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Summary
The present thesis concerns employing the finite element method together with computed 

tomography to solve problems relevant to clinical orthopaedics. 

The first part of the thesis describes a procedure of relating the gray-scale values from 

computed tomography to the local density of bone. Calibration procedures used today, 

simplify the composition of bone to consist of bone mineral and water-equivalent organic 

tissue. The procedure described in the present thesis accounts for both the mineral, collagen 

and fluid content in bone.

The geometry of the bone is extracted from the CT images to build the finite element models 

and assigned material properties according to local densities derived from the gray-scale 

values. Two different methods of building finite element models are described; voxel-based 

models, and geometry-based models.  

Voxel-based finite element models are generated directly from the tomographic images and 

are thus relatively easy to use to study the stiffness of a bone segment. The voxel-based 

models are here used to assess the mechanical stability of a leg lengthening. 

Geometry-based models are created by segmenting the tomographic images and building a 3D 

model, which in turn is meshed to create the finite element models. These models can be used 

to simulate surface conditions between implants and bone. They are here used to simulate the 

stress-shielding effect and stability of a cementless femoral stem in human cadaver femurs.  
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Chapter 1: General introduction 

The primary functions of bones are to provide mechanical support for the body and 

protect vital organs. The shape of bones is strictly functional, and can be seen at muscle 

attachment sites where bony ridges and protuberances, like the greater and lesser 

trochanter, provide lever arms for the muscles and give increased mobility. That the 

geometry of bones follows function is shown not only on the macroscale, but also in its 

microstructural architecture. Already in the 19th century, scientists noted that the 

trabecular orientation in cancellous bone reflected the stress and strain pattern in the 

bone (Huiskes, 2000). Also in cortical bone, canals and lamellar structure of the bone 

are found to align in the principal load directions (Petrtyl et al., 1996). The shape and 

microstructure of bones is not only determined by our genetics, but also adapts 

according to loading history, hormonal changes and the healing of injuries. Thus, we 

can recognise the same characteristic shapes of bones between different species, such as 

in a leg of lamb and a human femur. Conversely, we can also see a wide variation in 

geometry and mechanical properties among individuals of the same species.  

The development in computational mechanics and tomographic methods of medical 

imaging has enabled us to study the biomechanics of bones in a new way. Computed 

tomography (CT) can be used to noninvasively retrieve the bone geometry and 

determine its local material properties. Methods of computational mechanics, such as 

the finite element (FE) method, is a versatile tool that can be used analyse load 

configurations that are difficult to replicate experimentally and access stress and strain 

results from areas not accessible for measurements. By coupling these two together, FE 



Chapter 1: General introduction 

2

models can be built that include both the individual geometry and mechanical properties 

of a patient. Such subject specific FE models have been used to analyse stress and strain 

patterns in bone (Lengsfeld et al., 1998), predict fracture (Keyak et al., 1998) and to 

simulate the course of adaptive bone remodelling around implants (Rietbergen et al., 

1993). Although FE models are used extensively in construction and the industry in 

general, the employment of FE models in medicine has been largely limited to academic 

studies. In the present work two applications of subject specific FE models will be 

presented. Both examples are based on CT images, but differ in the type of cases they 

are used on, the way the FE models are built, and the way the analyses are run.

The first example concerns how subject specific FE models could be employed on 

patients undergoing limb lengthening in order to estimate the mechanical stability of the 

bone regenerate and determine when to remove the external fixation. Today, 

orthopaedic surgeons assess the mechanical stability of limb lengthenings from plain 

radiographs, and studies have reported refracture rates due to premature frame removal 

of 10-20% (Marsh et al., 1997; Forriol et al., 1999; Maini et al., 2000; Simpson and 

Kenwright, 2000; Garcia-Cimbrelo and Marti-Gonzalez, 2004). We have written a 

program that generates FE models directly from the CT scans, and can be used by 

persons without any specific training in computational mechanics. The generation of the 

FE models and analysis is largely automated, and is usually finished within a few 

minutes. It is therefore a tool that can be used by the orthopaedic surgeon in the 

treatment of the patient.  

The second example concerns the pre-clinical evaluation of hip implants. New 

prosthetic designs undergo in vitro mechanical testing using human cadaver bones 

before being introduced on the market. In the present thesis, subject specific FE models 

of human femurs are used to simulate the type of testing used for pre-clinical evaluation 

of hip implants. In this case, the FE models are not generated from the CT images 

directly. Instead, segmentation techniques are used to extract contours from the CT 

images and reconstruct a 3D model of the bone, before generating the FE models. Both 

the construction and analyses of the FE models are very time consuming; requiring 

several hours for building the model, and sometimes several days to complete the 
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calculations. This kind of FE analyses requires an operator trained in computational 

mechanics. These subject specific FE models are not meant to be used in the direct 

treatment of patients, but rather in the development process and testing of new implants. 

The thesis is organised as follows. Chapter 2 describes the attenuation of x-rays in 

different materials, and explain how this was employed to calculate the material 

properties of bone from the CT attenuation values. The procedure of leg lengthening 

and how to assess stability of the lengthened section with subject specific FE models is 

covered in the Chapter 3. Chapter 4 concerns the procedure of building the subject 

specific FE models for testing hip implants.
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Chapter 2:  Relating CT gray-scale values to bone 
density

2.1  Background 
Computed tomography (CT) is regularly used in biomechanics as it provides a 

noninvasive method for retrieving the geometry of bones and estimating local material 

properties. It is commonly known that the attenuation of electromagnetic radiation in a 

material depends on the density and chemical composition of the material (Rutherford et 

al., 1976). It is also commonly known that the mechanical properties (elastic stiffness 

and strength) of bone are highly dependent on its density (Carter and Hayes, 1977; 

Keller, 1994). The question that will be addressed in the present chapter is how the 

gray-scale pixel values, or attenuation values, in the CT images can be linked to the 

density of bone. 

Calibration phantoms are often used to link the pixel attenuation values of CT scans to a 

standardized unit of measure. They are made up of different materials with known 

mineral content. Thus, from the gray-scale values of the different phantom materials in 

the images, one can establish a relationship between mineral content and CT attenuation 

values. Dipotassium phosphate (K2HPO4) is soluble in water, and has radiographic 

properties similar to bone mineral - calcium hydroxyapatite (HA). Cann et al. (1985) 

therefore employed K2HPO4 dissolved in water to make a calibration phantom. 

However, problems with liquid calibration phantoms due to bubble formation in the 

solution and evaporation through imperfect seals were reported, and solid calibration 

standards using mixtures of calcium HA and water equivalent polymer were introduced 

instead (Goodsitt, 1992). The composition of the solid phantom was kept as simple as 
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possible - only calcium HA and water equivalent polymer - to avoid discussion about 

the proportions of the non-mineral components of bone (Kalender et al., 1995). 

However, apart from calcium HA and water, bone also contains a considerable portion 

of collagen which has a higher density than water. In theory, the calibration phantoms 

will therefore give an overestimation of the mineral content in bone because they ignore 

that collagen will attenuate more radiation than water due to its higher density. The 

calcium HA phantom has been found to overestimate bone mineral density by 

approximately 15% (Kaneko et al., 2003; 2004; Schileo et al., 2008). Keyak et al. 

(1994) found the K2HPO4 phantom to give an accurate estimate of the bone mineral 

content, while Les et al. (1994) found it to underestimate bone mineral content by 

almost 20%! The question therefore remains: what is the relationship between the 

density of bone and the CT attenuation values? 

Some studies of subject specific FE models use the calibration coefficients derived 

directly from the phantom (Bessho et al., 2006; Taddei et al., 2006; Reggiani et al., 

2007), while others adjust for the over- and underestimation of the calibration phantom 

(Schileo et al., 2008; Trabelsi et al., 2009; Yosibash et al., 2007; Keyak and Falkinstein, 

2003; Keyak and Rossi, 2000). In the present chapter an alternative approach will be 

described for relating the pixel attenuation values of a CT scan to the density of bone 

tissue. The attenuation of radiation in different materials has been described in studies 

concerning radiotherapy and radiation dose calculation (Rutherford et al., 1976; 

Schneider et al., 1996; Watanabe, 1999; Schneider et al., 2000). Instead of using a 

traditional calibration phantom with materials representing different degrees of tissue 

mineralization, we will take the long route via radiation physics to derive a relationship 

between bone density and CT attenuation values. First, the procedure for characterising 

the emitted x-ray spectrum will be described. Secondly, the calibration phantom will be 

presented; the different materials used and their chemical composition, and how the 

pixel values for each phantom material are obtained from the CT images. Thirdly, a 

relation between the density and the chemical composition of bone is set up, which is 

then employed to convert the CT pixel values into bone mineral density. Finally in this 

chapter, the different conversion factors used in our subject specific FE models will be 

presented and compared to conversion factors reported in literature.
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2.2  Characterising the x-ray spectrum
The pixel value in a CT image gives a measure of how much radiation is attenuated in 

the material at the location of the pixel, the linear attenuation coefficient ( ). The pixel 

values are given in Hounsfield units (HU), which means that they are normalised 

according to the linear attenuation coefficient in water:  

2

1000 1
H O

HU , (2.1) 

The pixels are stored as 12-bit values, and have a range from -1024 to 3071. As defined 

by equation (2.1), water has a HU value of zero. The attenuation of x-rays in air is 

practically zero, which gives a HU value of -1000. In bone the values might range 

between 200 and 600 HU for cancellous bone and between 1000 and 2000 HU for 

cortical bone.  

The total attenuation of x-rays in a material depends on the material density, 

composition and the radiation spectrum from the x-ray tube. In materials with a 

chemical composition (or effective atomic number) close to water, the HU values will 

remain largely unaffected by changes in the x-ray spectrum. In bone, however, photons 

will be attenuated differently due to its calcium content. The relationship between HU 

values and mineral density will therefore depend on the x-ray spectrum used in the CT 

scanner. In explaining how x-rays are absorbed and how we can use CT attenuation 

values to estimate bone mineral density, we will start by explaining a little about the x-

ray tube and how x-rays are absorbed in the tissue.  

The radiation from the x-ray tube is made up of a spectrum of photon energies that 

depends on different parameters. The x-rays are produced by accelerating electrons in 

an electric field determined by the electric potential (x-ray tube voltage, kV) between 

the cathode and anode (figure 2.1). The kinetic energy of the electrons is equal to 

electric potential multiplied by the electron charge. Hence, an x-ray tube voltage of 80 

and 140 kV gives the electrons a kinetic energy of 80 and 140 keV, respectively. The 
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electrons hit the anode and are decelerated by the material, thereby producing 

electromagnetic radiation, socalled braking radiation or Bremsstrahlung.

Figure 2.1: Principle sketch of the X-ray tube (left) and production of braking radiation in the anode 
material (right). 

If the electron is completely decelerated in one single interaction with an atom, all the 

kinetic energy of the electron is converted into one single photon with the exact same 

energy. The highest photon energy that can be produced by the x-ray tube is therefore 

equal to the kinetic energy of the electrons. However, in most cases the electron is 

slowed down in several stages producing several lower energy photons and creating a 

continuous spectrum of radiation energies.  

Electrons in an atom are organised in shells (K-, L- and M-shell) around the nucleus. In 

some cases an incident electron collides with electrons around the nucleus and ejects the 

electron from its shell. Another electron from an outer shell must then replace the 

ejected electron, thereby emitting a photon with energy equal to the difference in energy 

of the two shell positions. Tungsten, which is usually used for x-ray machines and CT 

scanners, has binding energies of 69.5, 11.5 and 2.5 keV (Seibert, 2004) for the K-, L- 

and M-shells, respectively. An electron from the L- or M-shell jumping down to the K-

shell would thus produce photons with energies 58 keV and 67 keV. Since electron shell 

binding energies are characteristic for the chemical element, this type of radiation is 

called characteristic radiation. The characteristic radiation of the anode material is 

shown as sharp peaks in the x-ray spectrum (figure 2.2). 
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Figure 2.2: The output radiation from the X-ray tube with tungsten anode at different peak voltages. The 
graphs were created using the TASMIP algorithm (Boone and Seibert, 1997).

Attenuation of x-rays in a material is a combination of different absorption and 

scattering effects - mainly photoelectric absorption, Rayleigh scattering and Compton 

scattering. For the range of photon energies used in clinical radiology (figure 2.3), the 

degree of photoelectric absorption and Rayleigh scattering depends on photon energy, 

while the degree of Compton scattering remains largely constant. In biological tissue 

photoelectric absorption dominates for photon energies lower than 25 keV, while 

Compton scattering dominates for photon energies higher than 25 keV (Dance, 2003). 

One property that distinguishes Compton scattering from photoelectric absorption and 

Rayleigh scattering, is that the latter are highly dependent on the atomic number (Z) of 

the absorbing material. Compton scattering is usually described using the Klein-Nishina 

formula (Seibert and Boone, 2005) which defines it as invariant of atomic number.  
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Figure 2.3: The contributions of photoeletric absorption ( ), Compton scattering ( INCOH) and Rayleigh 
scattering ( COH) in carbon at different photon energies (reproduced from Hubbell (1999)). The 
highlighted area marks the range photon energies in clinical radiology (17 to 150 keV). 

For monochromatic radiation the linear attenuation coefficient , , in a mixed material 

can be expressed as (Schneider et al., 2000): 

2.86 4.62( ) ( ) ( )i
A i C i R i

i i

wE N Z K E Z K E Z K E
A

, (2.2) 

where  is the material density, NA is Avogadro's number and wi, Ai and Zi is the weight 

fraction, atomic weight and atomic number of the ith chemical component. KC, KR and 

K  are the coefficients of Compton scattering, Rayleigh scattering and photoelectric 

absorption for a given photon energy (E). The exponentials of Compton and Rayleigh 

scattering were determined experimentally by Rutherford et al. (1976). The total 

attenuation in the material depends on the distribution of photon energies from the x-ray 

tube. Schneider et al. (2000) expressed the total attenuation coefficient for 

polychromatic radiation as: 

2.86 4.62i
A i C i R i

i i

wN Z K Z K Z K
A

, (2.3) 

where the superscript bar denotes that these are the mean values for a polychromatic 

spectrum. By expressing the total attenuation of a material relatively to that of water we 

get:



2.2 Characterising the x-ray spectrum

11

2 2

2.86 4.62
1 2

2.86 4.62
1 2 1 2

/

/ 1 / 8 8 8

i i i i i
i

H O H O H H O O

w A Z Z k Z k

w A k k w A k k
, (2.4) 

where

1
R

C

Kk
K

 and 
CK

K
k2 . (2.5) 

The values of k1 and k2 will be determined using a calibration phantom with materials 

with known densities and chemical composition. Their values are found by iterating on 

k1 and k2 until the error between HU values calculated for the different phantom 

materials and HU values measured in the CT images reaches a minimum: 

2

2

1 2, 1
1000

measured

n nH O n

HUError k k , (2.6) 

where n is the number of phantom material. The values k1 and k2 tell us the amount of 

Rayleigh scattering and photoelectric absorption relative to Compton scattering for the 

given x-ray spectrum. 

2.3  CT calibration phantom 
The calibration phantom used in the present thesis was made from materials spanning a 

wide range of atomic numbers and material densities. The phantom consists of rods and 

tubes with different materials (figure 2.4): water, polyoxymethylene (POM), 

polyvinylidene fluoride (PVDF), teflon, calcium carbonate powder (CaCO3),

polymethyl methacrylate (PMMA; MelioDent Rapid Repair, Heraus Kulzer GmbH, 

Germany) and four different mixtures of PMMA and CaCO3 (20%, 40%, 60% and 70% 

by weight of CaCO3).
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Figure 2.4: The different materials of the calibration phantom: water (1), POM (2), Teflon (3), PVDF (4), 
CaCO3 powder (5), PMMA (6), 20% CaCO3 (7), 40% CaCO3 (8), 60% CaCO3 (9) and 70% CaCO3 (10).

For a material with a given chemical composition we can calculate the elemental weight 

fraction:  

i i
i

j j
j

n Aw
n A

, (2.7) 

where ni is the number of atoms of the ith chemical component in a molecule consisting 

of j chemical components. Table 2.1 shows the densities, elemental weight fractions and 

effective atomic numbers of the phantom materials. The effective atomic numbers of a 

compound with respect to photoelectric absorption and Rayleigh scattering are defined 

as (Watanabe, 1999): 
1

1 , 1
1 , 1

,

m n
m n

R i i
i

Z Z , (2.8) 

where m is 4.62 and n is 2.86, which are identical to the exponentials of photoelectric 

absorption and Rayleigh scattering in equation (2.2) and (2.3). i is the electron fraction 

of the ith chemical component for a compound made up of a total of j chemical 

components: 
1

j ji i i i
i

jj j i j
j

w Zn Z w Z
n Z A A

 (2.9) 
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Table 2.1: Density and chemical composition of the phantom materials. Z and A is the atomic number 
and atomic weight of each chemical element (hydrogen, H; carbon, C; oxygen, O; fluoride, F; calcium, 
Ca). Z  and ZR are the effective atomic numbers of the phantom material for photoelectric absorption and 
Rayleigh scattering, respectively.
Material Density* Elemental weight fractions, % Z ZR

[g/cm3]

H
Z=1, 

A=1.008 

C
Z=6, 

A=12.01 

O
Z=8, 

A=16.00 

F
Z=9, 

A=19.00 

Ca
Z=20, 

A=40.08 

Water H2O 1.00 11.19 - 88.81 - - 7.52 7.12 

POM
[H2CO]n

1.40 6.71 40.00 53.29 - - 7.05 6.72 

Teflon 
[C2F4]n

2.16 - 24.02 - - - 7.64 7.56 

PVDF
[H2C2F2]n

1.79 3.15 37.51 - 59.34 - 7.99 7.65 

CaCO3
(powder) 1.25 - 12.00 47.96 - 40.04 15.73 13.78 

PMMA
[C5H8O2]n

1.1 8.05 59.98 31.96 - - 6.58 6.21 

PMMA+20%
CaCO3

1.23 6.44 50.39 35.16 - 8.01 10.39 8.10 

PMMA+40%
CaCO3

1.42 4.83 40.79 38.36 - 16.02 12.28 9.72 

PMMA+60%
CaCO3

1.62 3.22 31.19 41.56 - 24.02 13.65 11.17 

PMMA+70%
CaCO3

1.76 2.42 26.4 43.16 - 28.03 14.23 11.85 

*apparent density, mass per bulk volume. 

Figure 2.5: Two CT scans showing the calibration phantom and two bone specimen at 80 kV (left) and 
140 kV (right). The materials with atomic density higher than water exhibit a considerable shift in HU 
values from 80kV to 140kV. The same effect is observed in bone. 

Figure 2.5 shows that the x-ray tube voltage does not have any notable effect on the 

attenuation in polymers which have effective atomic numbers close to that of water. At 

lower voltages photoelectric absorption and Rayleigh scattering is much more prevalent 

and x-rays are much more effectively absorbed in materials with higher effective atomic 
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number. This shift in attenuation is very clear for the chambers with high amount of 

CaCO3 powder, and can also be observed in the bone samples in the CT scans. 

We will now explain the basic steps of our program written to obtain the HU values of 

the phantom and calculate k1 and k2 for different x-ray tube voltages. Two CT images 

representing the top and bottom end of a phantom section were selected. Circles were 

drawn in the images to define the ends of a cylinder for each phantom material. HU 

values for each phantom material were collected from all CT images within the defined 

cylinder (figure 2.6, right). 

Figure 2.6: Circles drawn on the CT scan, marking the location of each phantom material (left). The 
yellow cylinder (right) between the circle pair of one phantom material, marks were the HU values should 
be collected in the CT scans lying inbetween. 

Figure 2.7 shows that some of the phantom materials have a small peak at -1000 HU 

telling us that they contain some small pores of air, which can also be seen in the CT 

scans in figure 2.5 and figure 2.6. To avoid the pores and other flaws in the phantom 

materials from influencing the calculations, the median HU value of each phantom 

chamber were used to estimate k1 and k2, rather than the mean value. The values of k1

and k2 were calculated by minimizing the error in equation (2.6) through iteration. 

Values of k1 and k2 obtained at different x-ray tube voltages are given in table 2.2. 
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Figure 2.7: Distribution of CT pixel values (HU) obtained from the different phantom materials at 140 
kV x-ray tube voltage. Some of the phantom materials have a small secondary peak at -1000HU, due to 
small pores of air.

Table 2.2: Estimates of k1 and k2 at different x-ray tube voltages. 
X-ray tube voltage [kV] k1 k2

80 3.280·10-3 5.240·10-5

100 1.680·10-3 3.960·10-5

120 1.196·10-3 3.173·10-5

140 0.740·10-3 2.760·10-5

The values of k1 and k2 in table 2.2 show how photoelectric absorption and Rayleigh 

scattering decreases when increasing the x-ray tube voltage. Schneider et al. (2000) 

reported k1=1.24·10-3 and k2=3.06·10-5 at 120 kV, which is very close to our values. 
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Figure 2.8: The measured HU values of the phantom together with calculated values based on estimates 
of k1 and k2.

Figure 2.8 shows that the effective atomic number of a material together with x-ray tube 

voltage plays an important role for the HU value of the material. Carbon based materials 

like polymers and organic tissues usually have effective atomic number close to that of 

water (see table 2.1), and the HU values of these materials are therefore not particularly 

affected by changes in the x-ray tube current. Mineralized tissue, however, has a higher 

effective atomic number than water due to its calcium content, and is therefore affected 

by x-ray tube voltage. 

2.4  The composition of bone tissue 
The relation between bone composition and mechanical properties has been subject to 

extensive research, and bone is usually treated as a mix of collagen, calcium 

hydroxyapatite (calcium HA) and water (Hellmich and Ulm, 2002; Lees, 2003; Raum et 

al., 2006). Cortical bone has a dense structure, with a porosity of 5-10% (Martin et al., 

2007), forming the outer wall or shell around the bones. Cancellous bone, or trabecular 

bone, is found in the ends of long bones and inside flat and cuboidal bones, and has a 

porosity of approximately 75-95% (Martin et al., 2007). The marrow in the pores can be 

characterised as two distinct types; red bone marrow which is active in the formation of 

blood cells and has a high water content, and yellow marrow which largely consists of 
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fat cells. The water content of bone marrow is around 80% in children and drops to 50% 

in elderly people (Ishijima et al., 1996), which means that red marrow is converted into 

yellow marrow with aging. The density of bone marrow has been reported to be 1.03 

and 0.98 g/cm3 (Goodsitt et al., 1991) for red and yellow bone marrow, respectively. 

Lunde et al. (2008) extracted the fluid from morsellized bovine bone, and found it to 

have a density of 1.0 g/cm3 despite a very high fat content (~80%).

In order to calculate the chemical composition of bone, we will make the following 

assumptions: 

1. The ash fraction ( ) is constant at 0.6 (Hernandez et al., 2001; Schileo et al., 

2008).

2. The amount of fluid bound in the bone tissue is negligible (Broz et al., 1995). 

Bone tissue consists only of calcium HA and collagen, and fluid is only found in 

the pores and canals. 

3. The bone fluid and marrow has a density of 1.0 g/cm3, and is a mixture of water 

and fat. 

From the assumptions above we can define the mineral ( min) and apparent ( app) density 

of bone, and establish a relationship between the two: 

HA
min

tot

m
V

 (2.10) 

HA coll
app

tot

m m
V

 (2.11) 

0.6min minHA
app

HA coll app

m
m m

 (2.12) 

Using the densities of calcium HA and collagen ( HA=3.06 g/cm3 and coll.=1.38 g/cm3

(Steenbeek et al., 1992)), we can calculate the tissue density of bone:

coll coll
coll coll

coll coll

m mV
V

 (2.13) 

HA HA
HA HA

HA HA
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HA coll coll HA

m m
V V
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The estimate of tissue density corresponds with the results of Morgan et al. (2003) who 

found the trabecular tissue density to be 2.05 g/cm3. From this we can define the bone 

volume fraction (BV/TV) of a sample: 

1app coll HAmin
min

tissue tissue coll HA

BV
TV

 (2.19) 

The bone volume fraction is then used to express the total density of the bone sample as 
a function of its mineral density ( min):

1

1
1 0.857 1

total tissue fluid

coll HAmin
total min fluid min min

coll HA

BV BV
TV TV

 (2.20) 

The bone fluid, or marrow, has been defined to have a density equal to 1.0, and is 

regarded as a mixture of fat and water. The ratio between the two is the fat fraction 

(FF), which is known to vary depending on age and gender (Ishijima et al., 1996). Later 

on, two different compositions of the bone fluid (FF=0 and FF=0.5) will be tested to see 

what effect it has on the calibration coefficients. The weight fractions of the different 

constituents of bone can thus be expressed as functions of the bone mineral density 

( min):

FF 1

1
FF 1

fat fluid

coll HA
fat min fluid min

coll HA

BVw
TV

w
 (2.21) 

1- FF 1

1
1- FF 1

water fluid

coll HA
water min fluid min

coll HA

BVw
TV

w
 (2.22) 
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min
HA min

total min

w  (2.23) 

. 1coll min HA water fatw w w w  (2.24) 

Knowing the chemical composition of water (H2O) and calcium hydroxyapatite 

(Ca10(PO4)6(OH)2), the elemental weight fractions are calculated using equation (2.7). 

Fatty acids are long chains of carbon and hydrogen ([CH2]n). Collagen is made up of 

different proteins, and we therefore use the elemental weight fraction of protein 

(Steenbeek et al., 1992): 7% hydrogen, 54% carbon, 16% nitrogen, 23% oxygen.

Table 2.3: Density and elemental weight fractions of the chemical constituents of bone (hydrogen, H; 
carbon, C; oxygen, O; nitrogen, N; phosphorus, P; calcium, Ca).  

Density Elemental weight fractions, % Z ZR

[g/cm3]
H

Z=1, 
A=1.008 

C
Z=6, 

A=12.01 

N
Z=7 

A=14.01

O
Z=8, 

A=16.00 

P
Z=15, 

A=30.97 

Ca
Z=20, 

A=40.08
Water 1.00 11.19 0 0 88.81 0 0 7.52 7.12 
Fat ~1.00 14.37 85.63 0 0 0 0 5.54 5.17 
Ca. HA 3.06 0.2 0 0 41.4 18.5 39.9 16.32 14.94 
Collagen 1.38 7 54 16 23 0 0 6.55 6.24 

By combining the weight fractions of water, fat, calcium HA and collagen in equations 

(2.21) through (2.24) with the weight fractions given in table 2.3, the elemental weight 

fractions of bone can be expressed as functions of the mineral density:  

0.1119 0.1437 0.002 0.07H min water fat HA collw w w w w  (2.25) 

0.8563 0.54C min fat collw w w  (2.26) 

0.16N min collw w  (2.27) 

0.8881 0.414 0.23O min water HA collw w w w  (2.28) 

0.185N min HAw w  (2.29) 

0.399Ca min HAw w  (2.30) 
Figure 2.9 shows the weight fractions in bone as a function of mineral density when 

assuming a fat fraction of 50% in the bone fluid (FF=0.5).  
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Figure 2.9: Weight fractions of the elemental compounds of bone presented as a function of mineral 
density ( min). The bone fluid was assumed to be 50% fat and 50% water. 

The parameters k1 and k2, characterising the radiation spectre of the CT scanner, have 

been determined from the calibration (table 2.2). Thus we can insert k1 and k2, the 

weight fractions (equation (2.25)-(2.30)) and the total bone density (equation (2.20)) 

into equation (2.4) and (2.1) to calculate HU values for any mineral density. Figure 2.10 

shows HU values of bone calculated using the values of k1 and k2 from table 2.2.  

Figure 2.10: HU values calculated for bone tissue at different x-ray tube voltages. The bone fluid was 
assumed to be 50% fat and 50% water. 
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The relationship between mineral density and HU values in figure 2.10 can be 

simplified into a linear function on the form: 

min a HU b [g/cm3] (2.31) 

The slopes (a) and y-intercepts (b) calculated for the different x-ray tube voltages are 

shown in table 2.4. The table shows the calibration coefficients when assuming the bone 

fluid to be an even mixture of water and fat, and when assuming it to only be water:

Table 2.4: Calibration coefficients derived from our procedure. 
kV Slope 

[a ·103]
Y-int.

[b ·103]
50% water, 50% fat:    
 80 0.522 15.0 
 100 0.625 9.5 
 120 0.699 6.6 
 140 0.756 3.7 
100% water, 0% fat:    
 80 0.533 0 
 100 0.629 0 
 120 0.703 0 
 140 0.758 0 

The slope increases with increasing x-ray tube voltage, from 0.522·10-3 and 0.533·10-3

at 80 kV to 0.756·10-3 and 0.758·10-3 at 140 kV. A mineral density of 0 g/cm3 means 

that the sample only contains fluid. Thus, assuming that the fluid is 100% water, gives a 

y-intercept of 0 HU as defined in equation (2.1).

In this example, the fat in the bone fluid was assumed to have the same density as water, 

but a lower effective atomic number due to its carbon content (Z =5.54 versus Z =7.52). 

This means that a fluid with 50% fat and water will have a lower photon stopping power 

than pure water, hence the positive y-intercept. As the x-ray tube voltage increases, the 

amount of photoelectric absorption and Rayleigh scattering is reduced and the atomic 

number of the material has less effect on the HU values, while material density becomes 

dominant. Our assumption that the bone fluid has a density equal to water means that fat 

content in the fluid will affect the calibration coefficients at 80 kV, but be almost 

negligible at 140 kV. This stands in contrast to other studies who found the error 

induced by fat to be greater at 130 and 140 kV than at 80 kV (Laval-Jeantet et al., 1986; 

Goodsitt et al., 1988). Those observations can be explained, if the fat content in marrow 

and bone fluid gives a significantly lower density than assumed here. The assumption of 
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the bone fluid having a density of 1.0 g/cm3 was chosen as a compromise between 

yellow marrow ( =0.98 g/cm3), red marrow ( =1.03 g/cm3) and the fluid extracted from 

morsellized bone ( =1.0 g/cm3) (Goodsitt et al., 1991; Lunde et al., 2008). 

2.5  Evaluation of the calibration procedure 
The aim of this chapter was to describe the theory behind the calibration method used in 

the present thesis. The method is somewhat complicated, but can be used to calculate 

the HU value of any material with a known density and chemical composition. 

Unfortunately, we did not have the opportunity to properly validate our calibration 

coefficients against a standard calibration phantom for bone densitometry. Instead we 

will evaluate the calibration coefficients used in our subject specific FE models (table 

2.5) against those reported in literature (table 2.6). In the CT calibration for our FE 

models, the bone fluid was assumed to be equivalent to water, which per definition 

gives a y-intercept of 0. 

Table 2.5: Calibration coefficients used in the present thesis (value ± SD). 1The slope used in the FE 
models employing equation (2.32). 2The corrected slope when employing equation (2.18). 

kV Slope1

[a ·103]
Corrected slope2

[a ·103]
Section 3.5    
     Callus distraction, Initial 140 0.715 0.773 
     Callus distraction, Final  140 0.700 0.758 
    
Section 4.3, 4.4 & 4.5    
     Femur pair 01 140 0.720 0.778 
     Femur pair 02 140 0.711 0.772 
     Femur pair 03 140 0.714 0.773 
     Femur pair 08 140 0.696 0.755 
     Femur pair 11 140 0.717 0.774 
     Femur pair 13 140 0.725 0.789 
     Femur pair 16 140 0.715 0.773 
     Femur pair 18 140 0.678 0.734 
     Femur pair 19 140 0.690 0.748 
Mean 140 0.707±0.01 0.766±0.02 
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The calibration coefficient used to convert HU values to mineral density are shown in 

table 2.5 to be slightly lower than the ones given for 140 kV in table 2.4. The reason for 

this discrepancy was an error in the calculation of bone tissue density that was 

discovered later in the project. Instead of calculating the tissue density as given in 

equation (2.18), the density was mistakenly calculated as:  

.(1 ) 2.39tissue HA coll  [g/cm3] (2.32) 

As a result of this mistake, the calibration coefficients used in the FE models are 8% 

lower than they would have been if equation (2.18) had been employed.  

CT calibration coefficients for different calibration phantoms and bone reported in 

literature are shown in table 2.6. The density derived directly from the calibration 

phantom is referred to as QCT, while min refers to bone mineral density or ash density. 

Table 2.6: Calibration coefficients reported in literature (value ± SD): QCT=a·HU+b and min=a·HU+b. 
Adjusting the calibration coefficients according to: 1Keyak et al. (1994), 2Les et al. (1994), 3Schileo et al. 
(2008). 

 Calibration 
coefficients, QCT

Calibration
coefficients, min

kV  [a ·103] [b ·103]  [a ·103] [b ·103]
Liquid phantom, K2HPO4:     
Goodsitt et al. (1988) 80 0.538 -27.4   
Keyak et al. (1994) 80 0.529  -1.3  0.4981 33.51

Chen and Lam (1997) 120 0.691 -19.8   
Trabelsi et al. (2009) in air 120 0.663  -18  0.8092 30.32

Trabelsi et al. (2009) in water 120 0.810  -11  0.9882 38.92

Hindelang and Maclean (1997) 130 0.7 -13.6   
Goodsitt et al. (1988) 140 0.787 -6.65   
Keyak et al. (1994) 140 0.673  4.15  0.7131 431

Keyak et al. (1994) 140 0.692  -9.39  0.6591 301

Yosibash et al (2007) 140 0.682  -5.48  0.8322 45.62

      
Solid phantom, Calcium HA:      
Homolka et al. (2002) 120 0.760±0.03 2.8±3.7   
Homolka et al. (2002) 120 0.804±0.06 5.2±4.2   
Taddei et al. (2006) 120 0.656 15.4   
Taddei et al. (2006) 120 0.644 19.0   
Reggiani et al. (2007) 120 0.808 -5.64   
Schileo et al. (2008) 120 0.776  -5.61  0.6813 74.023

      
Bone, apparent density:      
Hvid et al. (1989) 100 1.06 94.9 0.610 57.8 
Hvid et al. (1989) 120 1.20 101 0.688 61.3 
Ciarelli et al. (1991) 130 1.141  118.4    
Hvid et al. (1989) 140 1.30 103 0.746 62.5 
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The calibration coefficients for min found in bone specimen (Hvid et al., 1989; Ciarelli 

et al., 1991) show that the slope (a) increases with the x-ray tube voltage (kV) similar to 

our results in table 2.4. Ciarelli et al. (1991) found good correlation between HU values 

and apparent and mineral density of bone, but only reported calibration coefficients for 

the apparent density. The positive y-intercepts (b) found by Hvid et al. (1989) and 

Ciarelli et al. (1991) may indicate presence of fatty marrow in the samples (Laval-

Jeantet et al., 1986; Goodsitt et al., 1988). Liquid phantoms use K2HPO4 dissolved in 

water, while solid phantoms use calcium HA in water equivalent polymer resin 

(Kalender et al., 1995; Homolka et al., 2002). Thus, all y-intercepts (b) for solid and 

liquid calibration phantoms listed in table 2.6 should be 0 under ideal circumstances.  

The calibration coefficients reported for QCT from the K2HPO4 phantom agree very 

well with our result in table 2.4 and those found for min of bone specimen in table 2.6. 

Two studies (Yosibash et al., 2007; Trabelsi et al., 2009) adjust QCT according to Les et 

al. (1994), who found K2HPO4 phantoms to underestimate the mineral density of bone 

considerably. However, judging by the results of Keyak et al. (1994), Hvid et al. (1989) 

and derived from our method (table 2.4) it seems that the QCT from liquid calibration 

phantoms hardly needs any adjustment at all. The calibration coefficients reported for 

the solid calcium HA phantoms show a wide spread of values even at the same x-ray 

tube voltage. While the values reported by Taddei et al. (2006) are in agreement with 

our values in table 2.4, the values of a reported by the rest are significantly higher. 

Studies have found calcium HA phantoms to overestimate the mineral density in bone 

(Kaneko et al., 2003; 2004; Schileo et al., 2008). The adjusted calibration coefficients of 

Schileo et al. (2008) agree with those reported by Hvid et al. (1989) and our results in 

table 2.4. Bone tissue consists of a considerable portion collagen (~40%) with a higher 

density than water (Steenbeek et al., 1992; Hellmich and Ulm, 2002). Collagen will 

therefore attenuate more radiation than water, which would explain a systematic 

overestimation of bone mineral density by the calibration phantoms using calcium HA 

and water equivalent polymer resin. Goodsitt (1992) found that liquid calibration 

phantoms produced lower estimates of bone mineral content than solid phantoms. This 

would explain why calibration coefficients from calcium HA phantoms need to be 
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adjusted to relate them to bone mineral density, while calibration coefficients from 

K2HPO4 phantoms do not seem to need any adjustment.  

The calibration coefficients presented in table 2.5 and table 2.6 exhibit a wide variation 

even at the same x-ray tube voltage. A small variation would be expected due to 

fluctuations in the x-ray spectrum of the CT scanner, but the variation seen for the solid 

calibration standards still seems excessive. Homolka et al. (2002) reported values for 

the slope varying between 0.724 (mandible specimen) and 0.868 (patient). A similarly 

excessive variation in calibration coefficients were reported for the European Spine 

Phantom at 120 kV; with slopes varying between 0.644 (Taddei et al., 2006) and 0.808 

(Reggiani et al., 2007). One explanation for this variation may be that the range of 

mineral densities in the calibration phantom is not sufficiently wide. The maximum 

mineral densities in the solid calibration phantoms are 0.15 and 0.20 g/cm3 in the Dental 

Phantom and European Spine Phantom (Homolka et al., 2002; Schileo et al., 2008), 

respectively. Fully mineralized bone on the other hand, has a mineral density of about 

1.2 g/cm3. The extrapolation outside the range of the materials in the calibration 

phantom, thus make the calibration coefficients much more susceptible to errors due to 

noise or artefacts in the CT images. In our calibration phantom, the materials span the 

range of material densities and atomic numbers found in bone, and should therefore 

provide more stable results. Although the range and standard deviation of the calibration 

coefficients is less in our phantom, there is still a considerable variation in the 

calibration coefficients used in our FE models (table 2.5) – with a ranging from 

0.678·10-3 to 0.725·10-3 at 140 kV (0.734·10-3 to 0.789·10-3, corrected coefficients). 

Some of this variation may be attributed to inaccuracies in the mixing of the phantom 

materials. Trabelsi et al. (2009) found the calibration coefficients to differ considerably 

if scanned in air or while immersed in water. The calibration coefficients in table 2.4 

and for the callus distractions in (table 2.5) were derived from the phantom scanned in 

air, while the calibration coefficients for the femurs (table 2.5) while surrounded by 

water. Our calibration phantom does not seem to be affected by the surrounding 

medium. 
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Our method of calibration is clearly much more complicated than the standard 

procedures, and we even discovered an error in the calculation of bone tissue 

composition. The error gave a systematic underestimation of bone mineral density of 

8% percent. Still, the calibration coefficients used in our FE models are within the range 

reported for standard calibration procedures at the same x-ray tube voltages. We have 

therefore chosen not to redo the FE analyses with corrected calibration coefficients. The 

procedure described in this chapter was used because we did not have any standard 

calibration phantom available, and therefore had to improvise a phantom. The phantom 

could be improved by using K2HPO4 dissolved in water instead of PMMA and CaCO3

mixtures, as it easier to ensure homogenous material distribution in a liquid solution 

than in a solid mixture. Aluminium could also be included as it has radiological 

properties (Z=13, =2.7 g/cm3) close to that of fully mineralized bone. The main 

advantage of the presented procedure is that it enables the contribution of collagen to be 

included in the calibration, something that is disregarded in the standard solid and liquid 

calibration phantoms. 
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Chapter 3:  Subject specific FE analysis of a callus 
distraction

3.1  Background 
Callus distraction, also known as distraction osteogenesis and callotasis, is the 

procedure of correcting and reconstructing the length of a limb by slowly stretching an 

osteotomy site. The procedure was pioneered and developed by the Soviet orthopaedic 

surgeon Gavriil Ilizarov, who observed new bone tissue being formed in the distracted 

fracture gap of a patient (Ilizarov, 1990). Ilizarov found that by using a system of 

external ring fixators it was possible to gradually distract the fracture gap and achieve 

the desired lengthening of the bone. Eventually, the distracted bone would remodel and 

regain its ideal tubular shape, making it indistinguishable from the original bone. 

Previous methods of limb lengthening were associated with many complications and 

great risk for the patient, and were generally avoided by the surgeons unless amputation 

was the only other alternative. Grafting of bone is generally not used as blood supply in 

bone is poor, thereby making successful integration of graft and host bone difficult 

(Brutscher, 1994). One-stage lengthening of bones by grafting or the use orthopaedic 

implants may also cause damage to nerves and soft tissue due to the sudden elongation 

(Cauchoix and Morel, 1978; Herron et al., 1978). A slow lengthening of the bone callus 

takes longer time, but allows the formation of new bone and lets the soft tissue adapt 

more gently. Although not being free from complications, the Ilizarov method of limb 

lengthening is considered safe and is now a standard procedure for limb lengthening 

worldwide. The procedure may be used to lengthen limbs in patients with bone 
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deformities, congenital or due to illness, or to regenerate bone after cancer surgery or 

complicated fractures. 

Callus distraction is initiated by fracturing the bone and letting it heal for about a week 

to allow a fracture callus to form before starting the distraction. The callus is then 

stretched by 1 mm a day until the desired lengthening is achieved (figure 3.1, left). In 

addition to limb lengthening, callus distraction can be used for bone transport (figure 

3.1, right). Bone transport is used after a section of bone has been resected (tumor, 

complicated fracture etc.) leaving a gap. A second osteotomy is then performed and 

slowly stretched to bridge the gap. Bone transport maintains the original length of the 

limb during treatment, thereby reducing the impact of the treatment to soft tissue and 

keeping the functionality of the limb.  

Figure 3.1: Callus distraction used for lengthening a limb (left) and to bridge a bone defect (right). 

When the desired lengthening is achieved, the distraction is stopped and the callus 

tissue is left to consolidate and mineralize. This consolidation process may last two to 

three times the duration of the distraction process (Brutscher, 1994). Thus, in some 

cases the external fixation frame must remain in place for as much as a year. The frame 

cannot be removed until the bone tissue is sufficiently strong and stable to carry the load 

of the patient. On the other hand, bone tissue needs mechanical stimulus to develop and 

maintain its strength. Leaving the frame on for too long to be "on the safe side" may 
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therefore be counterproductive as it may lead to bone resorption and delayed healing, in 

addition to increased risk of pin tract infection. Determining when to remove the 

external fixation frame is therefore crucial for the success of the treatment.  

Figure 3.2: Callus distractions in two patients. Left: During the consolidation phase, with the external 
fixation still in place. Right: The fixation was removed prematurely and the bone regenerate failed after a 
couple of days. 

Plain radiography is usually used to decide when the external frame should be removed. 

However, it has been found that plain radiography provides poor indication of the 

mechanical stability of the callus (Blokhuis et al., 2001; Starr et al., 2004; Anand et al., 

2006). In figure 3.2 on the right we see an example where the bone regenerate of a leg 

lengthening had been deemed healed from radiographs, but failed shortly after the 

fixation was removed. 

As will be discussed in this chapter, the callus formed during distraction has a different 

structure than found in a normal fracture, making it mechanically less stable. Various 

methods of assessing its stability have been studied: either by direct mechanical 

measurement on the patient, or indirectly by measuring the mineral content and 
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evaluating the callus structure from radiographic images. In many cases the external 

fixation frame does not permit measurement of the mechanical stability of the callus. 

The present chapter will describe how CT images can be used to build subject specific 

FE models of the distracted section in order to assess its mechanical stability. Only one 

previous study using subject specific FE models of a callus distraction was found (Harp 

et al., 1994). The FE model used in that study only had eight elements for each CT scan 

level, which is too coarse to reflect the heterogeneous structure of the callus distraction. 

The present chapter will discuss some of the mechanical characteristics of the bone 

regenerate (section 3.2), the problems with determining its mechanical stability (section 

3.3), and how to generate FE models directly from CT scans with only a few manual 

operations (section 3.4). Such FE models can be used by the orthopaedic surgeon to get 

an assessment of the stiffness of the lengthened section, and thus be employed to 

determine when the external fixation can be removed. In section 3.5, the method has 

been used on a patient. Unfortunately, the external fixation on the patient could not be 

dismantled to allow direct mechanical testing of the callus distraction. The FE models 

could therefore not be properly validated. The work presented in section 3.5 is thus only 

a preliminary study to assess different variables that might influence the results. This is 

of course a major limitation to the study, but also underlines the main motivation of the 

study: there is no way to measure the stability of the callus distraction directly, we 

therefore wish to use subject specific FE models evaluate its stability indirectly. 

3.2  Formation of the fracture callus 
The trauma of a bone fracture sets off a sequence of biological reactions in cells found 

in the marrow, on the bone surface and in the bone itself, in order to regenerate the bone 

and bridge the fracture gap. This section will not go into the biochemistry and cellular 

reactions, but merely focus on the mechanical aspects of fracture healing and how the 

healing of a distracted callus differs from a normal fracture. 

In general, there are two types of fracture healing: primary and secondary (Phillips, 

2005). Primary fracture healing occurs when the fracture is perfectly aligned and 

stabilized with no relative motion at the fracture interface. It does not produce a fracture 
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callus, instead the osteons in the cortical bone remodel directly across the fracture line 

thus fusing together the fracture site. Primary fracture healing is usually only seen when 

internal fixation is used to stabilize the fracture site, and is therefore not relevant for 

callus distraction. Secondary fracture healing occurs when there is a slight 

interfragmentary micromotion, and a callus is formed to stabilize and repair the fracture. 

New bone is formed at the fracture gap by two processes: direct bone formation 

(intramembranous ossification), and through the formation of cartilage and 

fibrocartilage that mineralizes over time (endochondral ossification). It has been 

suggested that the type of tissue that is formed is governed by the stress or strain state at 

the site (Carter et al., 1998). The cells responsible for generating bone (osteoblasts) need 

an environment with relatively little strain ( <1%) to form woven bone (Wraighte and 

Scammell, 2006). It has a disorganized structure and inferior mechanical properties 

compared to mature bone, but it is formed more rapidly. Woven bone created through 

direct bone formation occurs predominantly on the periosteal surface adjacent to the 

fracture gap, but can also be found on the endosteum. In areas with strain exceeding the 

strain limit for bone formation, cartilage and fibrocartilage is generated. As the cartilage 

stabilizes and reduces the tissue strains at the site, it gradually turns into woven bone. 

Cartilage is typically formed in and around the fracture gap. A fracture callus usually 

has a larger diameter than the original bone, which increases its second moment of area 

and contributes to the structural rigidity of the callus (figure 3.3, left).

Figure 3.3: The tissue differentiation in fracture healing when subjected to compression (normal fracture 
healing) and tension (distraction osteogenesis).
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Studies have shown that under ideal circumstances the pattern of bone formation in a 

distracted callus is different from the normal fracture healing (Aronson et al., 1990; 

Garcia et al., 2008). A fibrous tissue is formed between the two osteotomy surfaces with 

fiber orientation parallel to the direction of distraction. New bone is formed along these 

fibers, creating small columns extending from the osteotomy towards the center of the 

fracture gap (figure 3.3, right). A fibrous growth zone is maintained in the center of the 

fracture gap during distraction. The new bone generated along the fibers is formed in a 

process similar to intramembrous ossification without an intermittent cartilage phase 

(Ilizarov, 1989; Karaharju et al., 1993; Garcia et al., 2008). After distraction has been 

completed, the fibrous growth zone ossifies and a structure of trabecular bone oriented 

parallel with the distraction direction is formed in the distraction gap.  

Carter et al. (1998) used a simple FE model to demonstrate the two tissue differentiation 

patterns seen in a normal fracture callus and a callus undergoing distraction. It was 

assumed that muscle contractions and partial load bearing would subject a regular 

fracture to compressive forces, while a fracture gap undergoing distraction is subjected 

to tension. Compression produced a stress/strain pattern indicating a tissue 

differentiation similar to what is observed in regular fracture healing: direct bone 

formation on the periosteum, cartilage formation in the medullary cavity, and 

fibrocartilage in the fracture gap. They also found that bony bridging across the fracture 

would occur on the periphery of the callus. Under tension, representing the callus 

distraction, the pattern of tissue differentiation was opposite. Here the FE model 

predicted direct bone formation in the fracture gap and cartilage formation on the 

periosteum. FE models incorporating tissue differentiation schemes, have been used to 

demonstrate the effect of mechanical loading on bone repair and regeneration in normal 

fracture healing (Isaksson et al., 2006) and callus distraction (Isaksson et al., 2007). 

Also here the simulations predicted that a compressive load would give an external 

callus with early bony bridging in the periphery of the callus, while tensile forces gave 

bone formation in the fracture gap. A fracture undergoing distraction will therefore not 

get the characteristic bulging callus shape, but more likely a straight or even hourglass 
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shaped callus. This gives it a very unfortunate cross sectional shape, which in 

combination with its wide fracture gap (~50 mm) makes it considerably less stable than 

a normal fracture callus.  

3.3  Various methods of evaluating the consolidation of a callus 
distraction
Plain radiography is the main method in orthopaedics for examining fractures. When 

examining the consolidation of callus distractions, antero-posterior and medio-lateral 

radiographs are used. The fixation should be removed when the formation of a cortical 

wall is evident and can be seen in 3 of 4 sides in the two radiographs (Beaty, 1992; Starr 

et al., 2004; Fischgrund et al., 1994). This is a very subjective and not very reliable 

criterion (Blokhuis et al., 2001; Starr et al., 2004). Studies have therefore explored the 

possibilities of using other methods for determining the consolidation of the bone 

regenerate: ultrasound, quantitative radiography (DEXA, quantitative CT) and 

mechanical testing. 

3.3.1  Imaging techniques  
As opposed to radiographic imaging (plain radiography, DEXA, CT etc.) ultrasound 

does not expose the patient to any harmful radiation. It has even been suggested that 

ultrasound can help promote and accelerate bone regeneration in fracture healing 

(Malizos et al., 2006). The method has shown good results for the early phases of 

distraction when the mineralization of the bone regenerate is low. However, as the 

mineralization of the bone regenerate increases, ultrasound loses precision and cannot 

be used to predict the stability and strength during the consolidation phase of the 

treatment (Bail et al., 2002; Young et al., 1990; Hamdy et al., 1995).  

Plain radiography is used by the orthopaedic surgeon to make subjective evaluation of 

examined body part. The introduction of digital radiography has made it possible to 

retrieve more reliable quantitative information from the radiographic images. One 

simple way of calibrating the pixel grayscales in the images to standardized attenuation 

values, is to include an aluminium step wedge in the images. Kolbeck et al. (1999) 

found good correlation (R2=0.8) between the torsional stiffness of regenerate bone and 
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equivalent aluminium thickness. Dual energy x-ray absorptiometry (DEXA) utilizes the 

attenuation values aquired at two different x-ray tube voltages to separate the 

contribution of attenuation in soft tissue and bone in the image. Thus, DEXA gives an 

accurate measurement of the amount of bone mineral content within a projection area. It 

is widely used to monitor osteoporosis, and has also shown good results in assessing the 

consolidation of leg lengthenings (Eyres et al., 1993a; Eyres et al., 1993b; Reichel et al., 

1998; Aronson and Shin, 2003). Tselentakis et al. (2001) found good correlation 

(R2=0.77) between bending stiffness and the mineral content across the weakest section 

of the distracton. The radiation dose from a DEXA examination is lower than from plain 

radiography (Njeh et al., 1999), which makes it safer for the patient. However, the 

image resolution of DEXA is considerably poorer than for plain radiography, which 

makes it difficult to assess the formation of and possible defects in the cortical wall 

(Eyres et al., 1993a; Aronson and Shin, 2003). In addition, both plain radiography and 

DEXA are projected images, which means that the structural properties of the bone 

regenerate are difficult to determine.  

CT images can be used to quantify both the mineral density and spatial distribution of 

the bone tissue. It has therefore been suggested as an alternative method for assessing 

healing of regular fractures (Augat et al., 1997; den Boer et al., 1998) and limb 

lengthening (Aronson et al., 1990; Markel and Chao, 1993; Reichel et al., 1998; 

Aronson and Shin, 2003). The question is how the information provided in the CT 

images should be analysed. Aronson and Shin (2003) calculated the mean pixel value 

within a manually drawn region of interest, while Reichel et al. (1998) calculated mean 

values in the cortical and cancellous zones. Both methods are quite crude and do not 

take into account how the tissue is distributed over the cross sectional area. Due to the 

high radiation dose of CT imaging and the lack of a good method of analysing the 

information in the images, the use of CT for determining callus stability has remained 

largely academic. 

3.3.2  In vivo mechanical testing 
Several studies have tried to develop standardised methods for measuring the 

mechanical stability of fractures and callus distractions on patients. Usually parts of the 
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external fixation must be removed to allow mechanical testing, and thus the feasibility 

of using this method is limited by the fixation type. Figure 3.4 shows different types of 

external fixation used for callus distractions.

Figure 3.4: Three different fixation systems: From left to right: Ilizarov frame and Taylor spatial frame 
and the Orthofix unilateral frame.1

Unilateral frames are usually preferred when performing mechanical tests, as they are 

easily removed (Richardson et al., 1994). Dwyer et al. (1996) measured bending 

stiffness on patients who had undergone leg lengthening with unilateral frames. They 

proposed that a bending stiffness of 15 and 20 Nm/° for tibia and femur, respectively, 

could be used as a criterion for when the fixation could be removed. A study by 

Hammer et al. (1984) arrived at a similar healing criterion of 12.5 Nm/° bending 

stiffness for tibial fractures. Bending stiffness has shown promising results as an 

indicator of the maturity of leg lengthenings, and the manufacturer of the Orthofix 

fixator also supplies measuring equipment to be used with their frame (Orthometer, 

Orthofix SRL, Verona, Italy). It has therefore been adopted in various studies as an 

indicator of maturity of a leg lengthenings (Tselentakis et al., 2001; Chotel et al., 2008a; 

Chotel et al., 2008b). The major limitation with this method is that it requires a 

unilateral frame. Ring fixators, such as the Ilizarov frame, are easier to customize for 

each clinical case, and are often preferred for correcting angular deformities in bones. 

1 Images were copied from "Ilizarov & External fixator wearers support group" home page:
http://www.ilizarov.org.uk/  
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Another advantage of ring fixators is that the load is more evenly distributed over the 

osteotomy, which results in a more uniform bone formation in the fracture gap 

(Aronson et al., 1989). In contrast, unilateral frames have shown to give poor bone 

formation on the side closest to the frame (Aronson et al., 1989; Hamanishi et al., 1992; 

Li et al., 2006).  Ring fixators are therefore preferred by many orthopaedic surgeons, 

and bending tests are not feasible on a large portion of the patients. 

The Ilizarov frame uses an assembly of halfpins and transosseus wires, which makes 

temporary dismantling and direct mechanical testing of the lengthened section very 

difficult. Windhagen et al. (1999) presented a metering device using a sliding halfring 

system in the frame in order to measure the torsional stiffness of fractures and callus 

distractions without dismantling the frame. The method has been used in animal studies, 

and has shown that torsional stiffness is a good predictor of the strength of distracted 

sections (Windhagen et al., 2000; Floerkemeier et al., 2005). However, the method has 

not been tested clinically on human patients and no healing criterion based on torsional 

stiffness has yet been proposed. A more indirect way of measuring the healing of a leg 

lengthening is to measure the load share ratio of the frame during axial compression 

(Aarnes et al., 2005; Aarnes et al., 2006). By measuring the forces going through the 

axial fixator rods, one can assess the load carrying capability of the bone regenerate. 

Aarnes et al. (2005) proposed that it was safe to remove the frame once the load share 

ratio of the frame dropped to 10%. This method can be used on patients wearing the 

Ilizarov ring fixator, but may produce misleading results. The load share ratio depends 

on the stiffness of the frame, which will vary depending on frame design and tension in 

the transosseus wires (Fleming et al., 1989). If the frame is very rigid, the load share 

ratio may not reveal if the lengthened section is fully consolidated. Also, axial testing 

will not be able to differentiate between an ideal tubular shape and a very undesirable 

hourglass shape as long as the cross sectional area is the same. Bending and torsional 

stiffness depend on the cross sectional structure (2. moment of area and polar 2. 

moment of area) and therefore give a much better indication of the stability of the 

lengthened section. Ideally, a mechanical test procedure should include several load 
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cases in order to determine if it is safe to remove the frame. The different measuring 

methods of mechanical testing of callus distractions are shown in figure 3.5. 

Figure 3.5: Three different methods of measuring the stability of the bone regenerate presented in 
literature:  bending stiffness on a tibia with a unilateral frame (A) (reproduced from Dwyer et al. (1996)), 
torsional stiffness using a frame with sliding halfrings (B) (reproduced from Windhagen et al. (1999), and 
load share ratio under axial compression with an Ilizarov frame (reproduced from Aarnes et al. (2006)). 

A variation of the ring fixator is the Taylor spatial frame which uses telescopic diagonal 

rods instead of threaded axial rods. As opposed to the axial rods of the traditional 

Ilizarov frame, the diagonal rods of the Taylor frame can be disconnected, making it 

possible to perform direct measurement of mechanical stability. However, we are not 
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aware of any studies exploiting the possibilities with the Taylor frame to perform 

multiaxial mechanical testing of the bone regenerate. 

3.4  Creating the FE model of a callus distraction 

3.4.1  Retrieving the geometry of the bone regenerate 
As explained in the previous section, the traditional imaging techniques used by 

orthopaedic surgeons today only have limited capability at predicting the stability of a 

callus distraction. Images from CT contain information about the tissue mineralization 

and its distribution over the cross sectional area. The challenge for the orthopaedic 

surgeon is how the information provided by the CT images should be analysed. Our 

suggestion is to use the CT images to build a subject specific FE model of the callus, 

and analyse its total stiffness when subjected to bending, torsion and compression. 

Thus, the degree of tissue mineralization is put in context of its spatial distribution, and 

presented in terms of the mechanical properties of the distracted section. Since the FE 

models are intended to be used by orthopaedic surgeons, the generation of the model, 

the analyses, and post-processing of the results need to be as automated as possible. 

Voxel elements will therefore be used in the FE models, as they can be generated 

directly from the CT pixels. In order to capture the heterogeneous structure of the bone 

regenerate, CT scans with pixel size less than 0.5 mm and a slice distance of 0.7 mm 

were used to generate the FE models that will be presented in section 3.5. A program 

was written in MATLAB 7.0 to generate the voxel FE models directly from the CT 

scans, submit the models to the FE solver (ABAQUS 6.7, Simulia, Providence, USA) 

and post-process the results. All actions by the user are performed through a graphic 

user interface (GUI).  

The steps for creating the FE model will now be presented. Figure 3.6 shows the main 

GUI of the program; the upper part is for generating the FE model, and the lower part 

for running the FE analysis and post-processing the results. The user assigns a name to 

the case to be evaluated, browses to find the folder containing the CT scan series of the 

patient, and selects the desired mesh refinement. With the "fine" mesh refinement, every 

CT pixel is converted into one voxel element. The "medium" model is created by 

reducing the CT image resolution from 512 by 512 to 256 by 256, thus doubling the 
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pixel size and reducing the number of elements to a fourth. For the "coarse" model, 

every two images are merged together in addition to reducing the image resolution, thus 

doubling both pixel size and image thickness.  

Figure 3.6: The main GUI of the program. The users enter the path of the CT images and the desired 
mesh refinement.  

The program gathers all the CT images in the selected folder to create antero-posterior 

and lateral projected images of the scanned limb (figure 3.7, left and center). The user 

then marks the section he wants to model, by clicking directly in the two images. 
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Figure 3.7: The operator selects the sections to be modelled in the two projection images (red box). The 
center image also shows the top and bottom sections of the calibration phantom selected by the operator. 
The position of each phantom compartment is marked by the operator (blue circles).  

The bone regenerate has a speckled appearance in the CT images with no clearly 

defined cortex. It is therefore difficult to use automated segmentation techniques to 

isolate the bone regenerate in the images. Instead, the operator has to define the regions 

of interest (ROI) in five images from the selected section; top and bottom, center and 

the two quartiles. The operator draws a closed spline curve around the bone regenerate 

in each of the five images to define the boundary of the ROI. Once the operator has 

drawn the ROIs, the program generates the FE model automatically. The program 

partitions each of the five splines into four quadrants defined by "north-south" and 

"east-west" from the center of the ROIs, and each segment is again divided into 250 

equally spaced points. Thus, every point on the manually defined ROI spline has a 

corresponding point on each of the other four. Using these sets of corresponding points, 

the program can automatically calculate a ROI boundary of any CT image in the 

selected section by interpolation. Figure 3.8 shows the 5 manually defined ROIs 

(yellow) with interconnecting lines (black) used to calculate the boundaries of the ROIs 

in all the CT images inbetween (red). The piece-wise cubic hermite interpolation 

(pchip) scheme in MATLAB 7.1 was used to calculate the interconnecting lines.
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Figure 3.8: ROIs are defined by the user in 5 CT scans (yellow). The ROIs are divided into an equal set 
of points which are used to link them together. The interconnecting lines (black) are used to automatically 
generate ROIs in all CT images of the bone regenerate. An automatically generated ROI is seen in red.

The CT pixels inside the ROIs were used to build the FE model, using 8-noded brick 

elements (element type C3D8). Every element was assigned a Young's modulus 

according to the HU value of the pixels. As shown in figure 3.8, some areas inside the 

ROIs contain nonmineralized soft tissue and marrow, which does not contribute to the 

stability of the distracted section. Therefore a lower threshold of min=0.05 g/cm3 was 

defined in the FE models. All elements below this threshold were considered 

mechanically inactive and assigned a Young's modulus equal to 1% of the modulus for 

the threshold value. Figure 3.9 shows the finished FE models generated by the program. 

The model consists of the distracted callus section where the voxel elements reflect the 

material heterogeneity of the bone regenerate. The bottom nodes are constrained. On top 

of the callus section, the program adds a layer rigid of elements (E = 900 GPa). The top 

of the rigid element layer is connected to a beam element (element type B31) using 

connector elements (element type CONN3D2, beam). Thus, loads can be applied to the 

top node of the beam and the rigid element layer ensures that displacements are evenly 

distributed over the top of the bone regenerate. The axial direction of the beam goes 

through the centroids of the first and last ROI, so that it aligns with the axial direction of 

the leg. Since beam elements have six nodal degrees of freedom (3 translations and 3 

rotations) loads can be applied to the model via the top node either on the form of forces 

and moments, or as displacements and rotations.  
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Figure 3.9: FE models bone regenerate with coarse (left) and fine (right) mesh refinement. A layer of 
rigid elements (900 GPa) is used to ensure that diplacements are evenly distributed on the top of the FE 
model. 

The operator submits the FE model for analysis, by pressing the button marked "Run in 

Abaqus and postprocess" in the main GUI (figure 3.6). In order to evaluate the stability 

of the bone regenerate, four load cases are analysed; axial compression, torsion, and 

bending about the mediolateral and anteroposterior axis. The results are automatically 

post-processed and presented as force per displacement (kN/mm) and moment per 

degree deflection (Nm/°). The program does not require any prior knowledge of the FE 

method, and only a few manual operations are needed to build the models. 

3.4.2  Element size and material considerations for modelling bone 
regenerate
The limited availability of bone regenerate and the heterogeneity of the tissue make it 

very difficult establish a relationship between its Young’s modulus and density. 

Indentation studies on callus tissue have shown that the stiffness of the tissue depend 

both on mineral content and maturity of the tissue (Aro et al., 1989; Markel et al., 1990; 

Leong and Morgan, 2008), with stiffnesses ranging from < 1 MPa in granulation tissue 

to ~1 GPa for woven bone (Leong and Morgan, 2008). The Young’s modulus (E) of 

bone is usually expressed as a power function of the amount of bone material in the test 

specimen - bone volume fraction (BV/TV), apparent or mineral density ( app, min):  
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where Etissue and tissue is the Young's modulus and density of the trabecular bone tissue, 

and  is the ash fraction (~0.6). The exponential A is assumed to indicate the type of 

cellular structure in a porous material, where exponentials of 1, 2 and 3 are associated 

with columnar, open and closed cell porous structures, respectively (Gibson, 1985). To 

satisfy a continuum assumption for cancellous bone, the element sides should span at 

least 5 trabeculae (Harrigan et al., 1988). In cancellous bone the trabecular thickness 

and spacing is approximately 0.15 mm and 0.5 mm, which means that element sides 

should be approximately 3 mm. Figure 3.10 shows the midsection of the bone 

regenerate, the least mineralized level, at two instances during consolidation compared 

to cancellous regions in the femur. Whereas the cancellous bone in the femur seems to 

be relatively smoothly distributed over the whole cross section, the bone regenerate 

more resembles islands of mineralized tissue. Due to the non-uniform distribution of the 

bone regenerate, it is not possible to increase the element size in order to accommodate 

a continuum assumption for a porous structure. Instead the elements must be small 

enough to capture the heterogeneous character of the bone regenerate. The bone density 

measure (BV/TV, app and min) is then a measure of the local tissue maturity or degree of 

mineralization, rather than the amount of bone in a porous structure. As most density-

stiffness relationships for bone are given as power relations, it seems reasonable to 

assume the same for bone regenerate as a starting point. The relationship between the 

density and Young's modulus of the bone regenerate tissue would probably have to be 

established through in vivo mechanical testing on patients combined with a FE back-

calculation scheme. The material properties would thus be derived by adjusting the 

Young's modulus of trabecular bone (Etissue) and the exponential A in equation (3.1), 

until the results of the FE analyses corresponded with the experimental measurements. 

The Young's modulus of trabecular bone has been measured to be between 5 GPa (Choi 

et al., 1990) and 15 GPa (Rho et al., 1993). 
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Figure 3.10: Comparison of bone regenerate and mature cancellous bone. The images above show the 
mid-section of the bone regenerate in a patient at 2 months prior to frame removal (left) and directly after 
frame removal (right). The images below show the cancellous regions in the proximal femur and femoral 
condyles of a cadaver bone (Pa01Right). The images are shown with the same gray-scale contrast and 
reconstruction filter (B50f). 

In section 3.5, two different power relationships between density and Young's modulus 

for bone were tested. Harp et al. (1994) employed the cubic relation of Carter and Hayes 

(1977) in a previous study of a leg lengthening, but adjusted it by a factor of 0.53. Thus, 

the relation of Harp et al. (1994) corresponds to a trabecular Young's modulus of 16 

GPa when assuming a bone tissue density of 2 g/cm3. Homminga et al. (Homminga et 

al., 2001) used an exponential of 1.5 and assumed a trabecular Young's modulus of 5 

GPa.
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3.5  Subject specific finite element analysis of a callus 
distraction - a preliminary study2

Abstract
Background: Determining the stability of a callus distraction is today largely based on 

measurement of bone density and qualitative evaluation of bone structure on plain 

radiographs. In the present study, we demonstrate how computed tomography (CT) and 

finite element (FE) models can be used together in a simple and effective manner to 

evaluate the healing of a leg lengthening.

Method of Approach: CT scanning of a callotasis was performed two months before 

removal of external fixation and directly after removal of fixation. Two sections were 

modelled at each instance: the callotasis and a reference section below the distraction 

gap. Two density-stiffness relationships and two mesh refinements were analysed.  

Results: The FE analyses showed the estimates of compressive, torsional and bending 

stiffness to be very sensitive to the power term in the density-stiffness relationship. The 

stiffness of the callotasis increased from 3% to 19% and 15% to 44% relative to the 

reference section for a power of 3 and 1.5, respectively. The reference section also 

showed significant decrease in stiffness; 26% and 15% for a power of 3 and 1.5, 

respectively. Coarsening the mesh had little effect on the results, but improved 

computation time considerably. 

Conclusions: The study demonstrates the concept of using subject specific FE models to 

assess the stability of a callotasis. The models are simple to build, requiring only a few 

manual operations. The method could be used to get a more objective assessment of 

callotasis healing. 

3.5.1  Introduction 
The lengthening of bones through callus distraction (callotasis) is a normal procedure to 

correct the length of limbs (Ilizarov, 1990; Ilizarov and Ledyaev, 1992). The procedure 

involves first an osteotomy of the bone, and secondly a slow distraction of the callus 

2 Pettersen,S.H.,Aamodt,A.,Foss,O.A.,Skallerud,B.(2009) Subject specific finite element analysis of a 
callus distraction - a preliminary study, in Skallerud,B. and Anderrson,H.(editors) MekIT'09, 26-27th 
May 2009, Trondheim. Tapir forlag, ISBN:978-82-519-2421-4. 
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tissue generated in the osteotomy gap. The callus is stretched by means of an external 

fixation frame approximately 1 mm per day until the right lengthening is achieved - 

usually 4-5 cm. After the distraction phase, the bone tissue needs time to heal and 

consolidate. This consolidation phase is the longest phase of the treatment, lasting about 

two or three times the duration of the distraction (Brutscher, 1994). The frame should 

not be removed until the callus is strong enough to carry sufficient load. Apart from the 

general discomfort of the frame, leaving it on for too long may lead to bone loss in the 

immobilised bone (Eyres et al., 1993b) and increased risk of pin tract infection (Paley, 

1990). Determining the correct time to remove the external fixation is therefore critical 

for the success of the treatment.

Even though plain radiography has shown poor reliability in predicting the healing of 

bone (Blokhuis et al., 2001; Starr et al., 2004; Anand et al., 2006; Donnan et al., 2002), 

it remains the most common method of assessing the consolidation process of the 

callus. When cortical bone can be seen on 3 of 4 sides of the callus distraction in the x-

ray images, it is usually regarded as mature and the frame can be removed (Starr et al., 

2004). This is a very subjective criterion which leaves a lot to the judgement of the 

orthopaedic surgeon. Various studies have used mechanical testing to determine callus 

stiffness in compression (Prat et al., 1994; Aarnes et al., 2005), bending (Richardson et 

al., 1994; Dwyer et al., 1996; Moorcroft et al., 2001) and torsion (Thorey et al., 2000). 

However, the external frame makes reliable measurements very difficult, and 

mechanical measurement of callotases is therefore not very widespread clinically. 

Finite element (FE) models based on quantitative computed tomography (CT) are 

widely used in biomechanics and have been used to assess healing of regular fractures 

(Shefelbine et al., 2005) and callus distractions (Harp et al., 1994). It has been shown 

that quantitative CT coupled with FE analysis provides a higher degree of accuracy in 

predicting the femoral and vertebral strength than DEXA and quantitative CT alone 

(Cody et al., 1999; Crawford et al., 2003). Various studies have used FE models to 

explain the mechanobiology of callus distraction (Carter et al., 1998; Boccaccio et al., 

2007; Isaksson et al., 2007), however the authors are not aware of any studies using the 

FE models as a clinical tool to evaluate the consolidation process in patients. Only one 
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study was found using CT scans to create a subject specific FE model of a leg 

lengthening (Harp et al., 1994).

By converting the pixel data of the CT scans into voxel elements, subject specific FE 

models can be generated quickly and with a minimum of manual labour (Keyak et al., 

1990). CT scans of a lengthened leg were obtained during consolidation and at removal 

of the external frame, and used to build the FE models. The FE models were analysed 

under different simplified load cases; axial compression, bending and torsion. A section 

below the distraction gap was also analysed and used as a reference to assess the 

consolidation of the callus distraction. 

We do not have any mechanical stiffness measurement on the lengthened leg, and 

therefore cannot provide a full validation of our FE models. Instead, we will look at 

how the choice of material models and element size will affect results and computation 

time. Two different material models were investigated; one that has been used earlier in 

a FE study of a leg lengthening (Harp et al., 1994), and a material model for vertebral 

cancellous bone used for elements sizes of the same magnitude as the trabecular 

thickness (Homminga et al., 2001). 

3.5.2   Material and Methods 
CT scans of one male patient (31 years, 95 kg), who was treated with tibial lengthening, 

were used in the study. CT scans were obtained during the consolidation phase 4 1/2 

months after end of distraction with the Ilizarov frame still in place, and 2 months later 

directly after removal of the frame. We will denote these two instances as the initial and 

final state, respectively. A multislice CT scanner (Siemens Somatom Sensation 64, 

Erlangen, Germany) was used at 140 kV, 0.7 mm slice interval and B50s convolution 

kernel. The pixel size was 0.445 mm and 0.375 mm for the initial and the final scan 

series, respectively. The CT scans were calibrated using the method described by 

Schneider et al. (2000) using phantoms consisting of different mixtures of PMMA and 

calcium carbonate, and the CT attenuation values (HU) converted into mineral 
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densities3. The linear conversion factor between mineral density (g/cm3) and HU values 

( min/HU) was found to be 7.15·10-4 and 7.00·10-4 for the initial and final scan series, 

respectively. The apparent density was calculated from the mineral density by assuming 

a constant ratio min./ app. of 0.6 (Schileo et al., 2007). 

Figure 3.11: The lengthened leg at the initial (left) and final state (right). The boxes show the sections 
selected for the voxel FE models of the callus distraction (solid lines) and the reference section (dashed 
lines). 

The voxel FE models were generated from the CT images using scripts in MATLAB 

7.1 (The Mathworks, Natick, USA) and imported into a commercially available FE 

program (ABAQUS 6.7, Simulia, Providence, USA). For each of the two time 

instances, two sections were selected: the callus distraction and a reference section 

below the distraction gap (figure 3.11). All sections had the same length (L = 40.6 mm). 

3 See Chapter 2: Relating CT gray-scale values to bone density.
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Metal artifacts from the Ilizarov frame and the absence of a clearly defined cortical wall 

in the distracted section made it difficult to use automated segmentation to define a 

region of interest (ROI) in the CT images. Instead, a closed spline curve defining the 

ROI was drawn manually in five CT images: the top, middle, bottom and quartiles in a 

subset of CT images for each modelled section. Each spline curve was automatically 

divided into an equal set of points and direction and starting point of the curves adjusted 

to coincide with the others. In our model the number of points was set to 1000 to get the 

points densely distributed along the curves. Thus, by interpolating a set of 1000 lines 

between the 5 manually drawn ROI curves (figure 3.12) can be calculated. These lines 

are in turn used to automatically generate ROIs for all CT images of the selected subset. 

In our program a piecewise cubic hermite interpolation procedure was used. Only the 

pixels inside the ROI in each CT image were used in the FE models.  

Figure 3.12: The ROIs on the top (1), middle (3), bottom (5) and quartiles (2 and 4) of the modelled 
section are drawn manually. These ROIs are divided into an equal number of points which are used to 
automatically generate ROIs for all CT images inbetween. A manually drawn ROI is seen on the left and 
an automatically generated ROI on the right. 

The FE models were comprised of 8-noded linear brick elements (element type C3D8).

Two mesh refinements were generated: a fine and a coarse (figure 3.13). In the fine 

mesh, one element was generated for each pixel. To generate the coarse mesh, the 

resolution of the CT images was reduced from 512x512 to 256x256 pixels and every 

two images merged together, thus doubling the pixel size and slice distance and 

reducing the number of elements to an eighth of the fine mesh.  
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Figure 3.13: Fine (left) and coarse (right) FE model of the callus distraction at the final state. Loads were 
applied to the top node of the beam element, while the bottom nodes (orange) were fully constrained.  

The bottom nodes were modelled as fully constrained. On the top, a 5 mm layer of very 

stiff elements was generated (E = 900 GPa,  = 0.3). An axial beam element (element 

type B31) was connected to the top layer by connector elements (element type 

CONN3D2, beam). The axial direction of the beam was calculated from the center of 

the top and bottom ROIs. The axial beam could thus be used for applying forces and 

moments to the model while the rigid top layer ensured an even displacement on the top 

of the voxel mesh.  

Four different load cases were simulated: compression, torsion and bending about the 

medio-lateral and antero-posterior direction. For compression and torsion, only axial 

translation and rotation was allowed for the axial beam element. The beam was 

constrained in the medio-lateral direction for bending about the medio-lateral axis and 

vice versa for bending about the antero-posterior axis. 

Each voxel element was assigned a Young's modulus according to its density. As there 

is no established relationship between the density (or degree of tissue mineralization) 

and Young’s modulus for bone regenerate, two density-stiffness relationships for 

cancellous bone were considered in the FE models: 

Carter and Hayes (1977): 
3 0.06 33790 2009app appE [MPa] (3.2) 
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Homminga et al. (2001):  

1.5 1.5
1.5

5000
1.20tissue minE E GV [MPa] (3.3) 

Carter and Hayes (1977) assumed the trabecular Young’s modulus to be 22 GPa for a 

density of 1.8 g/cm3. When setting the viscoelastic term ( 06.0 ) equal to 0.53 (Harp et 

al., 1994) and assuming a trabecular density of 2.0 g/cm3 (Morgan et al., 2003), 

equation (3.2) corresponds to a trabecular Young’s modulus of 16 GPa. Equation (3.3) 

assumes the trabecular Young’s modulus to be 5 GPa for a trabecular density of 2.0 

g/cm3 ( min=1.20 g/cm3). Equation (3.2) and (3.3) thus respectively represent the higher 

and lower estimates of trabecular Young’s modulus; 5 GPa (Choi et al., 1990) and 15 

GPa (Rho et al., 1993). Similarly, the power terms of 3 and 1.5 are representative for 

what is found in literature, when expressing the density-stiffness relationship as a power 

function. For an idealized porous structure a linear function represents axially aligned 

columns, a quadratic function an open cell architecture, and a cubic function a closed 

cell architecture (Gibson, 1985). It is thus likely to believe that the density-stiffness 

relationship of bone regenerate can be found somewhere between equation (3.2) and 

(3.3).

A lower threshold of min=0.05 g/cm3 was chosen for our FE models. Elements below 

this threshold were considered mechanically inactive and assigned a Young's modulus 

1% of the Young's modulus calculated for the threshold density.

The displacements of the beam nodes were used to calculate the axial (kN/mm), 

bending (Nm/°) and torsional stiffness (Nm/°) of the modelled bone section. Since no 

material nonlinearity was considered in the FE models, the analyses were run in 

ABAQUS 6.7 as a linear perturbation step. 

3.5.3  Results 
The coarse FE models were run on a regular PC. The coarse model with most degrees of 

freedom (D.O.F.) required less than 1 Gb memory and 7 minutes to complete. The fine 

FE models were run on a high performance computer using 16 CPU's and required 
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approximately 15 Gb of memory and 50 minutes to complete for the model with the 

most D.O.F.  

Bone mineral content and average mineral densities of the FE models were calculated 

by excluding the mechanically inactive elements ( min<0.05 g/cm3). Bone mineral 

content in the callus distraction increased by 44% from initial to final state, with  

average mineral density increasing from 0.21 g/cm3 (290HU) to 0.27 g/cm3 (382HU). In 

the same time period bone mineral content in the reference section decreased by 10%, 

with average mineral densities decreasing from 0.47 g/cm3 (660HU) to 0.44 g/cm3

(624HU). The distributions of element densities in the different modelled sections are 

shown in figure 3.14.

Figure 3.14: Mineral content and distribution of voxel mineral densities (fine mesh) for the callus 
distraction (callotasis) and reference sections. Voxels below the threshold level ( min<0.05 g/cm3) have 
been excluded. 
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The stiffness measures calculated using the density-stiffness relationship of equation 

(3.2) gave an average initial stiffness of 3% for the callus distraction relative to the 

reference section (table 3.1). At the final state, the stiffness measures had risen to an 

average of 19%. For equation (3.3) the stiffnesses were approximately 15% at the initial 

state and increase to 44% at the final state (table 3.2).

The results also show a distinct decrease in calculated stiffness for the reference section 

between the initial and the final state: 26% and 15% for equation (3.2) and (3.3), 

respectively. Little difference was seen between the stiffness measures calculated for the 

coarse and the fine FE models. 

Table 3.1: Stiffness measures of the FE model using equation (3.2).
D.O.F. Compression 

[kN/mm]
Bending ML 

[Nm/o]
Bending AP 

[Nm/o]
Torsion 

[Nm/o]
Initial:      
 Callotasis, fine 1,076,955 0.82 1.38 1.57 0.45 
 Callotasis, coarse 147,915 0.81 1.45 1.50 0.50 
 Reference, fine 967,512 27.79 65.69 46.14 22.95 
 Reference, coarse 136,371 26.34 61.19 44.05 22.20 
Final:      
 Callotasis, fine 1,528,068 3.49 7.68 6.79 3.69 
 Callotasis, coarse 211,608 3.45 7.56 6.77 3.70 
 Reference, fine 1,338,189 19.97 46.26 35.14 16.59 
 Reference, coarse 187,479 19.40 44.22 34.19 16.17 

Table 3.2: Stiffness measures of the FE model using equation (3.3). 
D.O.F. Compression 

[kN/mm]
Bending ML 

[Nm/o]
Bending AP 

[Nm/o]
Torsion 

[Nm/o]
Initial:      
 Callotasis, fine 1,076,955 3.55 6.49 5.68 2.38 
 Callotasis, coarse 147,915 3.75 6.94 5.92 2.82 
 Reference, fine 967,512 21.78 49.77 35.98 20.64 
 Reference, coarse 136,371 21.93 49.58 36.24 21.15 
Final:      
 Callotasis, fine 1,528,068 7.61 15.68 14.63 8.12 
 Callotasis, coarse 211,608 7.98 16.34 15.28 8.75 
 Reference, fine 1,338,189 18.30 40.61 32.35 17.41 
 Reference, coarse 187,479 18.54 40.84 32.64 17.74 

3.5.4  Discussion 
In the present study, we have demonstrated how subject specific FE models can be used 

to isolate a callus distraction and assess its consolidation. The cross-sectional 

distribution of the bone tissue is as important for the mechanical stability of the callus 

distraction as the mechanical properties of the bone tissue itself. Much of this 

information is lost when using projected images such as plain radiography and DEXA. 
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Quantitative CT provides both the degree of tissue mineralization and its spatial 

distribution, and has shown promising results for evaluating the mechanical stability of 

leg lengthenings (Reichel et al., 1998; Aronson and Shin, 2003). However, for an 

orthopaedic surgeon who is used to plain radiography, it can be difficult to assess the 

mechanical stability from a series of CT images. By combining FE models with 

quantitative CT, the measurement of mineral density is put in context of its spatial 

distribution and directly produces an estimate of the mechanical properties of the 

studied section. Voxel FE models are easy to build and require only a few manual 

operations. In our case, two subsets of CT images were selected: one for the callus 

distraction and one for the reference section. Five closed curves had to be drawn 

manually in five CT images of each section to define the ROIs of the FE models, 

requiring less than 5 minutes of "manual labour". The reference section was chosen 

directly below the distraction gap to represent the mineral content and cross sectional 

tissue distribution of mature bone in the affected tibia. The contralateral tibia will have a 

higher degree of mineralization and be more rigid than the ipsilateral tibia which suffers 

bone loss due to immobilization. The mineralization of the callus distraction during the 

consolidation phase is therefore more likely to converge towards that of the ipsilateral 

tibia rather than the contralateral.  

Animal studies have shown good correlation between the stiffness and the strength of 

callotases (Windhagen et al., 2000; Floerkemeier et al., 2005). Since a future validation 

of the method probably would involve biomechanical testing on patients, stiffness was 

used as an indicator of the healing rather than strength. Four simplified types of loading 

were simulated: compression, torsion and bending about two axes. This gives an 

indication about both the mineral density of the bone regenerate and the structure of the 

callus distraction, i.e. the cross-sectional area, polar and 2. moment of area.  

The element size may affect the results if the element size is too big to reflect the 

structural architecture and too small to satisfy continuum material assumption 

(Homminga et al., 2001; Verhulp et al., 2006). Homminga et al. (2001) showed that the 

mechanical behaviour of a porous structure could be described using the gray-value 

procedure for elements sizes on the order of the trabecular thickness. For element sizes 
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larger than the trabecular thickness, the predictions of apparent Young's modulus 

remained largely accurate in the axial direction while becoming increasingly inaccurate 

in the transverse direction. The element sizes in our FE models were approximately two 

to four times the trabecular thickness. Even though the image resolutions used in the 

present study are not optimal for FE modelling, they are representative for what is 

feasible with whole-body CT scanners. 

Several methods of determining fracture healing by mechanical measurements have 

been proposed. Hammer et al. (1984) used bending to measure the deflection ratio of 

tibial fractures. The limit for a healed tibial fracture was set to a deflection ratio of 0.08, 

which translates into 12.5 Nm/° for a body weight of 75 kg. Similarly, Richardson et al. 

(1994) proposed a limit of 15 Nm/° for tibial fractures, and this criterion was later used 

for determining the consolidation of leg lengthenings (Dwyer et al., 1996). Other studies 

measuring the stiffness and strength for torsion and uniaxial loads, have reported the 

material properties of the lengthened leg at removal of the frame to be around 27% to 

63% percent compared to intact (Walsh et al., 1994; Aronson et al., 1997; Aronson and 

Shin, 2003). The FE models of the callus distraction gave results that were within the 

ranges reported in literature (Richardson et al., 1994; Dwyer et al., 1996; Aronson and 

Shin, 2003; Aarnes et al., 2005; Floerkemeier et al., 2005; Aarnes et al., 2006) and show 

a considerable increase in stiffness from the initial to the final state. From table 3.1 and 

table 3.2 we also see that the two material models gave significantly different 

stiffnesses, with (3.3) estimating the bending stiffness just above the safe level of 15 

Nm/o (Dwyer et al., 1996) at the final state, while (3.2) estimates it to be almost half the 

safe level. The stiffnesses for the callus distraction at the final state in table 3.2 are 

approximately half the stiffnesses in the reference section. This is similar to the results 

reported by Aronson (2003) who found the compressive and torsional stiffness of the a 

callus distraction at removal of the frame to be 47% and 43% compared to the control 

bone. Coarsening the mesh had little effect on the stiffness properties of the FE models, 

but reduced the required computation resources and time considerably.  

Figure 3.14 shows an increase in mineral density in the callus distraction over time, 

while a slight decrease is observed in the reference section. Bone loss in an immobilized 
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extremity is a well known effect and may account for some of this reduced 

mineralization measured in the reference section (Reichel et al., 1998; Eyres et al., 

1993b). Another explanation is metal artifacts from the external frame affecting the 

estimates of bone mineral density. Salmas et al. (1998) found that the metal artifacts 

from the Ilizarov frame gave a small (  40HU) increase in CT attenuation values. This 

corresponds very well with our measurements showing the average CT attenuation 

value in the reference section decrease from 660HU to 624HU. The metal artifacts can 

be seen as straight lines between the rods. Since the tibia is not coaxial with the center 

axis of the external frame, the tibia avoids the most pronounced metal artifacts (figure 

3.15).

Figure 3.15: Metal artifacts in the CT scans of the callus distraction (left) and the reference section 
(right). 

Equation (3.2) with a cubic density-stiffness relationship, gave a decreased stiffness in 

the reference section of 26% from the initial to the final state, while equation (3.3) with 

a power term of 1.5 gave a decrease of 15%. The reference section was chosen directly 

below the distraction gap and has a similar pattern of streak artifacts. If no major 

changes are made to the external frame, the metal artifacts will also be the same in CT 

scans taken at different stages in the consolidation phase. The degree of overestimation 

of bone mineral density and stiffness measures will thus be consistent throughout the 

consolidation phase and in both the distracted and reference section, and can therefore 

still be used to assess the development of mechanical stability of the bone regenerate.  
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Plain radiography is the most common method for assessing the maturity of a leg 

lengthening. The orthopaedic surgeon makes a subjective judgement of the stiffness and 

strength of the callus distraction, and the verdict will vary between different surgeons 

(Blokhuis et al., 2001; Starr et al., 2004; Donnan et al., 2002; Anand et al., 2006). Starr 

et al. (2004) characterized the inter- and intra-observer variability in deciding when to 

remove the external frame as being "moderately better than chance". Combining 

quantitative CT with FE analysis as presented in this study gives the orthopaedic 

surgeon an estimate of the mechanical stability of the callus distraction. We did not 

have any experimental measurements to validate our FE models. Although this 

represents a shortcoming, it also illustrates the motivation of the study; there is no 

reliable method for measuring the mechanical stability of a callus distraction with an 

Ilizarov frame, and we therefore want to use the FE method. A validation of the FE 

models is planned for future work. The authors believe that despite the obstacles 

regarding material modelling and metal artifacts in the images, quantitative CT 

combined with FE analysis can provide valuable information and could be used 

clinically.  
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Chapter 4:  Subject specific FE analysis of human 
femurs with prosthesis 

4.1  Background 
Total hip replacement (THR) is the surgical procedure of replacing a dysfunctional hip 

joint with an artificial joint, in order to provide pain relief and restore the function of the 

hip. Impairment of joint function may have many causes, but osteoarthritis is the most 

common and accounts for 70-80% of the hip operations. In a healthy joint the articular 

surfaces are smooth and lubricated by synovial fluid resulting in a joint with very low 

friction. Osteoarthritis simply means that the articular surfaces of the joints are worn 

out, and have lost their low-friction properties. The condition makes motion of the joint 

difficult and painful, and can at worst be disabling. It is especially prevalent in the hip 

and knee joints, which are exposed to loads two to three times the body weight during 

normal walking (Bergmann et al., 1993; 2001) and may endure thousands of load cycles 

daily (Morlock et al., 2001). As of today, there is no method of regenerating and 

repairing the articular cartilage. Instead, severe osteoarthritis is treated by replacing the 

old, damaged joint with a new, artificial joint. The procedure of THR was pioneered in 

the 1960s by Sir John Charnley, and is regarded as one of the most successful 

procedures in surgery. The procedure involves removing the acetabular socket and 

replacing it with an artificial cup fixated into the pelvis. The femoral head and neck is 

resected and the porous bone rasped out of the proximal femur to give room for a 

femoral stem inside the medullary cavity (figure 4.1). THR usually fully restores the 

function of the joint, and enables the patient to move around without any pain.
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Figure 4.1: THR in a patient. The hip joint on the patients left side has been completely replaced with 
artificial components: the acetabular socket has been replaced with a polymer cup cemented into the 
pelvis, and the femoral head and neck with a stem cemented into the femur.  

Between 86 and 170 hips are replaced per 100,000 population annually in the 

industrialised world (Canadian Institute for Health Information, 2008). In Norway, this 

amounts to 7000-8000 hip operations every year, where 85% are replacements of the 

original hip (primary surgery) and 15% are replacements of old implants (revision 

surgery) (The Norwegian Arthroplasty Register, 2008). The survival rate of hip 

implants is generally quite good for primary implants (~90% after 11 years), but 

becomes increasingly worse by each revision; respectively 77% and 67% at 11 years for 

the first and second revision (Danish Hip Arthroplasty Register, 2008). Due to the large 

volume of operations, implant failure and the need for reoperation will affect an 

increasing number of patients. A lot of effort is therefore put into developing new 

implants that will improve the long time performance of THR. 

A wide range of prosthetic designs for THR from several manufacturers are available to 

the orthopaedic surgeon, and new designs are introduced on the market every year. Pre-

clinical evaluation is therefore imperative to ensure safe treatment of the patients, and to 

make sure that inferior prosthetic designs are not put into use. When evaluating a new 

prosthetic design, two aspects of the prosthesis are usually tested; the implant stability, 

and the change in bone stress/strain induced by the femoral implant. Initial implant 
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stability is especially important for cementless stems that rely on osseointegration, as 

excessive implant micromotion inhibits bone ingrowth (Jasty et al., 1997). Inserting a 

metal stem in the femoral canal reduces stress in the surrounding bone, socalled stress 

shielding. Since bone adapts according to the load distribution in the tissue, a reduction 

in the mechanical stimulus to the bone will induce bone loss. This may in turn impair 

the stability of the prosthesis, increase the risk of bone fracture and complicate revision 

surgery.

Prosthetic designs are usually evaluated in experimental studies using human cadaver 

bones. However, there are several drawbacks with using real human femurs: necessary 

authorizations must be obtained before collecting the femurs, supply is limited, bones 

can usually only be implanted once, and a large selection of bones is required due to 

individual variations in bone geometry and material properties. Composite bone replicas 

were introduced to simplify experimental testing of new implant designs (Stolk et al., 

2002a; Viceconti et al., 2001). They are easier to handle and prepare for testing, have a 

standardized geometry and the mechanical properties are known. This makes composite 

femurs ideal for comparing different implant designs and testing new design features. 

However, patients do not come in standardized shapes and sizes. It is therefore 

important that new implants also are tested in a wide range of femurs with geometries 

and mechanical properties reflecting the variation seen in patients.

Finite element (FE) models have been used extensively in biomechanics to study the 

effect of different implants, and also to simulate the adaptive response of the 

surrounding bone (Rietbergen et al., 1993; Turner et al., 2005; Lengsfeld et al., 2005). 

Subject specific FE models derived from computed tomography (CT) have been 

presented in a numerous studies, but have usually been concerned with intact femurs 

(Taddei et al., 2006; Schileo et al., 2007; Yosibash et al., 2007; Lengsfeld et al., 1998) 

and predictions of femoral fracture strength (Keyak et al., 1998; Cody et al., 1999; 

Keyak and Rossi, 2000; Bessho et al., 2006; Schileo et al., 2008). The vast majority of 

FE studies of bones with prosthetic implants have relied on composite replicas for 

validation (McNamara et al., 1997; Viceconti et al., 2001; Lennon and Prendergast, 
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2001; Stolk et al., 2002a). Rohlmann et al. (1983) analysed strains in a femur with 

prosthesis and validated the result against strain gauge measurement, but did not include 

results for the intact bone. Analyses of implant micromotion have been presented in a 

few studies using subject specific FE models (Rubin et al., 1993; Reggiani et al., 2007; 

Abdul-Kadir et al., 2008), but usually only include very few femurs (one or two).  

The present chapter will describe how subject specific FE models can be employed for 

evaluating the design of femoral implants. With this approach, the designer can test new 

implants in a wide range of virtual femoral models spanning the variation seen in 

patients. The FE models are easily modified and can be employed to test different 

design features. In the present chapter we will first present the procedure of creating the 

subject specific FE models (section 4.2). The choice of density-stiffness relationship 

employed in the FE models is addressed in section 4.3. The subject specific FE models 

are then validated against in vitro measurements of cortical strain and implant stability 

in sections 4.4 and 4.5. 

4.2  Creating the FE model 

4.2.1  Retrieving the femoral geometry 
The first step of creating the subject specific FE model is to retrieve the geometry of the 

bone. The femurs were scanned using a multislice CT scanner (Siemens Somatom 

Sensation 64, Erlangen, Germany). The slice thickness of the CT images was set as thin 

as possible (0.75 mm) to reduce the effect of partial volume averaging over the image 

thickness. Additionally, the distance between the image slices was set very low (0.7 

mm) to get enough CT pixels to determine bone density of each element. A scan series 

of one femur might thus consist of more than 700 CT images.  

Before starting to extract the contours of the femur, the CT scans that should be used for 

creating the geometry of the FE model were selected. Figure 4.2 shows four levels 

selected manually by the user: the proximal levels of the femoral head (caput) and the 

greater trochanter, and the mid-levels of the lesser trochanter and the condyles. A level 

20 mm below the lesser trochanter was used to define the regions of proximal femur and 
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the femoral shaft. The geometry of the proximal femur is fairly complex, while the 

midshaft region is almost cylindrical. Contours were therefore extracted at 4 mm 

intervals in the proximal femur, and at 20 mm intervals for the femoral shaft. In the 

experimental setup, the femurs were potted distally in a steel cylinder at a distance of 25 

cm from the greater trochanter (Aamodt et al., 2001). The femoral geometry was 

therefore retrieved down to the distal level of the femoral shaft as indicated in figure 

4.2. Contours at the level of the condyles were also extracted, but only used as a guide 

to determine femur length and orientation, and not used in the FE model itself. 

Figure 4.2: Medio-lateral and antero-posterior views of a femur reconstructed from projections of the CT 
images. The levels of proximal caput, greater trochanter (G.Troch.), lesser trochanter (L.Troch.) and the 
condyles (solid lines) are picked manually. The levels defining the femoral shaft (slashed lines) are at a 
fixed distance from trochanter major and minor for all femurs. 

Inner and outer contours of the bone are usually extracted by defining a threshold value 

for cortical bone (Viceconti et al., 1999; Rubin et al., 1993; Aamodt et al., 1999), and 

then employing a border tracing algorithm (Testi et al., 2001). A border tracing 
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algorithm returns all pixel positions along the selected threshold value in sequential 

order, and the number of points must therefore be reduced and the contours smoothened 

to enable reconstruction of the 3D geometry. In the proximal femur the cortical wall is 

often so thin it appears not to be continuous, but to have several holes in it. The border 

tracing algorithm will then trace the contour of the cortical wall through the hole, and 

thus fail in extracting separate inner and outer contours. The crux of implementing the 

border tracing algorithm therefore lies in programming all the help functions that are 

needed when the algorithm fails, and to smoothen the contours and reduce the number 

of points.

In the present thesis an alternative and less elegant approach for segmenting the images 

was used. It involves some manual work to correct the contours, but creates fewer 

points along the contour which makes the contours easier to manage. Hangartner and 

Gilsanz (1996) showed that the interface between two adjacent materials is best 

determined using a relative threshold for the difference in HU values of the two. A 

relative threshold of 50% was used to extract the contours of cortical bone, which 

means that the average HU value of the two adjacent materials determines the interface. 

A region of interest (ROI) around the bone section in the CT scans was first defined 

automatically by the program based on a threshold of 400 HU. In cases where the 

program failed to correctly locate the bone region, the ROI was adjusted manually. 

Radial profiles from the center of ROI were used to determine the inner and outer 

cortical contours. The maximum HU value along the radial line was assumed to be the 

midsection of the cortical wall. Radiographic densities of 200 HU for cancellous bone 

and 0 HU for soft tissue/water were assumed to define the relative thresholds for inner 

and outer contours, respectively. Thus, for a maximum density of 1200 HU along the 

radial line defining the midsection of the cortical wall, the thresholds are 700 and 600 

HU for the inner and outer contours, respectively. The angular increment of the radial 

line was set to 5 degrees giving closed curves of 72 points. The described procedure 

works well in the region of the femoral shaft where the cortical wall is well defined. In 

the proximal regions, the cortical wall is very thin and the cross sectional shape is more 

complex. The automatically generated contours were therefore revised and corrected 

manually (figure 4.3).  
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Figure 4.3: Initial contours are generated automatically (left). The program suggests a ROI (blue box) 
and uses the HU profile of the radial lines from the center of the ROI to create the contours. The 
automatically generated contours (above right) are subsequently revised and corrected in Solidworks 
(below right). 

After revising the contours, the contours were imported into a CAD program 

(SolidWorks 2005, Solidworks Corporation, Concord, USA). Figure 4.4 (left) shows the 

inner and outer contours derived from the CT scans outlining the shape of the femur. 

Guide curves between the contours are needed to connect the contours and create the 3D 

model of the femur. Two reference planes were defined by the user. Guide curves were 

determined by the intersection points between the reference planes and the contours. 

The finished 3D model of the femur is shown in figure 4.4 (center). The cancellous 

bone was lofted from the inner contours of the proximal femur, while inner contours of 

the femoral shaft were used for the medullary canal. The medullary canal was only used 

for creating the cavity in the cortical bone, and was not used for the FE model itself. 
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The 3D models were meshed (CosmosWorks 2005, Solidworks Corporation, Concord, 

USA) using 2nd order tetrahedral elements with a global size of 3 mm (figure 4.4, 

right).

Figure 4.4: By positioning the two reference planes, the path of the guide curves are defined (left). The 
lofted 3D models of cortical bone, cancellous bone and the medullary canal (center), and the finished 
meshed model of the intact femur (right). 

4.2.2  Determining the HU value at each element location 
In order to assign material properties to the elements in our FE models, the CT pixels 

located inside the element must be identified. The node coordinates of the FE model are 

converted from cartesian spatial coordinates (xyz) into image pixel indeces (i and j) and 

image slice number (k). The element spanning the most CT images is then identified in 

the FE model. The number of CT images spanned by this element (hmax) is used to 

partition the job of identifying CT pixels located inside each element into smaller tasks 

requiring less memory.  

A set of CT images equal to 2·hmax is loaded into the program and only elements that are 

located completely inside this segment are processed (figure 4.5, left). In order to reduce 

the subset of pixels that will be tested, a box around the element is defined by its 
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minimum and maximum coordinates to reduce the number of pixels that will be 

considered (figure 4.5, right).

Figure 4.5: The job of identifying average HU value of each element is partitioned into smaller jobs. A 
segment of CT scans equal to 2·hmax is handled at a time to reduce the required memory. A box (green) 
defines the subset of pixels around the tetrahedral element. Each pixel in the subset is tested to determine 
if it is located inside the tetrahedron. 

The process of identifying the pixels located inside the tetrahedral element was 

described by Zannoni et al. (1998). The volume of a tetrahedron can be determined from 

the determinant of the matrix: 
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 (4.1) 

For a tetrahedral element we can define four tetrahedral volumes between the four 

element faces and any point (CT pixel or voxel) in space. If the sum of these four 

tetrahedral volumes is greater than the volume of the element, the pixel is located 

outside the element. If the sum of the volumes is equal to the volume of the element, it 

is located inside the element. The average HU value of pixels located inside the 

tetrahedron were calculated for each element. If the element is too small compared to 

pixel size and slice distance, the average HU value was calculated from the pixels 
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closest to the corner nodes. After all the elements inside the segment 2·hmax have been 

processed, the segment moves up a height equal to hmax, thus always overlapping a 

number of CT scans equal to hmax with the former segment. Any elements that were 

only partially inside one segment will be completely inside the next, and all elements 

will be processed in due course. The elements were organised in element sets by their 

HU value and assigned material properties accordingly.

4.2.3  Modelling the implanted femur 
Achieving proper positioning of the prosthesis is imperative for the success of a total 

hip replacement. The prosthesis should be oriented to achieve the desired neck direction 

and rotational center and the femoral stem must rest against bone that is sufficiently 

dense to ensure stability of the prosthesis. The femurs used in the experimental 

measurements were operated by an experienced orthopaedic surgeon. For the FE models 

it is similarly important that the implant is correctly positioned to produce accurate 

results. The inner cortical surface in the FE models was used to guide the positioning of 

the stem inside the femur. Care was taken in the proximal parts that the medial side of 

the prosthesis was close to the endosteum, letting the prosthesis rest against socalled 

"stabilising" bone (Aamodt et al., 1999). The gap between the distal end of the femoral 

stem and the endosteum was very narrow and we assumed that the stem would come in 

contact with bone in this region during loading. The prosthesis was therefore let to 

touch the endosteum distally on the lateral side, thereby starting the simulation with 

initial contact rather than iterating to detect contact during the analyses. Photographs of 

the femurs were used to reproduce the resection of the femoral neck and the direction of 

the prosthesis (figure 4.6). The positioning of the prosthesis was then checked against 

radiographs of the same femurs (figure 4.7).  
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Figure 4.6: Photographs of an implanted femur (13L) from different angles and the 3D model of the 
same femur. 

Modified 10-noded tetrahedral elements (C3D10M) were used for the implanted 

femurs, since they are known to give better convergence for contact analyses 

(ABAQUS/Standard version 6.6, 2006). The contact surfaces were defined using finite 

sliding face-to-face contact elements (Viceconti et al., 2000), with the stem surface as 

master and bone cavity as slave (figure 4.8).  

A wide range of values for the normal contact stiffness are reported in literature, from 

600 N/mm (Bernakiewicz and Viceconti, 2002) to 9000 N/mm (Reggiani et al., 2007). 

In our analyses we found a normal contact stiffness of 1200 N/mm to provide good 

convergence rates. The coefficient of friction of the interface was set to 0.4. Penalty 

contact algorithm was used in the analyses of cortical strain (section 4.4). For the 

analyses of interfacial micromotion, it is important that residual surface penetration is 

kept low. Augmented Lagrange formulation was therefore used in the micromotion 

analyses (section 4.5), with a residual penetration tolerance of 0.2%. 
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Figure 4.7: The positioning of the stem in femur 13L as used in the FE model compared with the post-
operative radiographic images.1

Figure 4.8: The contact surfaces of the prosthesis and bone cavity shown in ABAQUS with face-to-face 
gap elements. 

1 Images showing the positioning of the implants in the other femurs can be found in Appendix I: Implant 
positioning – radiographs versus CAD models.
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4.2.4  Modelling the hip simulator 
Loading of the hip and femur during gait is a complex combination of muscle and joint 

contact forces, acting together to provide locomotion and balancing the body. For the 

purpose of prosthesis evaluation, two simplified load cases are usually considered: 

single leg stance and stair climbing. Single leg stance is associated with the instance in 

the gait cycle where all the load is carried by one leg (Martin et al., 1998). Stair 

climbing has peak contact forces similar to single leg stance (Heller et al., 2001), but 

produces a higher torsional moment on the implant (Bergmann et al., 2001) and is 

therefore very important for testing implant stability. When performing mechanical 

testing on cadaver or composite femurs, the load cases are simplified further to 

accomodate repeatable test scenarios. The locations of the strain gauges and the 

principle setup of the hip simulator (Aamodt et al., 2001) used in the present  work is 

shown in figure 4.9. The strain gauge locations on the femur will be used to orient the 

FE model of the femur and model the complete load setup of the hip simulator. 

Figure 4.9: The experimental setup used for simulating single leg stance and stairclimbing. Single leg 
stance is simulated using a vertical load representing the body weight on the load fixture, while 
stairclmbing is simulated by applying an additional torque distally on the femur.  

The horisontal, proximal lever arm in the hip simulator simulates one half of the pelvis, 

where the applied axial load simulates the body weight along the center axis of the 
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body. The femur was oriented 12° in adduction and the distance between the loading 

point and the acetabular cup held constant at 110mm. A pulley system was used to 

simulate the forces in the ilio-tibial band and abductor muscles. The pulleys were 

adjusted so the abductor angle was 15° and the ilio-tibial band ran along the bone 

without touching. For practical reasons, the distance between the pulleys was set to 

40mm during testing. The distal steel cylinder of the femur was allowed rotate about its 

own axis. The load fixture allowed vertical displacement and rotation about the y-axis 

in the load point, and hinged distally, allowing rotation about the y-axis.

The experimental setup of the hip simulator complicates the calculation of the loads and 

makes it difficult to apply loads and boundary conditions directly on the femur FE 

model. Instead, the hip simulator was modelled using structural beam and connector 

elements, thereby allowing a full simulation of the test scenario. The first task is to 

adjust the orientation of the femur. The node coordinates of the FE model created in 

COSMOSWorks, are given according to the orientation of the femur during CT 

scanning. The node coordinates must therefore be transformed, to achieve the correct 

orientation. The transformation matrix calculated in two steps: first, redefining the 

origin and aligning the coordinate system according to landmarks on the femur, and 

secondly, orienting the femur 12° in adduction. For each femur, we have defined the 

rotational center of the femoral head and different node sets representing contact surface 

of the femoral head, the distal cut level of the femur, attachment of the trochanter strap 

and the strain gauges on the femur (figure 4.1).  
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Figure 4.10: The predefined areas where the loads are transferred to the femur are shown in green. The 
three vectors u, v and w are used to determine the orientation of the femur. The vectors are calculated 
from the points shown in red. 

The orientation of the femurs was adjusted as follows:

1. Origin: defined at the center of the distal cut-level of the femur. 

2. ez: the direction of the vector, u, from the origin to the midpoint between strain 

gauges B1, B3, C1 and C3: 

z
ue
u

 (4.2) 

3. ey: defined by cross the product of the vector u and the vector v, between the 

origin and the rotational center of the femoral head: 

y
u ve
u v

 (4.3) 

4. ex pointing in medial direction: 

x y ze e e  (4.4) 
 0xe w xx ee and yy ee  (4.5) 

These four steps provide the directions of the femur, defining the z-direction along the 

axis of the femoral shaft, x-direction pointing in the medial direction and the y-direction 

pointing in the anterior and posterior direction for left and right femurs, respectively. 

The adduction angle is achieved by additionally rotating the node coordinates by an 

angle 12° about the y-axis. The new node coordinates can then be calculated:
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Having adjusted the orientation of the femur, we can start modelling the hip simulator 

using structural beam (B31) and connector (CONN3D2) elements. The points E, F and 

G in figure 4.11 are the rotational center of the femoral head, midpoint of the trochanter 

area and midpoint of the distal femur, respectively. The horisontal bar ABCD is 

modelled using beam elements along the x-direction 50mm above E. Point B is situated 

directly above E, and A at a distance 110mm from B. The positions of point C and D 

were set according to the settings used during the experimental measurements.  

Points E, F and G were connected to the caput, trochanter and distal end of the femur 

using beam connector elements. A join connector was used between points B and E, 

thereby allowing the femur to rotate freely in E. The trochanter/ilio-tibial band was 

modelled with slipring connectors which utilize material flow as a degree of freedom, 

thus simulating the pulley system used in the experimental setup. The distance between 

G and J was set to 25 cm with point H in the midpoint. A combined join and revolute

connector was used between H and J to allow the femur to rotate about its longitudinal 

axis. The distal bar IJK was modelled using beam elements in the x-direction. The point 

K was situated directly underneath the load point A, and point I 10 cm from point K. In 

point A, only rotation about the y-axis and vertical translation was allowed. In point K, 

only rotation about the y-axis was allowed. Material flow of the slipring connectors was 

constrained in points F and I.

We now have a complete FE model of the hip simulator used in the experiments. Thus, 

single leg stance is simulated by applying a load in point A, and stairclimbing by 

applying an additional torque about the femoral axis in point H.  
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Figure 4.11: The complete FE model of the femur with load jig. Different types connector elements (blue 
dashed lines) are used to simulate the boundary conditions of the femur; a join connector simulates ball 
joint of the femoral head, slipring elements simulate the pulley system and a join+revolute element 
allows the femur to rotate around its axis.  

The setup described above was used in the measurements of cortical strain. During 

measurement of implant micromotion, the ilio-tibial band was omitted as it interfered 

with the measuring equipment. In the FE analyses of micromotion the slipring elements 

between C, D and I were therefore removed, and material flow constrained in points C 

and F. Thus, only the trochanter strap simulated abductor forces during micromotion. If 

the pulleys in point C and D are positioned at distances 163 and 203 mm from A, we 
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can calculate the forces acting on the femur during single leg stance. For the load setup 

with the ilio-tibial band, the caput and trochanter forces are 251% and 75% relative to 

the vertical load. With only the trochanter strap, the caput and trochanter forces are 

308% and 208% relative to the vertical load. Studies measuring caput loads in 

implanted hip prostheses, have reported loads of approximately 250% relative to the 

body weight during slow walking and single leg stance (Bergmann et al., 1993; 

Bergmann et al., 2001). This means that for the load setup with the ilio-tibial band, a 

vertical load of 600 N produces a caput load representative of a person weighing 60 kg. 

With only the trochanter strap, a vertical load of 600 N produces a caput load 

representative of a person weighing 74 kg. 

4.3  Density-stiffness relationship of femoral bone
In the preceding chapter we have described how to link the CT attenuation values to 

bone mineral density (Chapter 2), how to retrieve the femoral geometry from the CT 

images and build the subject specific FE models (section 4.2), but we have still not 

determined which material model to enter into our FE models. It is well known that the 

Young's modulus of bone depends on its density and the matter has been subject to 

extensive research (Currey, 1969; Carter and Hayes, 1977; Schaffler and Burr, 1988; 

Rice et al., 1988; Rho et al., 1995; Wirtz et al., 2000; Keller, 1994; Morgan et al., 2003). 

Bone tissue is a non-homogenous orthotropic material, where mechanical properties 

vary at different locations depending on the material density, trabecular architecture and 

cortical microstructure. It has been found that for FE modelling of whole bones, realistic 

modelling of the non-homogeneity of bone is very important, while the orthotropic 

properties play a minor role (Baca et al., 2008). Bone also contain fluids in the form of 

water, blood and fat (marrow) giving it viscoelastic properties (Carter and Hayes, 1977). 

Strain rates in bone during walking and running are in the range 0.001-0.01 s-1 (Lanyon 

et al., 1975), but may increase to 0.1 -1 s-1 for impact loads (Carter and Hayes, 1977). In 

experimental in vitro studies using whole bones, loading rates are usually kept low and 

viscous properties in bone are therefore generally ignored. Despite the vast amount of 

studies on the subject, there is still no agreement on exactly how the density and 

stiffness of bone is related (Helgason et al., 2008).
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Keller (1994) performed an extensive study on the mechanical properties of bone, and 

found that the relationship between compressive stiffness and mineral density could be 

described with one power function for both cancellous and cortical bone. However, FE 

studies employing this power function have found it to overestimate cortical strain by 

50% to 90% (Schileo et al., 2007; Taddei et al., 2007; Helgason et al., 2007; Austman et 

al., 2008). Keyak et al (1998) introduced a density-stiffness relationship with separate 

power functions between density and stiffness for cancellous (Keyak et al., 1994) and 

cortical bone (Keller, 1994). Bessho et al. (2006) found this density-stiffness 

relationship to produce very accurate predictions of cortical strain.  

In the present study, we will test two density-stiffness relationships in subject specific 

FE models of intact femurs. The first relationship is the one introduced by Keyak et al. 

(1998). The second relationship is a modified version (Verhulp et al., 2006), where the 

stiffness of cortical bone has been upscaled. Results from the FE analyses were 

compared with strain gauge measurements on the femurs.  

4.3.1  Material and Methods  
Strain gauge measurements on four cadaver femurs collected from three individuals 

were used in the prestudy. The femurs were tested in a load jig (figure 4.9) simulating 

the joint and muscle forces during single leg stance and stairclimbing. A vertical load 

was applied to the load jig to simulate the joint and muscle forces on the femur during 

single leg stance, followed by an additional torsional load distally to simulate 

stairclimbing. Two load levels were used: 600N and 900N vertical load, and 10Nm and 

15 Nm torque.  

The femurs were CT scanned at 140 kV, 150 effective mAs and B50f convolution 

kernel, with a pixel spacing of approximately 0.35 and 0.7 mm slice distance. The CT 

scans were calibrated as outlined in Chapter 2, and the pixel values converted into 

equivalents of bone mineral density. Inner and outer contours were extracted from the 

CT scans and used to reconstruct the geometry of each femur. Second order tetrahedral 

elements with a global element size of 3 mm were used in the FE models. Mineral 
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density of each element was calculated from the CT scans and material properties 

assigned to the elements accordingly (Zannoni et al., 1998). Two material models were 

examined in the FE models.  

The first material model was introduced by Keyak et al (1998) and is based on 

experimental measurements on cancellous (Keyak et al., 1994) and cortical bone 

(Keller, 1994): 
2.233900 minE  [MPa], for 0.27min [g/cm3] (4.7) 

 5307 469minE  [MPa], for 0.27 0.60min [g/cm3] (4.8) 

2.0110200 minE  [MPa], for 0.60min [g/cm3] (4.9) 

Equation (4.9) gives a Young's modulus of 14.7 GPa for a mineral density of 1.2 g/cm3

( app=2.0 g/cm3). This is quite low compared to other studies which generally report the 

Young's modulus of cortical bone to be 20-25 GPa for apparent densities of 1.7-1.9 

g/cm3 (Schaffler and Burr, 1988; Taylor et al., 2002; Rho et al., 1995; Broz et al., 1995; 

Kaneko et al., 2003; Hellmich and Ulm, 2002). A modified version of the first material 

model was therefore included in the present study. In the modified version, the Young's 

modulus of cortical has been upscaled to correspond with 22.5 GPa (Verhulp et al., 

2006):
2.233900 minE  [MPa], for 0.27min [g/cm3] (4.10) 

 11164 1112minE  [MPa], for 0.27 0.60min [g/cm3] (4.11) 

2.0115597 minE  [MPa], for 0.60min [g/cm3] (4.12) 

The two material models are shown in figure 4.12, together with the density-stiffness 

relationship used by Schileo et al. (2007). The material was considered as isotropic and 

with a Poisson ratio of 0.3.
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Figure 4.12: Density-stiffness functions for bone used in the present study (Keyak et al., 1998; Verhulp 
et al., 2006) and the function for cancellous bone in the femoral neck (Morgan et al., 2003) employed by 
Schileo et al. (2007). 

4.3.2  Results 
The principal surface strains2 from the FE analyses are compared with strain gauge 

measurements in figure 4.13. Summaries of the results for the FE models using the 

density-stiffness relationship of Keyak et al. (1998) and Verhulp et al. (2006) are given 

in table 4.1. The root mean square errors (RMSE) and peak errors are given as absolute 

values ( ) and as percentage of the maximum measured value.  

Excellent correlation (R2>0.90) was found for all femurs except 16L. Adopting a 95% 

confidence interval we find the slopes ( 1) for all femurs to be significantly greater than 

1 when employing equations (4.7)-(4.9). For the pooled results of all femurs, the y-

intercept ( 0) is significantly different from 0. Employing the modified material model 

of equations (4.10)-(4.12) improved the accuracy of the strain predictions considerably. 

The slope and y-intercept calculated for the femurs pooled together are still significantly 

different from 1 and 0, but they are much closer to the ideal values. The error indicators 

are also reduced. The RMSE is reduced by half from 20% to 10%. Femur 16L stands 

out with poor results and causes a high peak error for the pooled data of both material 

                                                
2 See Appendix II: Post-processing FE and experimental strain
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models. For the three remaining femurs (11R, 13L and 13R) the peak error is nearly 

halved when adopting the modified material model.  

Table 4.1: Correlation between strain gauge measurements and FE models using the two density-stiffness 
relationsships. FE = 1· Exp. + 0

Material 1 (95%CI) 0 (95%CI) R2 RMSE  Peak Error 
Keyak et al. (1998): 

11R 1.39 (1.34, 1.45) 91 (22,161) 0.98 561(20%) 1395 (51%) 
13L 1.41 (1.33, 1.48) 182 (113, 251) 0.96 464 (23%) 1096 (55%) 
13R 1.49 (1.40, 1.59) 163 (86, 240) 0.95 499 (29%) 1180 (68%) 
16L 1.33 (1.18, 1.47) -11 (-203, 181) 0.85 819 (27%) 2596 (87%) 
Pooled 1.39 (1.33, 1.44) 105 (48,162) 0.93 602 (20%) 2596 (87%) 

   
Verhulp et al. (2006):    

11R 0.93 (0.89, 0.97) 60 (13, 107) 0.98 218 (8%) 545 (20%) 
13L 0.97 (0.91, 1.02) 131 (82,180) 0.96 226 (11%) 723 (36%) 
13R 1.02 (0.96, 1.08) 120 (70,170) 0.95 218 (13%) 461 (27%) 
16L 0.86 (0.77, 0.96) -9 (-134,115) 0.86 488 (16%) 1608 (54%) 
Pooled 0.92 (0.89, 0.96) 74 (36, 112) 0.93 308 (10%) 1608 (54%) 

Figure 4.13: The strains predicted using the two density-stiffness relationships. The solid line demarks 
the one-to-one relationship, the dashed line the regression line and the dotted lines the 95% confidence 
intervals. The plots show that the density-stiffness relationship of Keyak et al. (1998) overestimates 
cortical strain (left). The modified relationship (Verhulp et al., 2006) improves the accuracy of the FE 
models (right).  

4.3.3  Discussion 
The purpose of the present study was to examine two density-stiffness relationships for 

use in subject specific FE models; the relationship introduced by Keyak et al. (1998), 

and a modified version with upscaled stiffness for cortical bone (Verhulp et al., 2006). 

The FE models showed good correlation between measured and predicted strain for 

both density-stiffness relationships. The correlation was considerably poorer for femur 



4.3 Density-stiffness relationship of femoral bone  

89

16L (R2=0.85) than the rest of the femurs (R2>0.90). In the FE models we found the 

density-stiffness relationship of equations (4.7)-(4.9) to overestimate cortical strain by 

approximately 40%. The modified density-stiffness relationship in equations (4.10)-

(4.12) improved the accuracy of strain predictions considerably. The pooled FE results 

of the modified material model produced a regression line with a slope of 0.92 and y-

intercept 86.5. Although the slope and y-intercept still are significantly different from 1 

and y-intercept different from 0, they show a considerable improvement. All error 

indicators (RMSE and peak error) were reduced when employing the modified material 

model.

Early density-stiffness relationships for bone assumed that the tissue of cortical bone 

and the trabecular tissue in cancellous bone were the same, and that the relationship 

could be expressed by one function for the whole range of bone densities (Carter and 

Hayes, 1977; Keller, 1994). However, it has been shown that the mechanical properties 

of trabecular tissue are significantly different from cortical tissue (Rho et al., 1993; Rice 

et al., 1988). Keyak et al. (1998) introduced a stiffness-density relationship where bone 

at the lower end of the density range ( min 0.27 g/cm3) was assumed to be cancellous 

and assigned material properties derived from tibial cancellous bone (Keyak et al., 

1994). Similarly, bone in the higher end of the density range ( min 0.6 g/cm3) was 

assumed cortical and assigned properties derived from femoral cortical bone (Keller, 

1994). This relationship has been used in FE studies concerning predictions of femoral 

fractures (Keyak et al., 1998; Keyak and Rossi, 2000; Bessho et al., 2006). Bessho et al. 

(2006) compared FE analyses with strain gauge measurements, and found equations  

(4.7)-(4.9) to produce accurate predictions of strain. However, several studies using 

subject specific FE models of whole bone have generally found the density-stiffness 

relationships of Keller et al. (1990) to overestimate strain by 50% to 90% (Schileo et al., 

2007; Taddei et al., 2007; Helgason et al., 2007; Austman et al., 2008). Our results seem 

to confirm that the elasticities calculated for cortical bone by equation (4.9) are too low.

Schileo et al. (2007) employed a density-stiffness relationship derived from cancellous 

bone from the femoral neck (Morgan et al., 2003) and found it to give accurate strain 

predictions in whole femurs. The material properties of the femoral neck were later used 
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by the same group to predict femoral fractures (Schileo et al., 2008). The neck area was 

therefore the primary region of interest, and the chosen density-stiffness relationship 

very relevant. In our study, however, we have analysed cortical strain in intact femurs, 

with the intention of developing FE models for preclinical evaluation of femoral stems. 

In that case, the neck is resected and most of the cancellous bone is removed by rasping. 

Also, we did not find it appropriate to employ a density-stiffness relationship derived 

for one particular type of cancellous bone on all types of bone tissue, both cancellous 

and cortical. We therefore did not consider using the density-stiffness relationship of the 

femoral neck employed by Schileo et al. (2007). However, figure 4.12 shows that the 

material model used by Schileo et al. (2007) produces stiffnesses quite close to the 

modified material model used in the present study. The results of the present study and 

the results of Schileo et al. (2007) therefore seem to mutually confirm each other. In the 

future work, we will adopt the modified density-stiffness relationship in equations 

(4.10)-(4.12) for our subject specific FE models.  
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4.4  Subject specific finite element analysis of stress shielding 
around a cementless femoral stem3

Abstract
Background: Stress shielding around a femoral stem is usually assessed experimentally 

using composite or human cadaver femurs. In the present study we have explored the 

feasibility of using subject specific finite element models to determine stress shielding 

in operated femurs.  

Methods: Cortical strain was measured experimentally on seven human cadaver femurs, 

intact and implanted with a straight cementless prosthesis. Two load configurations 

were considered: single leg stance and stair climbing. Subject specific finite element 

models derived from computed tomography of the same femurs were analysed intact 

and with an implant. Principal cortical strain was used to validate the finite element 

models. Stress shielding was defined as the change in equivalent (von Mises) strain 

between pre- and postoperative femurs. 

Findings: Cortical strain predicted by the finite element analyses showed to be close to 

unity with the experimental observations for both intact (R2=0.94, slope=0.99), operated 

femurs (R2=0.86, slope=0.86) and stress shielding (R2=0.70, slope=0.90). In the 

proximal calcar area, the region most prone to periprosthetic remodelling, the finite 

element models were found to successfully reproduce the stress shielding observed 

experimentally.  

Interpretation: The study shows that subject specific finite element models manage to 

describe the stress shielding pattern measured in vitro in the different femurs. Finite 

element models based on actual human femurs (cadaver and/or patient) could thus be a 

useful tool in the pre-clinical evaluation of new implants. 

4.4.1  Introduction 
Bone resorption in the proximal femur due to stress shielding is a known effect of 

femoral implants. The implants are much stiffer than the bone, and thus reduce the 

mechanical stimulus to the surrounding bone causing bone resorption. For femoral 

                                                
3Pettersen, S. H., Wik, T. S., Skallerud, B., (2009). Subject specific finite element analysis of stress 
shielding around a cementless femoral stem. Clin.Biomech.(Bristol., Avon.) 24, 196-202.  
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stems severe bone loss is especially prevalent in the proximal calcar region (Engh et al., 

1992; Kroger et al., 1998). It has been difficult to prove any direct adverse clinical 

effects of stress shielding on the revision rate of the implants (Harris, 1992; Bugbee et 

al., 1997; Engh, Jr. et al., 2003). Severe bone loss is therefore mainly a problem for 

revision surgery, as it makes it difficult to safely remove the old prosthesis and provide 

proximal stability for the new prosthesis (Kerner et al., 1999; Glassman et al., 2006). It 

is therefore desirable that the implant maintains the physiological loading of the bone in 

order to limit the degree of bone resorption.  

The stress shielding effect of a prosthetic design is usually evaluated by in vitro testing 

using human cadaver bones. However, the availability of cadaver bones is limited and 

the preparation of the bones is cumbersome. Other methods of testing have therefore 

been proposed, like using bone replicas and finite element (FE) analysis. Composite 

femur replicas are made to represent average adult femurs with mechanical properties 

close to human bone (Cristofolini et al., 1996). This eliminates the problem of 

geometric and mechanical variability between femurs. In this also lies one of the 

problems with using composite femurs, as the prosthetic design may become optimized 

for a particular femoral geometry.  

FE modelling allows implants to be tested in a wide range of femoral geometries and 

has been used in several biomechanical studies investigating both intact bones (Keyak 

et al., 1998; Lengsfeld et al., 1998; Helgason et al., 2007; Schileo et al., 2007; Taddei et 

al., 2007) and with orthopaedic implants (Rohlmann et al., 1983; Rubin et al., 1993; 

McNamara et al., 1997; Viceconti et al., 2001; Stolk et al., 2002a; Completo et al., 

2007). FE models can also be used to simulate adaptive remodelling to show how the 

prosthesis will perform on a longer term (Rietbergen et al., 1993; Kerner et al., 1999). 

Subject specific FE models with geometry and material properties derived from 

computed tomography (CT) have been described in several studies (Keyak et al., 1998; 

Lengsfeld et al., 1998; Helgason et al., 2007; Schileo et al., 2007; Taddei et al., 2007). 

To the best knowledge of the authors, there has not been published any studies 

validating the use of human subject specific FE models for evaluating the stress 
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shielding around a femoral stem. In the present study we will use subject specific FE 

models of human cadaver femurs to predict the cortical strain before and after 

implantation of cementless femoral stem. The results will be validated by experimental 

strain gauge measurements on the same cadaver femurs.  

4.4.2  Material and Methods 

Seven human femurs were collected from 3 males and 4 females aged 49-74 years 

(average 63 years). The study was approved by the regional medical research ethics 

committee. The femurs were examined by DEXA and plain radiography and excluded if 

signs of osteoporosis or other skeletal pathologies were found. The femurs were CT 

scanned (Siemens Somatom Sensation 64, Erlangen, Germany) at 140 kV, 300 mAs and 

B50f reconstruction kernel with a pixel spacing of approximately 0.35 mm, 0.75 mm 

slice thickness and 0.7 mm slice distance. Bags of water were placed around the femurs 

during CT scanning to reduce beam hardening. A calibration phantom consisting of 

different mixtures of calcium carbonate and polymer (PMMA) was used to convert the 

CT pixel values to equivalents of bone mineral density4.

The femurs were stored at -20°C, thawed at room temperature and prepared for testing 

as decribed by Aamodt et al. (2001). The condyles were resected and the femur 

cemented into a steel cylinder 25 cm distally of the upper tip of the greater trochanter. 

Triaxial strain rosettes were glued to the femurs on the medial, lateral and anterior sides 

of the femur as shown in figure 4.14 (left).  

                                                
4 See Chapter 2: Relating CT gray-scale values to bone density.
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Figure 4.14: Placement of the strain gauges on the femur (left) and the experimental setup used to 
simulate the forces acting on the femur under single leg stance and stair climbing (right). 

In vitro testing of the femurs was performed using a load jig shown in figure 4.14 (right) 

simulating the joint and muscle forces acting on the femur. The femur was tilted 12° in 

valgus and the distal steel cylinder constrained, allowing it only to rotate around its own 

axis. The load jig consisted of a lever arm acting as the pelvis with an acetabular cup 

transferring load to the femoral head, and a pulley system distributing the load between 

the ilio-tibial band and the abductor muscles on the greater trochanter. The importance 

of the ilio-tibial band and how its forces should be applied in a FE model is an issue of 

debate (Stolk et al., 2001). In our load jig, the ilio-tibial band does not act on the femur 

itself, but was included as it contributes together with abductor muscles in balancing the 

pelvis. The pulleys were positioned at a distance of 40 mm from each other and adjusted 

so that the trochanter band acted at an angle of 15° with the vertical axis. Two distinct 

load configurations were simulated in the load jig: single leg stance and stair climbing. 

A vertical load was applied to the end of the lever arm using a material testing machine 

(MTS 858 Minibionix II, Eden Prairie, USA) simulating the force of the body weight 

during single leg stance. An additional torque was applied to the femur distally to 
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simulate the load conditions during stair climbing. This loading setup gives resultant 

joint and ilio-tibial/trochanter loads of approximately 250% and 75% relative to the 

vertical load both for single leg stance and stair climbing. This corresponds with 

telemetric measurements of femoral joint forces in patients (Bergmann et al., 1993; 

Bergmann et al., 2001). Two load levels were used: with a 600 N vertical load and 10 

Nm torque, and a maximum at 900 N vertical load and 15 Nm torque. For two of the 

female femurs (18R and 19R) the maximum load level was set to 800 N and 13.5 Nm.  

The femurs were tested intact and implanted with a straight cementless prosthesis 

(DePuy Summit™, Leeds, UK). The prostheses were implanted into the femurs by an 

experienced orthopaedic surgeon.

FE models 
Inner and outer contours of cortical bone were extracted from the CT scans based on 

gray-scale transition values using in-house written code (MATLAB 7.1, The 

Mathworks, Natick, USA), and revised manually. The contours were lofted together to 

create a 3D model of the femur using SolidWorks 2005 (Solidworks Corporation, 

Concord, USA). Cortical and cancellous bone was modelled as two separate sections, 

and the medullary canal below the lesser trochanter modelled as empty. The endosteal 

surface of the cortical bone could this way be used to position the prosthesis in the 

femur. The 3D models were meshed using 10-noded tetrahedral elements with a global 

size of 3 mm (CosmosWorks 2005, Solidworks Corporation, Concord, USA). Material 

properties at the location of each elements were derived from the CT scans and mapped 

to the FE model (Zannoni et al., 1998). The material properties of bone were assumed 

linear elastic and isotropic (Baca et al., 2008). In our study we have used the density-

stiffness relationship introduced by Verhulp et al. (2006): 
2.233900 minE  [MPa], for 0.27min [g/cm3] (4.13) 

 11164 1112minE  [MPa], for 0.27 0.60min [g/cm3] (4.14) 

2.0115597 minE  [MPa], for 0.60min [g/cm3] (4.15) 

The same density-stiffness relationship was used on both the cancellous and cortical 

section. Material assignment and preparation of the mesh was performed using scripts 
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written in MATLAB 7.1. The FE models were exported to ABAQUS/Standard 6.7 

(Simulia, Providence, USA). 

Figure 4.15: The load jig as simulated in the FE analyses. The beam elements are shown as solid lines 
and connector elements (join, slipring and join+revolute) as dashed lines. On the right, the beam 
connector elements (light gray) connecting points E, F and G to the surface nodes of the femoral head, 
greater trochanter and the distal end, respectively. 

The node coordinates of the FE model were transformed to achieve the orientation of 

the femur used in the in vitro testing - with the x-direction pointing medially, the z-

direction pointing upwards and the femoral shaft tilted 12° in valgus. In order to 
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replicate the forces acting on the femur during the in vitro testing, the load jig was 

modelled using structural elements as shown in figure 4.15. The upper and lower lever 

arms were modelled using beam elements along the x-direction (ABCD and IJK). The 

three points E, F and G, were defined by the rotational center of the femoral head, the 

midpoint on the greater trochanter and the midpoint of the distal end of the femur, 

respectively. The boundary conditions of the femur were simulated using connector 

elements available in the ABAQUS software. The join connector simulates the ball joint 

of the load jig, and the join+revolute connector the distal cylinder. Slipring elements 

utilize material flow through the nodes as a degree of freedom, and were used between 

F, C, D and I to simulate the pulley system. Material flow of the slipring connectors was 

constrained in points F and I. In point K only rotation about the y-direction was 

allowed, and in point A only displacement in the z-direction and rotation about the y-

direction were allowed. The complete setup with structural and connector elements thus 

mimicked the boundary conditions of the load jig. Single leg stance was simulated by 

applying a vertical load in point A, and stair climbing by applying an additional torque 

in point H. 

All analyses were run using the nonlinear solver in ABAQUS/Standard 6.7 due to 

nonlinearities from the boundary conditions of the load jig and the implant-bone 

interface.

FE strain results from the elements were extrapolated to the surface nodes representing 

the strain gauge positions. The surface normal was determined at each strain gauge, and 

used to transform the FE strain tensors expressed in the global coordinate system to the 

local coordinate systems of the strain gauges. The predicted surface strains from the FE 

analyses could thus be compared directly with the experimental strain measurements5.

                                                
5 See Appendix II: Post-processing FE and experimental strain
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Prosthesis and interfacial surface conditions 
The geometry of the Summit prosthesis was provided by the manufacturer (DePuy, 

Leeds, UK). The prosthesis is porous coated with a slightly ribbed surface to promote 

fixation through osseointegration. This surface was smoothened in our FE models to 

simplify contact analysis. The endosteal surface in the 3D model was used to position 

the stem in the medullary canal so that penetration into cortical bone was minimal. The 

neck resection, anteversion angle and positioning of the visible part of the prosthesis 

was copied in the FE model based on postoperative photographs of the femur. 

Radiographs were used to check the stem positioning inside the femurs. The intersecting 

bone was then removed from the model. Contact between bone and stem was 

considered in the proximal coating area of the prosthesis, and between the distal tip of 

the stem and the lateral side of the endosteal surface in the medullary canal. No initial 

press-fit of the stem was considered in the FE models. Operated femurs were modelled 

using modified 10-noded tetrahedral element (C3D10M) as they are more suitable for 

contact analyses than the regular elements (C3D10) which were used for the intact 

femurs. The contact surface was modelled using finite sliding face-to-face contact 

elements with the prosthetic contact surface defined as the master surface and the cavity 

surface as the slave surface. The frictional coefficient was set to 0.4 and a normal 

contact stiffness of 1200 N/mm was employed. A penalty formulation was used for 

solving the contact interactions. The Young's modulus of the prostheses was set to 200 

GPa (cobalt chrome). 

Data analysis 
The FE models of intact and operated femurs were validated using linear regression for 

the first and second principal strains. To assess stress shielding at the different locations, 

the equivalent strain ( ) (von Mises strain) was used to sum up the strain conditions in 

one scalar value, and the strain values of operated femurs were expressed relative to the 

intact values ( R ).

2 2
1 2 1 2

2
3

 (4.16) 

100%operated
R

intact

 (4.17) 
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The relative change in strain is referred to as stress shielding. A R -value of 0% thus 

represents that the bone is fully stress shielded, while 100% represents that the 

physiological strains have been maintained. 

The data was analysed by linear regression to evaluate the agreement between the 

predicted FE results and the experimental strain gauge measurements. The agreement 

between FE results and experimental results could be regarded as perfect if the 

coefficients of correlation were found to be R2=1, slope 1=1 and y-intercept 0=0. 

Principal strains were analysed before and after implantation separately for each femur, 

and all femurs pooled together. The same was done for the stress shielding effect ( R ).

95% confidence intervals were calculated for the determined values of 1 and 0. If the 

95% confidence interval of 1 spanned the value 1, it was regarded as not significantly 

different from 1, and likewise for 0 and the value 0. 

4.4.3  Results 
Principal strains from the FE analyses and the strain gauge measurements for both intact 

and operated femurs are shown in figure 4.16. Intact femurs yielded a correlation of 

R2=0.94, slope 1=0.99 and y-intercept 0=108 microstrain. Operated femurs yielded a 

correlation of R2=0.86, slope 1=0.86 and y-intercept 0=65 microstrain. The slope of 

the intact femurs was not significantly different from 1, but the y-intercept was 

significantly greater than 0. For the operated femurs, both slope and y-intercept was 

significantly different from 1 and 0. The stress shielding effect expressed by the relative 

equivalent strain ( R ) yielded a correlation of R2=0.70 between FE results and 

experimental data (figure 4.17). The slope was slightly less than 1 and the y-intercept 

not significantly different from 0. The complete correlation results together with the 

root mean square errors (RMSE) are given in table 4.2.
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Figure 4.16: Comparison of principal strains for intact (left) and operated (right) femur. The solid line 
shows the one-to-one line, dashed line the regression line and the dotted lines the 95% confidence 
interval.

Figure 4.17: Correlation of the relative equivalent strain in the femurs after insertion of the femoral stem. 
The solid line shows the one-to-one line, dashed line the regression line and the dotted lines the 95% 
confidence interval. 
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Table 4.2: Coefficients of correlation for the individual femurs: FE = 1· Exp. + 0. The sex and age of 
each donor together with the size of the prosthesis are given in the parentheses. L=left, R=right, number 
identifies specimen.

n 1 (95%CI) 0 (95%CI) R2 RMSE
01R (M\60\8)     

Intact [ ] 56 1.07 (1.02-1.12) 29 (-13-72) 0.97 169 
operated  [ ] 56 0.86 (0.76-0.96) 70 (18-121) 0.84 212 

 Stress shielding [%] 28 0.73 (0.53-0.93) 13 (-1-27) 0.69 20 
02L (F\74\6)     

intact [ ] 56 0.93 (0.88-0.97)  93 (20-166) 0.97 308 
operated [ ] 56 0.91 (0.81-1.02)  10 (-101-120)  0.84 413 

 Stress shielding [%] 28 1.29 (0.96-1.62)  -19 (-44-6)  0.71 28 
03L (F\61\5)     

intact [ ] 56 0.82 (0.78-0.85)  96 (45-147)  0.98 347 
operated [ ] 56 0.68 (0.61-0.75)  67 (0-135)  0.88 404 

 Stress shielding [%] 28 0.73 (0.48-0.99) 14 (-4-33)  0.57 21 
08L (M\49\4)     

intact [ ] 56 0.97 (0.91-1.02)  160 (86-235)  0.93 319 
operated [ ] 56 0.94 (0.87-1.01) 87 (33-141)  0.93 220 

 Stress shielding [%] 28 0.86 (0.75-0.97) -4 (-13-6)  0.91 19 
13L (M\74\4)     

intact [ ] 56 0.97 (0.91-1.02) 131 (82-180)  0.96 226 
operated [ ] 56 0.87 (0.80-0.93) 66 (19-112) 0.93 208 

 Stress shielding [%] 28 0.97 (0.83-1.11) -3 (-16-11)  0.89 15 
18R (F\59\6)     

intact [ ] 56 1.20 (1.13-1.26) 98 (29-167)  0.97 343 
operated [ ] 56 0.86 (0.77-0.94) 82 (24-141)  0.89 251 

 Stress shielding [%] 28 0.60 (0.38-0.82) 14 (-1-28)  0.55 20 
19R (F\65\5)     

intact [ ] 56 1.32 (1.25-1.38) 160 (98-222)  0.97 388 
operated [ ] 56 0.98 (0.86-1.11) 65 (-20-150)  0.82 319 

 Stress shielding [%] 28 1.04 (0.65-1.42) -14 (-44-17)  0.54 25 
Summary all femurs      

intact [ ] 392 0.99 (0.97-1.02) 108 (79-137) 0.94 308 
operated [ ] 392 0.86 (0.82-0.89) 65 (38-92) 0.86 301 

 Stress shielding [%] 196 0.90 (0.81-0.98) 1 (-6-7) 0.70 21 

The second principal strain dominates on the medial side ( 12 ) of the femur and 

first principal strain on the lateral side ( 21 ), indicating compression and tension, 

respectively. A considerable drop in cortical strain from intact to operated femurs was 

observed experimentally in strain gauges A1 and B1, while strain gauges B2 and C2 

exhibited a slight increase. The additional torque during stair climbing produced slightly 

higher cortical strains. The difference was more pronounced in the operated femurs, due 

the bone being twisted around the femoral stem. Thus, the relative equivalent strains 

were slightly higher for stair climbing than single leg stance, but the general stress 

shielding patterns in the different femurs were largely the same for the two load cases. 

Figure 4.18 compares the stress shielding pattern at stair climbing in the different 

femurs as predicted by FE analyses and observed experimentally. The FE analyses 
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tended to underestimate the degree of stress shielding in strain gauge A1, but generally 

showed the same stress shielding pattern on the medial and anterior side of the femurs. 

The FE models significantly overestimated the degree of stress shielding on the lateral 

side (B3 and C3).

Figure 4.18: Bar diagram comparing the stress shielding effect of the prosthesis at stair climbing 
(800/900N, 13.5/15Nm) as predicted by the FE analyses and observed experimentally. The x-axis is set to 
200% for strain gauges B2 and C2 and to 100% for the rest. L=left, R=right, number identifies specimen.6

                                                
6 Bar diagram showing stress shielding during single leg stance can be found in Appendix III: Stress 
shielding during single leg stance.
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4.4.4  Discussion 
The primary aim of this study was to investigate the feasibility of using subject specific 

FE models to determine stress shielding around cementless femoral stems. FE 

simulations have been employed in several studies to predict the adaptive remodelling 

due to stress shielding observed in vivo (Rietbergen et al., 1993; Kerner et al., 1999). In 

the present study we have tried to simulate the experimental test procedure used for in

vitro pre-clinical evaluation of implants.  

The FE results of intact femurs gave very good agreement with the experimental strain 

measurements, and are close to the results reported by Schileo et al (2007). The 

operated femurs also produced results in good agreement with the experimental data, 

but the correlation was somewhat weaker. FE studies of composite femurs with an 

implant have shown a correlation with experimental measurements (R2>0.90) superior 

to our results (McNamara et al., 1997; Viceconti et al., 2001; Stolk et al., 2002a; 

Completo et al., 2007). However, these studies employed a standardized and simplified 

femoral geometry with known material properties, while our femurs covered a variation 

of femoral geometries and had unknown material properties. Regression analyses of the 

individual femurs gave slopes varying from 0.82 to 1.32 for intact and 0.68 to 0.98 for 

operated, showing that the FE models overestimated the stiffness of some femurs and 

underestimated it for others. The three FE models with poorest agreement with the 

strain gauge measurements, showed both overestimation (18R and 19R) and 

underestimation (03L) of cortical strain of intact bones. This implies that there was no 

systematic error in the estimates of bone elasticity. FE analyses of intact and implanted 

femurs yielded very good results for the three male donors (01R, 08L and 13L) which 

also were the three largest femurs in the study. Femurs 08L and 13L were implanted 

with the smallest implant (size 4). These two femurs generally had better results than 

01R, where the biggest implant size was used (size 8). It thus seems that both intact and 

operated subject specific FE models of femurs with a thick cortical wall gave better 

agreement with the experimental data.  
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Insertion of a femoral stem changes not only the magnitude of the principal strains, but 

might also change the principal strain directions. Thus, principal strains before and after 

operation are not necessarily comparable. Equivalent strain was therefore used instead 

to express the strain conditions at the strain gauge as one scalar parameter. Similar 

approaches of simplifying the strain conditions into equivalent strain or octahedral shear 

strain have been used in earlier biomechanical studies (Mikic and Carter, 1995; Kessler 

et al., 2006). The relative equivalent strain yielded a correlation of R2=0.70 between the 

FE models and the experimental measurements. Table 4.2 shows a varying degree of 

correlation between the predicted and measured stress shielding for the individual 

femurs, with values of R2 ranging between 0.54 and 0.91 and slopes varying between 

0.60 and 1.29. However, the bar diagram in figure 5 show that the FE models manage to 

describe the same stress shielding pattern on the medial and anterior sides of the femurs 

as observed experimentally. The FE models also manage to reflect some of the variation 

between the femurs in stress shielding at the different strain gauge locations. Proximally 

on the medial side (strain gauges A1 and B1), where bone loss due to adaptive 

remodelling is usually observed (Engh et al., 1992; Kroger et al., 1998), a considerable 

decrease in cortical strain after operation was seen experimentally and in the FE models. 

The anterior side of the femur lies in the transition between tension and compression 

and therefore exhibits little strain. The slight rise in cortical strain observed in B2 and 

C2 after operation can therefore be ascribed to the wedging of the prosthesis giving an 

increase in the hoop strain. Only for strain gauges B3 and C3 the FE analyses seem to 

miss the target and overestimate the degree of stress shielding significantly for all 

femurs.  

A modified version of the material model used by Keyak et al. (1998) was employed in 

our FE models. In the original version, a density-stiffness relationship found for cortical 

bone (Keller, 1994) was used for mineral densities greater than 0.6 g/cm3. This material 

model for cortical bone has been used in a series of biomechanical studies but, has 

largely shown to overestimate strain by 50% to 100% (Helgason et al., 2007; Schileo et 

al., 2007; Taddei et al., 2007). Schileo et al. (2007) extrapolated a density-stiffness 

relationship for trabecular bone (Morgan et al., 2003) to include densities of cortical 

bone and found it to better predict femoral strain when used in subject specific FE 
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models. The choice of appropriate material properties for bone tissue is a matter of 

constant debate. The density-stiffness relationship for bone has been shown to vary at 

different locations (Morgan et al., 2003) and depends on its microstructural architecture 

(Stauber et al., 2006). The modified material model (Verhulp et al., 2006) given in 

equations (4.13)-(4.15), distinguishes between lower density cancellous bone and higher 

density cortical bone and uses different density-stiffness relationships for these. It 

differs from the original version (Keyak et al., 1998) in that the Young's modulus of 

cortical bone ( min>0.6 g/cm3) is upscaled to give 22.5 GPa for fully mineralized bone 

( min=1.2 g/cm3). This corresponds with other studies showing the Young's modulus of 

fully mineralized cortical bone to be around 20-24 GPa (Taylor et al., 2002; Bayraktar 

et al., 2004). Even though bone is known to be orthotropic (Wirtz et al., 2000; Taylor et 

al., 2002), it is usually assumed isotropic in subject specific FE models (Keyak et al., 

1998; Bessho et al., 2006; Taddei et al., 2007; Helgason et al., 2007; Schileo et al., 

2007). Baca et al. (2008) found that material anisotropy only had a minor effect on 

results in FE models of intact femurs, as long as inhomogenous material properties were 

included in the model. For simplicity, the same assumption was used in our FE models, 

both intact and post-operative. In operated femurs, the implant is wedged into the femur 

during loading, thus increasing the hoop strain in the bone. Assuming material isotropy 

for a femur with an implant might therefore produce an underestimation of strains in the 

circumferential direction. 

In the 3D models of the femurs, the endosteal surface was defined by the inner cortical 

contours derived from the CT images. The 3D model of the prosthesis was then placed 

inside the cancellous bone and medullary canal. From the femur-prosthesis assembly we 

observed that there was a tight fit between the stem and endosteal surface. The antero-

posterior and varus-valgus orientation of the prosthesis in the FE models was therefore 

well defined by the endosteal surface of the cortical bone. Postoperative radiographs of 

the femurs were used to check the stem position in the FE models and confirmed the 

tight fit between stem and endosteal surface. The main challenge was to recreate the 

neck resection and anteversion of the prosthesis. It has been shown that errors in medial 

offset can induce errors when assessing the stress shielding effect of a femoral stem 



Chapter 4: Subject specific FE analysis of human femurs with prosthesis 

106

(Cristofolini and Viceconti, 1999). We did not have any method of accurately verifying 

the positioning of the femoral stem in the FE models, and this represents a major 

limitation of the present study. A more accurate procedure for replicating the implant 

position in the FE models would probably improve the results considerably.  

The choice of surface parameters is often based on pragmatic considerations to get 

stable simulations with good convergence. A wide range of normal stiffnesses and 

frictional factors used to describe the contact surfaces can therefore be found in 

literature (Bernakiewicz and Viceconti, 2002). Viceconti et al. (2000) found a frictional 

factor of 0.3 to produce the best results when initial contact pressure due to press fitting 

of the stem was included in the FE model. Initial contact pressure plays an important 

role for the interfacial micromotion between bone and implant, and it may also affect 

stress shielding if the contact pressure alters load transfer to the bone (Jasty et al., 

1994). However, the degree of contact pressure and interference penetration achieved 

during implantation is difficult to determine as it will vary considerably with the size of 

the implant, size and quality of the femur, and the force used during implantation. The 

level of pre-stress achieved through press-fitting is also known to decrease with time 

due to viscoelastic relaxation (Norman et al., 2006). In our models this contact pressure 

was therefore ignored and a frictional factor of 0.4 used for the interface (Viceconti et 

al., 2000).

Various biomechanical studies have used FE models to study the stress- and strain-

pattern in femurs implanted with a prosthesis (Rohlmann et al., 1983; Rubin et al., 

1993; McNamara et al., 1997; Stolk et al., 2002a; Viceconti et al., 2001). Validation has 

largely been limited to subject specific FE models of intact femurs or implant-bone 

assemblies using composite femur replicas (McNamara et al., 1997; Viceconti et al., 

2001; Stolk et al., 2002a; Completo et al., 2007). This study has shown that subject 

specific FE models successfully describe the overall stress shielding effect of the 

prosthesis, and manage to predict the differences in stress shielding pattern measured in 

vitro in the various femurs. The predictions of stress shielding were poor for some of 

the smallest femurs, but the results are still quite encouraging. Resolving the 

uncertainties regarding stem positioning and employing a proper anisotropic material 
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model for bone would probably improve the predictive strength of the FE models 

considerably. Subject specific FE models may be used in the development of new 

prostheses; either for customized implants, allowing preclinical evaluation of the 

prosthesis using the femoral geometry of the patient, or for standard implants, allowing 

preclinical evaluation in a wide range of femoral geometries. FE models will not replace 

in vitro testing of prosthetic design altogether, but may help eliminate unfortunate 

design features at an earlier stage and thus prove to be a valuable supplement. 
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4.5  Subject specific finite element analysis of implant stability 

for a cementless femoral stem7

Abstract
Background: The primary stability of a cementless implant is crucial to ensure long 

term stability through osseointegration. In the present study we have examined how 

subject specific finite element models can be used to evaluate the stability of a 

cementless femoral stem.  

Methods: Micromotion on the bone-implant interface of a cementless stem was 

measured experimentally in six human cadaver femurs. Subject specific finite element 

models were built from computed tomography of the same femurs, and used to simulate 

the same load scenario used experimentally. 

Findings: Both experimental measurements and numerical analyses showed a tendency 

of increased rotational stability for bigger implants. Good correlation was found 

between measurements and calculated values of axial rotation (R2=0.74, p<0.001). The 

finite element models produced interface micromotion of the same magnitude as 

measured experimentally, with micromotion generally below 40 m. Bigger femoral 

stems were found to decrease the micromotion in the experimental measurements. This 

tendency could not be recognised in the interface micromotion from the finite element 

models.

Interpretation: The finite element models showed limited success in predicting 

interfacial micromotion, but reproduced a similar pattern of rotational stability for the 

implants as seen experimentally. Since rotation in retroversion is often the main concern 

when studying implant stability, subject specific finite element models could be 

employed for pre-clinical evaluation of implants.  

4.5.1  Introduction 
The modern procedure of total hip replacement (THR) was pioneered in the 1960s by 

orthopaedic surgeon Sir John Charnley. Charnley introduced the low friction hip 

                                                
7 Pettersen, S. H., Wik, T. S., Skallerud, B., (2009). Subject specific finite element analysis of implant 
stability for a cementless femoral stem. accepted in Clin.Biomech. 
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implant with a femoral stem cemented into the medullary canal. The survival rate of 

cemented THR is around 90% after a 15 year period, and bone cement still remains the 

most common form of fixating the femoral and acetabular components (The Norwegian 

Arthroplasty Register, 2008). Bone cement does however show a tendency of gradual 

debonding over the years (Jasty et al., 1991), which may result in cement debris in the 

joint and loosening of the implant. The debris causes increased wear between the 

femoral head and acetabular component and induces osteolysis around the prosthesis 

(Jacobs et al., 2001). Cementless implants were introduced to eliminate these problems. 

Instead of using bone cement, they are fixated by bone growing into porous coated areas 

on the implant, socalled osseointegration.

The primary stability of a cementless implant is vital for osseointegration to occur. 

Interface micromotion around 40 m has been shown to give partial ingrowth, while 

micromotion exceeding 150 m inhibits bone ingrowth completely (Pilliar et al., 1986; 

Jasty et al., 1997). The primary stability of the stem is therefore one of the crucial 

features to study in a preclinical evaluation of a new prosthetic design. Although human 

cadaver femurs are regularly used for preclinical evaluations of implants, the use of 

human test specimen raises both ethical and practical concerns. Composite femur 

replicas have been used in numerous studies evaluating prosthetic designs and 

implantation techniques (McNamara et al., 1997; Viceconti et al., 2001; Sangiorgio et 

al., 2004; Park et al., 2008). The replicas simplify mechanical testing, but the 

interindividual variation seen in patients is lost. Finite element (FE) models have been 

employed in studies of the contact surface of both cemented (Verdonschot and Huiskes, 

1996; Ramaniraka et al., 2000; Stolk et al., 2002a) and uncemented prosthesis (Rubin et 

al., 1993; Viceconti et al., 2000; Bernakiewicz and Viceconti, 2002; Sakai et al., 2006; 

2008; Abdul-Kadir et al., 2008; Reggiani et al., 2007; 2008). These computational 

models enable us to study regions not accessible for experimental measurements and to 

easily isolate parameters and study their influence. Various FE studies have found 

different parameters to affect implant stability; varying joint and muscle forces 

(Pancanti et al., 2003), bone quality (Wong et al., 2005) and bone size (Viceconti et al., 

2006). These studies have relied solely on FE analyses, modifying a FE model to 

simulate different material properties, load and boundary conditions. By combining 
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computed tomography (CT) with the FE method, it is possible to build numerical 

models that incorporate both the geometry and material properties of individual femurs. 

These socalled subject specific FE models can be used to compare different implant 

geometries in one particular femoral geometry, and also analyse one particular implant 

geometry in a wider range of femoral geometries.  

The purpose of the present study is to validate subject specific FE models simulating the 

stability of a cementless femoral stem. The results from FE analyses will be compared 

with experimental measurements on the same femurs. 

4.5.2  Material and Methods 

Human femurs were collected from six individuals, 3 males and 3 females aged 49-74 

years (average 61 years). They are identified herein by lab code numbers and L for left 

and R for right. The study was approved by the regional medical research ethics 

committee. The femurs were examined by dual energy x-ray absorptiometry (DEXA) 

and plain radiography and excluded if signs of osteoporosis or other skeletal pathologies 

were found. Results from DEXA measurements of the individual femurs are shown 

table 4.3. The femurs were CT scanned (Siemens Somatom Sensation 64, Erlangen, 

Germany) at 140 kV, 300 mAs and B50f reconstruction kernel with a pixel spacing of 

approximately 0.35 mm, 0.75 mm slice thickness and 0.7 mm slice distance. Bags of 

water were placed around the femurs during CT scanning to reduce beam hardening. A 

calibration phantom consisting of different mixtures of calcium carbonate and PMMA 

was used to convert the Hounsfield Units (HU) of the CT scans to equivalents of bone 

mineral density8.

Table 4.3: Physical characteristics of the femurs used in the study.

Femur Age Gender DEXA Intertrochanteric region Implant size 
   BMD [g/cm2] Area [cm2]
01R 60 M 1.034 28.86 8 
03L 61 F 1.020 20.78 5 
08L 49 M 0.991 29.40 4 
13L 74 M 1.254 31.13 4 
18R 59 F 1.078 24.42 6 
19R 65 F 0.967 23.79 5 

                                                
8 See Chapter 2: Relating CT gray-scale values to bone density.
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The femurs were stored at -20°C, thawed at room temperature and prepared for testing 

as decribed by Aamodt et al. (2001). The condyles were resected and the femur 

cemented into a steel cylinder 25 cm distally of the upper tip of the greater trochanter. 

The femurs were implanted with a straight cementless prosthesis (DePuy Summit™, 

Leeds, UK) by an experienced orthopaedic surgeon.  

A load jig was used to simulate joint loads and muscle forces in the experimental 

measurement (Aamodt et al., 2002). The femurs were tilted 12° in valgus and 

constrained distally, allowing rotation about the proximal-distal axis. The load jig 

consisted of a lever arm acting as the pelvis with an acetabular cup transferring load to 

the femoral head, and a strap attached to the greater trochanter acting as abductor 

muscles. The position of the trochanter strap was adjusted so that it acted at an angle of 

15° with the vertical axis.  

 Loads were applied in three steps using a material testing machine (MTS 858 

Minibionix II, Eden Prairie, USA). A vertical load of 600N was applied to the end of 

the lever arm simulating single leg stance. This was followed by an additional torque of 

13.5 Nm applied to the femur distally to simulate stair climbing. Finally, the femur was 

unloaded to 0 Nm torque and 20 N vertical load. This load setup gives a joint contact 

force of 308% relative to vertical load. Telemetric load measurements from hip 

prosthesis have reported joint loads of approximately 250% relative to the body weight 

(BW) during slow walking and single leg stance (Bergmann et al., 1993; 2001), and a 

peak implant torsional moment of 2.24 % BW·m during stairclimbing (Bergmann et al., 

2001).  A vertical load of 600 N in our load jig thus represents a BW of 74 kg, and the 

torsional moment 1.82% BW·m. 
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Figure 4.19: The fixture used to capture the motion of the implant. The yoke with LVDTs is attached to 
the shoulder of the implant (white) and measures the motion of the ring attached to the femur (gray). The 
ring and LVDTs can be repositioned to measure the relative movement between implant and bone at 
different levels of the stem.

Micromotion measurements 
The measurements were performed using a specially designed fixture to capture the 

micromotion of the femoral stem relative to the bone (figure 4.19). A yoke with 

displacement transducers (LVDT) (WA10 and W1T3, accuracy < 1 m, HBM GmbH, 

Darmstadt, Germany) was attached to a threaded hole on the shoulder of the prosthesis, 

and a slot in the hole restricted any twisting between the prosthesis and yoke (figure 

4.20, right). A ring with three hemispherical ceramic ball probes was attached to the 

outside of the femur using a positioning guide to ensure that the ring and yoke were 

coaxial. The yoke was adjustable to enable measurement at any level along the stem. 

Measurements were performed at two levels; 15 mm below the proximal coating 

boundary and 5 mm above the distal coating boundary (figure 4.20, left).
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Figure 4.20: The Summit cementless prosthesis. Measurements were performed at two levels in the 
coating area; 15 mm below the upper coating boundary, and 5 mm above the lower coating boundary. 
Micromotion was calculated for three points on the implant surface for each level; anterior side (PA),
lateral side (PB) and posterior side (PC).

The measuring method presumes that the implant can be considered as a rigid body 

compared to the bone. In a prestudy the deformation between the shoulder and the distal 

tip of a femoral stem was measured by drilling holes through the cortical wall and 

attaching the ring directly on the distal tip. The stem deformation was measured to be 

0.7 m over the whole length of the stem, which supports the assumption of the 

prosthesis being rigid in comparison to the surrounding bone. The ring follows the 

deformation of the femur, and the complete femur is not considered rigid. However, the 

cross section of bone at the level where micromotion is measured is assumed to move 

like a rigid body. The movement of the ring relative to the implant-yoke assembly was 
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measured with LVDTs in two directions on each ball probe (fig.1, right), which gives a 

total of six measured displacements. Since a rigid body has six degrees of freedom, the 

spatial displacement vector of each ball probe can be calculated. The distance from the 

axis of the yoke and out to the points PA, PB and PC (figure 4.20, right) on the implant 

surface was measured with a slide calliper at the proximal and distal level. Using the 

distance between the ball probes and their spatial displacement vectors, we can 

determine the relative movement between the bone and implant at PA, PB and PC by 

interpolation. Calculation of interface micromotion, relative translation and rotation 

from the experimental measurements is given in the supplementary material9.

The operated femurs used in the present study had undergone approximately 50 load 

cycles as part of a separate study (Pettersen et al., 2009) prior to the micromotion 

measurement. The implants were therefore assumed to have settled firmly into the 

femurs. Five load cycles were run at each measurement level in our study: one 

preconditioning cycle, followed by four data collection cycles. The average values from 

the four data collection cycles were used in the study. 

Finite Element Models 
FE models of each femur were created from inner and outer contours of cortical bone 

extracted from CT scans. The 3D models were constructed and meshed using regular 

CAD software (SolidWorks 2005, CosmosWorks 2005). Cortical and cancellous bone 

was modelled as separate sections, and the medullary canal below the lesser trochanter 

as empty. The FE models were prepared for analysis and exported to 

ABAQUS/Standard 6.7 (Simulia, Providence, USA) using scripts written in MATLAB 

7.1 (The Mathworks, Natick, USA). Second order tetrahedral elements (C3D10M) with 

a global element size of 3 mm were used for the FE models. Material properties were 

mapped to the FE model using the CT attenuation values of the pixels inside each 

element (Zannoni et al., 1998) and the density-stiffness relationship of Verhulp et al. 

(2006).
2.233900 minE  [MPa], for 0.27min [g/cm3] (4.18) 

                                                
9 See Appendix IV: Calculating experimental micromotion, translation and rotation.
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 11164 1112minE  [MPa], for 0.27 0.60min [g/cm3] (4.19) 

2.0115597 minE  [MPa], for 0.60min [g/cm3] (4.20) 

The density-stiffness relationship was found to give good predictions of cortical strain 

in a previous study (Pettersen et al., 2009). Beam and connector elements were used to 

simulate the load jig and the boundary conditions of the femur (figure 4.21, left). A 

slipring element was used between points C and F and material flow constrained in both 

points. The slipring element thus behaved like a truss element and simulated the 

behaviour of the trochanter-band. A join connector was used between B and E, allowing 

the model to rotate freely in point E. By combining a join and revolute element between 

G and H, the distal femur was allowed to rotate about the femoral axis. The vertical load 

was applied in point A and torque in point H.

3D models of the cementless Summit prostheses were supplied by the manufacturer 

(dePuy, Leeds, UK). The ribbed surface of the coating area was modelled as smooth in 

the FE models to simplify contact analysis. The stem was positioned in the cancellous 

bone and medullary canal so that penetration into cortical bone was minimal. The neck 

resection and orientation of the visible parts of the implant were reconstructed from 

post-operative photographs of the femurs. The distal tip of the stem was expected to 

come in contact with the endosteum laterally during loading, and was positioned with 

initial contact in this region. Implant positioning in the FE models was checked against 

radiographs of the operated femurs. The interface was modelled using the augmented 

Lagrange contact algorithm with finite sliding face-to-face contact elements, with the 

prosthesis as master surface and the femoral cavity as slave. The coefficient of friction 

was set to 0.4 and normal stiffness to 1200 N/mm. The relative penetration tolerance of 

the surfaces was set to 0.2%, except for 08L where the tolerance was set to 0.3% due to 

convergence problems. The FE models had an average interface element length of 2 

mm, giving a maximum residual penetration of 4 m (6 m for 08L). The finished FE 

models had 419,897 (03L) to 597,934 (01R) degrees of freedom (54,126 and 83,058 

elements). 
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Figure 4.21: The complete FE model with femur and load jig (left). The beam elements are shown as 
gray, solid lines and the connector elements as dashed lines. The node sets of the proximal and distal 
interface levels are shown right. The displacement results of the node sets were transformed from the 
global coordinate system of the load jig (X, Z) to the coordinate system of the femur (X, Z).

Interface micromotion was calculated between the nodes on the implant and the 

corresponding nodes on the femoral cavity (figure 4.21, right). The FE results were 

compared with experimental measurements of micromotion on the anterior, lateral and 

posterior side of the implant both proximally and distally. In addition, the movement of 

the implant relative to the bone interface was decomposed into translations and 
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rotations. In our study we have focused on the rotation (retroversion) and translation 

(proximal-distal) along the longitudinal axis of the implant (Z-axis). Calculation of 

translations and rotations from the FE analyses is explained in the supplementary 

material10.

Two load cycles were simulated for the remaining femurs; one load cycle to pre-stress 

the bone, and a second load cycle for data collection. Interface micromotion and axial 

translation ( Tz) was calculated from the unloaded step (step 3) to stairclimbing (step 

5). Axial rotation ( z) during torsional loading was calculated from single leg stance 

(step 4) to stairclimbing (step 5). Five load cycles (15 load steps) were simulated for 

femur 19R to investigate the movement of the prosthesis over several load cycles. 

Figure 4.22: FE results showing the relative axial rotation and translation for 19R through 15 load steps 
(5 cycles). A large irreversible translation of the implant can be seen in the first load cycle. 
                                                
10 See Appendix V: Decomposition of FE node displacements into translation and rotation.
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4.5.3  Results 

In the FE analyses a considerable degree of axial implant migration was observed in the 

first load cycle (figure 4.22). The axial translation for the different FE models was 45-

120 m in the first load cycle (initial to step 2), but was reduced to 14-32 m in the 

second load cycle (step 3 to step 5). Even though the prosthesis in femur 19R continued 

to migrate downwards for several cycles, the migration was most severe in the pre-

stressing cycle. The axial rotation during torsional load is also larger in the pre-stressing 

cycle, but is largely stable in the cycles afterwards. 
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Figure 4.23: Interface micromotion around the proximal and distal levels of the implants. Micromotion 
was calculated from unloaded state (20N) to stairclimbing. Experimental values are the mean values from 
the four datacollection cycles. FE values were calculated from the load step 3 to 5. 

Experimental and FE interface micromotion of the implants is shown in figure 4.23. The 

FE analyses produced results of the same magnitude as those measured experimentally, 

with micromotion between 20 and 40 m on both the proximal and distal level. 

However, the micromotion pattern predicted by the FE analyses in the individual femurs 

differed considerably from the pattern observed experimentally. The experimental 

measurements gave the largest magnitude of micromotion for femur 13L; with a 
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maximum proximally of 42 m on the anterior side, and a maximum distally of 76 m

on the posterior side. However, in the FE analyses this femur showed the smallest 

degree of micromotion; with micromotion below 20 m for large portions of the 

proximal and distal levels. The smallest measurements of micromotion were found for 

femur 01R; with a maximum distally of 12 m on the posterior side and the rest of the 

measurements below 10 m. In the FE analyses, this femur had micromotion between 

20 and 40 m both proximally and distally. The FE analyses gave the highest magnitude 

of micromotion for femur 19R; with micromotion largely around 40 m on both the 

proximal and distal level. 

Figure 4.24: Stability of the implants versus implant size. Big femoral stems improve rotational stability 
between implant and bone. Stem size has no apparent effect on the axial translation. 

The correlation between experimental and FE results was good for axial rotation 

(R2=0.74, p<0.001). Figure 4.24 shows a higher degree of rotational stability for bigger 

implants. The axial rotation is also considerably lower on the proximal level. These two 

tendencies are reflected in both the experimental measurements and the FE results. For 

axial translation the correlation between experimental and FE results was poor 
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(R2=0.05, p=0.51). The FE analyses generally predicted higher axial translation than 

found experimentally. The measurements on femur 13L show that the implant is 

moving slightly upwards at the proximal level. In the FE analyses, all axial translations 

of the implants were directed downwards.  

4.5.4  Discussion 

Initial implant stability has been shown to be critical for the long term stability of 

cementless prostheses (Pilliar et al., 1986; Jasty et al., 1997). The purpose of the present 

study was to validate subject specific FE models used for simulating the relative 

movement between a cementless femoral stem and bone. The results from the FE 

analyses were compared with experimental measurements on the same femurs.  

Verdonschot and Huiskes (1996) found that when including friction on the bone-cement 

interface, relative interface motion was considerably larger in the first load cycle than in 

the cycles following afterwards. The same was observed in our FE analyses (figure 

4.22). When the implant is unloaded after the first load cycle, only a part of the axial 

translation is recovered, and the implant remains wedged into the bone cavity. The 

wedging of the implant generates a pre-stress in the bone holding the implant in place. 

The same method of including bone pre-stress in the FE models has been used in 

previous studies (Viceconti et al., 2000; Goetzen et al., 2005). The results from the first 

load cycle were therefore excluded from the study, and only the results from the second 

cycle compared to the experimental measurements. Only one femur was simulated for 

five cycles due to the considerable computation time demanded by the analyses.  

The FE analyses predicted interfacial micromotion of the same magnitudes as measured 

experimentally, but failed to show the same patterns. The experimental measurements 

gave micromotion below 40 m for all femurs except 13L. In the FE analyses 

micromotion generally varied between 20 and 40 m. Both the predicted and measured 

micromotion are in the area were a prosthesis would be assumed sufficiently stable. 

Westphal et al. (2006) reported a cyclic total translation around 400 m for the Summit 

prosthesis in vitro. However, their experimental setup differs considerably from ours 

and the results are therefore not directly comparable. Femur 13L showed the highest 
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degree of micromotion in the measurements, with micromotion exceeding 40 m, but 

had the lowest degree of micromotion in the FE analyses. Conversely, femur 01R which 

had the lowest micromotion in the measurements, showed a fairly high degree of 

micromotion in the FE analyses. The total interface micromotion is the resultant of 

relative movement in all three spatial directions on the contact surface. In order to better 

analyse the results, movement was decomposed into translations and rotations. The 

rotational stability is usually the main concern when testing the primary stability of 

implants (Sugiyama et al., 1992; Baleani et al., 2000; Viceconti et al., 2001; Ries et al., 

2003; Meneghini et al., 2006; Reggiani et al., 2007; Sakai et al., 2008). In our study we 

have concentrated on two main implant movements: translation and rotation along the 

stem axis. Good correlation was found between FE analysis and experimental 

measurements for the axial rotation, but not for axial translation. The measurements 

showed that the implant seemed to be moving upwards for femur 13L on the proximal 

level despite being subjected to a load downwards. Similar behaviour was reported for 

some of the measurements of Kassi et al. (2005), who suspected it to be caused by the 

implant tilting on the calcar. Even though the axial rotation for femur 13L is relatively 

high in the FE analysis, it still has the lowest magnitude of interface micromotion. This 

is due to the short radial distance from stem axis to the contact surface, which gives 

smaller interface micromotion for small stems even though axial rotation is large. The 

opposite applies to femur 01R with the biggest stem size, which produces fairly large 

interface micromotion in the FE analysis despite low axial rotation. 

In order to calculate the spatial micromotion of the three points PA, PB and PC, we 

assume the cross-section of bone at the measuring level moves like a rigid body. This 

implies that any deformation across the cortical wall is disregarded and that the 

movement of the measuring points are mutually dependent, i.e. that the y-translations 

measured of ball probes A and C to can be used to determine the y-translation of B. 

Monti et al. (1999) found the shear deformation across the wall to give an 

overestimation of micromotion of 2-4 m. Usually, micromotion is measured directly 

with extensometers and LVDTs (Baleani et al., 2000; Kassi et al., 2005; Britton et al., 

2004) or optoelectronic measuring devices (Buhler et al., 1997a; 1997b; Speirs et al., 

2000; Nogler et al., 2004) through holes drilled through the cortical wall. As the holes 
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introduce a mechanical weakening of the bone, measurements can only be obtained at a 

few points along the stem (Buhler et al., 1997a). The measuring method used in the 

present study does not give a direct measurement of the interface micromotion, but 

instead uses the movement of the ceramic ball probes A, B and C to make an 

assessment of the micromotion. The main advantage is that it leaves the cortical wall 

intact, enabling repeated measurements at several levels along the stem. Also, since 

micromotion is assessed at three points at each measuring level, we can analyse the 

relative motion between stem and bone by decomposing it into translations and 

rotations. 

To our knowledge, only three articles have reported micromotion predictions with 

subject specific FE models of human cadaver femora and validation against in vitro 

measurements; Reggiani et al. (2007; 2008) simulating the stability of an implant under 

torsional load, and Abdul-Kadir et al. (2008) under axial compression. In our study, we 

have used loads that resemble the joint and muscle forces during single leg stance and 

stairclimbing and increased the number of femurs in the study. Two parametric studies 

have reported on different variables affecting implant micromotion using FE models 

(Wong et al., 2005; Viceconti et al., 2006). Wong et al. (2005) found good bone quality 

to improve implant stability. Femur 13L had the highest intertrochanteric BMD of 1.25 

g/cm2 (table 4.3), but was still the least stable in the experimental measurements. 

Intertrochanteric BMD was generally around 1.0 g/cm2 for the remaining femurs. Due 

to the small range in BMD and small sample size of femurs, it was not possible to 

conclude on the effect of bone quality on implant stability in the present study. 

Viceconti et al. (2006) identified femoral size as the most important parameter followed 

by body weight and bone quality. Viceconti et al. (2006) scaled the size of the FE model 

and found smaller bones with a consequently smaller prosthesis to produce higher 

implant micromotion. This seems reasonable since smaller sized stems also have a 

smaller contact surface. Our results showed a tendency of reduced rotational stability 

for smaller stems. However, contrary to the assumptions of Viceconti et al. (2006), the 

smallest stems in our study were found in the two biggest femurs (08L and 13L) with 

the largest intertrochanteric area (table 4.3) and were both from male donors. CT scans 

showed female femurs to have relatively wide medullary canals compared to male 
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femurs despite their smaller external size. These geometrical differences between male 

and female femurs are quite typical (Dorr et al., 1993).

The proximal part of the Summit stem is porous coated on a ribbed substrate (radial 

ZTT™ structure) which is intended to provide better stability. The femoral cavity 

reamed through the cancellous bone is also quite rough and does not always match the 

shape of the prosthesis, creating interface gaps at some locations. Additionally, the 

implant is hammered in place until the orthopaedic surgeon finds it sufficiently stable, 

thus building up an initial surface pressure on the interface. All these factors affect the 

properties of the bone-implant interface. The normal displacement of the contact 

surfaces achieved during insertion of the implant is usually referred to as press fit or 

interference fit. Even though the interference fit can be quite considerable, its effect on 

bone pre-stress is known to reduce over time due to viscoelastic relaxation (Norman et 

al., 2006). Abdul-Kadir et al. (2008) estimated an interference fit of 50-100 m to be 

realistic for press-fitted stems in a clinical situation, but found a simulated interference 

fit of 1-2 m in the FE analyses to better reproduce the micromotion measured 

experimentally. Another complicating factor is nonlinearity of the interface friction 

coefficient (Shirazi-Adl et al., 1993). Thus, the stability of the femoral stem in the 

clinical and experimental scenario is affected by several factors that are difficult, if not 

impossible, to quantify. In our analyses, these factors were simplified to achieve 

convergence and reduce the computation time: the coating area was modelled as 

smooth, the coefficient of friction kept constant, and the same surface conditions used 

for the whole contact area. Thus, our FE models do not consider the contribution of the 

surface texture in providing stability for the implant, but only the geometrical shape of 

the stem. Interference fit from the implantation was ignored in the FE analyses. 

However, bone pre-stressing from the implant being wedged into the femur during 

loading was included in the FE simulations by using the first load cycle for pre-

stressing. Reggiani et al. (2008) found the difference in micromotion between FE 

analyses of "planned" and "actual" stem position to be 13%. The error due to inaccurate 

stem positioning in our FE models is probably of similar magnitude. All these factors 

affect the micromotion results of the FE models. Given the complexity of the contact 

problems and the simplifications made to the FE models, it seems unreasonable to 
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expect an accurate match between micromotion measured experimentally and numerical 

FE models. However, we found that the subject specific FE models manage to 

reproduce the pattern of axial rotation observed between the different stems in vitro.  

Stairclimbing is associated with torsional loads forcing the femoral head in retroversion, 

and has been found to be the most critical load case for the stability of femoral stems 

(Stolk et al., 2002b; Kassi et al., 2005). In the present study we have demonstrated that 

subject specific FE models could be used to assess rotational stability of a cementless 

femoral stem. Osseointegration depends on the magnitude of interface micromotion, 

and not rotations or translations. However, when evaluating different stem geometries it 

is useful to know if excessive micromotion is due to poor stability with respect to axial 

translation or to rotations in retroversion and varus-valgus. The designer can then adjust 

the stem geometry accordingly and improve its micromotion properties. The subject 

specific FE models used in the present study have also shown to be able to predict the 

changes in cortical strain after implantation (Pettersen et al., 2009). FE models as 

described in the present study could thus be used for a full evaluation of both the stress 

shielding effect and rotational stability of a femoral stem, and be a useful tool in the 

preclinical testing of new prosthetic designs. 
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Appendix I: Implant positioning – radiographs versus 
CAD models 

Femur 01R: 

Femur 02L: 
The greater trochanter on femur 02L fractured before micromotion measurement. The 
femur is therefore not included in the study of implant stability, but only in the study 
of femoral stress shielding. 
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Femur 03L: 

Femur 08L: 
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Femur 18R: 

Femur 19R: 
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Appendix II: Post-processing FE and experimental 
strain

In the FE analyses, strain results of the elements associated with the strain gauges 

were extrapolated from the integration points to the nodes on the outer cortical 

surface. Strain from FE analyses is expressed according to the specified coordinate 

system of the elements, and does not necessarily coincide with the surface orientation 

of the strain gauges. In our case, the strain from the FE analyses was given according 

to the global coordinate system and had to be post-processed to coincide with the 

local coordinate system of each strain gauge.  

The surface normal at each strain gauge location in the FE model was estimated from 

the coordinates of the strain gauge nodes. A right-hand coordinate system was 

defined; with the z-direction along the normal vector, y-direction in the axial and x-

direction in the transverse direction of the femur (see figure A.1). By transforming the 

strain tensor expressed from the global to the local coordinate systems of the strain 

gauges it was possible to eliminate all strain components normal to the outer surface. 

Thus, the remaining 2x2 strain tensor expresses the surface strain of the strain gauge. 

, ,

1 1
2 2| | |
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2 2

| | | 1 1
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Having transformed the strain of the FE analyses to the local coordinate system of the 

strain gauges, one can calculate the principal surface strains of the FE analyses.  

2 2
1

2 2 2 2
x y x y xy  (A.3) 
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Figure A.1: The local coordinate systems (CS) of the strain gauges A1, B1 and C1 shown together 
with the global coordinate system of the model. 

The experimental measurements of femoral strain were performed using 45°-90° 

strain rosettes. Thus, the principal surface strains of the strain rosettes can be 

calculated directly from the measurements:  

1 2 2

2

1
2 2

a c
a c b b a c  (A.4) 

It is now possible to compare the strain results of the FE analyses with the 

experimental strain gauge measurements.
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Appendix III: Stress shielding during single leg stance 
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Appendix IV: Calculating experimental micromotion, 
translation and rotation 

The fixture used to assess the stability of the stem relative to the bone, measures the 

displacement of ball probes A and C in the y- and z-direction, and of ball probe B in 

the x- and z-direction. The displacement vectors of the ball probes will be denoted as 

dA, dB and dC. The distance between the ring center and the ball probes is L/2. The 

coordinate system of the measuring equipment (figure 4.19) is defined differently 

from the coordinate system of the FE models (figure 4.21). We will therefore denote 

the translation derived from the experimental measurements by a superscript bar ( T )

to distinguish it from the translation according to the coordinate system of the FE 

models (T):

1
2

1
2
1
2

x y y

x

y y y

z

z z

dB dC dA
T
T dA dC
T

dA dC

T  (A.5) 

The missing displacement components (dAx, dBy and dCx) must be calculated in order 

to calculate the micromotion on the implant surface and the rotational angles of the 

implant: 

2 221
2x x y y z zdA T L L dC dA dC dA  (A.6) 

2 221
2x x y y z zdC T L L dC dA dC dA  (A.7) 

2 221
2y y y y z zdB T L L dC dA dC dA  (A.8) 

The distances from the stem axis and out to the points PA, PB and PC on the stem 

surface (figure 4.20) are measured at the distal and proximal measuring levels with a 

slide calliper. The setup used in the present study, measures the relative motion 

between the ring attached to outer cortical bone and yoke attached to the shoulder of 

the implant. The micromotion vector (mA, mB and mC) on the implant surface can be 
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determined by interpolation using the translation T at the center of the ring, the spatial 

displacements (dA, dB and dC) at the ball probes, and the distances PA, PB and PC:

2 2A A
A

L P Pd
L L

m T A  (A.9) 

2 2B B
B

L P Pd
L L

m T B  (A.10) 

2 2C C
C

L P Pd
L L

m T C  (A.11) 

The magnitude of micromotion, as shown in figure 4.23, is the length of the spatial 

micromotion vectors ( m) between unloaded state (step = 3, 6, 9 and 12) and 

stairclimbing (step = 5, 8, 11, 14): 

2 2 2

, , 2 , , 2 , , 2
1
4A Ax step i Ax step i Ay step i Ay step i Az step i Az step i

step i
m m m m m m m

  for i = 5, 8, 11 and 14       

 (A.12) 

Equation (A.12) shows the calculation of micromotion ( mA) between implant and 

bone in PA. The same calculation was performed for mB  and mC .

Small rotational angles are assumed in order to simplify the calculation of the relative 

rotations between stem and bone: 

180 1 2Z Z ZdA dC dB
L

 (A.13) 

180 1
Z ZdA dC

L
 (A.14) 

180 1
Y YdC dA

L
 (A.15) 

The angles ,  and  are the rotational angles about the x-, y- and z-axis as defined by 

the coordinate system of the measuring equipment. The translations and rotational 

angles are then sorted according to the coordinate system of the FE model. 

x y

y x

z z

T T
T T
T T

T  (A.16) 
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z

 (A.17) 

Axial translation ( Tz) as was calculated between unloaded state (step = 3, 6, 9 and 

12) and stairclimbing (step = 5, 8, 11 and 14), while axial rotation ( z) during 

torsional load was calculated between single leg stance (step = 4, 7, 10 and 13) and 

stairclimbing (step = 5, 8, 11 and 14): 

, , 2
1
4z z i z i

step i
T T T , for i = 5, 8, 11, and 14 (A.18) 

, , 1
1
4z z i z i

step i
, for i = 5, 8, 11, and 14 (A.19) 
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Appendix V: Decomposition of FE node displacements 
into translation and rotation 

The coordinates (X) and displacements (u) of the node sets on the implant-bone 

interface are used to decompose the relative movement between the two into 

translation (T) and rotation (Q). The procedure requires that the coordinate centers of 

the node sets coincide at each level. In the FE models used in the present study, the 

mesh on the cavity surface matched the mesh on the implant. The coordinate center of 

the cavity nodes was therefore perfectly coincident with the center of the implant 

nodes. X and u are 3 by m matrices, where m is the number of nodes in the particular 

node set. Since the femur is tilted 12° in valgus in the FE model, the coordinate 

system must be rotated 12° about the y-axis to upright position so that z-axis aligns 

with the axial direction of the implant (figure 4.21): 

0 0

cos(12 ) 0 sin(12 )
0 1 0

sin(12 ) 0 cos(12 )

NS NS
step stepX X  (A.20) 

cos(12 ) 0 sin(12 )
0 1 0

sin(12 ) 0 cos(12 )

NS NS
step i step iu u  (A.21) 

The superscript NS refers to the label of the node sets (for example cavity nodes on 

the proximal level, or implant nodes on the distal level), and the subscript step refers 

to the load step of the analysis (step = 0 refers to the initial node coordinates of the FE 

model). The relative translation between the implant and cavity can be calculated 

directly from their displacements: 

( ) ( )
x

Implant Cavity
step i y step i step i

z step i

T
T mean mean
T

T u u  (A.22) 

The axial translation (Tz), as plotted in figure 4.22, is the z-component of T in 

equation (A.22). The axial translation ( Tz), as plotted in figure 4.24, is calculated 

from the unloaded step to stairclimbing (step 3 and step 5): 
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5 3

x

step step y

z

T
T
T

T T T  (A.23) 

In order to calculate the rotational angles of the implant relative to the cavity surface, 

the rotational matrix (Q) of each node set must be determined for every load step. 

First, the displaced node coordinates at each load step are calculated: 

0
NS NS NS
step i step step iX X u  (A.24) 

The displaced node coordinates are then expressed relative to their midpoint: 

( )NS NS NS
step i step i step imeanX X X  (A.25) 

The rotational matrix between the initial and displaced node coordinates is determined 

using the mrdivide function in MATLAB 7.1: 

0( , )NS NS NS
step i step i stepmrdivideQ X X  (A.26) 

Since the mrdivide function gives a numerical approximation of the rotational matrix 

(Q), the matrix will not be perfectly orthogonal. The matrix is therefore adjusted to 

make it orthogonal and with a determinant equal to one. 

(1,:) (2,:) (3,:)NS NS NS
step i step i step iQ Q Q  (A.27) 

(2,:) (3,:) (1,:)NS NS NS
step i step i step iQ Q Q  (A.28) 

(3,:) (1,:) (2,:)NS NS NS
step i step i step iQ Q Q  (A.29) 

for j = 1:3 

( ,:) ( ,:) ( ,:)NS NS NS
step i step i step ij j jQ Q Q  (A.30) 

end

We define the rotational matrix as the product of three sequential rotations; about the 

z-, y- and x-axis, respectively: 

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

x y z

y y z z

x x z z

x x y y

c s c s
c s s c
s c s c

Q R R R  (A.31) 
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c s c s s c s s s c c c
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where s and c denote the sines and cosines of the rotations about the x-, y-, and z-axis. 

The angles are determined from the rotational matrix Q:

arcsin( (1,3) )NS NS
step i step iQ  (A.33) 

(1,2)
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NS
step iNS

step i NS
step i

Q
 (A.34) 

(2,3)
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NS
step iNS

step i NS
step i

Q
 (A.35) 

The angles ,  and  refer to the rotations about the x-, y- and z-axis, respectively. 

The relative rotation between the implant and the femoral cavity are then calculated: 
Implant Cavity

x

y

zstep i step i step i

 (A.36) 

The axial rotation ( z), as plotted in figure 4.22, is the z-component of  in equation 

(A.36). The axial rotation during torsional load (  z), as plotted in figure 4.23, is 

calculated from single leg stance to stairclimbing (step 4 and step 5): 

5 4

x

step step y

z

 (A.37) 
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