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Abstract. 

 

The crystal plasticity theory derives the response of a crystalline material from its structure 

and the structural defects. This work tries to find this connection. The first part revises the 

main concepts of the plasticity theory, structure of the crystalline material and its 

crystallographic texture, and shows how plastic deformations are explained by slip on the slip 

systems, which in turn is realized through the movement of the dislocations. Then the 

mathematical relations of the crystal plasticity are introduced, the main of which are Schmid’s 

law, maximum plastic work principle, Voce law, viscoplastic constitutive relation and Taylor 

model. Taylor model particularly represents the polycrystal as homogeneous in terms of 

strains in it. This simplified approach and other relations are used to establish a numerical 

model of an aluminium sample where texture is represented by a set of Euler angles. This 

model is then used to derive the yield surfaces of samples with different sharp textures for 

plane stress situation by two different methods. One of them is the direct Taylor approach, 

where the load is applied as a deviatoric strain rate tensor.  The other is a finite element model 

with one element. These yield surfaces show a strong unambiguous influence of texture on 

the plastic properties of the sample. These yield surfaces are analyzed and then represented as 

analytical yield functions. Finally, the morphology of the sample is introduced into the 

simulations and some preliminary results, showing its influence, are obtained. 

 

 

 

 

 

 

 

 

 

 

 

 



  

 



  

 

 

Notation 
 

0A                 cross sectional area 

SA                 slip plane area 

b                   Burger’s vector 

C                  stiffness tensor 

,ij ijc c′ ′′              transformation matrix 

ijdɶ                  transformed deviatoric stress 

ijd                  deviatoric stress  

ijD                 principal values of deviatoric stress 

E                  Young’s modulus 

( , )ij ijE c c′ ′′       error function 

( )f σ            yield function 

gf                 volume fraction of the grain 

yf                 yield stress 

F                  force 

m                  strain rate sensitivity 

ijm                 Schmid’s orientation matrix 

ijM                rotational matrix 

,n m
α α          slip system orientation vectors 

sn                  number of slip systems 

ODF            orientation distribution function 

qαβ                latent hardening matrix 

ijS                 normalized stress 

t                    time 

it                   traction 

′ ′′T,L,L ,L   additional transformation matrices 

v                  velocity field tensor 
p

w                plastic work 

pw                weight coefficient 

α                 index of current slip system 
( )αγ              resolved shear strain 
( )

*

αγ              kinematically equivalent shear strain 

γ                  relation between stress in x direction and shear stress 

Γ                 accumulated shear strain 
k

chΓ               characteristic shear strain of k-th term 

pε                plastic strain 

ε                  strain 



  

 

ij
εɺ             volume averaged strain rate 

θ                  shear strain rate 

kθ             strain rate of k-th term 

ρ              relation between stress in x and y direction 

02σ            equivalent stress 

ijσ             stress tensor 

iσ              principal stress 

0σ             isotropic stress 

σ ′             deviatoric stress 

*σ             statically equivalent stress 
pr

pσ           approximated stress 

sim

pσ          simulated stress 

ij
σ         volume averaged stress 

Sτ              resolved shear stress 

CSτ            critical resolved shear stress 

0τ              initial critical resolved shear stress 

skτ             saturation shear stress for k-th term 

( )Sϕ          isotropic yield function 

, ,ϕ θ ω       Euler angles 

ijω              rotation tensor 

0ω               scatter width of texture component 

ω                angle between a given orientation and the ideal orientation 
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1. Introduction. 
 

Aluminium is one of the most important structural materials. The plastic behaviour of 

aluminium is of a special interest because it undergoes plastic deformations in many cases: 

during production of details by sheet rolling, extrusion or pressing, during exploitation or 

collapse of construction. 

In phenomenological models used in engineering, aluminium is usually treated as isotropic, 

homogeneous and continuous. This is also true for the models that try to predict the plastic 

properties of aluminium, but it is not a correct assumption for most cases. Metals have 

complex anisotropic microstructure that can considerably influence their properties. 

Multiscale modelling tries to determine properties of a material on some level as a 

consequence of its properties on a smaller scale. In our case the macroscopic properties of an 

aluminium sample, like the stress-strain curve or the yield surface, are derived from its 

microstructure – the orientation and plastic properties of the constituent grains. For this, the 

crystal plasticity models are used, which couple the microscopic properties and orientations of 

grains and the macroscopic response of a sample to the exterior load. When these models are 

used in numerical modelling of metal behaviour they allow getting more accurate results than 

the phenomenological relations that do not consider the inner structure of the metal. More 

specifically, the plastic behaviour under different straining of a sample –represented by its 

yield surface – depends on the distribution of orientations of the grains in that sample. While 

crystal plasticity models allow us to find those different yield surfaces by use of numerical 

models (using Finite Element Method (FEM) or other), the usual methods do not, despite the 

fact that the influence of microstructure on these surfaces may be considerable. 

The objective of this work is to examine the influence of microstructural anisotropy (namely 

the typical textures) on the plastic properties of a rolled or annealed sheet aluminium sample 

(described by its yield surface) by means of a crystal plasticity model implemented in 

numerical simulation programs. 

Only aluminium is considered and only a number of sharp idealized textures of aluminium 

(as explained in 3.3). Only one rate dependent constitutive model of single crystal plasticity 

with latent hardening is used (explained in 2.3). The situation of plane stress (which is the 

most common approximation, when we describe the rolled sheet metal) is assumed. Only 

several combinations of texture-morphology are simulated. 

In this work it is shown what microstructure aluminium has and how we can use the 

mathematical relations based on its microstructure to predict macroscopic response. Firstly, a 

custom program developed by S. Dumoulin is used for numerical simulation that uses the 

Taylor approach directly. Then, a FEM program LS-DYNA is used, with microstructural 

properties implemented in a user-defined material model. Finally this material model is used 

for grain morphology study. Yield surfaces are obtained and analysed. A form of an 

approximate analytical yield function is found for them. 
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2. Theoretical foundation. 
 

In the first part of the work, we will represent the theoretical basis for the numerical 

simulations. Firstly an overview of the concept of yield surface will be given, as a primary 

tool for understanding the plastic behaviour of the material. Then we will describe the 

microstructure of a metal – a polycrystalline microstructure – and show how it may be 

described in mathematical terms so as to be used in the crystal plasticity models. We will 

define crystalline material and its most important properties as well as such important 

concepts as grain orientation and texture. Then the mechanism of crystal plasticity will be 

explained as slip in the crystal lattice by means of dislocation displacement. We will 

introduce the relations for plasticity in a single crystal. Then we will use these relations in the 

model of polycrystal plasticity – the Taylor model. Finally we will show how the texture - as 

a property of microstructure - is connected with the macroscopic properties of a sample [7, 

29]. 

In this work we make some general assumptions. We assume that all processes are 

quasistatic, which means that although we have some development of them in time, all 

accelerations are negligibly small and so are the inertia forces connected to them. We assume 

that all deformations are infinitesimal (so we can use the starting undeformed configuration of 

the body as a reference configuration). We also assume that the temperature is constant or it 

does not change enough to affect the deformations (isothermal conditions). Well known 

relations of continuum mechanics will be used throughout this work [3]. 

 

2.1 Yield surface. 

2.1.1 Yield stress. 

 

The first question that must be answered when we study the plastic behavior of a material is 

– at what value of load (stress) or deformation (strain) does this material start to yield (or we 

get plastic deformations). Figure 1 shows a relation between stress and strain for a simple case 

of uniaxial tension/compression. For some materials, especially mild steel, the stress-strain 

curve shows a distinct region of elastic proportionality and flat plastic region (Figure 2). The 

value of stress at which the material starts to yield can then be easily identified. It is called 

yield stress yf  [2, 3]. In these materials the elastic region is almost exactly linear and plastic 

strains accumulate without increase in stress (stress remains equal to the yield stress in a 

broad range of strains; this behavior is called perfect plastic). But for a general stress-strain 

curve it is not that simple. The elastic part is not exactly linear and it turns gradually into the 

plastic region, which is also not perfectly plastic, but shows some complex relation between 

stress and strain (such behavior, when yield stress is not constant, but some function of strain 

in plastic region is called hardening). So the transition part between pure elastic and plastic-

dominated parts is rather broad (Figure 1). In this case, the yield stress is not as definite as in 

the previous. There are several methods of how to define it. The most common one is to 

define yield stress yf  equal to the stress 0.2σ  resulting in a plastic strain p 0.002 0.2%ε = = . 

But other values of strain or other methods and definitions are also used, as illustrated on  
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Figure 1 Typical stress-strain relation curve for a metal. 

 
Figure 2. Perfect plasticity curve. 

 

Figure 3. We can base these methods on stresses but also on strains and strain energy. The 

choice of a method to define a yield stress is mostly arbitrary. 

Anyway, we can define a certain value of stress yf  for a material, which corresponds to 

yield in a uniaxial test and is a characteristic property of a material like e.g. Young’s modulus 

and the bulk modulus. 
 

2.1.2 Yield criteria. Yield surfaces. 

 

In the uniaxial test case yielding starts when the stress value reaches the yield stress. In the 

general case we have the stress state of a solid defined not by a single valueσ , but by a stress 

tensor σ . Yielding starts when a combination of components of the stress tensor reaches some 

value. We need a way to describe this combination and link it to the material properties. The 

material properties are usually scalar, so let ( )f σ be a scalar valued function of the stress 

tensor σ . Then we 
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Figure 3. Definitions of yield stress. I – Intercept stress, L-Limit of proportionality, P-Proof 

stress, T-Tangent stress [2]. 

 

can formulate the yield criterion: yielding starts when ( ) 0f =σ , if ( ) 0f <σ we have elastic 

behavior, ( ) 0f >σ  is not acceptable. 

The function ( )f σ is called the yield function for the material. It contains the stress tensor 

components in some form as arguments and material properties like e.g. uniaxial yield stress 

or hardening parameters. So the yield criterion is expressed mathematically by the yield 

function. The two most common yield criteria are the von Mises and Tresca criteria [2, 3]. 

The first one combines the equivalent stress, which is the norm of the stress tensor, and the 

yield stress in a uniaxial test. It may also be derived from strain energy considerations 

(yielding starts when the strain energy reaches a certain value). The other one uses the 

maximum shear stress as a main parameter. But generally we can use other criteria, based on 

stress or strain or strain energy. For a general material the yield stress is difficult to define as 

we already said, it is arbitrary, and so is the yield criterion. 

In order to obtain useful yield functions some fundamental hypotheses are usually 

formulated. These hypotheses are based on experiments and experience. For us the most 

important are the following two: 

1. The yield function is symmetric with respect to reversing of the stresses.  ( ) ( )f f  − =σ σ It 

is analogous to similarity of tension and compression curves for the uniaxial test. 

2. Isotropic states of stress or superposition of isotropic stress on states of stress 

corresponding to elastic response do not lead to yielding. The consequence of this is that we 

may assume that only the deviatoric part of the stress tensor appears in the yield function. 

The deviatoric and isotropic parts of stress tensor are basic concepts in continuum 

mechanics. Here we’ll just say that any stress tensor σ can be represented as a superposition 

of two parts 
0 ′= +σ σ σ                                                                (1) 

where 0
σ  is the isotropic part: 

0 1
( )

3
tr=σ σ I                                                             (2) 

and ′σ  is the deviatoric part: 
0′ = −σ σ σ                                                                 (3) 
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where I  is a unit matrix. So we can say that ( ) ( )f f ′=σ σ .We should mention that for 0
σ , 

11 22 33σ σ σ= = , and for ′σ  we have 11 22 33 0σ σ σ+ + = . The second hypothesis has an 

important consequence. All the volume changes in the material when it is deformed are due to 

the isotropic components of the strain and consequently the stress. So the deviatoric 

component can not change the volume of a body. It means that plastic deformations are 

isochoric in nature – they occur without change of volume [2, 3]. 

As the yield function is most often some continuous function of stress, it may be 

represented graphically as a surface in a stress space. This surface is called a yield surface. 

When the stress state, represented as a vector in stress space, lies inside the surface, we have 

elastic behaviour, when it reaches the surface, it becomes plastic. Hardening means that the 

surface moves from its original position. The yield surface can be obtained for any space with 

independent stress components ( x y xy( , , )σ σ τ , 1 2 3( , , )σ σ σ etc.) as base vectors. A general 

stress tensor has 6 independent components, but if we use the deviatoric nature of plasticity 

we can see that the three components of stress tensor lying on the main diagonal of the stress 

tensor are connected and the total number of independent components is 5. So in general the 

yield surface is a hypersurface in a 5-dimensional space. The form of this surface may vary, 

depending on the material properties and the stress space which we use (or which projection 

of 5D hypersurface on a 3D or 2D space is used), but it always reflects the basic properties of 

the material and plasticity. The simplest yield surface for an isotropic solid, the von Mises 

yield function, is shown in Figure 4. The second hypothesis means that the isotropic stress 

(which is corresponding to the line in the principal stress space, defined by the vector 

[ ]1,1,1=e ) does not influence the yield surface, so this surface must be cylindrical in form 

with the e vector as its axis. The plane 1 2 3 0σ σ σ+ + =  is called the deviatoric plane or π-

plane, because all points lying on it correspond to pure deviatoric states of stress. The curve 

formed by the intersection between the yield surface and the deviatoric plane is a circle for the 

von Mises criterion (which reflects the isotropy of the material) and a central-symmetric 

polygon for the Tresca criterion, which also represents the difference in these yield functions 

[3]. 

 
Figure 4. Von Mises and Tresca yield surface [11]. 
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If the solid has some anisotropy in its properties, then the symmetry will be violated in the 

yield surface too, and the curve will distort in the appropriate direction. So the yield surface is 

a handy tool for representing material properties and limits of elasticity for a given material (it 

should be noted that it is generally impossible to represent an anisotropic yield surface in the 

principal stress space like the one in Figure 4 so other stress space could be used). 

 

2.2 Crystals and Polycrystals. 

2.2.1 Single crystals. Basic definitions. Anisotropy and symmetry. 

 

A crystal or crystalline solid is a solid material, whose constituent atoms, molecules, 

or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions. 

Most commonly used manmade materials and naturally occurring substances (as well as 

aluminium which is a subject of this work) are aggregates of crystals or polycrystals. Many 

important properties which differentiate crystals from non-crystallic materials are due to their 

ordered structure and can be predicted or derived from it. Two important properties that are 

particular for the crystals are anisotropy and symmetry. 

A material property is isotropic when it is the same if measured along any direction in a 

sample, it does not depend on how sample is ‘turned’; it is anisotropic when it varies with 

different orientations of the sample in some reference coordinate system. Anisotropy of a 

property in a sample (macrolevel) appears as a result of anisotropy in the microstructure of 

the sample (microlevel). Property in this context means a relation between a macroscopic 

influence on the sample and its macroscopic response (for example the elastic modulus). 

The structure of crystals can be idealized into having translation symmetry at the atomic 

level. The constituent atoms of the crystal may be grouped in different ways, but on one or 

another scale these groups will be repeated again and again in a global orderly 3 dimensional 

structure called lattice [4]. Real materials differ from idealized ones by having ‘lattice 

defects’ which are errors in this repeating order (such as vacancies, dislocations, stacking 

faults [5] etc, some of them also define macroscopic properties and will be discussed further) 

and by being finite in extent (having surfaces and interfaces). Nevertheless the symmetry 

properties of crystals are predominantly determined by the symmetry of the lattice and the 

symmetry of the groups of atoms that are repeated in the lattice. 

A lattice may be described by a unit cell which is the smallest part of the lattice which still 

has the same properties (symmetries) as the whole lattice. The arrangements of atoms in the 

unit cell which are most common are shown in Figure 5. Aluminium has face-centred cubic 

cell structure (FCC). The symmetries of aluminium single crystal properties are the same as 

symmetries of its FCC unit cell. 

 
Figure 5. Hexagonal, body centred cubic and face centred cubic cell. 
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To describe the properties and processes in single crystals we need a way to define planes 

and directions in some reference frame connected to the crystal. The symmetry axes of the 

unit cell are a natural choice for the axes of this reference frame. They are connected to the 

structure of the crystal and are parallel for the whole lattice of the crystal. To define a 

direction in this reference frame so called Miller indices are used. Within a crystal frame, it is 

possible to describe lattice directions and lattice planes by integer indices. The definitions of 

these indices may be found in [4]. To denote that it is the direction which we describe the 

indices are taken into brackets [uvw]. To denote that we describe a plane they are taken in 

parentheses (hkl). The notation {hkl} denotes the set of all planes that are equivalent 

to (hkl) by the symmetry of the lattice.The notation <uvw> denotes the set of all directions 

that are equivalent to [uvw] by symmetry (Figure 6). 

 
Figure 6. Miller indices [4]. 

 

2.2.2 Polycrystals. Texture. 

 

Polycrystal is a solid that consists of many crystals (crystallites or grains). The properties of 

a polycrystal are defined by both properties of grains and their interaction. Each grain of 

polycrystal has its own orientation of lattice, so called crystallographic orientation (the spatial 

rotation of the crystallographic reference compared to the macroscopic reference of the 

specimen); an important concept here is the grain boundary, which is the border between two 

or more grains. The strain compatibility and stress equilibrium on the boundaries and their 

role in plasticity will be discussed later. 

The properties of single crystals are direction-dependent (anisotropic), so the properties of a 

polycrystal must be largely dependent on the orientations of its grains relative to its global 

reference frame. This orientation can be random but in many cases the research shows that a 

bigger part of grains have orientations around some distinct values. The non-random 

distribution of crystallographic orientations is called texture. 

We speak about texture when this distribution shows some preferred orientations, if this 

distribution is even and random it is said that the polycrystal has no texture. It can be easily 

seen that a material with texture will show some degree of anisotropy, because it will have 

some directions that are distinct from all others, and vice versa the polycrystal without texture 

will be isotropic. Texture also reflects the symmetry of the solid (sample). The number of 
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grains in real crystal is always finite, so the symmetry in a sample is always statistical in 

nature, unlike the single crystals where lattice is truly symmetric. 

Some textures can be described very well by ‘components’, which are a superposition of a 

small number of orientations with some spread around them (which may be quantified by a 

Gaussian distribution). Others can be well represented as fibers in orientation space (see next 

chapter) in which a single angle can be used to specify an orientation within the fiber [4]. 

The textures usually form as a result of some physical process or the treatment of metals. 

The textures in metallic materials are traditionally divided into deformation textures and 

annealing or recrystallizaion textures [4]. For example when sheet metal is produced by 

rolling, the grains in the treated piece of metal tend to rotate near particular orientations which 

differ according to microstructural features other than crystallography. The textures that 

develop in process of rolling are not the same in two metals even if they have the same FCC 

crystal lattice. The result is more depending on materials parameters (stacking fault energy, 

solute content [5]). In aluminium alloys, the texture tends to develop around the particular 

components, so called copper, brass and S texture components. Then the texture of the rolled 

material can be represented by some of these components in varying amount together with 

some amount of randomly distributed grains. In real material there is also always a certain 

distribution of orientation of the grains around these ideal components. 

After annealing the material does not lose all texture as could be expected (because new 

grains are formed), but some textures particular for this process appear in the material. These 

new recrystallization textures depend on the starting texture and also on the kinetics of the 

recrystallization process, like annealing time, heating and cooling rate and temperature. In 

aluminium alloys the most frequent recrystallization texture is the cubic texture, the second 

most frequent is the Goss texture (Table 1). 

 

Texture Indices Type 

Cu 

Brass 

S 

 

Cube 

Goss 

{112}<11-1> 

{110}<1-12> 

{123}<63-4> 

 

{100}<001> 

{440}<001> 

Rolling 

textures 

 

 

Recrystallization 

textures 

Table 1. Components of textures frequently found in aluminium alloys [6]. 

 

It should be mentioned that sometimes a texture is referred to as the texture of a material, 

not a sample. Some materials might have a characteristic texture which is always present in a 

sample of representative size. 

 

2.2.3 Representation of directions. Euler angles. 

 

If we need to represent a direction in general (not just within a crystal lattice like in case of 

Miller indices), the problem is basically the same as describing a unit vector. A unit vector 

may be described by its coordinates, but in our case it is more convenient to describe a unit 

vector by the coordinates of the point on the unit sphere where this vector touches the sphere. 

We can use the reference frame connected to the crystal or to the sample, in this case the 

reference frame of the sample is often defined by so called normal, transverse and rolling 

directions (because it was first introduced for analysis of the rolled sheet samples). 
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If we need to describe the position of a plane (for example the crystallographic plane) then 

the easy way is to imagine the plane of interest in the center of a unit  sphere, then the plane’s 

normal taken in the center of the sphere intersects it at two diametrically opposed points. We 

may define one of them as positive and negative as it is most convenient. Or if the sign is of 

no interest we can leave this set of normals unsigned, in this case the unsigned normals are 

called a pole. 

So the two numbers that specify the direction are most conveniently chosen as the 

coordinates on the surface of a sphere; if the normals are unsigned (poles), it is enough to 

describe their intersection with a hemisphere. Then we may map the points of intersection of 

these normals with the sphere or hemisphere on two circles or a circle (for hemisphere). Such 

representation of a distribution of some directional properties (for example the direction of 

some crystallographic axes) is called a pole figure. There are several methods to map the 

surface of a hemisphere onto a circle for representation purposes [4]. The directions on the 

pole figure may be represented as discrete points, but then in some cases in high density areas 

the individual symbols overlap too much and then seem under-represented. More often a 

continuous distribution of poles is plotted, where the discrete points are assigned with their 

respective intrinsic weights to small area pieces. 

Pole figures represent the directions in the sample reference frame. We can also plot one 

direction (e.g. tensile axis) in the reference frames connected to each individual grain’s lattice. 

We also get a set of points; each of these points represents the orientation of the tensile axis in 

a reference frame connected to one grain. This figure is called the inverse pole figure. In 

some cases the inverse pole figure represents important features of a texture that can not be 

seen on a ‘usual’ pole figure (for example in samples with fiber symmetry). 

There is another way to define the coordinates of a point on a spherical surface (i. e. the 

direction). We use XYZ for sample axes. We define the North pole as the point of intersection 

between the Z axis and the sphere. We define the standard meridian as the line of intersection 

between positive half of XZ plane and the sphere. We then use the pole distance θ  and an 

angle ω  from a standard meridian to describe any point on the sphere. We count ω as 

increasing when we go from positive X to positive Y. Alternatively these angles can be 

introduced as two rotations: first we rotate by ω  clockwise around positive Z, then by θ  

clockwise around new positive Y. These two angles are the Euler angles for locations on the 

sphere. 

In the other case as with the inverse pole figures we may use the crystallographic axes of a 

crystal for reference and describe for example the tensile axis for the whole sample. Now we 

define North pole as the intersection between the unit sphere and the positive z axis of the 

crystal. If we look at the connection between the system (North pole and standard meridian) 

in the first case and the second we can see that while the angle θ  between the z and Z axis is 

the same and goes from one type of description to another without change, the second angle 

depends on how the crystal x axis is put, so we use a third angle ϕ instead ofω  (Figure 7). 

Euler angles are given here as defined in [4]. Other definitions and notations are also used in 

other sources. 

To sum up, for some purposes we just need to specify one direction which is of most 

importance, either a direction in sample coordinate frame or in the single crystal coordinate 

frame (inverse system). To specify a direction just two numbers are enough. They are usually 

the coordinates on the surface of a sphere or the angles. The direction may also have a sign 

(be a unit vector) or be unsigned (when it is not important if it goes through positive or 

negative hemisphere). For unsigned direction we use the term ‘pole’. The points where poles 

(or unit vectors) intersect with the hemisphere may be mapped on a circle (or two circles for 

unit vectors). 
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2.2.4 Representation of orientations. 

 

What we described in the second example is the direction of the axis (the tensile axis) with 

respect to a crystallographic coordinate system. Often this is referred to as the ‘orientation’ of 

the tensile axis. We shall use the word orientation here only when it is implied that the entire 

relation between two coordinate frames is to be described (which requires three rather than 

two numbers). Complete textures are described exactly by a set of complete orientations. 

Sometimes though, only one direction is enough to give necessary information about texture. 

In some simple cases we can describe orientation as a plane and a direction on it using 

Miller indices. We give a normal to the plane and a line in it. For example if we have a rolling 

texture, we use the rolling plane and the rolling direction as a reference and describe the 

texture as {211}<111>, which means that the {211} of the grain crystal plane is parallel to the 

rolling plane, and the <111> direction is parallel to the rolling direction. For example, the 

orientations of the mentioned texture components that we observe in aluminium are given in 

Table 1 taken from [6]. 

 
Figure 7. Definition of Euler angles representing directions. Left: direction of a crystal axis 

in sample system; right: direction of tensile axis in crystal system [4]. 



  

12 

 

In general the relation between two coordinate frames can be represented in various ways. 

We can express either the axes of the crystal with respect to those of the sample (‘crystal 

orientation’) or vice versa (‘sample orientation’). These expressions are entirely equivalent. 

Symmetries also play a major role in descriptions of orientations – sometimes they make the 

relation between two coordinate frames simpler. 

An orientation of some general crystallographic frame can be described by for example 

three poles or a vector on a surface of a unit sphere, but these will not be discussed here. In 

case of the FCC crystal lattice of aluminium we have orthogonal coordinate systems of both 

the crystals and the sample. We can describe the relation (not including translations) between 

two orthogonal coordinate systems by transforming one into the other by a series of rotations. 

These rotations can be described by the same Euler angles which we already defined in the 

previous part. For the case that we also have cubic crystal symmetry and orthotropic sample 

symmetry, we can also keep all the angles in the range 0
o
 to 90

o
 (Figure 8). 

A convenient way to represent orientation in a numerical model is to construct the rotation 

matrix from the Euler angles. This matrix will transform any vector or a coordinate frame 

from one reference system to another. It may be used for example to find the change of grain 

orientation after some plastic strain was applied in FEM analysis. 

 

 
Figure 8. Definition of Euler angles representing orientation [14]. 

 

We denote the basis vectors of the global reference system ie and the vectors of the 

reference system of some single crystal as c

ie . We will use subscript c  from here on to denote 

the variables that relate to single crystals (grains). The relation between these two reference 

systems may found by using the cosine of angles between each pair of vectors. The relation 

has the form 
c

i ij jM=e e    (4) 

ijM is this rotation matrix for a general transformation. To find the components of M  we can 

use a series of simple rotations, each by one of Euler angles: 0 2φ π≤ ≤ , 0 θ π≤ ≤  and 

0 2ω π≤ ≤ . [1, 4]. 
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2.2.5 Representation of textures. 

 

Now we can describe a texture in our model qualitatively and quantitatively by a 

distribution of directions (in some simple cases) or orientations (in more general cases). We 

assume that a large number of individual orientations of the grains are known. We can 

construct a three dimensional orientation space (three numbers are necessary to define the 

orientation) then these individual orientations will correspond to a set of points in this space. 

Another possibility is that one has a continuous distribution of points in the orientation space. 

This space may be divided in a number of finite cells and to each cell some occupation 

density will be assigned. A continuous distribution may also be expressed as a number of 

coefficients of a series expansion. Any of these representations will be referred to as an 

orientation distribution function (ODF) [4, 28]. 

The orientation of the crystal with respect to the global frame may be defined by the set of 

Euler angles ( ), ,φ θ ω . Then the ODF is defined as the volume fraction of grains oriented 

along a certain direction g , where g  is taken to denote the set of Euler angles ( ), ,φ θ ω , and 

thus 

( )
( )1

ODF
dV

V d
=

g
g

g
                                                     (5)                        

Orientation of single crystals can be determined by various methods such as x-ray 

diffraction or the electron backscatter diffraction (EBSD) method in the scanning electron 

microscope (SEM). But the ODF and texture cannot be measured directly by any technique. 

Traditionally both x-ray diffraction and EBSD may collect pole figures for orientations of a 

number of grains. Then ODF is derived from these results by a number of methods. They can 

be classified based on how they represent the ODF. Some represent the ODF as a function, a 

sum of functions or expand it in a series of harmonic functions. Others, known as discrete 

methods, divide the orientation space in cells and focus on determining the value of the ODF 

in each cell [4]. 

 

2.3 Single crystal plasticity. 

 

In the previous parts it was discussed how the solids behave plastically, but it was not said 

why they do it so. Any deformations in solids (and accordingly strains and stresses) mean 

displacement of atoms or molecules that they consist of, stresses appear because of the forces 

of interatomic interaction (interatomic bonds). If the distance between the constituent particles 

varies with the deformation but the atomic bonds remain in the same general state, then the 

deformations are elastic. If the displacement of the particles leads to some redistribution of 

the interatomic bonds, then the deformations are plastic. In metallic and other crystalline 

solids the atoms are positioned in some order in the crystal lattice. Here the plastic 

deformations mean that atoms that constitute this lattice undergo some redistributions. For 

example we can consider a plane of atoms in a crystal. If we apply a large enough shear force 

upon this plane, its bonds with the neighbouring plane will be broken, it will irreversibly 

‘slip’ relative to it, and new bonds will form between the atoms of the planes but now shifted 

one position relative to the primary configuration.  This may explain the plastic 

incompressibility – the volume changes only when the interatomic distances change, i.e. it is 

only characteristic for the elastic deformations. 
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We can use the knowledge about atomic structure of a material for deriving numerical 

models that will describe its behaviour. This way our models will include the microstructural 

properties of material, unlike the phenomenological models. We may find the properties of a 

single crystal of a metal, then find the texture of the sample and couple these two properties 

together to predict the response of this sample. The obvious simple model that is natural to 

assume is, as said before, a slip along some plane by breaking the interatomic bonds between 

two layers of atoms. But this simple model has some serious problems. The interatomic bonds 

are relatively strong and breaking them all at once so that such slip could occur demands a 

very big magnitude of shear force. The shear stress computed from this model is tens of 

thousands times more than the shear stress measured in experiment [5]. This difference exists 

because of imperfections in the crystal lattice that allow other ways for it to deform rather 

than simultaneous breaking of a large number of atomic bonds along the slip plane. These 

imperfections or defects are called dislocations. 

 

 

2.3.1 Dislocations. Dislocation types. 

 

One important type of defect that can be observed in the crystals is the edge dislocation. 

The defect can be considered to be an additional partial plane of atoms inserted into the upper 

portion of the crystal and terminating on a {100} plane. Figure 9 shows how the edge 

dislocation can move by selectively displacing atoms. The shear stress is applied on the top 

and bottom faces of the crystal in a direction to produce shearing forces in a <100> direction. 

If one considers the disturbed atomic arrangement at the zone of partial plane termination 

(called dislocation core), it can be seen that there is an atom that is situated at equal distance 

from two neighbouring atoms, so it is equally attracted to both of them if no external stress is 

applied. When we apply the external shear stress in the right direction the equilibrium is 

disturbed and this atom is attracted preferentially to the right neighbour rather than the left 

one. As a result new interatomic bonds are created, small shift of atoms in the vicinity occurs 

so that the plane to the right now becomes the partial terminated plane, as shown in part 2 of 

Figure 9. It may be also seen as shift of the partial plane (and the edge dislocation) to the 

right, while physically there was almost nothing moving, just some minor rearrangement of 

atoms. So it is said that the dislocation moves. The dislocation continues to move in the same 

direction as long as the external shear stress is applied. Naturally, it stops when it reaches the 

surface (or interface) of the crystal. Then there are no new atoms to rearrange, so the upper 

half of the crystal becomes shifted relatively to the bottom part as shown in the final part of 

Figure 9. The crystal becomes deformed. This deformation is irreversible in nature (when 

dislocation reaches the surface it dissipates and can not shift the crystal back to its former 

state) which means it is a plastic deformation. Its reason is the dislocation motion. 

The plane containing the dislocation is called the slip plane and the slip direction is the 

direction of the motion of the dislocation line (and naturally it is the plane along which the 

crystal irreversibly deforms and the direction in which the crystal is deformed). It is obvious 

that the stress required to shift equilibrium of forces between the atoms at the dislocation core 

is much less than the stress required to break all bonds in the plane at once. This small stress 

that needs to be applied to the dislocation to move it is called frictional stress (Peierls stress) 

[5]. 

The stress found from dislocation model is much closer to the real values than the stress we 

found from “breaking all bonds” model. The dislocations and their evolutions were observed  
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Figure 9. Deformation of a crystal by a consecutive displacement of a dislocation [1]. 

 

in real samples, so dislocation model is a commonly accepted one [5, 2].  The dislocation is a 

line defect, the length of partial plane is much more than distances at the dislocation core. 

To describe the dislocation a so called Burger vector b  is used. It is derived from Burger 

circuit (Figure 10). Its magnitude is equal to the permanent offset that half of the crystal gets 

as a result of this dislocations motion. Its direction is the slip direction. Thus for the edge 

dislocation the slip plane contains both b and the dislocation line. 

Another basic type of dislocation is the screw dislocation. While the edge dislocation is 

moving by ‘linear’ way, the screw dislocation is an ‘angular’ type. The arrangement of atoms 

at the screw dislocation core is shown in Figure 11. 

As we can see it is also a line defect with length much larger than width. Slip occurs if the 

top and bottom of the crystal are subjected to the shear stress. The basic mechanism of screw 

dislocation is the same as for edge type – minor atomic rearrangements lead to movement of 

dislocation until it reaches the surface of the crystal. The word ‘screw’ is derived from the 

helical nature of the atomic structure in the volume around the dislocation core. The Burgers 

vector for a screw dislocation can be obtained by taking a Burgers circuit in a way similar to 

the edge dislocation circuit (Figure 10). It is also parallel to the slip direction and has length 

equal to the fundamental slip distance. For the screw dislocation the direction of the 

dislocation line motion is normal to the direction of the applied stress. The Burgers vector for 

the screw dislocation is, unlike the edge dislocation, parallel to the line and thus this vector 

and dislocation line do not define a unique slip plane and the dislocation can change slip plane 

(‘cross-slip’) [5]. 

These two basic types of dislocations are mostly an abstraction. In real crystals the 

dislocations are usually a combination of both types. The Burgers vector of such dislocation 

makes an angle between 0 and 90
o 
to the dislocation line and defines the slip direction. 

The energy of dislocation is proportional to the square of its Burgers vector [5] and we have 

the general principle of minimum potential energy, so it is natural, that dislocations with the 

smallest energy, i.e. the smallest Burgers vectors and consequently the smallest interatomic 

distance, are most frequently observed. Dislocations with larger slip distances are 

energetically unfavourable in comparison to those with the minimum possible value ofb . 

Thus slip directions are usually the directions where atoms are ‘packed’ most closely. 

Additionally, the frictional stress necessary for dislocation motion is minimized when the 

interatomic spacing between glide planes is greatest – it is easier to break and restore the bond 

between atoms at larger distance than between the closer ones. So slip on a close-packed 

atomic plane is favoured. The number of close-packed atomic planes in the crystal lattice or a  
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Figure 10. Burgers vector. Edge dislocation (upper) and screw dislocation (lower) [12]. 

 

 

 
Figure 11. Screw dislocation [13]. 

 

unit cell is determined by the arrangement of atoms, so for a given type of lattice and 

consequently for a given material or a group of materials we have the same slip planes and 

directions. We call the combination of a slip plane and a slip direction a slip system. For 

example in our case (aluminium FCC lattice) the {111} family of planes are the primary slip 

planes. The slip directions are the directions which are members of the <110> family. 

 

2.3.2 Resolved shear stress. Schmid’s law. 

 

The previous part showed that the physical microstructure of crystalline materials is the 

reason for existence of specific slip planes and slip directions that coincide with the planes 

and directions of highest density of atomic packing. Each type of lattice has a specific number 

of geometrically distinct slip systems (Table 2). There are, for instance, 12 slip systems in 

FCC materials and as many as 48 in BCC materials. Plastic deformations are realized through 

the movement of dislocations and, as a consequence, displacement in the sample along the 
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slip planes in the slip directions. Usually the crystals are subjected not to the shear stress in a 

slip system but to a more general case of tensile or compressive stress. Plastic flow in these 

crystals is accomplished also by slip in the slip systems. In some systems slip does not occur, 

we say that these systems are not activated. Whether the system will be activated may be 

determined in a way similar to the example in Figure 12. For simplicity in this figure we 

consider only one of the potential slip systems in a sample subjected to an applied tensile 

force F . The transverse cross sectional area of the crystal is 
0A  and the tensile stress is then 

found as
0/F Aσ = . It follows from the geometry of the system, that shear stress is always 

smaller than the tensile stress. The angle between normal to the slip plane and tensile 

direction is ϕ  and angle between the slip direction and tensile axis is λ . It should be noted 

that in general φ+λ≠90
o
, i. e. the three directions (tensile axis, slip plane normal and slip 

direction) are not coplanar. The projection of force on the slip direction is equal to cosF λ . As 

can be seen the slip plane area, SA is greater than 0A and the areas are related 

by
0 / cos SA A ϕ= . Then shear stress acting on the slip plane in slip direction can be found as 

mA

F
S

σ
λφτ == coscos

0

                                                  (6) 

This stress is called the resolved shear stress. m is the orientation factor. 

Alternatively, let n
α
 and m

α
 represent the orthonormal vectors defining the normal to the  

Slip directionsSlip 
planes

 

Table 2  Slip systems in FCC materials [18] 
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Figure 12. Resolved shear stress [5]. 

 

slip plane and the slip direction, respectively, for slip systemα , where 1,2, Snα = … and Sn is 

the total number of slip systems that may be activated in the material. The resolved shear 

stress is then equivalent to the traction force acting in the slip plane along the slip direction. 

Then we can find it as the projection of the traction force on the slip direction; the traction  

force in turn is found from the stress tensor and the normal to the slip plane (by definition of 

the Cauchy stress) 
)()()( αααα στ jijiiiS mnmt ==                                                (7) 

If we have a randomly oriented crystal, each of the slip systems will have its own 

orientation and consequently its own resolved shear stress. Some of them will be larger than 

the others - in this case we speak about favoured orientations. It is natural to expect that slip 

(and plastic deformation) will initiate in these favoured systems. It should be noted that the 

value of stress normal to the slip plane has no influence on slip. 

Since slip in different slip systems is occurring by the same physical mechanism it is 

reasonable to assume that to initiate slip the resolved shear stress must reach some certain 

value which is characteristic for material. We can denote this property CSτ  (critical resolved 

shear stress).  Its relation to the yield stress may be found from the same geometrical 

considerations: 

y CSf mτ=                                                             (8) 

The equation (8) is also known as Schmid’s law [16]. It can alternatively be expressed as: 

slip occurs at slip system α  as soon as )(ατ S  reaches the critical value )(ατCS , i.e. 

( ) ( )

S CS

α ατ τ=                                                             (9) 

The Schmid’s law has been verified experimentally. A series of tensile tests of single crystal 

sample was performed. Samples had different orientations of crystallographic axes. Different 

values of yield stress were measured for each sample. However when they were divided by 

appropriate values of orientation cosines, it was found that the value of CSτ  is invariant for a 

given material. It was also found that this value depends on the physical conditions of the 
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experiment that affect the dislocation motion in the crystal lattice such as strain rate and 

temperature, as well as dislocation density and material purity [5]. 

The resolved shear strain (or glide strain or slip strain) γ corresponding to resolved shear 

stress is a convenient measure of deformation in crystal plasticity. The plastic spin and plastic 

strain rate tensors for a slip on several slip systems are found similarly to the stress by 

summation of slip strain on the appropriate systems multiplied by a combination of 

orientation factors [7] 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

,
2 2

s sn n
p p

ij i j j i ij i j j im n m n m n m n
α α

α α α α α α α α

α α

γ γ
ε ω

= =

= + = −∑ ∑
ɺ ɺ

ɺ ɺ        (10) 

So if we know all orientations of slip systems then we may find all strain rates and rotation 

rates in the point from the shear strains on these systems. 

 

2.3.3 Yield surface of a single crystal. 

 

Schmid’s law postulated that plastic slip (i.e. plastic deformation in a solid) starts when the 

resolved shear stress in the slip system reaches its critical value. 

First, we will assume that plastic behaviour of a crystal is independent of the strain rate 

(rate-independent). We may also assume that the crystal has some straining history and that 

the critical resolved shear stress shows some hardening behaviour (it was never postulated 

that we have perfect plastic behaviour in slip, on the contrary, the interaction between the 

dislocations leads to hardening). It means that in general each slip system will have its own 

strain history and its own critical resolved shear stress. Then we can formulate the following 

yield function for a single crystal 
( ) ( ) ( ) ( ) 0, 1,2,...,

i ij j cs s
f n m n

α α α ασ τ α= − = =                             (11) 

This is a set of 
sn  equations. If ( ) 0f α <  for a given slip system α then the system is not 

activated, ( ) 0f α >  is inadmissible [1]. 

Instead of 
in and 

jm  we can also define a transformation matrix 
ijm  which is called 

Schmid’s factor (or Schmid’s matrix). 

The yield function may also be represented as a yield surface. As already mentioned it is in 

general a 5 dimensional surface (in space having 5 independent stress components as base 

vectors). The form of the yield surface is defined by the yield function, so in this case it is a 

polyhedron with flat surfaces (hyperplanes). Each hyperplane corresponds to slip in a slip 

system (when stress vector touches this surface). Two surfaces intersect at edges and several 

surfaces intersect at the vertices. If the stress vector lies on the edge it corresponds to the slip 

in two systems. In case of simultaneous slip in several systems at once (just several discrete 

directions of stress vector correspond to them) the vector is lying in the vertex. We can 

project this hyper-polyhedron onto a space with fewer dimensions, like for example in this 

work we use the three independent components of the plane stress tensor; anyway it remains a 

polyhedron (or a polygon if projected on the plane) [4]. 

 The yield function is basically a scalar field in the stress space and the yield surface is one 

of its isosurfaces (corresponding to value of yield function equal to zero). The gradients of a 

function will be normal to the isosurfaces by definition and consequently the gradient of yield 

function will be normal to the yield surface. The strain rate (which lies in the straining 

direction) is proportional to the gradient of yield function, or in other words it is normal to the 

yield surface. Figure 13 illustrates the cases of single and double slip. Here )( 1α
f  and )( 2α

f  

are the yield functions for the slip systems 1α and 2α . The strain rate increment dtdd p

ij

p

ij εε ɺ=   
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Figure 13. Yield surface with vertex and single slip (left) and double slip [4]. 

 

has the same direction as the strain rate and is normal to the hyperplane. When the stress 

touches the intersection the strain increment becomes undefined. The cone of normals 

bounded by strain increments of intersecting planes is shown.[1]. 

These properties of the single crystal yield surface lead to a problem. The faces of 

polyhedron correspond only to several discrete straining directions, so any straining may be 

found in the continuous spectrums of strainings connected to the vertices. But the same 

straining direction may be found in two or more different vertices and consequently 

correspond to two or more different stresses. Bishop and Hill (1951) [17, 22] suggested a 

method that made finding the right values of stress for the given straining directions 

algorithmically easy. It is called the principle of maximum plastic work. We assume that we 

know several stresses ∗σ , each of them lies in the vertex and may correspond to the given 

straining direction. Then the correct stress is the one that maximizes the plastic work done 

over the given strain increment 

( ) 0p

ij ij ijσ σ ε∗− ≥ɺ                                                            (12) 

In other words, one straining direction may be realized through slip on different 

combinations of slip systems. So we may formulate the principle in another way, so that it 

will allow us to choose the correct combination of slip systems that corresponds to a given 

straining rate. Let the plastic strain rate
p

ijεɺ  be prescribed; we assume that an unknown 

stress ijσ produces this strain rate by a set of shear strain rates (slip rates) on individual slip 

systems ( )αγɺ . In any crystal there always exist several sets of slip rates that give the same 

strain rate. We denote another, kinematically equivalent set of slip rates ( )αγ ∗
ɺ (it is not 

necessarily so that this set of slip rates may be achieved with the stress, fulfilling yield 

condition, it is just that they are possible kinematically). Then the complementary minimum 

principle helps to choose the physically correct system [1, 7]. It says that the plastic power 

expended by the physically possible slip rates producing a given plastic strain rate is less than 

that for a set of slip rates which is only kinematically possible: 
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( ) ( )

1 1

| | | |
s sn n

α α

α α

γ γ ∗
= =

≤∑ ∑ɺ ɺ                                                     (13) 

 

2.3.4 Work-hardening. Latent hardening. Voce law. 

 

Taylor and Elam (1923) (after them Khan and Huang, 1995) [7, 15] draw the following two 

conclusions from experiment observations. 

1. Slip systems are hardened by slip on other systems (whether they themselves are active or 

not). This hardening is called latent hardening to distinguish from the self-hardening. 

2. The latent hardening rate is at least comparable in magnitude to the self-hardening rate, i.e. 

the hardening of the active system by slip on itself. 

We can use a form of ‘Voce law’ (which assumes exponential behaviour of stress-strain 

curve at plasticity) together with latent hardening matrix in one model [19, 20, 21]. Other 

models were also developed, but this one is implemented in the numerical simulation [7]. Let 

the accumulated plastic shear strain be denoted Γ  and its rate of change defined by 

( )

1

| |
sn

α

α

γ
=

Γ =∑ɺ ɺ                                                         (14) 

We define strain-hardening rate for slip system α  as 

( )
( ) csd

d

τ
θ

Γ
Γ =

Γ
                                                      (15) 

The work-hardening relation now takes the form 

( )( ) ( )

1

sn

cs q
α β

αβ
β

τ θ γ
=

= Γ ∑ ɺɺ                                           (16) 

where θ  defines the hardening rate for a given accumulated plastic strain and qαβ  is the latent 

hardening matrix: 
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The diagonal terms of  αβq  representing self-hardening are all equal to unity, while the off-

diagonal terms that represent latent hardening might be unity or somewhat higher, depending 

on the latent hardening parameter q . The work-hardening rate θ  is defined as the derivative 

with respect to Γ  of a hardening curve (critical resolved shear stress as a function of 

accumulated plastic shear strain) in the form 

( ) 0

1

1 exp
N

k
cs sk

k sk

θ
τ τ τ

τ=

  Γ
Γ = + − −   

  
∑                            (18) 

where 0τ  is the initial critical resolved shear stress, assumed to be the same for all slip 

systems, kθ  determines the initial hardening rate, and skτ  represents the saturation for the 

term number k  of total N terms. It is seen that (18) is basically an exponential curve and thus 

represents a form of Voce hardening law with N hardening rates kθ . θ  is then calculated as 

1

( )
( ) exp( )

N
cs

k ch
k k

d

d

τ
θ θ

=

Γ Γ
Γ = = −

Γ Γ
∑                                        (19) 



  

22 

The characteristic shear strain 
k

skch

k
θ

τ
=Γ  represents the strain scale for the saturation with 

strain in term number k . We use 2N = in our model. 

 

2.3.4 Rate dependent behaviour. 

 

All of the previous arguments are based on the assumption that parameters of material like 

flow stress and work hardening do not depend on the plastic strain rate. This assumption 

makes derivations simpler, but physically that is not the case for most metallic materials. 

Strain rate affects the behaviour of materials. Physically it is connected to the dislocations 

movement and interaction [4, 5]. Rate dependence varies for different materials and for 

different temperatures in one material. Usually higher strain rates increase flow stress for the 

same strains. Rate dependent plasticity of materials is denoted viscoplasticity. 

To establish a model for viscoplastic behaviour which may be implemented in a numerical 

model we first make some assumptions. For simplicity we assume that slip rate in a material 

is defined by the state of the material, i.e. the stress state and the structural parameters. A 

power law is often used [20, 21, 25]: 

( )

1

( )

( ) ( )

0 ( )
sgn

m

cs

α

α α

α

τ
γ γ τ

τ

 
 =
 
 

ɺ ɺ                                     (20) 

where 0γɺ  is a reference shearing, m  is the instantaneous strain rate sensitivity of the material 

which reflects its viscoplastic properties (we assume that it is the same for all slip systems), 
( )

cs

ατ  is the critical resolved shear stress of slip system α  (it represents the properties of the 

material in form of the hardening law), and the stress state is described by the resolved shear 

stress ( )ατ . In (20) function )sgn(x  denotes the sign of the variable x . It should be mentioned 

that according to this model slip will occur for all resolved shear stresses different from zero, 

and, as such, no yield criterion exists. This may seem problematic, but for metals m often 

takes a relatively high value, so shearing rate becomes negligible when  ( ) ( )

cs

α ατ τ<  and 

model gives accurate enough predictions. 

 

2.4 Polycrystal plasticity. 

 

When the properties and relations for single crystals are established, the main question is 

how to find the properties of the aggregate consisting of these crystals from these known 

properties of individual crystal. As we already mentioned the properties of a polycrystal are 

defined not only by the properties of constitutive crystals but also by their interaction on the 

grain boundaries (interfaces): these interactions require both equilibrium of forces and 

kinematic compatibility conditions. For our first numerical model we do not model the 

interactions of large numbers of grains between each other individually (it requires too much 

computational time) but use some sort of averaging. Also to describe the solid consisting of 

large number of grains we can use a part of this solid which still has the same properties 

(texture) as a whole and use this smaller part for calculations. This process of describing a 

solid as homogeneous on average, consisting of a number of smaller parts each with the same 

properties as a whole is called homogenisation. Homogenization may be numerical (or 

computational, in FEM) or analytical. 
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2.4.1 Taylor model. 

 

An example of analytical homogenization is the Taylor model, developed in 1930s [18]. 

Every material point of a solid is assumed to be composed of a finite number gn  of grains. 

The set of grains may have a given texture. 

Taylor made the following assumptions: 

1. The elastic deformations are small compared to the plastic ones. 

2. Each grain is subjected to the same homogeneous deformation as the polycrystalline 

aggregate. 

3. The material behaviour is rate independent. 

4. All slip systems have the same hardening rate. 

The first assumption implies that 
p

ijij εε ɺɺ ≈  and 
p

ijij ωω ɺɺ ≈ . It also implies bulk plasticity *slip 

on many slip systems at once), because single slip plasticity can not guarantee the kinematic 

compatibility [4]. The second assumption is the main point of Taylor’s approach; it is 

sometimes even called the constant strain approach because of it. It may be written as 

ij

g

ij

g

ij

n

g

gij

g

f εεεε ɺɺɺɺ ===∑
=1

                                     (21) 

where 
ij

εɺ  is the volume averaged strain rate tensor, fg is the volume fraction of grain g. 

Naturally 1
1

=∑
=

gn

g

gf . g

ijεɺ is the strain rate tensor in individual grains. 

The fourth assumption says that hh =αβ . It means that all slip systems harden together and 

the critical stress at any slip system is the same: ( )

cs cs

ατ τ= and thus the active slip systems 

fulfil the yield condition in the form ( ) ( ) 0
cs

f
α ατ τ= − = . Taylor assumed further that the 

active slip systems are those that minimize the plastic power.  The stresses are found by direct 

volume averaging. We denote g

ijσ  the Cauchy stress in grain g (we assume stress constant 

within the grain). The Cauchy stress at the material point is equal to 

g

ij

n

g

gij

g

f σσ ∑
=

=
1

                                              (22) 

It is obvious that stress equilibrium at the grain boundaries may not be ensured if we assume 

homogeneous strain (although we may account for non-equilibrium by superimposing an 

elastic stress field on the solid).  The other assumption that may be a source of inaccuracy is 

that stress and strain are assumed constant within the grains and some gradients of it may 

exist. The Taylor model is also expected to fail when plastic heterogeneity is too great (for 

example at the presence of strong strain hardening or rate sensitivity [4]). But for a range of 

materials and strain situations we may use it to derive the properties of an aggregate (like 

yield surface, strain-stress curve and strain-hardening parameters) from the known or assumed 

properties of grains and texture. We apply the straining on the sample (which is also the same 

for all individual grains), use the maximum plastic work rule to find the combination of shear 

strains that correspond to this straining and then use Schmid’s law to find the stresses in 

individual grains, which are then averaged. The microparameters, such as the position of the 

slip systems described by the directional cosines, hardening of a single crystal grain and the 

texture (orientations of individual grains) described by Euler angles are defining the link 

between the macroscopic strain and stress. 
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The classical Taylor approach used rate-independent behaviour of individual grains. It is 

although possible to modify the model and use rate dependent model for single crystals. Then 

we use the first two hypotheses of the classical model and omit the third and the fourth. Most 

of the relations are the same as for the rate independent theory. The difference is in the 

constitutive relation. Also the strain hardening rate is now supposed to be different on 

different systems. It means that critical stress is now not the same in different systems and 

csτ can not be used as it was used in the rate independent Taylor model [1, 7]. 

 

2.5 Concluding remarks 

 

As we showed, the microstructure of a crystal – its atomic arrangement (lattice) and defects 

(dislocations) may be used as a basis for derivation of models that describe the behaviour of 

this crystal. The Schmid’s law defines the connection between stress applied to the single 

crystal and the resolved shear stresses on slip systems of this crystal. Schmid’s factor is also a 

link between the resolved shear strains and global strains. Texture, which in this work is given 

as a set of Euler angles, gives the orientations of constituent grains of a polycrystal. We use 

this geometric description – Schmid’s factor and Euler angles – to connect the stresses and 

strains in polycrystal as a whole with resolved shear stresses and strains in single crystals. 

This connection helps us to derive the response of the polycrystal when the response of the 

single crystals is known. Taylor’s model makes some assumptions that make this derivation 

mathematically simple. Then we may try finding properties (yield surfaces) of polycrystals 

with different textures using this method. To do this we just use different sets of Euler angles 

corresponding to different textures. This is what we do in the next part of the report. 
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3. Generating yield surfaces using Taylor model of 
crystal plasticity. 
 

3.1 Method of yield surface generation. 

 

On the first stage the yield surfaces were generated with the custom software that utilizes 

Taylor approach directly. The rate dependent model for the single crystal plasticity is 

implemented, which means that no yield criterion in explicit form is used. 

The calculations are performed stepwise in time steps defined in the beginning. The general 

procedure is the following. 

The number of time step is denoted i . The resolved shear stress rate iγɺ  is found from 

equation (20). The plastic component of the global strain rate tensor p
iεɺ  is found from iγɺ  and 

the geometric factors (slip plane orientation, slip direction and Euler angles) by equation (10) 

and (4). The complementary minimum principle (13) is used to choose the actual slip systems. 

The total strain rate tensor is given in the beginning of the calculations and according to the 

Taylor model it is the same for each grain. Then the elastic component of the strain rate tensor 

for each grain is found as 
i i i

e p= −ε ε εɺ ɺ ɺ                                                            (23) 

Strain is then found by linear extrapolation: 
1i i i

e e e t
+ ∆ε = ε + εɺ                                                      (24) 

Stresses in a grain are then found by Hooke’s law 
1 1i i

e

+ +
σ = Cε                                                             (25) 

where C  is the stiffness tensor. Now the stress tensor is used to find and update )(ατ  in (20). 
)(ατ is found by the same geometric considerations as in (7). To update ( )

cs

ατ the hardening law 

(16) is used. Then 
1i i i

cs cs cs tτ τ τ+ = + ∆ɺ                                                        (26) 

With equation (20) updated  1+iγɺ  is found in the same way and all calculations are 

performed again. The value of plastic work is controlled at each time step and the calculations 

stop once it reaches a certain value defined prior to the calculations. Then a certain stress state 

that corresponds to this value of plastic work is obtained. The total stress is found from (22). 

The sample is assumed isotropic with respect to the elastic properties, so the stiffness tensor 

has three independent components: 11C  12C  and 44C  [3]. Basic values of these are 

43,10611 =C , 35,6012 =C , 21,2844 =C . But the exact values of these are of no big 

importance in this work. The stress is defined by (16) and (20). (25) just defines the path to 

this stress. If we choose higher stiffness constants, the yield stress will be reached sooner and 

the plastic component in the total strain will dominate sooner, but the value of stress will be 

the same. Because of this the value of the stiffness constants was changed in some simulations 

to a more convenient one. 

The parameters of the viscoplastic model are the reference shear strain rate 0γɺ  and the 

instantaneous strain rate sensitivity m . The values used in most of the calculations are 

036,00 =γɺ  and 005,0=m . The influence of the strain rate sensitivity on the yield surface 

was studied separately and showed that it is a good estimate. 
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The hardening model parameters are the latent hardening parameter q , the initial critical 

resolved shear stress 
0τ , assumed the same for all slip systems. Two terms are used in (18), 

which gives us four parameters: 1θ ,
1sτ , 2θ  and 

2sτ . The values used in the calculations are: 

4,1=q   4,750 =τ   8971 =θ   7,131 =sτ  1,2052 =θ   7,152 =sτ  All values for the model 

parameters were obtained by fitting the stress-strain curve of a 6063-T6 aluminium sample in 

uniaxial tension with a corresponding curve generated by this program [26]. 

The stress tensor that we obtain in the end of the calculations above gives us one point of 

the yield surface in the stress space that corresponds to a certain point in the strain rate space. 

This point in the strain rate space is defined by the strain rate tensor that must be input at the 

start of the calculations. To obtain a number of points with the same value of plastic work that 

constitutes a cloud of points (that is further called ‘the discrete yield surface’), the 

calculations must be performed many times with an appropriate varying strain rate tensor. 

This data is available on the CD. Then the discrete yield surface may be interpolated into a 

continuous surface (we may assume that between the known points of the surface it is 

continuous and smooth, so that this interpolation is possible). For this interpolation a program 

written in Matlab is used. It depicts convex smooth surfaces and most polyhedrons, but very 

sharp edges and regions on the edge of the discrete surface are problematic for it. E. g. Figure 

24 has isoline 12 0.4S = on the edge of discrete surface so it could not be depicted properly 

and was not included in the illustration. On Figure 29 and 30 sharp edge is either depicted 

with irregular line or deleted from the illustration. But in general these problems are rare and 

do not prevent from understanding the form of the surface. We also do not use the same exact 

values of ρ  as in [6], just some arbitrary values, because they are of no importance for 

understanding the properties of yield surfaces. 

We assumed the plane stress situation, which implies three stress components - xxσ , 

yyσ and xyσ . The yield surfaces are also projected on the xxσ - yyσ - xyσ  space. To provide 

these the strain rate tensor must take form 










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The third diagonal component reflects the plastic incompressibility. But it also means that 

we get a stress component zzσ . To get rid of it and provide the plane stress state we impose a 

hydrostatic stress state on our result with component equal to zzσ− . As we said, only 

deviatoric stress tensor defines plasticity, so we may well impose a hydrostatic stress on our 

result and it will not influence the yield surface. This way the plane stress state is more a 

consequence of how we find the stress tensor. 

Different strain rate tensor imposed on the sample in the program are distinguished by the 

values of ρ  and γ . We define them as 

xx

yy

ε

ε
ρ
ɺ

ɺ

=                                                              (27) 

xx

xy

ε

ε
γ
ɺ

ɺ

=                                                              (28) 

The program varies these parameters in a given range to obtain different straining states. As 

we can see xxεɺ remains the same for each state. As the result of running the software we get a 

number of different combinations of ρ  and γ  values with the corresponding stress states. 
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The stresses are normalized with the value of  xxσ  corresponding to the uniaxial tension 

situation, the normalized stresses are denoted as 11S , 22S and 12S  so the surface always 

intersects the 11S  axis at 1. These stress states are then used for interpolating of a continuous 

surface that is represented by projecting the lines with equal 12S  on the 12S =0 plane. The lines 

containing the points with equal ρ  which are of a certain interest are represented too.  

It may be seen that points corresponding to pure shear ( 0xxε =ɺ , 0yyε =ɺ ) correspond to 

undefined values of ρ  and γ . The values of γ  at this part of the surface are quickly going to 

infinity and values of ρ  to the indeterminacy
0

0
, so this point must be calculated separately 

and the points in its neighbourhood are usually not calculated at all, because of numerical 

instabilities. 

It should be mentioned that this method is different from FEM. The Taylor model allows a 

great deal of simplifications. The geometry of the sample, its morphology, boundary 

conditions, all of these is neglected. Homogeneous behaviour throughout the sample is 

assumed. 

 

3.2 Generating yield surfaces of single crystals. 

 

Generating the yield surfaces of the single crystals with this software has several goals. Firstly 

these surfaces for the single crystals have certain properties determined by the crystal 

plasticity theory. These properties were for the most part described in the theoretical 

foundation chapter. Varying certain parameters of the simulation must lead to the predictable 

consequences which may be observed on the generated surfaces. All this will partly verify 

that any results obtained with this software are in accordance with the crystal plasticity model. 

These surfaces may also have another use. We will be simulating the straining of the strongly 

textured polycrystals. The textures of these polycrystals are well described by a component 

with small scatter and a randomly distributed rest of the grain orientations. This one 

component corresponds to a single orientation of a grain. Building the yield surface of this 

single grain and comparing it with the polycrystal yield surface may provide some 

verification/explanation of the latter. 

The crystal plasticity, and more specifically Schmid’s law (or the viscoelastic constitutive 

relation), predicts that the yield surface of a single crystal is a polyhedron. In general it is 5-

dimensional, but we project it on the plane stress space with three independent components of 

the stress tensor and get a 3D polyhedron. Figure 15 shows a yield surface generated for a 

grain with Euler angles (0,0,0). Rotating the grain, i. e. assuming other values of Euler angles, 

must rotate the 5D polyhedron, changing its projection. Figures 16 and 17 show the surfaces 

corresponding to Euler angles (0,0,30) and (0,0,45). The symmetric properties of the FCC 

crystal lattice lead to some rotational symmetries of the yield surface. The surfaces 

corresponding to the (0,0,60) and (0,0,90) orientations are coinciding with the ones defined by 

(0,0,30) and (0,0,0). The other property of a single crystal yield surface that may be 

considered is connected to normality. As we said in the previous chapter, a broad spectrum of 

stresses correspond to several discrete straining directions (normal to the planes of the 

polyhedron), while several discrete stresses pointing at the vertices of the polyhedron will be 

responsible for a broad spectrum of straining directions. But we must also consider the 

elasticity influence. Any yield surface produced will be the result of some work done by both 

elastic and plastic stresses. These two have distinctly different connection with the strains. 

While the plastic stress-strain relation is as described earlier, the elasticity means 
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proportionality. If we draw each point of the discrete yield surface generated by the 

simulation in the strain space we will get a pattern where the points cover the area around the 

origin relatively even, and the points corresponding to the value of ρ =some constant will lie  

 
Figure 15. Yield surface of a single crystal with orientation (0,0,0) with lines constρ = . 

 

 

 
Figure 16. Yield surface of a single crystal with orientation (0,0,30). 



  

29 

 
Figure 17. Yield surface of a single crystal with orientation (0,0,45). 

 

  

 

 
Figure 18. Single crystal (0,0,0). Distribution of stresses corresponding to an even 

distribution of strain rates at high elasticity. 
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Figure 19. Single crystal (0,0,0). Distribution of stresses corresponding to an even 

distribution of strain rates at low elasticity. 

 
Figure 20. Single crystal (0,0,0). Distribution of stresses corresponding to high plasticity 
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Figure 21. Stress-strain curves for elastic constants multiplied by factor 1 (upper) and 10 

(lower). Work is equal to the area under curves. Saturation stress is the same, independent on 

elastic constants. 

 

on the straight lines starting at the origin. Hookes proportionality law will transfer this pattern 

into the stress space without change. Several simulations were performed, with different 

proportion of elastic and plastic parts in the total work. Figure 18 corresponds to a high 

elasticity situation. The total strain equal to 0,2% was chosen as the stopping point. The points 

of the discrete yield surface are arranged in the same way as the strain rates in the strain rate 

space. 

Figure 19 corresponds to the higher influence of plasticity. The points start to gather around 

the edges and vertices of the polyhedron and are almost absent on the faces. Figure 20 

corresponds to the total strain of 1%. Plasticity is dominating and the points gathered at the 

vertices for the most part, so that a major part of all the different straining directions is 

provided by several discrete stress states.   

The ratio between the elastic and plastic work for all three cases is shown on Figure 21. To 

reduce the simulation time in the latter two cases the elastic constants were multiplied by the 
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factor of 10, so that the total elastic work decreased correspondingly. Note that they are not 

corresponding to the uniaxial test, which is difficult to perform accurately by controlling the 

strain rate tensor, but to a stress and strain component along the x axis, corresponding to the 

strain rate tensor 

1 0 0

0 0.5 0

0 0 0.5

 
 

− 
 − 

. 

 

3.3 Generating textures. 

 

The textures that are of particular interest are the typical textures in rolled and annealed 

aluminium, described in the previous chapter: Copper, Brass, S, Goss and Cube. To simulate 

the samples with more natural textures we use the same technique as in [6]. The texture is 

composed of a number of grains with orientations distributed around the ideal orientation and 

an equal number of randomly oriented grains. Both the directional part and the random part 

are generated by the software. The generated orientation part obeys Gaussian law. The 

distributions spread function is given as 

)
2

1
exp()0()(

2

0

2

ω

ω
ω −= GG                                               (29) 

where ω  is the angle between a given orientation and the ideal orientation, 0ω  is represents 

the scatter width of the spread and must be chosen for generating the texture. To emphasize 

the effect of the texture on the yield surface we use the value of 0ω  equal to 05  which 

corresponds to a case of a very highly textured sample. 

The pole figures for the generated textures may be compared with the pole figures obtained 

in [6]. On Figure 22 1 1 1 pole figure for the Copper texture with 0

0 5=ω  from [6] and the 

one for the generated texture are compared. 

 
Figure 22. 1 1 1 pole figures for Copper texture with spread 5 degrees in [6] (right) and in 

this work (left). 
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3.4 Influence of plastic work on the yield surface. 

 

We stated in the first chapter that the value of strain (and corresponding values of the elastic 

and plastic work) may be chosen arbitrarily, while usually it is chosen equal to 0.2%. The 

previous subchapter demonstrated that the ratio of the elastic-plastic in the total work at the 

end of the test is not so important for the form of a yield surface of a single grain, but has a 

certain influence on the distribution of the stresses. From this point of view it is worth 

investigating, which ratio of the elastic-plastic in the total work gives the most representative 

picture of plastic properties. The other ‘reference point’ is [6], who obtained these results 

before. 

To make the evolutions in the yield surface more obvious the copper texture is shown. To 

estimate the relation between strain-stress and plastic-elastic work, firstly a simulation with 

one straining direction was performed. Results are shown on Figure 21. From the relations 

between elastic and plastic work found from this figure some predictions about the yield 

surface can be made by using the crystal plasticity theory. These predictions turned out to be 

correct. 

Figure 23 shows the yield surface obtained for a very low ratio of plastic work, just in the 

beginning of the plastic deformations. The yield surface is rather linear and resembles the one 

for a (0 0 0) single crystal. The reason is that a large part of the slip systems with different 

orientations are not activated yet and the form is predominantly determined by a limited set of 

those that are activated. The form of the yield surface for different textures is almost the same 

at this level of plasticity, which confirms this assumption. The ρ =const lines are linear, 

showing that the proportionality determines the picture here. 

Increasing the ratio of plastic work to about 50% leads to the yield surface, shown on Figure 

24. Now more of the slip systems are activated and the form of yield surface is more curved, 

as in [6]. The ρ =const lines also start to curve. Also it is notable that it is more flat on top (so 

that a distinct line 12 0.4S = could not be interpolated. The explanation may be that the slip 

systems that activate now give on average a contribution to yield surface that is lower than 

0.4. Further activation of different slip systems cancels this effect.  

Figure 25 shows how the yield surface looks when the plastic work is dominating. The form 

of it didn’t change much, but the ρ =const lines now show a great deal of non-linearity. If we 

compare this picture with the yield surface of a grain that has Euler angles equal to (90.00    

35.26    45.00) which corresponds to the orientation of the Copper component of the texture 

(Figure 29), we may see that the distortion of these lines has a tendency: they are denser 

around the vertices of the copper component yield surface and less dense on the facets. As we 

observed in the previous part the stresses tend to gather at the vertices at large plastic work, so 

averaging the stresses for the copper component with the randomly distributed stress points 

for the random part of the texture will likely result in such a picture. The yield surfaces found 

in [6] correspond to a high ratio of the plastic work, so it is chosen to use it here. We achieve 

it by reducing the elastic work by increasing the elastic constants by a factor of 10. Then we 

find the plastic work that corresponds to the 0.2% strain for the non-textured sample in a 

simulation of a single straining direction (we use the following values of the strain rate: the 

shear strain is 0, 1=xxε , 5.0−== zzyy εε ), and then use this value of plastic work in the  
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Figure 23. Yield surface for copper texture at high elasticity. 

 
Figure 24. Yield surface for copper texture at low elasticity. 
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Figure 25. Yield surface for copper texture at high plasticity. 800 grains in total. 

 

 
Figure 26. Hardening. Yield curves for different strains in 12 0S =  plane. 
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simulations for all textures. This value of plastic work is 3.67053E-01p
w =  The time step t∆  

was accordingly decreased to retain the stability of the solution. 

To sum up what we know about the development of the plasticity with the increasing global 

strain, Figure 26 shows hardening by showing the intersects of the yield surfaces for the 

copper texture with the plane 12 0S =  at different values of strain. 

 

3.5 Influence of number of grains. 

 

F. Barlat and O. Richmond in [6] use 400 grains with distribution of the orientations around 

the ideal component. A fewer number of grains may lead to a worse representation of the 

component or the random part properties. To check if more grains will give some noticeable 

improvements, simulations with 600 and 800 ‘component’ grains (1200 and 1600 total 

number) were performed. From Figure 27 it can be seen that the number of grains over 400 

doesn’t influence the yield surface. So, 400 grains with components’ orientation and 400 

random orientation grains were used for all the simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

37 

 

 
Figure 27. Yield surface for copper texture with 1200 (upper) and 1600 grains in total. 
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3.6 Generating yield surfaces for typical textures. 

 

3.6.1. Non-textured case.  

 

The yield surface for the non-textured case is presented on figure (28). 800 grains with 

random orientations were used. The surface is central-symmetric and symmetric relative to 

the lines 1=ρ  and 1−=ρ . We can say that the isotropy expresses itself through the fact that 

the coordinates 
11S  and 

22S  are interchangeable. Normalization stress 226σ =  

 

 

3.6.2. Copper texture.  

 

The central symmetry remains as may be expected for any yield surface, as well as the 

mirror symmetry relative to the 12 0S = plane, but the other symmetries are gone and some 

anisotropy shows up. It may be explained if we look at this surface as the average of the 

previous one (Figure 28) and the component’s surface (Figure 29). The randomly distributed 

grains smooth the edges and the corners, but the form of the single crystal polyhedron is still 

recognisable. The reduction of max
22S is f. ex. due to the horizontal edge at 

22 0.7S ≈ . The 

distortion of the const=ρ lines was explained previously. The ‘components’ yield surface is 

also rather ‘low’ (has small value of max
12S ). It shows in the low max value of 

12S of the 

whole texture, which is the lowest of the six. This sort of comparison helps to explain the 

properties of the other yield surfaces too. Should also be noted that the lines 
12S const=  are 

more ‘angular’ than in [6], which is a result of the low density of the points in some areas and 

the linear interpolation. Either more points could be used or less plastic work, but by the time 

it was noticed there was little time left and both methods demand some lengthy simulations. 

Normalization stress 249σ =  

 

3.6.3. Brass texture. 

 

A peculiarity of the brass texture component is that it has two modifications with equal total 

volume fraction. These two variants are basically the same, just rotated relative to each other. 

These two components are central symmetric, but they are not symmetric relative to 

the 0=xyσ plane. The yield surface of the whole texture meanwhile is still symmetric, 

because the two orientations ‘cancel’ each other to retain symmetry. 

This yield surface is even more obviously anisotropic. The sharp edge of the components 

yield surface gives it a rounded highly curved ‘edge’ and higher values of 22S . The 12S  of 

‘component’ surface has max 12S  at about 0.45, which reduces the 12S =0.542 of the random 

texture part but not as much as the copper texture. Normalization stress 229σ =  
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3.6.4. S texture. 

 

The S texture component has the same rotated variants as the Brass texture. The difference 

is that the S component has not so sharp and protruding edges as the Brass. As a result the 

yield surface is not that obviously anisotropic and resembles the non-textured one. Value of 

12S  at (0,0) is also expectedly lower than for the isotropic. Normalization stress 233σ =  

3.6.5. Cube texture.  

 

This texture’s peculiarity is that the basic single orientations surface is very symmetric (the 

same as in Figure 15). This symmetry remains in the texture surface. The difference with the 

non-textured one is the distortion of const=ρ  lines that now have several vertices to be 

attracted to. The main component also gives it a more round form, than oval isotropic surface. 

12S  of the single orientation surface is equal to 1, so it is the highest of the six for the total 

texture. Normalization stress 204σ =  

 

3.6.6. Goss texture.  

 

The sharp edged and stretched up to almost 2 ‘component’s’ surface leads to a highly 

anisotropic and deformed surface of the total texture. 12S  in pure shear is at about 0.7 which 

gives a higher value in the total texture. Normalization stress 204σ =  
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Figure 28. Yield surface for non-textured sample, 800 grains in total. Found in this work 

and in [6](lower). 
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Figure 29. Yield surface for copper texture (upper), its main component (left) and as found 

in [6]. 
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Figure 30. Yield surface for brass texture (upper), its main component (bottom left) and as 

found in [6] (bottom right). 
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Figure 31. Yield surface for S texture (upper), its main component (bottom left) and as 

found in [6] (bottom right). 
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Figure 32. Yield surface for cube texture (upper), and as found in [6]. 
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Figure 33. Yield surface for Goss texture (upper), its main component (left) and as found in 

[6]. 

 

All the obtained yield surfaces are very much like the ones that were found in [6]. The 

differences in 12S  at (0,0) (pure shear) may be explained by the errors of interpolation. These 

errors are not more than several percent in all the cases. The interpolation method is also 

responsible for some minor irregularities in the yield surface projections (especially on Goss 

and Cube). 
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3.7 Concluding remarks 

 

The program that we used showed good results that are in accordance with the crystal 

plasticity theory. The anisotropic samples were modelled by sets of grain orientations 

(textures) typical for aluminium, with strongly expressed texture components. The yield 

surfaces for these anisotropic samples were generated and they also showed anisotropy. That 

anisotropy may be explained in terms of the crystal plasticity theory, at least in qualitative 

sense. Hardening at different strain levels was also found and explained. The necessary 

number of grains, to represent these textures, was found to be not more than 400. 

The next chapter will try using a different method of generating the yield surface. 

Comparison of the results will check the validity of some assumptions we made. Another 

useful step may be comparison of the obtained results with the experimental data and ‘tuning’ 

of the model parameters. 
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4. Generating yield surfaces with FEM. 
 

4.1 Peculiarities of generating yield surfaces with FEM. 

 

The next step is generating the yield surfaces using the FEM program LS-DYNA. It allows 

more control over the simulation in some respect, but has its own limitations. The main 

difference between the simulations performed for this chapter and the previous is that the 

boundary conditions become directly defined, not adjusted by superimposing a stress state. So 

this side of the previous simulation type may be checked for feasibility. 

The sample is now represented by a rectangle element (in the previous simulation the 

sample geometry was not considered at all). It is an 8-node constant strain element with one 

integration point (reduced integration). The stress is calculated at the integration point 

(superconvergence point). So we can say that the Taylor model is still implemented here, 

because the strain is still constant throughout the sample, but the calculation method is 

different. Now, instead of applying the strain rate matrix to the whole set of grains, we may 

apply the velocities and constraints to the nodes. The boundary conditions used for the 

simulations are shown on Figure 34. Node 1 is prevented from lateral motion in all 3 axial 

directions. The rotations of the element around the x, y and z axes are prevented by 

preventing appropriate displacements in the nodes 2, 4 and 5. The velocities
xxv , 

yyv  and 
xyv  

applied in nodes 2 and 4 give the strain rate components xxεɺ , yyεɺ  and xyεɺ . These strain 

components are connected by the parameters ρ and γ  as stated in (27) and (28). The velocity 

field and the strain rate field are connected by expression 

i

d

dx
=

v
εɺ                                                               (30) 

where 
ix  is one of the coordinates. So the velocities are connected by ρ and γ  in the same 

way as the strain rates. By beholding 
xxv  and varying ρ and γ  we obtain different points in 

the strain rate space and the corresponding points in the stress space in the same way it was 

done in the previous chapter. 

To explain how uniform deformations of the element are provided by applying the 

velocities at just two nodes we must introduce the conception of the periodic representative 

volume element and the periodic boundary conditions. In chapter 2.4 it was stated that we 

find the properties of a whole sample by modelling a small part of it that still has the same 

properties as the whole (Representative Volume Element or RVE). In the present case RVE 

consists of one element, but generally it consists of a number of elements. In a sense, it is 

analogous to the unit cell, which is also representative for the whole lattice. This RVE that we 

consider must be a valid representation of a sample, remote from the influence of the 

boundaries (free surfaces, fixed displacements etc) i.e. without the effects of the constraints. 

To provide this it must fulfil some requirements. Let us say that we consider a sample of a 

material, divided into small parts, each of them is representative for the whole. If we deform 

the whole, each RVE must be deformed in the same way as all the others, so that they are 

fully interchangeable. In other words all possible RVEs are connected by the translational 

symmetry in the undeformed and all the deformed states. These parts must also naturally 

remain kinematically compatible. To provide both this translational symmetry and the 

kinematic compatibility, RVE must deform in a certain way, as e.g. is shown on Figure 35. 

Displacement at the edge 1-2 of element a  is the same as at edge 3-4, same goes for edges 1-

3 and 2-4 and for edges of element b . This type of boundary conditions that provide 
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translationally symmetric and kinematically compatible RVEs are called periodic boundary 

conditions [8]. Special subroutines in LS-DYNAprovide this kind of boundary condition  

 

 
Figure 34. Boundary conditions of an element used in simulations. 

 

 

 
Figure 35. RVEs must provide both kinematic compatibility and translational symmetry. 

 

in our element. It means that e. g. when node 2 starts moving in the positive x direction, nodes 

3, 6 and 7 move accordingly, to behold the form of the element that will still fulfil the 

requirements. 

The calculations of the stress are now performed in another way than in the previous 

chapter. Time is again divided into small steps. The crystal plasticity model is implemented in 

the material model. It is used to calculate the tangent stiffness matrix at every time step. This 

tangent stiffness matrix depends on the current state of strain-stress. Then the equilibrium 

equations are constructed and solved for the forces and displacement in the nodes iteratively 
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at each time step to account for the non-linearity. The stress is calculated from the strain, 

which in turn is calculated from the displacement. 

 

4.2 Generated yield surfaces and comparison with previous 
results. 

 

The first step was again to consider the stress-strain curve in the uniaxial test. This time we 

have full control of the boundary conditions and can produce an accurate uniaxial test. The 

obtained stress-strain curve is the same as shown in Figure 21, upper part. The use of larger 

elastic constants to reduce the influence of elasticity was unsuccessful – the solution could not 

be obtained. So another value of the plastic work was chosen, than in the previous chapter. 

The plastic work that corresponds to the plastic strain equal to 0.2% is approximately equal to 

4. This value of the plastic work is used in simulation for a single crystal. A distribution of 

stresses, which was observed, is shown in Figure 36. The stresses again are attracted to the 

edges and especially vertices of the polyhedron, but in comparison to Figure 20, the points are 

much more scattered around the exact positions of the vertices. It may be explained by  

 
Figure 36. Distribution of stresses for a single crystal yield surface generated by LS-DYNA. 

 

difference in the boundary conditions: in Taylor we apply a constant strain rate, while in LS-

DYNA we apply a constant velocity, which gives a varying strain rate when the length of the 

sample is changing. And our model is rate dependent, so it gives some scatter in stresses. 

But what is more important, at 4p
w =  the distribution of the stress points show little 

enough influence of elasticity, so this value may be used in the polycrystal simulations. This 

time we had to use a value that is about 10 times bigger than the one used for the previous 

type of simulations to reduce the contribution of elasticity in total picture, and the 

computation time also increased considerably. 
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Figure 37. Yield surface by LS-DYNA for non-textured case, 800 grains. 

 

 

 
Figure 38. Yield surface by LS-DYNA for Copper texture component, 800 grains. 
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Figure 39. Yield surface by LS-DYNA for Goss texture component, 800 grains. 

 

It may be expected from this that the yield surfaces of the polycrystals generated in LS-

DYNA will not be very different from the ones generated by use of the Taylor model. The 

additional scatter may make them smoother and more rounded, though not much. This is what 

was observed. Figures 37, 38 and 39 show some of the results. The lines 
12S const= for the 

Copper component are more rounded than obtained by the Taylor model, and more like the 

ones found in [6]. Line 12 0.4S = was again badly interpolated and is not shown in Figure 38. 

The boundary conditions imposed on the element must lead to the plane stress state. The 

values of the stress components that must be equal to zero are negligibly low. We also get the 

same deviatoric stress states as in the previous chapter.  

 

4.3 Concluding remarks 

 

The FEM proved that the assumptions made in chapter 3 about the boundary conditions are 

reasonable. The results, obtained for the plane stress, provided by the boundary conditions 

and provided by superimposing the isotropic stress state are the same. The results also show 

that the crystal plasticity models may be successfully used as the material models in the FEM 

analysis, e.g. they may be used in the study of the morphology influence on the plastic 

properties. 
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5. Fitting of the generated surfaces to analytical 
expressions. 

 

It may be useful for the practical purposes to represent the obtained yield surfaces by some 

analytical yield function. The exact function that fits all the data points that we generated may 

be difficult to find, but a good approximation may be reached. An example of such 

approximation is developed in [10, 31]. 

In 2.1.2 we stated that only the deviatoric component of the stress gives a contribution to 

plasticity.  Then any isotropic yield function may be written as: 

( )ϕ ϕ= D                                                               (31) 

where D  represents the principal values of the stress deviator d . d  may be found from the 

Cauchy stress tensor by a linear transformation. To use the isotropic yield function for an 

anisotropic material we can substitute d with dɶ , so that it takes account for the material 

anisotropy. dɶ  is also found by linear transformation of d . The chain of transformations takes 

form: 

d = Cd = CTσ = Lσɶ                                                (32) 

where C  contains the constant coefficients (not to be confused with stiffness matrix) and 

T transforms the Cauchy stress to its deviator component. Now the isotropic yield function 

becomes anisotropic, if we simply use dɶ  instead of d . It will also behold the convexity. 

We can use several linear transformations, to increase the number of the coefficients 

describing the anisotropy. The yield function will then take form: 

( )ϕ ϕ= (1) (2) (k)D ,D , ...Dɶ ɶ ɶ                                           (33) 

for k  transformations. In [10] 2k =  is described, which gives 18 parameters to describe the 

anisotropy. The transformed tensors are 

′ ′d = L σɶ                                                              (34) 

′′ ′′d = L σɶ  

and the yield function ( )ϕ ϕ ′ ′′= D ,Dɶ ɶ . The yield function proposed by [10] and denoted 

Yld2004-18p is 

1 1 1 2 1 3 2 11 2 2

2 3 3 1 3 2 3 3

D D D D D D D D D D

D D D D D D D D

α α α α α

α α α α

ϕ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′= − + − + − + − + − +

′ ′′ ′ ′′ ′ ′′ ′ ′′+ − + − + − + −

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

          (35) 

The transformation matrix C takes form 

21 31

21 23

31 32

44

55

66

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

c c

c c

c c

c

c

c

′ ′− −

′ ′− −

′ ′− −
′ =

′−

′−

′−

C                          (36) 

′′C  has the same form with the corresponding coefficients ijc′′ . The exponent α is also a 

parameter that may be varied to find the best fit. It is interesting to note that if 2α = or 4 and 

the coefficients in C are equal to 1, then this yield function transforms into the von Mises 

yield function. 
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We have the stress tensor for different points of the yield surface from the simulations, so 

the problem is to find the coefficients in C for the anisotropic material. For this the error 

function is used: 
2

( , ) 1

pr

p

ij ij p sim
p p

E c c w
σ

σ

 
′ ′′ = −  

 
∑                                       (37) 

where p is the number of the flow stresses sim

pσ obtained in the simulations, pr

pσ is the stress 

from the approximated function (35) and 
pw  is a weight coefficient. The coefficients in C are 

varied to obtain the minimal value of E . 

The analytical surfaces were obtained for the same textures as in the previous chapters. To 

find the minimum of the error function (37) the solver module of MS Excel was used. A 

statistical analysis of the obtained analytical functions showed that most of them fit well into 

the analytical expression. The biggest maximum deviation is several percent and the biggest 

average deviation is less than one percent. 

The yield function (35) proved to be a good approximate for even the most strong-textured 

materials. As expected the least error is for the most isotropic material (non-textured). The 

anomalously high difference between the analytical function and the data are found for the 

Copper (9.7%, the next highest is 4.0%) and Brass textures (4.8%, next highest is 2.4%). It 

corresponds to the pure shear points at (0,0). The Goss texture also has its maximum 

difference there although it is not as big as for the other two. The density of the data points 

around the pure shear point is low – the values of γ  at this part of the surface are quickly 

going to infinity and values of ρ  to the indeterminacy
0

0
, so this point is calculated separately 

as already mentioned, and the points in its neighbourhood are usually not calculated at all. So, 

if we prescribe a usual weight coefficient 1 to this point it will be ‘ignored’ by the solver and 

a surface that smoothly continues from the ‘denser’ parts of the simulated surface will be 

preferred. If the top of the simulated surface is not smoothly curved but instead flat, this will 

lead to a big difference between the analytical value and the simulated data. This may be 

solved by prescribing a higher weight coefficient to these points, but trying this showed that 

while the maximum difference reduced, the total accuracy of the solution suffered. Should be 

noted that the solver finds a local minimum of the error function, so different starting points 

of the c  coefficients can give different results, but this process is complicated and unclear, so 

it was preferred to present the current results as is. But in the perspective, it may be 

investigated further, and may be better analytical surfaces could be found. The statistical 

diagrams for the ‘anomalous’ textures (Copper, Brass, Goss) are given without the pure shear 

points so as to be more representative. 

The results are presented on Figures 40-45 by yield surface projections generated by the 

same Excel sheet. The lines 
12S const=  start at 

12 0S =  and have a step of 0.1 (same as in the 

Matlab representation from previous chapters). The lower diagram shows the fractions of 

stress points, which have the absolute difference between the simulated surface and fitted 

yield surface in a certain interval. 
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Figure 40. Fitted yield surface for the non-textured sample and the absolute error 

distribution. Max error is 0.80%, average 0.22% 
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Figure 41. Fitted yield surface for Copper texture and the absolute error distribution. Max 

error 9.7%, average 0.70%. 
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Figure 42. Fitted yield surface for Brass texture and the absolute error distribution. Max 

error 4.9%, average 0.59%. 
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Figure 43. Fitted yield surface for S texture and the absolute error distribution. Max error 

3.1%, average 0.50%. 
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Figure 44. Fitted yield surface for Cube texture and the absolute error distribution. Max 

error 7.0%, average 0.99%. 



  

60 

 

 
Figure 45. Fitted yield surface for Goss texture and the absolute error distribution. Max 

error 5.2%, average 0.97%. 
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6. Influence of grain morphology of the polycrystal 
on its plastic behaviour. 
 

6.1 Introducing morphology into FEM analysis. 

 

The goal of this work is to research the influence of the microstructure of aluminium on its 

plastic behaviour. One side of the microstructure – crystallographic texture – was shown to 

have a distinct influence. The other important side of the microstructure is the morphology of 

the grains or their shape, size and distribution in the polycrystal. The morphology was not 

considered at all in the analysis in chapters 3 and 4. The grains of different shapes and size 

interact through their grain boundaries and it leads to a complex distribution of the stresses in 

them. Nevertheless we modelled the material as a continuum, albeit with a texture. 

Some studies (e.g. [9]) shows that the grain morphology has some influence on the 

properties of the polycrystals, though only a small number of grains was considered. The 

stresses and the strains inside the grains are heterogeneous. The stress redistribution on the 

grain level may lead to a “softer” response of the sample, in comparison to the Taylor 

approach (the models which account for the stress heterogeneity on the grain level are 

sometimes called “relaxed”). 

 
Figure 46. Strain field in a sample consisting of two grains with different orientations [9]. 

 

The study of this area has a limitation. These interactions together with the non-linear 

plastic behaviour usually result in a very big amount of the necessary calculations, which 

means the computational time. So a balance must be found, so that the morphology is 

described in enough detail and with enough precision, but the number of the elements must 

remain reasonably low. 

A way to find this balance is to use the periodic RVE, described in the previous chapter. In 

case of the morphology study we apply the same requirements of the translational symmetry 

and compatibility to the grain morphology, as illustrated in Figure 47. 

In this case it is impossible to use one element per RVE as we did in chapter 4. Each grain 

must consist of an appropriate number of the elements, enough to obtain a reasonable 

approximation of the intragranular stresses along with the evolving microstructure and 

texture. 
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To find the influence of morphology we may consider several samples with the similar 

geometry and texture and number of grains, but different grain form. Examples of such 

samples with different morphology are shown in Figure 48. Top left part shows a simplified 

description of grains by using one element for each grain. This representation will be more 

relaxed than a one-element description from the previous chapter. It contains 800 grains-

elements. Dimensions of RVE: 31 1 0.8mm× × . An orientation is assigned to each grain, so that 

400 orientations represent a component with a 5 degree scatter and the other half represents 

the randomly distributed orientations (the same scheme as the one used in the previous 

chapters). The top right part shows a more complex representation – the grains are equiaxial, 

each grain is represented by 8 elements. Total number of grains is 800 (so the number of 

elements increases to 6400). Dimensions of RVE: 31 1 0.8mm× × . An orientation is assigned to 

each grain again with the same scheme. The bottom part shows other grain morphology – the 

grains are elongated along one axis and also consist of 8 elements. 800 grains are used again. 

Dimensions of RVE:  

 

 

 

 
Figure 47. Representative volume element in morphology study [8]. 
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Figure 48. RVEs with different grain morphologies. 

 
38 1 0.8mm× × . The same texturing scheme is used. This type of morphology is characteristic 

to e.g. drawn wires. Rectangular elements are used because of their better stability for FEM 

solution. Other possible geometry which could be considered is arbitrary irregular grain 

shape. But a solution for this type of morphology was not found before deadline, so no results 

can be presented. 

 

6.2 Preliminary results and perspective for further study. 

 

Some simulations of the samples with introduced morphologies were performed. These 

simulations, as already mentioned, take much longer time than the one-element simulations so 

it was impossible to perform all of them before deadline. One element per grain with 

equiaxial grains, 8 elements per grain with equiaxial grains and 1 element per grain with 

elongated grain all of them non-textured were tested. The obtained results show that yield 

surfaces for different morphologies also differ. If we use 1 element-1 grain morphology yield 

surface as a reference, we can see from Figure 49 that 8 elements per grain gives a yield 

surface that is ‘compressed’ along the 11 22S S=  line. But both of them behold symmetry 

relative to this line, because both morphologies are isotropic. The elongated grains 

morphology on the contrary is just orthotropic and its yield surface is distorted and symmetry 

relative to 11 22S S=  line is broken. The difference between the surfaces is not big, but quite 

visible. Another comparison between the yield surfaces for 1 element-1 grain and equiaxial 

grains and the isotropic von Mises yield function surface is shown on Figures 52 and 53. The 

equiaxial case is closer to isotropy. It may be that intragranular stress redistribution leads to 

weakening of anisotropic effects, but it is too early to make firm conclusions basing on just 

one simulation. One more simulations which we had time to perform is of cube texture and 
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elongated grain morphology as compared to 1 element-1 grain morphology. Results are 

shown on Figure 54. The elongated grains caused a ‘rotation’ of yield surface. The effect is 

more pronounced and somewhat different from the non-textured sample (‘rotation’ is more 

pronounced for Cube).  A further study with different textures and morphologies is necessary 

to derive more regularities and tendencies. Figures 49-54 use the same representation the 

yield surface as in chapter 5. 

 

 
Figure 49. Yield surfaces for equiaxial 8 element grain morphology (blue) and equiaxial one 

element-one grain (red).  
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Figure 50. Yield surfaces for elongated grains (black) and 1 element per grain (red).. 
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Figure 51. Yield surfaces for elongated grains (black) and equiaxial 8 element grains (blue). 
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Figure 52. Yield surfaces for 1 element-1 grain (red) compared to von Mises yield surface 

(black). 
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Figure 53. Yield surfaces for equiaxial grains(blue) compared to von Mises yield surface 

(black). 
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Figure 54. Yield surfaces for Cube textured elongated grain morphology (red) compared to 

1 element-1 grain morphology (black). 
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7. Conclusion. 
 

7.1 Obtained results and main observations. 

 

After the literature study about the crystal plasticity theory and some of its models, a plane 

stress aluminium sample with distinct typical textures was numerically modelled in different 

ways and the following results were obtained: 

1. The program based on the Taylor approach, rate-dependent constituent law and Voce 

hardening law with latent hardening was tested on several different textures and showed the 

results that both agree with the previous studies on this subject and can be clearly explained 

by the crystal plasticity theory. It gave us a material model that can be utilized in other 

applications for other purposes. It is not very useful by itself, because it ignores almost every 

other aspect of the sample like the geometry or morphology and boundary conditions are 

more a consequence of manipulations with the isotropic stress. Nevertheless, it allowed us to 

get used to the material model, investigate its properties at different plastic work and for 

different textures. The single crystals, as expected, have polyhedral yield surfaces that depend 

on the rotations of the crystal around its axes. Plastic strains are realized through stress states, 

lying in the vertices of the polyhedron. The total yield surfaces of polycrystals are an average 

of the yield surfaces of all the constituent crystals. As the main texture component is a big set 

of grains with similar orientations, the yield surface of a sample with strong texture is a 

polyhedral yield surface of a grain with this single orientation, smoothened and rounded by 

the randomly distributed rest part of the total texture (or alternatively, it is the smooth 

symmetrical isotropic yield surface, distorted by the component’s polyhedral surface).  

Increasing plastic work leads to gradual activation of all slip systems. The starting yield 

surface for all textures is the same and coincides with the yield surface of a single crystal with 

(0,0,0) orientation. Then the other slip systems activate and after some value of plastic work 

(that corresponds to the strains 1%ε > ) all slip systems are activated, the yield surfaces 

reaches its form, characteristic for the given texture and hardening becomes isotropic.  

2. This material model was introduced into the FEM program LS-DYNA. We started with 

one element mainly to check how the material model implements into LS-DYNA and if the 

assumptions made about the boundary conditions in the previous program are feasible. The 

boundary conditions could be implemented explicitly. The generated yield surfaces showed 

the same behaviour as for the previous program. The method of transforming a stress deviator 

into a plane stress state is found working. So a method of generating the yield surfaces for 

homogeneous polycrystals was tested.  

3. We used the data from the previous simulations and tried to represent the yield surfaces 

as analytical yield functions. For the most part we succeeded – yield functions were found, 

which have a low difference between them and the simulated data. So a method of 

representing anisotropic yield criteria for a polycrystal was tested.  

4. Some simulations on the samples with grain discretisation (morphology) were performed. 

The yield surfaces for the polycrystals with different grain morphologies are different to some 

degree. The influence of grain morphology of the polycrystals on some level was confirmed.  
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7.2 Unresolved questions and problems. 

 

Most part of the work went smoothly with everything logical and explainable, but some 

unresolved problems remained. 

1. The stress points of the single crystal yield surface at high plastic work obtained with LS-

DYNA are distributed around the vertices’ positions, while in the program that uses the 

Taylor model they lie exactly in the vertices. It may be the effect of varying strain rate, as 

explained in chapter 4, but this explanation may be wrong. Some calculations that prove or 

disprove it or some additional simulations which will investigate this aspect could be done.  

2. The analytical functions obtained in chapter 5 seem to represent poorly the region of 

yield surface around the pure shear points (0,0). The yield surfaces for some textures seem to 

be rather flat there. The analytical yield functions tend to be smoothly curved. As explained in 

chapter 5 the MS Excel solver finds local minimum, so a more appropriate solution could be 

found if a good starting point was chosen. But how to find this good starting point is unclear. 

Some attempts were made but without success. If more time was given, may be a good fitting 

surface was found – some results of these attempts indicate it.  

 

7.3 Suggestions for further study. 

 

1. The simulations of samples with different morphologies should be continued. Solution 

for irregular grain form was not found. Other non-random textures should also be tested. It 

may show some tendencies and regularities and allow estimating how big the morphology 

influence is quantitatively, not just qualitatively.  

2. A comparison between the results from the numerical modelling and the real sample test 

data should be performed. Model parameters could be ‘tuned’ better and the divergence 

between the two will indicate where the numerical model has its weaknesses.  
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