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Summary

Biometric systems and fingerprint recognition systems in particular have become very
widespread in the recent years, both in mobile devices and through increased usage in
border controls and electronic national identification systems. One crucial aspect in any
biometric system is that the quality of the data that enters system is of the highest possi-
ble quality to facilitate ease of interaction and a high level of biometric performance. In
particular, the system error rates are sensitive to the quality of the enrolled sample due
to subsequent interactions with the biometric system, results in a comparison being made
against the enrolled sample. If the enrolled sample is of poor quality then the comparisons
are more likely to result in a false non-match.

A performance evaluation taking the moisture content of skin into account and using
modern optical fingerprint sensors revealed that the moisture level in the fingerprint has a
bearing on the biometric performance. Biometric performance is sensitive to the moisture
level of the skin and it was found that the effect is most pronounced on previous generation
of sensors. Newer sensors are constructed in such a way that they are resistant to even
high amounts of water on the sensing surface without compromising the fingerprint image
quality. The dataset resulting from the investigation is made available.

The influence of the fingerprint position on the sensor platen was investigated and
determined to be predictive of the biometric performance. Fingerprints with core points
centered receive higher comparison scores on average than fingerprints with non-centered
core points in genuine trials .

With respect to the predictive performance of quality algorithms, a performance eval-
uation of state of the art algorithms showed that the predictive capabilities varies across
datasets and comparison subsystem. The implementations of the evaluated state of the art
algorithms is made available.

Dactyloscopic examiners assessments of fingerprint quality was investigated and
found to have a bearing on genuine comparison scores, and a method towards a system
which assists examiners in determining evidential value was proposed.

Concerning quality assessment on devices with limited computational resources, a
method based on a clustering using receptive field and random forests was proposed and
found to result in predictive performance comparable to state of the art methods.

An algorithm for discriminating between fingerprint image and images of other bio-
metric modalities based on topological invariants was proposed. Experiments on separat-
ing fingerprint images and iris and face images show that the classification performance is
improved over a state of the art spectral based algorithm.
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Chapter 1

Introduction

1.1 Biometric Sample Quality

The first component of a biometric system is the data capture subsystem, which acquires
biometric characteristics. All subsystems in the biometric system operate and depend on
the successful acquisition of a biometric sample; the acquisition influences all parts of the
biometric system and consequently, it is important to specify requirements for the biomet-
ric sample to ensure that a sufficient amount of information is available to reach a desired
recognition performance. In the biometric terminology, these requirements are conveyed
by the concept of biometric sample quality.

Biometric sample quality is a term, which covers any method that is predictive of the
recognition performance for a given biometric sample, i.e. a quality assessment is a formu-
lation of the expected recognition performance.

At the highest level, determining sample quality concerns itself with quantifying mea-
surable structures in the object or the digital representation of the object at hand and re-
lating those measurements to observed biometric performance. Biometric sample quality
is constrained to only being defined for biometric samples, however, the constraint gives
rise to the fundamental question as to how it can be recognized that the presented object
is a representation of a biometric characteristic and further, at which point the level of in-
formation is sufficient to assert that the object is a biometric sample or a non-biometric
object.

Given a biometric sample, either presumed or asserted, it is necessary to determine to
which degree the sample is suitable for comparisons with other biometric samples, e.g.
in order to avoid storing a sample which has a high likelihood of being rejected when
compared with its mate.

A sample, which is suited for biometric comparison, might be used to form a biometric
reference attributed to the biometric data subject, however, when a sample is determined
to be unsuited for biometric comparison it is crucial to assess which, if any, of the fac-
tors contributing to the unsuitability of the sample are temporary or permanent. Tempo-
rary factors, such as non-conformant interaction with the biometric data capture subsys-
tem, might be correctable by performing a biometric presentation when conformance has
been ensured, whereas permanent factors are those which cannot be changed or corrected
through additional subsequent captures, e.g. a severely deteriorated fingerprint. Ideally,
when a temporary and correctable factor is deemed to be the cause of the sample being
unsuitable, the biometric system should inform the subject about why the sample was un-
suitable such that a correction may take place. For permanent factors the possibilities are
limited to accepting the unsuited sample as is or to initiate a procedure exterior to the
biometric system that manages instances where a sample cannot be acquired. However,
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1. INTRODUCTION

factors which are of temporary or permanent nature might result in a Failure to Enroll
(FTE), and thus render the biometric system ineffective for the subject.

In all cases different factors influence biometric performance in different ways, and it
is the requirements with respect to the recognition performance that dictate the acceptable
level of expected loss in recognition performance and the procedures that need to be in
place to handle factors which cannot be corrected within the biometric system.

Readers unfamiliar with biometric sample quality and fingerprints are encouraged to
review chapter 2 to develop further context in the reading of the rest of this dissertation.

1.2 Research Objectives

The main objective of this dissertation is to identify factors which are predictive of ex-
pected biometric sample recognition performance in biometric mated comparison trials of
fingerprint recognition systems. Towards this objective, a number of sub-goals arise and
are made concrete in the form of research questions presented in section 1.3. The research
is to determine a method which asserts whether an object is resembling a fingerprint; ex-
plicit or implicit fingerprint image covariates predictive of biometric performance shall be
identified; given a set of image covariates predictive of biometric performance, it shall be
ascertained how to combine the covariates to produce a robust classifier for quality assess-
ment; it shall be established to which degree there exists a relationship between subjective
and objective quality assessments.

1.3 Research Questions

From the research objectives outlined in section 1.2 a number of research questions forming
the main areas of contribution of this dissertation have been formulated as listed below:

RQ1 Can it be determined whether a presented object is a fingerprint biometric char-
acteristic?

RQ2 Which measurable fingerprint structures are predictive of biometric performance
for fingerprints?

RQ3 Can a computationally efficient quality algorithm be defined?

RQ4 Which environmental factors influence the recognition performance?

RQ5 Are automatic assessments of quality related to human expert assessments of
quality?

1.4 Publications

The following publications are part of this dissertation:

[1] M. Olsen, H. Xu, and C. Busch. “Gabor filters as candidate quality measure for NFIQ
2.0”. In: Biometrics (ICB), 2012 5th IAPR International Conference on. 2012, pp. 158–163.
DOI: 10.1109/ICB.2012.6199802
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[2] A. Aabrandt, M. Olsen, and C. Busch. “A topology based approach to categorization
of fingerprint images”. In: Biometrics Special Interest Group (BIOSIG), 2012 BIOSIG -
Proceedings of the International Conference of the. 2012, pp. 1–11

[3] M. A. Olsen, E. Tabassi, A. Makarov, and C. Busch. “Self-Organizing Maps for Fin-
gerprint Image Quality Assessment”. In: Proceedings of the 2013 IEEE Conference on
Computer Vision and Pattern Recognition Workshops. CVPRW ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 138–145. ISBN: 978-0-7695-4990-3. DOI: 10.
1109/CVPRW.2013.28. URL: http://dx.doi.org/10.1109/CVPRW.2013.28

[4] I. Danov, M. A. Olsen, and C. Busch. Interpretation of fingerprint image quality features
extracted by self-organizing maps. 2014. DOI: 10.1117/12.2050676. URL: http:
//dx.doi.org/10.1117/12.2050676

[5] J. Wang, M. A. Olsen, and C. Busch. Finger image quality based on singular point local-
ization. 2014. DOI: 10.1117/12.2050145. URL: http://dx.doi.org/10.
1117/12.2050145

[6] M. Dusio, M. A. Olsen, and C. Busch. “Fingerprint Sample Quality Assessment via
Ridge Line Count Using Laplacian of Gaussian Edge Finding”. In: The 2nd Interna-
tional Workshop on Biometrics and Forensics (IWBF). 2014

[7] M. A. Olsen, M. Dusio, and C. Busch. “Fingerprint Skin Moisture Impact on Biomet-
ric Performance”. In: International Workshop on Biometrics and Forensics 2015. 2015

[8] M. A. Olsen, V. Šmida, and C. Busch. “Finger image quality assessment features –
definitions and evaluation”. English. In: IET Biometrics (2015). ISSN: 2047-4938. URL:
http://digital-library.theiet.org/content/journals/10.1049/
iet-bmt.2014.0055

[9] M. A. Olsen, M. Böckeler, and C. Busch. “Predicting Dactyloscopic Examiner Finger-
print Image Quality Assessments”. In: BIOSIG (2015)

Each publication and its associated research questions are listed in table 1.1 along with
the chapter wherein the publication can be located in this work. A compact description of
the main contributions of each publication with respect to the research questions from sec-
tion 1.3 is located in chapter 3.

Other publications by the author which are not part of this dissertation are the follow-
ing:

[10] M. A. Olsen, D. Hartung, C. Busch, and R. Larsen. “Contrast Enhancement and
Metrics for Biometric Vein Pattern Recognition”. In: Advanced Intelligent Computing
Theories and Applications. Ed. by D.-S. Huang, M. McGinnity, L. Heutte, and X.-P.
Zhang. Vol. 93. Communications in Computer and Information Science. Springer
Berlin Heidelberg, 2010, pp. 425–434. ISBN: 978-3-642-14831-6. DOI: 10.1007/978-
3-642-14831-6_56

[11] M. A. Olsen, D. Hartung, C. Busch, and R. Larsen. “Convolution Approach for
Feature Detection in Topological Skeletons Obtained from Vascular Patterns”. In:
IEEE Symposium Series in Computational Intelligence 2011 (SSCI 2011). Paris, France,
Apr. 2011
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Citation Research Questions Chapter

[1] RQ2 10 (p. 133)
[2] RQ1 5 (p. 59)
[3] RQ2,RQ3 7 (p. 87)
[4] RQ2,RQ3 8 (p. 103)
[5] RQ2 6 (p. 69)
[6] RQ2,RQ3 11 (p. 145)
[7] RQ4 9 (p. 123)
[8] RQ2 4 (p. 23)
[9] RQ5 12 (p. 155)

Table 1.1: Publications and associated chapter and research question.

[12] M. A. Olsen and C. Busch. “Deficiencies in NIST Fingerprint Image Quality Algo-
rithm”. In: 12. Deutscher IT-Sicherheitskongress. Vol. 1. 2011, pp. 251–262

[13] D. Hartung, M. A. Olsen, H. Xu, and C. Busch. “Spectral Minutiae for Vein Pattern
Recognition”. In: Proceedings IEEE International Joint Conference on Biometrics (IJCB
2011), October 11-13. 2011

[14] D. Hartung, M. A. Olsen, H. Xu, H. Thanh Nguyen, and C. Busch. “Comprehensive
analysis of spectral minutiae for vein pattern recognition”. In: Biometrics, IET 1.1
(2012), pp. 25–36. ISSN: 2047-4938. DOI: 10.1049/iet-bmt.2011.0013

[15] G. Li, B. Yang, M. Olsen, and C. Busch. “Quality Assessment for Fingerprints Col-
lected by Smartphone Cameras”. In: Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2013 IEEE Conference on. 2013, pp. 146–153. DOI: 10.1109/CVPRW.
2013.29

[16] C. Gottschlich, A. Mikaelyan, M. Aastrup Olsen, B. Josef, and C. Busch. “Improv-
ing Fingerprint Alteration Detection”. In: The 13th IEEE International Symposium on
Parallel and Distributed Processing with Applications (IEEE ISPA-15) (2015)

1.5 Structure of the Dissertation

The dissertation is divided into 2 parts: Overview part I which provides an overview and
introduction to the topic, the scope of the dissertation, and summary of main contributions;
Publications part II contains a preprint of each refereed publication forming the research
aspect of this dissertation.
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Chapter 2

State of the Art

2.1 Introduction

This chapter provides an introductory state of the art overview to fingerprints, methods for
acquiring and comparing fingerprints, and of aspects of fingerprint image quality. Terms
and definitions are as stated in the ISO/IEC International Standard 2382:2012 [17].

2.2 Fingerprint Formation, Persistence and Uniqueness

The formation of fingerprints begins at an early embryonic age where the configuration
of epidermal ridges and minutiae positions are determined by week 10 post fertilization
and once fully formed by month 7, the ridge configurations do not change further [18].
Several hypotheses on the processes which dictate the formation of the ridge configu-
rations constituent of the fingerprint have been developed; Kücken and Newell formu-
lated a buckling model which takes into account the skin elasticity and rate of growth [19].
Garzón-Alvarado and Ramı́rez Martinez hypothesize [20] that the formation is based on
the reaction-diffusion theory of morphogenesis by Turing [21].

Fingerprint recognition is based on two fundamental premises, namely that the finger-
print patterns are unique across sources, and that the pattern of an individual source is
persistent.

The persistence of the fingerprint pattern was observed by Sir William J. Herschel in the
late 1800s [22], and investigated in a larger scale study by the German Federal Office for
Information Security (BSI) funded BioFinger project [23, 24] and later by Yoon and Jain [25],
who found that the genuine comparison scores decrease as the time interval between the
two captures increases and that the uncertainty of the temporal stability of recognition
accuracy increases when either of the samples are of poor quality.

Uniqueness is a property that was attached to fingerprints for a long time without sci-
entific basis. The use of evidence lacking in scientific basis was disputed in a court of law
in the case of Daubert versus Merrell Dow Pharmaceuticals, where the Supreme Court of
the United States ruled a set of criteria which must be followed for expert testimony to
be considered valid [26]. This ruling was applied in a case from 1999, which challenged
the use of forensic evidence based on fingerprints and wherein it was ruled that the fun-
damental premise asserting the uniqueness of fingerprints had not been objectively tested
and that the potential error rates for fingerprint recognition were unknown [27]. This in
turn led to an investigation where 50 000 fingerprints were compared and a probability of
a false match occurring was determined to be in the range of 10−27 to 10−97. The inves-
tigation has been criticized as not providing a reasonable error estimate when taking into
account variable but reasonable size, position and quality [28].
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An extensive theoretical quantification of the uniqueness of fingerprint patterns was
conducted by Pankanti et al. who estimated that when using an Automated Fingerprint
Identification System (AFIS) the probability of a false match between two fingerprints, each
containing 46 minutiae and obtained from different sources, is on the order of 10−77 [29];
reducing the number of minutiae to 12 increases the probability of a false match to an order
of 10−7. Empirical observations show that the probabilities obtained by the theoretical
model are several orders of magnitude lower than achieved on a collected dataset.

Zhu, Dass et al. construct model from a set of mixture models which take into account
the distribution and clustering tendencies and dependencies in different image regions of
the fingerprint as well as the orientation distributions, to provide a probability of a match
between two fingerprints from different sources [30].

Identical twins have the closest genetic relationship and hence any potential genetic
and environmental influence on the fingerprint formation is expected to be maximised in
fingerprints obtained from identical twins. Comparisons performed between fingerprints
obtained from identical twins show that there is a decrease in accuracy (i.e. false matches
are more probable), when compared with comparisons between non-twins [31].

2.3 Fingerprint Sensing

Fingerprint sensing broadly covers any device or method which acquires a fingerprint.
Sensing techniques can be divided into off-line sensing and live-scan.

Off-line sensing is widely known from law enforcement where fingerprints were ac-
quired by smearing the subject’s fingers with ink and rolling the fingers against a paper
card which recorded the impression. However, the most used form of off-line sensing are
those employed in acquisition of latent fingerprints in forensic investigations, e.g. scenes
of crime or disasters. Forensic techniques used in the acquisition process of latent impres-
sions from glass or other surfaces includes powder dusting and iodine fuming, however
acquisition from wet surfaces or human skin require other chemicals and procedures to
develop the fingerprint [32]. Acquisition of fingerprints post-mortem may be required to
determine the identity of the deceased individual, and those cases another set of methods
are available to forensic investigators, such as rehydration of the skin to restore the finger
texture [33, p.4-10]. In either case the acquired biometric sample is transferred to a digital
format such that latent examiners may perform the necessary markup of features and so
comparisons using AFIS are possible. While forensic techniques for post-mortem and latent
acquisitions are continuously being developed, the practice of smearing ink and recording
the impression on papers cards is widely abandoned and replaced by live-scan methods.
However, since the method was used for a number of years, the stored cards of acquisitions
have in many cases been digitized such that they are available for search using AFIS.

Civil applications using fingerprints for recognition are predominantly, if not entirely,
performed using the live-scan sensing method due to user acceptance, convenience, cost
and reliability. An acquisition with a live-scan sensor is performed by the user presenting
the finger to the device, e.g. by placing the finger on a platen, swiping the finger across
the device or by moving the finger through a volume of air where the device performs
a touch-less acquisition. ISO/IEC IS 19794-4:2011 [34] specifies identifiers for 20 capture
device technologies, with the majority being variations of optical systems, but also capaci-
tive, thermal, ultrasound, electro luminescent devices are represented in the extensive but
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not exhaustive list. Apart from the listed, a few others are notable: Optical Coherence
Tomography (OCT) is a medical imaging technique which achieves micrometer resolution
of the internal structures of the finger tissue and which has successfully been applied to
perform fingerprint recognition [35] and presentation attack detection [36, 37].

2.4 Fingerprint Recognition

Biometric recognition involves comparing two biometric samples (a probe and a reference)
to obtain a comparison score which is used to decide if the probe and reference are from the
same source (a match) or not (a non-match). The comparison is based on representations
of the samples in the form of biometric templates. In the case of fingerprints, a template
typically contains minutiae position and orientation information, while information about
singular point locations, texture information or any other extractable feature may be part
of the template.

Either of two fundamental errors may arise when performing a biometric compari-
son: a false match occurs when a match decision is made on a comparison between two
non-mated samples; and conversely, a false rejection occurs when a non-match decision is
made on a comparison between two mated samples. Recognition errors can in part be ex-
plained by the fact that biometric samples from the same source have inherent variabilities
which are not accounted for in feature extraction systems. The variability means that in
effect no two biometric samples are identical - variations in sensor noise, minute changes
occurring to the tissue over time, and changes in the environment where the acquisition is
performed all contribute to this. Recognition is feasible due to the selected features used
for recognition possessing an inter-class sample variability much greater than the intra-
class variability.

Current implementations of fingerprint recognition systems predominantly rely on
minutiae information, e.g. National Institute of Standards and Technology (NIST) provides
the NIST Biometric Image Software (NBIS) package which contains a biometric template ex-
tractor (MINDTCT) which uses minutiae information and produces templates and a com-
parison algorithm (BOZORTH3) which compares the produced templates.

Formats for storing fingerprint templates have been specified by International Organ-
isation for Standardization/International Electrotechnical Commission (ISO/IEC) in Inter-
national Standard 19794:4 [34]. The standard prescribes a standardized format for repre-
senting the biometric template and allows for additional proprietary data intended for use
by the comparison subsystem. Another standardization effort is through the American Na-
tional Standards Institute/National Institute of Standards and Technology - Information
Technology Laboratory (ANSI/NIST-ITL) standard [38]. The standard provides a record
type (Type 9) for storing minutiae information based on the feature set defined in Inter-
National Committee for Information Technology Standards (INCITS) 378 standard [39], as
well as proprietary defined feature sets and an extended feature set.
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2.5 Fingerprint Sample Quality

2.5.1 Overview

There is general consensus that sample quality broadly refers to the applicability of a bio-
metric sample in recognition tasks: a sample with high quality is expected to fulfil the
requirements of the target application, i.e. it is not likely to increase system error rates.
With the development of NIST Fingerprint Image Quality (NFIQ) in 2004 an automated,
objective method for establishing the quality of a fingerprint was provided.

A major challenge in achieving high predictive performance of the fingerprint, is the
fact that quality is predominantly computed per sample whereas comparisons are always
made for pairs of samples. In effect, the conclusion of the expected recognition perfor-
mance is made based on incomplete information due to the potential for high intra-class
variability.

Two high quality samples will give high comparison scores, but when one high quality
and one low quality sample is compared it is likely to yield a low comparison score, hence
it is hard to assign high quality and low quality appropriately when it is not known a priori
which sample the comparison will be made with.

The difficulties related to quality being associated with only a single image are ob-
served in face recognition, where two images in Face Recognition Vendor Test 2006 [40]
(FRVT 2006) of the same person receive low similarity score but still receive high similarity
scores with other images of the same person from the same location [41].

2.5.2 Distinguishing and Segmenting Fingerprints

Determining the properties which distinguish a fingerprint from another object is a funda-
mental task associated with general object recognition. This fundamental task is related to
segmentation, which associates individual parts of the whole to one or more parts which
may be present in the object.

Methods using a global threshold have proved to be ineffective in isolating the fin-
gerprint area from the background mainly due to variations in lighting or noise across
the image. Hence most effective methods concern themselves with determining the pres-
ence of an oriented striped pattern, i.e. a simplification of the ridge-valley structure which
makes up the directional field, to locate the foreground.

Numerous methods are based on this fundamental property of the presence of a direc-
tional field as determined by the distinct pattern stemming from the ridge-valley forma-
tion [42]. Segmentation methods based on Gabor filters are further a consequence of the
inherent directional property in the fingerprint and has been proposed as well [43, 44]. A
learning based approach using Support Vector Machine [45] (SVM) was proposed by Bazen
and Gerez [46] and extended by Yin et al. [47]. Several other learning based methods for
segmentation of fingerprints have been proposed since then [48, 49]. A dictionary based
method for quality and segmentation of latent fingerprints was proposed by Cao et al. [50].

One attempt at determining whether an image contains a fingerprint was proposed
by Libert et al. in the NIST developed metric Spectral Image Validation and Verification
(SIVV) which analyses the 1-dimensional power spectrum of the input image using Dis-
crete Fourier Transform (DFT) [51]. Specifically, the method relies on the assumption that
well formed fingerprints exhibit a distinct pair of local minimum and local maximum in
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the spectrum which arise from level 1 ridge flow. The method was later modified to pro-
vide a measure of image quality for latent fingerprint impressions [52].

Yoon and Jain propose a fingerprintness metric using difference between the observed
orientation field of the fingerprint and the orientation field of a fingerprint model [53].

2.5.3 Factors Influencing Fingerprint Sample Quality

Environmental factors play a significant role in the biometric performance for a given bio-
metric system. Studies have shown that fingerprint samples obtained from elderly pop-
ulations result in inferior quality when compared with a younger 18-25 year old popula-
tion [54]. Similar observations have been made between healthcare populations and the
general population [55]. A number of case studies have been produced from data collected
for Unique Identification Authority of India (UIDAI) and the fingerprint image quality of
the parts of the enrolled population have been analysed [56, 57].

The impact of fingerprint force during live scan acquisition was investigated by
Kukula, Elliott et al. [58], and the effect of force during deposition on latent fingerprints
was studied by Fieldhouse [59].

With respect to the fingerprint capture device, the fingerprint recognition performance
in rugged and cold weather conditions for chip and optical sensors was investigated by
Stewart et al. who found that biometric performance did not depend on temperature and
humidity [60]. Interaction with the sensor device is another crucial aspect of successful
acquisition: the influence on biometric performance with varying finger position on the
device was studied by Simon-Zorita et al. who found that significant performance increases
are achievable when the acquisition of reference and probe samples are controlled [61].

The characteristics of the skin, especially the moisture content have been found to have
a strong influence on image quality and biometric performance [62]. Drahansky studied
fingerprint skin diseases, quality and liveness and the effects on fingerprint recognition in
depth in his dissertation [63].

Successful comparison of wet fingerprints has been addressed by Krishnasamy who
also made a dataset of wet and wrinkled fingers available [64]. A classifier-based detection
of subjective labelled wet, dry and normal blocks within a fingerprint image has been
proposed [65].

A correlation between the fingerprint area and the and Equal Error Rate (EER) was
established by Schneider et al. [66], and Cappelli et al. determined in depth the relationships
between sensor area, geometric distortion and biometric performance to determine the
operational quality of fingerprint capture devices [67].

Intra-class variability causing deterioration in biometric performance can arise from
several other factors than the physical sensor. e.g. users unfamiliar with the acquisition
process, or a device which does not facilitate easy and correct user interaction, can result
in acquisitions which are highly variable due the positioning of the finger on the sensor
platen. In some circumstances users might intentionally or unintentionally disrupt the
acquisition process such that a low quality sample is acquired. In a border control scenario
this disruption could for example be due to tiredness, distractions in the surrounding area,
or due to the user being uncooperative and not conforming to the process with the intent
to invoke a false non-match.
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2.5.4 Explicit Objective Quality Assessment

Explicit quality assessment refer to quality assessment algorithms which quantify specific
properties in the fingerprint image, e.g. the ridge sharpness or the number of minutiae.
There exists a wide range of quality algorithms which are based on disparate techniques
each with the objective to measure one or more properties locally or globally.

Some attempts to distinguish classes of quality algorithms have been made; Fron-
thaler et al. briefly discuss that quality assessment methods may be divided into either
of full, reduced, or no-reference approaches, depending on the amount of available prior
information [68]. Prior information refers to particular assumptions and criteria that the
signal shall conform to, this could for example be that the dominant frequency in a Fourier
spectrum of the fingerprint image lies in a specific band which conforms to the empirically
observed ridge-valley frequencies in a given population. One may also partition quality
algorithms according to the fashion in which they operate: Alonso-Fernandez et al. de-
scribed a possible taxonomy for quality algorithms which divide the algorithms into those
which are based on local features, such as local Gabor filter responses or pixel intensities;
those that are based on global features, such as the standard deviation of the image gray
scale values, or magnitude of a frequency band in the computed Fourier spectrum; and
finally those which are based on classifiers, i.e. combine multiple local and global features
using for example neural networks to produce a quality value [69]. These categories are
useful in the describing the behaviour of a given quality algorithm, however, ultimately
the defining criteria for an algorithm being a quality algorithm is that it is predictive of
biometric performance [70].

Local quality algorithms are most common in the literature, in part due to the fact that
the quality of the fingerprint may vary in different regions and that the majority of cur-
rent comparison systems following International Organization for Standardization (ISO)
standards rely on minutiae information. Many algorithms rely on orientation information,
such as the orientation certainty level [71] which quantifies the strength of the local gra-
dient and orientation flow [72] which determines the coherence of dominant gradients in
neighbouring blocks. Another approach to determine the local structure is to apply Prin-
cipal Component Analysis (PCA) to fingerprint blocks [73]. Algorithms can rely on the
structure of the ridges, such as the ridge valley uniformity [71], or the local ridge clar-
ity [72], or the magnitude of ridge frequency in a particular band [74].

The Gabor filter has been applied as a contextual filter which enhances particular as-
pects of ridge frequency and orientation. A Gabor based quality feature which operates in
a local region and evaluated on subjective reference data has been proposed [43, 75].

Orientation tensors have been shown to be promising as a quality feature and has sim-
ilar distribution of quality values as that of human quality assessments [68]. Using De-
launay triangulation of minutiae as a quality through estimating the usable fingerprint
area appears as an alternative to estimate the quality when only the minutiae template is
available [76].

A local quality algorithm can be made global by use of a summary statistic of the lo-
cally computed quality values. For example, an algorithm which determines local filter
responses to produce a map of responses can be summarized using the standard deviation
of the responses or produce a ratio based on a threshold.

Local quality values can be combined or aggregated by a variety of methods. A clas-
sifier based on linear regression using local Gabor filter responses and additional infor-
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mation on foreground area and the number of minutiae in the fingerprint was evaluated
in terms of reduction in equal error rate and found to be predictive of biometric perfor-
mance [77]. NFIQ applied a non-linear classifier and utilized a neural network trained on
11 features based on orientation, minutiae to distinguish fingerprints into one of 5 quality
categories [78, 79]. NFIQ is widely used in practical applications since 2004 and devel-
opment of a replacement know as NIST Fingerprint Image Quality 2 (NFIQ 2) is under
way [80–82].

Since NFIQ, a number of proposals for classifier based quality assessment algorithms
have been developed. Local ridge orientation certainty, uniformity and frequency analysis
were used as features in three types of classifier: ı̈ve Bayes, Self-Organizing Map (SOM)
and Radial Basis Function Neural Network (RBFNN) to classify subjectively labelled image
blocks [83]. The tested classifier achieves good performance on identifying blocks subjec-
tively labelled with a quality value. Another SVM based classifier was trained to output
one of three quality levels by using image mean and variance, foreground area, coherence
and power spectrum [84]. This system was trained on subjective quality labels. Similarly,
a hierarchical K-means classifier using ridge distance, orientation certainty and ridge con-
sistency as features was proposed [85]. A fusion of no reference quality metrics using a
genetic algorithm was proposed [86]. Other methods for fusing multiple quality features
include using only texture based features [87], or combining no reference features with
texture and minutiae-based features [88].

Comparison of quality algorithms when applied to samples captured by different cap-
ture technologies and using minutiae-based and texture-based comparison systems [89–
91]. Here, the effectiveness of rejecting samples based on quality assessments was found
to vary depending on the capture technology used, and quality assessments exhibited a
lower discrimination capability for high-quality images over low quality images. Due to
the differing behaviour of sensors and comparison systems, an interoperability problem
arises where performance is degraded. One proposal to address this problem incorporates
sample quality information as a means to perform conditional processing and increase
the biometric performance of the overall system [92]. Assessment of quality algorithms
and biometric performance by controlled deterioration of fingerprint images underlines
the difficulty in a single quality algorithm suited for differing sensor and comparison sys-
tems [93]. However, a proposal towards a general biometric sample quality algorithm
using SVM with features from Scale-invariant Feature Transform (SIFT) and image quality
was tested on face, fingerprints and hand veins and shows that there is a possibility that
a general approach to multi modal quality algorithms is feasible [94] A comprehensive re-
view of quality algorithms for fingerprint, iris and face was made by Bharadwaj et al. [95,
96] and a comparative assessment study of fingerprint sample quality in minutiae based
systems by Alonso-Fernandez et al. [97] and by Jin et al. [98].

A framework for quality assessment algorithms and specifications of algorithms for
several modalities are undergoing a standardisation process primarily through ISO/IEC
standards series 29794 on biometric sample quality [70, 99, 100].

2.5.5 Applications of Sample Quality

Quality assessments have a variety of applications, e.g. adaptive image quality based cap-
turing of fingerprints [101], and liveness and presentation attack detection [102, 103]. An
extensive review of quality based presentation attack detection for iris, fingerprint and
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face modalities is available [104]. The application of biometric sample quality has been
studied in context of multi-modal authentication systems based on fingerprints and sig-
natures [105]. Alonso-Fernandez et al. found that comparison score normalization based
on quality improves EER in the biometric system [106]. With the increased usage of smart
phones, one algorithm for assessment for images captured using the phone camera has
been proposed [15].

Several attempts on performing comparison score fusion based on quality have been
proposed, e.g. an adaptive approach by Fierrez et al. [107] and a unified framework for
the multi modal case by Poh and Kittler [108]. An adaptive context switching framework
using quality assessment to determine the appropriate fusion algorithm and comparison
subsystem was proposed by Bharadwaj et al. [109].

In the forensic domain it is acknowledged that fingerprint examiners are subjective
in their evaluation of the evidential value for a given fingermark. As inter- and intra-
examiner evaluations of the fingermark varies, there is a need for objective methods to
assist examiners in the evaluation. Pulsifer et al. proposed one algorithm to perform an
objective quality assessment of fingermarks [110]. Similarly, the Latent Fingerprint Image
Quality (LFIQ) algorithm was developed by Yoon et al. [111].

An assessment of methods for performance evaluation of quality features in biometric
systems was performed by Grother and Tabassi, who proposed Error-Reject Curve (ERC)
as a means to evaluate quality algorithm behaviour [112]. The outcome of evaluations
based on fixed datasets are likely to have some influence from the dataset itself as differing
datasets have different characteristics which can stem from a variety of sources such as
sensors used, environmental influences and the population present in the dataset. An
estimate of the level of difficulty of a dataset for comparison evaluations can be given by
determining the area of overlap and relative distortion between samples [113].

2.6 Context and Application of Fingerprint Sample Quality

The rapid expansion in the use of fingerprint recognition and the increasingly large finger-
print databases created a need for AFIS which serves to aid dactyloscopic experts in finding
potential matches in fingerprint databases. Modern fingerprint recognition systems have
reached a very high level of biometric performance and have seen widespread use out-
side of forensic applications in areas as diverse as consumer electronics, time attendance
systems, border control and national identification systems.

A central challenge in fingerprint recognition is to maintain a high level of biometric
performance in varying environments and for all population groups in biometric systems
which cover entire populations. The challenge exists in part due to currently deployed
sensing technologies which are primarily focused on capturing the outer fingerprint, and
thus susceptible to natural changes of the skin surface due to manual labor surface contam-
inations. These changes lead to a degradation of biometric performance due to a reduction
of the number of features which can be extracted and due to an increased uncertainty of
the features that are extracted to form the biometric template. Excessive scarring of the
fingerprint results in a number of spurious minutiae along the edge of the scar and poses
challenges for ridge flow orientation detection, and extensive manual labor may further
result in partial or complete deterioation of the outer ridge structure making conventional
feature extraction difficult or infeasible.
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One example of a large scale biometric system using fingerprints and which encoun-
ters challenging conditions is the Aadhaar project in India. It provides an identification
number and enables the identification of any resident in India based on fingerprint, iris
and face modalities in addition to demographic information [114]. Residents across the
country, from rural regions to populated city centers, are enrolled in Aadhaar as a means
to prove their identity when accessing government- and private services which require
unique identification of individuals. Enrolment at such a scale requires a distributed ap-
proach and the enrolment stations have been outsourced to private companies which enrol
local residents. Performing quality assessments of the acquired samples allows for the re-
placement of a local enrolment supplier if it does not fulfil a specified requirement on the
capture quality. Following the enrolment, the resident may determine which of their fin-
gers are best suited for the identification process based in part on measured quality and
recognition performance.

European Dactyloscopy (EURODAC) is a European Union-wide electronic system for
the identification of asylum seekers and is the first common AFIS within the European
Union (EU) [115]. EURODAC was a result of the Dublin Regulation [116] which came into
effect in 2003 and covers all EU member states and Iceland, Norway, and Switzerland. A
similar large scale system, United States Visitor and Immigrant Status Indicator Technol-
ogy (US-VISIT), is in place in the United States of America. The Schengen Information
System (SIS) is a large database supporting member state police and enabling judicial co-
operation and management of e.g. external border control, missing persons or vehicles.
The extension of SIS, Second generation Schengen Information System (SIS II) [117] en-
tered operation in 2013 and includes biometric data in the form of fingerprints [118]. In
order to ensure a well functioning information system, national police authorities must ad-
here to a certain quality level as specified by EC Regulation 1987/2006 Article 22(a) when
submitting biometric samples [119].

The EURODAC system is in place as a central database for storing fingerprints of visa
applicants with the stated purpose of preventing a rejected individual from indefinitely
seeking asylum in other countries until accepted. The individual is rejected if the biomet-
ric sample provided by the individual matches with a biometric template already regis-
tered in the database. Consequently, an individual could supply a low quality sample on
purpose in order to minimize their chance of detection and thus apply for a visa multi-
ple times. Through the successful detection of low quality samples, it can be determined
whether the supplied sample is of a sufficient standard for recognition purposes and pre-
vent an individual from subverting the system through submission of low quality samples.
This scenario is substantiated by the findings of Wilson et al. [120] and Tabassi et al. [78]
who established that there is a strong correlation between fingerprint image quality and
biometric performance.
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Chapter 3

Contributions and Conclusions

3.1 Contributions

The research questions formulated in section 1.3 form the basis for the research docu-
mented in this dissertation. Each publication contained within this dissertation is made
with these questions in mind, and each publication contributes towards answering one or
more of the questions. The list below contains each of the research questions with a concise
description of the contributions made in this dissertation.

RQ1 Can it be determined whether a presented object is a fingerprint biometric char-
acteristic?

◦ A method for determining whether a presented object is a fingerprint was proposed
and the evaluation shows that the method outperforms the NIST provided SIVV al-
gorithm in distinguishing fingerprints from iris images. Existing approaches to de-
termining whether an object is a fingerprint predominantly rely on analysis of the
ridge frequency or the orientation properties of the ridge valley pattern, whereas
the proposed method is performing the classification based on persistent properties
in the form of Betti numbers found in the algebraic topology. The proposed method
achieves an equal error rate between 0.2% and 2.7% on mixed iris and fingerprint
datasets, where SIVV achieves between 6.2% and 12.9%, and further the perfor-
mance of the proposed approach appears invariant towards the choice of database
used as training set. This contribution has been presented in [2](see chapter 5).

RQ2 Which measurable fingerprint structures are predictive of biometric performance
for fingerprints?

◦ A Gabor filter based method for quality assessment was proposed and objectively
evaluated using biometric performance as the evaluation criteria. Existing Gabor
filter based approaches have been evaluated against subjective quality assessments,
where as the proposed method was evaluated using biometric performance as the
criteria. The proposed approach differs from existing Gabor filter based methods
by operating on a per-pixel basis. This contribution has been presented in [1](see
chapter 10).

◦ A quality assessment algorithm based on ridge line counts was proposed and eval-
uated using biometric performance as the criteria using ERC. This contribution has
been presented in [6](see chapter 11).

◦ An extensive evaluation of existing quality features from the literature was per-
formed using ERC as the main evaluation criteria. The evaluated methods have
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been made available for the research community as a Matlab based quality compu-
tation framework [121]. This contribution has been presented in [8](see chapter 4).

◦ A quality algorithm based on the location of the singular points in the fingerprint
was proposed and evaluated. The location of the singular points are predictive of
the biometric performance. This contribution is presented in [5](see chapter 6).

◦ A quality algorithm based on unsupervised clustering and supervised learning has
been proposed. The approach is one step towards automatic learned computation-
ally efficient quality features suitable for embedded devices. This contribution is
presented in [3](see chapter 7) and [4](see chapter 8).

RQ3 Can a computationally efficient quality algorithm be defined?

◦ A novel and computationally efficient method for quality assessment using a
Lookup Table (LUT) in the form of a SOM and an ensemble of decision trees via
Random Forests was proposed and evaluated. The proposed method sets itself
apart from other quality assessment algorithms by learning which features are dis-
tinctive in fingerprints and then learning an interpretation of those features with re-
spect to biometric performance. The evaluation shows the predictive performance
to be similar to that of orientation certainty level as specified in ISO/IEC Technical
Report 29794-4 [99]. This contribution was presented in [3](see chapter 7).

◦ A continuation of the research on the SOM based approach was conducted and eval-
uated. The comparative study involved experiments highlighting the influence of
the chosen size of the SOM. The study provided results of further experiments on
the choice of method for learning the relation between constituent parts of the fin-
gerprint and biometric performance which validate the choice of Random Forest.
This contribution was presented in [4](see chapter 8).

◦ A fast method for quality assessment based on ridge-line count determined
by zero-crossings of the Laplacian of Gaussian (LOG) filtered fingerprint image
was proposed and evaluated in terms of ERC. This contribution was presented
in [6](see chapter 11).

RQ4 Which environmental factors influence the recognition performance?

◦ An extensive dataset was collected under four controlled conditions with respect to
fingerprint skin moisture levels using five different commercially available optical
sensors and evaluated with respect to biometric performance for each sensor using
three commercially available comparison systems. The dataset is made available to
researchers via da/sec website [122].

◦ The main findings show that the fingerprint moisture level is correlated with bio-
metric performance and that current generation (2011 - 2015) sensors can achieve
high biometric performance levels for a wide range of moisture levels including
soaking wet. The findings confirm the findings by Blomeke et al. [62] and extend
them with further analysis on specific sensor characteristics. This contribution was
presented in [7](see chapter 9).

RQ5 Are automatic assessments of quality related to human expert assessments of
quality?
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◦ The subjective fingerprint quality of a set of fingerprint images was determined
by a group of dactyloscopic examiners and found to be indicative of the genuine
comparison score.

◦ Using quality features specified in the literature it was shown that expert assess-
ments are to some extent predictable and thus there is a potential for automated
methods to assist human experts in determining which fingerprints are suited for
processing in the Analysis, Comparison, Evaluation and Verification (ACE-V) pro-
cess. These contributions were presented in [9](see chapter 12).

3.2 Conclusions

Automated fingerprint quality assessment continues to be an important part of present
and future biometric systems due to its proven predictive capabilities as illustrated herein.

A set of algorithms which measure fingerprint structures inferred from local ridge
flows were determined to be predictive of biometric performance. Further, a subset of
these were found to be computational efficient. Computationally efficient methods for de-
termining fingerprint quality is particularly useful in capture devices which must decide
when to trigger a capture.

Recent developments in hardware construction and fingerprint sensors have reduced
the influence of environmental factors such as wet dry fingerprints, however the detection
and communication to the user on unintended interactions with the sensor continues to be
an open and important problem to be solved. The issue is partly a usability issue where
some interaction can be directed through proper ergonomics in the device, however in
instances where it is detected that the user interacts in a unintended way, such as not
centering the finger on the sensor, it is crucial to provide actionable feedback which can aid
the user in interacting with the system in the intended way. This is particularly important
as biometric systems in high throughput areas such as in airports are attended only by
minimal staff.

Similarly, forensics have seen increased automation with the large presence of AFIS and
tools to assist dactyloscopic examiners in identification tasks. The increasing automation
is still dependent on sufficient quality levels of the data, and an understanding of the in-
fluence that particular image defects may have on the confidence in identification. One
further step in this direction is a quality assessment system which assists dactyloscopic ex-
aminers in determining evidential value of the respective fingermarks. Understanding of
the forensic process and the relation between subjective and objective quality assessments
is crucial in producing such automation.

While evaluation of quality features has for the past decade been done with respect
to biometric performance, there remains a tendency towards defining quality features in
the light of our own subjective understanding and perception of what fingerprint quality
means. This is in part attributable to how the comparison and feature extraction subsys-
tem work. There is a largely unexplored area where comparison system sensitivities are
discovered by learned approaches such as the SOM and Random Forest based approach
proposed here.

Towards new definitions of quality, there is a need for a further understanding and
formulation of the characteristics that define an object as being a fingerprint. While one
approach has been proposed herein, this fundamental task remains open. Inherent topo-
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3. CONTRIBUTIONS AND CONCLUSIONS

logical differences were found between fingerprints and non-fingerprint images. These
differences contribute to further understanding of the fingerprint as an object and has ap-
plications in enabling proper detection of incorrect placement on sensor device, and auto-
matic verification of the presence of fingerprints encapsulated in transferred data formats.

As new sensors enter the market place which enable subsurface and volumetric sensing
of the fingerprint, new quality assessment methods must be researched to accommodate
the increased dimensionality of the input data as well as to accommodate the new feature
extraction and comparison algorithms that naturally follow such development. This poses
new problems with respect to computational efficiency which remain of high importance
in both civil applications such as integrated devices on mobile phones, and devices at
border controls in airports where throughput is of utmost importance.

Given the closed nature of commercial systems the sensitivity towards different im-
age properties change among different vendors, especially when considering the usage
of non-standardized biometric templates. These system differences are particularly chal-
lenging for the interpretation of the values provided by quality assessment algorithms. A
learned approach, which maps a set of distinct quality values associated with a particu-
lar fingerprint image with its observed performance across multiple systems can to some
extent alleviate the system specific sensitivities. A learned approach further opens up for
an adaptive system which takes these sensitivities into account when determining quality
values.
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Chapter 4

Finger Image Quality Assessment Features –
Definitions and Evaluation

Information about the paper

The predictive capability of quality algorithms vary depending on the
dataset and comparison algorithm used for the evaluation. Here we define
algorithms as specified in the literature and evaluate them in terms of Error-
Reject Curve (ERC) and inter algorithm correlations while providing refer-
ence implementations. The paper is a contribution towards research ques-
tionRQ2. This original paper was published in: [8] M. A. Olsen, V. Šmida,
and C. Busch. “Finger image quality assessment features – definitions and
evaluation”. English. In: IET Biometrics (2015). ISSN: 2047-4938. URL: http:
//digital-library.theiet.org/content/journals/10.1049/
iet-bmt.2014.0055.
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4. FINGER IMAGE QUALITY ASSESSMENT FEATURES – DEFINITIONS AND EVALUATION

Abstract

Finger image quality assessment is a crucial part of any system where a high biometric
performance and user satisfaction is desired. Several algorithms measuring selected
aspects of finger image quality have been proposed in the literature, yet only few of
them have found their way into quality assessment algorithms used in practice. We
provide comprehensive algorithm descriptions and make available implementations
of adaptations of 10 quality assessment algorithms from the literature which oper-
ate at the local or global image level. We evaluate the performance on four datasets
in terms of the capability in determining samples causing false non-matches and by
their Spearman correlation with sample utility. Our evaluation shows that both the
capability in rejecting samples causing false non-matches and the correlation between
features varies depending on the dataset.

4.1 Introduction

In large scale Automated Fingerprint Identification System (AFIS), there will be a fraction
of individuals who are unable to interact with the biometric sensor in the intended way
and there will be a certain fraction of individuals who will try to avoid detection. In both
cases, quality control in the signal processing subsystem of the biometric system must give
an actionable response to the interacting individual or a supervising individual such that
errors are addressed immediately.

At the border controls of Japan and the United States of America, an individual may
be rejected entry if the biometric probe sample captured from the individual matches with
a biometric reference already registered in a database, or a watch-list. Consequently, for
negative biometric claims a situation can arise where an individual supplies a low quality
probe sample on purpose, with the aim of minimizing the risk of detection. Thus, without
a method of determining whether the quality of the captured probe sample is reaching a
sufficient level for recognition purposes, an individual can subvert the system. The sce-
nario is substantiated by the findings in [78, 107, 120], where it is established that there is
a strong correlation between fingerprint image quality and biometric performance. Deter-
mining the quality of a fingerprint finds use in other scenarios such as immigration where
an individual can apply for a visa at the embassy or consulate for a given country. In order
to verify that the identity of the individual at the border control is indeed the same as the
one who received the visa at the country’s consulate, a fingerprint capture is performed at
the time of the application. Thus the subject is enroled in the biometric system and can be
identified at a subsequent border crossing.

In Europe such a system for the exchange of visa data is being implemented for the
Schengen area and is known as the Visa Information System (VIS). Its stated purpose
is to facilitate the visa application procedure, the fight against fraud and the prevention
of visa shopping. Thus the new system shall contribute to the prevention of threats to
European countries’ internal security. The Council of the European Union (EU) decided
to establish the VIS on 8 June 2004 [123] and the European Commission (EC) determined
on 30 November 2009 that the VIS should be implemented progressively starting with visa
applications first from North Africa, second the Near East and third the Gulf Region [124].

24



4.1 INTRODUCTION

The VIS has a centralized structure with a central information system, the Central Visa
Information System (CS-VIS) and the National Interfaces Visa Information System (NI-VIS).
Alphanumeric data as well as biometric data, in particular fingerprints and photographs,
is stored in the CS-VIS which can be queried through the NI-VIS by authorized staff of the
visa authorities in member states. The standard use case for a query is a Schengen border
crossing point, where probe fingerprint images of the traveler are compared against the
reference fingerprint images of the visa applicant. The biometric data entering the VIS has
to pass certain quality requirements on the local and central levels. The EC has provided
member states with a dedicated software kit, known as User Software Kit 4 - Quality Check
(USK4) [125], which is used to validate the quality of all fingerprints prior to being inserted
in the central system. In the period October 2011 until June 2012 results from consular
posts show that around 11 percent of all visa applications containing fingerprint image
failed to meet the local quality assurance [126].

A different approach to biometric border control exists in the United States and is
managed under Department of Homeland Security (DHS). Office of Biometric Identity
Management (OBIM) which replaced United States Visitor and Immigrant Status Indicator
Technology (US-VISIT) in March 2013 is an immigration and border control system used
for registering all non-residents entering or exiting the United States of America. Finger-
prints are an integral part of the system supporting the goal of establishing an identity to
a subject. Having an identity and subject linked allows for checks against watch lists, ver-
ification of existing identity documentation such as passports, and discovery of attempted
fraudulent identification. In addition to the fingerprint, a face mug shot is also recorded
for manual validation purposes.

The cost of a false reject is high in VIS and US-VISIT for the individual, who is apply-
ing for entry or a visa, as he is potentially faced with wasted travel expenses and anguish
over being unrightfully rejected, or the border control will have to employ special second
line procedures to verify the individuals identity claim through other means if at all pos-
sible. On the other side, the authorities may fail to identify an individual who is placed
in a watch list or is a known visa shopper with potential negative economic or human
consequences.

In India, the Unique Identification Authority of India (UIDAI) is managing the Unique
Identification number (UID). 102.5 million UID had been issued by the end of the year 2011
[127] and UIDAI expect 600 million enrolled by 2014 [114]. The goal of the UIDAI is to issue
a UID for all Indian residents and thus enable financial inclusion for particularly the rural
areas. It is estimated that 40 % of Indian citizens in rural areas do not have a bank account
and are thus excluded from large parts of society [128]. The UIDAI has faced the challenge
of including individuals who work extensively with manual labor that usually leads to
worn down and eventually damaged fingerprint patterns of particularly low quality.

For the UID the cost for the individual is high as the success of a bank transaction or
any interaction with government officials is dependent on successfully proving an identity
claim. Because of the risks exposed by falsely rejecting or accepting a biometric claim,
quality control measures must be implemented in any biometric system.

The rest of the paper is organized as follows: section 4.2 discusses biometric sample
quality, section 4.3 contains a detailed overview of finger image quality features with algo-
rithm descriptions, and an evaluation in terms of ERC, correlation and Area Under Curve
(AUC) is found in section 4.4. Concluding remarks are found in section 4.5.
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4.2 Biometric Sample Quality

4.2.1 Components of Sample Quality

The first component of a biometric system is the capture subsystem, which acquires bio-
metric characteristics. All subsystems operate and depend on the successful acquisition
of a biometric sample; hence the acquisition influences all parts of the biometric system.
Consequently, it is important to specify requirements for the biometric sample in order to
ensure that a sufficient amount of information is available. In the biometric terminology,
these requirements are conveyed by the concept of biometric sample quality.

There are different aspects of quality, and one effort to specify those is represented
through the International Standard ISO/IEC 29794-1 where three aspects of quality are
identified [70]:

• Character of a sample is the quality attributable to the inherent features of the source
from which the biometric sample is derived. For example a scarred finger has a poor
character.

• Fidelity of a sample is the quality that describes the degree of similarity between
the biometric sample and its source. A sensor with low spatial resolution typically
results in a low fidelity sample.

• Utility of a sample refers to the predicted impact of an individual sample to the over-
all performance of the biometric system. It is dependent on both the character as well
as the fidelity of the sample.

It is the utility that is of most interest as it is the objective measure for a biometric
sample and directly relates the influence of character and fidelity to expected biometric
performance. As an objective measure it has the advantage that the utility derived is fully
defined by a set of reproducible algorithms and thus it is possible to trace how a particular
sample were assigned a given utility.

For the scope of the definition sample quality assessment features and their evalua-
tion it is essential to correlate the predicted with the observed utility. This relationship is
depicted in fig. 4.1.

Current efforts on standardizing fingerprint image quality algorithms are carried out
by International Organisation for Standardization/International Electrotechnical Commis-
sion (ISO/IEC), subcommittee 37, working group 3. The efforts will result in an update to
29794-4 Biometric sample quality - Part 4: Finger image data

4.2.2 Influence of capture device technology

There exists a diverse set of capture device technologies each with different properties
some of which may negatively or positively affect the recognition error. International
Standard ISO/IEC 19794-4:2011 [34] lists a wide range of different sensor technologies,
and with each technology exists some limitation with regard to sensor surface area and
resolution.

The influence of the capture surface area on recognition accuracy has been addressed
in the literature where it has been found that the Equal Error Rate (EER) increases as the
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Figure 4.1: Quality scores define predicted utility that should correlate with observed utility derived
from comparison scores.

sensor size decreases [23, 66]. The more general problem of recognition errors due to dif-
ferent sensor technology used for probe and reference samples is discussed by Ross and
Jain [129] who found that there is a strong need for sensor independent algorithms, in
particular with regard to matching algorithms.

4.2.3 Influence of user behaviour and skin condition

User interaction with the acquisition device is another source of recognition error, e.g.,
placing only the fingertip or side of the finger on the sensor surface is likely to provide
insufficient information for the comparator, while pressing the finger too hard on the sens-
ing surface causes elastic deformations, which may exceed compensation capabilities of
the feature extraction or matching subsystems. The impact of force on measured image
quality and minutia count is addressed by Kukula et al. [58].

Degradations in measured quality are expected for certain fingerprint skin conditions
[62]. Skin conditions are likely to change due environmental factors such as tempera-
ture and moisture levels, as well as based on users profession (e.g. manual labor or office
work). Moreover it can be observed that specifically in Western cultures there is an in-
creasing number of individuals that suffer from dermatological diseases, that have a direct
temporal or persistent impact on the fingerprint pattern. Examples for such diseases are
atopic eczema, hyperceratotic eczema and thromboangitis. The skin condition for persons
aged 62 and above is generally less moist than that of persons aged 18 to 25 and the former
group generally receives lower quality scores than the latter [54].

4.2.4 Application areas of quality

Quality assessment can provide real-time actionable feedback at the capture level provid-
ing useful information that can lead to recommendations for the re-capture process and
thus eventually to a higher quality of captured finger images and consequently increased
biometric performance over systems not using quality control.

Further quality survey statistics are helpful in system monitoring to assess the per-
formance of individual capture stations or in the evaluation of capture station operators.
Distributed enrolment systems that operate e.g. with public-private partnership can be
supported by incorporating the quality statistics as one of the criteria, when computing
the enrolment fee for the station operator. Measurements over time can also point to sys-
tematic or system wide degradation of capture devices as they age and device components
such as Light Emitting Diode (LED) deteriorate.
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Modern biometric system architectures like the UIDAI operate with multiple biometric
feature extractors and comparison subsystems and apply load balancing between these
background components. With conditional processing of biometric samples of low quality
may be sent to a feature extractor that is particularly robust to low quality but is much
slower than the normal feature extractor.

Full-reference and no-reference image quality assessment algorithms have proven use-
ful in the context of fake biometric detection, i.e. the detection of artefacts used in ac-
tive subversion of a biometric system. An extensive review of the application of this
type of image quality measures to perform such detection is addressed in depth by Gal-
bally et al. [104].

4.2.5 Measuring biometric performance

4.2.5.1 Overview

Aspects of biometric quality must be expressed in an objective manner to ensure that per-
formance can be measured and compared between different systems.

Tabassi et al. [78] proposed with NIST Fingerprint Image Quality (NFIQ) an approach for
objective performance assessment based on a measure of the distance between the genuine
and imposter comparison score distributions for a given sample; well separated distribu-
tions imply that the likelihood of false accept or false reject is low and that it increases with
greater overlap between the distributions. This approach is generalized in ISO/IEC 29794-
1:2009 [70] which requires that the quality score output by a biometric quality assessment
algorithm conveys the predicted utility of the biometric sample. The method suggested
for determining the utility of a sample is similar to the one used in NFIQ, i.e. the utility is
estimated by the distance between the observed distributions of the sample’s comparison
scores.

4.2.5.2 Utility

While no specific method is mandated to derive the utility of a sample Annex A of ISO/IEC
29794-1 [99] suggests that the utility value of a sample may be computed as follows.

Given a set of comparison scores computed using a single comparator the utility of a
sample j from subject i is

utilityui =
mmated
i,u −mnon−mated

i,u

σmated
i,u + σnon−mated

i,u

(4.1)

Where mmated
(i,u) and mnon−mated

(i,u) are respectively the mean of the genuine and imposter
comparison score distribution of sample j from subject i and σmated

(i,u) and σnon−mated
(i,u) is

the standard deviation of respectively the genuine and imposter comparison score distri-
bution. Such a utility value can be computed for each comparator using the comparison
score provided by that comparator. Methods for fusing utility values exists and a more
detailed description of the entire utility computation process can be found in the annex of
ISO/IEC 29794-1:2009 [70].

The Spearman’s rank correlation coefficient is used in this work as a non-parametric
measure of statistical dependence between the quality score and utility.
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4.2.5.3 Error reject curve

Grother and Tabassi [112] introduced the ERC as a method of assessing the predictive per-
formance of a quality algorithm in terms of False Non-Match Rate (FNMR). We adopt the
equations for the one-dimensional case, i.e. where a rejection is driven by the minimum
quality qi of the qualities in a pair of samples. In particular, the combination function H is
chosen as the min function

qi = H
(
q

(1)
i , q

(2)
i

)
= min

(
q

(1)
i , q

(2)
i

)
(4.2)

Using the combination function in eq. (4.2) we form the set R(u) containing the pair-
wise minima less than u

R(u) =
{
j : H

(
q

(1)
j , q

(2)
j

)
< u

}
(4.3)

We then use R(u) to exclude comparison scores starting with the lowest of the pair-
wise minimums up to some fixed threshold t which corresponds to a FNMR of interest,
f . The threshold is obtained using the empirical cumulative distribution function of the
comparison scores.

t = M−1(1− f) (4.4)

FNMR(t, u) =
|{sjj : sjj ≤ t, j /∈ R(u)}|
|{sjj : sjj ≤ ∞}|

(4.5)

The method models the operational case in which samples are rejected due to low qual-
ity. The ERC is determined by progressively excluding a fraction of samples and recalculat-
ing the FNMR as the proportion of non-excluded scores which are below the threshold. For
good algorithms which output quality scores that are monotonically related to the com-
parison score the desirable result is that the FNMR decreases quickly with the fraction of
samples rejected.

To quantify the decrease in FNMR we propose two metrics which consider the AUC of
the ERC with respect to the theoretical best case where the decrease in FNMR equals the
fraction of samples rejected due to quality. The first metric, ηerc

auc eq. (4.6) is expressed as the
AUC of the ERC subtracted the area under theoretical best.

ηerc
auc =

∫ 1

0

ERC− area under theoretical best (4.6)

The second metric ηerc
pauc20 eq. (4.7) is similar to ηerc

auc with the modification that only the
first 20% the ERC is considered.

ηerc
pauc20 =

∫ 0.2

0

ERC− area under theoretical best (4.7)
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4.2.6 Quality in large scale biometric systems

When large biometric systems are analyzed certain properties will become apparent due
to the scale of the operative system. Due to wide availability of solutions and systems pro-
viding a range of possible performance, usability and conformance constellations German
Federal Office for Information Security (BSI) have provided technical guidelines for the
usage of biometrics in the public sector [130].

The influence of fingerprint quality on biometric performance has been studied in de-
tail by Wilson et al. in their 2004 study on recognition accuracy for US-VISIT [120]. The
primary dataset in the study is based on 274 000 right index finger pairs sourced from the
Mexican visa program. They show that a proprietary quality measure from Cogent Sys-
tems (now 3M [131]) with eight quality bins is a good rank statistic with all eight levels
ordered such that the error rate of fingerprints with level 1 is always lower than any other
quality level, and the error rate of quality level 2 is always lower than the next six quality
levels and so on. The same property is demonstrated for the NFIQ, which categorizes fin-
ger images into five quality bins. Due to the open source availability of NFIQ this software
became widely adopted since its release in 2004. More details on NFIQ will be provided in
section section 4.3.2.

On the two comparators tested they show that the performance degrades consistently
with lower quality levels for both the NFIQ and Cogent quality algorithms. An interesting
aspect shown in the study is that at quality levels 1 to 4 the true accept rate is at least 98.2%
at a false accept rate of 1.0% for the comparator used in US-VISIT Automated Biometric
Identification System (IDENT). For quality level 5 to 8 the true accept rate further degrades
from 95.2% to 53.6%. The implication is that half the quality scale is used for finger im-
ages that are highly likely to be correctly matched while much less fidelity is given to the
remaining more problematic finger images.

Finally, it is concluded that finger image quality is the most critical single factor im-
pacting the performance of fingerprint recognition systems. Wilson et al. recommend that
image quality should be the first place to improve if performance of an otherwise rea-
sonably engineered system is poor. One step towards better image quality in biometric
systems is to detect when an image is of insufficient quality such that a new capture can
be obtained (i.e. actionable quality).

The first study on finger image quality in India was performed by Vatsa et al. in a
UIDAI case study analyzing fingerprints of Indian population using image quality [56].
Using NFIQ, three datasets are analyzed with the objective of determining quality aspects
of fingerprints obtained from urban and rural population. In their analysis it is shown
that for the ten-print dataset collected among 20 000 individuals in the rural population,
83 % of the 200 000 finger images result in a NFIQ score of 1 or 2, indicating good or very
good quality. This is unexpected and the authors do show cases where NFIQ has incor-
rectly assessed the quality of two very poor quality images as being quality score 1 and 2,
respectively. This indicates that NFIQ does misclassify finger image quality classes under
some circumstances. Using a much smaller dataset of 1620 images in a prepared dataset
with finger images from 27 urban individuals and 81 rural individuals an identification
accuracy of respectively 90% and 64% was achieved.

It is observed that the finger image quality values reported by NFIQ are highly corre-
lated with comparison scores, which supports the findings by Wilson et al. on quality and
biometric performance being closely related.
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4.3 Review of finger image quality assessment features

4.3.1 Overview

In finger image quality analysis it is important to consider that the finger image can be
viewed at a high level (global finger image quality) and a local level (local finger image
quality). Analyzing the finger image at the global level can provide a fast assessment but
with the tradeoff that local context is neglected. The quality score derived from a global
quality feature does reflect the case where e.g. a part of the fingerprint is blurry or miss-
ing, but it does not provide information about the spatial location of the defect. This is in
contrast to quality features operating on the local level where spatial location is preserved
yielding a more nuanced assessment, and potentially providing important information to
the minutiae extractor in the form of a quality vector representing a quality map of the fin-
ger image. The common approach to compute local level information is to subdivide the
image into blocks as illustrated in fig. 4.2. This figure introduces the block and pixel index-
ing used in the quality feature definitions in sections 4.3.4 and 4.3.5. A taxonomy of finger
image quality algorithms has been proposed by Alonso-Fernandez et al. [69] where three
classes of quality algorithms are described in the context of existing algorithms, namely
those which are a) based on local features; b) based on global features; and c) those based
on classifiers.

Several fingerprint image quality assessment algorithm have been proposed in the liter-
ature, in particular, the classifier based NFIQ algorithm is used extensively in industry and
forms the quality control aspect in operational biometric systems. An extensive review of
finger image quality algorithms has been performed by Alonso-Fernandez et al. [97] and
more recently by Bharadwaj et al. [95].

V(1,1)

I(1,1)

Vh

Ih

Iw
Vw

I(Iw,Ih)

Figure 4.2: Illustration of block and pixel indexing within an image I with dimensions Iw, Ih. Shown
is the pixel I(1, 1), the block V(1,1), with dimensions Vw, Vh

The source code for the quality features specified in sections 4.3.4 and 4.3.5 are made
available online [121].

4.3.2 The NFIQ algorithm

The National Institute of Standards and Technology (NIST) developed in 2004 the NIST
Fingerprint Image Quality (NFIQ) algorithm and with it a new definition of quality of fin-
gerprint impressions and algorithms for measuring quality was proposed. The work at
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the time was the first open algorithm for an assessment of finger image quality, which is a
predictor of comparator performance [78].

The NFIQ image features are derived from an interpretation of a fingerprint quality
map and minutia counts. Localized quality of the fingerprint is measured by computing
four quality maps; a direction map, a low contrast map, a low ridge flow map and a high
curvature map. For the local analysis, the image is divided into a grid of blocks, where
all pixels within a block are assigned the same value derived from all pixels in the block.
The direction map represents the local ridge flow as derived through application of the
Discrete Fourier Transform (DFT). The low contrast map separates the background from
the fingerprint and detects areas which are blurry. The low flow map is derived from the
direction map by assessing if the block has a dominant ridge flow. If no dominant ridge
flow exists within a block then minutiae in that block are assumed to be unreliable. The
high curvature map is derived from the direction map as the coherence between the di-
rections of one block relative to its eight neighboring blocks giving an indication of the
directional stability in a region. The four maps are fused into one single quality map de-
scribing the block wise quality of the finger image. The quality blocks and minutiae from
the fingerprint are used to compose a quality feature vector which is used as input for a
neural network (i.e. a Multi-Layer Perceptron (MLP)) which outputs a corresponding qual-
ity number representing the expected utility of the given sample.

4.3.3 Improvements to NFIQ

Since its development, NFIQ has been analyzed and areas of improvement have been iden-
tified by Merkle et al. [132]. Herein, a two-step process is proposed where the optimization
of NFIQ is split into classification and prediction parts which improve NFIQ in the points
of fingerprint data basis, similarity score statistic, image feature selection and neural net-
work.

Some of these findings are being applied in the developments of NIST Fingerprint Im-
age Quality 2 (NFIQ 2) [80] which is the evolution of NFIQ initiated by NIST and BSI.

4.3.4 Local finger image quality

4.3.4.1 Overview

Local finger image quality assessment algorithms operate on local regions of the image
where each local region (i.e. an image block) contains at least 2 ridge lines. For images with
500 pixels per inch (ppi) a ridge and valley pair is 8 to 12 pixels wide [49] and consequently,
to cover two ridge lines a local region must be at least 24 pixels in either dimension.

Valid for all local finger image quality metrics is that they each assign a quality value
to each local region which is aggregated in a specified manner to yield a global quality
score for the finger image. It is recommended that the quality algorithm returns a map
or histogram of the quality values assigned to each local region. At a later stage, such
multiple quality maps can be combined to provide a robust local quality value.

In the remainder of this section state of the art of local finger image quality features are
reviewed and detailed algorithm descriptions are provided. Default values provided for
the variables are based on an empirical study and shall represent a good balance between
computational complexity and accuracy (i.e. utility correlation).

32



4.3 REVIEW OF FINGER IMAGE QUALITY ASSESSMENT FEATURES

In the following sections, a common input image will be used as example to illustrate
the result of specific points in the specified algorithms. Several of the algorithms perform
the same initial steps which are shown in fig. 4.3. The input image I shown in fig. 4.3a is
image 8 5.bmp from FVC2004 DB1 [133]. For algorithms operating in a block-wise manner
the image is subdivided into blocks according to the overlay grid shown in b. The block
V(10,7) is used as example in local processing and is marked up using a bold line. c shows
an enlarged view of V(10,7) and d shows V(10,7) rotated according to ridge orientation
its dominant ridge orientation as determined using eq. (4.17).

100 200 300 400 500 600
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400

(a)

100 200 300 400 500 600

100

200

300

400

(b) (c) (d)

Figure 4.3: Input image used in illustrative examples of the processing of quality.

Computing the block orientation from gradients From a single block representing a
local region of a fingerprint image, the dominant ridgeflow orientation is determined by
computing the gradient information and then determine the orientation of the principal
variation axis.

The numerical gradient of the block is determined using finite central difference for all
interior pixels in x-direction eq. (4.8) and y-direction eq. (4.9).

fx =
I(x+ 1, y)− I(x− 1, y)

2
(4.8)

fy =
I(x, y + 1)− I(x, y − 1)

2
(4.9)

With fx and fy the principal axis of variation of V is determined analytically using
the sine and cosine doubled angles determined from the arithmetic means of the image
gradient covariances eq. (4.17).

33



4. FINGER IMAGE QUALITY ASSESSMENT FEATURES – DEFINITIONS AND EVALUATION

a = fx
2 (4.10)

b = fy
2 (4.11)

c = fx · fy (4.12)

C =

[
a c
c b

]
(4.13)

d =
√
c2 + (a− b)2 + ε (4.14)

sin2 =
c

d
(4.15)

cos2 =
a− b
d

(4.16)

angle(V) =
atan2(sin2 , cos2 )

2
(4.17)

4.3.4.2 Frequency domain analysis

The Frequency Domain Analysis (FDA) algorithm operates in a block-wise manner. A one-
dimensional signature of the ridge-valley structure is extracted and the DFT is computed
on the signature to determine the frequency of the sinusoid following the ridge-valley
structure [83, 99].

The value of Qlocal
FDA is undefined if Fmax = 1 or Fmax = A(end) as both A(0) and

A(end+1) are not accessing valid indices. Workaround in that case is to set Qlocal
FDA = 1. De-

spite International Organization for Standardization (ISO) recommendation [70] of a high
quality value indicating a high quality, this is not the case for Frequency Domain Analysis
as specified in ISO/IEC TR 29794-4:2010 [99].

Algorithm 4.1: FDA algorithm
Input: Fingerprint image I
Output: FDA quality score QFDA

1 for each block V in I do
2 rotate V such that dominant ridge flow is perpendicular to x-axis
3 crop V such that no invalid regions are included
4 with V obtain the ridge-valley signature T (x) (eq. (4.18))
5 compute the DFT of T to obtain F
6 discard the first component of F
7 determine Fmax as the index of the term in F with largest magnitude
8 compute Qlocal

FDA of V using F (eq. (4.19))
9 compute QFDA as the arithmetic mean of all Qlocal

FDA (eq. (4.20))

A visual overview of the algorithm outputs are depicted in fig. 4.4 where a shows V
cropped to contain central area of rotated V; b shows the ridge-valley profile T ; c shows
the DFT of T after the first component has been removed; d shows Qlocal

FDA for each V in I.

Ridge-valley signature The ridge-valley signature is a projection of the mean values of
the local region along the y-axis onto a 1 dimensional vector. This effectively gives an
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Figure 4.4: Processing steps of Frequency Domain Analysis quality algorithm.

approximated representation of the fundamental periodicity within the local region. The
signature is computed as:

T (x) =
1

Vh

Vh∑
k=1

I(x, k) (4.18)

Computing the local Frequency Domain Analysis quality score The local FDA quality
score, Qlocal

FDA is computed as:

Qlocal
FDA =

A(Fmax ) + C(A(Fmax − 1) +A(Fmax + 1))∑N/2
F=1A(F )

(4.19)

where C = 0.3 according to the definition appearing in ISO/IEC TR 29794-4:2010. The
effect of the constant is to retain an attenuated amplitude of the frequency bands immedi-
ately surrounding Fmax

Computing the final Frequency Domain Analysis quality score The final quality score
is computed as the mean of local quality scores:

QFDA =
1

N ∗M

N∑
i=1

M∑
j=1

Qlocal
FDA (4.20)

4.3.4.3 Gabor quality

The Gabor (GAB) quality feature [1] operates on a per-pixel basis by calculating the stan-
dard deviation of the Gabor filter bank responses. The size of the filter bank is used to
determine a number of filters oriented evenly across the half circle. The strength of the
response at a given location corresponds to the agreement between filter orientation and
frequency in the location neighborhood. For areas in the fingerprint image with a regular
ridge-valley pattern there will be a high response from one or a few filters likely neigh-
bored orientations. In areas containing background or unclear ridge-valley structure the
Gabor response of all orientations will be low and constant.

The Gabor quality feature is resolution dependent.
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Algorithm 4.2: GAB algorithm
Input: Fingerprint image I
Output: GAB quality score QGAB

1 Convolve I with 2D Gaussian kernel with σ = 1 and subtract from I to yield Î
2 Generate filter bank by computing Gabor filter for each rotation θ (eqs. (4.21) and (4.24)); Compute the

Gabor response for each pixel in Î for each filter in the filter bank
3 Convolve the magnitude (complex modulus) of each Gabor response with a 2D Gaussian kernel with
σ = 4

4 Compute the standard deviation of the Gabor magnitude response values at each location yielding a map
of standard deviations

5 Sum the map of standard deviations and normalize according to number of sample points (typically size
of I) to produce the Gabor quality score QGAB

A visual overview of the algorithm outputs are depicted in fig. 4.5 where a shows the
Î, b to e and f to i depict respectively the real and imaginary part of the Gabor filter at four
orientations. The filter response is depicted in j to m and the corresponding Gaussian fil-
tered response is depicted in n to q. Standard deviation of the Gaussian filtered responses
are shown in r.

The Gabor filter The general form of the complex 2D Gabor filter hcx in the spatial do-
main is given by:

hcx(x, y; f, θ, σx, σy) = exp

(
−1

2

(
x2
θ

σ2
x

+
y2
θ

σ2
y

)
exp (j2πfxθ)

)
(4.21)

where

xθ = x sin θ + y cos θ (4.22)
yθ = x cos θ − y sin θ (4.23)

and f is the frequency (cycles/pixel) of the sinusoidal plane wave along the orientation
θ. The size of the Gaussian smoothing window is determined by σx, σy . The filter bank
size n is used to compute the differently oriented Gabor filters composing the filter bank.
Computing θ given n is done as:

θ =
k − 1

nπ
, k = 1, .., n (4.24)

4.3.4.4 Gabor-Shen quality

Gabor Shen (GSH) [43] is a Gabor based feature separating blocks into two classes: good
and bad. The scalar quality is the ratio between number of foreground blocks and number
of foreground blocks marked as poor.

The filter response of each Gabor kernel in the filter bank are computed on the pixels
in each block and a standard deviation is computed on the responses. Using thresholding
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Figure 4.5: Processing steps of Gabor quality algorithm. r indicates in light grayscale values those
image regions, where filter responses show large standard deviation and good image quality is as-
sumed.
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each block is determined to be foreground, background and poor or good quality. The
algorithm is outlined in algorithm 4.3.

The Gabor Shen quality feature is resolution dependent. Shen et al. suggest σx = σy =
4, f = 0.12, n = 8, b = 30 and that Tb and Tq are empirically determined according to
dataset. We have found that setting Tb = 1 and Tq = 2 to yield good results across several
datasets.

Algorithm 4.3: GSH algorithm
Input: Fingerprint image I
Output: GSH quality score QGSH

1 Generate filter bank of size n by computing Gabor filter for each rotation θ
2 for each block V in I do
3 Compute the n Gabor responses at each pixel in V
4 Compute the standard deviation G of Gabor reponses for V

5 With G segment I into foreground and background
6 Determine foreground blocks Vf as those V where µi > Tb
7 Determine poor quality blocks Vp as those V where µi > Tb and µi < Tq

8 Compute quality score QGSH as 1− Vp
Vf

A visual overview of the algorithm outputs are depicted in fig. 4.6 where a to d and e
to h depict respectively the real and imaginary part of the Gabor filter at four orientations.
The filter response is depicted in i to l and the standard deviation of the responses in m.
The mean of standard deviations in each block is show in n indicating in light grayscale
values those image regions, where good quality is assumed. Blocks marked as foreground
in o and blocks marked as poor in p.

4.3.4.5 Local clarity score

Local Clarity Score (LCS) [72, 99] computes the block-wise clarity of ridge and valleys by
applying linear regression to determine a gray-level threshold, classifying pixels as ridge
or valley. A ratio of misclassified pixels is determined by comparing with the normalized
ridge and valley width of that block.

Particular regions inherent in a fingerprint will negatively affect QLCS. For example,
ridge endings and bifurcations or areas with high curvature such as those commonly found
in the vicinity of core and delta points.

A visual overview of the algorithm outputs are depicted in fig. 4.7 a crop of the cur-
rent block shown in a with the average profile depicted in b. The grayscale values of the
profile and the regression line determined using linear regression is shown in c, with the
corresponding binarization into ridge (black) and valley (white) in d. Figures e through g
show respectively pixels in the input block determined to be ridge using threshold; gray
level threshold for ridges across the block shown; pixels above threshold marked in white.
Similarly for valleys in h through j. The local clarity score for each block is visualized in k
with white being maximum clarity.

Determining the proportion of misclassified pixels For a block V there are vT pixels in
the valley region and vB pixels in the valley region with intensity lower than a threshold
DT . Similarly there are rT pixels in the ridge region and rB pixels in the ridge region with
intensity lower than a threshold DT . α and β are expressions of these ratios.
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Figure 4.6: Processing steps of Gabor Shen quality algorithm.

α =
vB
vT

(4.25)

β =
rB
rT

(4.26)

Determining the normalized ridge and valley width The normalized valley width W̄v

and the normalized ridge width W̄r are determined as

W̄v =
Wv(

S
125

)
Wmax

(4.27)

W̄r =
Wr(

S
125

)
Wmax

(4.28)

where S is the sensor resolution in dpi, Wmax is the estimated ridge or valley width
for an image with 125 dpi resolution, and Wv and Wr are the observed valley and ridge
widths. According to [49], Wmax = 5 is reasonable for 125 dpi resolution.
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Algorithm 4.4: LCS algorithm
Input: Fingerprint image I
Output: LCS quality score QLCS

1 for each block V in I do
2 rotate V such that dominant ridge flow is perpendicular to x-axis
3 crop V such that no invalid regions are included
4 with V obtain the ridge-valley signature T (x) (eq. (4.18))
5 Determine a threshold DT using linear regression on T (x)
6 Determine proportion of misclassified pixel β and α in the ridge and valley regions (eqs. (4.25)

and (4.26))
7 Determine normalized ridge width and valley width W̄r and W̄v (eqs. (4.27) and (4.28))
8 Compute the local quality score Qlocal

LCS (eq. (4.31))
9 Compute quality score QLCS (eq. (4.32))

For 500 dpi resolution, eqs. (4.27) and (4.28) may be expressed as

Ŵv =
Wv

20
(4.29)

Ŵr =
Wr

20
(4.30)

Computing the Local Clarity Score The local quality score Qlocal
LCS is computed using the

average value of α and β in valid ridge and valley regions:

Qlocal
LCS =


(

1− α+ β

2

)
,
(
W nmin
v < W̄v < W nmax

v

) (
W nmin
r < W̄r < W nmax

r

)
0 , otherwise

(4.31)

where W nmin
r and W nmin

v are the minimum values for the normalized ridge and valley
width, and W nmax

v and W nmax
v are the maximum values for the normalized ridge and valley

width.

Computing the quality score The quality score QLCS is computed as the mean of local
scores Qlocal

LCS using eq. (4.31) where a higher QLCS score indicates higher quality.

QLCS =
1

N ∗M

N∑
i=1

M∑
j=1

Qlocal
LCS (i, j) (4.32)

4.3.4.6 Orientation flow

Orientation Flow (OFL) [72, 99] is a measure of ridge flow continuity which is based on the
absolute orientation difference between a block and its neighboring blocks.

In ISO/IEC TR 29794-4:2010 [99] the parameter θmin is a constant such that the angular
tolerance is 8 deg (θmin = 8), however here we set the tolerance to 0 deg. The local orienta-
tion quality score in this case is assigned such that Qlocal

OFL (i, j) = 1 when the local quality
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Figure 4.7: Processing steps of Local Clarity Score algorithm. k indicates in light grayscale values
those image regions, where good quality is assumed.

is the highest. This is opposite behavior of the ISO/IEC TR 29794-4:2010 definition where
Qlocal

OFL (i, j) = 0 when the local quality is the highest.

Algorithm 4.5: OFL algorithm
Input: Fingerprint image I
Output: OFL quality score QOFL

1 for each block V in I do
2 Determine the dominant ridgeflow orientation (eq. (4.17))
3 Compute the absolute orientation difference D(i, j) (eq. (4.33))
4 Compute the local orientation quality score Qlocal

OFL (i, j) (eq. (4.34))
5 Compute the quality score QOFL (eq. (4.35))

A visual overview of the algorithm outputs are depicted in fig. 4.8 where a line mark-
ing the normal to the ridge line orientation in a; the blockwise dominant orientations are
depicted in b and the orientation differences are shown in c; the local quality scores are
shown in d.

Absolute orientation difference The ridge flow is determined as a measure of the ab-
solute difference between a block and its neighboring blocks. The absolute difference for
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block V(i, j) is:

D(i, j) =

∑1
m=−1

∑1
n=−1 |V(i, j)−V(i−m, j − n)|

8
(4.33)

Local orientation quality score The local orientation quality score Qlocal
OFL (i, j) for the

block orientation difference D(i, j) is determined as:

Qlocal
OFL (i, j) =


D(i, j)− θmin

90 deg−θmin
, D(i, j) > θmin

0 , otherwise
(4.34)

where θmin is a threshold for the minimum angle difference to be considered as signifi-
cant.

Computing the quality score WithN ∗M local orientation quality score blocks the global
orientation quality score is computed as

QOFL = 1− 1

N ∗M

N∑
i=1

M∑
j=1

Qlocal
OFL (i, j) (4.35)
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Figure 4.8: Processing steps of Orientation Flow quality algorithm.

4.3.4.7 Orientation certainty level

Orientation Certainty Level (OCL) [71, 99] is a measure of the strength of the energy con-
centration along the dominant ridge flow orientation. The feature operates in a block-wise
manner.

The computation of OCL presented here deviates from ISO/IEC 29794-4:2010 [99] in
that we subtract the ratio between the eigen values from 1 such that QOCL = 0 reflects the
lowest quality and QOCL = 1 the highest quality.

A visual overview of the algorithm outputs are depicted in fig. 4.9 where the ratio of
the eigenvalues is shown in a as an ellipse and the local qualities are depicted in b where
higher intensity indicates higher Qlocal

OCL score.
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Algorithm 4.6: OCL algorithm
Input: Fingerprint image I
Output: OCL quality score QOCL

1 for each block V in I do
2 Compute the intensity gradient with centered differences method
3 Compute the covariance matrix C (eq. (4.13))
4 Compute the eigenvalues of C to obtain Qlocal

OCL (eqs. (4.36) and (4.38))
5 Compute the quality score QOCL as the mean of all Qlocal

OCL (eq. (4.39))

Computing the eigenvalues and local orientation certainty From the covariance matrix
C the eigenvalues λmin and λmax are computed as

λmin =
a+ b−

√
(a− b)2 + 4c2

2
(4.36)

λmax =
a+ b+

√
(a− b)2 + 4c2

2
(4.37)

this yields a local orientation certainty level Qlocal
OCL :

Qlocal
OCL = 1− λmin

λmax
(4.38)

which is a ratio in the range 0 to 1 respectively the lowest and highest orientation cer-
tainty level.

Computing the quality score The quality score QOCL is computed as the mean of local
scores Qlocal

OCL using eq. (4.39) where a higher QOCL score indicates higher quality.

QOCL =
1

N ∗M

N∑
i=1

M∑
j=1

Qlocal
OCL (i, j) (4.39)

(a)

100 200 300 400 500 600

100

200

300

400

(b)

Figure 4.9: Processing steps of Orientation Certainty Level quality algorithm. The light grayscale
values shown in b indicate regions with good local quality.
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4.3.4.8 Ridge valley uniformity

Ridge Valley Uniformity is a measure of the consistency of the ridge and valley widths [71,
99]. The expectation for a finger image with clear ridge and valley separation is that the
ratio between ridge and valley widths remains fairly constant and thus the standard devi-
ation of ratios is used as an indication of the sample quality. The Ridge Valley Uniformity
quality feature is resolution dependent.

Algorithm 4.7: RVU algorithm
Input: Fingerprint image I
Output: Ridge Valley Uniformity (RVU) quality score QRVU

1 for each block V in I do
2 Determine dominant ridgeflow orientation θ(V) according to eq. (4.17)
3 Rotate V such that θ(V) is perpendicular to x-axis
4 crop V such that no invalid regions are included
5 with V obtain the ridge-valley signature T (x) (eq. (4.18))
6 Determine a threshold DT using linear regression on T (x)
7 Binarize T (x) using DT
8 Determine transition points in T (x)
9 Drop first and last transition from T (x) to remove incomplete ridges or valleys

10 Determine Qlocal
RVU from the ratio between remaining ridge and valley widths

11 Compute the quality score QRVU as the standard deviation of all Qlocal
RVU

A visual overview of the algorithm outputs are depicted in fig. 4.10 where a crop of the
valid area of the current block is depicted in a; the ridge-valley signature is shown in b
and the result of linear regression on the intensities is depicted in c. The resulting standard
deviation of local ratios is shown in d.
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Figure 4.10: Processing steps of Ridge Valley Uniformity quality algorithm. As this algorithm ren-
ders local quality not compliant to ISO/IEC 29794-1:2009 the dark grayscale values shown in d indi-
cate regions with good local quality.

4.3.5 Global finger image quality

4.3.5.1 Radial power spectrum

Radial Power Spectrum (RPS) [74, 99] is a measure of maximal signal power in a defined
frequency band of the global radial Fourier spectrum. Ridges can be locally approximated
by means of a single sine wave, hence high energy concentration in a narrow frequency
band corresponds to consistent ridge structures.
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Algorithm 4.8: RPS algorithm
Input: Fingerprint image I
Output: RPS quality score QRPS

1 Filter I using Blackman window
2 Compute 2D-FFT F {I(x, y)} of I (eq. (4.40))
3 Apply Logarithm operator to power spectrum
4 Get range of frequency band of interest
5 Convert to polar coordinates
6 Extract frequency band of interest
7 Compute magnitude of bands (eq. (4.42))
8 Determine QRPS as the maximum magnitude of any band in frequency range of interest (eq. (4.43))

A visual overview of the algorithm outputs are depicted in fig. 4.11 where the input
image convolved with a Blackman filter (algorithm 4.8, line 1) is shown in a. The log trans-
formed spectrum of the DFT is shown in b and the conversion to polar coordinates in c
with lines in upper part indicating the frequency band of interest. The extracted band of
frequencies is shown in d, and the power is shown in e and the power of binned frequen-
cies is shown in f.

2D Fourier Transform The 2D discrete Fourier transform F (u, v) = F {I(x, y)} is:

F (u, v) =
1

IhIw

Iw−1∑
x=0

Ih−1∑
y=0

I(x, y) exp

(
−j2π

(
ux

Iw
+
vy

Ih

))
(4.40)

The magnitude of F (u, v) is computed as:

|F (u, v)| =
√
<(F (u, v))2 + =(F (u, v))2 (4.41)

Magnitude of frequency bands polar coordinates The magnitude of the annular band
between r and r + δr in the polar Fourier spectrum F (α, r) is computed as:

J(r) =
∑
α

F (α, r) (4.42)

Determine quality score The quality feature QRPS is found as:

QRPS = max |J(r)| (4.43)

4.3.5.2 Mu

The MU quality feature is the mean value of the input image.

4.3.5.3 Sigma

The SIG quality feature is the standard deviation of the input image.
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Figure 4.11: Processing steps of Radial Power Spectrum quality algorithm.

Algorithm 4.9: MU algorithm
Input: Fingerprint image I
Output: MU quality score QMU

1 Compute QMU as the mean of pixel values in I;

Algorithm 4.10: SIG algorithm
Input: Fingerprint image I
Output: SIG quality score QSIG

1 Compute QSIG as the standard deviation of pixel values in I;

4.4 Performance Evaluation

For the performance evaluation we have chosen to assess the predictive performance of
NFIQ and the quality features specified in sections 4.3.4 and 4.3.5.

We base our results on finger image data from Fingerprint Verification Competition
2004 (FVC2004) [133], Fingerprint Verification Competition 2006 (FVC2006) [134], MCYT
Fingerprint 330 (MCYT-330) [135] and Wet-Dry Dataset 2 (WDSET02) [7] databases which
are summarized in section 4.4. For the dataset WDSET02 5 different capture devices were
used and the capture protocol specified 4 finger surface conditions: no treatment with cap-
ture as the subject arrives; application of an alcohol based solution to dry the skin surface;
application of hand-moisturiser; and finally soaking in water. FVC2004 DB1 and FVC2006
DB2A were captured in a supervised manner were subjects were instructed to perform
various actions which result in various degradations such as elastic deformation and un-
even pressure. Samples in MCYT330 DP were captured using three levels finger placement
requirements on the sensor: relaxed but under supervision by operator; placement within
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specified rectangle; and high level of control where one core and/or delta must fall within
a specified rectangle. The datasets combined provide a total of 48 760 fingerprint image
samples captured using optical sensors.

For each dataset, comparison scores are computed using 3 commercial state of the art
minutiae based comparison systems denoted as A, B, and C as agreements prohibit us
from revealing the names. All genuine comparisons were made and imposter scores were
determined by randomly selecting a set of probes from other subjects (see section 4.4)
and compare with the reference template. In the cases where a provider failed to either
compute a template or a comparison score we have set the comparison score to 0.

We evaluate and rank the quality features according to their Error-Reject Curve (ERC)
characteristics and Spearman correlation with utility values as computed in eq. (4.1). In
the case of ERC, we focus on the decrease in FNMR achieved when rejecting the lowest
20% quality samples as rejecting more than 1 in 5 samples due to quality is unlikely to be
acceptable in an operational system (see section 4.2.5.3).

For features QFDA, QLCS, QOCL, QOFL, QRVU the quality values were computed on the
image foreground as determined by segmentation based on local standard deviation im-
age with a block size of 32 by 32 pixels and a threshold of 0.1 with ridgesegment.m
method [136].

Database FVC2004 DB1 [133] FVC2006 DB2A [134] MCYT330 DP [135] WDSET02 [7]
Sensor Optical (Single) Optical (Single) Optical (Single) Optical (Multiple)

Subjects 30 330 33
Fingers 4 140 10 10

Impressions 8 12 12 20
Total images 880 1680 39 600 6600

Genuine 6160 18 480 435 600 125 400
Imposter 17 600 840 000 19 800 000 660 000

Table 4.1: Datasets used for performance evaluation of quality algorithms.

4.4.1 Detection error trade-off

In order to assess the characteristics of the datasets and the biometric feature extractors and
comparators a benchmark is performed by computing the Detection Error Tradeoff (DET)
on each dataset. The DET plots are shown in fig. 4.12. It is observed that at a fixed False
Match Rate (FMR) at 10−4 the FNMR shifts over several orders of magnitude depending
on the dataset used. It is observed that A is performing best across datasets, while C is
the worst performing. Further, providers perform the worst on WDSET02 and the best on
FVC2006 DB2A.

Providers perform the worst on WDSET02, one reason for this is that the data collection
protocol for that dataset included the capture of soaking wet fingerprints which results in
very poor quality samples for some capture devices.

4.4.2 Feature correlations

Correlation of features has a significance when assessing which features to include in a
composite quality algorithm, i.e. one that uses input from multiple quality algorithms to

47



4. FINGER IMAGE QUALITY ASSESSMENT FEATURES – DEFINITIONS AND EVALUATION

0.
01

0.
1

1

10

10
0

0.01 0.1 1 10 100
FMR (%)

F
N

M
R

 (
%

)

Dataset − Provider

FVC2004DB1 − A

FVC2004DB1 − B

FVC2004DB1 − C

FVC2006DB2A − A

FVC2006DB2A − B

FVC2006DB2A − C

MCYT330DP − A

MCYT330DP − B

MCYT330DP − C

WDSET02 − A

WDSET02 − B

WDSET02 − C

Figure 4.12: Detection error tradeoff curves for datasets FVC2004 DB1, FVC2006 DB2A, MCYT330
DP, and WDSET02 using comparison scores from providers A, B, and C.

determine a scalar quality value or a vector of multiple selected quality values for a sample.
In such case it is advisable to select features which complement each other, i.e. they do not
correlate with each other.

Correlation tables for quality values and utility computed on the four datasets are
shown in tables 4.2a to 4.2d. The upper half shows the Spearman correlation between
two variables, the lower half depicts a scatter plot of the two variables and the diagonal
contains the name of the variable in that row and column.

We note that the correlation between features is clearly dependent on the dataset on
which they where computed, for example consider the correlation between FDA and MU,
which is varying significantly by being positively correlated (0.25) in FVC2004 DB1 and
WDSET02 (0.32), not correlated (0.00) in FVC2006 DB2A, and negatively correlated (−0.23)
in MCYT330 DP. The correlations between the features and utility computed according to
eq. (4.1) for each provider also reveals significant differences across datasets, e.g. the corre-
lation between NFIQ and each of A, B, C is respectively −0.18, −0.15, −0.17 for FVC2004
DB1 while for WDSET02 the correlations with the same providers are −0.65, −0.56 and
−0.52. Similarly for GAB we see major differences, and in the case of B on MCYT330 DP
there is a correlation of −0.03, while it is 0.49 on WDSET02.

4.4.3 Error reject curves

We determine the behaviour of quality features over the range of quality values in relation
to the FNMR using ERC (section 4.2.5.3). Ideally, when a sample is removed due to its com-
puted quality value, a corresponding decrease in FNMR occurs, i.e. the idealised quality
feature identifies exactly those samples which contribute to FNMR and its behavior in the
ERC is that the resulting reduction in FNMR occurs at the same rate as the rejection due
to quality. When a sample which did not cause a false non-match is removed due to its
quality level, it will result in an increase in the FNMR which occurs because the FNMR is
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Table 4.2: Spearman correlation table and scatter plots of quality features and utilities for each
dataset FVC2004 DB1 a, FVC2006 DB2A b, MCYT330 DP c and WDSET02 d. The upper half shows
the Spearman correlation between two variables, the lower half depicts a scatter plot of the two
variables and the diagonal contains the name of the variable in that row and column.
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computed using the genuine comparison scores of those samples remaining after samples
have been removed due to their inferior quality as determined be the respective algorithm
(see eq. (4.5)).

For each feature and combination of dataset and comparison score provider we com-
puted the ERC, noting the ηerc

auc and ηerc
pauc20 as computed according to eqs. (4.6) and (4.7). The

resulting curves for the MCYT330 DP dataset using provider A for comparison scores are
displayed in fig. 4.13, where we have used two different values of f , one f = 0.1 to simu-
late an operational case where the FNMR is 10%, and one with f = 0.01 where the FNMR is
1% (see eq. (4.4)). We show respectively the first 15% and 1.5% of samples being rejected
due to computed quality value. The inlay shows the full ERC from no samples removed to
all samples removed. The resulting ηerc

auc and ηerc
pauc20 computed from ERC for each case of f

are summarized in tables 4.3 and 4.4.
All the presented features provide a wide range of possible quality values, while NFIQ

by design provides 5 quality levels. The ERC show that NFIQ is more robust than indi-
vidual features as the FNMR in the ERC is decreasing as comparisons containing samples
associated with the rejected quality level are removed. Only in a single instance, the com-
bination of WDSET02 and provider B, do we note that NFIQ exhibits unexpected behavior
where the FNMR is increasing. The cost of the relatively small number of distinct quality
levels is that one must always choose to reject an entire level of quality, resulting in a rough
step function when then fraction of samples rejected is plotted against the resulting FNMR.
This behaviour is visible in fig. 4.13a where the FNMR remains at 0.10 until around 3% of
the samples are rejected where after the FNMR drops to slightly more than 8% and stays at
that level until around 20% of the samples are rejected and the FNMR is further reduced to
around 4%.

Table 4.3: Summary of AUC and Partial Area Under Curve (PAUC) for ERC plots of quality features
on FVC2004 DB1, FVC2006 DB2A, MCYT330 DP, WDSET02 computed on ERC using f = 0.1.

FVC2004 DB1 FVC2006 DB2A MCYT330 DP WDSET02
Feature ηerc

auc ηerc
pauc20 ηerc

auc ηerc
pauc20 ηerc

auc ηerc
pauc20 ηerc

auc ηerc
pauc20

GAB .068 .014 .023 .010 .026 .009 .017 .008
LCS .072 .014 .046 .010 .036 .011 .023 .010
RPS .062 .014 .051 .013 .031 .011 .089 .014
GSH .097 .014 .028 .011 .030 .011 .036 .014
OCL .081 .015 .039 .011 .049 .013 .063 .012
NFIQ .068 .013 .062 .014 .045 .013 .040 .015
MU .076 .015 .062 .013 .092 .014 .066 .015
SIG .115 .016 .077 .014 .105 .014 .120 .014
OFL .066 .013 .083 .012 .140 .015 .048 .011
FDA .121 .015 .147 .015 .174 .016 .181 .015
RVU .138 .017 .206 .017 .207 .017 .177 .015
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Figure 4.13: ERC for features on MCYT330 DP using A as basis for FNMR computation with ERC
starting respectively at 10% FNMR (f = 0.1) in a and 1% (f = 0.01) in b. See tables 4.3 and 4.4 for a
summary of each instance of f .

Table 4.4: Summary of AUC and PAUC for ERC plots of quality features on FVC2004 DB1, FVC2006
DB2A, MCYT330 DP, WDSET02 computed on ERC using f = 0.01.

FVC2004 DB1 FVC2006 DB2A MCYT330 DP WDSET02
Feature ηerc

auc ηerc
pauc20 ηerc

auc ηerc
pauc20 ηerc

auc ηerc
pauc20 ηerc

auc ηerc
pauc20

GAB 0.008 0.002 0.002 0.001 0.003 0.001 0.001 0.001
LCS 0.010 0.002 0.004 0.001 0.004 0.001 0.002 0.001
RPS 0.005 0.002 0.004 0.002 0.004 0.002 0.017 0.003
GSH 0.011 0.002 0.002 0.002 0.004 0.002 0.004 0.003
OCL 0.007 0.002 0.004 0.001 0.004 0.002 0.013 0.002
NFIQ 0.007 0.002 0.005 0.002 0.003 0.001 0.004 0.002
MU 0.009 0.002 0.007 0.002 0.011 0.002 0.004 0.002
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Table 4.4: (continued)

FVC2004 DB1 FVC2006 DB2A MCYT330 DP WDSET02
Feature ηerc

auc ηerc
pauc20 ηerc

auc ηerc
pauc20 ηerc

auc ηerc
pauc20 ηerc

auc ηerc
pauc20

SIG 0.011 0.002 0.006 0.002 0.014 0.002 0.022 0.003
OFL 0.011 0.002 0.008 0.001 0.014 0.002 0.002 0.001
FDA 0.010 0.002 0.017 0.002 0.021 0.002 0.017 0.002
RVU 0.016 0.002 0.029 0.002 0.026 0.002 0.008 0.001

4.5 Conclusion

Fingerprint sample quality continues to play a large role in biometric systems and the pre-
sented review and performance evaluation of existing quality metrics has shown that the
algorithms have varying performance across dataset and comparison score vendor. This
considerably complicates the task of selecting a subset of features which are suitable for
a combined or aggregated quality metric. Inter-feature Spearman correlation give indica-
tions as to which features are overlapping with respect to the aspect of the fingerprint they
measure.

An important point to address in future research is how to best combine quality fea-
tures in a way which minimizes the dependence on individual comparison score providers
while maintaining a sufficient predictive performance with respect to the biometric perfor-
mance.

The selection of quality features is further complicated by their non-monotonic behav-
ior, i.e. the feature might only be indicative of sample utility in a range of the values it
produces, and it is not guaranteed that a high quality value indicates higher biometric per-
formance across all ranges within the possible values. Using ηerc

auc and ηerc
pauc20 as indicators

for feature provides insights to the behavior of quality features throughout the quality val-
ues it provides in the context of FNMR, however it is clear from out results that the ordering
of the features using these indicators changes depending on the chosen f parameter in the
calculation of ERC. With f = 0.01 and using ηerc

auc as selection criteria, we conclude that
GAB, LCS, GSH provides consistent high performance across the tested datasets, and that
RPS, OFL and OCL appears sensitive to the dataset used.

Our results show that correlation with utility as computed using the definitions by
ISO/IEC is not indicative of the behavior of the quality feature when evaluated using ERC
and our recommendation is to apply feature correlations only in the context of identifying
potentially overlapping methods of quality measurements.

The quality features we have specified and evaluated are made available to the com-
munity [121]. We anticipate that parameters in the quality features can be tuned to achieve
a higher performance on specific datasets or a better generalisability when faced with new
datasets.
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Figure 4.14: Error-reject curves for each feature on each dataset FVC2004 DB1, FVC2006 DB2A,
MCYT330 DP, WDSET02 with each provider A, B, C and f = 0.1.
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Chapter 5

A Topology Based Approach to Categorization
of Fingerprint Images

Information about the paper

Detecting whether a fingerprint is present in an image is of fundamental im-
portance in capture devices and also in maintenance of existing fingerprint
based biometric systems. We propose a method to detect whether an object
is a fingerprint, and show it applicability in a scenario where iris images and
fingerprint images are mixed. The paper is a contribution towards research
question RQ1. This original paper was published in: [2] A. Aabrandt, M.
Olsen, and C. Busch. “A topology based approach to categorization of fin-
gerprint images”. In: Biometrics Special Interest Group (BIOSIG), 2012 BIOSIG
- Proceedings of the International Conference of the. 2012, pp. 1–11.

59



5. A TOPOLOGY BASED APPROACH TO CATEGORIZATION OF FINGERPRINT IMAGES

Abstract

This paper discusses the use of betti numbers to characterize fingerprint and iris im-
ages. The goal is to automatically separate fingerprint images from non-fingerprint
images; where non-fingerprint images of special interest are biometric samples which
are not fingerprints. In this regard, an image is viewed as a triangulated point cloud
and the topology associated with this construct is summarized using its first betti
number - a number that indicates the number of distinct cycles in the triangulation as-
sociated to the particular image. This number is then compared against the first betti
numbers of “n” prototype images in order to perform classification (“fingerprint” vs
“non-fingerprint”). The proposed method is compared against SIVV (a tool provided
by NIST). Experimental results on fingerprint and iris databases demonstrate the po-
tential of the scheme.

5.1 Introduction

Recent developments in engineering and other sciences have presented the need for new
mathematical tools in order to tackle even the simplest manual tasks like categorization
of biometric samples. The human brain can easily distuingish between an iris scan and a
fingerprint image; yet doing so for millions of images will undoubtedly take too long to be
practically possible. So a need for automatic processing of images by means of computers
is present. This area of research requires skills from many different disciplines, including
mathematics, computer science and biometrics; where computer science and biometrics
are multi-disciplinary sciences.

Classical tools in mathematical analysis, like Fourier analysis, are often the primary
tools in applying mathematics to a given problem. Unfortunately requirements of con-
tinuity and rigid geometric properties may not always be viable. Mathematicians have
recently been more active in refining considerably more advanced tools from mathematics
to suit applicational needs. The success of these efforts show promising results in areas
like cryptography, statistical mechanics and robotics, to name a few.

The purpose of this article is to present some results indicating the use of modern math-
ematics to tackle a concrete problem, namely categorization of fingerprint images from a
database of mixed biometric samples. Instead of using representations like Fourier trans-
forms, a fingerprint will be represented as a network in 3-dimensional Euclidean space. In
topology, a network is called a cell complex which is a generalization of a triangulation.
Once a cell complex is constructed, it no longer matters how long the edges are or if the
cell complex is deformed into another geometric shape, provided edges cannot be crossed.
This means that the analysis will be the same if a given cell complex is equivalent to a trian-
gulation of a cube or if it is equivalent to a triangulation of a sphere. More so the choice of
triangulation is not important, e.g. using 18 or 36 triangles to cover a torus would yield the
same topology. Topology is sometimes referred to as rubber geometry because it studies
properties which persist throughout continuous deformation of objects; such deformations
are called homeomorphisms, which are continuous mappings of topological spaces with
continuous inverses. Metrics are obviously sensitive to such deformations and therefore
a metric is a geometric property. In topology it is not important how far two points are
from each other, what matters is how they are connected. In relation to biometric samples,
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the main idea is to construct an information network, a cell complex, which accurately
captures features unique to the particular type of biometric sample, e.g. iris or fingerprint.

5.1.1 Related work

In 2009 Libert et al. published a detailed validation metric for fingerprint images using
Fourier analysis [51]. The peak height of a specially derived power spectrum was found
as the most significant classifier based on their analysis on multiple datasets. Moreover
applying a windowing function, specifically the blackman window function, the accuracy
of the Spectral Image Validation and Verification (SIVV) method was greatly improved,
see [51]. The authors illustrated results by thresholding on the peak height. In 2010 an
analysis was conducted which is somewhat similar to the usage of the method proposed
here, see [137].

The method SIVV, in its current implementation in NIST Biometric Image Software
[NIST-NBIS-2012], was used in this work as baseline algorithm to benchmark our own
method.

5.2 Fundamentals of topology and homology

One of the most challenging aspects of the method proposed here is that the mathemati-
cal machinary for conducting such an analysis requires knowledge of algebraic topology,
specifically homology theory. These topics in mathematics are considered modern topics
which means they employ advanced algebraic methods developed as late as the second
half of the twentieth century. It is therefore recommended that the interested reader seek
information from one of the numerous textbooks on the subject. It is recommended that
the reader start with the article [138].

The way the method presented here differentiates from the usual methods in applying
mathematics is that instead of considering a function which maps some domain to some
range, say the discrete Fourier transform; a sequence of functions Hn are to be consid-
ered. These functions work on both spaces and maps since they induce a structure on the
maps between two spaces. As an example consider the graph in figure 5.1. Denote the
triangulation by X.

v1

v2v3

ac

b

Figure 5.1: Example triangulation with three edges and three vertices.

Let C1(X) be a vector space spanned by the edges {a, b, c} and C0(X) the vector space
spanned by the vertices {v1, v2, v3}. Assume that the coefficients in the two vector spaces
are real numbers. Let the map

f : C1(X)→ C0(X) (5.1)
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be one which sends edges of the graph to their vertices. In general homology theories there
are analog maps for sending surfaces to edges etc. but in the current context, where we
only study graphs, it will suffice to only consider the map f . The homology group H1(X)
consists of 1-dimensional loops in X. Homology ensures that loops in spaces commute,
e.g. it does not matter if one traverses paths abc−1 or b−1a−1c, i.e.

abc−1 = b−1a−1c, (5.2)

where the inverse notation means traversing a path in the opposite direction of the arrows
in the graph. The elements in the kernel ker f of the map f are called cycles. The idea of
homology is to count distinct cycles regardless of starting point or direction taken. In the
above example both starting point and direction of the two traversals are different, yet the
cycle is the same. For a finite graph like X the first homology group is given by

H1(X) = ker f = {x ∈ C1(X) | f(x) = 0}. (5.3)

A certain number is associated to each of the groups Hn(X). It is called the n’th betti
number and it is given by the rank of the n’th homology group,

βn = rank Hn(X). (5.4)

This number is equal to the number of distinct n-dimensional “holes” in the space. For the
example above, the betti numbers are β0 = 1, β1 = 1 and βn = 0 for n ≥ 2.

In relation to biometric samples, the betti number of special interest is β1. It is im-
portant to note that a homology theory ensures that topological distinct spaces produce
algebraically distinct homology groups, in particular the set of all betti numbers are not
the same for topological distinct spaces.

It should be clear that empirical data is not ideal, i.e. there will be some variation in
the observations made. In relation to fingerprints and the methodology proposed here,
this means that two biometric samples will most likely produce two distinct topological
spaces, even though the samples are acquired from the same source. As will be observed
in a later section, the variation in the population will typically be centered around a mean.

Since (connected) graphs are our primary focus of investigation (1-dimensional cell
complexes) a much simpler way of calculating homology can be used as opposed to the
cases where surfaces and the higher dimensional analogs are taken into account. First of all
only one map is of particular interest, namely the one sending edges to its corresponding
boundary vertices. This is exactly what we illustrated in the above example, yet the actual
map is somewhat unclear at this point. It happens that we can construct this linear map
in such a way that the transformation matrix become explicit. One definition of f could
be to use the orientation of the edges, e.g. define the boundary of an edge by a linear
combination of the vertices of the edge with the sign of the individual terms depending on
orientation. Define the starting vertex to have a negative coefficient and the ending vertex
to have a positive coefficient. Figure 5.2 illustrates the idea.

− +

Figure 5.2: Definition of boundary map.
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With this definition the edges in X are mapped to their boundary by

f(a) = v2 − v1,

f(b) = v3 − v2,

f(c) = v3 − v1.

(5.5)

The map f can then be described by a matrix F given by

F =

 −1 1 0
0 −1 1
−1 0 1

 . (5.6)

The kernel ker f of the map f is the null space of the matrix F. It is a subspace of C1(X)
and the dimension of this subspace is the betti number β1 of the graph in figure 5.1, i.e.

β1 = dim ker f = 1. (5.7)

We now state a simple relation without proof, which gives us a very easy way to compute
the betti number β1 of a finite graph, e.g. a 1-dimensional triangulation of a point cloud in
3-dimensional Euclidean space. For a graph it holds that

β1 = 1 + dim C1(X)− dim C0(X)

= 1 + (number of edges)− (number of vertices).
(5.8)

Finding the higher betti numbers in higher dimensional cell complexes requires more ad-
vanced constructions from homology theory.

5.2.1 Application to biometric samples

Consider each grayscale image as a point cloud in R3, one point per pixel, i.e. the first two
coordinates is the position of the pixel and the third coordinate is the grayscale intensity. A
special way of constructing a triangulation of a point cloud called a Witness complex will
be used, see [139]. In loose terms, it limits the number of vertices and edges in a triangula-
tion by choosing the vertices according to distances to other vertices in a point cloud. It is a
cell complex where a small number of points from the point cloud are choosen as vertices
and edges are then constructed iteratively according to a set of criterias as described in
[139].

Once the triangulation is constructed, the betti numbers are calculated using homology
and the metric will be constructed. For simplicity a weighted Euclidean metric is chosen.
Initially only two types of images are used, e.g. fingerprint or non-fingerprint. The non-
fingerprint database will be either face samples or iris scan samples.

Assume that a vector is given consisting of n numbers acquired from a sample of finger-
print images, each the 1st betti number of a fingerprint; one for each image in the sample.
Denote this vector by v and let the variance of v be denoted by σ2. Given an image, it is
possible to calculate the corresponding 1st betti number β1. Let x denote the vector where
each element is equal to this betti number for a given image.

Then for a fixed training set v, a metric can be constructed by

D(β1) = D(β1;x, v) =
1

σ

(
n∑
i=1

(xi − vi)2

)1/2

. (5.9)
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For the topological method presented here, the metric in equation 5.9 is used. For every im-
age and corresponding 1st betti number β1, calculate two numbers: 1) the distance Df (β1)
to a sample set of fingerprints. 2) the distanceDg(β1) to the sample set of non-fingerprints.

Now in order to be able to control the error rates of the overall analysis, a few simple
functions are introduced. The two functions are

F1(s, β1) = sDg(β1) and F2(s, β1) = (1− s)Df (β1) , s ∈ [0; 1]. (5.10)

Given a value of s, let F1 ≥ F2 determine a false match increase by 1. Otherwise a false
non match increase of 1. The proportion of the number of false matches (resp. false non
matches) with respect to the number of non-fingerprints (resp. fingerprints) is the corre-
sponding error rate. The value of s can be determined experimentally and thus depends
on the choice of training sets. The variable s is used to calculate the ROC curve in the
section presenting the results.

This method shall be thought of as a way to coarsely characterize a biometric sample
or rather a point cloud.

5.3 Results

The results presented here will highlight both strengths and weaknesses of the method
derived from topology which will be denoted TOP and the already known method
SIVV. Some of the most interesting results are found when considering mixed biometric
databases, i.e. databases where both fingerprints, iris and other biometric samples are
contained. In order to see how the constructed metrics work on such databases when cate-
gorizing joint data sets with various fingerprint databases a DET curve is determined and
the equal error rate EER is calculated.

Portions of the research in this article use the database CASIA-FingerprintV5 [140] and
CASIA-IrisV4 [141] collected by the Chinese Academy of Sciences’ Institute of Automation
(CASIA). A fingerprint database acquired by Association BioSecure is used and referred
to here simply as Biosecure [142]. Also used is the MCYT database involving fingerprints
which was collected in a project conducted in 2003 [135].

All calculations are carried out on a computer running Linux (kernel 3.3.2-1) with a
Quad-core (3.10 GHz each) Intel Xeon E3-1225 processor and 4 GB memory. The software
used for computation are Javaplex version 4.0 and the SIVVUtility package which is part of
NIST Biometric Image Software version 4.0.1. All algorithms were run in parallel on three
of the cores due to the large number of images needed to be processed. User interfaces
have been rewritten in order to control output formats for both software packages.

5.3.1 General observations

There are a number of general observations to be made. The classifier used in this section
is the 1st betti number. Considering the betti number of fingerprint images yield a bell
shaped curve when approximating to the histogram in the figure below. A similar yet
skewed result is found for non-fingerprints. The databases used to produce figure 5.3 are
the CASIA-FingerprintV5 and CASIA-IrisV4 databases.

These bell curve shapes, although one is skewed, may be a product of the method by
which the betti numbers are calculated.
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Figure 5.3: Histogram of the 1st betti numbers of CASIA fingerprint and iris images

5.3.2 Mixed biometric (iris vs. fingerprint) database

In this section an analysis of the method is done using the iris database CASIA-IrisV4. The
fingerprint databases are analyzed separately and the results are highlighted in a table in
the end of this section. To illustrate the difference in the betti numbers a couple of examples
are shown. The fingerprint is taken from the public database FVC2000Db2, see [143], and
the iris is the one from one of the authors. Note that this is meant merely as an example.
The iris images used in the experiment are non-segmented ocular images.

(a) 1st betti number
57

(b) 1st betti number
2

Figure 5.4: Examples of 1st betti numbers of some images via witness complexes.

The examples in figure 5.4 indicate the difference of the betti numbers for the two types
of biometric samples.
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Figure 5.5: fingerprint vs iris database: EER(TOP) = 2.7%, EER(SIVV)=9.0%.

Database SIVV TOP Summary

MCYT dp 12.9% 0.2% Largest observed difference be-
tween methods.

Biosecure 6.2% 1.9% Smallest absolute difference.
CASIA 9.0% 2.7% Medium difference between

methods.

Table 5.1: EER for SIVV and TOP on varying fingerprint datasets vs. iris images.

Comparing with the SIVV method it becomes clear that the topological approach per-
forms better for fingerprints vs. iris databases (see fig. 5.5). The most interesting aspect
of considering mixed biometric databases is that when Fourier analysis seem to produce
misleading features; coarse topological features tend to correctly partition the database
into biometric types.

Table 5.1 illustrates how the equal error rate varies between fingerprint databases for
the two methods. The results clearly suggests that using the TOP-method will produce
much better results when categorizing fingerprints and iris scans. The most extreme case
is the MCYT dp database. It is the database with best performance using the topological
approach and the worst performance when using SIVV. An interesting observation has
been made; the choice of fingerprint reference database, also called training set, does not
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Training set
MCYT dp Biosecure CASIA

Database
MCYT dp 0.2% 0.2% 0.2%
Biosecure 1.9% 1.9% 1.9%

CASIA 2.7% 2.7% 2.7%

Table 5.2: EER for SIVV and TOP on varying fingerprint datasets vs. iris images in different training
set configurations.

Database SIVV TOP Summary

MCYT dp 5.0% 1.0% Largest observed difference be-
tween methods.

Biosecure 2.5% 3.0% Medium difference between
methods.

CASIA 3.7% 4.1% Smallest absolute difference.

Table 5.3: EER for SIVV and TOP on varying fingerprint datasets vs. face images.

produce a significant change in the results. So one may choose a subset from either MCYT
dp, Biosecure or CASIA-fingerprintV5 as a sample reference to a fingerprint database. Ta-
ble 5.2 illustrates the observed equal error rates when utilizing various training sets.

At least from a statistical point of view it seems that the TOP-method is invariant of fin-
gerprint reference database chosen. That is the equal error rate remains the same under dif-
ferent training sets. The table only illustrates this observation for the combinations of the
three databases, MCYT dp, Biosecure and CASIA. One should be very careful before mak-
ing any inference based on these preliminary observations. Note that the non-fingerprint
image training set is not varied in this experiment.

5.3.3 Mixed biometric (face vs. fingerprint) database

A similar analysis as the one from the previous section will be carried out. The non-
fingerprints in this section consists of facial images from the CASIA-FaceV5 [144] database.

In table 5.3 it is observed that SIVV performs slightly better for both CASIA fingerprints
and Biosecure databases. A significant difference is observed when comparing with the
MCYT database. In this particular case the method TOP performs better than SIVV. The
results shown here simply states that the TOP method does not yield better results than
SIVV for all biometric samples when categorizing. In complete analogy with the study of
iris vs. fingerprint, the equal error rates can be seen to be robust with respect to the choice
of fingerprint training set.

For the databases used in this study and referring to tables 5.2 and 5.4, it can be con-
cluded that the variances imposed by changing the training set for the fingerprint database
is not significant.
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Training set
MCYT dp Biosecure CASIA

Database
MCYT dp 1.0% 1.0% 1.0%
Biosecure 3.1% 3.0% 3.1%

CASIA 4.2% 4.2% 4.1%

Table 5.4: EER for SIVV and TOP on varying fingerprint datasets vs. face images in different training
set configurations.

5.4 Discussion and conclusions

It has been shown that, given an image, homology of a specially constructed triangula-
tion of the image, viewed as a point cloud will enable the separation of fingerprint images
from other biometric samples, in particular when categorizing iris scans and fingerprints.
For the iris scans the topological approach seems to perform better than the SIVV method.
When categorizing fingerprints and face samples the method SIVV seem to perform bet-
ter, if only slightly, for the databases Biosecure and CASIA-FingerprintV5. For the database
MCYT the method TOP seem to perform significantly better. The result indicate that the
acquisition of samples in the MCYT database or some form of processing of the images
may cause this significant decrease in equal error rate. Moreover it is observed that the
opposite holds for the SIVV method, where a significant increase in equal error rate is ob-
served for the MCYT database compared against both iris and face databases. Our method
seem to be invariant with respect to the choice of fingerprint training set.

The method of constructing the triangulation from a biometric sample, in this case a
fingerprint image, can be improved. The general construction could be to consider particu-
larly important landmarks in the fingerprint as vertices in the triangulation. Edges should
then be assigned between two vertices in such a way that certain information about the
sample specific to the landmarks yield a denser network, e.g. more information is retained
in the triangulation, which in turn should indicate a higher quality. This latter part is an
extensive work in progress, requiring many simulations to be run and much statistics to
be collected. It is possible that the method TOP can be extended to categorize the types of
fingerprints as well, e.g. identify whorl or arch structures.

Another possible extension of this study would be to study the same source under
varying conditions, e.g. time, pressure variation and humidity conditions. This would
give us an indication of the ability of the method to identify individual samples as being
from captured from the same source. The relation to well-known image features and the
importance of these are still unclear at this point, this being yet another interesting topic to
study next.
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Chapter 6

Finger Image Quality Based on Singular Point
Localization

Information about the paper

One aspect of fingerprint image quality is the positioning of the finger on
the sensor. Here we investigate the influence of the position of the finger-
print core point on the comparison score, and propose a quality algorithm
based on this position. The paper is a contribution towards research ques-
tion RQ2. This original paper was published in: [5] J. Wang, M. A. Olsen,
and C. Busch. Finger image quality based on singular point localization. 2014.
DOI: 10.1117/12.2050145. URL: http://dx.doi.org/10.1117/12.
2050145.
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6. FINGER IMAGE QUALITY BASED ON SINGULAR POINT LOCALIZATION

Abstract

Singular points are important global features of fingerprints and singular point local-
ization is a crucial step in biometric recognition. Moreover the presence and position
of the core point in a captured fingerprint sample can reflect whether the finger is
placed properly on the sensor. Therefore, the displacement given by detected core
points is investigated. We propose pattern-based filters to eliminate the false detec-
tion given by state of the art approaches. The experimental results show improve-
ment using different databases. Based on the improved singular point localization
algorithm, we explore and analyze the importance of singular points on biometric ac-
curacy. The experiment is based on large scale databases and conducted by relating
the measured quality of a fingerprint sample, given by the positions of core points,
to the biometric performance. The experimental results show the positions of core
points do have influence on the comparison algorithms, but are not as relevant as
other benchmarked quality metrics.

6.1 Introduction

Due to the excellent distinctiveness, persistence and ease of collection, fingerprints are
the most widely observed biometric characteristic for identification and authentication. In
practical biometric systems, the performance depends heavily on the quality of the input
samples. That is, a poor quality sample might have negative influence on the biometric
system. Hence, quality measurement of fingerprint samples is a crucial step to assure the
performance by rejecting poor samples specifically in the enrollment procedure.

A Singular Point (SP) is the important global feature of a fingerprint pattern. Typically
SPs, known as core and delta, are located in the regions which possess the higher ridgeline
curvature. The SPs are identified in Fig. 6.1 with regard to the Henry classification system
[49]. A core point is defined as the topmost point on the innermost recurving ridgeline of a
fingerprint [145] by ISO/IEC1, thus there is also one core point existed in each arch finger.

In biometric systems, SPs are important in fingerprint classification. Liu et al. [147] pro-
posed an indexing fingerprint based on location, direction, estimation and correlation of
SPs, and Wei [148] used the delta direction and the SPs to partition fingerprint classes[149].
Besides, SPs are also significant in fingerprint comparison, which are used as references to
line up two fingerprints in one-to-one comparison[150]. Hence recent literature states that
SPs plays an important role in fingerprint recognition[151, 152].

The importance of SPs inspires us that a concise description of their properties can be
used as metrics to assess fingerprint image quality. Core points are approximately located
in the center of a fingerprint pattern so that the positions of cores in a captured fingerprint
sample represents the displacement, i.e., whether the finger is placed properly on the sen-
sor. In a mated comparison trial, a low comparison score2 might be given if one of the
fingerprints performs a large displacement. A finger displacement in either the reference
or the probe sample or a shift of both in opposite directions will result in a reduced over-
lapping area to seek minutiae information and thus cause the low comparison score, even
though both samples might possess good quality.

1International Organization for Standardization/International Electrotechnical Commission
2Comparison score is directly proportional to similarity in this paper.
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(a) Whorl (b) Left loop (c) Right loop (d) Tented Arch

(e) Arch

Figure 6.1: Identified SPs within Henry classification system, where cores and deltas are marked by
circles and triangles respectively. Fingerprints are taken from FVC2000Db2 [146].

However, the mentioned importance of SPs was previously derived by speculatively
analyzing the functions in biometric systems without systematic analysis. Furthermore,
there is also the question of what is the degree of the importance when benchmarked with
other existing quality metrics. The contribution of this paper is the following: develop
an algorithm that can increase state of the art SP localization rate analyze the degree of
importance for processing SP in biometric systems.

The remainder of this paper is organized as follows: Sec. 6.2 describes the existing tech-
niques of SP localization and quality metrics used in this work; in Sec. 6.3, a few methods
are proposed both to localize SPs and explore the importance of the SPs; Sec. 6.4 presents
the experimental setup and results; Sec. 6.5 summarizes our contribution in a conclusion.

6.2 State of the Art

6.2.1 Singular Point Localization

In order to localize SPs in a fingerprint, the orientation field (OF) should be estimated as
a foundation. Various techniques have been proposed in the literature such as filter bank-
based[153] and model-based approaches[154]. However, it is reported that these methods
do not provide as much accurate results as the gradient-based methods[155].

Bazen and Gerez proposed a method to estimated the OF on the pixel level[150]. The
pixel-wise gradient vectors [Gx Gy]T whose phase angle denoted the direction of the max-
imum intensity change are given by:
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[
Gx
Gy

]
= ∇I(x, y) (6.1)

=

[
∂I(x,y)
∂x

∂I(x,y)
∂y

]
(6.2)

where I(x, y) is the intensity at pixel (x, y). The ridge orientation is orthogonal to the
gradient phase angle at each pixel, however, the gradient vectors cannot directly be used
to compute the OF because opposite gradient vectors will be canceled out with each other
although they represent the same orientations. A feasible representation is proposed by
doubling the angles and squaring the length of the gradients so that opposite gradient
vectors will point in the same direction[156]. While doubling the angle of and squaring
the length of gradients we can compute:

[
Gs,x
Gs,y

]
=

[
G2
ρcos2Gψ

G2
ρsin2Gψ

]
(6.3)

=

[
G2
ρ(cos

2Gφ − sin2Gψ)
G2
ρ(2sinGφcosGψ)

]
(6.4)

=

[
G2
x −G2

y

2GxGy

]
(6.5)

The estimated orientation at the fine pixel level will be quite noise sensitive, thus the
average squared gradient vector [Gs,x Gs,y]T of each element should rather be computed
according to squared gradient vectors within the surrounding window W :

[
Gs,x
Gs,y

]
=

∑WGs,x∑
W

Gs,y

 (6.6)

=

∑WG2
x −G2

y∑
W

2GxGy

 (6.7)

The average gradient direction Φ is given by:

Φ =


1
2 tan

−1(Gs,y/Gs,x), Gs,x ≥ 0
1
2 tan

−1(Gs,y/Gs,x) + π, Gs,x < 0 ∧Gs,y ≥ 0
1
2 tan

−1(Gs,y/Gs,x)− π, Gs,x < 0 ∧Gs,y < 0

(6.8)

Then the average ridge-valley direction θ of the fingerprint represented in the OF is
given by:

θ =

{
Φ + 1

2π, Φ ≤ 0

Φ− 1
2π, Φ > 0

(6.9)
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Based on the estimated OF, SPs can be localized with many techniques. The Poincare
index is an natural and practical method by computing the rotation in each closed curve
[157]. However, it is not resistant to noise and the method performs only with poor compu-
tational efficiency. Bazen and Gerez [150] proposed the application of the Green’s theorem,
which improved the Poincare index method by applying a discrete version of Green’s the-
orem and reported better performance regarding the correct detection rate.

The algorithm doubles the OF resulting in an interval (−π, π], and then computes gra-
dients of the doubled orientation field:

[
Jx(x, y)
Jy(x, y)

]
= ∇2θ(x, y) (6.10)

=

[
∂2θ(x,y)
∂x

∂2θ(x,y)
∂y

]
(6.11)

The discrete Green’s Theorem can be applied by summing the gradients of the doubled
OF [Jx Jy]T over the contour, thus the Poincare indexes change to 2π, -2π, and 0 for,
respectively, a core, a delta, and none of these [150]:

Index =
∑

∆x,∆y along ∂A

(Jx ·∆x+ Jy ·∆y) (6.12)

=
∑
A

rot[Jx Jy]T (6.13)

=
∑
A

(
∂ωy
∂x
− ∂ωx

∂y
) (6.14)

Furthermore, orientations of detected SPs can be estimated by comparing the doubled
OF around SPs with precomputed reference models of core and delta respectively:

DOFcore,ref =
(y,−x)√
x2 + y2

, DOFdelta,ref (6.15)

=
(−y,−x)√
x2 + y2

(6.16)

The orientation of a core or delta is given by taking the element-by-element product of
the estimated doubled OF DOFcore,obs and the complex conjugated of the reference model
DOFcore,ref or DOFdelta,ref respectively:

α̂C = ∠
1

N

∑
x,y

DOF ∗core,ref ·DOFcore,obs , α̂D (6.17)

=
1

3
∠

1

N

∑
x,y

DOF ∗delta,ref ·DOFdelta,obs (6.18)

As a result, the orientation of a core is the direction where the core points out to, and
for delta it is the direction where one of the three vertexes points to the top of the image.
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6.2.2 Quality Measurement Algorithms - State of the Art

The ISO/IEC Technical Report 29794-4 on fingerprint sample quality[99] is the most recent
overview of recommended fingerprint quality metrics. Amongst others the following met-
rics are defined in ISO/IEC 29794-4, which shall serve as baseline in the benchmark with
a SP-based sample quality metric in this work:

Orientation Certainty Level (OCL) measures the strength of the energy concentration
along the dominant ridge flow orientation within a block by means of computing the
block-wise gradient.

Frequency Domain Analysis (FDA) performs a block-wise Discrete Fourier Transform
and measures the energy concentration in a frequency band. Dominance in the very low
frequencies indicate low quality.

Radial Power Spectrum (PS) is a measure of maximal signal power in a defined frequency
band of the global Radial Fourier spectrum. Ridges can be locally approximated by means
of a single sine wave, hence high energy concentration in a narrow frequency band corre-
sponds to consistent ridge structures.

Furthermore, NIST3 Finger Image Quality (NFIQ) as it was released in 2004 is a neural
network pattern classifier, which is trained to classify fingerprint quality into 5 values[79]
by evaluating the block-based features and the quality of minutiae.

Gabor filter responses (Gabor) measures the responses of a fingerprint by applying
Gabor filters with four predefined orientations. For the fingerprint areas with clear ridge
pattern, the Gabor responses of one or a few orientations should have larger values than
other orientations. Whereas for the background or the poor ridge clarity fingerprint areas,
the Gabor responses of four orientations will be low and constant[1].

6.3 Proposed Methods

6.3.1 Semantic Filtering of detected Singular Points

While the method that was reviewed in Section 6.2 can be considered as one of the
strongest methods available to date there are known deficiencies[158]. There are numer-
ous spurious SPs being detected in the presented algorithm so that it is an essential post-
processing task to eliminate those false detection. We propose a series of sequentially
applied semantic filters. The filters are designed under the assumption that for the benign
case of a correctly placed finger the core is in the center of the fingerprint area and further
that the fingerprint area provides higher quality if it is more approaching to the center.
Therefore, if we detect multiple SPs and some subset does not satisfy the semantic condi-
tions outlined in this section, then those SP-candidates, which are near to the boundary of
the foreground area, will be removed. The following five semantic conditions are defined:

• C2D2: There shall be at most two cores and two deltas.

• CCDIS: If there are two cores, then the spatial distance between them should be
small.

• CCORIDIFF: If there are two cores, then they point out to approximately opposite
directions.

3National Institute of Standards and Technology

74



6.3 PROPOSED METHODS

• DDORIDIFF: If there are two deltas, then they possess similar orientations.

• DCDANGLE: If there are two deltas and at least one core, then the angle delta1 −
core− delta2 lies in a certain interval. If there are two cores, the midpoint of the two
cores is selected as depicted in Fig. 6.2.

Delta1
Delta2

Core

Figure 6.2: Angle delta1− core− delta2 of a image, the midpoint is used as the positions of cores if
there are more than one core points.

With the filters as defined we are confident to reduce the error rates in SP detection
significantly. Candidates that do not satisfy the filter rules are removed from the candidate
list such that the remaining SP can be considered to be reliable. We will show this in Section
6.4.

6.3.2 SP localization-based Quality Measurement Algorithms

The methodology we used to analyze the importance of the SPs is to relate the detected
SPs to biometric performance. Precisely the positions of detected SPs and a metric derived
from the SP-position with respect to the center of the fingerprint area are proposed as
quality metrics.

We propose to use SPs as control points to determine if a finger is placed on the center
of the sensor. Intuitively smaller displacement is likely to provide better quality because
a non-displaced fingerprint sample is a more complete representation of the fingerprint
pattern. Contrarily, if for the same finger instance, the capture subject shifted in two sub-
sequent capture attempts the finger respectively to the left and right, then then two gener-
ated captured samples might seem like a pair of non-mated (i.e. imposter) fingerprints.

Core points are located on the center of fingers, whereas delta points does not, so core
points are more suitable to indicate wheter a fingerprint has a large displacement. Further-
more in most cases at least one core exists in a fingerprint, thus only information that is
derived from the position of the core is proposed as quality metrics. Hence, the estimated
quality scores are expected to be decreasing along with an increase in the displacement. If
there are two detected core points on a fingerprint, the midpoint of both is used as the core
point to measure the displacement.

The segmentation of the fingerprint area in the sample is conducted first, in order to
obtain the foreground and then identify the center of the foreground. There is no need to
consider the intensity at each pixel because we are not interested in the center of gravity of
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the fingerprint. The coordinates of the center (Cx, Cy) of N foreground pixels is computed
as:

Cx =
1

N

N−1∑
i=0

Mx (6.19)

Cy =
1

N

N−1∑
i=0

My (6.20)

where [Mx,My] is the index of foreground mask along the horizontal and vertical di-
rection respectively. Then the SP localization-based quality metrics are proposed as:

• DIS: the quality score is defined by the distance from the center O of the foreground
to the core position C, as depicted in Fig 6.3a;

• HDIS: the quality score is defined by the horizontal distance from the center O of the
foreground to the core position C, as depicted in Fig 6.3b;

• VDIS: the quality score is given by the vertical distance from the center O of the
foreground to the core position C, as depicted in Fig 6.3c.

In addition, different fingerprints might likely have different foreground sizes, even
though the fingerprint sample is captured from the same fingerprint instance but in dif-
ferent acquisitions. Therefore we consider the size of the foreground as a factor that may
have influence and thus additionally consider relative metrics. The respective ratio ver-
sions DISR, HDISR, VDISR of the metrics defined above DIS, HDIS, VDIS are computed
by dividing the corresponding values by the maximum distance, maximum horizontal
distance and maximum vertical distance from center O to the boundary point M of the
foreground respectively, as depicted in Fig. 6.3.

6.4 Experiments

6.4.1 Singular Point Localization

For this experiment firstly we use the dataset FVC2002Db2, which contains 880 plain fin-
gerprint samples captured by an optical sensor [143]. The SPs for this dataset were identi-
fied manually according to the definition given by ISO/IEC 19794-1:2011[145]. Moreover
the ground truth data set SD14-BKA-GTD was used, which is a subset of NIST SD14[159]
fingerprint images. The dataset consists of 486 inked rolled and plain fingerprints samples.
The foreground, the minutiae , and SPs were marked-up by at least three dactyloscopic ex-
perts from the German Federal Criminal Police Office (BKA)[160].

Bazen reported in Ref. [150] that SP localization does not require a high resolution of
the fingerprint samples. Thus the samples, which were originally of a spatial resolution
of 296 × 560 pixels (FVC) and 832 × 768 pixels (SD14), were in our experiment down-
sized to a quarter size initially. In order to further reduce the interference of noises on the
background, segmentation is applied for FVC2002Db2, and ground-truth foregrounds of
SK14-BKA-GTD are used. Then a Gaussian filter with σ = 5 is applied to the foreground.
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C

O

M

(a) DIS/DISR

C OM

(b) HDIS/HDISR

C

O

M

(c) VDIS/DVISR

Figure 6.3: Examples of SP localization-based quality metrics on a fingerprint foreground, OC rep-
resents the score for DIS, HDIS, VDIS, and OC/OM represents for DISR, HDISR, VDISR.

The experimental results of the conventional Poincare index method, the Bazen method
that was based on Green’s theorem and the Bazen method with post-processing with the
proposed semantic filters are conducted for both datasets FVC2000Db2 and SD14-BKA-
GTD and are shown in Tab. 6.1 and Tab. 6.2 respectively.

SP type Error type PI Bazen Bazen & Filters

Core False 15.9 6.9 3.3
Missed 4.8 3.0 3.6

Delta False 18.5 3.5 3.5
Missed 2.3 2.3 2.3

SP False 24.6 8.6 5.9
Missed 7.1 5.3 5.9

Table 6.1: Results of SP localization for FVC2002Db2 (in %).

SP type Error type PI Bazen Bazen & Filters

Core False 58.9 31.3 9.9
Missed 8.4 9.0 10.5

Delta False 62.4 23.5 11.3
Missed 4.7 7.2 9.3

SP False 66.7 38.5 17.3
Missed 11.5 14.8 15.0

Table 6.2: Results of SP localization for SD14-BKA-GTD (in %).

Generally the conventional Poincare index method possesses the worst performance,
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with relatively low missed rate, but rather high false detection rate. In contrast, the Bazen
approach is more robust against noise, resulting in relatively fewer false detections. By
filtering out the spurious SPs after applying our proposed semantic filters, the SPs are
validated so that the false detection is further decreased. Meanwhile the missed detection
rate is slightly higher due to fact that the filter in some cases eliminate a candidate by
mistake. As a result, the error rate for SPs decreases, which shows that the proposed
semantic filters improves the correct SP localization rate.

6.4.2 Finger Image Quality

Initially the large-scale database CASIAFPV5[140] is used in this experiment, which con-
sists of 20000 fingerprint images of 500 subjects. Each subject provides 8 fingers and each
of them is captured for 5 acquisitions by an optical fingerprint sensor with 328 × 356 pix-
els. Furthermore, a subset of Ministerio de Ciencia y Tecnologı́a of Science and Technology
(MCYT) 330 biomodal Fingerprint subcorpus[135], MCYT330PB is selected. Fingerprints
from 330 individuals have been acquired by a capacitive sensor, with a resolution of 500
dpi. Each subject has provided 10 fingers and 12 acquisitions resulting 39600 fingerprints
all at 300 × 300 pixels. In addition, the other subset MCYT330DP is also used, which has
the same file structure and is collected by an optical sensor with 296× 400 pixels.

Besides, three commercial comparators are used for research purposes which are pro-
vided by the industrial vendors with anonymized names A, B, C. For each comparator,
comparison scores are computed for each pair of mated fingerprints and thus there are
500×8×5×4 = 80000 genuine comparisons in CASIAFPV5, and 330×10×12×11 = 435600
in MCYT330PB and MCYT330DP, respectively.

The experiment consists of two parts: the importance of SPs is explored by analyzing
how efficiently SPs can be used to reject finger samples with low comparison scores; what
is the influence on utility-based quality scores if the position of core is away from the center
of foreground.

6.4.3 Error versus reject curves

The effectiveness of proposed and benchmarked quality metrics are measured by Error
versus Reject Curves (ERC)[112], which is a method to evaluate how efficiently poor gen-
uine comparisons will be rejected, which correlate to low comparison scores. Hence, the
ideal case is that the rejected comparisons identified by a selected metric are exactly those
comparisons with lowest genuine scores. The efficiency of a given metric is evaluated by
a curve of False Non Match Rate (FNMR) variation along with the increase of rejections. If
the computed quality scores are perfectly correlated with the genuine quality score, then
the curve should decrease quickly with the fraction rejected and approach the ideal case.

In this experiment, 10% is set as false non-match rate, so these finger samples are target
to be rejected by the quality metrics under investigation. In an operational practice it is
not realistic to reject many samples , so at most a fraction of 35% of the samples can be
rejected. There might be a variety of quality metrics plotted in the same ERC graph, so
that it might get difficult if the ERCs show multiple intersections. In order to improve the
readability, the green area under the curve in Fig. 6.4 is used as a single number to indicate
the prediction performance. Therefore, a sample quality metric has a better performance
if the area is in proximity of 0.
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Figure 6.4: Example area of ERC. For the ease of visualization, the area under the curve is enlarged
as 100 times. The area in yellow marks the area of the ideal case, and green marks the area under the
QMA curve excluding the ideal area.

The results given by ERC for CASIAFPV5 are depicted in Fig. 6.5a, Fig. 6.5b, Fig. 6.5c,
using comparator A, B, C respectively.

The results given by ERC for MCYT330PB are depicted in Fig. 6.6a, Fig. 6.6b, Fig. 6.6c,
using comparator A, B, C respectively, and similarly for MCYT330DP are illustrated in
Fig. 6.7a, Fig. 6.7b, Fig. 6.7c

Regarding CASIAFPV5, the ERC is not decreasing for the SP localization-based meth-
ods, which seems the proposed approaches are not suitable for CASIAFPV5. As for
MCYT330DP and MCYT330PB, however, we can in general observe the ERC for the pro-
posed SP localization-based methods are linearly decreasing. The reason is that the fin-
gerprints in MCYT330PB and MCYT330PB have similar orientations, but there are a large
number of systematic rotations occuring in CASIAFPV5, with the result that the distance
measurement becomes meaningless. Hence the proposed method is not invariant with re-
spect to the rotation of the fingerprint and should be applied based only on the prerequisite
that there is no presence of systematic rotation.

In MCYT330DP and MCYT330PB, although the experimental results vary with depen-
dency on the different databases and comparators, generally the moderate decrease means
the low quality samples are rejected as expected. In other words, larger displacement of
SP in a fingerprint sample degenerates the biometric performance.

Moreover, we can see that averagely the proposed methods are not so efficient as the
benchmarked baseline quality metrics (NFIQ, OCL, FDA, GABOR, PS), which means that
the importance of the positions of core points is not as relevant as the measurement of
the other features presented in Sec. 6.2.2. For MCYT330DP, the benchmarked quality met-
rics OCL and GABOR varies seriously among different comparators, but results using SP
localization-based methods do not change dramatically, so the quality assessment using
the core positions is more reliable.
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Figure 6.5: ERC for providers A, B, C (left to right) for CASIAFPV5 a, b, c.
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Figure 6.6: ERC for providers A, B, C (left to right) for MCYT330PB a, b, c.
81



6. FINGER IMAGE QUALITY BASED ON SINGULAR POINT LOCALIZATION

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.02

0.04

0.06

0.08

0.1

Fraction rejected

Fa
ls

e 
N

on
−M

at
ch

 R
at

e 
0.

1

Error vs. Reject Curve − cmp.alg.: comparison scores A − db.: NFIQ2 MCYT330DP−FULL

 

 

nfiq: 1.26
ocl: 2.2
fda: 1.58
gabor: 2.33
ps: 2.05
dis: 2.64
disr: 2.41
hdis: 3.03
hdisr: 2.78
vdis: 2.64
vdisr: 2.4
ideal behavior

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.02

0.04

0.06

0.08

0.1

Fraction rejected

Fa
ls

e 
N

on
−M

at
ch

 R
at

e 
0.

1

Error vs. Reject Curve − cmp.alg.: comparison scores B − db.: NFIQ2 MCYT330DP−FULL

 

 

nfiq: 1.9
ocl: 3.03
fda: 1.8
gabor: 2.94
ps: 2.2
dis: 2.51
disr: 2.46
hdis: 2.86
hdisr: 2.67
vdis: 2.6
vdisr: 2.47
ideal behavior

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.02

0.04

0.06

0.08

0.1

Fraction rejected

Fa
ls

e 
N

on
−M

at
ch

 R
at

e 
0.

1

Error vs. Reject Curve − cmp.alg.: comparison scores C − db.: NFIQ2 MCYT330DP−FULL

 

 

nfiq: 1.51
ocl: 2.51
fda: 1.74
gabor: 2.6
ps: 2.18
dis: 2.55
disr: 2.32
hdis: 2.86
hdisr: 2.6
vdis: 2.64
vdisr: 2.38
ideal behavior

(c)

Figure 6.7: ERC for providers A, B, C (left to right) for MCYT330DP a, b, c.
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6.5 CONCLUSION

For MCYT330DP, the FNMR is not decreased by HDIS, which indicates that the qual-
ity of fingerprint samples in the database is not sensitive to the movement of SP in the
horizontal direction. Among the SP localization-based approaches, averagely DIS pos-
sesses better performance than HDIS and VDIS. This positive result is depending on the
effect of both HDIS and VDIS, which means that the displacements both in horizontal and
vertical direction degenerates the biometric performance. Furthermore, the ratio version
DISR, HDISR, VDISR has the lower area values than DIS, HDIS, VIDS so that the size of
foreground should be considered.

Overall it is obvious that the proposed SP based quality method contains complemen-
tary information and fusion with the baseline quality metrics is recommended.

6.4.4 Utility-based quality heatmap

In order to investigate the effect of displacement on the biometric performance, quality
heatmaps are generated according to the positions of the core points (the mid-point is
adopted if there are two cores) and quality scores.

In this experiment, the utility-based quality score is used to indicate the “good” and
“poor” quality of a sample. The utility scores are also genuine because they are computed
based on genuine comparison scores using the method defined in ISO/IEC 29794-1 [70].
The utility of the sample utilityui (the uth presentation of subject i) is computed by means
of the genuine and imposter comparison score distributions:

utilityui =
mgenuine
i,u −mimposter

i,u

σgenuinei,u + σimposteri,u

(6.21)

where µ and σ are the mean and standard deviation respectively. Consequently, higher
utility score indicates the higher biometric sample quality and vice versa. As mentioned
previously we used three top-performing comparators, A, B, C, so there are three utility
scores for each finger sample. Each block is 10 × 10 pixels, and the score in each block is
given by the mean of utility scores of samples having an SP in that block. In addition, the
number of samples in each block is also plotted in order to find region of interest (ROI),
i.e., the utility scores are meaningful only if there are plenty of samples.

Due to the rotations in CASIAFPV5, thus only the other databases are meaningful to
be analyzed. The utility-based quality heatmaps are illustrated in Fig. 6.8 and Fig. 6.9 for
MCYT330PB and MCYT330DP.

For both databases, generally in ROI the utility-based quality scores are decreased
along with the increment of displacement, i.e., the quality score is lower if the core point is
further away from the center of foreground. However, the decrease is more apparent with
comparator B, which means that this algorithm is more sensitive to the movement of core
points. In the other hand, comparator A is more resistant to displacements.

6.5 Conclusion

Our first contribution is a proposed sequential semantic filtering of candidate SPs, which
can significantly reduce the presence of falsely detected SPs. Experimental results based on
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Figure 6.8: Number of samples and utility maps for MCYT330PB. Each block is 10 × 10 pixels, and
ROI is approximately [-60, 60] and [-80, 100] in horizontal and vertical direction respectively.

FVC2002Db2 and SD14-BKA-GTD have shown that the total error rate decreased. Specifi-
cally, the SP false detection rate is decreased dramatically with a slight increment of the SP
miss rate, which leads to a promising trade-off.

Based on the proposed SP localization approach, we then explored and analyzed in our
second contribution, the importance of SP on fingerprint sample quality metrics in terms
of the positions of detected core points with respect to the center of the fingerprint area.
The experimental results given by ERC show the displacement measurement should be
applied without the presence of systematic rotations, and further that the displacement
has an influence on the biometric performance, but on average the relevance of the posi-
tions of core points is not as significant as the benchmarked baseline quality metrics, i.e,
Orientation Certainty Level, Frequency Domain Analysis, Radial Power Spectrum, NIST
Finger Image Quality and Gabor filter responses. A better performance is achieved by
DISR, HDISR and VDISR so that the size of foreground should be considered.
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Figure 6.9: Number of samples and utility maps for MCYT330DP. Each block is 10 × 10 pixels, ROI
is approximately [-60, 50] and [-110, 90] in horizontal and vertical direction respectively.

In conclusion, the SP based quality metric DIS is suggested to be used as a NFIQ 2.0
candidate quality metric because it measure the displacement comprehensively and has
complementary properties to other NFIQ 2.0 candidate metrics.
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Chapter 7

Self-Organizing Maps for Fingerprint Image
Quality Assessment

Information about the paper

This contribution is represents a contribution to fingerprint quality assess-
ment algorithms which are entirely defined through machine learning as a
two tiered unsupervised and supervised approach to result in an algorithm
which is computationally efficient. The paper is a contribution towards re-
search question RQ2 and RQ3. This original paper was published in: [3]
M. A. Olsen, E. Tabassi, A. Makarov, and C. Busch. “Self-Organizing Maps
for Fingerprint Image Quality Assessment”. In: Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition Workshops. CVPRW ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 138–145. ISBN: 978-
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7. SELF-ORGANIZING MAPS FOR FINGERPRINT IMAGE QUALITY ASSESSMENT

Abstract

Fingerprint quality assessment is a crucial task which needs to be conducted accu-
rately in various phases in the biometric enrolment and recognition processes. Ne-
glecting quality measurement will adversely impact accuracy and efficiency of bio-
metric recognition systems (e.g. verification and identification of individuals). Mea-
suring and reporting quality allows processing enhancements to increase probability
of detection and track accuracy while decreasing probability of false alarms.
Aside from predictive capabilities with respect to the recognition performance, an-
other important design criteria for a quality assessment algorithm is to meet the low
computational complexity requirement of mobile platforms used in national biomet-
ric systems, by military and police forces.
We propose a computationally efficient means of predicting biometric performance
based on a combination of unsupervised and supervised machine learning tech-
niques. We train a self-organizing map (SOM) to cluster blocks of fingerprint im-
ages based on their spatial information content. The output of the SOM is a high-
level representation of the finger image, which forms the input to a Random For-
est trained to learn the relationship between the SOM output and biometric per-
formance. The quantitative evaluation performed demonstrates that our proposed
quality assessment algorithm is a reasonable predictor of performance. The open
source code of our algorithm will be posted at http://www.nist.gov/itl/iad/
ig/development_nfiq_2.cfm

7.1 Introduction

Recognition performance is increased if fingerprints are of sufficiently good quality and
when overall database integrity is improved. Therefore, the ability to automatically ex-
amine a biometric image and produce a numerical estimate of the utility of the image
to a downstream comparison algorithm (i.e. matcher) is an operationally desirable func-
tion. Particularly, if a low quality value is predictive of recognition failure (primarily a
false negative, but possibly a false positive too), then a new sample can be collected while
the subject is still present. Without a method to determine whether the quality of a cap-
tured sample is sufficient for recognition purposes, an individual can be falsely rejected
or actively subvert the system. As such, many large scale biometric deployments mandate
measuring and reporting of quality scores. Examples are the Unique Identification Author-
ity of India (UIDAI) [127], the European Union Visa Information System (VIS) [123, 124,
161], or the United States Visitor and Immigrant Status Indicator Technology (US-VISIT).
While the ability to inspect low utility images is essential for both the server and client
side of these applications, the client side demands low computational cost, both in terms
of time and processing power. In fact, requirements for next generation quality assessment
includes near frame rate throughput [162].

The major contribution of this paper is a novel method for quality assessment which
has a very low computation cost; essentially after training the quality assessment is reduce
to a look up table. Our proposed method is based on a combination of unsupervised (self-
organizing map [163]) and supervised (Random Forest [164]) machine learning algorithm.
A self-organizing map (SOM) is utilized as a receptive field to learn the spatial informa-
tion content of a fingerprint image creating a high level representation in the form of class
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7.2 BACKGROUND AND RELATED WORK

labels. Transforming an input from image space to class labels reduces the dimensional-
ity by several orders of magnitude while retaining key characteristics of the finger image.
This new representation of the finger image becomes input for the Random Forest which is
to give a quality score that is predictive of biometric performance. To the authors’ knowl-
edge this is the first application of using a receptive field approach to fingerprint quality
assessment.

The paper is organized as follows: section 7.2 provides a quick overview of related
work in fingerprint quality assessment. section 7.3 details our proposed method. Discus-
sion of data, experiments and results are given in section 7.4, followed by conclusions and
future work in section 7.5.

7.2 Background and Related Work

Several fingerprint quality assessment algorithms have been documented in the literature,
a comparative study of them is given in [97]. The majority of them are based on process-
ing an image in either the spatial or frequency domain to compute particular features such
as orientation strength. Subsequently a scalar quality value is computed from a feature or
a combination of features. The technical report on fingerprint sample quality [99] by the
International Organization for Standardization has a recent overview of recommended
fingerprint quality features; e.g. Orientation Certainty Level which measures the strength
of the energy concentration along the dominant ridge flow orientation within a block by
computing the blockwise gradient; Ridge-Valley Structure which computes the blockwise
clarity of ridges and valleys by applying linear regression to determine a gray-level thresh-
old and then classify pixels as ridge or valley. A ratio of misclassified pixels is determined
by comparing the normalized ridge and valley thickness of that block. Orientation Flow
proposed in [72] is a measure of the rate of change in the blockwise ridge flow across the
fingerprint. The quality score decreases as the difference between the dominant ridge ori-
entation of the block and its 8 neighboring blocks increases. A block wise Gabor based
quality feature was proposed in [43] and a point wise Gabor based quality feature was
proposed in [1]. One widely used open source quality assessment algorithm which com-
bines several of the above features is NFIQ [78]. It is based on a neural network trained on
an 11-dimensional feature vector derived from finger image characteristics which include
minutia count, ridge curvature and local contrast.

Computation of these features happens to be expensive, first a processing unit is re-
quired for their computations, and secondly according to our in-house implementations,
it takes more than 130 millisecond to compute any of the features. In this paper, we aim
to address this shortcoming of the current methods. Once trained, our proposed method
is essentially reduced to look-up table operations, which reduces the computation time
by about half, and make it suitable for mobile platforms with minimum computational
resources.

7.3 Methodology

This section details how we employed the SOM and Random Forest clustering for calcu-
lation of fingerprint image quality. fig. 7.1 shows the overview of our proposed method.
We give a review of the SOM concept in section 7.3.1, and its application to our proposed
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method in section 7.3.2. section 7.3.3 describes how we used Random Forest to classify the
output of the SOM into five different quality categories.

Training set / 
validation set	


Train 	

self-organizing map	


SO
M

 Codebook	


Train	

random forest	


Binned	

comparison scores	


Activation histogram	


Test	

set	
 Activation histogram	
 Predicted 

comparison score bin	


Random
 forest	


Figure 7.1: Overview of system architecture and components. The training and validation sets and
their binned associated comparison scores are utilized to train the self-organizing map and the Ran-
dom Forest. Training the SOM creates a codebook which is used to create an activation histogram of
the training and validation sets. The histogram of activations from the training set is used as the ex-
planatory variables in the Random Forest, while the binned comparison score is the target variable.
Once trained, the Random Forest produces a model which is verified using the validation set. The
test set, containing the unseen data, is used to determine the accuracy of the pipeline.

7.3.1 Overview of Self-organizing Maps

The Kohonen Map, introduced in [163], is a self-organizing map (SOM) which is trained
without supervision. Its objective is to organize the input patterns to a topological struc-
ture where the relations between different patterns are preserved. The SOM is a two-
layered network consisting of a number of processing units. The first layer of units can be
considered as a group of sensors picking up the signal. It is fully connected to a second,
two-dimensional layer: the competitive layer. fig. 7.2 shows the topology of the network.
The weights associated with the connections are adjusted during training and only one
single unit in the competitive layer is active at a time. Due to the training rules explained
below, the spatial distance of two units reacting on different input patterns is a measure for
the similarity of the two patterns. The training of the network is carried out by presenting
data vectors x to the input layer of the network whose connection weight vectors mi of all
competitive units i are first initialized by random values. If N is the dimension of the data,
we choose N input units of the first layer and define an Euclidean distance di between x
and mi with

di = ‖ x−mi‖ =

√√√√N−1∑
j=0

(xj −mij)2 (7.1)

The input signal activates winner unit c whose weight vector has the minimum distance
to the given signal. The winning unit is also known as the best matching unit (BMU).

dc = min(di) (7.2)
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The updating of the weights mij associated to the units is only performed for units i
within a proximity d(t) defining the time-dependant neighborhood Nc(t) of the winning
c. This proximity d(t) is reduced as training of the network is progressing with time
t (eq. (7.6)). fig. 7.2 illustrates the time-dependent neighborhood. The update of weights
follows eq. (7.3), where a(t) represents a time-dependent learning rate.

m
(t+1)
ij = m

(t)
ij + ∆m

(t)
ij (7.3)

∆m
(t)
ij =

{
a(t)(xj −m(t)

ij ), if unit i ∈ Nc(t)
0, otherwise

(7.4)

a(t) = a0(1− 1

T
), t ∈ [0, . . . , T − 1] (7.5)

d(t) = d0(1− t

T
), t ∈ [0, . . . , T − 1] (7.6)

The SOM offers two properties during training that are strongly related to our challenge

Figure 7.2: Topology of the self-organizing map and the time dependent neighborhood Nc(t) of a
unit c.

namely a) an approximation of the presented data by mean vectors mi that are associated
as weights to the units thus essentially realizing a cluster analysis of the data and b) a topo-
logical ordering of the competitive units in such a way that neighboring units in the layer
represent similar clusters in multidimensional space and thus a dimensionality reduction.
This can be interpreted as a nonlinear, topology preserving, associative mapping process.
Generally, the Kohonen Map refers to the well-known K-means clustering [165]. As the
units in the competitive layer are ordered topologically, i.e. neighboring units react to data
vectors similar in the input space, the mapping can be interpreted as a reduction of any
N -dimensional space into two dimensions preserving the topology of the data as much
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as possible. The resolution of this discrete 2D-space is given by the number of competi-
tive units, i.e. clusters, which should be configured such that the map serves the require-
ments with regard to grading (granularity) of the quality score. The limited use case of
the SOM for clustering, topological organization and for subspace mapping has been de-
scribed. Due to the fixed number of units in the SOM and its topology preserving property,
some units may have very similar mean vectors mi. With a trained SOM we then assign
a meaning or class to each unit, such that its activation can be related to biometric per-
formance in the form of a comparison score or binned comparison score. Our SOM input
is blocks of the fingerprint image, and therefore we do not know the contribution of each
individual block towards the resulting comparison score. Furthermore, comparison scores
are pairwise while quality scores only relate to a single impression. Thus we cannot know
if a low comparison score is due to both impressions being of low quality or only one of
them. We uncover the relation between each unit in the SOM and biometric performance
through another layer of machine learning. In particular we utilize Random Forests to
determine the relation between a certain activation pattern and a given comparison score
(see section 7.3.3). During the organization process the goal is to find a limited set of cen-
troids representing the data in a C-means sense. As a result the centroids represent the
variety of feature vectors in an optimal way leading to a minimum of the error function,
which can be easily calculated by the Euclidean distance between all feature vectors and
their nearest codebook vector in the map. This search does not need to cover the entire
space of codebook vectors since efficient approximations can exclude the vast majority of
codebook vectors from consideration [166]. The unit which is closest to the input vector is
known as the best matching unit (BMU).

7.3.2 Application of Self-organizing Maps

First, to provide a fixed length input vector for the SOM the finger images are subdivided
without padding or overlap into blocks of size n × n pixels after intensity normalization.
One-dimensional vectors of length n2 are constructed from the pixel intensities in each
block by concatenating the rows. For the training a SOM of size dim × dim is initialized
with randomly generated weight vectors. During the training phase each training input
vector (i.e. the pixel intensities of a block) is presented to the network and modification
of network weights is performed. After T iterations (assuming T is large enough) the
SOM clusters the training input vectors into dim × dim units representing different spa-
tial characteristics of fingerprints. The trained SOM produces a codebook with dim × dim
entries each of length n2 where each codebook entry represents a cluster of input training
vectors. Due to the update function (eq. (7.3)) the codebook vector (or entry) associated
with each unit will stabilize such that nearby units will have similar codebook vectors.
Figure 7.3 shows the codebook vectors of a SOM of size 24 by 24 (dim = 24) trained
using input vectors of length 576 (n = 24) for T = 1 × 106 iterations. It is clear that
the SOM has identified clusters representing various ridge orientations, ridge strengths
and background. Variation in image intensity in the codebook is absent or limited due
to the image normalization performed as explained in section 7.4.1. The trained SOM as-
signs an index of the corresponding best-matching unit to each block of an input image.
fig. 7.4 shows the unit activation patterns for a finger image. Note that the white back-
ground appearing in the input images shown in fig. 7.4a activates the same units in the
SOM (shown in fig. 7.4b) indicating that the background has a cluster of its own.
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Figure 7.3: Visualization of the codebook for a SOM of size 24 by 24 (dim = 24)trained with 1.7×107

input vectors of length 576 (n = 24) for T = 1 × 106 iterations shown in a grid structure. Unit 0 is
located in upper left corner and unit 575 is located in the lower right corner.
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(a) (b)

Figure 7.4: llustration of relationship between finger image and SOM codebook shown in fig. 7.3.
7.4a is the input images which is divided into blocks of size 24 × 24. 7.4b shows the best-matching
unit for each image block where black is unit 0 and white is unit 575.

To summarize, a trained SOM transforms a fingerprint image from its spatial domain
into a vector of the SOM unit activations. The length of this vector varies for different
images because the number of blocks depend on the image size. To get a fixed-length rep-
resentation we compute the histogram of unit activations normalized by the block count
per image. Each image block in a finger image has exactly one BMU and thus we can form
a histogram of unit activations. This is motivated by the expectation that the activation
patterns for high quality and low quality images are different. Therefore, an image of size
U × V is represented by a vector of length dim × dim with each component being the
frequency of occurrence of the codebook entries.

To determine how the SOM behaves when presented with low quality (i.e. difficult to
match) and high quality (i.e. easy to match) fingerprint images we select 64 images that
result in false non-matches at the threshold corresponding to false match rate of 1×10−4

(this set is denoted Low ) and 64 images involved in comparisons giving the highest pos-
sible comparison score (this set is denoted High). Note that the threshold was computed
over 120 000 impostor comparisons. fig. 7.5 shows 10 randomly chosen examples of activa-
tion histograms from each of the Low and High sets. The SOM is of size 32× 32 (dim = 32)
and the network was trained for T = 1×106 iterations using image blocks of 24×24 pixels
(n = 24). Visual inspection reveals that the histograms of images in the low and high sets
look different. fig. 7.6 shows the sum of SOM unit activations of the 64 images in the High
and Low sets respectively. The difference of these two aggregated histogram (Low −High)
is depicted in fig. 7.7. Bars that extend below zero represent units with stronger activa-
tion in the High set than the Low . Similarly bars that extend above zero represents units
with stronger activation in the Low set. Since the difference between the two sets is non-
zero we conclude that the histograms of the two sets are substantially different. In other
words, we have shown that the activation histogram of images involved in a false reject
are significantly different from that of those which are highly likely to be correctly recog-
nized. Therefore we used this activation histogram as our feature vector for a supervised
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Figure 7.5: On the left, histogram of activations for 10 images from the set of images which occurred
in comparisons resulting in false non-matches at FMR= 1×10−4 (set High). On the right, histogram
of activations for 10 images from the set of images which occurred in comparisons with the highest
possible comparison score (set Low ).
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Figure 7.6: Aggregated histograms of the Low and High sets. The upper figure shows the aggregate
histogram of 64 images that gave the highest possible comparison score (easy to match and therefore
high quality). The lower figure shows the aggregate histogram of 64 images that produces false
non-match at threshold corresponding to false match rate of 1×10−4.
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Figure 7.7: Difference between aggregated histograms of the Low and High sets. Negative values
indicate that the unit is more active in images that gave the highest possible comparison score (easy
to match and therefore high quality), while positive values indicate that the unit is more active in
images that gave a false reject (therefore hard to match or low quality).
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learning to predict biometric performance.

7.3.3 Classification using Random Forest

We chose bins of genuine comparison scores as the response variable and tried several
classifiers: K-Nearest Neighbors, Support Vector Machine, Recursive Partitioning tree, and
Random Forest. Due to the 8-page limit, we only present results of Random Forests which
performed better than the others. Random Forests [164] basically grows many classifica-
tion trees. To classify a new object from an input vector, it puts the input vector down each
of the trees in the forest. Each tree gives a classification, in other words the tree votes for
that class. The forest chooses the classification having the most votes. Random Forest has
the advantages of being fast, capable of handling large datasets, and that it does not over
fit.

We investigate network dependence on block size, network size and number of itera-
tions by varying n and dim . table 7.1 summarizes the accuracy of the Random Forest for
the different parameters. It shows smaller block size gives better performance. Increasing
the size of the network does not seem to have a significant effect, which might be due to
lack of sufficient training data. Theoretically, the size of the map is only limited by the
memory capacity of the computing unit and availability of sufficient number of training
imagery. A larger SOMnetwork is more capable of representing all possible spatial infor-
mation of its training data, but it requires a larger number of images for training.

7.4 Experiments and Results

7.4.1 Data set

Data we used comprised of 7976 right index finger images of 3988 persons (2 images per
person) selected from a large operational repository. We took care to construct a balanced
training set (1000 pairs) with a representation of real world difficult to match samples to
the extend possible. Comparison scores are generated using one of the leading commercial
comparison algorithms we’ll reveal the name of the provider in final copy if paper is accepted.We want
the training data to be a balanced representation of all possible (or to the extend possible)
fingerprint impairments, as well as pristine images. We found that the current available
public datasets were not suitable for our work. This is mainly due to small size of these
datasets (a few hundred users at the most) and also absence of a reasonably wide range
of quality problems in these collections, which is expected and understandable given the
careful and at times controlled design of these collections. To ensure inclusion of a wide
range of quality in our dataset, we formed a balanced representation from all possible com-
parison score values generated by the biometric comparator used in our study. Given that
different levels of fingerprint quality result in different values of comparison scores, a set
of images representing all possible comparison scores, would represent the obtainable di-
versity in the quality. Specifically, we chose images from a large operational repository us-
ing comparison scores of a leading commercial fingerprint comparison provider. First, we
quantized the raw comparison scores by dividing their range into 100 bins. Then for each
bin of comparison scores, we randomly selected 10 pairs of images with the corresponding
quantized comparison score. This gave 2000 fingerprint images (10 × 100 comparisons, 2
images per comparison) from which we used 1800 for training and 200 for validation. Our
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test set consists of images from 2988 comparisons (5976 fingerprint images) selected at ran-
dom from the initial corpus excluding images occurring in any of the 1000 comparisons
selected for the training or validation sets. We further grouped the quantized comparison
scores (which are in [1-100]) into 5 levels such that quantized scores in [1, 20] belongs to bin
1, [21, 40] belongs to bin 2 and so on. These 5 levels quantify the biometric performance
for each pair of images and are used as the target (response) values for a Random Forest
whose explanatory variables are the SOM activation histogram. Images are normalized to
give equal intensity according to the pyramid based enhancement method from [167]. An
example of the enhancement process is shown in fig. 7.8.

Figure 7.8: Example of normalization process using image from FVC 2004 [168]. (a) is the input
image and (b) is the enhanced version.

7.4.2 Performance measurements

This section documents methods and results for the quantitative evaluation of our pro-
posed quality assessment approach. Evaluations are done by quantifying the association
between quality scores and the observed matching results. We used three widely accepted
and documented methods to assess the goodness of our proposed quality algorithm in
predicting performance. We examined the relationship of quality scores with a) genuine
comparison scores, b) recognition error rate (FNMR) for each level of quality, and c) im-
provement of FNMRas poor quality samples are removed.

dim = 24 dim = 32 dim = 40

n = 24 26.38% 26.76% 26.23%
n = 32 25.85% 24.32% 26.34%
n = 64 23.18% 22.73% 24.18%

Table 7.1: Accuracy of prediction of comparison score bin for various parameter choices for the
SOM dimensions (dim) and block sizes (n). The percentage reflects the accuracy of the predicted bin
matching the actual bin as determined from the comparsison score.
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Per the definition of biometric quality [70], quality values q should be a monotonic in-
creasing function of performance, where high-quality samples give high similarity scores
when involved in genuine comparisons. Figure 7.9 shows the relationship of our pro-
posed quality scores with biometric comparison scores, we generated heatmaps (i.e. sur-
face plots) of the three variables qverify , qenrol and score of the images in our test sets. The
x-axis represents quality of the enrolment samples. Quality of verification samples are on
the y-axis. The color in each cell represents the magnitude of genuine comparison (or sim-
ilarity) scores. If quality is an indicator of performance, higher similarity scores (shown in
yellow) will be achieved for high-quality images of the same finger. The heatmap in the
lower right corner shows the magnitude of samples in each of the combinations of score
for qverify , qenrol . Of the block sizes investigated, block size 24 gives the best performance;
images with higher quality score (4 or 5) result in the highest similarity scores (visualized
by yellow color in the upper right corner) and images with low quality scores (1 or 2) result
in the lowest similarity score (visualized by red color in the lower left corner. Block size 64
does not perform well.

A quality assessment algorithm is useful if it can at least give an ordered indication of
an eventual performance. This is the case for our proposed method as shown in Figure
7.10. Figure 7.10 shows the FNMRfor each L = 5 levels of our proposed quality method.
The highest FNMRis observed for the lowest quality samples (q = 1), and lowest FNMRis
observed for the highest quality samples (q = 5). Biometric matching involves at least two
samples and the challenge is then to relate performance (which involves two samples) to
quality values qverify and qenrol . We simplify the analysis by combining the two qualities
according to qi = M(qverify , qenrol). It is usually the case that operationally a quality as-
sessment algorithm can be used to assess whether an enrolment sample is of high quality.
The enrolment sample will be compared later with a sample that typically is of less con-
trolled quality. We used M(x, y) = min(x, y) which captures the concept that the worse
of two samples drives the similarity score. Figure 7.10 shows that our proposed method
provides a rank order indication of FNMR: the highest error rate is observed for the lowest
quality sample (q = 1) and the lowest error rate for the highest quality (q = 5). As such,
our proposed method is successful in predicting performance.

Another metric for comparative evaluation of quality assessment algorithms is the er-
ror versus reject curves [112]. The goal is to demonstrate how efficiently rejection of low-
quality samples results in improved performance. This models the operational case in
which quality is maintained by reacquisition after a low-quality sample is detected. Con-
sider that a pair of samples (from the same subject) with qualities qverif and qenrol are
compared to produce a genuine score, and this is repeated for N such pairs. If the quality
values are perfectly correlated with the genuine comparison scores, setting threshold τ to
give an overall FNMRof x and then rejecting x percent with the lowest qualities should
result in FNMRof zero after recomputing FNMR. Figure 7.11 shows the error vs. reject
curves of our proposed method as applied to different block, namely 24, 32, and 64. We set
the value of τ to give a false non-match rate of ten percent. Pairwise quality is computed
using the geometric mean of the quality scores of the two images being compared. Similar
results were obtained using min(x, y). Behavior of a perfect quality assessment algorithm
is displayed by the gray dotted line where the rejection of the lowest 10% quality would
result in an FNMRof zero. The most operationally relevant part of the error vs. reject
curves is usually on the left side where a small fraction, x, of low-quality rejections would
be tolerable from the perspective of forcing a second enrolment attempt. We set x = 0.3,
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Figure 7.9: Genuine comparison scores vs. (qverif , qenrol) for the 3 different block sizes. The proper
behavior is to have low-quality scores for low genuine scores, as is the case for block sizes 24 and 32.
The figure in bottom right shows the count of images involved in each cell.

because rejection of more than 30% is not operationally feasible. Block size of 24 performs
the best as it is evident by the sharpest decrease in FNMRwhen poor quality samples are
rejected. Rejection of 10% lowest quality decreases FNMRto 0.085 from its initial value of
0.1. To give a point of reference for comparison between our method and existing methods,
fig. 7.11 includes an existing known quality assessment method - the Orientation Certainty
Level [99]. Our proposed method outperforms Orientation Certainty Level for rejection
rates higher than 5%.

Computation efficiency: We noted the processing time required to compute quality
values on a PC equipped with a 2.3 GHz Intel Core i7 and 16 GB of memory. With a
network size of dim = 24 the quickest processing time was recorded at a block size of
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Figure 7.10: FNMRvs score threshold for each level of quality for different block sizes. The SOM-
trained on block sizes 24 and 32 performs better than block size 64, as is indicated by a better sepa-
ration of FNMRfor the five levels of quality.

n = 24 with 503 seconds to generate quality values for 7973 images ( 65 ms/image). With
the same network size but block size n = 64 we recorded a total processing time of 654
seconds ( 82 ms/image).

We conclude this section by noting that all three evaluation methods employed here
demonstrated that our proposed quality algorithm is capable of predicting performance of
a commercial biometric matcher.

7.5 Conclusions and Future Work

We presented a novel approach for fingerprint quality assessment which is fast and of
low computational complexity. Our approach is predictive of biometric performance and
avoids the explicit quality feature extraction that often has high computational cost. This
is achieved by training a self organizing map to represent the variety of spatial informa-
tion content of fingerprints in our training data. The training of the SOMnetwork may
require a significant computational effort, however the training is performed only once, in
an offline setting, using suitable computing resources. Once the code book is generated,
the operational mode is extremely efficient as the implicit quality assessment is reduced
to a loading-task of the fingerprint-image blocks to the input layer of the trained SOM,
and a subsequent lookup of the quality level in the associated Random Forest. Thus our
suggested approach has the advantage of having a very low computational cost which
makes it particularly suitable for applications constrained in processing resources such as
low-end mobile fingerprint devices used by the Unique Identification Authority of India
(UIDAI). We investigated the effect of finger image block size (input to the SOM), and the
size of the SOM network. Our experimental results suggest that smaller image block size
(24 pixels by 24 pixels in our case) performed better than larger sizes (32 or 64 pixels). A
larger SOMnetwork while more capable of representing all possible spatial information of
its training data, requires a larger number of images for training. We tried network sizes
of 24 (576 units), 32 (1024 units), and 40 (1600 units). Network size of 32 outperformed the
others, noting that our training data might not have been large enough for network size of
40. Quantitative results presented in section 7.4.2 demonstrate the predictive power of our
proposed finger quality assessment method.
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Figure 7.11: FNMRvs reject curves for our proposed method. The threshold is set to give an initial
FNMR= 0.1. The gray dotted line shows the ideal case where the rejection of the ten percent lowest
quality results in zero FNMR. Blocksize = 24 perform the best as it is evident by the sharpest decrease
in FNMRas poor quality samples are rejected. An almost flat curve suggests that the quality algo-
rithm is not effective in predicting the performance. The solid gray line shows the rejection curve for
Orientation Certainty Level metric. Our proposed method outperforms Orientation Certainty Level
for rejection rates higher than 5%.

Future work will address improvements in the SOM training, presentation of SOMout-
put to the learning algorithm (Random Forest), and its fine tuning. A potentially valuable
source of information is the distance between an image block and its associated BMU. This
information could be used to create a weighted SOM activation histogram. Combining
units with low distance between weight vectors may provide more robust classification.
Additionally, we plan to repeat the study using comparison scores of one or more com-
parison subsystem (or algorithms) and investigate its generalizability to comparison al-
gorithms not used at the training time. Finally, we are eager to try this approach for the
quality assessment of latent impressions.
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Chapter 8

Interpretation of Fingerprint Image Quality
Features Extracted by Self-Organizing Maps

Information about the paper

This paper explores potential alternatives to Random Forests in interpreting
the feature space produced by the Self-Organizing Map (SOM) approach pre-
sented in chapter 7. It is determined that there much of the SOM capacity is
spent on encoding non-fingerprint regions and that mean gray level can be
used to explain much of the variance in the produced map. The paper is a
contribution towards research question RQ2 and RQ3. This original paper
was published in: [4] I. Danov, M. A. Olsen, and C. Busch. Interpretation
of fingerprint image quality features extracted by self-organizing maps. 2014. DOI:
10.1117/12.2050676. URL: http://dx.doi.org/10.1117/12.
2050676.
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8. INTERPRETATION OF FINGERPRINT IMAGE QUALITY EXTRACTED BY SOM

Abstract

Accurate prediction of fingerprint quality is of significant importance to any
fingerprint-based biometric system. Ensuring high quality samples for both probe
and reference can substantially improve the system’s performance by lowering false
non-matches, thus allowing finer adjustment of the decision threshold of the biomet-
ric system. Furthermore, the increasing usage of biometrics in mobile contexts de-
mands development of lightweight methods for operational environment. A novel
two-tier computationally efficient approach was recently proposed based on mod-
elling block-wise fingerprint image data using Self-Organizing Map (SOM) to extract
specific ridge pattern features, which are then used as an input to a Random Forests
(RF )classifier trained to predict the quality score of a propagated sample. This pa-
per conducts an investigative comparative analysis on a publicly available dataset for
the improvement of the two-tier approach by proposing additionally three feature in-
terpretation methods, based respectively on SOM, Generative Topographic Mapping
and RF. The analysis shows that two of the proposed methods produce promising
results on the given dataset.

8.1 Introduction

Fingerprint image quality of the probe and reference samples directly affects the recogni-
tion performance of fingerprint-based biometric systems. Detecting low quality samples at
acquisition time and reacquiring a new sample with better quality while the subject is still
present can prevent the false non-matches. Therefore developing quality measurement al-
gorithms that can predict quality scores is of crucial importance for large scale biometric
deployments like the European Union Visa Information System (VIS)[169] or the US VISIT
Automated Biometric Identification System (IDENT)[170].

Researchers have contributed to the development of several state of the art algorithms
and moves toward standardization have been done[70, 82, 99]. However these algorithms
are mostly based on computationally expensive image processing steps, which may make
them unsuitable for mobile applications, where processing capabilities are constrained.

Self-Organizing Maps (SOM)[171] have been used for texture analysis[172] over the last
couple of decades and that has inspired our research in applying SOM in the field of fin-
gerprint image quality assessment[3]. The achieved operational speed makes the method
attractive for applications in mobile environment, however its accuracy, though compara-
ble with the state of the art, still lags behind the best predicting algorithms available.

The contribution of this paper is an investigative comparative analysis for the improve-
ment of the block-wise fingerprint image quality estimation based on SOM. The proposed
approach uses two-level modeling for constructing a linearly initialized SOM map to ex-
tract block-wise local features. The interpretation of these features to quality scores is done
by four different approaches using three different machine learning techniques - SOM,
Generative Topographic Mapping (GTM)[173] and Random Forests (RF)[164] with raw
features or histogram based feature vectors.

This rest of the paper is organized as follows. Section 8.2 provides information on back-
ground and related work, Section 8.3 is an overview of the investigated machine learning
techniques. Section 8.4 presents the methodology used for the experiments, whose execu-
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tion and results are shown in Section 8.5. Finally, Section 8.6 summarizes conclusions and
shares ideas for future work.

8.2 Background and Related Work

8.2.1 Fingerprint sample quality

Fingerprint image samples are compared by comparison algorithms with regard to simi-
larity of their ridge impressions, either by extracting minutiae or some other features. As
defined in the international standard ISO/IEC 29794-1 [70], biometric sample quality has
two influencing components: character and fidelity; both affecting a third component util-
ity as output. A Quality Measurement Algorithm (QMA) assigns a score to a sample which
reflects the positive or negative contribution to the biometrics recognition performance of
the biometric system.

Fingerprint sample quality is of high importance to modern fingerprint-based biomet-
ric systems, therefore quality estimation and quality measurement have wide range of
applications, all aiming to improve recognition accuracy. However a measure of qual-
ity is biometric system dependent, as shown by Grother and Tabassi [112], since different
comparison subsystems are sensitive to different sample artifacts like blurriness, contrast,
translation, rotation, etc. In consequence the endeavour of establishing a universal quality
standard defining a singular metric for the utility of the fingerprint sample for all applica-
tions remains a challenge[70].

For evaluating the results of the current work, two of the state of the art methods, NIST
NFIQ[79] and Orientation Certainty Level (OCL)[71], have been used as baseline meth-
ods. NFIQ was proposed by Tabassi[79] and is currently the de facto quality algorithm. Its
working principle is based on extracting eleven different features by analyzing the finger-
print image with NIST Fingerprint Image Software (NBIS)[174] to produce a feature vector.
The feature vector is given as an input to an artificial neural network to classify the image
as one of five quality levels. The neural network is a multi-layered perceptron which has
been trained on a subset of images from five datasets with different capture conditions.

OCL is a local feature analysis method for quality estimation introduced by Lim et al.
[71]. It is part of both ISO/IEC 29794-4[99] and NFIQ 2.0 Feature Definition Document[82].
This method has grounds in the observation that good quality samples have well defined
ridges and valleys. If taken block-wise, ridge and valley lines have the same orientation
and determining that orientation for good quality samples could be done with high cer-
tainty, unlike for poor quality samples. Therefore the measured orientation certainty is
used as quality feature for each block, which are later aggregated into a single quality
score.

Definitions of state of the art quality features have been presented in ISO/IEC 29794-4
[99] as well as in NFIQ 2.0 Feature Definitions Document (v0.5)[82]. Their evaluated per-
formance has been shown in NFIQ 2.0 Feature Evaluation Document (v0.5)[82]. However
most of the presented methods rely on image analysis techniques for the feature extraction
and happen to be computationally expensive. Therefore using machine learning methods
to learn the features from a training dataset is a promising novel approach that can speed
up the quality assessment.
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8.2.2 Holistic approach using Self-Organizing Maps

Self-Organizing Maps[175] is an unsupervised learning method, that has been used for
clustering and data visualization. A detailed perspective on the capabilities of this method
will be given in the following Section. In the field of image analysis, one of its best use
cases is for texture analysis[172]. Therefore using it in the field of fingerprint image sam-
ple analysis is a straightforward approach, since fingerprint samples have very specific
textures caused by the ridge impressions. Makarov[176] has recently experimented with
modeling the whole-image data of a fingerprint sample by applying SOM and then classi-
fying the new samples according to their best-matching unit. Since SOM effectively maps
similar samples to the same node, it is expected that similar samples would have similar
features, thus similar quality assessment.

The holistic approach is based on the following principle: the pixel values data of the
whole-image is taken row-wise to construct a single feature vector. Then a set of samples
are used for the training of a randomly initialized hexagonal SOM map with a predefined
network size, e.g., 16×16 nodes, 24×24 nodes, etc. The quality scores of the training sam-
ples are calculated by binning the observed utility score and after the training has finished
for each node a quality class is assigned by the mean quality score of all training samples
mapped to that node. A winner takes it all assignment, where the most populous quality
class among all training samples mapped to a node is the winner, was also tried in the
performed experiments as an alternative quality score node labeling. Also image segmen-
tation for background and foreground separation was applied in some of the experiments
and the results were compared with the results obtained from raw image data.

The main goal of the research was to prove that SOM is capable to provide a mapping,
such that it would be useful for predicting quality. Producing the results required a val-
idation set to be used and has shown that the samples predicted by the model to be of
low quality consisted of more samples with low observed utility; respectively, the samples
that were predicted to be of high quality consist of more samples with high observed util-
ity. These results for CASIAFPV5[140] dataset appeared to be quite promising and fueled
further research of the usage of SOM for modeling fingerprint image data.

8.2.3 Block-wise approach using Self-Organizing Maps

Even though the holistic approach has shown promising results, the trained models were
not able to capture many differences in the images. The global analysis of the images
leads to separating them into different groups, but often these groups have large inter-
group variations. Therefore, the next advances of the research were done by Olsen et al. [3]
and they were based on block-wise fingerprint image analysis and training a randomly
initialized SOM model that has to capture the block images data. Before dividing images
into blocks, they were normalized using pyramid decomposition[167]. Each of the nodes
in the trained SOM is assigned with an index number such that each block of a fingerprint
image sample can be assigned with its corresponding best-matching unit’s index number.

This is used to construct a vector of indices representing the finger image. The normal-
ized histogram for this vector is computed, i.e., another feature vector with the length of
the number of SOM nodes, containing the normalized histogram is constructed. The anal-
ysis of the histograms of low and high quality samples has shown that they are different
for each of the two groups.
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The histogram feature vectors are used for training a supervised Random Forest
(RF)[164] model to classify them into five quality classes, determined by the produced
comparison scores. Once the two models (the SOM and the RF) are trained, the same
feature extraction procedure is done using the SOM model for the validation set and the
constructed feature vectors are used to classify the samples into one of the five quality
classes by using the RF model. The procedure was applied on a NIST operational dataset
and has shown very good results [3], surpassing the performance of the state of the art
method Orientation Flow defined in Ref. [82].

8.3 Machine Learning Techniques

8.3.1 Self-Organizing Maps

Self-organizing maps (SOM) have been introduced by Kohonen[171] and are a biologically
inspired unsupervised learning neural network model [172]. It is a dimensionality reduc-
tion technique, similar in principle to vector quantization, where a number of codebook
vectors m are fitted to represent some larger list of data vectors x. Unlike vector quanti-
zation, SOM maintains globally and spatially ordered codebook vectors, usually forming
a two-dimensional grid for visualization purposes. The dimensionality of the codebook
vectors is the same as the dimensionality of the data and a distance metric is defined, e.g.
Euclidean distance:

d(x,m) = ‖x−m‖ =

√√√√ |x|∑
i=1

(xi −mi)2 (8.1)

After the map has reached in the unsupervised learning phase a state of convergence,
a non-linear mapping of the high-dimensional data space to the lower-dimensional grid
space is achieved. The training data topology is preserved as much as possible by the re-
sulting network (map), where each data sample’s best-matching unit (BMU) is determined
as follows:

c = argmin
i
{‖x(t)−mi(t)‖} (8.2)

The index t is used to denote the different data samples for x(t) and the state of the
codebook vector mi(t) at the moment t of processing data sample x(t). By considering the
coordinates on the map of the sample’s BMU, the dimensionality of the data is reduced to
the dimensionality of the network lattice. These coordinates could be used as a new set of
features themselves.

The network grid arrays could be constructed in a couple of different ways: regular grid
array, toroidal or spherical, where the first one is the most commonly used. Depending on
the number of node neighbors, a regular grid map could be rectangular (four neighbors)
or hexagonal (six neighbors). Hexagonal maps are more accurate and better suited for
visualizations, therefore they are recommended [175].

Before the training process a SOM network should be initialized and that could be
done either randomly, by randomizing the codebook vectors, or linearly, by spanning the
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Figure 8.1: Best-matching unit is determined using Eq. 8.2, then the neighborhood is determined by
Eq. 8.3 and the winner node and its spatial neighbors get updated.

network grid along the first two principal components of the training data. The training
process of a SOM map is controlled by the neighborhood function:

hci(t) = α(t) exp

[
−‖mc(t)−mi(t)‖2

2σ2(t)

]
(8.3)

where α(t) is a monotonically decreasing learning rate function affecting the elasticity of
the memory and σ(t) is a monotonically decreasing radius function, used to determine
the neighborhood around the BMU to be updated. This neighborhood is composed of all
non-zero values of hci and when determined by Eq. 8.3 is called Gaussian neighborhood.
There exists a bubble neighborhood, for which hci = 1 for a given range of neighboring
nodes and hci = 0 otherwise.

The training process proceeds with updating each grid node at a step by using the
equation

mi(t+ 1) = mi(t) + hci(t) [x(t)−mi(t)] (8.4)

There are two main SOM algorithms as explained in Ref. [175]. The first one is the
stepwise SOM algorithm, where each data sample x(t) is treated as a separate step in a
sequential process. The second algorithm is the batch SOM, which relies on availability of
all the training data, therefore no learning rate function α(t) is needed in the neighborhood
function hci(t). A list of best-matched samples Nc is maintained for each model mc(t),
where references to all samples, whose BMU is c, are kept. The update of the models is
performed in a batch update iteration for all the grid nodes at once, unlike the equential
update iterations used in the stepwise SOM.

8.3.2 Generative Topographic Mapping

Generative Topographic Mapping (GTM) was introduced by Svensen[173] as a principled
alternative to the SOM. It is a probabilistic counterpart of SOM, that models the distribu-
tion p(t) of the D-dimensional data by using a number of L-dimensional latent variables
x, where usually L = 2 for purposes of visualization. The mapping from the latent space
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to the data space is done by using the transformation y(x;W), where W is a parameter
matrix of some non-linear model, e.g. artificial neural network[177]. Usually y(x;W) is
chosen to be a generalized linear regression model[177] of the form y(x;W) = Wφ(x),
where φ(x) consists of M fixed radial basis functions[177].

Figure 8.2: The discrete regular grid of nodes in latent space (left), mapped to the data space (right),
where they correspond to centers of Gaussians with variance β−1. Taken from Ref. [173].

Defining a probability distribution p(x) in latent space gives a rise to a corresponding
distribution p(t | W) in data space, which is confined to the image of the L-dimensional
manifold in the data space under the mapping x → y of the non-linear function y(x;W).
Since in reality the data can only approximately lie on a lower-dimensional manifold, a
noise model for the t vector should be included. The distribution for t, given x and W,
becomes radially-symmetric Gaussian centered on y(x;W) having variance β−1 so that

p(t | x,W, β) =

(
β

2π

)D/2
exp

{
−β

2
‖y(x;W)− t‖2

}
(8.5)

In order to obtain the distribution in the data space for a given weight matrix W, an
integration over the latent distribution should be done

p(t |W, β) =

∫
p(t | x,W, β)p(x)dx (8.6)

However, computing the integration would be infeasible, therefore a discrete form of
p(x) is taken, such that

p(t |W, β) =
1

K

K∑
i=1

p(t | xi,W, β) (8.7)

where all xi are K nodes, centered on a regular grid in the latent space.
For a given data set the log likelihood is defined as

L(W, β) = ln

N∏
n=1

p(tn |W, β) (8.8)
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Determining the parameters W and β is done by maximizing the log likelihood, us-
ing an Expectation-Maximization algorithm (EM-algorithm)[178] performed in two steps,
called respectively Expectation (E-step) and Maximization (M-step). The algorithm can be
explored in details in Ref. Svensen-GTMgenerativetopographic-1998.

8.3.3 Random Forests

Random Forests (RF) was introduced by Breiman[164] as an ensemble machine learning
method for supervised classification and regression. A Random Forest in the context of
classification can be considered as an ensemble of decision trees[179]. For growing the
decision trees, random feature selection is used for the split at any given node by choosing
randomly m distinct features out of M features, where m�M . These m features could be
repeatedly chosen among different splits.

The algorithm for constructing a random forest proceeds as follows. Firstly, a number
of decision trees D has to be chosen. Then a dataset for each of these trees is bootstrapped
by bagging[180]. Each of the trees is fully grown by random feature selection method and
not pruned. Classifying an unseen sample involves classifying it using all the trees grown
and labeling it with the most populous choice among the classifiers.

8.4 Methodology

8.4.1 Overview

The input of our proposed method is a list of gray-scale fingerprint images and their cor-
responding averaged genuine comparison scores as a column vector y. For the purpose
of modeling and testing our quality algorithm, the data is divided into training and vali-
dation sets. The algorithm is divided into two phases, a low-level phase and a high-level
phase.

8.4.2 Low-level phase

For the low-level phase, the fingerprint images are divided into blocks and a SOM model
is obtained with unsupervised training over the image blocks of the training set of images.
Then by using the trained model, feature vectors are extracted for each fingerprint image in
the dataset. The algorithm for training the model and extracting the features is as follows:

1. Given the list of training images and the block size bsize, all the training images are
divided into square blocks of that size. Depending on the image size, different num-
ber of blocks are produced along each of the two dimensions N (x)

b and N (y)
b .

2. For each block b(x,y)
I , its fingerprint image source I and spatial index (x, y) are kept,

so later this information is used in feature construction for the high-level modeling.

3. All image blocks are converted into row-vectors v(x,y)
I of length bsize×bsize by taking

the pixel values of the blocks row-wise.

4. All Ntrain training vectors are combined in a matrix T . No special ordering of the
vectors is required, though random ordering is preferred.
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Figure 8.3: Overview of the training process pipeline. Each process or data source is separated in a
blue block and the communication between processes is denoted with arrows. Some of the processes
are grouped to form a big dashed blocks which are used for unseen data in the prediction mode.

T =

∣∣∣∣∣∣∣∣∣
v

(x,y)
I

v
(x+1,y)
I

. . .

v
(N

(x)
b ,N

(y)
b )

Ntrain

∣∣∣∣∣∣∣∣∣ (8.9)

5. Linearly initialize SOM by doing a PCA of the data matrix T . For too big matrices
to fit in the main memory, an iterative PCA algorithm [181] should be used. The

number of map nodes Mlow is determined heuristically by Mlow =

⌈√
N

(blocks)
train

⌉
in dependence of the total number of training image blocks N (blocks)

train and is upper
bounded by a manually chosen number (e.g. 4000 in the current work), such that a
trade-off between computational speed and SOM map smoothness for big datasets
is achieved.

6. Stepwise SOM training process is performed with previously determined parame-
ters: initial and final α(t) and σ(t), which define the neighborhood function and the
training length. These parameters could be either heuristically determined or com-
puted by cross-validation over the training data.
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Figure 8.4: The best-matching unit on the upper part of the SOM map (left) and the block of the
fingerprint image propagated through the map (right). The coordinates of the best-matching unit
are saved in a coordinate row vector c(x,y)I , indexed by (x, y), which are the coordinates of the block
itself on the fingerprint image (right).

7. After the model has been trained, each block vector v(x,y)
I is propagated through the

network, so the best-matching unit is determined and its coordinates on the SOM
map produce a two-dimensional coordinate row-vector c

(x,y)
I for each block of the

image. See Fig. 8.4.

8. For each image I all blocks’ coordinate vectors c
(x,y)
I are concatenated, where block

indices in the image are taken row-wise. Thus for each image I a feature vector fI of
length 2×N (x)

b ×N (y)
b is constructed.

The output of the low-level training is the low-level SOM model, that is used to extract
feature vectors fI for all images. These feature vectors are used as input by the high-level
phase for predicting quality scores.

8.4.3 High-level phase

Mapping feature vectors to quality scores itself requires the use of a machine learning
model. In the current work, several approaches are proposed, discussed and evaluated in
a benchmark.

Quantization of the results of the comparison algorithms is done using a binning pro-
cedure for converting from genuine comparison scores into quality scores. A cumulative
distribution function C(.) of the observed genuine comparison scores of the training set is
used[70]. Then a number of levels L is chosen and L−1 thresholds in the range 0−1 are de-
fined. Using the inverse cumulative distribution function C−1(.), these fraction thresholds
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are converted into genuine comparison score thresholds. Having these thresholds and a
given genuine comparison score, a corresponding quality may be obtained.

8.4.3.1 SOM modelling

One approach for the high-level phase is to train a SOM model for modeling the feature
vectors fI input data. The relatively small number of components of the feature vectors
makes possible the usage of batch SOM algorithm for the training. Thus only the pa-
rameters training length and neighborhood range function σ(t) are adjusted. The SOM
model is linearly initialized and the number of nodes M is heuristically determined by
M =

⌈
5×
√
Ntrain

⌉
.

After the training is done, each node of the constructed SOM map is labeled with the
mean average genuine comparison scores of the image samples mapped to it. This label-
ing process is called SOM map calibration. By propagating a feature vector through the
constructed SOM map and assigning an estimated average genuine comparison score, a
quality score is determined using the already defined binning procedure.

8.4.3.2 Generative topographic mapping

A different approach is modelling the feature vectors fI data by GTM. Parameters like
the number of grid nodes K and the number of radial basis functions M are determined
heuristically. σ and λ are also determined in this way, while W and β are estimated by the
EM-algorithm.

The training process is the process of estimating W and β, given all other parameters
and the training data feature vectors. The final GTM model is constructed once the EM-
algorithm converges and after that a calibration of the GTM map is performed. Since
GTM is a mixture of Gaussians, each node xi of the GTM map is labeled by computing
its expected average genuine comparison score by calculating the Gaussian components’
means zi using

zi =

∑
n

snp(xi | tn,w, β)∑
n

p(xi | tn,w, β)
(8.10)

where sn is the average genuine comparison score for training sample tn and n is it-
erating over all Ntrain training samples. After having all zi values, one could predict the
expected conditional mean y(tn) of an arbitrary sample tn by computing the convex com-
bination of the components means zi in the output space, using its posterior values

y(tn) =

M∑
i

ziP (xi | tn,W, β) (8.11)

where P (xi | tn,W, β) is the calculated responsibility Rin. This way an estimated
average genuine comparison score y(tn) is calculated and could be converted into a quality
score using the defined binning procedure.
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8.4.3.3 Random forests classifiers based on features

Another approach for the high-level phase is to use RF to model the data. RF is a su-
pervised learning model and it requires not only the feature vectors, but also the output
quality levels of the data prior the training. Since different comparison algorithms result in
different average genuine comparison scores for the training samples, for each comparison
algorithm a new model should be trained. A classification RF is used, so the binning of the
genuine comparison scores is done prior the training as well. Then a RF model is trained,
where the parameters m and n are defined by either cross-validation or heuristically.

8.4.3.4 Random forests classifiers based on histogram

The feature vector fI is only one way of representing the information retrieved by the low-
level phase. Another way is by constructing a histogram of the SOM hits for each image.
Each node of the trained low-level SOM map is numbered with an unique index 1 . . .Mlow,
where numbering the nodes is done column-wise starting from the top-left node. Then
each pair of SOM map coordinates in fI is translated into index, resulting in a vector of
indices indI of length N

(x)
b × N (y)

b . Then a histogram hI of the index numbers is created
with bins 1 . . .Mlow.

Using the histogram feature vector hI for training the RF classification model could
be considered as another high-level modelling approach. This approach is the same as
the one described in Sec. 8.4.3.3, except that the input data for this one is the histogram
vectors hI , but not the feature vectors fI . By using the histogram features the information
of the spatial coordinates of the blocks is lost and only their best-matching units’ indices
are considered. However it is not trivial to state whether this information is important
or not for constructing better models, therefore the two approaches are examined in the
current research.

8.5 Experiments and Results

8.5.1 Dataset

The proposed approach was benchmarked on a publicly available dataset CASIAFPV5,
which was separated into training and validation sets.

CASIA Fingerprint Image Database Version 5.0 (CASIAFPV5)[140] is collected by the
Chinese Academy of Sciences’ Institute of Automation and all fingerprint images are 8-bit
gray-scale BMP files with resolution 328 × 356. The dataset consists of 20000 fingerprint
samples, taken from 500 volunteers contributing 40 fingerprint images each. 5 fingerprint
samples were captured from all the fingers, except the little finger, on both of their hands
using an URU4000 optical fingerprint sensor in a single session. The fingerprint samples
are with significant intra-class variations, caused by rotation, translation and high or low
pressure. The training set is composed by choosing randomly 12000 fingerprint samples
of the dataset and the rest 8000 are used as a validation set.
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8.5.2 Low-level model

Training for the low-level is done using the training set of CASIAFPV5. Two models are
constructed: one for block size 16×16 pixels and one for block size 24×24 pixels. After the
images are cut into blocks, the number of 16 × 16 training block samples for CASIAFPV5
is 5280000. The number of 24× 24 training samples is 2184000.

The training is performed using SOM PAK[182] with starting parameters α(0) = 0.05
and σ(0) = 2× unitdist for a Gaussian neighborhood function, where unitdist is calculated
after the linear initialization of the SOM map by taking the diagonal distance of the map
in data space and dividing it by the number of nodes along the longest side of the map.

The total number of nodes Mlow is determined heuristically by Mlow =

⌈√
N

(blocks)
train

⌉
in dependence of the number of training image blocks N (blocks)

train and is upper bounded
by a manually chosen number (4000 in the current work), such that a trade-off between
computational speed and SOM map smoothness for big datasets is achieved. The number
of nodes along each of the dimensions is calculated respectively to the eigenvalues of the
first two principal components. The number of training iterations for block size 16× 16 is
set to 5000000 and for block size 24× 24 it is 2100000.

Analyzing the results from the training is done by observing the constructed SOM
maps in Fig. 8.5. Each of the nodes of these maps is a data vector, that could be trans-
formed back into image block. Each of the SOM map nodes has different number of blocks
mapped to it and analyzing the number of mapped blocks to each node is done using
hitmaps. However, the data from these experiments is not smoothly distributed over the
SOM map, therefore a log-hitmap is considered as well.

Observing the results from log-hitmap, we see that much of the data is concentrated in
the parts of the SOM map representing image blocks that stem from the background area
of the fingerprint sample. This is caused by the fact that there are many more background
blocks in the training data than foreground blocks. Moreover, the background blocks differ
mostly in mean gray level intensity. The result is that much of the background variance
is captured in the training process. The background area is mostly white, whereas the
fingerprint area is darker, causing the first principal component to be the brightness of the
blocks. Since the SOM maps are linearly initialized, the overrepresentation of background
blocks distorts the eigenvalues of the principal components, thus the elongated shape of
the SOM is not reflecting the real foreground data distribution.

8.5.3 High-level model

After the low-level model is constructed, both the training and the validation sets are prop-
agated through the trained SOM maps in order to compose the feature vectors that are to
be used by the high-level phase of the process. For CASIAFPV5 these feature vectors are
of length 880 and 364 for 16× 16 and 24× 24 respectively.

For obtaining results and converting them to quality scores, an average genuine com-
parison score is determined for each fingerprint sample by using a single comparison algo-
rithm as a black box for computing all possible genuine comparison scores per image and
taking their average value. For this work a selection of three top-performing comparison
algorithms has been used, anonymized as {A}, {B} and {C}, so each sample will receive
three average genuine comparison scores. Therefore the unsupervised models (SOM and
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Figure 8.5: From left to right: The trained low-level SOM map, the initial log-hitmap, and the final
log-hitmap for the validation set, the distance matrix U-mat. The trained SOM map is hexagonal,
since that ensures more accurate visualizations of the hitmaps and the distance matrices. The dataset
used for training is CASIAFPV5 and the block size is 16× 16.
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GTM) have to be calibrated separately for each comparison algorithm and the supervised
models (RF-feat and RF-hist) have to be trained for each comparison algorithm separately.
The performance evaluation of all high-level approaches is done by using ERC curves and
Correlation tables for each comparison algorithm alone.

8.5.3.1 SOM

Since for the high-level SOM training the batch SOM algorithm is used over a linearly
initialized map, only the number of batch iterations and the initial σ(0) are to be set. The
number of batch iterations is set to 30 and σ(0) = 2× unitdist, where unitdist is calculated
as noted in Sec. 8.5.2. After the model is trained, three calibrations are done for all three
comparison algorithms and evaluated using the validation set of the data.

As it could be seen from the prediction map, the expected average genuine scores are
not clustered, but scattered across the map. The same is true for the variance map. That
makes the maps harder to analyze and might be caused by poor training process.

The SOM hitmap shows strong bordering effect, meaning that the data is concentrated
in the edges of the map. As it seen int the prediction maps as well, there are some nodes
which do not have any samples assigned. That might suggest the need for better train-
ing parameters or even different map topology, e.g., toroidal SOM, in order to be able to
capture the data distribution better.

8.5.3.2 GTM

For constructing the GTM model the EM-algorithm is used to estimate the parameters W
and β. The size of the grid of sample points is heuristically set to 20 × 20, resulting in
K = 400 sample points xi. The form of the RBF grid is set to 9 × 9 RBFs, so the number
of radial basis functions used is M = 81. The other two parameters, the common width
of the radial basis functions σ and the regularization term λ, are determined heuristically
as well and set to λ = 1 and σ = 2s, where s is the spacing of the radial basis functions
centers. Similarly to the previous Sec. 8.5.3.1, three different calibrations are done for the
different comparison algorithms.

The prediction maps here contain more homogeneous regions and the low-valued
nodes are grouped together, unlike in the SOM map. That might suggest that GTM is
able to capture the data distribution better. Another figure showing how the data is cap-
tured by the model is the log-hitmap, where the data distribution could be analyzed by
observing the concentration of the data posterior modes.

8.5.3.3 Random Forests: features and histogram

For constructing the RF model, two parameters are to be set. The first one is the number
of trees D to be grown, where each tree uses n = N bootstrapped samples. The second
parameter is the number of features to be chosen at each split m. For both RF-feat and
RF-hist, these parameters are the same and are set to D = 500 and m = 100. The only dif-
ference between RF-feat and RF-hist is that the first one uses the feature vectors extracted
from the low-level as input data, where the second one uses a histogram of these features.
The performance of the random forests classifiers could be evaluated by observing the
confusion matrices for each of the models.
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Figure 8.6: The trained high-level SOM log-hitmap (a) for CASIAFPV5 and block size 16 × 16 with
the assigned prediction (b) and its variance (c) of the average genuine score values for each node. (d)
contains examples of images associated with the top left node in the SOM. This map is calibrated for
provider {A}.

8.5.4 Final results

In order to evaluate the performance of the proposed approaches, the Error versus Re-
ject Curves (ERC)[112] and the Spearman[183] correlation matrices should be analyzed.
ERC curves are an approach to visually evaluate how efficient a given algorithm is for re-
jecting samples with low genuine comparison scores and Spearman correlation matrices
show how similar different algorithms are by measuring their Spearman correlation val-
ues. Since the quality levels used by the RF approaches and NFIQ are quantized into five
levels, a jittering is added for drawing them. In order to eliminate the fluctuations caused
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Figure 8.7: Features forming the top leftmost node of the trained high-level SOM map for dataset
CASIAFPV5 with block size 16× 16.

by the randomness, 20 ERC curves are calculated for each approach and the mean curve is
drawn in the figure. Area under the curve is computed and the area of the perfect curve is
subtracted, so the approaches could be evaluated quantitatively how close they are to the
ideal curve.

The resulting ERC curves for the provider {A} is shown in Fig. 8.10. These results
show that the worst performing approach is using SOM for the high-level training. Second
worst is the high-level approach used in Ref. [3], which is the RF model trained with the
histogram as an input, rather than using the extracted features directly. The other two
methods are performing quite similar quantitatively, however the GTM approach is better
than the RF-feat approach if only the worst 20% of the samples are rejected. The results for
providers {B} and {C} are similar to the ones shown in Fig. 8.10.

Fig. 8.11 shows the Spearman correlation table for the dataset CASIAFPV5 with block
size 16 × 16. From this table it is visible that NFIQ shows highest correlation with the
average genuine comparison scores of the samples. OCL and the two RF methods show
also quite high correlation with the comparison scores and the NFIQ as well. On the other
hand, the GTM approach is very highly correlated with the SOM approach and poorly cor-
related with the comparison scores. Looking at these table, it is easily visible that the SOM
and GTM approaches are somehow related, the same is true for the two RF approaches.

8.6 Conclusions and Future Work

The PCA analysis done for linearly initializing the low-level SOM shows that the first
principal component, being the brightness of the block images, explains more than half
of the variance in the data. Analyzing the trained SOM shows that at least one third of
that variance is contributed by variance in the background blocks. However, the variance
information in the background blocks is of limited use as comparison algorithms usually
segment the background out prior to feature extraction. Using only foreground informa-
tion for the low-level training can result in smoother and concise SOM, thus better final
results are expected.

The ERC evaluation of different high-level approaches for dataset CASIAFPV5 has
shown good results for the methods GTM and RF-feat, which have outperformed the pro-
posed in Olsen et al [3] feature interpretation method RF-hist. Thus the loss of the infor-
mation about block position in the fingerprint image with constructing histogram features
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Figure 8.8: The trained high-level GTM log-hitmap (first) for CASIAFPV5 and block size 16×16 with
the assigned prediction (second) and its variance (third) of the average genuine score values for each
node. This map is calibrated for provider {A} and the posteriors’ modes are counted as hits.

seems to be crucial for dataset CASIAFPV5, but stating that these observations are valid for
all datasets, requires more experiments with better parameter selection for the high-level
models.

Operational speed measurements for the high-level phase were not performed, since
the propagation time for all the high-level methods is negligible compared to the time
consumed by the low-level phase. Thus the gain of optimizing the low-level phase is much
bigger and should be first explored. However the RF training requires much longer time,
compared to the other two approaches - SOM and GTM. Additionally, for each comparison
algorithm a different model should be trained labelled with the binned average genuine
comparison scores, unlike the case with the SOM and GTM maps, which only need to be
trained once and later calibrated.
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8.6 CONCLUSIONS AND FUTURE WORK

(a) vertical (b) horizontal (c) blocks

Figure 8.9: Features forming the top leftmost node of the trained high-level GTM map for dataset
CASIAFPV5 with block size 16× 16.
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Figure 8.10: ERC curves for CASIAFPV5 with block size 16× 16 for provider {A}.
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8. INTERPRETATION OF FINGERPRINT IMAGE QUALITY EXTRACTED BY SOM

According to the ERC plots, GTM and RF-feat have outperformed the previously sug-
gested high-level method RF-hist for CASIAFPV5. The resulting low-level map for block
size 24× 24 seems to be undertrained, thus more training cycles are needed for this block
size. Additionally much better model parameter selection could be performed for both
low- and high-level models and this will yield more robust and stable results, that could
be used as confirmation to the drawn conclusions. For the low-level phase, training with-
out the background blocks is expected to construct a much finer low-level model, thus
improving the results of all high-level methods.
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Chapter 9

Fingerprint Skin Moisture Impact on
Biometric Performance

Information about the paper

One challenge in developing new algorithms for fingerprint recognition sys-
tems is the availability test and validation on samples acquired under non-
ideal conditions. This paper investigates the relationship between moisture
levels and biometric performance and provides a new dataset with ground
truth measurements of fingerprint moisture levels prior to acquisition. The
paper is a contribution towards research question RQ4. This original paper
was published in: [7] M. A. Olsen, M. Dusio, and C. Busch. “Fingerprint
Skin Moisture Impact on Biometric Performance”. In: International Workshop
on Biometrics and Forensics 2015. 2015.
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9. FINGERPRINT SKIN MOISTURE IMPACT ON BIOMETRIC PERFORMANCE

Abstract

Dry or wet fingers have an impact on biometric performance and the measurement
of skin characteristics is important for actionable quality. We collected a ground truth
fingerprint skin moisture dataset containing 6600 samples from 33 subjects using 5
optical sensors, two claimed to work well in extreme skin moisture conditions. Con-
trolling conditions by applying cream, alcohol and water we performed objective
measurements of skin moisture prior to each fingerprint capture. Analyzing the rela-
tionship between measured moisture and biometric performance across five sensors
and comparison scores from 3 commercial providers confirms claims to resistance to
excessive moisture. Results indicate that sensors resistant to excessive moisture per-
form worse on dry fingerprints than sensors not resistant to excessive moisture. The
collected dataset is made available as an in-house dataset.

9.1 Introduction

There is a common agreement in government, industry and academia that the quality of
a fingerprint sample has an impact on its recognition performance as Grother and Tabassi
discuss [112]. ISO/IEC 29794–1 specifies biometric sample quality as a biometric perfor-
mance predictor [70]. Grother and Tabassi show [112], the accuracy of a biometric sys-
tem can be improved by rejecting poor quality samples, resulting in lower False Non-
Match Rate (FNMR) and hence an increase in recognition performance as discussed by
Wilson et al. [120].

Recognition performance may suffer due to poor quality of fingerprint samples caused
by one or several factors: a) skin defects: blisters, wrinkles or scars; b) skin conditions:
roughness, dryness or wetness; c) user behaviour: bad finger alignment, too little or too
much pressure; and d) environmental conditions: dirty sensor platen, extreme temperature
or lighting. If an acquired sample exhibits poor quality, skin conditions and user behaviour
may to some extent be altered if the subject is given sufficient feedback or another finger
may be used; then the acquisition process can be repeated.

Several of these defects may be addressed by actionable quality. Providing actionable
quality is desirable as information pertaining to how the quality of the fingerprint may be
improved in subsequent captures is conveyed. This is applicable in both supervised and
unsupervised modes as a means of assistance to the supervisor or simply decreasing the
number of recognition or enrolment attempts, leading to improved system performance
and better user experience.

The main contribution of this paper is 1) acquisition of a fingerprint sample dataset
with ground truth moisture measurement, available in a semi-public fashion [122]; 2) anal-
ysis of fingerprint skin moisture on recognition performance.

Addressing the lack of ground truth data on fingerprint defects we collect a dataset of
fingerprint samples with ground truth measurements of fingerprint skin moisture during
acquisition. To our knowledge there exists no dataset offering such ground truth informa-
tion. Subjective manual mark-up of samples as dry or wet suggested by Shen et al. [43],
Lim et al. [71], Alonso-Fernandez et al. [97] and Maltoni et al. [49] does not necessarily
convey information about skin moisture but categorizes the sample impression, in fact it
may not convey moisture at all as shown in Figure 9.1 where the fingerprint impression
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9.1 INTRODUCTION

of a wet finger and that of a finger forcibly pressed against the platen show very similar
characteristics, e.g. overall darker gray levels and spurious ridge line interconnections.
Blomeke et al. [62] investigated relationships between fingertip skin moisture, oiliness,
elasticity, temperature and that of a proprietary quality measure of acquired fingerprints,
where it is shown that the characteristics are weakly correlated and proposed that the rela-
tionships may be non-linear in nature and warrant further investigation. Sickler et al. [54]
investigated quality and moisture levels in relation to subject age finding that there is a
relation.

We focus on samples acquired using optical fingerprint sensors which is the capture
device technology most commonly used and offering highest resolution according to Mal-
toni et al. [49] and used in the Office of Biometric Identity Management (OBIM) program,
formerly known as US-VISIT, by Department of Homeland Security [170] and in Aadhaar
by Unique Identification Authority of India [184].

The rest of the paper is organized as follows: we provide an overview of fingerprint
sample quality in Section 9.1; dataset collection is described in Section 9.2; we evaluate
the impact of skin moisture on biometric performance in Section 9.3 before concluding in
Section 9.4.

Biometric fingerprint system performance is influenced by the quality of fingerprint
samples utilized by the system. Sample quality depends on the scanned finger character
and captured sample fidelity; it can be expressed in terms of utility, i.e. the observed per-
formance in one or more systems as defined in ISO/IEC 29794–1 [70]. Generally fingers
with clearly defined ridges scanned in suitable conditions provide better quality finger-
print images resulting in lower error rates and better performance. From the factors that
influence the quality of a fingerprint sample, skin moisture is a factor that has strong in-
fluence (see Figure 9.1), however the moisture can be changed and samples reacquired.

Figure 9.1: Fingerprint samples acquired from same finger with skin subjectively perceived as (left
to right): dry (62.5 %), wet (99.9 %), normally moist (84.6 %) and normally moist (84.6 %) with finger
strongly pressed on the sensor.

The general term sample quality may describe several attributes of a biometric sample
yet provide no particular meaning with respect to a concrete biometric system, e.g. a good
sample with clearly defined and sharp ridges featuring little or no minutiae will compare
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9. FINGERPRINT SKIN MOISTURE IMPACT ON BIOMETRIC PERFORMANCE

poorly in a minutiae-based comparison, as Grother and Tabassi discuss [112]. Hence the
international standard ISO/IEC 29794–1 requires a biometric fingerprint sample quality
metric to predict its biometric performance [70].

Based on the requirements in the aforementioned international standard, the state of
the art fingerprint sample quality algorithms, e.g. those specified in ISO/IEC 29794–4 [99]
and those which are candidates considered for NFIQ 2.0 [8], the successor of NIST Finger
Image Quality (NFIQ) [79] quantify sample x quality q via image analysis as q = QMA(x).

Fingerprint quality is used in Automated Fingerprint Identification Systems (AFIS) to
increase system performance by rejecting poor samples. However, they do not explicitly
provide information about what actually caused their positive or negative quality assess-
ment, which would be crucial information for improved AFIS user experience and helpful
in dataset survey and diagnosis. One reason for this is that ground truth data on particular
defects is not available, and as such the effectiveness of methods in detecting these defects
cannot be determined reliably.

9.2 Dataset collection

A dataset of 6600 fingerprint samples is collected from 33 subjects using all 10 fingers (see
Table 9.1) in four different skin moisture conditions, using 5 biometric fingerprint sensors
and registering fingertip skin moisture during acquisition [122]. Prior to sample acqui-
sition, the fingertip is measured using ”Moisture Meter SK–3” skin moisture measuring
device produced by Shenzhen Kier Electronic Apparatus Factory [185]. It determines a
percentage score that conveys objective skin moisture. 99.9 % is highest possible measure-
ment, and 41.3 % was lowest encountered in the data collection. In the rest of the paper we
will refer to the percentage score as an integer value in the range 0 to 999, e.g., 99.9 % will be
expressed as 999. Skin moisture measurement devices appear to be using either inductance
or capacitance methods for the measurement. Alanen et al. [186] and Clarys et al. [187]
show that both methods have very high correlation providing almost identical results and
are more sensitive to water than mineral oil, although capacitance method carries infor-
mation from deeper parts the skin (45 µm vs. 15 µm). The vendor claims to measure skin
moisture via the inductance method.

Age Ethnic origin Sex

Max 59 Caucasian 25 Female 16
Min 23 Asian 7 Male 17
Mean 33.5 Mid.Eastern 1
Median 30

Total 33

Table 9.1: Self-reported participant information in collected data set.

Capture devices used are all 500 dpi optical fingerprint sensors. We partition the sen-
sors into two groups according to claimed resistance towards sample quality degradation
caused by extreme skin moisture levels. Three sensors do not claim resistance to extreme
moisture level: Cross Match Technologies LScan 100 (S2), L–1 Identity Solutions DFR–2100
(S3), CrossMatch Patrol ID (S4) and are referred to as G1; Two sensors do claim resistance
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Figure 9.2: Empirical cumulative distribution of measured moisture levels for the 4 treatments fin-
gers were subjected to, respectively cream, alcohol, water and untreated.

to extreme moisture levels: Dermalog ZF–1 (S1) and Cross Match Technologies Guardian
(S5) and are referred to as G2 (see Table 9.2).

Sensor Alias Group

Dermalog ZF–1 S1 G2
Cross Match Technologies LScan 100 S2 G1
L–1 DFR–2100 S3 G1
Cross Match Technologies PatrolID S4 G1
Cross Match Technologies Guardian S5 G2

Table 9.2: Fingerprint sensors and associated alias and group.

9.2.1 Collection protocol

Fingerprints are collected in office conditions common for all subjects, applying invariant
finger–sensor force during acquisition by instructing subjects to gently touch the sensor
and placing a weight of 133 g on top of the fingernail, a weight empirically chosen as pro-
ducing good sample impressions for non–extreme skin moisture levels. Fingerprints are
acquired in four skin conditions: natural moisture, dried, moisturised and soaked in wa-
ter. The dry conditions are simulated by gently cleaning skin with alcohol solvent (68 %
ethanol, 2 % salicylic acid, 30 % water), after the alcohol has evaporated; moisturising is
performed by applying water–based body lotion (since the measurement device is insen-
sitive if oil is applied); over moisturising is performed last by soaking the fingertip in
pure water after the skin has been gently wiped with a paper cloth. Empirical testing
of the device prior to dataset collection showed that soaking treatment always results in
measurement of 999, thus for the fourth condition the measurement is skipped and 999 is
registered.

The ECDF of the moisture levels for each of the four treatments is depicted in Figure 9.2.
The samples treated with alcohol appear towards the lower end of the moisture range,
while those treated with cream appear at a slightly higher lever. Untreated samples, i.e.
samples acquired as the subject arrived for enrolment, have distinctly higher measured
moisture levels than either of alcohol or cream treatments. Samples treated with water
appear only at the highest moisture level.
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9. FINGERPRINT SKIN MOISTURE IMPACT ON BIOMETRIC PERFORMANCE

For each acquisition of fingerprint samples with one finger and using all five sensors
the moisture is measured once, prior to applying the finger to the first sensor. In order to
reduce sensor bias, we randomize the order of sensors prior to the start of acquisition for
each finger. Further we sought to keep the delay between acquisitions to less than four
seconds.

Figure 9.3: Collected fingerprint sample excerpts. treatment from left to right: normal, dry, cream
and water; top row shows samples acquired using a sensor from G1, bottom – G2. Measured moisture
from left to right: 630, 610, 778 and 999.

Figure 9.3 shows examples of the influence moisture conditions have on fingerprint
sample impression. Sensors in G2 appear to work well with over moisturised fingers; little
difference between normal and dried condition impressions (first and second column) is
due to already dry skin in the first measurement.

9.2.2 Partitions

We will assess the impact of moisture levels by determining recognition performance at
several levels using intra sensor, intra provider comparison scores. Independent of the 4
treatments, we define 3 moisture groups as follows.

In dataset D we denote the kth impression belonging to the ith subject captured using
sensor s as dkis , and the moisture measurement operation as M . The moisture level of dkis
is then:

mk
is = M(dkis) (9.1)

In a comparison with two samples there are two associated moisture measurements. We
posit that the comparison score is driven by the sample with the highest moisture level.
Thus, to perform a ranking we specify that the moisture level in a comparison is deter-
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mined by the sample with the highest measured moisture:

mn = max(mk
is ,m

l
jt) (9.2)

With the moisture level expressed in the range 0 to 999, with 0 being no moisture and 999
being soaking wet, we define three disjunct sets of comparisons according to the ground
truth measurements taken during the dataset collection containing comparisons with dry
(D), neutral (N ), and wet (W ) samples:

D = {mn : mn < 625} (9.3a)
N = {mn : 625 ≤ mn < 999} (9.3b)
W = {mn : 999 ≤ mn} (9.3c)

The range for W is determined as the highest measured value and the limit for N was set
by visual inspection under constraint to achieve a set of similar size to W (circa 25 % of
total). Due to the partitioning on moisture level, samples with different treatments might
be present in any of the sets.

9.3 Results

For each of the sets D , N , and W we determine the impact of moisture level in context of
sensor and provider by computing the DET curve for each provider and sensor combina-
tion. The number of acquisitions and comparisons in each set is summarized in Table 9.3.
In the cases where a provider failed to produce a biometric template from the captured
sample, we assigned that comparison with the lowest comparison score (i.e. 0). Provider
A is generally achieving the best performance regardless of sensor and was also the only
provider to produce templates for all acquired samples.

Comparisons

Set Acquisitions Genuine Impostor Failed

D 1536 35 724 104 047 692
N 3389 170 526 1 000 024 1362
W 1675 169 950 875 929 35 883

Table 9.3: Properties of ground truth sets for each provider. The Failed column indicates number of
comparisons not performed due to Failure-To-Acquire by a provider and which were thus assigned
lowest comparison score.

9.3.1 Performance according to measured moisture

The DETs are depicted in Figure 9.4 and show that sensors in G1 perform worse than those
in G2 (left-most and right-most plots) when dealing with comparisons in W , confirming
the statements by those vendors on resistance towards extreme moisture levels. While
the overall performance across providers and moisture levels appears to be higher for S5,
we see that for S1 the highest performance is achieved with comparisons from W using
scores from provider A. Turning our attention to the 2nd, 3rd and 4th plots (sensors S2,
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Provider Moisture S1 S2 S3 S4 S5

A
D 4.3 1.7 3.0 4.3 1.7
N 1.3 0.5 0.6 0.6 0.6
W 1.2 5.1 7.8 39.3 1.5

B
D 10.4 1.7 8.3 5.2 6.9
N 4.7 1.8 4.0 2.7 3.5
W 4.8 50.6 72.0 53.6 4.6

C
D 15.7 6.9 12.2 13.8 10.3
N 7.6 3.8 6.4 6.5 5.4
W 7.2 52.9 70.3 56.1 7.2

Table 9.4: FNMR in % at FMR=1% for each sensor and comparison score provider according to
measured moisture group.

S3, S4), we see that the comparisons in W are generally associated with poor performance.
Provider A (solid lines) extracts enough information from samples captured using S2 and
S3 to achieve recognition performance similar to that of providers B and C when those
consider only comparisons from D or N .

In Table 9.4 we show the FNMR at a fixed False Match Rate FMR = 1% to highlight
the differences across sensors and comparison score providers. Between all sensors, S2

achieves the lowest FNMR in conditions D and N regardless of comparison score provider
used. The lowest FNMR using W are achieved with provider A on samples captured
by S1 closely followed by S5 with respectively 1.2 % and 1.5 %. While S1 achieves lower
FNMR in on the combination W and provider A, S5 has lower FNMR than S1 in all other
combinations of moisture level and provider.

9.3.2 Moisture impact on genuine scores

We quantify the impact on genuine comparison scores by binning the measured moisture
levels for probe and reference samples and computing the mean comparison score in each
bin. The purpose is to determine if there exist ranges of moisture levels where higher
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Figure 9.5: Mean genuine comparison score binned by moisture levels for reference and probe sam-
ples. Axes show measured moisture and bin gray level represents. Left to right: score from provider,
A, B, C, number of samples in each bin. Top row using samples captured using G1 sensors, bottom
row using G2 sensors. Scores have been scaled to [0, 1] for each provider.

biometric performance can be expected, and to determine how sensor choice influences it.

In Figure 9.5 we divide the moisture range into 8 bins along the measured moisture
level of probe and reference samples. For each of the resulting 64 bins we compute the
mean comparison score. The initial grouping of sensors has been confirmed by results
depicted in Figure 9.4 and we use those same groups to form the sets of samples used
in comparisons (only considering scores from comparisons between samples from same
sensor). Due to differences in comparison scores for each of the providers, we further
group by provider. The right most plot in each row, depicts the number of samples present
in a bin. Note that some bins in the lower left corner of the heat maps are depicted as nearly
empty, meaning that very few comparison scores are used to form the average score in
those bins. There is a large number of comparisons in the upper right corner due to nearly
a quarter of the samples being annotated with highest moisture level.

For sensors in G1 (top row) the genuine comparison score is determined by the sam-
ple with the highest moisture level: when the reference sample has measured moisture
above 910, the moisture level of the probe sample is inconsequential for the comparison
score which stays low. The effect is clearly shown in the previous DET plots. For sensors
in G2 (bottom row) we see that the measured moisture level does not affect the genuine
comparison score in the same way as G1.

Both G1 and G2 mean comparison score is always lower when either reference or probe
sample has moisture levels below 617 and when the measurements indicate moisture lev-
els above 617 a higher comparison score can be expected. This indicates that our choice of
625 as threshold for set D is fairly close to observations in reduced biometric performance.
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9.4 Conclusions

We collected a fingerprint dataset with ground truth skin moisture measurements which
is made available to the community for on-site testing at our research group premises. We
show that the choice of sensor as well as that of feature extractor and comparator has sig-
nificant influence on expected performance depending on whether fingertip skin is at wet,
dry or normal moisture levels. We demonstrate that sensors in G2 are resistant to excessive
moisture levels in partition W as claimed by vendors. For samples in N and D which are
not subjected to excessive moisture we found that one sensor from G1 performed better
regardless of comparison score provider. For sensors in G2, improvements in biometric
performance can be achieved by addressing dry fingerprints. Our ground truth skin mois-
ture measurements indicate that moisture level shall be above 617 for good biometric per-
formance regardless of sensor, and below 910 for G1 sensors. The collected dataset in this
paper may be accessed by following instructions given online via da/sec [122].
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Chapter 10

Gabor Filters as Candidate Quality Measure
for NFIQ 2.0

Information about the paper

Gabor filters are widely applied in fingerprint systems in recognition, recon-
struction and quality areas. Here a variant of existing quality algorithms
based on Gabor filters is proposed and evaluated. The proposed method is
also evaluated in chapter 4. The paper is a contribution towards research
question RQ2. This original paper was published in: [1] M. Olsen, H. Xu,
and C. Busch. “Gabor filters as candidate quality measure for NFIQ 2.0”. In:
Biometrics (ICB), 2012 5th IAPR International Conference on. 2012, pp. 158–163.
DOI: 10.1109/ICB.2012.6199802.
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10. GABOR FILTERS AS CANDIDATE QUALITY MEASURE FOR NFIQ 2.0

Abstract

Quality assessment of biometric fingerprint images is necessary to ensure high bio-
metric performance in biometric recognition systems. We relate the quality of a fin-
gerprint sample to the biometric performance to ensure an objective and performance
oriented benchmark. The proposed quality metric is based on Gabor filter responses
and is evaluated against eight contemporary quality estimation methods on four
datasets using sample utility derived from the separation of genuine and imposter
distributions as benchmark. The proposed metric shows performance and consis-
tency approaching that of the composite NFIQ quality assessment algorithm and is
thus a candidate for inclusion in a feature vector introducing the NFIQ 2.0 metric.

10.1 Introduction

In large scale Automated Fingerprint Identification Systems (AFIS), it is important to con-
sider that there will be a certain fraction of individuals who will try to avoid detection.
At the border controls of Japan and the United States of America, an individual can be
rejected entry if the biometric probe sample captured from the individual matches (has a
high comparison score) with a biometric reference already registered in a database, or a
watch-list. Consequently, for negative biometric claims a situation can arise where an in-
dividual will supply a low quality probe sample on purpose, thus minimizing the chance
of detection. Without a method of determining whether the quality of the captured probe
sample reaching a sufficient level for recognition purposes, an individual can thus subvert
the system. The scenario is substantiated by the findings in [78, 107, 120], where it was es-
tablished that there is a strong correlation between fingerprint image quality and biometric
performance.

Determining the quality of a fingerprint also finds use in other scenarios such as in the
context of immigration where a subject can apply for a visa at the embassy or consulate
for a given country. In order to verify that the identity of the subject at the border control
is indeed the same as the one who received the visa at the embassy, a fingerprint capture
is performed at the time of the application. Thus the subject is enroled in the biometric
system and can be identified at a subsequent border control. In Europe such a system is
implemented for all countries of the Shengen area and is known as the Visa Information
System (VIS). In a system such as the VIS the cost of a false reject is high: the subject is
either faced with a wasted travel expense and anguish over an unrightful rejection, or the
border control will have to employ special procedures to verify the subject identity through
other means.

This exemplifies that it is desirable to assess the quality of a fingerprint image before
any enrolment transaction is initiated, so that for later comparisons, at least the enrolment
sample is of suitable quality. High comparator performance is achieved if a fingerprint’s
quality is sufficiently good and overall database integrity is improved. This requires poor
image samples to be rejected before they are enroled into databases. From an operational
perspective, such Failure To Capture might trigger a re-capture procedure potentially with
more support for the capture subject given by the operator personnel.

Here we present an approach based on Gabor filter responses and evaluate the per-
formance relative to the metrics defined in ISO/IEC TR 29794-4 [99] and NFIQ [78]. The
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findings presented herein are included in the development considerations of the forth-
coming NFIQ 2.0 [188] algorithm, which will be the successor of the widely adopted NFIQ
algorithm.

10.2 Background

If fingerprint image quality is to be a predictor of the biometric performance, then the qual-
ity metric should reflect the signal quality defining both the local and global characteristics
in a fingerprint. Locally, the ridge orientation certainty level [71], local orientation [72], or
the blockwise similarity to Gabor filter responses [75] can be applied as indicators of qual-
ity. In a similar manner, the discrete Fourier transform can be analyzed [83] to give an
impression of the global quality. An extensive comparative study on quality metrics was
performed by Alonso-Fernandez et al. [97]. Several of these metrics are included in the
ISO/IEC technical report on biometric fingerprint sample quality [99].

Fingerprint image quality as a predictor of biometric performance was first published
by National Institute of Standards and Technology (NIST) in the technical report Finger-
print Image Quality [78], which documents the development of the NIST fingerprint im-
age quality (NFIQ) algorithm. Here fingerprints are classified into 5 quality levels, rang-
ing from poor to excellent quality, based on several characteristics: ridge orientation flow,
ridge orientation certainty, local ridge curvature, and local contrast. Using an interpreta-
tion of these characteristics, NFIQ relies on a neural network to perform the classification.
In [132], several deficiencies in NFIQ have been identified, among those the important
notion that the the definition of the image features used to predict the NFIQ leaves great
optimization potential.

Our proposed method and methodology differs from that in [75] as we do not subdi-
vide the input into blocks and we do not use a subjective measure to compare the per-
formance of the algorithm. Instead we work in a pointwise manner and use an objective
performance assessment, thus ensuring reproducability of results.

10.3 Fingerprint Quality Metrics

We propose a fingerprint quality measure based on the Gabor filter responses. In this paper
we also evaluate several contemporary quality estimation methods, including Orientation
Certainty Level (OCL), Ridge-valley Structure (LCS), Ridge-valley Uniformity (RVU), Frequency
Domain Analysis (FDA), Radial Power Spectrum (POW) and Orientation Flow (OF).

10.3.1 Quality Metric Based on Gabor Filter Responses

A Gabor filter is a bandpass filter with local support that enhances some spatial frequencies
with a certain orientation and attenuates the others [189]. As fingerprints have parallel
ridge patterns with well-defined local frequency orientation, the Gabor filter responses of
fingerprints reflects the clarity of the fingerprint ridge pattern along a certain direction.
Therefore, we choose the responses of a bank of Gabor filters as one quality measure.

The general form of a complex 2D Gabor filter in the spatial domain is given by [190]:
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)
exp (j2πfxθ) , (10.1)

where

xθ = x sin θ + y cos θ, (10.2)
yθ = x cos θ − y sin θ, (10.3)

f is the frequency of the sinusoidal plane wave along the orientation θ, and σx, σy are the
parameters of the Gaussian window.

Figure 10.1: One complex Gabor filter (f = 0.1, σx = 6.0, σy = 6.0, θ = 1/2π). (a) the real part of the
complex Gabor filter; (b) the imaginary part of the complex Gabor filter.

We set the filter frequency f as the reciprocal of the average inter-ridge distance. For
fingerprint images captured from an adult population with the 500dpi resolution, the av-
erage inter-ridge distance is approximately 10 pixels [191]. Therefore, we set f = 0.1 in our
experiments.

We use n = 4 four different orientations, θ = (k − 1)/nπ, k = 1, ..., n, respectively, for
the bank of Gabor filters. Figure 10.1 presents the real and imaginary part of the Gabor
filter with orientation θ = 1/2π. The Gaussian parameters are set as σx = 6.0 and σy = 6.0.

We apply the above mentioned bank of Gabor filters to fingerprint images. We take the
magnitude of the filter responses and apply a small smoothing filter. A fingerprint and its
four Gabor filter responses are illustrated in Figures 10.2a-10.2e, respectively.

The Gabor responses reflect the local quality of fingerprints. For the fingerprint areas
with clear ridge pattern, the Gabor responses of one or a few orientations should have
larger values than other orientations. Whereas for the background or the poor ridge clar-
ity fingerprint areas, the Gabor responses of n orientations will be low and constant. In
other words, the variety of the n Gabor responses at a certain area can reflect the clarity
of the fingerprint ridge pattern in that area. Therefore, after obtaining the bank of Gabor
responses Gk, k = 1, ..., n, we take the standard deviation of them, denoted as Gstd and
shown in Figures 10.2f. Finally, the Gabor quality is defined as the mean of Gstd.

In this paper, we also evaluate another Gabor quality measure proposed by Shen et
al. [43] in Section 10.5. The main differences between our method with Shen’s are:
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(a) (b) 0π (c) 1/4π

(d) 2/4π (e) 3/4π (f)

Figure 10.2: Fingerprint from FVC2002Db2 dataset and its Gabor filter responses. (a) fingerprint im-
age; (b-e) Smoothed absolute value of fingerprint image that have been filtered by Gabor filters with
different orientations; (f) the standard deviation value of Gabor responses with different orientations.
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• In Shen’s method, the fingerprint foreground is segmented into blocks, and each
block is marked as ”good” or ”poor” by comparing the Gabor responses with a fixed
threshold Tq . However, for fingerprints obtained by different scanners, optimizing
such a fixed threshold Tq is difficult and unreliable. During our evaluation, we no-
ticed such unstable behaviour by setting different Tq . In our method, we obtain the
Gabor quality measure without thresholds.

• In Shen’s method, another fixed threshold Tb is used to segment fingerprint fore-
ground. However, we notice in our experiments that the size of the fingerprint fore-
ground could influence the recognition performance, i.e., a larger fingerprint fore-
ground could lead to a higher performance. Therefore, in our method, we did not
include the fingerprint segmentation part in our evaluation, in order to make the
Gabor quality measure also reflect the size of the fingerprint foreground.

• In our method, we evaluated the influence of different Gabor filter orientation num-
ber n to the quality measure performance. Instead of using n = 8 as proposed by
Shen, we found out that setting n = 4 will be able to obtain equivalent performances.
This setting can increase the calculation speed with a factor of two.

10.3.2 Other Quality Metrics

The technical report on fingerprint sample quality [99] by the International Organization
for Standardization is the most recent overview of recommended fingerprint quality met-
rics. We use the metrics defined there as a benchmark with which we compare our ap-
proach. We use the following metrics:

Orientation Certainty Level (OCL) measures the strength of the energy concentration
along the dominant ridge flow orientation within a block by means of computing the
blockwise gradient.

Ridge-valley Structure, also called Local Clarity Score (LCS) computes the blockwise
clarity of ridge and valleys by applying linear regression to determine a gray-level thresh-
old, classifying pixels as ridge or valley. A ratio of misclassified pixels is determined by
comparing with the normalized ridge and valley thickness of that block.

Ridge-Valley Uniformity (RVU) measures the blockwise consistency of the ratio be-
tween ridge and valley. A large deviation from the global mean of ridge-valley ratios
indicates low quality.

Frequency Domain Analysis (FDA) performs a blockwise Discrete Fourier Transform
and measures the energy concentration in a frequency band. Dominance in the very low
frequencies indicate low quality.

Radial Power Spectrum (POW) is a measure of maximal signal power in a defined
frequency band of the global Radial Fourier spectrum. Ridges can be locally approximated
by means of a single sine wave, hence high energy concentration in a narrow frequency
band corresponds to consistent ridge structures.

In addition to the quality metrics included in ISO/IEC 29794-4, we also evaluated the
Orientation Flow (OF) proposed in [72]. OF is a measure of the rate of change in the
blockwise ridge flow across the fingerprint. The quality score decreases as the difference
between the dominant ridge orientation of the block and that of its 8 neighboring blocks
increases.
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10.4 Quality Assessment

In this paper, we applied the concept of Biometric Sample Utility for quality assessment.
Biometric Sample Utility is a measure of the biometric performance for a particular sample.
The observed utility of the sample dui (the uth presentation of subject i) is computed by
means of the genuine and imposter similarity score distributions, e.g. in [70] the utility of
a sample is defined as

utilityui =
µgenuinei,u − µimposteri,u

σgenuinei,u + σimposteri,u

, (10.4)

where µ is the mean and σ is standard deviation. utilityui is a measure of the distance
between the two distributions: a high utility corresponds to the distributions being well
separated and therefore that dui has a low likelihood of being falsely rejected and that the
likelihood of an imposter being falsely accepted as dui is also low. Therefore, we say that a
high utility reflects a high biometric performance. We will use this definition of utility for
our performance comparison.

10.5 Experiments

The purpose of our experiments is to quantify the predictive performance of the Gabor
based quality metric relative to the metrics from ISO/IEC TR 29794-4 and NFIQ. We do so
by investigating the Spearman correlation between sample utility as defined in ISO/IEC
standard on biometric fingerprint sample quality [70] and the sample quality value for
each quality metric. Further we analyse the inter-metric correlations to uncover possible
redundant quality metrics.

10.5.1 Datasets and Protocol

For the experiments we use Db2 (optical) and Db3 (capacitive) of the FVC2002 [143]
database and Db1 (optical) and Db2 (optical) of the FVC2004 [133] database. We combine
the 8 presentations per subject from the A (100 subjects) and B (10 subjects) sets resulting
in 880 samples per dataset.

For each dataset we have computed the utility of each sample according to Eq. 10.4
using comparison scores obtained using the Neurotechnology Verifinger 6.2 SDK. We in-
vestigated 36 parameter permutations of the filter bank size, Gaussian and frequency pa-
rameters on the four datasets. For the Gabor filter bank size we used n = {4, 6, 8, 16},
the Gaussian parameters σx and σy were varied with σ = {4, 5, 6}, while the frequency
parameter f was varied with f = {0.05, 0.1, 0.15}.

We compare our approach with NFIQ, OCL, LCS, RVU, FDA, POW, OF and the Gabor
filter approach proposed by Shen et al [43]. Except for NFIQ, we apply 36 different param-
eter configurations on these metrics. In particular, for the blockbased algorithms (OCL,
LCS, RVU, FDA) we use blocksizes of 8, 16, 32, 64.
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10.5.2 Results and Evaluation

The highest Spearman correlation values achieved for each quality metric on each dataset
are summarized in table 10.1. The highest correlation with utility was obtained using the
Orientation Flow (OF) approach on the FVC2004Db1 dataset. From the table, we observe
that all the investigated metrics have an increased correlation with utility when using the
FVC2004Db1 dataset compared to the three other datasets. All metrics have low corre-
lation when using the FVC2002Db2 dataset which we believe is due to the FVC2002Db2
dataset containing particularly difficult to match samples (also called outliers). The rea-
son is that outliers will make the estimation of the genuine distributions unreliable, thus
influence the utility value. We observe that the proposed Gabor filter approach performs
consistently and similarly to the NFIQ metric across the datasets.

The configuration that resulted in the highest correlations for Gabor was obtained with
n = 4, σx = σy = 5, f = 0.1. In our experiments, we observe that the performance of the
quality measure does not increase when using values of n higher than 4. In Figure 10.3
the boxplots (boxes extend to 25th and 75 percentile, with mean marked as a line, and
whiskers extending to cover the range excluding outliers) depict the correlation of Gabor
quality values across all datasets when fixing respectively the Gabor parameters n 10.3a,
f 10.3b, and σ. We observe that when viewed across the four dataset these are indeed
the settings that show the highest correlations with utility. The influence of the frequency
parameter f is dominating the quality score and thus the whiskers extend across a large
range in both the filterbank size n and Gaussian σ box plots.

We also investigate the distribution of Gabor quality scores in relation to utility for
each of the datasets. We found that the Gabor quality scores are distinct for each dataset
and there are some outliers which show high utility and low quality score and vice versa.
This is depicted in Figure 10.4. Neither dataset represents the result of another dataset
and hence the consequence is that care must be taken in not extrapolating the results to a
general case. The solution is to use datasets containing a larger sample of the population
and which contain an even distribution of samples across the entire utility range.

Metric FDA Gabor GaborShen LCS NFIQ OCL OF POW RVU

FVC2002Db2 0.072 0.064 0.075 0.016 -0.039 0.072 0.037 -0.047 0.016
FVC2002Db3 0.025 0.132 0.073 0.056 -0.218 0.055 0.061 0.134 -0.107
FVC2004Db1 0.271 0.174 0.190 0.158 -0.213 0.201 0.211 0.119 -0.143
FVC2004Db2 0.070 0.126 0.113 0.125 -0.208 0.152 0.083 0.085 -0.125

Table 10.1: Spearman correlation between quality metrics and utility for each dataset. The highest
correlation found among 36 parameter configurations for each metric is listed. Negative values
indicate higher quality score correlate with lower utility (e.g. NFIQ).

In table 10.2, we summarize the intermetric correlation to give an overview of which
metrics may be redundant. We see almost perfect correlation (0.909) between our approach
and the approach presented by Shen et al. This is to be expected as both approaches are
based on Gabor filter responses, but we can use this information in combination with the
utility correlations in Table 10.1 to determine that our approach outperforms the Shen ap-
proach when seen across all datasets. We also note that there are relatively high correla-
tions with both the OCL and POW metrics, while the correlation between OCL and POW
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Figure 10.3: Spearman correlations between Gabor settings and utility across the parameter space
as investigated on the four datasets. (a) for fixed values of n (4, 6, 8, 16); (b) for fixed values of f
(0.05, 0.1, 0.15; (c) for fixed values of σ (4, 5, 6).
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Figure 10.4: Gabor score plotted against utility for each dataset using n = 4, f = 0.1, σ = 5.

is comparatively lower. This indicates that the Gabor approach may be improved by com-
bining the OCL and POW methods.

Metric FDA Gabor GaborShen LCS NFIQ OCL OF POW RVU

FDA 1.000 0.507 0.464 0.173 -0.068 0.481 0.322 0.364 -0.315
Gabor 0.507 1.000 0.909 0.512 -0.266 0.713 0.449 0.665 0.201
GaborShen 0.464 0.909 1.000 0.522 -0.296 0.709 0.469 0.564 0.188
LCS 0.173 0.512 0.522 1.000 -0.066 0.742 0.441 0.499 0.553
NFIQ -0.068 -0.266 -0.296 -0.066 1.000 -0.273 -0.319 0.023 0.127
OCL 0.481 0.713 0.709 0.742 -0.273 1.000 0.685 0.482 0.181
OF 0.322 0.449 0.469 0.441 -0.319 0.685 1.000 0.244 -0.006
POW 0.364 0.665 0.564 0.499 0.023 0.482 0.244 1.000 0.284
RVU -0.315 0.201 0.188 0.553 0.127 0.181 -0.006 0.284 1.000

Table 10.2: Intermetric Spearman correlations on FVC2004Db1.

10.6 Conclusions

We introduced a Gabor filter based approach, which correlates with utility on a level com-
parable or above that of eight contemporary quality metrics. This shows the viability of
using the Gabor filter to predict biometric performance on fingerprint images. While we
investigated 36 parameter configurations, there is still room for exploring the parameter
space for further optimizations.

142



10.6 CONCLUSIONS

As the NFIQ metric is a composite metric containing 11 features based on the finger-
print, we conclude that the Gabor filter approach could be included as part of a quality
feature vector in order to be able to outperform and replace the NFIQ metric. In relation
to the development of NFIQ 2.0, the successor of NFIQ, we have a positive outlook on the
inclusion of the presented approach.

Our future research will be improving the Gabor quality approach, focusing on deal-
ing with different types of fingerprints and/or scanners. Another research topic is how to
select and combine quality metrics for generating the NFIQ 2.0 metric. Furthermore, the
utility measure as defined in Eq. (10.4) is prone to outliers in the imposter and genuine
score distributions, especially the genuine score distributions. This influences the reliabil-
ity of the utility measure. We can cope with this by using datasets that allow for a larger
amount of genuine comparisons, or by using another utility measure, e.g. instead of con-
sidering all genuine comparisons, we could consider only the maximum genuine score
for a given sample. In our future investigations, we will consider these other options for
quality metric performance assessment.
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Chapter 11

Fingerprint Sample Quality Assessment via
Ridge Line Count Using Laplacian of Gaussian

Edge Finding

Information about the paper

This paper is one development towards new quality assessment algorithms
which fast to perform on systems with reduced computational resources. The
proposed algorithm is based on the assumption that there in any given high
quality area within the foreground of the fingerprint will be a certain num-
ber of ridge valley transitions. The paper is a contribution towards research
questionsRQ2 andRQ3. This original paper was published in: [6] M. Du-
sio, M. A. Olsen, and C. Busch. “Fingerprint Sample Quality Assessment via
Ridge Line Count Using Laplacian of Gaussian Edge Finding”. In: The 2nd
International Workshop on Biometrics and Forensics (IWBF). 2014.
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EDGE FINDING

Abstract

We propose a new fingerprint sample quality measurement algorithm based on lo-
cal fingerprint area analysis and ridge line counts. The proposed method determines
ridge orientation of local areas with Principal Component Analysis, finds edges using
the Laplacian of Gaussian and zero-crossings approach, and counts valley to ridge
transitions across the center of the area to assign a local score. The local scores are
aggregated to assign a single quality value for the fingerprint. We assess the per-
formance of our method with Error versus Reject Curves obtained from compari-
son scores from three fingerprint comparators on CASIA Fingerprint V5.0 and FVC
2004 DB 1A datasets. The quantitative evaluation shows that the proposed method
achieves predictive performance on level with NFIQ while achieving higher fidelity.

11.1 Introduction

Biometric fingerprint recognition is widely used to check and confirm personal identity
by analyzing the pattern of ridges present on a persons fingertip. Biometric systems work
by performing a comparison between enrolled reference templates and captured probe
samples to generate a comparison score. Based on this score and a biometric threshold,
a biometric decision is made - if the score is above the threshold, the decision is a match,
otherwise it is a non-match. Mated samples, stemming from the same subject and source,
give genuine comparisons; non-mated samples give impostor comparisons. By perform-
ing comparisons on all mated pairs of samples and several non-mated pairs in one dataset
of samples, two distributions of genuine and impostor comparison scores are obtained.
In a perfect world, these distributions could be completely separated by the biometric
threshold. In practice however, they do overlap and some genuine comparisons are falsely
rejected. The portion of genuine comparison scores that are below the threshold is called
the False Non-Match Rate (FNMR) and can be used as a performance metric.

It is currently understood in government, industry and academia that the recognition
performance of a sample is, among other factors, influenced by its quality [192]. ISO/IEC
29794–1 [70] gives a concrete definition of the quality of a biometric sample as being the
predictor of the biometric performance. Good quality samples give good recognition per-
formance whereas poor quality samples increase the error rates. A biometric system work-
ing with highest quality samples will have smaller error rates, i.e., rejecting samples of
poor quality will decrease the FNMR [192]. Recognition performance may suffer due to
poor quality of fingerprint samples caused by one or several factors: a) skin defects such
as blisters, wrinkles or scars; b) skin conditions such as roughness, dryness or wetness; c)
user behavior such as bad finger alignment, too little or too much pressure; and d) envi-
ronmental conditions: dirty sensor platen, extreme temperature or lighting. If the acquired
sample is of poor quality, c) and d) may be altered by the user if given sufficient feedback
and the acquisition process can be repeated.

The motivation to research fingerprint quality algorithm is driven by a need for higher
accuracy in prediction of performance and that ISO/IEC 29794-1 [70] requires 100 quality
levels for compliance. The contribution of this paper is a fingerprint sample QMA based
on local ridge line counts and which is competitive with state of the art methods and as
such is a possible candidate to be incorporated in ISO/IEC 29794–4 [99] and NFIQ 2.0
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[80]. Ridge line count is a measure of distance between two points in a fingerprint image.
In forensics it has been used in fingerprint classification schemes and the measurement
between core and delta has been used in forensic AFIS to improve fingerprint comparison
accuracy [49, p.161].

The rest of paper is organized as follows: Section 11.2 describes state of the art qual-
ity algorithms. Section 11.3 specifies the proposed method. Experiments and results are
discussed in Section 11.4 and 11.5 with conclusions presented in Section 11.6.

11.2 Fingerprint Sample Quality Analysis

State of the art fingerprint quality methods rely on image processing to measure various
features of the fingerprint sample to determine if the sample is good or bad quality. Bio-
metric sample quality estimation methods differ depending on the biometric characteristic
that is used, but the common principle is to use a Quality Measurement Algorithm (QMA)
that produces a scalar quality score q given an input sample x: q = QMA(x).

Several state of the art fingerprint QMAs are described in ISO/IEC 29794–4 [99] and the
NFIQ 2.0 Features Definition document [82]. From the best performing known methods
we have chosen Orientation Certainty Level (OCL) [71] and NIST Finger Image Quality
(NFIQ) [79] as baseline algorithms for benchmarking the methods proposed in this work.

OCL is a method of fingerprint quality estimation first introduced by Lim et al. in 2002
[71]. Fingerprint samples feature ridge lines flowing through the image in a certain pat-
tern at varying angles. Local areas of a sample contain a certain orientation of this flow.
Good quality samples with well defined ridge texture allow to determine the ridge orien-
tation with high certainty, whereas poor ridge texture results in uncertain measurement.
To determine this certainty, OCL applies a Sobel operator to obtain gray level gradients at
the local areas and performs Principal Component Analysis to find the covariance matrix
and eigenvalues. The ratio between found eigenvalues is the certainty of the orientation
flow and is used as the quality indication at the local area. Quality of the whole sample is
calculated as the mean of local qualities.

NIST Finger Image Quality, proposed by Tabassi, Wilson and Watson in 2004 [79] is
currently the most widespread approach to quality estimation according to Maltoni et al.
[49]. It is the best performing method according to the NFIQ 2.0 Features Evaluation [81]
and gives a good performance prediction for diverse comparison algorithms. NFIQ uses
orientation flow, minutiae count and other image features as a feature vector which is con-
verted into a single quality score using an artificial neural network [79]. NFIQ categorizes
fingerprint samples into five quality levels: excellent, very good, good, fair, poor and is the
defacto standard for fingerprint quality assessment.

11.3 Ridge Line Count Quality Assessment

The main principle behind the proposed Ridge Line Count (RLC) method is to locally
analyze a fingerprint sample and count the number of ridges. We assume that poor quality
regions of fingerprint samples do not contain clearly defined ridges and hence does not
allow to count them easily. Good quality samples will have more areas where ridges are
clearly defined and easily countable. This can be determined by taking into account that
for adults ridges/valley cycle takes 500µm up to 600µm [49] when the ridges are thick –
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with 500dpi sensors corresponds to roughly 3.25 ridge lines over 32px and minimally 2.7
ridge lines over 32px.

In order to calculate the number of ridges passing through a local area extracted from
a fingerprint sample, the following approach is proposed. First, the whole sample is bina-
rized using Otsu’s threshold in order to minimize intra-class variance of white and black
pixels, then the sample is divided into local areas of size 32×32 pixels. The area size is cho-
sen the same as in state of the art methods described in ISO/IEC 29794–4 [99] in order to
decrease the computational cost if multiple methods are combined (sample division would
not have to be repeated for each method). The upper bound for the local area size is the
curvature of skin ridges, the chosen size ensures minimal curvature outside of delta and
core fingerprint regions. The lower bound is ridge thickness - with the chosen area size it
is ensured that at least two full ridges should be present. Generally larger area size leads
to less areas and renders the method faster to compute overall. However, the purpose of
this paper is not to present the most optimal approach to quality analysis via ridge line
counting, but show that it is indeed possible and offers performance benefits compared to
other methods.

The next step is analysis of each area. To count the number of ridges, their orientation
is required such that the area may be traversed orthogonal to the ridge line orientation,
incrementing a counter whenever a ridge is passed. Area orientation is found by calculat-
ing grey level gradient of the area and performing Principal Component Analysis [193] to
obtain covariance matrix coefficients C =

[ a c
c b

]
. Area rotation angle is determined from

these coefficients as

α = tan−1(
c√

c2 + (a− b)2

a− b√
c2 + (a− b)2

) (11.1)

The area is rotated according to α such that the ridges are vertical. We estimate the ridge
count by traversing the area in the horizontal direction and count the number of detected
zero crossings after applying a Laplacian of Gaussian filter calculated as

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (11.2)

where LoG(x, y) is the response at pixel (x, y). Filter size is chosen as 13 × 13 and σ = 2.
The LoG approach is chosen as it includes a lowpass filter that removes noise that may
lead to spurious edges.

The proposed method produces a map of local area qualities. To produce a final quality
scalar q, this map is aggregated as follows – the final quality is the ratio of local areas that
feature a ridge count over a threshold to all local areas. The threshold is chosen as 2.7
which as described earlier is the minimum number of ridges expected to pass over 32
pixels.

As a less computationally expensive approach to counting ridge lines we propose an
alternative Ridge Line Count simple (RLC simple). The simple alternative approach does
not perform Laplacian of Gaussian edges finding, but traverses the rotated area through
vertical middle and counts each white to black pixel transition. The simple approach also
produces a map of local area qualities that is aggregated as a mean of the local values.

Figure 11.1 shows an example of how a fingerprint sample local area is processed with
the proposed method and the corresponding RLC and RLC simple values are shown below
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for each processed local area. Five areas extracted from different fingerprint samples are
shown, three of them produce a score higher than 2.7 and thus qualify for the threshold-
based aggregation method.

RLC = 1, RLC simple = 0.5

RLC = 2, RLC simple = 0

RLC = 3.5, RLC simple = 2.5

RLC = 4, RLC simple = 2

RLC = 4.5, RLC simple = 2.5

Figure 11.1: Proposed Ridge Line Count method processing performed on five example fingerprint
local 32 × 32 pixels areas. From left: original area, binarized area, rotated area, edges found using
LoG. Ridges are counted through horizontal middle of the area. The RLC and RLC simple values for
the area are shown below each row.

149



11. FINGERPRINT SAMPLE QUALITY ASSESSMENT VIA RIDGE LINE COUNT USING LAPLACIAN OF GAUSSIAN

EDGE FINDING

11.4 Experimental Setup

We focus on optical fingerprint sensors as they are most commonly used, offer highest
resolution [49], are used by the Office of Biometric Identity Management (OBIM) program
by the Department of Homeland Security [170] and used in the Aadhaar project by Unique
Identification Authority of India (UIDAI) [184].

The experiment is divided into three parts: preparation of fingerprint dataset, finger-
print comparison algorithms, reference and proposed QMAs; calculation of genuine and
impostor comparison scores, quality scores of all fingerprints via reference and proposed
QMAs; and assessment of proposed and reference QMA performance via ERC analysis.

The fingerprint datasets chosen are the publicly available CASIA Fingerprint Image
Database Version 5.0 (CASIAFPV5) [140] and DB 1A from the Third International Finger-
print Verification Competition (FVC2004DB1A) [133]. CASIAFPV5 contains 20 000 finger-
print samples acquired with varying rotation and pressure from 500 subjects with differ-
ent background, i.e. students, workers, waiters, etc. FVC2004DB1 contains 880 finger-
print samples acquired with varying skin moisture conditions, finger pressure and rota-
tion. Both datasets feature samples captured in 500dpi resolution and offer good quality
variation to support a fair assessment of the proposed method and comparison of its per-
formance with state of the art.

For the experiments we use three fingerprint comparators and treat them as black
boxes. They appear in the paper as comparator A, B, and C. The QMAs used to calculate
fingerprint quality are the proposed RLC, the variation RLC simple, and state of the art
NFIQ and OCL. OCL quality feature extraction is performed accordingly to the procedure
described in ISO/IEC 29794–4 [99]. RLC is calculated as described in section 11.3.

Comparison scores between all pairs of fingerprints are calculated using each of the
available comparators such that: all genuine comparison scores are calculated with an ex-
ception that no sample is compared to itself; a limited number of 100 impostor comparison
scores is calculated for each sample. All fingerprints have their quality calculated using the
proposed Ridge Line Count QMA, and state of the art Orientation Certainty Level (OCL)
and NIST Finger Image Quality (NFIQ).

State of the art and proposed method performance is assessed and compared in terms
of the improvement in False Non–Match Rate with poor quality samples rejection via Error
versus Reject Curves (ERC). ERC was first proposed by Grother and Tabassi [112] in 2007;
it shows precisely how removing lowest quality samples (as indicated by a certain QMA)
influences system performance viewed as FNMR. Additionally, the quality obtained via
the proposed method is compared to OCL and NFIQ in terms of how the results cor-
relate by calculating Spearman’s rank correlation coefficient ρ as described in NFIQ 2.0
Features Evaluation [81]. This way it is possible to determine whether two methods are
complementary – if the output of a pair of QMAs has low correlation, then these methods
are complementary and could be combined, otherwise if the correlation is very high, the
methods are likely to measure a similar feature of a sample.

11.5 Results

Figures 11.3 and 11.2 show Error versus Reject Curves analysis results calculated on the
CASIA Fingerprint V5.0 and FVC2004DB1A datasets using comparators A, B and C using
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FVC2004DB1A, Comparator A

FVC2004DB1A, Comparator B

FVC2004DB1A, Comparator C

Figure 11.2: Error vs. Reject Curves QMA performance analyzed on FVC2004DB1A using three fin-
gerprint comparators. RLC – proposed method, RLC simple – proposed method simplified version,
OCL and NFIQ – state of the art methods.
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CASIA Fingerprint V5.0 dataset, Comparator A

CASIA Fingerprint V5.0 dataset, Comparator B

CASIA Fingerprint V5.0 dataset, Comparator C

Figure 11.3: Error vs. Reject Curves QMA performance analyzed on the CASIA Fingerprint V5.0
dataset using three fingerprint comparators. RLC – proposed method, RLC simple – proposed
method simplified version, OCL and NFIQ – state of the art methods.
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minimum quality score as the criteria for rejecting a comparison. The x-axis shows the
fraction of samples rejected according to quality, with lowest quality samples rejected first.
The biometric threshold is chosen such that FNMR is ten percent as suggested by method
authors [112]. FNMR is shown on y-axis. The ideal case, marked by the straight dashed
line, shows the behaviour when up to ten percent of samples are rejected according to
quality and when the sole factor in FNMR is quality.

QMA performance as analyzed on the CASIA dataset is as follows: NFIQ allows FNMR
drop to 0.04 when 30 per cent of samples are rejected – this is the case for comparators A
and C – for comparator B FNMR drops to rougly 0.085. The proposed method offers sim-
ilar performance with 30 per cent rejected samples for comparators A and B, and slightly
outperforms NFIQ when comparator B is used. OCL offers worse performance allowing
FNMR drop to 0.055 for comparator A, 0.09 and roughly 0.05 for comparator C. Simplified
RLC is worse than the normal version for comparators A and C and performs similarly
with comparator B; it is generally better than OCL. The difference in performance between
comparators is due to the fact that each comparator produces a different distribution of
genuine and impostor comparison scores - on the CASIA dataset comparators A and C
behave similarly, whereas when comparator B is used then QMA performance is worse.

Results of ERC analysis of the QMAs on FVC2004DB1A are similar to those of CASI-
AFPV5. NFIQ and the proposed method give good results – for fraction rejected 30 per
cent the FNMR drops to 0.075, 0.08 and 0.09 for comparators A, B and C respectively both
for RLC and NFIQ. The simplified RLC is only slightly worse than the normal version
until more than 40 per cent of the samples are rejected when comparator A is used and
until 65 per cent are rejected for comparators B and C – when these fractions are rejected,
the simple method is actually better. It is also worth to note that on this dataset, with
comparator C NFIQ is very goot after roguhly 56 per cent of the samples are rejected.
With FVC2004DB1A the best QMA performance is observed when comparator A is used,
whereas comparators B and C give slightly higher ERC curves denoting worse QMA per-
formance.

NFIQ OCL RLC RLC simple

NFIQ 100 60 68 62
OCL 60 100 49 32
RLC 68 49 100 82

RLC simple 62 32 82 100

Table 11.1: Inter-method correlation on the quality sets of the CASIA Fingerprint V5.0 dataset. Abso-
lute value of Spearman’s ρ calculated using proposed and state of the art QMAs. Value is multiplied
by 100 and rounded for reader convenience.

Tables 11.1 and 11.2 show the inter-method correlation calculated as absolute value
of Spearman’s ρ multiplied by 100 and rounded for reader convenience for datasets CA-
SIA Fingerprint V5.0 and FVC2004DB1A respectively. For CASIAFPV5, state of the art
methods OCL and NFIQ show medium correlation of 60, and the proposed method RLC
shows medium correlation of 49 with OCL and medium correlation of 68 with NFIQ. The
simplified version of RLC shows a correlation of 62 with NFIQ and 32 with OCL, and a
correlation of 82 with the normal RLC. For FVC2004DB1A, OCL and NFIQ show a low cor-

153



11. FINGERPRINT SAMPLE QUALITY ASSESSMENT VIA RIDGE LINE COUNT USING LAPLACIAN OF GAUSSIAN

EDGE FINDING

NFIQ OCL RLC RLC simple

NFIQ 100 31 38 32
OCL 31 100 28 38
RLC 38 28 100 78

RLC simple 32 38 78 100

Table 11.2: Inter-method correlation on the quality sets of the FVC2004DB1A. Absolute value of
Spearman’s ρ calculated using proposed and state of the art QMAs. Value is multiplied by 100 and
rounded for reader convenience.

relation of 31, whereas the proposed RLC method shows correlation of 28 with OCL and 38
with NFIQ. The simplified RLC shows a correlation of 32 with NFIQ, 38 with OCL and 78
with the normal RLC. The proposed method and its simplified version are complementary
to the analyzed state of the art methods and could be combined with them.

11.6 Conclusions

A fingerprint sample Quality Measurement Algorithm measuring quality based on the lo-
cal count of ridge lines was proposed, assessed and compared to state of the art methods
NFIQ and OCL using Error versus Reject Curve analysis, three fingerprint comparators,
a publicly available fingerprint dataset CASIA Fingerprint V5.0 and FVC2004DB1A. The
analysis shows that the proposed method offers biometric performance prediction close
to that of NFIQ while at the same time increasing the fidelity, i.e., more quality levels
are provided so a finer control of the FNMR reduction is achieved. The correlation table
shows that the proposed method is complementary to that of orientation certainty level.
We show that a variation of the proposed method, which does not use Laplacian of Gaus-
sian for edge detection, can achieve nearly the same predictive performance but at a lower
computational cost as the filter convolution is skipped. The proposed method may be fur-
ther optimized by tuning parameters such as local area size and improving the ridge line
counting algorithm in order to minimize the computational cost and increase the perfor-
mance.
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Chapter 12

Predicting Dactyloscopic Examiner
Fingerprint Image Quality Assessments

Information about the paper

Dactyloscopic examiners work with fingermarks and one of their tasks is
to attribute evidential value to a fingermark. Here we show that quality
assessments made by examiners are indicative of comparison scores, and
we develop a proof of concept as a step towards an objective quality algo-
rithm which can assist examiners in making decisions on fingermark quality.
One major challenge in the development of such an algorithm is in the ac-
quisition of ground truth data which can be applied to develop and verify
the proposed algorithm. The paper is a contribution towards research ques-
tion RQ5. This original paper was published in: [9] M. A. Olsen, M. Böck-
eler, and C. Busch. “Predicting Dactyloscopic Examiner Fingerprint Image
Quality Assessments”. In: BIOSIG (2015).
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Abstract

We work towards a system which can assist dactyloscopic examiners in assessing the
quality and decision value of a fingerprint image and eventually a fingermark. How-
ever when quality assessment tasks of datyloscopic examiners are replaced by auto-
matic quality assessment then we need to ensure that the automatic measurement is
in agreement with the examiner opinion. Under the assumption of such agreement,
we can predict the examiner opinion. We propose a method for determining the ex-
aminer agreement on ordinal scales and show that there is a high level of agreement
between examiners assessing the ground truth quality of fingerprints. With ground
truth quality information on 749 fingerprints and using 10-fold cross validation we
construct models using Support Vector Machines and Proportional Odds Logistic Re-
gression which predicts median examiner quality assessments 35% better than when
using the prior class distribution.

12.1 Introduction

Fingerprint sample quality in the context of forensic applications where an examiner fol-
lowing the Analysis, Comparison, Evaluation, and Verification (ACE-V) protocol is part of
the initial information gathering phase where the examiner studies the impression to quan-
tify the present discriminating information and assess the quality and completeness [194].

The quality assessment will among other factors such as the completeness of the finger-
print have an impact on the decision value of the impression, which can be one of: Value
for Individualization (VID), which is used when the quantity and quality of the informa-
tion present is deemed sufficient to determine if the impression is from the same source
as another, yet unseen, impression; Value for Exclusion Only (VEO) is used when suffi-
cient information is present to determine that the impression is not from the same source
as another impression; No Value (NV) is used when the impression is deemed unsuitable.
The process of assigning VID, VEO, and NV is inherently subjective and requires training
and experience to perform accurately and consistently. Ulery et al. conducted a study on
the accuracy and reliability of 169 forensic examiners who assigned VID, VEO, and NV
decisions to 100 latents and found that VID decisions were unanimous in 48% of cases for
mated pairs and 33% for non-mated pairs [195]. In a related study on the repeatability and
reproducibility of decision by individual examiners, it was found that 93% of VID, 85%
NV, and 55% VEO decisions were repeated by individual examiners when presented twice
with the same impression after a 7 month interval [196]. These findings, which indicate
a high degree of accuracy with respect to VID, and lower accuracy with respect to VEO
mirror the findings by Langenburg [197].

It has been demonstrated that when provided with extraneous contextual informa-
tion, an examiner might change the method of judging and comparing fingerprints [198].
Additionally, the examiners are vulnerable to biasing information such as evidence of
confession of a crime, even in cases where the comparison of the impressions is non-
difficult [199].

Biometric sample quality has successfully been applied in the context of Automated
Fingerprint Recognition Systems (AFIS) to reject samples which are likely to contribute
negatively to False Non-Match Rates (FNMR). By rejecting those samples before they are
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enrolled, a high level of biometric performance is achievable and with it higher levels of
satisfaction by the users interacting with the biometric system [120].

We are motivated by the successful application of automated quality assessment in
AFIS and by the findings of Ulery et al. and Bradford et al., which highlight the subjective
nature of the ACE-V protocol, to determine methods which objectively assesses the qual-
ity of an impression in the form of a fingerprint or a fingermark. This paper represents
one step in this direction and our main objective is to determine methods which predict
the quality assessment that a dactyloscopic examiner gives a particular fingerprint. To
achieve this, we leverage a dataset which contains ground truth quality labels on inked
impressions as assessed by dactyloscopic examiners from the German Federal Criminal
Police Office (BKA), and apply quality assessment algorithms identified or developed in
the context of NFIQ 2.0 [80].

The rest of the paper is organized as follows: section 12.2 outlines state of the art meth-
ods for objective quality assessment. In section 12.3 we propose a method for quantifying
examiner agreement, section 12.4 details the ground truth dataset on which we base our
experiments that are described in section 12.5. We discuss our results in section 12.6 and
conclude in section 12.7.

12.2 Fingerprint quality

There exists a large number of fingerprint image quality assessment algorithms in the lit-
erature and several reviews have been made, e.g. in the context of optical and capacitive
sensors [90, 91]; relation between quality assessed by human experts and algorithms and
comparison scores [89]; and more recently quality assessment using no-reference algo-
rithms have been investigated [86]; a comprehensive review of biometric sample quality
is provided by Bharadwaj et al. [95] and a quality metric for fingermarks has been pro-
posed [111].

We have selected a subset based on those features specified in the NFIQ 2.0 quality
feature definitions document version 0.5 [82] which we summarize here: Frequency Do-
main Analysis (QFDA) uses the magnitude of the dominant frequency as determined by
discrete Fourier transform fingerprint image as a local quality value. Local Clarity Score
(QLCS) determines the clarity of the fingerprint image by estimating how well each block
in the fingerprint image can be segmented into ridge and valley region. Orientation Flow
(QOFL) measures the continuity of ridge flows in the fingerprint image by determining the
dominant ridge orientation agreement between one block and its neighbouring blocks.
Orientation Certainty Level (QOCL) is a measure of the strength of the ridge orientation
within a image block. A high score indicates that the ridge orientation within the block
is well defined. Ridge Valley Uniformity (QRVU) measures the consistency between ridge
and valley widths within each image block. The widths of ridges and valleys are expected
to be similar across the entire fingerprint image. Radial Power Spectrum (QRPS) quantifies
the energy concentration within a specified band in the Fourier spectrum. The limits of
the band are determined by the expected ridge valley frequency. Image mean (QMU) is
the mean value of pixel intensities across the fingerprint image. Image standard deviation
(QSIG) is the standard deviation of pixel values across the fingerprint image.

The features QFDA, QLCS, QOFL, QOCL, QRVU operate on 32 by 32 pixel non-overlapping
regions of the image and thus provide a vector of local quality values. QRPS, QMU, QSIG
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work on the entirety of the image and provide a scalar value. Based on these two groups
we define two sets of features: Set A which contains the mean and standard deviation of
each of the local quality vectors ofQFDA,QLCS,QOFL,QOCL,QRVU giving a total of 10 features;
set B contains, in addition to the features in set A, QRPS, QMU, QSIG for a total of 13 features.

12.3 Quantifying examiner agreement on ordinal scales

To quantify examiner agreement, which is an essential task to determine to which degree
examiners agree on what quality means and to compare and judge how well automatic
quality prediction will perform against its human counterpart, the following requirements
are specified for an examiner agreement coefficient:

1. an unlimited number of assessments on a single fingerprint shall be considered

2. the agreement of assessments shall be weighted according to their distance

3. assessments that belong to the same decision categories shall be assigned with high
weights

4. when the assessment scale varies the measure results shall remain consistent

Ad 1 - the coefficient shall be capable of measuring agreement for fingerprints that were
annotated by a minimum of 2 examiners and for fingerprints that are annotated by more
than 2 examiners. Ad 2 - assessments that are “closer” to each other shall result in higher
agreement. Ad 3 - not only the “distance” of single assessments shall be measured, as-
sessments in equal decision categories shall be weighted higher than assessments that are
not in the same decision category. Ad 4 - quality assessments in varying assessment scales
shall result in the same agreement if the relative distance of the single ratings are the same.
For example, a quality assessment of x11 = 1, x12 = 2, x13 = 5 {x1x ∈ N|1 ≤ x1x ≤ 5} and
a quality assessment of x21 = 1, x22 = 25, x23 = 100 {x2x ∈ N|1 ≤ x2x ≤ 100} shall result
in the same agreement coefficient.

Several common statistical measures like the Percentage agreement P̄ [196], the In-
terquartile Range IQR [200, p.27], the Median Absolute Deviation MAD [201, p.220] and
the Standard Deviation SD [200, p.26] were investigated to determine if they fulfil the
specified requirements. Table 12.1 displays how these measures perform on various as-
sessment examples. It is clear that none of the common measures are able to measure
examiner agreement sufficiently as they all violate one of the predefined requirements.

P̄ is equal for assessment examples 2 and 3, and examples 4, 5 and 6 thus violat-
ing requirement 2. IQR is equal for the assessment examples 3 and 4 violating require-
ments 2 and 3 as also for assessment example 5 and 6 which violates requirement 2. MAD
is equal for the first 3 examples thus violating requirement 2 and 3 and in the 4th and 5th
example requirement 2 is violated. SD violates requirement 3 in examples 2, 3, 7 and 8.
Requirement 4 is violated by IQR, MAD , SD as the produced values depend on the range
of the scale.

None of the measures described above satisfy the task of measuring examiner agree-
ment as specified by our requirements, and hence we propose a new coefficient which does
fulfil the specified requirements: Closest-neighbour Median Cluster Agreement (CMCA).
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Assessment example

1 2 3 4 5 6 7 8
A

ss
es

sm
en

t excellent, 1 2 31 21 21 1 1 1 1 2 3 4 5 1 2

very good,
2

1 3 1 2 2 1 1 3

good, 3 1 1 3 3 1 2 1 4

fair, 4 1 1 1 1 1 1 1 5

poor, 5 1 1 1 1 3 3 6 6

A
gr

ee
m

en
t P̄ 1.000 0.333 0.333 0.000 0.000 0.000 0.667 0.067

IQR 0.000 1.000 2.000 2.000 4.000 4.000 0.000 3.000
MAD 0.000 0.000 0.000 1.000 1.000 2.000 0.000 1.500

SD 0.000 0.471 0.943 0.816 1.700 1.633 1.491 1.491
CMCA 1.000 0.839 0.689 0.422 0.166 0.125 0.765 0.208

Table 12.1: Examples of agreement values computed using P̄ , IQR, MAD , SD , CMCA for 8 cases of
examiner assessments where the number of experts and their assessments vary. In the top half of the
table, each dot represents an examiner assessment ranging from excellent (1) to poor (5). The bottom
half of the table shows the agreement value assigned by the 5 metrics for each assessment example.

CMCA consists of multiple parts which are calculated as follows. Let xj be the jth

ascending sorted rating on the fingerprint. The closest neighbour distance NDj ∈ [0, 1],
one part to fulfil requirement 2, of the jth rating on the fingerprint is:

NDj = min (|xj − xj−1| , |xj − xj+1|) (12.1)

Further, let max i the maximum possible rating on the rating scale, min i the minimum
possible rating on the scale, x̃ the median of ratings and r the number of ratings on the
fingerprint. The distance consensusD ∈ [0, 1] of the fingerprint made to fulfil requirements
2 and 4 is:

D =

(
r∑
j=1

(
1− NDj

max i−min i

)
+
(

1− |xj−x̃|
max i−min i

))
− 1

2r − 1

(12.2)

Let cj be the jth cluster (ratings in the same decision category) and let |cj | be its cardinality.
Let nc be the number of clusters on. The average cluster size difference CSD ∈ [0, r − 2],
which compares the size of each assessment cluster against each other and calculates the
mean of their size differences is:

CSD =

nc∑
j=1

nc∑
k=j

||cj | − |ck||

(nc−1)·nc
2

(12.3)

To fulfil requirement 3, the distance consensus D is multiplied by the cluster size power
CSP ∈ [1, r − 1], which is calculated as:

CSP = nc− CSD

r
(12.4)
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The CMCA on the fingerprint is finally calculated by:

CMCA =


1.0 , nc = 1

1.0− |x1−x2|
max i−min i , r = 2

DCSP , otherwise

(12.5)

The CMCA ∈ [0, 1] over a set of fingerprints I is calculated as the arithmetic mean over
the CMCA agreements of each fingerprint in I .

The measurement results of CMCA applied to the 8 assessment examples are shown
in the last row of table 12.1. Assessment examples 5 and 6, show that CMCA fulfils re-
quirement 2 by considering the distance of between single assessments. It also fulfils re-
quirement 3, heavy weighted assessments that belong to the same decision category. The
example shows that the CMCA fulfils requirement 1, measuring agreement for any num-
ber of assessments on a single fingerprint.

After all, the CMCA was designed to measure examiner agreement per fingerprint, see
12.5. Other coefficients like Cohens Kappa [202] or Fleiss Kappa [203] were designed to
measure inter-rater agreement over the whole assessment population which is expressed
by the arithmetic mean of the set of CMCA. Nonetheless, Cohens Kappa has the disad-
vantage that it can only measure pairwise rater agreement on nominal data. In addition,
Fleiss Kappa is able to measure inter-rater agreement for more than 2 raters, but was also
designed for nominal data, so additional information of the natural order of categories on
ordinal data like it is present in our case of fingerprint quality, would not be considered
properly.

12.4 Ground truth data

The ground truth data of this paper, representing the human examiner quality assessment
part, originates form the NIST special database 14 [159], containing 54 000 fingerprints
from live-scan and scanned ink impressions and from the NIST special database 29 [204],
containing 4 320 fingerprints. In 2009, a team of 9 dactyloscopic examiners from the BKA
annotated for the purpose of a conformance testing study [160] several fingerprint char-
acteristics, like minutia points, singular points and the overall fingerprint quality which
is investigated in this paper. To establish an objective annotation, the examiner team was
equipped with a simple graphical user interface that omitted the support of the automatic
or semi-automatic minutia extraction functionality of the AFIS. To further increase the ob-
jectivity and anonymity of the process, each examiner was assigned with an ID that was
not known to other examiners. The examiners rated the overall fingerprint quality within
5 decision categories, ranging from excellent (1), very good (2), good (3), fair (4) to poor (5).
A total of 749 fingerprints were annotated by at least 2 examiners. Figure 12.1 shows the
logical partitioning of the annotated samples, where the first level contains the set of 749
fingerprints; the second level shows how many samples were annotated grouped by the
number of examiners. The third level shows the number of samples each distinct group
of examiners annotated, e.g. there were 713 fingerprints annotated by 3 examiners, which
came from two groups of 3 examiners annotating respectively 361 and 352 fingerprints (S2
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and S3). Table 12.2 shows the number of images that were annotated by each of the 9 ex-
aminers. We note that examiners 11 to 16 have each annotated nearly 400 samples, while
examiners 17 to 19 have annotated fewer than 20 samples.

749 fingerprints with mark-ups by BKA examiners

2
1

S1

1

3
713

S2

361
S3

352

4
7

S4

7

5
9

S5

9

6
2

S6

2

7
4

S7

3
S8

1

8
4

S9

3
S10

1

9
9

S11

9

Figure 12.1: Examiner markup tree. The bold digits in the second tree level display how many exam-
iners annotated a specific number of fingerprints. The last tree level shows how many fingerprints
where annotated by distinct groups of examiners.

Examiner

11 12 13 14 15 16 17 18 19

Annotations 396 393 397 378 388 371 10 17 17

Table 12.2: The number of images annotated by each of the 9 examiners.

CMCA

Quality n min max mean median std

1 41 .69 1.00 .82 .84 .08
2 306 .42 1.00 .86 .84 .15
3 305 .42 1.00 .90 .84 .10
4 92 .42 1.00 .88 .84 .11
5 5 .84 .84 .84 .84 .00

All 749 .42 1.00 .88 .84 .13

Table 12.3: Summary statistics of CMCA at each median ground truth quality level and across all
samples.

Table 12.3 summarizes the CMCA computed on median ground truth quality levels and
for all fingerprint images in the ground truth data set. The mean CMCA is .88 across all
fingerprint images, indicating that there is generally consensus between examiners when
subjectively assessing the quality level of a fingerprint image. At the individual levels we
note some differences in the CMCA, in particular that mean CMCA at quality level 1 is .82
while for level 3 it is .90.

Figure 12.2 shows an example fingerprint for each median quality assessment. For
median quality levels 1 through 4 the examiners were in agreement with CMCA = 1.0
while for the fingerprint illustrating level 5 where CMCA = 0.838. We observe that at
level 1 (left most figure) the ridge lines are clearly separated around the core, where the
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examples for levels 4 and 5 appear without clearly defined ridge lines and with blurry or
low contrast regions.

Median examiner quality

1 2 3 4 5

Figure 12.2: Median examiner quality assessment with example fingerprints. All images are from the
NIST special database 14 [159] (file names from left to right: f0000118, f0000109, f0000095, f0000969,
f0000968).

To assess whether human examiner quality assessments are indicative of the eventual
genuine comparison score of the fingerprint sample, we computed the genuine compar-
ison scores for all samples and grouped them according to the examiner who made the
assessment and the quality score that was assigned. Box plots showing the relation be-
tween assigned quality and genuine comparison score [205] for each of the 6 examiners
who annotated the most images (see table 12.2), as well as the median examiner quality
are depicted in fig. 12.3. The plots show that generally a higher quality score is associated
with a higher comparison score, however, for some cases we note some irregularities. For
Examiner 11 (left most plot), we note that no images were assigned quality level 5 and that
those samples which received a quality level of 1 were involved in comparisons resulting
in scores similar to those samples which were assessed as being quality level 2.
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Figure 12.3: Boxplots of genuine comparison score for each of 5 quality levels assigned by 6 examin-
ers and for the median of assigned quality levels.
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12.5 Experiments

Our goal is to predict the quality level that an examiner will assign to a given fingerprint.
We note from table 12.3 that our proposed CMCA coefficient indicates a high degree of
agreement between examiners as to the assigned ground truth quality levels for the data
set.

We perform a series of experiments in order to assess to which degree the quality scores
assigned by individual examiners or the median quality score is predicted. From table 12.3
we note that the distribution of median quality levels is not uniform with the majority of
samples being assigned levels 2 or 3 and with only 5 samples in level 5. Due to the low an-
notation count by examiners 17, 18, and 19 we do not attempt to predict their assessments
(see table 12.2) and instead only assess examiners 11 to 16 individually.

We train our predictive models using Multi-class Support Vector Machine (SVM) [45]
and Proportional Odds Logistic Regression (POLR) [206] where the response variable is
the assigned quality level (either individual examiner or median of examiners), and the
explanatory variables are features in sets A or B (see section 12.2).

The experiments are performed using 10-fold cross validation, i.e., we divide the avail-
able data in each experiment randomly into 10 disjunct partitions of equal size. Over the
10 possible permutations we perform training of SVM and POLR on the 9 folds and test
the performance on the remaining fold. In the case of SVM we use Radial Basis Function
as kernel and perform a grid search for optimal sample influence radius (γ) and cost (C)
over γ ∈ {0.001, 0.01, ..., 1000} and C ∈ {0.001, 0.01, ..., 1000} given the training folds. In
the case of POLR no parameter optimization is performed.

The predictive capability of the constructed models in each experiment setting is deter-
mined by calculating the mean and standard deviation of the F1 score and Cohen’s Kappa
(κ) [202] over the 10 permutations.

Cohen’s Kappa quantifies the class agreement between the model predictions and the
ground truth by taking into account the observed probabilities of the classes. When κ = 0
the agreement is equal to that which can be achieved by random chance based on the priors
- when κ = 1 then the agreement is complete. F1 is the harmonic mean of precision and
recall and the lowest score is achieved when F1 = 0 and highest when F1 = 1.

Experiments were performed using R [207] with SVM from e1071 [208]; POLR from
MASS [209]; cross validation and miscellaneous functions from caret [210] and xtable [211]
packages.

12.6 Results

Our analysis of the ground truth data set (section 12.4) showed that there is a high level of
agreement in assessing quality levels across examiners, and that the higher quality levels
are associated with higher genuine comparison scores.

Following the protocol described in section 12.5 we performed a total of 14 experiments
and have summarized the mean and standard deviations of F1 and κ for each of them
in table 12.4. Each line in the table alternates between feature set A and B in Set column
with the Target column indicating what is being predicted where Median indicates that it is
the median of examiner quality assessments per fingerprint that is predicted, and Examiner
11 indicates that it is the quality assessments of Examiner 11 which are predicted. The
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remaining columns are first grouped by F1 and κ, next by method SVM or POLR and
finally arithmetic mean (mean) and standard deviation (std) of testing results across the 10
fold cross validation.

F1 κ

SVM POLR SVM POLR

Set Target mean std mean std mean std mean std

A Median .58 .05 .59 .06 .31 .07 .33 .07
B Median .60 .08 .60 .06 .34 .12 .35 .07
A Examiner 11 .72 .05 .70 .03 .21 .17 .13 .10
B Examiner 11 .72 .05 .71 .06 .28 .14 .18 .16
A Examiner 12 .45 .06 .48 .05 .17 .07 .23 .07
B Examiner 12 .51 .05 .52 .07 .26 .08 .29 .08
A Examiner 13 .49 .07 .49 .08 .21 .09 .21 .12
B Examiner 13 .53 .08 .52 .08 .30 .10 .26 .09
A Examiner 14 .57 .10 .59 .09 .30 .14 .33 .13
B Examiner 14 .57 .09 .60 .09 .29 .14 .36 .13
A Examiner 15 .57 .06 .60 .09 .29 .08 .35 .14
B Examiner 15 .58 .07 .61 .08 .32 .09 .37 .12
A Examiner 16 .63 .11 .64 .09 .33 .21 .36 .16
B Examiner 16 .64 .12 .65 .11 .36 .21 .38 .19

Table 12.4: Results of experiments in predicting median and individual examiner quality assessment
using SVM and POLR on feature sets A and B.

The best prediction results when using Median as target is achieved with POLR and
feature set B when considering either of F1 and κ as evaluation criteria. We see that the
mean F1 is .60 for both SVM and POLR, but the standard deviation is smaller in the case
of POLR with .06 over .08 achieved with SVM. For κ we note a mean of .35 for POLR and
.34 for SVM, again with a smaller standard deviation favouring POLR.

We note that both F1 and κ spans a wide range when using individual examiner quality
assessments as target for the predictions. Examiner 12 appears to be hardest to predict with
a mean κ of .17 and .23 and F1 of .45 and .58 for respectively SVM and POLR when using
feature set A. Prediction of the scores assigned by Examiner 16 using feature set B gives
the highest mean F1 of .64 and .65 and κ of .36 and .38, however in both cases the standard
deviation over the 10 folds is the highest of the experiments performed.

Generally using the global features present in feature set B lead to marginal increases
in the mean F1 score while κ is increased further for both SVM and POLR.

In addition to SVM and POLR listed in table 12.4 we also used Recursive Partioning,
however that algorithm had difficulty working with the relatively small dataset with 10-
fold cross validation and was thus not able to complete all intended experiments.

12.7 Conclusion

In this paper we have made steps towards assisting dactyloscopic examiner in assessing
the quality of a given fingerprint or fingermark with the aim of determining its decision
value in the ACE-V protocol. We address the objective quality of fingerprints and relation
to examiner opinion with a continued goal to extend the quality assessment evaluation to
fingermarks which pose the greatest challenge in the forensic evaluation.
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12.7 CONCLUSION

We proposed the CMCA coefficient as a general method for quantifying examiner
agreement on ordinal scales containing any number of categories. Using CMCA we have
shown that there is a high level of agreement between examiners as to what constitutes a
high quality fingerprint and further that the ground truth assessments made by dactylo-
scopic examiners are indicative of genuine comparison scores.

On our limited dataset containing 749 finger images and using 13 quality features we
have constructed a model which predicts examiner quality assessments around 35% better
than random chance given the prior quality class probabilities as measured using Cohen’s
Kappa.

Our future work includes refinement of the quality feature set to improve the predic-
tive capabilities; evaluation of the importance of the individual features to gain insights
as to which image covariates are important to examiners; evaluation of the trained model
to determine the degree that the assigned quality levels are indicative of biometric per-
formance; and finally how the trained models can be incorporated in ACE-V protocol to
assist the decision making of dactyloscopic examiners when working with fingerprints or
fingermarks.
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DFT Discrete Fourier Transform. 10, 32, 34, 45

DHS Department of Homeland Security. 25

EC European Commission. 24, 25

EER Equal Error Rate. 11, 14, 26
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EURODAC European Dactyloscopy. 15

EU European Union. 15, 24

FDA Frequency Domain Analysis. ix, xiii, 34, 35

FMR False Match Rate. 47
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MLP Multi-Layer Perceptron. 32
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NFIQ NIST Fingerprint Image Quality. 10, 13, 28, 30–32, 46

NI-VIS National Interfaces Visa Information System. 25

NIST National Institute of Standards and Technology. 9, 10, 17, 31, 32, 52

OBIM Office of Biometric Identity Management. 25

OCL Orientation Certainty Level. ix, xiii, 42, 43

OCT Optical Coherence Tomography. 9

OFL Orientation Flow. ix, xiii, 40–42

PAUC Partial Area Under Curve. xi, 50, 51

PCA Principal Component Analysis. 12

RBFNN Radial Basis Function Neural Network. 13

RPS Radial Power Spectrum. ix, xiii, 44–46
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SECUNET secunet Security Networks AG. 52

SIFT Scale-invariant Feature Transform. 13
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SIS Schengen Information System. 15
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SVM Support Vector Machine [45]. 10, 13
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UIDAI Unique Identification Authority of India. 11, 25, 28, 30

UID Unique Identification number. 25
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