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Abstract

Liquid �ushing is the displacement of gas with a �owing liquid column and is
important in pressure testing of pipelines. To evaluate the capability of the
multiphase simulator OLGA 6.0 to predict �ushing of a pipeline, simulations
in OLGA have been compared to small-scale experiments.

A test rig has been set up with the con�guration of an undulating pipeline.
The main variable was the height of the water in the reservoir. The experi-
ments were video recorded. The end state of the �ow was logged by measur-
ing the height of the liquid column in the di�erent pipe sections. This was
compared with the end state in OLGA simulations. A Matlab script was
developed to perform image analysis of the video. The image analysis script
was used to compare the transient development of the experiments with the
simulations in OLGA.

The end state in the cases where the pipe was not �ushed in the experiments
was in good correspondence with the OLGA simulations. The transient
progress was however much faster in OLGA. The ratio in time for the water
to reach the outlet in the experiment where the pipe was �ushed and the
OLGA simulation was 2.5. This ratio declined with the inlet pressure. The
reason for this discrepancy is thought to be an e�ect of that there is no
model for surface tension between the �uid and the wall in OLGA. In order
to �nd a minimum range for the head needed in OLGA to �ush the pipe, a
parametric study was carried out. The factor between the head needed to
�ush the pipe in the experiments and the head predicted in OLGA was 0.84.
This was surprising since OLGA predicted a much quicker transient progress
with higher velocities and momentum. The reason for the over prediction of
the head needed to �ush the pipe is thought to come from that OLGA to
a small extent takes into account the �ow history. The e�ect of this is that
slugs are killed at the end of an upwards or downwards pipe.
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Sammendrag

Spyling (Flushing) av gass med en væske kolonne er viktig i forbindelse med
trykk testing av rørledninger. For å vurdere multifase simulatoren OLGA
6.0 sin evne til å predikere spyling av en rørledning har simuleringer i OLGA
blitt sammenlignet med små skala forsøk.

En test rigg har blitt satt opp med kon�gurasjonen av en bølgeformet rørled-
ning. Den viktigste variabelen var høyden på vannet i reservoaret. Forsøkene
ble �lmet med et video kamera. Slutt tilstanded ble logget ved å måle den
vertikale høyden av væske kolonnene i de ulike rør seksjonene. Dette ble sam-
menlignet med slutt tilstanden i OLGA simuleringene. Et Matlab skripe ble
utviklet for å gjøre bilde analyse av �lmen. Bilde analysen ble brukt til å
sammenligne det transiente forløpet av eksperimentene med simuleringene i
OLGA.

Slutt tilstanden i forsøkene hvor røret ikke ble spylt var i god overensstem-
melse med simuleringene i OLGA. Det transiente forløpet var mye raskere
i OLGA. Forholdet mellom tiden det tok væsken å nå utløpet i eksperi-
mentet hvor røret ble spylt og simuleringen i OLGA var 2.5. Dette forholdet
avtok med innløpstrykket. Grunnen til denne uoverensstemmelsen er vur-
dert å komme av at det ikke er noen modell for over�atespenning mellom
�uid og vegg i OLGA. For å �nne minste løftehøyde for at OLGA skulle
predikere spyling av røret, ble en parameterstudie av innløpstrykket utført.
Faktoren mellom løftehøyden som var nødvendig for å spyle røret i eksper-
imentene og OLGA simuleringen var 0.84. Dette var overraskende siden
OLGA predikerte et mye raskere transient forløp med større hastighet og
bevegelsesmengde. Grunnen til over prediksjonen av den nødvendige løfte-
høyden antaes å komme av at OLGA til en liten grad tar høyde for strømn-
ings historikk. E�ekten av dette er at væskeplugger forsvinner i overgangen
mellom et oppover rør og et nedover rør.
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Nomenclature

Parameters

α Volume fraction [−]
µ Dynamic viscosity [kg/ms]
ρ Density [kg/m3]
A Cross sectional area [m2]
c Celerity [m/s]
Cd Valve discharge coe�cient [-]
Cv Valve sizing coe�cient [gal/min/psi2]
D Diameter [m]
ε Roughness [m]
f Friction factor [−]
g Gravity [m/s2]
h Head [m]
H Holdup [−]
Fr Froude number [−]
p Pressure [Pa]
Q Volumetric �ux (�ow) [m3/s]
Re Reynolds number [−]
t Time [s]
θ Angle [−]
u Velocity [m/s]
Wb Bubble propagation rate [−]
z Elevation [m]
σ Surface tension [N/m]
QLT Total liquid volume �ow (OLGA) [m3/s]
Ul Liquid velocity (OLGA) [m/s]
HOL Holdup (OLGA) [−]
W Mass �ux (OLGA) [kg/s]
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Abbreviations and annotations

OLGA A multiphase, transient �ow simulator.

PVT Pressure, speci�c Volume and Temperature

Steady state System with constant properties in time

Transient A process that changes with time

Three-�uid model A two-phase �ow model in which the momentum
equation is solved for each phase. The phases are
often a mix of �uids e.g. oil and gas in the liquid
phase.

Holdup Liquid fraction of a volume

Water fraction Water fraction of a volume

Gas fraction Gas fraction of a volume
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Chapter 1

Introduction

Liquid �ushing of pipelines is the displacement of gas with a �owing liquid
column. The purpose is to completely empty the pipeline of gas. In order to
do pressure testing on pipelines no residual gas can remain in the pipeline
and thus it is critical to know that the pipeline is actually free of gas. This
can be investigated by pressure - volume correlations applying pressure from
one side of the pipe and measuring the compressibility of the �uid in the
pipeline. If the compressibility is higher than the �uid assumed present in
the pipe, one can suspect that gas is present in the pipeline.

However, trying to �ush pipelines by trial and error is not an e�cient way
to operate. Instead simulations should be performed in order to achieve
�ushing with a minimum of driving pressure. Using as low an inlet pressure
as possible is important to safety and reduces costs. Using an excessive
pressure results in a higher liquid velocity than what is necessary. This
causes wear on the equipment due to corrosion and acceleration of liquid
slugs that may result in damage to the equipment and injury to personnel.

OLGA is a multiphase simulator that could be used to predict the pressure
needed to �ush a pipe. In order to investigate OLGA's capability to do such
simulations a small scale experimental set-up have been developed. In the
experiments an undulating, air �lled pipeline is �lled with an inlet water
stream at constant pressure. The end state of a partially �lled pipe is logged
by measuring the hight of the water column in each pipe segment. The exper-
iments are �lmed with a video camera. A Matlab script has been developed
to investigate some transient parameters. The end state in partially �lled
pipes and the transient development of the �lling process has been compared
with simulations of the experiments in OLGA. Through these investigations
OLGA's performance in reproducing the laboratory experiments has been
evaluated.
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Chapter 2

Theory

In this section concepts regarding multiphase �ow in pipelines and character-
istic equations for the problem at hand. This is to give the reader a general
understanding of the �ow and a reference of equations especially developed
for phenomena that evolves in the experiments and simulations. This back-
ground is given as a reference for future work on this topic. A more thorough
recapitulation of multiphase theory may be found in lecture notes by Prof.
Ole Jørgen Nydal in [6].

2.1 Flow regimes

In multiphase �ow (2 or more phases) a variety of �ow regimes may oc-
cur. A �ow regime describes the con�guration of the phases, i.e. the shape
and mixing of the phases. Multiphase �ow is a term for a large variety of
�ow phenomena with very di�erent physical mechanisms involved. Since
the phenomena are so di�erent, multiphase �ow is studied by investigating
the characteristics of each �ow regime. An overview of �ow regimes in a
horizontal and vertical pipe is found in �gure 2.1.

In the experiments the pipe is constructed of straight sections with an upward
or downward angle of about 40 degrees. The �ow regimes of a horizontal pipe
(�gure 2.1a will tend to occur in the downward sections and the regimes of
a vertical pipe (�gure 2.1b) will tend to occur in the upward sections. Also,
not all of the regimes will be present since the experimental set-up is a low
pressure system with low velocities.
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(a) Horisontal pipe (b) Vertical pipe

Figure 2.1: Flow regimes in a horisontal and vertical pipe

2.2 Flow regimes in the undulating pipe

In this section, theory for the experiments is presented and some criteria to
verify the results are given. The �ow regimes observed in the experimental
set-up is found in �gure 2.2.

2.2.1 First uphill pipe

The observed �ow phenomena in the experiments are single phase �ow of
liquid in the �rst uphill pipe and then strati�ed �ow and a mixture of strati-
�ed, slug and bubble �ow in the subsequent sections. Since the source (single
phase water) is at the bottom of the �rst uphill section it is expected that the
water column is continuous as long as the pipe is inclined upwards see �gure
2.2a. This is because the pressure is higher in the source than in the pipe
and that gravity is counter current, pulling the dense water phase towards
the ground.

2.2.2 Bubble turning and strati�cation of the �ow

In the downwards sections the �ow is strati�ed or elongated bubble �ow.
When the waterfront passes a peak, gravity is co-current. This is a mecha-
nism that tends to stratify a �ow as long as the pipe is inclined at an angle
between 0 and 45 degrees downwards. According to Zukoski (1966) (see [2])
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strati�cation of a �ow is most likely to occur at an angle of 45 degrees down-
wards. In a vertical pipe liquid will �ow down on all sides of a bubble in an
axis symmetrical fashion. This is because the gravitational �eld is parallel
to the �ow as opposed to all other con�gurations, where gravity is pulling
the dense phase towards the bottom of the pipe. Strati�ed �ow in the pipe
is illustrated in �gure 2.2b and �gure 2.2d. In �gure 2.2b the velocity of the
water phase is too slow to maintain a front as it passes the peak. In �gure
2.2d the strati�ed �ow in the downhill pipe 4 is blocked by a water lock in
the bend. The discharge rate from the tank is almost zero. In this case water
is �owing as a thin �lm underneath the air bubble that is propagating up
towards the peak. In the former case, the head pressure drives the water
front down towards the bend. In the latter, the head pressure is too low to
push the bubble through the bend.

2.2.3 Criteria for strati�cation of the �ow

According to Liou and Hunt [2] air intrusion occurs when the celerity, c of
a long air cavity exceeds the discharge velocity in the �lled portion of a
pipe. Liou and Hunt have developed a method for calculating the celerity
by use of Zukovski's data and method for �nding the bubble propagation
rate [11]. Bubble propagation rate has the same meaning as bubble rise
(velocity) in a stagnant column. Zukoski investigated the dependency of the
celerity on viscosity, surface tension, the slope of the pipe and the diameter.
The �ndings were that viscosity is not signi�cant, surface tension becomes
more pronounced for smaller pipe diameters and the celerity increases by
approximately 20 % as the downward angle increases from zero to 45 degrees.
The celerity decreases upon a further increase in the angle. Liou and Hunt
have proposed one correlation for the critical celerity for a horizontal pipe
with diameters between 4 and 18 cm:

ccritical = 0.5
√
gD (2.1)

Air intrusion (bubble turning) should not occur if the discharge velocity
exceeds ccritical. Townson [8] found that the parameter c√

gD
reaches a maxi-

mum of 0.57, slightly higher than in equation 2.1. This factor is appropriate
for larger pipes. For smaller diameters Liou and Hunt has suggested using
Zukoskis data to �nd c√

gD
and multiplying with a factor between 1 and 1.2

to account for inclination to �nd the celerity of a pipe:

ccritical = CZukoskiCangle
√
gD (2.2)

where the parameter Cangle is between 1 and 1.2. In the set-up used in
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the con�guration with angles at approximately 40 degrees it is appropriate
to set Cangle = 1.2. To �nd the parameter CZukoski one must read o� the
number corresponding to the pipe diameter for a horisontal pipe (θ = 0) in
�gure 5 in Zukoskis paper [11]. This is a dimensionless bubble propagation
rate, Wb√

∆ρ
ρ
ga
. Wb is the bubble propagation rate, ∆ρ is the density di�erence

between water and air, ρ the density of water, g the gravitational acceleration
and a the radius of the pipe. Now the celerity c is calculated as

c = Cchart
Wb√
∆ρ
ρ ga

(2.3)

where Cchart is the read-o� from �gure 5 in Zukoski's paper [11]. Finally the
factor c√

gD
is found as

c√
gD

=
Wb√
g2a

= CZukoski (2.4)

The factor c√
gD

may now be cross checked with the values found for a 17.8cm

and a 1.36cm pipe in [2]. The pipe in Zukoskis paper with diameter 2.16cm
is fairly close to the pipe in the experimental set-up. The critical celerity of
the experimental set-up in this report is then

ccritical = 0.35 · 1.2
√

9.81 · 0.02 ≈ 0.20m/s (2.5)

Nydal [5] took a di�erent approach to �nding a criteria for strati�cation
of a �ow by air intrusion. He investigated at what conditions a co-current
(downstream) bubble (air intrusion) would change direction and �ow counter
current (upstream). This phenomenon is known as bubble turning since the
bubble changes the direction in which it �ows. The assumption is that the
bubble will �ow towards the low pressure side. Starting o� by setting up the
steady state liquid momentum balance (neglecting acceleration)

−∂p
∂x

=
1
D
τL,W − ρg sin θ (2.6)

where − ∂p
∂x is the pressure drop along the pipe, D is the pipe diameter,

τL,W = 1
2λρLu

2
L is the liquid/wall shear stress, uL the liquid phase velocity

and λ the Darcy friction factor. The ratio F between the frictional and
gravitational forces is given by

F =
8λFr2

sin θ
(2.7)
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where the Froude number Fr = uL√
gD

. The �ow is critical when F = 1. That
is when the gravitational forces balance the frictional forces. For a factor F
smaller than 1 bubble turning will occur. The criterion is

uturning = ucritical + u0 (2.8)

where uturning is the liquid velocity at which the bubble turns. u0 is the rise
velocity of a bubble in stagnant �uid. The equations 2.6, 2.7 are found in
Johansens doctoral thesis [3]. Nydal set up the friction-gravity balance as

1
2
fρU2

l S = ρgA sin θ (2.9)

where f is the fanning friction factor, S the pipe perimeter and A the pipe
cross section area. Blasius friction factor for turbulent �ow was applied

f = 0.046Re−0.2 (2.10)

with the Reynolds number Re = Ul
D
ν where ν is the kinematic viscosity.

The ratio between friction and gravity forces was written as

Rc =
2fF 2

sin θ
(2.11)

Equation 2.11 is equivalent with 2.7 and the same criterion of the critical
�ow velocity, equation 2.8 was applied. Nydal [5] and Johansen and Nydal
[4] proposed the use of two di�erent equations for calculating u0 in equation
2.8. Nydal suggested the use of equation 2.12 (Bendiksen [1]) that is simpler,
but does not take into account surface tension as this equation is for large
pipe diameters typically for oil and gas pipelines:

u0 = 0.54
√
gD cos θ + 0.35

√
gD sin θ (2.12)

Johansen and Nydal [4] suggested the use of equation 2.13 for the rise velocity
of a bubble in stagnant liquid is taking into account surface tension:

u0 =
[
0.54− 1.76

E0.56
o

]√
gD cos θ + 0.35

√
gD sin θ (2.13)

where Eo = ρLgD
2

σ is the Eötvös number and σ the surface tension. Johansen
[3] measured the surface tension for �ltered tap water to σ = 0.075N/m. The
discrepancy between equation 2.12 and 2.13 is the term − 1.76

E0.56
o

√
gD cos θ in
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(a) First uphill pipe (b) Strati�ed �ow in pipe 2

(c) Slugs in pipe 3 (d) Turning bubble in pipe 4

Figure 2.2: Flow phenomena in the undulating pipe

equation 2.13 that takes into account the surface tension and reduces the
rise velocity.

Measurements of uturning, ucritical and u0 for a pipe with D = 1.92cm is
found in Nydals paper [5]. The pipe diameter is very close to the diameter
used in the experiments in this report and Nydals results may be used at
least as a guideline with regards to these parameters. In Johansens results
[3], three phase �ow with D = 3.2cm has been used. This is probably too
di�erent from the set-up in this report to be relevant.

2.2.4 Slug �ow

Slug �ow occurs when the super�cial velocities of the liquid and gas phase
are relatively low. This is illustrated in �ow regime maps with the super�-
cial velocities on the axes e.g. �ow regime maps found in [6]. In order to
achieve slug �ow a phase with high compressibility (air) and a phase with
low compressibility (water) must be present. In order to develop slugs a
liquid blocking of the �ow is needed, typically at a low point. The upstream
pressure compresses the gas phase until the gas pressure equals the down-
stream column. Then gas will �ow past the liquid block until the pressure
upstream in the gas phase is lower than the pressure of the downstream
column. This phenomenon occur in the pipe as the strati�ed water phase

8



�ows down the downhill pipes and blocks the bends. However, at the point
when water is blocking a bend, the hight of the downstream water column is
very small. A mix of air and water �ow past the bend before the water lock
increases and slugging becomes more prominent. In �gure 2.2c the liquid
lock is signi�cant. One can see that there are slugs in the uphill pipe where
the green color is lighter indicating presence of air. When the �ow reaches
a peak, gravity pulls the water in the slugs down towards the bottom of the
pipe and the slugs disintegrate. A water column with slugs is lighter than a
water column with single phase water. If slugging starts to occur, the slugs
may accelerate since the water column becomes increasingly lighter and the
required back pressure in the gas to �ow through the bend and cause gas
declines. In the experiments, the slugs died as the gas bubbles displaced
through the water front and into the air �lled part of the pipe. The slugs
made the liquid column in the upwards inclined pipes lighter (not the �rst
since there was single phase �ow from the source). Then it is possible for
the water to propagate through the pipe, with strati�ed downhill �ow and
no pressure recovery with a back pressure equivalent to less than the sum of
the vertical height of the upward sections.

Mandal, Bhuyan, Das and Das (Mandal et al.) [7] carried out experiments
of two-phase �ow through a undulating pipe. The observations in the exper-
iments committed during this thesis supports qualitatively the results from
their work. Mandal et al. used measurement techniques to quantify the
phenomena (slugging, strati�cation) during their work. In this thesis the rig
has not been set up in this way as the scope is not to perform this kind of
research but to compare some parameters from the experiments with OLGA.

2.3 Pressure drop in two limiting cases

2.3.1 Filled pipe

There are two limiting cases in which the pressure drop may be calculated
analytically. The simplest case is single phase stationary �ow. That is the
case when the pipe is �lled with water and all air has been displaced. Apply-
ing Bernoulli's equation with minor losses along a streamline in stationary
�ow [10] page 385:

−∆p = ρg [∆z + ∆ht] (2.14)

where the total system loss is
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(a) Liquid block (b) Initiation of slugs

(c) Uphill �ow of slugs (d) Strati�cation

Figure 2.3: Development of terrain slugs in the pipe

∆ht =
u2

2g

(
fL

D
+
∑

K

)
(2.15)

∆p is the head loss, ∆z is the di�erence in elevation, f is the friction factor
and K denote minor losses. The friction factor f is dependent on the �ow
regime, if it is laminar, turbulent or transitional. In these rough estimations
friction factor for Poiseulle �ow is used for laminar �ow; f = f(Re) = 64µ

ρuD =
64
Red

. For turbulent �ow, the explicit Haaland friction factor is used; f =

f(Re) =
(
−1.8 log

[
6.9
Red

+
( ε

D
3.7

)1.11
])−2

. The loss in the elbows (bends)

has been approximated as the loss for a 1 inch pipe with a 90 degree long
radius, �anged elbow in [10], page 387, Kelbow,90 = 0.40. The last elbow
is half the angle of the previous ones and the head loss is according to the
mentioned table Kelbow,45 = 0.21. The valve factor has been found from
the same table, fully open, screwed globe valve with a 2 inch diameter,
Kvalve = 6.9. The pipe diameter in the feed pipe is 4cm and the diameter in
the test section is 2 cm. These are connected by overlapping the feed pipe
onto the the thinner pipe, resulting in a sudden contraction of the �ow in
the coupling. This is also known as vena contracta [10] page 389. The loss

due to vena contracta is KSC ≈ 0.42
(

1− d2

D2

)
where d is the diameter of

the thin pipe and D the diameter of the thick pipe. In the rig KSC = 0.105.
Head loss from a sharp inlet (the tank) is set to Kinlet = 0.5. A sharp inlet
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has the highest head loss. Since it is not known what the loss is at the
inlet, using a sharp inlet is deemed conservative in the sense that a higher
pressure loss will be calculated. The outlet is deemed where the vent is
mounted, reducing the pressure in the �uid to atmospheric pressure (1bara).
The head loss coe�cient is then Koutlet = 1 since the velocity of the �uid is
(approximately) zero at the surface in the tank. Instead of using velocities,
the volume �ow, Q is used. This is due to that there are two di�erent pipe
diameters. The velocity in a pipe section is found by dividing with the area.
The total pressure drop in a �lled pipeline is then according to equation 2.14
and 2.15

−∆p = ρg

[
∆z +

Q2

2g

([
fL

D

∣∣∣∣
feed

+Kinlet +Kvalve

]
1

A2
feed

+

[
fL

D

∣∣∣∣
pipe

+ 4Kelbow,90 +Kelbow,45 +KSC +Koutlet

]
1

A2
pipe

)]
(2.16)

2.3.2 Strati�ed downhill �ow

The second case is strati�ed �ow through all the downhill sections and single
phase in the uphill sections. Then the pressure drop in the pipeline will be the
sum of pressure drop due to vertical height di�erence in the uphill sections
plus the friction force and the head loss in the feed pipe. That is, there is no
recovery of pressure in the downhill sections due to gravity because the �ow
is strati�ed. The friction force in the downhill sections and the gravitational
force cancel out since they are equal in a strati�ed, stationary �ow. The
same equations as for the �lled pipe may be applied with some modi�cations.
The pressure drop in the downhill pipes due to friction is canceled out by
gravitational force as argued. The 90 degree bends are assumed to have an
e�ect of a 45 degree bend as strati�cation is assumed at the top point of an
uphill pipe. Single phase �ow is assumed to occur analogously in the bottom
of a valley, with the e�ect of a 45 degree bend. Equation 2.16 is now

−∆p = ρg

[∑
zuphill +

Q2

2g

([
fL

D

∣∣∣∣
feed

+Kinlet +Kvalve

]
1

A2
feed

+

[
fLuphill
D

∣∣∣∣
pipe

+ 5Kelbow,45 +KSC +Koutlet

]
1

A2
pipe

)]
(2.17)
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Figure 2.4: Marginal cases

2.3.3 Solution of the cases

Equation 2.16 and 2.17 have been solved for a range of volumetric �uxes,
Q and plotted in �gure 2.4. This �gure displays the head, h needed to
achieve the volumetric �ux, Q for the cases described above. The lower
curve (�lled pipe) is the lower threshold and the upper (strati�ed downhill
�ow) is the upper threshold. Then, it is known that the head needed to
achieve the corresponding volumetric �ux lies between these two curves. The
limiting cases for achieving any �ow is at Q = 0. One may also calculate
the corresponding bubble turning criteria, to see if strati�ed �ow is possible
according to the criteria that is chosen. The Matlab script for calculating
and plotting the marginal cases is in appendix A.

2.4 Valve coe�cient

Cd in OLGA is the discharge coe�cient for the valve. A valve coe�cient
states in a context the head loss due to the valve. The head loss may be
calculated by a number of variables and includes volumetric �ow rate. The
valve used in the experiments is speci�ed with a valve sizing coe�cient, Cv.

12



In OLGA 6.0 the option for valve coe�cient is limited to Cd.

The equation for calculating the discharge coe�cient is

∆Porf =
1
2

[(
A

AoCd

)2

− 1

]
Wtot

∑
i

αiUi (2.18)

where ∆Porf is the pressure drop over the valve, A the pipe �ow area, Ao
is the choke (ori�ce) �ow area, Wtot the total mass �ux, αi the volume
fractions of �ow �eld i and Ui velocity of �ow �eld i. The stroke time is zero
(diafragma) thus Ao = A and there is single phase �ow,

∑
i αiUi = Uliquid.

Equation 2.18 simpli�es to

∆Porf =
1
2

[(
1
Cd

)2

− 1

]
WtotUliquid (2.19)

From this one may observe two marginal cases regarding Cd. Cd = 0 will
cause in�nite pressure drop and consequently zero �ow. Cd = 1 causes
∆Porf = 0 and no pressure drop over the valve.

The equation for the pressure drop using valve sizing coe�cient Cv is

∆P = G

(
Q

Cv

)2

(2.20)

The author could not �nd any correlations for �nding a corresponding dis-
charge coe�cient for the valve sizing coe�cient for an arbitrary �ow rate/
state. Having the volumetric �ow rate and the density, the corresponding
discharge coe�cient may be calculated. But, the experiments are transient
and the �ow rate varies signi�cantly in time (variation in density for water
is insigni�cant since the temperature is very close to constant and the pres-
sure variations are relatively low). With the varying volumetric �ux it is not
possible to convert the coe�cients analytically for an arbitrary �ow rate.

2.5 Multiphase �ow simulator OLGA

OLGA is a 1-dimensional multiphase simulator that is designed to be used by
the oil and gas industry to predict the state of multiphase �ow in pipelines
and through process equipment on a system level. A three-�uid model is
used. One for the liquid water and oil phase, one for the gas phase and one
for droplets of water and hydrocarbons in the gas phase. An n-�uid model
denote that n continuity equations are applied. To couple the continuity
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equations three momentum equations are used, one for oil, one for water
and one for droplets combined with the gas. A slip relation is applied for
calculation of the droplet velocity in the gas phase. A mixed energy equation
for all the phases is used. This implies that the temperature �ashes instantly
between the phases resulting in equal temperature. A total of seven conser-
vation equations need to be solved. OLGA uses a minimum slip relation
to determine the �ow regime. Two �ow regimes are assumed; separated
and distributed. In separated �ow, the phases �ow separately through a
cross-section whilst in distributed �ow the phases are mixed, see �gure 2.1.
To close the system of equations, �uid properties (PVT tables), initial and
boundary conditions must be applied.

Some measures have been taken to enhance stability and robustness of the
program. To calculate pressure, the temperature from the previous time step
is used (decoupling of pressure and temperature). A semi-implicit scheme
for solving the conservation equations is utilized. To redeem the numerical
error that occurs in the scheme, volumetric error is corrected for over time.
Volumetric error is the discrepancy between the calculated volume of �uids
in a control volume and the actual (physical) volume.
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Chapter 3

Experimental setup

A rig has been built to carry out small scale experiments in an undulating
pipe. Schematics of the rig are given in �gure 3.2 The rig used has two peaks
and two valleys. The length of all the straight pipe segments and bends are
almost equal. The inlet is situated at the �oor of the rig on the left hand
side. At the last uphill section some modi�cations have been tried out. The
aim with these modi�cations was to prevent the siphoning e�ect that will
occur if a water column passes the high point of the loop. A siphoning e�ect
may also occur with air bubbles behind the water front if a slug of water
passes the highest point. The solution used in the experiments is illustrated
in �gure 3.2. This and the other modi�cations for the last peak on the pipe
that were tried out are illustrated in �gure 3.1.

3.1 Modi�cations

The original rig is illustrated in 3.1a. During initial testing it became clear
that this setup would display a siphoning e�ect. The �rst modi�cation was
to elongate the last uphill section to an elevation high enough so that the
driving pressure would not be able to drive any �uid over the peak. However,
air bubbles seemed to be trapped behind the waterfront due to the rapidly
decreasing velocity in the last high uphill section. It was found that it would
be a good idea to have strati�ed �ow near the �nal peak. Secondly the
modi�cation in �gure 3.1c was attempted. During the �rst experiments it
was observed that the seemingly small di�erence in elevation (approximately
10 cm) from the �nal peak to the vent resulted in a de�nite siphoning e�ect.
Thus the modi�cation in �gure 3.1d was attempted. With strati�cation
through a level pipe segment at the level of the peaks it was deemed that this
modi�cation would display the most correct results with regards to �ushing.
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(a) Original (b) High peak

(c) Vent after last peak (d) Vent at the last peak

Figure 3.1: The original rig and modi�cations

3.2 Experimental procedure

The experiments are conducted by opening a magnetic valve and letting the
water �ow until it comes to rest. A hand operated valve was used in one set
of experiments. It was experienced that it was di�cult to open the valve fast
enough not to cause a signi�cant in�uence on the �ow. Also hand operation
will in any case be a source of uncertainty. In the experiments presented
in this report only the magnetic valve has been used. A reservoir with a
relatively large diameter compared to the volume of the pipe being �lled is
used. This is to apply an inlet pressure which is close to constant throughout
the experiment. After each experiment the pipe is emptied by pressurized air
which is applied close to the inlet. The air �ow is applied until the interior of
the pipe is free from droplets and the pipe is visually deemed free of water.

The height di�erence between the inlet and the water surface is found by
measuring the elevation of the reservoir and the water level in the reservoir.
In the various experiments the level of the reservoir is changed to alter the
pressure at the inlet.

After each experiment the water is pumped back into the reservoir to ap-
proximately the same level. Fine tuning of the height di�erence of the water
surface and the inlet is done by adding small amounts of water to the reser-
voir manually. The reservoir rests on a manual jack.

3.2.1 Piping and video

The piping consists of clear acrylic pipes in the straight sections and clear
�exible pipes in the bends. Fluorescent color is added to the water to cause
a strong color in the propagating water. This is to produce video with
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Straight sections Length [m] Inner/ Outer diameter [m]

P1 0,910 0,016/0,020

P2 0,830 0,016/0,020

P3 0,832 0,016/0,020

P4 0,830 0,016/0,020

P5 0,832 0,016/0,020

P6 0,085 0,016/0,020

Table 3.1: Straight sections

Bend Length [m] Inner/ Outer diame-
ter [m]

Elevation [m]

B1 0,155 0,016/0,020 0,700

B2 0,155 0,016/0,020 0,080

B3 0,155 0,016/0,020 0,700

B4 0,155 0,016/0,020 0,075

B5 0,155 0,016/0,020 0,715

Table 3.2: Bends

better visibility of the propagating water and facilitate computer based video
manipulation.

A standard high de�nition video camera has been used to record the ex-
periments. To reduce the in�uence of the surroundings a black sheet was
mounted behind the rig. Along the pipeline a scale was mounted with mark-
ings every tenth centimeter. The markings were removed as they caused bad
contrast resulting in poorer performance of the video analysis.

The tank elevations tested are in the results chapter, 6

Brand Make Type Cd

ASCO Magnetic Diafragma ?

Table 3.3: Valve speci�cations
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Brand Chemicals Color

Merck Natrium and Sodium Fluorescent green

Table 3.4: Colorant

Brand Model FPS Resolution

Sony HDR-UX7E 25 1920x1080

Table 3.5: Video camera

Diameter [m] Length [m]

0.04 2.3

Table 3.6: Discharge pipe

Figure 3.2: Schematics of the rig
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(a) Bend

(b) Close-up

Figure 3.3: Geometric relations for the bends

3.3 Geometric relations

For the OLGA simulations with discrete sections modeling the bends, some
relations for the bends had to be found in order to approximate the curvature
and arch length.

The equation for the arclength is

S =
θ2L3

cos
(
π
2 − θ1

) (3.1)

where θ2 = 2θ1.

θ1 is found from
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θ1 = arccos
L2

L1
(3.2)

where L1 is the length of a straight pipe section. Connectors are mounted
between the �exible bends and the sti� straight pipes. These connectors
are so sti� that the part of the �exible bend that was mounted inside the
connector was considered part of the straight section. However, this is only
relevant for setting the length of the straight sections in OLGA since only
the slope of the straight sections are of interest. The length L2 was then
measured as the horisontal length L2 in �g 3.3a. The length L3 was measured
as the �exible pipe between the connectors. All measurements on the pipes
were conducted from the radial middle of the pipe.

The radius of the bend is found from

r =
L3

π
2 − θ1

(3.3)

The depth of the bends, L4 is of interest when setting up the OLGA case in
order to have the correct elevation of the peaks relative to the valleys.

L4 = r − L3 tan
(π

2
− θ1

)
(3.4)
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Chapter 4

OLGA Case description

4.1 Overview

The scope of this project is to compare small scale experiments in an undulat-
ing pipe with simulations performed with the multiphase simulator OLGA.
The most important is to investigate OLGA's capability to calculate the
head pressure needed to �ush a pipe. Setting up the experimental rig with
downhill and uphill sections of slopes around 40 degrees is thought to put
the capabilities of OLGA to a test. This is due to that strati�cation of �ow is
most likely to occur at a downward slope of 45 degrees according to Zukoski
(1966) [11] (section concerning Criterion for transition to open channel �ow
in [2]). Having multiple uphill and downhill sections around this slope with
relatively short straight pipe sections it was assumed that this con�guration
would be a good test case for OLGA versus �ushing of pipelines.

The OLGA model has known and unknown simpli�cations versus the real
test rig. In this report the simpli�cations that are thought to have the
most in�uence on the results will be emphasized. Especially issues regarding
simpli�cations made due to limitations in OLGA that prevents the end user
to regenerate �ow phenomena, initial and boundary conditions and geometry.
Finally the documentation of the OLGA simulator was often conferred with.
Unfortunately, in many cases the documentation did not provide enough
information about the options to know what the intended function of the
option was. This means the user has to guess the e�ect of setting a number
of options.
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(a) Sharp bend

(b) Bend divided in sections

Figure 4.1: Sharp and sectioned bends

4.2 The con�guration

There are two types of con�gurations that have been used:

1. Sharp bends

2. Bends that are divided into sections

The two di�erent types of con�guration are illustrated in �gure 4.1.

In the OLGA documentation it is stated that if there are changes in incli-
nation in a pipe, it should be divided into at least two sections. There are
simulations both with sharp bends as in �gure 4.1a and of bends that are
divided into sections as in 4.1. In the con�guration with sectioned bends,
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there has to be at least one node per section. Since the bends in the �rst
place are short compared to the straight sections, the distance between the
nodes in the bends will be small. By experience it is recommended that the
ratio between adjacent sections should be equal to or less than a factor 2.
There are two ways to remedy this for the straight sections.

1. Have an equidistant grid throughout the pipe based on the distance
used in the bends

2. Increase the distance of sections from the bend towards the middle of
a straight section

To calculate the position of the sections in the bends, a Matlab script has
been developed. The length of sections and position is calculated by di�eren-
tiating the equation for the arc length s = rθ and integrating it numerically
to achieve discrete nodes (coordinates) with straight sections in between.
The Matlab script is in appendix B

4.3 Initial and boundary conditions

The test case in OLGA is as close to the laboratory rig as possible. How-
ever, numerical instabilities have been encountered. A pressure controlled
system is prone to instability. The experiments are pressure controlled by
the elevation of the water surface of the tank and the friction of the �uids
�owing through the pipe. The alternative in OLGA is to have a mass trans-
fer controlled system which is not consistent with the experiment. A mass
controlled system will force the mass �ow rate into the system regardless
of the pressure. This is not the case in the experiments where the friction
from the increasing water column and the e�ects from the undulating terrain
retard the �ow.

4.3.1 Feed pipe

One reasonable setup has been found. This is illustrated in �gure 4.2a. The
feed pipe from the tank has been omitted in �gure 4.2a but kept in 4.2b.
Omitting the feed pipe produces a smaller pressure drop because there is less
wall friction. In the full model the feed pipe is horizontal but the pressure
is set at the source "tank". Then the pressure at the source can quickly
be modi�ed between each simulation to replicate the change of elevation of
the tank in the lab experiments. An alternative con�guration is to vary
the height of the feed pipe. This is cumbersome in OLGA and has not been
performed except for some testing to see if this con�guration was more stable.
The head loss coe�cients for the sudden contraction between the feed pipe
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and the pipeline as well as the inlet head loss in the tank outlet has been
added in the simple con�guration. This has been included as "Loss" process
equipment. This loss coe�cient in the OLGA case was set to 0.605, the sum
of head loss due to sudden contraction and the inlet at the tank, see 2.3.1.

4.3.2 Inlet source

The source used is pressure driven, referred to as SOVA in OLGA. The source
has to be pressure driven in order to be consistent with the experiments as
explained above. A SOVA comprises a source as it is understood in the
literature and a valve. There are two valve equations for the SOVA, Liquid
valve sizing equation and Gas valve sizing. This has been set to Liquid valve
sizing which is appropriate for a pure water source. The valve discharge
coe�cient has been set to the default value, 0.86. In the full model a regular
valve is set at the point where the actual valve is in the experiments. Further
information about source and SOVA in OLGA can be found in the OLGA
documentation.

4.3.3 Initial pressure

In all experiments the initial pressure in the air �lled part of the pipe is hold
at 1bara (atmospheric pressure). The pressure at the outlet is hold to 1bara
throughout the simulation which is consistent with the vent at the top of the
last uphill pipe on the rig. In the full model the initial pressure in the water
column in the feed pipe was set to the corresponding hydrostatic pressure
in the rig. Another option that was tried out was to set the initial pressure
to 1bara in the feed pipe and let the mass build up in the feed pipe before
opening the valve, that is labeled MOV (Magnetic Operated Valve). Neither
of these cases were numerically stable and consequently no simulation results
have been produced with this set-up. The error message from OLGA was
either that the pressure was negative or out of the PVT table, up to several
hundred bara.

4.3.4 Pressure drop

Finally, the pressure from the tank in the experiments is not constant. Nei-
ther is the pressure drop through the feed pipe and the magnetic valve. First
the water surface in the tank drops during the experiment. This is in the
millimeter scale and can be approximated as constant pressure. Secondly
the pressure drop in the feed pipe is varying with velocity. In the feed pipe,
there is single phase �ow and the pressure drop can be calculated with single
phase �uid mechanics as described in [10] pages 369 - 370. The �ow will be
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(a) Simple model (b) Full model

Figure 4.2: Full and simpli�ed model

single phase in the section since the feed pipe is initially �lled with water and
it is connected with an uphill section preventing any bubble turning process
to take place at this location in the pipe see section 2.2.1. The pressure drop
through the magnetic valve is determined by the valve equation (see section
2.4). The pipe roughness for the pipes used was not retrievable. Both the
local vendor in Trondheim, Hatling AS, and the producer, Gevacril, were
unable to deliver this information upon request. The surface roughness was
set to 1E-5 meters.

4.4 PVT tables

PVT is an acronym for Pressure Velocity Temperature. The PVT tables used
in OLGA consist of �uid property de�nitions related to pressure, velocity and
temperature. They are based to a large extent on experimental data. The
reason why PVT tables are necessary when simulating a multi-phase �ow
is because single phase corrolations are not applicable in a multiphase �ow.
Relations between the �uid properties have to be measured experimentally
and then applied to simulations.

4.4.1 PVTsim

The PVT tables used in the simulations in this report have been generated
using a program called PVTsim developed by Calsep (http://www.pvtsim.com/).
This program is aimed at calculating �uid properties for �ows containing hy-
drocarbons and process �uids for petroleum industry and especially designed
to be used with OLGA. The experiments are carried out with air and water.
In OLGA 6 which has been used for the simulations there is only an option
to choose 3-phases (�uids). Then OLGA 6 requires a PVT table with 3 sets
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of �uid properties. The way this has been resolved is to use air as the base
component in PVTsim and add water. The result is that the gas and liquid
phase have the properties of air and the water phase has properties of water.
This generates warning messages about the liquid phase in OLGA. These
warnings can be disregarded since this phase is not added in the simulation.

4.4.2 Interpolation

The PVT tables consists of discrete tabulated values with a range and inter-
val de�ned by the end user of PVTsim. OLGA in turn interpolates between
these values to �nd an approximation that is consistent with the pressure,
velocity and temperature calculated. It is recommended in the OLGA docu-
mentation to generate PVT tables that have a range well outside of what is
anticipated for the calculations. This is due to the iterative process OLGA
uses to reach a solution in a single time step.

4.5 Numerical issues

As described above, the test rig is pressure dominated. This forces the
simulations in OLGA to be pressure controlled in order to simulate the same
case. In OLGA this is set up as a source at the inlet with a constant pressure
equivalent to the pressure of the water column from the tank to the inlet.
The 'node' in this end of the pipe (upstream from the source) is closed. At
the outlet the node is open and set to a constant pressure. Experimenting
with setting up the OLGA case it was found at an early stage that a pressure
controlled system was vulnerable to instabilities.

4.5.1 CFL condition

In OLGA the Courant-Friedrich-Levy (CFL) condition is automatically switched
on. This condition prevents the mass from being transported over the whole
section (control volume) in one step (see literature e.g. [9]). The CFL con-
dition is:

u ·∆t
∆x

≤ C (4.1)

u is the velocity, ∆t is the time step, ∆x is the length interval and C de-
pends on the particular equation to be solved. In OLGA, the CFL condition
limits the time step ∆t to satisfy the condition since the length interval (the
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sections) is user de�ned. The alternative is to have an adaptive grid depend-
ing on the velocity. That adjusts the length interval ∆x so the condition is
ful�lled. There are also other stability criteria that may be switched on in
OLGA (see OLGA documentation). The CFL condition should be the most
limiting of these and no improvements to stability were observed by using
other stability conditions available in OLGA.

4.5.2 Stability vs resolution

Stability decreases with the number of nodes (n = L
∆x) and increases with

the number of time steps (k = tend−tstart
∆t ) (note that ∆t is calculated with the

CFL condition, equation 4.1). In this context nodes are the calculation node
in the end of each section in OLGA. Since the number of nodes (sections)
is given by manual input in OLGA, the stability of the case is to an extent
governed by the input from the end user. Reducing the number of nodes gave
increased stability. Since the calculations in OLGA are compared to video
manipulation of the experiments, the number of nodes should correspond to
the output of the video post processing. That is, the resolution i.e. accuracy
of the OLGA output should be at least the same as the accuracy of the video
output. This is to facilitate comparison of the output from simulations and
experiments. Having large control volumes smears out the results which in
turn makes like for like comparison less accurate with the experiments. The
frame rate (the number of frames per second) in the video is 25 (one frame
per 0.04 seconds). Then the number of nodes in OLGA should be such that
there is at least one node in the OLGA calculation grid per position of the
water front in each frame of the video.

4.5.3 Stable model

The OLGA case has been set up as close to the rig in the laboratory as
possible. Modeling the feed pipe with a source ((�gure 4.2b)) with stable
calculations was not possible. The closest stable OLGA case was to set a
pressure controlled source at the inlet of the �rst pipe (�gure 4.2a. With this
set-up some assumptions about the pressure drop at the outlet of the tank
and through the feed pipe have been made, see the section 2.3.1.

27



4.6 Other issues

4.6.1 Slugs

In setting the SLUGVOID option AIR was used. The slugvoid determines
the void fraction in liquid slugs. According to the documentation this is
appropriate for simulating an air/water case. According to the OLGA doc-
umentation �ow history at a pipe location is to a small extent considered
in the �ow regime. That is, if slug �ow is predicted in an upward pipe
and strati�ed �ow is predicted in a downward pipe, the slugs will die at
the entrance of the latter pipe. In reality slugs may persist in the downward
pipe. For the experiments with a set-up that is to obtain strati�cation in the
downhill pipe, see section 4.1, this is relevant. The limitation of OLGA in
this matter should not be as important as it would in, say, a �atter con�gu-
ration with more slug �ow tendency in the downhill pipes. An experimental
con�guration with smaller angles is consequently recommended as a future
test case.

4.6.2 Valve

The magnetic valve has a �nite opening time greater than zero. That is, the
water will �ow through a partially opened valve from it starts to open until
it is fully open in the experiments. The time it takes for a valve to fully open
from fully closed is called 'stroke time'. There is an option to set the stroke
time in OLGA. But there is no option to state at what time in the simulation
the valve is starts to open. A time series may be used instead. In the time
series one may give input at what time the valve is closed and when it is open.
OLGA makes a linear interpolation of the opening time. However, it is not
known what has been interpolated. There might be at least to possibilities;
the surface area is proportional to the opening time or the valve position is
proportional to the opening time. Due to these uncertainties, stroke time
has been omitted.

4.7 Simpli�cations and limitations

A list of simpli�cations and limitations in the OLGA case is mentioned for
future reference.

1. Sharp or sectioned bends (not curved)

2. Connectors between pipe sections are omitted

3. Finite number of nodes (calculation points)
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4. Feed pipe is omitted

5. Constant pressure in the source

6. Stroke time = 0
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Chapter 5

Post processing

5.1 Matlab

Matlab (version R2007a) was used to analyze the transient progress of the
experiments. Matlab is a scienti�c computer language for computer pro-
gramming that is simple and quick to write programs in. A lot of functions
are prede�ned to facilitate quick programming. This has been exploited to a
large extent in the code for post processing of the experiments. However, the
structure of the video analysis and the most important coding are explained
for future reference. The Matlab codes are attached in the appendices.

5.2 Image analysis

5.2.1 Overview

Image analysis of the video from the experiments was performed. The output
of this analysis is compared to the output from the simulations in OLGA.
The information that is extracted is the position and time stamp of the
last liquid pixel. The median velocity, see equation 5.1 and appendix D
can be computed by the change of the position in time. The velocity of
the liquid is often high enough so that the liquid passes through the bend
between two frames. The position and velocity of the liquid is compared to
the corresponding parameters in the OLGA output. The script for the video
analysis is found in appendix C.
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5.2.2 Importing video �les to MatLab

In the version of Matlab used the video has to be imported in a special
avi format. The video was recorded in a high de�nition format, mpeg 2
transport stream (m2ts). To keep all information from the high de�nition
video, it was converted into uncompressed avi format in one step. When
processing the images in Matlab, the images are loaded one frame at a time
since uncompressed avi �les are very large. A �owchart for the video analysis
is illustrated in �gure 5.1.

5.2.3 Investigation of pixels

The current analysis consists of observing the change of pixels from one video
frame to another. A signi�cant change of color corresponding to liquid mo-
tion is de�ned as the change in color above a certain threshold. Since the
video almost always has small changes in color due to di�erences in lighting,
the changes under a given threshold need to be �ltered out. Setting up crite-
ria for change of pixel value requires that the frame is stored and compared
to the previous and / or next frame using a relatively complicated �lter.
This will take time in both developing the code and running it. Therefore
a color has been added to the �uid to generate a good contrast with the
background. Then one is able to �lter out the motion by using a color �lter,
see �gure 5.1b.

5.2.4 Color �lter

The color format of the transformed video was UINT8. In the transformed
images on matrix form, each matrix comprising an image consists of n x m
x k numbers. n and m are the vertical and horizontal position of the pixel
respectively (starting with 1,1 at the top left corner). k denotes the last
dimension in the 3-dimensional matrix. The length of k is 3. k consists
of three components corresponding to the intensity of red, green and blue
(RGB) respectively. The intensity of each color is an integer ranging from
0, the darkest to 255, the lightest.

In developing the color �lter for detecting liquid motion, two di�erent �lter-
ing methods were tried. The �rst method was to set the intensity of green
to a minimum allowing all pixels with a value of green over some threshold
to be registered. Then setting the maximum value of red and blue so that
dark gray scale pixels are �ltered out was tried. This also caused dark green
pixels to be lost. Then the pixel values in the green �uid were investigated.
Most of the green water pixels had a green intensity over 75 and the blue
and red pixels in the unwanted gray scale areas i.e. empty pipe had almost
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(a) Flowchart (b) Color �lter

Figure 5.1: Matlab �owcharts for video analysis
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(a) Empty tube (b) Pipe with water

(c) Thin �lm of water (d) Filtered image

Figure 5.2: Investigation of the pixels in �lled and empty sections

the same value as green, e.g. 142,146,147, see �gure 5.2a as opposed to a
�lled pipe with values e.g. 173,223,125, see �gure 5.2b.

The second method tested involved keeping a minimum value of green (to
avoid black pixels) and a ratio between red and green and blue and green to
avoid gray pixels was tested. This �lter proved to be a lot more e�ective than
the �rst one. From investigation of some pixel values it was found that in
the pipe containing �uid, green was of strongest intensity and the other two
colors were weaker. Tuning of the �lter was accomplished by inspecting the
images produced with the �lter and manually adjusting values for each of the
ratios. Therefore this method is subjective. An example of a �ltered image
using this method is in �gure 5.2c. A good example of subjective �ltering
occur when the head pressure is low and a thin �lm of strati�ed water �ows
in the downward sections before the cross section is �lled to a larger extent.
The tube looks slightly green, but should this thin �lm of water be considered
as a water front? Catching this thin �lm of water with the �lter also increases
the chances of picking up unwanted gray scale pixels. An illustrative image
of the output of the �lter is in �gure 5.2d. A black cross-hair marks the last
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pixel that was considered green by the �lter. This was the last pixel stored
and it was the furthest downstream. Using this �lter, the thin strati�ed �lm
in the downhill section is not considered as green (water). Setting a high
sensitivity (catching thin water �lms) also considers green shadows outside
the pipe to be water. The �lter used in �gure 5.2d is conservative in the
sense that the �lter only catches what really is water. On the other hand
one can observe a white inclusion in the water column close to the front in
�gure 5.2d. Investigating the un�ltered image e.g. 5.2b one can see that
liquid is actually present in this section. In this example it is not critical
to catch the water front since it is further downstream. However, if on a
later occasion one would like to use the technique described in this report to
perform video analysis in the entire pipe, e.g. for tracking slugs, one has to
be very careful in tuning the �lter with regards to when water is present. In
the �nal version of the image processing script, the background is subtracted
from each frame. This allows setting very low tolerances between green and
red / blue intensity. The fraction that was set between the intensities caused
the processing script to catch the thin sheet of liquid in downhill pipes to be
considered as liquid.

5.2.5 Search algorithms

To optimize the script with respect to �nding the water front search algo-
rithms have been brie�y investigated. The crudest way to �nd the waterfront
is to step through the whole image, pixel by pixel from left to right (down-
stream since the water �ows from left to right) and updating a parameter
containing the position of the current pixel that is considered to be water.
In the end, this waterfront parameter will contain the position of the last
updated pixel within the criteria of the �lter and thus be considered as the
waterfront. This is a simple but not very reliable method. Directly behind
the rig a black sheet has been mounted to create a good contrast towards
the liquid. The struts have also been masked with black tape to avoid this
being captured by the �lter. Initially, a rectangular area is declared in the
program containing the pipe. To optimize the code both with regards to
speed and accuracy a search algorithm could be implemented. This has
not been done since optimization of the computer code is not a part of this
project. However, some suggestions on how this could be done are presented.
A strategy for estimating the position of the waterfront in the next frame
based on the velocity of the current waterfront and the time step between
the frames could be implemented. Using this, one should keep in mind the
con�guration of the rig, with straight sections and bends. Another approach
could be to start the search at the previous water front and perform a search
stepping away from the start point in all directions (a circle) until a criteria
is met. The quickest algorithm that has been investigated is to implement
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binary search. Binary search is suitable for structured arrays e.g. containing
numbers with increasing values. But the pixels of the image are not struc-
tured. Then one has to implement a method in the script to �nd the exact
location of the pipe within the matrix and only search in this area. The
pipe containing water will be identi�ed by the color �lter. Then the binary
search algorithm may be adjusted to search for the last pixel that has a color
spectrum within the criteria of the color �lter. What has been implemented
in the video analysis script is an option to choose the size of a box in which
the water front is searched for. This box is shifted 50% of its length to the
right. The program will leave a warning if the water is found on the edge of
the box indicating that the box is too small to �nd the front of the water.
It is shifted to the right (downstream if the velocity is positive) to minimize
the search area since the largest velocities occur when the water is propagat-
ing in positive x-direction. After an experiment, some liquid droplets would
remain in the pipe. This was especially a problem at di�erent �ttings. To
avoid the program to deem these droplets as the water front, an algorithm
was implemented to ignore droplets. A droplet is de�ned in the program if
the number of neighboring liquid pixels is smaller than a value chosen by the
end user.

5.2.6 Output

The scope of this project is to �nd to what extent OLGA is able to repro-
duce experimental results. The most important data to extract from video
analysis was the position of the waterfront when it propagates through the
pipe. Having that, and the corresponding time stamp, median velocity for
the waterfront can be found. From the contractors point of view (Professor
Ole Jørgen Nydal), the video analysis was successful if the position of the
water front was found. In addition, the color �lter could be used to analyze
the motion behind the waterfront. Then hold-up and velocities of air bubbles
and slugs could be found. However, this requires correlations between the
intensity of the �uid color and water fraction. Droplets will stick to the pipe
wall, the interface of the water phase might not be straight and di�usion of
light makes the air appear green. These phenomena make analyzing cross
sections containing both air and water very di�cult. Also, in �nding the
water fraction based on the color, will need a very high resolution. With
the distance from the camera to the rig and the resolution of the video, the
pipe diameter is in the range of 20 pixels. This resolution is insu�cient for
calculating water fraction.
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5.2.7 Future improvements

There are two key issues that need to be resolved in order to perform video
analysis behind the waterfront:

1. Finding the water fraction behind the water front

2. Resolution

To determine the water fraction correlations for �nding the water fraction
based on the color of a pixel, one can measure the water fraction while
�lming at some location. Then either make a table of water fraction versus
pixel value to look up the pixel values in the experiments or try to make a
correlation based on pixel values versus water fraction to be used explicitly.
To resolve the issue of resolution one can either simply move the camera
closer to the rig but having to use several cameras to �lm the whole rig.
This may result in considerable editing of the video from each camera. The
other way of resolving this is to use a camera with higher de�nition resulting
in larger �les for post processing. One may also use pipes with large diameter,
but the the rig will be longer.

5.3 Post processing of output from video analysis

The output from the video analysis script consists of and x and y coordinate
in the image matrix allocated with a time stamp. The coordinates need to be
scaled to physical coordinates (dimension [m]) to be compared with OLGA
output. This is done in the post processing script for the image analysis
in appendix D. Scaling of the pixels is done by measuring the distance
between two points on the rig. Then the pixel values of the points is found
and the ratio between pixels and meters on the rig is found. To a small
extent, the camera optics project the picture in a non-linear fashion and
could result in an error in the scaling method mentioned. However, this
error is assumed to be small. Another issue about the script is that some
remaining liquid may be in the pipe. If at some time this moves, the pixel
value in the area will di�er from the background image. The image analysis
script will catch this movement if it occurs in front of the waterfront. This is
an error due to di�culties in completely emptying the pipe from liquid after
an experiment and it should be disregarded. In the post processing script
there is an option to either linearly extrapolate the previous velocity or to set
the velocity to zero when this happens. Extrapolation may be elaborated to
take into account a set of earlier points. It cannot use later points, as these
are prone to be erroneous at the current location. I.e. if the remaing liquid
has been displaced in a time interval, it is likely that subsequent points will
be erroneous.
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The velocity calculation comes from the following equation.

u = sign (∆x)
∆S
∆t

(5.1)

where ∆S was set as the displacement since the previous position, using
Pythagoras' rule on the di�erence of x- and y-coordinate. The sign (positive
or negative velocity) is found from the displacement in x-coordinate. Positive
means that the water is �owing to the right further towards the outlet, and
negative that it �ows to the left. ∆t is the time step between the previous
and current position, set to 0.04 seconds, the frame rate of the camera. This
velocity is actually the velocity in the middle of the previous and current
position. For plotting purposes these velocities is allocated to the current
position. The error of doing this is considered small since ∆t is small, i.e.
high resolution in time.

5.4 Post processing of OLGA simulations

In order to be able to compare the OLGA results to the the results from the
video analysis post processing, the OLGA output need to be processed as
well. The Matlab script for the post processing of the OLGA results is found
in appendix E. The results using the trend plot are exported with the mode
"on time". The needed output is a parameter to deem if liquid is present
i.e. holdup, a time stamp, the x- and y-coordinate. The y-coordinate comes
from "geometry". The "geometry" has a di�erent allocation towards the
pipe length than the holdup. The geometry is allocated to a position that is
in the middle of two pipe length positions. This is thought to be a result of
that OLGA uses a staggered grid for calculation of velocity. To remedy this,
the same type of velocity calculation for the OLGA output is used as for
the video analysis, see equation 5.1. Then the velocity is exact with regards
of space for the OLGA post processing. The criteria for liquid present in a
control volume is set by a minimum holdup. To remedy numerical di�usion
e�ects and getting unphysical results, this was was set to a rather strict
criteria, holdup >= 1.

The length coordinate in OLGA is not the horizontal length. It is the length
along the pipe. Since the angles of the pipe sections in OLGA are very close,
a factor between the length along the pipe and the actual length of the rig
has been used to scale the "length" in the OLGA output. If the pipe sections
have a varying slope, a separate factor has to be found for each pipe section.

Depending on the parameters chosen, the output from OLGA shifts its struc-
ture. This has forced a lot of changes to the OLGA output script. Currently
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some of the names for the parameters in this script are misleading. The rea-
son for that di�erent parameters has been extracted is that it was thought
that velocity variables could be used directly to compare with the exper-
imental velocity. Some comparisons were made, but the OLGA velocities,
water sheet velocity, volumetric �ow liquid and volumetric �ow water turned
out to be unusable in this context. For reasons that are not known, they
seemed to be unrealistic and misleading in comparison of the propagation
rate of the water.

5.5 Comparison of the results

Finally the processed output from the video analysis and OLGA was plotted
using the script that is found in appendix F. Since the time step in the
simulations and the experiments (equal to the framerate of the camera) the
outcome of the two post processing scripts could be plotted. It was chosen to
plot both velocity and position in the same plot as to facilitate investigation
of correlations between the position and velocity. If the time step would have
been di�erent in the data sets, some interpolation must have been carried
out. Either interpolating the data with the smaller time step to the data
with large time steps or the other way around to keep the resolution of the
data set with the small time steps.
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Chapter 6

Results

6.1 A few notes about the plots

The author has considered how velocity should be plotted vs position for
data that has been processed with post processing scripts that have been
made. The issue is that the velocity does not go to a constant value when
the liquid reaches the end of the pipe. If that had been done, the correlation
between position and velocity might have been clearer. The velocity, however
is calculated as the change in position vs time. Consequently the velocity
goes to zero when there is no change in position (i.e. the liquid has reached
the end of the pipe). Then there will be one extra row with change in
velocity compared to change in position. Thus, the velocity graph will have
one increment extra before going to zero (in the cases the liquid reaches the
end of the pipe). Also, one should have in mind that the velocity is calculated
from the current position and the previous for a time step.

In some plots from OLGA the labels on the y-axis is not included. This has
been included in the caption. Note that "geometry" is the vertical height
and "pipe length" is the position following the pipe. The position in all other
plots refer to the horizontal position.

6.2 Comparison of OLGA and experimental results

The end state for the experiments (where applicable) is listed in table 6.1.
Note that the maximum height of the water column in the simulations is
determined by the discretization of the pipe. Since the con�guration used in
these simulations was with sharp bends, the maximum height of the water
column is the elevation of the highest node in the pipe section. The water
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Exp/Sim h [m] P1 [m] P2 [m] P3 [m] P4 [m] P5 [m]

Exp 0.45 0.448 0 0 0 0

Sim1 0.45 0.490 0 0 0 0

Sim2 0.45 0.490 0.142 0.142 0 0

Exp 0.675 0.680 0.267 0.237 0 0

Sim 0.675 0.490 0.514 0.514 0 0

Exp 0.705 0.690 0.690 0.681 0.286 0.330

Sim 0.705 0.638 0.638 0.514 0.638 0.518

Table 6.1: Column height at end state

column was determined as the elevation of the node with a holdup ≈ 1. The
holdup in P4 Sim2 was 0.73.

All simulations have been run with the PVT �le AirWater3.tab except Sim1
and Sim2. The PVT �les are not included in the appendix since they are
very long. The PVT �les are retrievable from the disk enclosed with one of
the copies of this thesis. The simulation in �gure 6.1 (Sim1) was ran with
the PVT �le AirWater2 and for the simulation in �gure 6.2 with the PVT �le
AirWater4. The di�erence between the PVT �le AirWater3 and the others
is that AirWater3 has a much shorter range in pressure. The main di�erence
between AirWater2 and AirWater4 is that the amount of water added in
PVTsim is less in AirWater4 than in AirWater2. Figure 6.3 and 6.4 are two
cases where the water passed the �rst peak but did not �ush the pipe. In
�gure 6.5 the pipe was �ushed in the experiment but not in the simulation.
Figure 6.6 displays a parametric study in OLGA of the pressure just below
and just above what is needed for OLGA to �ush the pipe.
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Figure 6.1: Experimental and simulation data for water surface 0.450 m,
PVT AirWater2
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Figure 6.2: Experimental and simulation data for water surface 0.450 m,
PVT AirWater4
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Figure 6.3: Experimental and simulation data for water surface 0.675 m

Figure 6.4: Experimental and simulation data for water surface 0.750 m
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Figure 6.5: Experimental and simulation data for water surface 0.825 m

Figure 6.6: Parametric study of the inlet pressure vs �ushing. Y-axes: dark;
vertical height, red; holdup, blue; total volumetric �ow
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Figure 6.7: Comparison of sharp and discretized bends

6.3 Discretized bends vs sharp bends

Figure 6.7 displays the position and velocity for the �rst liquid particle versus
time. Both simulations had the same number of sections (118). The source
pressure was set to 1.1 bara to avoid numerical instabilities.
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Figure 6.8: Comparison of coarse and �ne grid

6.4 Coarse vs �ne grid

Figure 6.8 displays the di�erent results between a �ne grid (118 sections)
and a coarse grid (25 sections). The pressure in the source was set to 1.1
bara and sharp bends were used.
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Figure 6.9: Parametric study Cd, 0.04 seconds. Y-axes; dark; height, pink;
holdup

6.5 Parametric study of Cd

Figure 6.9 and 6.10 displays the holdup with varying discharge coe�cient,
Cd in a pipe with sharp bends and an inlet pressure corresponding to an
elevation of the tank at 0.75 meters. Figure 6.9 displays the holdup after
0.44 seconds and �gure 6.10 after 20 seconds. The black line displays the
pipe. The corresponding y-axis shows the elevation. The x-axis displays the
distance along the pipeline, not the horizontal. The various colored lines in
the plot denotes the di�erent Cd coe�cients. The �le extension "`1.ppl"' is
Cd = 0.2, "`2.ppl"' is Cd = 0.4, "`3.ppl"' is Cd = 0.6, "`4.ppl"' is Cd = 0.8
and "`5.ppl"' is Cd = 0.9.

6.6 Study of velocity pro�le in OLGA

Figure 6.11 and 6.12 displays the velocity, holdup and volumetric �ux pro�le
for a time step in OLGA. The inlet pressure was set to 1.0724677 bara
corresponding to an elevation of the tank to 0.75 meters. The con�guration
used was with sharp bends and 25 sections.
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Figure 6.10: Parametric study Cd, 20 seconds. Y-axes; dark; height, pink;
holdup

Figure 6.11: Pro�le after 0.04 seconds
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Figure 6.12: Pro�le after 10 seconds
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Chapter 7

Discussion

7.1 Comparison of OLGA and experimental results

7.1.1 End state

For the experiments and simulations where the water did not displace the air,
the water came to rest. The water column in the experiments and simulations
is given in table 6.1. Due to discretization of the pipe in the simulations, the
node with the highest elevation containing water (holdup ≈ 1) was deemed
as the column height. For the experiments, the water column was measured
on the rig after the water had come to rest.

When PVT tables are generated in PVTsim, water speci�cation must be
given. In the water speci�cation there is an option to choose the amount
of either % water cut, mol spec water/mol feed, mol% of feed+spec water
or weight% of feed+spec water. mol spec water/mol feed was chosen and
the amount of water was set to a very low number, eg 0.0001. When PVT
tables with a number of water added that was not very low, water appeared
far downstream long before the water comming from the source had reach
that position. It is thought that this unrealistic accumulation of water is
a result of setting a number which is too high for the amount of water in
the PVT tables. This accumulation of water might have been due to that
OLGA calculates the water in the air to condensate. However the quantity
of liquid accumulated from condensation is unrealisticly high.

For the experiment with a tank level of 0.45 meters the momentum of the
liquid column almost made the liquid pass the �rst peak. The elevation of
the peaks on the rig is approximately 0.68 m above the inlet. It was expected
that the liquid would come to rest at approximately the same elevation as the
water surface in the tank when no liquid passed the �rst peak. The experi-

53



ment con�rmed this with an elevation of the liquid column to 0.448 meters.
The OLGA simulations displayed some curious results for this experiment.
For Sim1 the liquid that passed the �rst peak �gure 6.1 disappeared just
before 6 seconds. Then the liquid column in pipe 1 was 0.49 m at end state.
A liquid column that is higher than the elevation of the tank should not be
at rest. The water column is not at equilibrium since the water column is
higher on one side and the liquid should �ow towards the low pressure side.
Another simulation with a di�erent PVT table was carried out due to the
mysterious disappearing �uid. In this simulation the water barely passed
the �rst peak and the very bottom of the subsequent pipes were �lled with
water. For this simulation the �rst pipe had a holdup very close to 1 at
0.49 meters elevation. A water column of 0.49 meters elevation indicates
that the calculated pressure is higher than 0.45 meters. However, it is not
possible to set the source at the inlet in OLGA. The absolute position of
the source in the con�guration used is 0.0963 meters. This corresponds to a
vertical elevation of 0.07 meters. Then the calculated end pressure in OLGA
corresponds to a water column of 0.42 meters. It is not known what this
discrepancy comes from.

In all simulations with an end state with �uid at rest, OLGA predicted higher
water columns downstream than what was observed in the experiments. This
was consistent with the transient progress that is discussed below. However,
it is not very di�erent from the experiments. For the 0.45 m and 0.675 m
cases where the water barely passes the next peak in the experiments, only a
very small amount of water propagated to the next valley in the simulations.
This shows surprisingly good correspondence between the end state of the
experiments and the simulations, even for a coarse grid in OLGA. There
might be three reasons for the slight discrepancy for the end state. First the
end state of simulation with 0.45 m elevation of the tank displayed a water
column in the �rst pipe of 0.49. Thus the pressure in the simulations must
have been higher than in the experiments. Secondly, the total length of the
pipe is less in the simulations, since the bends have not been included in the
con�guration. Then there is a smaller pressure loss due to friction in the
OLGA case. Thirdly, there is no model for surface tension between the wall
and the �uid in OLGA. In a small diameter pipe, as is the case, this e�ect is
considerable and could be the main reason for the discrepancy with regards
to end state between the simulations and the experiments.

7.1.2 Transient progress

Generally, the liquid propagated a lot quicker through the pipe in the sim-
ulations than in the experiments. That is seen by that the graphs for the
position vs time comes to rest sooner for the simulations and has a faster
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propagation through the pipe. Also, the velocity pro�le lies to the left and
is generally higher than for the experiments. Curiously, the end state in the
simulations and experiments was surprisingly close given such a large di�er-
ence in velocity and propagation rate. Higher velocity of a liquid column also
means higher momentum. Then a higher frictional work has to take place to
brake up the �ow till rest. A reason for the end state to be so close between
simulations with higher velocity and propagation rate versus the experiments
has been identi�ed. Slugs die at the top of an upwards pipe section followed
by a downward pipe section if strati�ed �ow is calculated in the downward
section, see section 4.6.1. Then terrain slugging will not be calculated in
OLGA. As was described in 2.2.4, terrain slugging was very important in
the experiments. Certainly, terrain slugging in the uphill pipes was a key
factor for the liquid to propagate as far as it did for the experiments, except
of course the experiment with elevation 0.45 meters where the liquid did not
pass the �rst peak. Also, the experiment with elevation 0.45 meters showed
that momentum was very important for the experiments. The liquid column
accelerated rapidly in the �rst part of the �rst uphill pipe. This can be seen
in the plots of the various experiments and simulations as a very steep slope
of the position. The velocity pro�le should also have a steep slope. This is
di�cult to observe in the plots for two reasons. For the experiments, the
lighting at the inlet was poorer than the rest of the pipe. The result was
that the video analysis script did not catch the liquid front before it had
propagated a small distance. The result is that the position pro�le for the
experiments is almost straight up from time = 0 to time = 0 +dt. dt is 0.04
seconds in the simulations and experiments since this is the frame rate of the
video camera. For the experiments the coarse grid had a very similar e�ect.
With the coarse grid, the �rst node is at a distance of 0.1926 meters from the
inlet. Due to the �ow rate, the holdup was larger than 0.1 (the criteria set
for water is present) after 0.04 seconds. Dividing the distance over time the
velocity is 4.815 m/s, see �gure 6.1. After the initial high peak, the velocity
drops to zero since the holdup in the next node is lower than 0.1 and thus
water is not deemed to be present. These more or less discrete peaks follow
the stepping in the propagation rate in space. For simulations with higher
propagation rates, the holdup increases to 0.1 in several control volumes at
a time step. Then the velocity will be the number of control volumes (CV)
with holdup larger than 0.1 times the length of the CV divided by 0.04 sec-
onds. When the water is deemed as present in the control volume furthest
down stream with a holdup larger than 0.1, at many time steps it takes some
time before any subsequent CV's are �lled up with a holdup larger than 0.1.
That is the reason for the distinguished steps in the propagation pro�le and
peaks followed by zero velocity in the velocity pro�le for the simulations.

After the initial very high calculation of velocity and displacement for the
experiments, both curves �atten out considerably except for some distin-
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guished points. When the water propagates through the pipe, there are two
reasons for this. First the image analysis script has a color �lter in order
to �nd the liquid, see section 5.2.4. If there is a mixture of water and air
in the pipe, and there is too much air, the �lter will deem the color as a
shade of gray and ignores the pixel. Also if the number of neighboring pix-
els that is deemed as water is too low, the liquid in the region is deemed
as a remaining droplet (from a previous experiment) and ignored. A good
example of a bubble that propagates through a slug and causes the water to
�ow back and leave some ignored water droplets that are ignored is seen in
�gure 6.5 at around 3 meters. The propagation pro�le for the experiment
will also tend to �atten out at valleys and peaks. At peaks because a very
thin sheet of liquid �owing downhill, the front of the water is at some times
caught and some times deemed as remaining droplets and ignored. A good
example is the experiment in �gure 6.4. In the propagation pro�le there is a
distinguished step at about 1.5 meters when the liquid passes a peak accel-
erates in the downhill pipe and retards in the next valley. After the liquid
had reached its maximum displacement downstream, back �ow would occur
if the liquid did not reach the end of the pipe. When back �ow occurred,
droplets of water would somewhat stick to the pipe wall if the velocity was
high as for the experiment with a water surface of 0.45 meters, �gure 6.1
and 6.2. At time = 1.5s back �ow starts. At around time = 3s there some
droplets that are large enough not to be deemed as remaining droplets from
a previous experiment. These droplets are large enough not to remain on
the wall and �ow back. Then the next large droplet is found and so on until
the water column propagates up again due to the pressure gradient between
the water surface in the tank and the height of the water column.

In the simulations the water column oscillated longer than the experiments
after reaching the furthest point downstream. It is thought that the reason
for the water column in the simulations to oscillate a relatively long time
is due to that there is no model for surface tension between the �uid and
the pipe wall in OLGA. The pipe has an inner diameter of 0.016 meters and
then the surface tension e�ect is of importance, see section 2.2.3.

For the transient progress of the experiments versus simulations the cor-
respondence is quite good even for a coarse grid for the case with a water
surface of 0.45 meters and the correspondence with regards to time decreases
with higher water surface and velocity. This being said, it is important to
ignore holdup with very low values downstream. This is thought to be a
result of PVT tables and numerical di�usion. Taking the slope of the curve
for the experiment with water surface 0.825, the factor between OLGA and
the simulations is the inverse of the fraction of the time when the liquid
reaches the pipe outlet, time factor = ∆texp

∆tOLGA
= 5.64

2.24 ≈ 2.5. This factor,
when the water has reached the furthest point downstream, gets smaller for
the experiments with lower velocities and water that propagates a shorter
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distance, i.e. better correspondence for low inlet pressure and velocity. It
is thought that the main reason for this is that OLGA does not account for
surface tension between the �uid and the wall and possibly that the valve
coe�cient is wrong.

Even though OLGA predicts faster propagation of liquid in the pipe and
consequently higher velocity and momentum, OLGA did not predict that
the pipe was �ushed in the simulation with a pressure corresponding to a
water surface of 0.825 meters, see �gure 6.5. In the experiment, this elevation
of the water surface was su�cient to �ush the pipe. The liquid did, as is
illustrated reach the end of the pipe.

7.1.3 Flushing

In order to �nd the height di�erence between the water surface in the tank
and the inlet to �ush the pipe, the elevation of the tank was shifted a consid-
erable number of times around the elevation, 0.825 meters. This was found
as the lowest elevation of which it was possible to repeatedly �ush the pipe.
Surprisingly, OLGA did not predict �ushing with the corresponding pressure
although OLGA has in the cases without �ushing in the experiments, pre-
dicted more �lling of the pipe and higher propagation rates. A parametric
study of the inlet pressure was carried out in order to �nd at what inlet pres-
sure OLGA would predict �ushing of the pipe. A plot of the case that barely
�ushed and barely did not �ush the pipe is found in �gure 6.6. The inlet
pressure of the case that �ushed the pipe was 1.086875 bara and the inlet
pressure for the case that did not �ush the pipe was 1.086750 bara. The case
that did �ush the pipe has the �le extension 1.ppl and the one that did not
2.ppl. The corresponding water surface for the two cases are 0.9807 meters
and 0.9792 meters respectfully. Consequently, OLGA predicts �ushing for
a water surface of 0.9792 + a maximum of 1.5 mm. For the case that did
not �ush, the volumetric �ow, Q, is not zero. The velocity however is too
slow to push the bubble down the pipe. The average of the volumetric liquid
total �ow, Q, was found for the last 5 seconds to 2.61766E-05 m3/s. This
corresponds to a velocity of approximately 0.13 m/s. The critical celerity for
the pipe in question was found to be 0.2 m/s, see 2.2.3. After 40 seconds the
pipe �ow has reached a quasi steady state and the median of the velocity
is well below the critical celerity preventing the air intrusion to propagate
out of the pipe. The quasi steady state is due to that the volumetric �ow
�uctuates. The highest value of Q the last 5 seconds is about 5.5E-10 m3/s.
This corresponds to a velocity of 0.27 m/s and is above the critical celerity
and causes the bubble to be dragged downwards, co current with the �ow.
The pressure loss due to the "strati�cation" under the bubble is obviously
enough to retard the �ow and prevent the bubble from propagating out. The
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volumetric �ow of the �lled pipe is approximately 1.52E-4m3/s. When com-
paring the volumetric �ow with the �gure 2.4, it is seen that the volumetric
�ow (�ux) corresponding to a head of 0.98 meters is about 0.3E-4. That is
about a factor 2 in discrepancy with the OLGA �ow rate prediction. This
discrepancy is thought to come mostly from the head loss factors added for
the plot of the marginal cases, that are not accounted for in OLGA, see sec-
tion 2.3. Also, the valve coe�cient was set to a constant. An improvement
of the marginal cases script should be made to take calculate the valve sizing
coe�cient as described in section 2.4.

The factor in the head needed to �ush the pipe in the experiments and
OLGA is

hexp
hOLGA

= 0.825
0.9807 ≈ 0.84. This is a surprisingly good result given the

uncertainty regarding the head loss in the valve and the pressure drop in the
pipe with multi-phase �ow. Since OLGA does not take into account surface
tension, that is deemed as the largest contributor to the pressure drop for
this case with a small diameter that is not possible to include in the OLGA
model, it was expected that OLGA would predict a lower head needed to
�ush the pipe than in the experiments. The result from this analysis is
that OLGA over predicted the head needed. Two reasons for this result is
suspected. First that OLGA under predicts the gas lift e�ect that occurs
due to terrain slugging. Second that the pressure drop in the valve is lower
in the experiments than in the simulations. The latter suspicion is a bit
di�cult to assess since it was not possible to �nd the discharge coe�cient
for the valve, that OLGA requires, see section 2.4 and that the pressure drop
due to surface tension is unknown.

7.2 Discretized bends vs sharp bends

In �gure 6.7 it is seen that the liquid propagates faster in the pipe with
discretized bends than the pipe with sharp bends. This is seen from that the
position of the �rst liquid particle in the pipe with discretized bends lies to
the left indicating a quicker propagation. The velocity pro�le con�rms this
as the velocity pro�le for the pipe with discretized bends lies to the left and is
slightly higher than the pipe with sharp bends. When the liquid reaches the
end of the pipe, the calculated velocity pro�le drops to zero. This is due to
that the velocity is calculated from the the change of x- and y-coordinate of
the last position of the liquid with time. When the liquid has reached the end
of the pipe, the change in position is zero and thus the velocity is calculated
as zero. Using volumetric �ux or velocity parameters from OLGA produced
unrealistic results and was disregarded. The di�erence in the results from
using discretized bends or sharp bends is very small for this simulation. It
is thought that it would be corresponding results for a simulations with
lower pressure. Since OLGA produces instabilities with lower pressure for
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both a con�guration with discretized bends and sharp bends this has not
been possible to investigate. However, the comparison presented �gure 6.7
strongly indicates that discretization of the bends is unnecessary, especially
when other sources of discrepancy with experimental data are as large as
described in section 7.1.

7.3 Coarse vs �ne grid

To investigate the in�uence of using a coarse vs a �ne grid the simulations
plotted in �gure 6.8 was carried out. Due to the e�ect of smearing out of
results and numerical di�usion (see section 4.5.2) it was thought that the
results from the coarse grid would have a lower resolution. That assumption
was correct. Investigating the position and velocity pro�le of the �ne and
coarse grid in �gure 6.8 one should notice the distinguished steps in position
in the coarse grid vs the �n grid. The result on the velocity pro�le for the
coarse grid is that it jumps from zero to a high value for every step. In the
�ne grid this is less prominent. A re�ning of the grid eliminates stepping of
the front propagation and oscillations of the velocity. However, due to the
con�guration and �ow phenomena described in 7.1 there are at times sudden
changes of velocity and holdup. Thus, smooth graphs is not unconditionally
a correct result.

Using than approximately 25 sections lead to instability and failure to sim-
ulate the case in OLGA. The object of this project was to investigate to
what degree OLGA is capable of predicting whether or not the pipe would
be �ushed. In this scope the essential outcome of the simulations are the
end state, to what degree OLGA predicts the same end state as in the ex-
periments. Investigating the propagation of the water in �gure 6.8 there is
relatively little discrepancy between using a �ne or a coarse grid. The dis-
crepancy for using a �ner grid lies on the conservative side. When �ushing
a real pipeline, it is important to know that the pipeline will actually be
�ushed. It is deemed conservative that lower velocity and slower �lling of
the pipe is predicted as this indicates that a higher pressure is needed to
�ush the pipeline.

7.4 Parametric study of Cd

As mentioned in section 2.4 the valve coe�cient, Cd is used in OLGA to
calculate the pressure drop over the valve. There has not been found any
method for converting Cd to Cv for an arbitrary �ow rate. To get some
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understanding of the in�uence and sensitivity of the OLGA results due to
Cd a parametric study has been performed.

The parametric study is displayed in �gure 6.9 and 6.10. In �gure 6.9 the
�uid is propagating with relatively high velocity. It is evident that the case
with the highest Cd, Cd = 0.9 propagates quickest, however not much quicker
than Cd = 0.8 and correspondingly the case with the lowest Cd propagates
slowest. Cd = 0 is omitted as this is will cause in�nite pressure drop over
the valve resulting in zero �ow see section 2.4 for theory. Cd = 1 was also
omitted since this case caused numerical instability. In �gure 6.10 it is seen
that Cd >= 0.4 has approximately the same end state when investigating
the holdup pro�le. It is tempting to choose a Cd for the simulations that
reproduces an end state that matches the experiments and probably matches
the experiments better. However, it has been argued in section 7.1 that most
of the discrepancy between the simulations and the experiments is due to
that OLGA does not take into account surface tension. It is the authors
opinion that the simulations should be ran with the assumed input from an
operator, not to tune the simulation output to experimental results. Thus it
has been chosen to run the simulations with the default Cd = 0.86.

7.5 Study of velocity pro�le in OLGA

In order to compare velocity from the experiments and the simulations it
was thought that the velocity to the corresponding control volume that was
deemed as liquid by setting a low number for the holdup, see section 5.4
would be reasonable to compare with the experimental velocity calculations,
see equation 5.1. However the OLGA results were very strange and thus a
study of the velocity pro�le was carried out. It was found that the velocity
pro�le in OLGA was unrealistic. The holdup, geometry, velocity and volu-
metric �ux for the water is presented in �gure 6.11 after 0.04 seconds. In
this �gure, there is a velocity component for the water although there is no
water present downstream. An extremely small number (E-16 for holdup
or E-20 for total liquid �ux) indicates equal to zero. Using computers, the
value exact 0 is never found as there is some deviation on a very low scale.
Thus an extremely small number compared with other results should not
uncritically be deemed as "`not zero"'. The results in �gure 6.11 are not
problematic since �nding the last liquid node may (and has been) corre-
lated with other parameters, such as holdup. Then one may state that when
holdup is smaller than a reasonable number, liquid is deemed as zero. Even
doing this, problems arise when results as in �gure 6.12 arises. Here OLGA
produces a large velocity for the liquid when the volumetric �ux is extremely
small. Also holdup in these sections is not extremely small. When velocity
from the experiments was compared to the velocity calculated by OLGA
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corresponding to the last liquid node (holdup > 0.1), the OLGA velocities
would be very strange �uctuating extensively between large negative and
positive numbers in time. Correlating holdup to volumetric �ux, Q, also
produced unreasonable results. It was deemed as of no value for comparison
with the experimental output. Instead, the velocity for the OLGA output
was calculated as the velocity from the experiments calculating the change
in position vs time.
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Chapter 8

Conclusions

A small scale experimental set-up with two peaks and two valleys has been
prepared in the laboratory to carry out experiments on �ushing of pipelines.
It was possible to �ush the pipeline in the experimental set-up and the ex-
periments were repeatable. By keeping the same elevation and level of water
in the tank, experiments with the same outcome were produced. The rig had
three important modi�cations. First the hand operated valve was changed to
a magnetic valve. The magnetic valve has a short stroke time and the vari-
ation in stroke time is assumed neglectable. Using a magnetic valve instead
of a hand operated valve ensured repeatability of the experiments. Second,
a vent was set at the outlet to avoid siphoning. Thirdly, a black sheet was
mounted behind the rig. This created good contrast to the �uorescent water
and was critical to get good performance of the video analysis.

One camera was used to record the experiments. This was a high de�nition
camera with a frame rate of 25 frames per second. For the experiments
carried out, this was su�cient. The resolution of the video analysis was much
better than the resolution in the experiments. In performing experiments
with higher velocity, it is strongly recommended to use a camera with a
higher frame rate in order to have a smaller propagation of the liquid from
frame to frame. If careful investigation of the front is to be performed, it
is recommended to have more than one camera. This is to have a better
resolution. A camera with a shorter distance to the rig, will produce more
pixels that is capturing the water propagation and front. The camera was
carefully set up for the experiments. A leveling device was mounted on the
camera tripod in order to have the camera level.

A script was developed in Matlab for image processing. The work to develop
the image analysis script was extensive. One major part was to set up a
good color �lter. The other was to �lter out droplets of water that remained
from the previous experiment. This script has been tweaked to catch the

63



�rst area in the pipe with a continued liquid column. When the �ow is
uphill this is the same as the liquid front due to counter current gravity
e�ects. In the downhill pipes, the program tracks the front of the thin �lm
of water that propagates rapidly due to co current gravity. When printing
out images using this script, it is con�rmed visually that the script is catching
the propagation of the water column. The assumptions and methods in the
script has been documented thoroughly to facilitate further work on this
script and modi�cations to be used with other experiments.

A model of the experimental set-up has been developed in OLGA. Due to
numerical issues, some simpli�cations had to be made. Two phenomena that
is thought to have an important in�uence on the outcome of the simulations
have been discussed. These are the valve discharge coe�cient and the sur-
face tension between the �uid and the wall. The OLGA program does not
have a model to calculate the pressure drop due to surface tension between
the �uid and the wall. For small diameter pipes, as in the rig, this has
been con�rmed by extensive research to have a signi�cant e�ect. Through
parametric study of the valve coe�cient, the in�uence of this parameter has
been investigated. It is recommended that the magnetic valve in the rig is
replaced with a magnetic valve for which the discharge coe�cient is known
or that experiments are carried out to �nd the discharge coe�cient of the
valve that is used. The e�ect of surface tension has not been found. This is
due to the uncertainty of the pressure drop due to the discharge coe�cient.
However, it is strongly suspected that the surface tension is the main reason
for a large part of the discrepancy in the propagation rate of the simulations
and experiments. For the experiment that �ushed the pipe, the OLGA sim-
ulation predicted that the water would reach the end of the pipe by a factor
2.5. This factor decreases with inlet pressure and velocity of the water.

In the experiments and simulations that did not �ush the pipe, there was
a surprisingly good correspondence in the end state. The end state was
quanti�ed by measuring the vertical height of the liquid columns in the
pipes were liquid was present. Corresponding heights was found by studying
holdup in the OLGA output.

The simulations in OLGA to predict �ushing has been found to be conser-
vative. Surprisingly, OLGA did not predict that the pipe would be �ushed
with the equivalent inlet pressure as to the experiment in which the pipe
was �ushed. This was remarkable, since the propagation rate in the OLGA
simulation was higher than in the experiment by a factor 2.5. Also, surface
tension was thought to cause the inlet pressure needed to �ush the pipe in
the experiments to be higher. The factor between the head needed in the
experiments and OLGA to �ush the pipeline was found to be 0.84. Two
possible reasons for this outcome has been discussed. First, the discharge
coe�cient in the valve might be too high, creating a larger pressure drop
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in the simulations than in the experiments. The higher propagation rate in
OLGA contradicts this, when one does not take into account that OLGA
does not have a model for the pressure drop due to surface tension. The
other reason is that OLGA does to a small extent take into account the �ow
history. In e�ect, slugs are killed at the end of an upwards or downwards
pipe if OLGA has predicted the �ow regime in the pipe to be strati�ed. In
the experiments, siphoning is important as the water column displacing all
the gas propagates in the downwards pipes. Also, the gas lift e�ect due
to terrain slugging in the upwards pipes signi�cantly reduces the weight of
the water column and causes the water to �ush the pipe at surprisingly a
surprisingly low head, 0.825 meters.

Due to stability considerations, the grid in the OLGA simulations had to
be very coarse. Through a comparison with a �ne grid and a coarse grid, it
is found that the coarse grid has a good performance since the discrepancy
between the two grids is very small. Also, the bends in OLGA cannot be
modeled. A program to model the bend with discrete straight sections. The
discrepancy between a model with discrete sections in the bend and a model
with sharp bends has been found to be insigni�cant.

For future reference a list of further work is presented:

1. Video analysis to �nd liquid front in the downhill pipes, H ≈ 1

2. Post processing to �nd liquid front in the downhill pipes in OLGA,
H ≈ 1

3. Experiments with larger pipe diameter.

4. Smaller angles

5. Varying peak heights

6. Assess valve coe�cient and perform new simulations to �nd discrep-
ancy due to surface tension

Due to limitations in time and very large uncertainty of the outcome, the
image analysis script was set up to catch the front of the continuous water
column. In the uphill pipes this coincides with the water front since gravity
is counter current. In order to �nd the liquid front in the downhill pipes, a
method has to be developed to �nd the furthest downstream position in the
pipe where holdup is very close to 1. A correlation of the pixel values and
holdup must be found. This may be done by investigating pixel values over a
cross section of the pipe and correlating it to output from a multiphase meter.
This is assumed to be an extensive project and has not been considered a
part of this thesis. Finding the corresponding holdup in OLGA output is
straightforward by using the post processing script that has been developed.
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Experiments with an undulating pipeline with a larger pipe diameter should
be carried out. Using a larger pipe diameter, e.g. >0.2 meters, surface
tension e�ects between the wall and the �uid are small. Also large pipe
diameters is used in the oil and gas industry for transportation of hydrocar-
bons.

The angles between the straight sections is quite large and in a real case there
are usually considerably smaller changes in inclination between two pipe
sections. Experiments and simulations should be carried out to investigate
the performance of OLGA.

It is more realistic to have a case with varying elevation of the peaks and
valleys. This is also thought to produce a wider range of �ow phenomena
and will be an interesting case for OLGA to simulate.

A valve with known discharge coe�cient should be used in order to assess
the in�uence of surface tension in a small diameter pipe, that OLGA does
not account for.
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Appendix A

Matlab script for the marginal

cases

%Script to calculate marginal cases for the undulating pipeline used in
%experiments for the master thesis of Andreas N Winnem spring 2009. This is
%an extension of the original script that plots dp and corresponding head
%for a range of volume fluxes

clear all;
clc;
clf;

%Input parameters

%volume flux − only input parameter to be set by the user with the given
%experimental set−up in the laboratory
Q_min = 1e−6;
Q_max = 1e−3;
Q_diff = Q_max − Q_min;
%number of points to plot
n = 100;
Q_step = Q_diff/(n−1);
%vector of the volume fluxes
Q = (Q_min:Q_step:Q_max);
%gravtitational acceleration
g = 9.81;
%density of water
rho = 998.2071;
%kinematic viscosity of water
mu = 0.001;
%vertical height at peaks and bottoms between straight pipe segments
z = [0 0.7 0.08 0.7 0.075 0.708];
%length of straight pipesegments
l = [0.91 0.832 0.83 0.83 0.832];
%length of bend
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bend = 0.0155;
%feed pipe diameter
D = 0.04;
%Length feed pipe
L = 3;
%pipe diameter
d = 0.02;
%feedpipe roughness
epsilonD = 1e−5;
%pipe roughness
epsilond = 1e−5;

%head loss coefficients
Kelbow90 = 0.72;
Kelbow45 = 0.21;
Ksc = 0.105;
Kvalve = 6.9;
Kinlet = 0.5;
Koutlet = 1;

%declaring a velocity vector and vector for reynoldsnumbers for the pipe
%with large and small diameter
uD = zeros(1,n);
ud = uD;
ReD = uD;
Red = uD;

%calculating the flow regime in the pipes

%velocity in the feed pipe:
uD(1,:) = 4*Q(1,:)/(pi*D^2);
%Reynoldsnumber in the feed pipe:
ReD(1,:) = (rho*uD(1,:)*D)/mu;
%velocity in the pipe:
ud(1,:) = 4*Q(1,:)/(pi*d^2);
%Reynoldsnumber in the feed pipe:
Red(1,:) = (rho*ud(1,:)*d)/mu;

%declering vectors for the friction factors
fD = zeros(1,n);
fd = fD;

%friction factor based on the reynolds number
%feed pipe:

for i=1:1:n

if ReD(i)>2300

%Haaland friction factor
fD(i) = (−1.8*log(6.9/ReD(i) + ((epsilonD/D)/3.7)^(1.11)))^(−2);

else
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%Poisuille friction factor
fD(i) = 64 / ReD(i);

end

%pipe:
if Red(i)>2300

fd(i) = (−1.8*log(6.9/Red(i) + ((epsilond/d)/3.7)^(1.11)))^(−2);

else

fd(i) = 64 / Red(i);

end

end

%head loss for a filled pipe

%summing up head loss factors
KD = Kinlet + Kvalve;
Kd = Ksc + 4*Kelbow90 + Kelbow45 + Koutlet;

%initial calculations
∆_z = z(length(z))− z(1);
pipelength = sum(l);
Afeed = pi*D^2/4;
Apipe = pi*d^2/4;

%declaring vector for dp_filled
dp_filled = zeros(1,n);

%calculating the head loss in a filled pipe
dp_filled(1,:) = −rho*g*( ∆_z + ((Q(1,:).^2)/(2*g)).*...

( ( fD(1,:)*L/D + KD )/Afeed^2 +...
( fd(1,:)*pipelength/d + Kd )/Apipe^2 ) );

%declaring vector for the hydrostatic head
head_filled = zeros(1,n);

%corresponding hydrostatic head
head_filled(1,:) = −dp_filled(1,:)./(rho*g);

%head loss for a pipe with stratified flow in the downhill sections

%initial calculations
Kd = Ksc + 5*Kelbow45 + Koutlet;
sum_z = z(2) + z(4) + z(6);

%declaring vector for dp_stratified
dp_stratified = zeros(1,n);
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%calculating the head loss in a pipe with stratified flow in the downward
%pipes

dp_stratified(1,:) = −rho*g*( sum_z + ((Q(1,:).^2)/(2*g)).*...
( ( fD(1,:)*L/D + KD )/Afeed^2 +...
( fd(1,:)*pipelength/d + Kd )/Apipe^2 ) );

%declaring vector for the hydrostatic head
head_stratified = zeros(1,n);
head_stratified(1,:) = −dp_stratified(1,:)./(rho*g);

%plotting
figure(1)
hold on

plot(Q,head_stratified, 'r')
plot(Q,head_filled, 'b')

legend('Stratified downhill', ...
'Filled pipe', ...
'Location', 'BestOutside')

XLABEL('Volumetric flux, Q[m^3/s]')
YLABEL('Head, h [m]')
TITLE('Head vs volumetric flux')

hold off
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Appendix B

Matlab script for discretization

of the pipe

%Script to discretize a curved bend into straight sections and storing the
%nodes as coordinates for OLGA input. This is an extencion of the simpler
%script bend that only discretizes a bend.

clc;
clear all;
clf;

%input
%number of nodes to discretize the bend, use even numbers to reduce error
n = 4;
%bend radius
r = 0.122831704;
%arch length
s = 0.155100638;
%depth of arc in bend
arc_depth = 0.023678401;
%tangent angle with horisontal of straight pipe (radians)
theta_straight = 0.631354254;
%angle of curve section
phi = 2*theta_straight;
%vertical height at peaks and bottoms between straight pipe segments
z = [0.7 0.08 0.7 0.075 0.708];
%length of straight pipesegments
l = [0.91 0.832 0.83 0.83 0.832];

%calculating the length of bend section (one ghost node in each end)
∆_s = s/(n+2);

%initializing vector for the bend coordinates (x,y)
bend_coordinate = zeros(n,2)';
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%need a vector for the bends in the valleys
bend_valley = bend_coordinate;

%initialzing temporary angles to be used in the discretized equation
% theta_0 = theta_straight;
% theta_1 = theta_0;
theta_0 = theta_straight;

%initializing the vector for the angles for each pipe segment
theta = zeros(n+2,1);

%initial calculation
theta(1) = theta_straight;
theta(2) = theta_0 − 2*∆_s/r;

%calculating the angles
for i = 2:1:n+1

%second order central difference
theta(i+1) = theta(i−1) − 2*∆_s/r;

end

%calculating x,y coordinates
for i = 2:1:n+1

bend_coordinate(1,i) = bend_coordinate(1,i−1) + ∆_s*cos(theta(i));
bend_valley(1,i) = bend_coordinate(1,i−1) + ∆_s*cos(theta(i));
bend_coordinate(2,i) = bend_coordinate(2,i−1) + ∆_s*sin(theta(i));
bend_valley(2,i) = −(bend_coordinate(2,i−1) + ∆_s*sin(theta(i)));

end

bend_coordinate = bend_coordinate';
bend_valley = bend_valley';

%writing coordinates to file
filename = ['bend',num2str(n)];
save(filename, 'bend_coordinate','−ascii','−tabs')

%calculating input parameters to OLGA

%initializing coordinate vector
xy_OLGA = zeros(1,2);

%elevation profile of straight sections of the pipe including the bends
%length of elevation vector z
k = length(z);
y_straight_prof = zeros(1,k);
y_straight = zeros(1,k);

y_straight(1) = z(1) − arc_depth;

for i = 2:1:k
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%elevation profile
y_temp = z(i) − z(i−1);
y_straight(i) = z(i) − z(i−1) − sign(y_temp)*arc_depth;

end

%elevation profile of the straight sections excluding the bends
y_straight_prof(1) = z(1) − arc_depth;
y_straight_prof(2:k) = z(2:k)−....

sign(y_straight(2:k)).*arc_depth;

%calculating the horisontal length of the straight sections
x_straight = zeros(1,k);
x_straight(1,1) = sqrt(l(1,1).^2−...

(y_straight(1,1)).^2);
x_straight(1,2:k) = sqrt(l(1,2:k).^2−...

(y_straight(1,2:k)).^2);

%combining calculations for straight pipe sections and the discretized
%bends
bend_start = [0 0];
bend_temp = zeros(size(bend_coordinate));
bend_length_x = bend_coordinate(end,1);
x_length = 0;
y_length = 0;
slope = 0;

for i = 1:1:k−1

slope = sign(y_straight(i));
bend_start = [(x_straight(i) + x_length) y_straight_prof(i)];
if slope > 0

bend_temp(:,1) = bend_coordinate(:,1) + bend_start(1);
bend_temp(:,2) = bend_coordinate(:,2) + bend_start(2);

else
bend_temp(:,1) = bend_valley(:,1) + bend_start(1);
bend_temp(:,2) = bend_valley(:,2) + bend_start(2);

end
xy_OLGA = [xy_OLGA; bend_temp];
x_length = x_length + x_straight(i) + bend_length_x;

end

%have to reset bend_temp since it will be shorter than above and otherwise
%contain old values
bend_temp = [0 0];

%special treatment of the last bend since it is only half a bend.
slope = sign(y_straight(k));
bend_start = [(x_straight(k) + x_length) y_straight_prof(k)];
bend_temp(1:round(n/2+1),1) = bend_coordinate(1:round(n/2+1),1) + bend_start(1);
bend_temp(1:round(n/2+1),2) = bend_coordinate(1:round(n/2+1),2) + bend_start(2);
xy_OLGA = [xy_OLGA; bend_temp];
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%need to add an extra row of zeros for OLGA to understand that [0 0] is the
%starting point
xy_OLGA = [0 0;xy_OLGA];

%writing the OLGA input to file
filename = ['pipe',num2str(n)];
save(filename, 'xy_OLGA','−ascii','−tabs')

%plotting
figure(1)
hold on

plot(bend_coordinate(:,1),bend_coordinate(:,2), 'b')

legend('Discretized bend', ...
'Location', 'BestOutside')

XLABEL('Horizontal length [m]')
YLABEL('Vertical height [m]')
TITLE('Discretized bend')

hold off

figure(2)
hold on

plot(xy_OLGA(:,1),xy_OLGA(:,2), 'b')

legend('Pipeline', ...
'Location', 'BestOutside')

XLABEL('Horizontal length [m]')
YLABEL('Vertical length [m]')
TITLE('Discretized pipeline')

hold off
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Appendix C

Matlab script for video analysis

%this script takes in a file containing an avi movie and calculates some
%important fluid parameters from image prosessing of the video frames.
%
%Input: Video file, number of frames (range) that are to be evaluated,
%color to search for − the fluid is assumed to be fluoridized and a factor
%to determine the range/ specter of colors deviating from the colorant that
%are deemed to be evidence that the color (fluid) is present.
%
%Output: Position of waterfront and velocity of the waterfront.
%
%Options:
%1) Choose to extract filtered and unfiltered images (front_data = 0) or
%the coordinate of the last liquid pixel downstream (front_data = 1).
%frontdata_range_...txt will be the filename of the output.
%2) Set the number of frames to be analyzed. firstframe is the first frame
%to analyze and lastframe the last. If firstframe is set to 1 the program
%will analyze from 2 since this frame is used as background. If firstframe
%and lastframe are set to 0, the program analyzes all frames.
%3) Setting the area of the frame that is to be analyzed to avoid analyzing
%area of the frame where the pipe is not present. Produces a rectangle that
%is being analyzed.
%4) Set the number of subsequent pixels that are to be checked vs the last
%pixel that is deemed as liquid and the tolerance in number of pixels in x
%and y direction between the last liquid pixel and the first. Eg
%check_length = 5 stores the last 5 liquid pixels. pix_tol = 10 gives a
%maximum of 10 pixel difference between the latest liquid pixel and the 5th
%pixel that was deemed as liquid before that.
%5) Set the size of the area that is being analyzed for the frames after
%the first frame. The middle of the box is at the previous liquid front.

clc;
clear all;

%name of video file
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file = 'C:\Andreas\Master\Experiments\ws_45.avi';

%store front data (front_data = 1) or print out filtered images
%(front_data=0)
front_data = 1;

%set number of pixels that are to be checked to avoid finding droplets
check_length = 5;

%set maximum length in x and y direction between last and first pixel that
%is checked
pix_tol = 10;

%set length of box (pixels) that is to be analyzed after the first front
%position is found
box_length = 300;

%set fraction of coordinates in x and y direction of the video that is to
%be analyzed (to avoid analyzing pixels of a frame where the pipe is not
%present). Will produce a rectangle in which the frame is analyzed. Must be
%between 0 and 1, end must be larger than start, cannot be zero.
x_start = 0.01;
x_end = 0.97;
y_start = 0.30;
y_end = 0.75;

area = [x_start,x_end;y_start,y_end];

%number/ range of frames start − firstframe and end − lastframe, for
%manually selecting the frames to be analyzed
firstframe = 2;
lastframe = 3;
frames = [firstframe lastframe];

%converting frames to matrices that are to be manipulated
f2m(file,frames,front_data,area,check_length,pix_tol,box_length);

%function for reading frames from an avi movie and converting them to a
%matrix which is n by m by 3 that is to be analyzed with the function
%liq_position
function frame2matrix = f2m(file,frames,front_data,area,...

check_length,pix_tol,box_length)

%loading the movieinfo
movieinfo = aviinfo(file);

%calculating the inverse of the framerate; seconds per frame
spf = 1/movieinfo.FramesPerSecond;

%declaring the range of frames that are to be manipulated. Default is to
%analyze all frames, when frames = 0 (no manual input)
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if (frames == 0)

%subtracting 1 since the first frame is used as background
range = movieinfo.NumFrames − 1;
start = 1;

else

range = frames(2) − frames(1) + 1;
%subtracting 1 to find the background as the latest image before
%frame(1)

if (frames(1) > 2)

start = frames(1) − 1;

else

%start cannot be less than 1
start = 1;
range = range − 1;

end

end

%declaring a matrix for storing frontposition and timestamp
fronttime = zeros(range,3);

%finding the background that is to be subtracted from the subsequent images
%returns an array MOV from the movie file 'file' containing the frames
%'frames'
MOV = AVIREAD(file,1);

%returns a matrix with the frame on the format n by m by 3
background = frame2im(MOV);

%initializing progress bar
h = waitbar(0,'Progress');

% global prev_position;
prev_position = [0 0];

%initializing vector for droplets. coordinate (1,1) is a dummy in case
%there are no droplets found. (1,1) is assumed to be outside of the pixel
%region of the pipe
droplet = [1 1];

%writing a loop to extract the frames within the range
for j=1:1:range

%displaying the progress
waitbar(j/range)
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%declaring the frame to be evaluated
framenumber = start + j;

%returns an array MOV from the movie file 'file' containing the frames
%'frames'
MOV = AVIREAD(file,framenumber);

%returns a matrix with the frame on the format n by m by 3
image = frame2im(MOV);

if (front_data == 0)

%Declaring an individual frame name
filename = ['Frameorig',num2str(framenumber),'.png'];

%Writing the frames to file as individual jpg images
IMWRITE(image,filename,'png')

end

%extracting the background from the current image
image = image − background;

step = j;

if step == 1;

[frontposition prev_position droplet] = init_position(image,...
front_data,area,check_length,pix_tol,droplet);

else

%finding the front position
[frontposition prev_position droplet] = liq_position(image,...

front_data,area,check_length,pix_tol,prev_position,...
box_length,droplet);

end

if (front_data == 0)

%storing the filtered image
image = frontposition;

%Declaring an individual frame name
filename = ['Frame',num2str(framenumber),'.png'];

%Writing the frames to file as individual jpg images
IMWRITE(image,filename,'png')

end

if (front_data == 1)

80



%storing the frontposition with a timestamp
fronttime(j,1) = framenumber*spf;
fronttime(j,2) = frontposition(1);
fronttime(j,3) = frontposition(2);

end

end

delete(h)

if front_data == 1

frame2matrix = fronttime;

%writing fronttime to file
filename = ['frontdata_','range_',num2str(range),'.txt'];
save(filename, 'fronttime', '−ascii','−tabs')

end

%this function finds the front position in the first image that is being
%processed.
%Input: A frame on matrix form from an avi movie
%Output: A position either on (x,y) form or a relative length along the
%pipe, L

function [frontposition prev_position droplet] = init_position(image,...
front_data,area,check_length,pix_tol,droplet)

%defining the image size
%note that pixels in the y−direction is listed first using size(image)
xmax = size(image,2);
ymax = size(image,1);

%area to be analyzed
xstart = ceil(xmax*area(1,1));
xend = round(xmax*area(1,2));
ystart = ceil(ymax*area(2,1));
yend = round(ymax*area(2,2));

%note that pixels in the y−direction is listed first using size(image)
%the color we are looking for is green, so that is the only color in the
%color vector, k, that is searched for

%green color is in the second place:
k = 2;

% %since white color includes a strong green color (high numeric value), a
% %filter to exclude the white or bright colors except green is needed
% red = 200;
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% green = 150;
% blue = 200;
% black = 80;

%ratio definition between colors to see if that works better to catch more
%green fluid without getting greyscale pixels. Testing indicates that
%ration definition has a limited effect when subtracting the background.
% redgreenmax = 0.80;
% redgreenmin = 1.20;
% bluegreenmax = 0.80;
% bluegreenmin = 1.20;
redgreenmax = 1.0;
redgreenmin = 1.0;
bluegreenmax = 1.0;
bluegreenmin = 1.0;
greenmin = 50;

%setting a background color
background=255;

%setting a coordinate for the waterfront (y,x)
front = [yend,0];

front_check = zeros(check_length,2);

i = xstart;
j = ystart;

%to break off while loop
stop = 0;

while i < xend + 1

while j < yend + 1

%calculating the ratio between the color intensities blue and red
%vs green and storing the green intensity as well
imred = double(image(j,i,1));
imgreen = double(image(j,i,k));
imblue = double(image(j,i,3));
rgcalc = imred / imgreen;
bgcalc = imblue / imgreen;

if ((imgreen > greenmin) && (rgcalc < redgreenmax ||...
rgcalc>redgreenmin) && (bgcalc < bluegreenmax ||...
bgcalc > bluegreenmin))

image(j, i, :) = image(j, i, :);
front = [j,i];
front_check = [front_check; front];
front_check(1,:) = [];

% if ((image(j,i,k) > green) && (image(j,i,1)< red)...
% && (image(j,i,3)<blue))
% image(j, i, :) = image(j, i, :);
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else
image(j, i, :) = background;

end

if (j == yend && i == xend &&...
(((front_check(end,2) − front_check(1,2)) > pix_tol) ||...
((front_check(end,1) − front_check(1,1)) > pix_tol)))

for n = 1:1:check_length−1

diff = front_check(n+1,:) − front_check(n,:) + n − 1;

if diff(1)>1 || diff(2)>1
image(front_check(n+1,1),front_check(n+1,2),:) = ...

background;
droplet = [droplet;front_check(n+1,1),...

front_check(n+1,2)];
disp(['droplet found at ' num2str(front_check(2,end))])
stop = stop + 1;

end

end

j = ystart − 1;
i = xstart − 1;
stop = stop + 1;

front_check = zeros(check_length,2);
front_check(1:end,1) = prev_position(1);
front_check(1:end,2) = prev_position(2);

% image(front_check(end,1),front_check(end,2),:) = background;
% j = ystart − 1;
% i = xstart − 1;
%
% disp(['droplet found at ' num2str(front_check(2,end))])
% droplet = [droplet;front_check(end,1),front_check(end,2)];

stop = stop + 1;

end

j = j + 1;

end

j = ystart;
i = i + 1;

if stop>20
disp('Warning: loop breaked')
break

end
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end

if (front_data == 0)

%writing a crosshair at the image where the front is (for testing
%purposes)
cross = 10;

if (front(:) 6= 0)
cross_x = front(2);
cross_y = front(1);

for i = 1:1:cross

image(cross_y , i + cross_x − round(cross/2),:) = 0;

end

for j = 1:1:cross

image(j + cross_y − round(cross/2),cross_x,:) = 0;

end

end

%testing: printing the images with a crosshair on the waterfront
frontposition = image;

prev_position = front;

end

if (front_data == 1)

%returning the front position in (y,x) coordinates
frontposition = front;

prev_position = front;

end

%this function finds the front position in the first image that is being
%processed.
%Input: A frame on matrix form from an avi movie
%Output: A position either on (x,y) form or a relative length along the
%pipe, L

function [frontposition prev_position droplet] = liq_position(image,...
front_data,area,check_length,pix_tol,prev_position,box_length,droplet)
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%defining the image size
%note that pixels in the y−direction is listed first using size(image)
xmax = size(image,2);
ymax = size(image,1);

% %area to be analyzed
% xstart = ceil(xmax*area(1,1));
% xend = round(xmax*area(1,2));
% ystart = ceil(ymax*area(2,1));
% yend = round(ymax*area(2,2));

% box_length = 100;

%shifting parameter for shifting the box to the right (downstream)
shift = 0.5;
shift_length = round(box_length*shift/2);

%finding current box to analyze
xstart = prev_position(2) − round(box_length/2) + shift_length;
xend = prev_position(2) + round(box_length/2) + shift_length;
ystart = prev_position(1) − round(box_length/2);
yend = prev_position(1) + round(box_length/2);

%checking that the box does not exceed the predifined area to analyze
if xstart < ceil(xmax*area(1,1))

xstart = ceil(xmax*area(1,1));
xend = xstart + box_length;

end

if xend > round(xmax*area(1,2))
xend = round(xmax*area(1,2));
xstart = xend − box_length;

end

if ystart < ceil(ymax*area(2,1))
ystart = ceil(ymax*area(2,1));
yend = ystart + box_length;

end

if yend > round(ymax*area(2,2))
yend = round(ymax*area(2,2));
ystart = yend − box_length;

end

%note that pixels in the y−direction is listed first using size(image)
%the color we are looking for is green, so that is the only color in the
%color vector, k, that is searched for

%green color is in the second place:
k = 2;

% %since white color includes a strong green color (high numeric value), a
% %filter to exclude the white or bright colors except green is needed
% red = 200;
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% green = 150;
% blue = 200;
% black = 80;

%ratio definition between colors to see if that works better to catch more
%green fluid without getting greyscale pixels. Testing indicates that
%ration definition has a limited effect when subtracting the background.
% redgreenmax = 0.90;
% redgreenmin = 1.10;
% bluegreenmax = 0.90;
% bluegreenmin = 1.10;
redgreenmax = 1.0;
redgreenmin = 1.0;
bluegreenmax = 1.0;
bluegreenmin = 1.0;
greenmin = 50;

%setting a background color
background=255;

%setting a coordinate for the waterfront (x,y)
front = prev_position;

%vector for storing subsequent pixels that are liquid
front_check = zeros(check_length,2);
front_check(1:end,1) = front(1);
front_check(1:end,2) = front(2);

%eliminating earlier founds of droplets
length_droplet = size(droplet,1);

for i=1:1:length_droplet

y = droplet(i,1);
x = droplet(i,2);
image(y,x,:) = background;

end

i = xstart;
j = ystart;

%to be used if while loop runs too many times
stop = 0;

while i < xend + 1

while j < yend + 1

%calculating the ratio between the color intensities blue and red
%vs green and storing the green intensity as well
imred = double(image(j,i,1));
imgreen = double(image(j,i,k));
imblue = double(image(j,i,3));
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rgcalc = imred / imgreen;
bgcalc = imblue / imgreen;

if ((imgreen > greenmin) && (rgcalc < redgreenmax ||...
rgcalc>redgreenmin) && (bgcalc < bluegreenmax ||...
bgcalc > bluegreenmin))

image(j, i, :) = image(j, i, :);
front = [j,i];
front_check = [front_check; front];
front_check(1,:) = [];

% if ((image(j,i,k) > green) && (image(j,i,1)< red)...
% && (image(j,i,3)<blue))
% image(j, i, :) = image(j, i, :);

else
image(j, i, :) = background;

end

if (j == yend && i == xend &&...
(((front_check(end,2) − front_check(1,2)) > pix_tol) ||...
((front_check(end,1) − front_check(1,1)) > pix_tol)))

for n = 1:1:check_length−1

diff = front_check(n+1,:) − front_check(n,:) + n − 1;

if diff(1)>1 || diff(2)>1
image(front_check(n+1,1),front_check(n+1,2),:) = ...

background;
droplet = [droplet;front_check(n+1,1),...

front_check(n+1,2)];
disp(['droplet found at ' num2str(front_check(2,end))])
stop = stop + 1;

end

end

j = ystart − 1;
i = xstart − 1;
stop = stop + 1;

front_check = zeros(check_length,2);
front_check(1:end,1) = prev_position(1);
front_check(1:end,2) = prev_position(2);

% image(front_check(end,1),front_check(end,2),:) = background;
% j = ystart − 1;
% i = xstart − 1;
%
% disp(['droplet found at ' num2str(front_check(end))])
% droplet = [droplet;front_check(end,1),front_check(end,2)];
% front_check(end,:) = [];
%
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% stop = stop + 1;

end

j = j + 1;

end

j = ystart;
i = i + 1;

if stop>20
disp('Warning: loop breaked')
break

end

end

if (front_data == 0)

%writing a crosshair at the image where the front is (for testing
%purposes)
cross = 10;

if (front(:) 6= 0)
cross_x = front(2);
cross_y = front(1);

for i = 1:1:cross

image(cross_y , i + cross_x − round(cross/2),:) = 0;

end

for j = 1:1:cross

image(j + cross_y − round(cross/2),cross_x,:) = 0;

end

end

%testing: printing the images with a crosshair on the waterfront
frontposition = image;

end

if (front_data == 1)

%returning the front position in (y,x) coordinates
frontposition = front;

end
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if ((front(1) == xstart) || (front(1,1) == xend))

disp('Warning: liquid front was found at the end of the box.')
disp('Consider calculating with a larger box length')

end

if ((front(2) == ystart) || (front(1,1) == yend))

disp('Warning: liquid front was found at the end of the box.')
disp('Consider calculating with a larger box length')

end

if (front(1) == prev_position(1) || front(2) == prev_position(2))

disp('Warning: liquid front was not found.')

end

%updating previous position
prev_position = front;
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Appendix D

Matlab script for post

processing of the video analysis

%this script takes in a file containing the output from the script "main"
%that analizes the video from experiments conducted for Andreas N Winnem's
%master thesis 2009.
%Input: data file containing timestamp and coordinate of front position
%Output: Coordinate of waterfront with dimension [m] and velocity with
%timestamp.

clc;
clear all;
clf;

%write filename that is going to be processed here
filename = 'frontdata_range_256.txt';

%the number of vertical pixels
y_pix = 1080;

%maximum velocity allowed, input to disregard unreasonably high velocities
%due to the emergency of eg a droplet of remaining water from a previous
%experiment moving downstream, [m/s]
v_max = 10;

%in the case of unreasonable velocity, extrapolate previous velcoty to
%calculate position (extrapolate = 1)
extrapolate = 0;

%known distance measured on the rig [m]
rig_scale = 3;

%start of scale on the rig, found by read−off of image in matlab by
%checking the pixel value at the beginning of the scale
x_start = 200;
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%end of scale on the rig, found by read−off of image in matlab by
%checking the pixel value at the beginning of the scale
x_end = 1000;

%scale parameter for the pixels dim pixels/ meter
scale = (x_end − x_start)/rig_scale;

%loading the data from filename into Matlab
file = (filename);
%tyx contains timestamp y−coordinate and x−coordinate of the waterfront in
%the matrix, note that y−coordinates are in the second column
tyx_image = load(file);

%dropping all timestamps with zero change in position
%first finding the non−zero position entry in x and y column
y_first = find(tyx_image(:,2), 1, 'first');
x_first = find(tyx_image(:,3), 1, 'first');

%in the unprobable case that either x or y should be non−zero whilst the
%other remains zero:
first = min(y_first,x_first);

%dropping all but the latest zero entries (deemed as start of experiment)
tyx_image(1:first−1,:) = [];

%have to reset the timestamps for the remaining entries
starttime = tyx_image(1,1);
length_tyx = size(tyx_image,1);
tyx_image(1:length_tyx,1) = tyx_image(1:length_tyx,1) − starttime;

%need to manipulate the y−values since the image has coordinate (1,1) in
%upper left corner of the matrix − want (1,1) to be the lower left corner
tyx_image(:,2) = y_pix − tyx_image(:,2);

%matrix for storing the processed values, time, x−coordinate, y−coordinate
%and velocity
txyv = zeros(length_tyx,4);

%adding the timestamp
txyv(:,1) = tyx_image(:,1);

%calculating physical x_coordinate and adding to tyxv, note that
%x−coordinates are stored in the second column
txyv(:,2) = tyx_image(:,3)/scale;

%calculating physical y_coordinate and adding to tyxv
txyv(:,3) = tyx_image(:,2)/scale;

%number of rows
n = size(tyx_image,1);

%calculating velocity with the formula v=sign(dx)*sqrt(dx^2 + dy^2)/dt,
%dimension [m/s]. sign(dx) denotes positive or negative velocity in
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%x−direction which is consistent with positive or negative flow direction
%in the pipe
txyv(2:n,4) = sign(txyv(2:n,2) − txyv(1:n−1,2)).*sqrt((txyv(2:n,2) −...

txyv(1:n−1,2)).^2 + (txyv(2:n,3) − txyv(1:n−1,3)).^2 )...
./ (txyv(2:n,1) − txyv(1:n−1,1));

%storing the original data for plotting purposes
txyv_original = txyv;

%checking for unreasonable velocity
[r,c]=find(abs(txyv)>v_max);

%removing the unreasonable results and recalculating
for i = 1:1:length(r)

if (extrapolate == 1)

txyv(r(i),2) = txyv(r(i)−1,2) + txyv(r(i)−1,2) − txyv(r(i)−2,2);
txyv(r(i),3) = txyv(r(i)−1,3) + txyv(r(i)−1,3) − txyv(r(i)−2,3);
%velocity is the same as for the previous point
txyv(r(i),4) = txyv(r(i)−1,4);

else

txyv(r(i),2) = txyv(r(i)−1,2);
txyv(r(i),3) = txyv(r(i)−1,3);
txyv(r(i),4) = 0;
%velocity for the next point needs to be updated
txyv(r(i)+1,4) = sign(txyv(r(i)+1,2) − txyv(r(i),2))...

.*sqrt((txyv(r(i)+1,2) − txyv(r(i),2)).^2 +...
(txyv(r(i)+1,3) − txyv(r(i),3)).^2 )...
./ (txyv(r(i)+1,1) − txyv(r(i),1));

end

end

%plotting
plot(txyv(:,2),txyv(:,3))

%writing the output to file
filename = ['txyv_','starttime_',num2str(starttime),'.txt'];
save(filename, 'txyv','−ascii','−tabs')

%plotting the corrected x,y data

figure(2)

plot(txyv(:,2),txyv(:,3), 'b')

legend('Plot of x vs y', ...
'Location', 'BestOutside')
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XLABEL('Horizontal length [m]')
YLABEL('Vertical length [m]')
TITLE('Flow with error correction')

%plotting original x,y data, no checking for unreasonable velocities

figure(1)

plot(txyv_original(:,2),txyv_original(:,3), 'r')

legend('Plot of x vs y', ...
'Location', 'BestOutside')

XLABEL('Horizontal length [m]')
YLABEL('Vertical height [m]')
TITLE('Flow without error correction')
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Appendix E

Matlab script for post

processing of the OLGA output

%Script for extracting data from OLGA output. Used for Andreas N Winnem's
%Master Thesis 2009.
%
%Input: Output from "Profile plot" in OLGA. Header "TIME..." for each box
%in the OLGA output is the current time step. Check the desired parameter
%in Profile Plot and write to the file with matching file path as below in
%file. One parameter from OLGA may be prosessed at a time using this
%script.
%
%Output: The first column is the current time step, the two next is the
%length coordinate, x [m] and the last is the parameter chosen in
%OLGA. If more than one parameter is checked, num_parameter in this script
%has to be changed accordingly. Check the OLGA output for which column
%belongs to which paramter. The output from this script contains no
%headers. A plot to verify the output is produced. This plots the velocity
%vs time if velocity is to be calculated or the x−coordinate of the last
%downstream node containing liquid versus time.
%If velocity is to be calculated:
%Two files are generated. OLGA_full_output_end_time consist of
%simulation data for the whole pipe for all timesteps.
%OLGA_extract_end_time consist of only the last downstream control volume
%with liquid in it.

clc;
clear all;
clf;

file = 'C:\Andreas\Master\Matlab\flush_825\OLGA_geo_h_825_10s.txt';

%the number of parameters exported from OLGA, excluding, time step and
%geometry (y−coordinate), x−coordinate (horizontal length) comes out
%automatically.
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num_param = 1;

%since OLGA output comes with the length along the pipe, length coordinates
%in OLGA must be recalculated. Since the inclination of the pipesegments is
%almost equal, this is done by multiplying with the fraction of the actual
%total length of the rig and the total length of the pipe in OLGA.
rig_length = 3.88;

%set the box where holdup is present
holdup_box_OLGA = 2;
holdup_column = holdup_box_OLGA + 2;

%geo_column_OLGA must be the box geometry is in. In some simulations OLGA
%extracts this to the second box. Pipe diameter is given in pipe_diameter.
geo_box_OLGA = 1;
pipe_diameter = 0.016;
geo_column = geo_box_OLGA + 2;

%minimum value for holdup. Due to numerical reasons, nodes far downstream
%will have a holdup larger than 0 long before the liquid has actually
%propagated to this node, eg Holdup = 10−6. Set min_holdup to mitigate this
min_holdup = 0.1;

%+ 2 = time, x−coordinate
total_param = num_param + 2;

%file identifier, opening the text file
fid = fopen(file);

%variable for the current time step
time = 0;

%matrix for storing the output (volume flow)
time_front_geo = zeros(1,total_param);

%matrix for storing the output (holdup)
time_front_H = zeros(1,total_param);

%counter to find odd or even number a time stamp is found
count_time = 0;

%to count the number of rows for volume flow
geo_counter = 0;

%run untill en of input file
while (¬feof(fid))

%getting the current line from the text file
s = fgetl(fid);

%checkin for line that includes time step
if (strfind(s,'TIME')==1)

count_time = count_time + 1;
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%reading the time step
time = timeread(s);

end

%scanning for numbers in the line and time_count is odd
position_value = sscanf(s,'%f',Inf);

%saving line info if number is present
if (length(position_value)==total_param−1 && mod(count_time,2)==1)

time_front_geo = [time_front_geo; time,...
position_value(1), position_value(2)];

end

%saving line info if number is present and count_time is even
if (length(position_value)==total_param−1 && mod(count_time,2)==0)

time_front_H = [time_front_H; time,...
position_value(1), position_value(2)];

end

end

%dropping the first row of zeros since this was purely to initialize the
%time_front matrix
time_front_geo(1,:) = [];
time_front_H(1,:) = [];

time_start = time_front_geo(1,1);
time_temp = time_start;
row_counter = 0;

%finding the number of rows per timestep
while time_temp == time_start

time_temp = time_front_geo(row_counter + 1,1);
row_counter = row_counter + 1;

end

%subtracting 1 since the while loop stops at first position in the next
%time step
row_counter = row_counter − 1;

length_front_time = size(time_front_geo,1);

%number of timesteps, including the start, t = tstart
time_steps = length_front_time/row_counter;
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%OLGA uses staggered grid for computing velocities, ie one extra velocity
%node (row) and interpolation between the holdup nodes is done. Subtracting
%time_count/2 since time_front_H and the interpolated Q is one row less every
%time step

geo = (time_front_geo(1:row_counter−1,3) +...
time_front_geo(2:row_counter,3))/2;

geo_vector = geo;

for i = 1:1:time_steps − 1

geo_vector = [geo_vector; geo];

end

%building the time front matrix, time, x−coord, y−coord, holdup
time_front = [time_front_H(1:end,1) time_front_H(1:end,2) geo_vector...

time_front_H(1:end,3)];

%finding value of the last time step
end_time = time_front(end,1);

%writing the output to file
filename = ['OLGA_full_output','end_time_',num2str(end_time),'_s','.txt'];
save(filename, 'time_front','−ascii','−tabs')

%storing the total length along the pipe (to calculate the actual
%horizontal length scale further below)
total_length_OLGA = time_front(end,2);

%this part of the script extracts the parameters of the last downstream
%node where liquid is present. This will be the paramters compared with the
%output from video analysis

time_start = time_front(1,1);
time_temp = time_start;
row_counter = 0;

%finding the number of rows per timestep
while time_temp == time_start

time_temp = time_front(row_counter + 1,1);
row_counter = row_counter + 1;

end

%subtracting 1 since the while loop stops at first position in the next
%time step
row_counter = row_counter − 1;

length_front_time = size(time_front,1);

%number of timesteps, including the start, t = tstart
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time_steps = length_front_time/row_counter;

%finding and storing the parameters for the last downstream node where
%liquid is present, note that present liquid is deemed as a non zero entry
%for the fluid variable
row_start = 1;
row_end = row_counter;

OLGA_width = size(time_front,2);
OLGA_extract = zeros(time_steps,OLGA_width);

%checking for discontinuity. OLGA has in some simulations displayed
%accumulation of liquid at the end of the pipe before any liquid had been
%displaced to this section (ie after very short time).
continuity_check = 1;
discontinuity_step = OLGA_width;
old_check = 0;

%tolerance for zero entries between the previous last zero entry and the
%current, eg last = row 10, current = 100 leaves 90 entries with the
%parameter equal to zero. tol < 89 will then give a discontinuity warning
tol = 10;

for i = 1:1:time_steps

time_prop = time_front(row_start:row_end,:);

%updating row_start and row_end
row_start = row_start + row_counter;
row_end = row_end + row_counter;

%finding the last liquid node downstream
non_zero = find(time_prop(:,4), row_counter, 'first');

node_prop = 0;

if (length(non_zero) < OLGA_width)

node_prop = time_prop(1,:);

else

for j = 1:1:length(time_prop)

if time_prop(j,4)>min_holdup

node_prop = time_prop(j,:);

end

end

if node_prop == 0
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node_prop = time_prop(1,:);

end

end

%storing properties for the current time_step
OLGA_extract(i,:) = node_prop(:);

%checking if there is a discontinuity
if (continuity_check == 1)

for j=1:1:length(non_zero)−1

check_temp = non_zero(j+1) − non_zero(j);
position = time_prop(non_zero(j+1),:);
diff = check_temp − old_check;

if (check_temp 6= 1 && abs(diff) > tol)

disp(['Discontinuity was found at ' num2str(position)])
continuity_check = 0;

end

old_check = check_temp;

end

end

end

%recalculating length scale in OLGA output
OLGA_factor = rig_length/total_length_OLGA;
OLGA_extract(:,2) = OLGA_extract(:,2)*OLGA_factor;

%number of rows
n = size(OLGA_extract,1);

%adding extra column for velocity
OLGA_extract = [OLGA_extract zeros(n,1)];

%calculating velocity with the formula v=sign(dx)*sqrt(dx^2 + dy^2)/dt,
%dimension [m/s]. sign(dx) denotes positive or negative velocity in
%x−direction which is consistent with positive or negative flow direction
%in the pipe
OLGA_extract(2:n,end) = sign(OLGA_extract(2:n,2) −...

OLGA_extract(1:n−1,2))...
.*sqrt((OLGA_extract(2:n,2) − OLGA_extract(1:n−1,2)).^2 + ...
(OLGA_extract(2:n,3) − OLGA_extract(1:n−1,3)).^2 )...
./ (OLGA_extract(2:n,1) − OLGA_extract(1:n−1,1));

% %Velocity calculation based on the previous and the next position
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% OLGA_extract(2:n−1,end) = sign(OLGA_extract(3:n,2) − OLGA_extract(1:n−2,2))...
% .*sqrt((OLGA_extract(3:n,2) − OLGA_extract(1:n−2,2)).^2 + ...
% (OLGA_extract(3:n,3) − OLGA_extract(1:n−2,3)).^2 )...
% ./ (OLGA_extract(3:n,1) − OLGA_extract(1:n−2,1));

%plotting the x−coordinate if not velocity is calculated
plot_vector = 2;

%writing the output to file
filename = ['OLGA_extract_','end_time_',num2str(end_time),'_s','.txt'];
save(filename, 'OLGA_extract','−ascii','−tabs')

%plotting velocity
figure(1)

plot(OLGA_extract(:,1),OLGA_extract(:,5), 'b')

legend('Plot of time vs velocity', ...
'Location', 'BestOutside')

XLABEL('Time [s]')
YLABEL('Velocity [m/s]')
TITLE('Verification plot')

%plotting the position of the furthest downstream node with holdup larger
%than than min_holdup (deemed as liquid is present)
figure(2)

plot(OLGA_extract(:,1),OLGA_extract(:,2), 'r')

legend('Plot of time vs position', ...
'Location', 'BestOutside')

XLABEL('Time [s]')
YLABEL('Liquid front [m]')
TITLE('Verification plot')

%identfy number with arbitrary number of decimals within a string and
%converting to number

function time = timeread(str)

% The locations of the numbers:
idx = regexp(str,'\d');
% The numbers themselves:
nums = regexp(str,'\d','match');

length_idx = length(idx);

dot_position = 0;

%finding the position of the dot seperator in a number eg 0.001
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for i = 2:1:length_idx

if (idx(i)−idx(i−1))>1

dot_position = i;

end

end

%inserting dot in the number string of characters, each integer in eg 0.001
%is per now a character in an array, eg '0' '0' '0' '1'
nums = [nums(1:dot_position−1) , '.' , nums(dot_position:length_idx)];

%collecting the "characters"
num_collect = char(nums)';

%converting to number
numn = str2double(num_collect);

time = numn;
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Appendix F

Matlab script for comparing

the video analysis and the

OLGA output

%This script is to compare processed output from OLGAfor Andreas N Winnem's
%master thesis 2009.
%
%Input: Extract from OLGA prosessed data (OLGA_extract_end_time... files)
%and video analysis data (video_extract_starttime files). Pipe diameter d
%must be set for plotting the latest liquid position vs time.
%
%Output: Comparison of position (x/d) and velocity of last liquid particel
%downstream between simulations (OLGA) and experiments (video)
%
%Options:
%1) To plot the data the vectors to be plotted must be of the same
%length. In order to achieve this with datasets with unequal length there
%is either an option to cut the extra rows in the longest data set or to
%extrapolate the last value of the shortest data set. See varibles cut and
%extrapolate.
%2) To plot latest liquid position vs time set position = 1. To
%plot velocity vs time, set position = 0. Note that the end user
%must load the correct OLGA file (containing either velocity or a parameter
%indicating that liquid is present eg holdup.

clear all;
clc;
clf;

d = 0.02;

%loading data from file
OLGA_file_1 = 'C:\Andreas\Master\Matlab\ws_75\OLGA_extract_10_s.txt';

103



OLGA_file_2 = 'C:\Andreas\Master\Matlab\ws_75\video_extract_0.52.txt';

OLGA_data_1 = load(OLGA_file_1);
OLGA_data_2 = load(OLGA_file_2);

%set name for parameters from data set 1
name_1 = 'OLGA';
name_2 = 'Experiment';

%set length of x−axis [s]
xmax = 5;
xmin = 0;

%length of y−axis [m]
ymax_m = 4;
ymin_m = 0;

%length of y−axis [m/s]
ymax_ms = 12;
ymin_ms = 0;

%state the column of velocity in dataset 1
velo_column_1 = 5;

%state the column of velocity in dataset 2
velo_column_2 = 4;

%in the case that the size (number of rows) is unequal choose to cut or
%extrapolate, cut = 1 is cutting of rows to have the same length. This will
%cut a number of rows at the end of the longest datase, ie cutting off in
%time.
cut = 1;
extrapolate = 1 − cut;

%need to store the time vector for the longest data set if extrapolation is
%used
time = 0;

%option to choose between position of velocity input/ output
position = 1;
velocity = 1 − position;

%checking the length of data sets
OLGA_length_1 = size(OLGA_data_1,1);
OLGA_length_2 = size(OLGA_data_2,1);
length_diff = abs(OLGA_length_1 − OLGA_length_2);

%cutting
if cut == 1

if OLGA_length_1 > OLGA_length_2

cut_start = OLGA_length_1 − length_diff + 1;
OLGA_data_1(cut_start:OLGA_length_1,:) = [];
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else

cut_start = OLGA_length_2 − length_diff + 1;
OLGA_data_2(cut_start:OLGA_length_2,:) = [];

end

time = OLGA_data_2(:,1);

end

if extrapolate == 1

if OLGA_length_1 > OLGA_length_2

extrapolate_start = OLGA_length_1 − length_diff + 1;
last_line = OLGA_data_2(end,:);
width = size(OLGA_data_2,2);
zeros_matrix = zeros(length_diff,width);
OLGA_data_2 = [OLGA_data_2; zeros_matrix];
time = OLGA_data_1(:,1);

for i=1:1:width

OLGA_data_2(extrapolate_start:end,i) = last_line(i);

end

else

extrapolate_start = OLGA_length_2 − length_diff + 1;
last_line = OLGA_data_1(end,:);
width = size(OLGA_data_1,2);
zeros_matrix = zeros(length_diff,width);
OLGA_data_1 = [OLGA_data_1; zeros_matrix];
time = OLGA_data_2(:,1);

for i = 1:1:width

OLGA_data_1(extrapolate_start:end,i) = last_line(i);

end

end

end

% %writing the output to file
% filename = ['Comparison_',parameter,'.txt'];
% save(filename, 'OLGA_extract','−ascii','−tabs')
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%storing the horizontal position
OLGA_position_1 = OLGA_data_1(:,2);
OLGA_position_2 = OLGA_data_2(:,2);

%storing velocity
OLGA_velocity_1 = OLGA_data_1(:,velo_column_1);
OLGA_velocity_2 = OLGA_data_2(:,velo_column_2);

%plotting all in one figure, left y−axis horizontal length, right y−axis
%velocity, bottom x−axis time

figure(1)

hl1 = line(OLGA_data_1(:,1),OLGA_data_1(:,2),'Color','r');
hl2 = line(OLGA_data_2(:,1),OLGA_data_2(:,2),'Color','b');
ax1 = gca;
set(ax1,'XColor','k','YColor','k')
xlim([xmin xmax])
ylim([ymin_m ymax_m])

name_1m = [name_1 ' propagation'];
name_2m = [name_2 ' propagation'];

LEGEND(name_1m , name_2m ,'Location','East')
LEGEND BOXOFF

ax2 = axes('Position',get(ax1,'Position'),...
'YAxisLocation','right',...
'Color','none',...
'XColor','k','YColor','k');

hl3 = line(OLGA_data_1(:,1),OLGA_data_1(:,velo_column_1),...
'Color','k','Parent',ax2);

hl4 = line(OLGA_data_2(:,1),OLGA_data_2(:,velo_column_2),...
'Color','g','Parent',ax2);

set(get(ax1(1),'Xlabel'),'String','Time [s]')

set(get(ax1(1),'Ylabel'),'String','Horizontal position [m]')
set(get(ax2,'Ylabel'),'String','Velocity [m/s]')

xlim([xmin xmax])
ylim([ymin_ms ymax_ms])

name_1ms = [name_1 ' velocity'];
name_2ms = [name_2 ' velocity'];

LEGEND( name_1ms , name_2ms ,'Location','SouthEast')
LEGEND BOXOFF

TITLE('Propagation and velocity of liquid vs time')
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