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Chapter 1

Introduction and
motivation

The motivation for this thesis is experiments performed on fully clamped square
steel plates performed by Dharmasena et.al (2009) [9]. The plates were con-
structed of AL6XN steel, and exposed to blast loading from C4 at varying stand
off distances. Three different test configurations were performed; test with bare
charge, test with dry sand and test with wet sand.

Figure 1.1: Photo from experiment prior to detonation [9]

The main focus in this thesis, is to use the results from the bare charge and
dry sand experiments to validate computational models utilized in blast load
analysis. For this purpose three different methods will be used:

• The lagrangian LS-DYNA load blast function, where empirical pressure
data from ConWep is applied as nodal forces.

• The Arbitrary Lagrangian Eulerian framework in LS-DYNA, where the
explosive, air and resulting pressure wave are modeled within a mesh using
a multi material element formulation. The impulse from the blast is then
consequently imparted on the plate using a contact algorithm.

• The corpuscular method in the IMPETUS code, where the air and explo-
sive are treated as perfectly elastic particles, and sand is treated according
to a rheological model [12].
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2 1. Introduction and motivation

It was originally intended that this paper would consider blast on a honeycomb
truss strucuture in alloy AL6061-T6. Material tests were therefore performed to
determine the strain and strain-rate dependency, and was fitted for the Johnson
Cook model. As it turned out, the neccecary blast experiments needed to vali-
date the truss model was not performed. It is thus left for further investigation.

The thesis is separated into the following parts:

• Chapter 2: Brief summary of previous work in the study of blast loading
on plates. Special emphasis is given to fluid structure interaction FSI
effects and previous ALE blast studies.

• Chapter 3: Brief overview of the theory of explosions, pressure defini-
tions, ground effects and structural response.

• Chapter 4: Theoretical study of the numerical methods used in this the-
sis, with main focus on the Arbitrary-Lagrangian-Eulerian ALE method.

• Chapter 5: Material testing, modelling, and Split Hopkinson test de-
scription.

• Chapter 6: Description of blast experiments done by Dharmasena et.al
(2009).

• Chapter 7: Blast modelling using the Lagrangian method.

• Chapter 8: Blast modelling using the Arbitrary-Lagrangian-Eulerian
method.

• Chapter 9: Discrete particle method using the IMPETUS code, for bare
charge and charge surrounded by dry sand.

• Chapter 10: Comparison study, permanent central deflection and per-
manent state of deformation.



Chapter 2

Previous work

The early work of Taylor in the 1960‘s [34] showed that the transmitted impulse
to a free standing plate could be signifcantly reduced through fluid structure
iteraction FSI. This reduction, is caused by the plates moving relative to the
fluid, and was found to be even more significant as the mass of the plate was
reduced. Taylor derived a relation which expressed the relative transmitted im-
pulse to a free standing plate as a function of the non dimensional FSI time
scale. This parameter is computed as the relative ratio between the mass of the
plate and the mass of the compressed gas volume. Since Taylors analysis was
done assuming linear blast waves with exponential pressure functions and con-
stant fluid density, its effects were effectively confined to underwater explosions
where significant non linear compressional effects are not observed.

The theory of Taylor was extended by N. Kambouchev et.al [18] to consider
the nonlinear compressibility which occurs during air blasts. In his extension
the previously FSI time scale is given by the ratio of the plate mass and the
product of the peak density, shock speed, and blast decay time, which leads to a
compressible FSI nondimensional parameter analog to Taylor’s, but dependent
on the blast intensity. As a practical consequence of this work, it was shown that
the effects of gas compressibillity acted to further reduce the the transmitted
impulse to structures.

During the 1970‘s a number of experiments were performed on clamped plates
suspended using ballistic pendelums. The intention of these experiments was
to determine the underlying physics, and validate recent models for determin-
ing the failure modes in plates given blast loading. Typically, this loading was
performed using sheet explosives applied to the surface of the plates. The first
of these experiments were performed at MIT, department of Naval architecture
and Marine engineering, by Norman Jones e.t al [17]. The intention of this
experiment was to investigate the effect of an uniform velocity field with ana-
lytical solutions for plastic behaviour in plates. It was found to be appropriate
to only consider plate bending if the permanent deflection was less than half of
the plate thickness.

Further experiments were done on clamped beams in aluminium T6061 by
Menkes et.al [20] at the City College of New York. In this case the amount

3



4 2. Previous work

of sheet explosvies was varied, and the transfered impulse was measured using
a ballistic pendulum. Three distinct failure modes were observed for increas-
ing impulse. Namely an intial mode consisting of severe inelastic deformation
for low impulses, tensile tearing at beam supports for intermediate impulses,
and finaly shear failure for high impules. The data from the experiments were
correlated with a finite difference model, assuming Timoshenko beam theory.
After studying this model it was determined that the onset of shear failure was
primarly dependent on beam velocities rather than shear stress.

These same failure modes were later confirmed for thin square plates by G.N
Nurick et.al [24] of The University of Cape town in South Africa. The details
of this experiment is given in section 3.6.

M.S Chafi et.al [10] did validation studies considering the response on round
steel plates exposed to blast loading from TNT. Explosives and air continuum
were modeled in LS-DYNA using the multi material ALE framework, with the
equation of state determining the blast pressures from the explosion. The multi
material air mesh was refined with the explosive charge, allowing for a good
approximation of the initial detonation. The LS-DYNA displacement time his-
tories were compared to experimental data with varying stand off distances of
0.065m and 0.1m, and varying TNT charge masses between 1.094kg and 0.468kg.
The experimental data and the LS-DYNA model was found to be in good agree-
ment over the whole range of stand off distances and explosive masses.

A similar study was performed by A.Bouamoul et.al [5]. The ALE multi material
framework was used. In this article, experimental pressure data from sensors
were used to validate the pressures obtained by the LS-DYNA simulation. A
mesh convergence study was performed on the incident pressures, and it was
found that the numerical results indicated significantly lower pressures than
the results obtained from the sensors and ConWep data. The inital study was
performed considering a spherical air mesh, so an attempt was done on a square
mesh of roughly equal refinement. The obtained results were almost exactly the
same, indicating that both meshes were equally sucsessful. Parametric studies
were therefore performed on the bulk viscosity and the mesh contraction. This
yielded only a slight improvement, so mass scaling of the charge was finally used
to obtain agreement with experiments. Since the meshes considered were quite
coarse, it is possible that better results would be obtained with increased mesh
refinement.

Recent work at Livermore software coorporation [30] has resulted in a new
approach, which combines the FSI capabilities of the ALE method with the
speed of the ConWep blast function. The basic premisses of this method is that
only air adjacent to the structure is considered. The adjacent ALE elements are
loaded using the blast function, and FSI is handeled by the ALE framework.
This method was shown to be superior both in accuracy and computational
time, as less elements need to be considered and less numerical attenuation
occurs as the expansion wave travels through the mesh.

Lagrangian, uncoupled Eulerian-Lagrangian, and coupled Eulerian-Lagrangian
simulations were done by Børvik et.al [7], to simulate blast loading on a 20ft
container, corresponding to 4000 kg of TNT at a stand off distance of 120m.
Their work was one of many steps in a project, where the major objective was to
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develop a cost-effective and lightweight protection concept for a 20ft standard
ISO container, to be used as shelter in international operations. The uncou-
pled Eulerian-Lagrangian simulation was divided into 3 steps. A 1D flow was
considered to calibrate a model which gave the same pressure as ConWep when
hitting the container. This model was implemented in a 3D model, to obtain the
pressure history on each side of a rigid container. Finally the average pressure-
time curves were applied to the flexible container. It was demonstrated, by using
the uncoupled and coupled Eulerian-Lagrangian approaches, that the structural
flexibility reduces the pressure loads, and thus the structural response. A pure
Lagrangian simulation with pressure provided by ConWep based on correspond-
ing finite rigid wall reflected pressures, will therefore lead to conservative design.
More experimental data was needed to draw any clear conclusions.

Lars Olovsson et.al [28] conducted a study considering the air as perfectly elastic
particles using the LS-DYNA Corpuscular air bag function. In this study a
circular plate was exposed to a close stand off distance blast. The numerical
results were compared to a ALE continuum model, and it was concluded that
the Corpuscular method gave robust accurate results, low computational times,
and a simple approach for the blast problem.

A constitutive model for interaction between sand particles was developed by
Deshpande et.al [12]. The contact between sand particles may be treated as
collisions analogous to molecules in a liquid or gas, or, as the packing density
of the sand increases, semi-permanent contact. The goal of their work was to
propose a model that covered both regimes. Their model was validated with
experiments on steel plates exposed to blast loading done by Dharmasena et.al
(2009).

Further work was conducted on the Corpuscular method, which resulted in
the particle blast function in IMPETUS. Tore Borvik et.al [9] are currently
working on an article which compares experimental data with results obtained
by IMPETUS. The experiments were performed on square steel plates exposed
to blast from 150g C4 at different stand off distances, and final deflections were
measured. The IMPETUS code gave very accurate predictions in terms of final
deflections, and good agreement with the ALE method in terms of plate impulse.
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Chapter 3

Theory I - Explosion

Baker [1] defines explosion as a process by which a pressure wave of finite am-
plitude is generated in air by a rapid release of energy.

An explosion initiates a supersonically moving shock wave. The properties of
air as a compressible gas together with the high velocity of explosive detonation,
rises the disturbance at the shock front until it is nearly discontinuous. This
is a nonlinear process which differs markedly from an acoustic wave [1]. The
magnitude and distribution of the blast load on a structure is dependent on:

• Explosive properties - type and mass

• Casing effects - a free air blast gives a more important peak pressure than
an air blast from a cased charge. On the other hand, cased charge leads
to fragments.

• Distance between detonation and protective structure

• Interaction with ground plane or structure

For military explosives the velocity of the detonation/shock wave ranges from
6700 to 8840 m/s, the pressure ranges from 18620 to 38620 MPa, while the
temperatures range from about 3800 to 5700 K [31].

3.1 Pressure generated by explosions

It is important to start of this section with stating the differene between the
group velocity and particle velocity in terms of gas dynamics. One can illustrate
this by considering a number of equal pendulums connected in series such that
inclement angle is zero. If it is decided to drop one of the pendulums, one can
observe that the propagation of the motion through the suspended balls is of
much greater speed than the velocities of the end pendulums. By this fact the
conclusion must be that the speed of the motion must be far larger than the
speed of the induvidual pendulums.

7



8 3. Theory I - Explosion

This can be extended to gases by thinking of air as a dense net of particles.
Energy is initially created by the explosion at the source of the blast. The
energy will then set the nearest particles in motion such that particle collisions
propagate in radial direction. The individual particles will collide and deflect
resulting in a random pattern of moving particles with an average velocity away
from the source. Thus we have two components of the motion one hydrostatic
arising from random particle movements, and one dynamic component arising
from the average velocity away from the blast source.

One differs between :

• Side-on pressure Ps (also called hydrostatic and incident pressure)

• Dynamic pressure

• Reflected pressure Pr
• Stagnation pressure

Side-on pressure is the pressure on a surface parallell to the radial direction
of the shock wave within the region of overpressure [31].

In accordance with the bernoulli equation the particle velocity u and its density
ρ leads to the dynamic pressure q. This pressure, equation 3.2, can be thought
to be the increase in pressure one should expect, if a fluid in motion is brought
to a standstill.

ρ
u2

2 + ρgz + P = C (3.1)

q = ρ
u2

2 (3.2)

The reflected pressure occurs when a shock wave hits an object or a structure.
If a finite surface is hit by a shock wave, the high reflected pressure seeks relief
toward the lower pressure regions, the edges. The reflected pressure will decrease
to the stagnation pressure, which is the sum of the side-on pressure and the
dynamic pressure. On the other hand, the reflected pressure will last for the
duration of the wave, if the wave strikes an infinite surface [31].

The easiest way to explain the pressure distrubution is to look at an ideal
shock wave, figure 3.1. The shape of an ideal shock wave is only a function of
the distance from the center of the source R, and time t. The explosion occurs
in a still, homogeneous atmosphere, the source is spherically symmetric, and
there are no groundeffects, free-air burst [1].

One can see from figure 3.1 the instantaneous rise from the atmospheric pressure
P0, to a peak side-on overpressure, P0 +P+

s . After the positive phase duration,
t0, one have a negative phase until the pressure goes back to the atmospheric.
Smaller shocks can appear and effect the duration. The reflected pressure curve
is simular, only with higher peaks.

The positive phase of the pressure can be approximated with the modified Fried-
lander equation 3.3, where b is a time constant of pressure wave form. The
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Figure 3.1: Ideal shock wave [29]

incident impulse is determined from equation 3.4. In most blast studies, the
negative phase of the blast wave is ignored, hence only the equations for the
positive phase are included [1] [31].

Ps(t) = P0 + P+
s (1− t

t0
)e

−bt
t0 (3.3)

is =
∫ tA+t0

tA

Ps(t)dt (3.4)

One can find an expression for the reflected pressure, equation 3.5, by using the
Rankine-Hugoniot equations. This gives a maximum value equal to 8Ps. For
an acoustic wave the reflected pressure is two times the side-on overpressure. γ
is the ratio between heat capacities at constant pressure and volume, normally
equal to 1.4 for air. Ideal gas is assumed, in other words it is only reliable for
weak shock waves. It has been shown that the reflected pressure can reach as
much as 20Ps. For design purposes the parameters from reflected pressure may
be taken, but the duration of the wave should correspond to the duration of the
free-air pressure [2] [31].

Pr = 2Ps + (γ + 1)P 2
s

(γ − 1)Ps + 2P0γ
(3.5)

ir =
∫ tA+t0

tA

Pr(t)dt (3.6)

The reflected pressure depends on the angle of incidence α, shown in figure
3.2. The peak reflected pressure can be calculated by multiplying the pressure
coefficient Cr by the peak side-on/incident pressure Pso.



10 3. Theory I - Explosion

Figure 3.2: Peak reflected pressure as a function of angle of incidence [31]

3.2 Ground effects

In real life the shock wave is affected by weather conditions, atmosperic pressure
and ground effects. An explosion which occurs on a perfectly smooth, rigid plane
will reflect all energy at the ground plane, and effectively double the energy
driving the expansion wave. In reality, the explosion dissipates some energy in
ground cratering and in ground shock. A good "rule of thumb" is to multiply
the effective source energy by a factor of 1.8 if signigicant cratering occurs [2].
This is valid for surface-bursts, explosion on the ground. The reflection also
depends on the hight from the ground, see from figure 3.3. An explosion near
the ground, where the shock wave interacts with the ground surface prior to
arrival at the point of interest, is called a near-surface burst. The reflected shock
wave interacts with the incident shock wave, and merge into a singular pulse
called the Mach stem. For design purposes, the shock wave can be considered
as plane over the full height of the front. The pressure-time variation stays the
same, but the magnitude of the pressure is larger [31].

Figure 3.3: Groundeffects [31]
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3.3 Cube-root scaling and scaled distance

Testing of structures exposed to blast loading, especially full scale testing, is
not trivial. It is more convenient to do a small scale test, or even better, use
already existing data. By using Hopkinson cube-root scaling, equation 3.7, one
can attain the characteristic properties of the airblast wave from experimental
data included in TM-855-1. Parameters such as overpressure, dynamic pressure,
incident and reflected pressure, arrival time and particle velocity may be found
for an explosion with charge weight W and stand off distance R [31].

An example is shown in figure 3.4. One searches the charge weight W for stand
off distance R=1.5 m, giving the same peak reflected overpressure as when using
W2=0.15 g and R2=0.15 m. Cube-root scaling gives W=150 g.

R

R2
=
(
W

W2

) 1
3

(3.7)
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Figure 3.4: Cube-root scaling in practice
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Figure 3.5: Blast characteristics as a function of scaled distance for TNT [31]

By calculating the scaled distance Z, equation 3.8, one can easily find a large
amount of data associated with the blast wave, using plots based on empirical
data.

Z = R

W
1
3

(3.8)

3.4 ConWep

ConWep is a well known "tool" in structural analysis when looking at blast
loading. To avoid computational cost and complexity by doing CFD-analysis,
one can simplify by using ConWep. ConWep is based on the empirical blast
loading functions by Kingery and Bulmash. It is implemented in LS-DYNA as
∗LOADBLAST. The implementation is based on a report by Randers-Pehrson
and Bannister [14]. The blast load equation is:

P (τ) = Prcos
2θ + Ps(1 + cos2θ − 2cosθ) (3.9)

θ is the angle of incidence. The blast function can be used for free air burst
of a spherical charge, and surface-burst of a hemisperical charge. To calculate
the pressure, one define in the equivalent TNT mass, type of blast, charge
location, and surface identification for which pressure is applied. There are
some disadventages though; during simulation, the pressure vector always stays
normal to the surface of the shell, independent of the structural deformation.
This is in conflict with the flow of the blast wave, and may cause inaccuracies
if the deformation becomes large [23] [7].
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3.5 Equation of state (EOS)

An equation of state is a thermodynamic equation describing the state of gases
under a given set of physical conditions. It is a constitutive equation which
provides a mathematical relationship between two or more state functions as-
sociated with the matter, such as its temperature, pressure, volume, or internal
energy. Equations of state are useful in describing the properties of fluids etc.
One of the simplest equations of state is the ideal gas law, which is accurate for
gases at low pressures and moderate temperatures. When doing ALE analysis
,chapter 8, equations of state for the explosive and the air will be given.

The Jones-Wilkins-Lee JWL equation of state is an empirical mathematical
expression used to describe the pressure-volume relationship associated with
chemical products. It is used to calculate the state of the gas as it expands
from a certain high-pressure, high-density condition, to some terminal state at
normal pressure and gas density. The pressure is represented as a function of
volume V and energy E, equation 3.10 [35].

P = A

(
1− ω

R1V

)
e−R1V +B

(
1− ω

R2V

)
e−R2V + ωE

V
(3.10)

The C4 values and definitions for equation 3.10 are given in table 3.1.

A Pressure coefficient 597.4 GPa
B Pressure coefficient 13.9 GPa
R1 Principal eigenvalue 4.5
R2 Secondary eigenvalue 1.5
ω Fraction of the Tait equation, adiabatic exponent 0.32
E0 Initial internal energy 8.7 GJ/m3

Table 3.1: Input C4 to JWL equation of state

The air can be treated as a perfect gas, described by a linear polynomial equation
of state, with pressure depending on density ρ and internal energi (E). γ is 1.4
and the initial internal energy E0 is equal to 253.3 kPa, which gives an initial
pressure equal to 1 atmosphere [14].

P = (γ − 1)
(
ρ

ρ0
E

)
(3.11)
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3.6 Failure modes in plates

Experimental results obtained by G.N. Nurick et.al [24] illustrated that there
are basically 3 modes of failure for a clamped quadratic plate subjected to blast
loading, see figure 3.6.

Figure 3.6: Failure modes [24]

• Mode I failure: Large ductile deformation with midpoint deflection in-
creasing as a function of impulse. There may also be some shear deforma-
tion with this mode. The failure mode is assosciated with lower impulses
than the other modes.

• Mode II failure: A combination of ductile failure and partial to full
tensile tearing at the supports. The support tearing is caused by initial
shear deformation propagating further as tensile tearing. Mode II should
be further subdivided into.

• Mode II*: Tensile tearing over parts of the support. Can be seen as an
intermideate between mode I and II.

• Mode IIa: Full tensile tearing over entire support area and increasing mid-
point deflection with increasing impulse.

• Mode IIb: Full tensile tearing over supports and decreasing midpoint de-
flection as a funcion of impulse. The tensile tearing can usually be ob-
served starting over the support midspan and then propagating towards
the specimen corners.

• Mode III failure: Shear failure at supports. High levels of impulse will
cause the supports to fail in shear before tensile tearing occurs. Deforma-
tion will thus be localised with little energy dissipation. In terms of design
this is clearly not a desireable outcome for our structure
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3.7 Structures hit by fragments

Much of the theory behind this section is taken from Børvik [6], and Desphande
et.al [12]. Earlier the blast wave, and its effects on structures have been dis-
cussed. An explosion often generates fragments, which together with the blast
wave, damage the structure. The fragments may be pieces separated from its
body beacause of failure, loose objects or sand generated by a mine. In other
words, the size of the fragment may vary a lot, as well as the structures response.
Inertia effects, stress wave propagation, and non quasi-static (transient) mate-
rial behaviour are important elements in impact dynamics.

3.7.1 Projectiles and penetration

Depending on size, form, speed, mass etc, fragments may be assumed to act
like projectiles leading to non-perforating and perforating deformation modes.
Sand will be discussed later on.

According to Børvik [6], penetration is defined as the entry of a projectile into
any region of a target. Backman and Goldsmith (1978) suggested the following
penetration ways:

• Perforation: The projectile passes through the target with a final resid-
ual velocity, greater initial than dissipated energy

• Embedment: The projectile is stopped during contact with the target

• Ricochet: The projectile is deflected from the target without being stopped

Speed, mass, size, shape and hardness of the projectile are some om the param-
eters which decide the penetration way and the structur’s response.

3.7.2 Response of structure

Estimating the structural response after an impact, and transforme projectile
kinetic energy into work, is a highly complex process. Børvik devides the main
mechanisms into:

• Elastic vibrations in target and projectile. These may transfer energy to
the supports and initiate plastic deformations throughout the structure.

• Local plastic deformation of the sturcture, causing different types of fail-
ure.

• Global plastic deformation of the sturcture, with considerable membrane
and bending strains.

• Projectile deformation or fracture.

• Friction at the interfaces between the projectile and target.

Military projectiles, velocity regime 500-1300 m/s, will typically lead to very
little global deformation. Plastic work will occur both in the projectile and the
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target area close to the penetration. Lower velocity, higher mass, and softer
material lead to greater global deformations.

The ballistic limit velocity is an important parameter when designing a
protective structure, and is given by the average of two projectile velocities;
the highest velocity giving partial penetration, and the lowest velocity giving
complete perforation. It has been shown that a projectile having a velocity
just below the minimum perforation limit gives a maximum target deformation.
Thus, both local and global deformation have to be considered when designing
a protective structure exposed to fragments [6].

3.7.3 Sand

Explosions in sand, e.g. landmine-blast, will give different types of loading and
stuctural response, depending on the water content in the soil and the depth of
the sand. Dry sand fully disperses, while water saturated sand makes clumps
and gives higher loading on the target. An explosion deep underground may
generate no air shock, due to the energy absorbtion done by the soil. For design
purposes the shock wave is often neglected.

Deshpande divides the detonation of an explosive burried in sand into three
phases:

• Phase 1: Detonation of the explosive and the following soil interaction

• Phase 2: Expansion of the gaseous detonation products

• Phase 3: Development of soil ejecta

When the shock wave reaches the soil/air interface, phase 1 and 2, it is reflected
and only a small part is transmitted into air. This means that the primary
loading to the stucture is sand. The sand is ejected at high speed, generally in
the upward direction, and forms an inverted cone. Figure 3.7 shows the traces
of the ejecta in miliseconds, after an explosion of a 100 gram C4 mine buried 8
cm under dry sand [12].

Figure 3.7: Explosion in sand [12]



Chapter 4

Theory II - Numerical
methods

This chapter concerns the theory behind the numerical methods used in this
paper. First there will be a descripton on numerical time integration and the
attributes of explicite and implicite methods. Then there will be a summary of
the three different finite element formulations, namely the Eulerian, Lagrangian
and Arbitrary Lagrangian Eulerian (ALE) formulations. Special emphasis will
be given to the ALE methods, where the mathematical construct and properties
of the method will be discussed. Finally there will be a description of the basis
of the Corpuscular method.

4.1 Explicit method

LS-DYNA is mainly using explicit time integration to solve nonlinear dynamic
problems, e.g. explosions/blast loading. This section is based on the course
notes from Non Linear Finite Element analysis TKT4197 [19] and LS-DYNA
Theory Manual [13].

When using an explicit method, equation and equilibrium solving using itera-
tive methods is not necessary. This means that each time increment is compu-
tationally inexpensive and iterative convergence is not an issue. The method
is conditionally stable, and requires very small time steps. If the critical time
step ∆tcr, equation 4.7, is exceeded, the numerical process become unstable.
Beacause of the small time increments required, the explicit method is ideal for
high-speed dynamic simulations. When dealing with problems involving dis-
continuous nonlinearities such as contact-, buckling-, and failure problems, the
explicit method is preferable.

Equation of Motion of a MDOF System

[M ]
{
D̈(t)

}
+ [C]

{
Ḋ(t)

}
+
{
Rint(t)

}
=
{
Rext(t)

}
(4.1)

17
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M: Mass matrix
D: Damping matrix
Rint: Internal force vector, K*D for linear elastic material
Rext: External force vector, Pressure

The Central Difference Explicit Method

LS-DYNA uses the explicit central difference scheme to integrate the equations
of motion. For the central difference method to be explicit, lumped mass must
be employed. This eliminates solution of equations and increases the critical
time increment.

D̈n = M−1 (Rnext − CḊn −Rnint
)

(4.2)

Ḋn+1/2 = Ḋn−1/2 + D̈n∆tn (4.3)

Dn+1 = Dn + Ḋn+1/2∆tn+1/2 (4.4)

∆tn+1/2 = 1
2
(
∆tn + ∆tn+1) (4.5)

The geometry is updated by adding the displacement increments to the initial
geometry.

The critical time increment for the central difference method is determined from
the highest natural frequency ωmax and the damping ratio ζ.

∆tcr ≤
2

ωmax

(√
1− ζ2 − ζ

)
(4.6)

For an undamped system, the critical time increment becomes:

∆tcr ≤
2

ωmax
= L

cd
(4.7)

L is the element length, cd is the speed of sound in the material. The critical
time increment must be small enough that the information does not propagate
more than one element length during a single time step.

Why not implicit method?

The implicit method is ideal for problems where either the response period
of interest is long, or the nonlinearities are smooth. When using an implicit
method, equation solving and equilibrium solving is necessary for each time
increment. For each increment convergence must be obtained, which means that
each increment is computationally expensive. On the other hand, the method is
unconditionally stable. This means that the time increment size is not limited,
and fewer increments are required fo complete a simulation. However one needs



4.2. Langrangian, Eulerian and ALE formulations 19

to be assured that the timestep is significantly less than the the period of contact
for contact-impact problems. There are also problems with the fact that newton
solvers used in implicit methods are unable to resolve the discontinious shock
waves which occur at high impact velocities.

4.2 Langrangian, Eulerian and ALE formulations

Most of this theory is related to chapters 4 and 7 in Nonlinear Finite Elments
for Continua and Structures [3].

There are basically three numerical approaches for solving partial differential
equations in terms of finite elements. Namely the Lagrangian, Eulerian and
Arbitrary Lagrangian Eulerian (ALE) formulations. The difference between
these formulations stems from how the mesh conforms to material motion. The
subsequent sections will explain the differnce between these strategies and how
they are adopted in the finite element program LS-DYNA.

4.2.1 Governing equations

The initial start point for the theory part, is to consider what solution variables
need to be solved for. Typically, any dynamic finite element code needs to
consider 3 physical laws. These laws are given in terms of spatial coordinates
and are thus initally considered eulerian.

• Conservation of mass, equation 4.8

• Conservation of linear and angular momenta, equation 4.9 and 4.10

• Conservation of Energy, equation 4.11

ρ̇+ ρvj,j = 0 (4.8)

σji,j + ρbi = ρv̇i (4.9)

σij = σji (4.10)

ρE,t = (σijvi),j + bjvj + (kijθ,j),i + ρs (4.11)

E is defined in equation 4.12, where V 2 = vivi.

E = W int + V 2

2 (4.12)

The variables σij , b, kij , θ, and s, are the stress tensor, body force, thermal
conductivity tensor, temperature and specific source term respectivly.
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4.2.2 Lagrangian Formulation

In the a Lagrangian mesh the nodes move with the deformation of the mate-
rial. Consequently, the quadrature points are also locked within the material,
making storage of variables very convenient for history dependent materials.
The treatment of boundary condtions is also very straight forward as they are
always incident with the material domain. In addition, the stiffness and mass
matrices determined by the lagrangian formulation are always symetric by the
law of conservation of angular momentum, which can easily be utilized to reduce
computational time. However, in systems with large element deformation, the
Jacobian determinant of the deformation gradient tensor, equation 4.14, may
attain negative values, resulting in negative mass and energy densities. It is
also the issue of the stable timestep decreasing as a function of the smallest
dimension of the deformed element.

Since there is no convection of any properties in the Lagrangian formulation,
the conservation of mass is given by stating that the mass of the elements are
equal for subsequent timesteps. This implises that the density can be easily
solved for, equation 4.13.

ρ(X, t)J(X, t) = ρ0(X) (4.13)

J(X, t) = Det(F) (4.14)

F =

∣∣∣∣∣ ∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

∣∣∣∣∣ (4.15)

Which also simplifies the conservation of momentum and energy equations to

∂σij
∂Xj

+ pbi = pv̇i (4.16)

ρĖint = Dijσij −
∂kijθj
Xi

(4.17)

When compared to the Eulerian and ALE formulation, the algebra needed to
solve a Lagrangian system is far less complex, as the constitutive equations are
solved using material points.

4.2.3 Eulerian Formulation

The Eulerian finite element formulation assumes that the mesh is incident with
spatial reference points that do not change as the material deforms. The mate-
rial properties are thus updated by using a combination of convection and source
terms within the elements. It is no issue with decreasing stable timestep or neg-
ative mass, as elements do not deform. However there are errors assosciated
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with the difference algorithms used for solving the convective terms that lead to
smearing of discontuities and attenuation, which effectively separates variables
traveling at different frequencies. The fact that the nodes are also fixed while
the material moves and deforms is problematic, as the solution variables need to
be mapped into the material domain to get history variables locked to material
points. Last but not least, moving boundaries also pose problems, as rigid Eu-
lerian nodes can not conform to the moving bondaries. This makes the Eulerian
formulation most appropriate in fluid mechanics where history variables usually
are not needed for moving points.

The governing equations for the Eulerian formulation in terms of spatial points
is equal to what is given in section 4.2.1. However, in solid mechanics one
is usually interessted in obtaining derivatives locked to material points. The
differential equation for a volume moving with the material flow becomes:

Df

Dt
= f,[x] + f,ivi (4.18)

vi is the material velocity. The governing differential equations from section
4.2.1 will then take the form:

ρ,t[x] + p,ivi + pvi,i = 0 (4.19)

ρ[vi,t[χ] + vi,jvj ] = σji,j + pbi (4.20)

ρ(E,t[x] + E,ivi) = (σijvi),j + bjvj + (kijθ,j),i + ps (4.21)

4.2.4 ALE coordinate system

The basic difference between Lagrangian, Eulerian and ALE element formula-
tions, is how the mesh is constructed. In the Lagrangian formulation the mesh
follows material points, while in the Eulerian formulation the mesh is locked to
spatial reference points. The ALE formulation takes the best from both meth-
ods, as it relieves the distortion in Lagrangian elements, and handles the moving
boundaries unlike Eulerian methods. The key part of this formulation is that
the mesh is able to move independently of the material and spatial domains,
and consequently a third domain, namely the mesh or computational domain,
is introduced. One thus has 3 coordinate systems in the ALE formulation which
need to be defined, in order to get the material time derivatives of the three
physical laws, equation 4.8, 4.9, and 4.10.

• The spatial coordinate system cooresponding to the Eulerian formulation
defined by the domain Ω with the variable x

• The material coordinate system cooresponding to the Lagrangian formu-
lation defined by the domain Ω0 with the variable X

• The mesh coordinate system corresponding to the ALE formulation de-
fined by the domain Ω̂ with the variable χ
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One may start by defining the spatial coordinates as a function of the material
coordinates

x = Φ(X, t) (4.22)

Then define the intial mesh coordinates to be incident with the initial spatial
coordinates

χ = Φ(X, 0) (4.23)

Further more, one must define the transformation between mesh coordinates
and spatial coordinates

x = Φ̂(χ, t) (4.24)

Having established these relations, one may obtain the mesh coordinates by
taking the inverse of equation 4.22 and combine it with 4.23

χ = Φ̂−1(x, t) = Φ̂−1(Φ(X, t), t) = Ψ(X, t) (4.25)

As the analysis progresses, the mesh will displace from the its initial incidence
with the material. It is therefore appropriate to define a mesh displacement and
velocity which will be utilized for computing the transport term in the following
sections.

û(χ, t) = x− χ = Φ̂(χ, t)− χ (4.26)

v̂(χ, t) = Φ̂,t[χ] (4.27)

The needed equations for describing the material and mesh motion in the spatial
coordinate system is thus defined. Figure 4.1 serves as an illustration for the
mapping relationships.
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Figure 4.1: FEM domains

4.2.5 Advective velocity and material time derivatives

The next step is to express derivatives properly in the ALE formulation. If the
coordinate system is shifted from the spatial domain x to the ALE coordinate
system χ, one must recognize that the coordinate χ is free to move in space and
is therefore time dependent. Considering a function f(x, t), one must employ
the chain rule to determine its proper derivative.

f(x, t) = f(Φ̂(χ, t), t) (4.28)

ḟ(χ, t) = f,t[χ] + ∂f

∂χi

∂χi
∂t

(4.29)

To get the material velocity in terms of the ALE coordinate system, the inverse
of equation 4.25 replaces X.

vj = ∂Φj(X, t)
∂t

= ∂Φ̂(χ, t)
∂t

+ ∂Φ̂j(χ, t)
∂χi

∂Ψi(X, t)
∂t

(4.30)

In order to find the velocity in which the mesh and material seperates, one
subtracts equation 4.27 from 4.30.

ai = vi − v̂i = ∂Φ̂i(χ, t)
∂χj

∂Ψj(X, t)
∂t

(4.31)

The derivatives in the mesh domain can alternatively be expressed with a spatial
gradient.
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∂f

∂χi
= ∂f

∂xj

∂xj
∂χi

(4.32)

Substituting equation 4.32 into equation 4.30 gives

∂f

∂t
= f,t[χ] + ∂f

∂xj

∂xj
∂χi

∂χi
∂t

(4.33)

One recognizes that the product of the two last terms in equation 4.33 is equal
to the advective velocity 4.31. The expression can then be written on its final
form as:

∂f

∂t
= f,t[χ] + ∂f

∂xj

∂Φ̂j(χ, t)
∂χi

∂Ψi(X, t)
∂t

= f,[χ] + f,ja,j (4.34)

4.2.6 Governing equations in ALE system

The material time derivatives are basically equal to the Eulerian time derivatives
given in section 4.2.3. The only difference really being the substitution of the
material velocity vj with the convective velocoity aj given in equation 4.31

ρ,t[χ] + ρ,jcj + ρvj,j = 0 (4.35)

ρ[vi,t[χ] + cjvi,j ] = σji,j + ρbi (4.36)

ρ(E,t[x] + E,ici) = (σijvi),j + bjvj + (kijθ,j),i + ρs (4.37)

4.2.7 Implementation in LS-DYNA, Operator split

The implementation of the ALE formulation in LS-DYNA is based on succsessive
steps of Lagrangian forumulation, followed by a remap step and advection steps
[13].

In mathematical terms, this boils down to initially assuming that the mesh
moves with the material. Considering the transport equation for one component
of the Cauchy stress, equation 4.38,

σ,t[X] = σ,t[χ] + aiσ,i = q (4.38)

the advective term aiσ,i falls away. The remaining equation becomes:

σn,t[X] = q (4.39)
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Figure 4.2: Visual representation of subsequent Lagrangian and Eulerian steps

The derivative with respect to time is established, and it is possible to compute
a trial solution for the Cauchy stress.

σtrial = σn + ∂σn
∂t [X]

∆t (4.40)

After the Lagrangian step is completed one may choose to perform additional
Lagrangian steps, or perform a remapping or smoothing to elminate mesh dis-
tortion. This remapping can be based on several different algorithms which will
be mentioned in section 4.2.8.

After the new mesh is established, mass, stress, velocities and energies must
be transported such that they correspond corectly to the new mesh. This is
equivalent to the Eulerian step, equation 4.41, and is treated by advection.
The advective speed ai given in equation 4.31, is equal to the relative velocity
between the mesh and material.

σtrial,t[χ] + aiσ,i = 0 q = 0 (4.41)

Which is equvalient to the equation of advection, equation 4.42.

∂φ

∂x
= a(x)∂φ

∂t
(4.42)

This implies that the stabillty of the advection step is related to the Courant
Fredrichs Levy (CFL) criteria of computational fluid dynamics, equation 4.43.

C = c∆t
∆x = f

V
≤ 1 (4.43)
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f is the transported volume of variable in question, and V = ∆x the volume of
incident elements. The convective velocity c is the velocity difference between
mesh and material, and is given by equation 4.31.

Having both convective velocity and the size of the adjacent elements, it is
possible to compute the stable timestep based on the CFL condition. According
to Olovsson [26], this criteria should restrict the flow of particles to be less than
half incident element lenghts. This can be attained by selecting the timestep to
be:

∆tcr = min[∆x
e

s
,

∆xe

4c ] (4.44)

s is the speed of sound in the material.

The motivation behind the operator split, is that it simplifies the the governing
partial differential equation. The solution of the combination of the two partial
differential equations 4.39 and 4.41, is not equal to the solution of equation 4.38,
but it is simpler in terms of numerical stabillity, and far easier to implement
correctly than a full solution of equation 4.38.

4.2.8 Solution schemes for the advection step

In the current LS-DYNA implementation, two different algorithms are imple-
mented to solve the advection step, namely the first order accurate Donor Cell
alogrithm and the second order Van Leer muscle scheme [36]. Both these meth-
ods are monotonic, which means that they do not create new maxima and
minima in the solution variables.

max(θnew) ≤ max(φold) (4.45)

min(θnew) ≥ min(φold) (4.46)

They are also conservative which implies that:

∫
V

θnewdV =
∫
V

θolddV (4.47)

Donor Cell alogrithm

The Donor Cell algorithm is an upwind method. This implies that it is only
using data from upstream of the convective velocity [4]. The method of updating
variables utilizes internal averaging. This means that the updated varibles are
equal to the volume weighted average of their projection into the new mesh.
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Figure 4.3: Remapping of soulution variables using Donor Cell scheme [26]

This can also be seen from how it is constructed mathematically, equation 4.48
and 4.49, as the flux fj takes its information from location j − 1/2 if the con-
vective velocity is positive, and j + 1/2 if it is negative [13].

θn+1
j+1/2 = θnj+1/2 + ∆t

∆x (fθj − fθj+1) (4.48)

fj = cj
2 (θnj−1/2 + θnj+1/2) + |cj |2 (θnj−1/2 − θ

n
j+1/2) (4.49)

Van Leer scheme

Because of its first order accuracy, the Donor Cell alogrithm is highly dissipative.
In order to reduce dissipation, Van Leer [36] introduced a second order accurate
scheme. Like the Donor Cell algorithm this scheme is upstream, monotonic and
conservative, but it replaces the piecewise constant nodal values over elements φ
with a linear equation, figure 4.4. This equation is expanded around the element
centroid to ensure conservation.

Figure 4.4: Remapping of solution variables using van leer scheme [26]

To ensure monoticity such that new minima and maxima are not created, the
slope of the linear function is constructed such that the value of the element
centroid and values of adjacent elements are not exeeded [13]. In matematical
terms this is stated through the interpolation scheme as:
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φnj+1/2(x) = Snj+1/2(x− xnj+1/2) + φn0 j+1/2 (4.50)

Snj+1/2 = 1
2(sgn(sL)) + sgn(sR))× (min(sL|, snj+1/2|, s

R) (4.51)

sL =
φn0 j+1/2 − φn0 j−1/2

1
2 (xj+1/2 − xj)

(4.52)

sR =
φn0 j+3/2 − φn0 j+1/2
1
2 (xj+1 − xj+1/2)

(4.53)

snj+1/2 =
φn0 j+3/2 − φn0 j+1/2

xj+3/2 − xj−1/2
(4.54)

Figure 4.5 shows how the slope is restricted for 3 different distributions of the
parameter θ.

Figure 4.5: Slope selection based on φ distribution [26]

Half index shift

The Donor Cell and Van Leer scheme are effective algoritms for transportation of
element centered variables, i.e stress, plastic strain, mass and energies. Velocity
is however assosciated with element nodes. The half index shift moves the
velocity half an index to the element centers. In 2D this implies that four nodal
velocities must be transported to four different integration points, figure 4.6.
They can then be transported using either Donor Cell or the Van Leer scheme.
After the advection, they are moved back to the nodes in the updated mesh.
Since the nodes have four different element incidents, four different velocites are
obtained. They are consequently averaged to give the updated nodal velocity.
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Figure 4.6: Transport of nodal centred values to integration points [26]

4.3 Artificial bulk viscosity

As mentioned in section 3.1, a discontinious shock front is created because the
speed of sound increase with pressure. The unmodified finite element method
capture discontinious solutions rather poorly, and have a tendency to create
high frequency numerical oscillations within the shock front [4]. In modern
finite element codes, this problem is addressed by introducing an artificial bulk
viscosity term q to the momentum and energy equations [13].

q = C0ρl
2(ds
dt

)2 − C1ρla(ds
dt

) if ε̇kk ≤ 0 (4.55)

q = 0 if ε̇kk ≥ 0 (4.56)

C0 and C1 are dimensionless coefficients, typically selected as respectively 1.5
and 0.6. l is the lenght of the element, ε̇kk is the trace of the strain rate tensor, a
is the speed of sound within the shock, and ds

dt is the strain rate in the direction
of acceleration.

After the visocosity is added, the shock front becomes continious with a thick-
ness in the order of one element. The finite element codes thus become far
more stable at the cost of smearing the shock. This may have the negative
consequence of reducing the peak pressure during an airblast.

4.4 Contact formulations

Contact problems occur when two or more spatialy separated domains impact
each other, or when two domains governed by different physical equations in-
teract. In the case of fluid structure interaction (FSI), the contact alogrithm
controls how the impulse is imparted on the structure, and how the flow is
changed after FSI. Contact can generaly not be expressed through algebraic or
differential equations, because it is impossible to anticipate the points on the
two domains which will interact during an arbitrary motion [3]. This causes the
inpenetrability condition to be stated in very general terms.
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Γc = Γa ∩ Γb (4.57)

Figure 4.7: Contact of two initially seperated domains [3]

Any contact alogrithm must approximate the inpenetrability condition as best
as possible, and it typically should be constructed to [32]:

• Address the finite deformation in 3 dimensional space.

• Automatically determine the contact associations between impacting ele-
ments.

• Enforce the interface boundary conditions, including friction between slid-
ing boundaries.

In LS-DYNA there are currently implemented two different contact algorithms
for the ALE formulation. Namely the Kinematic constraint method and the
Penalty based method [13].

4.4.1 Kinematic constraint method

The Kinematic constraint method is subjected to impact and release condtions
which determine the duration of the impact, and ensure conservation of momen-
tum. It is basically constructed as a method of projection, where the equations
that govern the movement of the slave domain is constrained to movement along
a contact interface defined by the master domain. In order to ensure an efficient
calculation, mass momentum and force are lumped on the master nodes. The
velocity is consequently updated [3].

4.4.2 Penalty based method

The Penalty based method is constructed as a linear compression only spring,
acting in between contacting interfaces. The method measures the degree of
penetration of the slave mesh through a master surface, and applies a symmetric
compressional force. In mathematical terms it is constructed rather simply as
a heavyside step function. Its basic construction is on the form:
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Fc = α

∫
bc

U(un − g)undbc (4.58)

un is a vector of displacement normal to the contact boundary bc. g is the initial
clearing between the impacting surfaces, and α is a suitable penalty number
governing the strenght of the penalty force. The funcion U(un − g) is defined
as:

U(un − g) = 0 for (un − g) ≤ 0 (4.59)

U(un − g) = 1 for (un − g) ≥ 0 (4.60)

While the penalty method does not satisfy the contact boundary conditions
as accurately as the Kinematic constraint method, it does have some sigificant
advantages [32]:

• No new variables or extra degrees of freedom are needed to handle contact

• Permits symmetric treatment of the contact phase

• Very little numerical noise is created, thus severe hourglassing is not in-
troduced in elements of low order with reduced integration

• Implemenation is straight forward

• Unlike in the Kinematic constraint method, arbitrary intersection of master-
master and slave-slave surfaces are possible

The drawback of the method, is associated with how to determine the penalty
number α. To enforce the boundary condition and ensure that no particles flow
through the contact interface, it is necessary to select a high enough penalty
number. However a high penalty number will ultimately decrease the stable
timestep in explicit schemes. A good penalty alogrithm must therefore choose
an appropriate value somewhere in between.
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4.5 Corpuscular method

The theory in this section is taken from Olovsson et.al [25] [28] [9], and De-
sphande et.al [12].

A dicrete particle method, also known as the corpuscular method, has been
developed by Olovsson et.al, and is implemented in IMPETUS Afea Solver. To
begin with it was used for airbag simulations, but it is now also used to model
close-range blast loading, and the interaction between high explosive detonation
products, air, and sand. The corpuscular method has been found very robust,
and less CPU-demanding than the Eulerian approaches. The pressure loading
to a structure is described by momentum transfer from particles. The mod-
elling of air and detonation products is based on kinematic molecular theory,
originally derived by Maxwell (1860), while the modelling of sand is based on
the Rheological model, proposed by Desphande et. al [12].

4.5.1 Kinematic molecular theory

In kinematic molecular theory one supposes that the molecules are rigid fol-
lowing Newton’s laws, the collisions are perfectly elastic, the average distance
between the molecules L̄ is large compared to their size, and that the molecules
are in random motion. In addition, ideal gas is assumed.

Olavsson [25] derives an expression for the pressure P, equation 4.61, by looking
at N molecules moving inside a box with volume V, speed vi = [vx,ivy,ivz,i] and
mass mi. Since the pressure is an expression of the translational kinetic energy
only, a few large particles will give the same pressure as many small ones, as
long as the total mass and the root mean square velocity vrms are the same. In
simulations, one particle represents typically 1015 − 1020 molecules.

P = Px = Py = Pz = 1
3V

N∑
i=1

mi |vi|2 = nMv2
rms

3V = 2Wk

3V = 2
3wk (4.61)

Wk is the total translational kinetic energy of all molecules, while wk is per unit
volume. n is the amount of mol, and M is the molar weight. The root mean
square velocity is defined as the square root of the average velocity-squared of
the molecules in a gas (Wikipedia). The ideal gas law, together with equation
4.61, gives an expression for vrms, equation 4.62.

vrms =
√

3RT
M

(4.62)

wk is a fraction ξ(T ) of the specific internal energy e. ξ(T ) is a function of the
heat capacities. Some energy is stored as spin and vibration. For a di-atomic
gas at moderate temperature, 60 per cent is translational kinetic energy, while
40 per cent is spin. In a mono-atomic gas, no energy is stored as vibration or
spin, ξ = 1. Assuming temperature independent heat capacities, e = ρCvT , one
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ends up with equation 4.63. γ is the ratio between heat capacities at constant
pressure and volume, and lays between 1 and 5/3.

ξ(T ) = 3ρ(Cp − Cv)T
2e ⇒ 3

2(γ − 1) (4.63)

p = 2
3wk = 2

3ξ(T )e = (γ − 1)e (4.64)

The particles will loose some energy while impacting the expanding box. Olavs-
son [25] derives an expression for the rate of dropping energy, equation 4.65.
E is the total internal energy in the gas, and V̇ is the volume increase rate.
Assuming temperature independant heat capacities, the same energy drop as
when working with the ideal gas law is predicted.

Ė = −2ξE
3

V̇

V
⇒ E1 = E0

(
V0

V1

)γ−1
(4.65)

In a box filled with gas, one will find molecules flowing around with a great vari-
ety of velocities. The Maxwell-Boltzmann distribution for speed, equation
4.66, gives the probability for a certain speed to occur. The velocity distribution
is implemented in LS-DYNA and IMPETUS to translate macroscopic properties
to particle data.

f(|v|) = 4π
(

M

2πRT

)3/2
|v|2 exp

(
−M |v|2

2RT

)
(4.66)



34 4. Theory II - Numerical methods

4.5.2 Rheological model

While the contact between air particles and detonation products can be mod-
elled as purely elastic collisions, a penalty based contact is used for the sand. The
Rheological model uses two linear springs to describe the interaction between
two sand particles with mass mp, one spring acting in the normal direction,
the other one in the tangential direction, both having the stiffness K. Parallell
to the spring acting in the normal direction it is a linear dashpot with damp-
ing coefficient C. The tangential spring force is limited by a Couloumb friction
coefficient µ [9].

Figure 4.8: Rheological model, interaction between two sand particles [12]

The normal and tangential contact forces, Fn and Fs, are given by equation 4.67,
4.68, and 4.69. δn and δs are the relative normal and tangential displacements
of the contacting particles [12].

Fn = Knδn + Cδ̇n (4.67)

Fs = −Ksδs if |Fs| ≺ |µFn| (4.68)

Fs = −µ |Fn| sign (δs) otherwise (4.69)

The damping coeffisient determines the loss of energy during collisions, and is
directly related to the coefficient of restitution e, equation 4.70. The collision
time tc is a function of mass, coefficient of restitution, and the damping co-
effisient, equation 4.71. A plastic collision, e = 0, gives infinite collision time
[12].

e = exp

[
− πC√

2mpKn − C2

]
(4.70)

tc = −mp
ln (e)
C

(4.71)



Chapter 5

Experimental data and
Material Modeling

The investigations in this paper were primarly performed on a square plate in
Steel AL6XN. The original intention however, was to perform investigations
on a honeycomb truss structure in AL6061-T6. Experimental data regarding
honeycomb truss behavior under blast loading was not attained, so further inves-
tigations on the honeycomb truss was omitted. There were however experiments
performed on specimens in AL6061-T6 to determine strain rate dependency and
fracture strain. This might be useful for further work so it is included together
with material data obtained from the litterature for AL6XN.

5.1 Johnson Cook model

This section will deal with the material behavior of our plate in terms con-
stitutive laws and possibe failure modes. Emphasis will also be given on the
implemenation of these models in finite element formulation and the pitfalls
which consequently may arise.

In problems with large plastic strain velocities and coupled material-thermodynamic
behavior, standard elastic plastic material models are not sufficient to capture
the material behavior accurately. Usage of these models usually requires defi-
nition of kinematic and istropic hardening properties, which are very hard to
identify correctly. Johnson and Cook indtroduced a model which expresses the
flow stress as a function of plastic strain, strain rate and temperature, equation
5.1. These parameters are easy to determine, thus making model calibration a
simpler task.

σeg = [A+B(εple )n][1 + C ln( ε̇
pl
e

ε̇0
)](1− θm) (5.1)

Where ε̇0 is a reference strain rate, εple is the equivalent plastic strain, ε̇ple is the
plastic strain rate and θ is a normalised temprature which takes the form

35
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θ = T − Tr
Tm − Tr

(5.2)

Now there are at least two problems assosciated with the Johnson Cook model
[15].

• Unphysical strain rate: The strain rate effect captured by the loga-
rithmic term in the model is unphysical. It is evidence proving that an
exponential function of the strain rate is more appropriate. Problems
are also associated with small strain rates as the natural logarithm goes
towards minus infinity.

• No kinematic hardening: The Johnson Cook model does not include
any form of kinematic hardening, and thus the Bauschinger effect is not
considered. This is ok for problems with no stress reversals, but for other
loading situations errors will occure.

• No damage coupling: The Johnson Cook model does not account for
cross sectional damage in the flow stress. However, models which account
for damage are usually not employed because of complexity [8].

• Assumes homogenity: The Johnson Cook model assumes that the ma-
terial is homogenous in all principal directions. Some fairly common steel
and aluminium alloys do however not satisfy this, as extrusion and forming
processes lead to different material characteristics along different planes
in the material.

5.2 Material AL6XN

The steel AL6XN described by Nemat-Nasser [22] is a relatively new stainless
steel which shows promising ductilty characteristics. Nemat-Nasser performed
uniaxial compression tests over a range of temperatures (77K - 1000K) and
varying strain rates (0.001s−1 - 8000s−1). The properties of AL6XN were found
to be as follows:

• Very good ductility. For high strain rates and low temperatures it was
estimated to be over 40 %, and increasing with increasing temperature.

• The temperature was found to have a greater effect on the flow stress than
the strain rate.

• At low temperatures and high strain rates, failure was assosciated with
adiabatic shear bands, forming if the strain was in excess of 40 %.
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Figure 5.1: Strain hardening
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Figure 5.2: Strain-rate hardening



38 5. Experimental data and Material Modeling

200 400 600 800 1000

Temperature [K]

300

400

500

600

700

T
ru

e 
st

re
ss

 [M
P

a]

Plot
Modified Johnson-Cook

Nemat-Nasser et al. data

AL-6XN, ep = 0.001s-1, T = 296K

Figure 5.3: Temperature softening

In Nemat-Nassers article [22], a material model based on movement of disloca-
tions were utilized. This model is rather complex and thus seldom used. A far
simpler alternative is the previously mentioned Johnson Cook model. Using the
least squares approach, Tore Børvik et.al [9] calibrated the JC parameters con-
cerning temperature and strain rate to fit the data obtained from Nemat-Nassers
article. The quasi static stress-strain part of the JC model was computed from
experimental results by Despande et.al. This approach was chosen because the
plate used in Børviks and Deshpande et.al experiment was coldformed. The
specimens used by Nemat-Nasser were fabricated using electro-discharge ma-
chining to eliminate residual stresses. The assumptions for the calibration of
the JC model was:

• Room temperature T = 296K for the true-stress true-strain curve, and
the strain rate dependent part.

• A neglible strain rate ε̇p = 0.001s−1 for the quasi static true-stress true-
strain curve.

• A plastic strain εp = 0.1 for the temperature and strain rate dependent
parts.
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5.2.1 Fracture criterion

Fracture in the modified Johson Cook model is modeled utilzing element ero-
sion. This means that when the plastic work per unit of volume reaches the
critical valueWc, the element is eroded from the mesh [14]. This parameter was
determined by integrating the Dharmasena curve, figure 5.1, from zero to final
quasi static fracture.

Wc =
∫ εcr

σdε = 235.7E6Pa (5.3)

5.2.2 Input material data for ALX6N Steel

The input data to the Johnson Cook model, table 5.1, and the physical data
for AL6XN steel, table 5.2, is taken from Børvik et.al [9]. The critical energy
parameter is also included in table 5.1.

A [MPa] B [MPa] n C ε̇0 m Wc[Pa]
410 1902 0.82 0.024 0.001 1.03 235.7E6

Table 5.1: Johnson Cook parameters AL6XN

E [GPa] ρ[ kgm3 ] ν Cp[ J
kg∗K ] Tm[K] Tr[K] α[K−1]

195 8060 0.3 500 1700 296 1.5E-5

Table 5.2: Physical data AL6XN
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5.3 Material AL6061-T6

5.3.1 Microstructure

Several samples of the profile have been investigated by Ketill Pedersen, SINTEF
Materials and Chemistry. They show a huge variation in the microstructure. In
some parts of the profile, the grains were found to be several millimetres ,see
figure 5.4. Large pores were also observed in the material. Material testing
on small specimen, D=3 mm, will obviously lead to great variation in fracture
strain. A pore in the tensile specimen will reduce the fracture strain even more.
Consequently, not only the orientation to the extrusion direction change the
material behaviour, but also where in the material the specimen is taken from.

Figure 5.4: Grain structure

5.3.2 Quasi-Static tensile test

Quasi-static tests on AL6061-T6, have been done by SINTEF Materials and
Chemistry . Nine tests with three different orientations to the extrusion direc-
tion, 0, 45 and 90 degrees. The geometry of the specimen is shown in figure
5.5.

Figure 5.5: Geometri of specimen used in the quasi-static tests

A 20 kN DARTEC servohydraulic universal testing machine with displacement
control was used. The velocity was 0.15 mm/min, giving a strain rate of 5 ∗
10−4s−1. Force and minimum diameter, one in the thickness direction DZ and
one in the transverse direction D⊥ of the specimen, were measured to fracture.
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Crossection area A, true stress σ, and true strain ε could then be calculated by
using equation 5.4, 5.5 and 5.6. Fracture strain εf was found by inserting the
fracture cross section area Af in to equation 5.6.

A = π

4DZD⊥ (5.4)

σ = F

A
(5.5)

ε = ln
A0

A
(5.6)
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Figure 5.6: Quasi-Static tensile test, three orientations to the extrusion direction

Figure 5.6 shows that the stress level was about the same for all the tests.
Fracture occured randomly, which indicates anisotropic material. The highest
and lowest fracture strain was found to be respectively 0.81, for 45 degrees, and
0.39, for 90 degrees.
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5.3.3 Dynamic tensile test - Split Hopkinson

In order to calibrate the Johson Cook model correctly, material tests data must
be aquired to account for material strain rate and temperature dependency. For
this goal, a Split Hopkinson test was performed. The Split Hopkinson test rig
used at the department of structural engineering and the theory needed to to
determine material strain rate dependency is desribed by Clausen [11]. The rig
can in rough terms be described by figure 5.7.

Figure 5.7: Split Hopkinson test rig

The test procedure starts by clamping point B, using a frictional clamp. This
clamp is secured using a notched bolt which will eventually break given sufficient
stress. The bolt is manufactured in low ductility SS2140 steel and given a
notch to ensure triaxial stress state and brittle fracture. The importance of the
brittleness is assosciated with the steepness of the shock front, as a more ductile
bolt would ultimately give a larger failure time and a less cohesive front. A
hydraulic jack is winded up such that a given stress is attained in rod A-B. At
this point further level of clamping force is increased such that the bolt breaks.
A tensile stress wave will then travel from point B towards C. The tensile stress
wave will be recorded at strain gauges 1, 2 and 3. Consequently, parameters
such as stress, strain and strain rate can be determined using stress propagation
theory.

Wave propagation in the Split-hopkinson test rig

Even though the possion ratio cause contractions and expansions in metals, it
is generally assumed that the effect on this can be negelected in stress wave
theory. The standard hyperbolic wave equation then takes the form.

∂2u

∂2t
= c2 ∂

2u

∂2x
(5.7)

The general soltution can be determined to be the d’Alembert solution.

u(x, t) = f(x− ct) + g(x+ ct) (5.8)

f is the equation representing the propagating wave in the positive direction,
and g is the equation representing propagation in the negative direction. c
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represents the velocity of propagation. For an isotropic material it is equal to
the speed of sound and can be determined as.

c =

√
E

p
(5.9)

Stress state and velocity can easily be found by differentiate equation 5.8.

σ(x, t) = E[f ′(x− ct) + g′(x+ ct)] (5.10)

v(x, t) = ∂u

∂t
= c[−f ′(x− ct) + g′(x+ ct)] (5.11)

Determination of stress, strain and strain rate

After the clamp is relased in point B, the stress wave is recorded at point 2,
figure 5.7. It is then assumed that no dispersion occurs, such that the strain is
equal at point C. As the wave is incident with point C, it is partly transmitted
and reflected giving strain components in sensor 2 and 3.

ε(xc, t) = f ′(xc − c0t) + g′(xc + c0t) = εI + εR (5.12)

ε(xd, t) = f ′(xd − c0t) + g′(xd + c0t) = εT (5.13)

With equation 5.11 the current strain rate at C can also be found.

ε̇(xc, t) = c(−f ′(xc − c0t) + g′(xc + c0t)) = c(−εI + εR) (5.14)

ε̇(xd, t) = c(−f ′(xd − c0t) + g′(xd + c0t)) = c(−εT ) (5.15)

f and g can not be determined analytically. However the signals obtained from
the strain gauges, εI , εR and εT can be integrated numerically. The stress,
strain, and strain rate parameters needed to calibrate the Johnson Cook model
can then be determined as, [11]:

σs = E0A

As
εt (5.16)

εs = −2C0

Ls

∫ t

0
εrdτ (5.17)

ε̇s = −2C0

Ls
εr (5.18)
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5.3.4 Dynamic tensile test - Fracture strain

The fracture strain obtained from the quasi static tests was found between 0.4
and 0.8, 5.3.2. One can however not expect this to be true during the high
strain rates that occur under dynamic loading. Under these conditions, most
metals have much lower ductility, and in order to predict failure accurately, one
has to determine a dynamic fracture strain for the high strain rate regimes.

Seven tests with three different orientations to the extrusion direction, 0, 45 and
90 degrees, were done. To obtain the fracture strain from the dynamic tests, a
microscope was utilized to determine the diameter before and after fracture.

Specimen D0 [mm] Df1[mm] Df2[mm] Dfavg[mm] εf = D0
Df

0-1 3.01 2.075 2.550 2.313 0.263
0-2 3.02 2.400 2.500 2.450 0.209
0-3 3.01 2.240 2.550 2.395 0.229
45-2 3.02 2.240 2.100 2.170 0.331
90-1 3.01 2.100 2.345 2.222 0.304
90-2 3.01 2.270 2.335 2.300 0.269
90-3 3.01 2.355 2.240 2.297 0.270

Table 5.3: Measured dynamic fracture strain for AL6061

D0: Intial undeformed diameter
Df1: First measure of fracture area diameter
Df2: Second measure of fracture area diameter
Davg: Average fracture diameter
εf : Final true fracture strain

The critical plastic work per unit of volume Wc was found by integrating the
equivalent stress with respect to the plastic strain until fracture. Part 1 and 2
in equation 5.20 were neglected. εf was assumed to be 0.268, the average of the
fracture strains, table 5.3.

Wc =
∫ εf

0
(A+Bεnq ) = (279E6 + 220E6ε0.57

q ) = 90E6Pa (5.19)

5.3.5 Calibration of the Johnson Cook model

Calibration of the Johnson Cook model starts by assuming that the parameters
dependent on strain, strain rate and temperature are independent of each other.
This is, strictly speaking, not quite true, but by using the typically occuring
values for plastic strain, strain rate and temperature, one should be able to get
good agreement with experimental results.

σeg = [A+B(εple )n]︸ ︷︷ ︸
Part1

[1 + ε̇ple
ε̇0

]C︸ ︷︷ ︸
Part2

[1− θm]︸ ︷︷ ︸
Part3

(5.20)
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Figure 5.8: Split Hopkinson, engineering stress-strain, with respect to extrusion
direction and strainrate

• Parameters part 1: The first parameters A, B and n are fitted using
quasi static test results. As seen in figure 5.6, there were some differences
in the initial flow stress between the different extrusion directions and even
between samples in the same direction. The strain hardening however,
seemed to be more or less equal for all samples and directions. Since the
material coarseness causes this large spread of flow stress, there must be
a certain amount of guesswork in determining the correct properties for
the JC model. The curve 90-2 was therefore chosen for fitting using the
least squares method, as it represented a typical trend. The strain rate
was assumed quasi static ε̇ple = 0 and the temperature was assumed to be
T = 296K.

• Parameters part 2: The next parameters, ε̇0 and C, represent the strain
dependent part of the solution. Determination of this parameter is based
on the Split Hopkinson test results. To determine the strain dependency,
the assumption is that εpl = 0, 04. It was considered such as the strain
rate was stable and without dynamic interference for all specimens at this
particular strain. When applying this material model in a finite element
calculation, it should be verified that the typically occuring plastic strain
is close to the predicted εpl = 0, 04. Since the Split Hopkinson tests were
performed at room temperatures, the temeperature must be assumed to
be T = 296K. This might be problematic as the plastic deformations
could raise temperatures to such a degree that one effectively calibrates the
dynamic parameters for the wrong temperature. Preheating the specimens
to agree with fracture temperature will resolve this, but is currently not
an avaliable option at the NTNU Split Hopkinson rig.
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• Parameters part 3: There is currently not any avaliable equipment to
determine the temperature dependent part of the JC model. If it was to be
accesible, the assumptions would be ε̇ple = 0 and plastic strain εpl = 0, 04.
A uniaxial tensile test should then be performed recording the true stress
as a function of temperature. Using these data and the reference temper-
ature, the parameter m could be determined using least squares fitting.
There is probably published experimental data concerning temperature
depedency for AL6061-T6 in the litterature, but since the material is not
actually used in this paper it would be somewhat redundant to devote any
more time to it.

The experimental data compared to the Johnson Cook model is given in figure
5.9 and 5.10. The material data is given as points and the Johnson Cook model
is shown as trendlines.

Figure 5.9: Parameters, Part 1, Experimental data vs. Johnson Cook model

Figure 5.10: Parameters, Part 2, Experimental data vs. Johnson Cook model
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From figure 5.8 it is apparent that there are problems assosciated with the coarse
grain structure of our specimen. Normally we should expect the flow stress to
increase with increasing strain velocity, but the measured data seems to indicate
a random pattern. This certainly indicates a very low strain rate dependency,
and possibly that locally increasing temperatures counteract the effect of strain
rate hardening. A parametric study on C should therefore be performed if the
model is to be used in future papers. The quasi parameters A, B, and n however,
seems to be in good agreement with the material data from specimen 90-2.

5.3.6 Input material data for AL6061-T6 Aluminium

A [MPa] B [MPa] m C ε̇0 Wc [Pa]
279.25 220.34 0.57 0.0042 1 90E6

Table 5.4: Johnson Cook parameters AL6061-T6

E [GPa] ρ[ kgm3 ] ν Cp[ J
kg∗K ] Tm[K] Tc[K] α[K−1]

70 2700 0.33 900 933 855 2.3E-5

Table 5.5: Physical data AL6061-T6
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Chapter 6

Experimental study of steel
plates exposed to blast
loading

Experimental studies of steel plates, AL-6XN, exposed to blast loading of 150
gram C4 have been done by Dharmasena et.al (2009). The experiment and
its results will be described in this chapter. The experimental results will be
compared with different numerical solutions in chapter 10.

The plates were fully edge clamped, and the charge was placed 150 mm, 200 mm
and 250 mm from the target. The sides of the plate were 406 mm, the thickness
3.4 mm. Three different tests were done; bare charge, charge surrounded by dry
sand, and charge surrounded by wet sand. The charge was packed inside inside
a plastic sphere with radius 30 mm. The sand was not real sand, but consisted
of silica glass microspheres with a diameter of ≈ 200 µm. The mass of the sand
was approximately 2.7 kg, and surrounded the charge as a 46.2 mm shell.

The main focus in this thesis is bare charge. Charge surrounded by wet sand is
totally neglected. The permanent central deflection of the plate was measured
for each test, table 6.1. None of the plates failed as a result of the blast load.
No shear deformation was observed at the plate boundaries, so the mode of
deformation was assumed to be mode 1, see section 3.6. Consequently fracture
was not an issue. The set up for the experiment is shown in figure 6.1.

Stand off distance 150 mm 200 mm 250 mm
Experiments - bare charge 17 12.7 11.3
Experiments - charge surrounded by dry sand 38.5 26.8 18.5

Table 6.1: Experiments, Permanent central deflection
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Figure 6.1: Set up, steel plate exposed to blast loading [9]

Figure 6.2: Photo from experiment prior to detonation [9]

Figure 6.3: Permanent state of deformation, stand off distance 150 mm [9]



Chapter 7

Lagrangian method using
Load Blast function in
LS-DYNA

7.1 Motivation for the Load Blast function

In LS-DYNA, the ConWep blast charcteristics are implemented directly in the
load blast function, ensuring that correct blast pressure is assigned at each node
according to its distance from the blast source. The method is easy to use, little
computational time is required, and the results may be very good when looking
at blasts giving small deformations.

7.2 Numerical preliminaries

A number of different investigations were performed in the explicit finite element
program LS-DYNA. The blast was simulated using the load blast function on
a lagrangian mesh. The experimental set up utilized a charge of 150 grams of
C4 and was scaled with the factor 1.19 to attain its impulse-equivalent in TNT.
The finite elements considered were the 4 node quadrilateral belytscho-tsay shell
element and the 8 node solid constant stress element. The plate was discretized
using a mesh with elements roughly equal to the thickness; 3.38mm× 3.38mm
with 5 integration points for the shell, and 5 elements in thickness for the solid,
figure 7.1 and figure 7.2.
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Figure 7.1: Mesh for the shell computations

Figure 7.2: Mesh for the solid computations

7.3 Effect of mirroring

The quadratcic plate considered has symmetry along the x and y axis. Con-
sequently a reasonable approach would be to mirror the soulution about the
symmetry axes. However, there exists doubt wether or not this approach cap-
tures the physics of the problem. If shock waves arise within the steel plate, one
effectivly neglects the transfer over the symmetry axes and the corresponding
interaction effects that might occur. Wether or not this has any measurable
effect was tested by comparing the Von Mises stress states for the whole plate
with a mirrored quadrant at the time t = 3.6ms for stand off distance 150 mm,
figure 7.3. Shell elements were used.

Figure 7.3: Stress states at t=3,6ms

The results indicated no difference in the stress states between the mirrored
solution to the left and the whole plate to the right, figure 7.3. The conclu-
sion must therefore be either that shock discontinuities are not present to any
significant degree or that the physics is indeed captured by the mirroring.
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7.4 Shell vs. Solid

The constant stress solid element formulation was compared to the Belytschko-
Tsay shell element formulation. Figure 7.4 shows the time-displacement curve
for stand off distance 150 mm, for the two different element formulations. The
two formulations gave approximately the same answer. Shell elements were less
CPU demanding, and were therfore adopted in the further study, table 7.1.

Element formulation/ mesh 1/4 Shell 1/4 Solid 1/1 Shell
Elapsed time 3 min 17 min 11 min

Table 7.1: Elapsed time for shell and solid elements, time period 5 ms

0 0.001 0.002 0.003 0.004 0.005

Time [s]

0

5

10

15

20

25

C
en

tr
al

 n
od

e 
d

is
p

la
ce

m
en

t [
m

m
]

Solid vs. Shell
Solid

Shell

Figure 7.4: Central node displacement, stand off distance 150 mm, Solid vs.
Shell

7.5 Mesh effects

Different element sizes have been tested to see the effect on the central node
displacement; 3.38 mm, 6.77 mm, and 20.3 mm, figure 7.5. The stand off
distance was 150 mm. One can conclude that the solution is pretty mesh-
size independent. The maximum deflection is equal for all cases, while the
oscillations after ended loading has some variations. To have elements equal to
the thickness seemed to be meaningless this case, but is used anyways thanks
to low computational costs
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Figure 7.5: Central node displacement for different shell element sizes, stand off
distance 150 mm

7.6 Reflected Impulse

The reflected impulse per m2 was calculated by multiplying the average velocity
to the non-constrained plate with the mass per m2, figure 7.6.
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7.7 LS-DYNA blast function vs. Uniform pres-
sure from ConWep

The load blast function is not commonly found in other FEM programs. To
consider blast using these programs the usual approach is to assume a uniform
pressure field on the side facing the blast. This pressure is typically based on
the stand off distance and will yield overly conservative results. A number of
tests were performed using the load blast function in LS-DYNA, with a charge
of 150 g C-4 and stand off distance 0.2, 0.6, 1, 1.4, 1.8, 2.2 m. The obtained
reflected impulses were compared to the reflected impulses obtained by using
uniform pressure from ConWep [16].
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Figure 7.7: Reflected impulse, load blast function in LS-DYNA vs. Uniform
pressure from ConWep

The results, shown in figure 7.7, indicated that severly conservative estimates
will be obtained if one chooses to employ a uniform pressure field on very small
stand of distances.
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7.8 Energy

No problems concerning the plate energy are observed, 7.8.
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Figure 7.8: Plate energy, stand off distance 150 mm

7.9 Failure

When using the load blast function in LS-DYNA to investigate small deforma-
tions on a plate due to blast, one can expect good results. On the other hand,
when looking at problems concerning large deformations and material failure of
mode II and III (section 3.6), the load blast function may give very conserva-
tive results, see section 3.1 and 3.4. This could be interesting to compare with
results from other numerical methods, e.g. ALE and the Corpuscular method.
In contrast to the earlier analysis where element type and size had little to none
influence, analysis dealing with failure mode II and III are very mesh dependant.

Several analysis with duration 3 ms have been done to see what charge of C4 was
needed to cause failure mode IIa, full tensile tearing over the entire support area.
The 1/4 symmetry model with both shell elements (5 integration points) and
solid elements (5 elements in thickness) have been used. The fracture criterion
is described in section 5.2.1. The resulting charges of C4 are represented in table
7.2. To get the equivalent TNT values scaled with respect to impulse, which
are the input to LS-DYNA, one must multiply with 1.19.



7.9. Failure 57

Stand off distance 150 mm 200 mm 250 mm
Charge C4 [kg] ≈ 0.55 ≈ 0.73 ≈ 0.92
SHELL element size 5.08 mm
Charge C4 [kg] ≈ 0.46 ≈ 0.61 ≈ 0.79
SHELL element size 3.38 mm
Charge C4 [kg] ≈ 0.42 ≈ 0.55 ≈ 0.71
SHELL element size 2.54 mm
Charge C4 [kg] ≈ 0.65 - -
SOLID element size 5.08 mm
Charge C4 [kg] ≈ 0.65 - -
SOLID element size 3.38 mm

Table 7.2: C4 charge giving total failure (mode IIa)

Having no experimental data concerning this, it is impossible to say whether
the results are credible or not. Shell elements do not seem to be suitable for
material failure of mode II and III. Convergence is not obtained, and full tensile
tearing along the edges appears for much lower charges than when using solid
elements. From the results obtained using shell elements, figure 7.9, the charge
giving failure mode IIa seems to increase linearly with stand off distance. For
solid elements convergence is obtained.
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Figure 7.9: C4 charge giving total failure (mode IIa) using shell elements
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Figure 7.10: Failure mode IIa, C4 charge 0.55 g for shell elements and 0.65 g
for solid elements, element size 5.08 mm



Chapter 8

ALE method for blast
loading in LS-DYNA

8.1 Motivation for the ALE method

In the previous section the Lagrangian analysis was based on the LS-DYNA
Load Blast function. A major assumption of this formulation is that the blast
wall is infinitely rigid such that the wall stiffness and mass properties have little
influence on the reflected pressure. However, according to the kinetic theory
of gases, equation 4.61, the pressure on a plate is given by the air particles
impacting the plate and transfering momentum. Consequently if a plate attains
significant velocities, the impulse and pressure is reduced. In practial terms,
this means that a thin plate will attain greater speeds during blast loading and
thus experience less impulse than a thicker plate. This is of great importance
to engineers as the fact can be exploited to create more optmized thin walled
structures.

8.2 Solution strategy

Proper control of the ALE function in LS-DYNA is far from effortless and
requires a significant amount of tweaking of input parameters. The chosen
solution strategy is therefore an attempt to remove some of the complexity by
splitting the problem in two. The first part consists of tweaking the ALE mesh
size and switching ALE control cards in order to replicate the incident pressure
and impulse expected in a free air blast. The obtained impulse and pressure
are then validated against results from ConWep. The second part consists of
coupling the air blast model to a constrained plate. In this section parametric
studies will be performed on increasing mesh refinement both for the air and
plate. There will also be studies on several keycards controling the contact and
ALE formulation, to ensure no leakage and appropriate transfer of impulse to
the plate.
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8.3 Free air blast

8.3.1 Geometry and constraints

The initial air mesh configuration was chosen as cubic. In order to reduce com-
putational time and allow for high mesh refinement, constraints were imposed
normal to the x-y, x-z and y-z planes such that 1/8 of the blast was consid-
ered, figure 8.1. This approach was verified in the case ALE blast modeling for
aluminium foam models [21], where little difference was found between consid-
ering the whole domain and a symmetry based model. The mesh for the air
domain is constructed using a matlab program which defines nodes, elements
and constraints, and is included in appendix A.

Figure 8.1: Reflective boundary conditions imposed on cube

8.3.2 Material

The cube consists of two materials, air and C4. The *ale-multi-material-group
defines the two materials. The air is given a density using *mat-null, and the
C4 is defined using *mat-high-explosive-burn, which controls the explosive’s
detonation characteristics. The *inital-volume-fraction-geometry card defines
the initial distribution of air and C4. It also defines where the C4 i placed,
and its intial shape. Initial detonation defines where and when the detonation
starts. Both the air and explosive are treated as 1 point multi material ALE
elements.
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8.3.3 Air domain control parameters

In the *control-ale-keycard the Van Leer scheme with half index shift is selected
with one timestep between mesh smoothing and advection. The method of mesh
smoothing is selected as simple averaging. In the *ale-reference-system card the
option for mesh contraction in the vicinity of the shock front is considered. This
keycard requires an input of the parameter EFAC which determines the initial
mesh remapping factor [14]. The EFAC factor is a chosen between 1 and 0, where
1 is a fully Eulerian inital blast treatment, and 0 is fully Lagrangian initial blast
treatment. By utlizing a low value Lagrangian approach one may be able to
escape the smearing of Eulerian methods and attain higher and more realistic
impulses and pressures. There is however a penalty as distorted elments leads
to timestep reduction and possible program termination. A parameter study
will be performed regarding the EFAC factor at a later point in this chapter.

The *constrained-lagrange-in-solid-keycard is used to couple the air domain to
the plate, and the Penalty method is utlized as the contact algorithm with
suitable amount of interface points to prevent leakage. As the unit normal of
a shell element is defined by wether or not the nodes are numbered clockwise
or counterclockwise, the unit normal for the contact alogrithm is defined such
that it faces the blast source [27].

8.3.4 Open space incident pressure and impulse

The incident pressure is recorded using the tracer function in Ls-DYNA. A
problem with the tracer function is that it adds atmospheric and overpressures
together. They are consequently removed by subtracting the atmospheric pres-
sure from the incident pressure and the integral from the incident impulse during
the positive phase duration. The sensors are located along two series, figure 8.2
and figure 8.3, such that they are at the same distance from the blast source.

Sensor x-coord y-coord z-coord
Sensor 1 0.15m 0 0
Sensor 2 0.20m 0 0
Sensor 3 0.25m 0 0

Table 8.1: Sensor series 1

Sensor x-coord y-coord z-coord
Sensor 1 0.087m 0.087m 0.087m
Sensor 2 0.115m 0.115m 0.115m
Sensor 3 0.144m 0.144m 0.144m

Table 8.2: Sensor series 2

For the mesh convergence analysis, the number of elements per length is in-
creased by a factor of 2.25 for each analysis. The analysis time period is deter-
mined to be 3 ms. According to Lars Olovsson [27] a mesh of size 3 mm with
constant aspect ratio would be sufficient for this analysis. Consequently, one of
the meshes is selected to be finer and the other 2 coarser than this.
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Name Element lenght Domain size Number of elements
Coarse 10mm 0.263m3 17576
Medium 4.44mm 0.263m3 195112
Fine 1.98mm 0.263m3 2248091

Table 8.3: Mesh selection for open space incident

Figure 8.2: Sensors in series 1

Figure 8.3: Sensors in series 2
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Figure 8.4: Incident Impulse series 1, Stand off distance 150 mm
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Figure 8.5: Incident Overpressure series 1, Stand off distance 150 mm
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Figure 8.6: Incident Impulse series 1, Stand off distance 200 mm
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Figure 8.7: Incident Overpressure series 1, Stand off distance 200 mm
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Figure 8.8: Incident Impulse series 1, Stand off distance 250 mm
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Figure 8.9: Incident Overpressure series 1, Stand off distance 250 mm
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Figure 8.10: Incident Impulse series 2, Stand off distance 150 mm

0 4E-005 8E-005 0.00012

Time [s]

0

4000000

8000000

12000000

In
ci

d
en

t O
ve

rp
re

ss
u

re
 [

P
a

]

Element size [mm]
ConWep

10

4.44

1.98

Figure 8.11: Incident Overpressure series 2, Stand off distance 150 mm
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Figure 8.12: Incident Impulse series 2, Stand off distance 200 mm
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Figure 8.13: Incident Overpressure series 2, Stand off distance 200 mm
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Figure 8.14: Incident Impulse series 2, Stand off distance 250 mm
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Figure 8.15: Incident pressure series 2, Stand off distance 250 mm
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Analysis Element ALE Element Peak Incident Incident Elapsed
150 mm size [mm] count Overpressure [kPa] Impulse [Pa*s] time [min]
1 10 17576 2537 40.5 5
2 4.44 195112 7501 51.3 25
3 1.98 2248091 8917 63.8 NA

Table 8.4: Incident Overpressure and Impulse series 1, stand off distance 150mm

Analysis Element ALE Element Peak Incident Incident Elapsed
200 mm size [mm] count Overpressure [kPa] Impulse [Pa*s] time [min]
1 10 17576 3220 37 5
2 4.44 195112 4930 53.3 25
3 1.98 2248091 6149 64 NA

Table 8.5: Incident Overpressure and Impulse series 1, stand off distance 200mm

Analysis Element ALE Element Peak Incident Incident Elapsed
250 mm size [mm] count Overpressure [kPa] Impulse [Pa*s] time [min]
1 10 17576 1887 34.5 5
2 4.44 195112 3546 62 25
3 1.98 2248091 4513 74.2 NA

Table 8.6: Incident Overpressure and Impulse series 1, stand off distance 250mm

Analysis Element ALE Element Peak Incident Incident Elapsed
150 mm size [mm] count Overpressure [kPa] Impulse [Pa*s] time [min]
1 10 17576 7925 63 5
2 4.44 195112 11510 61 25
3 1.98 2248091 9499 61 NA

Table 8.7: Incident Overpressure and Impulse series 2, stand off distance 150mm

Analysis Element ALE Element Peak Incident Incident Elapsed
200 mm size [mm] count Overpressure [kPa] Impulse [Pa*s] time [min]
1 10 17576 7390 54 5
2 4.44 195112 7521 55 25
3 1.98 2248091 7503 57 NA

Table 8.8: Incident Overpressure and Impulse series 2, stand off distance 200mm

Analysis Element ALE Element Peak Incident Incident Elapsed
250 mm size [mm] count Overpressure [kPa] Impulse [Pa*s] time [min]
1 10 17576 5150 57 5
2 4.44 195112 4772 60 25
3 1.98 2248091 5235 65 NA

Table 8.9: Incident Overpressure and Impulse series 2, stand off distance 250mm
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Figure 8.16: Pressure variations in the expansion wave, 1/8 symmetry model at
t=4.98E-5s, Element lenght=2.96mm

Figure 8.17: Pressure variations at the expansion wave, 1/8 symmetry model at
t=4.98E-5s, Element lenght=1.98mm
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Figure 8.18: Incident overpressure 1/8 symmetry model vs. Fullscale model

8.3.5 Discussion

The results indicate generally increasing impulse with increasing mesh refine-
ment and slightly varying impulse with stand of distance. Generally, standoff
distance 200 mm seemed to have the lowest impulse and standoff distance 250
mm seemed to have the highest. The agreement with ConWep seemed to get
better with increasing stand off distance, and increasing mesh refinement. The
sensors in series 2 seem to converge for coarse meshes, while the sensors in se-
ries 1 do not converge at all. This may be caused by the reflective boundary
conditions imposed directly adjacent to the sensors at series 1. To check if the re-
flective boundary conditions cause any significant errors in analysis, the quarter
scale model was compared to a fullscale model of roughly the same refinement.
The obtained pressure histories from standoff distance 150mm figure ??, gave
identical results. From figure 8.16 and figure 8.17 there can be seen a region
of higher pressure close to the boundaries. This overpressure probably causes
some distortion in the expansion wave as the speed of sound increases. It is
therefore probable that the reflective boundary condtions have some influence,
but only to the extent of a few elements close to the boundary.

The pressure pattern shows large differences in pressure at surface of the expan-
sion wave. According to Svein Christensen of The NDEA, this pattern might be
caused by two things. Either Richtmeyer-Meshkov instabillities which is a phys-
ical phenomenon occuring at the surface of the expansion wave, or unsufficient
mesh refinement of the explosive charge. The unsufficient refinement leads to
micro jet beams which may effect the pressure locally close to the blast source.
It is believed that this is the source of the weird pressure pattern as definite
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improvement is seen with increasing refinement figure 8.17, figure 8.16.

Svein Christensen suggested defining pressure sensors at the same stand off
distances but at different angles relative to the charge, and compare the results
in terms of pressure and impulse. This is the motivation for the two different
sensor series.

For sufficiently small differences the analysis is probably ok. As seen in table
8.4 to 8.8, the difference between the sensors at the same stand off distance is
getting gradually less with increasing mesh refinement.

In terms of blast arrival time the sensors along the diagonal in series 2 are slightly
off compared to ConWep data. The expansion wave seems to be attaining a
somewhat square form as it expands. It is probable that the expansion wave
travels slightly faster along the diagonal because of the pressure instabillities.

8.3.6 Study on the E-factor

It could be interesting to consider the mesh contraction option and see if vari-
ation of the E-factor has any influence on the shock front pressure issues. The
study is performed on a 1/8 symmetry model utilizing elements with constant
aspect ratios and side lenghts le = 4.44mm. The sensor location was chosen as
150mm along the diagonal axis as in series series 2. The E-factors were chosen
as: 0.025, 0.10, 0.25 and 0.5.

Even though variations of the E-factor gave large differences in terms of impulse
and pressure, it is not clear at this point if it should be included any further
in the model. The factor basically allows for more Lagrangian behaviour in
the initial blast which for some EFAC values resulted in larger pressures and
impulses. However, for the smallest EFAC value of 0.025, the impulse actually
decreased and the pressure was found to be decreasing for EFAC values less
than 0.25. The computational time was also increasing with decrasing EFAC
values, indicating that severe element distortion was taking place. It might be
possible that the E-factor would be more well behaved for finer meshes, but this
has currently not been considered.
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Figure 8.19: Incident impulse distrubution t=3.99E-5 s, stand off distance=150
mm, sensor series 2
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Figure 8.20: Pressure distrubution t=3.99E-5 s, stand off distance=150 mm,
sensor series 2
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8.4 Blast on plate

In this section three computational models are considered. A fullscale model,
a 1/8 symmetry model with reflective boundary conditions, and a 1/8 biased
symmetry model.

Figure 8.21: 1/8 symmetry model

Figure 8.22: Fullscale model

Figure 8.23: 1/8 biased symmetry model, close to blast source
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8.4.1 Geometry, constraints and Element sizes

Two studies on a fullscale model with fine and coarse element sizes have been
performed. Finally a biased 1/8 symmetry model was used to attain reduction
of the compuational times.

Model Element length Bias Domain size Number of elements
Fullscale coarse 10mm - 0.63m3 216000
Fullscale fine 5mm - 0.63m3 1728000
1/8 symetry bias 3mm 1% 0.33m3 343000

Table 8.10: Air mesh selection for reflected pressure/impulse

The plate elements were chosen as twice the size of the ALE elements for the
fullscale model. For the 1/8 symmetry model the plate elements were chosen
as smaller than the ALE elements. This was done to check the influence of the
plate elements on the calculation.

Model Element length Dimensions Number of elements
Fullscale coarse plate 20.3mm 0.406m 400
Fullscale fine plate 10.15mm 0.406m 1600
1/8 symmetry plate 2.03mm 0.203m 10000

Table 8.11: Plate meshes for reflected pressure/impulse

8.4.2 Reflected Pressure and Impulse

Stand off Peak Reflected Reflected CPU time Time Period
distance [mm] Pressure [kPa] Impulse [Pa*s] [min] [ms]
Mesh model coarse fine coarse fine coarse fine
150 14015 15229 688 742 56 1114 2
200 10786 12310 667 748 75 1445 3.5
250 8278 10580 694 805 45 1068 3.5

Table 8.12: ALE, Average Reflected Pressure and Impulse, Fullscale model

Stand off Peak Reflected Reflected CPU time Time
distance [mm] pressure [kPa] Impulse [Pa*s] [min] period [ms]
150 13660 704 NA1 -
200 11500 739 NA -
250 10480 812 NA -

Table 8.13: ALE, Average Reflected Pressure and Impulse, 1/8 symmetry biased
model

1The analysis was unable to run to completion because of segmentation error or stable
timestep moving towards zero
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Figure 8.24: FSI for fullscale coarse and fine meshes, R=150mm and R=200mm,
t=9,99e-5 s and t=2,99e-4 s
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Figure 8.25: FSI for fullscale coarse and fine meshes, R=250, t=9,99e-5 s and
t=2,99e-4 s
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Figure 8.26: Reflected impulse, ALE fullscale model
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Figure 8.27: Reflected impulse, ALE 1/8 symmetry model
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Figure 8.28: Reflected pressure, ALE fullscale model
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Figure 8.29: Reflected pressure, ALE 1/8 symmetry model
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8.4.3 Energy levels
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Figure 8.30: Energy plots blast on plate, fullscale, stand off distance 150 mm
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Figure 8.31: Energy plots blast on plate, fullscale, stand off distance 200 mm
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Figure 8.32: Energy plots blast on plate, fullscale, stand off distance 250 mm
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Figure 8.33: Sliding energy, fullscale
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Figure 8.34: Total energy, 1/8 symmetry model
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Figure 8.35: Sliding energy, 1/8 symmetry model
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8.4.4 Discussion

Mesh refinement and convergence

The reflected impulse is generally increasing with stand off distance. This is
probably a bad sign, as according to TM5-855-1 (figure 3.5), the reflected im-
pulse should be decreasing for all stand off distances considered in this paper.

This trend seem to be increasing with mesh refinement. There are indications
that there is some degree of numerical contact energy being introduced to the
system. Further mesh refinement was impractial for the fullscale model as the
number of elements already was in the millions. As seen in table 8.12 the
computational times were prohibitively large. A 1/8 symmetry model with
further mesh refinement was consequently adopted. In this configuration the
plate mesh was selected as slightly finer than the air mesh.

When comparing the fullscale fine model 8.26 with the 1/8 symmetry model
8.27 there is a slight difference in terms of impulse. It seems like the impulse
for the fine fullscale model is increasing slightly at 0.8 ms. This impulse incre-
ment is probably caused by numerical errors in the contact algorithm, which
can probably be fixed by increasing the number of quadrature points in the
*constrained-lagrange-in-solid keycard. The results in terms of impulse are how-
ever very close, and if one disregards the impulse from the numerical errors it
seems like convergence is attained.

The fact that convergence was attained for the reflected pressure seems to in-
dicate that convergence of incident impulse is not a strict requirement for con-
vergence.

Energy levels

The energy plots seem to indicate some weird behaviour. There are a few
issues that must be pointed out. The peak in the energy plots corresponds
to the expansion wave impacting the plate. There is a clear trend indicating
that the total energy peak is increasing with stand off distance and with mesh
refinement, figure 8.30, 8.31, 8.32 and 8.34. In the fine fullscale models and the
1/8 symmetry bias analysis, this value even exceeds the initial energy stored in
the explosive for standoff distance 200mm and 250mm. The increasing energy
trend for times exeeding 0.8 ms is stronger for the 150 mm and 200 mm stand
off distances and increases with refined meshing. This is also reflected in the
impulse which begin to increase for stand off distances 150 and 200 at roughly
0.8 ms for the fine fullscale analysis.

The sliding energy gives out the non physical energy in the compression springs
assosciated with the contact algorithm. According to LS-DYNA support [33] a
positive sliding energy of about 10% of the peak internal energy is acceptable.
This criterion is met for all analysis in this section, even if one considers the
maximum internal energy as the second peak observed in figures 8.30-8.32. For
the biased model with the finer plate, the positive contact energy is neglible.

This negative energy is assosciated with leakage and can be seen to be increasing
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with decreasing stand off distances. This is the case for both the fullscale models
and the 1/8 symmetry bias model which gives out roughly the same negative
sliding energy when scaling with a factor of 8. The negative sliding energy
seems to be neglible when compared to the maximum of the internal energy for
all considered models. This proably indicates that the models are well behaved
when considering leakage.
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Figure 8.36: ileak=0 and ileak=2, standoff distance 250 mm, 1/8 bias symmetry
model

To test this, the ileak=2 option in the *constrained-lagrange-in-solid keycard
was turned on. This option ensures that particles stay on the right side of the
contact interface, while removing the energy needed to enforce this with dampers
parallel to the contact springs [26]. As expected, the results were exactely equal.
This confirms that leakage is not a problem.

It is currently not known what the source of the increasing contact energy
is. The contact energy levels seem to be well within the range suggested by
LS-Support [33], but the energy peak still seems to be growing with stand off
distance.

Finally, the fine fullscale model and the 1/8 symmetry model was prone to
terminate the calculation. The scenario in which this occured was typically
that the stable timestep decreased to zero and was followed by a segmentation
error message. It is unclear what caused this, but the coarser fullscale mesh
seemed to behave much better in this regard. The analysis did however perform
long enough to attain pressure and impulse histories.



Chapter 9

Corpuscular method in
IMPETUS

The main focus in this thesis has been blast on plates using bare charges. For
protective stuctures and military aspects, explosions in sand, e.g. land mines,
are very relevant. In this chapter, the results from two different numerical sim-
ulations using the non-linear finite element code IMPETUS, will be presented.
The first considering bare charge, the second considering charge surrounded by
dry sand.

9.1 Motivation for the Corpuscular method in
IMPETUS

A discrete particle method, called the Corpuscular method, is a new method
based on kinetic molecular theory, which seems to be promessing for solving
close range blast simulations, especially when dealing with complex structures.
The method is closerly described in section 4.5.

The Corpuscular method is Lagrangian, which means that it does not suffer from
advection errors that one experiences with an Eulerian formulation [28]. Com-
pared to ALE, the Corpuscular method in IMPETUS is more evident/straight
forward to use. There are less parameters to tweak, and it is less CPU demand-
ing. An other great advantage with this method, is the possibility to run blast
simulations including sand.
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9.2 Bare charge

As for the analysis in LS-DYNA, different models were utilized; a 1/8 symmetry
model, 1/4 symmetry model, and a fullscale model. The 1/8 symmetry model
resulted in too large central deflection and reflected impulse, especially for stand
off distance 150 mm, due to the reflecting boundary condition normally to the
plate.

For the 1/4 symmetry model, the air and C4 were modelled inside a box with
lengths 0.6x0.3x0.3m, with reflecting boundary conditions a long the Z-axis.
30x30X1 solid 64-node 3rd order hexahedron elements with length ≈ 6.77 mm,
was used for the plate. The edge nodes were constrained against translation
in all directions, while the nodes along the symmetry edges were constrained
against translation normally to the edge. The fullscale model was modelled as
constrained in rotation and displacement along the plate edges.

9.2.1 Convergence study on reflected impulse

Several analysis using different amounts of particles were done, both for the
1/4 symmetry model and the fullscale model. The amount of air particles
was initally set to be 10 times the amount of C4 particles. This ratio was
rather arbitrary, since little studies on this subject have been done. As long as
convergence is achieved, the ratio should be allright according to Lars Olovsson
[27].

Three amounts of particles were tried out for both of the models for stand off
distance 150 mm, table 9.1.

1/4 symmetry model Fullscale model
Air particles C4 particles Air particles C4 particles
1*105 1*104 4*105 4*104

3*105 3*104 1.2*106 1.2*105

5*105 5*104 2*106 2*105

Table 9.1: Particles used in convergence tests
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Figure 9.1: Study on Reflected Impulse, Stand off distance 150 mm, bare charge

Figure 9.1 shows that convergence is obtained. The 1/4 symmetry model cor-
responded very well with the fullscale model. It was therefore utilized in the
further studies, using 3∗105 air particles and 3∗104 C4 particles. The following
reflected impulses were obtained, figure 9.2.
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Figure 9.2: Reflected Impulse, 1/4 symmetry model, bare charge
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9.2.2 Energy levels

The energy levels for the plate and C4, are plotted in figure 9.3 and 9.4. For
comparison the results using the 1/4 symmetry model were multiplied by a
factor of 4.
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Figure 9.3: Energy C4, bare charge

0 0.001 0.002 0.003

Time [s]

0

500

1000

1500

2000

2500

P
la

te
 E

ne
rg

y 
[J

]

Energy
Internal

Kinetic

Total

Figure 9.4: Plate energy, stand off distance 150 mm, bare charge
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Figure 9.5: Plots from IMPETUS simulation, stand off distance 150 mm, bare
charge
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9.3 Charge surrounded by dry sand

In the simulations concidering charge surrounded by dry sand, the loading by air
was assumed to be negligible [9]. The sand had an initial density of 1620 kg/m3.
The charge radius giving a weigth of 150 gram is 28.2 mm. To obtain a sand
weight equal to 2.7 kg as in the experiments, the surrounding sand thickness
wast set to 46.8 mm.

Sensitivity tests on the sand contact parameters K (contact stiffness) and µ
(friction coefficient) were done by Olovsson et.al [9]. K=0.4 GN/m and µ=0.1
gave the best results. No further studies has been done on this subject. It
was also concluded that the deflection of the plate was relatively insensitive to
the number of particles [9]. The amount of C4 particles was set equal to the
simulations with bare charge, 3 ∗ 104. The sand was modelled using 6 ∗ 104

particles.

9.3.1 Results

Reflected Impulses, energy levels and simulation plots describe the influence of
dry sand in figure 9.6, 9.7, 9.8, and 9.9.
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Figure 9.6: Reflected Impulse, 1/4 symmetry model, charge surrounded by dry
sand
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Figure 9.8: Plate energy, stand off distance 150 mm, charge surrounded by dry
sand
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Figure 9.9: Plots from IMPETUS simulation, stand off distance 150 mm, charge
surrounded by dry sand
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9.4 Discussion

The reflected impulses for bare charge are within the expected size window,
though smaller than ConWep values seen in 7.6. It is noticed that the reflected
impulse is almost equal to the convergent values attained by the ALE method
for stand off distance 150mm.

They differ at larger distances as the reflected impulse in IMPETUS decrease
with increasing stand off distance, both for bare charge and charge surrounded
by dry sand. The simulations showed that the influence of sand was huge, which
was also seen in the experimental results. When adding sand, the reflected
impulses were more than doubled, table 9.2.

Stand off distance 150 mm 200 mm 250 mm
Reflected Impulse Load Blast LS-DYNA 772 688 605
Reflected Impulse IMPETUS Bare charge 703 590 504
Reflected Impulse IMPETUS Dry sand 1806 1502 1205
Ratio IMPETUS Dry sand / Bare charge 2.57 2.55 2.39

Table 9.2: Reflected Impulses, Bare charge vs. Dry sand

There seem to be no problems concerning the energy. For the simulation with
bare charge, figure 9.3, the C4 energy approaches zero when the blast is over.
Likewise for the simulation with dry sand, figure 9.7. The most important
energy source from the sand is friction. The plate energy plots show that the
internal energy, due to plastic strain, is much more important for the simulations
including sand, figure 9.4 and 9.8.

From the simulation plots, figure 9.9 and 9.5, one can see that the time period
for the blast is longer for the simulation including dry sand.

A bare charge simulation with duration time 1 ms using the 1/4 symmetry
model with 3 ∗ 105 air particles and 3 ∗ 104 C4 particles took about 30 minutes,
while the sand simulation with duration time 2 ms took about 1 hour. Much
less computational costfull than an ALE analysis using a fine mesh.
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Chapter 10

Comparison

Three different numerical approaches have been used to simulate close range
blast on plates with different stand off distances. The methods vary in com-
plexity and computational costs, but they should somehow lead to approxi-
mately the same results, knowing that small deformations and no fracture were
observed in the experiments. The permanent central deflection as well as the
undamped central node displacement as a function of time and the final state
of deformation, will be presented in this chapter.

The following parameters, table 10.1, were used to obtain the results presented
in this chapter:

Numerical simulation Model parameters
Load Blast 1/4 symmetry

Plate: 60x60 shell elements, size 3.4 mm
ALE 1/1 symmetry

Fluid: 60x60x60 solid elements, size 10 mm
Plate: 20x20, size 20 mm

IMPETUS 1/4 symmetry
Particles Air: 3 ∗ 105, Particles C4: 3 ∗ 104

Particles Sand: 6 ∗ 104

Plate: 30x30x1 solid elements, size 6.8 mm

Table 10.1: Parameters used for comparison of numerical simulations

10.1 Springback analysis

It is not a straight forward process to take out the permanent central deflection.
Different techniques, based on the same principle, have been employed for every
numerical method.
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10.1.1 Load Blast LS-DYNA

A global viscous damping was utilized to avoid lasting oscillations, using the
keyword *DAMPING-GLOBAL. The damping was put after 5 ms when the
system was observed to be in steady-state, consequently it should not affect the
plastic deformations. The total duration time was set to 15 ms to assure that
oscillations disappeared. The damping was assumed to be more or less critical
with the natural frequency measured from the time displacement plot.

10.1.2 ALE LS-DYNA

The same technique as for the Load Blast simulation could be used, but this
requires a long time period to stop the oscillations, which is inconvenient for
a CPU-demanding ALE simulation. Similar to Load Blast, a global viscous
damping was utilized to obtain permanent deformations. First, a normal ALE
analysis was done, in this case typically with a time period of 3 to 5 miliseconds.
The results were investigated, to determine at which time the plastic strains
remained constant, and if everything looked consistent with respect to impulse,
leackage and energy levels. For stand off distance 150 mm, the time was found
to be 2 ms, while 3.5 ms was used for stand of distances 200 mm and 250 mm.

The next step was to rerun the analysis using the new time period, including
a new keyword; *INTERFACE-SPRINGBACK-LSDYNA. This gives out a file,
dynain, which contains the plate’s stresses, displacements and plastic strains.
Then a new analysis, including this file, was done. Global viscous damping was
turned on, elastic material was choosen, and the plate was reconstrained.

10.1.3 IMPETUS

The damping/springback analysis done in IMPETUS, is pretty simular to the
one done in ALE. First, an analysis searching the appropriate time period
was run, and then an analysis using this termination time. The *OUTPUT-
INTERVAL function allows you to set the output interval for a model dump
file, and decide which part set id, defining elements and nodes, that will be out-
put to this restart file. Finally a springback analysis including the restart file
was done, giving out the permanent deformed state of the plate. The Johnson
Cook material model was used in the springback analysis.

In contrast to the springback analysis done in ALE which were run 2 and 3.5 ms,
the time period in IMPETUS was set to be 1 ms for every stand off distance.
This indicates the time where the transfer of impulse from the detonation prod-
ucts to the plate is ceased [9]. The simulations including dry sand were run 2 ms,
due to longer impulse transfer period. Børvik et.al [9], in their studies on the
same problem, used the same method to find the permanent central deflection.
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10.2 Central node displacement
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Figure 10.1: Central node displacement using different numerical approaches,
stand off distance 150 mm
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Figure 10.2: Central node displacement using different numerical approaches,
stand off distance 200 mm
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Figure 10.3: Central node displacement using different numerical approaches,
stand off distance 250 mm
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For stand off distance 150 mm, figure 10.1, the oscillations stabilized around the
permanent deflection for every numerical method, due to large plastic strain.
The curves from IMPETUS and Load Blast follow each other perfectly in the
beginning.

For stand off distance 200 mm, figure 10.2, the central node displacement was
very similar for ALE and IMPETUS. They both obtained a negative deflection
phase, while the Load Blast method oscillated around its permanent deflection.
This confirms that conservative results may occur when using the Load Blast
function.

For stand off distance 250 mm, figure 10.3, every numerical method obtained a
negative deflection phase.

The simulations using dry sand in IMPETUS, figure 10.4, led to small oscil-
lations stabilized around the permanent deflection, due to greater transfer of
impulse.
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10.3 Final state of deformation

Figure 10.5: Final state of deformation, stand off distance 150 mm, bare charge

Figure 10.6: Final state of deformation, stand off distance 150 mm, charge
surrounded by dry sand

The final state of deformation using IMPETUS corresponds very well with the
experimental results. Load Blast and ALEfine correspond pretty good as well,
while ALEcourse corresponds poorly.
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10.4 Permanent central deflection

The main goal for this thesis was to compare the central deflection obtained from
experimental results, with results obtained using different numerical methods.
The results became as follows:

Stand off distance 150 mm 200 mm 250 mm
Experiments bare charge 17 12.7 11.3
Load Blast LS-DYNA 18.2 15.6 11.3
ALE LS-DYNA 15.6 11.9 12
IMPETUS bare charge 15.5 12.3 11.3

Table 10.2: Permanent central deflection, bare charge

Stand off distance 150 mm 200 mm 250 mm
Experiments Dry sand 38.5 26.8 18.5
IMPETUS Dry sand 38 29.2 22.9

Table 10.3: Permanent central deflection, charge surrounded by dry sand
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Figure 10.7: Permanent central deflection using different numerical approaches
vs. experiments
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Every numerical method gave relatively good results compared to experimental
data. Especially for bare charge with standoff distance 250 mm, where IMPE-
TUS and Load Blast are spot on the experimental results.

10.5 Discussion

In IMPETUS, it has also been tried to run the bare charge simulations further
before doing a springback step. The same permanent central deflection was
obtained for stand off distance 150 mm when using a termination time equal to
3 ms. On the other hand, for stand off distances 200 mm and 250 mm, using
termination time 5 ms, the permanent central deflection decreased remarkebly,
2-3 mm. The negative deflection phase, figure 10.2 and 10.3, may explain why.
Since the springback analysis in the IMPETUS code uses the Johnson cook
material model in this thesis, it might attain plastic strains during the step.
Since the springback analysis removes all intial velocities it might underpredict
the plastic energy absorbed by the plate. When large velocities are present one
must take care to ensure that the kinetic energy of the plate is close to zero
before taking out the deformed plate.

For ALE, very good results with respect to central deflection were obtained
when using the course mesh model. On the other hand, when using the finer
mesh, the central deflection for stand off distance 200 mm and 250 mm got
way to large compared with the experiments, due to increasing impulse with
increasing stand off distance, figure 8.26.

Stand off distance 150 mm 200 mm 250 mm
Experiments bare charge 17 12.7 11.3
ALE LS-DYNA 15.6 11.9 12
Course mesh
ALE LS-DYNA 16 15.7 16.9
Fine mesh

Table 10.4: Permanent central deflection, course vs. fine mesh

It is therfore verified that the global response of the structure is in question with
the current ALE blast model. The better fit for the coarser mesh can probably
be explained by increasing attenuation for coarser meshes, section 4.2.8. Its
likeliness to the experimental data is therefore caused by greater numerical
dissipation rather than more accurate model description.

The computational time for the different methods vary quite a lot, table 10.5.
For IMPETUS, the main simulation, giving out the restart file for springback
analysis, is cheap in terms of computational time, while the springback anal-
ysis is pretty costful. For ALE, it is the other way around, especially for fine
mesh. The springback analysis done in IMPETUS is costful, because the en-
ergy tolerance defining when equilibrium has been reached is set very low. This
parameter can be changed without influence the results remarkebly. Table 10.5,
do not contain springback times.
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Simulation Elapsed Time [min] Duration of incident [ms]
Load Blast LS-DYNA 7 15
ALE LS-DYNA Course 56 2
ALE LS-DYNA Fine 1114 2
IMPETUS bare charge 27 1

Table 10.5: Elapsed time for different numerical simulations, stand off distance
150 mm

The compuational time speaks in great favour of IMPETUS, as the LS-DYNA
ALE model uses almoast 42 times the amount of computational time when
compared to IMPETUS. Since the models considered for ALE are fullscale and
Impetus 1/4 scale it is slightly hard to compare the times. As simplification the
LS-Dyna Elapsed time could be scaled by a factor of 1/4, and the the impetus
code elapsed time is scaled by a factor of 2. Under these circumstances the
impetus code still outperforms ALE with a factor of 5.15
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Chapter 11

Concluding remarks

• The Lagrangian approach generally gives accurate results even at the
shortest stand off distances used in this thesis. The Lagrangian model
does however not account for FSI effects and it is probable that a larger
charge with larger plate deformation, would yield more conservative re-
sults.

• Applying a uniform pressure directly as a function of the standoff distance
of the closest point on the plate, will give severly conservative results at
close standoff distance blast loading.

• Using solid elements, convergence was attained for the charge needed to
induce failure mode IIa.

• The results obtained using the ALE method were very variable. In terms
of reflected impulse, it was pretty much spot on when compared with
IMPETUS for standoff distance 150 mm. For the larger distances the
impulse was actually gradually getting bigger, which suggests numerical
energy being created. It was therefore necessary to use a coarser mesh
which seemed to increase less in reflected impulse. Probably because of
the larger amount of numerical energy dissipation. However, the final de-
formed shape from the coarse analysis seemed to be quite different from
that obtained from experimental data, figure 10.5. The fine analysis pro-
duced a deformation shape which was pretty much spot on.

• Calibrating the input parameters for the ALE method is extremely com-
plex. The amount of functions and switches for tweaking are overwhelm-
ing. For someone with limited experience in this field, it is relatively hard
to find the appropriate parameters to switch. The LS-DYNA keyword
manual is also somewhat limited in its description of the parameters. The
fact that accurate analysis requires compuational times roughly equal to
a day, makes it hard to keep the train of thought in motion.
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• Modeling the plate using 1/8 symmetry condtions, was appropriate for the
ALE analyis in this thesis. It was found to give consistent values in terms
of reflected impulse with the fullscale model. The reflective boundary
condtions seemed to increase the pressure close to the reflective bound-
aries, but this effect was confined to a few elements. The increasing con-
finement of the blast might cause more errors if even smaller stand off
distances are considered

• Turning on the E-factor in the *control-ale keycard gave too varying results
in terms of pressure and impulse to be considered for using any further in
the computational model.

• The IMPETUS analysis clearly gave the best correspondence with the
experimental results. It was found to require a 1/4 symmetry condtion,
since the boundaries behind the charge increases the amount of confine-
ment, and therefore also the reflected impulse on the plate

• The springback analysis performed in IMPETUS was partially unreliable
for the standoff distances 200mm and 250mm. This is speculated to be
caused by the usage of the Johnson Cook material model in the springback
step. The springback step zeros out the plate velocity and one might
therefore possibly neglect the energy transfered from kinetic to plastic
energy. The springback analysis seemed to give out great results when the
springback step was taken out after 1 ms [9].

• The displacement time histories attained from Load Blast, ALE and par-
ticle method showed generally the same history in terms of displacement.
The only exeption was the Lagrangian analysis at stand off distance 200
mm which differed by quite a lot.
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Further work

• ALE, change the contact formulatition from the Penalty method to the
Kinematic constraint method.

• ALE, perform additional analysis using the Donor cell algorithm, and
compare the results in terms of accuracy and computational times.

• ALE, turn off the automatic Penalty algorithm and use a custom defined
Penalty stiffness.

• ALE, employ the enhanced Load Blast function in LS-DYNA (*load-blast-
enhanced) to resolve the issues conserning increasing impulse in the ALE
analysis (see chapter 2 and reference [30]).

• ALE, define a better mesh which fits the charge.

• ALE, IMPETUS, Load Blast, increase the mass of the intial charge in the
analysis to spot the extend of increasing FSI effects.

• ALE and IMPETUS, determine the necessary charge to attain failure
mode II. Because of FSI effects this could be larger than the charge de-
termined in the Lagrangian section.

• ALE and IMPETUS, model the plate test rig more accurately. The plates
in this paper are locked/suspended in air, while in reality they are con-
strained by a test rig. The interaction with the test rig might alter the
results. In all analysis, fluid is allowed to flow around the edges of the
plate and in behind it. This might be a source off error.

• IMPETUS, try to discern a more appropriate energy tolerance in the
springback step. This step was found to use almost as long time as the
particle analysis, and it is probable that convergence can be attained with
lower tolerances.

• Do experiments with pressure sensors. This could make it easier to com-
pare experimental results with numerical analysis.
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Appendix A

Matlab program used for
mesh generation

%%%%%%Ls-Dyna-Mesh-generator

%define position of node1$
x_0=0;
y_0=0;
z_0=0;

%number of elements%
n_nodes_x=75;
n_nodes_z=75;
n_nodes_y=75;

%connectivity_matrix%
c_matrix=zeros((n_nodes_x-1)*(n_nodes_y-1)*(n_nodes_z-1),10);
%part_id
P_id=2;
%lenght base element
base_lenght=0.002;
increment=1.03;
nodes=zeros((n_nodes_x)^3,6);
nodesnew=zeros((n_nodes_x)^3,6);
nodesnew2=zeros((n_nodes_x)^3,6);
x_vector=zeros(1,n_nodes_x);
y_vector=zeros(1,n_nodes_y);
z_vector=zeros(1,n_nodes_y);
nodesnew2s=zeros((n_nodes_x)^3,6);

%element_lenght_x%
for i=1:(n_nodes_x-1);

if i == 1;
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x_vector(i+1)=x_vector(i)+base_lenght;
else

x_vector(i+1)=x_vector(i)+(x_vector(i)-x_vector(i-1))*increment;
end

end

%element_lenght_x%
for i=1:n_nodes_x;
for j=0:n_nodes_y*n_nodes_z;

nodes(i+(n_nodes_x*j),1)=i+n_nodes_x*j;
nodes(i+(n_nodes_x*j),2)=x_vector(i);

end
end

%element_lenght_y%
for i=1:(n_nodes_y-1);

if i == 1;
y_vector(i+1)=y_vector(i)+base_lenght;

else
y_vector(i+1)=y_vector(i)+(y_vector(i)-y_vector(i-1))*increment;

end
end

for h=0:n_nodes_y;
for i=1:n_nodes_y;
for j=1:n_nodes_y;

nodes(h*(n_nodes_y)^2+j+(i-1)*(n_nodes_y),3)=y_vector(i);
end
end
end

for i=1:(n_nodes_x)^3;
for j=1:6

nodesnew2(i,j)=nodes(i,j);
end

end

%element_lenght_z%
for i=1:(n_nodes_z-1);

if i == 1;
z_vector(i+1)=z_vector(i)+base_lenght;

else
z_vector(i+1)=z_vector(i)+(z_vector(i)-z_vector(i-1))*increment;

end
end
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for i=1:n_nodes_z;
for j=1:(n_nodes_z^2);

nodesnew2(((i-1)*(n_nodes_z)^2)+j,4)=z_vector(i);
end
end

%connectivity%

for i=1:(n_nodes_x-1)*(n_nodes_y-1)*(n_nodes_z-1);
c_matrix(i,1)=i;
c_matrix(i,2)=2;

end

for i=1:(n_nodes_x-1)*(n_nodes_y-1)

c_matrix(1+(n_nodes_x-1)*i,3)=1;
c_matrix(1+(n_nodes_x-1)*i,4)=1;
c_matrix(1+(n_nodes_x-1)*i,5)=1;
c_matrix(1+(n_nodes_x-1)*i,6)=1;
c_matrix(1+(n_nodes_x-1)*i,7)=1;
c_matrix(1+(n_nodes_x-1)*i,8)=1;
c_matrix(1+(n_nodes_x-1)*i,9)=1;
c_matrix(1+(n_nodes_x-1)*i,10)=1;

end

for i=1:(n_nodes_x-1)

c_matrix(1+(n_nodes_x-1)^2*i,3)=n_nodes_x+c_matrix(1+(n_nodes_x-1)^2*i,3);
c_matrix(1+(n_nodes_x-1)^2*i,4)=n_nodes_x+c_matrix(1+(n_nodes_x-1)^2*i,4);
c_matrix(1+(n_nodes_x-1)^2*i,5)=n_nodes_x+c_matrix(1+(n_nodes_x-1)^2*i,5);
c_matrix(1+(n_nodes_x-1)^2*i,6)=n_nodes_x+c_matrix(1+(n_nodes_x-1)^2*i,6);
c_matrix(1+(n_nodes_x-1)^2*i,7)=n_nodes_x+c_matrix(1+(n_nodes_x-1)^2*i,7);
c_matrix(1+(n_nodes_x-1)^2*i,8)=n_nodes_x+c_matrix(1+(n_nodes_x-1)^2*i,8);
c_matrix(1+(n_nodes_x-1)^2*i,9)=n_nodes_x+c_matrix(1+(n_nodes_x-1)^2*i,9);
c_matrix(1+(n_nodes_x-1)^2*i,10)=n_nodes_x+c_matrix(1+(n_nodes_x-1)^2*i,10);

end

%initialization%
c_matrix(1,3)=1;
c_matrix(1,4)=2;
c_matrix(1,5)=c_matrix(1,4)+n_nodes_x;
c_matrix(1,6)=c_matrix(1,3)+n_nodes_x;
c_matrix(1,7)=c_matrix(1,3)+(n_nodes_x)^2;
c_matrix(1,8)=c_matrix(1,7)+1;
c_matrix(1,9)=c_matrix(1,8)+(n_nodes_x);
c_matrix(1,10)=c_matrix(1,7)+(n_nodes_x);

for i=1:(n_nodes_x-1)*(n_nodes_y-1)*(n_nodes_x-1)
c_matrix(i+1,3)=c_matrix(i+1,3)+c_matrix(i,3)+1;
c_matrix(i+1,4)=c_matrix(i+1,4)+c_matrix(i,4)+1;
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c_matrix(i+1,5)=c_matrix(i+1,5)+c_matrix(i,5)+1;
c_matrix(i+1,6)=c_matrix(i+1,6)+c_matrix(i,6)+1;
c_matrix(i+1,7)=c_matrix(i+1,7)+c_matrix(i,7)+1;
c_matrix(i+1,8)=c_matrix(i+1,8)+c_matrix(i,8)+1;
c_matrix(i+1,9)=c_matrix(i+1,9)+c_matrix(i,9)+1;
c_matrix(i+1,10)=c_matrix(i+1,10)+c_matrix(i,10)+1;
end

%CONSTRAINTS%

for i=1:n_nodes_x*n_nodes_y*n_nodes_z;
if nodesnew2(i,2)==0;

nodesnew2(i,5)=1;
end
if nodesnew2(i,3)==0;

nodesnew2(i,5)=2;
end
if nodesnew2(i,4)==0;

nodesnew2(i,5)=3;
end

end

for i=1:n_nodes_x*n_nodes_y*n_nodes_z;
if nodesnew2(i,2)==0 & nodesnew2(i,3)==0;

nodesnew2(i,5)=4;
end
if nodesnew2(i,2)==0 & nodesnew2(i,4)==0;

nodesnew2(i,5)=6;
end
if nodesnew2(i,3)==0 & nodesnew2(i,4)==0;

nodesnew2(i,5)=5;
end

end
nodesnew2(1,5)=7;

DLMWRITE(’meshbias.txt’,nodesnew2,’precision’,9)
DLMWRITE(’meshbias.txt’,c_matrix,’-append’,’precision’,9)



Appendix B

Keyword files

B.1 LS-DYNA keyword file for the load blast
analysis in chapter 7 and 10

*keyword
$
$
$Includes plate mesh
*include
PlateShell60x60.k
$
$
*constrained_global
7,7,1,0.203,0,0
7,7,2,0,0.203,0
2,6,2,0,0,0
1,5,1,0,0,0
$
$
$Duration of incident
*control_termination
0.015
$
$
$Two random curves must be defined, for the LOAD_BLAST function to work
*define_curve
1
0,0
1,1
*define_curve
2
0,0
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1,0
$
$
$Defines a set for load application
*set_shell_general
1
part,1
$
$
$Defines a blast curve
*load_blast
0.1785,0,0,0.15,0

$
$
$The blast curve is saved as -2, and is loaded to the shell
*load_shell_set
1,-2
$
$
$Global damping curve
*define_curve
5
0.005,1250
0.015,1250
$
$
*damping_global
5
$
$
$Parameters to the modified Johnson Cook Model
*mat_107
$MID RO E PR BETA XSI CP ALPHA
1,8060,1.95e11,0.3,0,0.9,500,1.5e-5
$EODOT Tr Tm T0 FLAG1 FLAG2
1e-3,296,1700,293,0,1
$A B N C m
4.10e8,19.02e8,0.82,0.024,1.03
$Q1 C1 Q2 C2
0,0,0,0
$DC WC
1,235.7e6
$TC TAUC
1650,1e20
$
$
$Defines section, integration points, and thickness
*section_shell
1,,,5
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3.4e-3
$
$
$Allows thinning of shell
*control_shell
,,,1
$
$
$Defines part and links it to section and material
*part
plate
1,1,1
$
$
$Output
*database_nodout
5e-6
$
$
*database_glstat
5e-6
$
$
*database_binary_d3plot
1e-4,0
$
$
$Hourglass energy computed
*control_energy
2
$
$
$Second order objective stress update
*control_accuracy
1,4
$
$
*end
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B.2 LS-DYNA keyword file for the ALE analy-
sis in chapter 8

*KEYWORD 400000000
$
$
$Includes plate mesh
*INCLUDE
PlateShell150Coarse.k
$
$
$Changes the node and element numbers
*INCLUDE_TRANSFORM
CubeCoarse.k
900000,900000

$Duration of incident
*CONTROL_TERMINATION
2E-3
$
$
$Scale factor 0.67 for high explosive
*CONTROL_TIMESTEP
,0.67

$
$
$Set global control parameters for the ALE calculations
*CONTROL_ALE
$Lagrange, 1 cycle between advections, Van Leer advection
0,1,2
, , , , , ,1.013E5

$
$
*ALE_MULTI-MATERIAL_GROUP
$TNT: ID, part - AMMGID 1
2,1
$AIR: ID, part - AMMGID 2
3,1
$
$
$Allows the modelling of the detonation of C4
*MAT_HIGH_EXPLOSIVE_BURN
2,1601,8190,2.8E10,2,1,1
$
$
$Equation of state for C4
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*EOS_JWL
2,5.9750E11,13.9E9,4.5,1.5,0.32,8.7E9
$
$
$Air at 20 degrees
*MAT_NULL
3,1.204
$
$
$Equation of state for Air
*EOS_LINEAR_POLYNOMIAL
3,0,0,0,0,0.4,0.4,0
2.5325E5,1
$
$
$Parameters to the modified Johnson Cook Model
*MAT_107
$MID RO E PR BETA XSI CP ALPHA
4,8060,1.95e11,0.3,0,0.9,500,1.5e-5
$EODOT Tr Tm T0 FLAG1 FLAG2
1e-3,296,1700,293,0,1
$A B N C m
4.10e8,19.02e8,0.82,0.024,1.03
$Q1 C1 Q2 C2
0,0,0,0
$DC WC
1,235.7e6
$TC TAUC
1650,1e20
$
$
$1 point ALE multi-material element C4
*SECTION_SOLID
2,11
$
$
$1 point ALE multi-material element Air
*SECTION_SOLID
3,11
$
$
$Defines number of integration points and thickness to the plate
*SECTION_SHELL
4,,,5
0.0034
$
$
$Allows thickness change
*CONTROL_SHELL
,,,1
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$
$
$Assigns section, material, and EOS to C4
*PART

2,2,2,2
$
$
$Assigns section, material, and EOS to Air
*PART

3,3,3,3
$
$
$Assigns section and material to Plate
*PART

4,4,4
$
$
$Defines volume fractions of various ALE multi-material groups
*INITIAL_VOLUME_FRACTION_GEOMETRY
2,1,2
6,0,1
0,0,0,0.02818
$
$
$Defines the detonation of C4
*INITIAL_DETONATION
2,0,0,0,0
$
$
$Fluid-Structure Interaction
*CONSTRAINED_LAGRANGE_IN_SOLID
4,2,1,1,4,4,2

$
$
$Part set for springback function
*SET_PART
1
4
$
$
$Creates restart file for damping analysis
*INTERFACE_SPRINGBACK_LSDYNA
1,100,2
$
$



B.2. LS-DYNA keyword file for the ALE analysis in chapter 8 123

$Output
*DATABASE_BINARY_D3PLOT
1E-4
$
$
*DATABASE_GLSTAT
1E-6
$
$
*DATABASE_FSI
1E-6
2,4,1
$
$
*DATABASE_HISTORY_NODE
221
$
$
*DATABASE_NODOUT
1E-5
$
$
$Includes hourglass energy
*CONTROL_ENERGY
2
$
$
*END
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B.3 IMPETUS keyword file for the analysis in
section 9.2

Includes plate mesh
*INCLUDE
150plate30x30.k
$
$
$Duration of incident, and time step scale factor
*TIME
1.0e-3,0.67
$
$
$Output plots, ascii data, and restart file
*OUTPUT_INTERVAL
5.0e-5, 5.0e-6, 5.0e-5, 1
$
$
$Parameters to the modified Johnson Cook Model
*MAT_JC
1, 8060, 1.95e+11, 0.3
4.1e+8, 19.02e+8, 0.82, 0.024, 1.03, 293.0, 1700.0, 0.001
500,0.9, 0, 0, 0, 0, 0, 235.7e6
1
$
$
*SET_PART
1
1
$
$
$Links the part to the material
*PART
1, 1
$
$
$Changes element polynomial order
*CHANGE_P-ORDER
P, 1, 3
$
$
$Set up blast loading of a FE-structure with air, soil and high explosive
*PBLAST
P, 1, 300000, 0, 30000, 0, 1, 2
1, 0, 1, 0, 0, 0
1, 0, 2, 0.0, 0.0, 0.0, 0.0
$
$



B.3. IMPETUS keyword file for the analysis in section 9.2 125

$Global domain
*GEOMETRY
1, 1
0.0, 0.0, -0.3, 0.3, 0.3, 0.3
$
$
$High explosive domain
*GEOMETRY
2, 2
0.0, 0.0, 0.0, 0.0282
$
$
$Central node displacement
*OUTPUT_NODE
N,1
*END
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B.4 IMPETUS keyword file for the analysis in
section 9.3

Includes plate mesh
*INCLUDE
150plate30x30.k
$
$
$Duration of incident, and time step scale factor
*TIME
2.0e-3,0.67
$
$
$Output plots, ascii data, and restart file
*OUTPUT_INTERVAL
5.0e-5, 5.0e-6, 5.0e-5, 1
$
$
$Parameters to the modified Johnson Cook Model
*MAT_JC
1, 8060, 1.95e+11, 0.3
4.1e+8, 19.02e+8, 0.82, 0.024, 1.03, 293.0, 1700.0, 0.001
500,0.9, 0, 0, 0, 0, 0, 235.7e6
1
$
$
*SET_PART
1
1
$
$
$Links the part to the material
*PART
1, 1
$
$
$Changes element polynomial order
*CHANGE_P-ORDER
P, 1, 3
$
$
$Set up blast loading of a FE-structure with air, soil and high explosive
*PBLAST
P, 1, 0, 60000, 30000, 0, 1, 2
1, 0, 1, 0, 0, 0
1, 3, 2, 0.0, 0.0, 0.0, 0.0
$
$
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$Global domain
*GEOMETRY
1, 1
0.0, 0.0, -0.3, 0.3, 0.3, 0.3
$
$
$High explosive domain
*GEOMETRY
2, 2
0.0, 0.0, 0.0, 0.0282
$
$
$Soil domain
*GEOMETRY
3, 2
0.0, 0.0, 0.0, 0.075
$
$
$Central node displacement
*OUTPUT_NODE
N,1
*END



128 B. Keyword files

B.5 ALE springback analysis in chapter10

KEYWORD 500000000
$
$
$Includes restart file
*INCLUDE
dynain.k
$
$
$Parameters to elastic model
*MAT_ELASTIC
$MID RO E PR
1,8060,1.95e11,0.3
$
$
*CONSTRAINED_GLOBAL
7,7,1,0.203,0,0
7,7,2,0,0.203,0
7,7,2,0,-0.203,0
7,7,1,-0.203,0,0
$
$
*CONTROL_TERMINATION
20E-3
$
$
*DAMPING_GLOBAL
0,1000
$
$
*SECTION_SHELL
1,,,5
0.0034
$
$
*CONTROL_SHELL
,,,1
$
$
$Assigns part to section and material
*PART

4,1,1
$
$
$Output
*DATABASE_HISTORY_NODE
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221
$
$
*DATABASE_NODOUT
1E-4
$
$
*DATABASE_BINARY_D3PLOT
4E-3
$
$
*END
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B.6 IMPETUS springback analysis in chapter10

$Includes the restart file from earlier analysis
*INCLUDE
impetus.restart1
$
$
$Duration of incident, and time step scale factor
*TIME
1.0e-6,0.9
$
$
$Output plots, ascii data
*OUTPUT_INTERVAL
1.0e-3, 1.0e-4
$
$
$Springback function that uses dynamic relaxation and explicit time integration
*SPRINGBACK
1.0e-5,5.0e-6,0.999
$
$
$Parameters to the modified Johnson Cook Model
*MAT_JC
1, 8060, 1.95e+11, 0.3
4.1e+8, 19.02e+8, 0.82, 0.024, 1.03, 293.0, 1700.0, 0.001
500,0.9, 0, 0, 0, 0, 0, 235.7e6
1
$
$
$Links the part to the material
*PART
1, 1
$
$
$Central node displacement
*OUTPUT_NODE
N,1
*END
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