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INTRODUCTION

The general idea behind representation theory is, as the name sug-
gests, to represent complicated objects by something we know bet-
ter, namely vector spaces and linear transformations. It started out
with linear representations of groups, which are homomorphisms from
a group to a group of automorphisms on a vector space. Similar con-
structions were made for Lie groups and Lie algebras, and eventually
this was generalized to representations of associative algebras.

Let k be a field and Λ a finitely generated k-algebra. A finite-
dimensional representation of Λ is an algebra homomorphism from Λ
to a full matrix ring over k. Let d be a natural number andMd(k) the
ring of d × d-matrices over k. We denote by modd Λ the set of all d-
dimensional representations of Λ, i.e. all algebra homomorphisms from
Λ to Md(k). The representations in modd Λ correspond bijectively to
the Λ-module structures on the vector space kd. The general linear
group GLd(k) acts on modd Λ by conjugation, and the orbits of this
action corresponds to isomorphism classes of modules.

When k is algebraically closed, the set modd Λ also has the structure
of an affine variety. Then the closures of the GLd(k)-orbits are partially
ordered by inclusion, and this gives a partial order called degeneration
on the set of d-dimensional Λ-modules. There are several other partial
orders related to this, and we will study some of them.

The thesis consists of, in addition to this introduction, three papers:
Partial Orders on Representations of Algebras [7] (cowritten with Tore
A. Forbregd and Sverre O. Smalø), Degenerations of Submodules and
Composition Series [9] (cowritten with Steffen Oppermann) and Mod-
ule Degenerations and Finite Field Extensions [10].

1. Background

Let ρ be a representation in modd Λ. It defines a module structure
on the vector space kd in the following way. For a λ ∈ Λ and x ∈ kd
let λ · x = ρ(λ) · x (where the multiplication on the right hand side is
just matrix multiplication). Conversely, every module structure on kd

gives us a representation. Given a Λ-module M with underlying vector
space kd, every λ ∈ Λ defines a linear transformation fλ : kd → kd by
fλ(x) = λ · x. The function ρM : Λ →Md(k) given by ρM(λ) = fλ is
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2 INTRODUCTION

an algebra homomorphism, and thus a representation. This gives us a
bijection between the set of Λ-module structures on kd and modd Λ.

Since Λ is finitely generated, a representation is completely deter-
mined by its value on a finite set of elements. Let {λ1, . . . , λn} be a set
of generators for Λ, and let ρ ∈ modd Λ. If we know the matrices ρ(λi)
for 0 < i ≤ n, then we can reconstruct all of ρ. This means that we can
identify modd Λ with a subset of Md(k)n. This subset is closed in the
Zariski topology. To show this we need to construct some polynomials.

An element (A1, . . . , An) ∈ Md(k)n is in modd Λ if and only if for
every noncommutative polynomial f such that f(λ1, . . . , λn) = 0 we
have f(A1, . . . , An) = 0. Let k[{Xabc}0<a≤n,0<b≤d,0<c≤d] be the coordi-
nate ring of Md(k)n. For every f with f(λ1, . . . , λn) = 0, we have a
matrix

f

X111 · · · X11d
...

. . .
...

X1d1 · · · X1dd

 , · · · ,

Xn11 · · · Xn1d
...

. . .
...

Xnd1 · · · Xndd

 .

Each entry in this matrix is a polynomial that is 0 on modd Λ. Let S
be the set of all these polynomials for all f such that f(λ1, . . . , λn) = 0.
Then modd Λ is the zero set of S, and thus an affine variety.

The group variety GLd(k) acts on modd Λ by conjugation, that is,
for g ∈ GLd(k) and (A1, . . . , An) ∈ modd Λ we have g ? (A1, . . . , An) =
(gA1g

−1, . . . , gAng
−1). This induces an isomorphism between the mod-

ule represented by ρ and the module represented by g ? ρ, and thus we
get a one-to-one correspondence between GLd(k)-orbits in modd Λ and
isomorphism classes of d-dimensional Λ-modules. We are now ready
for the definition of degeneration.

Definition. If the orbit corresponding to a module N is contained in
the closure of the orbit corresponding to the module M , we say that
M degenerates to N , and denote this by M ≤deg N .

The simplest examples of module varieties occur when Λ = k[X], the
polynomial ring in one variable. Here we have modd(k[X]) = Md(k),
and the orbits are just similarity classes of matrices. That makes it easy
to decide if two modules are isomorphic, we only have to compare the
Jordan forms of their representations. If they have the same eigenvalues
and block sizes, they are isomorphic.

It is also easy to decide if one k[X]-module degenerates to another.
M. Gerstenhaber showed in [8] that for A,B ∈ modd k[X] we have
A ≤deg B if and only if rank(A− λ)i ≥ rank(B − λ)i for all i ∈ N and
all eigenvalues λ of A.
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Any minimal degeneration of a k[X]-module A can be constructed
by reducing the size of a Jordan block by one and increasing the size
of a smaller block with the same eigenvalue (or creating a new block
of size one).

In 1969, M. Artin [4] observed that for an exact sequence

0 // A // B // C // 0

we have B ≤deg A⊕C. An immediate consequence of this result is that
an orbit is closed if and only if the corresponding module is semisimple.

For some algebras this tells the whole story, every minimal degener-
ation is of this form. In particular this is true for k[X].

The existence of such sequences gives rise to a coarser order called
≤ext, which was first considered by S. Abeasis and A. Del Fra in [1].

Definition. Let M and N be Λ-modules. M ≤ext N if for some n ∈ N
there exist n short exact sequences

0 // Ai // Bi
// Ci // 0

such that M ' B1, N ' An ⊕ Cn and Bi ' Ai−1 ⊕ Ci−1 for 2 ≤ i ≤ n.

Abeasis and Del Fra also introduced a third order ≤r based on the
ranks of certain matrices.

They showed in [1], [2] and [3] that ≤ext, ≤deg and ≤r are the same
for all path algebras over An-quivers, and over some Dn-quivers. Later
K. Bongartz showed in [5] that ≤deg and ≤ext are the same for all
representation-directed algebras. This includes all path algebras over
Dynkin quivers. He also showed this for the Kronecker algebra. As
mentioned above, ≤ext and ≤deg are also the same for k[X].

In [11], C. Riedtmann proved the following.

Proposition 1. Let

0 // X // X ⊕M // N // 0

be an exact sequence in mod Λ. Then M ≤deg N .

Using this she gave the first example of a proper degenerationM ≤deg

N where N is indecomposable. When M ≤ext N , N is clearly decom-
posable, so this shows that degeneration is strictly finer than the ext-
order. In the same paper she presented an example due to J. Carlson
which shows that one cannot cancel common summands in a degener-
ation. This led her to introduce two new partial orders.

Definition. M virtually degenerates to N , denoted M ≤vdeg N , if
there exists Y ∈ mod Λ such that M ⊕ Y ≤deg N ⊕ Y .
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Definition. M ≤Hom N if for all X ∈ mod Λ we have [X,M ] ≤ [X,N ].

She then showed that≤vdeg and≤Hom are the same for representation-
finite algebras.

In 2000 G. Zwara proved the converse of Proposition 1 in [15].

Theorem 2. Let M and N be Λ-modules. The following are equivalent.

(1) M ≤deg N .
(2) There exists a short exact sequence of Λ-modules

0 // X // X ⊕M // N // 0 .

(3) There exists a short exact sequence of Λ-modules

0 // N // Y ⊕M // Y // 0.

This gives a completely module theoretic description of degenera-
tions. We can use this as an alternative definition of degeneration, and
since it does not involve geometry, we can relax the conditions on k.
It does not have to be algebraically closed any more, it does not even
have to be a field. All we need is a commutative artin ring.

Without geometry it is no longer obvious that degeneration is a
partial order, but this was proved by G. Zwara in [13].

Obviously we still have that M ≤ext N implies M ≤deg N , and
M ≤deg N implies M ≤vdeg N . From the new definition it is also easy
to see that M ≤vdeg N implies M ≤Hom N : If M ≤vdeg N we have a
Riedtmann sequence

0 // X // X ⊕M ⊕ Y // N ⊕ Y // 0 .

For any Z ∈ mod Λ we apply HomΛ(Z,−) to the Riedtmann sequence
and get an exact sequence

0 // HomΛ(Z,X) // HomΛ(Z,X)⊕ HomΛ(Z,M)⊕ HomΛ(Z, Y )

// HomΛ(Z,N)⊕ HomΛ(Z, Y ) ,

and summing up the lengths we see that [Z,M ] ≤ [Z,N ].
K. Bongartz has shown in [6] that for tame hereditary algebras over

algebraically closed fields ≤deg and ≤Hom are the same. G. Zwara
showed the same for representation-finite algebras over algebraically
closed fields in [14]. Zwara’s result was later generalized to any representation-
finite artin algebra by S. O. Smalø in [12].

The examples from Riedtmann and Carlson show that for arbitrary
algebras ≤ext is strictly coarser than ≤deg, which is again coarser than
≤vdeg. It is still not known if ≤Hom is different from ≤vdeg.
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2. Overview of the thesis

In [12], S. O. Smalø introduced the following family of quasiorders.
Let M be a Λ-module and n a natural number. An n × n-matrix A
with entries in Λ induces a k-linear map from Mn to itself. Denote the
image of this map by AMn.

Definition. M ≤n N if `(Mn/AMn) ≤ `(Nn/ANn) for all n × n-
matrices A with entries in Λ.

Equivalently, M ≤n N if each matrix has greater or equal rank as a
Mn-endomorphism than as a Nn-endomorphism. This generalizes the
rank order of Abeasis and Del Fra.

Clearly the relation ≤n is reflexive and transitive, but for small n it
is not always antisymmetric.

In [7], cowritten with my fellow student Tore A. Forbregd and our
adviser Professor Sverre O. Smalø, we show that ≤d3 always is a partial
order on modd Λ. It seems like for large enough n, ≤n is equivalent to
≤Hom. In the paper we claimed this as a fact, but we did not give a
proof. When the reviewer requested a proof, we realized that the proof
we had in mind was incomplete. We decided to remove the statement,
but unfortunately we wrote it twice and deleted it once, so it still
appears in the published version.

While we have not found a proof, we have not found any counterex-
ample either. In fact, in all examples we have looked at, ≤n is either not
a partial order or equivalent to ≤Hom. We still have no examples where
≤n is a partial order but is different from ≤Hom. However, we have
such an example for the closely related quasiorders ≤Hom−n obtained
by loosening the conditions of the Hom-order.

Definition. Let M and N be Λ-modules and n a natural number.
M ≤Hom−n N if [X,M ] ≤ [X,N ] for all Λ-modules X with `X ≤ n.

Example 1. Let Q be the Kronecker quiver,

Q : 1
α //

β
// 2 ,

and let Λ = kQ be the path algebra. The representations

P1 : k
( 1

0 )
//

( 0
1 )
// k2 , P2 : 0

//// k

are the indecomposable projective modules, and

I1 : k
//// 0 , k2

( 1 0 )
//

( 0 1 )
// k
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are the indecomposable injective modules. Let M = P2 ⊕ I2 and N =
P1 ⊕ I1. We have M ≤Hom−4 N , but [M,P2] > [N,P2], so M and N
are not comparable in the Hom-order. We also have that `(EndΛM) =
`(EndΛN) = 3, which is something that cannot happen with a proper
degeneration.

In [9], cowritten with Professor Steffen Oppermann, we show that a
degeneration M ≤deg N induces degenerations from submodules of M
to submodules of N . Given a submodule M ′ ⊆ M and a Riedtmann
sequence, we construct a submodule N ′ ⊆ N such that M ′ ≤deg N

′.
This construction gives rise to a function from the set of submodules
of M to the set of submodules of N , but this function does not seem
to have any nice properties. We give examples that show, among other
things, that it is neither injective nor surjective.

Since submodules degenerate to submodules we also have that com-
position series in some sense degenerate to composition series. We give
a geometric interpretation of this degeneration order using the subset
of modΛ consisting of those homomorphisms whose images are con-
tained in the ring of upper triangular matrices. Such a representation
can be viewed as a representation of a composition series. With the
right group action we get a correspondence between orbits and iso-
morphism classes of composition series, and orbit closures give rise to
degenerations.

In [10] we study the degeneration order for some algebras over fields
that are not algebraically closed. In particular we look at modules over
K ⊗k Λ, where K is a finite extension of the base field. These modules
can also be viewed as Λ-modules, and we try to show how isomorphism
classes and degenerations differ depending on which algebra we work
over. The Λ-isomorphism class of a module may contain several differ-
ent K ⊗k Λ-isomorphism classes, and in the case where K is a normal
extension we give a complete description of these. We show several
examples where modules degenerate as Λ-modules but not as K ⊗k Λ-
modules. We also find some examples where M ⊕M ≤deg N ⊕N but
M does not degenerate to N .
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PARTIAL ORDERS ON REPRESENTATIONS OF
ALGEBRAS

TORE A. FORBREGD, NILS M. NORNES, AND SVERRE O. SMALØ

Abstract. Let k be a commutative artin ring and let Λ be an
artin k-algebra. For each natural number d let repd Λ be the set
of isomorphism classes of Λ-modules with k-length equal to d. For
each natural number n, an n× n-matrix with entries in Λ, can be
considered as a k-endomorphism of Mn, where Mn denotes the
direct sum of n copies of the Λ-module M . The quasiorder ≤n on
repd Λ is defined by M ≤n N if for every n × n-matrix ϕ, with
entries in Λ, we have that `k(Mn/ϕMn) ≤ `k(Nn/ϕNn).

We show that the quasiorder ≤n is a partial order on repd Λ for
n ≥ d3.

1. Introduction

For an artin k-algebra Λ, where k is a commutative artin ring, and
a natural number d, let repd Λ be the set of isomorphism classes of
Λ-modules X such that the k-length of X, `k(X), is d. One can define
several partial orders on repd Λ, such as the degeneration order ≤deg,
the virtual degeneration order ≤vdeg and the Hom-order ≤hom. The
two first of these orders come from geometry when k is an algebraically
closed field. However, due to a result of C. Riedtmann combined with
a result of G. Zwara (see [6] and [8]) these orders have a purely mod-
ule theoretical interpretation. Namely, M ≤deg N is equivalent to the
existence of a short exact sequence of Λ-modules of the form

0 // X // X ⊕M // N // 0 .

and thus this can be taken as the definition for the relation ≤deg on
repd Λ for all d. Furthermore, Zwara also showed that this is equivalent
to the existence of a short exact sequence of the form

0 // N // M ⊕X // X // 0 .

The relation ≤vdeg is defined by M ≤vdeg N if there exists a Λ-module
Y such that Y ⊕ M ≤deg Y ⊕ N . Finally, the Hom-relation is de-
fined by M ≤hom N if `k(HomΛ(X,M)) ≤ `k(HomΛ(X,N)) for all Λ-
modules X. The fact that ≤hom is a partial order is due to a re-
sult of M. Auslander. In [1] he showed that M ' N if and only if

11



12 TORE A. FORBREGD, NILS M. NORNES, AND SVERRE O. SMALØ

`(HomΛ(X,M)) = `(HomΛ(X,N)) for all finitely generated Λ-modules
X. From Proposition 5 in the main section of this paper it follows that
one does not need to consider all X to show that M ' N , it is enough
to look at a certain set of submodules of M and N . This is proved
using a construction due to O. Iyama [4].

It is known thatM ≤deg N impliesM ≤vdeg N which impliesM ≤homN .
However, due to an example of J. Carlson we do not have that ≤vdeg is
equivalent to ≤deg in general. It is still open whether ≤vdeg is equiva-
lent to ≤hom. For some classes of algebras it is known that these three
orders coincide, e.g. algebras of finite representation type and tame
hereditary algebras. For a quick overview the reader is referred to [7].

Here we will look at the Hom-order and the quasiorders ≤n. If for
every n×n-matrix, ϕ, with entries in Λ, we have that `k(Mn/ϕMn) ≤
`k(Nn/ϕNn), then we write M ≤n N . If k is a field there is a strong
link between these quasiorders and the Hom-order, in the sense that
there exists a natural number nd such that ≤nd

is a partial order on
repd Λ and this partial order coincides with ≤hom.1 In the case where Λ
is of finite representation type, it is known that there is a universal n
such that ≤n is a partial order on repd Λ for any d (see [5]). The main
result, Theorem 6, states that ≤d3 is a partial order.

2. Preliminaries

Let k be a commutative artin ring and let Λ be an artin k-algebra.
For a ring R we have that if M is a right R-module, then it is in a
natural way a left R op-module. Therefore, throughout this article all
modules will be unital left modules. Denote by mod Λ the category
of finitely generated Λ-modules and for M in mod Λ let addM be the
additive closure of M in mod Λ. If not specified otherwise, the length,
`(M), of a Λ-module M will mean its length as a k-module. We will
write R(−,−) instead of HomR(−,−). For a Λ-module M let radM
be the Jacobson radical of M ,that is the submodule of M given by the
intersection of all maximal submodules of M . For artin algebras it is
known that radM = (rad Λ) ·M . Moreover, the socle of M , socM ,
is the sum of all simple submodules of M , i.e. the largest semisimple
submodule of M .

Let K0(mod Λ) = F (mod Λ)/R(mod Λ) denote the Grothendieck
group of mod Λ, where F (mod Λ) is the free abelian group on the
isomorphism classes of Λ-modules and R(mod Λ) is the subgroup gen-
erated by all short exact sequences of Λ-modules. Let [M ] denote the

1We don’t have a proof of this. See introduction.
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element in K0(mod Λ) corresponding to the module M in mod Λ. Fur-
thermore, for a ring R, denote by P(R) the full subcategory of modR
consisting of projective R-modules.

For a module M , Mn denotes the direct sum of n copies of M .
Let Mn(Λ) be the set of n × n-matrices with entries in Λ. A matrix
ϕ ∈Mn(Λ) induces a k-endomorphism on Mn by matrix multiplication
from the left, and we denote the image of this homomorphism by ϕMn.
It also induces a Λ-endomorphism on Λn by matrix multiplication from
the right, and we denote the image of this by Λnϕ.

Definition. The Hom-relation ≤hom on repd Λ is defined by M ≤homN
if `(HomΛ(X,M)) ≤ `(HomΛ(X,N)) for all X in mod Λ.

It is obvious that the relation ≤hom is reflexive and transitive. In [1]
Auslander showed that M ' N if and only if `(Λ(X,M)) = `(Λ(X,N))
for all X in mod Λ, and thus that ≤hom is antisymmetric and hence
a partial order. The result also holds in the more general setting of a
commutative ring R and an R-linear abelian category where all mor-
phism sets have finite lengths as R-modules. This generalization was
proved by Bongartz in [3].

One can equivalently define a Hom-order≤′hom by looking at Λ(M,X)
and Λ(N,X), however this gives the same partial order as ≤hom. For
the convenience of the reader we will recall a proof of this fact.

Proposition 1. Let M and N be modules in repd Λ. Then M ≤hom N
if and only if M ≤′hom N .

Proof. We first consider the case where `(Λ(P,M) < `(Λ(P,N)) for
an indecomposable projective Λ-module P . Since `(M) = `(N) and
`(M) = `(Λ(Λ,M)) there exists another indecomposable projective
Λ-module P ′ with `(Λ(P ′,M)) > `(Λ(P ′, N)), so M and N are in-
comparable. Moreover, for an indecomposable projective Λ-module P ,
`EndΛ(P ) op(Λ(P,M)) is equal to the number of times the simple mod-
ule P/ radP occurs as a composition factor of M . Likewise, for an
indecomposable injective Λ-module I, `EndΛ(I)(Λ(M, I)) is equal to the
number of times the simple module soc I occurs as a composition factor
of M . Since P and I are indecomposable, EndΛ(I) and EndΛ(P ) are
local rings, thus we see that

`k(Λ(P,M)) = `EndΛ(P ) op(Λ(P,M)) · `k(EndΛ(P )/ rad(EndΛ(P )))

`k(Λ(M, I)) = `EndΛ(I)(Λ(M, I)) · `k(EndΛ(I)/ rad(EndΛ(I))).

Let I be the indecomposable injective Λ-module corresponding to P ,
i.e. I is the injective envelope of P/ radP . By the above we have that
`(Λ(P,M) < `(Λ(P,N)) implies `(Λ(M, I)) < `(Λ(N, I)). Hence we get
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that `(Λ(P,M)) = `(Λ(P,N)) for all projective Λ-modules P if and
only if `(Λ(M, I)) = `(Λ(N, I)) for all injective Λ-modules I.

Now if `(Λ(P,M)) = `(Λ(P,N)) for all projective Λ-modules P , it fol-
lows from Corollary IV.4.3 in [2] that `(Λ(M,DTrX)) ≥ `(Λ(N,DTrX))
if `(Λ(X,M)) ≥ `(Λ(X,N)), where DTr: mod Λ → mod Λ is the
Auslander-Reiten translate on mod Λ. Hence, we get that `(Λ(X,M)) ≥
`(Λ(X,N)) for all X in mod Λ, if and only if `(Λ(M,X)) ≥ `(Λ(N,X))
for all X in mod Λ. �

Definition. Let M,N ∈ repd Λ. We say that M ≤n N if for every
ϕ ∈Mn(Λ) we have that `(Mn/ϕMn) ≤ `(Nn/ϕNn).

In general this gives a quasi-ordering on repd Λ, however it is not
always antisymmetric. It is known that ≤d5 is a partial order on repd Λ
(see [5]).

We now give some basic facts about these quasi-orderings.

Proposition 2. Let M and N be modules in repd Λ, and let m and n
be natural numbers. Then

(1) M ≤n N implies M ≤m N whenever m ≤ n. In particular, if
≤m is a partial order, then so is ≤n.

(2) M ≤homN implies M ≤n N

Proof. Part 1 follows from the fact that if m ≤ n, every m×m-matrix
can be expanded to a n× n-matrix simply by filling in enough zeros.

To show part 2, we consider the following exact sequence

Λn −·ϕ// Λn // Λn/Λnϕ // 0

with ϕ ∈Mn(Λ). By applying Λ(−,M) to the sequence above we get
the following exact commutative diagram.

0 //
Λ(Λn/Λnϕ,M) //

Λ(Λn,M)
Λ(−·ϕ,M)

//

�O

Λ(Λn,M)
�O

Mn
ϕ·− // Mn // Mn/ϕMn // 0

Since the alternating sum of the lengths of the modules in an exact
sequence equals zero, this yields that `(Mn/ϕMn) = `(Λ(Λn/Λnϕ,M)),
and hence M ≤hom N implies that M ≤n N for all n. �

3. The Main Result

We begin by stating and proving the following lemma.

Lemma 3. Let M,N ∈ repd Λ and X ∈ reps Λ. If M ≤d2s N and
N ≤d2s M , then l(Λ(X,M)) = l(Λ(X,N)).
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Proof. Note first that without loss of generality we may assume that
annM = annN , since otherwise there is a λ ∈ Λ such that `(M/λM) 6=
`(N/λN). Let Γ = Λ/ annM . We then have that Γ ⊆ Endk(M) and
hence `(Γ) ≤ d2, and Γ(X/ annM ·X,M) ' Λ(X,M) and Γ(X/ annM ·
X,N) ' Λ(X,N). Then we may find a free resolution ofX over Γ which
is of the form

Γd2s //Γs //X/ annM ·X //0 .

By adding d2s−s copies of the algebra Γ to the second and third terms,

we get the exact sequence Γd2s ϕ //Γd2s //X/ annM ·X ⊕ Γd2s−s //0,
where ϕ can be described by a matrix in Md2s(Λ). By applying Γ(−,M)
and Γ(−, N) and counting lengths in the resulting sequences, we get
that

`(Γ(X/ annM ·X,M) + `(ϕMd2s) = s · `(M)

`(Γ(X/ annM ·X,N) + `(ϕNd2s) = s · `(N).

Since M and N are both i repd Λ, we have `(M) = `(N) = d, and

M ≤d2s N and N ≤d2s M implies that `(ϕMd2s) = `(ϕNd2s). Hence,

`(Λ(X,M)) = `(Γ(X/ annM ·X,M)) = `(Γ(X/ annM ·X,N)) = `(Λ(X,N)).

�

Note that if one considers all matrices, rather than just square ma-
trices, adding Γd2s−s is not necessary. In other words, it is sufficient to
look at d2s× s-matrices.

In [4] O. Iyama showed that for each L in mod Λ we can find sub-
modules Li ⊂ L for i = 1, . . . , r such that gl. dim.EndΛ(

⊕r
i=0 Li) <

∞ where L0 = L. In [4] these submodules are given by Li+1 =
rad(EndΛ(Li)) · Li, i.e. Li+1 is the submodule generated by the im-
ages of all maps in the Jacobson radical of EndΛ(Li).

Remark 4. This construction behaves nicely with respect to direct
sums, that is if L = M ⊕ N then rad(EndΛ(L)) · L ' M1 ⊕ N1 with
M1 ⊂M and N1 ⊂ N .

Proposition 5. Let M and N be in repd Λ and let L0 = M ⊕ N and
Li+1 = rad(EndΛ(Li)) ·Li for i = 1, . . . , r with Lr+1 = 0. Then M ' N
if and only if `(Λ(X,M)) = `(Λ(X,N)) for all X in add

⊕r
i=0 Li.

Proof. Clearly M ' N implies `(Λ(X,M)) = `(Λ(X,N)) for all X. So
let C =

⊕r
i=0 Li and Γ = EndΛ(C) op, and suppose that `(Λ(X,M)) =

`(Λ(X,N)) for all X in addC. It is sufficient to consider the inde-
composable objects in addC. Let C '

⊕t
j=1Cj be a decomposition

of C into indecomposable Λ-modules. We then have an equivalence
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of subcategories Λ(C,−) : addC //P(Γ). For each Cj we have a k-
isomorphism Γ(Λ(C,Cj), Λ(C,M)) ' Λ(Cj,M). Since Cj is in addC, by
assumption we get that `(Γ(Λ(C,Cj), Λ(C,M))) = `(Γ(Λ(C,Cj), Λ(C,N))).
As Cj is indecomposable, EndΛ(Cj) is a local ring. Therefore we have
that

`(Γ(Λ(C,Cj), Λ(C,M))) = `(Γ(Λ(C,Cj), Λ(C,N)))

also when we consider lenghts over EndΛ(Cj)
op. This common num-

ber, denoted mj, is the multiplicity of the simple Γ-module Sj =

Λ(C,Cj)/ rad(Λ(C,Cj)) as a composition factor of Λ(C,M), and as a
composition factor of Λ(C,N), for j = 1, . . . , t. We then have that
[Λ(C,M)] =

∑t
j=1mj[Sj] = [Λ(C,N)] as elements in the Grothendieck

group K0(mod Γ) of Γ. By [4], Γ has finite global dimension, and thus
we have that the indecomposable projective Γ-modules constitute a ba-
sis for K0(mod Γ). This implies that every projective Γ-module is de-
termined by its composition factors, and therefore Λ(C,M) ' Λ(C,N).
Through the equivalence Λ(C,−) : addC //P(Γ) we get that M '
N . �

By combining Lemma 3 and Proposition 5 we get the following result.

Theorem 6. The relation ≤d3 is a partial order on repd Λ.

Proof. It is enough to prove that the relation ≤d3 is antisymmetric.
Suppose that M ≤d3 N and N ≤d3 M . Let L0 = M ⊕N and let C =⊕r

i=0 Li where Li+1 = rad(EndΛ(Li))·Li for i = 1, . . . , r with Lr+1 = 0.

Let C =
⊕t

j=1Cj be a decomposition of C into indecomposable Λ-
modules. By Remark 4 we have that Cj ⊂ M or Cj ⊂ N for all 1 ≤
j ≤ t, and therefore sj = `(Cj) ≤ d. Since d3 ≥ sjd

2, Lemma 3 yields
that `(Λ(Cj,M)) = `(Λ(Cj, N)) for each indecomposable summand Cj

of C, and hence `(Λ(X,M)) = `(Λ(X,N)) for all X in addC. Thus the
conditions of Proposition 5 are satisfied and we have that M ' N and
the relation ≤d3 is a partial order on repd Λ. �

4. Closing Comment

For an M in repd Λ, the length of the first syzygy of M as a module
over Λ/ annM is bounded by d3 − d. Therefore, ≤n will be a partial
order on repd Λ for n ≥ max {d3 − d, d}.
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DEGENERATIONS OF SUBMODULES AND
COMPOSITION SERIES

NILS M. NORNES AND STEFFEN OPPERMANN

Abstract. Let M and N be modules over an artin algebra such
that M degenerates to N . We show that any submodule of M
degenerates to a submodule of N . This suggests that a composition
series of M will in some sense degenerate to a composition series
of N .

We then study a subvariety of the module variety, consisting of
those representations where all matrices are upper triangular. We
show that these representations can be seen as representations of
composition series, and that the orbit closures describe the above
mentioned degeneration of composition series.

1. Introduction

Let k be an algebraically closed field, and let Λ be a finite dimensional
associative k-algebra with unity. We denote by mod Λ the category of
finite dimensional unital left modules over Λ. For natural numbers m
and n, letMm×n(k) denote the set of m×n-matrices with entries in k,
letMn(k) denote the k-algebra of n× n-matrices and Un(k) ⊆Mn(k)
the subalgebra of upper triangular matrices. GLn(k) ⊆Mn(k) denotes
the general linear group, and Ud(k) ⊆ GLd(k) denotes the subgroup of
upper triangular matrices.

Fix a natural number d. We want to study the set of left Λ-module
structures on the vector space kd. We have a one-to-one correspondence
between this set and the set of k-algebra homomorphisms from Λ to
Md(k). If f is such a homomorphism, we obtain a module structure
by setting λ · v := f(λ)v for λ ∈ Λ and v ∈ kd. Conversely, if we have
a module structure, we get a k-algebra homomorphism g by setting
g(λ) :=

(
λ · u1 . . . λ · ud

)
, where ui is the ith unit column vector.

Such a homomorphism is called a d-dimensional representation of Λ,
and we denote the set of all d-dimensional representations of Λ by
modd Λ.

Let {λ1, . . . , λn} be a generating set of Λ. Then a representation
ρ ∈ modd Λ is completely determined by its values on λi, so we can
view modd Λ as a subset of Md(k)n. This subset is Zariski closed, so

21
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modd Λ has the structure of an affine variety. The group variety GLd(k)
acts on modd Λ by conjugation, and its orbits correspond bijectively to
the isomorphism classes of modules. We can now give the definition of
degeneration of modules.

Definition. Let M and N be Λ-modules with representations µ and ν
in modd Λ. M degenerates to N if ν lies in the closure of the GLd(k)-
orbit of µ. This is denoted by M ≤deg N .

Degeneration is a partial order on the set of isomorphism classes of
d-dimensional modules. The codimension of a degeneration M ≤deg N ,
denoted codim(M,N), is the codimension of the orbit corresponding
to N in the closure of the orbit corresponding to M . The dimension of
an orbit GLd(k) ∗µ can be computed by the formula dim GLd(k) ∗µ =
d2 − [M,M ], where [M,M ] denotes the k-dimension of HomΛ(M,M).
From that we get codim(M,N) = [N,N ]− [M,M ].

In [8] G. Zwara, building on earlier work of C. Riedtmann in [4], gave
a nice module-theoretic description of this partial order:

Theorem 1. Let M and N be Λ-modules. Then the following are
equivalent:

(1) M ≤deg N
(2) There exists a short exact sequence 0→ N →M ⊕Z → Z → 0

in mod Λ for some Z ∈ mod Λ.
(3) There exists a short exact sequence 0→ X →M⊕X → N → 0

in mod Λ for some X ∈ mod Λ.

The short exact sequences in Theorem 1 are called Riedtmann-sequences.
In this paper we will use Riedtmann-sequences of the form 0 → X →
M ⊕X → N → 0, but all our results work equally well for sequences
of the other form.

Now one can extend the notion of degeneration to algebras over
arbitrary fields, and even over commutative artin rings, by using the
existence of Riedtmann-sequences as the definition. G. Zwara showed
in [7] that degeneration is a partial order also in this case. Here we
define the codimension of M ≤deg N to be [N,N ] − [M,M ] (where
[X,X] denotes length of HomΛ(X,X) as a k-module.)

One problem with the degeneration order is that in general one can-
not cancel common summands, that is X ⊕M ≤deg X ⊕ N does not
imply M ≤deg N . This led to the introduction of a new partial order
called virtual degeneration in [4].

Definition. Let M and N be Λ-modules. M virtually degenerates to
N if there exists a module X ∈ mod Λ such that X ⊕M ≤deg X ⊕N .
This is denoted by M ≤vdeg N .
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The following proposition gives an alternative way of describing vir-
tual degenerations. For a proof of the proposition see [6], section 2.

Proposition 2. Let M and N be Λ-modules. Then M ≤vdeg N if and
only if there is some finitely presented functor δ : mod Λ→ mod k such
that `(δ(X)) = [X,N ]− [X,M ] for all X ∈ mod Λ.

If δ is such a functor, we say that the degeneration is given by δ.
In section 2 we will prove the following:

Theorem 3. Let M and N be Λ-modules and let M ′ ⊆ M be a sub-
module.

(1) If M ≤deg N , then there exists a submodule N ′ ⊆ N such that
M ′ ≤deg N

′.
(2) If M ≤vdeg N , then there exists a submodule N ′ ⊆ N such that

M ′ ≤vdeg N
′.

In section 3 we look at representations whose images are contained
in Ud(k), which we call triangular representations. We show that these
can be viewed as representations of composition series, and then we
prove the following analogue of Theorem 1.

Theorem 4. Let µ and ν be triangular Λ-representations, and let re-

spectively M1
� � i1 // . . . �

� id−1 // Md and N1
� � j1 // . . . �

� jd−1 // Nd be the cor-

responding composition series. Then ν ∈ Ud(k) ∗ µ if and only if there
exists a commutative diagram

0

��

0

��

0

��
X1

h1 //

��

X2
h2 //

��

· · ·
hd−1 // Xd

��
X1 ⊕M1

(
h1 0
0 i1

)
//

��

X2 ⊕M2

(
h2 0
0 i2

)
//

��

· · ·

(
hd−1 0

0 id−1

)
// Xd ⊕Md

��
N1

��

j1 // N2

��

j2 // · · ·
jd−1 // Nd

��
0 0 0

with exact columns.

To study degenerations of modules, one can look at the variety
of quiver representations, repd(Q, ρ), instead of modd Λ. Let Q be
a quiver with vertices Q0 = {1, . . . , n} and arrows Q1, and let d =
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(d1, . . . , dn) ∈ Nn. Then repdQ =
∐

α∈Q1
Mde(α)×ds(α)(k), where s(α)

and e(α) are respectively the start and end points of the arrow α,
consists of all representations with dimension vector d. The group va-
riety Gd = GLd1(k) × . . . × GLdn(k) acts on repdQ, and the orbits
correspond to isomorphism classes. Given a set of relations ρ on Q,
repd(Q, ρ) is the subvariety of repdQ consisting of all representations
that satisfy the relations in ρ. K. Bongartz showed in [2] that the
degeneration order we get from repd(Q, ρ) is the same as the one we
get from modd kQ/〈ρ〉. He also showed a deeper geometric connection
between these varieties, but we will not go into that in this paper.
Usually repd(Q, ρ) is much smaller than modd kQ/〈ρ〉, which makes it
easier to perform computations.

In section 4 we introduce a similar smaller variety that can be used
to study degenerations of composition series.

For general background on representation theory of algebras we refer
the reader to [1]. For an introduction to the topic of module degener-
ations, see [5].

2. Degenerations of submodules

In this section, let k be a commutative artin ring and let Λ be an
artin k-algebra. All modules considered in this paper have finite length.

We first prove part 1 of Theorem 3.

Proposition 5. Let M and N be Λ-modules and let M ′ ⊆ M be a
submodule. If M ≤deg N , then there exists a submodule N ′ ⊆ N such
that M ′ ≤deg N

′.

Proof. Assume that M ≤deg N and let M ′ ⊆M be a submodule. Then
there exists an exact sequence

η : 0 // X

(
f
g

)
// X ⊕M // N // 0 .

Let X ′ = {x ∈ X | gfn(x) ∈ M ′ ∀n ≥ 0}, let iX : X ′ → X and
iM : M ′ → M be the submodule inclusions. From the definition of
X ′, we see that f(X ′) ⊆ X ′ and g(X ′) ⊆ M ′. Thus, by restricting(
f
g

)
to X ′, we get a homomorphism

(
f
g

)∣∣X′⊕M ′
X′

: X ′ → X ′ ⊕M ′. Let
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N ′ = coker
(
f
g

)∣∣X′⊕M ′
X′

. We then have the commutative diagram

0

��

0

��
0 // X ′

(
f
g

)∣∣∣X′⊕M′
X′ //

iX
��

X ′ ⊕M ′ //(
iX 0
0 iM

)
��

N ′

α
��

// 0

0 // X

(
f
g

)
//

��

X ⊕M //

��

N // 0

X/X ′

(
f
g

)
//

��

X/X ′ ⊕M/M ′

��
0 0

with exact rows and columns. Since the top row is exact we have
M ′ ≤deg N

′, so it remains to show that α is a monomorphism. We
have

ker f = {(x+X ′) ∈ X/X ′ | f(x) ∈ X ′}
= {(x+X ′) ∈ X/X ′ | gfn(x) ∈M ′ ∀n ≥ 1}.

If (x + X ′) is a non-zero element in ker f then x 6∈ X ′ = {x ∈ X |
gfn(x) ∈M ′∀n ≥ 0}, so we must have g(x) 6∈M ′ and hence (x+X ′) 6∈
ker g. This means that ker

(
f
g

)
= ker f ∩ ker g = (0). Then by the

Snake Lemma we get that kerα = (0). �

To prove the same result for virtual degenerations, we will need the
following simple lemma.

Lemma 6. Let X and Y be Λ-modules, and let M ⊆ X ⊕ Y be a
submodule. Then there exist submodules X ′ ⊆ X and Y ′ ⊆ Y such
that M ≤deg X

′ ⊕ Y ′.

Proof. Let i : M → X ⊕ Y be the inclusion and p : X ⊕ Y → X the
projection on the first summand. We have a commutative diagram

0 // Y // X ⊕ Y p // X // 0

0 // ker pi
?�

OO

// M
?�
i

OO

// im pi
?�

OO

// 0

with exact rows. From the bottom row we make an exact sequence

0→ ker pi→ ker pi⊕M → ker pi⊕ im pi→ 0,

which shows that M ≤deg im pi⊕ ker pi. �
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We can now complete the proof of Theorem 3.

Theorem 3. Let M and N be Λ-modules and let M ′ ⊆ M be a sub-
module.

(1) If M ≤deg N , then there exists a submodule N ′ ⊆ N such that
M ′ ≤deg N

′.
(2) If M ≤vdeg N , then there exists a submodule N ′ ⊆ N such that

M ′ ≤vdeg N
′.

Proof. Part 1 was proved in Proposition 5, so it remains to prove part
2.

Assume that M ≤vdeg N . Then there exists some Y ∈ mod Λ so that
M ⊕ Y ≤deg N ⊕ Y . We have a submodule M ′ ⊆ M , and we want to
find submodules N ′ ⊆ N and Y ′ ⊆ Y such that M ′⊕ Y ′ ≤deg N

′⊕ Y ′.
To do so we construct two descending chains of submodules Y = Y1 ⊇
Y2 ⊇ . . . and N = N1 ⊇ N2 ⊇ . . ., where M ′ ⊕ Yi ≤deg Ni+1 ⊕ Yi+1 for
all i.

We have that M ′ ⊕ Y ⊆M ⊕ Y , so by Proposition 5, there exists a
submodule Z1 ⊆ N ⊕Y such that M ′⊕Y ≤deg Z1. Then by Lemma 6,
there exist submodules N2 ⊆ N and Y2 ⊆ Y such that Z1 ≤deg N2⊕Y2,
so we have M ′ ⊕ Y1 ≤deg N2 ⊕ Y2.

For i > 1, assume that we have M ′⊕Yi−1 ≤deg Ni⊕Yi and Yi ⊆ Yi−1.
Then M ′ ⊕ Yi ⊆M ′ ⊕ Yi−1, and we can again apply Proposition 5 and
Lemma 6 to find Ni+1 ⊆ Ni and Yi+1 ⊆ Yi such that M ′ ⊕ Yi ≤deg

Ni+1 ⊕ Yi+1.
Since Y is artin there is some j such that Yj = Yj−1, so we have

M ′ ⊕ Yj ≤deg Nj ⊕ Yj and thus M ′ ≤vdeg Nj.
�

For a module M , let SubM denote the set of submodules of M .
The construction in the proof of Proposition 5 induces a function φη :
SubM → SubN . Note that if θ is a different Riedtmann-sequence
for the same degeneration, the functions φη and φθ may be different.
There are several questions that are natural to ask here, for example

• Is φη surjective?
• Is it injective?
• Is the codimension of M ′ ≤deg N

′ bounded by the codimension
of M ≤deg N?
• IfM ≤deg N is given by a finitely presented functor δ, isM ′ ≤deg

N ′ given by a subfunctor of δ?

As the following examples show, the answer to each of these questions
is in general no.
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Example 7. Let k be a field, Q the Kronecker quiver,

Q : 1
α //

β
// 2 ,

and consider the path algebra kQ and the kQ-modules given by the
quiver representations

I2 = k2
( 1 0 )

//

( 0 1 )
// k , S1 = k

( 0 )
//

( 0 )
// 0 ,

S2 = 0
( 0 )
//

( 0 )
// k , R = k

( 1 )
//

( 0 )
// k

DTrS1 = k3

( 1 0 0
0 1 0 )

//

( 0 1 0
0 0 1 )

// k2 .

We have a degeneration I2 ≤deg R ⊕ S1 given by a Riedtmann-
sequence

η : 0 // R // R⊕ I2
// R⊕ S1

// 0 .

Any (1, 1)-dimensional regular module R′ is isomorphic to a submodule
of I2, but when R′ 6' R the only submodule of R⊕S1 it can degenerate
to is the socle. Thus we see that φη is not injective. On the other hand,
there is a k-family of submodules of R ⊕ S1 that are isomorphic to R.
But there is only one submodule of I2 that can degenerate to any of
these, so φη is not surjective either.

Note also that we have [DTrS1, R⊕S1]−[DTrS1, I2] = 1 ≤ [DTrS1, S1⊕
S2] − [DTrS1, R

′] = 3, so if R′ ≤deg S1 ⊕ S2 is given by a functor δ,
then δ can not be a subfunctor of any functor giving the degeneration
I2 ≤deg R⊕ S1.

In the above example the codimension of the degeneration decreases
when we go to the submodules, that is, for modules M ≤deg N and
submodules M ′ ≤deg N

′ we have codim(M ′, N ′) ≤ codim(M,N). As
the next example shows, this does not hold in general.

Example 8. Let k be a field and Λ = k[X]/(X2), let S be the simple
Λ-module and let p : Λ � S and i : S ↪→ Λ be the natural projection
and inclusion. From the Riedtmann-sequence

η : 0 // S

(
0
i
0

)
// S ⊕ Λ2

(
0 0 1
0 p 0
1 0 0

)
// Λ⊕ S2 // 0
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we see that Λ2 ≤deg Λ⊕S2. Let M ⊆ Λ2 be the image of Λ⊕ S
( 1 0

0 i ) // Λ2 .

Then φη(M) ' S3, and codim(Λ2,Λ⊕S2) = 2, while codim(M,S3) = 4.
However, for the Riedtmann-sequence

θ : 0 // S

(
0
0
i

)
// S ⊕ Λ2

(
0 0 p
0 1 0
1 0 0

)
// Λ⊕ S2 // 0

we get φθ(M) ' Λ⊕ S, and then codim(M,φθ(M)) = 0.

Applying Theorem 3 repeatedly we get a connection between the
composition series of a module and the composition series of its degen-
erations.

Corollary 9. Let M and N be Λ-modules such that M ≤deg N (M ≤vdeg

N), and let (0) = M0 ⊆M1 ⊆ · · · ⊆Md = M be a composition series of
M . Then there is a composition series (0) = N0 ⊆ N1 ⊆ · · · ⊆ Nd = N
of N such that for 1 ≤ i ≤ d we have Mi ≤deg Ni (Mi ≤vdeg Ni). In
particular, Mi/Mi−1 ' Ni/Ni−1.

So given a composition series (0) ⊆ M1 ⊆ · · · ⊆ Md of M and a
Riedtmann-sequence of a degeneration M ≤deg N , we get a compo-
sition series (0) ⊆ N1 ⊆ · · · ⊆ Nd of N that seems to be some kind
of degeneration of (0) ⊆ M1 ⊆ · · · ⊆ Md. If we are working over
an algebraically closed field, it seems like there should be a variety of
composition series where (0) ⊆ N1 ⊆ · · · ⊆ Nd is in the orbit closure
of (0) ⊆ M1 ⊆ · · · ⊆ Md. In the next section we will describe such a
variety.

3. Triangular representations

In this section let k be an algebraically closed field, and let Λ be a
basic finite-dimensional k-algebra. We are going to look at the following
subvariety of modd Λ.

Definition. We call a representation ρ ∈ modd Λ triangular if im ρ ⊆
Ud(k). We denote the set of all triangular representations in modd Λ
by Td(Λ).

Given any subset of modd Λ, an obvious question to ask is which d-
dimensional Λ-modules have representations in the subset. As we shall
see, all d-dimensional Λ-modules have representations in Td(Λ).

Clearly Td(Λ) is a closed subset of modd Λ, so it is an affine variety.
The group variety Ud(k) acts on it by conjugation. In modd Λ, orbits
correspond to isoclasses of modules, and orbit closures can be described
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using Riedtmann-sequences. We are going to give a similar description
of orbits and orbit closures in Td(Λ).

We will first show how a triangular representation can be viewed as a
representation of a module and one of its composition series. Then we
show that Ud(k)-orbits correspond 1-1 to isoclasses of composition se-
ries. Finally, we prove Theorem 4, which gives an algebraic description
of the orbit closures, and shows that degeneration in Td(Λ) is the same
as the degeneration of composition series suggested by Corollary 9.

Given a triangular representation µ = µd we obtain a composition
series in the following way: Let Md be kd with the module structure
obtained from µ in the usual way. For each i let Mi be the submodule
generated by the unit vectors {u1, . . . ,ui}. Then we get a representa-
tion µi of Mi simply by deleting the rightmost column and the bottom
row of each of the matrices in µi+1.

Given a composition series (0) ⊆ M1 ⊆ . . . ⊆ Md we must choose a
basis of Md in order to construct a representation. Choosing the basis
{x1, . . . ,xd} such that xi ∈Mi for all i, we get a representation that is
triangular.

Since triangular representations represent composition series, and
all modules have composition series, it follows that all modules have
triangular representations.

We say that two composition series (0) ⊆ M1 ⊆ · · · ⊆ Md and
(0) ⊆ N1 ⊆ · · · ⊆ Nd are isomorphic if Mi ' Ni for all i and these
isomorphisms commute with the submodule inclusions. In modd Λ the
isomorphism classes correspond to GLd(k)-orbits, and we want a similar
correspondence for Td(Λ). We will now show that the orbits of Ud(k)
in Td(Λ) correspond to isomorphism classes of composition series.

If µ and ν are triangular representations of (0) ⊆ M1 ⊆ . . . ⊆ Md

and (0) ⊆ N1 ⊆ . . . ⊆ Nd, and ν = g ∗µ for some g ∈ Ud(k), then since
g ∈ GLd(k) we have an isomorphism between Md and Nd. Let gd = g
and for 1 ≤ i < d let gi be the matrix obtained from gi+1 by deleting
the bottom row and rightmost column. Then for each i, gi gives us an
isomorphism between Mi and Ni, and the isomorphisms commute with
the inclusions, so the two composition series are isomorphic.

Conversely, let µ and ν be triangular representations where we have
an isomorphism f between the corresponding composition series

M1
� � m1 //

f1
��

M2
� � m2 //

f2
��

· · · � �
md−1 // Md

fd
��

N1
� � n1 // N2

� � n2 // · · · � �
nd−1 // Nd

.
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The matrices of mi and ni with respect to the standard bases of ki and
ki+1 are

A(mi) = A(ni) =


1 · · · 0
...

. . .
...

0 · · · 1
0 · · · 0

 .

It is then easy to check that the matrix of fi, A(fi), will be upper
triangular for each i, and ν = A(fd) ∗ µ.

A composition series of a d-dimensional module can also be viewed
as a “representation” of the quiver

Ad : 1 // 2 // · · · // d ,

but with Λ-modules and homomorphisms instead of vector spaces and
linear maps. That is, we have a category Λ-repAd, where the objects
are series of d Λ-modules and d− 1 Λ-homomorphisms

M1
m1 // M2

m2 // · · ·
md−1 // Md

and morphisms are commutative diagrams

M1
m1 //

f1
��

M2
m2 //

f2
��

· · ·
md−1 // Md

fd
��

N1
n1 // N2

n2 // · · ·
nd−1 // Nd

,

and the composition series are objects in this category. Similarly to the
case of ordinary representations of Ad, we have an equivalence between
Λ-repAd and modUd(Λ).

We can now consider degenerations in Td(Λ). Clearly ν ∈ Ud(k) ∗ µ
implies ν ∈ GLd(k) ∗ µ, but the converse does not hold.

Example 10. Let Λ = k[X]/(X3) and consider mod3 Λ. Any repre-
sentation is completely determined by its value on X, so we identify
modd Λ with the set of nilpotent 3× 3-matrices. Let

µ =

0 0 1
0 0 0
0 0 0

 , ν =

0 1 0
0 0 0
0 0 0

 .

In mod3 Λ, µ and ν are in the same orbit, but in T3(Λ) we have

µ ∈ U3(k) ∗ ν =


0 a b

0 0 0
0 0 0

∣∣∣∣∣∣ a, b ∈ k
 ,
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but

ν 6∈ U3(k) ∗ µ =


0 0 a

0 0 0
0 0 0

∣∣∣∣∣∣ a ∈ k.


So as a triangular representation, µ is a proper degeneration of ν,
even though as ordinary representations they are isomorphic.

Let S be the simple Λ-module and Y the 2-dimensional indecompos-
able Λ-module, and let i denote the inclusion S ↪→ Y . Both µ and ν
represent S ⊕ Y , and the corresponding composition series are

µ : 0 �
� // S �

� ( 0
1 )
// S ⊕ S � �

( 1 0
0 i )// S ⊕ Y

ν : 0 �
� // S �

� i // Y �
� ( 0

1 )
// S ⊕ Y .

In Example 10, we have a degeneration at each level of the composi-
tion series. That is a necessary condition for having a degeneration in
Td(Λ), but as the next example shows, it is not sufficient.

Example 11. Keep the notation from Example 10, and let

ν ′ =

0 0 0
0 0 1
0 0 0

 .

This corresponds to the composition series

ν ′ : S
( 1

0 )
// S ⊕ S

( 1 0
0 i )// S ⊕ Y .

Between µ and ν ′ we have isomorphisms at each level of the composi-
tion series, but the isomorphisms do not commute with the inclusions.
Thus they are not isomorphic as composition series, and µ and ν are
in different G′-orbits. As a triangular representation, µ is a proper
degeneration of ν ′. Despite ν ′i being a degeneration of µi for each i, ν ′

is not a degeneration of µ in Td(Λ).

In order to get a degeneration in Td(Λ) we somehow need the module
degenerations to “commute” with the inclusions. More precisely, there
must be Riedtmann-sequences for the module degenerations that form
a commutative diagram with the composition series.

Theorem 4. Let µ and ν be triangular Λ-representations, and let re-

spectively M1
� � i1 // . . . �

� id−1 // Md and N1
� � j1 // . . . �

� jd−1 // Nd be the cor-

responding composition series. Then ν ∈ Ud(k) ∗ µ if and only if there
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exists a commutative diagram

0

��

0

��

0

��
X1

h1 //

��

X2
h2 //

��

· · ·
hd−1 // Xd

��
X1 ⊕M1

(
h1 0
0 i1

)
//

��

X2 ⊕M2

(
h2 0
0 i2

)
//

��

· · ·

(
hd−1 0

0 id−1

)
// Xd ⊕Md

��
N1

��

j1 // N2

��

j2 // · · ·
jd−1 // Nd

��
0 0 0

with exact columns.

For Example 10, we have this diagram (where p is the projection
Y � Y/S ' S):

0

��

0

��

0

��
χ : S

1 //

( 0
1 )
��

S
i //

( 0
i )

��

Y(
0
−p
1

)
��

χ⊕ ν : S ⊕ S
( 1 0

0 i )//

( 1 0 )

��

S ⊕ Y

(
i 0
0 0
0 1

)
//(

0 p
1 0

)
��

Y ⊕ (S ⊕ Y )(
0 1 p
1 0 0

)
��

µ : S
( 0

1 )
//

��

S ⊕ S
( 1 0

0 i ) //

��

S ⊕ Y

��
0 0 0
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And for Example 11, we have this diagram:

0

��

0

��

0

��
χ′ : 0 //

��

S
1 //(

0
1
−1

)
��

S(
0
1
−i

)
��

χ′ ⊕ ν ′ : S

(
0
1
0

)
//

1
��

S ⊕ (S ⊕ S)

(
1 0 0
0 1 0
0 0 i

)
//

( 1 0 0
0 1 1 )
��

S ⊕ (S ⊕ Y )

( 1 0 0
0 i 1 )
��

µ : S
( 0

1 )
//

��

S ⊕ S
( 1 0

0 i ) //

��

S ⊕ Y

��
0 0 0

We now come to the proof of Theorem 4.

Proof. We first assume that we have a commutative diagram

0

��

0

��

0

��
X1

h1 //(
f1
g1

)
��

X2
h2 //(

f2
g2

)
��

· · ·
hd−1 // Xd(

fd
gd

)
��

X1 ⊕M1(
h1 0
0 i1

)//
��

X2 ⊕M2(
h2 0
0 i2

) //
��

· · ·(
hd−1 0

0 id−1

)// Xd ⊕Md

��
N1

��

j1 // N2

��

j2 // · · ·
jd−1 // Nd

��
0 0 0

with exact columns, and show that this implies that ν ∈ Ud(k) ∗ µ.
The maps in and jn are monomorphisms for all n, and we start by

showing that hn can also be assumed to be monic.
Let r be the highest number such that hr is not monic. Let π :

Xr → imhr be the natural projection and ι : imhr → Xr+1 the natural
injection. We make a new commutative diagram by replacing the rth
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column with the image of the chain complex map (hr,
(
hr 0
0 ir

)
, jr):

0

��

0

��

0

��
· · · // Xr−1

πhr //(
fr−1
gr−1

)
��

imhr
ι //

α

��

Xr+1
//(

fr+1
gr+1

)
��

· · ·

· · · // Xr−1 ⊕Mr−1(
πhr−1 0

0 ir−1

)//
��

imhr ⊕Mr
( ι 0

0 ir )
//

β

��

Xr+1 ⊕Mr+1
//

��

· · ·

· · · // Nr−1

��

jr−1 // Nr
jr //

��

Nr+1
//

��

· · ·

0 0 0

The new column is a subcomplex of a short exact sequence, so α is a
monomorphism, and it is also a quotient of a short exact sequence, so
β is an epimorphism. Since dimk(imhr ⊕Mr) = dimk imhr + dimkNr

it is exact. By induction, we can construct a diagram of the desired
form where all the horizontal maps are monic.

We now use a modification of Riedtmann’s proof that a Riedtmann-
sequence implies degeneration. We want to find a family of representa-
tions {νt}t∈S ⊆ Td(Λ), where S is an open subset of k, νt ∈ Ud(k)∗µ for
all t 6= 0, and ν0 ∈ Ud(k) ∗ ν. We choose a basis B = {b1, . . . ,bd} for
a complement of im

(
fd
gd

)
in Xd⊕Md, in such a way that bi ∈ Xi⊕Mi

for all i. Let V be the span of B. Then we explicitly construct the
modules N t

d that will correspond to the representations νt. For each
t ∈ k we have a homomorphism

φt : Xd

(
fd+t·1Xd

gd

)
// Xd ⊕Md .

Let S be the set of all t ∈ k such that φt is a monomorphism and
imφt is a complement of V . As a vector space, N t

d is V . To multiply
with an element in Λ, we multiply in Xd⊕Md and project the product
onto N t

d along the image of φt. For t 6= 0 φt is a split monomorphism,
so we get an isomorphism between N t

d and Md. Restrictions of this
yields an isomorphism between composition series, and thus we get
that νt ∈ Ud(k) ∗ µ. The map sending t to νt is continuous, so ν0 must

be in Ud(k) ∗ µ.
To show the other implication, we embed Td(Λ) in moda(Ud(Λ)),

where a = d(d+1)
2

. Let {λ1 = 1Λ, λ2, . . . , λn} be a generating set of Λ,
and let Ei,j denote the matrix where the jth entry of the ith row is 1,
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and all other entries are 0. Then Ud(Λ) is generated by the matrices

Lj =

λj · · · 0
...

. . .
...

0 · · · λj


for 1 ≤ j ≤ n, Ei,i for 1 ≤ i ≤ d and Ei,i+1 for 1 ≤ i ≤ d − 1. Let
ψ : Td(Λ)→ moda Ud(Λ) be the morphism given by the following block
matrices. Here In denotes the n× n identity matrix and 0n the n× n
zero matrix.

ψ(µ)(Lj) =


µ1(λj) 0 0

0 µ2(λj) 0
. . .

0 0 µd(λj)



ψ(µ)(Ei,i) =


01 0 0 0

. . .
0 0i−1 0 0
0 0 Ii 0
0 0 0 0



ψ(µ)(Ei,i+1) =


01 0 0 0

. . .
0 0i Ii 0
0 0 0 0


Clearly ψ is a morphism of varieties, and Ud(k)-orbits in Td(Λ) are

mapped into GLa(k)-orbits in moda Ud(Λ). Thus ν ∈ Ud(k) ∗ µ im-

plies ψ(ν) ∈ GLa(k) ∗ ψ(µ), and by Theorem 1 we then have an exact

sequence of Ud(Λ)-modules 0 → X̂ → X̂ ⊕ M̂ → N̂ → 0. Since
modUd(Λ) ' Λ-repAd, this gives us an exact sequence in Λ-repAd,
which is the commutative diagram we are looking for.

�

4. Smaller varieties of triangular representations

When studying degeneration of modules, one can replace modd Λ
with a variety of quiver representations, which is usually much smaller.
We want to find a similar variety smaller than Td(Λ).

As in the previous section, let k be an algebraically closed field,
and let Λ be a basic finite-dimensional k-algebra. Then there is a
quiver Q and a set of admissible relations ρ such that Λ ' kQ/〈ρ〉. Let
d = (d1, . . . , dn) be a dimension vector over Q, and let d = d1 + . . .+dn.
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In the path algebra of a quiver we have some distinguished idempo-
tents, namely the trivial paths {e1, . . . , en}. Choosing suitable idempo-
tent matrices Ai ∈Md(k), we can identify repd(Q, ρ) with the subvari-
ety of modd Λ consisting of all representations µ such that µ(ei) = Ai.
We want to construct a similar subvariety of Td(Λ).

Recall that a set of idempotents {e1, . . . , en} in Λ is called orthogonal
if eiej = 0 when i 6= j, and a non-zero idempotent is called primitive if
it cannot be written as a sum of two non-zero orthogonal idempotents.
An orthogonal set of primitive idempotents is called complete if it is
not a proper subset of a larger orthogonal set of primitive idempotents.
If the orthogonal set {e1, . . . , en} is complete, then for any simple Λ-
module S we have S ' eiΛ/ rad eiΛ for some i. The set of trivial
paths in a path algebra is an example of a complete orthogonal set of
primitive idempotents.

Let E = {e1 . . . , en} ⊆ Λ be an orthogonal set of primitive idempo-
tents. We want to fix some idempotent matrices Ai ∈ Ud(Λ) and look
at the subvariety of Td(Λ) consisting of representations µ such that
µ(ei) = Ai. When we make this restriction in modd Λ, we go from hav-
ing representations of all d-dimensional modules to having just those
with a particular set of composition factors. When we do the same
in Td(Λ), the sequence in which the factors occur in the composition
series also matters.

Proposition 12. Let M and N be d-dimensional Λ-modules. The
following are equivalent:

(1) There exist composition series (0) = M0 ⊆ M1 ⊆ · · · ⊆ Md =
M and (0) = N0 ⊆ N1 ⊆ · · · ⊆ Nd = N such that Mi/Mi−1 '
Ni/Ni−1 for 1 ≤ i ≤ d.

(2) For any orthogonal set E of idempotents in Λ, there exist trian-
gular representations µ, ν ∈ modd Λ of M and N respectively,
such that µ(e) = ν(e) for all e ∈ E.

(3) There exists a complete orthogonal set E of primitive idempo-
tents in Λ and triangular representations µ, ν ∈ modd Λ of M
and N respectively, such that µ(e) = ν(e) for all e ∈ E.

Proof. We first show that 1 implies 2. Let E be an orthogonal set of
idempotents. Since any idempotent can be written as a sum of prim-
itive idempotents, and any orthogonal set can be expanded to a com-
plete orthogonal set, we may assume that E is a complete orthogonal
set of primitive idempotents.

When d = 1, 1 ⇒ 2 is obvious. Assume it holds for d = l − 1
and let M and N be l-dimensional modules satisfying 1. Then Ml−1

and Nl−1 have triangular representations µ and ν where µ(e) = ν(e)



DEGENERATIONS OF SUBMODULES AND COMPOSITION SERIES 37

for all e ∈ E. We now want to construct suitable bases for M and
N . Let (m1, . . . ,ml−1) and (n1, . . . , nl−1) be bases for Ml−1 and Nl−1

corresponding to µ and ν. Choose elements m ∈ M \Ml−1 and n ∈
N \Nl−1. Since M/Ml−1 is simple there is exactly one element e ∈ E
such that eM/Ml−1 6= 0, and since M/Ml−1 ' N/Nl−1 we also have
eN/Nl−1 6= 0. We set ml = em and nl = en. Then (m1, . . . ,ml)
and (n1, . . . , nl) are bases for M and N , and we let µ′ and ν ′ be the
corresponding representations.

We now have that for any x ∈ Λ,

µ′(x) =


sx1

µ(xi)
...

sxl−1

0 · · · 0 sxl


where sxi ∈ k. The l−1 first entries in row l are all 0 because Ml−1 ⊆M
is a submodule. Since µ(x) is upper triangular, µ′(x) is too. Thus
we have that µ′ is triangular. Similarly we see that ν ′ is triangular.
Furthermore we have

µ′(e) =


0

µ(e)
...
0

0 · · · 0 1

 = ν ′(e),

and for any other e′ ∈ E we have

µ′(e′) =


0

µ(e′)
...
0

0 · · · 0 0

 = ν ′(e′).

Thus we have µ′(e) = ν ′(e) for all e ∈ E. By induction we get that
1⇒ 2.

Obviously 2 implies 3, so it remains to show that 3 implies 1. Again
this is obvious for d = 1. Assume that it holds for d = l − 1 and let
M and N be l-dimensional modules satisfying 3. Let (m1, . . . ,ml) and
(n1, . . . , nl) be the bases corresponding to µ and ν. Since µ is triangular,
{m1, . . . ,ml−1} spans a submodule which we call Ml−1. We construct
Nl−1 in the same way. Ml−1 and Nl−1 satisfy 3, so by assumption they
also satisfy 1. All that is left to check is that M/Ml−1 ' N/Nl−1. Let
x ∈ E be the idempotent with xM/Ml−1 6= 0. Then we have

xml 6∈Ml−1 ⇔ uTl µ(x)ul = uTl ν(x)ul 6= 0⇔ xnl 6∈ Nl−1 ⇔ xN/Nl−1 6= 0,

which shows that M/Ml−1 ' N/Nl−1. �
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Two modules may have the same dimension vector, yet not have
compatible composition series as above. Thus, when we restrict to tri-
angular representations with fixed values on E, we get representations
of at most one of them.

Example 13. Let Q be the quiver 1
α //

2
β
oo , and let Λ = kQ/(αβ, βα).

Λ is generated by {e1, e2, α, β}, where ei is the trivial path corresponding
to the vertex i. Consider the quiver representations

M : k
1 //

k
0
oo , N : k

0 //
k

1
oo .

M and N both have simple socles, but the socles are not isomorphic.
Thus they do not satisfy statement 1 in Proposition 12. {e1, e2} is a
complete set of primitive orthogonal idempotents, so if µ and ν are
representations of M and N , and we have µ(e1) = ν(e1) and µ(e2) =
ν(e2), then by Proposition 12 µ and ν cannot both be triangular.

For example, let µ, ν ∈ mod2 Λ be the functions given by

(µ(e1), µ(e2), µ(α), µ(β)) =

((
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 0
1 0

)
,

(
0 0
0 0

))
,

(ν(e1), ν(e2), ν(α), ν(β)) =

((
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 0
0 0

)
,

(
0 1
0 0

))
.

Then µ represents M and ν represents N . We see that µ(ei) = ν(ei)
for i = 1, 2 but µ(α) is not upper triangular, so µ is not a triangular
representation. If we instead use a triangular representation of M , say
µ′ given by

(µ′(e1), µ′(e2), µ′(α), µ′(β)) =

((
0 0
0 1

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 0

))
,

we get µ′(ei) 6= ν(ei) (and in fact the only nonzero idempotent e such
that µ′(e) = ν(e) is the identity).

So we want an analogue of dimension vectors that also records the
sequence of the composition factors.

Definition. The composition vector of a composition series (0) =
M0 ⊆M1 ⊆ . . . ⊆Md is an element c = (c1, . . . , cd) ∈ E× . . .×E such
that for all i we have Mi/Mi−1 ' ciΛ/ rad ciΛ.

Now given a composition vector c we can construct a subvariety
Tc(Λ) ⊆ Td(Λ) in the following way. For 1 ≤ i ≤ n let Ac

i be the
diagonal d × d-matrix where the jth element on the diagonal is 1 if
cj = ei and 0 otherwise. Then let Tc(Λ) = {µ ∈ Td(Λ) | µ(ei) = Ac

i }.
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Any representation in Tc(Λ) represents a composition series with com-
position vector c, and from Proposition 12 we see that all composition
series with this composition vector are represented in Tc(Λ).

We also need a suitable group variety to act on Tc(Λ). The normal-
izer of a closed subset is itself closed, and thus an affine group variety
(see e.g. [3], Lemma 2.5.1). Since Tc(Λ) is a closed subset both in
Td(Λ) and in modd Λ, we could use its normalizer in either GLd(k) or
Ud(k). We denote these normalizers NGLd(k)(Tc(Λ)) and NUd(k)(Tc(Λ))
respectively.

If we choose NGLd(k)(Tc(Λ)), then the group action no longer pre-
serves composition series. This is shown in the next example.

Example 14. Let Λ be the Kronecker algebra as in Example 7, and
consider the modules R and R2 given by the following quiver represen-
tations.

R : k
1 //

0
// k , R2 : k2

( 1 0
0 1 )
//

( 0 0
1 0 )
// k2

R2 has triangular representations µ and ν given by

µ(e1) = ν(e1) =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1



µ(e2) = ν(e2) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



µ(α) = ν(α) =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



µ(β) =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , ν(β) =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


The corresponding composition series are 0 ⊆ S2 ⊆ S2

2 ⊆ P1 ⊆ R2

for µ and 0 ⊆ S2 ⊆ S2
2 ⊆ R ⊕ S2 ⊆ R2 for ν. They both have com-

position vector c = (e2, e2, e1, e1), but they are not isomorphic. Tc(Λ)
is isomorphic to the variety of quiver representations, rep(2,2)(Q) '
M2(k) × M2(k), and we have NGL4(k)(Tc(Λ)) ' GL2(k) × GL2(k).
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Since µ and ν both represent the module R2, they are in the same
NGL4(k)(Tc(Λ))-orbit.

Example 14 shows that NGLd(k)(Tc(Λ)) is a poor choice for the group
action. The action of NUd(k)(Tc(Λ)) on the other hand, obviously does
preserve composition series. In fact, we can restate Theorem 4 with
Tc(Λ) in the place of Td(Λ).

Theorem 15. Let c be a composition vector, let µ, ν ∈ Tc(Λ), and

let respectively M1
� � i1 // . . . �

� id−1 // Md and N1
� � j1 // . . . �

� jd−1 // Nd be the

corresponding composition series. Then ν ∈ NUd(k)(Tc(Λ)) ∗ µ if and
only if there exists a commutative diagram

0

��

0

��

0

��
X1

h1 //

��

X2
h2 //

��

· · ·
hd−1 // Xd

��
X1 ⊕M1

(
h1 0
0 i1

)
//

��

X2 ⊕M2

(
h2 0
0 i2

)
//

��

· · ·

(
hd−1 0

0 id−1

)
// Xd ⊕Md

��
N1

��

j1 // N2

��

j2 // · · ·
jd−1 // Nd

��
0 0 0

with exact columns.

The proof is the same as for Theorem 4, we just have to choose the
basis for V a little more carefully. Here we need to have cibi = bi for
all i.
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Abstract. Degeneration of modules is usually defined geomet-
rically, but due to results of Zwara and Riedtmann we can also
define it in purely homological terms. This homological definition
also works over fields that are not algebraically closed. Let k be a
field, K a finite extension of k and Λ a k-algebra. Then any K⊗kΛ-
module is also a Λ-module. We study how the isomorphism classes,
degeneration and hom-order differ depending on whether we work
over Λ or K ⊗k Λ.

1. Introduction

Let k be a field, K a normal finite field extension of k and Q a
quiver. Since K-vector spaces are also k-vector spaces and all K-linear
maps are k-linear, any K-representation of Q is also a k-representation.
But, since not all k-linear maps are K-linear, two nonisomorphic K-
representations may be isomorphic as k-representations.

Example 1. Let Q be the Kronecker quiver and consider the CQ-
modules

M : C
1 //

i
// C , N : C

1 //

−i
// C .

M and N are not isomorphic as CQ-modules, but if we view them as
RQ-modules, there is an isomorphism given by complex conjugation.

More generally, if Λ is a k-algebra, then two K ⊗k Λ-modules may
be isomorphic in mod Λ, the category of finite-dimensional Λ-modules,
but nonisomorphic in modK ⊗k Λ.

When we need to specify which algebra two modules are isomorphic
over, we will add a superscript to the isomorphism sign, e.g. M 'RQ N .

The Λ-isomorphism class of a given K ⊗k Λ-module splits into a
number of K⊗kΛ-isomorphism classes. In section 2 we give a complete
description of these isomorphism classes.

Since isomorphism classes depend on which algebra we are working
over, so do the degeneration order and the Hom-order.

45
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Degeneration of modules is usually defined geometrically. For a nat-
ural number d and a k-algebra Λ, let modd Λ be the set of algebra
homomorphisms from Λ toMd(k), the ring of d× d-matrices with en-
tries in k. Given a homomorphism µ ∈ mod Λ we can make a module
structure on kd. For any λ ∈ Λ, x ∈ kd, we define λx := µ(λ) ·x, where
x is viewed as a column vector and the multiplication on the right hand
side is just matrix multiplication. This lets us identify modd Λ with the
set of Λ-module structures on kd. The set modd Λ is actually an affine
variety, and we say that a module M degenerates to a module N if N
is in the closure of the isomorphism class of M .

This definition only works when k is algebraically closed, and in this
paper we want to look at other fields. In [9], G. Zwara showed that
there is an equivalent module theoretic way to describe degeneration,
and we will use this description as the definition.

Definition. Let M and N be modules in mod Λ. M degenerates to N
if there exists a module X ∈ mod Λ and an exact sequence

0 // X // X ⊕M // N // 0 .

We denote this by M ≤deg N . An exact sequence of the above form is
called a Riedtmann sequence.

This definition works for any field. With this definition it is not
obvious that ≤deg is a partial order, but this was shown by G. Zwara
in [7].

The degeneration order does not behave nicely with respect to cancel-
lation of common direct summands, so in [3] C. Riedtmann introduced
another order.

Definition. Let M and N be Λ-modules. M virtually degenerates to
N if there exists Z ∈ mod Λ such that M ⊕Z ≤deg N ⊕Z. We denote
this by M ≤vdeg N .

M ≤deg N clearly implies M ≤vdeg N , but for some algebras the vir-
tual degeneration is strictly finer. This was first shown by an example
due to J. Carlson (see [3]).

The last partial order we want to study in this paper is the Hom-
order, which is based on the dimensions of Hom-spaces. We will denote
the k-dimension of HomΛ(M,N) by Λ[M,N ].

Definition. Given two Λ-modules M and N , M ≤Hom N if Λ[X,M ] ≤
Λ[X,N ] for all X ∈ mod Λ (or, equivalently, if Λ[M,X] ≤ Λ[N,X] for
all X ∈ mod Λ).
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The relation ≤Hom is clearly reflexive and transitive. In [1], M. Aus-
lander showed that if M 6' N then there exists an X ∈ mod Λ such
that Λ[X,M ] 6= Λ[X,N ], which shows that ≤Hom is also antisymmetric.
M ≤vdeg N implies M ≤Hom N , but it is not known if ≤Hom is strictly

finer.
However, if the algebra is representation-finite, all three orders are

the same. This was shown for algebras over algebraically closed fields
by G. Zwara in [8] and generalized to arbitrary artin algebras by S. O.
Smalø in [4].

As with isomorphisms, we add a superscript when we need to specify
which algebra we are considering.

In section 3 we give several examples where ≤Λ
deg differs from ≤K⊗kΛ

deg .
We also give some examples of modules M,N where M⊕M degenerates
to N ⊕N but M does not degenerate to N . For some algebras Λ the
K⊗kΛ-isomorphism classes are the same as the Λ-isomorphism classes.
We show that in these cases ≤K⊗kΛ

Hom and ≤Λ
Hom are also the same.

In section 4 we show that if the endomorphism ring of a module is
a division ring, then the module is minimal in the degeneration- and
Hom-orders.

For background on representation theory of algebras we refer the
reader to [2]. For an introduction to degenerations of modules, see [4].

2. Isomorphism classes

Let k be a field, K a separable finite extension of k and Λ a k-algebra.
Let Γ = K ⊗k Λ. For any Λ-module M we give K ⊗k M a Γ-module
structure by (x ⊗ λ) · (y ⊗m) = xy ⊗ λm. Since Λ is a subring of Γ
any Γ-module is also a Λ-module.

Furthermore, any Γ-homomorphism is a Λ-homomorphism, so X 'Γ

Y implies X 'Λ Y . But, as Example 1 shows, the reverse implication
does not hold.

In Example 1 we see that the RQ-isomorphism class of M contains
two CQ-isomorphism classes, and one is in some sense a complex con-
jugate of the other. On the other hand, the RQ-isomorphism class of
the module

Xa : C
1 //
a
// C

contains only one CQ-isomorphism class if a ∈ R. If a is not real it
has two CQ-isomorphism classes. Note also that when a is real there
exists a RQ-module Ya such that Xa 'CQ C⊗R Ya, whereas when a is
not real there is no such RQ-module.
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Similarly, for any indecomposable CQ-moduleM its RQ-isomorphism
class contains either one or two CQ-isomorphism classes. When there
are two, a module in the second class can be constructed from M by
complex conjugation.

More generally, if K is a normal extension of k of degree n, the Λ-
isomorphism class of an indecomposable Γ-module splits into at most
n Γ-isomorphism classes, and they are related by k-automorphisms of
K.

Given a k-automorphism of K and a Γ-module M , we can construct
a Γ-module that is Λ-isomorphic to M in the following way.

Let φ be a k-automorphism on K, and let M be a Γ-module. We
construct a new Γ-module Mφ by setting Mφ = M as k-spaces, and
letting the multiplication be given by (x⊗λ) ·Mφm = (φ(x)⊗λ) ·M m.

Now the identity on M gives us a Λ-isomorphism φ̂ : Mφ →M , where
for any x ∈ K and m ∈M we have φ̂(xm) = φ(x)φ̂(m).

When K is a normal extension of k, let G(K/k) denote its Galois
group.

We are now ready to prove the main result of this section.

Theorem 1. Let M ∈ mod Γ. The multiplication map

µM : K ⊗k M →M

x⊗m 7→ xm

is a split epimorphism of Γ-modules.
Furthermore, if K is a normal extension of k, then we have

K ⊗k M 'Γ
⊕

φ∈G(K/k)

Mφ.

Proof. We prove the first part by constructing a splitting of µM .
Let µ : K ⊗k K → K be the map given by µ(x⊗ y) = xy. This is a

K⊗kK-module epimorphism. Since K is separable we have by Lemma
9.2.8 and Theorem 9.2.11 in [6] that K is a projective K⊗kK-module,
and thus µ splits. Let ν : K → K ⊗k K be a splitting of µ.

We first consider M = Γ = K ⊗k Λ. K ⊗k Γ = K ⊗k K ⊗k Λ is a
Γ-module with multiplication (x⊗ λ) · (y ⊗ z ⊗ κ) = xy ⊗ z ⊗ λκ. Let
νΓ : K ⊗k Λ→ K ⊗kK ⊗k Λ be given by νΓ(x⊗ λ) = ν(x)⊗ λ. This is
a Γ-module homomorphism and a splitting of µΓ. We now show that
for any f ∈ HomΓ(Γ,Γ) the following diagram commutes.

Γ
f //

νΓ

��

Γ

νΓ

��
K ⊗k Γ

K⊗kf // K ⊗k Γ
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The homomorphism f is given by right multiplication with an element
in Γ, and it is enough to check that the diagram commutes for all
generators of Γ. Let x, y ∈ K, α, β ∈ Λ and f = − · y ⊗ β. Then
νΓf(x ⊗ α) = νΓ(xy ⊗ αβ) = ν(xy) ⊗ αβ and K ⊗k fνΓ(x ⊗ α) =
K ⊗k f(ν(x) ⊗ α) = ν(x) ⊗ α · 1 ⊗ y ⊗ β, and since ν is a K ⊗k K-
homomorphism we have ν(x) ⊗ α · 1 ⊗ y ⊗ β = ν(xy) ⊗ αβ, so the
diagram commutes.

For a free Γ-module Γn let νΓn be given by νΓn((γ1, . . . , γn)) =
(νΓ(γ1), . . . , νΓ(γn)). Then for any f ∈ HomΓ(Γa,Γb) the following
diagram commutes.

Γa
f //

νΓa

��

Γ

ν
Γb

��
K ⊗k Γa

K⊗kf // K ⊗k Γb

For an arbitrary M , let

Γa
f // Γb

g // M

be a free presentation. Then we construct νM from the commutative
diagram

Γa
f //

νΓa

��

Γb
g //

ν
Γb

��

M

νM
��

K ⊗k Γa
K⊗kf // K ⊗k Γb

K⊗kg // K ⊗k M

.

Since

Γb
g // M

K ⊗k Γb
K⊗kg

//

µ
Γb

OO

M

µM

OO

also commutes and νΓ is a splitting of µΓ, νM is a splitting of µM .
Let φ ∈ G(K/k). Then we have a Γ-isomorphism 1 ⊗ φ̂ : K ⊗

Mφ → K ⊗M , so Mφ is a summand of K ⊗k M and the composition
ιφ := 1 ⊗ φ̂ ◦ νMφ is the inclusion. Let θ 6= φ be another element
in G(K/k), and let m ∈ im ιφ ∩ im ιθ. Now we view K ⊗k M as a
K ⊗kK ⊗k Λ-module. Since m is in im ιφ, we have for any x ∈ K that
x⊗ 1⊗ 1 ·m = 1⊗ φ(x)⊗ 1 ·m. Thus we get

1⊗ (φ(x)− θ(x))⊗ 1 ·m = 0
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for all x ∈ K, which means that m = 0. Thus im ιφ ∩ im ιθ = (0), so
Mφ and M θ are distinct summands. If K is normal it follows that

K ⊗k M '
⊕

φ∈G(K/k)

Mφ.

�

When K is normal, this gives us a complete description of the Γ-
modules that are Λ-isomorphic to a given Γ-module.

Corollary 2. Let K be a normal extension of k, and let M1, . . . ,Mr

be indecomposable K⊗kΛ-modules. If M 'Λ M1⊕ . . .⊕Mr, then there
exist φ1, . . . , φr ∈ G(K/k) such that M 'K⊗kΛ Mφ1

1 ⊕ . . .⊕Mφr
r .

When K is not normal, this does not hold. Then Λ-isomorphisms
do not even preserve the number of indecomposable Γ-summands.

Example 2. Let K = Q(α) where α is a root of X3 − 2. K is not
a normal extension of Q, and it has no nontrivial Q-automorphisms.
K⊗QK as a module over itself decomposes to K⊕L, and L ' K2 as K-
modules, but not as K ⊗QK-modules. In fact L is an indecomposable
K ⊗Q K-module.

3. Partial orders

Given two Γ-modules M and N , we can ask if M degenerates to N
as a Γ-module, but also if M degenerates to N as a Λ-module.

If we have M ≤Γ
deg N , then there is an exact sequence of Γ-modules

0 // X // X ⊕M // N // 0 .

This is also an exact sequence of Λ-modules, so we also have M ≤Λ
deg N .

We have already seen examples where M 'Λ N but M 6'Γ N . These
examples also show that Λ-degeneration does not imply Γ-degeneration.
There are also proper Λ-degenerations that are not Γ-degenerations.

Example 3. Consider the algebra

Λ =

(
C C
0 R

)
⊆M2(C).

This is a hereditary R-algebra corresponding to the Dynkin graph B2.
We have that C⊗R Λ ' CQ as C-algebras, where Q is the quiver

Q : 1 2
αoo β // 3 ,

via the isomorphism f : C⊗RΛ→ CQ given by f(1⊗( 1 0
0 0 )) = (e1 +e3),

f(1⊗ ( i 0
0 0 )) = i(e1− e3), f(1⊗ ( 0 0

0 1 )) = e2, f(1⊗ ( 0 1
0 0 )) = (α+ β) and

f(1⊗ ( 0 i
0 0 )) = i(α− β).
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The simple CQ-modules S1 and S3 are isomorphic as Λ-modules.
The CQ-modules

I1 : C C1oo // 0 , I3 : 0 Coo 1 // C

are also isomorphic as Λ-modules. I1 degenerates to S2 ⊕ S3 as a
Λ-module, but not as a CQ-module, and the same holds for I3 ≤Λ

deg

S2 ⊕ S1.

In the above example all Λ-degenerations of Γ-modules can be de-
composed into Γ-degenerations and Λ-isomorphisms. That is, for any
modules M,N ∈ mod Γ such that M ≤Λ

deg N , there exist M ′, N ′ ∈
mod Γ such that M 'Λ M ′ ≤Γ

deg N
′ 'Λ N . This does not hold for all

algebras.

Example 4. Let Q be the quiver

Q : • //// • //// •

and let Λ = RQ and Γ = CQ. Consider the modules given by the
following representations:

A : 0
//// C

( 1
0 )
//

( 0
1 )
// C2 , B : C3

( 1 0 0
0 1 0 )

//

( 0 1 0
0 0 1 )

// C2

( 1 0
0 1 )
//

( i 0
0 i )
// C2

C : C3
( 1 0 0 )

//

( 0 1 0 )
// C

//// 0 , X : 0
//// C

( 1 )
//

( i )
// C

Now there is an exact sequence 0 // A // B // C // 0 in
mod Λ, so we have B ≤Λ

deg A⊕C. However, we have Γ[X,A⊕C] = 1 <

Γ[X,B] = 2, so B 6≤Γ
deg A ⊕ C. Letting φ denote complex conjugation

we also have Aφ 'Γ A, Cφ 'Γ C and Γ[X,Bφ] = 2, so there are no
modules M and N such that M 'Λ B ≤Γ

deg A⊕ C 'Λ N .

Λ-isomorphisms do not preserve Γ-degenerations, and two Λ-isomorphic
modules can behave quite differently in the Γ-degeneration order. For
example, minimality is not preserved.

Example 5. Let Q be the Kronecker quiver and let Λ = RQ and
Γ = C⊗R Λ. Let M , N and N ′ be the modules given by

M : C2

( 1 0
0 1 )
//

( i 0
1 i )
// C2
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N : C2

( 1 0
0 1 )
//

( i 0
0 i )
// C2 .

N ′ : C2

( 1 0
0 1 )
//

( i 0
0 −i )

// C2

We have that M ≤Γ
deg N , but N ′ is minimal in the degeneration

order of mod Γ and N 'Λ N ′.

For some algebras, e.g. Λ = kQ where Q is a simply laced Dynkin
quiver, the isomorphism classes in mod Λ and modK⊗kΛ are the same.
It seems likely that in these cases the degeneration order should also
be the same. The Hom-order is indeed the same.

Theorem 3. Let Λ be a k-algebra and Γ = K ⊗k Λ. The following are
equivalent:

(1) M 'Λ N ⇐⇒ M 'Γ N for all M,N ∈ mod Γ.
(2) M ≤Λ

Hom N ⇐⇒ M ≤Γ
Hom N for all M,N ∈ mod Γ.

Proof. We always have that M 'Γ N =⇒ M 'Λ N . If M 'Λ N ,
then we have M ≤Λ

Hom N and N ≤Λ
Hom M . Assuming that 2 holds, we

then have M ≤Γ
Hom N and N ≤Γ

Hom M , and thus M 'Γ N . This shows
that 2 implies 1.

Now assume that 1 holds.
For any k-algebraR andR-modulesA andB we have HomK⊗kR(K⊗k

A,K ⊗k B) 'K K ⊗k HomR(A,B). Thus for any Γ-modules X and M
we have Γ[K ⊗kX,K ⊗kM ] = n · Λ[X,M ], where n is the degree of K.
But given 1 we also have Γ[K⊗kX,K⊗kM ] = Γ[Xn,Mn] = n2·Γ[X,M ],
so we get n · Γ[X,M ] = Λ[X,M ]. It follows that M ≤Λ

Hom N implies
M ≤Γ

Hom N .
Assume that M ≤Γ

Hom N . For every Λ-module X we have n ·
Λ[X,M ] = Γ[K ⊗k X,M ] ≤ Γ[K ⊗k X,N ] = n · Λ[X,M ], and thus
M ≤Λ

Hom N .
�

This leaves the question of whether the same result holds for de-
generations and virtual degenerations. If Λ satisfies the statements of
Theorem 3, do we also have that ≤Λ

deg and ≤Γ
deg are the same?

For representation-finite algebras all three orders are the same, so in
that case the answer is yes. It looks like all algebras that satisfy the
statements of Theorem 3 are representation-finite, so one option is to
try to prove that.
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Another possible way to prove Theorem 3 for degenerations is to use
a Riedtmann sequence in mod Λ to construct a Riedtmann sequence in
mod Γ.

When isomorphism classes are the same, we have that for any short
exact sequence

0 // A // B // C // 0

in mod Λ there is a short exact sequence

0 // An // Bn // Cn // 0

in mod Γ, obtained by applying K⊗k−. It seems like this should imply
that there is a short exact sequence

0 // A // B // C // 0

in mod Γ as well, and thus that Mn ≤deg Nn implies M ≤deg N .
Unfortunately this is not true in general.

The next example, which is a variant of the Carlson example men-
tioned in the introduction, shows that Mn ≤deg Nn does not imply
M ≤deg N .

Example 6. Let Λ be the exterior k-algebra in two variables X and
Y . Let f ∈ Λ be an element of degree 1, i.e. f = aX + bY for some
a, b ∈ k, and let (f) be the submodule of Λ generated by f . There is
an exact sequence of Λ-modules

0 // (f) // Λ // (f) // 0 ,

which shows that Λ ≤deg (f)2. If g ∈ Λ is another element of degree
1, then we have Λ2 ≤deg ((f) ⊕ (g))2. However, by Theorem 5.4 in [5]
we have Λ ≤deg (f) ⊕ (g) if and only if (f) ' (g). As in the original
Carlson example, we have Λ ≤vdeg (f)⊕ (g) for all f, g.

Adding a suitable K-structure, this shows that we may have M ≤Λ
deg

N and M ≤Γ
vdeg N without having M ≤Γ

deg N .
We give one more example of this, due to S. Oppermann and S. O.

Smalø. Here we also see that we can have a monomorphism from A2

to B2 without having any monomorphisms from A to B.

Example 7. Let Λ be the exterior k-algebra in three variables X,
Y and Z. Let r be its radical and S the simple Λ-module. The
Λ-homomorphism f : (Λ/r2)2 → (r/r3)2 given by right multiplica-
tion with the matrix (X Y

Y Z ) is a monomorphism, but there are no Λ-
monomorphisms from Λ/r2 to r/r3. Since coker f is semisimple, we
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have an exact sequence

η : 0 // (Λ/r2)2 // (r/r3)2 // (S2)2 // 0 ,

but there is no exact sequence

0 // Λ/r2 // r/r3 // S2 // 0 .

The exact sequence η shows that (r/r3)2 ≤deg (Λ/r2 ⊕ S2)2, and thus
r/r3 ≤Hom Λ/r2 ⊕ S2.

We also have r/r3 ≤vdeg Λ/r2 ⊕ S2. There are exact sequences

0 // Λ/r2
(XZ )
// r/r3 ⊕ (Z)/r3 // r/(XZ) // 0 ,

0 // (XZ) // r/(XZ) // (XZ, Y Z) // 0 ,

0 // (Y Z) // (XZ, Y Z) // S // 0 ,

0 // (Z)/r3 // (XZ)⊕ (Y Z) // S // 0 ,

which show that r/r3 ⊕ (Z)/r3 ≤deg r/(XZ) ⊕ Λ/r2 ≤deg (XZ) ⊕
(XZ, Y Z)⊕Λ/r2 ≤deg (XZ)⊕(Y Z)⊕S⊕Λ/r2 ≤deg Λ/r2⊕S2⊕(Z)/r3.

There is no degeneration though, as we will see from Proposition 4
below.

In both examples we have a virtual degeneration, so it is possible that
Mn ≤deg N

n implies M ≤vdeg N . Note also that the exterior algebras
do not satisfy the statements of Theorem 3. Thus it is still possible
that in this more restricted case Mn ≤deg N

n also implies M ≤deg N .
To see that r/r3 does not degenerate to Λ/r2 ⊕ S2 in Example 7, we

will look at their submodules. The 4-dimensional submodule Λ/r2 ⊆
Λ/r2⊕S2 is generated by one element. In r/r3, on the other hand, any
submodule generated by one element is at most 3-dimensional. This
turns out to be impossible if we have a degeneration.

For a Λ-module M and a natural number i, let SubiM be the set of
submodules of M that are generated by i elements. We have a function
fi : mod Λ→ N for each i, given by

fi(M) = max
N∈SubiM

dimkN.

Proposition 4. Let k be an algebraically closed field and Λ a finite-
dimensional k-algebra. Let M and N be Λ-modules such that M ≤deg

N . Then fi(M) ≥ fi(N) for all i.
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Proof. We want to show that for anym, d, i ∈ N, the set {X ∈ modd Λ|fi(X) ≤
m} is closed in modd Λ. Let {λ1, . . . , λn} be a basis for Λ. For any
i-tuple x = (x1, . . . , xi) of elements in kd, we have a function φx :
modd Λ→Md×ni(k) given by

Y 7→

Y (λ1)x1 · · · Y (λn)x1 Y (λ1)x2 · · · Y (λn)xi

 .

The columns of φx(ρ) span the submodule of Y generated by {x1, · · · , xi},
thus the dimension of that submodule equals the rank of φx(Y ). Let
Zm ⊆Md×ni(k) be the set of matrices with rank at most m. Then the
set of modules where {x1, . . . , xi} generates an at most m-dimensional
submodule is the inverse image of Zm, and we have

{X ∈ modd Λ|fi(X) ≤ m} =
⋂

x∈(kd)i

φ−1
x (Zm),

which is closed since the maps φx are continuous and Zm is closed.
Hence the closure of the isomorphism class of M is contained in {ρ ∈

modd Λ|fi(ρ) ≤ fi(M)}, so if M ≤deg N we have fi(N) ≤ fi(M). �

It follows immediately that we cannot have a degeneration in Exam-
ple 7 if the field is algebraically closed. Even if the field is not closed,
a degeneration is not possible. If there were a degeneration, applying
k⊗k− to its Riedtmann-sequence would show that N = k⊗k(Λ/r2⊕S2)
is a degeneration of M = k ⊗k r/r3. But f1(M) = 3 and f1(N) = 4,
so by Proposition 4 we have M 6≤deg N and consequently r/r3 6≤deg

Λ/r2 ⊕ S2.

4. Endomorphism rings

Let k be a field, Λ a k-algebra and M and N Λ-modules such that
M ≤deg N . Since also M ≤Hom N , we have Λ[M,M ] ≤ Λ[M,N ] and

Λ[M,N ] ≤ Λ[N,N ], and thus Λ[M,M ] ≤ Λ[N,N ]. If M 6' N , then
this is a strict inequality. If k is algebraically closed, this can be shown
geometrically. For arbitrary fields it can be seen from the following
lemma, which is Lemma 5.3 from [4].

Lemma 5. Let M and N be two nonisomorphic Λ-modules such that
M ≤Hom N . Then we have Λ[N,M ] < Λ[N,N ].

It follows from Lemma 5 that if N is a proper Λ-degeneration of M ,
then EndΛM must have strictly smaller dimension than EndΛ N . Thus
if EndΛM is one-dimensional, M cannot be a proper degeneration of
anything.
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If k is algebraically closed, the only finite extension of k is k itself. In
this case it is obvious that if EndΛ M is a field, then M must be minimal
in the Hom-order, and thus also in the degeneration order. When k is
not algebraically closed, EndΛM might be a field different from k. In
this case, Λ[M,M ] is greater than one, so it is not immediately obvious
that M should be minimal. However, it is.

Proposition 6. Let M be a Λ-module such that EndΛ(M) is a di-
vision ring. Then M is minimal in the Hom-order, and also in the
degeneration order.

Proof. Assume there exists a module N 6' M such that N ≤Hom M .
By Lemma 5 we have 0 < Λ[M,N ] < Λ[M,M ]. On the other hand,
HomΛ(M,N) is a right EndΛ(M)-module, which is free since EndΛ(M)
is a division ring. Thus Λ[M,M ] divides Λ[M,N ], which is a contradic-
tion.

Hence M is minimal in the Hom-order, and since the degeneration
order is coarser than the Hom-order, M is also minimal in the degen-
eration order.

�
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