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Sammendrag
MikroRNA (miRNA) er en gruppe ∼22 nukleotider ikke-kodende RNA som har under-
gått omfattende forskning siden oppdagelsen i 2001. MiRNAs rolle i posttranskripsjonell
genregulering i pattedyr og planter har blitt koblet til en rekke klinisk betydningsfulle
sykdommer. MiRNA-sekvenser kortere enn 16 nukleotider antas å være kløyveprodukter
av Ago2 eller degraderingsprodukt, og miRNA-studier har derfor kun inkludert segmenter
av lengde 16-25 nt. I 2014 fant J. P. Mossin ∼10 nt korte miRNA-segmenter som hverken
samsvarte med Ago2 kløyving eller kjente degraderingsprosesser, noe som utfordret de
rådende antakelsene om korte sekvenser. I et forstudie utført høsten 2014 av samme
forfatter som denne masteroppgaven, ble Mossins funn verifisert for flere datasett.

Denne rapporten presenterer et vellykket forsøk på å reprodusere funnene av både Mossins
og forstudiet til denne masteroppgaven, ved å studere korte, 11-15 nt miRNA-sekvenser.
Studiene ble utvidet til flere datasett fra både menneske og mus. Denne rapporten pre-
senterer en rekke analyser som motbeviser de rådende antakelsene for korte sekvenser, og
konkluderer med framfor å representere rester av degraderte miRNA passasjer-tråder, er
majoriteten av korte miRNA-sekvenser i realiteten markører for biologisk aktive miRNA.
Basert på resultatene i denne rapporten blir en modifisert modell av miRNA-aktivitet og
degradering presentert.
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Abstract
MicroRNAs (miRNAs) are a group of ∼22 nt non-coding RNAs that since their discov-
ery in 2001 have been extensively studied, and their post-transcriptional gene-regulatory
role in animals and plants have been linked to a number of clinically important diseases.
Studies have only regarded miRNA segments of length 16-25 nt, assuming shorter reads to
be either Ago2 cleavage or degradation products. The credibility of this assumption was
questioned by J. P. Mossin in 2014, when short reads of length ∼10 nt was found not com-
patible with being products of cleavage or known degradation processes. A preliminary
study from late 2014 by the author of this master’s thesis verified Mossins findings.

This report presents a successful attempt at reproducing both the findings of Mossin
and results from the preliminary study, by studying short reads of length 11-15nt. The
experiments are extended onto multiple data sets of human and mouse genomes. The
report presents a range of analyses discouraging the current assumption regarding short
reads, concluding that rather than being remnants of passenger strands, the majority of
short reads are actually markers for biologically active miRNAs. A modified model of
miRNA activity and degradation is presented, substantiated by the findings of this study.
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Chapter 1

Introduction
MicroRNAs (miRNAs) are short non-coding RNAs that play an important gene-regulatory
role in animals and plants (Bartel, 2009). Derived from longer duplex precursor sequences,
mature miRNAs are ∼22 nucleotides, and will typically be loaded into a RNA-induced si-
lencing complex (RISC) to serve as a guide strand for targeting messenger RNAs (mRNA)
by partially base-pairing with the mRNA. When paired to the target, the RISC may per-
form destabilization, translational repression or site-specific cleavage of the mRNA.

RISC is composed of an Argonaute (Ago) protein and a miRNA (Cenik & Zamore, 2011),
and Ago proteins exist in multiple variants across genomes. Mammals encode four Ago
proteins, Ago1-Ago4, of which all can be the active component in RISC. The activity of
RISC depends on which Ago protein is active in the complex, and the only Ago protein
known to be functionally distinct is Ago2, as only Ago2 retains the ability to cleave
mRNA. The functionality of the other Ago proteins is still not fully understood.

Since the recognition of miRNAs in 2001, a still increasing amount of research has been
conducted to attempt understanding the biogenesis of miRNAs, and abnormal expression
levels of miRNAs have been linked to a number of clinically important diseases (Soifer,
Rossi, & Saetrom, 2007). The miRNA mediated post-transcriptional gene regulation has
been extensively studied, and the data experimented on has been short RNA segments
of length 16-25 nt. In attempting to find ∼10 nt Ago2 cleavage products, Mossin (2014)
found a number of such short reads aligning to mature miRNAs, however these reads
were also found in samples where Ago2 were knocked out. Such short reads have been
commonly assumed either Ago2 cleavage products or products of known degradation
processes, however Mossins findings question the credibility of these assumptions.

The experiments of Mossin rose the question of what these short reads actually represent,
and in Wahl (2014), I extended his experiments to reproduce his findings. I concluded that
the prior assumptions regarding short reads cannot hold, and that short reads might be
caused by an unknown biological function and/or unknown degradation processes. This
is the outset for the study behind this report, where the objectives are to reproduce my
findings, assess the credibility of prior assumptions regarding short reads, and investigate
possible features and relations that can explain short read expression and correlation with
miRNAs.

This report describes my successful attempt at reproducing my preliminary results on six
independent data sets. The data experimented on are high-throughput sequencing data
from independent experiments on mouse and human, and the data have been aligned to
miRNA reference genomes and analysed. The short reads studied have been of length 11-
15 nt, and different aspects of their existence have been investigated to enable a reliable
discussion of the credibility of the current assumptions regarding short reads. Extensive
analyses of features of short reads and short read associated miRNAs have been conducted
to attempt explaining the underlying biological functionality of short reads, concluding
in a modified model of miRNA activity and degradation.
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Chapter 1. Introduction

The outline of this report is as follows. A theoretical introduction to all background in-
formation necessary for understanding the procedures and results is presented in Chapter
2, including previous work and the rationale for this project. In Chapter 3, a presentation
of the data experimented on is given, before describing the methods used to produce all
results. These results are presented and discussed separately in Chapter 4, and a discus-
sion comparing and evaluating the results is presented in Chapter 5. Chapter 6 provides
a conclusion of this report, and discusses possible directions for further studies.
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Chapter 2

Background

This section provides the basic background information needed to understand the work
presented in this paper. Bioinformatics is an inter-disciplinary field of science, and as
such this section will contain a wide range of topics. The main audience of this paper has
a background in computer science, so this section begins with covering some elementary
topics from molecular biology, before explaining some background of methods and tech-
nology used. Finally, it elaborates the actual problem in question, related work and what
the potential results may offer.

2.1 Cells, DNA, RNA and protein

The information presented in this section is based on Lewin (2006) except for where
otherwise noted, and will cover the basic biology of cells, DNA and RNA, followed by the
Central Dogma of molecular biology, and regulation of gene expression.

2.1.1 DNA and RNA

The smallest building block composing every organism is the cell. The human body
consists of approximately 37 trillion cells (Bianconi et al., 2013), each responsible for
chemical reactions necessary to maintain life, and for passing the information on how
to do so to the next generation of cells (Sung, 2010). This information is crucial for
constructing the organism and is defined in its complete set of genetic material, the
genome. The information is stored in deoxyribonucleic acid (DNA) structures, consisting
of chains of nucleotides, the basic unit of DNA. The genome is functionally divided into
genes, which are sequences of DNA that encode for another nucleic acid, the ribonucleic
acid (RNA).

Both DNA and RNA consist of polynucleotide chains, in which the building block nu-
cleotide is composed of a nitrogenous base, a monosaccharide sugar and a phosphate.
An alternating series of sugar and phosphate residues compose what is called the sugar-
phosphate backbone, spanning from the 5’ end to the 3’ end. The nitrogenous bases
protrude from the sugar-phosphate backbone by glycosidic bonds to the sugar. In DNA,
the base can either be Adenine (A), Cytosine (C), Guanine (G) or Thymine (T). These
nucleotides are connected in sequence to form a nucleotide chain, or DNA strand. Two
opposing DNA strands are connected through hydrogen bindings between opposing bases,
resulting in a DNA molecule shaped as a double helix with two sugar-phosphate back-
bones protecting its bases in between. An illustration of the DNA structure is given in
Figure 2.1.
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The sequences of nucleotides in the two chains can be represented as a string over the
alphabet {A, C, G, T}. The only possible base bindings are Adenine-Thymine and
Cytosine-Guanine, a constraint leaving the two strands reversely identical, and any of
the two strands can identify the same DNA sequence.

Figure 2.1: Simplified DNA structure. Image adapted from National Library of Medicine
US, NLM (2015).

2.1.2 Central Dogma

The central dogma of genetics explains how functional proteins are produced from the
information given in the DNA, a process called gene expression. Each cell has a copy of
the genome in its nucleus. The full human genome is vast and contains approximately 3
billion base-pairs, however only about 1.5% of it actually encodes proteins (IHGSC, 2001).
When the cell is to produce a certain protein, only a small part of the DNA encodes the
process. As the cell only contains one replicate of the DNA, it is necessary to transcribe
the relevant segment of the DNA, transport this out of the nucleus and to the production
unit in the cell, the ribosome, and produce the protein by translating the transcribed
DNA fragments. This gene expression process is illustrated in Figure 2.3.

The first step in this process is RNA transcription. In this process, the enzyme RNA
polymerase and other transcription factors attach to a specific site in the DNA, uncoils
the helix and synthesizes an antiparallel strand to the DNA template strand. This new
strand is RNA, similar to DNA but differing by being single-stranded and containing
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the nucleotide Uracil (U) in replacement for Thymine. The RNA contains sections not
required to produce the desired proteins, and some of these are removed to produce the
messenger RNA (mRNA), of which a simplified structure is illustrated in Figure 2.2. A
mRNA contains a coding region, which encodes for a specific protein, and two flanking
untranslated regions (UTR) on each side, conventionally named 5’ UTR and 3’ UTR.
The UTRs do not encode protein, but contain regulatory regions that may be utilized for
post-transcriptional influence.

Figure 2.2: Simplified mRNA structure. Image adapted and modified from http://
en.wikipedia.org/wiki/File:Mature_mRNA.png

The next step is RNA translation, which is the synthesis of proteins from mRNA. The
mRNA is transported out of the nucleus and to the ribosome. It is then read using the
genetic code, a language of 64 words consisting of all three-letter combinations of the four
nucleotides known as codons. These codons encode for one start codon, three stop codons
and a total of 20 amino acids, the building blocks of proteins. As the mRNA is read one
codon at a time, an anticodon with the translated amino acid binds to it. When the next
anticodon binds to the mRNA, the prior amino acid binds to the next one by peptide
bonds, creating a growing chain of amino acids. When the stop codon is encountered the
translation is terminated and the peptide chain is released into the cytoplasm, where it
will fold itself into a three dimensional structure defining the function of the protein.

2.1.3 Gene expression regulation

Approximately 45 million base-pairs constitute the encoding part of the human genome,
and encodes for an estimated number of 250,000 proteins. Not all proteins are produced
in every cell; what proteins and the amount of them vary from different cell types, tissues
and individuals, while the genome remains the same. Different genes in the genome can be
translated to proteins in one cell while not in another, and produced proteins are degraded
at different rates in different cells. The amount of a particular protein in a cell reflects the
balance between the productive and degradative biochemical pathways for that protein,
and to a certain degree this balance is self regulated by the the cell. This regulation is
called gene expression regulation, and the major regulatory mechanisms affect the protein
synthesis.

A gene can be in an ‘on’ or ‘off’ state regarding transcription, and must be ‘on’ for
transcription to be initialized. Human genes are by default in an ‘off’ state (Hoopes,
2008), regulated by histone bindings. If in an ‘off’ state, a gene will not be transcribed
and the corresponding proteins will not be synthesized, which is the major gene expression
control point.
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2.2. MICRORNA Chapter 2. Background

Figure 2.3: Central Dogma of molecular biology. Image adapted from Wiki Kids Ltd.
(2014).

If the cell needs to alter the protein balance due to environmental changes, the particular
protein might already be transcribed, thus altering the transcription is not sufficient.
Post-transcriptional regulation is then necessary, and can be performed in different ways.
The mRNA can be altered while in transit to the ribosome, the RNA translation initiation
in the ribosome can be affected, and how the cell processes or degrades newly synthesized
proteins can affect the protein levels in the cell.

A mechanism important for the work presented in this paper is the post-transcriptional
regulation mediated by noncoding RNA. This has emerged as a critical mechanism for
gene expression regulation (Carthew & Sontheimer, 2009), and will be described in more
detail in the next section.

2.2 MicroRNA

There are two main classes of RNA, where one is translated into protein (mRNA) and the
other not. The most common class is mRNA, whose function is presented in section 2.1.2.
The other class of RNA are commonly known as non-coding RNA (ncRNA), and consists
of a wide range of small functional RNAs that are active in different processes within the
cell (Mattick & Makunin, 2006). Most are involved in protein synthesis, DNA replication
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or gene expression regulation. One such ncRNA important for the work presented in this
paper is the microRNA, a ncRNA involved in gene regulation. This section presents the
history and importance of miRNA recognition, their biogenesis and their function in the
cell.

2.2.1 Biogenesis of miRNA

The information presented in this section is based on Ambros (2004), Bartel (2004), and
Mattick and Makunin (2006), unless otherwise specified.

What has later been classified as microRNAs was first discovered in 1993 in a study of
C. elegans (Lee, Feinbaum, & Ambros, 1993). They found the process of which the lin-4
gene negatively regulates the lin-14 protein was not due to a lin-4 protein, but rather a
pair of short RNAs produced by lin-4. The pair consisted of one ∼22 nt RNA and one
∼61 nt RNA, the longest predicted to be the precursor of the shorter one, and their main
interaction causing the down regulation was found to be multiple antisense complemen-
tarity with the 3’ untranslated region of lin-14. This discovery launched a new branch of
molecular biology research where gene regulation in animals and plants mediated by short
RNAs became an important topic. In 2001 microRNAs (miRNAs) were recognized as a
separate class of ncRNAs, and since their discovery, a large number of human miRNAs
and miRNA target genes have been identified, and abnormal expression levels of some
miRNAs and their targets have been linked to a number of clinically important diseases
(Soifer et al., 2007).

Human mature microRNAs are small, single-stranded RNAs of approximately 20 – 23
nucleotides, with a primary function of identifying target mRNAs for destabilization or
translation reduction. MiRNAs originate from the genome, and the miRNA biogenesis
is illustrated in Figure 2.4. The precursor transcript is transcribed from the genome by
normal RNA transcription in the nucleus and folds back on itself to form distinctive hair-
pin structures, each hairpin representing a potential miRNA precursor, and the whole
transcript may serve as both an mRNA and a primary miRNA (pri-miRNA). Still in
the nucleus, the enzymatic complex of Drosha and DGRC8 processes the pri-miRNA to
produce precursor-miRNA (pre-miRNA) by cleaving the hairpin from the pri-miRNA. A
pre-miRNA is an approximately 70 nucleotides long RNA duplex, folded by imperfect
base-pairing into a stem-loop structure, containing two mature miRNA candidates. Fig-
ure 2.5 illustrates a miRNA hairpin, where purple nucleotides represent the candidate
mature miRNA sequences.

The pre-miRNA is transported to the cytoplasm by Exportin-5 and Ran-GTP, where
the pre-miRNA is recognized and the Dicer-TRBP complex cleaves off the loop of the
pre-miRNA molecule, resulting in a 22 nucleotide miRNA:miRNA* duplex. The duplex
represents two possible mature miRNAs, of which one will typically be incorporated into
an Argonaute protein of the RNA-induced silencing complex to guide mRNA silencing.
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Figure 2.4: MicroRNA biogenesis. Image adapted from Tili et al. (2008).

Figure 2.5: Example miRNA hairpin, hsa-mir-16-1. The purple nucleotides represent the
two candidate mature sequences, one on each strand.

2.2.2 miRNA mediated gene regulation

The information given in this section is based on Cenik and Zamore (2011) and Saito and
Saetrom (2010).

The RNA-induced silencing complex (RISC) is composed of an Argonaute protein and
a small RNA guide, which in this context is a mature miRNA. Argonaute proteins are
essential for development and differentiation in humans, and defend the cells against viral
infections. Four different Argonaute (Ago) proteins are found in mouse and humans,
Ago1, Ago2, Ago3 and Ago4, of which only Ago2 has the known ability to cleave RNA,
while the unique functionality of the other proteins are still fully not understood.
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The miRNA:miRNA* duplex produced by Dicer contains two mature miRNA candidates,
of which only one will be incorporated into RISC. The process of incorporating the mature
miRNA strand into an Argonaute protein to produce RISC is illustrated in Figure 2.6.
The duplex is first loaded into the Argonaute protein, resulting in what is called pre-RISC.
The Argonaute must then determine which miRNA strand to include as its target guide,
a process described in the next section. When the mature miRNA strand is selected, the
miRNA* strand is evicted from pre-RISC to be ultimately degraded and the resulting
complex is mature RISC, ready to identify the target mRNA through the incorporated
miRNA guide strand.

The Argonaute protein of RISC pre-organizes the ‘seed region’, nucleotides 2-7, of the
miRNA so that their base edges are displayed and ready to at minimum partly pair
with the corresponding nucleotides in the 3’ UTR of the target mRNA. When paired
to the target mRNA the activity performed by RISC depends on which Argonaute is
active. All Argonautes may through a degree of complementarity perform destabilization
or translational repression, while Ago2 has an additional slicer activity, of which a high
degree of complementarity guides a cleavage of the target mRNA between its nucleotides
across from the guide nucleotide 10 and 11.

Figure 2.6: RNA-induced silencing complex (RISC). Image adapted and modified from
Rutz and Scheffold (2004).
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2.2.3 Argonaute strand preference and sorting mechanisms

The process of which pre-RISC selects one strand of the double stranded miRNA:miRNA*
duplex for incorporation has been studied in multiple organisms. A strong bias is found
toward the strand with the thermodynamically less stable 5’ end; however, an Argonaute-
dependent preference has also been reported. For Drosophila and C. elegans, miRNAs are
sorted among the different Argonaute proteins based on the structural characteristics of
their precursors (Tomari, Du, & Zamore, 2007). In Arabidopsis, the miRNAs are strictly
sorted among Ago1-Ago5 by the 5’ terminal nucleotide of each strand, independent of
miRNA size or what biological pathway produced it (Mi et al., 2008). Attempts at
verifying the existence of similar global sorting mechanisms on a handful of sequences
of human cells have not been successful (Dueck, Ziegler, Eichner, Berezikov, & Meister,
2012; Meister et al., 2004).

A more recent study on human cells reported a possible existence of a unique sorting
system operating on a small scale (Burroughs et al., 2011), and alternative cleavage sites
for a pri-miRNA have been found to yield isomiRs with different strand preferences (Seong
et al., 2014). Polikepahad and Corry (2013) reported an Ago1 preference for adenine as the
3’ terminal nucleotide, and an Ago2 preference for 3’ uracil in mice. A similar preference
for 3’ uracil has been suggested but not yet confirmed for human Ago2, however a bias
against 3’ adenine has been observed (Kandeel et al., 2014). Elkayam et al. (2012) further
reports a preference for either A or U as the 5’ terminal nucleotide of human miRNAs
due to structural requirements of the Argonaute proteins.

Whatever strand is selected as the guide strand of RISC, it is strongly bound to the
Argonaute protein. An Ago protein consists of multiple domains, and the 5’ end of a
miRNA is bound to the MID domain, and the 3’ end to the PAZ domain of the Argonaute,
leaving room for the stretch of miRNA to be contained in between . The 5’ end of a
miRNA is found to continously be bound to the MID domain, however there has been
two different models for how the 3’ end is bound. The fixed-end model states that the 3’
end of miRNAs are also continuously bound, while the two-state model presents a more
flexible, repeating binding and releasing of the 3’ end dependent on the miRNA pairing
with target mRNAs (Cenik & Zamore, 2011). Accordingly, the 3’ end of miRNAs that
are base paired with mRNAs will be released from Ago. The latter model has gained
more support the last years, with multiple experiments revieling release of miRNA 3’ end
during mRNA basepairing (Sasaki & Tomari, 2012) (Y. Wang et al., 2009).

2.2.4 IsomiRs

As described in section 2.2.1, a pri-miRNA hairpin is processed into a∼22 nt miRNA:miRNA*
duplex representing two possible mature miRNA sequences. In reality, the hairpin of a
pri-miRNA can give rise to a variation of expressed miRNA sequences, conventionally
named isomiRs after Morin et al. (2008). Of all variations observed, the most abundant
sequence is regarded the mature sequence of the hairpin and used for reference, while
all others are regarded isomiRs of the same miRNA. All isomiRs are distinct sequences,
and can be either templated or non-templated, depending on whether the sequence can
be found within the pri-miRNA. Templated isomiRs can arise by a shift in the cleav-
ing site of either Drosha-DGRC8 or Dicer-TRBP, resulting in variations in both ends
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of the miRNA:miRNA* duplex and thus trimming of the expressed sequences. Post-
transcriptional removal of nucleotides in either end of the sequence also results in tem-
plated isomiRs. Post-transcriptional addition or substitution of nucleotides may however
yield non-templated isomiRs, of which 3’ additions of Adenine and Uracil are particu-
larly common (Wyman et al., 2011). An example of possible isomiRs of the 5’ strand of
hsa-mir-16-1 are presented in Figure 2.7.

Figure 2.7: Example of possible isomiRs of the 5’ strand of hsa-mir-16-1. The mature
sequence is presented in blue, and its flanking yellow nucleotides represent the surround-
ing nucleotides from the pri-miRNA. The first four isomiRs illustrates trimming of the
expressed sequence due to shift in cleavage positions, and results in templated varia-
tions. The last two isomiRs are non-templated, due to 3’ additions and substitution not
matching the pri-miRNA.

IsomiRs are found to interact with Argonaute proteins just as mature miRNAs (Cloonan
et al., 2011), and recent studies have found them to be of functional and evolutionary
importance (Tan et al., 2014).

2.3 Approaches for miRNA isolation

When studying miRNAs, the experiments often depend on Argonaute proteins, as these
are the only known proteins to frequently interact with miRNAs to perform biologically
important functions. Obtaining cell samples of miRNA and Argonaute interactions can
be done by different approaches, two of which are relevant to this report. One approach
is to genetically modify the DNA of an organism, effectively inactivating the gene, known
as gene knockout. Another approach, which may be performed in combination with gene
knockout, is to precipitate a desired protein from a cell sample by immunoprecipitation.
The information presented in this chapter is based on information from Kaboord and Perr
(2008) and Z. Wang (2009).

2.3.1 Gene knockout

Gene knockout (KO) is a procedure of which the DNA of an organism is modified to
effectively inactivate a known gene. This approach is usually taken when the sequence of
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a specific gene is known while the true function of the gene is not. The function of the
gene can then be studied by comparing the knockout organism with normal, wild-type
individuals (WT), and any dissimilarities in behaviour or physicology can be investigated
as possible effects of the inactivated gene. This procedure is most frequently used on mice
due to the simplicity of modifying mouse DNA, and knockout mice are commonly used
as animal models for human physiology and behaviour in experiments. When studying
miRNAs and Argonaute proteins, the function of Argonaute proteins can be studied
by performing Argonaute KO and comparing the KO individual with WT individuals.
Investigating the dissimilarities between the two may provide insight into the function of
Argonautes and miRNAs, and when performing KO on the different Ago proteins, the
functions of them can be compared.

Gene knockout has some limitations. Naturally, mice do not share the same genome and
physicology as humans, and observations in mice may not be transferable to humans.
Also, altering the DNA of an organism may alter essential functions and processes in the
organism and essentially turn lethal, resulting in studies of only the developmental stages
of an organism and not the entire life cycle.

2.3.2 IP procedure

A cell sample may contain thousands of proteins and RNA segments, of which often only
a specific subset is of interest to a study. When studying miRNAs and their associa-
tion with Argonaute proteins, the desired sample will typically contain only Argonaute
proteins and short RNA segments associated with them. To accommodate this need,
a common procedure to use when studying miRNAs is immunoprecipitation. Immuno-
precipitation (IP) is a procedure that uses high affinity antibodies to extract a specific
protein from a sample. An appropriate antibody is chosen for the desired protein, which
when incubated with the sample will bind to the protein. A solid substrate specifically
designed to bind to the antibody, called beads, are added to the solution after incubation.
When the protein-antibody complexes are bound to the beads, the solution is centrifuged,
leaving the heavier beads and their bound complexes at the bottom and all lighter com-
ponents of the sample on top. The supernatant is removed, and the beads are washed to
remove non-specific binding. An illustration of the general procedure is given in Figure
2.8. Immunoprecipitation can be carried out in various ways, depending on the chosen
antibody type, incubation conditions, bead type and washing procedure. The different
approaches have different advantages, and might yield different results. Two approaches
commonly used differ mainly in the choice of beads, where the traditional practice utilizes
agarose beads and the more novel practice utilizes magnetic beads. Another approach is
taken when known antibodies are unobtainable, of which specific tags are engineered onto
the proteins of interest. These approaches are explained in the following sections.

2.3.2.1 Agarose and magnetic beads

Traditionally, the beads used in IP has been agarose beads. Agarose beads are highly
porous sponge-like structures, with a large surface area resulting in a high binding ca-
pacity. Agarose beads will only bind with the desired protein if its surface is coated in
antibodies, any region not coated will bind to whatever protein that sticks. The cost
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Figure 2.8: Stages of a simplified immunoprecipitation procedure. First, a suitable an-
tibody is added to the sample. Second, the antibody binds to the protein of interest
during the given incubation time. Third, the suitable beads are added to the sample and
binds to the antibodies, making antibody-protein complexes insoluble. Last, the solution
is centrigufed, the supernatant is removed and the beads washed. Image adapted from
Leinco Technologies (2015).

of ensuring precision of the process might thus be high in terms of antibody amounts
per bead. Another drawback of this approach is the delicate nature of the removal of
supernatant. A perfect separation of beads and supernatant is very difficult, and the
result often includes some supernatant or lacks some of the beads. The physical stress on
the proteins from repeated centrifugation is also a disadvantage, especially if the protein
complexes in question are fragile.

Some of the disadvantages of agarose beads have caused an increase in the use of the
more novel magnetic beads. Compared to agarose beads, magnetic beads are smaller and
with an even, spheric surface, resulting in a significantly reduced surface area, which in
turn drastically reduces both the antibody cost and the binding capacity of each bead.
However, the small and even size of the beads allow for a higher amount of beads per
sample volume than with agarose beads, reducing the binding capacity loss. The main
advantage of this approach is in the last stage of the procedure, where the beads are
separated from the sample by using magnets as opposed to centrifugation and supernatant
removal. This ensures minimum loss of precipitated proteins, reduces background noise,
allows for more fragile complexes to be precipitated and is less time consuming than
repeated centrifugations.

2.3.2.2 Tagged proteins

Immunoprecipitation is dependent on the availability of antibodies for the protein of in-
terest, and proteins lacking available antibodies are unable to be immunoprecipitated.
An alternative approach is to engineer specific tags onto the proteins of interest, of which
known antibodies are available. The procedure is then similar, and can be implemented
with either agarose or magnetic beads. In addition to enabling any protein to be immuno-
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precipitated, this approach is highly reproducible as the same tags and antibodies can be
reused multiple times. However, engineering tags onto proteins might obscure the natural
protein functions or introduce unnatural functions. Additionally, this approach precipi-
tates overexpressed, tagged proteins and not the biologically natural proteins. The result
might thus be of tagged proteins of obscured functionality, and the biological relevance of
such results are questionable.

2.4 RNA Sequencing

The total amount of transcripts and their quantity in a cell at a specific point in time
defines the transcriptome of the cell (Z. Wang, Gerstein, & Snyder, 2009). The tran-
scriptome changes in time due to development and physiological changes in the cell, and
cataloguing all transcripts and studying their expression levels in different cells, tissues or
stages under the same or different conditions has proven powerful for understanding the
functional elements of the genome. Different methods and technologies have been devel-
oped for analysing the transcriptome, and currently the most commonly used method is
RNA-Seq (RNA sequencing) (Z. Wang et al., 2009), which the data used in this project
is produced by.

RNA-Seq is an approach where the advantages from next generation sequencing are uti-
lized, allowing high throughput and quantitative analysis of the entire transcriptome. As
such, the whole transcriptome can be analysed, reads classified into different RNA types
such as total RNA, mRNAs, and miRNAs, and their differential expressions determined
in a limitless manner.

There is a still increasing number of different platforms for RNA-Seq, however they all fol-
low the same basic principles, illustrated in Figure 2.9 (Farazi et al., 2012). The first step
is to isolate the total RNA from the cell group in the sample. An adapter sequence is then
ligated to the 3’ end of each RNA segment, possibly including a sample specific barcode
if more than one sample is to be processed simultaneously to reduce cost and overhead,
allowing identification and subsampling later. Another adapter sequence containing a
primer is then ligated to the 5’ end of the RNA segment. The resulting sequences, consist-
ing of the 5’ adapter, actual RNA segment and 3’ adapter, are then reversely transcribed
into complementary DNA (cDNA) segments. These individual segments are amplified
using a common amplification technique in molecular biology, polymerase chain reaction
(PCR), resulting in a collection representing the relative expression levels of the original
RNA transcripts. This collection is known as a cDNA library, and is used as input to a
next generation sequencing platform for RNA sequencing.

The result generated by the high-throughput sequencing platform is typically in the form
of FASTQ or FASTA, text-based file formats where every individual read is represented
as an entry, accompanied by its quality score (only in FASTQ) and associated informa-
tion such as alignment identifier, sequence read count and comments. Both formats are
presented in Figure 2.10 for illustration.
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Figure 2.9: RNA-Seq process.

Figure 2.10: Example entries in FASTQ and FASTA format. The first line of every entry
contains information about the entry, the following lines contains the nucleotide sequence
of the read, and in FASTQ format, the quality score is given in a seperate line following
a ‘+’ sign.

The sequence read counts, or read frequencies, should be converted to relative frequencies
for the sample by normalizing to the total sequence reads for the sample, a procedure
described in detail in section 3.5. These frequencies are relative frequencies within the
same sample; if absolute values for the sequences are preferred, this is obtainable by nor-
malizing against known amounts of calibrator sequences that were added during cDNA
library preparations.
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2.5 NGS data processing

When the sequencing results are available, a series of processing steps must take place
before the sequencing data is ready to be analysed. First, the reads may include adapter
remnants, and these must be removed. To reduce the computational cost and improve
accuracy when processing miRNA data, a typical second step is to merge duplicate reads
to reduce the data size. Third, the reads must be aligned to a reference genome or a set of
known sequences. This section elaborates these three pre-processing steps, briefly presents
the technology available for the different tasks, and explains in detail the algorithm behind
the most commonly used sequence alignment tools.

2.5.1 Adapter removal

The resulting reads from most sequencing platforms are usually longer than miRNAs,
and may contain parts of or the full 3’ adapter ligated to the sequence during cDNA
library preparations. Identification of adapter-containing reads and removal of the adapter
sequences is necessary for obtaining the original RNA sequences, and there is a range of
tools that serve this purpose. These tools differ in accepted input file format, algorithms
and functionality, such as whether reads containing adapter remnants should be discarded
or trimmed, and tolerance of insertions or deletions.

For this work, the exact adapters are known and their position is at the 3’ end of the reads,
resulting in a simplified identification process. All miRNA reads used for this paper was
found to contain at least part of a 3’ adapter, however there are two different scenarios
that come to play. As illustrated in Figure 2.11, the read may either run into the adapter,
or the adapter is within the read. For both scenarios, all remnants of the adapter and
eventual following characters (nucleotides) should be removed.

Figure 2.11: Adapter alignment scenarios. White rectangles are reads, black are adapters
and grey are segments removed. Image adapted and modified from Martin (2011).

In theory, the adapter sequence remnants in the read should have a perfect match with the
known adapter sequence ligated to the read in the cDNA library preparations. However,
due to a non-negligible sequencing error rate in current technology, requiring an exact
match might discard many valid reads. A more preferred approach is to use semi-global
alignments (Gusfield, 1997), which when altered to penalize initial gaps in the read se-
quence, performs better. Cutadapt (Martin, 2011) is a much used command line tool that
implements such a modified semi-global alignment algorithm, and this is the tool used in
this project. Cutadapt computes an optimal alignment between the adapter and the read,
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calculates an alignment error rate and trims or discards the sequence based on whether
the error rate is within defined limits.

2.5.2 Merging of duplicate reads

Duplicate reads are common, and they need to be handled, as processing of a substantial
amount of identical reads in the following, computationally heavy procedure is highly
unnecessary. It is often observed a high degree of duplicates in short RNA processing,
so for this project duplicate handling is essential. The current practise is not to remove
duplicates, but rather merge them and retain information on the amount of identical reads
to use in later analysis.

A tool used for this project is the module fastx_collapser1 from the fastx toolkit, which
accepts either FASTQ or FASTA input formats and collapses identical reads into a single
entry, retaining the total amount of the read in the original data. The entries are sorted
by decreasing expression levels, and each entry is given an identifier, which is usually its
position in the sorted list, followed by the total expression of the read in the sample, as
exemplified in Figure 2.12.

Figure 2.12: Example of fastx_collapser output. The first line of every entry explains the
expression rank of the read in the sample, followed by the total expression separated by
a dash.

2.5.3 Sequence alignment to reference genome

To provide for expression analysis on sequencing data, the high throughput data must be
aligned to a reference genome or a set of annotated sequences to identify where the se-
quences are transcribed from. This is a computationally heavy procedure as high through-
put data is immense, and in attempting to overcome this challenge much research has been
conducted and many different algorithms and platforms for the computation have been
developed. The existing mapping tools have their individual specificities; however they
share many similarities, and most utilize either hash table based algorithms or Burrows-
Wheeler transform (BWT) based algorithms (Schbath et al., 2012). The main challenges
of mapping algorithms are handling the genome size in an efficient manner, allowing for a

1Available from http://hannonlab.cshl.edu/fastx_toolkit/index.html
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defined number of error/mismatches, locating multiple alignment matches and achieving
acceptable performance regarding computational time and memory usage.

In general, hash table based algorithms split the genome into k−mers, find all locations
of each k−mer in the genome and hash the results in a list, essentially creating a hashed
index of the genome. When searching for alignment matches for a read, the read is also
split into k−mers, and a hashing procedure finds the corresponding k−mers in the index,
extracts the possible positions, and accepts a match if succeeding k−mers have succeeding
positions. This approach does not allow for mismatches, demands too much memory,
and as the genome only has four characters and short combinations of these tend to
appear multiple times, it will spend an unnecessary amount of time investigating identical
sequences. Modifications are however available to overcome some of these challenges, such
as only searching for the first 5’ k −mer of a read (a seed) and extending the search if
a match is found (seed and extend), allowing mismatches in only n of the total k −mers
of the read (pigeon hole principle), and using seeds with “don’t care” positions that are
not evaluated in the search (spaced seeds). However, even if the algorithm first searches
for a seed match, with RNA Seq data there is often many hits for a seed and all these
must be extended, thus essentially many identical sequences are processed. The extend
process is also time consuming, as it usually includes a form of dynamic programming for
calculating the distance between the read and the genome segment following the matched
seed. The range of approaches to error handling has proven efficient for finding partly
identical matches; however if the errors are uniformly distributed among the k − mers
or seeds, it will be slow and insensitive. In summary, hash table based algorithms are
not optimal regarding computational time as it scans identical sequences multiple times,
while the error handling is efficient as long as the errors are not uniformly distributed.

While hash table based algorithms efficiently allows for mismatches, BWT based algo-
rithms have a limited error handling ability with a heuristic that do not scale well on
increasing number of errors. However, while hash table based algorithms have great
memory requirements and slow computational times, BWT based algorithms are faster
and more memory efficient, as BWT based algorithms only scan a repeating sequence
once, and have a much more compact genome representation. Newer tools tend to pre-
fer BWT based algorithms (Schbath et al., 2012), an approach taken by a common tool
also used in this project, Bowtie (Langmead, Trapnell, & Pop, 2009). The next section
presents in detail the BWT approach taken by Bowtie.

2.5.3.1 Burrows-Wheeler transform

The Burrows-Wheeler transform was discovered in the 1980s and early 1990s and pub-
lished in Burrows and Wheeler (1994). It was intended for lossless text compression,
and can as such be very efficient for searching in an input text. Burrow-Wheeler trans-
formation of a string is a reversible permutation of the characters in the string. First,
a character x not yet present and lexicographically smaller than any character in S is
appended, and the resulting string is regarded as a cylinder. All cyclical rotations of
S + x are constructed and when lexicographically sorted, the BWT of the string is in the
last column of the resulting Burrows-Wheeler matrix (BWM). Figure 2.13 illustrates this
computation of the BWT of an input string S = ‘CTGAGT’ with x = ’$’.
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Figure 2.13: Burrows-Wheeler transform of string S = ‘CTGAGT’ and x = ‘$’. The
second column holds all permutations of the string S+x, the third column represents the
BWM and the last column the BWT of S.

The BWM has one important property called the Least-First (LF) Mapping, describing
a correlation between the characters in the first and last column of the sorted rotations.
Specifically, the ith occurrence of any character x in the last column, L, corresponds to
the ith occurrence of x in first column, F , as well as in the input string. These LF-links
are utilized when recovering the input string from the transform: the last character of
the input string is the first character in L, so starting at L[0], the LF-link LF [0] returns
the index i of L[0] in F , and the preceding character of the input string is then L[i].
Recursively following these links results in the original string input. See Figure 2.14 for
illustration of recovering the string ‘acaacg’ from the BWT ‘gc$aaac’ using LF-mapping.

Figure 2.14: Recovering the input string of a Burrows-Wheeler transform using LF-
Mapping. Image adapted and modified from Langmead et al. (2009).

When the characters are sorted by their right-context in this manner, the same characters
tend to group together in the last column. When transforming RNA data, there are only
four characters, and as the first column is sorted, it will contain many repetitions of As,
Cs, Gs and Us, in that specific order. All instances need not be maintained, only the
total number of the four characters. When recovering the original sequence or searching
within it, the whole F is not required. Say there are 100 As, 80 Cs, 95 Gs and 120 U’s,
with L[i] being the 60th occurrence of G in L, the LF-mapping is simply 100+80+60 =
240. The same compression of L is possible, although it will contain more entries, as it is
not sorted. As F only has four entries and L is at most the same size of the input string,
the memory footprint is relatively small compared to hash table based approaches.

The searching procedure by LF mapping does not allow for mismatches as only exist-
ing links are investigated, and different approaches have been made to overcome this
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constraint. Bowtie overcomes this by backtracking to a previously matched position, sub-
stitutes the nucleotide with a random one, and continuing the search from that point
forward. To mitigate excessive backtracking, two indexes are used: a ‘forward’ index con-
sisting of the BWT, and a ‘mirror’ index containing the reversed BWT, each index used
for aligning opposing halves of the query. Using the two indexes and a limited number of
allowed mismatches constrains the number of mismatches allowed in one half if already
aligned with mismatches in the other, and reversely, reducing excessive search. Addition-
ally, an upper limit on the number of allowed backtracks are set, and if reached the search
is terminated.

2.6 Rationale

Since the recognition of miRNAs, a still increasing amount of research has been conducted
to attempt to understand the miRNA biogenesis and pathways. Searching for articles
regarding microRNAs in Bibsys Ask1, Pubmed2 or other scientific search engines return
over 100 000 results, illustrating the focus miRNAs have gained the last decade. Most
experiments and research have studied the miRNA biogenesis and miRNA mediated post-
transcriptional regulation, focusing on the mature miRNA sequence, the guide strand,
of the miRNA:miRNA* pair, disregarding the passenger strand miRNA* and assuming
it to be rapidly degraded. The last few years, an increasing number of studies have
focused on the passenger strand (Mah, Buske, Humphries, & Kuchenbauer, 2010) with
results indicating that also these strands have a function other than degradation, and
even coexistence of 5p and 3p guide sequences are being reported (Choo, Soon, Nguyen,
Hiew, & Huang, 2014).

The degradation processes of miRNAs have recieved little attention, due to a perception
of mature miRNAs being stable molecules protected by the Ago protein in the RISC
complex (Zhang, Qin, Brewer, & Jing, 2012), and degradation of passenger strands have
not been of interest. However, the need for a robust miRNA regulation is illustrated by
the large amount of research that connects dysregulation of miRNAs with diseases, where
decay is one of the expected regulatory processes (Ruegger & Grosshans, 2012). 3’ tailing
of guide strands are commonly observed and percieved as markers for miRNAs about to be
degraded, a process which requires the 3’ end of miRNAs to be accessible and not protected
by an Argonaute protein, indicating that the two-state model might be more accurate than
the fixed-end model. The review of Ruegger and Grosshans (2012) presents the current
understanding of miRNA degradation, and based on the scarce research available on
the subject, they conclude that miRNA degradation is a process probably of much higher
significance than assumed, and that the degradation might be influenced by mRNA pairing
which contradicts the current perception of miRNA/mRNA interactions being a one-way
process.

The majority of research on miRNAs has studied RNA sequences filtered on read lengths of
approximately 18-26 nts. This is due to an assumption that shorter reads are degradation
products or Ago2 cleavage products, an assumption commonly agreed upon. The guideline
for RNA-Seq by Farazi et al. (2012) recommends to evict reads not within the range

1http://www.ask.bibsys.no
2http://www.ncbi.nlm.nih.gov/pubmed
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[16,25] nts due to the same assumption, which exemplifies a practice widely used. This
has resulted in a void of research on miRNA sequences smaller than 16 nts.

J.P. Mossin conducted a study in 2014 (Mossin, 2014) with a primary focus on differ-
ential isomiRs, variants of the same miRNA, in high-troughput sequencing data. When
searching for Ago2 cleavage products, he discovered that a group of small ∼10 nt reads
aligned with the 3’ end of mature sequences, which could not be cleavage products nor
explained by previously reported degradation processes. The experiment was performed
on high-throughput sequencing data from mouse, and Mossin proposed an extension of
this particular part of his study to other and bigger datasets to decide whether the re-
sults were significant and reproducible. This was the starting point for my work in Wahl
(2014), where I successfully reproduced Mossins results by studying reads of length 11-
15 nts in the Meister (human) and Lundbæk (mouse) datasets, presented in section 3.2.
I also performed a range of analyses discouraging the current short read assumptions,
concluding that these short reads might be degradation products of unknown processes
and/or results of an unknown biological function.

The work behind this report is an extension of my work in Wahl (2014), where the main
intention is to reproduce my findings on a wider range of datasets. If so, the possibilities
of short reads being either degradation products or results of an unknown biological func-
tion should be further explored. Possible Argonaute dependencies should be investigated,
including any tendencies for a sorting mechanism influencing short read association. Fea-
tures of short reads should be analysed, and an attempt at identifying miRNA features
that may predict short read association of miRNAs should be performed. Any significant
results of these analyses may provide better understanding of the role of miRNAs, the
origin of short reads, and implicate an updated model of miRNA functionality and decay.
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Chapter 3

Data and Methods
The datasets, methods and tools used in this project are briefly presented in this section.

3.1 Reference data

Conducting read mapping in this project has required existing reference data, which has
been obtained from miRBase version 21 (Kozomara & Griffiths-Jones, 2014), the pri-
mary public microRNA sequence repository. The data obtained from miRBase is existing
miRNA hairpins, mature miRNA sequences and miRNA stem-loop structures. The files
available from miRBase contain annotated sequences across multiple genomes, and for
the purpose of this project sequences representing human and mouse were filtered out,
separately. The stem-loop structure data was in a format suitable for visualization only,
and was converted to the more convenient dot-bracket format, where brackets and dots
represent a base pairing or lack of it, respectively. An example of this conversion is pre-
sented in Figure 3.1.

Figure 3.1: Example of conversion from visual stem-loop structure format (a) to dot-
bracket format (b).

3.2 Sample data

The analyses presented in this paper have been conducted on six different sample datasets,
three from mouse and three from human. Five of these are produced by immunoprecipita-
tion (section 2.3.2), while one present data from knock-out experiments on Ago2. Samples
of immunoprecipitated Argonaute proteins are denoted Ago IP, while knock-out data are
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denoted Ago2 KO. Details on each dataset and where it can be accessed are presented in
this section.

3.2.1 Human sample data

Three human datasets were processed, all of which provides immunoprecipitated Arg-
onaute data. The first dataset is a published dataset by Dueck et al. (2012), available at
the NCBI Gene Expression Omnibus1 (GEO) as GSE45506. The experiment aimed to
study miRNAs associating with different Argonaute proteins in human HeLa cells, and
as such they performed IP of Ago 1 through 4 by using antibodies and agarose beads, as
explained in section 2.3.2.1. The samples of interest are Ago1 IP, Ago2 IP and Ago3 IP,
and these comprise the dataset denoted Meister throughout this report.

The second human dataset was published in Rybak-Wolf et al. (2014), produced to study
Dicer targets and binding sites in human and C. elegans. The dataset is available at GEO
as GSE55333, where the samples of interest are Ago2 IP and Ago3 IP. Immunoprecipita-
tion was performed in human embryonic kidney 293 cells by using tagged Ago2 and Ago3
proteins and magnetic beads, as explained in section 2.3.2. The Ago2 IP and Ago3 IP
samples of this dataset will be denoted Rajewsky throughout this report.

The third human dataset was publised in Burroughs et al. (2010), and is available at the
DDBJ Sequence Read Archive2 under accession number DRA000205. The original study
aimed to better define the global contours of 3’ miRNA additions in human THP-1 cells,
and performed IP of Ago1 through 3 by using antibodies and non-magnetic, silica-based
polymer beads. The samples of interest are Ago1 IP, Ago2 IP and Ago3 IP, and these
comprise the dataset denoted Daub throughout this report.

3.2.2 Mouse sample data

The first mouse dataset is a published dataset by Polikepahad and Corry (2013), available
at the NCBI Sequence Read Archives3 by accession number SRA056111. The study aimed
to determine the functional implications of antisense transcript binding to Argonaute
proteins, and performed immunoprecipitation of Ago1 and Ago2 in mouse CD4+ T cells
by using known antibodies. They immunoprecipitated Ago1 and Ago2 three times each,
resulting in 6 individual samples denoted Ago1a IP, Ago1b IP, Ago1c IP, Ago2a IP, Ago2b
IP and Ago2c IP, of which all are of interest and collectively denoted Corry throughout
this report.

The second mouse dataset was published by D. Wang et al. (2012), in association with
studying the functions of individual Argonaute proteins and microRNA activity in mam-
mals. Ago1 through 3 were immunoprecipitated in mouse epidermal cells by using anti-
bodies and agarose beads, and the result is available at the Yi Laboratory webpage4. The
samples of interest are Ago1 IP, Ago2 IP and Ago3 IP, and throughout this report these
will collectively be denoted Rui.

1http://www.ncbi.nlm.nih.gov/geo/
2http://trace.ddbj.nig.ac.jp/dra/index_e.html
3http://www.ncbi.nlm.nih.gov/sra
4http://yilab.colorado.edu/Data.html
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The last mouse dataset was produced by M. Lundbæk, R. Mjelle and P. Sætrom in
2013 in association with yet unpublished work at Department of Cancer Research and
Molecular Medicine at NTNU. Their experiment measured miRNA expression levels in
Ago2 knockout cells and wild type cells, specifically three knockout samples and three wild
type samples from two separate mouse cell lines. Studying these samples may provide
further insight to the functionality of miRNA mediated Ago2 activity. The two cell lines
will be denoted DOC and GH, and the combined data set of 12 samples will be denoted
Lundbæk throughout this report.

3.3 Sample data processing pipeline

The main steps in the pipeline outlined in Farazi et al. (2012) have been followed in this
project. cDNA libraries were already constructed, and the sample datasets used in this
project are the NGS output data from their respective experiments. The data processing
pipeline is illustrated in Figure 3.2, and has the sample data in FASTQ format as input
to the process.

Figure 3.2: Data processing pipeline.

The sample data was already sorted by barcode, so the first step of the pipeline is to
remove adapter remnants from the cDNA library preparations. The adapter sequence of
the sample must be known prior to the operation, and with an adapter sequence A the
trimming is done using Cutadapt with the command shown for step 1 in Table 3.1.

To reduce the computational cost in further steps, the second step removes duplicate
reads and obtains the total count for each read. This is done by collapsing all identical
reads into one entry and maintaining the total expression level for that read in the sample.
No sequence length filtering was applied. The command used for performing this with
fastx_collapser is illustrated in step 2 in Table 3.1, where “–Q 33” declares the correct
format for the quality scores in the input .FASTQ file. The resulting .FASTA file contains
an entry for every unique read with its associated total expression level and rank, and the
entries are sorted on descending expression levels. See Figure 2.12 for an example. During
this process the quality scores of the reads are evicted, as there is no reliable method for
combining quality scores of multiple reads, however requiring exact alignment in the third
step ensures reliability.

The third step is the most common NGS data processing step, in which the reads are
mapped against a reference genome. For the human datasets the reference genome is
all annotated human miRNA hairpins, for the mouse datasets the reference genome is all
annotated mouse miRNA hairpins, both references obtained from miRBase. The mapping
was performed using Bowtie, by first building bowtie indexes of the two sets of hairpins,
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and then aligning the sample dataset against its respective indexes. Bowtie provides
fast and memory-efficient alignment due to, amongst many aspects, a sensitivity and
accuracy compromise. By default, Bowtie reports only one alignment per read, which is
not guaranteed to be the best one, and the default allowed number of mismatches is 2.
Additionally, Bowtie tries to align both the read and its complementary sequence to the
genome, resulting in possibly two alignments from different strands of miRNA hairpins.
Bowtie provides for many user-defined options that modify the default settings, and for
this study the maximum number of mismatches was set to 0 (“-v 0”), all alignments was to
be reported (“-a”) with a maximum number of 100 (“-m 100”), the reported alignments
was to be the best alignments found (“--best”) and reads should only be aligned to
the forward strand (“--norc”). The command line for building the bowtie indexes and
producing read mappings with bowtie is given in step 3.1 and 3.2 in Table 3.1, respectively.

Table 3.1: Tool commands for each step in the data processing pipeline

Step Tool command

1 cutadapt –a A sample.fastq >trimmed.fastq
2 fastx_collapser -i trimmed.fastq -o collapsed.fasta -Q 33
3.1 bowtie-build hairpin_file.fa hsa_index
3.2 bowtie –f hsa_index collapsed.fasta –a –v 0 –m 100 --best --norc > alignments.txt

3.4 Alignments processing

The read alignments identified by Bowtie are not readily interpretable, and scripts were
produced for performing a series of steps to enable flexible analysis of the data. The
alignment data is first parsed and desired information stored in an object-oriented manner,
before a range of aspects are investigated and visualised. The following section describes
this process.

3.4.1 Data parsing

To enable sophisticated analysis, considering only the alignment data is not sufficient.
The annotated miRNA hairpins, their stem-loop structures, and their annotated mature
miRNA sequences are also required, and along with the alignment data this constitutes
the input to the data parsing process. The underlying data structure used for the program
is object oriented, and the program steps are illustrated in Table 3.2.

First, the annotated miRNA hairpins from the genome in question (mouse or human) are
parsed, and each hairpin is represented as a Hairpin object, with its hairpin identity as
object identifier, and the nucleotide sequence as an attribute. For every hairpin parsed,
the corresponding dot-bracket format stem-loop structure is read, and stored as another
attribute of the Hairpin object.
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Table 3.2: Data parsing steps

Step Description

1 Parse annotated miRNA hairpin and stem-loop sequences
2 Parse annotated mature miRNA sequences
3 Parse read alignments
4 Identify mature miRNAs and isomiRs
5 Identify short reads

Second, the annotated mature miRNA sequences are parsed. As there might be multiple
mature sequences and unannotated isomiRs per miRNA hairpin, the identifiers from the
annotated sequences are discarded. Each annotated mature sequence is given a new,
unique identity, containing its corresponding hairpin ID and a suffix consisting of the
total number of mature sequences for that particular hairpin at the time of initialization.
The first mature sequence found for hairpin hsa-mir-23a would have the ID hsa-mir-23a1,
the second hsa-mir-23a2 and so on. Each annotated mature sequence is parsed, given a
new identifier and represented as a MicroRNA object, with its corresponding Hairpin ID,
start index relative to the hairpin, nucleotide sequence, and residential strand stored as
attributes.

The third step is to load the read alignments. First, the read frequency of all alignments
are read and their sum maintained for normalization (see section 3.5 for details). Then,
every alignment entry is parsed, and their information maintained in different data struc-
tures. The length of every alignment is inspected, and if the length is in the range [11,15],
the read is stored as a short read candidate. If the length is in the range [16,25], the read
is investigated as an annotated mature sequence candidate, and if so, the expression level
of the corresponding MicroRNA object is incremented by the normalized read frequency
of the new alignment. If the miRNA candidate is not an annotated miRNA, the read is
stored as an isomiR candidate.

The fourth step has two implementations, and evaluates the list of isomiR candidates.
The alignments can either be run with regard to all templated expressed isomiRs, or it
can regard only the highest isomiR if that isomiR is higher expressed than any annotated
miRNA for the same strand. If all isomiRs are regarded, any sequence in the range [16,25]
aligning to a hairpin with an expression level above 0.5 rpm (see section 3.5) is approved.
If only one possible isomiR is regarded, the isomiR retained is the highest expressed one.
If multiple isomiRs have the same expression level, the priority is an index offset closest
to the annotated sequence, followed by a proximity to sim22 nt length of the sequence,
closest end index to the annotated sequence and lastly, if all prior criterias are equal for
two reads, the smallest one will be retained. In either way, the new isomiRs are saved as
new MicroRNA objects with an ID declaring them unannotated. Following the example
for hairpin hsa-mir-23a in the last paragraph, the ID of an unannotated isomiR would
be hsa-mir-23a5N and hsa-mir-23a3N for 5’ and 3’, respectively. In either run mode,
all annotated and retained isomiRs for the same strand are compared, and the highest
expressed sequence is regarded the mature one, disregarding whether it is annotated or
not, and the strand with the highest total expression level is regarded the guide strand
of the duplex. Finally, if no expressed sequence is found for a hairpin, it is regarded
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unexpressed.

The fifth step is to investigate the short read candidates to identify true short reads and
represent these as short read objects. First, as short reads might align to multiple hair-
pins, short reads aligned to hairpin strands not expressed in the sample are discarded.
Secondly, when the pre-miRNA is cleaved from pri-miRNA, it is not perfectly cleaved at
the mature sequences, and short segments from the pri-miRNA immediately adjacent to
the mature sequences might be included in the pre-miRNA, called miRNA-offset RNAs
(moRs) (Langenberger et al., 2009). Due to this, the short read candidates are evaluated
as possible moRs, and if concluded as such, they are maintained as moRs and discarded
as short reads. Short read candidates are classified as moRs if they have no more than
2 positions overlap with a mature miRNA sequence and resides adjacent to the 5’ end of
the 5’ mature sequence, or in the 3’ end of the 3’ mature sequence. Figure 3.3 illustrates
the different sections of a hairpin.

Figure 3.3: Different sections of a pre-miRNA hairpin, where blue is moRs, yellow is the
pair of mature sequence candidates and green is the hairpin loop.

If the short read candidate is found to be an actual miRNA short read, different attributes
must be identified. First, an alignment is performed to find if the short read aligns best
with the 5’ or 3’ end of the corresponding miRNA sequence, the resulting position being
either ’start’ or ’end’ to avoid confusion with prime definitions. Second, the alignment
offset is found between the short read position and the corresponding boundary of the
mature sequence: if the short read aligns to the start of the sequence, the offset is between
the 5’ end of the short read and the 5’ end of the mature sequence, if it aligns to the end
of the sequence, the offset is defined as the difference between the 3’ end of the short read
and the 3’ end of the mature sequence. See Figure 3.4 for illustration of the alignment
positions and offsets. This alignment is performed only against the mature sequence if
analysis is to regard only the highest miRNA for each strand, however if all isomiRs are
to be evaluated, this alignment must be done against all isomiRs of the corresponding
hairpin strand. The isomiR to which the short read aligns best with is chosen, and if
multiple isomiRs align equally, the highest expressed one is chosen. When the corre-
sponding isomiR or mature sequence is chosen , all features of the short read is defined,
and the alignment is presented as a Shortread object, containing attributes declaring the
corresponding Hairpin ID, MicroRNA ID, nucleotide sequence, expression level, alignment
position, alignment offset, corresponding prime and a Boolean value declaring whether
the read origins from the highest expressed strand of the Hairpin.
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Figure 3.4: Short read alignment to mature sequences. If the shortread is closer to the 5’
end than 3’ of its corresponding mature sequence, it is positioned at the start, otherwise
end. An alignment offset is calculated, and position shifts towards the 5’ end are negative,
towards the 3’ end are positive, as shown for the 3’ strand in the figure. Shortreads are
shown in green, and shortread 1 and 2 will align to the start with a start offset of -2 and
+1, respectively, while shortread 3, 4 and 5 will align to the end, with end offsets of -5,
-2 and 0, respectively.

Finally, all MicroRNA objects are investigated, and annotated sequences not found in the
sample are regarded unexpressed. The resulting data of interest are the Hairpin objects,
MicroRNA objects, and Shortread objects, stored in three separate data structures easily
accessible. These structures enable flexible analysis, which are presented in more detail
in the next section.

3.4.2 Analysis and visualization

The object-oriented presentation of the processed data is accessible for flexible analysis
and visualizations, and for every sample and dataset, a range of analyses are performed.
First, a report is printed containing statistics about the sample, such as the number
of expressed miRNAs, both annotated and unannotated, and the percentage of these
associated with short reads, of which miRNAs residing in the guide strand and passenger
strand are reported separately.

Further, most analyses in this project are done through visualizing correlations between
different aspects of the data. All visualizations are performed using Matplotlib plots (see
section 3.7), and three different plot types are used: bar chart, box-and-whiskers plot
(boxplot), and scatter plot. For most plots the data visualized have been log2 trans-
formed to reduce variance, indicated by labels in the plots. Scatter plots and bar charts
are relatively uncomplicated to interpret as they only represent two-dimensional data,
however boxplots are more complex. Two example boxplot with explanation is given in
Figure 3.5. The boxplot with notches, as presented in the right of the figure, show the
95% confidence interval around the median of the data sample. These are useful when
comparing data sets: if the notches of two boxes do not overlap, the medians of the two
boxes differ with 95% confidence.
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Figure 3.5: Two variants of box-and-whiskers plots. For both, the lower border of the
box represents the first quartile (Q1) of the data sample, the higher border the third
quartile (Q3). The median, Q2, is represented as a line within the box. The length
of the box, IQR, is defined as Q3 − Q1, and is used for calculating the whiskers. The
lower whisker (min) is given by Q1 − 1.5 ∗ IQR, the higher (max) by Q3 + 1.5 ∗ IQR.
Any data points that resides outside this range may be included if desired, and are then
represented as outliers, as illustrated with a circle in the boxplot to the let. Two other
variant, represented by the boxplot to the right, includes notches. Notches represent the
95% confidence interval around the median.

Multiple statistical tests were performed on a subset of the data. Sample-specific tests
were calculated directly on the Shortread objects, while external scripts calculated tests
spanning across multiple samples. For external scripts, the object data needed was written
as a matrix to file in a tabular delimited manner, with attribute factors represented by
columns and reads represented by rows. More details on the statistical method are given
in section 3.6.

3.5 Normalization

For the aligned reads loaded as described in the last section to be comparable with each
other and across samples, a normalization of the read frequencies is necessary. After
collapsing identical reads, each read is only represented once, and the identity of that
read entry contains information on the total expression level from its original sample,
as described in section 2.5.2. After aligning each read to the genome using Bowtie (see
section 3.2), the same read might have aligned to multiple locations in the genome, and
each of these alignments are represented as individual entries in the resulting alignment
data. For each entry, information on how many additional locations the read aligned to
is given.

For this project no sequence length filter is applied as short RNAs are desired, and as
such many short sequences are included in the result. Short RNA sequences may very well
align to multiple locations in the genome, which might introduce noise to the analysis,
thus the frequency count should be corrected for additional matching sites. The corrected
frequency for a single read is given as

Cr = Fr
Lr

(3.1)
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where Fr is the collapsed read frequency, Lr is the total number of aligned locations for
the read, and Cr is the corrected read count for read r.

To enable comparison across samples, the read counts must also be normalized against the
total read count in the sample, which is done following a read-per-million (rpm) scheme
given by

RPM(Cr) = Cr
Ct
∗ 106 (3.2)

where RPM(Cr) is the read-per-million normalized count, Cr is the corrected read count,
and Ct is the total read count within the sample. Throughout all computations and
analyses, the expression level of every read or mature sequences is given as rpm normalized
values.

3.6 Statistical methods

To identify statistically significantly differing features regarding miRNA short reads, dif-
ferent statistical methods have been used. The Wilcoxon signed-rank test are used to
compare single values between data sets, while the ANOVA test is used for complex
comparison of a range of features across data sets.

3.6.1 Wilcoxon signed-rank test

The Wilcoxon signed-rank test was published by Frank Wilcoxon in 1945 (Wilcoxon,
1945), and is a useful model for comparing repeated measurements of related samples,
where the values cannot be assumed to be normally distributed. It compares n paired
absolute values between two samples, and calculates the absolute difference and the sign
of the difference. The resulting differences are sorted in an ascending order, and ranked
from position 1 to n, discarding all values with a difference of zero. The sign are added
to the rank, and the sum of the signed ranks are calculated, resulting in the test statistic
valueW . The null hypothesis of this test is that the median difference of the pairs is zero.
For small n values, the W value is compared against a reference table of Wα,n values, and
the null hypothesis is thrue if W is smaller than the corresponding Wα,n. The reference
table contain pre-defined W values for samples of specific sizes required to reject the null
hypothesis with a certain probability. This probability value, p, denotes the probability
of obtaining the observed signed ranks when the null hypothesis is true, and a significance
level of α of p = 0.05 is used.

3.6.2 Statistical testing across multiple samples

To test for significantly differing features across samples, Fisher’s Analysis of Variance
(ANOVA) was calculated (Fisher, 1925). ANOVA is a collection of complex models for
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comparing group variances for a broad range of feature definitions, including possibili-
ties for error strata. The basic operations of ANOVA is to perform statistical tests to
determine if the means of different variables or samples are equal. ANOVA essentially
calculates means and variances for every factor specified, dividing the variances of two
factors in turn and calculates an F-value for the total data. As F increases, the evidence
for evicting the null hypothesis increases, and this value can be used to calculate a cor-
responding p-value. The output from a computational approach to the ANOVA method
is usually an ANOVA table containing the F-value, degrees of freedom, sum of squares,
mean squares and p-value, and as with the Wilcoxon signed-rank test, the significance
level is set to p = 0.05. The features analysed are short read position, residential strand,
offset from miRNA sequence, the sample condition and associated Argonaute protein, and
the conditional value evaluated is the expression level of short reads.

3.6.3 Implementation of statistical methods

The Wilcoxon signed-rank test was implemented using existing functionality in the SciPy
statistics library, while the ANOVA test was implemented with existing functionality in
the R language library. The data required for the ANOVA test were written to file in
a tabular delimited manner for objects of each sample, to be used by external scripts
when calculating the test. The specific function calls are presented in Table 3.3, and more
information on the libraries is given in the next section.

Table 3.3: Function call for statistical methods.

Test Command Tool

Wilcoxon signed-rank stats.wilcoxon(sample1, sample2) SciPy
ANOVA anova(lm(response ~ formula, data)) R

3.7 Tools and languages

The analysis of aligned sequence data has been implemented using mainly the Python1

programming language, with the additional python based third party libraries SciPy2,
Biopython3, Matplotlib4, and Numpy5. SciPy is a scientific extension to Python, which
includes the statistical library stats utilized for sample specific statistical test in this
project. Biopython is a set of python based tools that simplifies bioinformatics associated
tasks, such as parsing Bowtie output FASTA files (see section 3.2). Matplotlib is a two-
dimensional plotting library used to produce publication quality plots presented in this

1http://www.python.org/
2http://www.scipy.org/
3http://www.biopython.org/
4http://www.matplotlib.org/
5http://www.numpy.org/
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paper. Numpy provides support for multidimensional arrays and high-level mathematical
functions, and has been utilized when calculating the data to be plotted by Matplotlib.

For statistical testing across multiple samples, specifically ANOVA tests (see last section
for details), the R1 programming language was briefly used.

All necessary source code for reproducing the results presented in the next chapter can
be accessed at the online repository, where the input files accessible are the alignment
output files from section 3.4.1 for the Meister, Daub, Rajewsky, Corry, Rui and Lundbæk
data:
https://bitbucket.org/kristwah/mirna-short-reads

1http://www.r-project.org/
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Chapter 4

Results

The most essential results from this project is presented in this chapter. First, statistics
obtained after processing all data sets are presented. Second, the findings of Wahl (2014)
are verified, and a general tendency of short reads aligning to miRNAs with offset 0 is
found for all data sets, along with a coexpression of short reads and miRNAs. Third,
the majority of short read associated miRNAs are found to be within the 20% most
expressd miRNAs, indicating that short reads may be related to miRNA activity in the
cell. Fourth, the terminal nucleotides of miRNAs are studied, revealing a 5’ preference
for Uracil regardless of any short read association, and no consistent preference for a 3’
nucleotide. Fifth, the lengths of short reads and miRNAs are investigated as an attempt
at explaining their origin. Sixth, an attempt at identifying statistically differentiating
features across the data sets are presented. Seventh, a classification scheme for miRNA
hairpins reveals that the vast majority of short read associated miRNAs originates from
hairpins with a clear strand preference, and of these, the majority of short read associated
miRNAs reside in the guide strand. Lastly, the results of repeating all prior analyses by
regarding all expressed isomiRs are presented.

Throughout this chapter, short reads aligning to the 5’ and 3’ end of mature sequences
are denoted start reads and end reads, respectively. Also, all presented analyses are based
on the sample data sets Daub, Corry, Lundbæk, Meister, Rajewsky and Rui, presented in
section 3.2, and will be denoted accordingly.

4.1 Sample data processing

When processing each sample data set as described in section 3.3 and 3.4.1, the resulting
object oriented presentation of the data are readily available for analysis. For each data
set, statistics from the results are retrieved for each sample, including the number of
unique alignments, number of expressed hairpins and miRNAs, the number of expressed
short reads and the share of miRNAs associated with short reads. These statistics will
be presented in this section, to visualize the differences in quantities between the data
sets and aid comparisons between the sets. The statistics for the human and mouse data
sets are presented separately in the following sections. Statistics regarding unannotated
miRNAs represent isomiRs that differ from the annotated mature sequences provided from
miRBase, as described in Section 3.4.1. The statistics presented are the mean values from
all subsamples of each data set; the sample-specific values, mean and standard deviations
are presented in Appendix A.
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4.1.1 Processing of human sample data

This section presents results from the processing of the three human sample data sets
Meister, Daub and Rajewsky, described in Section 3.2.1. The number of annotated hair-
pins and mature miRNAs for the human genome is 1,865 and 2,562, respectively. A
presentation of the average values from all samples of each data set is presented in Table
4.1.

The number of unique alignments differ drastically between the data sets, as well as the
minimum absolute expression level of the top ten most abundant reads of each sample,
with 99,834 in Meister, 56,001 in Daub and 511,611 in Rajewsky. All other values are
quite similar for Meister and Daub, while Rajewsky show different trends. The number of
expressed annotated hairpins and miRNAs, unannotated sequences, and short reads, are
more than doubled for Rajewsky compared to Meister and Daub, probably due to higher
read depth of its samples. However, the share of expressed sequences that are associated
with short reads are similar for all data sets, indicating a correlation between expressed
miRNAs and expressed short reads. For Meister and Daub, Ago2 IP show higher numbers
of short reads than Ago1 IP and Ago3 IP, while for Rajewsky, Ago3 IP show the highest
numbers. The Rajewsky data was produced by tagging Ago2 and Ago3 proteins in the
sample cell, and as discussed in Section 2.3.2.2, immunoprecipitating tagged proteins
might not provide true, biological reads. Additionally, the sequencing depth of this data
set is deeper than the others, and in total this introdues some constraint as to the reliability
of comparisons between Rajewsky and the other data sets. Detailed statistics from each
subsample and the standard deviation of the means are given in tables A.1, A.2 and A.3
in Appendix A.

4.1.2 Processing of mouse sample data

This section contains the results from processing the three mouse sample data sets Corry,
Rui and Lundbæk, described in Section 3.2.2. The number of annotated hairpins and
mature miRNAs for the mouse genome is 1,185 and 2,112, respectively. A presentation
of the average statistics from all samples of the Corry and Rui data sets are presented in
Table 4.2. The number of unique alignments differs drastically between the two data sets,
along with the top ten most abundant reads in the different samples. Even with lower
unique alignments, a greater number of annotated and unannotated miRNA sequences
are expressed in Rui, while short reads are clearly more frequently observed in Corry,
with a total of 44.6% of all expressed hairpins in Corry being associated with short reads
compared to only 3.4% in Rui. A closer look at the actual short reads in question for
Rui show that the normalized expression levels are lower than the expression levels of
short reads in Corry. The low number of unique short reads for Rui, as well as the low
expression levels of these, renders comparisons between Rui and the other data sets rather
restricted and unreliable. The detailed statistics for each subsample of both data sets are
given in tables A.4, A.5 and A.6 in Appendix A. An interesting observation is that the
standard deviation of the means from the Corry data set is quite high. As Corry contains
triple samples of the same Ago IP, this is surprising, and might illustrate the level of noise
present in the samples.

The Lundbæk data set differs from the others by knocking out Ago2 to enable comparison
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Table 4.1: Statistics from processing the human sample data sets. All numbers presented
are the mean values across all subsamples of each data set. The Alignments row presents
the number of unique alignments from each data set. The top ten most abundant reads
are represented in the Reads row, while the total expression level of mature sequences of
each strand is represented in the Expression row. Short read-association (SR-associated)
is calculated from the set of expressed annotated sequences and unannotated sequences.
When considering mature sequences only, the number of unannotated mature sequences
and corresponding SR-association is given in the Matures rows; when considering all
observed isomiRs, the number of unannotated isomiRs and corresponding SR-association
is found in theIsomiRs rows.

Data set Meister Daub Rajewsky

Alignments Unique 10,961 86,323 34,058

Reads Top 10 99,834 56,001 511,611

Expression 5’ 503,009 236,092 300,813
3’ 96,733 68,953 292,553

Hairpins Expressed 583 (31.3%) 586 (31.4%) 1,308 (70.1%)
SR-associated 193 (33.1%) 202 (34.4%) 439 (33.6%)

MiRNAs Annotated 404 (15.8%) 474 (18.5%) 1,393 (54.4%)

Matures Unannotated 486 482 1,375
SR-associated 220 (24.7%) 238 (24.9%) 611 (22.1%)

IsomiRs Unannotated 2,031 1,503 4,552
SR-associated 499 (20.2%) 508 (25.7%) 1,100 (18.5%)

Short reads Candidates 1,387 1,600 3,011
Actual 1,246 1,412 2,731
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Table 4.2: Statistics from the processing of Corry and Rui data sets. The Alignments
row presents the number of unique alignments from each data set. The top ten most
abundant reads are represented in the Reads row, while the total expression level of ma-
ture sequences of each strand is represented in the Expression row. Short read-association
(SR-associated) is calculated from the set of expressed annotated sequences and unanno-
tated sequences. When considering mature sequences only, the number of unannotated
mature sequences and corresponding SR-association is given in the Matures rows; when
considering all observed isomiRs, the number of unannotated isomiRs and corresponding
SR-association is found in theIsomiRs rows.

Subset Corry Rui

Alignments Unique 157,106 4,522

Reads Top 10 83,082 57,108

Expression 5’ 61,274 423,647
3’ 5,827 72,862

Hairpins Expressed 439 (37.1%) 537 (45.3%)
SR-associated 196 (44.6%) 18 (3.4%)

MiRNAs Annotated 499 (23.6%) 530 (25.1%)

Matures Unannotated 386 447
SR-associated 238 (26.8%) 18 (1.8%)

IsomiRs Unannotated 617 1,849
SR-associated 280 (25.1%) 19 (0.8%)

Short reads Candidates 984 21
Actual 729 20
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of knocked out cells and normal ones, rather than immunoprecipitate Ago2-associated
RNA segments. The statistics obtained after processing this data set are presented in
Table 4.3, where the samples have been grouped into DOC KO, DOC WT, GH KO and
GH WT subsets, representing knockout and wild type of the two cell lines. The number
of unique alignments, as seen in the second row of the table, are similar for all subsets,
and the absolute expression levels of the top ten abundant reads of all subsets were above
approximately 12,000 - 15,000. Generally, the share of expressed hairpins and miRNAs
are quite similar in all subsets, where a slight increase is observed for WT compared to
KO for all numbers except annotated miRNAs in the GH cells. The share of short read-
associated sequences among the expressed sequences is also quite similar, and a slight
increase in the WT cells compared to the KO cells is observed for both cell lines. The
increase in numbers for isomiRs, short read candidates and actual short reads in WT cells
is non-negligible, indicating that Ago2 activity influences the number of unique isomiRs
and the short read frequency in the cell. However, the share of short read-associated
mature miRNAs do not show a similar increase, thus Ago2 cannot be the only cause for
short reads in the cell, and might mostly influence the short read association of lower
expressed isomiRs. The detailed statistics for each subset is given in tables A.7, A.8, A.9
and A.10 in Appendix A. As with Corry, it is interesting to observe that also the triple
samples of same conditions in the Lundbæk set show high SDs, indicating a noise level
that cannot be overlooked.

Considering the differences in data input is important for a reliable fundament of further
comparisons between the data sets. Generally, the human data sets yield higher numbers
of expressed hairpins, expressed miRNAs, isomiRs and short reads than mouse datasets,
regardless of the number of unique alignments. The share of expressed sequences asso-
ciated with short reads is also higher in the human sets. The high standard deviations
found for the repeated samples of Corry and Lundbæk might illustrate a non-negligible
noise level present in the samples. However, the consistent share of short read associated
miRNAs across all samples except Rui indicates a consistent, existing correlation between
short reads and miRNAs.
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Table 4.3: Statistics from processing the Lundbæk data set, divided into DOC KO, DOC
WT, GH KO and GH WT subsets. All numbers presented are the average values across all
samples of each subset. The Alignments row presents the number of unique alignments
from each data set. The top ten most abundant reads are represented in the Reads
row, while the total expression level of mature sequences of each strand is represented
in the Expression row. Short read-association (SR-associated) is calculated from the
set of expressed annotated sequences and unannotated sequences. When considering
mature sequences only, the number of unannotated mature sequences and corresponding
SR-association is given in the Matures rows; when considering all observed isomiRs, the
number of unannotated isomiRs and corresponding SR-association is found in theIsomiRs
rows.

Data set DOC KO DOC WT GH KO GH WT

Alignments Unique 29,895 32,310 28,115 32,626

Reads Top 10 12,689 12,715 15,242 15,173

Expression 5’ 268,898 176,531 285,002 166,034
3’ 74,340 117,001 125,970 127,211

Hairpins Expressed 333 (28.1%) 393 (33.2%) 369 (31.1%) 376 (31.7%)
SR-associated 96 (28.8%) 113 (28.8%) 99 (26.8%) 119 (31.6%)

MiRNAs Annotated 366 (17.3%) 472 (22.3%) 420 (19.9%) 418 (19.8%)

Matures Unannotated 238 286 277 286
SR-associated 109 (18.0%) 128 (16.9%) 112 (16.1%) 133 (18.9%)

IsomiRs Unannotated 1,696 1,813 1,751 1,840
SR-associated 169 (8.2%) 235 (10.3%) 215 (9.9%) 272 (12.0%)

Short reads Candidates 530 726 559 801
Actual 296 448 387 553
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4.2 Verification of findings in Wahl (2014)

The starting point for my work with miRNA short reads was the findings of Mossin (2014),
which I essentially verified by successfully reproducing Mossins findings for the Meister
and Lundbæk data sets in my work in Wahl (2014). In particular, I found that short reads
align well with either the start or the end of mature miRNAs, discouraging a prior belief
that short reads are either products of Ago2 cleavage or degradation. Additionally, I found
that the correlation of short read and miRNA expression is not strictly linear, further
discouraging the prior belief of short reads being degradation products, and indicating
a more complex correlation between short reads and miRNAs. For this project, the
first objective was to reproduce these findings on multiple data sets to further verify
and ensure statistical reliability of earlier findings. This section presents the successful
approach at verifying both short read alignments and coexpression of short reads and
miRNAs. Although both alignments and coexpression results for Meister and Lundbæk
were presented in Wahl (2014), I present them again in this report for a holistic view of
the results and comparison between the data sets.

4.2.1 Short read alignments

The first step of verifying the findings of Wahl (2014) was to align short reads to mature
sequences of all sample data sets and compare the results. The alignments are performed
following the scheme presented in Section 3.4.1. Alignments for the human data sets
are presented in Figure 4.1, with ’Start offset’ denoting the alignment offset for start
reads, and ’End offset’ denoting the alignment offset for end reads. All three human data
sets show a tendency of short reads aligning well to either end of their corresponding
mature sequences. Additionally, higher expression levels for end reads than start reads
are observed in all data sets.

(a) Meister (b) Daub (c) Rajewsky

Figure 4.1: Total short read alignments for the human sample data sets.

Alignments for the mouse data sets are presented in Figure 4.2. The mouse IP data sets,
Corry and Rui, show a high degree of perfect alignments for start reads, and Rui show well
alignment also for end reads while Corry show bad alignments for end reads. The total
expression level of short reads in Rui is drastically lower than any of the other data sets,
in accordance with the quantities reported in Section 4.1, and comparing these results
with the other data sets is imprecise. However, the alignment tendency is still similar,
which is a good indication that short reads, independent of their expression levels, align
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well with mature miRNAs. An interesting observation is that start reads show higher
expression levels than end reads, in contrast to the findings from the human data sets.
The results from the Lundbæk data set show the same tendency for well alignments with
mature miRNAs, and as with the human samples, show higher expression levels for end
reads than start reads. An important observation is that except higher expression levels
for Ago2 WT, there is a lack of significant alignment difference between the Ago2 KO and
Ago2 WT samples, indicating that the short read existence and alignment with mature
sequences are independent of Ago2 activity. Additionally, Ago2 cleavage would result in
equal shares of start and end reads, which is not the case in either Ago2 KO or Ago2 WT
samples.

(a) Corry (b) Rui

(c) Lundbæk KO (d) Lundbæk WT

Figure 4.2: Total short read alignments for the mouse sample data sets.

The results from both human and mouse data sets verify the reported tendency of short
reads aligning well with their corresponding mature miRNAs. All human samples, as
well as the mouse Lundbæk samples, show higher expression levels of end reads than start
reads. The mouse IP samples, Corry and Rui, show higher expression levels for start reads
than end reads, and Corry show overall bad alignments for end reads. The implication
however remain the same: the alignment tendencies are not compatible with the prior
assumptions that short reads are products of either Ago2 cleavage or degradation by
known processes.

A closer investigation of possible differences between the 5’ and 3’ strand of the hairpins
reveal no significant differences in alignments, however all samples show much higher
expression levels for the 5’ strand than the 3’ strand. An exception is the Rui data
set, however the overall short read expression level of this sample is too low to perform
a reliable comparison. The alignment distribution for each strand of all data sets is
presented in figures B.1, B.3, B.5, B.7, B.9 and B.11 in Appendix B.

As discussed in Section 4.1, the data sets are of different size and contain different quan-
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tities and expression levels of miRNAs and short reads. To better visualize the dynamics
of the alignment data, box-and-whiskers-plots were created, as described in Section 3.4.2.
These show the same tendency of short reads aligning well to their corresponding mature
sequences, and also that this alignment is not only true for a small set of highly expressed
short reads, but rather a general tendency of all short reads. Alignment boxplots for all
samples are given in figures B.2, B.4, B.6, B.8, B.10 and B.12 in Appendix B.

The boxplots present the results for all individual subsamples, and were analysed to
investigate any possible Argonaute dependent alignments trends. For Meister, Daub and
Corry, the expression levels were higher for Ago2 than the other Argonautes. Rui and
Rajewsky showed higher levels for Ago1 and Ago3, respectively, however these samples
showed generally lower expression levels and are not readily comparable. No general
tendency for a preference for start or end reads among the Argonautes was observed.

4.2.2 Correlation of short read and miRNA expression

The second step of verifying my findings in Wahl (2014) was to investigate the correla-
tion of short read and miRNA expression. If short reads are degradation products, the
correlation should be linear and hold for all miRNAs. To investigate whether this is true,
the expression levels of all short reads aligned to a mature sequence were summarized
and plotted against the expression level of the corresponding mature sequence. To obtain
a more reliable comparison across data sets, a threshold was set for the expression level
of short reads and mature sequences, discarding all reads with an expression level below
t = 0.5rpm. Both values were log2 transformed before plotted against each other, and a
regression line was calculated for the total set of data points. The results are presented in
Figure 4.3, where Rui is omitted due to too few short reads above the expression thresh-
old. All datasets show an only partly linear relationship, where some highly expressed
miRNAs are associated with lowly expressed short reads and vice versa. This contradicts
the assumption of short reads being degradation products, and verifies and supports the
findings in Wahl (2014).

If short reads are cleavage products, the correlation is expected to be linear, and to
only involve miRNAs from the passenger strand of a miRNA hairpin. When further
analysing the results by comparing the results for the highest and lowest expressed strands,
respectively regarded the guide and passenger strand of a miRNA hairpin, all data sets
show that the vast majority of short read associated miRNAs reside in the guide strand.
Most data sets show a poorly fitted regression line for the passenger strand, indicating
a slight or no causal relationship between the expression of short reads and miRNAs
residing in the passenger strand, further discouraging the assumption of short reads being
cleavage products of Ago2. An interesting note is the observation of a more steep, linear
correlation for end reads than start reads in all samples except Corry and Rui, which has
too few short reads to be evaluated. Also, there seems to be a trend of higher numbers
of end reads than start reads in the same samples. The correlation for the guide strand,
passenger strand, start and end reads for the Daub data set are presented in Figure 4.4
as an example.
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(a) Meister (b) Daub

(c) Rajewsky (d) Corry

(e) Lundbæk KO (f) Lundbæk WT

Figure 4.3: Correlation between expression levels of short reads and their corresponding
mature miRNAs for (a) Meister, (b) Daub, (c) Rajewsky, (d) Corry, (e) Lundbæk KO
and (f) Lundbæk WT.
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(a) (b)

(c) (d)

Figure 4.4: Correlation between the expression levels of short reads and their correspond-
ing mature miRNAs for the (a) guide strand, (b) passenger strand, (c) start reads, and
(d) end reads of the Daub data set.
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4.3 Short read association of miRNAs

The statistics presented in Section 4.1 revealed that for most data sets, the share of
expressed mature sequences associated with short reads ranged from 16% to 26%, thus
only these are represented in the correlation graphs presented in the last section. Further
analysis is required to evaluate the total set of miRNAs, and investigate whether the short
read association of miRNAs is dependent on miRNA expression levels. For each sample,
the total set of expressed miRNAs was dynamically divided into ten equally sized bins,
ranging from the 10% lowest expressed miRNAs to the 10% highest expressed miRNAs.
For each bin, the percentage of its miRNAs associated with short reads was calculated
and plotted in a bar chart. To obtain more reliable comparison across the data sets, a
threshold of t = 0.5rpm for both short read and miRNA expression was used, discarding
all reads with lower expression levels.

As Ago2 is the only Argonaute present in all data sets, the results for Ago2 is presented
in Figure 4.5. The Rui data set is omitted due to too few short reads with expression
level above the threshold. For Corry, the Ago2c sample is representative for the three
Ago2 samples and is presented, the same holds for the GH WT1 sample of Lundbæk.

If short reads are cleavage products, and thus remnants of discarded passenger strands,
they should associate with the lower expressed miRNAs, which is clearly not supported in
any of the samples. Rather, the results show a trend in all data sets where the percentage
of miRNAs associated with short reads increases with the expression level of miRNAs, and
the majority of short read associated miRNAs are found within the top 20% expressed
miRNAs. The most expressed miRNAs in a cell are more likely to perform biological
functions, thus the results indicate that short reads may be related to miRNA activity in
the cell.

By closer investigation, an interesting observation is that the vast majority of short read
associated miRNAs reside in the highest expressed strand, the guide strand, which is not
compatible with short reads being passenger strand cleavage products. Additionally, the
share of the 10% highest expressed miRNAs seem to be greater for the 5’ strand than
the 3’ strand, and accordingly, the share of short read associated miRNAs. This trend
is observed for all five data sets, however it is less clear in Meister and Rajewsky. The
results for the Daub data set are presented in Figure 4.6 as an example.
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(a) Meister Ago2 (b) Daub Ago2 (c) Rajewsky Ago2

(d) Corry Ago2c (e) Lundbæk GH WT1

Figure 4.5: Short read association of miRNAs in relation to miRNA expression levels. All
expressed miRNAs are divided into ten equally sized bins represented by ten bars in the
figure. The share of miRNAs of each bin associated with short reads are represented by
the darker colour of the within the bars.
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(a) Guide strand (b) Passenger strand

(c) 5’ strand (d) 3’ strand

Figure 4.6: Short read association of miRNAs in relation to miRNA expression levels. The
bins are created as in Figure 4.5, with the lighter blue shade within each bar representing
the share of miRNAs and the darker blue shade representing the share of short read
associated miRNAs in the bin belonging to the guide strand (a), passenger strand (b), 5’
strand (c) and 3’ strand (d) for the Daub data set.
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4.4 Terminal nucleotide preferences

As discussed in Section 2.2.3, terminal nucleotides of miRNAs have been studied to in-
vestigate possible preferences of the different Argonautes. In mice, a preference for 3’
adenine and uracil has been reported for Ago1 and Ago2, respectively, while a preference
for 5’ adenine and uracil has been predicted for humans due to structural requirements
of the Argonaute proteins. To investigate whether different terminal nucleotides might
be associated with short read association of miRNAs, the 5’ and 3’ terminal nucleotide of
miRNAs was analysed.

For the human data sets, Figure 4.7 presents the 5’ terminal nucleotides of miRNAs of
four distinct groups: miRNAs with only start reads, only end reads, both start and end
reads and miRNAs without short reads aligned to them. For the analysis an expression
level threshold of rpm = 0.5 was used for both miRNAs and short reads. As expected, the
vast majority of miRNAs with short reads, either start, end, or both, have a 5’ terminal
uracil. An exception is Ago3 in Rajewsky, where uracil accounts for approximately 40%.
An interesting observation is that for all data sets, the miRNAs not associated with short
reads have a different nucleotide distribution than those associated with short reads. If
uracil is important for miRNAs to bind with Argonautes, it may indicate that miRNAs not
capable of binding with Argonautes are also not associated with short reads, and as such,
short reads are associated with miRNAs that are active in the cell. A closer investigation
reveals that the actual expression level of miRNAs without short reads compared to those
associated with short reads are low, corresponding to the findings in Section 4.3 of highly
expressed miRNAs being associated with short reads, introducing some uncertainty to
the reliability of comparisons between the two sets. Still, the pattern is an interesting
observation.

For the Lundbæk data set, all samples follow the same pattern as the human data sets.
The same is observed for Corry, but an important note is that this pattern can only be
verified for miRNAs with start reads as there are hardly any miRNAs with end reads
of an expression above the threshold. The results for Corry and Lundbæk are found in
Appendix C.

Figure 4.8 presents the 3’ terminal nucleotides of miRNAs from the human data sets,
where the same threshold of rpm = 0.5 is used and the groups defined in the same
manner. For the 3’ end, consistent nucleotide preference across the data sets cannot be
found. The nucleotide distribution for Ago2 are quite similar for Meister and Daub, where
the majority of miRNAs associated with short reads have either a 3’ terminal cytosine
or uracil, while miRNAs not associated with short reads seem to have a higher share of
3’ adenine and a lower share of cytosine. Ago1 and Ago3 show no similarities across the
samples, and the Rajewsky set do not share any patterns with any of the other human data
sets. The only pattern found for all samples is that miRNAs without short reads have a
different nucleotide distribution than those with short reads aligned to them. The degree
of difference is not the same in all samples, but still clear. However, as with the 5’ terminal
nucleotides, the group of miRNAs not associated with short reads have a drastically lower
expression level, and comparing the groups introduces some uncertainty to the reliability
of the results. Still, the pattern is interesting and might indicate a functional difference
between miRNAs with and without short reads.
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(a) Meister (b) Daub

(c) Rajewsky

Figure 4.7: 5’ terminal nucleotide preferences of human miRNAs associated with start
reads, end reads, both start and end reads or neither.
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(a) Meister (b) Daub

(c) Rajewsky

Figure 4.8: 3’ terminal nucleotide preferences of human miRNAs associated with start
reads, end reads, both start and end reads or neither.
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For the 3’ terminal nucleotides of the mouse data sets, Lundbæk KO show the same
trends as for 5’ terminal nucleotides, while Lundbæk WT show incosistent results among
its internal samples. Rui and Corry contain too few miRNAs associated with start or
end reads above the threshold to be included in this analysis. The results for Corry and
Lundbæk are found in Appendix C.
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4.5 Analysing short read lengths

When analysing short reads, it would be interesting to investigate whether short reads of
a particular length are more frequent than others. To enable such an analysis, the total
expression level of all short reads of each length within the range 11-15 nucleotides were
summarized and plotted for each length. As in earlier sections, Rui is omitted due to
low expression levels of short reads. Corry reveals a preference for start reads of length
12 and end reads of length 11, Daub for start and end reads of length 11, Rajewsky for
start and end of length 15, while Meister and Lundbæk show less clear preferences. The
distributions are not similar across any multiple data sets, and the results do not provide
any insight regarding the length of short reads. The results for end reads are presented
in Figure 4.9, while the results for start reads are found in Appendix D, Figure D.1.

(a) Meister (b) Daub (c) Rajewsky

(d) Corry (e) Lundbæk

Figure 4.9: The total expression level of end reads of each length within the range 11-15
nucleotides.

Even though the length alone do not seem to be an important feature of short reads,
the length of end reads could have a more sophisticated importance. Short reads are
of length 11-15 nts, and their corresponding miRNAs of approximately 22 nts. The seed
region of miRNAs is the first ~8 nucleotides of the sequence, which implicates a possibility
that end reads of e.g. length 14 is the remaining nucleotides after the seed region of a
miRNA of length 22. To investigate whether this might be true, the difference between
the lengths of end reads and their corresponding mature miRNAs was calculated, and the
total expression level for all end reads of each length difference summarized. The results
are presented in Figure 4.10. Meister seems to have a clear preference for a difference of
8, Daub for 11 and Lundbæk for 8 and 11. Rajewsky and Corry do not show any clear
preference. A closer investigation of the individual samples of each set reveals that all
subsamples of Meister and Daub show a clear preference for 8 and 11 nts, respectively,
while the individual samples of the other data sets show much variation. Taken together,
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(a) Meister (b) Daub (c) Rajewsky

(d) Corry (e) Lundbæk

Figure 4.10: Differences between the length of miRNAs and their associated end reads.
The total expression level of end reads for each length difference is plotted in rpm.

these results are not significant and do not provide any direct insight, however the clear
preference of Daub and Meister are interesting.

Investigating the lengths of short reads and end reads in particular could not provide
any consistent insight into the function or traits of short reads, other than dismiss the
possibility that their lengths are of central importance.
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Table 4.4: ANOVA p-value results

Feature Meister Daub Rajewsky Corry Lundbæk

Ago 0.000795 0.080591 0.814369 0.158942 0.005045
Strand 0.552156 0.000177 0.000281 3.81e-10 0.000643
Position 0.010027 0.284557 0.303438 0.416926 3.83e-10
Offset 0.166807 0.309072 0.179639 4.12e-10 0.410241
Ago + strand 0.167533 0.341845 0.955350 0.818357 0.000742
Ago + position 0.020789 0.736115 0.086723 0.314100 0.848687
Strand + position 0.185666 0.453279 0.554527 0.350389 0.921602
Ago + offset 0.226724 0.899623 0.623590 0.131213 0.995590
Strand + offset 0.034654 0.730168 0.787048 0.000779 0.242640
Position + offset 0.895815 0.385174 0.713991 0.001790 0.205713
Ago + strand + position 0.178897 0.743960 0.236442 0.613452 0.641173
Ago + strand + offset 0.120423 0.993507 0.961543 0.828930 0.998795
Ago + position + offset 0.527726 0.930109 0.327872 0.655669 0.999994
Strand + position + offset 0.064324 0.347805 0.156358 0.097808 0.175154
Ago + strand + position + offset 0.295503 0.849407 0.864046 0.949222 0.999757

4.6 Investigating significantly differentiating features

In the prior sections, tendencies and patterns of short read expression and alignment
to miRNAs have been studied. An approach taken next is an attempt at identifying
statistically significantly differentiating features of short read expression, by calculating
the Analysis of Variance (ANOVA) test as described in Section 3.6.2. The conditional
value to be evaluated is the expression level of each short read, and the features evaluated
for influencing the expression level of a short read are its alignment offset, start/end
position, residential strand, and which Argonaute protein it is associated with. The p-
values from the resulting ANOVA tables are presented in Table 4.4 for all data sets except
Rui, due to its low expression levels of short reads. The significance level is set to p = 0.05,
and values below this threshold are presented in bold.

As seen in the results, only the Argonaute protein, residential strand, position and com-
bination of strand and offset are found statistically significant across multiple data sets.
The Ago protein is found significant in the Meister and Lundbæk data sets, however the
Lundbæk data set represent different cell lines and a knock out of Ago2, rather than differ-
ent Argonautes, and this feature is thus not comparable with the Meister data set. The
position is found significant in the Meister and Lundbæk data set, while the combination
of residential strand and offset is found significant in the Meister and Corry data set.
However, both features generates p-values way above the significance level in the other
three sets, which renders the features not significant on a more global level.

The residential strand of short reads is found significantly different in all data sets except
Meister. This finding is supported by prior results, which revealed higher expression levels
of short reads aligning to the 5’ strand than to the 3’ strand. The total expression level of
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Table 4.5: Total expression level miRNAs from each hairpin strand.

Strand Corry Daub Lundbæk Meister Rajewsky Rui

5’ 367,529 708,216 2,689,325 1,508,977 601,526 1,270,883
3’ 34,853 206,801 1,333,518 290,165 585,016 218,516

each strand is presented in table 4.5, which reveals that all five data sets contain higher
expression levels of miRNAs from the 5’ strand than the 3’ strand, some more than a five-
fold difference. The Wilcoxon signed-rank test provides a p-value of 0.02770, implying a
significant difference between the expression of the 5’ and 3’ strand. This indicates that
the strand itself is not a significant feature, but rather that the expression of short reads
correlates with the expression of miRNAs, regardless of the strand.

The ANOVA results could not provide any consistent significantly differentiating features
for all data sets, however significantly higher expression levels of miRNAs of one strand
was found to yield significantly higher expression levels of short reads for that strand. The
complete ANOVA tables for each data set are found in Appendix E, Figures E.1 through
E.6.
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4.7 Hairpin classification

Prior sections have investigated features of short reads and the correlation of short reads
and miRNAs. In this section, an approach at identifying features of short read associated
miRNAs is presented, attempted by investigating the short read association of miRNA
hairpins in correlation with the hairpin strand preference. For the following subsections,
first a classification scheme for miRNA hairpins based on their strand preference is es-
tablished, second the short read association of the highest and lowest expressed strands
of each class are investigated. Third, the correlation of hairpin and short read expres-
sions are analysed. Fourth, the different short read alignment scenarios for hairpins are
presented, along with an investigation of the correlation between scenarios and hairpin
expression. Finally, the hairpin fold change of the different scenarios are compared.

4.7.1 Classification scheme

For all hairpin classification analyses to be presented, expressed miRNAs are divided into
two classes based on their fold change (FC). A miRNA hairpin is annotated with two
strands, and if both are expressed, the degree of preference for one or the other must
be established. This ratio between the strands of a hairpin is denoted fold change (FC)
throughout this report. The classes used are ’Different’ and ’Equal’, representing the
scenarios where there is a clear differential preference for one strand over the other, and
where there is no such preference. The classification scheme is given by

miRNA ∈
{
E, FC < 10
D, otherwise

(4.1)

where D represents the ’Different’ class and E the ’Equal’ class. The classification thresh-
old is set to FC = 10, where FC is given by

FC = max(rpm5p, rpm3p)
min(rpm5p, rpm3p)

(4.2)

where rpm5p and rpm3p represent the total expression level for the 5’ and 3’ strands of the
miRNA, respectively. Following, a miRNA is of class ’Different’ if the total expression level
of one strand is at minimum ten-fold the total expression level of the other; otherwise it
is of the ’Equal’ class. All miRNA hairpins with only one expressed strand are discarded.

The short read association of miRNAs of the two classes focuses on which strand the
short reads align to. Short reads either align to the highest or lowest expressed strand,
and if the two strands are equally expressed, the 5’ strand is denoted as the highest
expressed strand. Following, hairpins can be associated with short reads on the guide
strand, passenger strand, both strands, or neither strand. An expression level threshold
of rpm = 0.5 is set for all miRNAs and short reads, discarding reads not qualified.
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4.7.2 Short read-association of strands

After classifying all expressed miRNAs as described in the last section, the short read
association of miRNAs is investigated. A miRNA might be associated with short reads in
both strands, the highest or the lowest expressed strand. When plotting the percentage
of miRNAs associated with short reads on either or both strands, the same tendency is
found in all data sets. The results from the Daub data set are presented in Figure 4.11 as
an example, where the percentage of miRNAs associated with short reads is plotted for
all subsamples, and the set size n is printed above the bars for reference. In all data sets,
the vast majority of short read associated miRNAs are of the ’Different’ class, of which
the majority is associated with short reads on the highest expressed strand. MiRNAs
with a clear strand preference are more likely to perform active functions in a cell, as they
are more susceptible to be incorporated into Argonautes, thus the results indicate that
short reads are related to active miRNA hairpins. As in Section 4.3, the majority of short
read associated miRNAs reside in the highest expressed strand, the guide strand that are
incorporated into Argonaute proteins, further supporting a possible perception of short
reads being related to active miRNAs in the cell.

Meister, Rajewsky and Lundbæk show tendencies of higher association of end reads than
start reads, while Daub show no difference and Corry a preference for start reads. Thus,
no consistent preference for start or end reads are found. The results for the other five
data sets are found in Appendix F.1, Figures F.1 through F.5.

4.7.3 Correlation of short read and hairpin expression

The last section identified a trend where miRNAs with a clear strand preference are more
prone to be associated with short reads than miRNAs without a clear strand preference.
To investigate whether there is a difference in also the correlation between the expression
of short reads and hairpins between the ’Different’ and ’Equal’ class, this correlation of
short reads aligning to the lowest, highest and both strands of a hairpin were plotted for
start and end reads, ’Different’ and ’Equal’, separately. The results for all data sets are
found in Appendix F.2, Figures F.6 through F.11.

The vast majority of short read associated hairpins belong to the ’Different’ class, and
as such, the majority of expressed short reads are expected to also be in the ’Different’
class. This is true, however a non-negligible share of the expressed reads reside in the
’Equal’ class in all data sets. Four out of five data sets still show higher expression
levels of hairpins in ’Different’ than ’Equal’ class, the exception being Rajewsky, and the
same four except end reads in Corry show also higher expression levels of short reads in
’Different’ than ’Equal’. The few numbers of short reads aligning to the passenger strand
renders these not suitable for comparison across the sets. The majority of short reads
have been found to align to the guide strand, and as such, these serve the best basis for
comparison. The results for start and end reads were not found significantly different, and
as presented in the last section, the share of short read associated miRNAs is also similar
for start and end reads. Following, this analysis do not separate short reads into start
and end reads. The combined results are presented in Table 4.6, where the correlation
coefficients, regression line slopes and p-values for short reads aligning to the guide strands
of the ’Different’ and ’Equal’ class are summarized and presented separately. The p-value
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(a) End reads in ’Different’ (b) Start reads in ’Different’

(c) End reads in ’Equal’ (d) Start reads in ’Equal’

Figure 4.11: Short read association of miRNAs of classes ’Different’ and ’Equal’ from the
Daub data set. A miRNA can be associated with short reads on its highest and/or lowest
expressed strand, resulting in three groups: highest, lowest and both. The percentage of
miRNAs associated with either is plotted in this figure, with the set size of each subsample
denoted above.
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Table 4.6: Correlation coefficients (r), regression line slopes (s), p-values and n for the
correlation between the expression of short reads aligned to the guide strand and hairpins
of the ’Different’ and ’Equal’ class for all six sample data sets. The p-value represents the
null hypothesis that the slope is zero.

Different Equal
Data set r s p n r s p n

Corry 0.230 0.181 0.229 29 0.879 0.805 0.121 4
Daub 0.374 0.363 0.000 97 0.201 0.155 0.410 19
Lundbæk 0.511 0.384 0.000 460 0.199 0.082 0.0297 119
Meister 0.558 0.491 0.000 81 0.180 0.153 0.474 18
Rajewsky 0.317 0.220 0.015 58 0.623 0.314 0.004 19

represents the probability value of the null hypothesis test that the slope is zero. The
same table for start and end reads separately is found in Appendix F.2, Table F.1.

For the ’Different’ class, the correlation calculations are performed with p-values below
the significance level of p = 0.05 in all data sets except Corry, indicating that the slope
representing the correlations in the other data sets are not zero, and a correlation exists.
When comparing the correlation coefficients across the two classes, Corry and Rajewsky
show higher values in ’Equal’, while the other data sets show a clear preference for ’Differ-
ent’. When comparing regression line slopes between ’Different’ and ’Equal’, the same is
observed: Corry and Rajewsky show steeper slopes in ’Equal’, while the other data sets
show clearly steeper slopes in ’Different’. As expected from the last section, the group size,
n, is much higher in ’Different’ than ’Equal’ for all data sets. An important observation
is the high p-values in the ’Equal’ class compared to ’Different’ for all data sets except
Corry, indicating that a significant correlation of short read and hairpin expression for
the guide strand is found in ’Different’, but not in ’Equal’.

The correlation coefficient is expected to decrease as n increases, as fitting a regression
line to a set of data points is usually harder as the number of points increase. An interest-
ing observation is thus that except for Corry and Rajewsky, the correlation coefficients
generally seem to slightly increase when n increases, and there is not a consistent propor-
tionality between n and r. r seems to be independent of n, possibly implying that the
correlation of short read and hairpin expression is a true biological connection and not
statistical artefacts.

This analysis finds a greater expression level of short reads and hairpins in the ’Different’
class than ’Equal’, and visualizes a clear correlation between the two. This correlation
is found significant in the ’Different’ class except for Corry, and for some of the data
sets also in the ’Equal’ class. When comparing the two classes, the regression line slope
is found steeper in ’Different’ than ’Equal’ for three of the data sets. The correlation
coefficient is found independent of the group size n, indicating that the observations are
more likely to be true observations and not artefacts.
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Table 4.7: Short read alignment scenarios for a hairpin. For following analyses, each
scenario is represented by the colour given in this table.

Scenario Definition Colour

A Short reads only on the passenger strand Green
B Short reads only on the guide strand Blue
C Short reads on both strands Orange
D Short reads on neither strand Red

4.7.4 Hairpin expression of alignment scenarios

The search for features of short read associated miRNAs has so far revealed that the
majority of short read associated miRNAs belong to the ’Different’ class, and especially
reside in the guide strand, and that the expression of short reads and hairpins correlates
in a partly linear manner, especially for the ’Different’ class and with a steeper correlation
in ’Different’ than ’Equal’. The last section only covers the expression of hairpins with
short reads associated with it, when in reality there is a set of hairpin expressions not
yet investigated. Next, the different short read alignment scenarios for a hairpin are
investigated. A miRNA hairpin has two strands, and when both are expressed, there are
in total four possible short read alignment scenarios, given in Table 4.7.

For each scenario, hairpin expressions are plotted in a notched boxplot (section 3.4.2)
separately for ’Different’ and ’Equal’. The results for all data sets are given in Appendix
F.3, Figures F.12 through F.17, while the results for Meister are presented in Figure 4.12
as an example.

For scenario B and D, a first observation is the obvious difference in group size between
the two classes, where short reads yield 81 and 43 hairpins for B and D in ’Different’,
compared to 18 and 84 hairpins in ’Equal’, respectively. Simultaneously, the share of
hairpins in A compared to B is much lower in ’Different’ than ’Equal’, while the share
of hairpins in C compared to D is much lower in ’Equal’ than ’Different’, even though
the expression level of scenario C is generally higher than D. For ’Different’, scenario B
represents the majority of hairpins, while for ’Equal’, scenario D represents the majority.
A very interesting observation is the drastically smaller number of hairpins of scenario A
than B, implicating that hairpins with short reads only on the passenger strand are rare if
there is a clear strand preference. Closer investigations of the short reads aligned to these
hairpins reveal low short read expression levels, and might illustrate the level of noise in
the samples. These observations are consistent across all data sets.

As explained in section 3.4.2, the median of two boxes differs with 95% confidence if their
notches do not overlap. There are in total 16 boxes representing hairpin expressions,
and two different comparisons among these are interesting to investigate: the same sce-
nario between the classes, and the same strand between the scenarios of the same class.
These comparisons have been performed for all data sets, however both Rui, Corry and
Rajewsky contain scenario boxes with n = 0, and comparing the other sets with these
are not always reliable.

Comparisons of the same scenario between the classes did not provide significant findings
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(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal’

Figure 4.12: The expression levels of each hairpin strand of scenario A (green), B (blue),
C (orange) and D (red) for the Meister data set in the ’Different’ and ’Equal’ class.

across all data sets, however when omitting Rajewsky and Corry, neither the passenger
nor guide strand of scenario B overlapped across the classes. The notches for the guide
strand of scenario C only overlapped between the classes for the Meister data set, while
the guide strand of scenario D did not overlap in any data sets. Comparing the same
strand between the scenarios of the same class revealed that no strands of scenario C and
D overlapped in either ’Different’ or ’Equal’. The guide strand of scenario A and B did
not overlap in the ’Difference’ class of any data set except Corry.

In total, this implies that there is a significant difference in expression level of hairpins from
both strands of scenario B, the guide strand of C, and the guide strand of D, between the
’Different’ and ’Equal’ class, indicating that the strand preference of a hairpin significantly
influences its expression level. The short read association of a guide strand was found to
yield significantly different expression levels across scenarios A and B in ’Different’, and
the same was found for both strands of scenarios C and D in both classes.
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4.7.5 Fold change of hairpin groups

The previous section summarized the expression level of each strand of hairpins in the
different scenarios. Next, the strand preference of hairpins of the different scenarios is
analysed by calculating their fold changes (FC), the ratio between the expression level of
its guide and passenger strand. The fold change is known to be a factor for predicting
active miRNAs in a cell, where higher expression levels predict more active miRNAs.
Comparing the fold changes for the different scenarios, and of the different classes, might
yield some insight into whether short read association also might be a factor for predicting
active miRNAs.

For the four scenarios presented in the last section, the fold change of every hairpin is
calculated, log2 transformed and plotted against the log2 transformed expression level of
its guide strand. Note that for this analysis, start and end reads have been combined.
The results for all data sets are found in Appendix F.4, Figures F.18 through F.23, while
the results for Daub are given in Figure 4.13 as an example.

(a) Scenario A and B in ’Different’ (b) Scenario A and B in ’Equal’

(c) Scenario C and D in ’Different’ (d) Scenario C and D in ’Equal’

Figure 4.13: Fold change of scenarios A (green), B (blue), C (orange) and D (red) of the
’Different’ and ’Equal’ class of Meister

The classification threshold of FC = 10 presented in section 4.7.1 is observable in the
figure, as all FC values for ’Different’ class is greater than and all FC values for ’Equal’ are
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less than 3.32, the log2 transform of 10. Scenario A, with small n-values in all data sets,
shows a random distribution in both ’Different’ and ’Equal’, with no visible difference.
Scenario B shows a more linear distribution in the ’Different’ class, while a random distri-
bution in the ’Equal’ class. Scenario C shows random distributions in all sets. Scenario D
shows a partially linear distribution in the ’Different’ class, while a random distribution in
’Equal’. By far, scenario B in ’Different’ reveals the highest fold change values, followed by
scenario C, and scenario D. An interesting observation is the generally lower fold changes
of hairpins of scenario A than B.

In total, no distributions of the ’Equal’ class seem causal, while scenario B and D appear
at minimum partially causal in the ’Different’ class, of which scenario B are both more
linear and contain much higher fold change values. The fold change of a hairpin cannot
alone fully predict the short read association of a miRNA, however the hairpins with
the largest fold changes are associated with short reads in primary the guide strand,
secondary in both. Most hairpins of scenario D in the ’Different’ class have FC values
half the maximum values of scenario B. To some extent, this thus indicates that the
combination of high fold change and high expression levels of a hairpin can predict short
read association of miRNAs.

4.8 Evaluating all expressed isomiRs

All prior analyses have been performed by regarding only the highest expressed miRNA or
isomiR of each annotated hairpin strand, discarding all isomiRs lower expressed. The last
years, the function of isomiRs have gained more research focus, and multiple reports state
that isomiRs may be involved in biological functions just as the mature miRNAs, and
that different isomiRs of the same miRNA might mediate different functions. If multiple
isomiRs and not only the mature sequences perform functions in a cell, and so far my
results indicate that short reads are associated with active miRNAs, it would be interesting
to analyse the effect of including all isomiRs in the analyses. As explained for step four
in Section 3.4.1, the processing of each data set can be done regarding all expressed
unannotated isomiRs above a threshold of rpm = 0.5, essentially aligning short reads to
the isomiR with primarily the best alignment, secondarily the highest expression level.
All prior analyses have been reproduced using these settings, and the results are presented
and discussed in this section: processing statistics, alignments, coexpression of short reads
and isomiRs, short read association of isomiRs, terminal nucleotide preferences, short
read lengths, ANOVA results, short read association of and correlation with isomiRs
based on classification of fold change, and short read alignment scenarios of fold change
classification.

First, the processing statistics for isomiRs are presented in Section 4.1, where the number
of unannotated isomiRs range from 1,500 - 4,550 for the human samples, and 617-1,849 for
the mouse samples, of which all samples contain clearly higher number of isomiRs than
mature sequences. Generally, the share of miRNAs and isomiRs associated with short
reads are reduced, which is expected as the number of isomiRs increase while the number
of short reads are the same. An important note is that earlier, a short read aligning
to a specific strand of a hairpin was only aligned to the mature sequence, resulting in
many short reads aligning to the same sequences. Now, short reads align to the best
sequence, and due to this the Daub data set actually shows an increased share of short
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(a) (b)

Figure 4.14: Short read alignment to isomiRs for the Meister dataset, with total expression
levels (a) and quartile distributions (b).

read associated miRNA sequences, indicating a large group of miRNAs aligning better to
isomiRs than mature sequences.

Second, the alignments presented in Section 4.2.1 are reproduced. The expected outcome
is naturally better alignments, as short reads are now aligned to the best fitted isomiR,
and the results for all data sets support this. The share of short reads aligning with offset
’0’ has drastically increased, and all other offsets, are drastically decreased. Generally, the
quartiles of all offsets except ’0’ has decreased, along with all whiskers and outliers, while
offset ’0’ has increased quartiles, whiskers and outliers, indicating that many of the short
reads earlier not aligning to offset ’0’ now aligns perfectly with another isomiR. As many
of the upper outliers have shifted accordingly, it seems not only lowly expressed short
reads have been affected. If short reads truly represents functional miRNAs, it seems
isomiRs might also be functional. This shift is found in all data sets, and the results are
presented in Appendix G.1, Figures G.1 through G.6. The results for the Meister data
set are presented in Figure 4.14 as an example.

Third, analysing the shift in the correlation of short read and isomiR expression is im-
portant. Short reads aligning perfectly with isomiRs might just illustrate that there are
many lowly expressed isomiRs of the same strand, and at least one of them happens to
align perfectly with a short read. If this is the case, the expected results would be a
non-linear expression correlation, and an increased number of lowly expressed isomiRs
aligning to short reads of random expression levels. All data sets do indeed reveal a
reduced regression line slope for isomiRs, however the distribution is still linear. Addi-
tionally, the isomiRs are not only found at the bottom end of the isomiR expression scale,
but rather evenly distributed. In total, this indicates that indeed some isomiRs might
be lowly expressed and perhaps randomly align well with short reads, however the even
distribution and continued linear correlation rather indicates that many isomiRs truly
correlates with short reads and their function of origin. The majority of short reads still
align to the guide strand, and a slight preference in expression levels for end reads are
observable. The original results for Daub were presented in Figure 4.4, and the updated
results are presented in Figure 4.15 as an illustration of patterns found in all data sets.
The updated results for all data sets are found in G.7.
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(a) (b)

(c) (d)

Figure 4.15: Correlation of short reads and isomiRs for the Daub data set, for the (a)
guide strand, (b) passenger strand, (c) end reads and (d) start reads.
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(a) (b)

(c) (d)

Figure 4.16: Short read association of isomiRs compared to expression levels for the (a)
guide strand, (b) passenger strand, (c) 5’ strand, and (d) 3’ strand for the Daub data set

Fourth, the short read association of isomiRs are expected to be generally lower than
for mature sequences, as the number of miRNA sequences has drastically increased while
the number of short reads is still the same. As reported for the processing statistics, the
share of miRNA sequences associated with short reads has generally decreased. This is
also seen in the updated graphs for short read association, where the share of short read
associated miRNAs is generally lower. An interesting observation is that the decrease
is smaller for the 10% highest expressed isomiRs, which appears more preferred. This
is however not that surprising, as the mature miRNAs still are the highest expressed
miRNAs, and the majority of the additional isomiRs are found in the lower expression
bins. The fact that the short read association of miRNAs and isomiRs still increases with
the expression level supports the prior indications of short read associated isomiRs being
actually functional and not just random sequences that happen to align with short reads.
The prior findings of miRNAs residing in the guide strand being more associated with
short reads are observed also for isomiRs. The results for the Daub data set are presented
in Figure 4.16 as an illustration of the trend found in all data sets.

Fifth, the terminal nucleotides of miRNAs and isomiRs are investigated as in Section
4.4. Other than an observation of isomiRs obtaining similar nucleotide distributions as
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(a) (b)

Figure 4.17: Length difference between end reads and their corresponding isomiRs for the
(a) Daub and (b) Meister data set.

mature miRNAs for both the 5’ and 3’ end, no consistent changes are observed across the
samples. For the Daub data set, the terminal nucleotide preferences of isomiRs related to
their short read association is presented in Figure G.9, and the comparison of terminal
nucleotide distributions of mature sequences and isomiRs are presented in Figure G.8, as
an illustration of the tendencies observed for all data sets.

Sixth, the length of short reads are investigated anew in the same manner as in Section 4.5.
As the set of short reads are the same, the length distributions are identical to the original
results. The difference between isomiR length and end read length is thus potentially
very interesting. If the additional isomiRs are the true aligned miRNA sequences for
short reads, the length difference distribution should be more true and representative of
the actual relationship between short reads and isomiRs. However, as with the original
results, no consistent findings are observed across the data sets. Some data sets obtain a
shift in the preferred length and some obtain a clearer preference for the original length,
however the preferred lengths are still not similar across the sets. The results for Daub
and Meister are presented in Figure 4.17 as an illustration of the differences between the
data sets.

Seventh, the attempt at identifying statistically significantly differentiating features of
short reads performed in Section 4.6 did fail to identify a differentiating feature, but rather
illustrated the expression difference of mature miRNAs between the 5’ and 3’ strand of
hairpins in the samples. The ANOVA test was repeated to include all isomiRs, and the
updated results are presented in Table 4.8. As the set of short reads are still the same,
and rather only the position and offset might have changed, the results should be similar
for most features. As in the original results, the strand does still yield p-values below
the significance level of p = 0.5 in all data sets except Meister, and when comparing
the total expression levels of both strand, the fold change is still similar. However, in
addition to Meister and Lundbæk, now also Corry contain significant p-values for both
the Argonaute and the position of short reads, thus three out of five data sets find these
features significant. This is interesting, and as reported in prior sections, a tendency for
higher expression levels for end reads and steeper correlations between end reads and
miRNAs might support the position being a significant feature, however for Corry, a
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Table 4.8: ANOVA p-value results for isomiRs

Feature Meister Daub Rajewsky Corry Lundbæk

Ago 0.000872 0.090556 0.971286 0.013734 0.007652
Strand 0.555809 0.000246 0.000428 5.26e-11 0.000498
Position 0.009786 0.214910 0.871202 0.000643 2.75e-12
Offset 0.478778 0.555482 0.225339 0.595797 0.097293
Ago + strand 0.160115 0.390001 0.993178 0.295148 0.000292
Ago + position 0.020399 0.683498 0.057967 0.259445 0.860303
Strand + position 0.145760 0.468465 0.119010 0.038085 0.915800
Ago + offset 0.843927 0.956229 0.692706 0.395862 0.999768
Strand + offset 0.094984 0.874761 0.681754 0.020003 0.622750
Position + offset 0.957971 0.785608 0.547024 0.222115 0.368370
Ago + strand + position 0.125507 0.737716 0.163986 0.582698 0.519110
Ago + strand + offset 0.214729 0.991144 0.957237 0.033914 0.999905
Ago + position + offset 0.847583 0.994175 0.368769 0.892783 1.000000
Strand + position + offset 0.255565 0.425632 0.229679 0.043782 0.377377
Ago + strand + position + offset 0.686131 0.956324 0.864973 0.892852 1.000000

preference for start reads are found. No consistent differences between Argonautes have
been found however. Three out of five data sets is not sufficient to conclude the features
significant, and except illustrating the continued preference for 5’ strands, these results
do not provide any new insight.

Eighth, the classification scheme presented in Section 4.7.1 is applied to all isomiR align-
ments, and first the short read association of strand in both the ’Different’ and ’Equal’
class is investigated. The same pattern is found as in the original results of Section 4.7.2,
however the class sizes are updated, and generally, the number of hairpins in the ’Differ-
ent’ class has increased while ’Equal’ has decreased. The correlation of expression of short
reads aligning to the guide strand and their corresponding isomiRs yielded the results pre-
sented in Table 4.9, where compared to the original results in Table 4.6, the slopes of all
data sets except Corry are steeper in D than E. Correlations that evolve more significant
as n increases should statistically be more correct, and this might indicate that there is
indeed a more causal relationship between the expression of short reads and hairpins if
the hairpins has a high fold change.

Nineth, the short read alignment scenarios defined in Section 4.7.4 are applied to the
classification scheme, and the expression of hairpins of each scenario is plotted again for
each class. When compared to the original results, the quartiles of scenarios A and B
are slightly increased for the ’Different’ class of all data sets, while scenarios C and D
are slightly increased for the ’Equal’ class of all data sets. The drastically low number of
hairpins of scenario A is still observable, and the preference of ’Different’ class for scenario
B and ’Equal’ class for scenario D still holds. Figure 4.18 presents the updated results
for the Meister data set as an illustration of the observations in all data sets. As for the
fold changes of the different scenarios in the two classes, there are no changes from the
original results of Section 4.7.5.
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Table 4.9: isomiRs

Different Equal
Data set r s p n r s p n

Corry 0.220 0.201 0.252 29 0.880 0.692 0.120 4
Daub 0.408 0.394 0.000 98 0.194 0.116 0.456 17
Lundbæk 0.532 0.407 0.000 463 0.255 0.103 0.006 115
Meister 0.565 0.527 0.000 82 0.381 0.330 0.146 16
Rajewsky 0.410 0.305 0.001 65 0.492 0.104 0.104 12

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal’

Figure 4.18: The expression levels of each isomiR hairpin strand of scenario A (green),
B (blue), C (orange) and D (red) for the Meister data set in the ’Different’ and ’Equal’
class.
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In total, isomiRs align well with short reads, their expression correlates with short reads,
higher expression levels of isomiRs predict higher association of short reads, the nucleotide
preferences of isomiRs are similar to mature sequences, the strand preference of hairpins
including isomiRs predicts a steeper correlation of short read and hairpin expression, and
the expression of alignment scenarios are slightly increased. These findings indicate that
isomiRs yield more significant results than mature sequences alone, and support prior
reports of isomiRs serving biological functions in the cell.
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Chapter 5

Discussion and evaluation
The rationale for this study, as presented in Section 2.6, was to reproduce and extend my
experiments from Wahl (2014). No prior studies of short reads have been reported, due
to a common assumption that short reads are products of either Ago2 cleavage or known
degradation processes. This chapter will provide a discussion regarding the credibility of
these assumptions and the implications of my findings presented in Chapter 4, and the
discussion is threefold. First, the credibility of the prior assumptions and my findings
in Wahl (2014) are discussed. Second, a discussion of short read and miRNA features
is provided. Third, possible Argonaute dependencies are discussed. Fourth, a novel
model for miRNA activity in relation with Argonaute proteins is presented. Fifth, the
limitations and reliability of the results are discussed, before finally, a conclusion of the
overall findings ends this chapter.

5.1 Credibility of prior assumptions

The results presented in Section 4.2.1 and 4.2.2 verify the findings of Wahl (2014). Short
reads are found to align well with either the start or end of mature miRNA sequences,
and this tendency is found to not only hold for a small subset of miRNAs, but is a
general tendency across all expressed miRNAs. Additionally, the coexpression of short
reads and their associated mature miRNAs are found slightly linear, where the majority
of short reads align to the guide strand, and short reads on the passenger strand yield
random coexpression with miRNAs. These results are found for all data sets, and provide
enhanced significance to the original findings of Mossin (2014) and Wahl (2014).

As discussed in Wahl (2014), the prior assumptions of short reads being either products
of Ago2 cleavage or known degradation processes cannot hold for the observed results.
As the report stated, for these assumptions to hold, the alignment of short reads should
be randomly distributed along the hairpin strands, the coexpression of short reads and
miRNAs should be strictly linear, and short reads should align to passenger strands. If
Ago2 cleavage yielded short reads, there should only be a correlation of short reads and
miRNAs for Ago2 samples, and there should be a significant difference between the Ago2
KO and WT samples of Lundbæk. As the results of all data sets of this study contradict
these requirements, the prior assumptions regarded short reads are strongly discouraged.

In addition to the original analyses in Wahl (2014), results of this study further discourages
the prior short read assumptions. The short read association of miRNAs are found to
increase with the expression level of miRNAs (Section 4.3), and again the majority of
short read associated miRNAs reside in the guide strand. In Section 4.6, the expression of
miRNAs are found to be significantly differentiating for the expression level of short reads.
When applying the fold change classification scheme in Section 4.7, miRNAs with large
fold change values were found to be more prone to short read association, and miRNAs
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with short reads only on the passenger strand were merely found for miRNAs with high
strand preferences. Together, this implies that short reads are associated with highly
expressed guide strands of miRNAs, which is incompatible with the current assumptions
on the origin of short reads.

5.2 Features of short reads associated miRNAs

All observations in this study discourage the prior assumptions of short reads being prod-
ucts of either Ago2 cleavage or known degradation processes. The origin of short reads
and what they actually represent is unknown, and different approaches have been taken
to attempt revealing the nature of short reads and short read associated miRNAs.

Short reads of this study are all within 11-15 nucleotides, align well with miRNAs, and
their expression levels correlate with the expression level of miRNAs. Four data sets
contained higher expression levels of end reads, while two data sets contained higher
expression levels of start reads, thus the position is not found significant on a global
level. However, all three human data sets contained higher end read levels, while the
two mouse IP data sets contained higher start read levels, indicating a possible species
difference. No significant, global miRNA independent features of short reads have been
identified across the data sets, illustrated by the ANOVA results in Section 4.6. Features
of individual short reads do not appear relevant, but rather the features of short read
associated miRNAs.

For all expressed hairpins in all six data sets, the 5’ strand is clearly higher expressed
than the 3’ strand, and the association and expression of short reads are accordingly
higher for the 5’ strand. The expression level of miRNAs were in Section 4.2.2 found to
correlate with the expression level of short reads in a partly linear manner, and in Section
4.6, this correlation was found to be significant. One of the most important, consistent
findings of this study is the significant difference of short read association of the guide
strand compared to the passenger strand. This pattern is found in coexpression analyses,
short read association analyses and miRNA classification by fold change analyses, where
the number of short read associated miRNAs and their expression levels are significantly
higher for the guide strand. In Section 4.7.4, short reads aligning to the passenger strand
of hairpins with clear strand preferences were very rare; passenger strands were mostly
associated with short reads if the hairpin lacked a clear strand preference or if also the
guide strand was associated with short reads. This strongly discourages prior assumptions
of the origin of short reads, and indicates a more significant relationship of short reads
and miRNAs.

Different features and patterns of miRNAs with and without short reads have been anal-
ysed, and in Wahl (2014), an attempt at classifying individual miRNAs based on their
short read association failed. In this study, another approach has been pursued, providing
more significant results. When analysing short read association of miRNAs in Section 4.3,
the vast majority was found within the 20% most expressed miRNAs, and the majority of
these resided in the guide strand. In Section 4.4, miRNAs without short reads were found
to possess a different terminal nucleotide distribution than miRNAs with short reads,
notably with some constraints as to the reliability of the comparison due to drastically
differences in expression levels between the groups of miRNAs. When classifying miRNA
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hairpins based on their strand preference in Section 4.7.2, the vast majority of short read
associated miRNAs was found to originate from hairpins with clear strand preferences,
and of these, the correlation of the expression level of short reads and guide strands were
found more significant and steep in Section 4.7.3. The short read association of hairpin
strands was found to be a differentiating feature for hairpin expression in Section 4.7.4,
and to some degree, higher fold change combined with higher expression levels of hairpins
were found to predict miRNA short reads in Section 4.7.5. All these observations have one
united implication: short reads are mainly associated with biologically active miRNAs.

Traditionally, high expression levels and clear strand preferences are signals of biologically
active miRNAs, and the combination of high fold change and expression levels of guide
strands conventionally predict active miRNAs. If the majority of short reads are asso-
ciated with active miRNAs, then in addition to high expression and fold change values,
short reads can actually be markers for active miRNAs.

5.3 Argonaute dependencies

Possible Argonaute dependencies were initially interesting as short reads were assumed
to partly originate from Ago2 cleavage of passenger strands. From the beginning of my
work with miRNA short reads in 2014, all analyses have included a differentiation on the
associated Ago protein to enable comparisons. In Wahl (2014), I could not determine an
Argonaute independent short read existence, but rather found that different Argonautes
provided different levels of influence on short read expression. In this study I find no results
indicating Ago dependency: there are no consistent terminal nucleotide differences for the
different Argonautes among the data sets, short read alignment distributions are similar,
short read and miRNA coexpressions are similar, length differences of miRNAs and short
reads are similar, short read association of miRNAs are similar, short read association of
different strands of the ’Different’ and ’Equal’ class are similar, and expression level of
short reads aligning to the different Ago proteins are different across the data sets.

The ANOVA results of Section 4.6 identified the Argonaute protein as significant for
the Lundbæk and Meister data set, which were the two data sets analysed in Wahl
(2014), however this feature was not found significant for the other four data sets. The
individual data sets show some variation among its different Argonaute IP samples, which
separately are promising for an existence of Ago dependency, however these differences
are not consistent across the data sets, and can not be concluded as significant. As such, I
find no consistent, global indications of an Argonaute dependency of short read expression
for the data available, however as subsamples of different Agos vary within data sets, I
cannot prove an Argonaute independency of short read expression either.

Even though no consistent differences among the Argonaute proteins have been observed
across the data samples, an important observation is the increased expression levels of
short reads for Ago2 WT compared to Ago2 KO in the Lundbæk data set, presented
in Figure 4.2. This might indicate that the presence of Ago2 influences the expression
of short reads. As short read association is primarily found for the highest expressed
miRNAs, the 75th and 90th percentile of expressed miRNAs of the KO and WT samples
are compared, and the result are found in Appendix H, Table H.1. For the DOC cell line,
both the 75th and 90th percentile is increased for the WT sample compared to the KO

75



5.4. MODIFIED MIRNA MODEL Chapter 5. Discussion and evaluation

sample, and accordingly, the total short read expression level is increased. For the GH
cell line, the percentiles are slightly increased in the KO sample, but not the short read
expression. The DOC samples are genetically identical, whereas the GH cell samples are
from two individuals of different gender, and as such, comparing the KO and WT samples
of DOC are more reliable than GH. The short read alignment distribution is similar for
Ago2 KO and WT from both cell lines. In total this indicates that Ago2 is not critical
for short read expression and alignment, but rather the expression level of miRNAs per
se. This might illustrate that short reads are associated with all three Argonaute proteins
investigated in this study, and that a lack of any one of the three will reduce the level of
short reads.

One drawback of the data sets analysed in this study is the non-negligible difference in
the preparations and methods used to generate the data, a limitation discussed in Section
5.5.1. Different protocols have been used, and different Argonaute proteins are immuno-
precipitated. This does not provide for a solid comparison of such delicate relations as
the Argonaute-short read dependency appears to be. To gain a more reliable, informative
comparison and investigation of Argonaute dependency of short read expression, a more
substantial amount of comparable data is needed.

5.4 Modified model for miRNA activity

The current biogenesis model of miRNAs, as presented in Section 2.2, states that after
the Dicer-TRBP complex cleaves off the pre-miRNA hairpin loop, the miRNA:miRNA*
duplex is loaded into an Ago protein. The Argonaute must then determine which strand
to retain, usually the strand with the thermodynamically less stable 5’ end, a specific
terminal nucleotide preference or base pairing in specific locations, and when the miRNA
strand is selected, the miRNA* strand is evicted. The mature miRNA strand is then
strongly protected by the Argonaute protein, while the miRNA* strand is rapidly de-
graded, resulting in the commonly observed high accumulation of miRNAs compared to
miRNA*s. Short reads are assumed to be the remnants of different stages of this degra-
dation of the miRNA* strand. The results of this study have firmly established that the
majority of the observed short reads align to miRNA sequences rather than miRNA* se-
quences, and following, the current model is an insufficient representation of the reality of
miRNA biogenesis. In this section, I first present a modified model based on the results of
this study. Following, whether the results of this study supports the model is discussed.
Lastly, a brief discussion on existing literature supporting the model and its implications
are presented.

5.4.1 Model definition

Based on the results of this study, I suggest a modified model of miRNA activity and
degradation, presented in Figure 5.1. The figure illustrates four scenarios that yield
different origins of short reads. As in the original model, The Dicer-TRBP complex cleaves
off the pre-miRNA hairpin loop, and the resulting miRNA:miRNA* duplex is loaded into
an Argonaute protein, resulting in pre-RISC. Usually, the strand preference is already
destined upon loading, and the 5’ end of the guide sequence is immediately securely
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Figure 5.1: Modified miRNA model based on results of this study, where miRNA and
miRNA* strands are represented in blue and green, respectively. The different origins
of short reads are marked with number, where (1) represents miRNA:miRNA* duplexes
released from Ago, (2) miRNA* strands evicted by maturation of RISC, (3) miRNA
strands evicted from RISC by alteration of seed region, and (4) miRNA strands evicted
from RISC by 3’ alterations.

bound to the MID domain of the Argonaute protein. The duplex is then dissociated,
and the unwinding is done by either cleavage by Ago2, or due to mismatches in specific
locations. However, if the duplex is tightly bound the Argonaute might be unable to
separate the strands, and the whole duplex is released from Ago, illustrated by scenario
1 in the figure.

If the unwinding succeeds, the 5’ end of the guide strand is securely bound in the MID
domain and the 3’ end securely bound in the PAZ domain of the Argonaute, while the
passenger strand is released, illustrated by scenario 2 in the figure. When the guide strand
is incorporated into the mature RISC, the miRNA mediated gene regulation is carried
out by base pairing the seed region to target mRNAs. In mature RISC, miRNA 5’ end
is always tightly bound. However, the seed is on open display to bind to mRNAs, and
though not validated by any experiments, this might enable the seed region to be cleaved
and modified by nucleases in the cell. If so, the remaining miRNA sequence would be
released from Ago, illustrated by scenario 3 in the figure.

Following the two-state model presented in Section 2.2.3, the miRNA 3’ end is released
from Ago during base pairing with mRNA, enabling commonly observed 3’ modifications.
Additions of 3’ adenine or uracil are common, as well as removal of terminal nucleotides.
When the 3’ end of the miRNA is altered, the Argonaute may reject rebinding the 3’ end,
and the whole sequence is released, illustrated by scenario 4 in the figure.

Following this model, short reads found in a miRNA associated sample may originate from
four different scenarios, as illustrated in the figure. The first two scenarios leave either the
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passenger strand or both strands in the cell, unprotected and subject to degradation by
multiple nucleases, and might be both cleaved, trimmed and modified. If the passenger
strand of scenario 2 is evicted from Ago2, it is already cleaved before eviction. These
miRNA and miRNA* sequences might equally yield start and end reads of different,
random alignments. The last two scenarios involve degradation of incorporated mature
miRNAs, where the first yields perfectly aligned end reads by altering the seed region,
and the second yields perfectly aligned start reads by trimming the 3’ end.

Caused by the four scenarios of short read origins, both start and end reads are expected
to be observed, where the two first scenarios might yield random alignments, and the
two last perfect alignments. As guide strands accumulate in significantly higher numbers
than passenger strands, the expression of approximately perfectly aligned guide strand
short reads are expected to be significantly higher than randomly aligned short reads and
passenger strand short reads.

5.4.2 Support for model in results

The modified miRNA model is supported by multiple results of this study. Regarding
short reads, the existence of start and end reads from both strands are observed in all data
sets, and perfectly aligned short reads from the guide strand are much higher expressed
than imperfectly aligned short reads, and short reads from the passenger strand. These
findings support the model, and illustrate the existence of short reads of different origins.
As the guide strand accumulates into higher expression levels, the short read association
of miRNAs are expected to increase with the miRNA expression, which is found in the
results. Hairpins with equal expression of both strands in a sample have been reported
to often actually exist as miRNA:miRNA* duplexes in the cell, not unwinded and not
degraded. Duplexes not easily unwinded and often rejected from pre-RISC might thus
exist in the cell in both duplex and degraded forms, yielding full-length miRNAs of both
strands, and short reads aligning to either end of them both. This is supported by the
findings of this study, as the ’Equal’ class of the hairpin classification based on fold change
values of Section 4.7 actually represents, to some extent, the group of equally expressed
miRNA strands of miRNA:miRNA* duplexes. Additionally, some hairpins might yield
isomiRs of different strands that both can be incorporated into RISC, and as such, equally
expressed pairs of the ’Equal’ class hairpins might both yield short reads through targeting
mRNA. Short reads are observed for the ’Equal’ class, however in lower numbers, and
highest expressed hairpins are those associated with short reads on both strands, further
supporting the model.

In the ’Different’ class, representing hairpins incorporated into mature RISC, the highest
expression levels are observed for hairpins associated with short reads on the guide strand
or both, where the first are greater in numbers than the latter. Few hairpins are associated
with only passenger strand short reads, and might illustrate the level of noise in the data
or an isomiR yielding a different strand preference of an Argonaute, essentially resulting
in a perfectly aligned short read for the passenger strand. Not all hairpins with a clear
strand preference are associated with short reads, which may be caused by the same fact
reducing short reads in the data: the data analysed in this study contain only exact
matches, and modified miRNAs are thus not included. As tailing are common during
degradation, especially in 3’ modifications, a substantial amount of short reads might not
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be present in these analyses.

The tendency for terminal nucleotide differences of miRNAs to be dependent on their
short read association might indicate that inactive miRNAs do not yield short reads,
which is supported by the model. The analysis of differences between miRNA and end
read lengths in Section 4.5 did not reveal a consistent pattern, however after the end read
is released from Ago, it would undergo further trimming and degradation, resulting in
different lengths of end reads. In total, there are no strong discrepancies between the
observations in this study and the suggested model.

5.4.3 Literature support and implications

As discussed in the rationale for this study, there are scarce amounts of literature on
the subject of miRNA degradation. The eviction of miRNA:miRNA* duplexes if the
Argonaute is unable to unwind the duplex is commonly agreed upon, however the process
of degradation and eviction is not understood. The eviction of a passenger strand upon
selection of a guide strand is conventional and frequently reported, where the passenger
strand is cleaved if Ago2 is involved, and rapidly degraded when evicted. The degradation
processes involved is not fully understood.

The model introduces two conditions for yielding short reads of incorporated guide strands.
To yield end reads, the seed region of a miRNA is assumed attacked, of which no signifi-
cant evidence in the literature is found. As of my knowledge however, no evidence exists
of the contrary either, and my findings are supported by the literature review by Ruegger
and Grosshans (2012) which actually presents the possibility of target mRNA binding
of miRNAs to be a factor for miRNA degradation. To yield start reads, the miRNA 3’
end must be exposed for attack. The two-state model accounts for 3’ end exposure, and
releasing of the miRNA 3’ end is reported by multiple experiments. Regarding degrada-
tion processes, 3’ tailing and 3’-to-’5 trimming of miRNAs are reported to be commonly
observed for miRNAs with an extensive complementarity to target mRNAs (Ameres et
al., 2010). If both the seed region and 3’ end of guide strands are exposed, the strand
might yield both start and end reads. The determining factor for what sequence end that
is attacked is unknown, however the level of complementarity between the miRNA and
target mRNA might be of importance.

However scarce, this model is supported by the available literature, and its implications
are intriguing. First, as remarked by Ruegger and Grosshans (2012), if target mRNAs
influence the stability of miRNAs, the current concept of miRNAs regulating mRNAs must
be altered, into a more complex mutual regulation of miRNAs and mRNAs. Second, the
short read association of highly expressed miRNAs implicates that short reads might be
used as markers for biologically active miRNAs, and when combined with fold change
values, a more precise prediction is achieved.

5.5 Evaluation

This section first presents a discussion on the basis of comparison between the data sets,
and an overall presentation of weaknesses and limitations of the analyses presented in
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this report. Second, the strengths and findings supporting reliable patterns are discussed,
concluding which results are not reliable, and which represent true, biological relations.

5.5.1 Limitations

For this study, all six NGS data sets presented in Section 3.2 have been processed as
described in Section 3.3 and parsed as described in Section 3.4.1. As such, all data sets
have been equally processed in my analyses, and should be comparable across the data
sets. However, the procedures and technologies used in the different laboratories to isolate
miRNAs, generate and process the RNA sequencing data, were not identical, and the basis
of comparison might not be fully present.

For the human data sets, immunoprecipitation was performed by using known antibodies
and agarose beads in Meister, known antibodies and polymer beads in Daub, and tagged
Ago proteins and magnetic beads in Rajewsky. For the mouse samples, immunoprecipita-
tion was performed by known antibodies however with unknown bead types in Corry, and
known antibodies and agarose beads in Rui. Lundbæk performed knock out of Ago2, and
provides KO and WT samples of two different cell lines. The starting point for comparing
these data sets is thus uncertain.

A major difference is in the IP procedure performed by Rajewsky compared to the others,
where Ago proteins are tagged and bound to magnetic beads. Magnetic beads are per-
ceived to reduce background noise compared to agarose beads, however tagging proteins
might obscure their natural function and even introduce new functionality to the pro-
teins, and the true relevance of immunoprecipitating tagged proteins is uncertain. As the
Rajewsky data set differs from the other two human data sets in many analyses, both in
number of unique alignments, read depth, and short read expression and behaviour, ruling
out eventual significant differences due to preparations is not possible, and comparison of
the Rajewsky data set with the others are not fully reliable.

The Meister, Daub, Corry and Rui are all produced using antibodies, and non-magnetic
beads. However, the data sets show significant differences, including variations in the
number of unique alignments and read depth, where Rui represents the extreme. Other
unknown parameters might be of influence, such as washing procedures, incubation times
and centrifugation, as well as the technology and parameters used for sequencing. The
extreme difference in unique alignments for Rui indicates specific settings not known,
and the low levels renders complex comparisons with this data set unreasonable. The
Corry data set contain triple samples of supposedly the same procedure and technique,
however the results for the individual samples show great variations, even in the number
of unique alignments and expression level of hairpins, where e.g. a standard deviation of
23,000 is present for the unique alignments of the three duplicate samples of Ago2. Corry
yields different results than the other data sets in multiple analyses of this study, which
might illustrate the unreliable content of this data set or merely the level of noise possibly
present in all data sets.

Caution is advised for comparisons of both Corry, Rajewsky and Rui, and as Lundbæk
does not contain IP data, the base of comparison across all six data sets is not convincingly
strong. The data sets contain IP or KO/WT of different Argonautes, and even though no
significant Ago difference was found, they might not be truly comparable. As comparing
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the data sets in the first place introduces uncertainty, there might actually exist Ago
dependencies not visible, and combining the different Ago samples and comparing the
total samples might enhance the behaviours common for the different Agos, while obscure
behaviours that are not common. This might result in some of the anomalies observed in
the results.

The methodology used in my data processing might also be flawed. Requiring exact match
in sequence alignment was intended to increase accuracy and reduce noise, however this
might also limit the possibility of obtaining holistic results. Requiring exact matches
inhibits non-templated isomiRs and modified reads, such as tailing of short reads, and
thus many interesting sequences might be lacking from the analyses performed in this
study. If start reads are results of guide strands modified and trimmed at the 3’ end
while in RISC, then a significant amount of start reads might not be included in the data,
possibly explaining a tendency for higher expression levels of end reads than start reads
in the human samples.

Another possible flaw of my data processing is the use of expression level thresholds,
where t = 0.5rpm has been consistently used. Whether this threshold is a sufficient
level is unknown to me, however applying a threshold generally introduces a more reliable
basis for comparison across the data sets. Another threshold of question is the fold change
threshold for hairpin classification, where FC = 10 was used. Whether other threshold
values are more realistic in true biological settings are unknown, and there might exist
more sophisticated classification schemes, however the significant difference in fold change
patterns of the different alignment scenarios of hairpins above and below the threshold
indicates a rational classification.

5.5.2 Strengths and reliability

Based on the limitations presented in the last section, finding differing results across
the data sets in many of the analyses presented in this paper is not surprising, such as
nucleotide preferences, short read lengths, significantly differing features, and group size
and expression of alignment scenarios of classified hairpins. However, not all results varied
among the data sets. The alignment of short reads to miRNAs was indisputably well in all
data sets, even in Rui which contain very few short reads. The correlation of short reads
and miRNAs were also slightly linear in all data sets. The share of short read associated
miRNAs were similar for all sets except Rui, and the short read association of miRNAs
increased in accordance with miRNA expression levels for the same data sets. In all five
data sets the expression of short reads and the share of short read associated miRNAs
were greater for the guide strand, and all data sets revealed a tendency for nucleotide
differences among miRNAs without associated short reads. The short read association
of the different strands of the ’Different’ and ’Equal’ class were found to be significantly
different in all data sets, and besides Corry, the correlation of hairpin and short read
expression for the guide strand was found better and steeper in the ’Different’ class.
The short read association of hairpin strands was found differentiating for the hairpin
expression level in all data sets.

In addition to the results from analysing mature miRNAs, when including all templated
isomiRs, most results were similar or more significant. This indicates that even though
the data may be limited, the paramount patterns observed are likely to be true, as they
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converge when additional data is introduced to the analyses. Some exceptions of detailed
analyses exist, illustrating the noise and inaccuracy of compound and complex relation-
ships in the data. However, even though a certain level of noise is likely present, the
paramount patterns are clear and reproducible in all data sets: short reads align well
with miRNAs, almost perfectly when regarding all templated isomiRs, and the majority
of short reads align to highly expressed miRNAs, and especially the guide strand. The
strand preference and fold change of hairpins are found to be strong predictors for short
read association in all data sets, and the coexpression of short reads and miRNAs are
significant in all data sets.

Importantly, no results support the prior assumptions of short reads being products of
either Ago2 cleavage or known degradation processes of passenger strands in the cell.
In total, the concluded findings of this report are reliable, and especially, the presented
modified model of miRNA is supported by the results, independently of the processing
limitations.

5.6 Conclusion

By conducting the experiments of this study, I have not found any evidence supporting
the prior assumptions of short reads being merely products of Ago2 cleavage or known
degradation processes of passenger strands. A more complex relationship of short reads
and miRNAs appear to be present, where the majority of short reads align to guide
strands, and the majority of short read associated miRNAs are the highest expressed
miRNAs of the samples, while the existence of passenger strand short reads and imperfect
aligned short reads also exist in lower numbers. In total, this indicates that there might be
different origins for short reads, and a modified model of miRNA activity and degradation
are presented, based upon the reliable findings of this study. The implication of this model
is that the majority of short reads, which are highly expressed and perfectly aligned, are
markers for biologically active miRNAs in the cell.

Possible Argonaute dependencies of short read expression and alignments are not found
across the data sets. However, the individual samples of the data sets contain variations,
indicating data set specific Argonaute differences, which might not be reproducible among
the data sets due to noise, a constrained base of comparison and the fact that not all data
sets contain the same Argonaute samples. Hence, this study proves neither Argonaute
dependency nor independency of short read expression. However, the paramount patterns
observed and correlation of short reads and miRNAs are existent in all Argonaute samples,
indicating that this is a general relation. Specific features and more complex behaviours
related to specific Argonautes might exist, even though not observable on a global level
in this study.
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Conclusion and future work
The outset for this study was to assess the credibility of my findings in Wahl (2014) as
well as the common assumptions of short reads being merely products of Ago2 cleavage
or degradation of passenger strands. My results and the discussion in the last Chapter
strongly discourage these assumptions, and the findings of Wahl (2014) are verified and
their significance enhanced. Additionally, short reads are found to mainly associate with
the highest expressed miRNAs, especially guide strands of hairpins with clear strand
preferences. The conclusion implicates that rather than being unimportant remnants of
passenger strands, short reads are actually markers for biologically active miRNAs. A
modified model of miRNA activity and degradation based on the results of this study is
presented, where different origins for short reads are elaborated.

The scope of this project has been restricted, and the results highlight potential directions
for further research. First, an important requirement for future work on the subject would
be to reproduce my analysis on data sets with a more reliable base of comparison, espe-
cially regarding Argonaute dependencies. Including more data sets of the same genome
and conduct genome-specific experiments might be an alternative. Second, requiring ex-
act matches omits all non-templated isomiRs and short reads with 3’ tailing, thus the
data analysed in this study might not be complete. Including additional non-templated
reads might yield more significant results, and might enable an interesting analysis of the
differences between start and end reads, where non-templated reads are expected to yield
especially higher numbers of start reads.

Third, the proposed model of miRNA activity and degradation introduces new research
areas. Studies to investigate whether miRNA/mRNA interactions are mutual and not a
one-way process could yield most interesting results, altering the current understanding of
the role of miRNAs. Whether the seed region of incorporated miRNAs actually is prone
to modifications is important to verify the modified model.

Fourth, testing the sanity of my results by analysing an arbitrary set of small RNA
sequences of an independent data set would be interesting. Especially, extracting the
miRNAs associated with short reads should yield highly expressed, functional miRNAs.
Simultaneously, comparing the set of short read associated miRNAs with the set of bio-
logically active miRNAs should result in a high degree of overlapping miRNAs.

Whatever the approach, the goal should be to verify my findings, pursue a substantiated
understanding of miRNA activity and degradation, and perform extensive analyses to
identify more complex relations, features and possible Argonaute dependent behaviours.
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Appendix A

Sample processing statistics

Table A.1: Processing of Meister

Sample Ago1 IP Ago2 IP Ago3 IP Mean SD

Alignments Unique 10,226 13,497 9,159 10,961 2,260

Reads Top 10 141,379 77,654 80,468 99,834 29,399

Expression 5’ 549,286 343,729 616,013 503,009 115,876
3’ 67,927 166,746 55,526 96,733 49,765

Hairpins Expressed 590 (31.6%) 577 (30.9%) 582 (31.2%) 583 (31.2%) 7
SR-associated 178 (30.2%) 224 (38.8%) 177 (30.4%) 193 (33.1%) 27

MiRNAs Annotated 393 (15.3%) 410 (16.0%) 410 (16.0%) 404 (15.8%) 10

Matures Unannotated 484 517 457 486 30
SR-associated 197 (22.5%) 266 (28.7%) 197 (22.7%) 220 (24.7%) 40

IsomiRs Unannotated 1,781 2,612 1,700 2,031 505
SR-associated 447 (20.57%) 669 (22.14%) 380 (18.01%) 499 (20.2%) 151

Short reads Candidates 1,346 1,844 970 1,387 438
Actual 1,183 1,685 870 1,246 411
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Table A.2: Processing of Daub

Sample Ago1 IP Ago2 IP Ago3 IP Mean SD

Alignments Unique 111,448 60,228 87,293 86,323 25,624

Reads Top 10 32,652 98,879 36,471 56,001 30,360

Expression 5’ 129,617 414,433 164,226 236,092 126,895
3’ 42,356 108,970 55,535 68,953 28,803

Hairpins Expressed 487 (26.1%) 716 (38.4%) 556 (29.8%) 586 (31.4%) 117
SR-associated 174 (35.7%) 235 (32.8%) 196 (35.3%) 202 (34.3%) 31

MiRNAs Annotated 409 (16.0%) 562 (21.9%) 452 (17.6%) 474 (18.5%) 79

Matures Unannotated 394 608 444 482 112
SR-associated 199 (24.8%) 278 (23.8%) 237 (26.5%) 238 (24.9%) 40

IsomiRs Unannotated 1,222 1,880 1,407 1,503 339
SR-associated 366 (22.44%) 677 (27.72%) 482 (25.93%) 508 (25.7%) 157

Short reads Candidates 1,232 2,119 1,449 1,600 462
Actual 966 1,980 1,289 1,412 518

Table A.3: Processing of Rajewsky

Sample Ago2 IP Ago3 IP Mean SD

Alignments Unique 31,075 37,041 34,058 4,219

Reads Top 10 544,613 478,609 511,611 33,002

Expression 5’ 290,194 311,432 300,813 10,619
3’ 287,999 297,107 292,553 4,555

Hairpins Expressed 1,306 (70.0%) 1,310 (70.2%) 1,308 (70.1%) 3
SR-associated 471 (36.1%) 406 (31.0%) 439 (33.6%) 46

MiRNAs Annotated 1,378 (53.8%) 1,407 (54.9%) 1,393 (54.4%) 21

Matures Unannotated 1,350 1,400 1,375 35
SR-associated 649 (23.8%) 572 (20.4%) 611 (22.1%) 54

IsomiRs Unannotated 4,598 4,506 4,552 65
SR-associated 1,077 (18.02%) 1,123 (18.99%) 1,100 (18.5%) 33

Short reads Candidates 3,090 2,932 3,011 112
Actual 2,715 2,746 2,731 22
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Chapter A. Sample processing statistics

Table A.4: Processing of Corry Ago1

Sample Ago1a IP Ago1b IP Ago1c IP Mean SD

Alignments Unique 120,849 114,106 154,278 129,744 21,513

Reads Top 10 37,795 19,118 54,278 37,064 14,363

Expression 5’ 22,222 36,802 5,094 21,372 12,959
3’ 3,386 4,859 509 2,918 1,806

Hairpins Expressed 397 (33.5%) 422 (35.6%) 385 (32.5%) 401 (33.8%) 19
SR-associated 155 (39.0%) 197 (46.7%) 197 (51.2%) 183 (45.6%) 24

MiRNAs Annotated 438 (20.7%) 516 (24.4%) 425 (20.1%) 460 (21.8%) 49

Matures Unannotated 328 349 313 330 18
SR-associated 180 (23.5%) 245 (28.3 %) 219 (29.7%) 215 (27.2%) 33

IsomiRs Unannotated 560 834 236 543 299
SR-associated 179 (17.99%) 279 (20.71%) 205 (31.11%) 221 (22.0%) 52

Short reads Candidates 600 957 1,187 915 296
Actual 403 660 804 622 203

Table A.5: Processing of Corry Ago2

Sample Ago2a IP Ago2b IP Ago2c IP Mean SD

Alignments Unique 170,735 210,866 171,799 184,467 22,869

Reads Top 10 122,068 110,303 154,930 129,100 18,885

Expression 5’ 49,607 90,423 163,496 101,175 47,113
3’ 3,951 7,219 15,037 8,736 4,651

Hairpins Expressed 440 (37.1%) 469 (39.6%) 523 (44.1%) 477 (40.3%) 42
SR-associated 184 (41.8%) 214 (45.6%) 228 (43.6%) 209 (43.8%) 22

MiRNAs Annotated 450 (21.3%) 542 (25.7%) 625 (29.6%) 539 (25.5%) 88

Matures Unannotated 404 434 488 442 43
SR-associated 220 (25.8%) 266 (27.3%) 295 (26.5%) 260 (26.5%) 38

IsomiRs Unannotated 461 636 972 690 260
SR-associated 240 (26.37%) 356 (30.25%) 421 (26.38%) 339 (27.6%) 92

Short reads Candidates 739 1,142 1,280 1,054 281
Actual 571 884 1,049 835 243
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Chapter A. Sample processing statistics

Table A.6: Processing of Rui

Sample Ago1 IP Ago2 IP Ago3 IP Mean SD

Alignments Unique 4,624 4,052 4,890 4,522 428

Reads Top 10 56,758 46,702 67,864 57,108 8,643

Expression 5’ 434,002 422,371 414,568 423,647 7,985
3’ 75,758 67,948 74,880 72,862 3,493

Hairpins Expressed 538 (45.4%) 499 (42.1%) 575 (48.5%) 537 (45.3%) 38
SR-associated 25 (4.7%) 14 (2.8%) 14 (2.4%) 18 (3.4%) 6

MiRNAs Annotated 531 (25.1%) 495 (23.4%) 563 (26.7%) 530 (25.1%) 34

Matures Unannotated 432 416 493 447 41
SR-associated 25 (2.6%) 14 (1.5%) 14 (1.3%) 18 (1.8%) 6

IsomiRs Unannotated 1,693 2,005 1,850 1,849 156
SR-associated 26 (1.17%) 15 (0.6%) 15 (0.62%) 19 (0.8%) 6

Short reads Candidates 30 17 17 21 8
Actual 29 16 15 20 8

Table A.7: Processing of Lundbæk DOC KO

Sample DOC KO1 DOC KO2 DOC KO3 Mean SD

Alignments Unique 26,847 24,116 38,722 29,895 7,765

Reads Top 10 10,525 10,574 16,967 12,689 3,025

Expression 5’ 251,266 237,130 318,298 268,898 35,404
3’ 66,373 80,611 76,035 74,340 5,935

Hairpins Expressed 335 (28.3%) 309 (26.1%) 355 (30.0%) 333 (28.1%) 23
SR-associated 93 (27.8%) 82 (26.5%) 112 (31.6%) 96 (28.8%) 15

MiRNAs Annotated 356 (16.9%) 346 (16.4%) 397 (18.8%) 366 (17.3%) 27

Matures Unannotated 244 207 262 238 28
SR-associated 105 (17.5%) 89 (16.1%) 132 (20.0%) 109 (18.0%) 22

IsomiRs Unannotated 1,388 1,439 2,262 1,696 491
SR-associated 159 (9.12%) 148 (8.19%) 200 (7.52%) 169 (8.2%) 27

Short reads Candidates 436 456 698 530 146
Actual 253 246 390 296 81
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Table A.8: Processing of Lundbæk DOC WT

Sample DOC WT1 DOC WT2 DOC WT3 Mean SD

Alignments Unique 29,253 35,432 32,246 32,310 3,090

Reads Top 10 16,784 10,478 10,884 12,715 2,882

Expression 5’ 242,629 126,400 160,564 176,531 48,775
3’ 132,619 96,636 121,748 117,001 15,068

Hairpins Expressed 403 (34.0%) 394 (33.3%) 382 (32.2%) 393 (33.2%) 11
SR-associated 108 (26.8%) 120 (30.5%) 110 (28.8%) 113 (28.8%) 6

MiRNAs Annotated 488 (23.1%) 465 (22.0%) 462 (21.0%) 472 (22.3%) 14

Matures Unannotated 296 274 287 286 11
SR-associated 123 (15.7%) 137 (18.5%) 125 (16.7%) 128 (16.9%) 8

IsomiRs Unannotated 1,959 1,739 1,740 1,813 127
SR-associated 227 (9.27%) 246 (11.2%) 232 (10.54%) 235 (10.3%) 10

Short reads Candidates 647 776 755 726 69
Actual 418 457 469 448 27

Table A.9: Processing of Lundbæk GH KO

Sample GH KO1 GH KO2 GH KO3 Mean SD

Alignments Unique 33,751 24,581 26,014 28,115 4,933

Reads Top 10 16,869 14,835 14,022 15,242 1,197

Expression 5’ 256,876 301,528 296,602 285,002 19,989
3’ 102,106 136,008 139,796 125,970 16,945

Hairpins Expressed 368 (31.1%) 360 (30.4%) 378 (31.9%) 369 (31.1%) 9
SR-associated 109 (29.6%) 94 (26.1%) 95 (25.1%) 99 (26.8%) 8

MiRNAs Annotated 438 (20.7%) 399 (18.9%) 424 (20.1%) 420 (19.9%) 20

Matures Unannotated 265 270 297 277 17
SR-associated 122 (17.4%) 109 (16.3%) 106 (14.7%) 112 (16.1%) 9

IsomiRs Unannotated 1,694 1,777 1,783 1,751 50
SR-associated 233 (10.88%) 204 (9.38%) 207 (9.43%) 215 (9.9%) 16

Short reads Candidates 665 480 531 559 96
Actual 427 351 384 387 38

v
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Table A.10: Processing of Lundbæk GH WT

Sample GH WT1 GH WT2 GH WT3 Mean SD

Alignments Unique 29,658 33,601 34,618 32,626 2,620

Reads Top 10 12,088 16,677 16,755 15,173 2,182

Expression 5’ 130,569 179,545 187,988 166,034 25,313
3’ 107,606 135,196 138,830 127,211 13,941

Hairpins Expressed 355 (30.0%) 392 (33.1%) 381 (32.2%) 376 (31.7%) 19
SR-associated 94 (26.5%) 136 (34.7%) 127 (33.3%) 119 (31.6%) 22

MiRNAs Annotated 388 (18.4%) 429 (20.3%) 438 (20.7%) 418 (19.8%) 27

Matures Unannotated 301 309 248 286 33
SR-associated 108 (15.7%) 152 (20.6%) 140 (20.4%) 133 (18.9%) 23

IsomiRs Unannotated 1,775 1,889 1,855 1,840 59
SR-associated 231 (10.73%) 305 (13.16%) 281 (12.26%) 272 (12.0%) 38

Short reads Candidates 739 845 818 801 55
Actual 486 605 569 553 61
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Appendix B

Short read alignments

B.1 Meister alignments

(a) 5’ strand alignment (b) 3’ strand alignment

Figure B.1: Total short read alignment for the Meister data set, shown for (a) the 5’
strand and (b) the 3’ strand.

(a) Ago1 IP (b) Ago2 IP (c) Ago3 IP

Figure B.2: Alignment boxplots for the Meister data set, shown for (a) Ago1 IP, (b) Ago2
IP and (c) Ago3 IP.
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B.2. DAUB ALIGNMENTS Chapter B. Short read alignments

B.2 Daub alignments

(a) 5’ strand alignment (b) 3’ strand alignment

Figure B.3: Total short read alignment for the Daub data set, shown for (a) the 5’ strand
and (b) the 3’ strand.

(a) Ago1 IP (b) Ago2 IP (c) Ago3 IP

Figure B.4: Alignment boxplots for the Daub data set, shown for (a) Ago1 IP, (b) Ago2
IP and (c) Ago3 IP.
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Chapter B. Short read alignments B.3. RAJEWSKY ALIGNMENTS

B.3 Rajewsky alignments

(a) 5’ strand alignment (b) 3’ strand alignment

Figure B.5: Total short read alignment for the Rajewsky data set, shown for (a) the 5’
strand and (b) the 3’ strand.

(a) Ago2 IP (b) Ago3 IP

Figure B.6: Alignment boxplots for the Rajewsky data set, shown for (a) Ago2 IP and
(b) Ago3 IP.
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B.4. CORRY ALIGNMENTS Chapter B. Short read alignments

B.4 Corry alignments

(a) 5’ strand alignment (b) 3’ strand alignment

Figure B.7: Total short read alignment for the Corry data set, shown for (a) the 5’ strand
and (b) the 3’ strand.

(a) Ago1 IP (b) Ago2 IP

Figure B.8: Alignment boxplots for the Corry data set, shown for (a) the sum of Ago1 IP
samples, (b) the sum of Ago2 IP samples.
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Chapter B. Short read alignments B.5. RUI ALIGNMENTS

B.5 Rui alignments

(a) 5’ strand alignment (b) 3’ strand alignment

Figure B.9: Total short read alignment for the Rui data set, shown for (a) the 5’ strand
and (b) the 3’ strand.

(a) Ago1 IP (b) Ago2 IP (c) Ago3 IP

Figure B.10: Alignment boxplots for the Rui data set, shown for (a) Ago1 IP, (b) Ago2
IP and (c) Ago3 IP.
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B.6. LUNDBÆK ALIGNMENTS Chapter B. Short read alignments

B.6 Lundbæk alignments

(a) 5’ strand alignment (b) 3’ strand alignment

Figure B.11: Total short read alignment for the Lundbæk data set, shown for (a) the 5’
strand and (b) the 3’ strand.

(a) Ago2 KO (b) WT

Figure B.12: Alignment boxplots for the Lundbæk data subsets, shown for (a) Ago2 KO
and (b) WT.
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Appendix C

Nucleotide preferences

(a) Corry (b) Lundbæk KO

(c) Lundbæk WT

Figure C.1: 5’ terminal nucleotide preferences of mouse miRNAs associated with start
reads, end reads, both start and end reads or neither.

(a) Corry (b) Lundbæk KO

(c) Lundbæk WT

Figure C.2: 3’ terminal nucleotide preferences of mouse miRNAs associated with start
reads, end reads, both start and end reads or neither.
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Appendix D

Short read lengths

(a) Meister (b) Daub (c) Rajewsky

(d) Corry (e) Lundbæk

Figure D.1: The total expression level of start reads of each length within the range 11-15
nucleotides.
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Appendix E

Anova results

Figure E.1: Anova results for Meister

Figure E.2: Anova results for Daub
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Chapter E. Anova results

Figure E.3: Anova results for Rajewsky

Figure E.4: Anova results for Corry

Figure E.5: Anova results for Rui
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Figure E.6: Anova results for Lundbæk
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Appendix F

Hairpin classification

F.1 SR association of hairpins

(a) Start reads in ’Different’ (b) End reads in ’Different’

(c) Start reads in ’Equal’ (d) End reads in ’Equal’

Figure F.1: Short read association of miRNAs of classes ’Different’ and ’Equal’ from the
Daub data set.
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F.1. SR ASSOCIATION OF HAIRPINS Chapter F. Hairpin classification

(a) Start reads in ’Different’ (b) End reads in ’Different’

(c) Start reads in ’Equal’ (d) End reads in ’Equal’

Figure F.2: Short read association of miRNAs of classes ’Different’ and ’Equal’ from the
Rajewsky data set.
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Chapter F. Hairpin classification F.1. SR ASSOCIATION OF HAIRPINS

(a) Start reads in ’Different’ (b) End reads in ’Different’

(c) Start reads in ’Equal’ (d) End reads in ’Equal’

Figure F.3: Short read association of miRNAs of classes ’Different’ and ’Equal’ from the
Corry data set.
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F.1. SR ASSOCIATION OF HAIRPINS Chapter F. Hairpin classification

(a) Start reads in ’Different’ (b) End reads in ’Different’

(c) Start reads in ’Equal’ (d) End reads in ’Equal’

Figure F.4: Short read association of miRNAs of classes ’Different’ and ’Equal’ from the
Lundbæk data set.
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Chapter F. Hairpin classification F.1. SR ASSOCIATION OF HAIRPINS

(a) Start reads in ’Different’ (b) End reads in ’Different’

(c) Start reads in ’Equal’ (d) End reads in ’Equal’

Figure F.5: Short read association of miRNAs of classes ’Different’ and ’Equal’ from the
Rui data set.
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F.2. HAIRPIN AND SR CORRELATION Chapter F. Hairpin classification

F.2 Hairpin and SR correlation

(a) End reads in ’Different’ (b) Start reads in ’Different’

(c) End reads in ’Equal’ (d) Start reads in ’Equal’

Figure F.6: Correlation of hairpin and short read expression for the Daub data set.

xxvi



Chapter F. Hairpin classification F.2. HAIRPIN AND SR CORRELATION

(a) End reads in ’Different’ (b) Start reads in ’Different’

(c) End reads in ’Equal’ (d) Start reads in ’Equal’

Figure F.7: Correlation of hairpin and short read expression for the Meister data set.
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F.2. HAIRPIN AND SR CORRELATION Chapter F. Hairpin classification

(a) End reads in ’Different’ (b) Start reads in ’Different’

(c) End reads in ’Equal’ (d) Start reads in ’Equal’

Figure F.8: Correlation of hairpin and short read expression for the Rajewsky data set.

xxviii



Chapter F. Hairpin classification F.2. HAIRPIN AND SR CORRELATION

(a) End reads in ’Different’ (b) Start reads in ’Different’

(c) End reads in ’Equal’ (d) Start reads in ’Equal’

Figure F.9: Correlation of hairpin and short read expression for the Corry data set.
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F.2. HAIRPIN AND SR CORRELATION Chapter F. Hairpin classification

(a) End reads in ’Different’ (b) Start reads in ’Different’

(c) End reads in ’Equal’ (d) Start reads in ’Equal’

Figure F.10: Correlation of hairpin and short read expression for the Rui data set.
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Chapter F. Hairpin classification F.2. HAIRPIN AND SR CORRELATION

(a) End reads in ’Different’ (b) Start reads in ’Different’

(c) End reads in ’Equal’ (d) Start reads in ’Equal’

Figure F.11: Correlation of hairpin and short read expression for the Lundbæk data set.
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F.2. HAIRPIN AND SR CORRELATION Chapter F. Hairpin classification

Table F.1: Correlation coefficients (r), regression line slopes (s), p-values and n for the
correlation between the expression of short reads aligned to the guide strand and hairpins
of (a) the ’Different’ class and (b) the ’Equal’ class for all six sample data sets. The
p-value represents the null hypothesis that the slope is zero.

End reads Start reads
Data set r s p n r s p n

Daub 0.294 0.264 0.009 77 0.355 0.305 0.001 80
Meister 0.510 0.453 0.000 77 0.428 0.286 0.002 50
Rajewsky 0.308 0.219 0.022 55 0.781 0.171 0.022 8
Corry 0.000 nan nan 1 0.228 0.180 0.235 29
Lundbæk 0.449 0.363 0.000 442 0.478 0.201 0.000 174
Rui 0.000 nan nan 1 0.000 nan nan 1

(a) ’Different’ class

End reads Start reads
Data set r s p n r s p n

Daub -0.097 -0.063 0.741 14 0.403 0.236 0.194 12
Meister 0.253 0.177 0.345 16 0.785 0.343 0.001 14
Rajewsky 0.551 0.404 0.018 18 0.439 0.137 0.325 7
Corry 1.000 1.244 nan 2 0.900 0.747 0.100 4
Lundbæk 0.318 0.129 0.001 107 0.046 0.020 0.702 71
Rui nan nan nan 0 nan nan nan 0

(b) ’Equal’ class
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Chapter F. Hairpin classification F.3. ALIGNMENT SCENARIOS

F.3 Alignment scenarios

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal’

Figure F.12: The expression levels of each hairpin strand of scenario A (green), B (blue),
C (orange) and D (red) for the Meister data set in the ’Different’ and ’Equal’ class.
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F.3. ALIGNMENT SCENARIOS Chapter F. Hairpin classification

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal’

Figure F.13: The expression levels of each hairpin strand of scenario A (green), B (blue),
C (orange) and D (red) for the Daub data set in the ’Different’ and ’Equal’ class.
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Chapter F. Hairpin classification F.3. ALIGNMENT SCENARIOS

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal’

Figure F.14: The expression levels of each hairpin strand of scenario A (green), B (blue),
C (orange) and D (red) for the Rajewsky data set in the ’Different’ and ’Equal’ class.
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F.3. ALIGNMENT SCENARIOS Chapter F. Hairpin classification

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal’

Figure F.15: The expression levels of each hairpin strand of scenario A (green), B (blue),
C (orange) and D (red) for the Rui data set in the ’Different’ and ’Equal’ class.
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Chapter F. Hairpin classification F.3. ALIGNMENT SCENARIOS

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal’

Figure F.16: The expression levels of each hairpin strand of scenario A (green), B (blue),
C (orange) and D (red) for the Corry data set in the ’Different’ and ’Equal’ class.
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F.3. ALIGNMENT SCENARIOS Chapter F. Hairpin classification

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal’

Figure F.17: The expression levels of each hairpin strand of scenario A (green), B (blue),
C (orange) and D (red) for the Lundbæk data set in the ’Different’ and ’Equal’ class.
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Chapter F. Hairpin classification F.4. FC OF ALIGNMENT SCENARIOS

F.4 FC of alignment scenarios

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal ’

Figure F.18: Fold change of scenarios A (green), B (blue), C (orange) and D (red) for the
Meister data set.
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F.4. FC OF ALIGNMENT SCENARIOS Chapter F. Hairpin classification

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal ’

Figure F.19: Fold change of scenarios A (green), B (blue), C (orange) and D (red) for the
Daub data set.
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Chapter F. Hairpin classification F.4. FC OF ALIGNMENT SCENARIOS

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal ’

Figure F.20: Fold change of scenarios A (green), B (blue), C (orange) and D (red) for the
Rajewsky data set.
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F.4. FC OF ALIGNMENT SCENARIOS Chapter F. Hairpin classification

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal ’

Figure F.21: Fold change of scenarios A (green), B (blue), C (orange) and D (red) for the
Corry data set.
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Chapter F. Hairpin classification F.4. FC OF ALIGNMENT SCENARIOS

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal ’

Figure F.22: Fold change of scenarios A (green), B (blue), C (orange) and D (red) for the
Lundbæk data set.
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F.4. FC OF ALIGNMENT SCENARIOS Chapter F. Hairpin classification

(a) Scenarios A and B in ’Different’ (b) Scenarios A and B in ’Equal’

(c) Scenarios C and D in ’Different’ (d) Scenarios C and D in ’Equal ’

Figure F.23: Fold change of scenarios A (green), B (blue), C (orange) and D (red) for the
Rui data set.
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Appendix G

IsomiR results

G.1 Alignments

Figure G.1: Short read alignments to all isomiRs in total rpm (left) and quartiles (right)
for the Meister data set

Figure G.2: Short read alignments to all isomiRs in total rpm (left) and quartiles (right)
for the Daub data set
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G.1. ALIGNMENTS Chapter G. IsomiR results

Figure G.3: Short read alignments to all isomiRs in total rpm (left) and quartiles (right)
for the Rajewsky data set

Figure G.4: Short read alignments to all isomiRs in total rpm (left) and quartiles (right)
for the Corry data set

Figure G.5: Short read alignments to all isomiRs in total rpm (left) and quartiles (right)
for the Lundbæk data set
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Chapter G. IsomiR results G.1. ALIGNMENTS

Figure G.6: Short read alignments to all isomiRs in total rpm (left) and quartiles (right)
for the Rui data set
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G.2. SR AND MIRNA CORRELATION Chapter G. IsomiR results

G.2 SR and miRNA correlation

(a) Meister (b) Daub

(c) Rajewsky (d) Corry

(e) Lundbæk

Figure G.7: Correlation between expression levels of short reads and corresponding
isomiRs for (a) Meister, (b) Daub, (c) Rajewsky, (d) Corry and (e) Lundbæk.
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Chapter G. IsomiR results G.3. NUCLEOTIDE PREFERENCES

G.3 Nucleotide preferences

(a) (b)

Figure G.8: The nucleotide distribution of mature sequences and isomiRs for the 5’ (a)
and 3’ (b) strand of hairpins in the Daub data set.

(a) (b)

Figure G.9: Terminal nucleotide preferences of isomiRs associated with start reads, end
reads, both start and end reads or neither for the 5’ (a) and 3’ (b) strand of the Daub
data set.
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Appendix H

Argonaute dependencies

Table H.1: Comparison between the knock-out and wild-type samples of Lundbæk. The
short read column represents the total, normalised expression level of short reads. The ma-
tures column represent the results of regarding only mature sequences, while the isomiRs
column represents results from regarding all isomiRs. For the isomiRs column, the ex-
pression level of all isomiRs of the same miRNA are summarized, for the matures column
the mature sequences of the same miRNA are summarized. For both columns, the values
are log2 transformed, and the 75th and 90th percentile calculated and presented in the
corresponding columns in the table.

Short reads Matures IsomiRs
75th 90th 75th 90th

DOC KO 1,518 7.25 10.63 7.88 11.12
DOC WT 3,735 7.35 11.04 7.95 11.42
GH KO 2,435 7.39 11.06 8.07 11.67
GH WT 3,643 6.96 10.96 7.66 11.80
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