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Abstract

Fracture mechanics plays an important role in many different applications.
When modeling fractures, singularities occur around the fracture tips. An-
other aspect that makes the modeling of fractures difficult, is the complexity
of the fracture structures. In this master thesis, an adaptive isogeometric
analysis (IGA) solver using Locally Refined B-splines (LR B-splines) are im-
plemented. To guarantee good results, even for complex problems where
the analytical solution is unknown, a residual based error estimate is used.
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Sammendrag

Bruddmekanikk spiller en viktig rolle innen mange forskjellige anvendel-
ser. Når man modellerer sprekker oppstår singulariteter rundt tuppen av
sprekken. Et annet aspekt som gjør modellering av sprekker vanskelig er
kompleksiteten av sprekkformasjoner. I denne masteroppgaven er en adap-
tiv IGA løser som tar i bruk LR B-splines implementert. For å garantere gode
resultater, selv for komplekse problemer hvor analytisk løsning er ukjent,
brukes et residualbasert feilestimat.
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1 INTRODUCTION

1 INTRODUCTION

Fracture mechanics plays an important role in many different engineering ap-
plications. Examples of such applications can be thermal induced fractures in
structures [9] and how naturally fractured reservoirs influence the production of
oil [13].

Modeling fractures is a complicated process and there are a lot of aspects that
need to be taken in consideration. One of these aspects is the singularities that
occur arround the fracture tips. When solving Elasticity problems on elastic bodies
containing fractures, these singularities result in high concentrations of stress
centered around them. As a result, several evaluation points are needed at these
specific areas, and for finite element methods this is referred to as local refinement.
Unfortunately, for traditional isogeometric analysis (IGA) solvers, local refinement
is difficult to perform. Another aspect making the process difficult is knowing
where to refine. When performing local refinement in general, one needs an indi-
cation on how the error is distributed throughout the domain. The main purpose
of this is to identify where the error is greatest and to know where to perform
local refinement. When solving partial differential equations (PDEs), the error
is the difference between the analytical solution and its numerical estimate. For
most fracture applications, the fracture formation can be complex, which makes
it difficult to determine an expression for the analytical solution of the problem.
Without an expression for the analytical solution, we are not able to calculate the
exact error on the domain, and as a consequence, not able to predict where to
refine.

In this thesis we aim to address the two challenges presented above. By using
another set of basis functions in our IGA solver, we are able to perform local re-
finements. These basis functions are called Locally Refined B-splines. As for the
challenge concerning complex problems where the analytical solution is unknown,
we are going to use a residual based a posteriori error estimate as an indicator on
where to refine and also to conclude on the accuracy of our implementations.
Both Locally Refined B-splines and the error estimate used will be explained in
details in the following chapters.

As already mentioned, we are interested in fractures within elastic bodies. By
an elastic body, we refer to a solid corresponding to the domain on which we
are going to solve the PDEs. In reality, by simply changing some of the material
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parameters, an elastic body can be everything from a steel construction to a tiny
rubber detail. This represents in other words a very general approach to fracture
mechanics and rather than focusing on the material properties, the main focus
throughout the thesis will be on the IGA solver and how to overcome the mathe-
matical challenges caused by the singularities.

Since the IGA solver represents an important part of this thesis, a short intro-
duction to IGA will be given below. Afterwards, the outline of the thesis will be
described and in the end, in order to avoid any misunderstadings, some com-
ments on the notations used throughout the thesis will be given.

1.1 A SHORT INTRODUCTION TO ISOGEOMETRIC

ANALYSIS

IGA is, like finite element analysis (FEA), a finite element method used for solving
partial differential equations on specified geometries. The IGA method was first
introduced by Tom Huges et al. in 2005 [11]. Since then there has been extended
research on the topic and the method has been applied in several fields, such as
optimal shape theory [15], structural enginering [12], and biomechanics [14].

Except for the geometry and the basis functions used, IGA and FEA are in many
ways very similar to one another. However, unlike FEA, IGA uses the same set
of basis functions to describe the geometry as well as expressing the numerical
apporoximaton of the solution. This phenomenon is called the isoparametric
concept. An alternative to using IGA when solving a partial differential equation
on a domain, is to use Computer Aided Design (CAD) as a tool to construct the
geometry and then to use FEA to do analysis on it. When using CAD and FEA
seperatly, however, the object has to be constructed twice; first in CAD using func-
tions called splines, and then reconstructed by assambling elements as building
blocks. IGA, on the other hand, stribes to connect the two disiplines.

Although the concept is simple, there are many disadvantages when discretizing
an object; first of all, it is far from an easy process and it is very expensive in
terms of time consumed. In practice, according to [16], the discretizing process
is estimated to take up approximately 80% of the total time spent on analysis.
Secondly, although one can get a more precise reconstruction by reducing the size
of the elements, one will never be able to get an exact replica of the original ob-
ject. When using IGA both of these disadvantages are taken care of; then, instead
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of reconstructing the object, the object itself is divided into elements on which
analysis is performed directly. That way, time spent on discretizing the object is
reduced and possible errors caused by the differences between the original object
and the discretization, are avoided.

1.2 OUTLINE OF THE THESIS

In order to get an understanding for IGA and the framework used in this thesis, we
will start by introducing spline theory in Chapter 2, and then in the next chapter
we follow up with a breif introduction to IGA. In Chapter 4, the problems that
later will be solved numerically, are presented. Even though we assume that the
reader has some knowledge of the finite element method, both the strong-, weak-
and Galerkin form of the problems will be stated. In Chapter 5, we will discuss
fractures and singularities, and in Chapter 6 we will see how these singularities
affect the results theoretically. In Chapter 7, four numerical examples will be
presented and in the end the entire thesis will be rounded up by some concluding
remarks in Chapter 8.

1.3 NOTATIONS USED THROUGHOUT THE THESIS

In this section, some comments on the notation used is the thesis will be given.
Expressions and concepts will be written in cursive when introduced for the first
time. To seperate matrices, vectors and scalars from each other, matrices will be
given in uppercase, while vectors will be marked in bold.

When working with Elasticity problems, the three rigid body motions in the plane
(rotation and translation in both x- and y-direction) have to be fixed to guarantee
a unique solution. When modelling Elasticity problems, fixed translates to ho-
mogeneous Dirichlet boundary conditions. An explanation of the symbols that
will be used throughout this thesis for addressing such conditions, are given in
Table 1.1.
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Symbol Explanation

Fixed bearing

This symbol indicates no move-
ment in both x- and y-direction for
a given point. The body is free to
rotate about the point, however.

Sleeve-bearing

There is no movement in the nor-
mal direction, while the body can
move freely in the other directions.
In this case there will be no move-
ment in the x-direction. If the
symbol was rotated, however, then
the body would be fixed in the y-
direction.

Table 1.1: Symbols used to describe homogeneous Dirichlet boundary conditions
for Elasticity problems.
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2 SPLINE THEORY

One of the things seperating IGA from FEA, is the basis functions used. In regular
FEA the basis functions are piecewise linear functions that are C 0 across elements.
In IGA, however, a smoother and also more flexible family of functions is applied.
These functions are called Splines and are also used in CAD. As we shall see in this
chapter, Splines are flexible and have severeal features making them well suited
for both constructing shapes, but also well suited for analysis.

When Hughes et al introduced IGA in 2005 [11] Non Uniform Rational B-splines
(NURBS) were proposed as basis functions. Since then, several alternatives to
NURBS have been suggested. For the IGA solvers implemented in this thesis,
the regular spline basis functions, B-splines, as well as the recently introduced
Locally Refined B-splines (LR B-splines) are applied. Why these two types of basis
functions are chosen, will be described in detail later.

LR B-splines are based on B-splines, which again are the basis functions used to
construct Splines. To get a better understanding of how it is all connected and
why this set of family is beneficial compared to linear basis functions, we will start
by introducing Splines. Then, an introduction to B-splines will be given and in the
end, LR B-splines will be discussed briefly. It should be noted that during the work
of this thesis the main focus has been on the actual use of the LR B-splines and
also on observing the results obtained by using these basis functions combined
with a posteriori error estimate. Nevertheless, to give the reader an idea of what
it is all about, a short introduction to LR B-splines and the idea behind it, will be
given.

2.1 SPLINES

Before going into details and in order to get a better understanding of what spline
theory is all about, we are going to concider a B-spline entity called a spline curve.
An example of such a curve is displayed in Figure 2.1. As we can see from this
figure there are some red points in the x, y-plane and a blue, smooth curve which
is "approaching" these points, but not interpolating all of them. This blue curve
is an example of a spline curve, and the red points correspond to what we call
control points. The curve does not seek to interpolate the points, but approximate
them in the best way possible. In fact, among all the curves approximating a set of
points, Splines are the ones minimizing the energy norm. We will come back to
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Figure 2.1: Visualization of a spline curve, s ∈ Sp,ξ, colored dark blue, where
ξ= [0,0,0,1,2,3,4,5,5,5]. The corresponding control points are visualized as red
dots and red lines are drawn between them.

the definition of the energy norm later, but what this means in practise is that we
get a very smooth and flexible curve that, despite its flexability, does not oscillate
unnecessarily.

B-splines, which shall be defined later, are the basis functions used to build such
parametric curves. From a more mathematical point of view, B-splines are basis
functions spanning what we call a spline space,

Sp,ξ = span{B1,p,ξ, ...,Bn,p,ξ}.

This spline space contains spline curves which are made up by linear combina-
tions of B-splines multiplied with control points. The control points are in other
words the projections of the spline curves onto the basis functions in the spline
space. The formal definition of a spline curve, s ∈ Sp,ξ, in the x − y plane is as
follows:

s(ξ) =∑
i

ci Bi ,p,ξ(ξ) (2.1)

where Bi ,p,ξ is the i th B-spline, ci = [xi , yi ] the corresponding control points and ξ
the parametric variable of the curve.

A spline curve is parametrized by a parametric vector called knot vector. A knot
vector is a vector defined in a parameter space and has (n +p +1) non-decreasing
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entries, called knots, where p is the desired polynomial order of the B-spline basis
and n the number of basis functions defined on the domain,

ξ= [ξ1,ξ2,, ...,ξn+p+1]. (2.2)

The spline curve is divided into elements determined by the knot spans which
again correspond to the distance between two consecutive knots.

There are several advantages with splines. First of all; they are smooth. In addition
to this, since the B-splines are piecewise polynomials, the resulting splines are
very flexible. This way the entire spline curve is very flexible despite the fact that
the order of the B-splines are rather low. Low polynomial order of B-splines is
again beneficial when performing IGA as we shall see in the next chapter. If we
were to approximate the same curve by using one single polynomial we would
have to use a lot higher polynomial order and then, for less oscillating parts of the
curve, one would risk instances of the Runge phenomenon, where the polynomial
could take off.

2.2 B-SPLINES

As mentioned earlier, B-splines are piecewise polynomials defined in a parameter
space and serve as basis functions when constructing parametric geometries such
as splines. B-splines have several properties that make them benificial when
performing IGA.

B-splines:

• Are C∞ in between knots.

• Are C p−m at the knots, {ξi }, where m is the multiplicity of the knot.

• Are non negative on the entire knot vector, ξ.

• Satisfy the partion of unity, i.e. ∀ξ ∈ span(ξ),
∑

Bi ,p,ξ(ξ) = 1.

• Have local support: Each B-spline, Bi ,p,ξ, has support on [ξi , ...,ξi+p+1) and
therefore only depends on p +2 knots.

An example of a B-spline basis, visualizing some of the properties listed above,
is displayed in Figure 2.2. Here each basis function, Bi , is ploted using different
colors. As can be seen, all of the basis functions are positive for all values of ξ and
their support is local. Due to the local support property of the B-splines, only p+1
basis functions or less have support on each element, which is defined by the knot
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Figure 2.2: A set of B-spline basis functions corresponding to a given knot vector,
ξ= [0,0,0,1,2,3,4,5,5,5], where p = 2 and number of basis functions; n = 7.

intervals, [ξi ,ξi+1]. When performing IGA and evaluating the basis functions on
each element, the limited amount of basis functions has a huge advantage and
reduces the computational costs. This will be discussed more thoroughly in the
next chapter.

2.2.1 CONSTRUCTION OF B-SPLINES BASIS FUNCTIONS

If we consider a knot vector as the one in Equation (2.2) and let all its entries be
positive and non decreasing then, by applying cox-de Boor recursion formula:

Bi ,p,ξ(ξ) = ξ−ξi

ξi+p −ξi
Bi ,p−1,ξ(ξ)+ ξi+p+1 −ξ

ξi+p+1 −ξi+1
Bi+1,p−1,ξ(ξ), (2.3)

we are able to construct a B-spline basis on the domain [ξp+1,ξn+1], where p is
the polynomial order of the basis functions. It is important to note that we define
0
0 := 0, and that the formula starts (for p = 0) with:

Bi ,0,ξ(ξ) =
{

1, if ξ ∈ [ξi ,ξi+1),
0, otherwise.
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The Cox-de Boor formula is the official definition of B-splines. Notice that the
basis functions are noted Bi ,p,ξ, where ξ is the corresponding knot vector. The
reason for this, as can be seen from Equation (2.3), is that the basis is completely
determined by the knot vector. However, to simplify the notation, Bi ,p,ξ will from
now on be refered to as Bi ,p .

2.2.2 DERIVATIVES OF B-SPLINES

As we shall see in Chapter 4 where the problems used for the implementations
in Chapter 7 are introduced, the first derivative of the basis functions is required
when performing IGA. Fortunately, by the construction of B-splines defined by
Cox-de Boor formula, Equation (2.3), an expression for the first derivative of
B-splines can easily be derived:

d

dξ
Bi ,p (ξ) = p

ξi+p −ξi
Bi ,p−1(ξ)− p

ξi+p+1 −ξi+1
Bi+1,p−1(ξ). (2.4)

This formula can again be generalized for the k th-derivative:

d k

d kξ
Bi ,p (ξ) = p

ξi+p −ξi

( d k−1

d k−1ξ
Bi ,p−1(ξ)

)
− p

ξi+p+1 −ξi+1

( d k−1

d k−1ξ
Bi+1,p−1(ξ)

)
.

In the implementations used in this thesis, only the first and second derivatives of
the B-splines are required.

2.2.3 THE KNOT VECTORS’ INFLUENCE ON THE CORRESPONDING

B-SPLINE BASIS

Although the order of the B-splines is set by choosing p, the continuity of the
B-splines is decided, and can be controlled, by the knot vectors throughout the
domain. In fact, by repeating a particular knot, the continuity of the B-splines
is reduced at that particular point. In other words, by adding equal consecutive
knots we are able to regulate the smoothness of the B-splines evaluated at these
points and by doing so, also across the elements.

As listed in Section 2.2, B-splines are C p−m at a knot, where m is its multiplicity.
As a consequence, the B-splines are at least p −1 regular across the knots and by
increasing the multiplicity of the knot to p, the corresponding spline will be C 0

at that particular knot and forced to interpolate the corresponding control point.
This can in many settings be a huge advantage, and by changing the knot vector
one can easily create C 0-lines in the geometry. There are several settings where
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this may be of interest. One of them is if we want to create sharp edges in the
geometry. Another example may be if there are abrupt changes in the solution
field.

In particuliar, it is standard practice in CAD literature to have p +1 multiplicity of
the first and the last knot. When this is the case, the knot vector is said to be open
or (p+1)-regular. As a consequence of open knot vectors, the control points which
lie on the boundary of the B-spline entity will be interpolated. As a result, open
knot vectors are convenient when working with homogeneous Dirichlet boundary
conditions. We will come back to homogeneous Dirichlet boundary conditions
later in both Chapters 4 and 7.

2.2.4 B-SPLINE GEOMETRIES

In Section 2.1, spline curves which correspond to one dimensional B-spline ge-
ometries, were introduced. By expanding the basis to several dimensions however,
one can easily generate multidimensional geometries. In fact, by using open knot
vectors the boundary of the domain is also a spline entity [16]. For the rest of
the examples presented in this thesis only two dimensional geometries will be
considered. In the following subsection, such two dimensional geometries (also
known as tensor product B-spline surfaces) and the two dimensional B-splines
used, will be introduced. Thereafter, we will have a look at the B-spline coefficients
and their influence on the geometry.

B-SPLINE SURFACES

To create a two dimensional B-spline surface we have to generate two sets of
B-splines (one for each spatial dimension). So instead of using one single knot
vector, we now have two; ξ and η,

ξ= [ξ1,ξ2, ...,ξn+p+1],

η= [η1,η2, ...,ηm+q+1],

where p and q corresponds to the polynomial orders for the B-splines in the two
spatial directions, while n and m represents the number of basis functions.

Given the two knot vectors and a control net C = [Ci , j ]i=1:n, j=1:m , the correspond-
ing tensor product B-spline surface is defined by:

S(ξ,η) =
n∑

i=1

m∑
j=1

Bi ,p (ξ)B j ,q (η)Ci , j ,
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where Bi ,p (ξ) and B j ,q (η) are the one dimensional B-splines of order p and q
determined by the two knot vectors ξ and η respectively. The expression for S(ξ,η)
can also be written in terms of two dimensional B-splines and instead of two
indices, a global one, I = i + ( j −1) ·n, can be used:

S(ξ,η) =
n·m∑
I=1

BI ,p,q (ξ,η)C I ,

where the control net now is stored in a vector. All points x = [x, y]T ∈ S(ξ,η) can
in other words be written as:

x =
n·m∑
I=1

BI ,p,q (ξ̃, η̃)C I . (2.5)

Here (ξ̃, η̃) corresponds to (x, y) only it is evaluated in the parameter space and
not the physical space. We will come back to the different spaces in Chapter 3.

CONTROL POINTS AND CONTROL POLYGON

Although the control points are not necessarily interpolated when using B-splines,
they still provide some interesting properties for the corresponding geometry.
One of them is the convex hull property. This property ensures that, given a set of
control points, the geometry is guaranteed to be completely contained within the
convex hull of the given points. A definiton of a convex hull can be found in [16].
Because of this property, for a one dimensional case, the curve will not diverge
and take off (which is the case for Runge’s phenomenon), but rather stay bounded.

Another interesting property is the fact that as the distances between the control
points decrease, the resulting geometry will converge towards the control polygon1.
That way, if there are many details at a certain part of the geometry, one can
increase the number of control points locally and gain more control over the final
result. For the implementations in Chapter 7, the geometries are rather simple. As
we shall see later, an increased number of control points will be used, but not to
control the geometry, but rater the solution of the PDE.

2.2.5 REFINEMENT BY KNOT INSERTIONS, H-REFINEMENT

When we are performing IGA we want the error of our numerical apporoximation
to be as small as possible. As we shall see, there are several ways of ensuring this.
One of them consists of decreasing the size of the elements, and by doing so de-
creasing the knot spans. This method is called h-refinement. In this section we are

1Control polygon: piecewise interpolation of the control points.
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going to discuss how the B-spline entity is affected under h-refinement. A more
thorough discussion on error and error bounds, however, is given in Chapter 6.

IGA is a finite elment method, and according to [2] for such methods an expression
for a priori error estimate is given by:

||e||E(Ω) ≤C1N−p/2 ≈C2hp , (2.6)

where C1 and C 2 are constants, N is the number of degrees of freedom, whereas p
and h represents the polynomial order of the basis functions used and the size of
the elements, respectively. As can be seen from this error bound, the error is of
orderO(hp ), so by performing h-refinement and decreasing h, the error is reduced.

Another method for decreasing the error, is to perform order elevation, also refered
to as p-refinement, and increase the polynomial order,p, of the basis functions.
A third refinement method is called k-refinement and consists of both h- and
p-refinement.

A regular procedure for verifying implementations is to perform uniform h-refinent
for fixed values for p and to verify that the optimal convergence rate for finite
element methods is obtained. This optimal convergence rate corresponds to the
exponent of N in Equation (2.6). By uniform we mean that the knots are unifor-
mally distributed along the knot vector and the knot spans are of the same lenght.
In practice, when one wants to perform a series of uniform h-refinements, one
has to start off with a uniformally distributed knot vector, [ξi ,ξi+1] = h,∀i . Then
for each h-refinement, all of the knot spans are halved by knot insertions. That
way we obtain:

[ξi ,τi ] = h/2,

[τi ,ξi+1] = h/2,

where {τi } correspond to the inserted knots. In fact, if τ is the new updated knot
vector with the old knots in addition to the inserted ones, in such a way that ξ⊆τ,
then the corresponding spline spaces, Sp,ξ and Sp,τ, are nested [20], i.e.

Sp,ξ ⊆Sp,τ.

This means that all the B-splines in the old spline space, Sp,ξ, can be expressed
using the new ones in Sp,τ. This is an important property when working with IGA,
because it ensures that the geometry can remain unchanged under knot insertion.
As already mentioned in Chapter 1, the same basis functions used to describe
the solution space, describes also the shape of the geometry. The geometry itself
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(a) h = 1/3. (b) h = 1/6. (c) h = 1/12.

Figure 2.3: H-refinement performed on a quart disk with a hole. Open, uniform
and idential knot vectors in addition to quadratic basis functions are used. The
element size is indicated under each figure. The coarsest mesh is visualized in (a),
where ξ=η= [0,0,0,1/3,2/3,1,1,1].

lies in other words in the spline space, Sp,ξ, and since the two spline spaces are
included, the geometry will also lie in Sp,τ.

2.2.6 UPDATE OF THE CONTROL NET UNDER H-REFINEMENT

The number of basis functions depends on the number of knots. As a conse-
quence, when performing h-refinement by inserting new knots in the knot vector,
the number of B-splines in the new spline space, and thereby also the number of
control points needed, increases. It is therefore necessary to update the control
points in such a way that the geometry stays unchanged. For a better comprehen-
sion, consider the three images in Figure 2.3, where two rounds of h-refinement
are performed. Here, although the control net (represented by red dots) changes
as h-refinement is performed, the geometry remains the same.

Fortunately, there is a simple method for finding the new updated control net,
given the old sets of inputs and the new knot vector. In fact, if C corresponds to
the original control net before refinement, stored on matrix form, the updated
control net, C̃, can be found by simply multiplying C by a transformation matrix
T:

C̃ = TC.

The procedure for finding the components of the transformation matrix T = (Ti j )
consists of inserting ξ= t j+p into the recursive formula for generating B-spline
basis functions, Equation (2.3), and is described in the formula below.
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Formula 1 Let ξ = [ξ1,ξ2, ...,ξn1] and τ = [τ1,τ2, ...,τn2] be the old and new knot
vector respectively, such that ξ⊆τ and n1 ≤ n2 ∈N. Then the formula for finding
the elements of the transformation matrix T is given by:

T s
i j =

τi+s −ξ j

ξ j+s −ξ j
T s−1

j ,i + ξ j+s+1 −τi+s

ξ j+s+1 −ξ j+1
T s−1

j+1,i , for s = 1, ..., p (2.7)

starting with (s = 0)

T 0
j ,i =

{
1, if τi ∈ [ξ j ,ξ j+1),
0, otherwise.

(2.8)

The method presented here is valid for B-splines. It is really important to note that
when updating control points there are some differences between how to handle
B-splines and other basis functions such as NURBS. With B-splines we only have
to update the control net as described in Formula 1, but with NURBS it is not as
straight forward. For the geometry of a NURBS entity to remain unchanged, one
also has to update what is called the NURBS weights. Since NURBS will not be
used as basis functions the for implementations done in this thesis we will not go
into any further details. Information about NURBS can be found in [16] and how
to update control points and weights is found in [27].

2.3 LOCALLY REFINED B-SPLINES

In many engineering applications, some parts of the geometry are more exposed
than others. Later, in Chapter 7, some examples illustrating this will be presented

Figure 2.4: Visualiztion of the physical domain (x, y) (which in this case corre-
sponds to a shelf) and the parametric domain made up by the parametric knot
vectors; ξ=η= [0,0,0,1,2,3,3,3].
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and as we shall see, in order to ensure good results in terms of reliability and
computational costs, local refinement on these particuliar subdomains is needed.

Although B-splines work well as basis functions for IGA in many applications, they
are not flexible in terms of local refinement due to their tensor product structure.
As already mentioned in the previous section, a B-spline surface is parametrized
by two knot vectors when it is in two dimensions. An example of this is visualized
in Figure 2.4. Here a shelf is parametrized by ξ and η. The mesh, containing the
elements, is indicated in both the physical and the parametric representation of
the domain and it is possible to see the tensor structure. In Figure 2.5 however, the
disadvantage of using B-splines when performing h-refinement becomes clear.
As can be seen from the figure, if we were to refine the lower left corner of the
shelf, this would not only affect the intended element, but also the elements above
and to the right. As a result, because of the tensor product structure, only global
refinements are possible. Since local refinements are what we want, this drawback
results in additional and unnecessary computational costs, which is unfortunate.

Recently, several basis functions have been proposed as alternatives to the widely
used NURBS and B-splines. Among them; Locally refined B-splines, denoted LR
B-splines. LR B-splines were introduced in 2013 by T. Dokken et al. [23] and first
applied in IGA by Johannessen et al. in 2014 [25]. Two other widely used basis
functions are T-splines, introduced in 2003 by Sederberg et al. [10], and Hierar-
chical B-splines [1]. For the numerical examples presented later in this thesis,

(a) Locally refined mesh. (b) Globally refined mesh.

Figure 2.5: Mesh structures after refinement by knot insertions. The desired local
refinement is visualized in (a), while (b) displays the actual resulting mesh when
B-splines are used as basis functions.
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however, only LR B-splines are used. For a comparison of the Hierarchical and
LR B-splines in addition to a fourth alternative; Truncated Hierarchical B-splines,
and how they perform when used for IGA, see [26].

In the subsections that follow only a short and simplified presentation of LR
B-splines and adaptive refinement using these basis functions will be given. A
lot of definitions and additional information are left out. For more information
about IGA based on LR B-splines in addition to a detailed explanation of adaptive
refinement using LR B-splines we recommend consulting [25].

2.3.1 LR B-SPLINES

LR B-splines are not that different from regular B-splines. However, when talk-
ing about LR B-splines, both the basis functions and the associated mesh are
refered to. The idea behind LR B-splines is simple: instead of letting the mesh
be determined by the basis functions, we go the other way around and start by
constructing a mesh which affects the outcome of the basis functions.

Before stating the official definition of LR B-splines, some mathematical terms
such as local knot vectors, minimal support and LR-mesh must be introduced.

LOCAL KNOT VECTORS, B-SPLINES AND THEIR LOCAL SUPPORT

When working with B-splines we are dealing with global knot vectors. When using
LR B-splines however, a local knot vector for each basis function is specified.

As already stated in the previous section about B-splines, we know that they have
local support:

Supp(Bi ,ξ) = [ξi , ...,ξi+p+1).

In fact, the local knot vector of a given B-spline is simply the restriction of its
support on the global knot vector. By the definition of B-splines, see Equation (2.3),
they are uniquely determined by the local knot vectors. Local knot vectors can
therefore be used to identify identical B-splines. That is why, when working with
LR B-splines and refering to a B-spline, the corresponding local knot vector is
specified:

Bi = B[ξi ,...,ξi+p+1].

When the problem is extended to two dimensions and the two knot vectors, ξ
and η, as well as the one dimensional B-splines in both directions are given, the
resulting global B-splines in two dimensions correspond to:
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BI = B[ξi ,...,ξi+p+1]B[η j ,...,η j+p+1],

:= B[ξi ,...,ξi+p+1][η j ,...,η j+p+1],

where I is the same global index as presented in the previous section.

The local support of some basis functions are visualized in Figure 2.6. Here the
corresponding knot vectors used are ξ=η= [0,0,0,1,2,3,3,3], and the polynomial
orders are equal to two.

MESHES AND MULTIPLICITY

As already mentioned, for LR B-splines, it is the mesh that defines the basis func-
tions and not the other way around. Recall that B-splines are entirely determined
by the global knot vectors. When performing local refinement on the domain
using LR B-splines, the mesh is altered and not the global knot vectors. In this
section, to get a better understanding of the LR-mesh and how it is all connected,
different meshes will be introduced.

When working with LR B-splines we distinguish between three different meshes:
Tensor meshes, Box meshes and LR-meshes. From B-splines we are used to working
with Tensor meshes. By its definition, a Tensor mesh is a regular mesh consisting
of rectangles, made up by horizontal and vertical lines that span the enitre length
of the domain. Another alternative to the Tensor mesh, is what we call a Box mesh.
A Box mesh is also a mesh consisting of rectangles, but the lines partionning the
domain into rectangles do not have to span the entire domain. When employing
LR B-splines, the Tensor mesh is replaced by a mesh called LR-mesh. An LR-mesh,
is a special case of a box-mesh, resulting from several single line insertions from

(a) B[0,0,0,1][0,0,0,1] (b) B[0,1,2,3][0,0,0,1] (c) B[0,0,1,2][0,0,1,2]

Figure 2.6: The support of three arbitrary basis functions.
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(a) Tensor mesh. (b) LR-mesh. (c) LR-mesh.

Figure 2.7: Different meshes. The original Tensor mesh is illustrated in (a), in (b)
the LR-mesh after one line insertion is depicted and (c) contains the resulting
LR-mesh after several line insertions.

an initial Tensor mesh. That way, after each line insertion, the temporal mesh is
also a Box Mesh by construction. The LR-mesh is in other words a Box mesh, but
the Box mesh is not necessarily an LR-mesh.

The different types of meshes are made up by horizontal and vertical lines. So
basically when one wants to refine a mesh, one only has to insert additional lines
into the mesh. For an LR-mesh the multiplicity of each line is specified. That way,
instead of storing the same line several times, its multiplicity is given. To perform
local, instead of global refinement, the length of the lines can be restricted to the
desired part of the domain. To get a better understanding of the three meshes
described above and how the refinement process works, consider Figure 2.7. Once
again the same example of the shelf in Figure 2.4 is used, and this time some
meshes at different stages of the local refinement process are visualized. In Fig-
ure 2.7a, a coarse Tensor mesh is visualized. By inserting a single line in the lower
left corner, an LR-mesh is obtained in Figure 2.7b. The resulting LR-mesh after
several line insertions is visualized in Figure 2.7c.

Before stating the definition of LR B-splines, two more expressions concerning
the lines and the support of the basis functions are needed; traverse support and
minimal support. A line is said to traverse a B-spline when it is passing through all
of the B-splines’ support. For a basis function to have minimal support, however,
all mesh lines traversing its support must be present in the local knot vector. We
are now ready for the definition of LR basis functions. The definition below is
taken from [25].
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DEFINITION

Let M be an LR-mesh with multiplicities. A function; B : R2 →R, is called an LR
B-spline on M if the two following properties hold:

• Bγ

ξ
(ξ) = γBp (ξ)Bq (η) is a weighted B-spline where all knot lines (and the

knot line multiplicities) in ξ and η are also in M.

• B has minimal support on M.

According to [23], the weights γ are constructed to ensure partion of unity of LR
Splines. A property which will be introduced below.

2.3.2 LR SPLINES

Up to now, only the LR basis functions have been introduced, but as already
mentioned when we talk about LR Splines, both the LR-mesh and the set of LR
B-splines defined on that set, must be specified.

DEFINITION

An LR Spline, L, is a pair of an LR mesh, M, and a set of LR B-splines, S, which are
defined on the LR mesh; L := (M,S).

LR SPLINES PROPERTIES

In the previous section concerning B-splines, we already listed some properties
making B-splines beneficial when performing IGA. As we shall see in this sub-
section, similar properties remain valid for LR Splines as well. Some of these
properties are listed below.

LR Splines:

• Form a partion of unity:
∑n

i=1γi Bi (ξ) = 1.
For all ξ in the parametric space determined by the knot vectors, the cor-
responding LR B-splines, sum up to one. As mentioned above, {γi } are
constructed to ensure this property. The partion of unity is good for numeri-
cal stability. It often helps the condition number and makes the code more
robust towards numerical noise.

• Are nested: (Mi ,Si ) ⊂ (Mi+1,Si+1).
Similarly to the B-splines, for which the spline spaces are nested under
h-refinement, LR Splines are also embedded, when the LR-mesh is refined
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by line insertions. This is a strong result which guarantees that the geometry
can remain unchanged. As for the PDE, this means that the solution will
always be better on a finer grid than on a coarser one.

• Are order indepentent under refinement.
Basically, this mean that if several lines are inserted into an LR-mesh, it
does not matter in which order the lines are inserted. As long as the final
LR-mesh is the same, the resulting LR B-splines will also be the same.

2.3.3 PROCEDURE FOR PERFORMING ADAPTIVE REFINEMENT

METHOD USING LR B-SPLINES

When performing adaptive refinement method, refered to as ARM, using LR B-
splines, one starts off with a Tensor mesh and a set of B-splines defined on it.
Then, by inserting lines as mentioned in the previous section, an LR-mesh is
constructed and by updating the B-splines that are traversed due to the insertion,
LR B-splines are obtained. For detailed information about how to update basis
functions, consult [25].

For the numerical examples that follow in this thesis, the following procedure is
used when performing local refinement: First the basis functions that need to be
refined are specified. Then, all of the knot spans in the local knot vector of the
basis functions are divided in two by horizontal and vertical line insertions. For
each line insertion, the basis functions which are traversed by the inserted line
are updated, and in the end the final locally refined mesh is obtained along with
the corresponding LR B-splines.

We continue by considering the same example as in the previous subsections, but
this time, instead of identifying the element that needs to be refined, we start by
identifying the basis function. In our case, imagine that we want to refine the
basis function situated in the lower left corner; B[0,0,0,1/3][0,0,0,1/3], who’s support
is visualized in Figure 2.6a. In this case, since the local support only covers one
element, only two lines are needed; one vertical line: [1/6]× [0,1/6] and another
horizontal line: [0,1/6]× [1/6]. As a result, the element is split into four new and
smaller elements. When inserting these two lines, B[0,0,0,1/3][0,0,0,1/3] is not the only
basis function affected. In one dimension p +1 basis functions have support on
each knot span. In two dimensions this corresponds to a total of (p +1)× (q +1)
basis functions with support on each element. In our case, since we are using
quadratic basis functions in each direction, nine basis functions have support on
the split element, but only three of these basis functions are traversed by the first
line. Thus, when inserting the vertical line first only three of the total nine basis
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functions are split as visualized in Figure 2.8.

We have now briefly explained how to go about when performing local refinement
on restricted subparts of a geometry. How to identify subdomains that need to be
refined, however, is a model problem, and shall be discussed and elaborated in
detail in the following chapters. Before embarking on this, a brief introduction to
isogeometric analysis will be given in the next chapter.

Figure 2.8: The local support of the nine basis functions with support on the first
element. Only the three first basis functions, B[0,0,0,1][0,0,0,1],B[0,0,1,2][0,0,0,1] and
B[0,1,2,3][0,0,0,1], are traversed by the inserted red line. For the resulting six to be
traversed, the line should have been longer and had the length of the dotted lines.
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3 ISOGEOMETRIC ANALYSIS

As already mentioned in the introduction, IGA is a finite element method for
approximating partial differential equations on given domains. Although IGA is a
finite element method, the handling of the domain is different than in FEA. Instead
of approximating a continuous domain,Ω, by a discrete domain,Ωh , as is done in
FEA, the domain itself is divided into elements. This phenomenon is illustrated
in Figures 3.1 and 3.2, for which the domain corresponds to a cup. In Figure 3.1
the exact objectΩ, made with CAD, is visualized in addition to its approximation
Ωh made up by linear Lagrangian elements. As can be seen, although there is a
similarity between the two geometries,Ωh does not depictΩ exactly. In Figure 3.2
however, the two objects are identical. The same set of basis functions used in
CAD is also used in IGA. So, instead of putting together predefined elements to
form an approximation of the domain,Ω itself is used to determine the shape of
the elements.

IGA is not only favorable because the domain is exact, it also performs better when
it comes to refinement. As mentioned in Chapter 1, the process of making the
finite approximation,Ωh , is timeconsuming and expensive. What makes it even
worse is that when performing refinementΩh has to be rebuilt after each iteration.
Since all the examples presented later in Chapter 7 need adaptive refinement to

Figure 3.1: This figure contains an illustration of the two domains considered when
performing FEA. In this case the domain corresponds to a cup. WhileΩ represents
the exact domain made by CAD,Ωh corresponds to the finite approximation ofΩ
on which FEA is performed.
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Figure 3.2: This figure contains an illustration of the two domains considered
when performing IGA. In this case the domain made by CAD coincide with the
domain used for IGA.

function optimally, this is very unfortunate. When using IGA, however, since we
are working with the object directly, pre-processing of the domainΩ is not needed
and a lot of time is saved.

As can be seen from Figure 3.2, Ω is divided into elements. These elements are
made up by knot spans in the knot vectors. In fact, when performing IGA we are
working on three different spaces all at once: the physical space, the parameter
space and the parent space. A visualization of the three spaces and the mappings
between them are given in Figure 3.3. The domain,Ω, in addition to the solution
field and boundary conditions are defined in the physical space, while basis func-
tions are defined in the parameter space and, as we shall see later, points called
Gaussian quadrature points are defined in the parent space.

The domain, on which we want to solve our set of equations, can be arbitrary.
We risk dealing with really complicated geometries which can be cumbersome to
perform analysis on. That is why, instead of working withΩ in the physical space
directly, Ω is mapped to a more regular domain Ω̃ which lies in the parameter
space. In the parameter space, the domain is made up by the knot vectors. No
matter how the shape of Ω is in the physical space, in the parameter space it is
uniquely determined by the knot vectors. Two completely different geometries
in the physical space can in other words be identical in the parameter space as
long as the two sets of knot vectors are the same. What will differ for the two
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Figure 3.3: Visualization of the three different spaces and corresponding domains
when performing IGA. To the left: the physical space and domain;Ω. In the center:
the parameter space and Ω̃. To the right: the parent space and Ω̂e . In all three
spaces the same element is colored red, and J1 and J2 correspond to the two
mappings between them.

geometries however, are the mappings between the spaces. We will come back to
the definition and how to determine these mappings later.

In IGA, a set of knot vectors containing several elements, is referred to as a patch.
Some geometries are difficult to describe with only one patch. For the implemen-
tations done in this thesis only single patch geometries will be considered. More
information about how to handle multiple patches can be found in [16].

IGA is a finite element method and those familiar with this family of methods
know that we seek to solve a set of equations

Au = b,

numerically. This is done by looping through the elements, Ωe , and adding the
local contributions, Ae and be , to the global systems, A and b, respectively. To
simplify this process, each element is mapped to a third space called the parent
space, on which the numerical integration is performed. In our case the numerical
integration is done by using Gaussian quadrature points to approximate the basis
functions. For a better comprehension of how it is all connected, we are going to
consider the following example.

Imagine that we want to use the Poisson problem to model how the heat is dis-
tributed on the surface of a cup. Since this is a two dimensional problem we will
use two knot vectors and basis functions of order p in one direction and order
q in the other. As we shall see later in Chapter 4, for the Poisson problem the
components of the stiffness matrix, A, are on the form:
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[A]i j =
∫
Ω

∇Bi ·∇B j dΩ,

where Bi and B j are the basis functions introduced in the previous chapter. Since
the elements, {Ωe }, make upΩ entirely and as they do not overlapp one another,
we have that: ⋃

Ωe∈P
Ωe =Ω,

⋂
Ωe∈P

Ωe =∅,

(3.1)

where P represents the set of all the elements. From this we can thus see that:

[A]i j =
∑
Ωe∈P

∫
Ωe

∇Bi ·∇B j dΩe . (3.2)

So in order to determine the components of A, we loop through the elements,
{Ωe }. Then, for each element we loop through the basis functions with support
on that element and generate quadrature points on the corresponding element
defined in the parent space. This will be referred to the parent element and shall
be denoted Ω̂e . The same goes for the corresponding element in the parameter
space, denoted Ω̃e .

Although the quadrature points are on the parent element, the basis functions are
defined in the parameter space. As a result, in order to evaluate the basis func-
tions in the quadrature points, they are mapped from Ω̂e to Ω̃e . A visualization
of the quadrature points and how they are mapped can be found in Figure 3.4.
In Appendix A.3 a flowchart describing the code structure of IGA and higlighting
some differences between a standard FEA- and IGA code can be found.

Because of the local support of the basis functions only nb f = (p + 1)× (q + 1)
are defined on each element. This is of huge advantage. For systems with many
unknowns and a large number of degrees of freedom, the bandwith of the matrix A
will be small and A will have a sparse structure. In order to approximate the basis
functions in Equation (3.2) correctly, we are going to need a total of (p+1)×(q +1)
quadrature points for each parent element, Ω̂e .

Since we actually integrate in the parent space, but want the answer in the physical
space, it is important to multiply by the determinants of the mappings between
the three spaces. In the end we are left with the following expression:



27 ISOGEOMETRIC ANALYSIS

Figure 3.4: Visualization of the same element in the parameter space (to the left)
and in the parent space (to the right). The white stars represent the Gaussian
quadrature points, while J2 and J−1

2 correspond to the mappings between the two
spaces. In this case quadratic basis functions are used in each direction, resulting
in nine quadrature points.

[Ae ]ı̂ ̂ =
∫
Ωe

∇B ı̂ ·∇B ̂ dΩe ,

≈
nb f∑
k=1

∇B ı̂ (x̃k ) ·∇B ̂ (x̃k )|J1||J2|wk ,

where {x̃k } are the quadrature points evaluated in the parameter space Ω̃e , {wk }
represent the quadrature weights, while ı̂ and ̂ correspond to local indices of the
local stiffness matrix Ae .

As can be seen from this, when performing IGA it is important to have control
over the different spaces, and also the mappings between them. Since Ω̃e and
Ω̂e by construction always have the same shape, the mapping J2 from the parent
space to the parameter space will be a scalar mapping. In two dimensions J2 will
therefore be a two times two diagonal matrix with the following determinant:

|J2| = (ξmax −ξmi n) · (ηmax −ηmi n)

(ξ̂max − ξ̂mi n) · (η̂max − η̂mi n)
,

where ξmax , ξmi n , ηmax and ηmi n correspond to the extremes of the element in
the parameter space, while ξ̂max , ξ̂mi n , η̂max and η̂mi n the extremes in the parent
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space. Figure 3.4 contains also a visualization of J2.

As for J1 (corresponding to the mapping from the paramter space to the physical
space) in two dimensions it is defined as:

J1 =
[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
.

From the previous chapter and Equation (2.5), we know that:

x =
nb f∑
i=1

Bi (ξ,η) · cx,i ,

y =
nb f∑
j=1

B j (ξ,η) · cy, j ,

where nb f corresponds to the total number of basis functions, Bi (ξ,η) and B j (ξ,η)
are two dimensional basis functions and {cx,i } and {cy, j } are the B-spline coeffi-
cients of x and y , respectively. So to find the components of J1 we only have to
differentiate the expressions of x and y with respect to ξ and η. Since the derivative
is a linear operator, J1(1,1) becomes:

∂x

∂ξ
=

n∑
i=1

∂Bi (ξ,η)

∂ξ
· cx,i ,

which can easily be calculated using the formula for first derivatives of B-splines,
see Equation (2.4). The other elements of J1 are found in the same way.

As already mentioned, a flowchart can be found in Appendix A.3. We are not going
to comment on the code structure any further, but a good description in addition
to comments on assembly can be found in [16].
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4 MODEL PROBLEMS

In this chapter, the two problems, the Poisson - and the Elasticity problem, used
in Chapter 7, will be presented. Given a set of equations,

Au = b,

we have already seen in the previous chapter how to find the components of A
and b when performing IGA. The main goal of this chapter, is to show how this set
of equations is established by discretizing a continuous boundary value problem
(BVP).

For each of the two problems the procedure will be more or less the same: We
will start with the strong form of the problem, corresponding to the BVP. Then,
the weak form will be established, which in the end will be transformed into
the Galerkin form; a discrete computational model of the problem. Since the
procedure is the same for the two problems, the different steps will be explained
more thoroughly for the Poisson problem. As for the Elasticity problem, each of
the three forms will be stated and additional information about specific notation
used for Elasticity problems will be introduced.

4.1 POISSON PROBLEM

In mathematical modeling the Poisson problem is a well known and established
problem. Even though it is simple and does not contain many different and com-
plex mathematical operators, it is used to describe a wide variety of problems
and physical phenomena. Because of its simplicity, the Poisson problem is con-
sidered to be a very nice introductory example when performing operations on
BVPs. Once one has understood how it works for this problem, similar results can
easily be transfered to more complex problems. The two following sections are a
demonstration of this, as the procedure for establishing the Galerkin form for the
Poisson problem abd the Elasticity problem are similar.

For the numerical example containing the Poisson problem in Chapter 7, both
homogeneous Dirichlet and non-homogeneous Neumann boundary conditions
are applied. The same boundary conditions will therefore be presented here.
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4.1.1 STRONG FORM

Given a geometryΩ and its boundary Γ= ΓD ∪ΓN , where ΓD ∩ΓN =∅, then the
strong form of the Poisson problem is given by:

Find u: Ω→R, such that,

∆u =− f inΩ,

u = g on ΓD ,

∂u

∂n
= h on ΓN .

(4.1)

Here n corresponds to the outer unit normal on the Neumann boundary. Since
we are only considering homogeneous Dirichlet boundary conditions g ≡ 0.

4.1.2 WEAK FORM

In order to find the weak form of the BVP, we start by defining the two following
spaces:

U = H 1
ΓD

= {
u ∈ H 1(Ω) : u|ΓD = g

}
,

V = H 1
0 = {

u ∈ H 1(Ω) : u|ΓD = 0
}
,

(4.2)

where H 1 is a sobolev space defined as:

H 1(Ω) = {
u :Ω→R : Dαu ∈ L2(Ω), |α| ≤ 1

}
.

Here d is the spatial dimension of Ω and α = [α1, ...,αd ]. In addition Dα =
Dα1

1 Dα2
2 ...Dαd

d ,
(
D j

i = ∂ j

∂x
j
i

)
, and we also define |α| := ∑d

i=1αi . The definition of

L2 is given in Appendix A.2.1. In our case we will only work with two dimensional
problems, d = 2, so ∀u ∈U the following holds:

||u||2E(Ω) =
∫
Ω

∇u ·∇u dΩ<+∞, (4.3)

where ||·||E corresponds to the energy norm. The same property also holds ∀v ∈V .

In the literature U is often refered to as the trial solution space and V the weighting
space. When solving the weak form of the BVP, we search for a solution within U .
By their definition, the two spaces are different, but in our case, since we are only
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working with homogeneous Dirichlet boundary conditions (g ≡ 0) the two spaces
are identical,

U =V. (4.4)

By having homogeneous Dirichlet boundary conditions instead of non-homogeneous,
the modeling of the problem is simplified. For a more thorough discussion on
this matter and on non-homogeneous Dirichlet boundary conditions, please see
Section 4.3.1.

To establish the weak form we start by multiplying each side of Equation (4.1) by
an arbitrary test function v in the weighting space, v ∈V , and then integrate over
the domainΩ. Then, by using Greens first identity and the fact that v is equal to
zero on ΓD , ( see Equation (4.2)) we are left with:

Find u ∈U , such that:∫
Ω

∇u ·∇v dΩ=
∫
Ω

f v dΩ+
∫
ΓN

∂u

∂n
v dΓN , ∀v ∈V. (4.5)

Having in mind that U =V , the weak form in Equation (4.5) can also be written
on the form:

Find u ∈V , such that:

a(u, v) = l (v), ∀v ∈V ,

where a(·, ·) represents a symmetric bilinear form and l (·) a linear functional. They
are defined as:

a(·, ·) : V ×V →R, a(u, v) =
∫
Ω

∇u ·∇v dΩ,

l (·) : V →R, l (v) =
∫
Ω

v f dΩ+
∫
ΓN

∂u

∂n
v dΓN .

(4.6)

We have now established the weak form of the original BVP, Equation (4.1). For
appropriate regularity assumptions the solution of the weak form is the same as
for the solution of the strong form. A more thourough discussion on the regularity
assumptions, however, is given at the end of this chapter in Section 4.3.2. It should
be noted, however, that the weak form is only a temporarily state of our process
and we are now going to form the final set of equations.
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4.1.3 COMPUTATIONAL PROBLEM

In order to get the continuous weak formulation given in Equation (4.5) on a
discrete form we need to construct a finite-dimensional space,
dim(Vh) = nh <+∞, which is an approximation, but also a subspace of V ,

Vh ⊂V.

The Galerkin form of the original problem can then be written as:

Find uh ∈Vh such that

a(uh , v h) = l (v h), ∀v h ∈Vh . (4.7)

If we now let the discrete finite dimensional subspace, Vh , be spanned by the
B-spline basis functions, Bi , introduced in previous chapters such that Vh =
span

{
Bi ,p,ξ

}
i=1:nh

. Then both uh , v h ∈Vh can be written on the form:

uh =
nh∑

i=1
Bi ci ,

v h =
nh∑
j=1

B j d j ,

(4.8)

where ci and d j are the corresponding B-spline coefficients of uh and v h , re-
spectively. By inserting the expressions of uh and v h in Equation (4.8) into Equa-
tion (4.7), and due to the bilinearity of a(·, ·), we are able to express the problem
on linear matrix form:

Ac = b, (4.9)

where c corresponds to a vector containing all the B-spline coeffcients of uh . A,
on the other hand, is refered to as the stiffness matrix and b the load vector. The
elements of A and b are defined as:

Ai j = a(Bi ,B j ), (4.10)

bi = l (Bi ), (4.11)

where a(·, ·) and l (·) are the same bilinear and linear forms as defined previously
in Equation (4.6). It should be noted that by solving Equation (4.9) we are only
finding the B-spline coefficients of uh . In order to find an expression for the so-
lution field, uh , itself we have to multiply the coefficients by the corresponding
basis functions as stated in Equation (4.8).
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4.2 ELASTICITY PROBLEM

Imagine given an elastic body; Ω. When solving the Elasticity problem, we are
interested in how the body itself is deformed and how the stress is distributed
throughout the domain when forces are acting on the body.

For the Elasticity problem there is no longer one single solution field, which was
the case for the Poisson problem, but rather as many solution fields as there are
spatial dimensions. In our case, we will only be considering problems in two
dimensions. So for each point (x, y) in the geometry Ω, we will be interested in
finding ux and uy , corresponding to the relative movements in x- and y-direction,
respectively.

u :Ω→R2, u =
[

ux

uy

]
.

The Elasticity problem can easily be extended to higher dimensions.

As already mentioned, we are also interested in the stress distribution σ, which in
two dimensions is of the form:

σ=
[
σxx σx y

σx y σy y

]
,

where {σi i } represent the normal stress components and {σi j }i 6= j the shear stress
components. Another quantity of interest is the strain tensor ε;

ε=
[
εxx εx y

εx y εy y

]
,

where the strain components are defined as:

εxx(u) = ∂ux

∂x
, εy y (u) = ∂uy

∂y
, εx y (u) = ∂ux

∂y
+ ∂uy

∂x
.

For simplicity, we will use another notation, namely the Voigt notation, where σ
and ε are of the form:

σ →σ=
σxx

σy y

σx y

 ,

ε → ε=
εxx

εy y

εx y

 .
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Even though we have two solution fields, they are coupled and can therefore
not be solved seperately. In fact, the deformation in both directions are coupled
through Hooke’s law, which written on matrix form becomes:

σ(u) =Cε(u),

=C Du.
(4.12)

where C and D are two matrices defined as:

C = E

1−ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 ,

D =


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂y

 ,

for which E corresponds to Young’s modulus and ν the Poisson ratio.

We have now introduced the different parameters of interest when working with
Elasticity problems. In the following sections the strong-, weak- and Galerkin form
will be presented. Since the approach is the same as for the Poisson problem, the
forms will be stated, but there will be very few details concerning the derivation of
the forms.

4.2.1 STRONG FORM

The strong form of the Elasticity problem is of the form:

Find u :Ω→R2 such that

∇σ(u) =− f inΩ,

u = 0 on ΓD ,

σ(u) ·n = h on ΓN .

(4.13)
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Written on the Voigt notation introduced above, the strong form of the BVP, Equa-
tion (4.13), becomes:

DT C Du =− f inΩ,

u = 0 on ΓD ,

(Du)T C n = h onΓN .

(4.14)

4.2.2 WEAK FORM

The procedure for establishing the weak form of the Elasticity problem is similar
to the Poisson problem. It consists of first multiplying Equation (4.14) by a test
function and integrating over the entire domainΩ. Then by performing integra-
tion by parts and rearranging a bit we are left with the weak form and we are also
able to identify the bilinear and linear form:

∫
Ω

(Du)T C (Dv )dΩ=
∫
Ω

f T v dΩ+
∫
ΓN

hT v dΓN , (4.15)

a(u, v ) = l (v ). (4.16)

As for the spaces, U and V , the procedure is the same as previously and because
of the homogeneous Dirichlet boundary condition they are equal to one another,
U = V . This time however, the criteria given in Equation (4.3) translates to the
finite strain energy: ∀v ∈V ,

||v ||2E(Ω) = a(v , v ),

= 1

2

∫
Ω

(Dv )T C Dv dΩ<+∞. (4.17)

4.2.3 COMPUTATIONAL PROBLEM

Similarly as for the Poisson problem, a discrete subspace of V is established,
Vh ⊂U . We want to solve the BVP on this subspace, giving us a discrete solution,
uh ∈Vh , which is an approximation of the original continuous solution field, u.
Once again the procedure is exactly the same as for the Poisson problem and in
the end we are left with:

Ac = b.
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This time, however, the stiffness matrix and load vector are defined as:

Ai j = a(Bi ,B j ) =
∫
Ω

(DBi )T C (DB j )dΩ,

bi = l (Bi ) =
∫
Ω

f T Bi dΩ+
∫
ΓN

hT Bi dΓN .
(4.18)

Once again we are left with the control points of the solution field and not the
solution field itself. In order to find the deformed body, one only has to update the
control points of the deformed body and then multiply by the corresponding basis
functions as described earlier. To find the updated control points, one simply add
the control points of the solution field, c = [c1,c2, ...,cnh ]T , to the original control
points of the geometry.

4.3 ADDITIONAL COMMENTS

In this section some remarks mentioned previously in the chapter will be discussed
more thoroughly.

4.3.1 NON-HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS

As already mentioned, for the numerical examples presented in this thesis we will
only be working with homogeneous Dirichlet boundary conditions and g ≡ 0. If
this was not the case, and we had g 6= 0, we would have to perform what is called a
lifting process. Unfortunately, for IGA this procedure is a bit more complicated
than for regular FEA.

Recall that for IGA the same set of basis functions used to describe the solution
field, is also used to describe the domainΩ. As a consequence, Ω is therefore a
B-spline object and as we have already seen, the same goes for the entire boundary
of the domain Γ. The only difference is that Γ is a B-spline object with one spatial
dimension less thanΩ. Since the same basis is used to describe the solution field,
this also applies to the numerical solution field uh and the solution field evaluated
on the boundary, denoted ∂uh .

As we have seen earlier in this chapter, when we are solving the discrete set of equa-
tions using IGA, we are only finding the corresponding B-spline coefficients of the
solution field uh . Since we are not able to guarantee that the non-homogeneous
Dirichlet boundary conditions are in the solution space, the conditions can not be
strongly imposed directly, i.e. we can not force the control points, {xi }, located on
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ΓD to have the corresponding values g (xi ). There are several methods for solving
this. One of them consists of finding new boundary conditions within the solution
space by projecting the given boundary conditions, {g (xi )}, onto the space by
using the Least Square method. We will not go into any further details, but for
those interested more information about the lifting process for finite element
methods in general, can be found in [17]. As for how it works for IGA, there is an
additional comment on the matter in [16].

4.3.2 REGULARITY ASSUMPTIONS

As already mentioned in Section 4.1.2, under appropriate regularity assumptions
the solution of the weak form and the strong form is the same. For the Poisson
equation in two dimensions, the solution of the weak form satisfies the regularity
criteria given in Equation (4.3). For the two solutions to be the same, the solution
of the strong form has to be regular enough. In fact, according to [17], u must be
in H p+1(Ω). A general definition of H k (Ω) can be found in Appendix A.2.2. As we
shall see in the following chapters, for all of the numerical examples presented
later, this regularity assumption is not met. Fortunately, as shall be demonstrated
through numerical implementations, it is possible to overcome this obstacle by
using addaptive refinement.
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5 FRACTURES AND SINGULARITIES

As mentioned in the introduction, one of the main objectives of this thesis is
to show that by using a posteriori error estimate, optimal convergence can still
be obtained for problems with singularities for which the analytical solution is
unknown. In the previous chapter, the Elasticity problem was introduced and in
the next chapter we will see how singularities influence the error, but looking into
that it is imporant to have an idea of what causes these singularities.

For the numerical examples considered in this thesis, the singularities will be
caused by static fractures in the domain. In the following sections we will start by
explaining briefly how these fractures result in sharp edges in the domain which
again affect the regularity of the analytical solution. In the end of this chapter
there will be a short comment on how to model fractures.

5.1 SINGULARITIES CAUSED BY LARGE INTERNAL

ANGLES

The numerical examples presented later in Chapter 7 all contain punctual singu-
larities due to large internal angles in the geometry. The singularity occurs when
the angles become greater than 180 degrees. An example of such a geometry is
visualized in Figure 5.1, whereα represents the internal angle causing a singularity
at the point P .

By a punctual singularity we mean that the continuity of the exact solution is
limited at a given point. In fact, the greater the internal angle is, the stronger
singularity. So for geometries containing closed fractures, where the internal
angles are equal to 360 degrees around the fracture tip, the singularity is the most
severe. The smoothness of a function is characterized by a smoothness parameter,
noted λ. For small values of λ, the singularity is strong. Basically, the greater λ,
the smoother solution. As we shall see later in the next chapter, λ has an effect
on the performance of finite element methods. However, if λ is big enough, the
rate of convergence will only be limited by the polynomial order of the basis
functions used, and behaves similarly as regular problems without singularities.
In this section an expression for the analytical solutions of the model problems
introduced in the previous chapter will be stated. This time, the geometries will
contain large internal angles. And as we shall see, λ will have a significant impact
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Figure 5.1: Visualization of a domain,Ω, containing a point singularity at P . The
internal angle causing the singularity is denoted α.

on the expression.

There has been a lot of research on this matter and for the rest of this section we
are going to follow the results of Szabó and Babuška which can be found in [4].

According to [4], almost all analytical solutions containing pointwise singularities
can be written as a sum of two functions, u1 and u2. While u1 is a continuous func-
tion unaffected by the singularities, u2 describes the solution in the neighborhood
of the singularities. In polar coordinates, if we let r0 define the neighborhood of
the singularities, then the analytical solution can be written of the form:

uexact = u1 +u2,

= u1 +
ns∑

i=1
Ai rλφ(θ) , r < r0,

(5.1)

where {Ai }i=1:ns
are constants, φ(θ) is a continuous function dependent on the

problem and ns is the number of singularities. In our case, we will only consider
problems with one or two singularities.

For the Poisson problem containing pointwise singularities, the analytical solution
is of the form:

uexact = a1rλ cos(λθ)+a2rλ sin(λθ), (5.2)

where a1 and a2 are arbitrary constants. The derivation can be found in [4].
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Basically it consists of first assuming that uexact is of the form:

uexact = rλF (θ), (5.3)

where F (θ) is some continuous function of θ. In order to determine F (θ), the
expression of uexact, Equation (5.3), is inserted into the strong form of the Poisson
problem, Equation (4.1), and by some assumptions on F (θ) and identification,
Equation (5.2) is found.

For the Elasticity problem, however, the procedure is a bit more complicated than
for the Poisson problem. Although the expression for uexact is still of the same
form as in Equation (5.3), one has to identify the direction of the tractions acting
on the elastic body before being able to conclude on F (θ).

In fracture mechanics for problems in two dimensions one distinguishes between
two types of fractures; mode I and mode II, based on the tractions causing the
fractures. While mode I represents normal tractions on the plane of the crack,
mode II covers shear stresses along the crack. Mode I is therefore often referred
to as an opening mode, while mode II is called a sliding mode. In this thesis only
mode I fractures will be considered for which the components of the analytical
solution, uexact = [ux ,uy ]T , are given by:

ux = 1

2G
rλ

[(
κ−Q(λ+1)

)
cos(λθ)−λcos

(
(λ−2)θ

)]
,

uy = 1

2G
rλ

[(
κ+Q(λ+1)

)
sin(λθ)+λsin

(
(λ−2)θ

)]
.

(5.4)

Here G , κ and Q are constants characteristic for the problem. We will get back
to this in Chapter 7. For the derivation of Equation (5.4) and the corresponding
expression for mode II fractures we recommend consulting [4].

5.2 REGULARITY OF THE ANALYTICAL SOLUTION

We are going to discuss how the regularity of uexact is affected by the singularities.
Recall from the previous chapter that the solution of the strong form has to be in
H p+1(Ω) to guarantee optimal convergence rate. We are now going to show that
for problems containing pointwise singularities this is not the case.

By the definition of H p , which can be found in Appendix A.2.2, it follows that the
Sobolev spaces are nested [17], i.e. ∀m > n ≥ 0 we have that:

H m ⊂ H n . (5.5)
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So, if u 6∈ H 2, then u 6∈ H p+1 , ∀p ≥ 1.

Recall that in the neighborhood of the fracture tip (r < r0), uexact is of the form:

uexact = rλF (θ). (5.6)

Assume now that u is in H 2. Then the following is true:
∫
Ω

|∆u|2 dΩ<+∞. In polar

coordinates the Laplacian operator is defined as:

∆uexact =
(∂2

∂r
+ 1

r

∂

∂r
+ 1

r 2

∂2

∂θ2

)
uexact,

which by inserting Equation (5.6) for uexact gives:

∆uexact = rλ−2 [λ2F (θ)+F ′′(θ)]︸ ︷︷ ︸
f (λ,F (θ))

.

For simplicity we regroup the last part of the equation in one general function
f (λ,F (θ)), and we then have an expression for |∆uexact|2 :

|∆uexact |2 = r 2λ−4| f (λ,F (θ))|2.

Then, by integrating we get that:

∫
θ

r0∫
0

|∆uexact |2r dr dθ =
∫
θ

( r0∫
0

r 2λ−3 dr
) ∣∣∣ f

(
λ,F (θ)

)∣∣∣2
dθ,

=
∫
θ

1

2λ−3

[
r 2λ−2

]r0

0
| f (λ,F (θ))|2 dθ.

(5.7)

In our case, 0 ≤λ< 1. So 2(λ−1) < 0, and as a result we have that:[ 1

r 2(λ−1)

]r0

0
→ undefined. (5.8)

As a consequence, uexact can not be in H 2 and because the Sobolev spaces are
nested, the same applies to H p+1, ∀p ≥ 1.

5.3 DIFFERENT METHODS FOR MODELING FRACTURES

There are several different methods for modeling fractures. In our case we are only
interested in static fractures which do not evolve over time. For the numerical
examples presented in Chapter 7 the fractures are therefore modeled by inserting
them directly into the geometry by inserting discontinuous lines in the LR-mesh
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where the fractures are supposed to be. When doing this, however, it is important
not to forget to apply boundary conditions along the fracture. Although the frac-
ture seems to be included in the geometry, it is part of the boundary.

If we were to model fracture propagation in an elastic body, on the other hand,
we could have implemented what is called a phase field. This method consists
of modeling the propagation of the fracture and tracking its evolution through
a history field. In addition to solving the Elasticity problem (resulting in two
solution fields, ux and uy , for each point (x, y) in the domainΩ) there would be a
third value describing the extent to which the material itself was damaged. The
field would have taken values from 0 to 1, where 1 corresponds to a fracture and
0 undamaged material. While in our case we only model sharp crack topology,
the phase field depicts diffusive cracks as well. A visualization of the two crack
topologies can be found in Figure 5.2. Since phase field will not be implemented
in this thesis, we will not go into further details. Interested readers are however
encouraged to check out the two articles [18] and [19] by Miehe et al. for more
information. As for combining phase field with local refinement in IGA, this has
been done by Borden et al. [21] and by Oda Kulleseid Nilsen in her master thesis
[22]. While Borden et al. used T-splines to perform local refinement, Nilsen used
LR B-splines.

(a) Sharp fracture. (b) Diffusive fracture.

Figure 5.2: Vizualization of fractures for both sharp- and diffusive crack topology
where Γ represents the fracure andΩ the entire domain.
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6 ERROR ANALYSIS

When performing IGA and solving partial differential equations numerically, it is
really important to be able to conclude on the accuracy of the code and by that
on the validity of the numerical results. When the analytical solution is known,
this can easily be done by calculating the error measured in the energy norm,
||e||E(Ω), and then look at the convergence rate as h-refinement is performed. To
conclude on the code, the convergence rate will then be compared to a predefined
theoretical convergence rate determined by a priori error estimate. When the
analytical solution is unkown, however, things become more complicated. One
alternative is then to use the code itself to conclude on its validity, by looking at a
posteriori error estimate.

In this chapter both a priori - and a posteriori error estimates will be presented. For
the a priori error estimate we will discuss how it is influenced by the singularities,
presented in the previous chapter. The a posteriori error estimate used in this
thesis, was first presented by Ainsworth and Oden [8], and will be derived for the
Elasticity problem.

6.1 A PRIORI ERROR ESTIMATE

In order to conclude on the performance of the method, we need an estimate of
the error. By using the error bound we can then predict how fast the method will
converge As already mentioned in Section 2.2.5, for finite element methods the
error is of order O(hp ) [2] and an upper bound of the error measured in the energy
norm is given by:

||e||E(Ω) ≤C N−p/2, (6.1)

where N is the number of degrees of freedom, C is a constant and p is the poly-
nomial order of the basis functions used. The optimal convergence rate of the
method is determined by the absolute value of the exponent of N , namely p/2,
and the energy norm is defined as:

||e||E(Ω) = ||uexact −uh ||E(Ω),

=
√

a(uexact −uh ,uexact −uh),
(6.2)

where a(·, ·) is a bilinear form depending on the problem at hand, uexact represents
the exact analytical solution onΩ, while uh is the numerical approximation.
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For finite element methods, the convergence rate of p/2 is obtained under h-
refinement when the exact solution, uexact , is smooth, i.e. uexact ∈ H p+1. Another
bound on the error as a function of uexact is given by:

||e||E(Ω) ≤C N−p/2||uexact ||p+1 (6.3)

where || · ||p+1 is the corresponding norm on the sobolev space, H p+1, defined in
[3]. So for the upper error bound to stay bounded, uexact must be defined in H p+1,
as mentioned in the previous chapters.

When performing regular h-refinement the relation between the biggest and the
smallest size of the elements, hmax and hmin, will always be bounded from above,
even when hmin → 0.

lim
hmin→0

hmax

hmin
=C <+∞. (6.4)

Meshes where this relation is fulfilled is called quasi-uniform meshes [3].

For problems where uexact is not smooth u 6∈ H p+1, however, the optimal error
bound and convergence rate as stated in Equation (6.1) can still be obtained. This
is done by compensating on the bound given in Equation (6.4).

As mentioned in the previous chapter, to quantify the smoothness of uexact and to
determinte the strength of the singularity, the parameter λ is used. For unregular
problems, where λ< 1 the following estimated error bound is obtained [7]:

||e||E(Ω) ≤C N− 1
2 min(p,λ). (6.5)

According to [2], if a mesh is found such that the error is approximately the same
over all the elements, then the convergence rate becomes independent of the
system and the optimal convergence rate is obtained. Such a mesh is said to be
nearly optimal.

To reduce the influence of the singularities, we are interested in locating the er-
rors by finding the elements containing them. Such elements are called singular
elements, and according to its definition given in [6], a singular element is:

"An element where the regularity of the solution is such that the rate of convergence
of the h-version finite element method with elements of fixed degree p would be
sub-optimal".
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In fact, by reducing the size of these elements and by letting the limit in Equa-
tion (6.4) go to infinity as the size of the singular elements go to zero, the singularity
becomes more localized [6] and as shall be demonstrated in Chapter 7 optimal
convergence rate is obtained. By considering the definition of the energy norm,
Equation (6.2), we get an idea of how this is possible. The norm consists of an
integral over the domainΩ, whereΩ is made up entirely by the elements, Equa-
tion (3.1). So by reducing the measure of the singular elements, we also reduce
their impact on the error bound and by that their influence on the convergence
rate.

6.2 A POSTERIORI ERROR ESTIMATE

In the previous section we were able to calculate the actual error, since the exact
analytical solution was known. In fracture mechanics, complicated domains and
fracture formations make it hard to predict the analytical solution and in most
cases uexact is unknown. However, it is still possible to obtain optimal conver-
gence rate by using what we call residual based error estimate. We will prove
this through numerical implementations in Chapter 7 and in this section we will
derive an expression for the error estimate used.

Only one numerical example solving the Poisson problem will be considered in
Chapter 7, for which the analytical solution is known. Because of this, we will
only derive the a posteriori error estimate for Elasticity problems. However, we
are going to follow the same procedure as in [8] where exactly the same has been
derived for the Poisson problem.

Have in mind that we are looking for an estimate of the error measured in the
energy norm and that in the end we aim to find an upper error bound of the form:

||e||2E(Ω) ≤C
{ ∑
K∈P

h2
K||r ||2L2(K) +

∑
γ∈∂PN

hK||R||2L2(γ)

}
, (6.6)

where r represents the residual on the domain, R the residual on the boundary, P
the set of all elements {Ωe } and hK corresponds to the diameter of the element
K measured in the physical space. Because of these residuals, the error bound
above (and similar error bounds) is often refered to as a residual based error es-
timate. Throughout this thesis we will alternate between using this expression,
a posteriori error estimate and in some sections it will also be referred to as the
error estimate.
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In order to derive Equation (6.6), we are going to start by considering the strong
form of the Elasticity problem on Voigt notation, which was given in Chapter 4
(see Equation (4.14)). By subtracting DT C Duh on both sides of the equation and
since DT C D is a linear operator we have that:

c

DT C Du =− f ,

DT C Du −DT C Duh = f −DT C Duh ,

DT C De = f −DT C Duh .

(6.7)

In fact, this is the same strong form as for the Elasticity problem, Equation (4.14),
except this time the right hand side corresponds to f −DT C Du and instead of
solving for u, as done earlier, we now solve for the error e. An observant reader
might note that the expression above provides an exact solution for e, which is
actually what we are looking for. That being said, there are two reasons for why
we do not just solve the problem above as was done for u. To start with, this
would require the same computational effort as solving the problem itself. In
other words, it would be very computational expensive. The second reason is due
to the orthogonal Galerkin projection. In fact,

a(e, v) = a(u, v)−a(uh , v),

= l (v)− l (v) = 0, ∀v ∈V ,
(6.8)

so the projection of e onto the solution space V is equal to zero.

As already mentioned, Equation (6.7) corresponds to the strong form of the Elas-
ticity problem. And since the problems have the same structure, the same goes
for the weak forms. By using this and the fact that a(·, ·) is a bilinear form we are
able to deduce the following:

a(e, v) = a(u −uh , v) = a(u, v)−a(uh , v),

= l (v)−a(uh , v),

=
∫
Ω

f T v dx +
∫
ΓN

hT v ds

︸ ︷︷ ︸
l (v)

−
∫
Ω

(Duh)T C (Dv)dx. (6.9)

Since the elements ofΩmake up the domain entirely, we can sum over the ele-
ments, which gives:

a(e, v) = ∑
K∈P

{∫
K

f T v dx +
∫

∂K∩ΓN

hT v ds −
∫
K

(Duh)T C (Dv)dx
}

.
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Then, by performing integration by parts on the last term in the equation above
and rearranging, we are able to identify the internal and boundary residual, r and
R, respectively.

a(e, v) = ∑
K∈P

{∫
K

f T v dx +
∫

∂K∩ΓN

hT v ds −
∫
∂K

(C Du)T v ·n ds

+
∫
K

(DT C Du)T v dx
}

= ∑
K∈P

{∫
K

(
f +DT C Du

)︸ ︷︷ ︸
r

·v dx +
∫

∂K∩ΓN

(
h − (C Du)T n

)︸ ︷︷ ︸
R

·v ds

−
∫

∂K\ΓN

(C Du)T v ·n ds
}

.

For the last term of the equation above, the integration is done over the internal
boundaries of K. In other words, over the common boundaries K shares with
other neighboring elements. The main purpose of this term is to depict the jump
discontinuities of the flux from one element to another. In regular FEA this term
is indispensable. In general IGA, as described in Chapter 2, there is increased
continuity across elements. As a result the last term vanishes as the line integral is
cancelled out.

We have now an expression for a(e, v) in terms of r and R, and by using this, an
upper bound on ||e||E(Ω) is achieved:

||e||2E(Ω) ≤C
{ ∑
K∈P

h2
K||r ||2L2(K) +

∑
γ∈∂PN

hK||R||2L2(γ)

}
.

How this is done however, is not trivial and a detailed proof of how we were able
to derive this upper bound is given in Appendix A.1.
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7 NUMERICAL EXAMPLES

In this chapter four numerical examples illustrating the theory from the forego-
ing chapters will be presented. In the two first examples the Poisson - and the
Elasticity problem will be solved on an L-shaped domain. This domain has an
internal angle greater than 180 degrees which as explained in Chapter 5, causes
a singularity. Then, an even more complicated geometry containing a discon-
tinous line from the edge of the domain to the center, will be presented. This
line represents a fracture and a rupture in the domain itself. As we shall see, this
fracture results in an internal angle of 360 degrees, which again causes the highest
singularity possible due to internal angles. In the last example, we aim to solve a
more complex problem consisting of an internal fracture on a membrane.

All of the examples in this chapter contain singularities and in order to overcome
these and obtain optimal convergence rates, we are going to perform local refine-
ment with LR B-splines. For each problem h-refinement will be compared to local
adaptive refinement.

In Chapter 4 the strong-, weak- and Galerkin form of the Poisson - and Elasticity
problem were derived. By using the general expression for the analytical solution
of the two problems evaluated on geometries with point singularities, which were
given in Chapter 5, we are able to calculate ||e||E(Ω) for the three first problems.
For the internal fracture in the membrane, however, the analytical solution is
unknown. This is where the a posteriori error estimate derived in the previous
chapter comes in. And as shall be shown in this chapter, similar results are ob-
tained when using this error bound as an indicator on where to perform adaptive
refinement. The residual based error estimator will be calculated for the last
two numerical examples. For the third example (the elastic body with the edge
crack) it will be done in order to prove that we obain similar results as for when
adaptive refinement method is performed based on ||e||E(Ω). In the last example
the residual based error estimate will replace ||e||E(Ω) completely.

For each of the examples the code will be validated using convergence plots.
In these plots the logarithm of the error measured in the energy norm, noted
||e||E , is plotted against the logarithm of the degrees of freedom, DoF. In all of the
convergence plots the dots, {∗,×}, will correspond to iterations, and reference
lines with the correct theoretical convergence rates will be marked as dotted lines.
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(a) The domainΩ.
(b) The exact solution of Equation (7.1).

Figure 7.1: L-shape Poisson: Visualization of the domain (a) and the exact solution
seen from above (b).

7.1 THE POISSON PROBLEM SOLVED ON AN L-SHAPED

DOMAIN

In this example the well known Poisson problem will be solved on an L-shaped
domain. The main purpose of this example is to verify that the expected conver-
gence rates for both quadratic, cubic and quartic basis functions are obtained for
this problem. As mentioned in the introduction of this chapter we are interested
in both the convergence rate under uniform h-refinement and under adaptive re-
finement using LR B-splines. For an L-shaped domain the smoothness parameter,
λ, is equal to 2/3. This will be explained more thorough later in this section. From
Equation (6.5) in Section 6.1, we already know that the convergence rate, C R, is
given by:

C R = 1

2
min(p,λ).

As a consequence, under h-refinement the singularity will dominate the error
bound, and as for local adaptive refinement we want to verify that optimal conver-
gence rate can be obtained for our implementations.

7.1.1 PROBLEM DEFINITION

The domain used in this example is a simple L-shape and is displayed in Fig-
ure 7.1a. As can be seen, homogeneous Dirichlet boundary conditions and non-
homogeneous Neumann boundary conditions, defined on ΓD and ΓN respectively,
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Figure 7.2: L-shape Poisson: Parameterization of the domain, Ω, in both the
physical (left) and parametric (right) space. The mappings between to two spaces
correspond to J1 and J−1

1 , as introduced in Chapter 3.

are applied and recall from Equation (4.1) that the strong form of the Poisson prob-
lem is given by:

∆u = 0 inΩ,

u = 0 on ΓD ,

∂u

∂n
= h on ΓN .

(7.1)

The exact solution is visualized in Figure 7.1b and is of the form uexact = r
2
3 sin( 2θ

3 ),

where (r,θ) are the polar coordinates defined as, r =√
x2 + y2 and θ = tan−1( y

x ).
This corresponds well with the expression for uexact which was given in Equa-
tion (5.2). By comparing the two we see that a1 = 0 and a2 = 1.

The parameterization used is visualized in Figure 7.2. As can be seen, only one
patch of elements is needed. Since only one patch is used, a C 0-line from the
origin to the upper left corner as indicated in Figure 7.2, is added to the mesh.
This is done by repeating knots in the knot vector. As explained in Chapter 2, by
doing so, the basis functions are forced to interpolate the control points along the
C 0-line and we are able to describe the sharp edge in the geometry. An alternative
method would be to use a grid with uniform squares, but this would require sev-
eral patches.

The L-shaped domain contains an internal angle greater than 180 degrees, and
because of this angle a singularity occurs at the origin. An expression for the



THE POISSON PROBLEM SOLVED ON AN L-SHAPED DOMAIN 54

smoothness parameter, λ, for the Poisson problem is as follows [5]:

λ= π

maxA(αA)
, (7.2)

where {αA} represents the set of internal angles. In our case the largest internal
angle is 3π/2, which again gives λ= 2/3. By inserting this into Equation (6.5) we
get the expected convergence rate of 1/3 for all p ≥ 1.

7.1.2 RESULTS

Regular h-refinement: Due to the singularity, the same convergence rate is ob-
tained when using different polynomial orders. In other words, we do not gain
accuracy when performing p-refinement, and as can be seen in Figure 7.3 the
expected theoretical convergence rate of 1/3 is obtained.

Local adaptive refinement: As can be seen in Figure 7.4, after some iterations of
adaptive refinement and approximately 105 DoF, the optimal convergence rates
are obtained for the polynomial orders p = 2,3 and 4. We also observe that we
gain accuracy when performing p-refinement, which is as expected theoretically.

In Figure 7.5 the meshes at different stages of the local refinement process are
displayed. These figures visualize well the refinement patterns and the tendencies
throughout the refinement process. As can be seen, in the beginning most of the
refinements are centered around the singularity at the origin. However, later in
the process, the refinements are more scattered throughout the domain.

As already explained in Section 6.1, to achieve optimal convergence rate the
distribution of the local error per element has to be uniform. This means that all
the contributions from each element have to be equal. This corresponds well with
our results and the refinement tendencies illustrated in Figure 7.5. The further
out in the refinement process, the smaller difference between the error on the
elements. And at a certain point in the process the local error of the elements
situated close to the singularity will be so small that the elements further away
from the singularity also have to be refined. In our case, for quadratic basis
functions, this happens around the 12th to the 14th iteration. As can be seen from
Figure 7.5, up until iteration 12 the refinement is situated around the singularity,
but between iteration 12 and 14 the refinement spreads and for later iterations the
refinement is performed on most of the domain. By comparing these results with
the convergence rates displayed in Figure 7.4, these observations are confirmed.
In this figure the dots along the line correspond to the different iterations and
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Figure 7.3: L-shape Poisson: Convergence plot for the Poisson problem solved on
an L-shaped domain using regular h-refinement for different polynomial orders
(p = 2,3 and 4).

as can be seen for p = 2, optimal convergence rate is almost obtained after 14
iterations.

Figure 7.4: L-shape Poisson: Convergence plot for the Poisson problem solved
on an L-shaped domain for different polynomial orders (p = 2,3 and 4) using
adaptive refinement with LR B-splines.
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(a) It. 1, DoF. 171. (b) It. 4, DoF. 316.

(c) It. 8, DoF. 603. (d) It. 12, DoF. 2341.

(e) It. 14, DoF. 4823. (f) It. 16, DoF. 10463.

Figure 7.5: L-shape Poisson: Mesh after different number of iterations (It) of local
refinement and the corresponding degrees of freedom (DoF).
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7.1.3 ADDITIONAL COMMENTS

For this example, quadratic, cubic and quartic basis functions are used. And, as
shown in Figure 7.4 the optimal convergence rate for all three of them is obtained
under adaptive refinement. In IGA, however, it is normal practice to use polyno-
mial of order two. That way, the bandwidth of A remains small, computational
costs are kept low and we still gain in terms of continuity compared to regular FEA
where as mentioned earlier linear basis functions (p = 1) are used. Because of this,
only quadratic basis functions (p = 2) will be considered for the three remaining
numerical examples of this thesis.



THE ELASTICITY PROBLEM SOLVED ON AN L-SHAPED DOMAIN 58

7.2 THE ELASTICITY PROBLEM SOLVED ON AN

L-SHAPED DOMAIN

In the previous example we showed that, despite the L-shaped domain causing a
singularity at the origin, it is possible to obtain optimal convergence by adaptive
refinement using LR B-splines for the Poisson problem. This time, using the
same L-shaped domain and the parameterization already introduced, an Elasticity
problem will be considered. This is the first time in this thesis that fracture analysis
will be presented in a numerical example. In fact this example may be considered
as a wide open crack with an opening of 90 degrees.

7.2.1 PROBLEM DEFINITION

A lot of work has been done on this theme, and this is truly a benchmark example.
Similar numerical examples can be found in [2, 6, 7]. For these examples, however,
different refinement methods have been used.

In this example we are interested in how the domain itself changes when forces are
acting on it. In our case, we will only be working in R2, so we will be interested in
finding the relative displacement in both x- and y-direction. The set of equations

Figure 7.6: L-shape Elasticity: The domain Ω. As can be seen; homogeneous
Dirichlet boundary conditions at the origin for both components of u and only for
the y-component at the rightmost corner. For the rest of the boundary Neumann
boundary conditions apply.
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describing this evolution is as follows:

E(1−ν2)

1−2ν

∂2ux
∂x2 + 1−2ν

2(1−ν)
∂2ux
∂y2 + 1

2(1−ν)
∂2uy

∂x∂y

∂2uy

∂y2 + 1−2ν
2(1−ν)

∂2uy

∂x2 + 1
2(1−ν)

∂2ux
∂x∂y

=−
[

Fx

Fy

]
, (7.3)

where E is the Young’s modulus describing the stiffness of the material, ν the Pois-
son ratio, Fx and Fy are the body forces while ux and uy represent displacement
in the x- and y- direction, respectively. Derivation of this set of equations can be
found in [4]. Recall from Chapter 5 that the analytical solutions of ux and uy for
mode I fractures in polar coordinates are given by:

ux = 1

2G
rλ

[(
κ−Q(λ+1)

)
cos(λθ)−λcos

(
(λ−2)θ

)]
,

uy = 1

2G
rλ

[(
κ+Q(λ+1)

)
sin(λθ)+λsin

(
(λ−2)θ

)]
.

(7.4)

Here κ, Q and G are constants characteristic of the problem which are defined as:

G = E/
(
2(1+ν)

)
, (7.5)

κ= 3−4ν, (7.6)

Q =−cos(λ−1) 3π
4

cos(λ+1) 3π
4

. (7.7)

In addition to the relative displacements, we are also interested in the stress
distribution on the domain, and for this numerical example the expression of the
exact stress components is as follows:

σxx =λrλ−1
[(

2−Q(λ+1)
)

cos
(
(λ−1)θ

)− (λ−1)cos
(
(λ−3)θ

)]
,

σy y =λrλ−1
[(

2+Q(λ+1)
)

cos
(
(λ−1)θ

)+ (λ−1)cos
(
(λ−3)θ

)]
,

τx y =
[

(λ−1)sin
(
(λ−3)θ

)+Q(λ+1)sin
(
(λ−1)θ

)]
,

(7.8)

where τx y represents shear stress components (σx y ).

As already mentioned, the domain and parameterization are the same as in the
previous example. However, as can be seen in Figure 7.6, to guarantee symme-
try, the L-shape is rotated such that the x-axis divides the internal angle, α, in
two. As for the boundary conditions, non-homogeneous Neumann boundary
conditions are applied on the entire boundary, and homogeneous Dirichlet at
the origin and in one of the corners as visualized. By using the expression for the
exact stress components, Equation (7.8), along the edge, we are able to implement
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(a) Solution seen from above. (b) Solution seen from the side.

Figure 7.7: L-shape Elasticity: The numerical solution of the stress distribution
on a coarse grid.

Neumann boundary conditions, and the right hand side in Equation (7.3) is cal-
culated by inserting the analytical expression for ux and uy given in Equation (7.4).

Once again, the singularity is due to the domain itself. Therefore λ will remain
the same as for the previous example (λ= 2/3). As a consequence, the expected
convergence rate will also remain unchanged (1/3).

7.2.2 RESULTS

For the numerical simulations the following values are used: E = 105 and ν= 0.3.

Relative displacements and stress distribution: By running an IGA solver on our
problem we are able to achieve the following results displayed in Figure 7.7. This
figure depicts the stress distribution of the numerical solution on the domain.
The stress field consists of three components ( σ= [σxx ,σy y ,τx y ]T ) and in order
to visualize the stress in terms of a scalar field the Von Mises equation for two
dimensions was used:

σv =
√
σ2

xx +σ2
y y −σxxσy y +3σ2

x y .

As can be seen from the results there is a high concentration of stress around the
singularity. Figure 7.8 highlights another aspect of the results. As can be seen
from these figures, the stress concentration increases for each iteration as the
mesh is refined around the singularity. This corresponds well with the analytical
expressions of the stress components given in Equation (7.8). Here σ∝ rλ−1, and
in our case, since λ= 2/3, we have that σ∝ 1/r 1/3. As a consequnce, the stress
distribution, σ, will go to infinity as r goes to zero. As the mesh is refined around
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(a) It. 6, DoF 1055. (b) It. 7, DoF 1227. (c) It. 8, DoF 1703.

Figure 7.8: L-shape Elasticity: The numerical stress distribution at different stages
of the refinement process.

the singularity the numerical solution will approximate the analytical solution.

Adaptive refinement: Once again adaptive refinement with respect to the energy
norm is carried out with LR B-splines, and Figure 7.10 visualizes some of the
meshes achieved at different stages in the refinement process. As can be seen,
similar results to the previous example are obtained; first the refinements are fo-
cused around the singularity and further into the process the refinements spread.

Once again the implementations are verified by a convergence plot, see Figure 7.9.
In this example only quadratic basis functions are considered, so the results for
both h-refinement and adaptive refinement are depicted in the same figure. As can
be seen, we are able to attain the optimal convergence rate by adaptive refinement
for this example as well.

Figure 7.9: L-shape Elasticity: Convergence plot for p = 2 when solving the Elas-
ticity problem on an L-shaped domain. While the red line corresponds to regular
h-refinement, the blue one represents the results obtained for adaptive refinement
using LR B-splines.
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(a) It. 1, DoF. 377 (b) It. 4, DoF. 767.

(c) It. 8, DoF. 1703. (d) It. 10, DoF. 2953.

(e) It. 12, DoF. 4877. (f) It. 15, DoF. 11979.

Figure 7.10: L-shape Elasticity: Mesh after different number of iterations (It) of
local refinement and the corresponding degrees of freedom (DoF).
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7.3 AN EDGE CRACK IN AN ELASTIC BODY

In this example we are going to consider an elastic body with a crack going from
the edge of the domain and into the center, as displayed in Figure 7.11. In fact, as
can also be seen in the same figure, our domain is only a restricted segment of a
larger elastic body containing a fracture. This fracture causes a singularity and we
are left with an internal angle of 360 degrees around the tip of the fracture. This
time around, since the angle causing the singularity is higher compared to the
one in the L-shaped domain, the singularity will be more severe.

This is also a typical benchmark example and a similar example can be found in
[24].

This is the last example with an exact solution that will be presented in this thesis.
As we shall see, in the last example the analytical solution is not given and as a
result we are not able to calculate the error measured in the energy norm and use
this to validate our code, as is done up until now. Therefore, in addition to once
again demonstrate that the optimal convergence rate can be obtained, this time
for a larger singularity, we are also going to perform adaptive refinement with
respect to the posteriori error estimate which was introduced in Section 6.2. The
main purpose of this example is therefore to demonstrate that similar results and
optimal convergence rate can be obtained when refining with respect to the upper
error bound as well.

Figure 7.11: Edge Crack: To the left a physical interpretation is visualized and to
the right a section of it. It is the section to the right that actually corresponds to
the domainΩ on which we are going to solve our problem.
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7.3.1 PROBLEM DEFINITION

For this example we are still interested in solving an Elasticity problem and the
same set of equations, Equation (7.3) used in the previous example describes the
evolution of the system. The entire boundary will have non-homogeneous Neu-
mann boundary conditions and in order to prevent the three rigid body motions
and to guarantee a unique solution, Dirichlet boundary conditions are applied
as indicated in Figure 7.11. The only difference from the latter example is the
geometry and the strength of the singularity. For geometries with internal angles
of 360 degrees, λ is equal to 1/2, which again leads to a different value for Q,
calculated in the same way as previously, Equation (7.5).

For the parameterization of the problem, a different approach than the one used
in the two previous examples will be applied. This time we will use a parameteri-
zation such that the mesh consists of squares. Then, the crack will be built directly
into the geometry by inserting a C−1-line at the position of the crack. That way,
the line seperates the geometry in two, and there will be two sets of control points
along the fracture, one for each fracture surface. These double sets of control
points come in handy when we are to implement Neumann boundary conditions
along the edge.

7.3.2 RESULTS

Relative displacements and Young’s Modulus: The same results as for the previ-
ous example are attained and we experience a high concentration of stress around
the singularities. However, this time different values for E are tried out. And as
can be seen from Figure 7.12, Young’s Modulus has a huge effect on the relative
displacements. Basically, the greater value for E , the more rigid body.

Adaptive refinements:
We start by proceeding in the same way as for the previous examples by verify-
ing the implementations through a standard convergence plot. For the adaptive
refinement the error per basis function is calculated and the ones with the high-
est error are refined. The results are displayed in Figure 7.13 and once again
we are able to achieve optimal convergence rate by adaptive refinement. Under
h-refinement the singularity dominates and the expected convergence rate of
1/4 is obtained. This convergence rate is worse than for the L-shape where the
convergence rate was equal to 1/3. This corresponds well with the theory about λ
presented in Chapter 5.
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(a) E = 106. (b) E = 100.

(c) E = 10. (d) E = 1.

Figure 7.12: Edge Crack: The deformed domain for different values of E (Young’s
modulus). For all the cases above, 13 iterations of adaptive refinement are per-
formed resulting in a total of 4273 DoF.

The mesh structure for this refinement strategy is displayed in Figure 7.16, and
once again we observe that the refinement at an early stage is centered around
the singularity.

Up until now we have been able to verify the code by calculating ||e||E(Ω). We are
now, however, interested in how the a posteriori residual based error estimate
behaves under adaptive refinement. This error estimate was introduced in Sec-
tion 6.2. For simplicity, since this error estimate is an upper bound of ||e||E(Ω) it
will be referred to as the bound for the rest of this example.

First, we are going to see how the bound behaves when we perform adaptive re-
finement in the same manner as done previously. Then, we will perform adaptive
refinement with respect to the bound itself. The main purpose of doing this is
to verify that the convergence rate of the error measured in the energy norm,
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Figure 7.13: Edge Crack: Standard convergence plot for the error measured in the
energy norm. Blue line corresponds to regular h-refinement and red to adaptive
refinement.

||e||E , stays unchanged and that when optimal convergence rate is obtained for
the bound it is also obtained for ||e||E . As a result, even though we are not able to
give an expression for ||e||E for examples where the exact solution is not known,
optimal convergence rate can still be guaranteed. If you think about it, this is
really impressive. By doing so, we are actually able to conclude on the validity of
the code by using the implementation itself.

The bound presented in this thesis is rather conservative, meaning that it is a
rough estimate and bigger than it necessarily needs to be. That being said, in
order to obtain optimal convergence rate, one only has to asssure that a uniform
distribution of the error is obtained. So, when deciding which basis functions to
refine or not, only the relative error between the elements is of interest, and not
necessarily the error itself. The bound beeing conservative will in other words not
effect the final outcome.

The two different refinement strategies are implemented and the results can be
seen in Figures 7.14 and 7.15, where the blue colored lines correspond to results
obtained for the bound, and the red colored lines correspond to the error mea-
sured in the energy norm. At first glance, the two figures might look identical. For
the results displayed in Figure 7.14 the refinement is done regarding to ||e||E as
done previously. As we can see, the bound behaves similarly to the energy norm,
and for both h-refinement and adaptive refinement the convergence rates of both
the energy norm and the bound are identical. Due to the bound being a rough
estimate of the energy norm, there are at each iteration some differences between
the two of them. However, we also observe that they are parallel and have the
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Figure 7.14: Edge Crack: Convergence plot under both h-refinement and adaptive
refinement. The adaptive refinement is done according to the energy norm ||e||E .
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Figure 7.15: Edge Crack: Convergence plot under both h-refinement and adaptive
refinement. The adaptive refinement is done according to the error bound (EB).

same convergence rate, which is the most important thing.

In Figure 7.15 the refinement is based on the bound itself. And once again we are
able to achieve good results. What is important to notice is that the behavior of
the energy norm remains unchanged. We will therefore be able to conclude on
the validity of the implementation if optimal convergence rate is obtained for the
bound. This remains valid even for problems where the exact analytical solution
is unknown. As we shall see, this result will have a huge advantage in the following
example.
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(a) It. 1, DoF. 211. (b) It. 4, DoF. 805.

(c) It. 9, DoF. 1891. (d) It. 13, DoF. 4333.

(e) It. 15, DoF. 6391. (f) It. 16, DoF. 8189.

Figure 7.16: Edge Crack: Mesh after different number of iterations (It) of local
refinement and the corresponding degrees of freedom (DoF). The refinement is
done according to ||e||E(Ω).
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7.4 INTERNAL CRACK IN A MEMBRANE

Up to now, we have only solved problems for which the exact solution is known.
The main purpose of these examples was to introduce theory and to validate
our code. Now, the same code will be used to solve a more complex and realistic
problem, namely a membrane with an internal fracture as visualized in Figure 7.17.
In this figure, the red circles represent the internal angles causing singularities,
which once again, are of 360 degrees each.

7.4.1 PROBLEM DEFINITION

As before a line with multiplicity p +1 is inserted into the geometry, representing
the fracture, and the same set of equations applies. We are in other words inter-
ested in solving an Elasticity problem, but this time, the only body force acting
on the geometry is the gravity. Because of the rotation of the fracture, the gravity
force is normal to the fracture surface. As a result the loading is mode I.

This time, since the exact solution is not known and we are not able to predict
the stress distribution as done previously. We are therefore going to assume
homogeneous Neumann boundary conditions on all of the edges except for the
upper edge where we have homogeneous Dirichlet conditions as visualized in

Figure 7.17: Internal Fracture: The domainΩ. As can be seen Dirichlet boundary
conditions are applied on the top. The dark line in the center represents the
internal fracture in the membrane.



INTERNAL CRACK IN A MEMBRANE 70

(a) Solution seen from above. (b) Solution seen from the side.

Figure 7.18: Internal Fracture: Numerical stress distribution after six iterations of
refinement resulting in 2820 DoF. The refinement strategy used is based on the
upper error bound.

Figure 7.17. As for the fracture surfaces we are going to assume homogeneous
Neumann boundary conditions here as well.

7.4.2 RESULTS

For the implementations done the following values are used: E = 1000 and ν= 0.3.
The resulting stress distribution is visalized in Figure 7.18. As can be seen in Fig-
ure 7.18a, an opening occurs and similarly to the other examples, there is a huge
concentration of stress around the two fracture tips.

To achieve these results, the refinement strategy based on the upper error bound
on the error is applied. As can be seen from the convergence plot, Figure 7.19,
optimal convergence is reached by adaptive refinement. By using h-refinement,
the same result as for the latter example is obtained. This corresponds well
with the theory since the maximal internal angle is the same as for the previous
example.
Some of the meshes obtained along the refinement process are displayed in
Figure 7.23. Not unexpectedly most of the refinement is centered around the
singularities and we recognize the same tendency as seen earlier in the other
examples.

As already demonstrated in the previous example, the error estimate gives us an
indication on where to refine. There are however, other alternative methods that
could also be applied. One example is a gradient based refinement method which
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Figure 7.19: Internal Fracture: Convergence plot for the upper bound where both
h-refinement and adaptive refinement are performed. Quadratic basis functions
are used.

consists of refining areas with major changes in the solution field, i.e. areas where
gradient field measured in the absoulte value is big. Before learning about the
residual based method implemented in this thesis, another more intuitive method
was developed based on the results and tendencies from the previous examples.
This method consists of first refining the basis functions in the neighborhood of
the singularities. Then the basis functions with the highest concentration of stress
are refined. The resulting mesh structure can be seen in Figure 7.20. This method,
however, proved inadequate on several areas. First of all, although this method is
well suited and captured the tendencies experienced in the previous examples, the
method is not general enough and we risk loosing essential information about the
solution field. For instance, if we were to start off with refining accordingly to the
stress concentration from the beginning. Then, only the upper part of the domain
would be refined as can be seen in Figures 7.21 and 7.22. From the results obtained
for the second example, the Elasticity problem solved on an L-shaped domain,
Section 7.2, we know that the stress distribution increased as the mesh was refined.
In this example when the PDE is solved on a coarse mesh, the resulting numerical
stress distribution is too small to be detected and taken into consideration. This
is also illustrated in Figure 7.21 where the stress distribution along the upper
boundary is greater than at the fracture tips. Another remark can be made on
the degrees of freedom, which increased rapidly and the refinement is limited
to the neighborhood of the singularities. This was not the case for the preferred
refinement strategy based on the upper bound, and as illustrated in Figure 7.23,
after some iterations the refinement is spread through the entire domain.
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(a) It. 4, DoF. 2276. (b) It. 5, DoF. 3270. (c) It. 7, DoF. 6420.

Figure 7.20: Internal Fracture: Meshes at different stages of the refinement pro-
cess where the refinement is first based on the location and then on the highest
stress distribution.

(a) It. 3, dof. 352. (b) It. 7, dof. 1140.

Figure 7.21: Internal Fracture: Numerical stress distribution where the refine-
ment is done according to highest stress distribution.

(a) It. 1, dof. 208. (b) It. 3, dof. 352. (c) It. 5, dof. 616. (d) It. 7, dof. 1140.

Figure 7.22: Internal Fracture: Meshes at different stages of the refinement pro-
cess. The refinement is done according to highest stress distribution.
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(a) It. 1, DoF. 236. (b) It. 4, DoF. 1566.

(c) It. 6, DoF. 2820. (d) It. 8, DoF. 4710.

(e) It. 9, DoF. 6070. (f) It. 10, DoF. 7674.

Figure 7.23: Internal Fracture: Mesh after different number of iterations (It) of
local refinement and degrees of freedom (DoF). The refinement strategy used is
based on the upper error bound.
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8 CONCLUDING REMARKS

In this thesis we have implemented an IGA solver and seen how its performance
is influenced by singularities. By using LR B-splines and by performing adaptive
refinements, we were able to achieve optimal convergence rate despite the singu-
larities. In addition to this, we were able to implement the residual error estimate
introduced in the previous chapters. This error estimate was then used to indicate
where to perform local refinements. In the end, optimal convergence rate for both
the error measured in the energy norm and the estimate itself, was obtained for
this refinement strategy as well.

In the following sections some of the numerical results presented in the previous
chapter will be discussed further. As a final remark we propose some ideas that
could be persued in future works.

8.1 COMMENTS ON NUMERICAL RESULTS

In the previous chapter we first considered the Poisson problem as an introductory
example to adaptive refinement. The later examples were increasingly more
complicated. In this chapter, we aim to draw parallels between the examples and
highlight some of the tendencies that can be read from the results.

8.1.1 IMPACT OF GREATER SINGULARITY

Recall that the only thing seperating The Elasticity Problem Solved on an L-shaped
domain (Example 2) from An Edge Crack in an Elastic Body (Example 3), is the
geometry. The same set of equations is solved and even the same boundary
conditions apply in both examples. As explained, the internal angle around the
fracture tip results in a more severe singularity for Example 3 than for Example 2,
and we have that:

λex2 >λex3.

In both examples the same refinement strategy is used, and the two resulting
convergence rates are visualized in Figure 8.1. Here the blue and green line corre-
spond to the results obtained in Example 2 and 3, respectively. The red, dotted
line, however, is a reference line with the optimal convergence rate. Although
the results are quite similar and optimal convergence rate is achieved in the two
examples, we still observe that compared to Example 3, optimal convergence rate
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Figure 8.1: Loglog convergence plot containing results obtained in Example 2 and
Example 3. The red, dotted line corresponds to the reference line with the optimal
convergence rate (CR = 1). The arrows indicate for which degree of freedom
(DoF) this convergence rate is obtained in the two cases. The refinement is done
according to the error measured in the energy norm and quadratic basis functions
are used.

is obtained earlier in the refinement process in Example 2. This is indicated by the
blue and green arrows.

Recall the general expression for the convergence rate (CR) for problems with
singularities given in Chapter 6,

CR = 1

2
min(p,λ)

Since λex3 is smaller than λex2, and since the polynomial order is the same in both
examples (p = 2), the results displayed in Figure 8.1 make sense. In other words,
for problems where the internal angles are large and λ is small, more iterations of
adaptive refinement and a higher number of degrees of freedom are needed.

8.1.2 ENERGY NORM VERSUS RESIDUAL BASED ERROR ESTIMATE

In Section 7.3, we compared convergence rates obtained when the refinement is
done according to the error measured in the energy norm and when it is done
according to the residual based error estimate. As we can see from the two conver-
gence plots, Figures 7.14 and 7.15, the two refinement strategies provide the same
results and by that the same convergence rate. As pointed out in Chapter 7, even
though the residual based error estimate is conservative, we are able to achieve
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optimal convergence rate. When performing adaptive refinement we are inter-
ested in estimating the relative error between the elements, and not necessarily
its exact magnitude. As long as we are able to identify the singular elements as
defined in Section 6.1, the results are good.

Even though the residual based error estimate provides satisfying results, it should
be noted that finding an expression for the estimate evaluated for Elasticity prob-
lems and then implementing it can be quite cumbersome. For the residual com-
ponent, r , in the error estimate corresponding to the residual on the domain (see
Equation (6.9)), the operator DT C Du requires the second derivatives of the basis
functions with respect to the physical coordinates. In Section 2.2.2, a general
formula for the kth derivative with respect to the parametric variables of B-splines
is given. So to obtain the second derivative with respect to the physical variables,
we have to use the chain rule. The examples presented in this thesis, are all two
dimensional. So the derivation of the second derivative is manageable, but for
higher dimensions this expression quickly becomes difficult to handle. However,
as seen in this thesis there is much to be gained from using the residual based
estimate. For being able to actually conclude on the accuracy of the code without
knowing the analytical solution, calculating some partial derivaties is a small price
to pay.

8.1.3 MULTIPLE SINGULARITIES

One of the differences seperating An Edge Crack in an Elastic Body (Example 3)
from Internal Crack in a Membrane (Example 4) is the number of singularities.
While Example 3 contains only one singularity, Example 4 contains two.

In Figure 8.2 the resulting convergence rates of the residual based error norm
in both examples are plotted. In both examples, the same refinement strategy
based on the residual error estimate is used and optimal convergence rate is
obtained in both cases. One of the most evident differences between the two
curves is the gap in magnitude between them. Example 3 and 4, represent two
quite different problems with different boundary conditions, so the gap is only
reasonable. Once again, we are not interested in the magnitude of the residual
error estimate, but rather the shape of it. Another observation can be made on the
number of points on the two different curves. Recall that the points represent the
iterations during the refinement process. As can be seen, in Example 3 the number
of degrees of freedom increase less per iteration. Since Example 3 contains one
single singularity, this makes sense. As a result, in example 3, the singularity is
more centered than in example 4. In example 4 a higher portion of the domain is
affected by singularities and therefore more basis functions need to be refined.
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Figure 8.2: Loglog convergence plot combining the results obtained in Example 3
and Example 4. In both examples, the refinement strategy used is based on the
residual error estimate.

8.2 FUTURE WORK

For the numerical examples presented in this thesis, the implemented IGA solver
works well. In most engineering applications, however, the geometries are in three
dimensions. One more spatial dimension results in a greater amount of degrees
of freedom, and by that a larger system of equations to solve. If we were to use our
code for such problems, we would have to make some changes to make it more
efficient. One change that could easily be done is to improve the method used to
solve the set of equations (Au = b). In this thesis the built-in backslash operator
in MATLAB was used. This could have been done more efficiently by exploiting
the sparsity of the Stiffness matrix.

In this thesis only static fractures were considered. What could be very interesting,
however, is to look at dynamic fractures, and thereby how fractures propegate in
materials. As already mentioned in Chapter 5, one way of modeling this is to use
a phase field combined with a history field. Nowadays, fracture propagation is a
hot topic and it opens up for a lot of different engineering applications such as
hydraulic fracture propagation in oil reservoirs.
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A APPENDICES

A.1 PROOF OF UPPER BOUND ON ERROR ESTIMATE

In this section we aim to give a detailed proof of the derivation of the upper bound
of the a posteriori error estimate introduced in Section 6.2. From before we already
know that:

a(e, v) = ∑
K∈P

{∫
K

r · vdx +
∫

∂K∩ΓN

R · v ds
}

, ∀v ∈V , (A.1)

and in the end we want to derive the following upper bound on ||e||E(Ω):

||e||2E(Ω) ≤C
{ ∑
K∈P

h2
K||r ||L2(K) +

∑
γ∈∂PN

hK||R||L2(γ)

}
. (A.2)

Each of the variables in the expression above are defined in Section 6.2.

In order to make the proof easier to read, it will be divided into five steps:

Step I: Galerkin Orthogonal Property.

Step II: a(e, v) = a(e, v)−0.

Step III: Bound on a(e, v) by Using Cauchy Schwarz Inequality.

Step IV: Bound Independent of IX v .

Step V: The Final Result.

Taken out of context, these headings do not make a lot of sense, but in the proof
that follows each of these steps will be elaborated further. Before proceeding
however, some additional information that will come in handy later in the proof
will be introduced.
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GALERKIN ORTHOGONALITY PROPERTY: e ⊥ X

Recall the Galerkin orthogonality property mentioned in Section 6.2. It states that
the error, e = u −uh , is orthogonal to the solution space, ie. ∀vh ∈V a(e, vh) = 0.

a(e, vh) = a(u, vh)−a(uh , vh)

= f (vh)− f (vh)

≡ 0.

(A.3)

ADDITIONAL BOUNDS

In the following proof we are going to want to swap between different norms and
are therefore dependent on establishing equvalencies between them. Fortunately,
such equivalencies relating || · ||L2 and || · ||H1 can be found in [8] ( Theorem 1.7 on
page 14). According to this theorem we have the following: Given v ∈V , let Ix v
be the projection of v onto the solution space X . Then the following bounds are
valid:

||v − Ix v ||L2(K) ≤C hK||v ||H 1(K̃),

||v − Ix v ||L2(γ) ≤C h1/2
K ||v ||H 1(K̃),

(A.4)

where K̃ is defined as the set of all the elements sharing a common border with
element K. For a detailed proof of Equation (A.4) see [8].

STEP I: GALERKIN ORTHOGONAL PROPERTY

In order to prove Equation (A.2) we start off by inserting IX v , the projection of a
given v ∈V , into Equation (A.1). According to the Galerkin orthogonal property
the error e is orthogonal to the solution space, and since the projection is defined
in this subspace the bilinear form of e and IX v is equal to zero.

a(e, IX v) = ∑
K∈P

{∫
K

r · IX vdx +
∫

∂K∩ΓN

R · IX v ds
}
= 0.

STEP II: a(e, v) = a(e, v)−0

Then, we use this result and basically subtract zero from a(e, v), resulting in:

a(e, v) = a(e, v)−a(e, Ix v),

= ∑
K∈P

{∫
K

r · (v − IX v)dx +
∫

∂K∩ΓN

R · (v − IX v)ds
}

. (A.5)
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STEP III: BOUND ON a(e, v) BY USING CAUCHY SCHWARZ

INEQUALITY

We have now established an expression for a(e, v), Equation (A.5), containing both
v and IX v . The next step is to derive an upper bound of this expression and in the
end we want the following:

a(e, v) ≤ ∑
K∈P

{
||r ||L2(K)||v − IX v ||L2(K) +||R||L2(∂K∩ΓN )||v − IX v ||L2(∂K∩ΓN )

}
. (A.6)

To do this, the two parts inside the sum in Equation (A.5) should be considered
one at a time. Below we will show the derivation of an upper bound for the first
part will be demonstated. An upper bound for the second part can be found in a
similar way.

∫
K

r · (v − IX v)dx =
∫
K

∑
i=1:2

ri (v − IX v)i dx

=
∫
K

∑
i=1:2

|ri (v − IX v)i |dx

≤
C .S.(

∑
)

∫
K

√ ∑
i=1:2

|ri |2︸ ︷︷ ︸
func1

√ ∑
i=1:2

|(v − IX v)i |2︸ ︷︷ ︸
func2

dx

≤
C .S.(

∫
)

√√√√∫
K

|func1|2 dx

√√√√∫
K

|func2|2 dx

=
√√√√∫

K

∣∣√ ∑
i=1:2

|ri |2
∣∣2 dx

√√√√∫
K

∣∣√ ∑
i=1:2

|(v − IX v)i |2
∣∣2 dx

=
√√√√∫

K

∑
i=1:2

|ri |2 dx

√√√√∫
K

∑
i=1:2

|(v − IX v)i |2 dx

= ||r ||L2(K)||v − IX v ||L2(K).

As indicated, for this derivation Cauchy Schwarz (C.S) is performed twice. First
with respect to the sum

(
C .S.(

∑
)
)

and then according to the integral
(
C .S.(

∫
)
)
.
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STEP IV: BOUND INDEPENDENT OF IX v

a(e, v) ≤ ∑
K∈P

{
||r ||L2(K)||v − IX v ||L2(K) +||R||L2(∂K∩ΓN )||v − IX v ||L2(∂K∩ΓN )

}
≤ ∑

K∈P

{
||r ||L2(K)hK||v ||H1(K̃) +||R||L2(∂K∩ΓN )h

1/2
K ||v ||H1(K̃)

}
= ∑

K∈P

{
||v ||H1(K̃)

(
hK||r ||L2(K) +h1/2

K ||R||L2(∂K∩ΓN )
)}

≤
C .S.(

∑
)

√ ∑
K∈P

||v ||2
H1(K̃)︸ ︷︷ ︸

I

√ ∑
K∈P

{
h2
K
||r ||2L2(K) +hK||R||2L2(∂K∩ΓN )

}
(A.7)

We are now going to consider I seperately and provide an upper bound for this
term.

As alrady stated, K̃ corresponds to the set of all neighboring elements sharing a
common boundary with element K. A visalization of this is shown in Figure A.1.
As can be seen from this figure, each element K has eight surrounding elements.
And as a consequence, when we are summing over all of the elements inΩ each
element (except for the ones lying on the boundary ∂Ω) will be accounted for
eight times. So instead of evaluating the Sobolev norm, || · ||H 1 over K̃ in I, we can
evaluate the norm over K and just multiply by a constant:

Figure A.1: Visualization of element K and its neighboring elements, K̃.
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√ ∑
K∈P

||v ||2
H1(K̃)

≤C
√ ∑

K∈P
||v ||2

H1(K)
. (A.8)

Then by the definition of || · ||H 1 , see Appendix A.2.2, we have that:

∑
K∈P

||v ||2
H1(K)

=
∫
Ω

(|v |2 +|∇v |2)dx,

= ∑
K∈P

∫
K

(|v |2 +|∇v |2)dx,

=∑
K

||v ||2
H1(K)

,

⇒
√∑

K

||v ||2
H1(K)

= ||v ||H1(K). (A.9)

Inserting these two results, Equations (A.8) and (A.9), into Equation (A.7) then
gives:

a(e, v) ≤C ||v ||H1(Ω)

√ ∑
K∈P

{
h2
K
||r ||2L2(K) +hK||R||2L2(∂K∩ΓN )

}
. (A.10)

STEP V: THE FINAL RESULT

The proof is almost finished, but some small final adjustments are needed. First of
all, we start by using ||v ||H 1(Ω) ≤C ||v ||E . Then, Equation (A.10) holds for ∀v ∈V ,
and since e is defined in V , v can be replaced by e.

a(e,e) ≤C ||e||E
√ ∑

K∈P

{
h2
K
||r ||2L2(K) +hK||R||2L2(∂K∩ΓN )

}
.

And in the end, by the definition of the energy norm || · ||E we have that a(e,e) =
||e||2E and by rearranging a bit and using ||e||E > 0, for e 6= 0 we are left with

||e||2E(Ω) ≤C
{ ∑
K∈P

h2
K||r ||L2(K) +

∑
γ∈∂PN

hK||R||L2(γ)

}
. �
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A.2 SPACES AND NORMS

In the following sections, the definition of two of the spaces and norms used in
the thesis will be given. All of the definitions below are taken form [17].

A.2.1 SQUARE INTEGRABLE FUNCTIONS, L2

The space of square integrable functions, over a given domainΩ⊂Rn is defined
as:

L2(Ω) = {
f :Ω→R s.t.

∫
Ω

(
f (x)

)2 dΩ<+∞}
.

And the corresponding norm is defined as:

|| f ||2L2(Ω) =
∫
Ω

| f (x)|2 dΩ.

A.2.2 SOBOLEV SPACE, H p

Definition: LetΩ be an open set of Rn and k be a positive integer. We call Sobolev
space of order k on Ω the space formed by the totality of functions of L2(Ω) such
that all their (distributional) derivatives up to order k belong to L2(Ω):

H k (Ω) = {
f ∈ L2(Ω) : Dα f ∈ L2(Ω), α : |α| ≤ k

}
.

The corresponding norm is defined by:

|| f ||2
H k (Ω)

= ∑
|α|≤k

∫
Ω

(
Dα f

)2 dΩ, ∀ f ∈ H k (Ω).
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A.3 FLOWCHART

The code structure in IGA is not that different from what we are used to for FEA. In
fact, by changing only a few parts of a FEA code we can easily obtain a correspond-
ing code for IGA. fig. A.2 represents a flowchart of a traditional FEA code, and by
carrying out small changes to parts of the code which in the figure are colored
green, the code is converted into IGA. A good description on how to proceed when
implementing an IGA solver is given in [16].

Figure A.2: Flowchart of a typical FEA code. The green elements are the only parts
of the code that seperate FEA from IGA.
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