
Geo-enhanced routing in DHT with 
WebRTC
Using WebRTC to build geographically aware 

Distributed Hash Table between browsers.

Rolf Erik Heggem Lekang

Master of Science in Computer Science

Supervisor: Svein Erik Bratsberg, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology



 



Geo-enhanced routing in DHTs with WebRTC

Using WebRTC to build geographically aware
Distributed Hash Tables between browsers.

Author:
Rolf Erik H. Lekang

Supervisor:
Svein Erik Bratsberg

Department of Computer and Information Science
Norwegian University of Science and Technology

2015



ii



Abstract

Peer-to-peer systems have earlier made it possible to do more with the net-
works available than the typical server-client architecture allows. In the last
few years, websites have developed from very static pages to complex dynamic
applications. The web continues to evolve and WebRTC introduces peer-to-
peer communication to the browser and the web applications we run in these
browsers. The web applications can utilize this technology in different ways.
This project moves a known peer-to-peer algorithm, Chord, to the browser as a
proof-of-concept. Moreover, it looks into using geographical location data to en-
hance the routing in a Distributed Hash Table (DHT). This project investigates
the how to build a peer-to-peer system between browsers and how to test the
system during development and after. The project proposes to use simulation
and a scaled test with real browsers to test WebRTC based peer-to-peer applica-
tions. In this project, the browsers ran within Docker containers in data centers
around the world. Both simulations and tests with real browsers can be used in
development as well as evaluation testing. The Docker based real browser tests
were helpful in indicating bugs, however, the environment were hard to debug.
The results from the evaluation tests indicate that the routing enhanced with
knowledge of geographical locations gives a boost in routing performance.
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Sammendrag

Peer-to-peer systemer har tidligere gjort det mulig å oppnå mer med nettverkene
som er tilgjengelig enn det man får til med en klient-tjener arkitektur. De siste
årene har man sett nettsider utvikle seg fra statisk innhold til avanserte dy-
namiske web-applikasjoner. Utviklingen fortsetter, og WebRTC introduserer
peer-to-peer kommunikasjon mellom nettlesere og web applikasjonen vi kjører i
disse nettleserne. Web applikasjonene kan utnytte denne teknologien på forskjel-
lige måter. Dette flytter en kjent peer-to-peer algoritme, Chord, til nettleseren
som et proof-of-concept. I tillegg ser prosjektet på bruk av lokasjonsdata til
forbedring av rutevalg i en distribuert hash-tabell. Videre, undersøker pros-
jektet hvordan man kan utvikle et peer-to-peer system mellom nettlesere og
hvordan man kan teste et slikt system. Prosjektet foreslår å bruke simulasjoner
og skalerte tester med ekte nettlesere til testing av peer-to-peer systemer. I dette
prosjektet kjørte de ekte nettleserne i Docker kontainere i datasentre omkring
i verden. Både simulasjonene og testene mellom flere nettlesere kan bli brukt
under utvikling og til evalueringstesting. Testene med ekte nettlesere i Docker
var nyttig til å indikere feil eller dårlig feilhåndtering, men det var utfordrende
å feilsøke i det miljøet. Resultatene fra evalueringstestene indikerte at ytelsen
av systemet øker ved bruk av geografiske lokasjonsdata til å forbedre rutevalg.

v



vi



Acknowledgement

I would like to thank Professor Svein Erik Bratsberg at the Department of Com-
puter and Information Science at Norwegian University of Science and Technol-
ogy. He has guided the project and given valuable feedback along the way.

vii



viii



Contents
1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Readers manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Peer-to-peer systems . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Structured vs Unstructured peer-to-peer systems . . . . . 4

2.2 Distributed Hash Tables . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Consistent Hashing . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Churn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Web technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Geographical location . . . . . . . . . . . . . . . . . . . . 10

2.3.2 WebSocket: real-time communication between client and
server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Web Storage . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Offline mode . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Asynchronous code in JavaScript . . . . . . . . . . . . . . 13

2.4.2 Promise pattern . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Prototype object . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.4 Node.js and io.js . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.5 Support in browsers . . . . . . . . . . . . . . . . . . . . . 16

2.4.6 Browserify and CommonJS . . . . . . . . . . . . . . . . . 17

2.5 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix



x CONTENTS

2.5.1 Containers and virtual machines . . . . . . . . . . . . . . 17

2.5.2 Docker as a tool in research . . . . . . . . . . . . . . . . . 18

2.5.3 Docker registry . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.4 Headless browsers within docker . . . . . . . . . . . . . . 19

2.6 WebRTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Media communication . . . . . . . . . . . . . . . . . . . . 20

2.6.2 Data communication . . . . . . . . . . . . . . . . . . . . . 20

2.6.3 Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.4 Browser support and frameworks . . . . . . . . . . . . . . 21

2.6.5 Testing WebRTC applications . . . . . . . . . . . . . . . . 23

3 Design 27

3.1 Levels of abstractions . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Chord on WebRTC . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Changes in Chord . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Testing and simulation . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 Logging and testing utilities . . . . . . . . . . . . . . . . . 35

3.5.2 Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Experiments 39

4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Dataset generation . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Retrieval simulation . . . . . . . . . . . . . . . . . . . . . 40

4.2 Real browser experiments . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Retrieval experiment . . . . . . . . . . . . . . . . . . . . . 44

5 Discussion 47

5.1 Geographical enhanced routing . . . . . . . . . . . . . . . . . . . 47

5.2 Building distributed systems with WebRTC . . . . . . . . . . . . 48



CONTENTS xi

6 Conclusion 51

6.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A Software packages 59

A.1 peerjs-rpc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 peerjs-mock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.3 peerjs-rpc-mock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.4 rpc-dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B List of technologies 65



xii CONTENTS



List of Figures
2.1 The highlighted part of the circle shows the key-space assigned

to peer N2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The two figures shows the lookups necessary to find an item stored
on N8 from N1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 A permission prompt shown to ask for the users approval of ge-
ographical location access. . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Example code showing the difference of promises and callbacks . 14

2.5 Sequence diagram for a connection process in WebRTC . . . . . 22

3.1 The development stack of Chord implementation. . . . . . . . . . 28

3.2 The relations between prototype objects. . . . . . . . . . . . . . . 29

3.3 The two figures shows the lookups necessary to find an item stored
on N8 from N1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 The RPC dashboard . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Cumulative timings of 1000 different key location lookups with
evenly distributed geographical location . . . . . . . . . . . . . . 41

4.2 Cumulative timings of 1000 different key location lookups with
random geographical location . . . . . . . . . . . . . . . . . . . . 42

4.3 Cumulative timings of key location lookups with 40 nodes random
geographical location . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Average query time queries of different bit distances . . . . . . . 43

4.5 Cumulative timings of key location lookups with 40 running in
docker containers . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.1 Sequence diagram for a sending process in peerjs-mock . . . . . . 60

A.2 Example of using peerjs-rpc-mock directly . . . . . . . . . . . . . 61

A.3 Example of using peerjs-rpc-mock with require-mock . . . . . . . 62

A.4 Example of using rpc-dashboard . . . . . . . . . . . . . . . . . . 63

xiii



xiv LIST OF FIGURES



List of Tables

4.1 Data on round trip times from [1] . . . . . . . . . . . . . . . . . . 40

4.2 Relevant data from simulations with 1000 nodes . . . . . . . . . 42

xv



xvi LIST OF TABLES



List of Acronyms

API Application Programming Interface.

CDN Content Delivery Network.

CI Continuous Integration.

CPU Central processing unit.

CSS Cascading Style Sheets.

DDoS Distributed Denial-of-service attack.

DHT Distributed Hash Table.

DOM Document Object Model.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

JSEP JavaScript Session Establishment Protocol.

JSON JavaScript Object Notation.

NAT Network address translation.

OS Operating System.

REST Representational State Transfer.

RPC Remote Procedure Call.

RTT round-trip time.

SLA Service Level Agreement.

xvii



xviii List of Acronyms

TTL Time To Live.

VoIP Voice over IP.

W3C World Wide Web Consortium.

WebRTC Web Real-Time Communication.

Xvfb X virtual framebuffer.



1 | Introduction

Peer-to-Peer systems have been used for multiple purposes for several years.
However, most peer-to-peer systems to this date are developed to run directly on
an Operating System. WebRTC introduces a way to build peer-to-peer systems
within the browser. Thus, the browser is a sandboxed environment suitable
for peer-to-peer applications. WebRTC is divided in two separate use cases,
streaming media or sending data. To this day, WebRTC implementations mostly
utilize the media-channel. There are existing solutions for video-conference calls
and streaming of live video. However, the data-channel of WebRTC has had a
lack of attention. The attention is picking up as the WebRTC specification and
libraries around it is further developed. Thus, more proofs-of-concepts are built
to show the benefit from using WebRTC to transfer data.

Most of the proof-of-concepts that have surfaced based on the WebRTC data
channel focuses on privacy, e.g. file-sharing applications that allow users to send
files directly to each other without storing the files on a server. Furthermore,
there is new text chat application, called friends1, which communicate between
the people using it with WebRTC.

Web Real-Time Communication (WebRTC) will probably chance the way users
of applications on the web interacts with each other. It is a young technology
with a lot of promise. This research project investigates the possibilities of
the technology with a proof-of-concept implementation of a known peer-to-peer
application, the Chord Distributed Hash Table (DHT). Moreover, the project
proposes to use the geographical location API in modern browsers to enhance
routing performance. The research has a focus on testing and evaluation of
WebRTC based peer-to-peer applications.

1.1 Motivation

There are two main motivations for this research project. The first is to create
a proof of concept of a peer-to-peer application with WebRTC between web-
browsers, from which requires research on different implementations of WebRTC

1http://moose-team.github.io/friends/
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2 CHAPTER 1. INTRODUCTION

and frameworks created for WebRTC and research on how to test the peer-
to-peer application. The second motivation is to look into how geographical
location might be used to enhance routing in peer-to-peer applications. Both of
these points are related to how the web is evolving with client side applications
that in some use cases could benefit from using peer-to-peer communication,
and furthermore, could benefit from higher performance based on geographical
location.

1.2 Problem definition

Research the possibilities for creating distributed systems with WebRTC by
implementing a proof of concept as a Distributed Hash Table. Furthermore,
use that implementation to check if knowledge of geographical location can help
enhance the routing performance. A part of the research of the use of the
WebRTC stack to build distributed peer-to-peer applications is to find good
strategies for testing the application in terms of correctness of functionality and
performance wise.

RQ1 Is WebRTC suitable for a DHT algorithm, such as Chord?

RQ2 Can the geographical location enhance routing performance in a
Distributed Hash Table?

RQ3 How to build a reasonable test environment for a peer-to-peer application
built with WebRTC?

1.3 Readers manual

The rest of this report is divided into five chapters. Chapter two describes back-
ground knowledge and the state of the art of each concept and technology that
is relevant to this project. Chapter three describes the design of the WebRTC
version of Chord developed in this project. Chapter four describes the experi-
ments performed in this project. The design of the experiments, the execution
of the experiments and the results of the experiments. Chapter 5 discusses these
results, limitations and similar discoveries of the project. Chapter 6 concludes
the information in this report and the results from the research experiments.
In addition to those chapters, the appendices contain relevant information that
is not directly in the scope of the project. Appendix A contains information
about Open-Source JavaScript modules created for this project and their doc-
umentation. Appendix B contains a list and short descriptions of technologies,
frameworks and modules used in this project.



2 | Background

2.1 Peer-to-peer systems

Peer-to-peer systems evolved from the rapid growth of the internet and com-
puter networks. A peer-to-peer system embraces the use of a large quantity of
computing nodes requiring the same information to share that information[2].
In a peer-to-peer system, each peer that needs to send or receive information
communicates directly, or indirectly through a similar node, with the node it
sends to or receives from.

One of the best-known types of peer-to-peer applications is Voice over IP (VoIP),
which makes it possible to call directly peer-to-peer. This kind of services
are very popular for video calls, and Skype[3] one of the best-known peer-to-
peer calling services as well as one of the best-known peer-to-peer applications.
Nevertheless, the peer-to-peer architecture has been utilized in different ways.
The applications includes file-sharing[4], web-caching[5][6], distributing sharded
information[7][8][9] and games[10].

Peer-to-peer communication has been utilized when there is no need for a central
server or a central server is not wanted in the architecture. There are several
reasons why a central server architecture is unwanted. One of those reasons
is avoiding a single point of failure, which could be achieved by having several
sites with central servers. However, there are situations when that is not feasible
because the resources might not be available. Moreover, peer-to-peer communi-
cation can be a viable option if there is critical that computing nodes continue
to work and coordinate when the central server goes down.

Furthermore, there are certain applications that would benefit from not having
a central location, which handle communication and coordination. One use-
case that has had problems because of the central architecture is free speech
movements. In addition, platforms that enable free speech movements to do
important work are target of DDoS attacks and blockage in government con-
trolled networks. Events in recent years have shown that there are those who
will go to those lengths in order to shut down and suppress free speech move-

3



4 CHAPTER 2. BACKGROUND

ments1. Furthermore, it has been seen that services like Twitter has played an
important role in work against oppression. However, they can be easily blocked
by a governmental firewall, because of its architecture based on central servers.

On the other hand, creating tools to avoid governmental firewalls has its negative
factors. In many countries, the governmental firewall is used for good purposes.
They stop criminality and other bad things from happening. However, peer-
to-peer systems exist and most of those who want to avoid governmental fire-
walls with peer-to-peer technology can already do that. Furthermore, creating
peer-to-peer technologies that work inside web pages makes it more accessible
especially for people with lower resources which free speech movements.

Transferring substantial amounts of data is another situation where peer-to-
peer communications are more applicable than a server-client architecture. In a
server-client architecture file transfer between two clients can be slow, because
the files need to be uploaded to the central server from the first client before the
second client can download it from the server. Thus, it takes more time and uses
more of the network resources than it would if the file were transferred directly.
This is especially true if the clients are sharing files are in closer proximity
together, in terms of network latency, than the clients are with the server.
Furthermore, if they are on the same local network transferring files peer-to-
peer would be faster than transferring through a server. Companies who deliver
content with a large footprint in file size(e.g. operating systems, games and game
updates) often utilizes peer-to-peer technologies to deliver their content. The
cost of delivering downloads of updates to a game with high-quality graphics
can be significantly lower when using peer-to-peer communication to use shared
bandwidth and computing power.

Nonetheless, peer-to-peer technologies have been fundamental to online piracy
and other criminal activities. Especially peer-to-peer file sharing is widely used
to share files illegally without regards for ownership rights and licensing of ma-
terials. However, developing technologies like peer-to-peer file-sharing enables
the society to use the existing network to deliver services and content that would
not be possible at an affordable level without it. There is little indicating that
not having peer-to-peer technologies would stop online piracy. Thus, it is pos-
sible to argue that the technology enables more good than harm. Furthermore,
the legal services that provide content that compete with the piracy channels
in the digital world depend on the same technology.

2.1.1 Structured vs Unstructured peer-to-peer systems

There are two types of peer-to-peer systems, structured and unstructured systems[2].
Both have advantages and disadvantages that affect when it is appropriate to

1The attack on Github(https://www.eff.org/deeplinks/2015/04/
china-uses-unencrypted-websites-to-hijack-browsers-in-github-attack) and the
blockage of Twitter in Turkey(http://www.bbc.com/news/world-europe-26677134) are
recent examples.

https://www.eff.org/deeplinks/2015/04/china-uses-unencrypted-websites-to-hijack-browsers-in-github-attack
https://www.eff.org/deeplinks/2015/04/china-uses-unencrypted-websites-to-hijack-browsers-in-github-attack
http://www.bbc.com/news/world-europe-26677134
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use either one. It exists well known implementations of structured systems,
e.g. Chord[7] and Dynamo[8], and unstructured systems, e.g. Squirrel[5] and
Gnutella[6].

The structured peer-to-peer systems have a policy that governs node distribution
and the general topology of the peer-network. In those kinds of systems, there
are guarantees of correct node lookup and a bound on the time complexity.
Furthermore, the policy lowers the message overhead, because of the rules of
the network topology the amount of messages needed to lookup a node is lower
compared to a system without such rules. However, the rules and enhanced
routing comes at a cost. Such systems need to maintain information about
parts of the network. Each node needs to know something about other nodes
and that information needs to be maintained according to the policy to perform
as the system guarantees.

On the other hand, there are unstructured peer-to-peer systems. Compared with
structured systems it does not have the same level of topology maintenance
since the system is self-organizing. In particular situations with high churn,
the lowered maintenance cost can be necessary to avoid that the peers use a
significant amount of computing resources for maintenance. Furthermore, the
self-organizing feature makes an unstructured system more resilient to node
failure because it is designed to depend on certain policies. However, this can
result in routing errors and flooding of network messages. Since there is no
clear policy on the network topology, the system can not deliver a guarantee
of routing correctness or routing performance. In some system design, this
can be a downside, especially systems that need to honor a SLA. However
not all systems needs those guarantees. Unstructured systems are appropriate
whenever guarantees of delivery and network consumption can be traded for a
more churn resilient system.

2.2 Distributed Hash Tables

2.2.1 Consistent Hashing

Consistent hashing is a technique in order to map keys and node IDs to a circular
keyspace. The circular keyspace ranges from the minimum hash value to the
largest hash value applicable to the given keyspace. The hash is calculated with
a hashing function, which is deterministic, in order to map a key or the node id
to a hash-key within the circular space.

The circular keyspace needs to have a range of at least m bits in order to
avoid key-collision. Karger et al.[11] proved the following: "For any set of N
nodes and K keys, with high probability: (1.) Each node is responsible for at
most (1 + ε)K/N keys and (2.) when an (N + 1)st node joins or leaves the
network responsibility of O(K/N) keys changes." In this setting the term high
probability is given that there is a good distribution on the hash values used.
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There are multiple strategies that would result in a good distribution in most
cases. However, there will always be some unique cases that will result, in the
worst case, in a skewed distribution. In such a situation, the statement above
will not be valid.

2.2.2 Churn

In peer-to-peer systems, Distributed Hash Table especially, Churn is a concern
for the stability of the system and the network created by the system. Churn
refers to Churn rate, which is the rate a measurement for the amount of peers
a system [12]. There are different reasons in play when peers leave a peer-
to-peer network. In terms of a system designed for maximal uptime like a
peer-to-peer based database(e.g. Cassandra), the prominent reasons are peer
failure, network failure or network isolation. On the other hand, systems like
file-sharing networks are prone to peers leaving the network because their users
decide to leave or choose to turn off the host machine. Hence, the probability of
a high Churn rate differ significantly from system to system. Moreover, different
systems adopt different strategies for recovering after nodes leave the network.
There are two primary strategies for detecting nodes that have left the network
for some reason. The first is by using a heartbeat signal, where the each peer
sends a message to the other peers that are interested to know about the given
peer. The other is by pinging, where the interested peers ping the given peer to
check if the peer is accessible.

2.2.3 Chord

Chord is a Distributed Hash Table built on the concept of consistent hashing. [7]
It uses a circular key-space of m-bit size. The keyspace starts at the lowest sha1
hash and ends on with a hash of the start hash plus m bits. It uses the circular
key-space and the features of consistent hashing to guarantee correctness in
routing of the peer network. The Chord algorithm works in two different modes,
simple key location and scalable key location. The difference of the two nodes
affects lookup time. The simple key location has N messages worst case lookup
effort while scalable key location uses log N messages in the worst case. In both
cases, N is the number of nodes in the network. The differences between those
two approaches are described in more detail in sections later on.

Each peer has the responsibility of a range of that key-space, that range stretches
from the peers predecessors key to the peers key. Figure 2.1 shows the key-
space of peer N2 highlighted. The key-space ring is self-preserved in the way
that there is no central organization of the ring. Each node has a hash value
and by asking known nodes for its successor the node finds the correct place
in the ring. Chord runs maintenance tasks at regular intervals to maintain the
successor and predecessor connections when new nodes join the ring. Thus,
there is no need for a joining node to announce itself directly after joining as
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the stabilize task will announce it to the correct node eventually. The stabilize
task runs at regular intervals on each node and makes sure that each node that
should know of the new node knows.

N1

N2

N3

N4

N5

Figure 2.1: The highlighted part of the circle shows the key-space assigned to
peer N2

N1

N2

N3

N4

N5
N6

N7

N8

N9

N10

(a) Simple key location

N1

N2

N3

N4

N5
N6

N7

N8

N9

N10

(b) Scalable key location

Figure 2.2: The two figures shows the lookups necessary to find an item stored
on N8 from N1
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Simple key location

This is the first of two key location lookup algorithms. It is slower than the
Scalable key location lookup in terms of number of nodes lookup necessary to
get from a key location to another. It has a worst case scenario of O(N) lookups.
On the other hand, it requires very little maintenance since each node only needs
to know its successor because a correct lookup is guaranteed if each node knows
its successor.

Algorithm 1 Successor lookup of key in simple key location
function findSuccessor(hash)

if hash ∈ (n, successor] then
return successor

else
return successor.findSuccessor(hash)

end if
end function

The successor lookup in this location strategy is listed in pseudocode in figure 1.
It checks whether itself has the range in which the key belongs, if not it requests
the successor to do the same through a RPC-call. Thus, when the right node is
found, the RPC-call will return the value.

This approach is not scalable and will only be suitable for a small number
of nodes. However, if the number of nodes never exceeds the given threshold
that fits the performance requirements, it could be a valid trade-off in order to
avoid extra maintenance. Furthermore, if having less information per worker is
more valuable than enhanced performance this approach could still be a suitable
choice.

Scalable key location

Simple key location can result in N number of lookups with N nodes, which
might result in a low performance. In order to work around this the number of
lookups needs to be significantly less with high numbers of nodes. The scalable
key location is a strategy to lower the nodes that need to be asked in a location
lookup.

The scalable key location maintains a finger table at each node with information
about knowledge of certain nodes in the ring. It has an entry for 2n bit increase
in the key, which means that entry n in the table refers to the key of the node,
holding the finger table plus 2n bits. The finger table makes it possible to
lookup farther away in the keyspace without asking each node in between. This
will significantly lower the number of nodes a node need to ask to lookup a key
location. It will lower the worst case from O(N) to O(logN) in a network of N
nodes.
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Algorithm 2 Successor lookup of key in scalable key location
function n.closestPrecedingNode(hash)

for i = finger.length− 1 to 1 do
if hash ∈ (n, successor] then

return finger[i]
end if

end for
return n

end function

function n.findSuccessor(hash)
if finger[i] ∈ (n, successor) then

return successor
else

n′ = n.closestPrecedingNode(hash)
return n.findSuccessor(hash)

end if
end function

The jump increases the farther along the ring the node is placed, thus for each
entry in the finger table the keyspan between the referring and the referred node
increases. Since the difference is in a power of two, the range will double for each
entry in the finger table. This have several benefits: Looking up closer node has
a higher probability of reaching the correct node with one lookup, which is good
because then it is possible to lookup approximately correct node and get from
that node to the correct with a few more lookups. The benefit of increasing
the range for every step farther away is lowered maintenance. Thus, it is a
trade-off between detailed knowledge and maintenance, and because a node is
more likely to look up a closer node more often it is acceptable with a higher
level of maintenance closer to the node. This strategy inherits the guarantees of
simple key location because the first row in the finger table will always contain
the successor current node.

The finger table is continuously updated and maintained. A task, which runs
periodically, updates an entry in the finger table by trying to lookup the key of
that place in the finger table.

Algorithm 3 The maintenance functionality for the finger table
function n.fixFingers

next = next+ 1
if next ≥ finger.length then

next = 1
end if
finger[next] = n.findSuccessor(n+ 2next−1)

end function
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2.3 Web technology

The client side of the web technology stack consists of HTML and ECMAScript,
in addition, there is the APIs defined by browsers that are an extension of
the HTML specification and the ECMAScript specification. ECMAScript is
a scripting language defined by the ECMA-262 specification[13]. There are
different implementations of ECMAscript, the most popular and the one with
widest support in browsers is JavaScript, see section 2.4 for more background
on JavaScript. The HTML 5 specification ads numerous features to the web
technology stack. A few of those features are relevant and can be useful for
distributed systems in the browser. The sections below introduces the most
relevant ones.

2.3.1 Geographical location

The Geolocation API defines a way to retrieve the geographical location of a
browser[14]. Its specification defines the structure of the API, by which it is pos-
sible to retrieve the current location and updates whenever the location changes.
Modern web clients can range from watches to desktop computers. Thus, the
location of the device might change while the application depending on geo-
graphical location is used, which might require the client using the geographical
data to listen for change events. Moreover, in order to retrieve the geographical
location, the user needs to approve the access. This is in most modern browsers
implemented as an prompt-alert as shown in figure 2.3

Figure 2.3: A permission prompt shown to ask for the users approval of geo-
graphical location access.

It is possible to retrieve longitude, latitude and accuracy from the API. Those
data make it possible to pinpoint the location of the machine the browser is
running on. Furthermore, with two locations it is possible to calculate the dis-
tance in between the two with Lambert’s formula. It calculates the spherical
distance based on the radius of the earth. Based on the formula and the data
types available in JavaScript the precision of the distance will be on the me-
ter scale, thus comparing in kilometer scale should be accurate given that the
geographical location can be detected with acceptable accuracy.
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2.3.2 WebSocket: real-time communication between client
and server

Communication between client and server through HTTP has a significant over-
head, by which real-time communication will suffer. There is three different ways
of handling real-time communication between client and server: HTTP polling,
HTTP long-polling and WebSocket[15]. The two first works by sending HTTP
requests to the server when the client application assumes that there is some
new information. The difference between the two is the frequency of the polling.
The polling of information that might be ready requires HTTP requests on reg-
ular intervals, which can be effective and a good solution if the data requested
is accessible on regular intervals. In the case when the data becomes available
sporadically and in an unpredictable manner, polling will waste resources in
the form of network traffic and and increased latency. WebSocket on the other
hand, is designed for the latter use case. WebSocket is a full-duplex communi-
cation between client and server. Thus, when the connection is created, both
parties can send information to the other party. This can be useful of notifying
the client of new data or regularly sending data one or both ways or stream-
ing data, e.g. logs, from the server to the client. A W3C specification[16] the
WebSocket API and communication.

2.3.3 Web Storage

The Web Storage API specification defines an interface for accessing and storing
data in web clients outside cookies[17]. There are two types of storage defined in
the API, which is SessionStorage and LocalStorage. Both are created to address
needs that cannot be addressed by using cookies.

In addition to the Web Storage API, there is another way to store information in
web clients: cookies[18]. Cookies have been a way to store state in web browsers
for more than two decades. Cookies are accessible both to the client and server
side as they are attached to all HTTP requests. The original use case for cookies
was to create a shopping cart for e-commerce websites. The requirements for
storing of state in web browsers has since grown into many different use cases.
There are several use cases where cookies will affect the web application in a
negative manner. There is also a security concern when using cookies, especially
over an unencrypted connection. Since the cookie is sent with every request it
is possible to listen to network communication, from which it is possible to get
cookies of other web users on the network. The Web Storage API, makes it
possible to avoid this in the cases where the state is only useful in the client and
there is no need to send it to the server with each request or to send it to the
server at all.

The first storage in the Web Storage API, SessionStorage, fills the need for
storage in the client that is accessible just to the current session. Isolating a
storage to the current session can be important in applications that a user would,
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with high probability, use in several windows or tabs simultaneously. Especially
if the data stored by one session might interfere with another session and not
behave as the user expects.

The second, LocalStorage, is a persistent storage that can store large amounts
of data, compared to SessionStorage. LocalStorage is not isolated to the current
session. Thus, all sessions can access the data at any time. Furthermore, the
data will not be removed before it is deleted by the application or the user. The
data will not be transferred to the server with each HTTP request as opposed
to how cookies works. This gives the ability to save larger amounts of data
without slowing down HTTP requests the server.

Both storage types are applicable as a storage backend in a distributed hash
table implementation. However, there is positive and negative consequences of
using either of them. The session-based storage will loose all data when a session
ends, which makes failure recovery and re-joins more complicated. However, a
re-join would be like a normal join and would not require handling stale data.
LocalStorage will have persistent data between sessions, and thus it will be able
to serve data from earlier sessions. This makes the impact of each failure and re-
join less in terms of resources used to synchronize data. Furthermore, the data
will be accessible to all instances running in the same browser, which would
make it insufficient to open a new browser window in order to start another
virtual node. However, if it is a requirement that the data should only live
for one session data can be stored with the session id as key prefix. Storing
with a session prefix would also solve the problem of running several instances
in different windows in the same browser. Thus, with application logic it is
possible to achieve the features of SessionStorage, which make the LocalStorage
more applicable.

2.3.4 Offline mode

Application cache manifests enables web application to run even when the
browser is offline. This feature can be useful for several purposes in a peer-
to-peer system. It allows applications that do not need a connection to the
server that hosts the application to work. Hence, the user can visit a web ap-
plication one time and still use it even if the server is down as long as it has
the necessary data. In the peer-to-peer setting with WebRTC, this means that
a group of peers can create a peer-to-peer network if they have the application
in their browser and can configure signaling servers(see section 2.6.3).
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2.4 JavaScript

JavaScript is an implementation of the ECMAScript specification. The language
was initially developed by Brendan Eich. It is a dynamically typed programming
language and also defined as a prototype-based scripting language. In today’s
browsers, it is the de-facto standard for client side programming on the web
stack[19] as it has been for several years. Moreover, JavaScript can run both in
a web browser and directly in an OS. Not only can the language run in both
situations, but in various cases the same code base can both run in a browser
and on the directly in the Operating System.

2.4.1 Asynchronous code in JavaScript

In JavaScript, there is often need to write asynchronous code. Especially when
one works with network requests or IO operations. Until a few years back
there was one way to handle asynchronous in JavaScript. That was callbacks,
which can be achieved by sending callback functions as an argument to other
functions[20]. The callback function should take the of the asynchronous oper-
ation as arguments. Thus, the function doing the asynchronous operation can
call the callback function when it is done. This is a good pattern when you have
one code block waiting on another. However, if there is several asynchronous
operation that needs to be performed in a given order the nesting of callback
can become large. Nesting in several layers with asynchronous dependencies
can be error prone and make the code hard to read. In the callback pattern,
there is the need for error handling in each callback function, from which wrong
handling of errors can occur. Furthermore, if there is no interest in handling
errors at any level lower than the outermost level, there would be a need for
code that populates the errors up to the last level.

2.4.2 Promise pattern

Promises is another pattern for handling asynchronous code in JavaScript. It
builds on the notion of a chain of events that return either a value or a promise
of a value. A promise can either be resolved with a value or rejected with an
error. All errors thrown inside a promise chain will reject the promise, and the
rejection is passed down the chain. Thus, they are only handled in the place in
the chain where it is appropriate. If an error is thrown, the chain is broken, and
the next error catch function is called. Furthermore, a function calling another
function that returns a promise can return the promise. Thus, if there is no
need to handle the promise within the function, it can be returned. Besides,
promise libraries have the functionality to wait for several promises to return
and then resolve a list of return values.

Figure 2.4 shows the differences between a callback approach and a promise-
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1 // callback version
2 function loadWithCallback(arg1 , callback) {
3 asyncOperation1(arg1 , function (error , result) {
4 if (error) return callback(error , null);
5 asyncOperation2(result , function (error , result2) {
6 if (error) return callback(error , null);
7 asyncOperation(result , function (error , result3) {
8 if (error) return callback(error , null);
9 callback(result3);

10 });
11 });
12 });
13 }
14
15 load(function(error , result) {
16 if (error) {
17 // handle error
18 } else {
19 // handle success
20 }
21 });
22
23 // promise version
24 function loadWithPromise(arg1) {
25 return asyncOperation1(arg1)
26 .then(function(result) {
27 return asyncOperation2(result);
28 })
29 .then(function(result) {
30 return asyncOperation3(result);
31 });
32 }
33
34 load
35 .then(function(result) {
36 // handle success
37 })
38 .catch(function(result) {
39 // handle error
40 });

Figure 2.4: Example code showing the difference of promises and callbacks
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based approach of a load function that contains three ordered asynchronous.
The promise code is more readable and has less boilerplate code for error han-
dling. Line 4,6 and 8 only passes the error on correctly and makes sure that
the rest of the callback does not run if an error occurs, which the promise chain
handles in the promise example.

Several test frameworks in JavaScript has built-in support for promises. This
makes it possible to return a promise within a test function. The test will then
wait for the promise to resolve before concluding the test. One of the nice
features of returning a promise in a test is failure handling. If the promise chain
throws an error and it is not caught before the end. The test framework will
mark the test as failed.

Benchmarks In discussions on the topic of callbacks versus promises, per-
formance has been a downside of using promises. The promise library called
bluebird changed that. Bluebird is efficient in both memory consumption and
the time it takes to perform x operations. The performance of bluebird have
been compared to other promise libraries and callbacks in a benchmark.2 Blue-
bird is insignificantly slower than callbacks, however, significantly closer to the
performance of callbacks than any other promise implementation.

2.4.3 Prototype object

In JavaScript, there is only one construct, Object. All types derive from an
object. Thus, implementing inheritance and class like data structures must be
based on objects. The closest concept to a class that is available in JavaScript
is prototype objects. Each object has an internal link to a prototype. The
prototype object also has an internal link to a prototype object, unless it is
null. Thus, it is possible to create inheritance with prototype objects.

The prototype chain is a chain of linked prototype objects which ends with null.
All prototype objects is a set of properties as with regular objects. Lookups
of properties in an object first checks if the object has an own property with
the given name before checking the prototype chain closest to farthest away.
Moreover, since objects store functions as properties, this makes it possible to
inherit and override functions by extending the prototype chain.

ES6, the next version of ECMAscript, introduces a new keyword to the language
specification: class. It is syntactical sugar for the process of extending objects
and prototype chains to achieve inheritance.

2The benchmark mentioned can be found on https://github.com/petkaantonov/
bluebird/blob/f114841282193642484ddb8dc315fc45355bbdb0/benchmark/README.md (re-
trieved 26.04.2015)

https://github.com/petkaantonov/bluebird/blob/f114841282193642484ddb8dc315fc45355bbdb0/benchmark/README.md
https://github.com/petkaantonov/bluebird/blob/f114841282193642484ddb8dc315fc45355bbdb0/benchmark/README.md


16 CHAPTER 2. BACKGROUND

2.4.4 Node.js and io.js

Node.js is a platform, on which it is possible to run JavaScript directly in a
operating systems instead of in a browser[20]. This enables creation of server
side JavaScript applications, as well as, running JavaScript on a local computer.
Node.js is based on Chromes V8 JavaScript engine. Thus, the same language
interpreter is used in Google Chrome and Node.js.

Furthermore, the framework is built around the event based pattern described in
section 2.4.1, from which all I/O and network operations are asynchronous and
event based. There are, however, sync wrappers around several functions(e.g.
readFile3 has readFileSync4). These synchronized versions blocks Node.js’ event
loop in order to make the code synchronous. Thus, all other asynchronous
code will have to wait for the sync operation before they can call their callback
functions or resolve their promises. The blocking of the event-loop can therefore
result in significant holdup and slow down in concurrent code.

The Node.js ecosystem is built around npm, which is a packet manager for
Node.js and io.js. It is not restricted to Node.js packages or JavaScript for that
matter. However, it is created for JavaScript packages for Node.js/io.js and
Browserify(see section 2.4.6). The require functionality in Node.js will look up
JavaScript modules in node_modules, which is where npm install dependencies,
or local files with a specified path. Dependencies in Node.js is hierarchical,
which means that if a module depends on another module it will be installed
in node_modules inside the module, e.g. if a depends on b then b would be
installed in node_modules/a/node_modules/b/. The hierarchical dependencies
makes it possible to have several packages that depend on different versions of
the same package without getting conflicts or broken modules.

io.js is a fork of Node.js[21]. A few of Node.js’ core contributors decided to
create a fork of Node.js because they were unhappy with the status quo in the
development of Node.js. The development of Node was, and is still, lagging
behind on the support of newer versions of the V8 engine. Furthermore, one
of the goals of io.js is to have a predictable release cycle that strictly follows
semantic versioning.5 The upgraded V8 version and faster releases with bug
fixes and performance increases makes io.js a more suitable choice in some situ-
ations. Especially when performance is key to application. io.js will eventually
be merged back into node, it was decided in May 2015 to merge Node.js into
io.js and the merged code base will become Node.js.

2.4.5 Support in browsers

An ongoing problem with the web-stack is the differences between modern
browsers. The different browsers supports different parts of the specification

3https://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback
4https://nodejs.org/api/fs.html#fs_fs_readfilesync_filename_options
5http://semver.org/

https://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback
https://nodejs.org/api/fs.html#fs_fs_readfilesync_filename_options
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of HTML, CSS and ECMAscript. Furthermore, parts of the specifications de-
fine the functionality, not the APIs. Thus, the naming of certain functionality
in the API differ from browser to browser.

2.4.6 Browserify and CommonJS

Browserify makes it possible to require dependencies in a similar fashion to
Node.js[22]. It is a tool to build JavaScript application for the browser and
inject dependencies. It uses a require function similar to Node.js require[23]
to define dependencies of a file. As a result, the dependencies must be on the
same form as Node.js packages, which means that Node.js packages that do not
require server-side dependent code can be used in the browser. Furthermore, it
makes it possible to use npm6 to install dependencies.

In addition to making the pattern used in Node.js and Node.js packages available
code written with Browserify can run in Node.js. Thus, Node.js based test
runners and tools is compatible with the code. This makes it possible to run
tests without a full browser.

2.5 Docker

Docker is a platform for virtualization. Its goal is to be an easy way to build,
deploy and move instances of distributed applications. The key idea is that
processes are run within a container that isolates the process from the host op-
erating system, by which makes the host not as vulnerable from the application
running inside the container[24]. Moreover, it gives the possibility to run sev-
eral similar applications on the same host without the risk of the applications
interfering with each other. On of the key features of docker is its portability,
it is possible to move a container from one host to another without much delay.

2.5.1 Containers and virtual machines

The features mentioned above are features that other virtualization technology,
e.g. vagrant, has had for a long time. However, the overhead of running a regular
virtual machine versus running a container is significantly different. The virtual
machine runs a complete operating system within the virtual machine, on which
resources like CPU, memory and disk space is consumed. The footprint in disk
space of a simple web API can be below 10MB. However, the virtual machine has
a footprint of often as high as 5GB or more. Furthermore, the virtual machines
need to reserve resources for both memory and disk. The reservation means
that the resources cannot be used by another application. Thus, even if an
application uses 500MB of RAM at average and up to 1GB of RAM under load

6https://npmjs.com
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it still needs to reserve 1GB of RAM from the host system. Therefore, running
the same application under docker one would be able to run more instances on
the same hardware compared to regular virtual machines.

The time necessary to start a virtual machine and install the application could
take a while. Docker tries to avoid that by creating the image used for a con-
tainer one time and running it several times. Building the image takes approx-
imately the same time as installing the application on a regular machine, then
starting the container takes an insignificant amount of time. This makes docker
more suitable than regular virtual machines in the cases where there is a need to
start several instances simultaneously or to start an instance in a short amount
of time.

Docker can affect the host system more than a regular virtual machine because
it does not have the same restraints on resources. There are restraints in place
when using Docker, but they are more liberal than and not as strictly defined
as they are in regular virtual machines. However, it is possible to limit the
resources that a given Docker container can use, e.g. set the limit of use of
RAM to 1GB.

Fat and thin containers

In the Docker community, there is some controversy about whether Docker
should be used as fat or thin containers. A fat container is one, in which
several applications and services are installed. An example could be using one
container for a website. The docker container would need to install a database,
cache server, web server and application server. In the same context, a thin
container strategy would have one container for each of those applications. The
controversy is about how one should use Docker and defining best practices.

Both strategies have positive and negative factors. The thin container strategy
makes it easy to scale up specific parts of the application. In the website exam-
ple, one could add a container for a new application server if that is the current
bottleneck. However moving the whole application around requires download-
ing or building and running several containers that can be time-consuming and
unpractical. Fat containers on the other hand can easily be moved around, but
is more difficult to scale on specific parts of the application because it requires
rebuilding a large container as well as starting a new instance of everything.

2.5.2 Docker as a tool in research

In research, reproducibility is important for the credibility of the work. It makes
confirmation of the results feasible. Docker is a great tool to make reproducibil-
ity achievable because if the application, algorithm or system can be run with
a docker container and the test data set is available then the conditions in form
of setup should be the same when someone tries to reproduce[25]. There is
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still factors that change between different runs, but several of them are control-
lable(e.g. the amount of resources in terms of CPU, RAM, etc. available to the
test).

2.5.3 Docker registry

The Docker registry is a service for hosting of reusable docker images. It makes
it possible to download prebuilt images. The service makes it possible to up-
load a Dockerfile or to set up automatic pulling of a Dockerfile from a version
control server on updates. The Dockerfile is then built, and the docker soft-
ware can download the image. The time needed to download a Docker image
in order to start a container can often be significantly lower than building it
locally, especially on servers with a good network connection. A container can
be downloaded and started on a new machine with docker with one command.

2.5.4 Headless browsers within docker

Browsers need a screen to attach their graphical user interface, on which they
display everything one can see when one uses the browser. In order to create
many isolated instances of browsers it is necessary to run them within a virtual
machine or container. In the case of running them inside Docker, there is no
screen to attach them to. This will also be the case when running them on
headless servers, which is appropriate when running automated tests. Thus, it
is necessary to emulate a screen so that the graphical interface can be rendered.
However, it will be rendered on a virtual canvas that will not be rendered itself.
One way to achieve this is to use Xvfb as the window manager, in which the
browser is started. Xvfb is a virtual version of the X window management
system used on multiple UNIX-based systems.

Networking in Docker containers is by default isolated from the host. All Docker
containers share a local virtual network, from which they connect to the internet
trough a bridge. The bridge requires NAT to open connections back to processes
running in Docker containers. However, it is possible to turn this off by starting
the Docker container with the option –net=host, which will make the process
in the Docker container access the network connections of the host OS and thus
work as an process running directly on the host OS. Furthermore, this affects
browsers running in Docker because if one would want to use a Docker container
to test connections without NAT it is necessary to set the –net option to host.
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2.6 WebRTC

WebRTC, or Web Real-Time Communication is an addition to the ECMAScript
API specification[26]. The goal of WebRTC is to enable peer-to-peer commu-
nication directly between browsers and other internet devices through a well-
defined API[27]. Earlier one had to use plugins to enable communication be-
tween browsers, however as a result of the HTML 5 API enhancement. It nat-
urally followed to add an API for peer-to-peer communication. The WebRTC
specification and API has two separate types of communication.

There are other implementations of WebRTC than browsers, even though this
is meant for browsers. To mention a few, there are reusable frameworks for iOS
and Android. Those exist for different reasons. Firstly, the mobile browsers have
not adopted WebRTC fully, and a few have not adopted it at all. Furthermore,
there are applications that benefit from having access to native APIs on mobile
devices. In addition to the mobile platform implementations, there are multiple
open-source unofficial implementations of WebRTC in different programming
languages.

2.6.1 Media communication

The video streaming capabilities makes it possible to send video streams between
peers from browser to browser. The research and development in this area have
mostly been focused on video-calls7 and video-on-demand services. [28] This
thesis will not focus on the media streaming part of WebRTC.

2.6.2 Data communication

WebRTC has support for transferring data in peer-to-peer between browsers or
other implementations. This is the part of the WebRTC specification that can be
utilized in a distributed hash table implementation. The data communication
channels support sending data in various formats, e.g. byte-arrays or JSON-
objects.

2.6.3 Signaling

WebRTC is based on peer-to-peer communication, but since it is designed to be
used by consumers without configuring networks beforehand there is a need for
connection broker[29]. The modern networks that are combined as the internet
are built of multiple small networks. The small networks can have firewalls
blocking certain traffic or have one IP-address. In cases where a whole network
has one public IP-address, the router controlling the network needs to translate

7Services like appear.in and talky demonstrate this.
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packages sent to the network for it to reach the correct destination. In most
cases, this is handled by a technology called Network address translation. To be
able to connect directly between peers from different networks behind NAT and
firewalls, it is necessary to have a common broker to negotiate the connection.
In other words, WebRTC is peer-to-peer but still needs a server to connect in
some cases. However, if the peer is publicly available and it knows to listen for
incoming messages, there is no need for signaling through a server.[30] Thus,
the two peers can negotiate the creation of a data transfer channel directly.

The signaling specification is defined by JavaScript Session Establishment Pro-
tocol[31] rather than the WebRTC specification because it is intended to be
more general and make it possible for the implementation to make the signaling
decisions. Thus, the requirements of the protocol are specified in its document.

Figure 2.5 shows a sequence diagram of the process of signaling between two
peers. They both have a connection to the signaling server that is used to
communicate offers and answers. Peer1 tries to connect to Peer2. The process
starts with the creation of an offer on Peer1 and attaches a local descriptor.
The descriptor contains meta-information about Peer1 and is set as the local
descriptor on Peer1 ’s data-channel object as well. Moreover, Peer1 sends the
offer to the signaling server through the connection already established. Then
the signaling server forwards the offer to Peer2 if it has a connection to Peer2.
Otherwise, the signaling server reports back to Peer1 with a message that Peer2
is not available. If Peer2 is available and receives the offer and wants to connect,
it creates an answer set local descriptor on it and itself, as Peer1 did with the
offer. Furthermore, it must set the local descriptor of the offer as the remote
descriptor on its data-channel instance. Then Peer2 sends the answer to the
signaling server, by which sends it to Peer1. After receiving the answer Peer1
sets the descriptor attached to the answer as the remote descriptor on its data-
channel instance and the WebRTC data-channel connection is open and can be
used to send data between the two peers. Also, the answer and offer payload
might contain interesting metadata like browser type and version, which can
be useful when sending data since different browsers support different ways of
serializing payloads.

2.6.4 Browser support and frameworks

The implementations of the specifications in the different web browser differ in
several ways. There are browsers that do not support WebRTC. It is mostly
newer versions of Chrome, Firefox, Safari and Opera that support WebRTC.
However, how you interact with the communication layer differ. The different
browsers have their names for API functions, namespaces and variables. To
make interaction between applications and the WebRTC API easier there exist
frameworks that give an abstraction layer with a single API. A few of these
frameworks also add an abstraction layer on top of the signaling described in
section 2.6.3. Peer.js and SimpleWebRTC are described in more detail in the
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Peer1 Signaling server Peer2

createOffer()

setLocalDescription()

sends offer

sends offer
createAnswer()

setLocalDescription()

setRemoteDescription()

sends answer

sends answer
setRemoteDescription()

Figure 2.5: Sequence diagram for a connection process in WebRTC

sections below.

Peer.js

Peer.js is a framework with assets that are useful on the client side and the server
side. On the server side, they have a package for Node.js which can be used as
a signaling server. The team behind Peer.js also offers this as a service from
peerjs.com, which is a hosted version of the node-package. On the client side,
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there is a package that handles signaling and abstraction of browser differences.
Thus, it is possible to use the same code in different browsers as long as they
are supported by Peer.js. The largest benefit of using Peer.js is the handling of
differences between browsers. In addition, connecting between nodes and error
handling is handled in a good way and keeping that part of the code separated
from rest of the code base lowers the risk of regression errors in connecting
and handling of errors. Furthermore, since it defines an API, it adds a layer
of abstraction that can be mocked. Mocking communication between nodes
makes it possible to write isolated tests to test the correctness of functionality
in the routing algorithm in a simulated environment. peerjs-mock, described in
section A.2, and peerjs-rpc, described in section A.1, both utilizes this to enable
isolated testing. The ability to write isolated tests decreases the feedback loop
significantly compared to starting multiple browsers and connecting them before
being able to test the given functionality.

SimpleWebRTC

SimpleWebRTC is framework created to make it easy to start a new WebRTC
application[32]. It takes care of signaling and connecting to other clients. The
framework is designed around the concept of rooms, to which clients connect.
Thus, there is little control over the client-to-client connections. SimpleWebRTC
will connect to each client in the given room and accept connections from each
client in the given room. Furthermore, the abstractions in this framework hide
functionality that an advanced application, as a DHT would need. However, as
a starting point for a proof of concept of simple applications utilizing WebRTC
it would be a good choice.

SimpleWebRTC is built mainly for the media streaming channel of WebRTC
because it was written to build Talky, a video conferencing application based
on WebRTC. The only use of the data channel that this framework supports is
file transfers. However, the API for file transfer is limited.

2.6.5 Testing WebRTC applications

Tests for WebRTC applications for the browser requires a browser. Using
browser emulator and virtual DOMs, as might be custom for testing of client
side code for browsers, will not work. None of the available browser emulators
has support for WebRTC. Thus, it is necessary to use either Chrome or Firefox
with a webdriver like Selenium. The webdriver makes it possible to control the
web browser from code and automate testing. Selenium supports fine-grained
control of the browser with clicks and other behavior that are expected of the
user of a web browser. However, in the case of testing a WebRTC application
with minimal user interaction it may be only necessary to be able to control
the navigation. Moreover, Selenium supports waiting for a given condition for
an amount of time. In the case that the condition becomes fulfilled, the sele-
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nium script will move on. Otherwise, the script will raise a condition. Thus,
it is feasible to run a browser with selenium until a condition in the JavaScript
application is fulfilled and then quit the browser.

Headless browsers

The headless browser makes it possible to run tests that need a browser on a
server without a graphical interface. The browser software needs a graphical
interface to render web pages. They are created to be used with graphical
interfaces not to run on servers. However, it is possible to run a normal browser
as a headless browser by attaching its graphical interface to a virtual X-screen.
X is a window system used on Unix-like systems and there exists a virtual
version of it called Xvfb. Thus, it is possible to run a browser, e.g. Firefox
or Chrome, on a Linux server, without attaching it to a screen. Furthermore,
running browsers with Xvfb is helpful when running several browsers inside
different Docker containers as described in section 2.5.4.

Testing for correctness

Testing of correctness can be divided into two parts. The first is testing of cor-
rectness in the code of the project and the second is testing for correctness with
the whole stack. The latter would be an integration test. If one assume that the
underlying abstractions work as expected testing for correctness in the project
code should be enough, however it is always better to test with integrations
in place because software might not always work as expected. The first part
is achievable by mocking the WebRTC API or the API of the abstraction of
WebRTC that is used. Mocking WebRTC will also make the tests run outside
a browser with Node.js testing tools like mocha. Thus, the tests run faster and
can run on continuous integration without a headless browser.

Testing in at scale

In the development of peer-to-peer applications with WebRTC, there is a need
to test in real browsers at approximately the target scale. Thus, if one creates
an application designed for 20 peers. There should be performed testing on
approximately the same amount of peers. Testing with two-three peers will not
be satisfyingly checking the requirements of the application.

Simulations will only test parts the application. It can be a great way to find
logic errors in certain situations and ensure that regression errors do not reap-
pear. However, it is necessary to use actual browsers to be able to evaluate
the performance of the application when running in browsers and to test their
integrations.

Testing with many browsers can be complicated and an issue of orchestrating
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different actions in different browsers. Therefore, running browsers with scripts
is wise to be able to get a predictable behavior of the browser. Furthermore, run-
ning the browsers headless, as described above, gives the ability to run browsers
on several nodes and control them from one, which makes it possible to run
more browsers and larger tests. Besides, it is important to test that browsers
running on different machines and sub-networks can communicate and work to-
gether as the application expects. Also, Docker makes it feasible to start the
same browser in a sandboxed environment multiple times on the same host or
several hosts without much overhead.
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3 | Design

The implementation in this project is separated into smaller modules. There is
a module for the Chord algorithm, a module for using the algorithm in a web
browser, a module for viewing statistics about the Chord network in real-time.
In addition to those modules, there are helper modules for RPC, mocking of
Peer.js and mocking of the RPC module.

3.1 Levels of abstractions

Implementations of software are always on a given level of abstraction. In dis-
tributed systems, the communication often has impact on which abstraction
levels that are appropriate. The WebRTC environment, especially, gives re-
strictions on the lower end of the abstraction levels. However, the different
WebRTC-frameworks also defines another level of abstraction. Section 2.6.4
describes some differences between browsers and implementations of WebRTC.
Thus, as described in section 2.6.4, an abstraction on the different APIs into a
single interface is helpful. The solution described here is based on Peer.js[33], a
framework described in section 2.6.4.

Furthermore, the implementation will communicate similarly to known Remote
Procedure Call (RPC) implementations from other languages and platforms.
Therefore, the project would benefit from an RPC implementation in peerjs.
There were not any acceptable RPC implementations on top of WebRTC or
Peer.js when this project started. Thus, developing a RPC-module was neces-
sary as a part of the project. The module, peerjs-rpc, can be installed from npm
and is available to the general public. The module is described in more detail,
in terms of design and API, in section A.1 in the appendix. Figure 3.1 shows
the abstraction levels and where in those layers the Chord implementation and
the RPC-module are placed. The communication is handled by the web browser
and the WebRTC API. Thus, the communication is never handled directly by
the implementation.

The RPC module is built using the promise pattern, see section 2.4.2 for infor-
mation on the pattern. Therefore, it is possible to use function calls in between
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nodes as promise chains, and it can also be a part of a bigger promise chain.
Using promise chains for all asynchronous task makes sure that all asynchronous
events happen in the correct order. Furthermore, since the RPC module pop-
ulates the error between nodes and reject promises as if the error happened
locally, the correct node handles errors in the correct place. Thus, the error is
handled on the closest place to its origin where it is understood. In most cases
in Chord, that place is on the node that initiated the original sequence of events
like a get-call or a call to findSuccessor.

Chord

peer.js-rpc

Peer.js

WebRTC API

Web Browser

Figure 3.1: The development stack of Chord implementation.

3.2 Chord on WebRTC

This section will describe the implementation of the regular Chord algorithm,
see section 2.2.3, while section 3.3 describes the changes needed to be able to
enhance the routing based on geographical location.

The implementation of Chord on WebRTC needs to be designed to work in a
modern browser with support for WebRTC. It is important to have a dependency
management system, by which can solve dependency injections of JavaScript
libraries, as well as local files. The choice for this project was Browserify, see
section 2.4.6. It makes it possible to run the code in Node.js or io.js in addition
to browsers as it leverages CommonJS dependency injection. The ability to run
the code in Node.js or io.js as well as browsers makes it possible to run tests
and simulations without using browsers. Thus, the feedback loop from unit
tests becomes smaller since unit tests can be run without a browser or browser
emulator. Most of the unit test needs to mock WebRTC/Peer.js to restrict the
scope of a given test. Thus, mocking Peer.js and running unit-tests in Node.js
with Mocha results in a better development process. Furthermore, the ability
to run simulations in Node.js makes it possible to test the performance of the
routing in given environments and situations, in addition to, the ability to create
more sophisticated tests with a whole chord ring running inside a Node.js script.



3.2. CHORD ON WEBRTC 29

3.2.1 Structure

The implementation is divided several prototype objects. There is four main
classes Chord, Node, Task and Storage. The sections below describes them in
detail. Figure 3.2 illustrates the relations between prototype objects. Each line
represents references between instances, the object above has a reference to the
object below. Also, the RPC prototype object in the figure is from peerjs-rpc.

Chord

RPC Task Node(ID)

Storage

Figure 3.2: The relations between prototype objects.

Chord This object represents an instance of the algorithm and represents
a peer. It has an instance of the RPC-object from peerjs-rpc. It contains
all necessary functionality of the Chord algorithm, e.g. findSuccessor and
stabilize. All communications between peers are between instances of this
object through their instance of the RPC-object. Furthermore, on the creation
of the Chord object it will pass itself as scope to the RPC-instance. Thus, other
nodes can invoke methods on the given instance and access attributes on the
given instance. An instance of this object contains a reference to an instance of
Node, in which it stores information about itself.

Node The Node object is a representation of a node in the Chord-ring. It
inherits ID, so it has all the functionality of that object as described below.
Also, the Node object contains information about the predecessor, successor
and the finger table. Furthermore, a reference to the storage is also within
this object, which is an instance of Storage described below. The predecessor,
successor and each node in the finger table are also instances of the Node object.
However, unknown attributes like the finger table are not set in those instances.

ID This object stores the hash of the node as hex-string and byte arrays
and has the functionality to compare with other ID-objects. Furthermore, this
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object also can check whether an ID is within in the range between the two
other ID objects. It is in its object in order to use the functionality without
using separate this functionality from the Node object, described above, was

Task The task object maintains the running of scheduled tasks, e.g. fixFingers.
It encapsulates the built-in setInterval in the JavaScript language. It handles
starting and stopping of tasks and error handling within tasks. In addition, it
stores an counter of how many times the task have run for debug purposes.

Storage The Storage object is an interface for different storage methods(e.g.
cookies, Web Storage), and it has a basic in object storage for testing purposes.
Using the in object storage makes the storage class store the data in a regular
JavaScript object, which will exist for as long as the storage object exists. Thus,
it is great for testing as creating a new Storage object or a new Node object will
create a new object to store the values in and the old will be garbage collected.

3.2.2 Routing

Chord has two different types of key location lookup, from which there are
two different implementations of findSuccessor, as described in section 2.2.3
and section 2.2.3. The implementation in this project solves this by adding
an argument on calls to findSuccessor that defines the key location lookup
strategy. Thus, the result is a merged version of the two shown in algorithm 1
and algorithm 2 in section 2.2.3 The updated findSuccessor function is shown in
algorithm 4. Using an argument on the lookup functions instead of a separate
prototype object for each of strategies makes it possible to change on the fly.
Thus, it is possible to do a key location lookup with different strategies without
creating a new ring, which necessary to test comparatively between the different
strategies.

3.3 Changes in Chord

In order to benefit from the knowledge of geographical location, the Chord algo-
rithm needs changes. The Chord algorithm uses a finger table to enhance routing
performance in the scalable key location version, as described in section 2.2.3.
The proposed algorithm will build on the scalable key location version and has
a few changes to utilize the geographical location of the node.

Multiple parts of the chord algorithm need changes. Firstly, all parts com-
municating information about nodes need to pass the geographical location
of the nodes. Thus, instead of sending a single hash string, when resolving
findSuccessor and other functions that return nodes, it is necessary to send
an object containing the hash and the geographical location. Furthermore, the
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Algorithm 4 The findSuccessor implementation that can choose strategy
1: function n.findSuccessor(hash, strategy)
2: function STRATEGIES.scalable(hash)
3: return successor.findSuccessor(hash, ”simple”)
4: end function

5: function STRATEGIES.scalable(hash)
6: n′ = n.closestPrecedingNode(hash)
7: return n.findSuccessor(hash, ”scalable”)
8: end function

9: if finger[i] ∈ (n, successor) then
10: return successor
11: else
12: return STRATEGIES[strategy](hash)
13: end if
14: end function

finger table and predecessor- and successor-fields have to store the geographical
location information. Secondly, the routing must be changed to use the location
information to route more efficiently. In order to use the location of a node to
route better, the algorithm has changes in the closest preceding node lookup in
the finger table.

Algorithm 5 shows the new closest preceding node lookup. The difference from
the original lookup is the when the loop finds the closest node in the finger table,
see line 3. The new lookup will check if the node that is one step farther away, in
the keyspace, in the finger table is geographically closer. If it is, the next closest
node in the finger table will be chosen instead of the closest. Figure 3.3 shows
the lookup routing from N1 to a key that belongs to N8, in which figure 3.3(b)
is the lookup with geographical enhancement while figure 3.3(a) is the same as
figure 2.2(b) from section 2.2 shown for comparison.

Furthermore, the findSuccessor needs changes in order to call the correct closest
preceding node function. Algorithm 6 contains changes necessary, in which
line 9 to 12 contains a new function that calls the geographical aware closest
preceding node lookup. Since line 16 calls the correct strategy function based
on the strategy argument it is possible to decide whether to use simple(see
section 2.2.3), scalable(see section 2.2.3) or geographical enhanced lookup on
each separate call to a lookup function.

The approach described above preserves the correct lookup guarantee of the
original Chord implementation. The guarantee states that if all nodes have the
correct successor the lookup will always return the correct node. The nodes
returned by the closest preceding node lookup in the finger table always will
return a node that is between the node asking and the node containing the
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Algorithm 5 Changes to the lookup to account for geographical distance
1: function n.geoClosestPrecedingNode(hash)
2: for i = finger.length− 1 to 1 do
3: if hash ∈ (n, successor] then
4: distance1 = geographicalDistance(n, finger[i - 1])
5: distance2 = geographicalDistance(n, finger[i])
6: if distance1 ≤ distance2 then
7: return finger[i− 1]
8: end if
9: return finger[i]

10: end if
11: end for
12: return n
13: end function

requested key location. Thus, it will at some point reach the predecessor of
the node containing the requested key location. Therefore, the findSuccessor
function will return the successor of the node asked, as shown on line 14 in
algorithm 6.

3.4 Error handling

The error handling strategy for used in this project is based on the promise pat-
tern, from which custom placing of error handling is achievable. In section 2.4.2,
it is mentioned that promise chains will break on error, and the error populates
to the first catching element in the chain. Thus, in asynchronous distributed
chains of events the error will still be handled at a place where the error the
application has a large enough context to understand how to handle the error.
Furthermore, the intention is to handle the error as close to the origin of the
error as possible. However, if one invoke of a function on another peer throws
an error the peer that throws the error might not know what the error affects.
Thus, sending it back to the invoking peer is the wanted result, because that
peer has the context to handle the error. The promise chain from the RPC
module handles this so that the invoking node gets the error.

In some cases, the error needs to be handled locally. It is possible to handle
errors locally on the invoked peer by adding a catch on the local promise chain.
The catch block handles the error and then rethrow the error, or it throws a
new error after handling the original error. Thus, both the invoking peer and
the invoked peer is aware of the error and can handle it appropriately.
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N3

N4

N5
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N7
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(a) Scalable key location

N1Oslo

N2Oslo

N3Tokyo

N4Oslo

N5Tokyo
N6Berlin

N7Oslo

N8Tokyo

N9

N10

(b) Geographical key location

Figure 3.3: The two figures shows the lookups necessary to find an item stored
on N8 from N1

3.5 Testing and simulation

This project involves several types of testing: unit testing, simulations of routing
and real world scenario testing.

The first is an important part of the development process and is two-sided: unit
tests running in node and unit tests running in the browser. However, it is the
same test suite run in different environments for different purposes. The unit
tests for this project runs with a test framework called mocha1. The tests are as
described above scoped down to test specific parts of the algorithms and utilities
used by the algorithms and their interaction with the RPC-module. Thus, the
tests will not call any WebRTC functionality as this set of tests assumes that

1http://mochajs.org/
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Algorithm 6 findSuccessor after adding geographical key location lookup
1: function n.findSuccessor(hash, strategy)
2: function STRATEGIES.scalable(hash)
3: return successor.findSuccessor(hash, ”simple”)
4: end function

5: function STRATEGIES.scalable(hash)
6: n′ = n.closestPrecedingNode(hash)
7: return n.findSuccessor(hash, ”scalable”)
8: end function

9: function STRATEGIES.geographical(hash)
10: n′ = n.geoClosestPrecedingNode(hash)
11: return n.findSuccessor(hash, ”geographical”)
12: end function

13: if finger[i] ∈ (n, successor) then
14: return successor
15: else
16: return STRATEGIES[strategy](hash)
17: end if
18: end function

the RPC-module works as documented. Instead, it uses mocking libraries that
mock the WebRTC-communication between nodes and enables several nodes to
communicate with defined side-effects. Thus, since all usage of browsers specific
API’s are mocked, the tests can run in Node.js or io.js. However, the mocha
tests can run within a browser if the test runner loads the tests correctly. To be
able to run the tests in a browser, the tests must be bundled with Browserify
and loaded in a browser window. Karma2 is a tool that can accomplish this by
using plugins for mocha and Browserify. These tools make it possible to run the
tests in the background while developing and load them into a browser for an
extra check or to debug issues that only appear in a browser.

The second type, the simulations, are designed to be able to run the distributed
algorithm in a controlled environment. Section 4.1 in the experiments chapter
describes the simulation setup and the results in detail. The simulations run in
Node.js or io.js and can simulate a network of Chord nodes by using a mock
module for peerjs-rpc called peerjs-rpc-mock. The module support simulating
delays on the nodes on a connection based level. Thus, it is possible to define
delays between all nodes both ways. Using simulations in this way can be a
powerful tool for evaluating the algorithm and improving its performance and
for comparing different versions of algorithms.

2http://karma-runner.github.io/
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The last type, the real browser network tests, are designed to evaluate how the
system performs in as real as possible situation. Section 4.2 in the experiments
chapter describes the experiment and its results in detail. The tests run in
a real browser. Furthermore, to achieve an as real situation as possible there
must be several psychical nodes included in the network and several browser
instances. In addition to those requirements, since one version of the algorithm
uses geographical location there must be nodes running in different locations.
The tests must run from data centers on different continents. Browsers are, as
mentioned in section 2.5, intended to render web pages. Thus, they do not work
on servers without a window management system. These tests, therefore, run
in browsers attached to a virtual window management system, by which makes
the browser believe they render the content on a screen.

In this project, two docker images was used one with Firefox and one with
Chrome. Detailed descriptions of the Docker images is listed in appendix B.
The Chrome docker images was unsuitable to use with geographical location
because it was not feasible to avoid the prompt to allow access to the browsers
location(see section 2.3.1). Thus, the experiments was performed using the
firefox image as it was possible to load a settings profile with geographical
location access set to always accept.

3.5.1 Logging and testing utilities

The Chord module is a Browserify module, from which it is possible to im-
port all the components described in section 3.2.1. The test page contains a
loading script written in JavaScript that imports the Chord algorithm and con-
figures everything necessary to run the test. This script is the entry-point of the
Browserify-bundle created for the test. The loading script instantiates a new
Chord object and tells it to join an existing node.

A Node.js based server serves the script that initiates the Chord algorithm.
The server is written in a JavaScript and Node.js and serves a page with the
test page and a REST API view with a list of clients. The purpose of the
API view is coordinating of tests, and the view would not be necessary in a
real use case of an DHT with WebRTC. Furthermore, the same Node.js server
runs the server-side part of Peer.js, which handles signaling and negotiation of
a new WebRTC connection. Also, the node server listens to a WebSocket(see
section 2.3.2) channel for logging and coordination of the browsers connected to
the Chord application.

Furthermore, the loading script configures some logging utilities. The headless
browser tests must run on several servers as mentioned above. The headless
browsers do not give access to the logging console in an easy way, see sec-
tion 2.6.5. Thus, custom logging is necessary to know what was going on during
tests and after the tests. The wrapper script that initiates the chord algorithm,
therefore, sends log messages over WebSocket to the node server serving the test
site. The node server logs all messages it receives over WebSocket. Thus, the
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Node.js server works as a central logging service for the test environment.

The Node.js server can also transmit messages through WebSocket channels to
all browsers currently participating in a test running on the given server. Thus,
it is possible to send commands. Such commands are helpful in controlling and
coordinating the test nodes since there is no direct control over the web-browsers.
Examples of implemented commands are refresh, by which all browsers would
refresh the page, and quit, by which all browsers would result in the quitting
all the browsers.

3.5.2 Dashboard

Figure 3.4: The RPC dashboard

In the real-scenario tests, it is necessary to communicate with the Chord ring.
Querying nodes with get- and set-request is easy to do with the RPC module.
Thus, as long as a peer ID and the signaling server is available it is possible to
invoke get and set on the given peer, to which the ID belongs. There are two
ways to accomplish the invoking. However, both are in a browser since the RPC-
module need Peer.js to load. The first is to add the test queries to the loading
script described in section 3.5.1. The second is to build a standalone utility to
query with that creates a RPC instance and use it to query Chord peers. The
first would be the quickest and easiest to create. However, it would be tightly
coupled with the test script. The tight coupling is unwanted because if changes
to the querying mechanism are required a new Chord ring must be created and
stabilized before it would be possible to query again. Furthermore, as a stan-
dalone application the querying module could be used with other applications
utilizing the RPC-module. Therefore, a test-dashboard was created.



3.5. TESTING AND SIMULATION 37

The dashboard is a simple one-page JavaScript app. The dashboard does two
things. Firstly, it connects to all nodes in a list of peer IDs and invokes the same
function on all of them and stores the result in a list. The dashboard passes
the result list to a template that render the information as HTML, before the
rendered template is shown to the user. Secondly, it is possible to invoke a
function on a given node.

Furthermore, the dashboard is built generically, by which makes it usable for
other applications that use the peerjs-rpc module. The dashboard designed to
accept custom templates and JavaScript code that creates listeners for forms in
the template. Also, the name of the function that the dashboard invokes on all
nodes can be set as an option.
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4 | Experiments

This project had two types of experiments. A simulation ran with io.js on
one server, and an experiment ran in real browsers. It is just the latter that
had access to WebRTC. Thus, the simulation uses mocked communication with
predefined delays. Setup and results of both experiments are described in the
following sections:

4.1 Simulations

The simulation ran in io.js, in other words it ran directly on a machine, not
within a browser. As described in section 2.4.4, io.js makes it possible to run
JavaScript on a machine outside the browser. This makes it possible to evaluate
the performance of the routing in predictable conditions. Even thought the con-
ditions are predictable it does not mean they are necessarily optimal conditions.
It makes it possible to define the conditions to fit the test in question. Thus, it
is possible to add latency, delayed and faulty messaging.

In a test between browsers in a real-life situation there are multiple changing
factors that affects the performance of routing and messaging in general. Those
factors are beyond the control of the application and the WebRTC framework.
The abstraction level in which this application is operating has no control over
network or the browser. Thus, when the message is handed to the browser to
be sent to another peer there are many factors that weigh in on the correctness
and speed of the delivery.

This experiment is designed to evaluate the changes to the Chord implemen-
tation in known conditions. The geographical aware routing will be tested by
adding a fictional delay to the RPC-modul. Thus, all messages sent with the
RPC module will be delayed by a given time based on the given distance between
the sending peer and the receiving peer. Each node will have a preset location,
with latitude and longitude as the Geolocation API would have returned.

The delays are based on data from publications of statistical data of delays on
geographical distances. [1] shows that the round-trip time for a given distance is
as shown in table 4.1. The RTT data is from statistics from the Akamai network,
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which handles delivery of streaming of live video feeds from one location to the
whole world. Thus, the data is trustworthy as it is taken from statistics of
real use-cases where RTT is a key performance metric. Hence, using that data
to configure latency in the simulations should generate a realistic view of the
latency impact on the RTT in the Chord network. However, this will not account
for the delays in browsers and computation, which will be present in the real
browser test in the next section.

The locations chosen for the experiment are Berlin, Paris, Honolulu, Oslo, Tokyo
and Washington. The distances between those location ranges from 500 km to
10 000 km. All those distances yield additional noticeable latency as they are
longer than the local distance approximation in [1].

Table 4.1: Data on round trip times from [1]1

Distance 160 km 800 - 1600 km 5000 km 10 000 km
RTT 1.6 ms 16 ms 48 ms 96 ms

4.1.1 Dataset generation

A dataset generator was developed for this project. It generates all possible
hash values in the keyspace, from 000000 to FFFFFF, and takes a sample from
those hash values. The sample can either be evenly distributed or chosen more
randomly. Then, the generator takes the sample and generates a Chord ring
by setting the correct predecessor and successor on each node. Furthermore,
it populates the finger-table with the correct data and sets the location either
based on a modulo based selection or randomly choosing a location. Finally,
the generated Chord ring is converted to a JSON array to make it possible to
load it into a simulation. The JSON array can be saved to a JSON-file, from
which it is possible to load the generated Chord ring multiple times. Thus, it is
possible to verify a simulation by running it several times with the same Chord
ring.

4.1.2 Experiment setup

The simulations experiments ran on a Ubuntu 14.04 server running on a Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz with 16 GB of RAM. Furthermore the
simulations ran in io.js version 1.8.1.

4.1.3 Retrieval simulation

This simulation is designed to test end-to-end time of gets in a prepared chord
ring. All runs of this simulation will be based on chord rings which the test

1The paper has these values in miles, therefore the values are converted.
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loads from JSON-files. The files contains information about each node as well
as their predecessor, successor and finger table. Thus, the test can run directly
without waiting for the network to stabilize. Furthermore, it makes the test
reproducible because it possible to load the same ring several times. Thus with
the code checkout from version control and the correct data file, the simulation
should give the same result when run several times on the same hardware.

Long key distance

In one simulation 1000 queries was performed on two different 1000 node Chord
networks. The first had an even distribution on geographical location, each node
had location based on nmodLOCATIONS.length, where n is the nodes place-
ment in the Chord ring. The second had randomly generated geographical loca-
tions. They where assigned based onMath.random(0, LOCATIONS.length)2.
Figure 4.1 shows the cumulative timings of the queries in the first Chord net-
work and figure 4.2 shows the cumulative timings of the queries in the second
network.

Figure 4.1: Cumulative timings of 1000 different key location lookups with
evenly distributed geographical location

A lookup of the farthest away from the peer doing the query takes at average
6-7 lookups in a network with 1000 nodes. Hence, if all lookups have the longest
distance the lookup will have 1344 ms in added latency. The simulations had

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Math/random

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/random
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Figure 4.2: Cumulative timings of 1000 different key location lookups with
random geographical location

an average query time below that, as expected since not all connections are over
the longest geographical distances. Table 4.2 lists the average and standard
deviation of the simulations of both the scalable lookup and the geographical
lookup.

Table 4.2: Relevant data from simulations with 1000 nodes
Distribution of locations Even Random

Strategy Scalable Geographical Scalable Geographical
Average query time 1308 ms 1093 ms 1176 ms 959 ms
Standard deviation 308 288 314 325

Variable key distance

In another simulation designed to compare the benefit of geographical enhanced
routing in different key location distances, the simulation ran a query for each bit
distance from 1 to 22 and ran the query from each node in the Chord network.
Figure 4.4 shows the result from the simulation. It shows that longer distances
gives higher rewards, which is to be expected as the longest distance will have
O(logN) lookups while the shortest have O(1) lookups. Thus, the longer the
distance the more chances for the geographically enhanced to affect the routing.
Also, the figure shows that the geographical strategy at least performs as good
as the Chord scalable lookup strategy.
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Figure 4.3: Cumulative timings of key location lookups with 40 nodes random
geographical location

Figure 4.4: Average query time queries of different bit distances
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4.2 Real browser experiments

The real browser experiments are designed to measure how the algorithm works
and performs in a real scenario. An instance of rpc-dashboard performs and
controls the experiments. The dashboard, which has the functionality to do
multiple queries as in the simulations, run on a regular machine that have a
regular browser, from which it is possible to interact with the dashboard. Fur-
thermore, the dashboard connects to all peers and can invoke any function of
the Chord algorithm on any of those peers. The peers run on headless browsers
inside docker containers as described in section 2.5 and 3.5.

4.2.1 Experiment setup

The experiments ran on the latest stable version of Firefox(37.0.2) within Docker
containers running on Docker 1.6 with Ubuntu 14.04. The Docker containers ran
on 20 core virtual machines in Digital Ocean’s3 data centers in San Francisco,
New York, London and Singapore in addition to one server on the campus
of Norwegian University of Science and Technology. The Docker container is
available on the Docker registry4.

There are some limitation that apply when running these experiments. The
most noticeable one is CPU power. Using the WebRTC API can be fairly CPU
intensive, especially when several instances of a browser is running inside Docker
containers on the same host. The experiments showed that there is a limit on the
number of peers that can run on a given machine before the processing time is
so significant that the latency, saved from routing based on geographic location,
is insignificant. Thus, there is a limit on how many servers it is possible to run
a given number of serves from Digital Ocean.

4.2.2 Retrieval experiment

A retrieval experiment ran on several Chord networks. The experiment was
performed by creating N browser instances that visited a given url and viewed
that page until the TTL expired or condition in the selenium script was fulfilled,
which would happen if a certain element became visible. The test page loaded
Chord and configured logging and other necessary utilities, as described in sec-
tion 3.5.1. The first node creates a Chord ring and all other calls join with the
first node as the node they wants to join. Thus, all except the first node would
invoke findSuccessor on the first node.

The dashboard described in section 3.5.2 was used to monitor the Chord net-
work until it stabilized itself and all nodes had the appropriate predecessor and

3https://www.digitalocean.com/
4https://registry.hub.docker.com/u/relekang/firefox-webrtc/build_id/55395/

code/bfmny6kvdzfdbntyx6jktdb/

https://registry.hub.docker.com/u/relekang/firefox-webrtc/build_id/55395/code/bfmny6kvdzfdbntyx6jktdb/
https://registry.hub.docker.com/u/relekang/firefox-webrtc/build_id/55395/code/bfmny6kvdzfdbntyx6jktdb/
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successor and their finger table was populated. Then the dashboard was used
to query several lookups from each node to different key locations.

Figure 4.5: Cumulative timings of key location lookups with 40 running in
docker containers

Figure 4.5 shows the cumulative time of queries ran on a Chord ring with 40
nodes. It shows that the geolocation enhanced routing also has a benefit when
running in a network of real browsers.
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5 | Discussion

5.1 Geographical enhanced routing

The experiments show that there is an increase in performance when utilizing
geographical location data when routing in a Chord network. The increased
performance is not significant compared to the cost of additional lookups. How-
ever, that is to be expected that extra lookups cost more than the increased
latency on long distances. On the other hand, the geographical key location
lookup strategy performs at least as good as the scalable solution, which indi-
cates that choosing the next closest preceding node does not add a significant
amount of additional lookups. It can be argued that it indicates that in most
cases it results in the same amount of lookups. Thus, running the geographically
aware lookup strategy poses little risk of a decrease in routing performance.

Nonetheless, there is an overhead of maintenance and communication of the geo-
graphical aware lookup strategy. All maintenance messages that refers to nodes
must send the location. There is a significant increase in size when comparing
an object with the hash value representing the peer id and location compared to
a string of the peer id. Despite the footprint difference, the increased payload
size is insignificant compared to the base payload size of the RPC communica-
tion. Thus, even thought there is a cost, the cost of running the geographically
enhanced lookup is not high.

Furthermore, the simulations show that the increased performance of using the
geographically enhanced varies based on different factor. The performance in-
crease is larger in a lookup with long key distance compared to a lookup of
short key distance. This is to be expected as the closer the destination key is
the more dense the finger table. Thus, it will require fewer lookups to find the
correct location, whereas the geographical enhancement will not apply often.
Furthermore, in the beginning of the finger table there is a higher probability
of the same node occupying several rows. Hence, when the lookup of closest
preceding node checks the row on n − 1, the probability that the distance will
be the same is higher. Even so, lookups that use the closest parts in the finger
table often result in one or two lookups. Even if there is a long geographical
distance between the nodes, the long distance round-trip is inevitable in order
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to find the correct node.

Comparing the simulation with the real browser experiments shows interesting
results. The real-browser experiment indicates that there is an improved perfor-
mance in geographically enhanced routing as seen in the simulations. However,
the benefit is less significant compared to the total time. The total time of a
lookup in the real browser experiment is higher than the time of the simulation.
The increased duration of a lookup is to be expected as the actual browser test
has several factor affecting the time it takes to do a lookup or send a message.
Firstly, sending messages across networks has a base latency not accounted for
in the latency listed in table 4.1. Secondly, using a real network connection
is prone to have package loss and bad routing or other network related errors
that are not seen in a simulation. Thirdly, there is an increased consumption
of CPU when sending real messages. Moreover, the browser overhead will also
add additional CPU consumption. The CPU consumption is further discussed
in section 5.2. Lastly, the impact of shared computing resources from running
on a shared data center is also a risk that is hard to avoid and measure, but it
should not be significant in the end.

The first two factors is as expected while the performance on the load in each
browser is a bit higher than expected. Thus, the lowered increase in the test
with an actual browser is expected. Nonetheless, there is an increase in per-
formance. The performance increase could have been higher if each machine
ran fewer nodes, from which the CPU consumption on each machine would be
lower. Thus, it indicates that using the geographical location to enhance routing
in geographically widespread peer-to-peer networks can be beneficial. Further-
more, the strategy for utilizing the geographical knowledge can be refined and
further developed to create an even better performance strategies. Different
peer-to-peer systems need different strategies to be able to use geographical
knowledge.

Moreover, an interesting additional side-effect of lowering the amount of long-
distance round-trips is the decreased probability of package loss. It is shown in
[1], the publication with the latency statistics, that the probability of package
loss is halved from long distance connections to regional connections.

5.2 Building distributed systems with WebRTC

Building a proof-of-concept Distributed Hash Table with WebRTC has uncov-
ered both positive and negative traits of the stack and the technology.

The tests in real browsers show that WebRTC can consume a high amount of
the available CPU. In this project, the test environment was a browser running
in Docker, in which a WebRTC application send at average two messages per
second. The experiences of running this setup indicate that the browser or
the WebRTC implementation has a significant overhead. It does not have a
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noticeable impact in a typical setting with the user running a single browser
regularly. On the other hand, it has a increased load compared to other web
applications and is more unstable. In the development and early experiment,
running several instances of the Chord algorithm in different tabs within the
same browser often resulted in the browser quitting or crashing.

Even if the load is not noticeable in regular use cases, it can easily affect the
test environment and the test result in an experiment as the one described in
section 4.2. Even if in most cases it is not noticeable to a regular users. There are
known issues with browser implementations of WebRTC using a high amount of
CPU power. Those issues lead to poor performance of everything running inside
the browser in general. The general experience is that running several browsers
on one node works until a certain threshold affected by the CPU power. Both
the clock rate and number of cores impacts the number of nodes one can run on
a given machine. Since each instance of the Chord peer runs inside its browser,
it utilizes multicore and several CPUs in a good way.

While the CPU load was high, the Docker experiments showed that the usage
of memory was not any higher than expected from running a web browser. The
Chord implementation itself is not memory intensive, and the expected load on
the experiments running in real browsers indicates that the handling of WebRTC
messages is not memory intensive either.

Nonetheless, WebRTC is a new technology, and it has not been supported by
browsers for long. The specification is not finished; it is still a draft at World
Wide Web Consortium (W3C). Therefore, it is expected that the technology
will evolve in the near future. As more and more take use of it the browser
implementations will become more battle proven and, thus, have a higher chance
of a better performance.

The performance is also affected by the fact that JavaScript is single-threaded
and asynchronous operations are handled after the current running block has
yielded. Hence, blocking operations affects the asynchronous operation in the
way that they can not complete until the blocking operation does. The Chord
implementation does not have any blocking operations since everything is wrapped
in promises. However the stack below might have blocking operations that even
if they are called by asynchronous code it will result in the blocking of the
event-loop, which handles event-callbacks. Hence, it can affect the performance
of sending and receiving messages, e.g. a background task like fixFingers can
slow down the query of a key location.
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6 | Conclusion

This research project has shown that the concept of distributed systems built on
top of Web Real-Time Communication (WebRTC) is feasible, but the technology
is still young. WebRTC has the potential to be a platform for a new set of peer-
to-peer systems in the future. Furthermore the results from the project indicate
that using geographical knowledge can boost performance in such peer-to-peer
systems. The sections below evaluates the results in the light of the research
questions presented in chapter 1.

RQ1 Is WebRTC suitable for an distributed hash table algorithm, such
as Chord?

WebRTC is a good platform to develop distributed peer-to-peer systems. How-
ever, not all peer-to-peer systems fit in the web stack, and it does not make
sense to put all kinds of peer-to-peer systems in a browser. However, there are
use cases that are appropriate to solve in the browser environment WebRTC
is suitable. If this applies to a Distributed Hash Table is deemed by the same
criteria. There are multiple use cases for Distributed Hash Tables in browsers,
and there are situations where they are not so applicable. A use case for an
DHT in the web browser environment is coordination of peer-to-peer Content
Delivery Network (CDN) or other similar cache networks.

Nonetheless, the technology is still in its early stages and changes fast. Thus, the
performance of an application on top of this technology and how to implement
them has a high probability of chance. On the other hand, as with all new
technology each day brings it closer to a more standardized and stable state.

RQ2 Can the geographical location enhance routing performance in a
Distributed Hash Table?

Using the geographical location to enhance the performance of routing in a
Distributed Hash Table is possible. The strategy used to utilize the knowledge
of geographical location will affect the performance increase in the routing.
This project proposed to change the closest proceeding node lookup to use

51



52 CHAPTER 6. CONCLUSION

knowledge of the geographical location to enhance routing performance. The
strategy was to choose the peer one step farther away in the finger table in
the case where it was geographically closer. The changes in the routing results
in fewer long distance round-trips in queries over large keyspaces. Decreased
amount of long distance round-trips results in lowered lookup times. Also, it
reduces the probability of package loss.

Another related question is whether a web browser is a correct layer for routing
optimization. In some cases, it might because the information is not available
on a lower level. Also, adding a high-level routing optimizer does not do the
job of the ones on a lower level. Both optimizers will work and make the chosen
route better. The routing in Chord is on a high level, and it is not as the routing
in the network layer it is routing in the network of nodes and their structure in
the virtual network. Thus, if there is application logic affecting the routing, the
routing optimization can be placed on the same level as that logic. In this case,
the findSuccessor is that kind of logic, and hence it is appropriate to put the
optimization of that routing logic on the same level.

RQ3 How to build a reasonable test environment for peer-to-peer ap-
plication built with WebRTC?

In the development of peer-to-peer applications with WebRTC, it is important to
run different types of tests. There are three major branches of tests that apply:
unit-testing, simulations and testing in real browsers. Each of the different
types has their benefit, from which a reasonable test strategy can be derived.
The unit-tests are to ensure that isolated parts of the application works as
expected under different circumstances. The simulation combines integration
testing between components of the application with performance testing. The
applications can be tested in different situations with known factors and known
side-effects. The testing in real browsers can be divided into two different parts:
manual correctness tests and full application integration and performance test.
The first is to test the application between to local browsers. The second is
the most interesting part. Testing integration and performance in a real setting
in real browsers running inside Docker containers gives the ability to evaluate
how the application performs an behaves when used in a real browser setting.
Running those docker containers on fairly cheap virtual servers lowers the cost
of a full-blown test of a peer-to-peer application on WebRTC. Furthermore,
it makes it possible to test how the application is affected when it runs in
browsers on different continents. These tests running inside real browsers in
Docker containers are somewhat hard to debug, but having central logging over
WebSocket to the server hosting the test was helpful. Also, it was the closest
one can get to acquire knowledge of what is going on inside the web browsers
in the Docker containers.
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6.1 Further work

Better strategy of geographically enhanced routing

The strategy for using the geographical location to enhance routing proposed
in this project did not have a large impact on a particular situation. Thus,
further work naturally includes researching whether there is a strategy that is
even better at exploiting the knowledge of the geographical location to achieve
better routing performance. There are several possible options. One is to use a
bucket strategy as Dynamo[8] does and replicate buckets to different geograph-
ical regions.

Utilizing concurrency of multithreading in browsers

Browsers have one way to achieve better concurrency than the non-blocking
event-pattern allows. Web Workers are JavaScript files loaded into and running
in their threads. Thus, one script maps to one thread. It might be interesting
to research the possibility to make Web Workers handle background tasks.

Contribute to WebRTC and WebRTC libraries

The WebRTC specification and implementations still need a lot of work. The
most prominent implementations are open-source, Chromium and Firefox. The
knowledge gained from this project could help the development by providing
data from the experiments and bug reports of discovered issues.

Furthermore, the WebRTC libraries and frameworks, e.g. Peer.js, also has some
issues uncovered by this project. The discoveries have already resulted in contri-
butions to Peer.js. However, there is still unresolved issues with the framework.

Create more peer-to-peer applications with WebRTC

Another way to contribute to WebRTC is to create more applications on top of
the API. The best way to test a technology is to use it. The more a technology
gets used, the more it is tested and the better it become. Not only will using of
WebRTC help the technology forward it will also result in utility modules, e.g.
an Remote Procedure Call-module.

Automated tests of peer-to-peer applications

This project has found a good way to orchestrate a test of a WebRTC applica-
tion with a large set of peers. The natural next step is to automate that process.
It should be possible to start a test from one checkout of the code base from
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version control with a single script. Furthermore, this could be integrated with
a Continuous Integration system, by which would make it possible to evaluate
changes to such an application easier. The Continuous Integration system could
set up peers in browsers on different nodes and then ran the tests before pre-
senting them to the developer evaluating the change. An automated process like
this would be a good tool when developing peer-to-peer WebRTC applications.

Create a new RPC module

The Remote Procedure Call-module created for this project is based on Peer.js
because of reasons as time-limit and a need for a signaling server. However,
most of the benefits as a unified API for all browsers are benefits that could be
provided by an Remote Procedure Call-module. It might be worth researching
the possibility to have a Remote Procedure Call-module directly on top of the
WebRTC browser stack without any other framework.
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A | Software packages

The packages and framework described below was developed for this project.
They fill a requirement of the project that was not related directly to the research
and, therefore, is excluded from the codebase.

A.1 peerjs-rpc

This module is open-sourced and can be found on Github1 and npm2.

Design

This module is designed to work with browserify and exposes its functionality
as defined by browserify. It also requires Peer.js with browserify. Thus, Peer.js
must be installed via npm. npm will handle this when installing this module.

All methods exposed by this module supports both Promises and callbacks, as
described in section 2.4.2. The methods will call the callback with error as
the first argument and then the result as the second argument. This is called
Error-First callbacks.

RPC(nodeId, scope, options) The constructor takes three arguments: nodeId
is the local node id, scope is an object containing functions and variables that
should be available to other nodes, options is an object with options for this
module and options that are passed on to peerjs.

ping(nodeId, callback) This method will ping the node with a given nodeId
and resolve the returned promise and the callback with either true or false
depending on whether the node responds.

1https://github.com/relekang/peerjs-rpc
2https://www.npmjs.com/package/peerjs-rpc
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attr(nodeId, attrName, callback) This method will fetch the value of an
attribute in the given scope on the node with the given nodeId. The method will
resolve the returned promise and the callback with the value of the attribute.
In the case, that the attribute does not exist in the given scope, the promise
will be rejected with an error and the callback will be called with the error as
the first argument.

invoke(nodeId, functionName, arguments, callback) This method will
invoke a function in the given scope on the node with the given nodeId. The
method will resolve the returned promise and the callback with the value re-
solved by the promise returned by the function. In the case, that the function
does not exist in the given scope, the promise will be rejected with an error and
the callback will be called with the error as the first argument. The arguments
argument should be a list and if no arguments should be passed to invoke it
should be an empty list.

A.2 peerjs-mock

This module is open-sourced and can be found on Github3 and npm4.

Design

This module makes it possible to test code depending on peer.js in an envi-
ronment without WebRTC. It is designed for Node.js and io.js environments or
Browserify based browser environments. It should be applied on import level by
using a mocking module for the require function in Node.js, io.js or Browserify.
It simulates peer.js by creating its own DataConnection object and keeping a
register of available connections. Thus, the connection objects will use the reg-
ister to find the correct object and call receive on that object in order to send
data. Figure A.1 shows the internal calls of peerjs-mock when sending of data
is initiated.

The module has two objects, PeerMock and DataConnectionMock, that replaces
two objects in Peer.js, Peer and DataConnection respectively. The mock of the
Peer-object implements the original API of the original object, but it uses the
mocked data connection object to handle communication.

Figure A.1: Sequence diagram for a sending process in peerjs-mock

3https://github.com/relekang/peerjs-mock
4https://www.npmjs.com/package/peerjs-mock
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A.3 peerjs-rpc-mock

This module is open-sourced and can be found on Github5 and npm6.

Design

This module has the same API as peerjs-rpc described in section A.1. It is
designed to mock everything beneath peerjs-rpc. Thus, it isolates the algorithm
from WebRTC and Peer.js.

The package overrides the sending and receiving mechanism of peerjs-rpc and
uses a single object containing references to all nodes. The sending mechanism
calls the receiving mechanism on the peerjs-rpc instance that is supposed to
receive the message. In other words, the sending mechanism finds the given
node in the object containing all instances of peerjs-rpc objects and calls the
mechanism in that instance that handles incoming messages directly. The mod-
ule is wrapped in a function, which takes an object as an argument. The object
is used to store the references to all the nodes. This gives the initiator of the
mock the ability to control the node references, e.g. remove an reference from
the object to simulate peer-failure.

This module gives full control of the communication between peers. Thus, it
is possible to create predictable situations by adding delays. The control over
delays between different nodes is important when creating a simulation that is
supposed to test the performance of changes in an algorithm in environments
with different delays between different nodes.

Furthermore, mocking on a higher level than peerjs-mock can be good to avoid
unnecessary allocation of resources, which might result in the ability to run
simulations with a larger number of nodes.

Usage

1 var RPC = require(’peerjs -rpc -mock’)({});
2 var n1 = new RPC(’n1’, scope);

Figure A.2: Example of using peerjs-rpc-mock directly

The module is installed from NPM with npm install peerjs-rpc-mock. Then
it can either be used directly as shown in figure A.2 or put in as mock in require
as shown in figure A.3.

5https://github.com/relekang/peerjs-rpc-mock
6https://www.npmjs.com/package/peerjs-rpc-mock
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1 var mr = require(’mock -require ’);
2 mr(’peerjs -rpc’, require(’peerjs -rpc -mock’)({}));
3 var YourModule = require(’your -module ’);

Figure A.3: Example of using peerjs-rpc-mock with require-mock

A.4 rpc-dashboard

This module is open-sourced and can be found on Github7.

Design

The dashboard is designed to be a reusable dashboard renderer, by which can
be used to interact with several peerjs-rpc peers. On instance of the dashboard
takes a given set of options, as listed below in the usage section. The dashboard
will connect to all peers from a list of identification strings and then invoke a
function on each peer and store the result in an object. Furthermore, it will
render a template passed as an option and call a function onRendered passed as
an option. After rendering the newly rendered template will replace the content
of an element in the DOM. The template will get a list of the outputs of the
invoked function from the peers in addition to extra context variables passed as
an option.

The dashboard will create an RPC instance, from peerjs-rpc, for the dashboard
with a unique ID prefixed with dashboard. Thus, if the network it is connecting
to initiate actions on connect, the application should filter peers prefixed with
dashboard.

Usage

Figure A.4 shows a code example of a general usage of the rpc-dashboard mod-
ule.

Options

container CSS selector of the element which should contain the dashboard.

rpcOptions Options-object passed to the peerjs-rpc module.

fetchClients A function that returns a list of RPC-peer identification string
or a promise that will resolve such a list.

template A compiled Handlebar-template.
7https://github.com/relekang/rpc-dashboard
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1 var createDashboard = require(’rpc -dashboard ’).init;
2
3 var dashboard = createDashboard ({
4 container: ’#container ’,
5 rpcOptions: require(’./rpc -options ’),
6 func: ’toJSON ’,
7 fetchClients: function () { return [’peer1’, ’peer2 ’]; },
8 template: require(’./ templates/peers.handlebars ’),
9 onRendered: function onRendered(utils) {

10 // rewire listeners
11 }
12 });

Figure A.4: Example of using rpc-dashboard

onRendered A callback function that will be called when the template is ren-
dered.

peerComparator A comparator function used in Array.sort().
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B | List of technologies

This chapters lists short descriptions for every framework and technology used
in this project that are relevant to this report.

Docker A platform for deploying and running isolated processes. Section 2.5
describes the platform and how it compares to reguar virtual machines.

xvfb Virtual X window management system. It can be used to run application
that requires a window management systems on machines without displays, e.g.
web-browsers in a Docker image.

Selenium Utility that controls browsers. It can simulate user behaviour in a
browser. Selenium controls the test browsers in the docker containers in this
project.

JavaScript frameworks

Created for this project

peerjs-rpc Remote Procedure Call module on top of Peer.js. See section A.1

peerjs-rpc-mock Mock of the peerjs-rpc module. A module designed for
simulations. See section A.3

peerjs-mock Mock of the Peer.js module. It mocks the connections between
two peers. See section A.2

rpc-dashboard A reusable dashboard to view stats from peers using peerjs-
rpc. See section A.4

65
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Third-party

Node.js Serverside JavaScript framework. Makes it possible to run JavaScript
with Chromes V8 engine directly on an OS instead of in the browser. See
section 2.4.4 for more detailed description.

io.js A fork of Node.js. It is for the same purpose as Node.js, but is more up
to date. See section 2.4.4 for more detailed description.

Browserify A framework for dependency injection in client-side JavaScript
which utilises the CommonJS pattern for dependency management, which is
the same as Node.js.

Bluebird A promise implementation in JavaScript. It is described in the
Promise-pattern section in chapter 2.4.

Peer.js A wrapper around the WebRTC API that creates a unified interface
for all supported browsers and handles signaling of connections. More detailed
description is in section 2.6

Mocha Unit test framework for JavaScript. It runs by default on Node.js,
but can also run in the browser.

Karma Karma is a test runner that runs JavaScript unit tests in a browser.
It can run tests written with several test frameworks in most browsers.

Docker images

This project used two Docker images for browser testing. Both images takes
two arguments: an url and a timeout. The browser will visit the url and stay
open for the amount of time specified in the timeout.

relekang/firefox-webrtc A Docker image running latest stable version of
Firefox, version 37 at the time of the last build of the Docker image. It is
available on Github1 and on the Docker registry2.

1https://github.com/relekang/docker-webrtc-test
2https://registry.hub.docker.com/u/relekang/firefox-webrtc/

https://github.com/relekang/docker-webrtc-test
https://registry.hub.docker.com/u/relekang/firefox-webrtc/
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relekang/chrome-webrtc A Docker image running latest stable version of
Chrome, version 42 at the time of the last build of the Docker image. It is
available on Github3 and on the Docker registry4.

3https://github.com/relekang/docker-webrtc-test
4https://registry.hub.docker.com/u/relekang/chrome-webrtc/

https://github.com/relekang/docker-webrtc-test
https://registry.hub.docker.com/u/relekang/chrome-webrtc/
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