
Design and Implementation of Software
for the ROV Neptunus

Jostein Munz

Master of Science in Cybernetics and Robotics

Supervisor: Sverre Hendseth, ITK

Department of Engineering Cybernetics

Submission date: July 2015

Norwegian University of Science and Technology

Master thesis

Design and Implementation of
Software for the ROV Neptunus

By :
Jostein Munz

Supervisor:
Sverre Hendseth

Co-supervisors:
Roger Skjetne

Andreas Reason Dahl

Department of Engineering Cybernetics
Norwegian University of Science and Technology

July 13, 2015

Scope of work

Background

The Remotely Operated Vehicle(ROV) Neptunus is a small, low cost ROV to be
developed for academic or recreational use. The scope of this master thesis is to
design and develop the software for this ROV. The functional requirements for the
ROV are:

• Common ROV control and payload functionality.

• A user interface consisting of an operator interface and a developer interface.

• Two HMI platforms; pc and tablet. The pc HMI shall have support for
joystick control.

• Remote monitor and control functionality. Methods for taking and assigning
command including fail-safe.

• A built-in dynamic ROV simulator mode.

• Feedback control and state estimation functionality.

• Interface to the Oculus Rift system.

Work description

1. Perform hardware and software design for ROV Neptunus. Expand the func-
tional requirements in detail. Review and conclude on relevant software
frameworks.

2. Implement the user interface with priority on the developer interface.

3. Implement minimum required functionality to control the ROV, then expand
the implementation scope as time allows.

4. Documentation of the system and relevant software tools shall be inlcuded in
the report to facilitate further development. The ease of further development
shall also be considered in decisions for the software and hardware solution
chosen.

5. Develop and perform tests based on functional requirements and known is-
sues.

Abstract

There has been an increased interest in researching and developing technical so-
lutions for underwater vehicles the last years. In most cases, underwater vehicles
are expensive and not affordable to private individuals. Development of low cost
ROVs has lately been increasing supported by an active Do-It-Yourself (DIY) com-
munity. The OpenROV project has contributed to this community by producing
cheap ROVs with open source software, encouraging users to develop their own
plugins. Development of a lost cost ROV were carried out fall 2014, as a project
thesis [1]. The result was a low-cost ROV prototype, called Neptunus using Open-
ROV computer hardware and software.

The growth of the internet over the last decades has motivated the development
of web applications. The communication between web servers and clients has
been dominated by the use of the Hyper Text Transfer Protocol (HTTP) and the
request-response pattern. In the recent years, developments have been made to fa-
cilitate bi-directional communication protocols. The WebSockets protocol provides
this, as an alternative to the HTTP protocol. Node.js is a runtime environment
that uses the Google V8 JavaScript engine to run Node.js web servers. The use of
the WebSockets protocol is facilitated in Node.js web servers, making it a desirable
choice for real-time applications.

Design of hardware and software solutions for the ROV Neptunus was performed.
This includes review of frameworks and software tools. A Node.js web server
was implemented on a BeagleBone computer running Linux Ubuntu. The Node.js
specific framework Express.io was used. A user interface consisting of an operator
interface and a developer interface was implemented in JavaScript. The operator
interface contains methods for controlling the ROV with the use of keyboard,
touchscreen and joystick. The operator interface contains functionality vital in
development such as logging and plotting.

A control module was implemented to control the ROV with either motion control
or manual control. This included a thrust allocation procedure for the motion
control mode. A camera module for streaming of the video was implemented. The
mjpg-streamer application was used to stream the video from the camera to the
client. A simulator module was implemented to facilitate parallel development.
Remote monitoring and control over WiFi was implemented. This included meth-
ods for taking and giving control, as only one operator can be in control at any
time. All the implemented functionality was tested. Documentation of the system
and relevant software tools for development was included.

Preface

This thesis was written at NTNU spring of 2015. Testing was performed at the
Marine Cybernetics lab at NTNU, campus Tyholt.

I wish to thank my supervisor, Sverre Hendseth and my co-supervisors Roger
Skjetne and Andreas Reason Dahl for the help they have provided. I also wish
to thank Mauro Candeloro and Martin Ludvigsen for their involvement in the
project. Last, but not least, I want to thank everyone who helped me at Marine
Cybernetics, the company, in particular Mikhail Lindblad.

Contents

1 Introduction 2
1.1 Background . 2
1.2 Thesis organization . 2

2 Web programming 4
2.1 JavaScript . 4
2.2 CSS . 4
2.3 HTML . 4
2.4 Server and client . 5
2.5 WebSockets . 5
2.6 Node.js . 6

3 Remotely Operated Underwater Vehicle 9
3.1 Reference frames . 10
3.2 Kinematics . 11
3.3 OpenROV . 11
3.4 Neptunus . 13

4 Choice of system solution 17
4.1 Computer hardware solution . 17
4.2 ROV specific solution . 17
4.3 Software solution . 18

5 Product specifications 19

6 System overview 21

7 User Interface 23
7.1 Operator interface . 23
7.2 Developer interface . 27

8 Signal flow and processing 32
8.1 Data flow . 32
8.2 Deadband function . 35
8.3 Wild points . 36
8.4 Serial port API . 37

9 Thrust Allocation and Control 39
9.1 Control modes . 39
9.2 Control functions . 40

9.3 Thrust allocation . 40

10 Camera stream 41

11 Remote control 43
11.1 Remote control . 43
11.2 Industry standards for transfer of control 43
11.3 Implementation of transfer of control 44

12 Simulator 45

13 Testing 51
13.1 Internal acceptance test, 21st of May 2015 51
13.2 Factory acceptance test, 28th of May 2015 53
13.3 Customer acceptance test, 4th of June 2015 54

14 Discussion 57

15 Conclusion 59

16 Further work 60

Appendices 63

A 63
A.1 Content of the zip . 63
A.2 Accessing the BeagleBone . 63
A.3 Uploading code to the BeagleBone 63
A.4 Starting the web server . 63
A.5 Achieving internet access on the BeagleBone 64
A.6 Hardware vulnerability . 64
A.7 Video stream setup . 65
A.8 Displaying data sent over serial connection 65
A.9 Troubleshooting unresponsive motor 65
A.10 MathJS . 66

List of Figures

3.1 The ROV Minerva. Courtesy of NTNU 9
3.2 The ROV OpenROV . 10
3.3 Backside of the ROV OpenROV . 12
3.4 BeagleBone . 12
3.5 Arduino . 13
3.6 The ROV Neptunus and ROV SF 30K. Courtesy of NTNU 15
3.7 The ROV Neptunus . 16
6.1 System overview . 21
7.1 Operator interface . 23
7.2 XBOX one controller . 25
7.3 User interface in manual control mode 26
7.4 Developer interface . 27
7.5 Plot of surge, yaw and heave . 28
7.6 Plot of starboard, port and vertical thruster 29
7.7 Zoomed version of surge, yaw and heave 30
8.1 Signals . 32
8.2 Wild points . 37
12.1 System overview with simulator active 45
12.2 Simulated x, u and surge . 48
12.3 Simulated y . 48
12.4 Simulated depth, w and Heave . 49
12.5 Simulated heading, r and Yaw . 50
13.1 Console log of gamepad.js bug . 56
A.1 MathJS . 66

Acronyms

ROV Remotely Operated Vehicle

HMI Human Machine Interface

DIY Do-It-Yourself

DNV GL Det Norske Veritas Germanische Lloyd

DOF Degrees Of Freedom

DP Dynamic Positioning

IMU Inertial Measurement Unit

NED North, East, Down

HTTP Hyper Text Transfer Protocol

HTML Hyper Text Markup Language

CSS Cascading Style Sheet

CGI Common Gateway Interface

TCP Transmission Control Protocol

IP Internet Protocol

I/O Input / Output

API Application Programming Interfaces

UART Universal Asynchronous Transmitter/Reciever

ROS Robotics Operating System

1

1 Introduction

1.1 Background

There has been an increased interest in researching and developing technical so-
lutions for underwater vehicles the last years. Sophisticated technology has been
developed to perform complex underwater operations with high precision, such as
seabed mapping, online underwater monitoring, subsea installations, and mainte-
nance on pipes. In most cases, underwater vehicles are expensive and not affordable
to private individuals. Development of low cost ROVs has lately been increasing
supported by an active DIY community. The OpenROV project has contributed to
this community by producing cheap ROVs with open source software, encouraging
users to develop their own plugins. Development of a lost cost ROV were carried
out fall 2014, as a project thesis [1]. The result was a low-cost ROV prototype,
called Neptunus. The OpenROV computer hardware and software was used for
the ROV Neptunus during this development.

The growth of the internet over the last decades has motivated the development
of web applications. The communication between web servers and clients has
been dominated by the use of the Hyper Text Transfer Protocol (HTTP) and the
request-response pattern. In the recent years, developments have been made to fa-
cilitate bi-directional communication protocols. The WebSockets protocol provides
this, as an alternative to the HTTP protocol. Node.js is a runtime environment
that uses the Google V8 JavaScript engine to run Node.js web servers. The use of
the WebSockets protocol is facilitated in Node.js web servers, making it a desirable
choice for real-time applications.

1.2 Thesis organization

The use of Node.js as web server solution is discussed and concluded in chapter 4.1.
This is chronologically after Node.js has been presented as background material in
chapter 2.6. This is purposely done to separate the background chapters from the
result chapters. The same applies to the choice of hardware and frameworks.

The product specifications were incrementally developed. In the thesis, the final
version is presented. The exception to this is the testing chapter. This describes
the incremental development process.

The terms ”Internal acceptance test”, ”factory acceptance test” and ”customer
acceptance test” are used in the testing chapter. These expressions are common

2

in the industry, and they have a particular meaning. The usage in this thesis is
not meant to reflect the industry usage wholly, but the terms were commonly used
during the project work, so they were kept in the report.

In the user interface, pictures of the camera image is included. This was intended
to be in-water images, but the lab pool was unexpectedly closed for repair.

3

2 Web programming

2.1 JavaScript

JavaScript is the scripting language used for the behavior of a web site. It is an
interpreted language in contrast to compiled languages like C and Java. JavaScript
is written and saved as plain text files of the .js type. JavaScript is a weakly typed
and dynamic language. Arrays are dynamic in JavaScript and the type of variables
does not have to be set. The return statement is optional. Using all the available
input parameters to function calls is also optional. JavaScript supports object
oriented programming, but all objects are defined as functions rather than classes.

2.2 CSS

Cascading style sheet, or CSS for short, is used to style web sites. It is written
into .css files in plain text in the same manner as JavaScript files. CSS code can be
used to control colors, fonts, size and alignment of elements among other things.
Elements of the website can be grouped into classes. The CSS styling can then be
applied to individual classes to avoid manually styling all elements.

2.3 HTML

Hyper Text Markup Language or HTML for short is used to make the content of a
webpage. Examples include tables, paragraphs, text, images and headings. Other
relevant items used are:

Radio buttons is a type of control element. It is a collection of several buttons
where only one can be chosen. Radio buttons have visual appearance of dots.

Form input is used to submit texts. This can for example be a user name,
information or input to a search query.

A Scrollpane is a pane that provides bars for scrolling when the content of the
pane exceed the layout boundaries for the pane.

Styling and scripting can be done within HTML code, but most web servers have
separate .js and .css files and link to them in the HTML code.

4

2.4 Server and client

Web servers are mainly used to for serving the world wide web. The terms web
server and client can be illustrated by explaining what happens when a website is
accessed. A user opens a browser and types the website URL into the URL bar.
An Hypertext Transfer Protocol (HTTP) request is sent to server. Server will
serve (send) HTML to the client. Any JavaScript files or CSS files that the HTML
invokes are also sent. The client web browser will read, interpret and execute these
files. When the browser has finished this work, the client can view the web site.

The three most used web servers are Apache, Microsoft IIS and nginx [2]. These
can not do much alone, so they are used together with other server side programs
such as scripts and databases. This is referred to as the server stack. Examples of
common server stacks are LAMP (Linux, Apache, mySQL and PHP) and Microsoft
IIS in combination with Active Server Pages (ASP) and Microsoft SQL Server
running on the Windows OS. A common way of connecting the server to programs
used server side is through a Common Gateway Interface (CGI). Common scripting
languages for web servers are PHP, python, Perl and ASP. Ruby on Rails and
Django are common frameworks used in web applications, written in Ruby and
Python, respectively.

Communication between a server and a client is mostly done with the HTTP
protocol. This is a request-response based system. The client posts a request to
the server and the server responds. The request must contain a request method.
The request methods available are: GET, HEAD, POST, PUT, DELTE, TRACE,
OPTIONS, CONNECT and PATCH. The server responds with a HTTP status
code, and if the request is successful, the content requested. The HTTP status
codes are typically a three digit code, where the first digit represent the type. 1xx is
for Information, 2xx for Success, 3xx for Redirection, 4xx for Client Error and 5xx
for Server Error. Common status codes include; 200: Continue, 404: Not Found
and 500 Internal Server Error. The HTTP protocol also includes a header section
with HTTP header fields. Examples of such fields are: ”Connection: keep-alive”,
”Accept-Charset: utf-8” and ”Content-Length: 429”.

2.5 WebSockets

WebSockets is an alternative protocol to HTTP for communication. It facilitates
bidirectional communication between the client and the server without the need
for an client request. It is build on Transmission Control Protocol and Internet
protocol (TCP/IP). WebSockets does not share the use of HTTP status code and
header fields. This leads to less traffic on the connection.

5

2.6 Node.js

Node.js, or Node for short, is an open source runtime environment that can be used
to create web servers. Node in itself was written in C, C++ and JavaScript. Node
applications are written in JavaScript or other languages that compile to JavaScript
such as CoffeeScript or Microsoft TypeScript [3]. The Google V8 JavaScript engine
is used to interpret the code in Node applications. The use of the V8 engine for
Node applications can be compared to how the Java Virtual Machine (JVM) is
used for Java. Node facilitates the use of the WebSockets protocol in addition to
HTTP, creating a bi-directional connection between server and client.

Node can in itself be a fully functional server stack. This is in contrast to the
traditional server stacks mentioned in chapter 2.4. According to [4], Node does
not work well with relational databases such as SQL databases. MongoDB is a
document-oriented database that is commonly used in conjunction with Node.

Web servers have typically dedicated one OS process or thread for every client
connection. Node instead runs on a single thread with an event loop. This re-
duces connection overheading. A Node applications serving a million connections
simultaneously was demonstrated in [5]. Using the common method of one thread
per connection, [4] estimates a cap of 4000 connections with a similar setup. This
solution however comes with the drawback that CPU intensive operations done in
the web server can choke traffic for all the connections on the server. In [6] a Node
web server was compared to a Apache with Java EE. Node was 20% faster.

Node comes with a low level I/O API utilizing non-blocking events and callbacks.
Anonymous functions are also widely used in this API. This is illustrated in listing
1, used to print the IP of clients upon connection and disconnection. This together
with the two way communication between server and client makes Node a popular
choice for real time systems. Since Node runs on a single thread, one must be
careful not to get exceptions bubbled to the top loop crashing everything. Error
handling in Node is preferably done by returning errors to calling functions. This
is in contrast to throwing exceptions which is popular in for example Java.

A Node project has a main class, typically named app.js, similar to the main
function in C. The project is run by a terminal command ”node app.js”. Linking
in Node is done in runtime as it is interpreted and not compiled. The ”require()”
statement is used to import other Node scripts and core Node modules.

Listing 1: Listening for client disconnect

app . i o . on (” connect ion ” , func t i on (socket){
var ip = socket . handshake . address . address ;
c on so l e . l og (” C l i en t connected with ip : ” + ip) ;

6

socket . on (” d i s connec t ” , f unc t i on (){
conso l e . l og (” C l i en t d i s connected with ip : ” + ip) ;

}) ;
}) ;

Node has a packet management system called npm. Anyone can publish npm
modules and there exist more than 150 000 publicly available modules.

One of the most popular npm packages is Express. It is a framework for Node that
according to [4] ”is the de-facto standard for the majority of Node.js applications
today”. It provides, among other things, templates and tools to handle routing,
error handling and static serving. ”Hello world” for an Express project, taken
from the Express’ web site [7], is shown in listing 2. The server will respond with
”Hello world!” for requests to the root URL(/) or route. For every other path, it
will respond with the HTTP status code ”404 Not found”. The Express package
can also be used to generate a more comprehensive server with boilerplate code for
error handling, logging, routing and more. This is done from the command line.

Listing 2: Hello world!

var expre s s = r e q u i r e (’ express ’) ;
var app = expre s s () ;

app . get (’ / ’ , f unc t i on (req , r e s) {
r e s . send (’ He l l o World ! ’) ;

}) ;

var s e r v e r = app . l i s t e n (3000 , func t i on () {
var host = s e r v e r . address () . address ;
var port = s e r v e r . address () . port ;

c on so l e . l og (” Example app l i s t e n i n g at
l o c a l h o s t : 3 0 0 0 ”) ;

}) ;

Socket.io is another widely used npm package. It is a library for bidirectional
communication between a server and a client using the WebSockets protocol. It
also provides both a client and server API. These APIs are semantically similar,
but the server side contains Node code, while the client is plain JavaScript. Events
can be emitted and listened to by both the server and the client.Listing 3 and 4
shows how the server and client listens to and emit events. The server receives
a req object that contains some connection information in addition to the data
sent from the client. The client however, receives the data that is sent directly.

7

Using socket.io it is also possible to group together clients in a room, and choose
to broadcast a message to a given room from the server.

Listing 3: Server listen and emit

i o . on (” c l i en tEvent ” , f unc t i on (req){
conso l e . l og (” Recieved data : ” + req . data) ;

}) ;

i o . emit (” serverEvent ” , serverData) ;

Listing 4: Client listen and emit

i o . on (” serverEvent ” , f unc t i on (data){
conso l e . l og (” Recieved data : ” + data) ;

}) ;

i o . emit (” c l i en tEvent ” , c l i en tData) ;

The express framework and the socket.io library have been combined to a single
framework named express.io. In listing 1 Express.io is used. The app object is
associated with express and the io object is assosicated with socket.io.

8

3 Remotely Operated Underwater Vehicle

Remotely operated underwater vehicles, commonly known as ROVs, are unmanned
vehicles operating with a tether. The tether, commonly referred to as an umbilical
cord, maintains a data connection between a topside computer and the ROV. The
tether also provide electrical power in many cases. Batteries are occationally used
in small ROVs instead. Figure 3.1 shows the NTNU ROV Minerva.

Figure 3.1: The ROV Minerva. Courtesy of NTNU

ROVs were initially developed mostly by the US military in the 1960s for recovery
missions [8]. In the 1970s, development of ROVs for use in the offshore oil and gas
industry started. This development has been ongoing since. ROVs have also been
developed for detection and elimination of underwater mines. Research, academics,
and marine agriculture are among other areas of use. Typical sensors and tools
for industrial scale ROVs include IMU, acoustic positioning system, depth sensor,
magnetometer, camera and robotic manipulators.

ROVs have traditionally been too expensive for recreational use. However, the last
decade, a do-it-yourself (DIY) community around recreational use of ROVs have
been growing. It is reasonable to assume that the OpenROV project has been

9

a considerable driving force behind this. OpenROV is a small ROV, illustrated
in figure 3.2, at the cost around 900$ unassembled or 1500$ fully essembled. It
comes with open source software, and the OpenROV forums have around 4000
registered users. Student ROV competitions has been held since 2001 by The
Marine Advanced Technology Education Center (MATE) [9].

Figure 3.2: The ROV OpenROV

3.1 Reference frames

Two frames of reference used in marine craft navigation is the North East Down
(NED) and the body fixed (BODY) reference frames.

The NED frame of reference is a plane tangential to the earth’s surface at the
location of the craft. The x axis points towards true north, y axis east and z down,
perpendicular to x and y. Navigation in the NED reference frame is commonly
referred to as flat earth navigation. The NED reference frame is not an inertial
frame, but for most marine crafts it can assumed to be.

The BODY reference frame moves together with the craft. The BODY frame of
reference can be used to define six Degrees Of Freedom (DOF) for a craft; surge,
sway, heave, roll, pitch and yaw. Motion in the surge, sway and heave directions are

10

forward/backward, sideways and up/down motion. These three motions describe
the linear velocity of the BODY frame with respect to the NED frame. The x axis
of the BODY frame is positive forwards, the y axis is positive to the starboard
side of a craft and the z axis is positive downward. Roll, pitch and yaw defines
rotations about the BODY axes. p, q and r denoted the angular velocity of the
BODY frame with respect to the NED frame.

3.2 Kinematics

The general marine craft equations of motion in 6-DOF according to [10]:

η̇ = JΘ(η)ν (3.1)

Mν̇ + C(ν)ν +D(ν)ν + g(η) + g0 = τ + τwind + τwave (3.2)

where η is position and orientation (euler angles) in the NED frame. ν is linear
and angular velocity in the BODY frame. R is the rotation matrix from BODY to
NED. T is the transformation matrix that relates the derivative of the euler angles
to the BODY angular velocity. τwind and τwave are typically negligible below 10m.

η =
[
x y z φ θ ψ

]>
(3.3)

ν =
[
u v w p q r

]>
(3.4)

τ =
[
X Y Z K M N

]>
(3.5)

J =

[
R(Θ) 0

0 TΘ(Θ)

]
(3.6)

3.3 OpenROV

The front of OpenROV was illustrated in figure 3.2. The backside of the OpenROV
is illustrated in figure 3.3. The OpenROV comes with a BeagleBone show in figure
3.4 with Linux Ubuntu, and an Arduino show in figure 3.5.

11

Figure 3.3: Backside of the ROV OpenROV

Figure 3.4: BeagleBone

12

Figure 3.5: Arduino

The OpenROV also comes with three motors, six batteries, three speed controllers,
two HomePlug adapters, one servo for camera tilt, a Genious F100 HD webcam,
lights, a laser, an IMU and a depth sensor. The HomePlug adapter is used to
connect ethernet to twisted pair. This is done to reduce umbilical size.

OpenROV runs a Node web server on the BeagleBone. Communication between
BeagleBone and Arduino over serial port using an universal asynchronous reciev-
er/transmitter (UART). The Arduino is responsible for power management and it
contains drivers for the motors, lights, laser, servo and sensors. These are written
in C++. The webcam is connected to the BeagleBone through USB.

3.4 Neptunus

The Neptunus ROV project was started fall of 2014 by a group of students at
NTNU. Their work is documented in [1]. The main goal of the project was to test

13

an OpenROV, and design a new ROV with the same cost range as OpenROV with
experiences from the testing.

Weaknesses in the OpenROV design according to [1] based on the testing:

• Hydrodynamic inefficient design.

• Inefficient thruster build leading to substantial thruster loss, especially in
vertical direction.

• Undesired pitch motion when moving in the surge or heave direction. This
was concluded due to the placement of the thrusters. Resultantly hard to
maintain constant depth when moving.

• Unstable communication. This was concluded to be caused by the HomePlug
adapters and the umbilical.

• Sub-optimal umbilical attachment point. It was speculated that this con-
tributed to the undesired pitch motion.

• Water leakage during sea trials

• Occational video dropout during rapid change in thrust command. It was
speculated that this was due to transient voltage drop.

The following contributions to the Neptunus ROV were made by [1]:

Design and construction of a new hull. Hydrodynamic efficiency and stabil-
ity was addressed in detail.

New thruster configuration. Increased spacing between the propellers for re-
duction in thrust loss in both vertical and horizontal direction. The propel-
lars were also carefully aligned with the vessel axis to avoid undesired pitch
moments when moving the surge or heave direction.

Power setup was changed. A 12V dc transformer connected to a regular 230V
outlet on topside was added. Power setup on the ROV was modified to
accommodate this. The batteries from OpenROV was kept.

The umbilical cord was modified to incorporate wiring for the 12V power source.
The OpenROV HomePlug adapters were removed, and ethernet was used all
the way from topside to ROV. The umbilical attachment point on the ROV
was changed.

Design of Oculus Rift as a input method to control the ROV was performed.

The software and computer hardware from the OpenROV was not modified in [1].
The cylinder holding the computer hardware and the camera from ROV was kept,

14

Figure 3.6: The ROV Neptunus and ROV SF 30K. Courtesy of NTNU

but it was placed vertically instead in the Neptunus. Due to a wiring error in the
process of making Neptunus, the port motor has opposite directions of the other
two. The ROV Neptunus is shown in figure 3.7. The Neptunus and the NTNU
SF 30K (courtesy of NTNU) is pictured together in figure 3.6 (photo by Asgeir
Sørensen). Photos were obtained from [1].

15

Figure 3.7: The ROV Neptunus

16

4 Choice of system solution

4.1 Computer hardware solution

The requirement of remote control from the product specifications limits the op-
tions for the system solution. Two solutions were considered, a web server solution
and a solution using Nation Instruments CompactRIO hardware. The second so-
lution provide remote monitoring and control functionality, but the cost of the
hardware is on the scale of thousands of dollars. Due to the budget of the project,
the CompactRIO was concluded not to be a valid option and a web server solution
was chosen. The hardware used in the OpenROV was reviewed and deemed fit for
the product specifications. As stated in chapter 3.4, the OpenROV was tested in
[1]. There were no indications of weakness in hardware design revealed during this
testing. Consequently it was decided to keep the hardware from the OpenROV in
the Neptunus design.

4.2 ROV specific solution

Two ROV solutions were considered; Robotics Operating System (ROS) and LSTS
Unified Navigation Environment (DUNE).

DUNE, not to be confused with the C++ library: ”Distributed and Unified Nu-
merics Environment”, is a runtime environment for Autonomous Underwater Ve-
hicles (AUVs) and ROVs, written in C++. DUNE is developed and maintained
by a group of academics from the University of Porto. DUNE was discarded as
an option mainly because no practically feasible solution for remote control was
found.

ROS is primarily a robotics framework widely used in industry and academics. It
has over 3000 publicly available packages according to [11], and it is free to use. It
has a modular design where an application is built by one or mode blocks of code
called nodes. One node typically performs one function. Nodes can be connected
together making ROS applications highly scalable. ROS has been developed to be
used on Linux primarely. C++, Python and some other languages can be used to
write ROS applications. For client use, a JavaScript library called roslibjs can be
used. It should not be problematic to write a web server inside a ROS application
fulfilling the requirement of remote control. If ROS was to be implemented, it
would be installed on the BeagleBone. ROS can interface with the serial port used
to connect the BeagleBone to the Arduino.

17

The main advantage of using ROS would be that modules for navigation, con-
trol and possibly video streaming already exist. This was weighted against the
time spent on initial installation and overhead of a ROS application. The prod-
uct specifications states that the navigation and control modules shall contain a
dynamic filter and DP with the sub-functionality of autopilots on heading and
depth. Considering the quality of the sensors used, it would be natural to use
basic controllers such a PID. More sophisticated controllers such as backstepping
and feedback linearization require more accurate sensors than a PID controller.
Consequently, the potential value of using ROS is diminished, as the implementa-
tion time of the navigation and control is estimated to be relatively small. Tuning
of the parameters in a PID controller and a dynamic filter can often be more time
consuming than the implementation itself. This work have to be done regardless
of the user of ROS. On this basis it was concluded not to use ROS.

The option to no use any ROV specific frameworks or tools simplifies the learning
curve for new developers entering the project, aiding the ease of further develop-
ment as stated in the scope of work.

4.3 Software solution

As stated in section 4.1, a web server solution was chosen. Node was chosen as
the server solution. Main reasons for this include:

• Rapid development with JavaScript as the only programming language across
the server stack. This also facilitates the ease of further development.

• Two-way communication between server and client.

• Motor drivers already exist from OpenROV.

The Express.io frameworks was chosen as it suits the application. It facilitates
rapid construction of the web server and the use of WebSockets protocol makes it
easy for the server to send measurements and other updates.

In web servers it is common to use a client side tools to control the layout and
appearance of a web page. This was considered, but as stated in the scope of work,
emphasis shall be put on the developer interface. Consequentially, it was decided
not to use any client side frameworks or tools as pure HTML and JavaScript was
concluded to suffice. AngularJS and ReactJS can be reviewed in further work on
this.

18

5 Product specifications

The product specifications were made by incremental testing and feedback from
persons involved in the project. This chapter contains the final version of the prod-
uct specifications. The testing chapter contains documentation of the incremental
changes made.

The server shall include the following modules:

Navigation module for implementation of dynamic filters for state estimation.
A Kalman Filter or passive observer can be used for this purpose.

Control module carrying out thrust and control requests from the client.

Camera module streaming the video from the webcam to the client.

Simulator module replacing the measurements with simulated measurements
when activated. Based on a dynamic model and a discrete method for solv-
ing the differential equations of the system.

The ROV shall have remote control functionality with the following features:

• Accessible through WiFi and internet

• Only one client in control at any one time

• Transfer of control by request and acknowledge

The ROV shall also have a Safety mode. This shall stop the ROV when the client
in control disconnects or loses focus of the window. It shall also trigger when run
mode, control mode or input mode is changed.

The operator interface shall contain the following:

Camera stream image

Radio buttons for choosing input mode

• Keyboard

• Touchscreen

• Joystick

• Oculus

19

Radio buttons for choosing Control modes

• Motion control: In this control mode, the ROV is controlled in the
surge, yaw and heave degrees of freedom.

• Manual control: Individual motor control.

• DP control: Dynamic positioning.

Radio buttons for choosing Run modes

• Normal

• Simulator

Display of the following measurements

• Heading [deg]

• Depth [m]

The following control commands

• Set autopilot depth

• Set autopilot heading

• Set gain

• Set lights intensity

• Set laser intensity

The developer interface shall contain the following:

• A logger than prints information to the user with time stamp. It shall be
possible to control what information is displayed here.

• Measurements, commanded thrust, estimated states and simulated states, if
the simulator is active, shall be saved. There shall be plotting functionality
of saved data. Up to 10 plots, with the possibility to add and remove plots.
There shall also be a option to delete saved data to reset the graphs.

• Relevant information shall be logged to file.

20

6 System overview

Figure 6.1: System overview

An illustration of the system topology in normal running conditions can be seen
in 6.1. The whole lines represent control and data flow. The dotted line between
Camera.js and mjpg-streamer represents instantiation. The green boxes are the
client and the server software. These make up the content of the zip file delivered
with the thesis.

The blue boxes are libraries used:

jQuery libs: jQuery is a large JavaScript library. It was used for a wide range
of activities in the client. Examples include the ScrollPane, event handlers
and identification of HTML elements.

canvas.js is used for plotting.

21

gamepad.js is a library for taking game controller and joystick inputs. This was
used to control the ROV with an XBOX one controller

socket.io.js is the client side script for the socket.io library. This is automatically
generated when using the express.io framework.

SerialHandler.js was made by OpenROV. Handles communication to the Ar-
duino over a serial port. Messages are written to, and read, from a buffer.

StatusReader.js was also made by OpenROV. Used to read and interpret buffer
content.

Sensor and thruster drivers written by OpenROV utilizing Arduino libraries.
The software on the Arduino was not modified during the thesis work. The
code can be found at [12].

Control.js contains thrust allocation and thrust commanding functionality, a stop
method for stopping all thrusters, functionality to set lights and laser and place-
holder functions for DP and autopilots. The Navigation.js file contains place-
holders for dynamic filters. Other navigational methods, for example based on
camera or laser, can be put here when developed. The arrow between Control.js
and Navigation.js is a reference placeholder to be used in the feedback loop when
implementing autopilot functionality.

Mjpg streamer is a command line application that is being used to stream video
from the webcam to the client. It broadcasts the stream over http on a separate
port. The webcam is connected to the BeagleBone with a regular USB cable.

The communication between the BeagleBone and Arduino is done through a serial
port.

The communication between index.html and app.js is facilitated by the socket.io
library through the WebSockets protocol.

The client.js and dev-mode.js are the scripts that governs the user interface and
the developer interface, respectively.

22

7 User Interface

The user interface is displayed by entering the web server IP and port in a web
browser URL bar in the following format: ip:portnr. All the major browsers are
supported.

7.1 Operator interface

Figure 7.1: Operator interface

The operator interface shown in figure 7.1, with the top of the developer interface
showing at the bottom, contains the functionality specified in the product spec-
ification with the default settings. The six images to the top right are used for
controlling the ROV with touch input. Any touchscreen device can be used such as
tablets, smartphones and touch monitors. The default option for the input mode
is either keyboard or touchscreen depending on the platform used. If both are
available simultaneously, then both can be used. If one were to input conflicting

23

Table 7.1: Keyboard input

Key Command (motion) Command (manual)

W Positive surge Vertical thruster up

Q Positive heave Port thruster forward

D Positive yaw Starboard thruster backward

S Negative surge Vertical thruster down

E Negative heave Starboard thruster forward

A Negative yaw Port thruster backward

Table 7.2: Joystick input

Key Command Command Value

(motion) (manual)

Right stick Y Surge Starboard thruster [-1, 1]

Left stick Y Heave Port thruster [-1, 1]

Right stick X Yaw - [-1, 1]

Left bottom shoulder (LT) - Vertical thruster down [0, 1]

Right bottom shoulder (RT) - Vertical thruster up [0, 1]

inputs on a keyboard and a touchscreen simultaneously, the most recent command
would overwrite the previous command.

Table 7.1 shows keyboard input keys and corresponding thrust requests. Table 7.2
described joystick input. An XBOX One controller illustrated in figure 7.2 was
used for testing, but any similar game controller such as Playstation or Nintendo
controller with PC drivers should work.

24

Figure 7.2: XBOX one controller

25

Figure 7.3: User interface in manual control mode

When switching to manual control mode the pictures are replaced. Figure 7.3
illustrates this. The auto pilots on depth and heading are disabled when manual
control is chosen.

The DP control mode, heading auto control, depth auto control and the oculus
rift input mode are placeholders. The framework around these inputs have been
made, such that when DP mode, auto heading or auto depth is requested, a signal
will be sent to the control module. The control module contains empty functions
to be used for this. When DP mode is chosen auto depth and auto heading are
disabled in the client. Control input from keyboard, touchscreen or joystick are
rejected when DP or Oculus is chosen as input. The valid input range of the lights
and laser form is [0, 255]. Valid input for the gain is [0, 1]. Invalid requests will
be rejected in the web server by the Control.js module.

Event handlers were implemented such that any swapping between control mode,
input mode or run mode triggers a signal to the server ordering the ROV to stop.
The stop signal will also be triggered if focus on the window is lost by listening for
the ”onblur” event. This happens if the window is minimized or if other windows
pop up and take focus.

The ”Request control” button is for the remote control and transfer of control
functionality. The ”toggle dev-mode” button is used to show or hide the developer

26

interface.

7.2 Developer interface

Figure 7.4: Developer interface

Figure 7.4 shows the developer interface. The left side is used for adding, removing
or resetting plots. The following measurements, commands, estimated states and
simulated states can be plotted, as table 7.3 illustrates.

Figure 7.5 and 7.6 illustrates the plotting functionality. All the plots are from the
same run. Note that the port thruster signal has opposite effect as the two others,
as the thruster direction is reversed as explained in chapter 3.4.

27

Table 7.3: Data saved for plotting

Measurement Command Estimated state Simulated state

Depth [m] Surge Estimated roll Simulated x

Roll [deg] Heave Estimated pitch Simulated y

Pitch [deg] Yaw Estimated heading Simulated z

Heading [deg] Starboard thruster Estimated depth Simulated ψ

Voltage useage [V] Port thruster Simulated u

Current usage [A] Vertical thruster Simulated w

Simulated r

Figure 7.5: Plot of surge, yaw and heave

28

Figure 7.6: Plot of starboard, port and vertical thruster

29

Figure 7.7: Zoomed version of surge, yaw and heave

The CanvasJS library was used for the plotting functionality. It has zooming and
panning functionality for the x axis while the y axis is automatically scaled to fit.
Figure 7.7 shows a zoomed in version of figure 7.5 The two boxes in the top right
corner is used to toggle between panning and zooming, and to zoom out. When
hovering the cursor over a data point, a small window appears displaying the x
and y value of the data point.

Up to a maximum of 10 plots can be displayed simulataniously. The ”remove
plots” button clears the plots from the screen, but the data is still stored. The
”reset graphs” will delete all data using for plotting, but not remove the plot
windows from the interface.

The right side of the developer interface is used for logging. This functionality is

30

for displaying information that is not feasible to plot. A dropdown menu is used
to select what type of information to be displayed. Another dropdown is used to
deselect displayed information. The currently chosen information types are shown
below the dropdowns in a list. In real time, info is displayed on a ScrollPane with
a time stamp. In contrast to the plotting functionality, the logger does not store
the information, and cannot display data retroactively.

List of available choices for the logger:

• Gain change

• Thrust command (client)

• Thrust command (to motors)

• Transfer of control

• Autopilot depth

• Autopilot heading

• Stop

31

8 Signal flow and processing

8.1 Data flow

Figure 8.1: Signals

Figure 8.1 shows the main signal flow in the system. Parenthesis indicates function
call. All data exchanged between server and client is done by emitting events.
These emits are listed in figure 8.1 between app.js and index.html. Listing 5
shows the code that emits a thrust command from the client to the server. Listing
6 shows a part of the function in the server that handles the incoming command
event.

32

Listing 5: Thrust command from client

var command = {
type : ” thrust−command” ,
input : ” d e f a u l t ” ,
controlmode : controlMode ,
va l : value ,
keypres s : pressType ,
d i r : d i r e c t i o n
} ;

i o . emit (”command” , command) ;

Listing 6: Thrust command recieved in server

app . i o . route (”command” , func t i on (req){
request IP = req . handshake . address . address ;
i f (i s I n C o n t ro l (request IP)){

switch (req . data . type){
case ” thrust−command” :

c o n t r o l . processCommand (req . data) ;
break ;

case ” stop ” :
c o n t r o l . s top () ;
break ;

. . . .
}

}
}) ;

The command event does not only contain thrust commands. The following list
contains the types of objects emitted with the command event.

33

• thrust-command
• stop
• runmode-normal
• runmode-simulation
• set-gain
• set-lights
• set-laser
• auto-heading
• auto-depth
• auto-heading-off
• auto-depth-off
• dp

Figure 8.1 shows two function calls from app.js to Control.js: processCommand(cmd)
and stop(). processCommand(cmd) is the function that processes thrust com-
mands. The three dots in the figure represents a set of functions that handles
the rest of the different command event types. For example, if the command
object has type set-gain, then the function control.setGain(value) is called. The
write(command) function from Control.js orders SerialHandler.js to write the ar-
gument to the buffer and send it over the serial port. The red text is what is
being sent and read from the buffer. The data object sent from SerialHandler.js
to Navigation.js contains all the measurements. Table 8.1 lists the measurements
found in the data object.

Table 8.1: Measurements

Variable Measurement

data.deap Depth [m]

data.roll Roll [deg]

data.pitc Pitch [deg]

data.hdgd Heading [deg]

data.vout Voltage [V]

data.iout Current [A]

The server contains an EventEmitter object that is used to send information back
to app.js from different modules of the web server. This is represented by the
bolded texts in figure 8.1. The emitter emits a ”toClient” event. The object
passed in the event contains a type and a content property. The names of the

34

bolded texts are the types that are being sent. For example, measurements are
sent from the Navigation.js module to app.js by the following line of code:

Listing 7: measurement emit

s ta tusEmit te r . emit (” t oC l i en t ” ,
{

type : ” measurement ” ,
content : data
}) ;

app.js listens to the ”toClient” event. When triggered, the object emitted is passed
on to the client with the ”msg” event. The content of the object is then used to
display measurements, plotting and logging. Measurements, thrust commands,
estimated states and simulated states are saved in the client by the dev mode.js

script. This process starts automatically such that plot data recording starts on
the client connects and not just when the plot is requested. The data is saved as
objects with the data stored together with a Date object as private variables. The
Date object saves the current time upon creation, and it is used for the x axis to
the plots. Simulated states will not be saved during normal run mode and vice
verca for measurements.

The orange texts in figure 8.1 are placeholders. Dynamic filter needs to be imple-
mented to estimate states. This will require knowledge of the thrust commands
given (tau). The estimated states will be used in the Control.js module in DP
control and autopilots.

8.2 Deadband function

When the user presses a valid keyboard button, moves the joystick or presses a
touchscreen element, the input mode is first checked. If input from wrong source,
the signal is rejected. If a joystick is used the signal is sent through a deadband
test before being sent to the server. In pseudocode, the signal denoted x:

Listing 8: Deadband function

func t i on deadband (x)
{

i f (abs (x) > e p s i l o n){
send thrus t command ;

} e l s e {
stop ;

}

35

}

This is to prevent unintentional thrust commands when the stick is resting around
zero. It would also be difficult to completely stop without this functionality as the
stick sensors are quite sensitive. epsilon = 0.1 was chosen for testing.

8.3 Wild points

Wild points in the measurements were detected during testing. It was concluded
that the source of the majority of the wild points was most likely caused by errors
in the buffer used to read data from the serial port in the SerialHandler.js script.
There were several arguments for this conclusion. The wild points were frequently
close to 0.1, 10, 100 or 1000 times the approximated real value. Measurements
of pitch, roll and heading were at times outside the range of what an IMU will
output. It was also observed at times that the measurement value for heading
would be ”pitc”, which is the variable name for the pitch measurement.

A filter was implemented in the dev-mode script to reject wild points. It checks if
the measurement is a number within a defined interval. For roll, pitch and heading
this was [0, 360], current [0.01, 4], voltage [10, 13] and depth [-10, 200]. Figure
8.2 illustrates wild points after filter implementation. It is left as further work to
improve on this.

36

Figure 8.2: Wild points

8.4 Serial port API

Documentation of the serial port API made by OpenROV is partially documented
in [13]. The relevant functions used are:

• ”go(motor1, motor2, motor3, smoothing);”

• ”ligt(lightIntensity);”

• ”claser(laserIntensity);”

The first, second and third motor is the port, vertical and starboard thruster,
respectively. The smoothing argument is whether or not to activate a smoothing
filter on thrust commands in the motor drivers. The input range for the motor

37

arguments are [1000, 2000], where 1000 is full speed backward and 2000 is full speed
forward. The ligt and claser functions sets the lights and lasers. The input range
on the lights and laser is [0, 255]. In the OpenROV documentation, the motor
arguments are denoted with type:milliseconds. This is because PWM signals are
used for the motor controllers. Appendix A.8 further elaborates on the serial port
API.

38

9 Thrust Allocation and Control

Thrust commands are passed to the Control.js module with the command object
of type ”thrust-command”. The properties of the object and the values they can
have are as follows:

var command =

type: ”thrust-command”

input: ”default”, ”joystick”

controlmode: ”motion”, ”manual”

value: {−1, 0, 1} or [−1, 1] or [0, 1]

dir: ”surge”, ”heave”, ”yaw”

thruster: ”port”, ”starboard”, ”vertical”

The command object will contain either the ”dir” property when motion control
is used, or the ”thruster” property when manual control is used. The value range
depends on input mode. {−1, 0, 1} for default and either [-1, 1] or [0, 1] for joystick
as shown in table 7.2).

The Control.js module saves the values for the desired thruster speed. When a
new thrust command is received, the desired thruster speed is updated and sent to
the motors. In manual control mode, the incoming commanded value is multiplied
by an adjustable scalar gain k = [0, 1] and scaled from [-1, 1] to [1000, 2000]
in accordance with the range mentioned in chapter 8.4. In motion control, the
commanded value is multiplied by k, then a thrust allocation is performed before
the value is scaled as in manual control mode.

9.1 Control modes

Three control mode choices are available in the user interface:

• Manual control

• Motion control

• DP

In the manual control mode, the user input is mapped straight to the individual
thruster. Motion control is used to control the vessel in the surge, yaw and heave
degrees of freedom. The DP control mode option was included as a placeholder
for future implementation.

39

9.2 Control functions

• Autopilot heading

• Autopilot depth

These control functions were included in the client as placeholders. Functionality
to process the input in the client and pass the request to the control module was
implemented.

9.3 Thrust allocation

The Control.js module saves the direction and value of an incoming thrust com-
mand when in motion control mode. This is saved in the thrust vector τmotion. u
denotes the desired thruster force.

τmotion =
[
X Z M

]>
(9.1)

u =
[
uport uvertical ustarboard

]>
(9.2)

X is the surge value, Z the heave value and M the yaw value. The thrust allocation
was developed by simply looking at the geometry of the thrusters and the different
forces and moments that they produce. The scalar gain was applied and saturation
elements were applied to limit the signal to [-1, 1].

u =
[
sat(k(X +M)) kZ sat(k(X −M))

]>
(9.3)

The port thruster propeller is mounted the opposite way of the two others as
mentioned in (ref intro neptunus). The port signal is therefore inversed before the
thrust command is sent to the motor drivers. Theory on thrust allocation can be
found in [10].

40

10 Camera stream

Two tools for camera streaming were considered; ”mjpg-streamer” and ”FFmpeg”.

FFmpeg is a large multi purpose project for processing video and audio. It has
tools for recording, converting and streaming among other functionalities
[14].

mjpg-streamer is the tool used by OpenROV. It is a lightweight command line
application that is designed to stream video with decent quality and minimal
resource usage. From the website: ”It was written for embedded devices with
very limited resources in terms of RAM and CPU.” [15] [16].

mjpg-streamer was chosen for easy setup and use, as well as the performance. The
documentation of mjpg-streamer is sparse compared to FFmpeg, but it is quite
simple to install and use. The mjpg-streamer fills precisely the purpose of the
application. If post processing of the video was required, FFmpeg would be a
more suited option. The procedure for setting up mjpg-streamer is explained in
appendix A.7. It is run with the command in listing 9.

Listing 9: Starting the mjpg-streamer

spawn (mjpg−streamer −o ”outputArguments”
− i ” inputArguments ”) ;

spawn() is a method of the ChildProcess class, which is a part of the Node API.
It executes the function argument as a command line instruction. This is done in
a separate process that outputs info about the state of the process through data
streams. This allows for error messages to be parsed back to Node if the process
fails.

Available input arguments for the mjpg-streamer are; input device, resolution,
framerate and format. Output arguments are; www-folder-path, port, password,
commands. A list of supported resolutions can be found in [17]. 600x800 was used
for the tests and in the pictures from chapter 7.

The stream is accessed in client.js and displayed by the following function;

Listing 10: Video streaming

func t i on s ta r tV ideo ()
{

i o . on (” s t a r t e d ” , f unc t i on (){
var videoElement = document . getElementById (” sourcev id ”) ;
var adre s s = ” http : / / 1 9 2 . 1 6 8 . 0 . 1 2 : 3 0 3 1 / ? ac t i on=stream ” ;

41

videoElement . s e t A t t r i b u t e (” s r c ” , adre s s) ;

var v ideoConta iner = document . getElementById (” conta ine r ”) ;
v ideoConta iner . s t y l e . MozTransform = ” r o t a t e (270 deg) ” ;
v ideoConta iner . s t y l e . WebkitTransform =”r o t a t e (270 deg) ” ;
v ideoConta iner . s t y l e . oTransform = ” r o t a t e (270 deg) ” ;
v ideoConta iner . s t y l e . t rans form = ” r o t a t e (270 deg) ” ;
v ideoConta iner . s t y l e . msTransform = ” r o t a t e (270 deg) ” ;

}) ;
}

The started event is emitted by the server after it has loaded the video. 192.168.0.12
is the IP of the web server and 3031 is the port argument specified in the initializa-
tion of mjpg-streamer. This is a different port than the one used for communication
between app.js and the client. As mentioned in chapter 3.4, the camera is mounted
such that the image needs to be rotated in the client. Several function calls for
the rotate(deg) function is necessary because of differences in the browsers.

42

11 Remote control

The system specifications states that the ROV shall be controllable locally with
WiFi and globally using the internet. Only one client shall be in control at any
given time, and the ROV shall have functionality for transfer of control between
clients.

11.1 Remote control

A WiFi connection was established by connecting the ROV umbilical to a router.
Accessing the BeagleBone and starting the web server was done through ssh. The
procedure of connecting to the BeagleBone is further elaborated in appendix A.2.

The common method of assigning an IP address to a computer is through dynamic
address assignment. This is typically done with Dynamic Host Configuration Pro-
tocol (DHCP). With this method, a router will handle allocation of IP addresses.
An IP address also can be assigned manually as a static IP address. A connection
to the BeagleBone can be achieved with both dynamic and static IP assignment.
If a dedicated router is used, the method of static IP assignement is convenient for
the given problem. If one does not have multiple connections to the BeagleBone
available, the use of static IP address will make it easier to re-establish a cable
connection if the wireless connection is unsuccessful.

The ROV was successfully run with static IP addressing over local WiFi connec-
tion. Attempts were made to control the ROV over the internet with static and
dynamic IP, however unsuccessfully.

11.2 Industry standards for transfer of control

The major classification societies have difference in their practice, but they all
require only one operator to be in control of a vessel at any time. DNV GL has
the following standards for transfer of control [18];

• The main operator station shall be able to take control without acknowledge,
but an audible warning must precede the transfer of control.

• Transfer of control from other stations must be by a request and acknowl-
edged before initiated. This is unless the operating stations are within visual
and audio contact range.

43

• Set-points and parameters for autopilots, DP and other control functions
must be synchronized between work stations before transfer of control. This
may require manual adjustment of levers and joysticks. This is commonly
referred to as pick-up procedure

11.3 Implementation of transfer of control

A default master client is chosen by specifying the IP address in app.js. Any
other client can connect to the ROV, observe it and display plots, but only the
master can send commands. A client can request control by clicking the ”request
control” button in the user interface. A ”request-control” event is then emitted to
the server. If the requesting client is not already the master the ”request-control”
event is sent from the server to the master client. This triggers a popup window in
the master client informing of the IP of the requesting client and a prompt to give
control. If the prompt is accepted, a signal is sent to the server which transfers
control. The new master is then alerted that it’s request was accepted. The ROV
is also stopped when transfer of control is performed. When DP and autopilot
functionality is implemented, pick-up procedures should be implemented.

If the master client disconnects, the ROV will stop in accordance with the safety
mode in product specifications. This is achieved by the code listing 11.

Listing 11: ROV stop when disconnected

app . i o . on (” connect ion ” , func t i on (socket){
var ip = socket . handshake . address . address ;
socket . on (” d i s connec t ” , f unc t i on (){

i f (ip == masterIP){
conso l e . l og (” Master C l i en t d i s connected with ip :

” + ip + ” stopping ”) ;
c o n t r o l . s top () ;

}
}) ;

}) ;

44

12 Simulator

The software system in simulator mode is illustrated in figure 12.1. It simulates the
ROV in four degrees of freedom; position and heading. The thrust commands from
the client is routed to the simulator module instead of the motors. The simulator
calculates the movement of the vessel in the time domain. This is calculated from
a discretized version of the system model. The simulated states are outputted back
to the user interface instead of measurements from the sensors when the simulator
is active.

Figure 12.1: System overview with simulator active

The kinetics from [10] is used, adjusted to four degrees of freedom. Pitch and
roll was modeled to be constant equal to zero. Assuming negligible coriolis and
centripetal force due to low speeds, the equations of motion:

η̇ = J(ψ)ν (12.1)

Mν̇ +D(ν)ν + g = τ (12.2)

45

η =
[
x y z ψ

]>
(12.3)

ν =
[
u v w r

]>
(12.4)

J =

[
R(ψ) 0

0 1

]
(12.5)

Where η denotes the NED frame position and yaw angle. ν denotes the BODY
frame velocities. R(ψ) is the rotation matrix about the down axis. As the ROV
has no lateral or azimuth thrusters it does not generate any sway motion and
τv ≡ 0. The force vector produced by the motors in 4-DOF is then:

τ =

fkX

0

fkZ

2fklM

 (12.6)

τinput =
[
X Z M

]>
and k as defined in chapter 9. f is the force produced by the

thrusters, f = 12N at maximum capacity according to [19]. l is the yaw moment
arm measured to be 0.045m.

Coefficient matrices according to [19] reduced to 4-DOF

M = MA +MRB (12.7)

MA =

2.055 0 0 0

0 14.6033 0 −0.8926

0 0 2.3295 0

0 −0.8926 0 0.1498

 (12.8)

MRB =

3.4600 0 0 0

0 3.4600 0 0

0 0 3.4600 0

0 0 0 0.399

 (12.9)

46

D = Dl +Dq(νr) (12.10)

Dl =

2.2907 0 0 0

0 4.9804 0 0

0 0 15.1897 0

0 0 0 0.2605

 (12.11)

Dq(νr) =

4.008|ur| 0 0 0

0 35.216|vr| 0 0

0 0 10.304|wr| 0

0 0 0 0.320|r|

 (12.12)

g =

0

0

0.0234

0

0

0

(12.13)

Where Dq(νr) is the quadratic damping coefficient matrix and Dl is the linear
damping coefficient matrix.

Functionality for using the simulator with manual control mode was not imple-
mented. This can be achieved by implementing functionality to perform the map-
ping described in chapter 9.3 in reverse.

A numerical solution to the dynamic system was achieved by the use of the Euler
method with step size dt = 0.01.

The MathJS JavaScript math library was used to perform matrix operations in
the simulator module. Comments to the MathJS library can be found in appendix
A.10.

A demonstration of the simulator was performed. The resulting plots of the sim-
ulated values is shown in figure 12.2, 12.3, 12.4 and 12.5.

47

Figure 12.2: Simulated x, u and surge

Figure 12.3: Simulated y

48

Figure 12.4: Simulated depth, w and Heave

49

Figure 12.5: Simulated heading, r and Yaw

50

13 Testing

As specified in the scope of work, testing of the developed software was planned
and executed.

The tests were performed at Marine Cybernetics lab at Tyholt. Batteries and 12V
dc power supply was used on all tests. Power supply max current output was set
to 3.13A.

Preface and preliminary test: There is an available option to turn on smooth-
ing of thrust signal in motor drivers. Prior to the test, a land test was per-
formed without smoothing. The software crashed repeatedly when performing
rapid changes in thrust direction. The was a known issue, described in chapter
3.4.

13.1 Internal acceptance test, 21st of May 2015

Test setup: Ethernet cable was used to create a direct link between topside pc
and ROV. The smoothing parameter of thrust signal was used on all tests.

Test scope:

• Control functionality

• User interface

• Voltage and current

• Lights

51

Test description Result Comment

Current and voltage test.
Full speed forward and up.
On land

1.41A, 12V Voltage change was smooth

Current and voltage test.
Full speed backward and
down. On land

1.37A, 12V Voltage change was smooth

Current and voltage test.
Full speed forward and up.
In water

3.13A, 10.9V Voltage change was smooth

Current and voltage test.
Full speed backward and
down. In water

3.13A, 10.9V Voltage change was smooth

Forward OK

Move backward OK

Move up OK

Move down OK

Turn starboard Not OK Turned port

Turn port Not OK Turned starboard

Manual control mode - Not implemented

Touch screen input - Not implemented

Camera streaming OK* Quality and consistency fine. Im-
age needs to be rotated -90 de-
grees

Turn on lights OK* Dimming functionality wanted.
A random delay

Test discussion and subsequent corrections

An error in the thrust allocation was found and corrected as a result. Upon further
inquiry into the delay in lighting, it was discovered that the command to turn on or
off lights only was executed when the next thrust command was sent. Functionality
was added to re-send the previous thrust command after a light command, such
that lighting happened instantly.

52

13.2 Factory acceptance test, 28th of May 2015

Test setup: Ethernet cable to router. The router broadcasted the signal locally
and a laptop was used to access the ROV through WiFi.

Test scope:

• Motion control mode

• Manual control mode

• Touchscreen as input using Ipad

• Joystick as input using XBOX one controller

• Remote control over WiFi.

• Lights

• Camera

Test description Result Comment

Starboard thruster forward OK

Starboard thruster backward OK

Port thruster forward Not OK Vertical thruster up

Port thruster backward Not OK Vertical thruster down

Vertical thruster up Not OK Port thruster forward

Vertical thruster down Not OK Port thruster backward

Move forward Not OK Turned starboard

Move backward Not OK Turned port

Turn starboard Not OK Moved backward

Turn port Not OK Moved forward

Move up OK

Move down OK

Lights OK

Camera OK

Test discussion and subsequent corrections

The first six tests were performed in manual control mode, the following six in
motion control mode. The thrust tests were performed with keyboard and joystick
with identical results. Ipad was tested, but no thrust input worked here. It was

53

discovered that when pressing and holding on an image on an Ipad, the browser
will pop up a prompt to save the image. This event blocked the intended use of
the thrust command images. Listing 12 shows how this problem was handled in
the client.

Listing 12: Deny image save

document . body . s t y l e . webkitTouchCallout=”none ” ;

As the tests were conducted it was suspected that there was a sign error in the
control module causing a reversal in the port thruster. It was discovered that the
thrusters responded differently to the function used to control the ROV. go(1700,
1700, 1700, 1) would make the starboard and vertical thruster produce forward
thrust, while the port thruster produced negative thrust. Upon further inquiry,
it was revealed that this was due to a wiring error in the hardware. Software
corrections were implemented to compensate for this.

The results of test 3 through 6 was found to be a syntax error and corrected.

13.3 Customer acceptance test, 4th of June 2015

Test setup: Same as in the factory acceptance test.

Test scope:

• Manual control.

• Motion control.

• Touchscreen as input method using Ipad and Samsung S3 smart phone.

• Transfer of control.

• Developer interface.

• Simulator.

54

Test description Result Comment

Manual control joystick Not OK The ROV occasionally does
not stop in the vertical di-
rection

Motion control joystick OK

Manual and motion control
keyboard

OK

Manual and motion control
Ipad

OK* The rotation of the camera
image not supported in the
Safari browser. Change im-
age text for manual

Manual and motion control
Samsung S3

OK

Transfer of control OK

ROV stop when master dis-
connects

OK

Plotting OK* Detection of frequent wild
points. Functionality to re-
set graphs wanted

Logger OK* Writing the log to file is
wanted

Simulator OK

Test discussion and subsequent corrections

The laser was suppose to be tested, but the hardware was not available. Simulator
run plots were illustrated in chapter 12. Support for camera rotation in the Safari
browser was added, shown in chapter 10. A wild point filter was added to reduce
the amount of wild points in the measurement plots. Implementation of filter is
found in chapter 8.3. Functionality to reset the graphs were added, explained in
chapter 7.2. The pictures used for manual control mode with touch input was
changed. ”Thruster 1”, ”Thruster 2” and ”Thruster 3” was changed to ”port
thruster”, ”vertical thruster” and ”starboard thruster”. The vertical thruster im-
age text was changed from ”forward” and ”backward” to ”up” and ”down” to
clarify their functionality. Logging to file was left as further work.

The error in manual control mode with joystick input was found to be caused by
an error in the gamepad.js library. The library emits two kinds of events when
buttons are pushed; an ”axis-changed” event when a stick is moved and a ”button

55

up/down” event when a button is pressed or released. The left and right bottom
shoulder buttons are used for controlling the vertical movement of the ROV in
manual control mode. The bottom shoulder buttons emit both the axis-changed
event and the button up/down event. The error occurs because the order the
two events are emitted is non-deterministic. The ROV did occasionally not stop
because it first received the event that the button was released, then it received
the event that it was halfway released. Figure 13.1 shows the log from such an
event. When the button is pushed, the axis changed is triggered before the button
down event. When the button is released, the button up is triggered before axis
changed. Solutions to this error is left as further work.

Figure 13.1: Console log of gamepad.js bug

56

14 Discussion

A table element was used for the layout in the Operator interface. According to
[20], it is bad practice to do this. However, it was stated in the scope of work that
the focus should be on the developer interface and the development of functionality,
rather than visual appearance. It is left as further work to improve the client form
and layout.

The remote control functionality was only demonstrated over local WiFi connec-
tion. In theory, it should be minimal modifications to expand to global connection
over internet. The main point of the scope of work was to facilitate the design
and implementation such that remote control over internet is possible. This was
demonstrated with local connection. It is left as further work to troubleshoot this.

The testing revealed a bug in gamepad library used for joystick control as described
in chapter 13. Solving this problem with logics can be difficult due to the non-
deterministic nature of the problem. The state of the buttons can be polled and
checked when an axis-changed event is received, but since the bug is not consistent,
this can create problems with false positives. A simpler solutions is to avoid the
problems by using different components of the joystick as input. As the two sticks
on the joystick is already used for the starboard and port thrusters, there is no
other available inputs with continous signal range, so buttons such as A and B
have to be used. The manual control mode is not the main control mode, and the
use of binary inputs for one thruster here does not cause a great deterioration in
performance. It is left as further work to implement a solution to this problem.

Implementing a full DP mode on the ROV may not be feasible as the ROV does not
have any absolute position measurements. The sub-functionality of constant depth
autopilot and constant heading autopilot is certainly feasible due to depth sen-
sor and magnetometer measurements. Currently the only way to obtain position
is by integrating IMU measurements, which introduces drift in state estimation.
Camera and laser based methods such as Simultaneous Localization and Mapping
(SLAM) can be considered. However, this technique is quite advanced, and it is
typically implemented on sophisticated systems with expensive sensors. Expansion
of the ROV sensor suite can also be considered, but the sonar technology used for
underwater positioning is typically expensive.

If full DP is not implemented, the DP button can be used for simply holding
heading and depth, or it can trivially be renamed or removed.

Since it shall be possible to control the ROV over the internet, it may be subjected
to malicious attacks. The remote control was implemented without particular
considerations on security. As the system is now, the risk and consequence of an

57

attack may not be large. This may be considered in the future.

The software solution developed as a whole, and Node in particular, were found to
be satisfactory choice for the system. There were no particular difficulties encoun-
tered with Node during the development. As the OpenROV used similar solutions,
some parts of the code is similar. This is mostly restricted to the camera mod-
ule. The coding style in the OpenROV is different than the one used. OpenROV
have adhered to the loose and dynamic nature of the JavaScript language, while
a stricter and more structured style as often seen in C++ and Java code, have
been used for this work. Functions have been small and modular. OpenROV have
used bigger function with a wider scope. OpenROV also employed widespread use
of event emitters within the web server. Regular function calls have been used
instead of event emitters when possible.

58

15 Conclusion

Design of hardware and software solutions for the ROV Neptunus was performed.
This includes review of frameworks and software tools. A Node.js web server
was implemented on a BeagleBone computer running Linux Ubuntu. The Node.js
specific framework Express.io was used. A user interface consisting of an operator
interface and a developer interface was implemented in JavaScript. The operator
interface contains methods for controlling the ROV with the use of keyboard,
touchscreen and joystick. The operator interface contains functionality vital in
development such as logging and plotting.

A control module was implemented to control the ROV with either motion control
or manual control. This included a thrust allocation procedure for the motion
control mode. A camera module for streaming of the video was implemented. The
mjpg-streamer application was used to stream the video from the camera to the
client. A simulator module was implemented to facilitate parallel development.
Remote monitoring and control over WiFi was implemented. This included meth-
ods for taking and giving control, as only one operator can be in control at any
time. All the implemented functionality was tested.

59

16 Further work

• DP functionality with the sub-functionality of automatic hold on depth and
heading. As stated in the discussion section, position control in the xy-
plane may not be feasible. This should be considered before attempting to
implement full DP.

• Implementation of a dynamic filter such as Kalman Filter.

• Automatic logging to file functionality.

• Move the wild point filter to the navigation module to remove errors be-
fore measurements enter the dynamic filter. The wild point filter should be
improved in order to remove more of the wild points. This can be done
by checking every measurement against previous measurement values. This
problem also motivates improvement of the module that reads the buffer
from the serial connection. This can be done in conjunction with the task of
writing new drivers for the motors and sensors.

• Troubleshoot the problem with remote control over the internet.

• Turning lights on and off with joystick control.

• Improve client layout and appearance. Review tools for layout of web site
such as ReactJS or AngularJS. Change the touch input to more elegant
solutions such as swiping instead of clicking on images.

• Improve simulator module to six degrees of freedom. Incorporate thruster
and umbilical effects. This can include drag force from umbilical, thruster
losses and thruster rise time. Implement changes to facilitate stand-alone
simulator use. The current software contains references to OS native code
in the serialport library used in SerialHandle.js crashing the application if
run on any OS that is not ARM-Linux. This can be solved by specifying
command line arguments when starting the application. This is done in the
same manner as argc/argv in C programs. It can be considered to include
the option of manual thrust mode in simulation mode.

• Integration with Oculus rift. Design and implementation of Oculus Rift
control for ROV was done in [21]. Analysis of joystick control for ROVs with
a constant-jerk reference model and filter-based reference models was done
in [22]. The output from the oculus rift system can be interpreted similarly
to a 3-DOF joystick, and the control theory from [22] can be used.

60

References

[1] Jostein Follestad, Fredrik Sandved, and Eirik Valle. Low cost rov design,
based on testing, simulations and analysis of openrov, 2014.

[2] May 2015 web server survey. http://news.netcraft.com/archives/2015/

05/19/may-2015-web-server-survey.html.

[3] Coffeescript on node.js. https://books.google.no/books?id=Oda-

MgEACAAJ&dq=nodejs&hl=en&sa=X&redir_esc=y.

[4] http://www.toptal.com/nodejs/why-the-hell-would-i-use-node-js,
year not stated, but not before 2013.

[5] http://blog.caustik.com/2012/08/19/node-js-w1m-concurrent-

connections/, 2012.

[6] http://blog.shinetech.com/2013/10/22/performance-comparison-

between-node-js-and-java-ee, 2013.

[7] http://expressjs.com/starter/hello-world.html.

[8] http://www.rovmarine.it/en/home-eng/14-not-categorized/16-the-

history-of-rovs.

[9] http://www.marinetech.org/regional-contest.

[10] Thor I. Fossen. Handbook of marine craft hydrodynamics and motion control,
2011.

[11] http://www.ros.org/is-ros-for-me/.

[12] https://github.com/OpenROV.

[13] https://github.com/OpenROV/openrov-software/blob/master/docs/

OpenRovSoftwareArchitectureOverview.pdf.

[14] https://www.ffmpeg.org/.

[15] https://code.google.com/p/mjpg-streamer/.

[16] https://www.raspberrypi.org/forums/viewtopic.php?f=43&t=45178,
2012.

[17] https://wolfpaulus.com/jounal/embedded/raspberrypi_webcam/.

[18] Dnv gl rules and classifications of ships / high speed, light craft and naval
surface craft, 2011.

61

http://news.netcraft.com/archives/2015/05/19/may-2015-web-server-survey.html
http://news.netcraft.com/archives/2015/05/19/may-2015-web-server-survey.html
https://books.google.no/books?id=Oda-MgEACAAJ&dq=nodejs&hl=en&sa=X&redir_esc=y
https://books.google.no/books?id=Oda-MgEACAAJ&dq=nodejs&hl=en&sa=X&redir_esc=y
http://www.toptal.com/nodejs/why-the-hell-would-i-use-node-js
http://blog.caustik.com/2012/08/19/node-js-w1m-concurrent-connections/
http://blog.caustik.com/2012/08/19/node-js-w1m-concurrent-connections/
http://blog.shinetech.com/2013/10/22/performance-comparison- between-node-js-and-java-ee
http://blog.shinetech.com/2013/10/22/performance-comparison- between-node-js-and-java-ee
http://expressjs.com/starter/hello-world.html
http://www.rovmarine.it/en/home-eng/14-not-categorized/16-the-history-of-rovs
http://www.rovmarine.it/en/home-eng/14-not-categorized/16-the-history-of-rovs
http://www.marinetech.org/regional-contest
http://www.ros.org/is-ros-for-me/
https://github.com/OpenROV
https://github.com/OpenROV/openrov-software/blob/master/docs/OpenRovSoftwareArchitectureOverview.pdf
https://github.com/OpenROV/openrov-software/blob/master/docs/OpenRovSoftwareArchitectureOverview.pdf
https://www.ffmpeg.org/
https://code.google.com/p/mjpg-streamer/
https://www.raspberrypi.org/forums/viewtopic.php?f=43&t=45178
https://wolfpaulus.com/jounal/embedded/raspberrypi_webcam/

[19] Fredrik Sandved. Remote control and path-following for c/s enterprise 1 and
rov neptunus(msc), 2015.

[20] https://css-tricks.com/complete-guide-table-element/, 2013.

[21] Eirik Valle. Marine telepresence system (msc), 2015.

[22] Fredrik Dukan. Rov motion control systems (phd), 2014.

[23] http://derekmolloy.ie/beaglebone/getting-started-usb-network-

adapter-on-the-beaglebone/, 2013.

[24] http://stackoverflow.com/questions/19481415/share-the-internet-

access-from-laptop-to-beaglebone-black-and-then-access-it-thr,
2014.

[25] http://www.tomshardware.co.uk/faq/id-1925829/change-default-

internet-connection-sharing-address-range.html, 2013.

62

https://css-tricks.com/complete-guide-table-element/
http://derekmolloy.ie/beaglebone/getting-started-usb-network-adapter-on-the-beaglebone/
http://derekmolloy.ie/beaglebone/getting-started-usb-network-adapter-on-the-beaglebone/
http://stackoverflow.com/questions/19481415/share-the-internet-access-from-laptop-to-beaglebone-black-and-then-access-it-thr
http://stackoverflow.com/questions/19481415/share-the-internet-access-from-laptop-to-beaglebone-black-and-then-access-it-thr
http://www.tomshardware.co.uk/faq/id-1925829/change-default-internet-connection-sharing-address-range.html
http://www.tomshardware.co.uk/faq/id-1925829/change-default-internet-connection-sharing-address-range.html

Appendices

A

A.1 Content of the zip

The .zip file delivered contains the software developed. This does does not include
Arduino code or the mjpg-streamer. The public, routes and bin folders in the zip
is not used in the project. They were generated automatically by Express.io.

A.2 Accessing the BeagleBone

PuTTY is a program that can be used to log on to the BagleBone with an ethernet
or USB connection. The ethernet connection on the BeagleBone has a default
static IP adress of ”192.168.254.1” and the USB IP is also static with an address
of ”192.168.7.2”. This is when the OpenROV OS image is used. When accessing
the BeagleBone through PuTTY, the username should be ”rov”.

A.3 Uploading code to the BeagleBone

Uploading code from a windows computer to the BeagleBone was done using the
open-source program WinSCP. WinSCP has a graphical user interface that sup-
ports drag-and-drop file transfer. It is fairly straightforward to use, but directory
permission on the BeagleBone restricts eligible destination directories. The rov
user does not have permission to write to most directories. Changing ownership of
folders is possible, but discouraged for users not seasoned in a Linux environment.
To view the permission of files within the working directory, the command ”ls -l”
can be used. This will display ownership of files as well as read, write and execute
permission. The ”/opt/scripts” directory is one of those which is owned by the
rov user.

A.4 Starting the web server

The web server was started by logging on to the BeagleBone with PuTTY, navi-
gation to the /opt/scripts/dev-master folder and executing the command: ”node
app.js”.

63

A.5 Achieving internet access on the BeagleBone

Internet access on the BeagleBone was achieved by sharing a laptops internet
connection through ethernet. Note that this is not for remote control purpose, as
outside entities cannot connect to the ROV as it is hidden behind the pc. The
purpose of this was mainly to download an npm package called serialport directly to
the BeagleBone. When this package is downloaded, native files are automatically
compiled and included. Consequently, if this is downloaded to a windows machine,
windows native files are included. Using a Linux laptop was also not an option, as
the BeagleBone required ARM-Linux files.

Internet access on the BegleBone can be achieved through an ethernet or USB
connection. Instructions for accessing the internet on the BeagleBone with a USB
connection can be found in [23]. A USB connection may be prefered over ethernet
according to [23], due to easier networking protocol. Unfortunately, there were
errors in the particular hardware used preventing the usage of USB. Instead, in-
ternet access through ethernet connection on the BeagleBone was achieved. The
following paragraph contains instructions on this procedure on a windows pc.

The procedure found in [24] was followed. However, when the internet was shared,
Windows changed the IP address of the local connection automatically. Windows
have reserved a collection of IP addresses specifically for that use. Modifications
in the Windows registry in accordance with [25] was made such that the assigned
IP address coincide with the same subnet as the BeagleBone. The IP address of
the BeagleBone could have been changed to accommodate the Windows one, but
it was preferred not to edit the networking settings of the BeagleBone. The reason
for this was that the ethernet connection was the only available connection method
at the time, and editing the networking settings in the BeagleBone meant risking
losing the only connection. When the remote control functionality was developed,
an addition connection to an HDMI screen had been acquired.

There were variables existing in the Linux path environment related to proxying.
These had to be removed from the environment in order for a functioning internet
connection. The npm system also had some proxy variables set that had to be
removed in order to use.

A.6 Hardware vulnerability

It was experienced that a BeagleBone board stopped working entirely. No con-
nection could be established through either USB or ethernet. After re-flashing the
OS image to the BeagleBone, it functioned correctly.

64

A.7 Video stream setup

Setting up the mjpg-streamer was relatively straightforward. It was downloaded
and linked to path. The video device, the input path and the output path that
mjpg-streamer must have appropriate permission levels for the application to use
them. This was done. Alternatively, the mjpg-streamer can be run as super user
with the sudo command.

A.8 Displaying data sent over serial connection

The data sent over the serial port between the Arduino and the BeagleBone can be
displayed in the console while operating the BeagleBone. The command for this
is: cat /dev/ttyO1. When driving the ROV with the OpenROV software, some
commands were observed that can also be found in the API [13]. The following was
observed: ”cmd:thro(25)”, ”cmd:yaw(-40)” and ”cmd:lift(25)”. These commands
appeared to be thruster commands as the corresponding thrusters were simultane-
ously activated. The parameters used for the function calls are inconsistent with
the range that is listed in the API. Attempts were made to reproduce the response
from these commands. Recreation of the signals over the serial port (not using
the OpenROV software) was successful, but there was no thruster response. The
”go()” function described in chapter 8.4 was simultaneously tested (with success)
to disregard hardware failure as a cause.

There were no observations of the ”go()” function in the console log when the cat
command was used. However, the object used for measurements was observed.
The output from the cat command was in this case consistent with the API in
[13].

There were observations of two signals on the port ”motor” and ”mtargs”, these
were suspected to be status updates on the motors, and not commands.

A.9 Troubleshooting unresponsive motor

The motors on the ROV are connected to electronic speed controllers. These have
physical switches that can easily be flicked by accident. This should be checked if
motors suddenly do not respond.

65

A.10 MathJS

Math.js or MathJS is a mathematics library. It has support for matrix operations
including transposing. Transposing a row vector, however, will return the row
vector and not a column vector. This is illustrated in the screenshot in figure A.1.
Upon use, an undeclared variable was use in a multiplication function. Instead of
throwing an error, it returned a matrix consisting of undefined elements.

Figure A.1: MathJS

66

	Introduction
	Background
	Thesis organization

	Web programming
	JavaScript
	CSS
	HTML
	Server and client
	WebSockets
	Node.js

	Remotely Operated Underwater Vehicle
	Reference frames
	Kinematics
	OpenROV
	Neptunus

	Choice of system solution
	Computer hardware solution
	ROV specific solution
	Software solution

	Product specifications
	System overview
	User Interface
	Operator interface
	Developer interface

	Signal flow and processing
	Data flow
	Deadband function
	Wild points
	Serial port API

	Thrust Allocation and Control
	Control modes
	Control functions
	Thrust allocation

	Camera stream
	Remote control
	Remote control
	Industry standards for transfer of control
	Implementation of transfer of control

	Simulator
	Testing
	Internal acceptance test, 21st of May 2015
	Factory acceptance test, 28th of May 2015
	Customer acceptance test, 4th of June 2015

	Discussion
	Conclusion
	Further work
	Appendices
	
	Content of the zip
	Accessing the BeagleBone
	Uploading code to the BeagleBone
	Starting the web server
	Achieving internet access on the BeagleBone
	Hardware vulnerability
	Video stream setup
	Displaying data sent over serial connection
	Troubleshooting unresponsive motor
	MathJS

