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Abstract

Marine controlled-source electromagnetic (CSEM) method is a non-invasive off-
shore technique used, in association with magnetotelluric and seismic data, for the
study of the oceanographic lithosphere and hydrocarbon reservoir exploration. CSEM
data are often used in optimization processes that produce an electrical resistivity
imaging of the subsurface. CSEM research shows interest for developing high-order
optimization methods, able to achieve faster convergences without investing too much
manual effort building initial inversion models. As a result, 3D CSEM industry has
started a transition from quasi-Newton to Gauss-Newton methods.

The large numerical complexity is a limiting factor when applying the Gauss-
Newton method for the 3D inversion of CSEM data. These problems can involve
O(106) inversion parameters and O(105) forward simulations, resulting in a Jaco-
bian matrix of O(100 TB) and a Gauss-Newton Hessian matrix of O(1 TB). There
are some papers that propose methods to reduce the memory complexity and others
that present schemes to reduce the time complexity. However there is not a proposal
to significantly reduce the total numerical complexity of the 3D Gauss-Newton opti-
mization method without affecting the parameterization of the problem.

The first main contribution of this thesis is a method for obtaining a low-rank
approximation of the Gauss-Newton Hessian matrix that dramatically reduces the nu-
merical complexity of the 3D CSEM Gauss-Newton optimization without altering the
parameterization of the resistivity models. For large-scale surveys, it can reduce the
number of forward simulations between 10-100 times, and it also reduces the memory
complexity, from O(TB) to O(GB). It is based on simulating groups of distant phase-
encoded sources, instead of single-source simulations. The resultant small number
of simulations motivated the development of a matrix free recursive direct solver to
obtain the model updates at each iteration with a reduced memory usage. A study of
the associated cross-talk noise and inversion results validates this proposal.

The second main contribution of this thesis is the introduction, apparently for the
first time in 3D CSEM, of the Newton and the Halley class methods. This opens the
state-of-the-art frontiers to higher-order methods where the computation of a Green
function per model parameter is required. Initially, the numerical complexity of these
methods makes their use unapproachable. In this research it is concluded that it is pos-
sible to apply these methods with the same memory complexity as in a Gauss-Newton
method, and with a contained time complexity. It is proposed the use of a finite-
difference frequency-domain direct solver for on-the-fly computations of the Green
functions, a reduced memory construction of the systems matrices and the modifica-
tion of a trust-region solver to handle the indefiniteness of these matrices. Synthetic
3D CSEM survey inversion results demonstrate the feasibility of this method.
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Chapter 1
Introduction

The aim of this thesis is to develop efficient high-order optimization methods for
the large-scale inversion of three-dimensional (3D) controlled-source electromagnetic
(CSEM) data. The first part of this chapter is an introduction to the main concepts,
motivations and challenges that this PhD research involves. This part is divided into
six subsections: The first three, intended for a general audience, introduce common
concepts of geophysical inversion data, explain the 3D CSEM survey technique, and
summarize the main challenges that a 3D CSEM optimization problem involves; the
following two subsections are focused on the 3D CSEM Gauss-Newton optimization,
and the main papers that present different approaches to reduce its computational
cost; in the last subsection it is discussed the motivation for developing higher order
optimization methods than Gauss-Newton for the inversion of 3D CSEM data. The
last two parts of this chapter contain an explanation of the scope of this thesis, and its
outline.

1.1 Background and motivation

1.1.1 Geophysical data inversion

An important part of geophysics is to understand the subsurface of the earth by making
inferences based on different types of measurements (observed data). These measure-
ments can be based on direct digging (or drilling), or can be based on non-destructive
methods. The data from these last methods depend on the interaction of a physical
field (e.g. gravity, magnetic field, seismic wave-field or electromagnetic field), gener-
ated by a natural or an artificial source, with the physical properties of the subsurface
where it propagates through. In some cases, a simple representation of observed data
is sufficient, but when more detailed information is needed, quantitative models of
the earth need to be estimated. Calculating the (synthetic) data, given a source and
a media, is called the forward problem. Obtaining the media parameters, given the
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1.1 Background and motivation

observed data and the source, is known as the inverse problem.
In general, the objective of a geophysical inverse problems is to find a parameter

model of the earth that is consistent with the observed data. These inverse problems
are formulated as a mathematical optimization problem, where the function to be
optimized (objective function or misfit function) typically considers the differences
between the observed data and the synthetic data calculated for the trial model. These
problems are often ill-posed due to: the number of observed data is limited and usu-
ally contaminated by noise; the mathematical models are simplifications of the true
geophysical phenomena; and the solution of these problems is solved with finite preci-
sion. According to the definition given by Jacques Hadamard, a well-posed problem
has a solution, this solution is unique, and it changes continuously with the initial
condition. Therefore, the objective function often incorporates an additional regu-
larization term, based on a priori information of the geophysical phenomena in the
subsurface, that reduces the ambiguity and increase the stability of the solution. The
foundations of the regularization theory were developed by Andrei N. Tikhonov. An
overview of the different optimization methods for geophysics data inversion can be
found in Zhdanov (2002), Tarantola (2005) and Zhdanov (2009).

1.1.2 3D CSEM survey technique

Measurements of the sub-seafloor electrical resistivity have an important function in
the study of the oceanographic lithosphere, the hydrocarbon (oil and gas) exploration
and reservoir assessment. These data were traditionally collected using wire-line log-
ging of boreholes, a technique successfully introduced in the oil and gas industry by
the Schlumberger brothers (Johnson, 1962). This method involves the significant cost
of drilling test wells into structures about which a priori information is not always
available. The use of a non-invasive geophysical electromagnetic (EM) method repre-
sents a major economic advantage although it is not able to provide the same vertical
resolution, due to the diffusive nature of EM energy propagation (Løseth et al., 2006).

A marine controlled-source electromagnetic (CSEM) survey is an offshore tech-
nique used to map the electrical resistivity of the sub-seafloor. Initially this technique
was used for the study of the oceanographic lithosphere (Constable and Srnka, 2007).
Eidesmo et al. (2002) introduced a technique for the application of CSEM to deter-
mine the presence of hydrocarbon reservoirs. The method is based on the resistivity
contrast between the resistivity (tens of Ωm) of hydrocarbon-saturated layers, and
the surrounding low resistivity (few Ωm) sedimentary layers saturated with aqueous
saline fluids. Nowadays, CSEM data is used in conjunction with magnetotelluric
(MT) data and seismic data (e.g. Hu et al. (2009) and Brown et al. (2012)), demon-
strating the potential to significantly increase drilling success rate (e.g. of the study
of this benefit in Hesthammer et al. (2010) and Fanavoll et al. (2010)). It has also
shown to be effective in field appraisal (e.g. Morten et al. (2011) and Ziolkowski and
Wright (2012)) and in structural imaging applications (e.g. Hoversten et al. (2013)
and Morten et al. (2013)).

14



Chapter 1. Introduction

In a CSEM survey, a horizontal electric dipole (antenna) is towed close to the
seabed, transmitting a high-power low-frequency signal that penetrates in the subsur-
face (figure 1.1). The EM field is attenuated when it propagates through conductive
sedimentary layers, but the presence of resistive layers, like the ones produced by hy-
drocarbon deposits, results in a wave-guide EM propagation (an explanation of this
effect can be found in Mittet and Morten (2013)). This effect makes the detection of
hydrocarbon reservoir possible despite the inherent low resolution of CSEM data. A
grid of receivers deployed on the seafloor measures the EM fields.

Figure 1.1: Representation of a CSEM survey. A vessel is towing an electric dipole (in
yellow and black) close to the seabed while a grid of receivers (white boxes) are recording
electromagnetic measurements. As a pseudo-example of CSEM data inversion results, on the
subsurface section the electrical resistivity information (in light colours) is superimposed to
the geological strata (seismic information in grey lines).

Currently, the most advanced techniques are the full-azimuth three-dimensional
(3D) CSEM surveys (e.g. Fanavoll et al. (2014)). Using the collected data in an
inversion process, it is possible to generate a 3D resistivity map of the subsurface,
with the benefits over one-dimensional (1D) and two-dimensional (2D) techniques, of
imaging the lateral resistivity variations and the resistors situated between towlines.
In full-azimuth 3D CSEM surveys the receivers are taking EM measurements while
the antenna is towed through the whole survey (azimuth data), and not only for those
moments when the antenna is being towed over the receiver line (inline data) like in
lower-dimensional methods. These are measurements of two orthogonal components
of the electric and magnetic fields, for several frequencies (mostly between 0.1 Hz
and 10 Hz). As an example, a realistic 3D CSEM survey can cover an area of 40
km × 40 km using hundreds of receivers. For this example the total amount of data
measurements is about 107 samples (survey data or observed data), when considering
frequency-domain data.

Due to the collaboration with EMGS ASA, this PhD research is focused on the
inversion of 3D CSEM data related to hydrocarbon explorations. However, all the
methods contained in this thesis can also be applied in the inversion of 3D CSEM

15



1.1 Background and motivation

data for its applicability in the study of the oceanographic lithosphere. In some studies
(e.g. Hölz et al. (2015) and Myer et al. (2006)) the use of 3D CSEM data inversion is
essential for having a correct interpretation of the geology.

1.1.3 The optimization problem in 3D CSEM

3D CSEM data inversion is formulated as a local iterative optimization problem due
to the numerical complexity associated when considering regular size surveys. By
comparing full-wave forward modelling simulation results (synthetic data) with the
observed data, an initial resistivity model is iteratively modified with inversion model
updates until the differences between both types of data are sufficiently reduced (fig-
ure 1.2). In this local optimization scheme, the diagonal of the covariance matrix
is commonly used to estimate the confidence in the inverted parameters. Currently,
stochastic optimization of CSEM data, where a global minimum is recovered and an
accurate uncertainty measurement is obtained, is only feasible in small 1D and 2D
problems. In Trainor-Guitton and Hoversten (2010) some of the main practical chal-
lenges of stochastic methods in CSEM are shown.

Figure 1.2: Local optimization scheme for CSEM data.

The first main reason of the numerical complexity associated with 3D CSEM data

16



Chapter 1. Introduction

inversion is the number of (forward) modelling simulations. For each iteration model
in a local optimization method, and for each random sample model in a stochastic
method, it is necessary to compute the synthetic data. In addition, at each iteration
of a local optimization, it is necessary to compute the Green functions involved (an
example in the subsection 1.1.4). In EM, a Green function is a unit dipole moment
source solution of Maxwell’s equations for a given conductivity model.

For performing EM modelling simulations there are examples of solution methods
based on finite-difference frequency-domain (FDFD), finite-difference time-domain
(FDTD), finite-element (FE), finite-volume (FV) and integral equation (IE). A review
of these methods can be found in e.g. Avdeev (2005), Zhdanov (2009) and Börner
(2010). Except for IE, the results for Maxwell equations are obtained by solving large
sparse linear systems. In EM modelling, iterative solvers are typically used to solve
the linear systems due to their moderate computational complexity, though their con-
vergence behaviour and their iteration accuracy are deteriorated in the presence of
large resistivity contrast and non-uniform simulation meshes. On the other hand, di-
rect solvers are robust methods that factorize the system matrix and then efficiently
obtain the right-hand side solutions (RHS) with high accuracy. Due to their large com-
putational complexity and limited scalability, direct solvers have not been considered
for 3D EM simulations. However, as is studied in Grayber and Streich (2012), the
evolution of the direct solvers starts to be feasible for use in moderate size problems
(smaller than typical industrial use).

The other main reason for the numerical complexity of the 3D CSEM data inver-
sion is due to the large number of inversion parameters. As is explained in the fol-
lowing paragraphs, this number is determined by the model discretization, the model
anisotropy considered and the grid decoupling technique applied between the mod-
elling discretization and the inversion parameterization.

The model discretization depends on the dimensions of the survey area, the het-
erogeneity of the survey layout and the source frequencies. These frequencies are
determined based on the maximum depth bellow the mud-line that need to be repre-
sented, the maximum EM wave penetration (the electromagnetic skin-depth for the
lowest frequency propagating at the largest background resistivity), and the smallest
length-scale that need to be describe considering the EM maximum sensitivity (Mittet
and Morten, 2012). As an example, for an area of 40 km x 40 km, a maximum depth
of 5 km bellow mud-line (considering highest background resistivity of 10 Ω m at 0.1
Hz), using regular box-basis functions of 200 m x 200 m x 100 m (for a pixel-based
or cell-based model representation), the model would be discretized into 2 · 106 cells.
In addition, for the modelling simulations it would be necessary to include the cells
corresponding to the water layer and the air layer. These layers are not considered in
the inversion due to their conductivity values are typically known (measured during
the survey).

The anisotropy of the geological formations related to hydrocarbons is commonly
linked to the layers of sedimentary materials. For example, the electrical conductivity
in the parallel direction to a sedimentary layer can be different than in the vertical
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1.1 Background and motivation

direction, due to the influence of the gravity on the deposition. In EM, it is common to
use a tensor of six independent elements (e.g. Weiss and Newman (2002)) to describe
an anisotropic conductivity model σ(r) at position r:

σ(r) =

 σxx(r) σxy(r) σxz(r)
σyx(r) σyy(r) σyz(r)
σzx(r) σzy(r) σzz(r)

 . (1.1)

As it is shown in Tompkins (2004), Tompkins (2005) and Ellis et al. (2011), it is im-
portant to consider the electrical anisotropy to avoid wrong interpretation of CSEM
data. In many situations of CSEM hydrocarbon explorations, horizontally layered
sediments that can exhibit vertical transversal isotropy (VTI) on a macroscopic scale
appear. This allows us to use the simplification that only considers three elements in
eq. 1.1, σxx(r) = σyy(r) = σH(r) and σzz(r) = σV (r). For the previous paragraph
model example, discretized into 2 · 106 cells, this simplification involves two conduc-
tivity models in the optimization (σH(r) and σV (r)). In the case of using the same
mesh for the parameterization, that example results in a total of 4 · 106 inversion pa-
rameters (unknowns). Note that another grid decoupling technique could be applied,
for example combining several discretization cells in a single inversion parameter,
based on the expected resolution of the data.

1.1.4 3D CSEM Gauss-Newton optimization

The state-of-the-art of CSEM data inversion has experienced an evolution from gra-
dient based optimization methods, like non-linear conjugate gradient (e.g. Gribenko
and Zhdanov (2007), Commer and Newman (2008)) and quasi-Newton techniques
(e.g. of the use of L-BFGS in Plessix and Mulder (2008)), to Gauss-Newton methods
(e.g. Habashy and Abubakar (2004), Liu et al. (2008) and Abubakar et al. (2009)).
The main interest for developing higher-order inversion methods is to achieve faster
convergence rates without the need of too much manual effort building complex ini-
tial models. High-order methods provide more accurate and efficient inversion paths
to the local minima. In EM problems, it is easy to find examples of the use of the
Gauss-Newton scheme when having a small number of unknowns as when using 2D
models (e.g. Abubakar et al. (2005)) or when solving small size 3D problems (e.g.
of a magnetotelluric application in Chen et al. (2002), and a CSEM application in
Sasaki (2013)). Still, the use of the Gauss-Newton scheme in industrial-survey size
3D CSEM problems is not so common due to the numerical complexity that it in-
volves, as it is shown in the next paragraphs (details in the following chapters).

The inversion of 3D CSEM data is formulated as a constrained non-linear least-
squares optimization problem

σ? = arg min
σ∈M

ε(σ), (1.2)

where σ is a discrete parameterization of the 3D conductivity model, M represents

18



Chapter 1. Introduction

the set of possible models compatible with a priori information, and

ε(σ) = εD(σ) + λ εR(σ), (1.3)

is the cost function. This cost function is formed by the regularization misfit term εR,
the “trade-off factor” λ, and the data misfit term

εD (σ) =
∑
κ

dκd
∗
κ =

∑
κ

Wκ∆Fκ (Wκ∆Fκ)∗. (1.4)

The short hand notation κ = (F, i, f, rrx, rtx) uniquely labels a measurement, ∗ is
the complex conjugate, F represents a field (F = E for electric and F = H for
magnetic), i are the spatial components (x, y) of the field recordings, f are the fre-
quencies, rrx is a receiver position, and rtx is a source position. Here d is a vector that
contains Nκ data-misfit residuals. Wκ is a datum weight (typically inverse standard
deviation) and ∆Fκ = F

Synth
κ (σ)−F Obs

κ represents the difference between synthetic
and observed fields.

The regularization term εR(σ) introduces a priori information about the solution
model σ? (see more details in Zhdanov (2009) and in Portniaguine and Zhdanov
(1999)). For example, the regularization can incorporate information on model con-
ductivity (εap model), model smoothness (εgrad) and conductivity anisotropy (εap aniso),

εR (σ) = εap model (σ) + εgrad (σ) + εap aniso (σ) . (1.5)

In a local optimization scheme (figure 1.2), the solution σ∗ is obtained iteratively,
starting from an initial guess σ(0) and updating the model with a new step ∆σ(k) at
each iteration (σ(k+1) = σ(k) + ∆σ(k)). The equations (details in chapter 5) for
getting these model updates in a Gauss-Newton scheme are:

H(k) ∆σ(k) = −g (k), (1.6)

H(k) = H(k)
D + H(k)

R , (1.7)

g (k) = g
(k)
D + g

(k)
R . (1.8)

HD is the Gauss-Newton data Hessian matrix, HR is the Gauss-Newton regularization
Hessian matrix, gD is the data gradient vector and gR is the regularization gradient
vector. The Gauss-Newton Hessian matrix H ≈ ∇2ε is a real N × N matrix, and
the gradient g = ∇ε is a real vector of N elements. In this scheme, HD involves the
largest computational complexity since it is based on the Jacobian matrix:

HD nn′ =
∑
κ

[JnκJ ∗n′ κ + J ∗nκJn′ κ], (1.9)

Jκn = Wκ
∂F

Synth
κ (σ)

∂σn
. (1.10)

The Jacobian J is a Nκ × N complex matrix. As is explained in the following
chapters, its straightforward computation requires many Green functions. They are
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obtained in NSim forward modelling simulations, one per each receiver and source
position, for the different field components:

NSim = NF NiNrx︸ ︷︷ ︸
NSimRx

+ Ntx︸︷︷︸
NSimTx

in case of using a FDTD solver; (1.11)

NSim = NF NiNrxNf︸ ︷︷ ︸
NSimRx

+NtxNf︸ ︷︷ ︸
NSimTx

in case of using a FDFD solver. (1.12)

The notation Na denotes the number of unique elements of index a. Note that the
number of source positions Ntx can be several order of magnitude larger than the
number of receiver positions Nrx.

The data gradient also involves the computation of Green functions, however it
can be efficiently computed in 2 ·NSimRx using the adjoint scheme described in Støren
et al. (2008). Therefore the computational cost per iteration when applying a gradient
based method in a 3D CSEM problem is much smaller than when using the Gauss-
Newton method.

The computation of the regularization terms HR and gR does not need modelling
simulations. This cost is really insignificant in comparison to the one associated to
the data terms (see Zhdanov (2009) for details).

In addition to the number of forward modelling simulations, another main chal-
lenge of applying Gauss-Newton in a large-scale 3D CSEM problem is the memory
requirement associated with a large number of Green functions, and the sizes of J
and H. For the previous subsections 3D CSEM survey example, where the number
of inversion parameters is 4 · 106, and the number of data residuals is 107, an explicit
computation of the Jacobian requires 291 TB (using 4 bytes precision), while the stor-
age of the Hessian matrix requires 29.1 TB (using 4 bytes precision and taking into
account the matrix symmetry). Moreover, the solution of a dense matrix linear-system
(eq. 1.6) when using a large number of inversion parameters, precludes the application
of a direct solver and involves a significant time complexity.

1.1.5 Reducing the computational cost of 3D CSEM Gauss-Newton

The interest in applying higher order methods, for the inversion of regular-size survey
3D CSEM data, has motivated the research on techniques to reduce the high numerical
complexity associated with the application of the Gauss-Newton method. The follow-
ing paragraphs is an overview of the main works that have been done in relation with
this topic.

In Li et al. (2011), the authors propose a compressed implicit Jacobian calculation
that reduces the memory complexity involved in a 3D CSEM Gauss-Newton optimiza-
tion, at the cost of increasing the computational time. It uses the conjugate-gradient
line-search (CGLS) method for solving eq. 1.6, but avoids the explicit construction of
the Hessian or the Jacobian matrix. It performs the products Ju = v and J Tv in an
efficient way. Firstly it multiplies the Green functions relative to receiver positions by
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the iteration vector a, and then reusing these intermediate results in the product J Tv.
The memory required is O((NSimRx + NSimTx) · N), which is less than in the case of
storing the Hessian or Jacobian matrix when Nκ < N . In addition this paper applies
the adaptive cross approximation (ACA, Bedendorf (2000)) to improve the efficiency
of the proposed method. Based on the smoothness of the fields, the ACA approxi-
mation allows a compress representation of the field matrices that form the Jacobian
matrix.

Abubakar et al. (2012) presents a model-compression scheme, extended for 3D
models in Lin et al. (2013), that is able to reduce the computational complexity (time
and memory) of the Gauss-Newton method by at least one order of magnitude. This
proposal consists of transforming the cell (pixel) basis representation of the resistivity
model into another discrete-basis function representation with compressive capabil-
ities. Based on the limited resolution of CSEM, it reduces the number of inversion
parameters by truncating these basis functions without significantly affecting the in-
version results. The authors consider the discrete Fourier transform (DFT) and the dis-
crete wavelet transform (DWT) for the Haar wavelet (Haar, 1910) and the Daubechies
4 wavelet (Daubechies, 1992). A comparison of synthetic and real data inversion
results is presented, where the wavelet transform shows the best performance.

CSEM data can be acquired in the frequency-domain (fCSEM) or in the time do-
main (tCSEM). Although both responses can be related to each other using the Fourier
transform, a transformation of tCSEM data to the frequency domain requires an ap-
propriated preprocessing (e.g. Zach et al. (2008)) that ensures a correct data interpreta-
tion. When trying to invert tCSEM data in the time-domain (i.e. without transforming
the data to the frequency-domain), the number of data samples increases several order
of magnitude with respect to fCSEM data. Zaslavsky et al. (2013) presents a method
that allows to perform a 3D tCSEM data Gauss-Newton inversion with a similar cost
of inverting fCSEM data. This method uses a space-time data compression in asso-
ciation with a fast 3D forward solver that is based on the rational Krylov subspace
reduction (RKSR) algorithm. RKSR is a method for the solution of non-dispersive
Maxwell’s systems, based on the projection of a system of time-convolution equa-
tions onto a small subspace of the Laplace domain solutions.

These previous works are good alternatives to reduce the computational cost of
3D CSEM data inversion when using the Gauss-Newton method. However these im-
provements are not always enough when trying to run a large-scale 3D CSEM inver-
sion. For the example survey described in this introduction, with 4 · 106 inversion
parameters and 107 data residuals (in the frequency-domain), the implicit Jacobian
representation (Li et al., 2011) significantly reduces the required memory but it would
also increase the time complexity several orders of magnitude. For the same survey
example, if using the model-compression described in Lin et al. (2013), a reduction
of one order of magnitude of the memory complexity would result in a Hessian ma-
trix of 2.91 TB, far beyond a common computer capacity (not considering clusters).
Moreover, the solution of the equation system (eq. 1.6) at each iteration involves an
important computational cost too. The development of a simple method for obtaining
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a pre-conditioner would help to reduce that cost.
As is explained in this introduction, the numerical complexity of a 3D CSEM data

Gauss-Newton inversion is also due to the number of forward modelling simulations
required. The development of faster modelling solvers tries to reduce this complexity.
Still there are more options to explore as reducing the number of required simulations,
for example based on a stochastic source selection of sources to be simulated at each
iteration.

1.1.6 Higher order optimization methods than Gauss-Newton

The same arguments that motivate the development of the Gauss-Newton optimization
method for the inversion of CSEM data could be used to justify the research on higher
order methods. It is well known that higher order methods than Gauss-Newton are not
typically efficient due to the relation cost versus convergence rate. However, there are
problems where properties like system matrix (tensor) sparsity can make it affordable
(Gundersen and Steihaug, 2011).

As it was previously commented, Gauss-Newton optimization is the highest or-
der method typically in use for inversion of 3D CSEM data. It would be useful to
explore the possibilities of a higher order method, in order to compare its inversion
results with Gauss-Newton. Although these implementations initially might not have
a direct application in the industry context, they would help to evaluate the accuracy
of the Gauss-Newton convergence paths. In addition, it would contribute to the un-
derstanding of the numerical complexity and performance of higher order methods in
3D CSEM.

Beyond the Gauss-Newton method, it is necessary to compute higher order deriva-
tives of the residuals with respect to the model parameters. These derivatives require
the computation of tensor Green functions for the entire domain, i.e. compute the elec-
tromagnetic field when situating a unit dipole moment source at any spatial position
in the model. Note that for these methods, these calculations represent a challenge
since the number of Green functions is several order of magnitude larger than in the
Gauss-Newton method where the Green functions are computed placing a unit dipole
moment source only at each source and receiver spatial position. However, the perfor-
mance achieved by current direct solvers (Grayber and Streich, 2012) starts to make
computations of a large number of Green functions feasible.

As is detailed in chapter 5, another challenge is the memory cost required to store
the large number of Green functions and the dense multi-dimensional matrices that ap-
pear in higher order methods than 3D CSEM Gauss-Newton. Moreover, these meth-
ods have the difficulty of solving linear equation systems with indefinite matrices.
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1.2 Scope

The forward modelling simulations involved in a 3D CSEM data Gauss-Newton in-
version is one of the main contribution to its computational cost. The first part of this
PhD research is focused on the inversion aspects of the problem and not specifically
on the modelling solvers. There is an associated research project, also funded through
PETROMAKS, that studies efficient modelling approaches.

The computational complexity of a large-scale 3D CSEM data Gauss-Newton in-
version is due to: a) The large number of forward modelling simulations; b) The large
number of inversion parameters; c) Its distributed computation.

The aim of this research is to achieve an efficient inversion algorithm that ideally
reduces the resource requirements in these issues. This research is primarily focused
on the improvement of those aspects related to a) and b).

The second part of this PhD research is to develop even higher-order methods
than Gauss Newton for 3D CSEM problems, as Newton and Halley class optimization
methods. These implementations represent a challenge because of the large numerical
complexity involved.

The development of high-order optimizations methods beyond the Gauss-Newton
approximation is useful to have the possibility of comparing their results with the ones
obtained with current implementations of Gauss-Newton.

1.3 Outline

This PhD thesis is divided into 6 parts: an introduction, four chapters, each one cor-
responding to an individual paper, and a future work description.

This introduction (chapter 1) includes an explanation of the topics that are going
to be addressed, and the motivation of this PhD research, based on the interest for
developing efficient high-order 3D CSEM data inversion schemes. It shows the large
numerical complexity that a 3D CSEM data Gauss-Newton (GN) inversion involves,
and a summary of the main previous papers that other authors have done to cope with
it. Moreover, the research on higher order optimization methods than 3D CSEM data
Gauss-Newton inversion is motivated. The scope of this thesis is also defined in this
chapter.

In order to reduce the large numerical complexity that a 3D CSEM GN inversion
involves, in chapter 2 a low-rank approximation to the GN data Hessian matrix is
proposed. This approximation is based on the simulation of phase-encoded groups
of sources instead of incorporating sources individually. The idea is similar to the
”super-shot” technique that is applied in seismic full-wave inversion. The feasibility
of the approach is demonstrated by numerical examples, showing the potential of
reducing the number of forward simulations and memory use (Green functions and
Jacobian storage) by two orders of magnitude.

In chapter 3 the presented low-rank approximation to the GN data Hessian matrix
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is further researched. Several strategies to form the group of sources are studied and it
is concluded that grouping based on maximum distance has an eigenvalue distribution
closer to the standard GN data Hessian matrix one. It is also described how the number
of groups of sources determinates the reduction of the computational cost, and how
the approximation error can be reduced by increasing the number of source groups.

A large-scale 3D CSEM data GN inversion could potentially benefit the low-rank
method introduced in the two previous chapters. For these purpose, additional re-
search is necessary, mainly to determinate how to cope with the large number of
inversion parameters involved in a realistic survey, and to validate this low-rank ap-
proach with synthetic and realistic CSEM data inversions. In chapter 4, it is studied
all the aspects relative to the practical use of the low-rank approximation to the GN
data Hessian matrix in a realistic problem. This chapter introduces a matrix free re-
cursive direct solver that allows to reduce the memory complexity associated with a
large number of inversion parameters. Moreover, an approximation of the regulariza-
tion Hessian matrix is suggested, demonstrating a dramatic reduction on the memory
use. This work includes an analysis of the influence of the number of distant-source
groups in the eigenvalue decomposition of the GN data Hessian matrix, and a quali-
tative analysis of the introduced cross-talk error. Synthetic and realistic survey data
results demonstrate the feasibility of this low-rank method.

To date, the 3D CSEM GN inversion is the highest-order method in use. The
acquired knowledge and the results presented in the previous chapters, together with
the interest for developing methods able to achieve faster convergence rates, drove this
PhD research to explore beyond state-of-the-art frontiers of 3D CSEM inversion. The
paper presented in chapter 5 is focused on the development of the Newton and Halley
class methods that so far does not seem to have been applied in 3D CSEM. Higher-
order methods than GN are not generally considered efficient due to the computational
cost involved. As it is shown in this chapter, higher-order methods than GN require
one forward modelling simulation when a unit dipole moment source is situated in
every spatial position (tensor Green functions), and the construction of large system
of equations. It is shown that the use of forward modelling direct solvers, an efficient
construction of the different linear system elements, and a trust-region solver able
to handle negative curvature of the system matrices, allow to apply the Newton and
Halley class methods for a moderate size 3D CSEM data inversion (∼ 50000 inversion
parameters). Numerical simulation results show that the different approaches drives
the convergence through different paths that may end in different minima.

Finally, the chapter 6 describes several directions for future extensions of this
research. Though this work proposes a solution for the main challenges that a state-
of-the-art large-scale 3D CSEM data inversion presents, there are some tests and val-
idations, beyond the scope of this PhD research, that can be useful to explore.
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Chapter 2
A low-rank approximation to the
Hessian for 3D CSEM
Gauss-Newton Inversion

As it is explained in chapter 1, the main challenge when addressing a 3D CSEM data
Gauss-Newton inversion is the large numerical complexity involved. In this chapter
it is introduced a low-rank approximation to the Gauss-Newton data Hessian matrix
that has the potential of significantly reduce that complexity.
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Abstract: Use of controlled-source electromagnetics in increasingly challenging ex-
ploration applications has led to the requirement for more powerful 3D inversion ap-
proaches. For 3D cases, application of Gauss-Newton algorithms is limited by the
computational cost required to compute the Hessian matrix and solve for the model
update. We consider a low-rank approximation to the Hessian matrix, which has the
potential to reduce the numerical complexity drastically. The scheme is based on
phase encoding groups of sources instead of incorporating sources individually. We
demonstrate the feasibility of the approach by numerical examples and present an
analysis of the errors introduced by the approximation.
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2.1 Introduction

2.1 Introduction

The application of 3D controlled-source electromagnetics (CSEM) to image and char-
acterize targets in increasingly challenging environments has motivated the develop-
ment of more powerful inversion methods. The target response often represents a
small perturbation of the measured signal response from complex background resis-
tivity variations. When the geological understanding is limited, we require the 3D
CSEM inversion to reconstruct from the data not only the potential hydrocarbon reser-
voir target, but also an accurate representation of the background resistivity variation
and the structural framework.

The Gauss–Newton optimization algorithm is known to work well for inversion
of CSEM data when assumptions of lower spatial dimensionality can be applied
(Abubakar et al., 2006; Mittet et al., 2007). When a 3D model description is required,
and when the input from state-of-the-art 3D acquisition is to be used, the numeri-
cal complexity of the Gauss–Newton algorithm can be very large (Abubakar et al.,
2009; Sasaki, 2011). The large size of the Jacobian and Hessian matrices, as well
as the number of 3D forward simulations can be a severe limitation. This has been
addressed by several authors considering schemes to reduce the numerical cost by e.g.
model reparameterization (Lin et al., 2013), and input data decimation (Schwarzbach
and Haber, 2011).

Gradient-based approaches to 3D CSEM inversion, like conjugate-gradient and
quasi-Newton (Mackie et al., 2007; Støren et al., 2008), are less computationally de-
manding, and are now commonly used. However, these approaches are most accurate
when a good background model has been built. The construction of the background
model can be a demanding task if the geology is complex and if little other geophysi-
cal data is available.

In this paper we present a Hessian approximation based on the superposition of
phase-encoded sources. This approach leads to a low-rank representation of the Hes-
sian matrix, and alleviates the computational cost of constructing and storing this
matrix as well as the solution of the Gauss–Newton equation. We show by numerical
examples how the approximation is able to capture important features of the Hes-
sian, at a numerical cost that is up to two orders of magnitude smaller than the exact
calculation.

2.2 Gauss–Newton optimization and Hessian approximation

The inversion of CSEM data is formulated as an optimization problem
σ = arg minσ∈M ε(σ), where σ is a 3D conductivity model in the setM of models
compatible with a priori information, and ε is the cost function. The cost function
includes both regularization terms and a data misfit term,

εData (σ) =
∑

F,i,f,rrx,rtx

∣∣WF
i (rrx|rtx, f) ∆Fi (rrx|rtx, f ;σ)

∣∣2 . (2.1)
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Here ∆F = FObs − F Synth represents the difference between observed and synthetic
fields (F = E for electric and F = H for magnetic), W is a datum weight (typically
inverse measurement uncertainty), i are the spatial components (x, y) of the field
recordings, f are the frequencies, rrx is a receiver position, and rtx is a source position.
The shorthand notation κ = (F, i, f, rrx, rtx) will uniquely label a measurement.

The non-linear optimization problem is solved by iteratively updating the conduc-
tivity model. The Gauss–Newton equation for model updates ∆σ is H ∆σ = −g
where H = J†J + c.c. is the Hessian matrix constructed from the Jacobian matrix J,
and g =

∑
κWκ∆F ∗κ (J)κ+ c.c. is the model parameter gradient of the cost function.

The c.c. denotes complex conjugated term. The Jacobian is a complex N ×M matrix
where N is the number of data samples, and M is the number of model parameters.
The Jacobian can be constructed from Green functions,

(J)κ,r = WF
i (rrx|rtx, f)

∑
m

GF,Ji,m (rrx|r, f)
∑
n

GE,Jm,n (r|rtx, f) Jn (rtx, f) , (2.2)

where r is the position in the model, GF,Jm,n denotes the Green function for field F,
componentm, from a unit electric current source in direction n, and Jn is a component
of the source (m,n = x, y, z). It is straightforward to generalize the expression in eq.
2.2 to the anisotropic and discrete case. From this expression, we see that explicit
construction of the Jacobian requires the Green function associated with every source
position rtx to be calculated. The Hessian matrix is a real M ×M matrix, with rank
given by the number of rows in the Jacobian, i.e. rank(H) = 2 NF Nf Ni Nrx Ntx
(Grayver et al., 2013). Here, and throughout, the notation Na denotes the number of
unique elements of index a. For a state-of-the-art 3D CSEM survey and with a realistic
model representation, the numerical complexity involved with the construction of H
and the solution for the model update can be very large. The number of forward
solutions required can be of order 104, and the dense linear system for ∆σ can be of
size 106 × 106.

In this paper, we consider a low-rank approximation where sources in eq. 2.2 are
combined after encoding with a random phase factor, i.e. we construct∑

κ∈g eiφκ(J)κ for a group of sources g associated with a receiver channel, and where
φκ are uniformly distributed random numbers in the interval [0, 2π). The number of
source groups Ng and the grouping scheme will be discussed below. Following this
approach, the factors of J associated with the sources in a source group and a specific
receiver channel can be calculated from a single simultaneous-source (super-shot)
forward solution of the Maxwell equations. We denote the output of such simulation,

G̃Fi,m,rrx,g (r, f) =
∑

n, rtx∈g
WF
i (rrx|rtx, f) Jn (rtx, f) eiφF,i,rtx,f GE,Jm,n (r|rtx, f) . (2.3)

The approximate Hessian matrix H̃ following from the Jacobian constructed in this
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approach becomes,

H̃(r, r′) =
∑

F,i,f,rrx,g

[∑
m

GF,Ji,m (rrx|r, f) G̃Fi,m,rrx,g (r, f)

]
× (2.4)

[∑
n

GF,Ji,n
(
rrx
∣∣r′, f) G̃Fi,n,rrx,g (r′, f)

]∗
+ c.c.

The rank of the approximation is given by the number of terms in the outer sum,
i.e. rank(H̃) = 2 NF Ni Nf Nrx Ng. Note that both the rank and the storage
requirement to construct H̃ scale by Ng instead of Ntx as for H. The reduction in
numerical complexity from the approximation is described below, but it is realistic that
the ratioNtx/Ng can be of order 10−100 meaning a dramatic decrease in complexity.
Consider now the errors introduced by the approximation to the Hessian in eq. 2.4.
Due to the summation over source positions in G̃, the approximation will include
terms involving two different source positions. Such terms are not present in H, see
figure 2.1.

Figure 2.1: (a) Diagram representing terms included in the Hessian H. Arrows correspond
to Green functions, with reverse directions indicating complex conjugation. Current factors
WF
i (rrx|rtx, f) Jn (rtx, f) eiφF,i,rtx,f are associated with source positions. (b) Diagram rep-

resenting the additional cross-talk terms introduced into H̃, where two separate source posi-
tions give a contribution.

We refer to these errors as “cross-talk” and denote their contribution η, such that
H̃ = H + η. The source-diagonal terms, involving only a single rtx, are the terms
that make up the exact Gauss–Newton Hessian H. The random phase-factors eiφκ

introduced in eq. 2.3 will cancel in the source-diagonal terms since they enter as an
absolute value. However, for the cross-talk terms, where two different source points
are involved, the phase factors remain and act to suppress the cross-talk in the outer
summation in eq. 2.4. This is similar to applications of phase encoding in seismic
modeling, see e.g. Bansal et al. (2013). The number of source-diagonal terms con-
tributing to H is proportional toNtx. The number of cross-talk terms contributing to η
will scale with the number of sources as N2

tx (assuming Ng = 1). However, the mag-
nitude |η| should scale linearly in Ntx due to the random phase of the cross-talk terms
from the eiφκ factors, and by analogy to a Gaussian random walk. Further, the number
of significant terms contributing to η should be less than N2

tx due to the exponential
decay of the Green functions for cross-talk terms where |rtx − r′tx| is large. Thus
the magnitude |η| scales by the number of sources in a source group as (Ntx)α with

34



Chapter 2. A low-rank approximation to the Hessian for 3D CSEM Gauss-Newton

α < 1. In summary, the asymptotic behaviour of the approximation is feasible since
limNtx→∞ |η|/|H| = 0. We can reduce the error of the approximation by increasing
the number of source groups Ng. In fact, using the maximum Ng = Ntx makes H̃
identical to H, but in this case there is no reduction in computational cost. We can
optimize the approximation by constructing the source groups with maximum separa-
tion between the spatial locations of sources. In this case, each cross-talk contribution
shown i figure 2.1 (b) will be smaller compared to a source-diagonal contribution in
figure 2.1 (a) by the decay of the Green functions over distance |rtx − r′tx|.

The approximation H̃ to the Hessian will be better for some parts of the matrix
than others. A good implementation into an inverse scheme can use the approxima-
tion where the errors are below tolerance, and use the Gauss–Newton Hessian when
accuracy is critical. In a standard Gauss–Newton implementation, the number of for-
ward computations, Nsim, is mainly driven by the number of source Green functions
needed, that is Nsim ∼ Ntx. Likewise, the memory needed to store the Jacobian ma-
trix scales linearly with Ntx. When the Hessian matrix is built using source groups
and following the approach described above, both the number of simulations and the
memory requirements for the Jacobian scale as Ng instead of Ntx. The low-rank ap-
proximation allows a Hessian representation using considerably less memory when
Ng is small by storing the quantities in square brackets in eq. 2.4. In addition to the
savings on number of forward solutions and memory requirements, we expect that
solving the Gauss–Newton equation can be done very efficiently by exploiting the
low-rank property of the Hessian matrix in eq. 2.4.
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2.3 Results

2.3 Results

In this section we show model updates computed for an example CSEM survey, using
both the Gauss–Newton update and the approximation scheme described above. In
the example, the inversion parameterization is a regular grid with cell size 200 m ×
200 m × 100 m and the total number of cells is 28275. The survey layout is detailed
in figure 2.2 with a total of 10500 data samples.

(a) z = 1500 m

(b) y = 3000 m

Figure 2.2: True model and survey layout for the example CSEM survey. The water con-
ductivity is 4 S/m, and the water depth is 500 m. A resistor is located at 1.5 km depth, with
dimensions 3 km × 2 km × 0.1 km, and conductivity 0.02 S/m. The formation conductivity
is 1 S/m. There are 5 towlines and 25 receivers recording Ex and Ey at 0.25 and 1.0 Hz. The
source distance is 300 m along towlines.
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(a) H̃ ∆σ = −g

(b) H ∆σ = −g

(c) ∆σ = −g

Figure 2.3: Model updates ∆σ at y = 3000 m.
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2.4 Conclusions

The Gauss–Newton equation was solved using a conjugate gradient method with
a small stabilizer and an initial model with the correct background conductivity. Fig-
ure 2.3 shows the solution for three cases using (a) the approximate Hessian matrix
H̃, (b) the exact Gauss–Newton Hessian matrix H, and (c) steepest descent (H→ 1).
The approximate Hessian was obtained using one source group per receiver channel
(Ng = 1). Comparing (a) with (b) and (c), we see that the solution to the Gauss–
Newton equation with the approximate Hessian matrix is qualitatively more similar to
a solution with the exact Hessian matrix than a steepest descent solution. In particu-
lar, much of the sensitivity information in H remains in H̃ as seen at depth. Table 2.1
shows key characteristics for the computational cost of inversion for the example sur-
vey as well as for a larger, more realistically sized 3D CSEM survey. As is shown in
the table, the number of forward simulations is reduced with a factor 2.6, however in
a larger survey the reduction in computational cost can be much larger while keeping
the error at the same level.

Case Numerical cost Standard GN Approximate H̃ Ratio
Example Forward simulations 260 100 2.6
Example Jacobian memory 4.4 GB 43.1 MB 105
Realistic Forward simulations 11800 1000 11.8
Realistic Jacobian memory 127.4 TB 68.7 GB 1900

Table 2.1: Computational cost comparison for exact Gauss–Newton and the approximation
scheme, for the simple example case shown in figure 2.2 and figure 2.3, as well as a large-scale
realistic survey.

The data for the realistic survey in table 2.1 were obtained from a survey area of
30 km×20 km×4 km, with 10 towlines at 2 km line separation and a source distance
of 100 m along the towlines. In total we obtain 5700 source positions recorded at 100
receiver sites, measuring the horizontal components of electric and magnetic fields at
4 frequencies. The same discretization as in the smaller example is assumed, for two
anisotropy components. The survey has a total of 14.59 million data samples. Using
three source groups (Ng = 3) we keep the simultaneous source separation at 300 m
such as in the smaller example survey discussed above. The size of the Hessian will
be 2.6 TB, but the Jacobian representation in the approximation scheme offers a 40-
fold reduction in size. The approximation error, η, could be reduced by increasing the
number of source groups, but the computational cost would increase.

2.4 Conclusions

We have described a low-rank approximation to the Hessian for Gauss–Newton 3D
inversion of CSEM data. The scheme is based on superposition of phase-encoded
sources, and we have demonstrated the potential to significantly reduce both the num-
ber of forward simulations and memory requirements for inversion. We thank Re-
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search Council of Norway (PETROMAKS project 217223) and EMGS ASA for sup-
porting this work.
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Chapter 3
Efficient computation of approximate
low-rank Hessian for 3D CSEM
inversion

This chapter is a continuation of chapter 2 where a low-rank approximation to the
Gauss-Newton data Hessian matrix is introduced. In this case, several strategies to
form the group of sources are studied and it is also described how the number of
sources determinates the reduction of the computational cost and the approximation
error.
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3.1 Introduction

The application of 3D controlled-source electromagnetics (CSEM) to image and char-
acterize targets in increasingly challenging environments has motivated the develop-
ment of more powerful inversion methods. The target response often represents a
small perturbation of the measured signal response from complex background resis-
tivity variations. When the geological understanding is limited, we require the 3D
CSEM inversion to reconstruct from the data not only the potential hydrocarbon reser-
voir target, but also an accurate representation of the background resistivity variation
and the structural framework.

The Gauss–Newton optimization algorithm is known to work well for inversion
of CSEM data when assumptions of lower spatial dimensionality can be applied
(Abubakar et al., 2006; Mittet et al., 2007). When a 3D model description is required,
and when the input from state-of-the-art 3D acquisition is to be used, the numeri-
cal complexity of the Gauss–Newton algorithm can be very large (Abubakar et al.,
2009; Sasaki, 2011). The large size of the Jacobian and Hessian matrices, as well
as the number of 3D forward simulations can be a severe limitation. This has been
addressed by several authors considering schemes to reduce the numerical cost by e.g.
model reparameterization (Lin et al., 2013), and input data decimation (Schwarzbach
and Haber, 2011). Gradient-based approaches to 3D CSEM inversion, like conjugate-
gradient and quasi-Newton are less computationally demanding, and are now com-
monly used (Mackie et al., 2007; Støren et al., 2008). However, these approaches are
most accurate when a good background model has been built. The construction of
the background model can be a demanding task if the geology is complex and if little
other geophysical data is available.

In this paper we present a Hessian approximation based on the superposition of
phase-encoded sources. This approach leads to a low-rank representation of the Hes-
sian matrix, and alleviates the computational cost of constructing and storing this
matrix as well as the solution of the Gauss–Newton equation. We show by numerical
examples how the approximation is able to capture important features of the Hessian,
at a numerical cost that is up to two orders of magnitude smaller than the exact cal-
culation. The low-rank approximation was introduced by Amaya et al. (2014) and is
here expanded to include a more detailed consideration of the grouping of sources and
the effect the grouping has on accuracy and on forward modeling.

3.2 Gauss–Newton optimization and Hessian approximation

The inversion of CSEM data is formulated as an optimization problem

σ = arg min
σ∈M

ε(σ), (3.1)

where σ is a 3D conductivity model in the setM of models compatible with a priori
information, and ε is the cost function. This cost function includes both regularization
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terms and data misfit terms that are dependent on the observed data,

εData (σ) =
∑

F,i,f,rrx,rtx

∣∣WF
i (rrx|rtx, f) ∆Fi (rrx|rtx, f ;σ)

∣∣2 . (3.2)

Here ∆F = FObs − F Synth represents the difference between observed and synthetic
fields (F = E for electric and F = H for magnetic), W is a datum weight (typically
inverse measurement uncertainty), i are the spatial components (x, y) of the field
recordings, f are the frequencies, rrx is a receiver position, and rtx is a source position.
The shorthand notation κ = (F, i, f, rrx, rtx) will uniquely label a measurement.

The non-linear optimization problem is solved by iteratively updating the conduc-
tivity model. The Gauss–Newton equation for model updates ∆σ is H ∆σ = −g
where

H = J†J + c.c. (3.3)

is the Hessian matrix constructed from the Jacobian matrix J, and

g =
∑
κ

Wκ∆F ∗κ (J)κ + c.c. (3.4)

is the model parameter gradient of the cost function. The c.c. denotes complex conju-
gated term. The Jacobian is a complex N ×M matrix where N is the number of data
samples, and M is the number of model parameters. The Jacobian can be constructed
from Green functions,

(J)κ,r =WF
i (rrx|rtx, f)

∑
m

GF,Ji,m (rrx|r, f)×
∑
n

GE,Jm,n (r|rtx, f) Jn (rtx, f) ,

(3.5)

where r is the position in the model, GF,Jm,n denotes the Green function for field F ,
componentm, from a unit electric current source in direction n, and Jn is a component
of the source (m,n = x, y, z). It is straightforward to generalize the expression in eq.
3.5 to the anisotropic and discrete case. From this expression, we see that explicit
construction of the Jacobian requires the Green function associated with every source
position rtx to be calculated.

The gradient in eq. 3.4 can be computed efficiently and without explicitly con-
structing the Jacobian by the use of adjoint state modeling. In this case, the factors
Wκ∆F ∗κ are used as the source strength in simultaenous source simulations for each
receiver component after the synthetic data has been calculated. An implementation
of such approach is described in Støren et al. (2008).

The Hessian matrix is a real M ×M matrix, with rank given by the number of
rows in the Jacobian (Grayver et al., 2013), i.e.

rank(H) = 2 NF Nf Ni Nrx Ntx. (3.6)
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3.3 Source grouping strategies

Here, and throughout, the notationNa denotes the number of unique elements of index
a. For a state-of-the-art 3D CSEM survey and with a realistic model representation,
the numerical complexity involved with the construction of H and the solution for the
model update can be very large. The number of forward solutions required can be
of order 104, and the dense linear system for ∆σ can be of size 106 × 106. In this
paper, we consider a low-rank approximation where sources in eq. 3.5 are combined
after encoding with a random phase factor, i.e. we construct

∑
κ∈s eiφκ(J)κ for a

group of sources s associated with a receiver component, and where φκ are uniformly
distributed random numbers in the interval [0, 2π). The number of source groups Ns

and the grouping scheme will be discussed below. Following this approach, the factors
of J associated with the sources in a source group and a specific receiver component
are calculated from a single simultaneous-source (super-shot) forward solution of the
Maxwell equations. We denote the output of such simulation,

G̃Fi,m,rrx,s (r, f) =
∑

n, rtx∈s
WF
i (rrx|rtx, f) Jn (rtx, f) eiφF,i,rtx,f GE,Jm,n (r|rtx, f) .

(3.7)

The approximate Hessian matrix H̃ following from the Jacobian constructed in this
approach becomes,

H̃(r, r′) =
∑

F,i,f,rrx,s

[∑
m

GF,Ji,m (rrx|r, f) G̃Fi,m,rrx,s (r, f)

]

×

[∑
n

GF,Ji,n
(
rrx
∣∣r′, f) G̃Fi,n,rrx,s (r′, f)

]∗
+ c.c. (3.8)

The rank of the approximation is given by the number of terms in the outer sum,

rank(H̃) = 2 NF Nf Ni Nrx Ns. (3.9)

Note that both the rank and the storage requirement to construct H̃ scale byNs instead
of Ntx as for H. The reduction in numerical complexity from the approximation is
described below, but it is realistic that the ratio Ntx/Ns can be of order 10 − 100
meaning a dramatic decrease in complexity.

3.3 Source grouping strategies

Several strategies can be used in order to form the group of sources, as introduced in
eq. 3.5. In this section we will explore three configurations, shown schematically in
figure 3.1 below.
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(a) Four groups of sources gath-
ering closest ones in a single
group simulation

(b) Four groups of sources
gathering randomly the differ-
ent sources in a single group
simulation

(c) Four groups of sources
gathering distant sources in a
single group simulation

Figure 3.1: Examples of different strategies for source grouping. The triangles represent
source positions, and the points with the same color are grouped.

In the example shown in figure 3.1 the sources are arranged in four groups. In
figure 3.1(a) the sources are grouped such that each group covers a particular area. In
figure 3.1(b) the sources are grouped randomly, and in figure 3.1(c) the groups are se-
lected by maximizing the distance between the sources. Numerical studies described
below have shown that using groups based on a largest distance, as in figure 3.1(c),
gives the best result. This is in agreement with the qualitative argument in the next
section which predicts that approximation errors decay with increasing separation be-
tween simultaneous sources in eq. 3.7.

Once the groups of sources have been established, one forward modeling per
group of sources and receiver component is performed, usingWF

i (rrx|rtx, f) eiφF,i,rtx,f

as the strength for each source in a group. Linearity of the Maxwell equations implies
that this is equivalent to the summation of individual terms in eq. 3.7. The random
phase factors eiφF,i,rtx,f are sampled independently for φ at each source position.

The number of forward simulations needed for building the Hessian matrix in
a standard Gauss-Newton implementation, NSim, and with the low-rank approach,
ÑSim, are

NSim = Nrx ·Nc ·NF +Nd ·Ntx (3.10a)

ÑSim = Nrx ·Nc ·NF +Nd ·Ns ·Nrx. (3.10b)

With realistic values for a modern 3D CSEM survey, NSim is dominated by the num-
ber of sources Ntx. The ratio ÑSim/NSim then displays a decrease in the number of
forward modeling jobs whenever Ns ·Nrx/Ntx < 1.

It is not only the reduction in number of forward computations which will allevi-
ate the computational complexity. For the Jacobian, or equivalently the Green func-
tions required to construct it, the volume of data in standard Gauss–Newton inversion
scales linearly with Ntx. Using the approximateion described here, this scaling is in-
stead given by Ns. In the same way, the low-rank approximation allows a Hessian
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3.4 Qualitative analysis of the approximation accuracy

representation using considerably less memory when Ns is small by storing the quan-
tities in square brackets in eq. 3.8. In addition to the savings on number of forward
solutions and memory requirements, we expect that solving the Gauss–Newton equa-
tion can be done very efficiently by exploiting the low-rank property of the Hessian
matrix in eq. 3.8.

3.4 Qualitative analysis of the approximation accuracy

Consider now the errors introduced by the approximation of the Hessian in eq. 3.8.
Due to the summation over source positions in G̃, the approximation will include
terms involving two different source positions. Such terms are illustrated schemat-
ically in figure 3.2 where (a) shows contributions from one source position, as in a
standard Hessian, and (b) shows the additional terms introduced through the low-rank
approximation.

Figure 3.2: (a) Diagram representing terms included in the Hessian H. Arrows correspond to
Green functions, with reverse directions indicating complex conjugation. Source strength fac-
tors WF

i (rrx|rtx, f) Jn (rtx, f) eiφF,i,rtx,f are associated with source positions. (b) Diagram
representing the additional cross-talk terms introduced into H̃, where two separate source
positions give a contribution.

We refer to these errors as “cross-talk” and denote their contribution η, such that
H̃ = H + η. The source-diagonal terms, involving only a single rtx, are the terms
that make up the exact Gauss–Newton Hessian H. The random phase-factors eiφκ

introduced in eq. 3.7 will cancel in the source-diagonal terms since they enter as an
absolute value. However, for the cross-talk terms, where two different source points
are involved, the phase factors remain and act to suppress the cross-talk in the outer
summation in eq. 3.8. This is similar to applications of phase encoding in seismic
modeling, see e.g. Bansal et al. (2013). The number of source-diagonal terms con-
tributing to H is proportional to Ntx. The number of cross-talk terms contributing to
η will scale with the number of sources as N2

tx (assuming Ns = 1). However, the
magnitude |η| should scale by the square root of the number of terms. This is due to
the cancellations from random phases eiφκ of the cross-talk terms and by analogy to
a Gaussian random walk. We therefore expect linear scaling |η| ∼ Ntx. Further, the
number of significant terms contributing to η should be even less due to the exponen-
tial decay of the Green functions. This means that for cross-talk terms where |rtx−r′tx|
is large the magnitude of the contribution to |η| is very small. Thus the magnitude |η|
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scales by the number of sources in a source group as (Ntx)α with α < 1. In summary,
the asymptotic behavior of the approximation is feasible since limNtx→∞ |η|/|H| = 0.

We can reduce the error of the approximation by increasing the number of source
groups Ns. In fact, using the maximum Ns = Ntx makes H̃ identical to H, but in
this case there is no reduction in computational cost. We can optimize the approxima-
tion by constructing the source groups with maximum separation between the spatial
locations of sources In this case, each cross-talk contribution shown in figure 3.2 (b)
will be smaller compared to a source-diagonal contribution in figure 3.2 (a) by the
decay of the Green functions over distance |rtx − r′tx|. This supports the numerical
results where source groups based on the maximum distance between sources were
found to give the highest accuracy, as is discussed in the results section. The distance
between sources is thus a tuning parameter for the accuracy of the approximation that
determines the number of source groups Ns and the strength of the cross-talk noise.

Figure 3.3: Eigenvalue distribution from various source grouping strategies, with Ns = 12
and rank = 600.

3.5 Results

In this section we will show numerical results for the low-rank Hessian approxima-
tion. Figure 3.3 shows the eigenvalue distributions for the three methods of grouping
sources illustrated in figure 3.1, and also the distribution for the Hessian of stan-
dard Gauss–Newton. In this example the groups are chosen such that the rank of
the approximate Hessians is 600. It is seen that source grouping based on maximum
distance has an eigenvalue distribution that is closer to that of the standard Gauss–
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3.5 Results

Newton Hessian, than the other two methods of grouping. This is consistent with the
discussion above that suggests that the grouping based on maximum distance is the
most accurate. The following results show model updates computed for an example
CSEM survey, using both the Gauss–Newton update and the approximation scheme
described above. In the example, the inversion parameterization is a regular grid with
cell size 200 m × 200 m × 100 m and the total number of cells is 28275. The survey
layout is detailed in figure 3.4 with a total of 10500 data samples.

(a) z = 1500 m

(b) y = 3000 m

Figure 3.4: True model and survey layout for the example CSEM survey. The water con-
ductivity is 4 S/m, and the water depth is 500 m. A resistor is located at 1.5 km depth, with
dimensions 3 km × 2 km × 0.1 km, and conductivity 0.02 S/m. The formation conductivity
is 1 S/m. There are 5 towlines and 25 receivers recording Ex and Ey at 0.25 and 1.0 Hz. The
source distance is 300 m along towlines.
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(a) H̃ ∆σ = −g

(b) H ∆σ = −g

(c) ∆σ = −g

Figure 3.5: Model updates ∆σ at y = 3000 m.

49



3.6 Conclusions

The Gauss–Newton equation was solved using a conjugate gradient method with
a small stabilizer and an initial model with the correct background conductivity. Fig-
ure 3.5 shows the solution for three cases using (a) the approximate Hessian matrix
H̃, (b) the exact Gauss–Newton Hessian matrix H, and (c) steepest descent (H→ 1).
The approximate Hessian was obtained using one source group per receiver channel
(Ns = 1). Comparing (a) with (b) and (c), we see that the solution to the Gauss–
Newton equation with the approximate Hessian matrix is qualitatively more similar to
a solution with the exact Hessian matrix than a steepest descent solution. In particu-
lar, much of the sensitivity information in H remains in H̃ as seen at depth. Table 3.1
shows key characteristics for the computational cost of inversion for the example sur-
vey as well as for a larger, more realistically sized 3D CSEM survey. As is shown in
the table, the number of forward simulations is reduced with a factor 2.6, however in
a larger survey the reduction in computational cost can be much larger while keeping
the error at the same level. The data for the realistic survey in table 3.1 were obtained

Case Numerical cost GN Approx. H̃ Ratio
a) NSim 260 100 2.6
a) J size 4.4 GB 43.1 MB 105
b) NSim 11800 1000 11.8
b) J size 127.4 TB 68.7 GB 1900

Table 3.1: Computational cost comparison for exact Gauss–Newton and the approximation
scheme, for a) the simple example case shown in figure 3.4 and figure 3.5, as well as b)
large-scale realistic survey.

from a survey area of 30 km×20 km×4 km, with 10 towlines at 2 km line separation
and a source distance of 100 m along the towlines. In total we obtain 5700 source
positions recorded at 100 receiver sites, measuring the horizontal components of elec-
tric and magnetic fields at 4 frequencies. The same discretization as in the smaller
example is assumed, for two anisotropy components. The survey has a total of 14.59
million data samples. Using three source groups (Ns = 3) we keep the simultaneous
source separation at 300 m such as in the smaller example survey discussed above.
The size of the Hessian will be 2.6 TB, but the Jacobian representation in the approx-
imation scheme offers a 40-fold reduction in size. The approximation error, η, could
be reduced by increasing the number of source groups, but the computational cost
would increase.

3.6 Conclusions

We have described a low-rank approximation to the Hessian for Gauss–Newton 3D
inversion of CSEM data. The scheme is based on superposition of phase-encoded
sources, and we have demonstrated the potential to significantly reduce both the num-
ber of forward simulations and memory requirements for inversion.

50



Chapter 3. Efficient computation of approximate low-rank Hessian for 3D CSEM

3.7 Acknowledgments

We thank Research Council of Norway (PETROMAKS project 217223) and EMGS
ASA for supporting this work.

3.8 References

Abubakar, A., Habashy, T., Druskin, V., Alumbaugh, D., Zerelli, A., and Knizhn-
erman, L. Two-and-half-dimensional forward and inverse modeling for marine
CSEM problems. In SEG Expanded Abstracts 2006, pages 750–754, 2006. doi:
10.1190/1.2370366. URL http://dx.doi.org/10.1190/1.2370366.

Abubakar, A., Habashy, T. M., Li, M., and Liu, J. Inversion algorithms for large-scale
geophysical electromagnetic measurements. IOP Science Inverse Problems, 25:
123012, 2009. URL http://stacks.iop.org/0266-5611/25/i=12/a=123012.

Amaya, M., Morten, J. P., and Boman, L. A low-rank approximation to the Hes-
sian for 3D CSEM Gauss-Newton inversion. In 76th EAGE Conference & Exhi-
bition, 2014. doi: 10.3997/2214-4609.20141099. URL http://dx.doi.org/10.3997/
2214-4609.20141099.

Bansal, R., Krebs, J., Routh, P., Lee, S., Anderson, J., Baumstein, A., Mullur, A.,
Lazaratos, S., Chikichev, I., and McAdow, D. Simultaneous-source full-wavefield
inversion. The Leading Edge, 32(9):1100–1108, 2013. doi: 10.1190/tle32091100.
1. URL http://dx.doi.org/10.1190/tle32091100.1.

Grayver, A. V., Streich, R., and Ritter, O. Three-dimensional parallel distributed
inversion of CSEM data using a direct forward solver. Geophysical Journal
International, 193(3):1432–1446, 2013. doi: 10.1093/gji/ggt055. URL http:
//dx.doi.org/10.1093/gji/ggt055.

Lin, Y., Li, M., Abubakar, A., and Habashy, T. A wavelet-based model compression
method for three-dimensional electromagnetic data inversion. In SEG Technical
Program Expanded Abstracts, volume 138, pages 707–712, 2013. doi: 10.1190/
segam2013-0395.1. URL http://dx.doi.org/10.1190/segam2013-0395.1.

Mackie, R., Watts, M., and Rodi, W. Joint 3D inversion of marine CSEM and MT
data. In SEG Expanded Abstracts, volume 116, pages 574–578, 2007. doi: 10.
1190/1.2792486. URL http://dx.doi.org/10.1190/1.2792486.

Mittet, R., Maulana, H., Brauti, K., and Wicklund, T. A. CMP inversion of marine
CSEM data. In EGM 2007 International Workshop, April 2007. URL http://www.
earthdoc.org/publication/publicationdetails/?publication=41234.

51

http://dx.doi.org/10.1190/1.2370366
http://stacks.iop.org/0266-5611/25/i=12/a=123012
http://dx.doi.org/10.3997/2214-4609.20141099
http://dx.doi.org/10.3997/2214-4609.20141099
http://dx.doi.org/10.1190/tle32091100.1
http://dx.doi.org/10.1093/gji/ggt055
http://dx.doi.org/10.1093/gji/ggt055
http://dx.doi.org/10.1190/segam2013-0395.1
http://dx.doi.org/10.1190/1.2792486
http://www.earthdoc.org/publication/publicationdetails/?publication=41234
http://www.earthdoc.org/publication/publicationdetails/?publication=41234


3.8 References

Sasaki, Y. Gauss-newton-based 3D joint inversion of marine CSEM and MT data.
In 73rd EAGE Conference & Exhibition, C027, 2011. doi: 10.3997/2214-4609.
20149043. URL http://dx.doi.org/10.3997/2214-4609.20149043.

Schwarzbach, C. and Haber, E. Finite element based inversion for electromagnetic
problems using stochastic optimization. In SEG Expanded Abstracts, volume 110,
pages 567–572, 2011. doi: 10.1190/1.3628145. URL http://dx.doi.org/10.1190/1.
3628145.

Støren, T., Zach, J., and Maaø, F. Gradient calculations for 3D inversion of CSEM
data using a fast finite-difference time-domain modelling code. In 70th EAGE
Conference & Exhibition, P194, 2008. doi: 10.3997/2214-4609.20147963. URL
http://dx.doi.org/10.3997/2214-4609.20147963.

52

http://dx.doi.org/10.3997/2214-4609.20149043
http://dx.doi.org/10.1190/1.3628145
http://dx.doi.org/10.1190/1.3628145
http://dx.doi.org/10.3997/2214-4609.20147963


Chapter 4
A low-rank approximation for
large-scale 3D CSEM Gauss-Newton
inversion

The low-rank approximation introduced in chapter 2 and chapter 3 could potentially
reduce the computational cost of large-scale 3D CSEM data GN inversion. However
there are still some practical aspects, as how to cope with a large number of inversion
parameters, that need to be solved in order to apply this approximation to realistic size
CSEM surveys. This is solved in this paper by introducing a matrix free recursive di-
rect solver. A more detailed analysis of the approximation is also included.

Paper #3. Submitted to Geophysics journal in 2nd February 2015.

Authors: Manuel Amaya, Jan Petter Morten, and Linus Boman.

Abstract: We consider an approximation to the Hessian for inversion of 3D con-
trolled source electromagnetic data. The approach can considerably reduce the nu-
merical complexity both in terms of the number of forward solutions as well as the
size and complexity of the calculations required to compute the update direction from
the Gauss-Newton equation. The approach makes use of “super-shots” where several
source positions are combined for simultaneous-source simulations. The resulting
Hessian can be described as a low-rank approximation to the Gauss-Newton Hessian.
The structure of the approximate Hessian facilitates a matrix free direct solver for the
Gauss-Newton equation, and the reduced memory complexity allows to use a large
number of unknowns. The cross-talk introduced in the approximation is studied, and
it is shown how the dissipative nature of marine electromagnetic field propagation re-
duces the impact of this noise. Inversion results from recent field data demonstrates
the numerical and practical feasibility of the approach.
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4.1 Introduction

4.1 Introduction

The marine controlled-source electromagnetic (CSEM) method is an efficient tool for
offshore hydrocarbon exploration with the potential to significantly increase drilling
success rate (Hesthammer et al., 2010). Moreover, the technology has been demon-
strated to be effective also in field appraisal (Morten et al., 2011) as well as struc-
tural imaging applications (Hoversten et al., 2013; Morten et al., 2013). CSEM data
imaging is today based on full waveform inversion approaches for all of these appli-
cations. Using inversion, interpretation challenges related to background complexity
and hydrocarbon reservoir variations can be addressed by the depth imaging and from
quantitative resistivity information in the resulting subsurface models.

State-of-the-art 3D CSEM acquisition offers significant advantages by allowing to
image the lateral variations, and also targets which could be situated between source
towlines. If subsurface resistors not related to hydrocarbons are present, then the
resolution of interpretation ambiguity is often dependent on understanding the geom-
etry in 3D. Our experience with CSEM data inversion suggests that Hessian-based
optimization schemes can often be successful for imaging the 3D geometry of both a
hydrocarbon reservoir and other resistive structure that may be present, starting from a
simple intial guess model. However, the Hessian-based inversion strategies that were
originally devised and successfully applied for lower dimensional analysis employing
a 2D assumption on model geometry (Abubakar et al., 2006; Mittet et al., 2007; Li and
Key, 2007; Abubakar et al., 2009), will lead to very large computational complexity
when scaled up for 3D appliccations.

One of the numerical complexities of inversion approaches that rely on second-
derivative information like Gauss-Newton, Levenberg-Marquard, or Occam (deGroot
Hedlin and Constable, 1990), arise due to the size of memory needed to store and
carry out computations with the Hessian matrix. The number of parameters required
to describe the subsurface region covered by a 3D CSEM survey can be of order
N ∼ 106, and the size of the Hessian will scale as N2 making the matrix unpractical
to handle even on large high-performance computer systems. Li et al. (2011) and Lin
et al. (2013) introduced a model compression method that can significantly reduce
the number of parameters for a 3D Gauss-Newton inversion approach. In this paper
we will present a method combining a low-rank approximation of the Hessian com-
bined with a direct solver so that the number of inversion parameters is no longer a
bottleneck.

A second complication for inversion algorithms based on a Gauss-Newton opti-
mization is the large number of forward simulations needed. In order to construct
the Hessian matrix, it is necessary to compute the Green functions for the individual
source and receiver sensors of the survey . For a large 3D CSEM survey, the number
of independent source positions can be very large, often in the order of Ntx ∼ 105.
The resulting numerical computational load is formidable considering that 3D mod-
eling is required. Grayver et al. (2013) studied the use of a direct solver in forward
modeling, which has a very gentle scaling with respect to the number of independent
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source positions that need to be evaluated once the system matrix factorization has
been achieved. However, the memory requirement for the matrix factorization can be
very large for an industry-scale 3D CSEM survey.

In order to cope with the above-mentioned numerical complexity of 3D CSEM
inversion, descent-based inversion approaches that do not require the full Hessian
computation have been employed, see e.g. Mackie et al. (2007); Zhdanov et al. (2007);
Støren et al. (2008). However, these approaches typically require significant manual
work to ensure that the initial model reflects the large-scale features of the background
geology in order to achieve acceptable convergence rates and feasible models Loke
and Dahlin (2002). Higher-order methods, like e.g Gauss-Newton, typically require
less information in the initial models in order to achieve these two goals.

In this paper we introduce an inversion scheme based on the Gauss-Newton al-
gorithm, but with a significantly reduced numerical complexity. We make use of a
“super-shot” technique where the superposition of several Green functions is com-
puted in single modeling jobs with simultaneously active sources. These constructs
can be used to reduce the numerical load both from the simulation of Green func-
tions and storage of the Jacobian for marine CSEM inversion. The scheme is effective
when the number of source positions is much larger than the number of receiver posi-
tions, or vice versa. The use of such “super-shots” has previously been introduced in
seismic data imaging. In seismic prestack wave-equation migration, the use of source
encoding techniques has been demonstrated to reduce the cross-talk noise following
from the processing of simultaneously active sources (Morton and Ober, 1998; Jing
et al., 2000; Romero et al., 2000). Such encoding techniques have also been utilized
in seismic full waveform inversion, see e.g. Krebs et al. (2009); Boonyasiriwat and
Schuster (2010); Ben-Hadj-Ali et al. (2011); Schiemenz and Igel (2013); Bansal et al.
(2013). In this work we will consider a related phase encoding technique for elec-
tromagnetic data inversion. The approach based on “super-shots” can be particularly
well suited for CSEM data due to the strong attentuation of signal amplitude from
dissipative propagation, which limits cross-talk.

The proposed inversion scheme can be described as a low-rank approximation
to the Gauss-Newton Hessian. However, the rank of the approximated Hessian is a
parameter of the approach and will typically be much larger than the rank of quasi-
Newton approximations to this quantity. Moreover, we do not make use of informa-
tion from past iteration models to construct the Hessian approximation. If the model
update is based on the models of past iterations, then the update may also be similar
to previous updates. In comparision, when approximating the Hessian and computing
model updates using only latest model data, we allow model changes in each iteration
without dependence on past models. This allows a higher convergence rate. In the
inversion results shown in this paper we will compare both quasi-Newton inversion
based on past iteration data for the Hessian approximation, Gauss-Newton inversion,
and finally our proposed approaches to inversion. In our approach we also do not
modify the cost function or the gradient computation, preserving the main structure
of the Gauss-Newton scheme.
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The Green functions from the simultaneous source modeling can lead to a consid-
erable compression of the Jacobian matrix. The inversion approach presented in this
paper achieves further computational savings by utilizing this fact, and in addition, we
use a direct solution of the approximated Gauss-Newton equation. This solver avoids
the explicit construction of a large (N2) Hessian matrix thus allowing inversion with
a much larger number of free parameters.

In this paper we first describe the theory of the low-rank approximation and how
the data part of the Hessian is represented. We then analyze the error of the ap-
proximation. Next we describe the solution of the Gauss-Newton equation with the
low-rank data Hessian using a data Hessian matrix free formulation. Then we show
inversion results and compare to a quasi-Newton approach and to a Gauss-Newton
scheme with model parameters compression. Finally we discuss the results and con-
clude.

4.2 Theory

The inversion of CSEM data is formulated as an optimization problem,

σ(r) = arg min
σ∈M

ε(σ), (4.1)

where r defines the conductivity at position r of a 3D conductivity model in the set
M of models compatible with a priori information and

ε(σ) = εD(σ) + εR(σ), (4.2)

is the cost function. This cost function includes the regularization misfit term (εR),
and the data misfit term (εD) which depends on the observations,

εD (σ) =
∑

F,i,f,rrx,rtx

∣∣WF
i (rrx|rtx, f) ∆Fi (rrx|rtx, f ;σ)

∣∣2 . (4.3)

Here ∆F (σ) = FObs − F Synth(σ) represents the difference between observed and
synthetic fields (F = E for electric and F = H for magnetic), W is a datum weight
(typically inverse measurement uncertainty), i are the spatial components (x, y) of the
field recordings, f are the frequencies, rrx is a receiver position, and rtx is a source
position. The shorthand notation κ = (F, i, f, rrx, rtx) will uniquely label a measure-
ment.

In this work, the non-linear optimization problem is solved by iteratively updating
the 3D conductivity model, following the Gauss-Newton method but with an approx-
imate Hessian. At each iteration, the model update ∆σ is obtained by solving the
linear equation system

H ∆σ = −g, (4.4)

where the Hessian is
H = HD + HR, (4.5)
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and the gradient is
g = gD + gR. (4.6)

We will refer to HD and gD as the data Hessian matrix and the data gradient, which are
derived from the data misfit term εD. The quantities HR and gR are the regularization
Hessian matrix and the regularization gradient obtained from the regularization misfit
term εR.

The data Hessian matrix and the data gradient vector are constructed from the
Jacobian matrix J as

(HD)r,r′ =
∑
κ

(J)r,κ(J)∗r′,κ + c.c., (4.7)

(gD)r =
∑
κ

Wκ∆F ∗κ (J)r,κ + c.c. (4.8)

The asterisk superscript denotes complex conjugation, and the notation c.c. denotes
the complex conjugate of the preceeding expression. The Jacobian is a complex
N × M matrix where N is the number of model parameters, and M is the num-
ber of data samples. Note that in a Gauss-Newton approach, the Hessian in eq. 4.7
is approximated by neglecting a second-order derivative term. The Jacobian can be
constructed from Green functions (Støren et al., 2008),

(J)r,κ =WF
i (rrx|rtx, f)

∑
p

GF,Jp,i (rrx|r, f)×
∑
q

GE,Jp,q (r|rtx, f) ̂q (rtx, f) , (4.9)

where r is the position in the conductivity model, GF,Jp,q denotes the Green function
for field F , component p, from a unit electric current source in direction q, and ̂q
is a vector component of the source dipole moment approximated as a point dipole
(p, q = x, y, z). When the field data have been normalized by the dipole moment,
̂ is a unit vector. It is straightforward to generalize the expression in eq. 4.9 to the
anisotropic and discrete case. From this expression, we see that explicit construction
of any element (r, κ) of the Jacobian requires the two Green functions associated
with the receiver position rrx and the source position rtx to be simulated. Therefore
the total number of forward solutions (receiver simulations plus source simulations)
needed for building the data Hessian matrix and the data gradient in a standard Gauss-
Newton implementation is

NSim = NF NiNrx︸ ︷︷ ︸
NSimRx

+ Ntx︸︷︷︸
NSimTx

. (4.10)

Here, and throughout, the notationNa denotes the number of unique elements of index
a, i.e. Ni is the number of spatial components of the field recorded at the receivers.
The time-domain forward modeling code utilized computes the Green function at all
survey frequencies from a single simulation. Therefore, NSim in eq. 4.10 does not
scale with the number of frequencies Nf for our case.
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The data Hessian matrix is a real N ×N dense symmetric positive semi-definite
matrix. The number of independent data samples (number of Jacobian columns)

M = NF Ni Nf Nrx Ntx (4.11)

could limit the maximum rank of the data Hessian matrix (Grayver et al., 2013), i.e.

rank(HD) ≤ min(N, 2M). (4.12)

In a 3D CSEM survey, the number of data samples M can be larger than the number
of model parameters N .

The regularization εR(σ) introduces a priori information about the solution model
σ(r) (Zhdanov, 2009), and is usually designed to give a positive definite Hessian
that makes it feasible to solve the linear system in eq. 4.4. In our implementation,
the regularization can incorporate information on model conductivity (εap mod), model
smoothness (εgrad) and conductivity anisotropy (εap aniso),

εR(σ) = εap mod(σ) + εgrad(σ) + εap aniso(σ). (4.13)

In this scheme, the regularization εR(σ) is normalized by the number of model pa-
rameters, and the contributions to the total misfit for the regularization terms in eq.
4.13 are balanced by the use of weights.

The regularization Hessian matrix derived from this scheme is

HR = Hap mod + Hgrad + Hap aniso, (4.14)

where Hap mod is a diagonal positive definite matrix, and the other two terms have
off-diagonal structure.

4.2.1 Low-rank data Hessian matrix: super-shots and adjoint modeling

For a state-of-the-art 3D CSEM survey and with a realistic model representation, the
numerical complexity involved with the construction of the data Hessian matrix HD
and the solution for the model update can be very large. The number of simulations
required can be of order 105, and the dense linear system, see eq. 4.4, can be of size
106 × 106 depending on the parameterization.

In this paper we propose a low-rank approximation to the data Hessian matrix,
H̃D, in a Gauss-Newton scheme, i.e.

H̃ ∆̃σ = −g, (4.15)

where the approximate Hessian is

H̃ = H̃D + HR. (4.16)

It is only the data Hessian that is approximated; the gradient and cost function are not
affected.
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To compute the matrix H̃D we consider a low-rank approximation where sources
in eq. 4.9 are combined in superpositions, after being encoded with a random phase
factor. The result is a contraction of Jacobian columns that can be written

(J̃)r,κ̃ =
∑
rtx∈s

eiφκ(J)r,κ, (4.17)

for a group of source positions s, and where φκ are uniformly distributed random
numbers in the interval [0, 2π). The shorthand notation κ̃ = (F, i, f, rrx, s) will
uniquely label a source-group simulation.

The number of source groups, Ns, and the grouping scheme are discussed below.
Following this approach, the quantities in eq. 4.17 associated with the source posi-
tions in a source group and a specific receiver field-component are calculated from a
single simultaneous-source (super-shot) forward solution of the Maxwell equations.
We denote the output of this simulation as

G̃Fp,i,rrx,s (r, f) =
∑

q, rtx∈s
GE,Jp,q (r|rtx, f) WF

i (rrx|rtx, f) eiφκ ̂q (rtx, f) , (4.18)

whereWF
i (rrx|rtx, f) eiφκ ̂q (rtx, f) is the distributed source strength that corresponds

to the receiver field-component. For each source-group we need to simulate all re-
ceivers, fields, and components so that the number of simulations is

NSims = NF NiNrx Ns. (4.19)

With respect to the total number of simulations, the quantity NSims above will replace
NSimTx in eq. 4.10 when super-shots are applied. The super-shot simulations in eq.
4.18 define an approximate Jacobian J̃ as

˜(J)r,κ̃ =
∑
p

GF,Jp,i (rrx|r, f) G̃Fp,i,rrx,s (r, f) , (4.20)

that in turn defines an approximate data Hessian matrix H̃D,

(H̃D)r,r′ =
∑
κ̃

˜(J)r,κ̃
˜(J)
∗
r′,κ̃ + c.c., (4.21)

analogous to a Gauss–Newton Hessian. The number of columns (data samples) in the
approximate Jacobian is

M̃ = NF Ni Nf Nrx Ns. (4.22)

Ns is typically selected small (i.e. of order 1 to 10 as discussed below), so M̃ � N ,
and therefore

rank(H̃D) ≤ 2 M̃. (4.23)

Comparing eq. 4.23 with eq. 4.12 we see that this approach results in a low-rank data
Hessian matrix approximation H̃D. Note that both the number of forward solutions
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(compare eq. 4.10 and eq. 4.19) and the storage requirement to construct H̃D (com-
pare eq. 4.11 and eq. 4.22) scale by Ns instead of Ntx as for HD. The reduction in
numerical complexity from the approximation is described below. For now we just
note that realistic values of the ratio Ntx/Ns can be of order 10 to 100, i.e. a dramatic
decrease in complexity.

The number of source-groups determines the accuracy of the approximation. In
the limit where there is only one source per group no approximation is made and
the Gauss–Newton Hessian is recovered. We therefore consider Ns to be a tuning
parameter controlling the accuracy.

The data gradient gD is computed following the adjoint scheme described in
Støren et al. (2008) which does not involve any approximation of the expression for
the gradient in eq. 4.8. Following this scheme we compute

(gD)r =
∑

υ=F,i,f,rrx,p

sign(F )GF,Jp,i (rrx|r, f)Lυ(r), (4.24)

were sign(F ) is +1 when F is a magnetic field and −1 when F is an electric field,
and

Lυ(r) =
∑
q,rtx

GE,Jp,q (r|rtx, f)
[
WF
i (rrx|rtx, f)

]2
∆F ̂q (rtx, f) . (4.25)

The Green function GF,Jp,i in eq. 4.24 is the same as the one used for the approximated
Jacobian J̃ in eq. 4.20. To compute Lυ(r) it is necessary to run additional simulations

NSimAdj = NF NiNrx, (4.26)

since the source strength factors are different in the superpositions in eq. 4.18 and eq.
4.25.

The total number of forward solutions needed to compute the approximated data
Hessian matrix in eq. 4.21 and the data gradient in eq. 4.24 in the low-rank approach
is

ÑSim = NSimRx +NSims +NSimAdj = NF ·Ni ·Nrx · (Ns + 2). (4.27)

For typical modern 3D CSEM surveys, NSim is dominated by the number of sources,
Ntx. We thus see a decrease in the number of forward solutions compared to Gauss-
Newton inversion wheneverNF NiNrx (Ns+2)/Ntx < 1, where both factorsNF and
Ni are of order unity. Note that the number NSims from eq. 4.19 corresponds to the
number of additional forward solutions required by the low-rank approach compared
to gradient-based approaches like quasi-Newton and non-linear conjugate gradients.

Source grouping strategies

We will now discuss the selection of source points for the groups introduced in eq.
4.17. We will consider the three different strategies shown schematically in figure
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Figure 4.1: Examples of different strategies for source grouping. The triangles represent
source positions, and the points with the same color are grouped.

4.1, where all source positions are arranged in four groups. In figure 4.1(a) the sources
in each group are selected such that each group covers a contiguous area. In figure
4.1(b) the sources are grouped randomly, and in figure 4.1(c) the groups are created
by maximizing the distance between the sources in each group. Numerical studies
described below show that using groups with more distant sources, as in figure 4.1(c),
gives the best result. This is in agreement with the qualitative argument in the next
section which predicts that approximation errors decay with increasing separation
between simultaneous sources in eq. 4.18. Note that the specific grouping illustrated
in the example figure 4.1(c) is only approximately optimal, as further increase in
separation could be possible.

Figure 4.2: Survey layout for synthetic study.

In order to illustrate some properties of different grouping strategies we will con-
sider synthetic data from the model and source-receiver layout shown in figure 4.2.
The example survey includes 25 receivers, 5 towlines (sampling 330 source positions
in total), and a thin resistor at 50 Ωm. The background resistivity is 1 Ωm and the
water resistivity is 0.25 Ωm. The input synthetic data for the study were the Ex and
Ey fields at frequencies 0.25 and 1.0 Hz, without noise.

In figure 4.3 we show the eigenvalue distribution for the data Hessian from the
three different grouping strategies described above, and the Gauss-Newton Hessian.
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The eigenvalue distribution for the distant-sources grouping is in closest agreement
with the Gauss-Newton data Hessian eigenvalue distribution, and the grouping based
on random selections is also similar to the grouping based on distant sources. The
number of forward simulations is the same for the different grouping strategies, and
identical to the rank of the approximated data Hessian, rank(H̃D) = 600. The number
of source groups was Ns = 3.

Figure 4.3: Example eigenvalue distribution for different source-grouping strategies. We use
the same number of simulations in the three different grouping strategies. The eigenvalues are
shown in sorted order from the largest to the smallest along the horizontal axis.

As mentioned, the number of source groups controls the accuracy and computa-
tional cost of the approximation and is thus a tuning parameter. In particular, the value
of this parameter determines the level of cross-talk noise (discussed below). More-
over, the rank of the approximate data Hessian H̃D is proportional to the number of
groups. In figure 4.4 we show an example, based on the survey shown in figure 4.2, of
how increasing the number of groups increases the rank of the low-rank data Hessian
in eq. 4.21. We use the grouping strategy based on distant sources described above.
From figure 4.4 we see how increasing Ns leads to an increase in the number of non-
zero eigenvalues, and an eigenvalue distribution closer to that of the Gauss-Newton
data Hessian HD.
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Figure 4.4: Example eigenvalue distribution for different number of distant-source groups
Ns.

In a typical application of the 3D CSEM Gauss-Newton inversion scheme, the
regularization terms in the cost function at eq. 4.13 will stabilize the solution of the
linear system in eq. 4.4, and limit the condition number of the Hessian matrix H.
Therefore, though the matrix H̃D is typically rank deficient as shown in figure 4.3
and figure 4.4, the eigenvalue distribution of the matrix in eq. 4.4 that determines the
update for the low-rank approximation can be close to that of the original Gauss-
Newton scheme. Figure 4.5 demonstrates this for the survey shown in figure 4.2.
Note that the magnitude scale of the eigenvalues in figure 4.5 is different than in
figure 4.3 and figure 4.4 due to a scaling factor applied to balance the contributions
of data misfit and regularization in the cost function. The black curve (E6) shows
how the a priori regularization acts to limit the smallest matrix eigenvalue for the
low-rank approximation with Ns = 3. For the small and largest eigenvalues, the
distribution is similar to that following from the Gauss-Newton Hessian (green curve
E1). The magenta curve (E4) shows the eigenvalues when only the data Hessian is
considered. When we increase the number of source groups, it is possible to obtain
a regularized low-rank Hessian that has a similar eigenvalue distribution as a Gauss-
Newton Hessian (compare the red curve E2 with the yellow curve E5).

For each iteration of the inversion, it is possible to vary the sources that are in-
cluded in each group while keeping the source-grouping strategy. Once the groups
of sources are established, one forward solution per group of sources and receiver
field component is performed (a total of NF NiNrx Ns forward solutions), using
WF
i (rrx|rtx, f) eiφκ as the source strength for each source in a group s. Linearity

of the Maxwell equations implies that this is equivalent to the summation of individ-
ual terms in eq. 4.18. The random phase factors eiφκ are sampled independently for
φκ in each group κs = (F, i, f, rrx, rtx ∈ s).
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Figure 4.5: Hessian matrix H eigenvalue distributions. Blue curve E0: Gauss-Newton data
Hessian HD only. Green curve E1: Gauss-Newton data Hessian and regularization HD +
Hap mod. Red curve E2: Gauss-Newton data Hessian and regularization HD + Hgrad. Cyan
E3, purple E4, and yellow E5 curves: Low-rank data Hessian H̃D only for 1,3, and 8 source
groups. Black curve E6: Low-rank data Hessian and regularization H̃D + Hap mod.

Noise analysis and phase encoding

Let us now consider the errors introduced by the approximation of the Hessian in eq.
4.21. When the data Hessian is constructed according to eq. 4.7, each term contribut-
ing is computed from the Green functions associated with one receiver and one source
position. The same terms appear when computing the low-rank approximation (eq.
4.21), but in addition the approximation introduces terms (cross-talk terms) which are
not part of the Gauss-Newton data Hessian.This is illustrated by the diagrams in figure
4.6 where (a) shows a low-rank approximation contribution from one source position,
which is the same that also appears in a standard Gauss-Newton data Hessian com-
putation, and (b) shows one of the additional terms introduced through the low-rank
approximation.

The terms of figure 4.6 (a) involve only one source and one receiver positions
associated with a single measurement.

Due to the summation over source positions in G̃, the approximation will also
include terms involving two different source positions (but the same receiver channel
e.g. Ex(rrx|rtx, f)) in the product in eq. 4.21. These terms are shown as figure 4.6
(b). We will refer to these diagrams as “cross-talk” and denote their contribution η,
such that

H̃D = HD + η. (4.28)
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Figure 4.6: Diagrams representing the two types of terms included in the data Hessian matrix
of a low-rank approximation (eq. 4.21). Each source position (subscript “tx”) is associated
with its corresponding source strength factors (see discussion following eq. 4.18). In these
diagrams, an arrow from e.g. position rtx to r represents a Green function GF,Jp,q (r|rtx, f)
which is a factor in the corresponding term of the Hessian. “Reverse-time” arrows where the
origin for the propagation represented by arrows is located at a receiver position (subscript
“rx”) appear with complex conjuation in the Hessian expressions. (a) Diagram representing
those terms of H̃D that also make up the data Gauss-Newton Hessian (eq. 4.7). (b) Diagram
representing the additional cross-talk noise terms introduced into H̃D, where two different
source positions contribute.

Though the cross-talk terms will represent an approximation error, we note that η has
specific matrix properties. The matrix η will be symmetric, and from the definition
we have that

rank
(
H̃D − η

)
= rank (HD) . (4.29)

These properties could be utilized in schemes to reduce the effect of η in the ap-
proximation. In figure 4.7 we show the diagonal (i.e. matrix elements for indices
σV(r), σV(r) and σH(r), σH(r) where subscripts V,H pertain to vertical and horizon-
tal component) of the matrices HD and η for two different number of groups. These
results were computed using a half-space model. Comparing figure 4.7 (b) and figure
4.7 (c) we note that the cross-talk (approximation noise) is reduced when we increase
the number of source groups from one group to three. An important fact is that the
Hessian magnitude exceeds the magnitude of the cross-talk. We study these two phe-
nomena later in this section. The large-scale structure of the cross-talk seen in figure
4.7 could be detrimental to the inversion convergence but is hard to suppress. The
synthetic data inversion results in Appendix (section 4.7) show that an inversion re-
sult of similar quality as in the Gauss-Newton approach can be achieved despite the
cross-talk noise. As an additional obseration, we note that the diagonal cross-talk
noise was reduced more efficiently by increasing the number of source groups in the
horizontal rather than the vertical components as seen in figure 4.7 (b) and figure 4.7
(c).

The phase encoding in the super-shots in eq. 4.18 is a way to reduce the errors
due to cross-talk. Noise reduction approaches based on random phase encoding have
also been applied in seismic modeling, see e.g. Bansal et al. (2013). In eq. 4.21, the
random phase factors eiφκ will cancel in the terms where a single source position is
involved, as in the terms for the Gauss-Newton Hessian, figure 4.6 (a). This is because
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the source Green functions appearing in H̃D are included in combinations

GE,Jp,q (r|rtx, f) eiφE,i,rtx ×
[
GE,Jp,q

(
r′
∣∣rtx, f) eiφE,i,rtx

]∗
. (4.30)

For these terms the random phase cancels, and phase encoding does not affect the
diagrams corresponding to the Gauss-Newton data Hessian.

(a) Magnitude of the elements on the diagonal of HD

(b) Magnitude of the elements on the diagonal of η, Ns = 1

(c) Magnitude of the elements on the diagonal of η, Ns = 3

Figure 4.7: Plots of the Hessian and cross-talk matrix diagonals at depth 1500 m for the survey
shown in figure 4.2. Vertical conductivity component on the left and horizontal conductivity
component on the right. These results were computed in a half-space model.

The cross-talk terms result in contributions where the source Green functions for
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two different positions rtx and r′tx appear in combinations of the type

GE,Jp,q (r|rtx, f)
[
GE,Jp,q

(
r′
∣∣r′tx, f)]∗ × e

iφE,i,rtx−iφE,i,r′tx . (4.31)

The random phase factor in this expression will act to reduce the total contribution
of the cross-talk terms. To analyze this, let us first assume that the magnitudes of the
cross-talk terms in η are Gaussian distributed. In such case, the resulting magnitude
of the sum of the cross-talk terms will be governed by the properties of a Gaussian
random walk. If we assume that there are A terms contributing, then the magnitude,
|η|, will scale as∼

√
A instead of linear scaling due to the random phases in eq. 4.31.

The number of terms (figure 4.6 (a)) contributing to HD is equal to the different
number of combinations (eq. 4.11) of the eq. 4.30 that appear in eq. 4.21, i.e. it is
proportional to Ntx. The number of cross-talk terms (figure 4.6 (b)) contributing to η
scales with the number of all possible combinations of two different sources (eq. 4.31)
included in a group simulation that appear in eq. 4.21, i.e. scales as N2

tx (assuming a
single source group Ns = 1). However, the magnitude |η| should still scale by Ntx by
analogy to a Gaussian random walk as described above, i.e. |η| ∼ Ntx.

Let us now consider the details of the distribution of cross-talk magnitudes. The
physics of the problem indicates that the magnitude distribution of the cross-talk terms
should be more centered than a Gaussian distribution. The exponential decay of the
magnitude of the Green functions will result in negligible contributions from the prod-
uct of Green functions in eq. 4.31 when the distance |rtx − r′tx| is large. This will be
the case for many of the terms making up η. The spatial decay of the Green functions
is shown in figure 4.8. Thus, the attenuation of the magnitude for the contributions
makes |η| scale by the number of sources in a source group as (Ntx)α with α < 1, and
the asymptotic behaviour of the approximation is given as limNtx→∞ |η|/|HD| = 0.

Next we turn our attention to the magnitude of the individual terms contributing to
HD relative to the cross-talk terms in η. First we note that for each cross-talk contri-
bution there is a contribution to the data Hessian with larger magnitude. The elements
of the Jacobian are Frechet derivatives computed from a product of a Green function
associated with a receiver position and a source position, see eq. 4.20. Magnitudes
of Frechet derivatives (formed by the Green functions shown in figure 4.8) are shown
in figure 4.9. Contributions to H̃D are products of two such Frechet derivatives. A
cross-talk contribution is the product of two Frechet derivatives (with complex conju-
gation on one factor) corresponding to two different source positions, e.g. the product
of Rx1-Tx5 by Rx1-Tx3 of figure 4.9. The terms contributing to HD are products
of a Frechet derivative by its complex conjugate, e.g. the product of Rx1-Tx3 by the
complex conjugate. Using as a reference the magnitudes represented in figure 4.9,
we see that this HD contribution will dominate over the cross-talk contribution from
Rx1-Tx5 by Rx1-Tx3. In general, there is always a term contributing to HD larger
than terms part of η involving the same receiver and one of the source positions.
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Figure 4.8: Green function amplitude at different source (Tx) and receiver (Rx) positions, for
the electric field Ex at frequency f = 0.25 Hz, when using the survey layout represented at
figure 4.2 for a larger model with the same background and water conductivity but without the
50 Ωm target.

We can reduce the error of the approximation by increasing the number of source
groups Ns. In fact, as we showed above, using the maximum Ns = Ntx makes H̃D
identical to HD, but in this case there is no reduction in computational cost. We
also demonstrated that we can optimize the approximation by constructing the source
groups with maximum separation between the spatial locations of sources. This
supports the numerical results where source groups based on the maximum distance
between sources were found to give the highest accuracy, as is discussed in the results
section. The distance between sources determines the number of groups, and can
therefore be considered the tuning parameter for the accuracy of the approximation.

The approach described in this paper will retain the same cost function ε and
gradient g as is used in a standard Gauss-Newton scheme. The approximation only
introduces error into the Hessian in the Gauss-Newton equation, which results in an
approximate search direction ∆̃σ. However, at early iterations of the inversion, when
the cost function is large and far from the minimum, the parabolic assumption of the
Gauss-Newton scheme will be poor and the accuracy of the computed search direction
need not be very good. Treating the number of source groups as a tunable parameter
in our approach, we may then improve the accuracy of the approximation dynamically
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as the inversion gets closer to the minimum and improved search direction accuracy
is required to maintain good convergence rate.

Figure 4.9: Frechet derivatives computed from the Green functions in figure 4.8.

4.2.2 Data Hessian matrix free recursive direct solver

As we mention in the introduction, the main challenge of implementing a 3D CSEM
Gauss-Newton is the computational cost. The low-rank approximation to the data
Hessian matrix described above can reduce the number of forward solutions as well
as the size of the Jacobian by a factor of 10-100. The size of the linear equation system
for the model update in eq. 4.15 will however scale quadratically by the number of free
parameters of the inversion if the Hessian is constructed explicitly, and this will be a
dense matrix. For a typical 3D CSEM problem, the number of parameters considered
in quasi-Newton inversion schemes can be of order 107. In such case, a parameter
compression strategy that can reduce the order of magnitude of the parameter number
by 10-100 is required in order to solve numerical linear algebra problem. For the low-
rank approximation, we can however make use of the implicit matrix representation in
eq. 4.21 to construct a data Hessian matrix free solver. The feasibility of the resulting
direct solver is determined by the sparsity of the regularization Hessian matrix and
the smaller size of the Jacobian in the low-rank approach.

From the Gauss-Newton eq. 4.15, the update at each iteration is obtained as ∆̃σ =
−H̃−1g, where the inverted matrix has the following structure,

H̃−1 =

HR +
M̃∑
m=1

(
J̃mJ̃†m + c.c.

)−1 , (4.32)
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where M̃ is the number of approximated Jacobian columns as in eq. 4.22, and J̃m
represents the m-th column. The superscript † symbol represents the conjugate trans-
pose. Introducing the short-hand notation

J̃mRe = Re(
√

2 J̃m), J̃mIm = Im(
√

2 J̃m), (4.33)

we can rewrite the eq. 4.32 in the following form,

H̃−1 =

HR +

2M̃∑
j=1

(
J̃jJ̃

T
j

)−1 , (4.34)

with J̃1 = J̃1Re , J̃2 = J̃1Im , J̃3 = J̃2Re and so on. As described in Press et al. (2002),
the matrix inverse can be computed recursively applying the Sherman-Morrison for-
mula, (

A + uuT
)−1

= A−1 − A−1uuTA−1

1 + uTA−1u
. (4.35)

To compute ∆̃σ we have implemented a recursive solver using the Sherman-Morrison
formula which is explained below. At each iteration we incorporate a single approxi-
mated Jacobian column J̃j that has been computed on the fly in order to avoid storing
the whole J̃ matrix. At iteration j it is only necessary to keep in memory the sparse
HR, the so-called iteration vectors wj and the scalars cj . The algorithm is described
below in three steps.

Initialization,

H̃−1(0) = H−1R . (4.36)

First iteration (j = 1),

H̃−1(1) =
(
H̃(0) + J̃1 J̃

T
1

)−1
=H̃−1R −

H̃−1R J̃1 J̃
T
1 H̃−1R

1 + J̃T1 H̃−1R J̃1

=H̃−1R − c1w1w
T
1 , (4.37)

w1 = H̃−1R J̃1 . (4.38)

c1 =
(

1 + J̃T1 w1

)−1
. (4.39)
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The Sherman-Morrison formula, eq. 4.35, is applied in the second step of eq. 4.37.
Second iteration (j = 2),

H̃−1(2) =
(
H̃(1) + J̃2 J̃

T
2

)−1
=H̃−1(1) −

H̃−1(1) J̃2 J̃
T
2 H̃−1(1)

1 + J̃T2 H̃−1(1) J̃2

=H̃−1(1) − c2w2w
T
2

=H̃−1R − c1w1w
T
1 − c2w2w

T
2 , (4.40)

w2 =H̃−1(1) J̃2

=H̃−1R J̃2 − c1w1w
T
1 J̃2 , (4.41)

c2 =
(

1 + J̃T2 w2

)−1
. (4.42)

When generalizing for iteration j,

H̃−1(j) =H̃−1(j−1) − cjwjw
T
j

=H̃−1(0) −
j∑
q=1

cqwqw
T
q , (4.43)

wj =H̃−1(j−1)J̃j

=H̃−1(0)J̃j −
j−1∑
q=1

cqwqw
T
q J̃q, (4.44)

cj =
(

1 + J̃Tj wj

)−1
. (4.45)

At the final iteration j = 2M̃ we obtain the solution,

H̃−1 = H̃−1
(2M̃)

, (4.46)

and then the approximated model update is obtained as

∆̃σ = −

H̃−1(0)g −
2M̃∑
j=1

cjwjw
T
j g

 . (4.47)
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We note that it is also possible to omit the explicit construction of the inverse
regularization Hessian matrix, H−1R = H̃−1(0). If we provide a method to compute

solutions of the system HRx = v then all matrix-vector products involving H̃−1(0) such
as in eq. 4.44 and eq. 4.47 can be obtained without the explicit inverse. Since the
regularization will be a sparse matrix and these solutions will be required many times,
a direct solver will be efficient: if a factorization is carried out at the initialization step,
all subsequent computations of H−1(0) v can be obtained very quickly from the direct
solver.

The main benefit of solving the linear system in eq. 4.15 as described here is that
the memory complexity is smaller than by keeping the dense H̃ matrix in memory.
The memory complexity for this Sherman-Morrison formula based recursive solver
is O(N M̃), where M̃ � N for a realistic example with a small Ns. Compared to
approaches where the Hessian is constructed explicitly, it becomes feasible to solve
linear systems in eq. 4.15 with the same number of parameters as is typically used in
quasi-Newton approaches.

Approximate inverse regularization Hessian contribution

In the example shown in this paper, we introduced a further approximation to sim-
plify the data Hessian matrix free solver described above. We suppress off-diagonal
elements of the sparse regularization Hessian matrix,

H̃R = diag(HR), (4.48)

and use the Hessian

Ĥ = H̃D + H̃R. (4.49)

The approximated regularization Hessian matrix (H̃R) allows us to explicitly con-
struct the inverse of the regularization contribution to the Hessian for the linear equa-
tion solver in eq. 4.36.

The a priori model regularization matrix Hap mod is not modified when it is used in
the approximated regularization Hessian matrix (eq. 4.48) because Hap mod is diagonal
by definition. For the gradient smoothness Hgrad the approximation will affect the re-
sulting update, but since we are carrying out iterations of the non-linear optimization,
the lack of information can be compensated at later iterations.

72



Chapter 4. A low-rank approximation for large-scale 3D CSEM Gauss-Newton

4.3 Inversion results

In this section we present and compare the inversion results from a recent 3D CSEM
field dataset. The geological complexity and the scale of the acquisition of the field
data makes this a challenging and interesting survey to use to test the performance of
inverse schemes. We consider four different schemes: (A) quasi-Newton L-BFGS-B
(Zhu et al., 1997), (B) 3D Gauss-Newton using model parameter compression and
a conjugate gradient (CG) solver for eq. 4.4, (C) the proposed low-rank approach
using model parameter compression and a CG solver for eq. 4.15, and (D) the low-
rank approach using the presented recursive direct solver with the approximation in
eq. 4.48. The approaches (A) and (B) are in the class of optimization methods most
commonly applied for inversion of marine CSEM data today. For all the tests we
use L2-norm model smoothness regularization. In Appendix (section 4.7) we include
inversion results from the synthetic survey in figure 4.2.

The survey data considered here were acquired by EMGS ASA in 2014. Due to
showright restrictions, we can not describe the precise location of the survey or the
details of the survey layout. We consider a subset of the source towlines and receiver
deployments from the survey, and the spatial extent of the area covered by receivers
is shown in figure 4.10. The water depth in this area is about 2.5 km, and multiple salt
bodies are located at the boundaries of the area covered by receivers. For the examples
in this section we included data from 256 receivers recordingEx andEy from sources
along 11 towlines. The receiver and towline spacing was 2 km. Note that there are
receivers without a source towline crossing over their position in this data selection,
i.e. receivers recording only azimuth data. There are 1802 source positions in the
data subset considered here. The survey frequencies were 0.125, 0.25, 0.5, 1.0, and
1.875 Hz. In total the number of data samples is approximately 0.55·106 in these
examples.

Figure 4.10: Receiver coverage for the subset of the survey data considered in the inversion
examples. Receivers were positioned in a 2 km×2 km grid inside the area shown by the
polygons. The source towing was focused on the top region, where receivers recorded both
inline and azimuth data. The receivers in the lower region only recorded azimuth data.

All of the inversions used a half-space initial guess resistivity model, with the
bathymetry and water conductivity determined from survey data. We note that typ-
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ically some structural information like e.g. salt outlines from seismic is utilized to
obtain the best inversion results. However, in this case we instead use a simple initial
model in order to highlight the performance of different inversion schemes. We con-
sider anisotropic inversion with transverse isotropy defined by a vertical axis, i.e. a
VTI model where we invert for horizontal and vertical resistivity. For some of the in-
version tests the convergence became slow after the misfit reached a root mean square
(RMS) value of 3.9, and we therefore use this value in order to have a fair comparison
between methods. We define the RMS value as

√
ε/N where ε is defined in eq. 4.2

and N is the number of observations. Although results with misfit this large are not
suited for geological interpretation, they allow us to effectively compare the perfor-
mance and numerical cost of the different inversion schemes that we consider in this
paper.

The model parameter compression scheme used for the inversion schemes (B) and
(C) defined above is based on creating a coarser discretization of the model at depth
and away from the area covered by the receivers. The coarsening is determined by
the expected resolution of the data. This scheme was used to obtain a reduction of the
number of parameters in the order of a factor 200 compared to a homogeneous dis-
cretization of the entire domain, and makes it feasible to construct the Gauss-Newton
Hessian matrix for such a large model.

The results from the L-BFGS-B optimizer (A) are shown in figure 4.11. To
achieve this result we carried out 60 iterations of the inversion, where each itera-
tion required 1004 forward solutions (60240 solutions in total). The memory usage to
compute the update was about 10 GB for 107 free parameters.

Figure 4.11: Survey scheme (A) inversion result: L-BFGS-B optimizer result; depth-slices at
4200 m for the vertical resistivity model (left) and the horizontal resistivity model (right); the
total number of free parameters was 107.

In figure 4.12 we show results from the Gauss-Newton scheme (B), where we
utilized the model parameter compression and used a CG method to solve the eq. 4.4.
This result was obtained after 13 iterations, using 2806 forward solutions per iteration
(36478 simulations in total) and a memory usage of 12 GB for 5 · 104parameters.
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Figure 4.12: Survey scheme (B) inversion result: 3D Gauss-Newton optimizer result (H =
HD + HR) using CG solver and model parameter compression; depth-slices at 4200 m for the
vertical resistivity model (left) and the horizontal resistivity model (right); the total number of
free parameters was 5 · 104.

Figure 4.13 shows results obtained using the low-rank approximation (C) to the
data part of the Hessian matrix in eq. 4.15. For this case we used the same model
compression as in case (B). The results were obtained after 15 iterations, and the
number of forward solutions per iteration was 1506 (22590 forward solutions in total)
using Ns = 1 source groups. The maximum memory usage was similar to case (B).

Figure 4.13: Survey scheme (C) inversion result: low-rank optimizer (H̃ = H̃D + HR) using
CG solver and model parameter compression; depth-slices at 4200 m for the vertical resistivity
model (left) and the horizontal resistivity model (right); the total number of free parameters
was 5 · 104 and the number of source groups was Ns = 1.

In figure 4.14 we compare the eigenvalue distribution of the Hessian matrices
for the first iteration in cases (B) and (C), with the eigenvalue distribution of their
data Hessian matrices (without regularization). We see that when we incorporate the
regularization, the eigenvalue distributions of both cases (compare E2 and E3) are
similar. This is in agreement with the discussion of the results shown in figure 4.5.
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Figure 4.14: Eigenvalue decomposition for the first-iteration Hessian matrices (with and with-
out regularization) of the inversions (B) and (C). E0: data Hessian matrix HD of inversion
(B). E1: data Hessian matrix H̃D of inversion (C). E2: Hessian matrix H = HD + Hgrad,
with Wgrad(σ) = 1e−1, of inversion (B). E3: Hessian matrix H̃ = H̃D + Hgrad, with
Wgrad(σ) = 1e−1, of inversion (C).

Finally, we show inversion results for the case (D) where we use the low-rank
approximation to the data part of the Hessian (Ns = 1) as well as the matrix free
recursive solver summarized in the eq. 4.47.

Figure 4.15: Survey scheme (D) inversion result: low-rank optimizer using the recursive
solver with the diagonal of the regularization Hessian matrix (Ĥ = H̃D + H̃R); depth-slices
at 4200 m for the vertical resistivity model (left) and the horizontal resistivity model (right);
the total number of free parameters was 107 and the number of source groups was Ns = 1.

For this case we executed 21 iterations of the inversion, and the number of forward so-
lutions per iteration was 1506 (31584 simulations in total). We used the same number
of free parameters, 107, as in case (A) with no compression of model parameters. The
memory usage to construct the update was 180 GB. As explained above, for this par-
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ticular case we neglected the off-diagonal parts of the regularization Hessian matrix.
This approximation may have impaired the inversion convergence.

The large-scale structures in the recovered resistivity models are similar for the
four inversion approaches. There is a difference in scale between A,D and B,C due
to the model parameter compression scheme. The similarities appear to be stronger
in the vertical than in the horizontal resistivity models. The resistive regions in the
top left and top right corners are due to the presence of salt. The structures seen in
the center of the survey area correspond to structures identified in seismic data. The
magnitude of the resistivity contrast varies in the four cases, but note that the misfit is
approximately the same for these results.

Let us now analyze the data fit. Our measure for the misfit is computed according
to the following expression,

χ =

∣∣FObs − F Synth
∣∣

δF obs . (4.50)

This quantity, that we call ”significant misfit”, gives the discrepancy between observed
and synthetic data in units of the estimated observed data measurement uncertainty,
denoted by δF obs. Figure 4.16 shows the common mid-point sorted data misfit χ for
offsets 4 km and 8 km, for the case of the low-rank approximation with the recursive
solver (D). The misfit distribution is similar for the other inversion cases considered
in this paper. The largest variations of the residuals between different approaches are
found in the NW and NE corners of the survey area, where salt bodies are present.
The data coverage for these structures is poor due to lack of receivers over these re-
gions. Only the extension of source towlines out of the receiver grid give data that
sample this part of the model. The resulting lack of information makes it difficult for
the inversion to fit these data.

Figure 4.16: Significant misfit (eq. 4.50) for survey scheme (D) inversion results: low-rank
optimizer using the recursive solver with the diagonal of the regularization Hessian matrix
(Ĥ = H̃D + H̃R). For offsets of 4 km (left) and for offsets of 8 km (right).
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4.4 Discussion

In this section we compare the computational complexity of the low-rank approach
introduced in this paper to that of the quasi-Newton and Gauss-Newton approaches.

The L-BFGS-B optimizer is of quasi-Newton type and requires us to compute the
gradient g for each update. The required number of forward solutions scales by the
number of receivers and not the number of sources. The computation of the update
has a relatively small numerical cost. L-BFGS-B builds up an approximation to the
Hessian matrix using past gradients and updates. The Gauss-Newton scheme has
a larger computational cost because it involves an explicit computation of a second
derivative from the Jacobian.

In table 4.1 we show a comparison between the computational cost of the different
schemes for which we showed inversion results above.

(A)
L-BFGS-B
N = 107

(B) 3DGN + CG
Ns = 1,

N = 5 · 104

(C) LR + CG
Ns = 1,

N = 5 · 104

(D) LR + DS diag
Ns = 1, N = 107

Number of
simulations
per iteration

O(Nrx) O(Ntx) O(NrxNs) O(NrxNs)

Jacobian
columns
(rank)
(M or M̃)

10 updates O(Ntx) O(Ns) O(Ns)

Solver time
complexity

O(N) O(N2k1/2) O(N2k1/2) O(NM̃2)

Solver
memory
complexity

O(N) O(N2) O(N2) O(NM̃)

Table 4.1: Computational complexity for the different schemes: (A) L-BFGS-B; (B) 3D
Gauss-Newton using Conjugate Gradient (3DGN + CG); (C) Low-rank approach using Con-
jugate gradient (LR + CG); (D) Low-rank approach using the proposed recursive direct solver
but just using the diagonal of the regularization matrix (LR + DS diag). k is the condition
number of the Hessian matrix, that in general depends on the size of the matrix.

Table 4.1 shows that the number of simulations for the low-rank approach is closer
to that of the quasi-Newton scheme when the number of source groups is small (the
presented results use Ns = 1). The computational load from forward solutions fol-
lowing from Gauss-Newton is very large.

A further benefit of the low-rank approach is that the data samples (Jacobian
columns) required to construct the Hessian scales with the number of source groups
Ns rather than number of sources Ntx like the Gauss-Newton scheme. For the L-
BFGS-B optimizer it is only necessary to store the last few model updates and gradi-
ents for a few iterations (5 in our case) to estimate the Hessian matrix.
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In the previous section, we showed how a recursive direct solver can avoid the
construction of the data part of the Hessian matrix. The use of the low-rank approach
in conjunction with this solver results in a very small memory complexity. Thus
we can solve large systems when the memory resources are limited (e.g. requires
GB instead of TB when using 106 unknowns). The time complexity may however
be similar for cases (C) and (D) described above. In table 4.2 we summarize the
computational complexity of each of the four tests.

(A)
L-BFGS-B

(B) 3DGN + CG (C) LR + CG (D) LR + DS diag

Number
of free pa-
rameters
(N)

107 5 · 104 5 · 104 107

Number of
simulations
per iteration

1004 2806 1506 1506

Jacobian
columns
(rank)
(M or M̃)

10 updates 550000 2510 2510

Solver time
complexity
(FLOPs)

109
2.5 · 1012

[1017]

2.5 · 1012

[1017]
6.3 · 1012

Solver
memory
complexity
(GB)

0.149
12

[93132]

12

[93132]
180

Total num-
ber of
iterations

60 13 15 21

Total num-
ber of
simulations

60240 36478 22590 31584

Table 4.2: Computational cost to obtain inversion results:(A) L-BFGS-B ; (B) 3D Gauss-
Newton using Conjugate Gradient (3DGN + CG); (C) Low-rank approach using Conjugate
gradient (LR + CG) ; (D) Low-rank approach using the proposed recursive direct solver but
just using the diagonal of the regularization matrix (LR + DS diag). Note: The numbers in
square brackets for schemes (B) and (C) show the cost in the case where the model parameter
compression scheme is not applied, i.e. in the case of using 107 free parameters.

The 3D Gauss-Newton scheme (B) and low-rank schemes (C) and (D) require
fewer iterations than the quasi-Newton case (A) to achieve the same misfit. This is an
indication that the low-rank schemes give better updates than the quasi-Newton case.

In the case of the low-rank inversion (schemes (C) and (D)), the total number
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of simulations demonstrates that fewer forward solutions are required than in case
of the 3D Gauss-Newton scheme (B) to reach the same misfit. We expect that this
difference can be larger for surveys with a larger number of source positions (in this
case Ntx/Nrx = 4.6). The difference between the number of simulations for the low-
rank cases (C) and (D) is probably due to the approximated regularization Hessian
matrix which leads to the requirement for more iterations to reach the same misfit.

The low-rank scheme results in a significant compression of the Jacobian ma-
trix used to form the Hessian. Since computational complexity is proportional to the
number of Jacobian columns, this is an important factor to take into consideration. In
implementations where a large Jacobian matrix is stored, the memory complexity can
be a challenge too. The low-rank scheme can reduce this complexity significantly as
we showed in table 4.1 and table 4.2, and in our example leads to reduction by a factor
M/M̃ = 550000/2510 ≈ 200.

4.5 Conclusions

In this paper we have introduced a low-rank approximation to the 3D CSEM Gauss-
Newton data Hessian matrix, and a matrix free recursive direct solver. When the
approximation is used together with the direct solver, inversion results similar to stan-
dard 3D Gauss-Newton optimization are obtained, but at a cost similar to that of
quasi-Newton methods. This is achieved without modifying the cost function or the
gradient, preserving the main structure of the Gauss-Newton scheme. Moreover, the
direct solver allowed us to use a much finer discretization of the model with associated
larger number of inversion parameters.

The low-rank data Hessian matrix approach can reduce the number of simulations
per iteration in the order of the ratio of the number of sources to the number of receiver
in a survey. Moreover, the matrix free recursive direct solver reduces the memory
complexity when using large number of inversion parameters.

In our results, the low-rank approach reaches the same residual misfit as full rank
3D Gauss-Newton when starting from a half-space, but with a lower total number of
simulations. This is due to the fact that the low-rank scheme needs approximately the
same number of iterations as full rank 3D Gauss-Newton, but a number of simulations
per iteration closer to a quasi-newton scheme. The recursive direct solver allows to
use a larger number of inversion parameters than with the 3D Gauss-Newton scheme
due to the smaller use of memory.
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4.7 Appendix

In this appendix we will present inversion results for the synthetic survey shown in
figure 4.2. This survey example was used to illustrate certain theoretical aspects of
the low-rank approximation in the section 4.2. The numerical complexity involved in
the inversion of this synthetic dataset is not very large, but the results are useful to
validate the different schemes considered.

We consider four different inversion methodologies: (As) quasi-Newton L-BFGS-
B (Zhu et al., 1997), (Bs) 3D Gauss-Newton with a conjugate gradient (CG) solver
for eq. 4.4, (Cs) the proposed low-rank approach with a CG solver for eq. 4.15, and
(Ds) the low-rank approach using the presented recursive direct solver with the ap-
proximation in eq. 4.48. Due to the small size of the synthetic survey considered, and
in contrast to the field data example studied in the section 4.3, we do not need to use
a model parameter compression. The inversion parametrization is a regular grid with
cell size 200 m×200 m×100 m. We consider a VTI model, resulting in 5 · 104 free
parameters.

The initial guess model was a half-space for all the inversions considered in this
appendix. This initial model has a background resistivity of 1 Ωm, and a water re-
sistivity of 0.25 Ωm. We terminated the iterations when the convergence rate became
too slow (misfit change in new iteration smaller than 1%).

In figure 4.17 we show the inversion results for the scheme (As). The inversion
took 74 iterations, where each iteration required 50 forward solutions (3700 solutions
in total). The memory usage to compute the update was about 10 MB. Though the
transverse resistivity of the target is of the same order as in the true model, the in-
version does not recover the correct target shape. We expect that the geometry of
the reconstruction could be improved by tuning the regularization settings to favour
a model with resistivity contrasts rather than smooth variations. Note that the target
is reconstructed in the vertical resistivity component since the vertical resistivity gov-
erns the target response, and we did not apply any anisotropy regularization. This is
common to all the results in this appendix.

Figure 4.17: Synthetic-survey scheme (As) inversion result: L-BFGS-B optimizer result;
vertical slice at y=2900 m for the vertical resistivity model (left) and the horizontal resistivity
model (right); iteration 74 with misfit=0.382 RMS.
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The inversion result for the scheme (Bs) is shown in figure 4.18. This result was
obtained after 53 iterations, using 645 forward solutions per iteration (34185 simula-
tions in total) and a memory usage of 12 GB for the calculation of the update. The
target is recovered in the vertical model with the approximate correct shape and resis-
tivity. In the horizontal model we can observe weak artifacts at positions correlating
to the receiver positions.

Figure 4.18: Synthetic-survey scheme (Bs) inversion result: 3D Gauss-Newton optimizer
result (H = HD + HR) using CG solver; vertical slice at y=2900 m for the vertical resistivity
model (left) and the horizontal resistivity model (right); iteration 53 with misfit=0.125 RMS.

Figure 4.19 shows the inversion results for the scheme (Cs). This result was
achieved after 53 iterations, with 150 forward solutions per iteration (7950 simulations
in total), and a memory usage of 12 GB for the calculation of the update. We observe
that these results are similar to those achieved with the scheme (Bs). However, the
target is situated 100 m above its position in the true model. Considering the low
frequencies involved, we belive that this difference (on the scale of the discretization)
is below the resolution of the data.

Figure 4.19: Synthetic-survey (Cs) inversion result: low-rank optimizer (H̃ = H̃D + HR);
vertical slice at y=2900 m for the vertical resistivity model (left) and the horizontal resistivity
model (right); iteration 76 with misfit=0.137 RMS.

For the synthetic survey that we considered in this appendix, the reduced memory
usage from the recursive direct solver is not relevant since the low number of model
parameters makes the CG solver feasible even without model parameter compression.
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However in order to validate the different approaches, we show in figure 4.20 the in-
version results for scheme (Ds). This result was achived after 119 iterations, using
150 forward solutions per iteration (17850 simulations in total). The memory usage
to compute the update was about 20 MB. In these inversion results we observe detri-
mental effects following from the approximation of the regularization Hessian matrix
as a diagonal matrix. The target is not as focused as in the result from the previous
schemes, and in the horizontal model the artifacts are stronger. We expect that these
aspects would improve if a better approximation to the inverse of the regularization
Hessian contribution was utilized when constructing the update in the data Hessian
matrix free solver.

Figure 4.20: Synthetic-survey (Ds) inversion result: low-rank optimizer using the recursive
solver with the diagonal of the regularization Hessian matrix (Ĥ = H̃D + H̃R); vertical slice
at y=2900 m for the vertical resistivity model (left) and the horizontal resistivity model (right);
iteration 119 with misfit=0.139 RMS.
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Chapter 5
3D CSEM data inversion using
Newton and Halley class methods.

Beyond the state-of-the-art frontiers, the use of higher-order methods than Gauss-
Newton, like Newton and Halley class methods, is not generally considered due to the
computational cost involved. In this paper this problem is efficiently solved allowing
the inversion of moderate size 3D CSEM survey data.

Paper #4. Submitted to IOP Science Inverse Problems journal in 21st August 2015.

Authors: M. Amaya, K. R. Hansen and J.P. Morten

Abstract: We introduce the use of the Newton and the Halley class optimization meth-
ods for the inversion of 3D controlled source electromagnetic data. The inversion is
formulated as a constrained non-linear least-squares problem which is solved by iter-
ative optimization. These methods require the derivatives up to second order of the
residuals with respect to model parameters. We show how Green functions determine
the high order derivatives, and develop a diagrammatical representation of the residual
derivatives. The Green functions are efficiently calculated on-the-fly, making use of a
finite-differences frequency-domain forward modelling code based on a multi-frontal
sparse direct solver. This allow us to build the second-order derivatives of the residu-
als keeping the memory cost in the same order as in a Gauss-Newton scheme. Model
updates are computed with a trust-region based conjugate-gradient solver which does
not require the computation of a stabilizer. We present inversion results for a syn-
thetic survey and compare the Gauss-Newton, Newton, and super-Halley optimization
schemes, and consider two different approaches to set the initial trust-region radius.
All the methods reach convergence by the same number of iterations. Our analysis
shows that each approach drives the convergence through a different path.
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5.1 Introduction

5.1 Introduction

Marine controlled-source electromagnetic (CSEM) surveys are used to map the con-
ductivity of the subsurface. In offshore hydrocarbon exploration applications, the
CSEM data are typically interpreted together with other geophysical data, such as
seismic data, to determine the presence and properties of hydrocarbon reservoirs (Ei-
desmo et al., 2002). The CSEM data can also be used to support exploration and
seismic processing by structural imaging applications (Hoversten et al., 2013; Morten
et al., 2011). In a CSEM survey (Constable and Srnka, 2007), a powerful electric
dipole is towed close to the seabed transmitting a low-frequency signal that pen-
etrates the subsurface. The low frequency ensures a significant penetration depth.
The presence of thin resistive layers, such as resulting from a hydrocarbon accumu-
lation, produces a wave-guide effect. This effect can give a large response in the
data, which makes detection of hydrocarbon charged reservoirs possible. A grid of
receivers deployed on the seabed measures the EM field. Imaging of the processed
data is achieved by iterative modelling and inversion workflows that produce a resis-
tivity model of the subsurface. State-of-the-art techniques for acquisition and imaging
generate 3D resistivity models of the survey area, for a recent example see Fanavoll
et al. (2014). The presence, volume, and properties of imaged resistors can be used
for risk assessment in exploration.

In this paper we focus on the development and implementation of high-order in-
version methods that so far are not applied in 3D CSEM inversion. These inverse
problems are typically formulated as a local optimization problem that finds a mini-
mum of the total residual between the observed data and the synthetic responses, the
cost function, from a model within the neighbourhood of the initial guess. The global
minimum of such an optimization problem could in principle be found by a stochastic
approach. However, the number of free parameters and modelling complexity in-
volved in a 3D CSEM inverse problem make stochastic methods unaffordable due to
the very large computational cost.

The main interest for developing high-order inversion methods is to achieve faster
convergence without the need of expending too much manual effort building detailed
initial models. An example of this interest is the transition from quasi-Newton meth-
ods (Plessix and Mulder, 2008) to Gauss-Newton methods (Abubakar et al., 2009).
Higher order methods than Gauss-Newton are not generally considered efficient due
to the amount of storage and computation needed. There are some problems where
properties like system matrix (tensor) sparsity can make it affordable (Gundersen and
Steihaug, 2011). However, as we show in this paper, when developing high-order
inversions methods in 3D CSEM, large and dense matrices (tensors) need to be pro-
cessed.

To date, inversion based on Gauss-Newton optimization is the highest order method
typically in use for imaging of 3D CSEM data. This method considers derivatives of
the optimization cost function with respect to model parameters to the second order
by an approximate Hessian matrix. The Gauss-Newton approximation to the Hessian

88



Chapter 5. 3D CSEM data inversion using Newton and Halley class methods.

only includes the first-order derivative of the residuals. A typical 3D CSEM survey
involves N ∼ 106 inversion parameters and Nκ ∼ 107 data samples. The size of the
Gauss-Newton Hessian matrix scales as N2, making its storage requirement a limit-
ing factor when processing large surveys. In Lin et al. (2013) a model compression
method is introduced that allows to reduce the number of inversion parameters. An-
other challenge is the number of forward simulations required to compute the Hessian
matrix for a 3D CSEM Gauss-Newton inversion with a large number of data samples.
In order to reduce this computational cost, a low-rank approximation to the Hessian
matrix was presented in Amaya et al. (2014). There are other approaches to cope
with the computational complexity of the 3D CSEM Gauss-Newton scheme: in Li
et al. (2010) a compressed implicit Jacobian method is presented; Zaslavsky et al.
(2013) shows the use of a fast 3D forward solver using an optimal subspace selection
to reduce the size of the Jacobian matrix.

Beyond the Gauss-Newton method, it is necessary to compute higher order deriva-
tives of the residuals with respect to model parameters. The computation of these
high-order derivatives requires the computation of tensor Green functions for the en-
tire parameter domain, i.e. the complete electromagnetic field resulting from a unit
point source at any spatial position in the model. In 3D CSEM time complexity from
obtaining millions of these Green functions could become the main bottle neck of
high-order inversion schemes. The performance achieved by current direct-solvers
(Grayber and Streich, 2012) makes those tensor Green functions simulations afford-
able for the purposes of this paper.

With this paper we would like to introduce inversion using high-order methods
beyond the Gauss-Newton approach for imaging of 3D CSEM data. We show that if
Green functions can be computed efficiently, high-order methods can be implemented
without a significant increase in storage requirements. The main increase in the com-
putational cost would be based on the construction and storage of the derivatives of
the misfit function.

The storage of tensor Green functions and multi-dimensional matrices, that ap-
pear in higher-order methods than 3D CSEM Gauss-Newton, significantly increases
the memory complexity. We have solved the storage difficulties for developing the
two inversion methods that we present in this paper, 3D CSEM Newton and 3D
CSEM Halley class methods (Ezquerro and Hernández, 2003; Gutierrez and Hernan-
dez, 2001; Han, 2001). We compute the Green functions on the fly using a finite-
difference frequency-domain (FDFD) sparse direct solver, avoiding the construction
of the rank-3 tensor in a way that allows us to keep the memory cost in the same order
as in the case of a Gauss-Newton approximation to the Hessian matrix.

Higher-order inversion methods than 3D CSEM Gauss-Newton have the difficulty
of solving linear equation systems with indefinite matrices. Therefore we suggest
the implementation of a trust-region solver that can handle the non-positive-definite
matrices.

We present the implementation of a 3D CSEM Newton and a 3D CSEM super-
Halley’s method, both based on the computation of second-order derivatives of the
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residuals, and we show synthetic results.
The organization of this paper is the following. First we show how to obtain the

third-order approximation of the data-misfit model cost function. After a diagrammat-
ical explanation of such expansions, we derive the stationary point equations. Next
we explain how we obtain the forward modelling solutions and the way we store the
matrices. Then we discuss the implementation of the trust-region solution algorithm
used in this paper. Finally, we apply our scheme to a synthetic model, and compare
results from the Gauss-Newton, Newton, and super-Halley inversions.

5.2 Theory

The inversion of CSEM data is formulated as a constrained non-linear least-squares
optimization problem,

σ? = arg min
σ∈M

ε(σ), (5.1)

where σ is a discrete parameterization of the 3D conductivity model, M represents
the set of possible models based on a priori information, and

ε(σ) = εD(σ) + λ εR(σ), (5.2)

is the cost function. This cost function includes the regularization misfit term, εR, with
λ an adjustable scalar parameter. The data misfit term, εD, depends on the observations
through a L2-norm,

εD (σ) = dκd
∗
κ , (5.3)

dκ = Wκ∆Fκ. (5.4)

In order to simplify the notation, we use the Einstein summation convention so a sum
over the repeated index κ is implied in the above equations. The short hand notation
κ = (F, i, f, rrx, rtx) uniquely labels a measurement, F represents a field component
(F = E for electric and F = H for magnetic), i are the spatial components (x, y)
of the field recordings, f are the frequencies, rrx is a receiver position, and rtx is
a source position. Here d = (d1, ..., dNκ)T is a vector that contains Nκ residuals,
and d∗ is its complex conjugate. Wκ is a datum weight (typically inverse standard
deviation) and ∆Fκ = F

Synth
κ (σ)−F Obs

κ represents the difference between synthetic
and observed fields.

The regularization term εR(σ) introduces a priori information about the solution
model σ? (Zhdanov, 2009; Portniaguine and Zhdanov, 1999). The regularization
term can be designed to achieve a semipositive-definite Hessian matrix by adjusting
the “trade-off factor” λ in eq. 5.2. In a Gauss-Newton approximation, the sum of the
data Hessian HGN ≈∇2εD and the regularization Hessian matrices will be a positive-
definite matrix. However, in the higher order methods that we apply in this paper, the
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data Hessian matrix H = ∇2εD and the tensor T ≈∇3εD are indefinite. Therefore,
the regularization term that we use in this paper just imposes model smoothness, and
is not used to ensure positive definite characteristic of the Hessian matrix H and
the tensor T . In the following, we focus on the data misfit term. Details about the
regularization can be found in our references.

5.2.1 Data-misfit model cost function

The problem (eq. 5.1) is iteratively solved starting from an initial guess σ(1), by up-
dating the model with a new step ∆σ at each iteration, so that iterate σ(k+1) =
σ(k)+∆σ(k). To obtain the step ∆σ(k) we define the model cost functionm(k) (∆σ)
that is an approximation to the cost function ε (σ) in the vicinity of the current iter-
ate σ(k). At each iteration we constrain the updated model σ(k+1) by applying a
non-linear transformation of the parameters, forcing them to lie within the physical
bounds (Habashy and Abubakar, 2004).

We define the data-misfit model cost function m(k)
D (∆σ) that is used at each iter-

ation by expanding the data-misfit εD(σ + ∆σ) in eq. 5.3 to the third-order in ∆σ,
but approximating it by removing the third-order residual derivative contribution from
∇3εD. This expansion becomes,

m
(k)
D (∆σ) =d (k)

κ d∗ (k)κ + g(k)n ∆σ(k)n +
1

2
H(k)
nn′∆σ

(k)
n ∆σ

(k)
n′

+
1

6
T (k)
nn′ n′′∆σ

(k)
n ∆σ

(k)
n′ ∆σ

(k)
n′′ , (5.5)

∇ε(k)D n = g(k)n = d∗ (k)κ J (k)
κn + c.c., (5.6)

∇2ε
(k)
D nn′ = H(k)

nn′ = J (k)
κn J

∗ (k)
κn′ + d∗ (k)κ S(k)κnn′ + c.c., (5.7)

∇3ε
(k)
D nn′ n′′ ≈ Tnn′ n′′ = J ∗ (k)κn S

(k)
κn′ n′′ + J ∗ (k)κn′ S(k)κnn′′ + J ∗ (k)κn′′ S(k)κnn′ + c.c.,

(5.8)

where c.c. represents the complex conjugate of the preceding terms. Defining N as
the number of model parameters with n = 1, · · · , N , the gradient g is a vector of N
real-elements and the Hessian H is a real N × N matrix. The Jacobian matrix J
is a Nκ × N complex matrix containing the first derivatives of the residuals dκ with
respect to model parameters. The quantity S is a Nκ ×N ×N tensor formed by the
second derivatives of the residuals with respect to model parameters.

The Jacobian matrix J can be constructed from the first-order derivatives of the
synthetic fields, see in the appendix (section 5.7) eq. 5.51 and eq. 5.52,

Jκn = Wκ
∂F

Synth
κ (σ)

∂σn
, (5.9)
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∂F
Synth
κ (σ)

∂σn
= ∆V (rn)

∑
p∈An, q

GF Ji p (rrx|rn, f,σ)GE Jp q (rn|rtx, f,σ) Jq (rtx, f) .

(5.10)

In this equation, ∆V (rn) is a volume factor that applies for the spatial discretiza-
tion, and rn is a suitably chosen interpolation point for the region associated with
parameter σn. Note that an additional grid decoupling technique can be applied in
eq. 5.10 to introduce more flexibility in the choice of inversion parameters. For ex-
ample, extended regions consisting of several discretization cells for the evaluation
of Green functions can be combined in the parameterization. However, in this pa-
per we consider that the discretization of the computational domains for the Green
functions and the inversion parameterization is the same. The index range denoted
An represents the model anisotropy (Zhdanov, 2009), so that the range of the index
p depends on the type of model parameter σn. In this work we consider a vertical
transverse isotropic (VTI) model, i.e. we consider independent horizontal and vertical
components for the conductivity of each parameter region. This means that the con-
ductivity tensor has the structure σi j(rn) = δi j [σH(rn)(δi x + δj y) + σV(rn)δi z],
where δi j is the Kronecker delta. Thus, for the horizontal conductivity parameters
p = x, y, and for the vertical conductivity parameters p = z in eq. 5.10. The Green
function GF Ji p (rrx|r, f,σ) denotes the field F for component i (i = x, y) at position
rrx, given a unit current source in direction p operating at position r with frequency
f . All Green function expressions in this paper use an equivalent notation. The factor
Jq(rtx) approximates the vector current source contribution in direction q at position
rtx as a point dipole.

The second-order derivatives of the residuals that appear in the tensor S can also
be derived from Maxwell’s equation,

Sκnn′ = Wκ
∂2F

Synth
κ (σ)

∂σn∂σn′
, (5.11)

∂2F
Synth
κ (σ)

∂σn∂σn′
= ∆V (rn) ∆V (rn′)

∑
m∈An, p∈An′ , q[

GF Jim (rrx|rn, f,σ)GE Jmp (rn|rn′ , f,σ)GE Jp q (rn′ |rtx, f,σ) Jq (rtx, f)

+GF Ji p (rrx|rn′ , f,σ)GE Jpm (rn′ |rn, f,σ)GE Jmq (rn|rtx, f,σ) Jq (rtx, f)
]
. (5.12)

The details of the derivation of this result can be found in our appendix (section 5.7)
eq. 5.54, where we also explain that we apply reciprocity to reduce the number
of simulations when computing the Green functions related to receiver position (
GF Jim (rrx|r, f,σ) and GF Ji p (rrx|r, f,σ)).
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The following symmetries follow from the definitions,

Sκnn′ = Sκn′ n, (5.13)

Hnn′ = Hn′ n, (5.14)

Tnn′ n′′ = Tn′ n′′ n = Tn′′ nn′ . (5.15)

These symmetries facilitate a compressed storage scheme.

5.2.2 Diagrammatic representation of the derivatives

We develop a diagrammatic representation of the derivatives of the data-misfit εD from
eq. 5.6, eq. 5.7, eq. 5.8, and the contributions to the data-misfit model cost function
mD (eq. 5.5). The diagrammatical representation appeals to the interpretation of the
Green function G(rb|ra,σ) as a propagator. Here we suppress the frequency argu-
ment for the Green function. A propagator describes how a “disturbance” or source
for the electric field at ra leads to a response at position rb. In the diagrammatic rep-
resentation this process is indicated as an arrow originating at ra and terminating at
rb. Using this identification, e.g. the first and second-order derivatives of the fields
that appear in eq. 5.10 and eq. 5.12 can be represented as in figure 5.1.

(a) Diagrammatic representation of the first derivative of the synthetic field with respect to
the conductivity parameter, ∂F Synth

κ (σ)/∂σn. In eq. 5.10 it appears multiplied by the corre-
sponding weight.

(b) Diagrammatic representation of the second derivative of the synthetic field with respect to
conductivity parameters σn and σn′ , ∂2F Synth

κ (σ)/∂σn∂σn′ . In eq. 5.12 it appears multiplied
by the corresponding weights.

Figure 5.1: Diagrams of the first-order and second-order derivatives of the fields with the
source and receiver in the spatial representation σ(r). The source distribution Jq(rtx) is shown
with a filled circle, and the receiver by a filled triangle.
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Note that we do not make use of the reciprocity principle when constructing diagram-
matic representations (see Appendix in section 5.7).

Such diagrammatic representations can be very useful to simplify the develop-
ment of higher order derivatives, and to appreciate the physical significance of the
various terms in the data-misfit model function. Moreover, a set of simple rules for
the one-to-one identification of a diagram and a mathematical representation, allows
for diagrams to be used systematically to construct the expressions for the contribu-
tions to a high-order expansion. In order to construct an n-th order derivative, we
construct all possible connected diagrams with n internal nodes. The mathematical
expressions are given by the product of the source factors and propagators along the
path. See Appendix in section 5.7 for more details.

In figure 5.2 we present diagrammatical representations of the terms that make
up the derivatives of the data-misfit term ∇εD, ∇2εD, and ∇3εD. The gradient ∇εD
(eq. 5.6) is given by the diagram in figure 5.2(a). This contribution to mD is thus
illustrated as the result of the propagation from the source position to the perturbed
point in the model, and subsequent propagation to the receiver. This visual illustra-
tion corresponds with an interpretation of the perturbation as a scatterer. The factor[
W 2
κ∆Fκ

]∗
Jq(rtx), applied at the source coordinate rtx, denotes the source ampli-

tude for the propagation. The total gradient will be a sum over all the data samples in
the dataset, i.e. all field components, frequencies, and source-receiver combinations
(rrx, rtx), as in eq. 5.3. In the diagrammatic representation we implicitly include
the complex conjugate pair of each diagram. For the gradient, this would involve the
corresponding diagram withW 2

κ∆FκJ
∗
q (rtx) as the source, and the complex conjuga-

tion of the Green function propagators. We draw diagrams with complex conjugated
Green functions as “reverse-time” propagation, in the sense that any series of propaga-
tors emanating at a receiver coordinate rrx and ending at a source coordinate rtx has
an implied complex conjugation on the Green function. Explicitly, the mathematical
expression for the gradient (eq. 5.6) is

gn =∆V (rn)
∑

F,i,f,rrx,rtx

∑
p∈An, q

[
GF Ji p (rrx|rn, f,σ)GE Jp q (r|rtx, f,σ)

×
[
WF
i (rrx|rtx, f)

]2
∆F ∗i (rrx|rtx, f,σ)Jq (rtx, f)

]
+ c.c.. (5.16)

This expression can be seen to be one-to-one with the representation in figure 5.2(a)
given the above set of rules for identification of elements in these diagrams and phys-
ical quantities.

Let us now consider the diagrammatic representation of the second-order terms
involving the Hessian ∇2εD (eq. 5.7). The diagrams are shown in figure 5.2(b). The
first diagram shown involves a two-step propagation from the source to the receiver,
as well as a similar propagation from the receiver to the source. The latter two Green
functions, from the receiver to the source, are associated with complex conjugation
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given the direction of the arrows from the receiver to the source, and the prescription
described above. The complex conjugate pair diagram is implicitly included. Note
that the diagram obtained when r′ → r corresponds to the magnitude of the model
parameter sensitivity.

(a) Diagrammatic representation of contributions to ∇εD = g .

(b) Diagrammatic representation of contributions to ∇2εD = H. The Gauss-Newton Hessian matrix
HGN is an approximation only formed by the diagram on the left.

(c) Diagrammatic representation of contributions to ∇3εD. In this paper, the quantity T is an approxi-
mation only formed by the terms represented by the diagram on the left.

Figure 5.2: Diagrams of the data-misfit derivatives. Note that diagrams corresponding to
complex conjugate pairs and permutations of the internal spatial nodes rn, rn′ , rn′′ are not
shown, but implicitly assumed added.

The second diagram in figure 5.2(b) includes an “internal propagation” between
the two positions r and r′. Such contributions to the Hessian are omitted in a Gauss-
Newton approach. In addition to the complex conjugate pair that can be constructed,
the diagrammatic representation also implicitly includes all permutations of such in-
ternal nodes. This is similar to the situation shown in figure 5.1(b). In total there will
be four contributions represented by the second diagram in figure 5.2(b). Note that
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these latter four contributions are significantly more complicated to compute because
of the internal propagator, which is discussed below.

Higher order contributions can be developed systematically by constructing all
possible diagrams with the number of internal nodes corresponding to the order of
the expansion. The diagrams for the third-order terms involving ∇3εD are shown
in figure 5.2(c). The first type of diagram is a combination of a first and a second
derivative. Complex conjugate pairs and internal node permutation introduces in total
12 of these terms. These are the type of contributions involved in the tensor T (eq.
5.8). The second type of diagram in figure 5.2(c) involves two internal propagators.
There are also here 12 implied diagrams from complex conjugation and internal node
permutation. Note that the second type of diagram in figure 5.2(c) is omitted in the
approximation eq. 5.8 due to the numerical complexity involved in computing the
double internal propagation.

5.2.3 Stationary point equations

Once the data-misfit model function mD is defined, it is possible to get the stationary
point equations that determines the steps ∆σ(k). A necessary condition of the solu-
tion eq. 5.1 is that the gradient of the objective function vanishes at σ?. Applying this
condition to eq. 5.5,

∂m
(k)
D (∆σ)

∂∆σn
= 0, (5.17)

we get the stationary point equation

g(k)n +H(k)
nn′∆σ

(k)
n′ +

1

2
T (k)
nn′ n′′∆σ

(k)
n′ ∆σ

(k)
n′′ = 0. (5.18)

In order to simplify the notation, from this point we suppress the iteration index k.
When applying a Gauss-Newton (GN) optimization scheme, eq. 5.18 is approx-

imated to first-order in the residual derivatives, i.e. all terms determined by S are
omitted. At each iteration, the step ∆σGN is obtained from

HGN
nn′ ∆σGNn′ = −gn, (5.19)

HGN
nn′ = J ∗κnJκn′ + c.c.. (5.20)

In this paper we apply two higher-order methods in 3D CSEM optimization, New-
ton’s method and a Halley class method. As mentioned in the introduction, our inten-
tion is to explore higher-order methods by solving the numerical challenges that these
methods present.

In order to apply Newton’s method, the eq. 5.18 is approximated to first-order. At
each iteration the step ∆σN is obtained from,

Hnn′ ∆σNn′ = −gn, (5.21)
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where we use the complete expression for the Hessian matrix by including the second-
order derivative of the residuals S (compare eq. 5.7 with eq. 5.20).

Another higher-order proposal is to solve eq. 5.18 by applying a Halley class
method for multidimensional functions in the way that it is formulated in Gundersen
and Steihaug (2011). This method can be formulated as applying two Newton steps
at each iteration to obtain the step ∆σH,

∆σHn = ∆σAn + ∆σBn, (5.22)

Hnn′∆σAn′ = −gn, (5.23)

(
Hnn′ + αTnn′ n′′∆σAn′′

)
∆σBn′ = −1

2
Tnn′ n′′∆σAn′∆σAn′′ . (5.24)

For the inversion results in this paper, we consider the super-Halley method where the
parameter α = 1. Other alternatives are the Chebyshev’s method (α = 0), and the
Halley’s method (α = 1/2).

5.2.4 Forward solutions and system of equation construction

A 3D CSEM optimization method based on first-order derivatives of the residuals (eq.
5.10), like Gauss-Newton (eq. 5.19), requires the computation of the Green function
for each source G(rn|rtx,σ) and receiver position G(rn′ |rrx,σ) (here reciprocity
has been applied), for each field-component and frequency. For higher order deriva-
tives methods, in addition it is necessary to evaluate, for each field-component and
frequency, a Green function G(rn′ |rn,σ) for all pairs of cell positions in the model
(internal propagation in the parameterized domain). In these cases, for a regular size
3D model, the number of internal Green function simulations is several orders of
magnitude larger than the number of source and receiver Green function simulations.

Direct solvers have started to become practical for modelling of moderate-size
3D CSEM surveys and using state-of-the-art computer clusters (Da Silva et al., 2012;
Yang and Oldenburg, 2012; Grayver et al., 2013; Schwarzbach and Haber, 2013). In
some cases, direct solvers can be faster than iterative solutions when a problem re-
quires many right hand sides (RHS) (Grayber and Streich, 2012). Our two 3D CSEM
optimization proposals (Newton and Halley class methods) require the computation of
the second-derivatives of the residuals (eq. 5.12), which are the lowest-order deriva-
tives that require the simulation of internal Green functionsG(rn|rn′ ,σ). Therefore,
due to the large amount of required RHS, we suggest the use of a FDFD direct-solver
to obtain the forward solutions.

We use a FDFD modelling tool that uses the MUMPS sparse direct solver to obtain
a numerically efficient solution for forward modelling. MUMPS factorizes the system
matrix, making use of a multifrontal approach and a MPI standard parallelization
(Amestoy et al., 2001, 2006). Once the matrix is factorized, each RHS is obtained in

97



5.2 Theory

a few seconds. A similar modelling approach for 3D CSEM Gauss-Newton inversion
was considered by Streich (2009).

The storage required for the complete set of Green functions becomes a challenge
when using a model of size typical in current commercial applications. We keep in
memory only the Green functions G(rn|rtx,σ) associated with the source positions
and the Green functionsG(rn′ |rrx,σ) associated with the receiver positions to reduce
the memory requirement. The internal Green functions G(rn|rn′ ,σ) (for its three
field components) are computed on-the-fly, and considered one at a time. Next we
combine this internal Green function with all the Green functions associated with
sources and receiver positions, to obtain the contribution in the calculation of the
high-order derivative of the residuals. In this way we only buffer an internal Green
function (three field components) simultaneously, avoiding the use of the large amount
of memory needed in case of storing the whole tensorG(rn|rn′ ,σ).

In the methods that we present in this paper, the dimensions of the tensors S and
T make their storage impractical for a moderate-size model. As we comment on
the introduction, a realistic survey involves N ∼ 106 inversion parameters (Hessian
storage ∼ TB) and Nκ ∼ 107 data samples. The memory requirement scales as,

dim(H) = N ×N, (5.25)

dim(S) = Nκ ×N ×N, (5.26)

dim(T ) = N ×N ×N. (5.27)

To cope with the storage challenges following from these scaling behaviours, we do
not explicitly compute S and T . Rather, we compute the product d∗κSκ n n′ when
obtaining the Hessian matrix H, and the product Tn n′ n′′∆σAn′′ when obtaining a
super-Halley update, from eq. 5.6 to eq. 5.8 and from eq. 5.22 to eq. 5.24. In this way
we keep the memory complexity in the order of the Hessian matrix.

dim(d∗κSκnn′) = N ×N, (5.28)

dim(Tnn′ n′′∆σAn′′) = N ×N. (5.29)

Following these strategies, we can obtain the model update for 3D CSEM inversion
for the Newton (eq. 5.21) and Halley class methods (eq. 5.23 and eq. 5.24), with the
same memory complexity as in the case of a 3D CSEM Gauss-Newton inversion.

5.2.5 Trust-region solver

In order to solve the linear equation systems eq. 5.21, eq. 5.23 and eq. 5.24, there are
two main strategies that can be applied to deal with the fact that matrices H and T are
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generally indefinite. One option is to apply a Hessian matrix modification, i.e. finding
at each iteration the smallest matrix B(k) such that,

H(k) + BA (k) is positive definite, (5.30)

and

H(k) + T (k)∆σB (k) + BB (k) is positive definite. (5.31)

For a typical 3D CSEM inversion this process can involve a large computational cost
to determine the optimal matrix B.

Another alternative to solve eq. 5.21, eq. 5.23, eq. 5.24 is to use one of the inexact
Newton methods described in Nocedal and Wright (2006). They are iterative meth-
ods with modifications to handle negative curvature in the Hessian matrix. We have
implemented the trust-region Newton conjugate gradient (CG) Steihaug algorithm
(Steihaug, 1983) because the alternative, based on line-search Newton direction, can
require many line-search evaluations or/and giving a small reduction in the misfit, and
a trust-region Newton-Lanczos method is computationally too expensive.

At each iteration of an optimization scheme, for solving a linear equation systems
(e.g. eq. 5.19, eq. 5.21, eq. 5.23 and eq. 5.23) with a trust-region method like CG-
Steihaug, a mechanism is necessary to establish the trust-region radius R(k). We
consider two alternatives to set the initial trust-region radius R(1). The first one is to
set

R(1) = ‖∆σGN‖2, (5.32)

i.e. we calculate an initial Gauss-Newton step ∆σGN with a regular conjugate gradient
solver and then we assign the Euclidean norm of this step to the initial radius of the
trust-region algorithm. Another way is to establish the initial trust-region radius based
on an initial steepest-descent step ∆σSD, i.e.

R(1) = ‖∆σSD‖2. (5.33)

Once the initial trust-region radius R(1) is set, we calculate the first-iteration step
∆σ(1). For the following iterations, the trust-region radius is adjusted according to
the following strategy. We define the parameter

ψ(k) =
(
ε(σ(k))− ε(σ(k) + ∆σ(k))

)(
m(k)(0)− (m(k)(∆σ(k))

)−1
, (5.34)

i.e. the ratio between the actual cost function reduction and the predicted cost function
reduction. As we show in algorithm 1, the ratio ψ is used to determine when to adjust
the trust-region radius, and when to accept the step ∆σ. In the case of a Halley class
method, at each iteration we use the same trust-region radius to obtain the two Newton
steps ∆σA (eq. 5.23) and ∆σB (eq. 5.24) independently, but adjusting this radius for
the following iteration based on the L2-norm of the resultant step ∆σH (eq. 5.22).
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Algorithm 1 Trust-region algorithm used in this paper

1: Set the initial radius R(1) based on a initial step: eq. 5.32 or eq. 5.33
2: Given Rmax ≥ R(1) and η ∈ [0, 1/4]
3: for k=1,2,... do
4: Obtain the iteration step ∆σ(k) by applying the CG-Steihaug solver (Stei-

haug, 1983) in the corresponding linear equation system: in eq. 5.19 for ∆σGN (k);
or in eq. 5.21 for ∆σN (k); or in eq. 5.23 and eq. 5.24 for ∆σH (k)

5: Evaluate ψ(k) from eq. 5.34
6: if ψ(k) < 1/4 or (actual reduction < 0 and predicted reduction < 0) then
7: R(k+1) ← 1/4 R(k)

8: else
9: if ψ(k) > 3/4 and ||∆σ(k)|| = R(k) then

10: R(k+1) ← min(2R(k), Rmax)
11: else
12: R(k+1) ← R(k)

13: end if
14: end if
15: if ψ(k) > η then
16: σ(k+1) ← σ(k) + ∆σ(k)

17: else
18: σ(k+1) ← σ(k)

19: end if
20: end for

The trust-region algorithm 1 that we implement is based on the one described in
Nocedal and Wright (2006), but with one modification. A cubic approximation like
a Halley class method (eq. 5.22) based on a trust-region implementation, could result
in an iteration step ∆σH from eq. 5.22 that is not a descent direction. This situation
can arise while computing the step ∆σB from eq. 5.24 if R is too large. Therefore
we have extended the algorithm to reduce R when the actual reduction and predicted
reduction are simultaneously negative.

100



Chapter 5. 3D CSEM data inversion using Newton and Halley class methods.

5.3 Inversion results

We present 3D CSEM inversion results based on a synthetic survey dataset. These
results allow us to evaluate our implementation of the methods that we present in this
paper. We compare three different optimization schemes: (A) Gauss-Newton, (B)
Newton, and (C) super-Halley. We use a trust-region conjugate gradient method (see
subsection 5.2.5) to solve the linear systems for the model updates. For each scheme,
we consider the two alternatives eq. 5.32 and eq. 5.33 to set the initial trust-region
radius.

Figure 5.3: True model including the survey layout used in the tests. Data for Ex and Ey at
0.25 Hz and 1.0 Hz is used in the inversion tests. Top: cross-section at y = 3100 m. Bottom:
depth-slice at z = 1500 m.
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(a) Misfit per iteration for the different schemes when the initial trust-region radius R(1) =
‖∆σGN‖2 (L2-norm of a initial Gauss-Newton step).

(b) Misfit per iteration for the different schemes when the initial trust-region radius R(1) =
‖∆σSD‖2 (L2-norm of a initial steepest-descent step).

Figure 5.4: Total misfit for the three schemes while using different initial trust-region radius
(eq. 5.32 and eq. 5.33).

In figure 5.3 we show the synthetic model used in these tests, and the source-
receiver layout. The synthetic survey layout consists of 25 receivers and 5 towlines.
The receiver and towline spacing is 1 km. The true model has an homogeneous back-
ground resistivity of 1 Ωm, and contains a thin resistor of 50 Ωmat 1000 m below the
seabed. The water depth is 500 m, and the water has a resistivity of 0.25 Ωm. The
recorded data components are the Ex and Ey fields for the frequencies 0.25 Hz and
1.0 Hz. For these tests we did not contaminate the dataset with noise. The total num-
ber of data samples is Nκ = 13368. For the VTI model we invert for the horizontal
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and vertical resistivity components. The model is discretized as a rectilinear grid with
cells of size 200 m×200 m×100 m. This gives a total of N = 45240 free parameters.
In all the inversion results that we show, the initial guess is a half-space model with a
background resistivity of 1 Ωmand water resistivity of 0.25 Ωm, i.e. corresponding to
the background in the true model. We do not show inversion results for the horizontal
resistivity since this component does not show significant differences comparing to
the initial model. This is due to the well-known fact that the electric field is vertically
polarized for the guided-wave produced in a thin resistive layer (see an explanation of
this effect in Mittet and Morten (2013)).

In the figure 5.4 we show the total misfit per iteration for the six different tests.
The initial total misfit is ε(1) = 3.26. We stopped all the tests at iteration k = 16
because, as we show in detail in the table 5.1, the convergence was very slow at that
stage.

The same number of iterations is required to reach similar final misfit for all the
six tests, see figure 5.4. However, the two different strategies for setting the initial
trust-region radius results in a different evolution of the convergence. At the first
iterations, the Gauss-Newton scheme in figure 5.4(a) shows a faster convergence than
the Newton and the super-Halley schemes. In figure 5.4(b), at early iterations the three
schemes show a similar convergence speed, but the super-Halley case is slightly faster
in the first two iterations. At iteration 8, all the tests reach a similar low total misfit,
but the inversion result models still show important differences when comparing to
the true model. At iteration 16 all the inversion result models are close to the true
model, but we can observe some minor differences.

In table 5.1 we gather detailed information about the first and last iteration of the
different tests. This allows us to analyse the differences observed in figure 5.4. In the
table we also show the computed values for the angle between the steepest descent
direction and the model update following from each inversion approach,

φ(k) = arccos
(
‖∆σ(k) · (−gk)‖ /

(
‖∆σ(k)‖ · ‖(−gk)‖

))
(5.35)

The rest of parameters that appear in each column correspond with the definition
previously used in this paper: k = iteration number; ε(k+1) = total misfit (eq. 5.2) of
the updated model σ(k+1) = σ(k)+∆σ(k); ‖∆σ‖2 = L2-norm of the model update.

For the iteration k = 1, the data in table 5.0(a) shows that the (A) Gauss-Newton
scheme produces a long step ∆σ(1) that reduces the total misfit much more than in
the case of the (B) Newton and (C) super-Halley schemes. In the same table and at
the same iteration, we observe that although the result of the Newton and super-Halley
steps produce a similar total misfit, the angles φ(k) for both cases are very different.
The angle φ(1) of the scheme (B) step in table 5.0(a) is almost zero since the trust-
region algorithm reduces the radius one time before finding a descent direction. We
can observe all these differences comparing from figure 5.5 to figure 5.7. The ratio
ψ(1) ≈ 1 indicates that the predicted misfit reduction is quite accurate for the three
schemes, at iteration k = 1 in table 5.0(a) and table 5.0(b).
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(a) Information about the iteration results when using an initial trust-
region radius R(1) = ‖∆σSD‖2.

scheme k ε(k+1) ψ(k) ‖∆σ(k)‖2 φ(k)

(A) 1 0.76 1.01 18.63 57.4 ◦

(B) 1 1.49 1.03 4.65 0.07 ◦

(C) 1 1.47 1.04 6.53 45.5 ◦

(A) 15 0.31 0.51 0.01 52.7 ◦

(B) 15 0.31 0.63 0.02 78.24 ◦

(C) 15 0.31 1.38 0.01 38.7 ◦

(b) Information about the iteration results when using an initial trust-
region radius R(1) = ‖∆σGN‖2.

scheme k ε(k+1) ψ(k) ‖∆σ(k)‖2 φ(k)

(A) 1 2.21 1.04 2.33 0.0 ◦

(B) 1 2.21 1.04 2.33 0.0 ◦

(C) 1 2.07 1.07 3.50 41.23 ◦

(A) 15 0.31 0.87 0.03 67.98 ◦

(B) 15 0.29 0.32 0.01 0.29 ◦

(C) 15 0.28 1.18 0.02 59.83 ◦

Table 5.1: Information about iteration k = 1 and iteration k = 15 of the three schemes when
using different initial trust-region radius (eq. 5.32 and eq. 5.33).

Figure 5.5: Inversion result σ(2) of the iteration k = 1 and the scheme (A) when using
R(1) = ‖∆σGN‖2. Section at y = 3100 m.
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Figure 5.6: Inversion result σ(2) of the iteration k = 1 and the scheme (B) when using
R(1) = ‖∆σGN‖2. Section at y = 3100 m.

Figure 5.7: Inversion result σ(2) of the iteration k = 1 and the scheme (C) when using
R(1) = ‖∆σGN‖2. Section at y = 3100 m.

For the tests based on the use of R(1) = ‖∆σSD‖2 (table 5.0(b)), the initial steps
are shorter than in table 5.0(a). In table 5.0(b), scheme (C) at iteration k = 1, the
step is a bit larger than in scheme (A) and (B), as a result of the two independent
super-Halley steps (eq. 5.22), however it does not show a significant difference in the
reduction of the total misfit. Only slight differences are observed when comparing the
inversion results figure 5.8 and figure 5.9, with figure 5.10.
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Figure 5.8: Inversion result σ(2) of the iteration k = 1 and the scheme (A) when using
R(1) = ‖∆σSD‖2. Section at y = 3100 m.

Figure 5.9: Inversion result σ(2) of the iteration k = 1 and the scheme (B) when using
R(1) = ‖∆σSD‖2. Section at y = 3100 m.
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Figure 5.10: Inversion result σ(2) of the iteration k = 1 and the scheme (C) when using
R(1) = ‖∆σSD‖2. Section at y = 3100 m.

At iteration k = 15, the six tests in table 5.1 produce very small steps ∆σ(15)

with different angles φ(15). Although all of them reach the total misfit ε(16) ≈ 0.3,
the inversion results (from figure 5.11 to figure 5.16) show some differences between
them.

Figure 5.11: Inversion result σ(16) of the iteration k = 15 and the scheme (A) when using
R(1) = ‖∆σGN‖2. Section at y = 3100 m.
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Figure 5.12: Inversion result σ(16) of the iteration k = 15 and the scheme (B) when using
R(1) = ‖∆σGN‖2. Section at y = 3100 m.

Figure 5.13: Inversion result σ(16) of the iteration k = 15 and the scheme (C) when using
R(1) = ‖∆σGN‖2. Section at y = 3100 m.

108



Chapter 5. 3D CSEM data inversion using Newton and Halley class methods.

Figure 5.14: Inversion result σ(16) of the iteration k = 15 and the scheme (A) when using
R(1) = ‖∆σSD‖2. Slice at y = 3100 m.

The inversion results from figure 5.11 to figure 5.14 place the resistor 200 m above
its position in the true model. In these results, the maximum resistivity is 40 Ωm.
Since at each iteration the regularization (smoothness) contribution is reduced, at it-
eration k = 15 the weak regularization produces irregularities in the target resistivity.
In figure 5.15 and figure 5.16 the resistor is situated 100 m above its position in the
true model and the maximum resistivity reaches 50 Ωm.

Figure 5.15: Inversion result σ(16) of the iteration k = 15 and the scheme (B) when using
R(1) = ‖∆σSD‖2. Slice at y = 3100 m.
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Figure 5.16: Inversion result σ(16) of the iteration k = 15 and the scheme (C) when using
R(1) = ‖∆σSD‖2. Slice at y = 3100 m.

In order to compute these results, each test used 8 MPI-processes per frequency in
a single isolated-cluster node, with a maximum total (sum of all the processes) RAM
memory of 60 GB per frequency. The FDFD forward modelling tool has the largest
memory usage. The average computing time needed by each test was: test (A) used
2.5 hours per iteration; test (B) used 13 hours per iteration; test(C) used 23 hours per
iteration.

5.4 Discussion

In this section we compare the results of the 3D CSEM Newton and super-Halley
schemes, to the results of 3D CSEM Gauss-Newton scheme.

In the six tests, the different angles φ(1), the different L2-norms of the initial steps
‖∆σ(1)‖2, and the evolution of their total misfits, suggest that each method drives
the inversion through different paths. Indeed, although the last inversion results σ(16)

have a similar total misfit, we can observe differences when comparing them.
The implementation of the trust-region approach does not guarantee the optimal

set of steps in the constrained minimization problem. For the six tests presented here,
the differences in the convergence speed at the initial iterations are not sufficient to
conclusively evaluate the initial trust-region radius schemes described above. Al-
though the two approaches to set the initial trust-region radius apparently change the
behaviour of the inversion, we think that the initial misfit reduction is too low for the
tests that use R(1) = ‖∆σSD‖2.

The main difference between the results at iteration k = 15 and the true model is
the depth placement of the resistor. We note that for the low frequencies considered,
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the smallest propagation length-scale is the skin-depth which is approximately 500 m
for the highest frequency. Variations in depth placement that are significantly smaller
than this length are considered below the resolution of the data. However, it is inter-
esting to see that there are two inversion results that place the resistor closer to its true
position.

When evaluating integrals over the internal Green functions for which the unit
source is contained within the integration volume, we approximate the integral by us-
ing the solution for G(rn|rn′ , σ) obtained by the FDFD method. Doing this we are
approximating an integral (over a singular function) by an average value of the inte-
grand over the cell volume. In higher order approaches like Newton and Halley class
methods, these approximations affect all the values of the diagonal (and its vicinity)
of the Hessian matrix H and the tensor T . In the presented tests we do not observe
incorrect resistors or non-converging inversions that might be produced by such ap-
proximations. It may be possible to obtain a better approximation to G(rn|rn′ , σ),
but that is beyond the scope of our paper.

5.5 Conclusions

In this paper we introduce the use of the high-order optimization schemes Newton
and Halley-class methods for 3D CSEM inversion. These schemes represent the next
step in complexity over Gauss-Newton optimization, which is currently becoming
an established methodology for 3D CSEM inversion. Our results contribute to the
understanding of the numerical complexity and performance of high-order methods
compared to current inverse schemes.

The use of a FDFD direct solver, for performing the tens of thousands of forward
simulations per iteration, and on-the-fly computations, allow to implement 3D CSEM
higher order optimization methods than Gauss-Newton due to the resultant limited
computational cost. We show that it is possible to perform these computations keeping
the memory complexity low. Once the system matrix is factorized using the direct
solver, it is possible to explore high-order methods without further time-consuming
modeling operations. Our diagrammatic representations show how the higher order
methods can all be developed from internal propagations, i.e. Green functions with
both spatial indices inside the parameterized domain.

A trust-region solver that can handle the negative curvature of the system matrices,
avoids the computational cost associated with finding an optimal stabilizer. Our re-
sults suggest the use of a more sophisticated trust-region algorithm that could modify
the trust-region radius following a more efficient pattern.

The results that we present show that the three different schemes (Gauss-Newton,
Newton and super-Halley) drive the inversion through different paths, making it diffi-
cult to compare the convergence speed of these methods.

In future work we would consider more complex conductivity models, that in-
volve a more complex cost function with local minima corresponding to qualitatively
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5.7 Appendix

In this appendix, we consider the derivatives of the cost function and the synthetic
data, with respect to model parameters σ(r). These derivatives follow from the varia-
tion of the fields when we vary the parameters,

F Synth
κ (σ + δσ) = F Synth

κ (σ)

+
∑
n

1

n!

∫ n∏
m=1

drm
∂nF

Synth
κ (σ)

∂σ(r1) · · · ∂σ(rn)
δσ(r1) · · · δσ(rn). (5.36)

In this expression, we defined the derivatives ∂nF Synth
κ /∂σ(r1) · · · ∂σ(rn) of the ex-

pansion of the fields in the parameters, and the variation in the parameters δσ(r). We
will give a simplified derivation of these derivatives, focusing first on the develop-
ment, and subsequently introducing more details. Other derivations of the parameter
derivatives pertaining to geophysics applications in particular can be found in e.g.
McGillivray et al. (1994) and Plessix (2006).

The physical equations that F Synth
κ satisfies, are the Maxwell equations. The set

of first-order partial differential equations for the electric and magnetic fields can
be combined as a second-order equation for the electric field, i.e. we consider that
F Synth = E in this section. In the frequency domain, and utilizing the quasi-static
approximation, this equation becomes,

i

ωµ
∇×∇×E(r, ω)− σ(r)E(r, ω) = J(r, ω). (5.37)

Here ω = 2πf is the angular frequency, µ is the magnetic permeability assumed
constant, E is the electric field, σ is the conductivity tensor, and J are the electric
current sources. A similar equation can be derived for the magnetic field, but since
we only consider electric field responses in this paper we have omitted that derivation.
Note however, that the subsequent steps follow analogously.

We represent the linear operator associated with the inhomogeneous partial dif-
ferential eq. 5.37 depending on the conductivity as Lr(σ, ω). The subscript r will
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denote the spatial argument of the operator. Using this definition, and suppressing the
angular frequency argument, the inhomogeneous equation to solve can be written

Lr(σ)E(r|σ) = J(r), (5.38)

where we have added an explicit label for the conductivity model on the electric field.
Let us consider the effect of a perturbation of the conductivity model, δσ, at posi-

tion p. The operator can be expanded as

Lr (σ + δσ(p)) = Lr(σ)− δσ δ(r− p). (5.39)

We also expand the electric field in the perturbed model,

E(r|σ + δσ(p)) ≈ E(r|σ) + δσ
∂E(r|σ)

∂σ(p)
. (5.40)

We now introduce the Green function tensor for the electric field at position r in
direction i, due to a unit electrical current source at position r′ with spatial direction
j, Gi j(r|r′, σ). This quantity is associated with the operator Lr(σ), and defined as
the solution of the equation

Lr(σ)G(r|r′, σ) = I δ(r− r′), (5.41)

where I is a 3×3 unit matrix. In the above equation, we have reverted to the vector
notation for the tensor components i, j. The Green function allows us to express the
solution to eq. 5.38 as

E(r|σ) =

∫
dr′G(r|r′, σ) J(r′). (5.42)

The eq. 5.38 for the electric field in the perturbed model can be written,

[Lr(σ)− δσ δ (r− p)]

(
E(r|σ) + δσ

∂E(r|σ)

∂σ(p)

)
= J(r). (5.43)

To first order in δσ, and using the identity in eq. 5.38, we get

Lr(σ)
∂E(r|σ)

∂σ(p)
= δ (r− p) E(r|σ). (5.44)

This equation is solved using the Green function, and we also substitute the result in
eq. 5.42 to obtain,

∂E(r|σ)

∂σ(p)
=

∫
dr′G(r|p, σ) G(p|r′, σ) J(r′). (5.45)

This is the desired result for the derivative. If we can approximate the source as
a unit dipole point-source at rtx, the integration of the coordinate r′ simplifies as
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∫
dr′f(r′)Jl(r

′) ≈ f(rtx) Ĵl(rtx) with Ĵl designating the source components with

dipole moment
∣∣∣Ĵ∣∣∣ = 1 Am. This approximation is generally good for CSEM data

when the separation between the source and the receiver is at least a wavelength,
and the source length is small compared to the wavelength. Note that the numerical
results in this paper were computed with a line-source approximation rather than the
approximation described above.

We can go on to derive an expression for the second derivative by considering a
perturbation at position q and the expansion,

∂E(r|σ + δσ(q))

∂σ(p)
≈ ∂E(r|σ)

∂σ(p)
+ δσ

∂2E(r|σ)

∂σ(p)∂σ(q)
. (5.46)

Following the same procedure as above, we construct an equation for this quantity in
the perturbed model based on eq. 5.44,

Lr (σ + δσ (q))
∂E(r|σ + δσ(q))

∂σ(p)
= δ (r− p) E (r|σ + δσ (q)) . (5.47)

Inserting the expansions for the quantities in the perturbed model, we find to the same
accuracy used above that

Lr(σ)
∂2E(r|σ)

∂σ(p)∂σ(q)
= δ(r− q)

∂E(r|σ)

∂σ(p)
+ δ(r− p)

∂E(r|σ)

∂σ(q)
. (5.48)

We can finally use the Green function and the expression in eq. 5.45 to express the
second derivative as,

∂2E(r|σ)

∂σ(p)∂σ(q)
=

∫
dr′G(r|q, σ) G(q|p, σ) G(p|r′, σ) J(r′)

+

∫
dr′G(r|p, σ) G(p|q, σ) G(q|r′, σ) J(r′). (5.49)

This is the expression for the second derivative.
Expressions for higher order derivatives are obtained in the same way. For exam-

ple, the third derivative becomes,

∂3E(r|σ)

∂σ(p1)∂σ(p2)∂σ(p3)
=
∑
(1 2 3)

∫
dr′G(r|p3, σ) G(p3|p2, σ)

×G(p2|p1, σ) G(p1|r′, σ) J(r′), (5.50)

where the notation (1 2 3) denotes that we should include all permutations of the in-
dices in the sum. The generalization to arbitrary order derivatives follow the same
pattern, with the number of “internal nodes”, above denoted p1,p2,p3 for third or-
der, corresponding to the order of the derivative. Such generalization accommodates
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the diagrammatic technique described in subsection 5.2.2 to construct arbitrary order
derivatives.

In order to make contact with the notation used in the main text, we will now
write down the expression above for the first derivative in components. When we
consider the Green function for general field components F = E,H due to an elec-
tric source, J, or a magnetic source, K, we use the notation GF,Ui,j for U = J,K.
Moreover, we consider a discrete approximation, where parameter variations are de-
fined for finite regions of volume ∆V (rk). The coordinate rk is considered at the
region center point. The integration over the variations in the definition in eq. 5.36
is then approximated

∫
drf(r) δσ(r) ≈

∑
k ∆V (rk)f(rk)∆σ(rk) where the sum is

over the discretization. We also generalize the result in eq. 5.45 to consider tensor
structure on the parameter, σ → σj,k. If we consider a VTI medium, the perturbation
becomes δσ → δσj,k = δj,k [δσH (δj,x + δj,y) + δσVδj,z], with independent horizon-
tal, δσH, and vertical, δσV, components. Introducing this tensor structure in eq. 5.43
leads to a component projection of the Green functions. The expression for the first
derivative then becomes,

∂Fi(r|rtx, f, σ)

∂σH(p)
=∆V (p)

∑
j=x,y

GF Ji j (r|p, f, σ)GE Jj l (p|rtx, f, σ) Ĵl(rtx, f),

(5.51)

∂Fi(r|rtx, f, σ)

∂σV(p)
=∆V (p)GF Ji z (r|p, f, σ)GE Jz l (p|rtx, f, σ) Ĵl(rtx, f). (5.52)

Above we reinstated the frequency argument f . To simplify the computational load
in numerical evaluations of the derivatives, the reciprocity principle can be applied to
compute the Green function connecting r and p where r corresponds to fixed receiver
positions,

GF Ji j (r|p, f, σ) = sign(F )GE Uj i (p|r, f, σ). (5.53)

Here the index U = J when F = E, and U = K when F = H .
The component representation for the higher order derivatives is obtained follow-

ing the same generalizations. For example, the mixed second derivative for σH and σV
from eq. 5.49 becomes,

∂2Fi(r|rtx, f, σ)

∂σH(p)∂σV(q)
=∆V (p)∆V (q)

∑
j=x,y

×
[
GF Ji z (r|q, f, σ)GE Jz j (q|p, f, σ)GE Jj l (p|rtx, f, σ)Ĵl(rtx, f)

+GF Ji j (r|p, f, σ)GE Jj z (p|q, f, σ)GE Jz l (q|rtx, f, σ)Ĵl(rtx, f)
]
.

(5.54)

Again, the reciprocity principle can be used to reduce computational load in numerical
evaluation of this derivative when the number of receiver positions r is small.
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Chapter 6
Future work

This PhD thesis is focused on relevant topics related to current methods for large-scale
3D CSEM data inversion. There are complementary issues that can be addressed. This
chapter describes several directions to extend this research.

The research on higher-order methods than Gauss-Newton for 3D CSEM prob-
lems was not a primary objective of this thesis. However, about this topic a com-
plementary subject is the validation of the approximation that it is done in chapter 5
when using the finite-difference frequency-domain solution output for evaluating the
Green functions at the same position of the unit dipole moment source. Although non-
significant effects were observed in the presented inversion results, it is interesting to
compare the numerical results with the analytical results of these functions. The time
necessary to compute this validation was the main reason for leaving this issue for
future papers.

Another topic outside the scope of this PhD research is the efficient distributed
computation of the 3D CSEM Gauss-Newton inversion (not applying the presented
lowrank approximation). When working with large-scale surveys, the number of data
is such that it is necessary a large number of computers. Currently, an implicit rep-
resentation of the Jacobian matrix or the Gauss-Newton Hessian matrix is not afford-
able in a common computer node when a large number of inversion parameters are
involved. It is necessary to study different ways to divide this computation, look-
ing for the best balance between the lowest communication cost and the maximum
computation performance.

An extension of this PhD thesis is to test the proposed optimization methods with
synthetic resistivity models with more complicated topology. It would be useful to
evaluate the results of the different inversion paths in these scenarios.

It would also be interesting to apply the methods included in this thesis in joint-
inversion schemes (that include seismic and/or magnetotelluric data), to evaluate their
effect in this type of inversions.

The development of preconditioners for solving the linear equation systems that
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appear in 3D CSEM problems would help to speed up the inversion process. This is
not necessary when applying the presented matrix free recursive solver in the lowrank
approach, but it would be useful when applying the straight forward Gauss-Newton
method.
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