is available to the them.
This paper suggests a methodology to overcome the challenges related to the

optimization part as presented above. This is done in three steps. First, we adapt
a well known, graph-based modelling scheme to oil and gas networks. Second, we
propose the use of spline-based surrogate models to represent the nonlinear parts
of the system. This implies that models, which are available as proprietary (black-
box) simulators, explicit model equations or look-up tables, are approximated with
splines through a sampling and interpolation scheme. By performing this substi-
tution for each item of equipment in the network a priori optimization, the solver
can be decoupled from the process simulator during the optimization run, resulting
in a considerable reduction in solution times. Third, we introduce a global branch-
and-bound based MINLP solver that exploits the facts that all nonlinearities are
described by splines and takes advantage of the structural properties of oil and
gas networks. In order to evaluate our approach it was deemed necessary to use
a comprehensive and realistic test bench rather than simplistic cases. Thus, three
industrial cases are used where all relevant models and constraints are included.
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3.2. Problem description

The remainder of this paper is organized as follows. A short description of the
production optimization problem for subsea production systems is given in Section
3.2. A brief report on recent works on this topic follows in Section 3.3. A new
mathematical programming framework for optimizing general flow networks is de-
rived in detail in Section 3.4. In Section 3.5, we give a description of B-splines,
which are used as surrogate models for the nonlinear functions in the problem for-
mulation presented in Section 3.4. The solution method is presented in Section 3.6
and benchmarked on several realistic cases in Section 3.7. Finally, some concluding
remarks are given in Section 3.8.

3.2. Problem description

Consider the subsea production system illustrated in Figure 3.1, consisting of reser-
voirs, wells, manifolds, flowlines, risers, and separators. The system is built to allow
a safe and efficient transportation of reservoir fluid to the surface. At the surface
the fluid is separated before it is further treated in processing facilities. The fluid
flow through the system is controlled with valves, e.g. chokes (adjustable valves)
and manifold valves (on/off valves). The valve settings decide the production and
operational status of the wells: that is, the flow rate of each well, the routing of the
flows through the network, and the allocation of lift gas.

Figure 3.1.: A subsea production system with two daisy-chained manifolds.

The daily production optimization problem is the search for valve settings that
maximize the production of oil (or profit) while respecting physical laws and oper-
ational constraints. Physical laws that must be abided include: mass, momentum,
and energy conservation laws; and well inflow relations. Some physical laws may
be empirically modelled because of their high complexity. For example, pipeline
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pressure drops are often modelled with the empirical Beggs and Brill correlation
(Beggs and Brill, 1973). Typical operational constraints may include: upper and
lower rate constraints; draw-down (minimum) pressure constraints; oil, gas, and
water handling capacity constraints; upper bound on gas-lift availability; and num-
ber of allowed routing changes. The operational constraints are typically provided
by the user to be in accordance with the current production plan.
A requirement for solving the daily production optimization problem, and for

it to provide applicable and optimal solutions, is that an accurate model of the
production system is available. The model should accurately predict flow rates
for any valve setting in the search space of interest. To reduce the modelling
effort, we present a mathematical programming framework that includes the above-
mentioned physical laws and operational constraints of a generic production system.
The flexible framework, presented in the next section, allows for modelling of most
common subsea production system topologies.

3.3. Previous work

Network flow and design problems lie in the intersection of several domains, includ-
ing: operations research, applied mathematics, engineering, and computer science
(Ahuja et al., 1993). A diverse set of problems can be formulated as network prob-
lems, for example: optimization of urban public transportation networks (Mandl,
1980), train routing and scheduling (Cordeau et al., 2009), and design of optimal
water distribution systems (Alperovits and Shamir, 1977).
The recent works of Luathep et al. (2011) and Raghunathan (2013) look at global

optimization of the network design problem using a MILP and MINLP approach,
respectively. These methods have features similar to the method presented later in
this paper. For instance, the graph is used as a modelling tool, convex formulations
are obtained by using the big-M relaxation, nonlinear relations are approximated
with piecewise functions, and a MILP or MINLP problem is solved using a special-
ized solver.
In the following we provide a brief report on works that address the petroleum

production optimization problem described in Section 3.2. To the authors’ knowl-
edge, the works of Kosmidis et al. (2004, 2005) were the first to address well oil
rate allocation, gas lift allocation, and well routing with a single problem formula-
tion. In these works the complete production optimization problem is posed as a
MINLP problem.1 Many earlier works have considered optimization of individual
network components, for instance optimal gas lift allocation on a well basis (Wang,
2003; Rashid et al., 2012). A survey on these early works is provided by Kosmidis
et al. (2005) and Bieker et al. (2007). From 2006 and onwards, several works have
emerged that build on the contributions of Kosmidis et al. (2005) or use a similar
approach, see for example Martin et al. (2006); Misener et al. (2009); Gunnerud
and Foss (2010); Codas and Camponogara (2012). These works use piecewise linear

1The problem is also referred to as the daily well scheduling problem in the literature.
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formulations to approximate nonlinear relations in the network such as nonlinear
pressure drop functions. This modelling approach results in a MILP that scales
poorly when nonseparable functions of four or more variables are approximated
(Misener and Floudas, 2010; Vielma et al., 2010; Vielma and Nemhauser, 2011).
This may be one reason for the relatively simple formulations used in these works.
For example, temperatures are not considered and pressure drops are modelled as
functions of flow rates only. Interestingly, the MINLP formulation of Kosmidis
et al. (2005) did include linear temperature drop models. A computational analy-
sis of different multidimensional piecewise linear models was recently provided by
Silva and Camponogara (2014). The analysis shows that SOS2 models and MILP
models with a logarithmic number of binary variables have the best performance.
These formulations may allow modelling of (nonseparable) functions of four or five
variables, for which separation to multiple lower-dimensional functions is not pos-
sible.
The spline-based approach presented in this paper can be viewed as an alternative

to the piecewise linear approaches mentioned above. The approach to be presented
results in a global NLP problem (MINLP if routing is included). The main dif-
ference is that the solver must branch on continuous variables, instead of SOS2 or
binary variables as is the case in the MILP approaches. The approach allows us to
accurately approximate nonlinear functions in up to five variables. This enables us
to model pressure and temperature drops as functions of flow rates, pressure, and
temperature.

3.4. Multiphase flow network modelling

In this section we present a general mathematical programming formulation for
multiphase flow networks. The goal is to achieve a formulation that is as simple
as possible, while capturing important physics with sufficient accuracy. This goal
reflects our desire to obtain a problem formulation that we can solve in reasonable
time to get applicable solutions.
The problem formulation is based on the following assumptions:

A1. The system operates at steady-state conditions.

A2. Continuous and differentiable multiphase pressure drop and temperature drop
models.

A3. The thermodynamics can be modelled under the assumptions in Section 3.4.3.

A4. No uncertainty is considered in the model structure or its parameters.

An argument for assumption A1 follows: The daily production optimization
problem has a horizon spanning several hours to one day. In general, the fluid
dynamics in the network (wells and pipelines) have time constants in the order of
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minutes, and will appear instant on this horizon. Similarly, the dynamics at the
system boundaries appear constant on this horizon: the reservoir dynamics have
time constants in the order of weeks to months, and the surface facility dynamics
have time constants in the order of seconds to minutes. One may note that there
are exceptions where A1 does not hold, examples include dynamic phenomena like
slugging or casing-heading instability which are highly influential on the production
and act in the relevant horizon of hours.
Assumption A2 ensures continuous and differentiable constraint functions, which

is a prerequisite for most gradient-based optimization solvers. As will be discussed,
spline surrogate models have these properties by construction, even when the func-
tion they approximate do not. Assumption A4 is included since uncertainty is not
structurally treated in the proposed framework.
A directed graph G = (N,E), with nodes N and edges E, is used to represent the

flow network (Ahuja et al., 1993). A node in N represents a junction or simply a
point of interest in the network. An edge in E connects two nodes and represents a
pipe segment (e.g. a wellbore, jumper, flowline, or riser), a valve (e.g. a production
choke or manifold valve), or any item of equipment (e.g. a subsea multiphase
pump). Valves represent special edges since they can be closed to disjoint the
neighbouring nodes. To make this distinction clear we introduce a subset of edges,
Ed, that represent the valves. An edge in Ed is referred to as a discrete edge since
it has two states: it is either open or closed. Associated with each discrete edge
is a binary variable which is used to model the switching between the open and
closed state. The discrete edges are used to route the flow through the network by
restricting flow through certain valves. All other edges (E\Ed) represent pipes or
equipment.
Table 3.1 gives the various sets used to describe the flow network. Some utility

sets that simplify the notation are given in Table 3.2. In the rest of this paper the
terms graph, network, and system are used interchangeably.
The following requirements are placed on the graph structure:

R1. A source node i ∈ Nsrc has zero entering edges and one leaving edge, i.e.
Ein

i = ∅ and |Eout
i | = 1.

R2. A sink node i ∈ Nsnk has zero leaving edges, i.e. Eout
i = ∅.

R3. An internal node i ∈ Nint has one or more leaving edges. It may have more
than one leaving edges iff all of them are discrete edges and at most one of
them can be open at any time.

The first and second requirement follow the normal definition of source and sink
nodes. The additional requirement that a source node may have only one leaving
edge is made without loss of generality (an equivalent graph fulfilling this require-
ment can always be obtained by adding nodes). The third requirement on the
internal nodes is needed because splitting of fluids is not modelled; this simplify-
ing requirement is commonly applied in works on flow network modelling (Codas
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Table 3.1.: Sets

Set Description

N Set of nodes in the network.
Nsrc Set of source nodes in the network. Nsrc ⊂ N.
Nsnk Set of sink nodes in the network. Nsnk ⊂ N.
Nint Set of internal nodes in the network. Nint = N\{Nsrc ∪Nsnk}.
E Set of edges in the network. An edge e = (i, j) connects node i to node j,

where i, j ∈ N.
Ed Set of discrete edges that can be open or closed. Ed ⊂ E.
S Set of flow phases in the network. For three-phase petroleum flow the

phases are denoted S = {oil, gas,wat}, where oil denotes the hydro-
carbon liquid phase, gas the hydrocarbon gas phase, and wat the wa-
ter liquid phase. A compositional model may have more than three
phases/components.

et al., 2012). This requirement is enforced by manifold routing constraints, to be
presented later in this section.

The sets Esrc and Esnk in Table 3.2 are cut-sets. A cut-set is a set of edges that,
if removed, partitions the graph nodes into two disconnected subsets. These sets
are useful because the net flow through the graph can be measured as the net flow
over the edges in a cut-set.

Table 3.2.: Utility sets

Set Description

Ein
i Set of edges entering node i, i.e. Ein

i = {e : e = (j, i) ∈ E}.
Eout

i Set of edges leaving node i, i.e. Eout
i = {e : e = (i, j) ∈ E}.

Esrc Set of edges leaving a source node in Nsrc, i.e. Esrc =
⋃

i∈Nsrc

Eout
i .

Esnk Set of edges entering sink node in Nsnk, i.e. Esnk =
⋃

i∈Nsnk

Ein
i .

Nd Set of nodes with discrete leaving edges, i.e. Nd = {i : i ∈ N,Eout
i ⊂

Ed} ⊂ N.

The variables of the problem, listed in Table 3.3, are related to the nodes and
edges of the graph. The flow rates are given as mass flow rates or as volumetric flow
rates in standard conditions. In the latter case, the flow rates must be properly
scaled with the phases’ standard condition densities, denoted with ρs for s ∈ S. For
brevity, the phase flow rates on an edge e ∈ E are collectively denoted qe, that is,
with an oil, gas, and water phase, qe = [qe,oil, qe,gas, qe,wat]

T. Furthermore, we denote
all the flow rates, pressures, and pressure drops in the network with q, p, and ∆p,
respectively. We use the same notation for vectors containing the temperature and
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enthalpy variables.

Table 3.3.: Variables

Variable Description

pi Pressure at node i ∈ N.
∆pe Pressure drop over edge e = (i, j) ∈ E, e.g. ∆pe = pi − pj.
te Temperature of fluid entering edge e ∈ E.
∆te Temperature drop over edge e ∈ E. The fluid leaving e has a temper-

ature of te −∆te.
he Enthalpy of fluid entering edge e ∈ E.
∆he Enthalpy drop over edge e ∈ E. The fluid leaving e has an enthalpy

of he −∆he.
qe,s Flow rate of phase s ∈ S on edge e ∈ E.
ye Binary variable associated with an edge e ∈ Ed. If ye = 1 the edge is

open, allowing a nonzero flow; otherwise, ye = 0 and the edge is closed
with zero flow.

Table 3.4.: Parameters

Parameter Description

qLe,s, q
U
e,s Lower and upper bound, respectively, for flow rate qe,s of phase s ∈ S

on edge e ∈ E. It is assumed that 0 ≤ qLe,s ≤ qUe,s.
pLi , p

U
i Lower and upper bound, respectively, for pressure pi in node i ∈ N.

It is assumed that 0 ≤ pLi ≤ pUi .
tLe , t

U
e Lower and upper bound, respectively, for temperature ti on edge

e ∈ E. It is assumed that 0 ≤ tLe ≤ tUe .

With the network topology represented by the graph, and the variables and
parameters associated with the nodes and edges, the flow network is modelled
by placing control volumes around each node and edge. In each control volume
mass, momentum, and energy conservation laws are enforced. In the following,
we present the equations/constraints for the conservation laws, as well as some
operational constraints. Together with an objective, they form the basis of the
proposed mathematical programming problem formulation, or framework, for pro-
duction optimization. The complete formulation is given towards the end of this
section.

3.4.1. Mass balances

In steady-state, the mass flow into a node must equal the mass flow out of it, i.e.
there is no accumulation of fluid in the node (or in the network). Using the sets
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Ein
i and Eout

i , the mass balances for the nodes may be expressed as:
∑
e∈Ein

i

qe,s −
∑

e∈Eout
i

qe,s = 0, ∀s ∈ S, i ∈ Nint. (3.1)

Note that the mass balances are defined only for the internal nodes in the network
(Nint). Since a source (sink) node have leaving (entering) edges only, its mass
balance would enforce zero net flow out (in) of the node. Hence, source and sink
nodes are excluded from Eq. (3.1).

3.4.2. Momentum balances

The multiphase flows in the network are driven by the node pressures (potentials)
pi. The pressure drop over an edge e = (i, j) is defined as ∆pe � pi − pj, and
relates the two node pressures pi and pj. For edges e ∈ Ed that represent choke
or on/off valves, ∆pe is a free/adjustable variable as discussed in 3.A. For edges
e ∈ E\Ed that represent pipes, ∆pe is given by some pressure drop correlation
∆pe = fe(qe, pi, te). The function fe(·) maps the upstream conditions (flow rates,
pressure, and temperature) to the pressure drop ∆pe. When it is more convenient
to express fe in terms of the downstream pressure, pi can simply be replaced with
pj. The pressure drops in the network are modelled with the following constraints:

∆pe = fe(qe, pi, te), ∀e ∈ E\Ed. (3.2)

Notice that Eq. (3.2) does not apply to edges with an adjustable pressure drop
(Ed). A pressure correlation may be insensitive to temperature for certain flow
conditions, e.g. liquid dominated flows. In this case the correlation can be simplified
to ∆pe = fe(qe, pi) without any significant loss of accuracy. Another special case
occurs for edges representing short pipes with negligible pressure drop, i.e. with
fe(·) ≈ 0, giving ∆pe = pi − pj ≈ 0. In the rest of this paper fe(·) will be used to
denote the pressure correlation of edge e, even if fe(·) = 0.
For a discrete edge e ∈ Ed, the momentum balance needs to be deactivated when

the edge is closed. This logic is accurately expressed by the following disjunction:

[
ye = 0

]
∨
[

ye = 1
∆pe = pi − pj

]
. (3.3)

The disjunction in Eq. (3.3) can be interpreted as follows: if an edge e is closed
(ye = 0), then there is no direct relation between the pressures in the adjacent nodes
i and j (the node pressures may still be indirectly related through other paths in
the network); if the edge is open (ye = 1), then the two pressures must satisfy the
relation ∆pe = pi − pj, where ∆pe is given by fe(·) in Eq. (3.2).
Although the disjunction in Eq. (3.3) captures the desired logic for the momen-

tum balance its form is not widely supported by commercial solvers. A straight-
forward way to deal with the disjunction without using logical expressions is to
approximate it with

ye(pi − pj −∆pe) = 0. (3.4)

87



Chapter 3. Global optimization of multiphase flow networks

This formulation introduces an additional (and undesired) nonlinearity to the prob-
lem through the multiplication with ye. This nonlinearity can be relaxed using
linear big-M constraints.2 Notice that the pressures pi and pj are constrained
to 0 ≤ pLi ≤ pi ≤ pUi and 0 ≤ pLj ≤ pj ≤ pUj . In practice pLj and pUj may
be inferred from pLi and pUi , and the image of fe(·). These bounds imply that
−Me ≤ pi − pj − ∆pe ≤ Me, where Me = (pUi − pLi ) + (pUj − pLj ). Using Me, the
disjunction in Eq. (3.3) may be approximated with the big-M constraints

−Me(1− ye) ≤ pi − pj −∆pe ≤ Me(1− ye). (3.5)

For ye = 1, Eq. (3.5) yields 0 ≤ pi−pj −∆pe ≤ 0, and the constraint ∆pe = pi−pj
in Eq. (3.3) is retrieved. For ye = 0, Eq. (3.5) yields two constraints which are
inactive in the feasible set: e.g. the inactive constraints allow ∆pe to take on
any value in [(pLi − pUj ), (p

U
i − pLj )], effectively disconnecting pi and pj. Thus, the

relaxation do not alter the optimal solution of the problem. A drawback with using
big-M constraints is that they often produce a weak relaxation of the disjunction.3

However, reasonably tight values for Me can easily be derived from the pressure
drop functions. Thus, we accept Eq. (3.5) as an alternative model to Eq. (3.3)
and use it to model the momentum balances. Before proceeding, we note that the
same big-M constraints were used by Codas et al. (2012). We also note that an
alternative relaxation could have been achieved by using a convex hull formulation
(Grossmann, 2002).

3.4.3. Energy balances

The thermodynamic potentials (enthalpies), he, of the fluids in the network are
modelled using the temperature variables te. At the source nodes, fluid enters the
network with a specified temperature (typically close to the reservoir temperature).
As the fluid flows through the network, its temperature changes due to mixing with
other fluids and energy loss through the pipe walls to the surroundings. In the
following we will assume that the mixing happens at the nodes, and the energy
loss occurs at the edges (pipes). To simplify the modelling we make the following
assumptions:

• Instant mixing. At any point in the network all fluid phases are assumed to
have the same temperature.

• No work is done by the system. However, the model can easily be extended
to include energy generation or loss through work, allowing for active com-
ponents such as pumps and compressors.

2The big-M constraints can easily be derived by applying McCormick’s relaxation of bilinear
terms to Eq. (3.4).

3In theory it is possible to let Me → ∞ and still obtain a valid relaxation. This will however
give an increasingly poor relaxation and produce ill-conditioned systems of equations in the
solver, causing numerical problems.
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• The heat transfer between the system and its surroundings may be completely
determined from internal states. Consequently, the heat transfer properties
and surrounding temperatures are assumed to be constant.

• The enthalpy is equal to the internal energy of a fluid, that is, no pV -work
is done. This assumption is reasonable for a stationary process without fluid
accumulation.

• Constant heat capacities cs for all phases s ∈ S.

Regarding the last assumption above: In general, the heat capacity of a fluid
is a function of pressure and temperature, i.e. cs = cs(pi, te). In practice, this
relation is available in a compositional PVT model or a black oil model (Aziz and
Settari, 1979). To simplify the model we assume cs to be constant in this work.
This simplification is reasonable for liquids, but may give rise to large errors for
gases. However, in the enthalpy calculations below, the contribution from gas is
generally much smaller than that of liquids, mitigating the erroneous heat capacity
of gas. According to the above assumptions, we next present the equations in the
thermodynamic model.
The temperature drop over the edges are modelled as

∆te = ge(qe, pi, te), ∀e ∈ E. (3.6)

The relation gives the temperature change due to heat transfer through the pipe
walls to the surroundings. In short, insulated, non-restrictive pipes the temperature
drop can usually be ignored by setting ∆te = 0.
The enthalpy of the fluid entering edge e, and the change in enthalpy across edge

e, are calculated as

he = te
∑
s∈S

cs · qe,s, ∀e ∈ E,

∆he = ∆te
∑
s∈S

cs · qe,s, ∀e ∈ E,
(3.7)

where cs is the constant heat capacity of fluid s ∈ S.4 As previously mentioned,
nonlinear heat capacities on the form cs(pi, te) may be used in Eq. (3.7) to increase
the accuracy of the model. However, for liquid dominated flow the contribution to
enthalpy from gas is relatively small.
Similar to the mass balances, we enforce an energy balance at each internal node

(conjunction) in the network. With the enthalpy variables available the energy
balances are easily expressed as:

∑
e∈Ein

i

(he −∆he) =
∑

e∈Eout
i

he, ∀i ∈ Nint. (3.8)

4In Eq. (3.7) the heat capacities cs are given in [J/kg K], the rates qe,s in [kg/s], the temperatures
te and ∆te in [K], and the enthalpies he and ∆he in [J/s] = [W].
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Note that the downstream enthalpies (he−∆he) are used in the left-hand side of Eq.
(3.8) to summarize the energy entering the node. According to the assumptions,
the energy balances above are correct if: 1) no work is performed, 2) no heat is
added, and 3) that the net change in kinetic and potential energy is zero.

The inclusion of the above energy model may increase the accuracy of the overall
problem formulation. However, the increased accuracy comes at the cost of a com-
putational heavier formulation since 3|E| nonconvex constraints (nonlinear equality
constraints) are added to the problem. One upside with the energy model is that it
does not involve any binary routing variables. To see why, consider the case when a
discrete edge is closed (ye = 0). The flow rate is then forced to zero, which in turn
forces the enthalpy on the edge to zero. Consequently, it does not contribute to the
energy balance in Eq. (3.8). Thus, there is no need to involve binary variables in
the energy balances.

3.4.4. Flow routing

Flows can be routed through certain parts of the network by opening and closing
discrete edges: closing a discrete edge forces its mass flow to zero. This behaviour
is expressed by combining the binary variable ye with the lower (qLe,s) and upper
(qUe,s) bounds on the flow rate as:

yeq
L
e,s ≤ qe,s ≤ yeq

U
e,s, ∀s ∈ S, e ∈ Ed. (3.9)

Note that Eq. (3.9) may force the flow rates qe to zero. Thus, the domains of the
nonlinear functions fe(·) and ge(·) should contain qe = 0; otherwise, ye = 0 =⇒
qe = 0 is infeasible.

Depending on the network topology, some binary variables may be redundant.
For example, the mass balance of a node with one entering and one leaving discrete
edge will enforce equal flow rates. Thus, closing any one edge will force the flow rate
on the other edge to zero. In this case one discrete edge (a single binary variable)
is sufficient to model the on/off logic.

In general, the discrete edges may be configured to model any routing problem.
Next we discuss a common routing configuration called a manifold.

The manifold: a special routing structure

A manifold is a collection of pipes and on/off valves designed so that its inlets can
be routed to its outlets in various configurations, possibly by commingling the inlet
streams. In a graph, the analogue to a manifold is a set of discrete edges connected
as shown in Figure 3.2.

A normal operational constraint on subsea manifolds is that an inlet stream can
be routed to at most one of the outlets. This constraint enforces requirement R2;
that a node may have at most one open outlet. The manifold routing constraints
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Figure 3.2.: A manifold modelled with discrete edges (dashed lines). The manifold can route each
of the three inlet streams to any of the three outlets.

are easily expressed with the binary variables of the discrete edges as

∑
e∈Eout

i

ye ≤ 1, ∀i ∈ Nd, (3.10)

where Nd are nodes with discrete leaving edges.5 The constraints in Eq. (3.10)
allow flow to none or one of the edges leaving a node. Routing to zero edges forces
the phase flow rates to zero via the mass balances in Eq. (3.1) and flow routing
constraints in Eq. (3.9). If the inlet stream is required to flow to exactly one outlet
the inequality in Eq. (3.10) is replaced with equality.
A manifold with 9 discrete edges configured as in Figure 3.2 has a total of 29 =

512 possible routing combinations. The cut in Eq. (3.10) reduces the number of
feasible routing combinations to 26 = 64. A quick way to calculate the number of
feasible combinations is to find the number of feasible combinations for each node,
which is n + 1 for a node with n discrete leaving edges, and then multiply these
numbers together. As calculated above we obtain n+1 = 4 for all three nodes, and
4 · 4 · 4 = 43 = 26 = 64 feasible combinations.
Note that a manifold is constructed to minimize pressure loss across its pipes

and valves, hence the pressure drop over the discrete edges may be fixed to zero.

3.4.5. Boundary conditions

To obtain a well-posed flow network problem it is necessary to specify boundary
conditions for the network. The boundary conditions are usually related to the
source and sink nodes, and specify the interaction between the network and its
neighbouring systems. Next we discuss a few upstream and downstream boundary
conditions, commonly used in models of subsea petroleum production networks.

5The constraint in Eq. (3.10) is redundant for nodes with only one discrete leaving edge: the
constraint would be ye ≤ 1, which is always true. These redundant constraints can easily be
omitted by altering Eq. (3.10) to apply only to nodes i ∈ {j : j ∈ Nd, |Eout

j | > 1}. However,

to keep the notation simple the manifold routing constraint is applied to all nodes in Nd.
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Upstream boundary conditions

At a source node i ∈ Nsrc we assume that the following relation between the pressure
pi and flow rates qe exists:

ζi,s(qe, pi) = 0, ∀s ∈ S, i ∈ Nsrc, (3.11)

where ζi,s : R|S|+1 → R, and e = (i, j) is the (only) edge leaving source node i.
A common class of inflow rate boundary conditions in subsea production networks

is the inflow performance relationship (IPR). It describes the mass flow from the
reservoir into the well as a function of the measured bottom-hole pressure (also
known as draw-down pressure). Wells without bottom-hole pressure sensors are
usually modelled with a well performance curve (WPC), relating the flow rate to
the wellhead pressure.
Two widely used IPRs are the linear (straight line) IPR and Vogel’s quadratic

IPR (Ahmed, 2006). With a linear IPR, a well i ∈ Nsrc can be modelled with the
linear constraints:

qe,oil = ci,PI(pi,res − pi),

qe,gas = ci,GOR · qe,oil,
qe,wat =

ci,WCT

100− ci,WCT

· qe,oil.
(3.12)

There are four constants in Eq. (3.12) that characterizes a well: the reservoir
block pressure pi,res (which is considered constant according to assumption A1),
the productivity index ci,PI, the gas-oil ratio ci,GOR ≥ 0, and the water cut ci,WCT ∈
[0, 100).
The linear model in Eq. (3.12) does not hold for all reservoirs. For instance, it

does not hold for reservoirs with a thin oil rim overlaid by a large gas cap, where
wells are subject to gas coning. In coning wells, the gas rate varies nonlinearly
with the oil flow rate, and Eq. (3.12) should be substituted with nonlinear rela-
tions. These relations may be generated from near-well simulations performed by
a reservoir simulator (Mjaavatten et al., 2008).
When temperatures are included in the model, it is customary to assume that the

temperature of the entering fluid is constant and equal to the reservoir temperature,
that is

te = const., e ∈ Esrc. (3.13)

Reasonably accurate inflow models is a prerequisite for an accurate network
model. This part of the model is, however, hard to calibrate. In practise, ex-
periments need to be performed to collect data for inflow model calibration. This
usually involves disruptive well testing, where a single well is routed to a test header
to allow the measuring of flow rates over a time span of hours.

Downstream boundary conditions

In line with Assumption A1 it is reasonable to assume a constant downstream
(separator) pressure when modelling a subsea production system. The constraints
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are easily expressed as:

pi = const., i ∈ Nsnk, (3.14)

where a constant pressure is specified for the sink (separator) nodes.

3.4.6. Operational constraints

In daily production optimization the production engineers must consider many
operational constraints. To obtain solutions with practical value these constraints
must be included in the optimization problem. Here we mention two very common
operational constraints: namely the capacity and draw-down constraint.

Capacity constraints

In daily production optimization, the topside separator is typically considered to
be the downstream boundary of the network. Hence, the amount of fluid entering
the separator must honour the water and gas handling capacity of the downstream
process facility. The capacity constraints on the total production of gas and water
are easily expressed by cut sets (here we have used the set of sink edges Esnk):

∑
e∈Esnk

qe,gas ≤ Cgas and
∑

e∈Esnk

qe,wat ≤ Cwat, (3.15)

where the total gas (water) flowing into the separator/sink nodes is limited by the
gas (water) handling capacity Cgas (Cwat).

Draw-down constraints

A draw-down constraint is a lower limit on the bottom hole pressure of a well. The
constraint prevents operation at pressures and thereby rates that potentially can
damage the well and near-well reservoir. Let i ∈ N be a node representing the
bottom hole of a well. Then a draw-down constraint on i is expressed with the
bounds on pi: i.e. p

L
i ≤ pi ≤ pUi , where the lower bound pLi specifies the draw-down

limit.

3.4.7. Objective function

As discussed in the introduction, the main objective when optimizing a petroleum
network is typically the maximization of oil production. This objective is easily
expressed by summing the oil rates of all edges in a cut set. Two obvious cut sets
are the edges leaving a source node (Esrc) or the edges entering a sink node (Esnk).
Below we express the objective function using the latter.

maximize z =
∑

e∈Esnk

qe,oil, (3.16)
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Sometimes it makes sense to include contributions to the cost of operating in the
objective function; for example the cost of utilizing gas lift or processing produced
water. In this framework it is straightforward to include these in the objective.

3.4.8. Flow network: a MINLP formulation

With the complete flow network modelled, the daily production optimization prob-
lem is posed as the following mixed-integer nonlinear programming problem:

maximize
y,q,p,∆p,t,∆t,h,∆h

z =
∑

e∈Esnk

qe,oil

subject to
∑
e∈Ein

i

qe,s −
∑

e∈Eout
i

qe,s = 0, ∀s ∈ S, i ∈ Nint

∆pe = fe(qe, pi, te), ∀e ∈ E\Ed

∆pe = pi − pj, ∀e ∈ E\Ed

−Me(1− ye) ≤ pi − pj −∆pe ≤ Me(1− ye), ∀e ∈ Ed

∆te = ge(qe, pi, te), ∀e ∈ E

he = te
∑
s∈S

cs · qe,s, ∀e ∈ E

∆he = ∆te
∑
s∈S

cs · qe,s, ∀e ∈ E

∑
e∈Ein

i

(he −∆he) =
∑

e∈Eout
i

he, ∀i ∈ Nint

∑
e∈Eout

i

ye ≤ 1, ∀i ∈ Nd

yeq
L
e,s ≤ qe,s ≤ yeq

U
e,s, ∀s ∈ S, e ∈ Ed

qLe,s ≤ qe,s ≤ qUe,s, ∀s ∈ S, e ∈ E\Ed

pLi ≤ pi ≤ pUi , ∀i ∈ N

tLe ≤ te ≤ tUe , ∀e ∈ E

ζi,s(qe, pi) = 0, ∀s ∈ S, i ∈ Nsrc

pi = const., ∀i ∈ Nsnk

te = const., ∀e ∈ Esrc

ye ∈ {0, 1}, ∀e ∈ Ed

(P)
In the rest of this work we denote an optimal value of P by z∗, obtained at an

optimal solution (x∗,y∗), where x is a vector containing all the continuous variables
in P. Notice that the problem is nonconvex due to the integer variables and the
nonlinear equality constraints Eqs. (3.2), (3.6), (3.7), and (3.11). Consequently, we
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cannot expect to find a global optimum, unless the problem is solved with a global
solver.
The formulation in P can be used to model any nonlinear flow network under

Assumptions A1-A4, and topology requirements R1-R3. For problems not requir-
ing an accurate energy model, a cruder model can be obtained by removing from P
the temperature and enthalpy variables, as well as the constraints for energy con-
servation. This will remove 3|E| nonconvex constraints, simplifying the problem
considerably. For a subsea production network, the framework allows for modelling
of gas lifted wells and complex multi-branch wells by the addition of nodes and
edges.
A key property of P, which may not present itself immediately, is that the integer

variables participate in linear constraints only. This is an advantageous property
since the discrete logic may be exclusively handled by the solver. In some cases the
nonlinearities are represented by process simulators without the capacity to handle
discrete logic.
Another important aspect of the formulation is that it does not contain functions

of more than |S| + 2 variables (rates, pressure, and temperature). This allows the
nonlinear functions to be replaced with approximations/surrogates of low dimen-
sion. In Section 3.5 we show how the nonlinear functions f(·) may be approximated
with spline surrogate models. As will become clear later in Section 3.6, this allows
us to solve P to global optimality with a spline-compatible solver.
Before continuing, we would like to remark on the fact that choke openings are

not directly computed in P. Chokes are usually modelled with nonlinear Cv curves,
relating the choke opening and the differential pressure over the choke. To avoid the
additional nonlinearity of the Cv curves when optimizing, the choke are represented
by a differential pressure variable (∆pe). The choke openings are back-calculated
from the optimal differential pressures after solving P.

3.5. Spline surrogate models

In this section we give a brief introduction to function approximation with splines.
Our purpose is to motivate the use of splines as surrogates for the nonlinear func-
tions in the optimization problem, P. We will use a light notation and represent
the splines as basis splines, or B-splines. For a detailed treatment of B-splines we
refer the reader to the literature on spline theory; cf. the textbooks of Piegl and
Tiller (1997) and Schumaker (2007).

3.5.1. Univariate and multivariate B-splines

A spline is a piecewise polynomial function which possesses a required degree of
smoothness at the points where the polynomial pieces connect (which are called
knots). First we consider the univariate B-spline, denoted as

φp(x) = cTbp(x), (3.17)
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where c ∈ Rn is a vector of n coefficients and bp ∈ Rn is a vector of n B-spline
basis functions.6 The basis functions in bp are (overlapping) p-th degree polynomial
pieces in the variables x; see Figure 3.3 for an illustration. They are recursively
constructed from a nondecreasing sequence of n + p + 1 real numbers t1 ≤ . . . ≤
tn+p+1 known as knots. These numbers are often collected in a vector t = {ti}n+p+1

i=1 ,
called the knot vector. Note that with our notation the dependence of bp, and φp,
on t is implied. We refer the reader to the literature for a description of the relation
between the knots and the basis functions.

The B-spline φp is a linear combination of basis functions and consequently a
piecewise polynomial with degree p. An important property of the B-spline is that
it has local support, meaning that at most p + 1 basis functions are nonzero at
a point x. This, in addition to several other advantageous properties, allow fast
and numerically stable methods for manipulation and evaluation of splines; see for
example De Boor (1972) and Cox (1972).

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

Figure 3.3.: Illustration of the univariate, cubic B-spline basis functions b3 = [bi,3]
5
i=1 for the

knot vector t = {0, 1, 2, 3, 4, 5, 6, 7, 8} (marked with asterisks on the x-axis). The
cubic B-spline φ3(x) = cTb3(x), with coefficients cT = [1, 1, 1, 1, 1], is also shown.

The B-spline generalizes nicely to the multivariate case. A degree p B-spline in
the variables x ∈ Rd may be compactly written as

φp(x) = cTBp(x), (3.18)

6Vectors are assumed to be column vectors unless otherwise stated.
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where Bp ∈ RN is a vector of N multivariate B-spline basis functions of degree
p. The multivariate basis functions are obtained by taking the tensor product of
univariate basis functions, i.e.

Bp(x) = b1
p(x1)⊗ . . .⊗ bd

p(xd) =
d⊗

i=1

bi
p(xi), (3.19)

where ⊗ denotes the Kronecker product.7 The Kronecker product produces a vector
Bp that contains all possible combinations of the univariate bases: this results in
a total of N = n1 · · ·nd multivariate basis functions, where ni is the number of
univariate basis functions in bi

p(xi) in variable xi. Consider the following example
illuminating the Kronecker product: [a, b]⊗ [c, d] = [ac, ad, bc, bd]. Transposition is
distributed over the Kronecker product so in the case of column vectors we obtain
[a, b]T ⊗ [c, d]T = [ac, ad, bc, bd]T.
Each basis function vector bi

p in Eq. (3.19) is parametrized by its own knot vector
ti. Note that a multivariate basis function is a product of d degree p univariate basis
functions, making it a multivariate, piecewise polynomial of degree dp.8 The domain
of φ(x) is considered to be the box X = X1 × · · · × Xd, where Xi is the interval
supported by at least one basis function in bi

p(xi). Consequently, φ(x) = 0, ∀x /∈ X.
A bivariate B-spline is illustrated in Figures 3.4 and 3.5.
Most properties of the univariate B-spline carry over to the multivariate case.

For example, the multivariate B-spline also enjoys local support and have fast al-
gorithms for manipulation and evaluation (although their implementation require
extra care to exploit sparsity patterns). The multivariate B-spline is a powerful
modelling and approximation tool, as is testified by the numerous computer-aided
design tools that use it. A broad application follows from the fact that the B-
spline may represent any piecewise polynomial function exactly, that is, without
any approximation error. Models containing non-polynomial functions, such as the
transcendental functions, may only be approximated by a B-spline. The approxi-
mation error can then be controlled by changing the density of the samples. In the
next section we show how to approximate a function that has been sampled on a
grid with a B-spline.

3.5.2. Function approximation with B-splines

Let any function f : Rd → R be sampled on a regular grid to yield m data points
{xi, yi}mi=1, where f(x

i) = yi. Using only these data points a B-spline that approx-
imates f is constructed. Several approximation methods exist and they are usually
categorized as being interpolating or smoothing. Among the interpolating methods

7In the literature the multivariate B-spline is often referred to as tensor product B-spline since
the basis functions are constructed using the tensor product.

8To ease the notation in Eqs. (3.18) and (3.19) we have assumed that all univariate basis
functions vectors bi

p are of the same degree p. This assumption can easily be removed without
any consequences.
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Figure 3.4.: Illustration of the univariate, cubic B-spline basis functions b1
3 = [b1i,3]

5
i=1 and

b2
3 = [b2i,3]

5
i=1 for the knot vectors t1 = t2 = {0, 1, 2, 3, 4, 5, 6, 7, 8}. Bivariate, bicu-

bic basis functions are constructed by Bp = b1
3 ⊗ b2

3. The grey box x ∈ [6, 7]2

is supported by the following bivariate basis functions: [b14,3, b
1
5,3] ⊗ [b24,3, b

2
5,3] =

[b14,3b
2
4,3, b

1
4,3b

2
5,3, b

1
5,3b

2
4,3, b

1
5,3b

2
5,3].

the widely used cubic spline interpolation is most common. There are especially
three reasons for the popularity of cubic spline interpolation: 1) it is fast to com-
pute, 2) it offers a high degree of smoothness, and 3) it is a good approximation to
a broad class of functions.

An interpolation method computes a B-spline that interpolates f at all of the m
data points. Mathematically, the following linear system is solved for the coefficients
c: [

Bp(x
1) Bp(x

2) . . . Bp(x
m)

]T
︸ ︷︷ ︸

Bc

c = y (3.20)

In Eq. (3.20) y = [yi]mi=1 and Bc ∈ Rm×N is the so-called B-spline collocation
matrix : the matrix where row i corresponds to the vector of basis functions Bp(x

i)
evaluated at sample xi. It is customary to select a knot vector that gives a square
collocation matrix (N = m). An example of such a knot vector is the free end
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Figure 3.5.: A bivariate, cubic B-spline constructed from the basis functions in Figure 3.4 and the
coefficients c = 125, where 125 ∈ R25 is a vector of 5× 5 = 25 ones.

conditions knot vector for cubic spline interpolation (p = 3):

tF = { x1, . . . , x1

︸ ︷︷ ︸
p+1 repetitions

, x3, . . . , xm−2, xm, . . . , xm

︸ ︷︷ ︸
p+1 repetitions

}.

Notice that the second and second last knot is omitted from tF to give N = m. For
square Bc, the conditions under which Bc is invertible are known as the Schoenberg-
Whitney nesting conditions : ti < xi < ti+p+1 for i = 1, 2, . . . ,m, allowing xi = ti
only if ti = ti+p < ti+p+1. These conditions are fulfilled for t = tF . When Bc is
square and invertible, the B-spline coefficients can readily be computed by solving
Bcc = y.
The m×m linear system in Eq. (3.20) can be solved efficiently by a sparse solver

on a modern desktop computer for m ≤ 100, 000. For example, when approxi-
mating a function in 5 variables this practical limit allows a discretization with 10
values in each variables, resulting in a grid of 105 = 100, 000 sample points. For a
“well-behaving”, low-dimensional function such as a well lift curve, 100,000 sam-
ples is more than enough to achieve an accurate approximation. In this work we
have utilized the SPLINTER library for function approximation (Grimstad et al.,
2015b).
Before we illustrate cubic spline interpolation in the next subsection, we point out

that the approximation error of a spline can be made arbitrarily small for continuous
functions by increasing the sampling density. Furthermore, the approximation error
is dependant on the knot placement. Optimal knot placement, however, is a difficult
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and largely unresolved problem, particularly for multivariate B-splines (Natali and
Pinto, 2009). Luckily, when samples are taken on a regular grid the knots can be
set equal to the sample points as in tF .

9 With scattered (irregular) sample points
it is not trivial to select the knot vectors. In either case, the problem of where to
place the sample points still remains and is highly dependant on the function to be
approximated.

3.5.3. An example: Beggs and Brill approximated with a B-spline

Figure 3.6 shows the Beggs and Brill pressure drop correlation for a slightly in-
clined pipe. With the given parameters, the correlation includes three different
flow regimes on the domain. By inspecting the figure one may observe several
bends in the correlation; the groove between the segregated and transition flow
regime is conspicuous.

Figure 3.6.: Beggs and Brill pressure drop correlation for a 1 degree inclined, 1000 meter long,
12 inch pipe. The water-cut is fixed at 10% and the outlet pressure is 30 bar. As
indicated, three different flow regimes occur as the oil rate increases. The overlaying
grid shows the sample points used to build the spline approximations.

The 20x20 grid in Figure 3.6 shows the m = 400 points where the correlation was
sampled. From these points two approximations are constructed: a linear spline
(p = 1) and a cubic spline (p = 3). The approximation error of the two splines are
plotted in Figure 3.7.

9By default, SPLINTER computes the knots by applying a moving average filter with window
size p + 2 to the sample points. With equidistant samples this filter produces a knot vector
equivalent to tF .
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(a) (b)

Figure 3.7.: The approximation error of the linear spline (a) and the cubic spline (b) interpolating
the Beggs and Brill pressure drop correlation on the equidistant 20x20 grid in Figure
3.6.

By inspecting the figure we see that qualitatively the approximation errors of
the two interpolating splines are similar. The error increases along the diagonal
grooves/bends where the rectangular grid fails to capture the geometry. The most
notable difference between the two splines are the ripples in Figure 3.7a. The ripples
show that the linear spline fails to capture the curvature between the grid lines;
this effect is not present to the same degree in Figure 3.7b.
To quantitatively compare the interpolating splines we measure the relative ap-

proximation error with εrel,2 = ||1− φ(x)/f(x)||2,X and εabs,∞ = ||f(x)− φ(x)||∞,X

for x ∈ X, where || · ||p,X denotes the Lp-norm on the domain X. The errors for
the two splines are given in Table 3.5.

Table 3.5.: Spline approximation errors.

εrel,2 εabs,∞

Linear spline 0.0044 1.1193
Cubic spline 0.0039 1.0545

3.6. Solution method

In this section we present the proposed method for solving P. The main assumption
is that all the nonlinear functions in P are B-spline functions on the form in Eq.
(3.18), that is, we assume that fe(·), ge(·), and ζi,s(qe, pi) are B-spline functions.
The bilinear terms in the enthalpy constraints in Eq. (3.7) may also be represented
exactly with splines.10 With this assumption problem P falls into the category

10A spline may represent a bilinear term exactly. In fact, the convex hull relaxation of the B-spline
is identical to the McCormick relaxation for bilinear terms (Grimstad and Sandnes, 2015).
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of spline-constrained MINLP problems, which may be solved to global optimality
by the spline-compatible optimization framework CENSO (Convex ENvelopes for
Spline Optimization), recently presented by Grimstad and Sandnes (2015). CENSO

is publicly available as open-source C++ code (Grimstad et al., 2015a). A descrip-
tion of the algorithm is given in the next section. Please note that without loss of
generality we assume P to be a minimization problem in this description. After the
description, we present two improvements that may speed up the algorithm when
solving production optimization problems.

3.6.1. Description of CENSO

CENSO is a framework for optimization with spline constraints. It contains a
spatial branch-and-bound (sBB) algorithm that partitions the problem domain by
branching on continuous variables as well as integer variables; this produces sub-
problems Pk of P. Spline (equality) constraints are generally nonlinear, thus non-
convex, and must be relaxed during the solution process. CENSO employs lifted
polyhedral sets to relax spline constraints, producing relaxed LP subproblems, de-
noted Rk.
Let ẑk denote the solution to Pk and z̄k the solution to Rk. The fact that ẑk ≥ z̄k

is used to process the search domain. The current best feasible solution found,
known as the incumbent, is denoted zu. The algorithm described next, terminates
when it has proved that there cannot exist a solution better than zu − ε (where
ε > 0 is a small number). This is known as ε-convergence.
The schematic in Figure 3.8 describes the sBB algorithm in CENSO. From the

top: the algorithm is initialized by adding P to the list of problems L, and setting
the upper bound on P to zu = ∞. The algorithm then enters a loop which ter-
minates when L is empty. Upon termination there are two possible outcomes: a
global optimum has been found (ε-convergence) or the problem is infeasible.
The first step inside the loop is to select and remove from L the next subproblem

Pk to be processed. The sBB in CENSO uses a simple best-bound-first policy,
selecting the subproblem with the lowest lower bound z̄k (inherited from its parent
node).
After selection, bounds tightening techniques are applied to Pk. The purpose

of these techniques is to reduce the domain of Pk and hence to accelerate the
exploration of the search space. These methods may also prove Pk infeasible, in
which case it is fathomed.
Next, the convex relaxation Rk is generated and solved to get z̄k. By default,

the convex relaxation is solved by Gurobi (Gurobi Optimization, Inc., 2014). With
the lower bound on Pk three fathoming rules are checked: (i) z̄k ≥ zu, (ii) z̄k = ∞
(Rk infeasible), and (iii) zu − z̄k ≤ ε (converged). If any of (i)–(iii) are true, the
node is fathomed as it may not contain a solution better than zu − ε.
If the subproblem cannot be fathomed its domain needs further processing. First,

the incumbent is updated by checking if the solution to Rk is feasible to Pk. To
further improve the incumbent an NLP or MINLP solver may be used to find a
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feasible solution of Pk that is better than zu. This heuristic is not required, but
may speed up the convergence of the search.
Finally, at the end of the loop a continuous or integer branching variable is

selected for Pk. This variable is then branched on to create two new partitions Pk−
and Pk+. The two partitions are added to the list L, completing one iteration of
the loop. Note that after one loop iteration the list size |L| is either decremented
by one (if Pk fathomed) or incremented by one (if Pk is branched on). If the list is
empty, the search terminates with the optimal solution zu.

Figure 3.8.: The spatial bound-and-bound algorithm in CENSO.

3.6.2. Branching variables and bounds tightening

A requirement for the sBB algorithm to converge to a global optimum is that it
may branch on all complicating variables. In a MINLP problem, the complicating
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variables are the integer variables and any continuous variable that participates
nonlinearly in a nonconvex constraint. For problem P, the complicating variables
are y and xc, where xc = [xi]i∈Ic are the complicating continuous variables. The
index set Ic is given so that {xi : i ∈ Ic} = {qe, pi, te,∆te : e = (i, j) ∈ E}. Note
that xc does not contain the variables ∆pe, he, and ∆he since they participate
linearly in all constraints (the reader can verify this by looking at P).

A continuous branching variable, like an integer branching variable, must be
branched on a finite number of times to ensure ε-convergence. However, the required
number of branches may be large depending on the value of ε and the convergence
rate of the convex relaxations. At any rate, it is highly desirable to keep the number
of continuous branching variables at a minimum.

ProblemP has a relatively large number of nonconvex constraints and, as a result,
xc contains most of the continuous variables. From computational experience, we
know that branching on all of the variables in xc is detrimental to the efficiency
of the algorithm, even for small network problems. To alleviate the computational
load we employ so-called bounds tightening.11

Bounds tightening (BT) are techniques that reduce the variable bounds [xL,xU ]
of a problem without removing its optimal point. BT techniques with this property
are said to be valid or to produce valid inequalities. BT will shrink the feasible set
of the primal problem and its convex relaxation. In some cases it may also prove
a problem infeasible. All BT techniques utilize the constraints to, in some way,
reduce the variable bounds.

Let us illustrate the advantage of bounds tightening with a simple example: Let
x1 ∈ [xL

1 , x
U
1 ] and x2 ∈ [xL

2 , x
U
2 ] be continuous branching variables, related via the

constraint x1 − x2 = 0. Bounds tightening will propagate the variable bounds
through the constraint and ensure that x1, x2 ∈ [max{xL

1 , x
L
2 },min{xU

1 , x
U
2 }]. Thus,

when bounds tightening is applied, it is sufficient to branch on one of the two
variables: e.g. branching on x1 will reduce the feasible range of x2, and vice versa.

Immediately, we understand that if we branch on the variables associated with
the degree of freedom in P, bounds tightening will ensure diminishing bounds on the
remaining (branching) variables. Let x̄c = [pi]e=(i,j)∈Ed be the |Ed| free, continuous
variables inP (according to the DOF analysis in 3.A). Then, it is sufficient to branch
on y and x̄c. It is clear that x̄c ∈ R|Ed| ⊂ xc ∈ R(|S|+3)|E|. To be more precise, with
bounds tightening the number of continuous branching variables is reduced from
(|S|+3)|E| to |Ed|. The reduction in the number of continuous branching variables
limits the tree size and accelerates the solution time of the sBB algorithm, even
when accounting for the additional computational load of the bounds tightening
techniques. Next, we briefly describe the bounds tightening capabilities of CENSO.

11Techniques that use the constraints to reduce the variable bounds have several names in the
literature, including: bounds tightening, range reduction, and interval analysis.

104



3.7. Case studies

Bounds tightening techniques in CENSO

CENSO employs the following BT techniques for MINLP problems: the reduced-
cost BT (RCBT), originally introduced for MILP problems (Ryoo and Sahinidis,
1996; Belotti et al., 2009); and feasibility-based BT (FBBT) (Messine, 2004; Belotti
et al., 2010). These are computationally cheap techniques that perform tightening
by propagating variable bounds through the constraints. They can be solved at any
node in the sBB tree, but generally produce shallow cuts. To improve upon the BT
capabilities of CENSO we implement the optimality-based BT (OBBT) technique
used by Zamora and Grossmann (1999) and Sahinidis (2003).
With OBBT a relaxed problem Rk is solved with the objective to minimize or

maximize one variable. This is done for each complicating variable in xc. Let F (Rk)
represent the (convex) feasible region of Rk. Then the convex problems solved by
the OBBT are

minimize
x

{±xi : x ∈ F (Rk), z ≤ zu} , i ∈ Ic. (3.21)

Let x̃L
i and x̃U

i be the solutions for the two objectives in Eq. (3.21) for variable
xi. Then the new bounds on xi are [x

L
i , x

U
i ]∩ [x̃L

i , x̃
U
i ]. If any of the problems in Eq.

(3.21) are infeasible, problem Rk must be infeasible and can therefore be fathomed.
The OBBT requires the solution of 2|Ic| convex NLPs or LPs; when all non-

linearities of P are represented with B-splines the relaxed problems Rk are LP
problems. The OBBT may be run iteratively to achieve a greater tightening of
the bounds: tighter variable bounds produce tighter convex relaxations, which in
turn produce tighter variable bounds. Running OBBT iteratively is expensive and
yields diminishing returns. However, it may greatly reduce the size of the BB tree.
Therefore, it is typically used on every subproblem down to a certain depth, and
to a limited extent deeper in the BB tree.

3.6.3. Primal heuristic

At the root node of the sBB tree, the MINLP solver BONMIN (Bonami et al.,
2008) is evoked to search for a feasible solution to P. If successful, the (primal)
feasible solution, being an upper bound on the solution of P, may help in cutting
large portions of the sBB tree. BONMIN is a heuristic in this setting since it is
used to find a local optimum to the nonconvex problem P.

3.7. Case studies

In this section we present a benchmark study of the solution methods in Table
3.6. The study includes three realistic production optimization cases from two BP
operated subsea production systems, referred to as BP subsea production system
1 and 2, from here on. Note that these cases do not necessarily correspond to
the normal operation of the production system. The cases are based on models
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implemented in the GAP software from Petroleum Experts (Petroleum Experts
Ltd., 2014). The GAP models serve as reference models when comparing solutions
generated from the four different solution methods.
The four solution methods in Table 3.6 may be described as follows. The first is

a traditional approach where a proprietary gradient-based multi-start NLP solver
treats the GAP model as a black-box model, calculating gradients by finite dif-
ferences. The three other methods formulate problem P by approximating the
nonlinear relations in the production system models with splines. Problem P is
then solved using IPOPT, BONMIN, and CENSO, respectively. The branch-and-
bound-based MINLP solvers BONMIN and CENSO may solve problem P with
discrete edges (discrete variables). The proprietary solver and IPOPT, being NLP
solvers, cannot handle discrete variables.

Table 3.6.: Solution methods.

Solver Type Routing Global Model

Proprietary solver NLP No No GAP

IPOPT (Wächter and Biegler, 2006) NLP No No P
BONMIN (Bonami et al., 2008) MINLP* Yes No P
CENSO (Grimstad and Sandnes, 2015) MINLP**Yes Yes P

*Convex MINLPs, **Spline constrained MINLPs.

CENSO solves problem P to global optimality and provides an optimality cer-
tificate with the solution, i.e. the optimality gap is less than ε upon termination.
Solving a MINLP problem to global optimality is considerably harder, and more
time consuming, than attempting a local solve. To illustrate the difference, the cases
were solved to local optimality using BONMIN. To improve BONMIN’s chances
of finding good solutions of the nonconvex problems it was configured with the
following options: algorithm set to “B-BB” (standard branch-and-bound mode),
num resolve at root set to 10, and num resolve at node set to 2. This allows BON-

MIN to solve the nonconvex subproblems in the BB tree from several starting
points; the starting points are naively drawn from a uniform distribution limited
by the variable bounds. All other options were left at their default values.
There are a few key differences between the solution methods described above

that complicates comparison of the methods. First of all, the proprietary solver and
IPOPT cannot handle discrete variables. Thus, we include them in the comparison
only when all discrete decisions are fixed. Second, the proprietary method solves
a different model/optimization problem than the other methods since it uses the
GAP model directly. To achieve a somewhat fair comparison, the optimal solutions
are compared by evaluating GAP at the optimal valve settings.
The three last methods in Table 3.6 were run on a laptop computer equipped with

an Intel 2.7 GHz dual-core processor and 8 GB of RAM memory. The proprietary
solver was run on another computer with favourable performance.
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Note that the reported solution times do not include the time it took to build
the splines in P. The timings for building the splines are reported at the end of
this section.

3.7.1. Case 1: Production optimization of BP subsea production
system 1

In this case we consider the subsea production system depicted in Figure 3.9. The
production system consists of 10 wells, 4 daisy-chained manifolds, 4 flowlines and
1 riser. The system is modelled with three fluid phases, i.e. S = {oil, gas,wat}.
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Figure 3.9.: Topology of BP subsea production system 1.

As shown in the figure (Node 25), lift gas can be injected into the riser base to
increase production by lowering the density of the fluid column. This is achieved
by modelling Node 25 with the rate boundary conditions qe,oil = 0 and qe,wat = 0.
The amount of lift gas injected into the riser is given by qe,gas ∈ [0, 20] mmscf/d.
To simplify the model, the lift gas is assumed to have the same composition as the
produced gas. The total gas production is limited to 340 mmscf/d, which is the
gas handling capacity of the downstream processing facilities.
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Figure 3.10.: A well modelled with three nodes and two edges.

The wells are modelled by connecting three nodes {i, j, k} with two edges, (i, j)
and (j, k). In this configuration, depicted in Figure 3.10, the nodes are labeled as
follows: bottomhole (i), wellhead (j), and manifold (k). The bottomhole node (i)
is a source node with no incoming edges. The inflow from the reservoir to the well
is modelled by a nonlinear IPR (a piecewise function composed of a straight line
and Vogel’s equation), with a fixed GOR and WCT. The well parameters are listed
in Table 3.7. The pressure drop over the wellbore, edge (i, j), is described by a
nonlinear lift curve f(i,j) relating the flow rates q(i,j) to the wellhead pressure pj.
The choke is described by the edge (j, k), with a related pressure drop ∆p(j,k).

Table 3.7.: Well parameters.

Well PI (rank #) GOR (scf/STB) WCT (%) pLi (bara)

1 6 1100 15 190
2 3 800 25 200
3 4 800 40 110
4 1 800 55 120
5 10 600 55 120
6* 2 700 50 0
7* 8 700 25 0
8 5 700 30 210
9 7 700 0 210
10 9 800 0 170

* Well is offline. ** Values are rounded for commercial reasons.

The system is modelled without any energy considerations, i.e. temperature and
enthalpy variables, and related constraints, are not included in the problem for-
mulation P. This reduces the number of nonconvex constraints and (complicating)
variables, and hence the complexity of the problem.
We divide Case 1 into two parts. In Case 1.1 and Case 1.2 the nonlinearities are

represented with linear and cubic interpolating splines, respectively. The interpo-
lating splines are constructed by solving Eq. (3.20), with degree p = 1 for Case 1.1
and p = 3 for Case 1.2. Since the case includes discrete edges (binary variables) it
is only solved with BONMIN and CENSO.
The results for the cases are reported in Table 3.8. Evidently, the cases are solved

efficiently by both solvers. The solution time of CENSO is strictly higher than that
of BONMIN, as is it must be since it runs BONMIN as a primal heuristic. The
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Table 3.8.: Results for Case 1.

Case, Solver Iterations (#) Time (s) z∗ (mSTB/d)

Case 1.1 (linear splines)
BONMIN 0 2 77.483
CENSO 9 56 77.483

Case 1.2 (cubic splines)
BONMIN 0 5 78.381
CENSO 17 191 78.381

number of iterations used by CENSO is kept low by intensive bounds tightening,
while BONMIN terminates with the global optimum after examining the root node
only; i.e. it uses 0 iterations in both cases. However, BONMIN does not terminate
with an optimality certificate, like CENSO.

Notice that the optimal value of the two cases differ with almost 1 mSTB/d.
The difference is due to the linear and cubic spline interpolation of the pressure
drop curves since the pressure drop curves have a positive curvature (convex-like
curves). This curvature is captured by the cubic spline, but is over-estimated by
the linear spline (piecewise linear) interpolation. Consequently, the higher pressure
drop causes a lower production for a fixed separator pressure. The two optimal
solutions do however give the same optimal valve settings.

The 11 active constraints at the optimal solution are listed in Table 3.15. The
case has 10 wells, and one additional source node for gas lift, giving 11 DOF (when
all binary variables are fixed). Hence, there are 11 active constraints at the optimal
solution (in addition to 10 fixed binary variables).

At the optimal solution Well 4-7 are offline. Well 6 and 7 are set offline. Well 4
and 5 have a WCT above 50% and it is not unexpected that they are offline at the
optimal solution. All online wells operate at the minimum choke differential pres-
sure, meaning that the system is pressure constrained – the gas capacity constraint
is not active and maximum gas lift is used.

To investigate the approximation error of problem P to the GAP model we insert
the optimal valve settings into GAP and record the pressures and rates it predicts.
The relative errors between the variables in GAP and Case 1.2 (cubic splines) are
reported in Table 3.9. Most of the errors are below 1%, which is satisfactory. We do
observe some propagation of error along the flowlines, and for the riser the pressure
loss error is almost 4%. This may be improved upon by sampling the flowline
pressure drop more densely, and accepting a higher computation time.
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Table 3.9.: Validation using GAP of solution from CENSO on Case 1.2.

Error (%)

Edge e qe,oil ∆pe pj

Wells
(1,11) 0.26 0.18 0.14
(2,12) 0.23 0.13 0.11
(3,13) 0.21 0.10 0.09
(4,14)* 0 0 0
(5,15)* 0 0 0
(6,16)* 0 0 0
(7,17)* 0 0 0
(8,18) 0.91 0.42 0.40
(9,19) 0.47 0.38 0.37
(10,20) 1.18 0.44 0.42

Flowlines
(21,22) 0.24 0.62 0.05
(22,23) 0.23 2.70 0.28
(23,24) 0.23 1.35 0.39
(24,26) 0.55 3.84 0.55
(26,27) 0.55 0.81 0**

* Edge is closed (well is offline) at the optimal solution.
** The separator pressure is fixed.

3.7.2. Case 2 and 3: Production optimization of BP subsea production
system 2

In these cases we consider the production system drawn in Figure 3.11. The system
has 13 wells, 5 flowlines, and 2 risers. Four of the wells can be routed to either of the
risers. The two risers are named as follows: edge (48, 51) is the east (E) riser and
edge (50, 51) is the west (W) riser. We refer to the flow path 44 → 46 → 48 → 51
as the E loop and the flow path 45 → 47 → 49 → 50 → 51 as the W loop.

For brevity we assign numbers to the wells so that well i represents the well with
bottomhole node index i, although the well consists of several edges and nodes.
The wells are modelled using a nonlinear IPR (a piecewise function composed of a
straight line and Vogel’s equation), with a fixed GOR and WCT. The well param-
eters are listed in Table 3.10. As in the previous case, we model the system with
three fluid phases, i.e. S = {oil, gas,wat}.
The network has a total of 17 discrete edges for routing and shutting in wells.

To mimic the current field operation wells 9, 10, and 13 are set offline. This leaves
214 = 16, 384 routing and well status combinations. By considering the manifold
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Figure 3.11.: Topology of BP subsea production system 2.

routing constraints in Eq. (3.10) we find that the number of feasible combinations
is 26 · 34 = 5, 184.

In addition to the common constraints described in Section 3.4, this case has two
special constraints. Each riser has a maximum mix velocity constraint (the mix
velocity is the sum of the in-situ liquid and gas velocity). These constraints limit
the erosion of the risers’ inner tube coating due to high velocity sand particles. The
mix velocity of riser e ∈ {(48, 51), (50, 51)} is modelled as ve(qe, pj, te +∆te) ≤ vUe ,
where vUe is the upper velocity limit. Notice that the downstream pressure pj and
temperature te +∆te are used since the velocity is calculated at the outlet, where
it invariably attains its maximum value. To accurately express these important
constraints, temperature and enthalpy variables are included in the formulation.

To benchmark how the model complexity added by the discrete decisions and
temperature variables affect the computation time, we solve Case 2 and 3 with the
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Table 3.10.: Well parameters for Case 2 and 3.

Well i PI (rank #) GOR (scf/STB) WCT (%) pLi (bara)

1 10 2400 45 280
2 5 900 0 190
3 8 4500 30 220
4 2 1500 65 0
5 3 1800 35 220
6 11 3300 0 210
7 6 2900 5 220
8 12 4200 0 220
9* 1 0 0 0
10* 7 0 0 0
11 9 900 20 200
12 4 900 0 200
13* 13 0 0 0

* Well is offline. ** Values are rounded for commercial reasons.

Table 3.11.: Configurations in Case 2 and 3.

Case Well status Well routing Energy
balances

Riser velocity
constraints

Case 2.1 – – – –
Case 2.2 � – – –
Case 2.3 � � – –

Case 3.1 – – � �
Case 3.2 � – � �
Case 3.3 � � � �

Yes: �, No: –

various configurations described in Table 3.11. Note that in Case 2.1 and Case 3.1
the status and routing of the wells are set to the state of the current field operation.

Case 2: Optimization without energy balances

In Case 2 problemP is solved without temperature and enthalpy variables (t,∆t,h,∆h),
and without the energy conservation constraints in Eqs. (3.6), (3.7), and (3.8).
Since the riser mix velocity constraints cannot be modelled without temperature
variables, they are also excluded from the problem. The nonlinear relations for
pressure drop and boundary conditions are modelled with cubic splines.
The results of Case 2 are reported in Table 3.12. Several interesting observations

can be made from the results. First of all, it is clear that allowing wells to be shut
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in or re-routed may only increase the optimal value. The optimal value of Case 2.2
is therefore higher than Case 2.1, but lower than that of Case 2.3. Next, the local
solvers seem to find good optimal solutions. In fact, in all cases except Case 2.1,
all solvers are able to locate the global optimum. This may be attributed to the
problem formulation in P, and the smoothness of the cubic splines. Finally, the
exponential increase in computation time becomes distinct when globally solving
Case 2.3 with CENSO.

Table 3.12.: Results for Case 2.

Case, Solver Iterations (#) Time (s) z∗ (mSTB/d)

Case 2.1
Proprietary solver – 9000 143.139
IPOPT 37 0.1 143.435
BONMIN 0* 5 143.435
CENSO 30 280 143.435

Case 2.2
BONMIN 761 44 143.763
CENSO 19 314 143.763

Case 2.3
BONMIN 4386 146 143.875
CENSO 89 1870 143.875

* Problem has no integer variables and is solved at the root node.

In Case 2.3, CENSO finds the solution z∗ = 143.875 mSTB/d. This solution is
verified by running the GAP model with the optimal valve settings. This gives a
production of 143.936 mSTB/d; a relative difference of 0.04%. Compared to the
optimal solution from the proprietary solver in Case 2.1, the increase in production
is 0.56%.
The active constraints at the optimal solution of Case 2.3 are listed in Table

3.16. As indicated in the table, Well 3 is offline in the optimal solution. This is
not surprising since it is a weak producer and the well with the highest GOR. Well
8, having the second highest GOR, is choked to hit the gas capacity constraint on
the total gas production. The rest of the wells operate at maximum capacity, i.e.
at their draw-down pressure or minimum choke differential pressure.

Case 3: Optimization with energy balances

The full Problem P is solved with temperature and enthalpy variables. The previ-
ously described riser mix velocity constraints are included in the problem formula-
tion to guard against solutions susceptible to high erosion rates.
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Note that Case 3 includes all constraints of Case 2, in addition to the energy
balances and riser mix velocity constraints. Thus, the optimal values in Case 2 are
necessarily lower bounds on the optimal values in Case 3.
The results for Case 3 are presented in Table 3.13. In Case 3.1 IPOPT, BONMIN,

and CENSO finds the same (globally) optimal solution. The same solution is found
by BONMIN and CENSO in Case 3.2. As reported, CENSO requires more than 1
hour to find and certify a global optimum. In Case 3.3, BONMIN fails to locate the
same or a better optimum than Case 3.2 and 3.1. This happens because BONMIN

mistakenly cuts away the optimum during its search. By comparing Case 3.1 and
3.2 we notice that, as in Case 2, the option to turn off wells does not seem to have
a large impact on the solution time.

Table 3.13.: Results for Case 3.

Case, Solver Iterations (#) Time (s) z∗ (mSTB/d)

Case 3.1
Proprietary solver – 9000 136.400
IPOPT 124 0.6 140.674
BONMIN 0* 32 140.674
CENSO 59 2630 140.674

Case 3.2
BONMIN 2432 387 140.674
CENSO 11 3670 140.674

Case 3.3
BONMIN 16152 2328 140.462
CENSO 249 9000** 140.674

* Problem has no integer variables and is solved at the root node.
** CENSO was terminated after 9000 seconds with an optimality gap of 25.163 mSTB/d.

CENSO finds the same optimal solution in all three cases, with the active con-
straints listed in Table 3.17. As indicated, Well 3 and 8 act as “swing producers”
and are adjusted to hit the E and W riser mix velocity constraint, respectively.
Wells 9, 10, and 13 are shut in. The rest of the wells operate at maximum capacity,
i.e. in this particular case at their draw-down pressure or minimum choke differ-
ential pressure. The results indicate that shutting in or re-routing wells does not
increase oil production since it is limited by the riser velocity constraints.
The optimal solution found by CENSO on Case 3.2 is 140.674 mSTB/d. This

solution is verified by implementing the optimal valve settings in GAP, to give
140.650 mSTB/d. The relative difference between these two solutions is -0.02%.
It is not possible to assert the accuracy of which P approximates the GAP model
based on a single point; however, this may indicate that the accuracy increases
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when temperatures are included in P.
Prior to solving Case 3.1, the best known solution was 136.400 mSTB/d, found

by the proprietary solver. The solution located by IPOPT, BONMIN, and CENSO

gives a production of 140.650 mSTB/d in GAP. The potential increase in produc-
tion is 4.25 mSTB/d, or 3.12%.

3.7.3. Pre-computations: building B-splines

Before solving P, B-spline approximations must be built from the samples taken
from the nonlinear relations. In Table 3.14 we report the build times for various
B-splines; the build time of a B-spline is the time it takes to solve the linear system
in Eq. (3.20). The examples include the inflow curves, pressure drop relations, and
temperature drop relations used in the cases presented previously. It is worth noting
that a B-spline must be rebuilt only when the relation it approximates changes.

Table 3.14.: B-spline build times.

Samples (#) Dimension (#) Degree (#) Time (s)

24 1 1 96× 10−6

24 1 3 127× 10−6

3773 4 1 0.2
3773 4 3 21.7
9800 4 1 3.0
9800 4 3 590.0
5184 5 1 1.4
5184 5 3 93.3

3.8. Concluding remarks

A framework for production optimization of multiphase flow networks has been
presented. By modelling the network with a graph and the nonlinear relations in
the network with B-splines, a fast solution method based on the spline-compatible
MINLP solver in CENSO was devised. The solution method can solve problems
formulated in the framework to global optimality. To accelerate solution times,
CENSO was augmented with a primal heuristic (BONMIN) and an optimality-
based bounds tightening technique from the literature. Together with a DOF anal-
ysis, this allowed us to reduce the number of sBB tree branches considerably.
In addition to the theoretical contributions outlined above, we have performed a

benchmark study where the solution method is compared to several other nonlinear
programming methods. The study involves three realistic cases defined using two
subsea production system models provided by BP. The findings are summarized
below.
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• The formulation in P proved flexible and allowed us to model the cases in
the benchmark study. The formulation includes nonlinear energy balances to
model the transportation of energy with higher detail than previous works
on petroleum production optimization. Features such as daisy-chained mani-
folds, lift gas injection, routing, and velocity constraints were easy to include.

• The B-spline surrogate models were sufficiently accurate to be used in pro-
duction optimization of real cases. Inflow performance curves, pressure and
temperature drop correlations, and velocity maps were successfully modelled
with splines.

• CENSO was able to successfully solve several realistic cases to global opti-
mality. However, as the solution time increases exponentially with the size of
the problem (number of complicating variables), we found that the global so-
lution method was not viable for daily production optimization of the largest
case, namely Case 3.3.

• The local solvers IPOPT and BONMIN were able to successfully solve prob-
lems formulated with P to local optimality. In all cases except one, they
located the global optimum certified by CENSO. This leads us to believe
that the NLP relaxation of P is near convex in large portions of the feasi-
ble region. We attribute the consistency of the results to the smoothness
and derivatives of the cubic B-splines, and to the linear participation of the
integer variables in P.

• The local and global solvers are complementary in the sense that the local
solvers provide fast results for complex problems and are thus suitable for
daily production optimization. CENSO, however, can be used to certify local
solutions from time to time, and also globally explore new production settings.

• In Case 3, the new methodology identified a potential increase in production
of 4250 standard barrels of oil per day, or 3.12% more than the best, previously
known solution. This solution was verified in the GAP simulator.

We believe that the above findings illustrate what any proficient practitioner of
mathematical programming knows; that a “good” problem formulation is a require-
ment for fast solution times and consistency across solvers.

The speed of the new method would allow for parameter sensitivity analysis and
stochastic optimization to include uncertainty in crucial model parameters (at least
for small to moderately sized problems). With such approaches it would be possible
to generate not only an optimal point, but an optimal operational plan for the user.
This is an important step towards better decision support systems.
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3.A. Degree-of-freedom analysis

Here we give a degree-of-freedom (DOF) analysis for problem P. We denote the
DOF with D, and calculate it as D = Dc + Dd, where Dc and Dd is the number
of free continuous and binary variables, respectively. It is straightforward to verify
that Dd = |Ed| so we focus on calculating Dc. We perform the analysis in two
steps: first, we calculate the DOF for a network without discrete edges, i.e. with
Ed = ∅; second, we calculate the DOF for discrete edges.

First, we consider a network without discrete edges. According to the re-
quirements all nodes, except sink nodes, must have exactly one leaving edge.
Consequently, for a network without discrete edges the following must be true:
|E| = |N| − |Nsnk|. This relation between the number of edges and nodes is useful
when we next attempt to eliminate variables with equality constraints.

To calculate Dc we first count the number of continuous variables to

q︷ ︸︸ ︷
|S| · |E|+

p︷︸︸︷
|N| +

∆p︷︸︸︷
|E| +

t︷︸︸︷
|E| +

∆t︷︸︸︷
|E| +

h︷︸︸︷
|E| +

∆h︷︸︸︷
|E| . (3.22)

A quick glance at Table 3.3 verifies these numbers. Remark that when we now
attempt to eliminate variables we must take care to count one elimination per
constraint, and to only eliminate a variable that participate in the constraint.

Starting with the flow rates q: we count equality constraints related to flow rates
to |S| · |Nint|+ |S| · |Nsrc|, which is the number of mass balances in Eq. (3.1) plus the
number of rate boundary conditions in Eq. (3.11), respectively. Using the relation
|E| = |N| − |Nsnk| we find that |Nint| + |Nsrc| = |N| − |Nsnk| = |E|. Thus, there
are |S| · |E| variables, |S| · |E| constraints, and zero DOF in the flow rates q.

We continue by counting 2(|E| − |Ed|) = 2|E| pressure drop constraints ∆pe =
fe(·) and ∆pe = pi − pj (remembering that Ed = ∅). We also count |Nsnk| pressure
boundary conditions. In total we get 2|E|+ |Nsnk| = 2|E|+ |N| − |E| = |N|+ |E|
constraints, which is the same as the number of pressure variables. Thus, we have
zero DOF in the pressure variables p and ∆p.

In the same fashion we consider the 4|E| temperature and enthalpy variables.
From Eqs. (3.6), (3.7), and (3.8) we count 3|E| + |Nint| constraints. We also have
|Esrc| = |Nsrc| boundary constraints in Eq. (3.13) on the temperature variables.
The total number of constraints is 3|E|+ |Nint|+ |Nsrc| = 3|E|+ |N|−|Nsnk| = 4|E|.
Thus, we find no DOF in the variables t, ∆t, h, and ∆h.
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We conclude the first step of the analysis by establishing that there is no degree
of freedom in P when Ed = ∅, i.e. D = Dc +Dd = 0.
In the second step of the analysis we let Ed �= ∅, i.e. we allow discrete edges.

We begin by considering a node with one leaving discrete edge. The discrete edge
does not have the constraints ∆pe = fe(·) and ∆pe = pi − pj. However, when
ye = 1, ∆pe = pi − pj is recovered from the big-M constraint in Eq. (3.5). On the
other hand, when ye = 0, the flow rates are forced to zero (qe = 0) by the flow
routing constraint in Eq. (3.9) (since we already have zero DOF in the flow rates
we may use the boundary constraint ζi,s(qe, pi) = 0 to fix one pressure). In either
case, one DOF remains. This DOF reflects different things for the two cases: for
ye = 1, ∆pe is free, but it relates the node pressures pi and pj, affecting the flow
rate qe; for ye = 0, ∆pe is free, but does not affect the flow rate since qe = 0 or the
neighbouring pressures since −Me ≤ pi−pj−∆pe ≤ Me never become active. Note
that there is a subtlety with the latter case (ye = 0): since ∆pe cannot affect other
variables it is not suited to be a branching variable (more importantly, ∆pe is not
a complicating variable in P). It is better to branch on pi, which is a complicating
variable that may affect other variables. We conclude that for each discrete edge
we get one DOF in the continuous variables, and in total Dc = |Ed|.
Finally, we consider the special case where nodes may have multiple leaving

discrete edges. The only change in P is the addition of the inequality constraints
for manifold routing in Eq. (3.10). These constraints do not alter the DOF.
We conclude the analysis by establishing that Dc = |Ed| and Dd = |Ed|, giving

D = 2|Ed|. The DOF is associated with the discrete edges e ∈ Ed representing
(choke) valves.

3.B. Case results

The active constraints at the optimal solution of some of the cases are reported in
this appendix.
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Table 3.15.: Active constraints at optimal solution of Case 1.

Well Online Active constraint Lower
bound

Upper
bound

Solution

1 Yes Choke ∆p (bar) 0 – 0
2 Yes Choke ∆p (bar) 0 – 0
3 Yes Choke ∆p (bar) 0 – 0
4 No Oil rate (mSTB/d) 0 – 0
5 No Oil rate (mSTB/d) 0 – 0
6 No Oil rate (mSTB/d) 0 – 0
7 No Oil rate (mSTB/d) 0 – 0
8 Yes Choke ∆p (bar) 0 – 0
9 Yes Choke ∆p (bar) 0 – 0
10 Yes Choke ∆p (bar) 0 – 0
– – Lift gas (mmSTB/d) 0 20 20

Table 3.16.: Active constraints for Case 2.3.

Well Online Active constraint Lower
bound

Upper
bound

Solution

E loop
1 Yes Draw-down pressure (bara) 283.0 – 283.0
2 Yes Choke ∆p (bar) 0.5 – 0.5
3 No Oil rate (mSTB/d) 0.0 – 0.0
5 Yes Choke ∆p (bar) 9.5 – 9.5
6 Yes Choke ∆p (bar) 10.0 – 10.0

W loop
4 Yes Choke ∆p (bar) 1.0 – 1.0
7 Yes Choke ∆p (bar) 5.0 – 5.0
8* Yes Total gas (mmscf/d) – 300.0 300.0
9 No Oil rate (mSTB/d) 0.0 – 0.0
10 No Oil rate (mSTB/d) 0.0 – 0.0
11 Yes Choke ∆p (bar) 5.5 – 5.5
12 Yes Fixed oil rate (mSTB/d) 4.4715 4.4715 4.4715
13 No Oil rate (mSTB/d) 0.0 – 0.0

* Well 8 is adjusted to hit the gas capacity constraint.
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Table 3.17.: Active constraints for Case 3.2.

Well Online Active constraint Lower
bound

Upper
bound

Solution

E loop
1 Yes Draw-down pressure (bara) 283.0 – 283.0
2 Yes Choke ∆p (bar) 0.5 – 0.5
3 Yes Mixed velocity, E riser (m/s)* – vUe vUe
5 Yes Choke ∆p (bar) 9.5 – 9.5
7 Yes Choke ∆p (bar) 5.0 – 5.0

W loop
4 Yes Choke ∆p (bar) 1.0 – 1.0
6 Yes Choke ∆p (bar) 10.0 – 10.0
8 Yes Mixed velocity, W riser (m/s)* – vUe vUe
9 No Oil rate (mSTB/d) 0.0 – 0.0
10 No Oil rate (mSTB/d) 0.0 – 0.0
11 Yes Choke ∆p (bar) 5.5 – 5.5
12 Yes Fixed oil rate (mSTB/d) 4.4715 4.4715 4.4715
13 No Oil rate (mSTB/d) 0.0 – 0.0

* Velocities not displayed for commercial reasons.
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Chapter 4

Virtual Flow Metering using B-spline Surrogate
Models

Grimstad, B., Robertson, P., and Foss, B. (2015c). Virtual flow metering using B-
spline surrogate models. In 2nd IFAC Workshop on Automatic Control in Offshore
Oil and Gas Production, Florianópolis, Brazil.

Summary

Existing optimization-based virtual flow metering solutions use ad-
vanced, black-box process models directly in the optimization problem.
This approach has many potential disadvantages, for example: non-
smooth models and lack of derivative information may hamper the opti-
mization solver. In this paper a new approach to optimization-based vir-
tual flow metering using B-spline surrogate models is presented. In this
approach the black-box process models are replaced with smooth B-spline
approximations, with gradients readily available to the solver. We show
that the approximation can be done without any significant loss of accu-
racy. By using surrogate models the optimization solver can be decou-
pled from the process simulator, saving I/O-operations and evaluations
of the process model, resulting in reduced solution times. Another bene-
ficial feature of the problem formulation is that poorly calibrated models
may be identified and weighed less in the optimization problem. Some
insight on how to select measurement noise and model error weights is
shared with the reader.

4.1. Introduction

Model-based technologies are increasingly used to improve the operability and
safety of subsea oil and gas production systems; several testimonials to this can
be found in the literature, cf. (Stenhouse, 2008; Foss, 2012). By coupling sensor
data with process models, operators may estimate the unknown flow rates in the
system. This may aid them in: operating within safety and flow assurance lim-
its, preventing unnecessary wear and tear on the equipment, identifying equipment
failure, and in guiding the system to desired operating points.
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In modern field developments, accurate pressure and temperature sensors are
installed throughout the production system, from the bottom-hole of the wells to
the separator. Flow meters are installed more sparingly due to high costs. For
additional accuracy and redundancy, the systems are monitored with software that
infer the flow rates by inserting available measurements into an advanced process
model/simulator. This technology is known as flow estimation, data reconcilia-
tion or virtual flow metering (VFM). A survey and discussion on the use of flow
estimation in subsea oil and gas production systems can be found in the recent
work of Robertson (2014). The same work provides a list of existing commercial
and in-house VFM solutions. One example from this list is FMC Technologies’
FlowManagerTM(Holmås and Løvli, 2011).

A VFM system is an online system, running at real-time speed in intervals of
seconds or minutes. For this reason, steady-state models have been prevalent in
VFM systems to obtain the required solution times. Once within each interval a
steady-state flow estimation problem, or data reconciliation problem, is solved to
obtain the estimated rates. For a linear process model, this problem is a special
case of the Kalman filter (Narasimhan and Jordache, 1999). This relation becomes
less clear when a nonlinear model is used and operational constraints are included.
The resulting optimization problem is then non-convex and difficult to solve. The
situation is not improved by the fact that the process model is considered to be
a black-box model without available gradient information. To resolve some of
these issues we will in this work replace the process models with B-spline surrogate
models. These surrogate models are accurate, smooth, fast to evaluate, and they
offer gradients – all being favourable properties for optimization.

Using the B-spline surrogate models, we form a data reconciliation problem that
we solve for a semi-realistic case with two subsea wells. A nice feature of the
proposed method is that model errors, as well as measurement noise, are considered
in the problem formulation. This allows for gross error detection to identify poorly
calibrated models, which is a common issue in VFM systems; this is due to the lack
of flow rate measurements for model calibration (Bieker et al., 2007).

4.2. Flow estimation

Let y be an ny-vector of variables to be reconciled with the corresponding measure-
ments ȳ.1 We denote the difference between the reconciled and measured values
with v, i.e. v = y−ȳ. Furthermore, we denote with an nx-vector x the unmeasured
variables that we want to estimate. To estimate x we solve the following nonlinear

1Vectors are denoted with bold face y and vector elements with yi. All measurements are denoted
with a bar accent, e.g. ȳ.
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programming problem

minimize
x,y,v,w

||v||2M + ||w||2N
subject to g(x,y) = w

y − ȳ = v

x ∈ X

(P)

where g : Rnx×Rny → Rm are m maps between the reconciled (measured) variables
y and the unmeasured variables x. In general, g is a vector of nonlinear functions
and, hence, g(·) = w describes a nonconvex constraint set. The variables w ∈ Rm

represent model errors; in the case of a perfect model w = 0. The set X is a convex
polytope which may include linear constraints on the estimated variables x. Note
that the measurements ȳ are not considered variables in P.

The objective of P is a weighted least-squares quadratic function defined by the
norms ||v||2M = vTMv and ||w||2N = wTNw, representing penalties on measure-
ment and modelling errors, respectively. The matrices M and N can be thought of
as the inverse covariance matrices for the measurement noise and model errors. In
this work we set M = diag(µ) and N = diag(ν), where µ and ν are two vectors of
non-negative weights, to obtain diagonal, positive definite matrices and a convex
objective function.

Problem P is a steady-state data reconciliation problem. Next we describe how
P may be configured to estimate the flow rates in a simple subsea production
system with two wells. The sequential solution of this problem, incorporating new
measurements as they become available, is often termed virtual flow metering.

4.2.1. Formulating a simple flow estimation problem

Here we present a configuration of P which can be applied to any two-well subsea
template tied back through a single pipeline (see Fig. 4.1). Extensions to include
more wells and/or more complex topologies are straightforward.

For a subsea production system the vector of measured variables is typically
y = [pT, tT,uT]T, with measurements ȳ = [p̄T, t̄T, ūT]T, where p denotes pressures,
t denotes temperatures, and u denotes choke openings. The unmeasured variables
to be estimated are typically the flow rates, i.e. x = q, where q denotes the flow
rates. The vector g may include pressure and temperature drop functions, as well
as other relations between the variables. Below, we consider some commonly used
pressure drop functions. For simplicity we assume perfect temperature and choke
opening measurements and fix t = t̄ and u = ū in the formulation.

The well performance is usually described by the inflow performance relationship
(IPR), which describes the inflow from the reservoir to the wellbore. The IPR, here
denoted with f ipr

i , relates the liquid rate qliqi to the flowing bottom hole pressure pbhi .
It depends on factors such as rock properties (e.g. permeability), fluid properties,
the well completion, et cetera. Denoting the IPR model error variable with wipr

i , we
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model the IPR as follows:

wipr
i = pbhi − f ipr

i (qliqi ), ∀ i ∈ {A,B}. (4.1)

The vertical lift performance (VLP) curve describes the relationship between the
well flow and the pressure loss from the bottom hole to the wellhead, and depends
on e.g. the well geometry and fluid properties. While a well can be modelled from
the reservoir to the wellhead using the IPR and VLP curve, the two models can be
combined to create a single well performance curve (WPC)

wwpc
i = pwhi − fwpc

i (qliqi ), ∀ i ∈ {A,B}. (4.2)

The VLP curve may be ambiguous with respect to flow rate due to gas lifting at low
flow rates, therefore we prefer to use the WPC, which is usually more well-behaved.

Figure 4.1.: Topology of production system.

Wellhead choke valves control the flow rates from each well. The flow rates
through the choke valves depend on e.g. choke geometry and the upstream flow
regime.

wchk
i = pman − f chk

i (qliqi , pwhi ; t̄whi , ūi), ∀ i ∈ {A,B}. (4.3)

The wellhead choke model used in this paper is a multiplier model, which is based
on the simple valve equation together with a Morris multiphase multiplier and
Chisholm slip correlation (see e.g. Schüller et al. (2003)).
The flowline is modelled using the OLGAS 3P multiphase flow correlation. The

input variables to the correlation are upstream (manifold) pressure, liquid flow rate,
gas-oil ratio (GOR) and water cut (WCT). The measured upstream temperature is
considered a fixed parameter. The output is the downstream (separator) pressure:

wfl = psep − ffl(pman, qliqC , rgorC , rwctC ; t̄man). (4.4)
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For convenience, we collect all the model errors in a vector

w =
[
wipr

A , wipr
B , wwpc

A , wwpc
B , wchk

A , wchk
B , wfl

]�
,

with corresponding weights ν. Similarly, we collect the measurement/reconciliation
errors in a vector

v =
[
vbhA , vbhB , vwhA , vwhB , vman, vsep

]�
,

with corresponding weights µ.
In addition to the pressure drop constraint functions in g, we model interrelations

between the unmeasured variables x with the constraint set X. For example, we
include mass balance constraints on the rate variables q in X, e.g.

qpC = qpA + qpB, for p ∈ {oil, gas,wat}.
Other linear relations that we include in X are:

qliqi = qoili + qwati , qgasi = rgori qoili , qwati = rwcti qliqi ,

for i = {A,B}, where rgori and rwcti are a constant GOR and WCT, respectively.

4.3. B-spline surrogate models

In practice, the nonlinear maps in g, such as the pressure loss functions in the
previous section, are given by some process simulator. Most commercially available
process simulators are proprietary code and may be considered as “black-box calcu-
lators”. A process simulator models the production network with complex, nonlin-
ear functions that may be non-smooth in certain regions. Generally, no derivative
information is made available and finite difference methods must be used when
optimizing with gradient-based solvers, often resulting in a large number of evalua-
tions. Furthermore, when coupling an optimization solver to a (black-box) process
simulator, evaluation may be time consuming for several reasons: 1. the simulator
may require convergence of the whole network model at each evaluation (even when
perturbing a single component of the network), and 2. the IO-operations to trans-
fer data between the solver and simulator may be time consuming. To solve the
above problems we will replace the nonlinear maps g with B-spline approximations
φ. The B-splines in φ are referred to as B-spline surrogate models.
Note that the pressure drop functions in the previous section are on the form

gi(·) = yi− fi(·) = wi. Thus, in the following we will approximate fi (instead of gi)
by φi, i.e. φi ≈ fi, and gi ≈ yi − φi.

4.3.1. B-splines

A B-spline is a piecewise polynomial function in the variable x, defined by a degree
p, a vector of knots t ∈ Rn+p+1, and a vector of n coefficients c ∈ Rn as follows:

φ(x; p, t) = cTb(x; p, t). (4.5)
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b(x; p, t) ∈ Rn is a vector of n B-spline basis functions. The basis functions are
overlapping, degree p, polynomial functions, as depicted in Fig. 4.2 for n = 8
and p = 3. The basis functions and their derivatives may be evaluated by the
numerically stable and fast, recursive algorithms of De Boor (1972) and Cox (1972).

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x

b i
(x
)

Figure 4.2.: B-spline basis functions for p = 3 and n = 8.

The B-spline in (4.5) generalizes to the multivariate case, where it is called the
tensor product B-spline. Most properties of the univariate B-spline, such as a high
degree of smoothness and local support, carry over to the multivariate case without
any complications. For brevity we will discuss only univariate B-splines in the rest
of this section. We note however that the discussion is valid also for tensor product
B-splines. The interested reader is referred to the textbooks of Schumaker (2007)
and Piegl and Tiller (1997) for an introduction to multivariate splines.

4.3.2. Cubic spline interpolation

Let any function f : R → R, for example fwpc
A in (4.2), be sampled on a regular

(rectangular) grid to yield N data points {xi, f(xi)}Ni=1. Several methods exist for
constructing a B-spline that interpolates these N points. These methods vary in
how the B-spline degree p and knots t are selected. The commonly preferred cubic
spline (p = 3) can be obtain by using a free end conditions knot vector

tF = { x1, . . . , x1︸ ︷︷ ︸
p+1 repetitions

, x3, . . . , xm−2, xm, . . . , xm︸ ︷︷ ︸
p+1 repetitions

}.

To obtain the spline the following linear system is solved for the coefficients c:

[
b(x1) b(x2) . . . b(xN)

]T
︸ ︷︷ ︸

B

c = f , (4.6)

where f = [f(xi)]
N
i=1 and B ∈ RN×n is called the B-spline collocation matrix. Note

that b(x) = b(x; 3, tF ) in (4.6).
One advantage with (cubic) spline interpolation is that it avoids the problem of

Runge’s phenomenon, in which oscillation occurs between the interpolation points
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(as is evident in interpolation with high degree polynomials). The functions in g
are often polynomial or near-polynomial and approximated by B-splines with little
error. The authors’ experience with approximating various pressure loss functions
suggests that the approximation error typically lies in the order of 0.1− 0.001% (in
fact, the error can be made arbitrarily small by increasing the sampling resolution).
Arguably, the error between g and reality is orders of magnitude larger than this. To
illustrate this with an example, let φwpc

N (qliq) be the B-spline approximation of the
WPC fwpc(qliq) sampled in N points. Further, let eN(q

liq) = 1−φwpc
N (qliq)/fwpc(qliq)

be the resulting relative approximation error. Approximation errors for N = 50,
N = 10 and N = 5 are shown in Figure 4.3, while error measures are summarized
in Table 4.1.
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Figure 4.3.: B-spline approximation errors for a WPC.

Table 4.1.: Maximum and 2-norm errors.

N ‖eN‖∞ ‖eN‖2
5 1.1 · 10−2 7.8 · 10−2

10 6.1 · 10−4 5.7 · 10−3

50 6.5 · 10−5 2.4 · 10−4

The construction of a B-spline surrogate model is a two-step procedure: 1. sam-
pling the simulator and 2. solving the linear system in (4.6) for the B-spline co-
efficients. This procedure can be run offline and the resulting B-splines stored in
advance of optimizing P.
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4.4. Results and discussion

4.4.1. Reference OLGA simulation

To test the performance of the estimator, a production network model represen-
tative to Figure 4.1 was implemented in OLGA, which is considered the de facto
industry standard for dynamic simulation of multiphase petroleum production sys-
tems (Bendiksen et al., 1991; Schlumberger, 2014b). A benchmarking simulation
was run to obtain a set of noise-free measurements {ȳk}Tk=0 (pressures, temperatures
and choke positions) and flow rates {q̄k}Tk=0, which were assumed to be unknown.
Here, k are time indices (the simulation was run for 26 hours with a 10 second
sampling interval). In the simulation, the choke valves were sequentially stepped
up from 5 % to 60 % opening, as depicted in Figure 4.4. Default OLGA settings
were used.
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Figure 4.4.: Choke positions.

4.4.2. Obtaining the pressure drop models

To equip the estimator with the necessary pressure drop models, a model of the
production network was implemented in Petroleum Experts’ IPM software package
(Petroleum Experts Ltd., 2014). IPRs, WPCs and the flowline model were sampled
from the IPMmodule GAP, and approximated with cubic B-splines. For the chokes,
we used a multiplier model based on the valve equation, which was also sampled
and approximated with B-splines. Prior to sampling, the models were matched
against multi-rate flow tests run in OLGA. The IPRs, WPCs and flowline model
were matched using available tools in GAP, while the choke models were matched
using a simple multiplication factor. For a large number of samples, it may take a
few seconds to generate a B-spline, however, this single calculation is done offline
and does not contribute to the time taken to solve P.
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4.4.3. Case 1 – Single model evaluation

We first present the estimation results obtained by evaluation each pressure drop
model individually. This is equivalent to a nonredundant VFM method which uses
a single pressure drop model for estimation. The resulting estimates are presented
in Figures 4.5 (Well A), 4.6 (Well B) and 4.7 (Flowline). We note that the IPRs
and WPCs tend to underestimate the flow rate slightly, while the choke models
tend to overestimate the flow rate. Note how the choke model estimates degrade
as the choke opens more, which is due to the increasing sensitivity of the flow
rate with respect to pressure as the pressure drop across the choke decreases. The
flowline rate estimate displays a large error compared to the well flow rate estimates,
indicating that the flowline model is relatively poor.
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Figure 4.5.: Estimation by single model evaluation, well A.
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Figure 4.6.: Estimation by single model evaluation, well B.
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Figure 4.7.: Estimation by single model evaluation, flowline.

4.4.4. Case 2 – Uniform weights

Having made a qualitative assessment of the quality of each pressure drop model in
Case 1, we now present the estimation results obtained by solving problem P with
uniform weights, i.e. N = I. Since we have much higher confidence in the pressure
measurements than the pressure drop models, M was configured with relatively
large weights; M = 103 · I. For each measurement ȳk, problem P was configured
as described in Sec. 4.2.1 and solved to local optimality to obtain the estimate qk

of the unmeasured flow rates q̄k.

Qualitative gross error detection

The resulting values of the elements in w are shown in Figure 4.8. When quali-
tatively interpreting this figure, we note that: 1. Small values (i.e. close to zero)
indicate that the pressure drop model agrees with the relevant reconciled pressures
in the network, and 2. values which are close to each other indicate that the ap-
propriate pressure drop models are in agreement with each other with respect to
flow rates. In our case, the model error for the flowline VLP is relatively far from
the remaining pressure drop models. This indicates that the rates predicted by the
flowline VLP are not consistent with the other pressure drop models (nor with the
reconciled pressures), and may be introducing unnecessary estimation errors. This
is apparent from Fig. 4.7, however, in a real-life case, such a figure would not be
available. We now proceed to adjusting the model error weights in an attempt to
improve the flow rate estimates.
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Figure 4.8.: Model errors with uniform weighting.

4.4.5. Case 3 – Heterogeneous weights

Finally, we present the estimation results obtained when we attempt to consider
the observations made in Figure 4.8 and measured model uncertainty through the
flow tests. Here, we select the weights ν based on a normalized sum norm of errors
between the measured pressures in the flow tests, and the corresponding pressures
predicted by the matched models. The adjusted weights are shown in Table 4.2.
Note the flowline weight νfl is selected relatively small.

Table 4.2.: Model error weighting ν in Cases 2/3.

Case ν ipr
A ν ipr

B νwpc
A νwpc

B νchk
A νchk

B νfl

2 1 1 1 1 1 1 1
3 1 0.79 0.25 0.19 0.41 0.37 0.05

Again, we configure and solve P for each measurement ȳk. The resulting estima-
tion errors in Cases 2 and 3 are shown in Figure 4.9. A clear reduction in estimation
error is seen when our confidence in each model is taken into account through the
weighting. In general, as seen in Table 4.3, the estimates in Case 3 are also better
(or near as good) as the estimates produced by any single model. Equally impor-
tant, we note that using a multi-model formulation increases robustness compared
to a single-model approach; the resulting estimates become an “agreed consensus”
between several models and are less prone to degradation in certain operating con-
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Figure 4.9.: Absolute estimation errors for Case 2 and 3.

ditions (cf. a choke model subjected to a low differential pressure). Note that the
spikes in estimation error are caused by unmodelled dynamic behaviour following
the choke moves.

4.4.6. Solution times

The non-convex problems on the form in P were solved to (local) optimality by
the nonlinear programming solver IPOPT (Wächter and Biegler, 2006) on a laptop
computer with an Intel Core i7-3740QM CPU running at 2.7 GHz. The solution
times are reported in Table 4.4. We notice that the solution times are below the 10
second real-time limit set by the sampling rate. In fact, as shown by the max-values,
all problems were solved well within 10 seconds.

Problem P can be solved to global optimality by a solver that accepts spline con-
straints, such as CENSO (Grimstad and Sandnes, 2015). A considerable increase
in computation time should then be expected, with the implication that the above
real-time limit would most certainly be exceeded. A global solution could however
be run in parallel to a local algorithm to identify if the local algorithm is stuck in
a poor local solution.
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Table 4.3.: Mean/max absolute errors (Sm3/h).

IPR WPC Chk. FL Case 2 Case 3

Mean
Well A 0.42 0.53 10.8 - 0.64 0.17
Well B 0.94 0.88 4.39 - 0.69 0.50
Flowline - - - 3.27 1.20 0.71

Max
Well A 3.31 2.29 17.0 - 2.67 2.57
Well B 3.87 3.82 16.3 - 2.60 2.99
Flowline - - - 8.81 6.35 7.08

Table 4.4.: Solution times (s).

IPR WPC Chk. FL Case 2 Case 3

Mean 0.009 0.010 0.151 0.326 0.496 0.478
Max 0.096 0.093 1.396 2.104 2.472 3.032
% RT* 0.1 0.1 1.5 3.3 5.0 4.8

*Real Time

4.5. Concluding remarks

The proposed method for virtual flow metering was tested on a semi-realistic subsea
production system with two wells. The successful test results are encouraging along
several axes:

• the process models can be replaced with B-spline surrogate models without
any significant loss of accuracy,

• a commercial NLP solver (IPOPT) can efficiently solve a series of data rec-
onciliation problems P without any convergence problems (helped by the
properties of the B-spline models),

• poorly calibrated models can be identified by analyzing the error variables in
the problem formulation.

The authors hope to later improve the proposed method by automating the
detection and de-weighting of poorly calibrated models, possibly by including gross
error detection in P. Several simultaneous procedures for data reconciliation and
gross error detection have been presented in the literature (Özyurt and Pike, 2004).
These procedures are derived from robust statistics and solve the two problems as
one nonlinear program (NLP).
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Chapter 5

On Why Model-Based Production Optimization is
Difficult in the Upstream Industry

Grimstad, B., Almklov, P., Foss, B., and Gunnerud, V. (2014). On why model-
based production optimization is difficult in the upstream industry. Published as
a report in the IO center.

Summary

This paper presents an analysis on the use of model-based tools for
production optimization in petroleum production. Its motivation is ar-
gued through a comparison with the downstream process industries where
such tools are widely deployed. The empirical platform for the study in-
cludes interviews, secondments, experience with model-based tools in the
downstream sector, and pilot testing of model-based tools in the upstream
industry. In the paper we contextualize production optimization both in
terms of technology and user groups before the main section on obser-
vations is presented. The discussion is grouped according to different
aspects of data, technology and people, which reappear in a summariz-
ing discussion.

5.1. Introduction

The petroleum industry has gone digital during recent years. Developments in
sensors, data processing, and remote control technology have, together with im-
proved video conferencing and data sharing facilities, inspired new strategies and
operational models. In this paper we summarize some experiences from a part of
this venture, the attempts to use the increased availability of production data, in
particular real-time data, for purposes of production optimization. Even though
there are success stories to be told, and promising research results that hold great
potential, we believe it is useful to systematically address the difficulties related to
production optimization. In this paper we summarize some findings and insights
from our research in this respect.
In Norway, the digitization of the petroleum industry has been connected to

the philosophy of Integrated Operations (IO) (Norwegian Oil Industry Association,
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2005; Rosendahl and Hepsø, 2013; Besnard and Albrechtsen, 2013). Internationally,
similar initiatives have been referred to as e-Field, Intelligent Field, Smart Field,
and Field of the Future (Haavik, 2013; AbdulKarim et al., 2010). The authors of
this paper are all affiliated with the IO Center at NTNU (IO Center, 2014), which
has been sponsored by eight international oil companies and five suppliers. Its
goal has been to develop new methods and tools for IO, which can be embedded
in improved work processes in oil companies, and enhanced products and services
from suppliers. The IO Center has conducted research on production optimization
in tight cooperation with its industry sponsors since 2008, allowing researchers
to observe and analyze the day-to-day operations of the oil companies. This has
provided a unique opportunity to study work processes and hardware/software
systems for production optimization.
The downstream industries such as refineries and chemical process plants con-

sistently couple real-time data flows with online model-based optimization, both
for automated control and for decision support for operating personnel (Bauer and
Craig, 2008). The information and control hierarchy, which is needed to operate
plants safely and efficiently, is often illustrated with a stack as in Figure 5.1. The
base level of the stack is the actual process with its sensors and control handles.
The sensors and control communicate with a basic control layer implemented in
some state-of-the-art control system. This layer needs numerous inputs, in partic-
ular set points for the lower level controllers. The downstream industries typically
supply these through an Advanced Process Control (APC) layer, which uses real-
time data, models and optimization in fully automated control loops where Model
Predictive Control has become the key technology (Qin and Badgwell, 2003). The
APC structure cascades upwards to the top layer, where decisions are made and
implemented by personnel, who rely on decisions support systems, rather than fully
automated control loops. These support systems again rely extensively on the use
real-time data, models and optimization, and the top layer is often denoted Real-
Time Optimization (RTO). This layer is both used for plant wide optimization or
for optimizing parts of the overall plant. It may be noted that a 5th layer focusing
on planning and scheduling is omitted in Figure 5.1.
Currently, upstream production optimization decisions are dominated by heuris-

tic approaches, even though they are supported by an increasing suite of tools for
visualization and analyses. Thus, it is a fair statement that the upstream oil and
gas industry lags far behind the downstream industries in technologies for and ap-
plication of APC and RTO. Consequently, there is a potential for improved use of
real-time data. IO Center research on production optimization has been driven by
a desire to develop solutions for the RTO layer in the upstream industry rather
than the APC layer. The justification is a belief that it is advantageous to in-
troduce real-time model-based optimization in the RTO layer with humans in the
loop, prior to the APC layer with fully automated control loops.
The IO Center has taken a holistic approach to the RTO layer challenge by

simultaneously researching technology as well as work practices. Technology re-
lated research has focused on appropriate mathematical models for optimization
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Figure 5.1.: Stack illustrating the different control levels.

and means for automatic calibration of such models. Examples of the former is
spline-based proxy modeling (Grimstad et al., 2016) and of the latter is the SmartX
method for well testing (Zenith et al., 2015). Further, efficient and robust optimiza-
tion techniques have been developed and evaluated; one example is (Gunnerud and
Foss, 2010). The advancements have been tested on a variety of industrial cases
in collaboration with IO Center partners. An overview is provided in (Foss, 2012).
Our research on operational work practices has particularly focused on sensor data
interpretation and interdisciplinary decision making (Østerlie et al., 2012; Almklov
et al., 2014). This paper seeks to integrate the insights from these research ventures
and it is, as is further described in the method section, based on an extensive and
prolonged interaction with the industry.

The availability and use of software for the RTO layer varies greatly between
fields, companies and countries. Improving the understanding of this variation is
one of the research gaps addressed in this paper. Rather than viewing this as a
one-sided implementation issue, asking why people do not utilize new technologies,
we seek explanations both in the human, organizational and technical domains.
To achieve this goal we need an empirical platform, which is presented in the
subsequent section. Subsequently, the context of production optimization will be
discussed in more detail before the main findings are presented and justified. The
paper ends with a discussion and some conclusions.
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5.2. Methods and Data

The empirical basis for this work can be divided into five parts. First, the authors
have experience from secondments that focused on production optimization in the
operating and research parts of three oil companies and two suppliers. Second, one
of the authors has experience with APC in the process industries through the de-
velopment of MPC methodology, which subsequently was commercialized. Third,
for the purpose of this paper we conducted interviews with seven informants. The
outplacements and interviews come in addition to earlier interview series and obser-
vations at subsurface departments at three oil companies. Thus, the total empirical
background involve five oil companies and two suppliers. These interviews primar-
ily serve to support our discussion of the (interdisciplinary) operational context
into which new tools and methods must be implemented, and the variation in pro-
duction optimization challenges on different fields. Fourth, the interaction between
the IO Center and its industry partners, in meetings discussing research challenges
and implementation issues, provides highly relevant input for this paper. The 14
semi-annual IO Center Technical Committee meetings between production and op-
timization experts from partner companies and the IO center, and many bilateral
workshops with individual companies, have been particularly useful as arenas for
discussions on industry needs and implementation issues. Finally, a substantial
number of scientific publications has provided us with insight from an academic
perspective, in particular through conference presentations and review processes.

A limitation of the study is the fact that several oil companies, especially some of
the large ones, possess internal and classified technologies for production optimiza-
tion. Such information is not part of the empirical platform for this paper. Even
though our data includes international companies and fields outside the Norwegian
continental shelf (NCS), our paper is likely to be have a slight Norwegian bias as
well as a focus on offshore production systems. Our findings still are, we believe,
generic enough to have a transfer value to other parts of the world. Thus, this is no
complete story on state-of-the-art model-based production optimization. Rather,
our ambition is to document some examples and observations that contribute to ex-
plaining the hurdles for widespread and successful use. Hopefully, this will increase
the understanding of the landscape into which model-based optimization software
must be fitted. For the industry insider, in particular, this approach can provide
a useful external perspective due to the authors’ rather broad empirical platform.
The paper may also contribute to an increased understanding of technology imple-
mentation issues in general and optimization technologies in particular.

5.3. The Context of Production Optimization

In this section we outline the context of production optimization in the technical
and organizational domains. This description will serve as a platform on which
we later will place and relate our findings. We will not paint a complete picture,
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but rather outline the main characteristics of the typical environment in which
(offshore) production optimization takes place. By viewing our findings in this
context we seek to present new insight to their root causes.

5.3.1. The Production System and Production Optimization

The following description of the technical domain is related to the technology pyra-
mid in Figure 5.2. The description starts with the production system at the bottom
of the pyramid and continues upwards. Note that the bottom layer of Figure 5.2,
the production system, is the same as the bottom layer of the stack in Figure 5.1.
The production system, as defined in this paper, comprises the wells and infras-

tructure necessary to transport the reservoir fluid to the surface processing facili-
ties. Therefore, the production system is bounded by the reservoir upstream and
the processing facilities downstream. A variety of external conditions are imposed
at the boundaries of the production system. The well inflow from the reservoir
may change in the short term due to intricate flow phenomena such as gas and
water coning, and in the long term due to drainage and injection, whereas down-
stream, the processing facilities typically impose conditions such as gas and water
production limits, gas-lift capacity restrictions, and separator pressure constraints.

Figure 5.2.: Illustration of the top-to-bottom dependence on the technologies involved in pro-
duction optimization. The pinnacle of the pyramid is production optimization for
decision support.

In addition to these externally imposed boundary conditions the production sys-
tem is subject to numerous operational constraints such as limits in well draw-down
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pressure and choke valve settings, and constraints related to flow routing and flow
assurance. Some constraints may be nontrivial to model. For example, a riser
may have a fluid velocity constraint to avoid erosion of the inner tube coating due
to sand production. In general the above constraints reflect the desire to operate
optimally within safe and cost efficient limits. To complicate matters even more,
operation may be constrained by maintenance, testing, and other disruptive work.
Typical examples of this are well testing, which is performed regularly to monitor
well performance and well integrity, and operations to remove deposits in wells and
pipelines.

Data acquisition and storage is the collection of measurement data from the
sensors installed in the production system, which subsequently is fed through the
control system and stored in historian databases for later use. This data enables the
operators and engineers to monitor and trend key variables in the production sys-
tem, thus helping to ensure safe operation. Returning to Figure 5.2 data acquisition
is placed on top of the production system layer.

The typical greenfield production system is well-instrumented with pressure and
temperature sensors installed throughout the system. More advanced and expensive
instruments such as subsea multi-phase flow (MPF) meters and downhole sensors
are, however, also being installed more extensively than in older systems. This fol-
lows the modern mindset in the upstream industry that additional instrumentation
may add more value than its self-cost (Gilman and Nordtvedt, 2014), where the
added value is largely accounted for by improved operational awareness and safety.
The improved operability does not come from the raw data alone—interpreting
large amounts of interrelated data from a production system can be overwhelm-
ing, even for an engineer with intimate knowledge of the system—but rather from
processing and visualization of the data.

Sensor data from the production system cannot be taken at face value. Sensors
deteriorate over time and there are often interaction effects to be sorted out when
interpreting them. In this interpretative work engineers draw on a multitude of
information sources.1 For example, sensor quality is often labeled by engineers (on
a scale from faulty to good) based on the available information and interpretation.
This implies that human interpretation is involved in the information processing
upwards in the pyramid in Figure 5.2. Even measured production volumes, val-
ues that one may suppose are straight-forward to measure, often require human
evaluation before they are passed on. Another example of situations where human
judgement is involved in this process is when MPMs measure several wells on one
template, and one needs to make inferences to evaluate the relative contribution
of the individual wells. The fact that human evaluation is involved does not mean
that it is a matter of guessing. It rather implies that the calculations are supported
by some degree of human evaluation.

The value of real-time data may increase if it is combined with an appropriate

1This has been discussed in a theoretical studies by Østerlie et al. (2012) and Almklov et al.
(2014), among others.
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mathematical model of the production system, e.g. for virtual metering, data rec-
onciliation, or prediction. This is illustrated as the production system model in
the third layer in Figure 5.2. To capture important interactions in the production
system, the model should represent the complete production system (confined ac-
cording to the above definition of the production system), rather than a smaller
part of this. A motivation for obtaining such a model of the production system is
that it can serve more than one purpose if it is sufficiently extensive and accurate.
It may for instance be used for real-time flow estimation, for flow assurance analyses
or optimization case studies.
The production system model is an example of the modern, holistic modelling

approach, where a multi-purpose model is sought and the modelling scope is ex-
tended to include crucial parts of the system (Stenhouse, 2006; Bakken et al., 2011;
Crompton and Gilman, 2011). The various model components are maintained by
their respective discipline engineers; e.g. well models are maintained by well en-
gineers and reservoir fluid descriptions by the reservoir engineers. Thus, building
and maintaining a production system model requires several competencies. As can
be imagined, the technical and organizational challenges related to model mainte-
nance are substantial since it requires extensive interaction across disciplines and
sites in order to exchange relevant operational information. However, experience
tells us that the predictive power of a multi-purpose production system model may
be worth the modelling effort.
The purpose of model-based production optimization (PO) is to suggest opera-

tional settings that are optimal in some sense; e.g. that produce a targeted amount
of oil, while minimizing cost and honoring relevant constraints. There are some
model-based PO technologies available today. Bieker et al. (2007) gave a rather
early overview of methods for model-based production optimization problem. They
categorize the optimization methods based on traits such as the ability to handle
routing decisions and on the use proxy models. It should be noted, however, that
optimization solver technology has advanced significantly since 2007, especially
within mixed-integer programming, and has thus changed the premises for some of
the conclusions in the paper.
During the last decade, the industry has moved towards more integrated pro-

duction optimization solutions, with the goal of coordinating all decision in one
master problem. For example, the integrated problem may coordinate gas lift al-
location, routing, and well balancing, while respecting flow assurance constraints.
An integrated problem requires more input data than the individual sub-problems
it contains; that is, it must include operational constraints from all the integrated
production optimization sub-problems. As a result, the use of integrated solutions
is more demanding since it requires more competent and alert users.

5.3.2. Production Planning and the Production Engineer

In the previous section we described the technological context of PO using Figure
5.2. The figure shows model-based PO as the pinnacle of the pyramid, resulting in
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advice to the production planning process. This process is driven by the Produc-
tion Engineers (PEs), who are responsible for the daily follow-up and production
planning of an asset. They use their experience and knowledge of the system to
find the best way to operate the field. This production strategy, however, needs
to be aligned with the interests and concerns of other disciplines. In addition, the
decisions are often performed in a dynamic and hectic environment with strict time
constraints and often large uncertainties.2 The work environment of the PEs is
outlined in Figure 5.3. Using this figure we describe the organizational context of
production optimization since this context is important to understand the decision
making processes. Even though the groups identified in this figure are not exhaus-
tive, they include key personnel. However, there is a variation in composition and
relative importance of these groups between companies and within companies.

Figure 5.3.: Players that influence the production planning process.

For a typical offshore asset the PEs run an onshore operation center in teams of
2-4 persons. The daily operation normally begins with a morning meeting between
the PEs and the operators located at the control room offshore. Together they share
information about the current operation to prepare for imminent activities and to
solve unresolved issues. To plan future production the PEs periodically (weekly to
monthly) create a production and injection plan (PI plan). This plan, which is a

2The domains of geology and reservoir management, which influences PO decisions, are always
hampered by significant uncertainty.
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core activity for the PEs, requires extensive input from other groups such as reser-
voir management and topside processing. The engineers in these groups typically
come from different disciplines and may have different incentives for changing the
production plan. In particular, the PI plan should obey the production constraints
from topside processing and the long-term injection plans from reservoir manage-
ment. Even though some of these constraints are stable and predictable, others are
less predictable and connected to specific events or temporary issues, like instabil-
ities in the processing train or maintenance activities. The PI plan is discussed in
daily meetings between the PEs and operators, and subsequently implemented by
the operators. In the cases where model-based tools are used to develop the PI
plan the production engineers normally also collaborate with specialists from the
software supplier and company-internal specialist on modeling and simulation.

The value of a model-based production optimization tool is difficult to measure as
it encompasses production gains, cost reduction, mitigation of risk, enhanced HSE,
and possibly other non-economic values. To quantify its potential value, operations
with and without model-based tools should be compared. This is problematic since
operations and field properties change during the evaluation period. Therefore, it
is important to assert the average increase or loss of value over a reasonable time
span (Mochizuki et al., 2006). A common claim in the oil industry is that model-
based production optimization has the potential to increase production value with
1-4%, especially for mature assets. It is quite hard to find open source references to
support this claim. One example, however, is given in Teixeira et al. (2013) where
the use of a model-based production optimization system increased oil production
rate by 1.2%. Another example of added value by reducing costs and mitigating
risks is less wear and tear on the equipment as a result of operating within system
constraints to avoid erosion due to sand production (Castanier and Rausand, 2006).

5.4. Observations

A key motivation for this paper is to argue that state-of-the-art PO methods are
generally not used as much as one would expect in the upstream industry, and to
reflect on some causes for this. In the following we have grouped our observations
from interacting with the industry as a set of themes. These are, by their very
nature, interconnected, but we believe that this structure is a fair starting point
for the discussion.

5.4.1. Instrumentation and Data Availability

A sufficient amount of informative real-time data is required for a continued eval-
uation and improvement of a production system model. Thus, model-based opti-
mization software is indirectly dependent on having sufficient instrumentation and
data availability.
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During the last two decades we have seen major advancements in instrumenta-
tion and data availability. Integrations frameworks that collect real-time data and
make it available to data analytic tools have been in use for some time now, and
have proven to be an invaluable technology. Further, there has been a general in-
crease in the number of installed downhole and subsea sensors per well. Today, the
common subsea production system is well-instrumented with redundant pressure
and temperature sensor pairs installed in the wellhead and wellbore. MPMs are
also installed more frequently, but are still sparingly used due to high installation
and maintenance costs. The growing trend in use of instrumentation is backed by
advancements in technology such as fiber optic sensing (Kragas et al., 2001).
Increased use of instrumentation benefits greenfields, as well as mature fields

when new wells are completed. However, many mature fields operate with a very
low level of instrumentation, which usually is reflected in little to no modelling
effort. Thus, for mature fields, where production optimization has the highest
potential, lack of instrumentation is a major obstacle for the use of model-based
tools. Model-based production optimization is considered to have a larger potential
in mature fields than in greenfields (van der Linden and Busking, 2013; van der
Linden, 2014). Reasons for this is that mature fields more often have complex and
varying production bottle-necks, and flow assurance problems.

5.4.2. Uncertainty and Model Calibration

There are mainly two types of uncertainty of relevance to our discussion; measure-
ment data uncertainty and model uncertainty. The latter is especially pronounced
in well inflow models. This becomes important since well rates normally are esti-
mated through infrequent well tests, thus rates have to be estimated between these
temporal measuring points that are far apart. As a consequence, the challenge for
PO is less related to measurement uncertainty than uncertainty in the models as
such.
The starting point of a fruitful PO workflow, is accurate knowledge of the cur-

rent operating strategy and operating point. The low temporal predictability of
simple well inflow models (e.g. linear production index models), make it hard to
assess how much each well is producing if the reservoir conditions change, or if
the last well test is outdated. Moreover, temporal uncertainty is also related to
scaling and wear of the choke valves. A move away the current operating point,
suggested by a PO strategy, is subject to spatial uncertainty since the model may
be less accurate at the new operating point due to un-modelled nonlinearities in
the system. This uncertainty affects the production network model in particular,
since re-routing of well streams and flow regime changes are particularly hard to
model correctly. Infrequent well tests combined with low temporal predictability of
the inflow models, and low spatial predictability of the production model are major
hurdles for successful use of model-based PO.
As alluded to in the above discussion, the production system model must be cal-

ibrated on a regular basis due to the changing conditions in the reservoir and the
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highly nonlinear behavior of multiphase flow. The model is a coarse approximation
of the production system and has only local (spatial and temporal) prediction ca-
pabilities. To maintain a useful prediction capability for the upper layer in Figure
5.2, the model must be calibrated when the operating point has moved considerably
or when a significant time has passed since the previous calibration. Calibration
requires informative measurements of the system state. In practice, these are ob-
tained by performing experiments on the system. For example, the performance of
individual wells is measured by performing well tests.
Well testing is a disruptive operation that causes production losses and requires

careful planning. Thus, there is a clear cost-benefit trade-off in the design and
execution of well testing. Traditionally, the oil companies have kept the amount
of well testing at a minimum. A consequence of this is that data for calibration
purposes is scarce. To tune the tens to hundreds of parameters of a production
system model from normal production data as well as data from campaigns one has
to solve an underdetermined problem, which has many solutions, some of which give
unrealistic parameters. To identify a realistic solution one therefore has to apply
modelling and engineering knowledge. Even when considerable effort is invested in
calibration, the resulting model will have limited prediction capabilities away from
the snapshots.
Another challenge with model maintenance is that it requires modelling efforts

across several disciplines, from both field engineers and optimization specialists,
and possibly by personnel that do not see the immediate value of a well-maintained
model. Moreover, this competence is usually limited resource in oil companies as
well as service companies.

5.4.3. Disruptive Operational Events

There are two main reasons for changing the production strategy. These are vary-
ing reservoir conditions and disruptive events triggered by equipment failure and
scheduled maintenance.
From the PE workflow perspective, the varying reservoir conditions, which nor-

mally are slowly changing, are fairly easy to handle. Further, the recalibration of
inflow and production system models are usually done close to the current oper-
ating conditions, making it a less work demanding and complex task. Since the
changes are small and the new optimal operating strategy is likely to be close to
the current strategy, the production loss due to non-optimal operating conditions
will be limited; thus, making the PO task less time critical.
However, disruptive events such as equipment failure or maintenance usually re-

quire larger changes to the production strategy. This again requires more complex
and work intensive recalibration of the models and possibly also more time con-
suming optimization runs. Since the time period the new production strategy will
be optimal often is shorter, e.g. until the equipment is fixed, the PE and operators
might from a cost value perspective, be motivated by a PO strategy that fast re-
turns reasonable solutions , rather than a time and work consuming close to perfect
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solution.
There is a wide variety of operational events that may influence production. We

have mentioned well tests. Another typical class of such disruptions are topside
maintenance or sand control related. As an example, one informant mentions a
field where deposition of asphalthenes in the flow lines requires regular cleanup
operations (“pigging”).
“It is a very regular activity. So on an average anywhere from two weeks to a

month you have to do some type of maintenance on the subsea system, it all depends
on the rate of deposition [..] and what we’ve found is that certain combinations of
wells induce a certain frequency in which you have to perform maintenance, and
those are the things that we are trying to collect more information on [..].”
The frequent occurrence of disruptive events that trigger the need for large

changes to the production strategy, undermines the value of optimization efforts
and is an important obstacle for today’s best practice PO workflows.

5.4.4. Limitations in Software

Here we discuss the software limitations of the upper layers in Figure 5.2 in two
parts; first we consider the limitations of the typical production system simulator,
then the optimization software as such.
There is no doubt in the great value multi-phase process models have for studying

and improving the operation of subsea production systems; see for instance Lunde
et al. (2009). Virtual flow metering systems, especially, have been a successful tech-
nology. These systems have become a prerequisite for many of today’s greenfields,
even when MPMs are installed. The commercially available and in-house process
simulators are improving every year; they become more accurate, faster and more
complex. A key limitation, however, is their need to be manually calibrated with
limited information available (as discussed in Section 5.4.2). Extra information
is made available through campaigns such as well tests. Even with a shortage of
information we believe that existing tools for model calibration can be improved
to better support, or even automate, the current model calibration workflow. This
may prevent human errors and allow for faster model adaption to new data.
Another common issue with process simulators is that they are packaged as black-

box programs, that is, their inner workings are not revealed to the user to protect the
intellectual property of the software vendor. As a direct result the machine-machine
interface between the process simulator and optimization software is restrictive and
may prohibit the use of efficient optimization solvers. As an example, it is not
common for multi-phase flow simulators to offer gradient information, which is a
prerequisite for most efficient solvers. Structural information about the network is
another type of information that may aid the optimization software, but again this
is normally unavailable through this interface.
Optimization software has advanced considerable during the last two decades.

Today, there are several vendors that offer robust and fast optimization software
that can handle nonlinearities and discrete decision variables, which often occur
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in production optimization problems; e.g. as routing decisions. In several of the
interviews we conducted we asked the following question: Which features of mod-
ern optimization software do you desire the most? The top choices were speed and
integer handling to support routing decisions. We have not been able to identify
any major limitations for these features in optimization software – on the contrary,
state-of-the-art optimization software is both fast, reliable, and most certainly ca-
pable of handling discrete variables. In our experience, we find that the major
limitations lie in the machine-machine interface of the process simulators since it
prevents fast production optimization that can handle discrete decision variables
rigorously.

5.4.5. Trust in Models

Trust is important for wider deployment of model-based decision support tools.
We have seen several trust-related issues that negatively affect the reputation and
lifespan of model-based PO. First of all, it is important that the engineers under-
stand the output of the system, its limitations and uncertainty. As one of our
interviewees pointed out: “it’s not about the ease of using a product, it’s about
understanding the output from it.” Of course, we believe both items are important.
However, a problem with PO tools is that the “reasoning” behind the results may
be difficult to comprehend, and thus, to trust the results that a tool offers. Distrust
can, however, be mitigated through training courses by providing the users with a
conceptual understanding of mathematical optimization in the context of produc-
tion optimization. Second, it is hard to quantify benefits. This is fundamentally
difficult since a field may be operated in only one way at a time, making direct
comparison of operation with and without model-based PO difficult. Demonstra-
tion is, however, possible if the field is operated with and without model-based PO
sequentially, as long as the state of the field is kept fairly constant.
According to our experience, production optimization software has a long way to

go to achieve the necessary trust level of its users. Trust must be earned through
the quality of the technology itself (the quality of the optimization as such, and
the handling of uncertainty and information not included), support and manage-
ment (e.g. demonstrating the value of small increases in production) and training
(learning how to QA the recommendations from the software). Importantly, trust
relies on a system for maintenance of the models. Thus, it is not only a matter
of trusting the recommendation provided by the system, but also believing that
maintaining the application is worthwhile.
Unfortunately, the self-energizing process where loss of trust in models occurs

because of poor model maintenance is a frequently reported experience. When a
poorly calibrated model predicts results that do not live up to the expectations of
the users, interest is lost, and efforts in keeping the model up to date are reduced.
This stereotypical process, illustrated in Figure 5.4 is a quite common phenomenon
and can only be overcome by strong management support during implementation,
deployment and production. In the success stories we know of, individual champions
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Figure 5.4.: The stereotypical cascade of events leading to loss of trust in a model.

with the attention of management have been crucial.3

5.4.6. Organization-wide Deployment of Model-based Tools

From an organizational point of view some degree of standardization of PO sys-
tems and practices between fields, and for some purposes between disciplines, is
necessary. Even though it might be tempting and logical, it is not a trivial task to
replace existing systems on specific sites and in specific disciplines. The literature
on failed integration efforts of new information technology systems across disci-
plines and sites is extensive. Though standardization must be pursued, some level
of tailoring is necessary to fit the specifics of each field. Key reasons for this are:

• The level of instrumentation of the field, hence the availability and quality of
data, and the control options available vary, see Section 5.4.1.

• The specifics of each field such as geology, depth, hydrocarbon composition,
technical lay-out of topside and subsurface systems, produces optimization
challenges, and constraints differ considerably between fields.

• When deploying a tool, one must consider the fact that specific work practices
co-develop with it. The expertise of the engineers is often tightly coupled to
the tools and methods they work with. Almklov et al. (2014) show how
key specific tools and systems over time co-evolve with work practices, which
means that changing them might mean radical changes also to work practices.

Thus, even though it makes sense, from a knowledge management perspective,
to standardize tools and practices within a company, the relevance and useful-
ness will vary and so also the friction involved in the standardization processes.
Organization-wide deployment of model-based systems is perceived as difficult

3See (Stenhouse, 2008) for examples on the importance an application champion.
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(Stenhouse et al., 2010) since models need specialization towards each individ-
ual asset. Generally, also outside petroleum production (see e.g. Ellingsen and
Monteiro 2006), ICT- integration efforts across disciplines require much work, in
particular to align terminology, categories, level of detail and specific needs found
in one location with the need for standardization from an overall perspective. In
sum, given the variety between different fields, organization-wide deployment of
PO tools faces a challenge in terms of the need for standardization versus the need
for tailoring.

5.4.7. Finding and Sustaining Integrated Competence

There is a distinct divide in competence between modelling and optimization spe-
cialists, and field engineers in most oil companies. Successful use of model-based
tools for operational decision support requires both an understanding of the field
as well as an understanding of how it translates into a production system model
– with its advanced multiphase flow correlations and thermodynamics. In addi-
tion to the modelling competence, typically found among petroleum and chemical
engineers, some basic knowledge of mathematical optimization is necessary when
working with optimization tools. This competence is normally found among (pro-
cess) control engineers. To obtain the combined, or integrated competence needed
to run model-based production optimization, field engineers are typically supported
by a centralized or external group of modelling and optimization experts.

Model maintenance, which we discussed in Section 5.4.2, is one aspect of model-
based decision support in which field knowledge must be combined with modelling
expertise. Consider the following anecdotal conversation overheard at an oil com-
pany by one of our interviewees: “‘Look, the PVT model says <match>so it must
be good.’ No, you pushed the match button that is why it says <match>.” Here,
the user misunderstands the output from the product: the output says that the
PVT has been matched, which does not necessarily mean that the match is good,
i.e. that the PVT model will match reality. This must be verified by the engineer,
as is clearly pointed out by the co-worker.

Cross-disciplinary competence is often needed in modeling tasks that interface
closely with operational issues. This integrated competence is rarely found among
field engineers or modeling and optimization specialists, and it is not commonly
developed in courses and training within the oil companies. The integrated com-
petence may develop over time by collaboration and information sharing between
the different groups. However, as these may be geographically dispersed, there are
significant obstacles to this specific competence.

5.4.8. Limited Sharing of Information

Information sharing across groups and sometimes company boundaries is normally
necessary to fully benefit from model-based PO tools.
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As discussed in Section 5.4.7, the PEs do not necessarily obtain the required
modelling and optimization skills to maintain and use model-based PO tools. To
support the PEs, in-house optimization specialists and/or external PO expertise are
often engaged. Referring to Figure 5.3, the groups that we discuss are named PO
experts (external), PO experts (internal), and Production Engineers. The external
PO expert service is located at a vendor or service company, which typically has
ownership of the PO software and a service contract with the E&P company. In-
house optimization specialists are often located in centralized teams that provide
organization-wide support to the company assets. Some configuration of these three
groups make up the PO capability of an asset.
In our interviews with internal and external PO experts we spent a lot of time

discussing the challenges related to information sharing. The core of these discus-
sions was the following fact: for an external expert to provide a meaningful PO
service, sufficient information must be transferred from the asset to the expert,
possibly across company boundaries. Below we summarize the discussions on this
matter.
As noted in Section 5.3, sensor data often needs human interpretation to be

useful. They tell more to a PE with experience from the specific field than to an
“outsider”. This understanding of the data comes in part from an awareness of
the operational situation. The outsider, in this case being the internal or external
PO expert, will not understand this operational context in which the data makes
sense, unless the PE has communicated this information. We argue that this is
true also for internal PO experts that provide organization-wide support, since it is
unrealistic for them to maintain knowledge of all asset operations. Consequently,
the PO expert’s understanding is based on assumptions of data and model quality,
and even decision processes, that may be incorrect. This information gap may well
lead to misguided PO advice.
When an external PO expert service is used to aid in the daily or weekly PO

activity there is a need for communicating, across company boundaries, measure-
ment data as well as operational information in regular batches. In return, the PO
experts provide PO advice based on this information. There are several difficul-
ties with this model for collaboration. Usually both parties have a shared software
platform where the model-based PO software resides. With this platform they can
acquire the same information (sensor and soft sensor data) about the production.
However, other operational information, such as planned shutdowns, failing sensors,
closed valves, injection of MEG, injection of water or gas and pigging operations,
is usually not available. This contextual data constitutes important input to the
PO analysis. There is, for instance, no point in disturbing the system by ramping
up a well, which has a planned shut-in the next day. Likewise, if there has been an
ongoing water injection campaign then some of the well performance models may
be unrealistic and in need of updating. In this case there is little to no value in
running a model-based PO tool based on the current models. It is not reasonable
to expect that the PEs, who work in a hectic environment, can convey all relevant
operational information, especially across company boundaries.
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Another challenge with sharing of information across company boundaries is that
production optimization is an activity that involves highly sensitive information for
the E&P company, e.g. daily production rates. This information will necessarily be
visible to anyone involved in a PO activity. Thus, a confidentiality agreement, which
possibly limits the means for collaboration, is usually signed by all participants.
Based on the above discussion one may question if a production optimization

strategy that relies on extensive information sharing across company boundaries is
a sustainable solution. On a final note some of the challenges outlined above are
also relevant beyond the operational context described above, for instance when a
software vendor is engaged to develop, customize or maintain PO software for an
E&P company.

5.4.9. KPIs and Incentives

As previously mentioned, the gains from model-based production optimization may
be hard to quantify. Thus, it is difficult to define measurable KPIs that encourage
efforts towards using and maintaining PO tools. We have earlier encountered ex-
amples of KPIs that define conflicting goals between the groups involved in Figure
5.3. One example appears in fields where an aggressive short-term production tar-
get and long-term recovery goal are conflicting, i.e. maximizing production rates in
the short term will harm long term recovery. Some oil companies have bonus struc-
tures that reward the PEs if they hit yearly target rates – which may encourage a
greedy, short-term production strategy.
KPIs for PO tools should communicate the desire to regularly improve the current

operating condition. Finding ways to demonstrate and reward the improvements
made by model-based tools is a key to achieving this. Measurable KPIs are impor-
tant to motivate the continued use of model-based tools, by giving the users with
incentives for maintaining and caring for the tools.

5.5. Discussion

The observed challenges presented in Section 5.4 act along three axes: data, tech-
nology, and people. Thus, this discussion is structured similarly.
Data. Data is a key for model validation and calibration, estimation and aware-

ness, and production optimization. Poorly instrumented fields have a lack of quality
data, and modeling and optimization may thus not be possible. Sharing data be-
tween people and companies is difficult for several reasons. We mentioned the
interface between proprietary software and optimization systems, but also between
different professions and companies, as challenging areas.
Technology. On a long-term horizon we see a trend towards faster and more

accurate models for online use. The advancements in reservoir and multi-phase
flow simulators come slowly since extensive research is required to increase our un-
derstanding of the intrinsic and difficult physics of multiphase flow. We believe
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that better instrumentation and more informative data will be a game changer in
modelling of future fields. It will allow for simpler models for production estima-
tion, and produce more informative data for calibration of production optimization
models. On a short-term horizon we believe that advancements can be made rela-
tively quickly by improving process simulator interfaces to allow full utilization of
the modern optimization solvers that are available at the commercial market today.
This low-hanging fruit can be reached by better fitting two existing technologies,
that is, by improving the interface between the process simulator and optimization
software. Software for automatic model calibration is another technology advance-
ment that may give value in the short-term. As discussed, model calibration is a
prerequisite for model-based production optimization. It is an analytical activity,
which should be performed whenever new calibration data is available. One obsta-
cle for fully automating model calibration is that it may be difficult to build in the
engineering knowledge that is applied to screen bad calibration settings. However,
we do not believe that this obstacle is insuperable – operator and service companies
in the upstream business have achieved goals far greater than this.

People. We have shown that model-based PO requires as composite set of skills
and knowledge. Knowledge of the specific oil field and production system, and quite
advanced modelling and optimization skills, need to be combined to implement and
use such tools. This combination is sometimes found in multi-skilled individuals,
but more often it is a product of extensive and continued collaboration between
(internal and external) modeling experts and field engineers. This is organization-
ally challenging and requires management support. The integrated competence we
identify as important, is thus both an individual quality and the outcome of suc-
cessful collaboration. Model-based PO requires work and dedication, especially in
the implementation phase, but also in terms of regular maintenance. This work
may be challenging to align with KPIs for different departments and also to fit in-
centive structures for individual workers, as the “output” of a well-tuned PO tools
are hard to quantify.

Task distribution and work processes vary somewhat between companies, and we
have not gone in detail on work process organization as such. We have however
identified several issues – i.e. trust, KPIs and the need for integrated competence –
that should be addressed when developing and adjusting work processes regarding
model-based optimization.

5.6. Conclusion

Referring back to the title of this paper we assert that the question is qualified: pro-
duction optimization in the upstream industry is difficult. Numerous papers have
documented failed attempts at implementing and achieving value from model-based
production optimization, and we have provided several reasons that contribute to
explaining this. In the introduction we compared real-time optimization and de-
cision support in upstream and downstream systems. There are fundamental dif-
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ferences related to instrumentation and data availability that makes it much more
difficult to maintain models of upstream production systems. This has direct conse-
quences for model-based production optimization. To answer on why model-based
production optimization is difficult we have identified and discussed several chal-
lenges with data, technology, and people that the industry seems to agree on.
In spite of the challenges outlined in this paper, the authors are optimistic about

the future role of model-based tools in the upstream business. We believe that the
technology gap between upstream and downstream will shrink in terms of automa-
tion and reliance on model-based tools. This will give the oil companies opportuni-
ties for higher operational awareness, more optimal utilization of the reservoir and
production system, and ultimately a safer operation.

Acknowledgements

This work was supported by the Center for Integrated Operations in the Petroleum
Industry at NTNU in Norway (IO center).

153





Chapter 6

Concluding remarks

Model-based real-time optimization and monitoring for subsea production systems
have been studied in this thesis. As argued in the introductory chapter, methods
based on surrogate models are promising since they fit into the framework of math-
ematical programming with general algebraic (a priori known) constraint functions.
They may hence utilize the full potential of available NLP or MINLP solvers. This
is opposed to simulation-based optimization using black-box solvers, which allows
for a simple problem formulation, but generally yields unpredictable results at high
computational cost.

Several function approximation methods exist that may be applied to generate
surrogate models replacing simulation-based constraint functions. In the introduc-
tion, a selection of surrogate models (categorized by approximation method) were
presented and some of their properties related to accuracy, cost of evaluation, cost
of construction, and smoothness, were listed. As argued for based on these proper-
ties and some experimentation with different surrogate models, the B-spline seemed
a suitable candidate for representing simulation models. With nice properties such
as local support, it is cheap to build and evaluate, and provides high accuracy and
smoothness. It may also be used to interpolate or smooth data, the latter being
useful in cases where sample data is noisy. Unfortunately, at the outset of this thesis
it became clear that the previous research on optimization with B-splines was very
limited. Additionally – or perhaps consequently – there were not any optimization
solvers that could handle constraints with piecewise functions like the B-spline,
at least not directly. Thus, a considerable effort had to be put into developing a
rigorous theory for optimization with B-splines. This theory was subsequently im-
plemented in the optimization framework CENSO, and benchmarked against other
state-of-the-art solvers on a set of suitable problems. This was a difficult compar-
ison since there were no support for B-splines in the other solvers. A compromise
was made by using a test set consisting of polynomially constrained MINLP prob-
lems. The test set acted as a common ground for comparison since a B-spline may
represent any polynomial. The work described above was published in the article
by Grimstad and Sandnes (2015). It lay the foundation for performing real-time
production optimization with B-spline surrogate models.

Trailing the development of CENSO, with some overlap, was the development
of a mathematical framework for simulation-based production optimization. The
framework was developed to simplify and ensure proper modelling of general pro-

155



Chapter 6. Concluding remarks

duction optimization problems that rely on simulation-based models, surrogate
models, or a mix of the two. The framework disaggregates the production system
to a network of low-dimensional and computationally light (and robust) simulation
units. Furthermore, the framework ensures proper handling of routing variables
by excluding them from simulation-based constraints, and including them in lin-
ear constraints only. This increases the efficiency of bounds tightening techniques
and may consequently lower the solution times. The disaggregation also allows the
simulation units to be replaced with surrogate models, resulting in a generalized
algebraic formulation suitable for a NLP or MINLP solver. Thus, the simulation
and optimization is decoupled during the solution process, removing communica-
tion delays, evaluation costs, and convergence issues (for example due to hidden
constraints). This decoupling of simulation and optimization was key to achieve
solutions in real time – times measured in terms of minutes and seconds, not days
and hours.
The developed mathematical framework can be used to model any multiphase

flow network under mild assumptions. It combines mass, momentum, and en-
ergy conservation laws with sophisticated (simulation-based) relations for pressure
and temperature drop. The inclusion of temperatures and enthalpies in the mod-
elling helps to reduce the loss of accuracy introduced by surrogate models. As
demonstrated in several cases, this loss of accuracy is negligible compared to the
existing inaccuracies/uncertainties in the simulator model. The framework was
implemented in C++ code using a graph data structure (see Appendix B). With
minimal input from the user, the code generates a mathematical programming for-
mulation representing the production optimization problem. The semi-automatic
generation minimizes the probability for user error during modelling. The resulting
problem formulation can be solved using CENSO.
Using B-spline surrogate models, CENSO was applied to solve production op-

timization cases for several real production systems. In these cases, a potential
production increase in the range of 1-4% was demonstrated. The mathematical
framework proved to be flexible in terms of modelling different operational con-
straints and network configurations. It also produced formulations with consistent
behaviour across optimization solvers. This work was done in tight collaboration
with the oil company BP, which facilitated and showed great interest in the devel-
opment. The above application was documented in the paper by Grimstad et al.
(2016).
The realistic cases discussed above showed that CENSO is capable of glob-

ally solving small to medium-sized production optimization problems in real time.
These problems required CENSO to solve thousands of (local) subproblems. This
shows that CENSO can be employed to locally solve large-scale production opti-
mization problems. In general, global optimization scales exponentially with prob-
lem size – that is, the number of complicating variables – and it is not reasonable to
expect a global solution for larger problems with today’s technology. The fast solu-
tion times for subproblems may however improve current technologies by opening
for: 1) larger problem-sizes and hence more accurate models, 2) consideration of
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more routing options, 3) global optimization (possibly terminated early to honour
time constraints), and 4) handling of uncertainties, for example by including chance
constraints.
The use of B-spline surrogate models for simulation-based real-time monitoring

was pursued in (Grimstad et al., 2015c). This paper was motivated by a desire to
demonstrate the versatility and accuracy of B-spline surrogate models. As the paper
concludes, the B-spline surrogate models are suitable also for real-time monitoring.
The loss of accuracy caused by approximating each simulation unit with a B-spline
surrogate model was negligible. Furthermore, the analytical derivatives of the B-
spline contributed to a computational efficiency that allowed monitoring in real
time.
There are many obstacles to achieving and maintaining a high-performance

model-based tool for production optimization. A discussion based on industry
experience and a series of interviews on the technological and organizational chal-
lenges was given in (Grimstad et al., 2014). As pointed out in this discussion, the
upstream industry is lagging behind the downstream process industry in the ap-
plication of RTO. The author hopes that the industry players are willing to focus
their efforts on the issues identified in (Grimstad et al., 2014). By reducing these
issues in a step-by-step fashion, the industry may finally be able to embrace RTO
technology.
The work in this thesis has resulted in a large code base with tools facilitating

simulation-based production optimization. The code code is written entirely in
C++ and has been shared with the public; it is described in more detail in Appendix
B. The author hopes that someone will use this software – with commercial or
academic interests – for purposes that may enhance current RTO technology or
continued research on optimization with surrogate models.
Several observations and demonstrations were made during the thesis work, a

few of which are listed below:

• The B-spline offers great approximation flexibility and accuracy, low evalu-
ation costs, analytical derivatives, and a high degree of smoothness. It is
suitable for surrogate modelling in optimization.

• A mathematical programming framework offers great flexibility in modelling
production optimization problems.

• Commercial optimization solvers offer low solution times as long as the prob-
lem formulation is good: i.e. is smooth and has derivatives. A good formula-
tion gives consistency across solvers.

• There is a trade-off between model complexity and computation time. With
sufficient model accuracy, small to medium-sized (daily) production optimiza-
tion problems can be solved to global optimality in real time. It is currently
not possible to globally solve (daily) production optimization problems with
high model complexity (e.g. with many fluid components and many routing
options) in real time.
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• Poor model maintenance due to technological and organizational issues seems
to be limiting the performance of current RTO applications in the upstream
industry. There is a need for new infrastructure and work procedures that
simplify and increase automation of model maintenance.

Before continuing with some suggestions for further research, the author would
like to revisit the research objective posed in the introduction of this thesis. Has
the work in question contributed towards an enhancement of current model-based
decision tools for production optimization? The author proudly believes so. A new
method for model-based real-time optimization has been developed, implemented,
and successfully tested together with an industry partner. Several applications have
been demonstrated. And an extensive code base has been documented and shared
for the public’s interest. As it usually is, the work has spawned more questions
than it has answered, and in the final sections of this thesis the author would like
to recommend some promising research paths that may be pursued. But caution
is advised – new questions may spawn and head hairs may wither!

6.1. Recommendations for further research

There are several interesting directions in which further research on the topics in this
thesis may be conducted. The recommendations given here will focus on research
that may enhance current model-based RTO software. In particular, the following
three directions will be discussed: comparing different surrogate models, handling
of uncertainties, and integration of models. All of these are exciting avenues for
further research that may yield significant contributions.

6.1.1. Comparison of surrogate models

In the introduction of this thesis a list of surrogate model types was given. While
this work focused on B-spline surrogate models, there are several interesting can-
didates that may be just as suitable for production optimization. For example,
stochastic process modelling, for example using Kriging, seems to be appropriate
when incorporating noisy measurement data in the production optimization mod-
els. Such models have already been used to model expensive black-box functions in
optimization (Jones et al., 1998). Furthermore, piecewise linear models have a long
history as surrogate models in production optimization. A comparison of piecewise
linear models was recently given by (Silva and Camponogara, 2014).
It would be interesting to compare existing nonlinear surrogate models, such as

the Gaussian process models, RBF models, and splines. A comparison would map
the strengths and weaknesses of the different surrogate models and provide a guid-
ance for practitioners. Characteristics such as computational cost of construction
and evaluation, scaling in terms of variables, accuracy, smoothness, availability
derivatives and convex relaxations, ease of use and solver compatibility, and flexi-
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bility in terms of interpolation or smoothing in case of noise, should be included in
such a comparative study.
The nonlinearity of the above-mentioned models can be handled by a global

optimization method, such as spatial branching. This is fundamentally different
from the piecewise linear approach, which is handled by logic, for example by using
integer variables or branching on special ordered sets. An unanswered question is
whether piecewise linear models should be preferred over nonlinear approximations
as surrogate models. Is integer branching better than spatial branching? The
answer is possibly “Yes” today, since current MIP technology is more mature than
current technology for spatial branching. The author would like to conjecture
that, under the same conditions on accuracy, optimization with piecewise linear
and nonlinear models, handled using branching on integer and continuous variables
respectively, will prove to scale similarly in the limit, as the optimization technology
matures.

6.1.2. Handling of uncertainties

A deliberate treatment of known uncertainties may enhance current RTO software
for production optimization. In particular, it is of great interest to guard against
control moves that are likely to violate operational constraints or yield less profitable
operation. The former is crucial for the validity of control moves under operational
considerations such as safety limits; the latter is important to build operator trust in
model-based decision support tools. A model-based RTO software may suggest such
poor control moves if uncertainties in the operational constraints and/or production
system model are not treated systematically.

Uncertain operational constraints

Most operational constraints in daily production optimization can be considered
to be uncertain. For the purpose of this discussion, operational constraints are
classified as being measured or not measured, and as noisy or noise-free. A routing
constraint may be regarded as a measured and noise-free constraint – there is no
uncertainty related to the violation of such a constraint. However, most operational
constraints are on pressures, temperatures, or rates, which are measured with sig-
nificant noise. This noise should be accounted for by the RTO software. Some
operational constraints are not directly measured; examples include constraints
on in-situ velocity or amount of sand erosion. The violation of such constraints
must be quantified by estimation, which naturally introduces model uncertainty.
If the estimation is based on noisy measurements, the violation of the constraint
is uncertain due to measurement noise and model uncertainty. As this discussion
illustrates, there are several types of uncertainty related to operational constraints
that each could be addressed differently. The chance constraint and the conditional
value-at-risk are two available tools for a systematic handling of uncertainty in op-
erational constraints (Hanssen et al., 2015). Modelling uncertain constraints using
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the conditional value-at-risk seems promising, but there are still questions related
to scalability as the problem size increases considerably with many scenarios.

Model uncertainty and model maintenance

In many cases the uncertainty in the production system model is more severe than
that related to operational constraints. As discussed in Chapter 5 (Grimstad et al.,
2014), model uncertainty can lower the value of model-based decision support soft-
ware significantly. This challenging issue touches on one of the core difficulties of
operating an upstream production system – that highly important decisions must
be made with very little information at hand. There are several preemptive and
reactive measures that may decrease model uncertainty. Some of these measures
require technological advances as well as organizational adaptation – a change in
operational philosophy.
First of all, model uncertainty is directly linked to lack of and/or poor use of

available data in model calibration. Lack of data (suitable for model calibration)
is due to infrequent well testing. Poor use of available historical production data
may happen because of limitations in software for model calibration, difficulties in
retrieving data, lack of time/resources for model calibration, or lack of competency,
to mention some possible issues. Uncertainty degrades the predictive capabilities of
the models and renders them useless in the worst case. The problem is in some cases
mended somewhat by the impressive predictive capabilities of empirical models,
even when improperly calibrated. However, also sophisticated models are subject
to considerable uncertainty over time. Models should be periodically calibrated
as the reservoir conditions change over time. Flow conditions in the production
system – if subject to scaling, wax deposition, or other flow assurance issues – may
also change over time.
The most obvious way to reduce model uncertainty is to increase the number

of well tests. This may, however, not be possible due to the high costs of well
testing. This has caused researchers to look at alternative well-testing methods
that attempt to extract more information during well testing (Goh et al., 2007) or
during normal production (Zenith et al., 2015). Additional calibration points can
sometimes be extracted from historical data using statistical methods and used for
model calibration (Melbø et al., 2003). Another preemptive strategy is to detect
uncertainty in models using statistical methods. Uncertainty may then be indicated
to the users, who may initiate a calibration. One such method is discussed by Skibeli
(2015). Keeping the users (production engineers) informed of possible uncertainties
can save their time by helping to pinpoint model uncertainties. Ultimately, the
indication of uncertainties may increase operational awareness.
A technological improvement that may better the situation for model-based tools

is automation in the model calibration process. This may decrease the resources
put into model calibration and increase calibration frequency. Full automation is,
however, difficult since the expertise of engineers is required to validate the model
parameters resulting from calibration.
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Finally, a last avenue for research is the development of algorithms for produc-
tion optimization under model uncertainty. When optimizing with models that
lack predictive capability the search should be limited to a neighbourhood of the
current operating point. This limitation can for example be specified using a trust
region (Conn et al., 2009). The following steps outline a possible algorithm for
optimization under uncertainty: 1) do a locally constrained optimization, 2) if it is
optimal to move, take a small step away from the current operating point in the
direction indicated by the optimization, 3) adjust the operating point to be feasible,
in a fashion similar to a line-search, 4) if possible, update the model by performing
a model calibration, 5) repeat the process from 1. This pseudo code has many
similarities with an inexact sequential quadratic programming algorithm. Also,
it has many similarities to the (less systematic) workflow of production engineers
and operators. As mentioned above, to handle uncertainty in models may require
more than technological advancements – it may require a change in operational
philosophy.

6.1.3. Integrating models

The last recommendation for further research is related to integration of models
for the reservoir, the production system, and the topside facilities. The motivation
for performing such an integration is that it may expand the scope of production
optimization both spatially and temporally. The integration may give solutions
that are more optimal than those returned by siloed approaches that consider a
single model and a reduced scope. It has already been demonstrated that short-
term optimization may have a negative effect on long-time solutions. However, due
to the gradually increasing uncertainty of predictions into the future, a trade-off
between short-term and long-term solution must be found. The possible trade-offs
lies on a Pareto front. As in economics, the trade-off illustrates risk versus reward.
There are currently no systematic ways of asserting where on the Pareto front one
should lie. Hence, practitioners of reservoir management stay on the (long-term)
end, and practitioners of daily production optimization stay on the other (short-
term) end of the Pareto curve.
Integration of models is a daunting task for several reasons. Firstly, it is difficult

to couple and simulate models with different time scales. It is not trivial, for exam-
ple, to define synchronization points when using variable step simulation. Secondly,
integration may increase the simulation time considerably and render the integrated
model useless for optimization purposes. Thus, the use of surrogate models, such
as the B-splines presented in this thesis, is advised. Thirdly, integration of mod-
els is such a demanding task that it requires several persons and competencies.
And lastly, the models to be integrated may be implemented in different software
that are incompatible or has complicating interfaces. Another type of difficulty
arises when integrating models that use different fluid compositions and accompa-
nying thermodynamics. In spite of these challenges, several integration attempts
have been documented in the literature (Queipo et al., 2003; Barber et al., 2007;
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Rahmawati et al., 2010, 2012).
A motivation for integrating models can be found in the history of production

optimization: In the beginning, optimizations were performed on isolated parts of
the system due to limitations in computational power and solver capabilities. For
example, gas lift was allocated to one well at the time, following some prioritization,
generally leading to suboptimal solutions. Today, several problems are solved in
one optimization problem formulation. Gas lift allocation, with constraints on total
available lift gas, is but one problem addressed by such a formulation.
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Appendix A

Notes related to optimization with splines

In this appendix some unpublished notes related to optimization with B-splines are
collected.
For brevity the following derivations are performed for a univariate B-spline.

Remark that the derivations extend to the multivariate case with few adjustments.
The derivations are concerned with the B-spline constraint

f(x) =

n+p∑
j=0

cjBj,p(x) = y, (A.1)

where Bj,p is a p-th degree B-spline basis function defined by a (p + 1)-regular
knot vector. We denote the domain of f with X = [xL, xU ]. The image of f is
constrained to the box Y = [yL, yU ].

A.1. Bounds tightening with B-spline constraints

Utilizing the properties of nonnegativity Bj,p(x) ≥ 0 ∀j, p and partition of unity∑
j Bj,p(x) = 1 for all x ∈ X, we may reduce the domain of f , i.e. the bounds on

x, by investigating the control points alone. Below we illustrate the approach with
an example for the constraint f(x) = y = 0. f is plotted in Figure A.1.
First, we attempt to tighten the lower bound x, that is, we want to see if xL

can be increased. Moving from left to right we consider one knot span at the time.
The first non-empty knot span is [t1, t2] = [0, 1] in which basis functions B0 and
B1 are nonzero. The control points related to these basis functions are P0 and P1;
and the related coefficients are c0 = 1 and c1 = 1, which both are strictly positive.
Consequently, f(x) > 0 and the constraint f(x) = 0 cannot be fulfilled in this knot
span. Thus, we can set xL = 1. An alternative way of looking at the procedure
follows from the fact that the B-spline lies in the convex hull of the control points
related to the knot span, and if the convex hull does not intercept the zero line the
constraint f(x) = 0 cannot be fulfilled.
We continue with the next knot span [t2, t3] = [1, 2] and investigate the related

control points P1 and P2. Related to P2 is the coefficient c2 = 0. Thus, the B-
spline f may attain a value of zero (actually it can only achieve that value at the
boundary x = 2). Similarly, if c2 < 0 we could not be guaranteed that f(x) > 0 for
all x ∈ [1, 2]. Thus, we terminate the bounds tightening of the lower bound xL.
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B-spline
Basis functions
Control points

f(
x)

−1
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Figure A.1.: A linear (p = 1) B-spline function with knot vector t = {0, 0, 1, 2, 3, 4, 5, 5} and
control points P0 = {0, 1}, P1 = {1, 1}, P2 = {2, 0}, P4 = {3, 0}, P5 = {4,−1}, and
P6 = {5,−1}.

The procedure for the upper bound xU is similar, but considers knot spans from
right to left. The reader may confirm that the upper bound can be tightened
to xU = 4. By applying the procedure to the upper and lower bound a relative

tightening of 100
(
1− (4−1)

(5−0)

)
= 40% is achieved.

A.2. Piecewise convex hull relaxation of B-spline constraints

As shown here, a strengthened convex hull relaxation for the B-spline constraint
in (A.1) can be obtained by piecewise relaxation. The piecewise relaxation follows
naturally from the properties of the B-spline and is, as will be shown, tighter than
the convex hull relaxation in Lemma 2.1. Using binary variables, the piecewise
relaxation is expressed as a MIP. The approach is similar to that of the piecewise
McCormick relaxation (Kolodziej et al., 2013).

In the following, we utilize that the B-spline in (A.1) has local support

Bj,p(x) = 0 for x /∈ [tj, tj+p+1],
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and a partition of unity

i∑
j=i−p

Bj,p(x) = 1 ∀x ∈ ti, ti+1,

to device a strengthened piecewise convex hull relaxation for constraints f(x) = y.
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B4B3

B2B1

B0

B
i(x
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0

0.2

0.4

0.6

0.8

1

x0 1 2 3 4 5

Figure A.2.: Cubic basis functions for knot vector t = [0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5].

For a (p + 1)-regular knot sequence the p + 1 first knots are identical; the same
is true for the p+ 1 last knots. In the example in Figure A.2, the first p+ 1 knots
are t0 = . . . = t3 = 0. Now, consider the first non-empty knot span x ∈ [tp, tp+1] =
[t3, t4] = [0, 1]. As illustrated in Figure A.2, the spline has support from four basis
functions in this interval, namely {B0, B1, B2, B3}; all other basis functions are
zero. Thus, we can write the B-spline as

f(x) =

p∑
j=0

cjBj,p(x) for x ∈ [0, 1].

In general we can split the B-spline into n segments i = 0, . . . , n− 1 as

f(x) =

i+p∑
j=i

cjBj,p(x) for x ∈ [ti+p, ti+p+1].

In each segment, the B-spline is a convex combination of its control points. That
is, for each segment i we have that (x, y) ∈ conv {Pi, . . . , Pi+p} is a convex relaxation
of f(x) = y for x ∈ [ti+p, ti+p+1]. Using disjunctions we may express a convex
relaxation for f(x) = y for the interval [t0, tn+p], i.e. the whole domain, as

n−1∨
i=0

[
(x, y) ∈ Ri

]
, (A.2)
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where
Ri = {(x, y) : x ∈ [ti+p, ti+p+1], (x, y) ∈ conv {Pi, . . . , Pi+p}} . (A.3)

The piecewise relaxation in (A.2) can also be written: (x, y) ∈ ⋃
i Ri. The disjunc-

tion can be modelled using binary variables as described in (Grossmann and Lee,
2003), resulting in a MIP formulation.
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Figure A.3.: The convex hull (a) and piecewise convex hull (b) relaxation for a quadratic B-spline
(p = 2) with knots t = [0, 0, 0, 1, 1, 2, 3, 3, 3] and coefficients c = [1, 0, 2, 0.5, 0, 1].

Lemma A.1 (Piecewise convex hull relaxation). The piecewise convex relaxation
in (A.2) is tighter than the convex relaxation in Lemma 2.1.

Proof. For any segment [ti+p, ti+p+1] the convex hull relaxation from Lemma 2.1 is
the set

R = {(x, y) : x ∈ [ti+p, ti+p+1], (x, y) ∈ conv {P0, . . . , Pn−1}} . (A.4)

Clearly, since the convex hull of a set of points is equal to or larger than the convex
hull of a subset of the same points we have that Ri ⊆ R on segment i. Since the
piecewise convex hull relaxation is at least as tight as R on any segment, the overall
relaxation must be at least as tight as R. That is,

⋃
i Ri ⊆ R, which concludes the

proof. The consequence of the proof is illustrated in Figure A.3.

A.3. Outline of a computational complexity analysis for

Algorithm 3

In this section we provide an outline of a computational complexity analysis for
Algorithm 3 in Chapter 2. Algorithm 3 is a spatial branch-and-bound algorithm,
in which integer variables and complicating continuous variables are branched upon.
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The analysis, as outlined below, may suggest some practical limits on the problem
sizes one can expect to solve with Algorithm 3. It may also illuminate the trade-off
between knot refinement and spatial branching. Knot refinement serves to tighten
the convex hull and promotes fathoming of nodes, consequently reducing the tree
size. It does, however, increase the size of the lower bounding problems. Spatial
branching, on the other hand, is computationally cheap, but increases the tree size.
Computational experience shows that a balanced combination of knot refinement
and spatial branching is likely to give the lowest solution times on average.

We begin by investigating the while loop in Algorithm 3. For simplicity, we
assume that the problem does not contain integer variables (the analysis may easily
be extended to include the combinatorial aspect of branching on integer variables).
Furthermore, we disregard the optional computations (i.e. the bounds tightening,
knot refinement and upper bounding). The while loop then contains two required
and computationally expensive operations: first a convex lower bounding problem
must be solved, then spatial branching is performed.

The convex lower bounding problem R can be solved in polynomial time by an
interior-point algorithm (Karmarkar, 1984). The convex hull relaxation used in Al-
gorithm 3 produces LP relaxations. LP problems have a computational complexity
of O(ncL2), where n is the number of variables, c is a constant (e.g. c = 3.5 for the
interior-point algorithm of Karmarkar 1984, and c = 6 for the ellipsoid algorithm),
and L is the number of bits in the input (Bland et al., 1981). The bound can be
interpreted as O(nL) steps, of O(n2.5) arithmetic operations, with O(L) precision.
We note here that L will be a function of the number of basis functions in the
B-spline constraints. It will depend in particular on the number of control points
used in the convex relaxations. The number of control points grows exponentially
with the dimension d of a given B-spline constraint. This growth must be included
in a proper analysis of the overall computational complexity of Algorithm 3.

Next, the computational complexity of Algorithm 1 must be investigated. This
algorithm is used in the spatial branching to subdivide B-splines. In the first step of
the algorithm, d knot insertion matrices {Ai}di=1 are computed. We assume that all
matrices are of size A ∈ Rn×ñ, with n ≤ ñ (here n and ñ denote the number of uni-
variate basis functions before and after knot insertion). The number of operations
required by the Oslo 1 algorithm to compute each matrix is in the order of O(p2ñ)
according to Lyche et al. (1985).1 Thus, step one of Algorithm 1 requires O(dp2ñ),
where d is the number of variables (dimension) of the tensor product B-spline. The
second step of the algorithm is a sequence of Kronecker products. Since n ≤ ñ, we
simplify the computation of the upper bound by assuming that the matrices are
square ñ × ñ (since n ≤ ñ). Then, the Kronecker products require the following
number of operations:

d∏
i=1

ñ2 = ñ2d

1An improved Oslo 1 algorithm exists that requires fewer operations than the original algorithm.
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The total number of operations for Algorithm 1 is thus O(ñ2d+ dp2ñ). In practice,
the number of operations will be significantly lower if matrix sparsity is exploited.
Still, this bound indicates that it may be computationally intractable to apply
Algorithm 1 to B-splines in, say, d = 10 variables or more.
To summarize, the computational complexity of the while loop in Algorithm 3

is O(n3.5L2 + ñ2d + dp2ñ), where L is a function of the number of control points
ñd in the B-spline constraints. The computational complexity of Algorithm 3 is
bounded by the number of explored nodes times this bound. It is nontrivial to
compute the number of nodes that must be explored to ensure termination. The
bound in Equation (2.11) is however a good starting point. Finally, we note that
knot refinement will increase ñ and consequently increase the cost of each iteration.
However, it will at the same time reduce the number of nodes in the tree according
to the bound in Equation (2.11).
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Appendix B

Software

This appendix gives an overview of the software developed during the course of
this thesis work to facilitate production optimization using surrogate models. The
software has been used to solve the cases in (Grimstad and Sandnes, 2015; Grimstad
et al., 2015c, 2016; Foss et al., 2015), which include several realistic production
optimization cases provided by BP Exploration Operating Company Ltd.

B.1. SPLINTER

SPLINTER is a C++ library for multivariate function approximation (Grimstad
et al., 2015b). The first draft of the code was developed during the spring of 2012 by
Anders Sandnes and Bjarne Grimstad. Bjarne Grimstad continued the development
until the code was released publicly in October 2014. Since then, several people in
the open-source community have contributed to the code. Today, SPLINTER is
being managed by Anders Wenhaug and Bjarne Grimstad.

SPLINTER’s most important features are listed here: a data structure for storing
and sorting data samples, a tensor product B-spline implementation for function
approximation by smoothing or interpolating data samples, an implementation of
ordinary least squares for polynomial fitting, and an implementation of radial basis
function interpolation with various functional forms.
The code is shared under the permissive (weak copyleft) Mozilla Public License

2.0.

B.2. CENSO

A C++ framework for global optimization with spline constraints, described in
(Grimstad and Sandnes, 2015; Grimstad et al., 2016). CENSO stands for Convex
ENvelopes for Spline Optimization (Grimstad et al., 2015a).
The framework facilitates modelling of optimization problems, and in particular

modelling of problems with piecewise constraint functions. Spline functions are
represented and manipulated using the SPLINTER library. It includes a spatial
branch-and-bound solver specialized for spline constraints. It also has an interface
to the following solvers: IPOPT (Wächter and Biegler, 2006), BONMIN (Bonami
et al., 2008), and GUROBI (Gurobi Optimization, Inc., 2014).
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The code was recently shared with the public under the permissive (weak copy-
left) Mozilla Public License 2.0.

B.3. Graph Problem Builder

The Graph Problem Builder is a C++ code for building production optimization
problems formulated as in (Grimstad et al., 2016) using a graph data structure.
The code requires the following, minimal information about the problem: network
topology, fluid characteristics, operational and other custom constraints, and sur-
rogate models (e.g. splines built using SPLINTER) for the nonlinear pressure and
temperature drops in the system. Mass balances, momentum balances, and energy
balances, as well as routing logic, is automatically included in the final optimization
problem.
The maturity of this code is not at the same level as that of SPLINTER and

CENSO. Nevertheless, it was successfully used to accelerate the modelling of the
production optimization cases in (Grimstad et al., 2016). The code has not been
released publicly and the time of writing.
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mental spline functions and their limits. Journal d’Analyse Mathématique, 17(1):71–
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