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Abstract

Background and Objectives

Ever since civilizations first started to build, the human race has sought a material
that can bind stones into a solid mass. After the rediscovery of cement in 1824, the
concrete (essentially a mixture of Portland cement, water and aggregates) has become
the most commonly used structural material in modern civilizations. The quality of
the concrete structure is of course dependent on the quality of each constituent that
is used in the concrete mix. However, this is not the only controlling factor. The
quality is also much dependent on the rheological properties of the fresh concrete
during placement into the formwork or mold. Such rheological properties are best
measured with viscometers of various types.

In this work, coaxial cylinders viscometers are used in measuring the rheological
properties of concrete, mortar and cement paste (named ConTec BML Viscome-

ter 3 and ConTec Viscometer 4). These cement based materials are mixed with
various types of plasticizers and superplasticizers (i.e. lignosulfonates). The mech-
anism of (super)plasticizers is to disperse the cement particles and thus prevent or
reduce cement particle coagulation. In this manner they are capable of imparting
considerable physical and economical benefits to the cement based materials in terms
of workability and workability retention, using moderate amounts of cement even for
low w/c mixes.

Experimental Program

Because rheological measurements on concrete requires large resources in terms of
test material, labor and time, the complete laboratory test program of this thesis is
not carried out with concrete. Rather, mortar and cement paste are also included.
This is done in the anticipation that they will simulate the rheological behavior of
concrete. By this approach, it is possible to create a larger and more complicated test
program. [In Section 6.3.2, the relationship between the mortar and concrete results
are discussed].

Three major themes are considered in this thesis, and consequently it is divided
into three parts. The first part concerns how the different lignosulfonate types
changes the rheological properties of the cement based material as a function of tem-
perature and time. This investigation is made with help from the second part of
this thesis, which identifies some of the parameters p1, p2,. . . affecting the shear vis-
cosity η = η(p1, p2, . . . ) of the cement based material. This is done by investigating
the thixotropic behavior of cement paste. An experimental error is present during a
viscometric measurement on concrete. The error is generated by particle migration.
Investigating and compensating for this error constitutes the third part of this the-
sis. For further details about the objectives of each theme, see Section 1.2. The major
results of each part will be given shortly.

Being made of granular particles, it is natural to consider concrete, mortar and
cement paste as different types of suspensions. However, the normal procedure of
generating a shear viscosity function η dependent on the phase volume Φ is not
attempted in this thesis. Rather, the approach is to investigate how the different
lignosulfonate types changes the rheological behavior as a function of temperature
and time, where the phase volume Φ is the same for the compared batches.
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Part One: Effects of Lignosulfonates (Time and Temperature Properties)

Both the fresh concrete and mortar are modeled here as a Bingham fluid, characterized
by the yield value τo and the plastic viscosity µ from a single rheological experiment.
When using lignosulfonates, it is demonstrated that the yield value τo is much more
sensitive to temperature and time, compared to the plastic viscosity µ. Also, the
effect of the different lignosulfonate types is more reflected by the measured yield
value τo, than by the measured plastic viscosity µ; i.e. comparing the effect of two
different polymer types gives usually quite different yield values τo, while the plastic
viscosity µ is roughly the same for the two cases.

In terms of workability and workability retention, the high molecular weight ligno-
sulfonates performs far better than the low molecular weight ones. The former types
also performs considerable better compared to a naphthalene polymer (i.e. sulfonated
naphthalene formaldehyde), which serves as a reference in this work.

Generally, the yield value τo is found to increase with increasing time. Most
often, it is also increasing with increasing temperature. However, there are excep-
tions to this: For mortar samples of ordinary Portland cement (OPC) using high
molecular weight lignosulfonates, there is a clear decrease in yield value τo with in-
creasing temperature. A possible explanation for this, is related to increased swelling
and/or increased adsorption of the polymers to the surface of cement particles (see
Figure 6.30, Page 138). This temperature effect does not occur for the case of fly ash
cement (FAC) with the same lignosulfonate types. The reason for this may possible
be related to that the swelling/adsorption properties of these polymers are overshad-
owed by a too large quantity of water present in the FAC-batches (see Section 6.4.4).
For further details about these results see Section 6.5.3.

Part Two: Thixotropy (Measurements and Numerical Simulations)

To increasing the fundamental knowledge of rheological behavior of the cement based
material, an investigations of thixotropic behavior was made on cement pastes mixed
with either lignosulfonates or naphthalene. The thixotropic behavior is directly re-
lated to coagulation, dispersion and re-coagulation of the cement particles. In making
the analysis, a modification is applied to the Hattori-Izumi theory, which is a theory
about the bookkeeping of the number of reversible coagulated connections between
the cement particles Jt. The modification consist, among other things, of include a
fading memory to the analysis. That is, the cement paste is allowed to remember its
recent past. By a combination of experimental results and numerical simulations, it
is demonstrated that such memory term is very important. Also, two types of yield
values had to be introduced into the simulation, namely τo and τ̃o. The former (τo)
is related to the permanent coagulation state Jpt of the cement particles, while the
latter (τ̃o) is related to the reversible coagulation state Jt (see Figure 2.11, Page 27).
The same type of relationship applies for the plastic viscosity µ and its thixotropic
counterpart µ̃. For further details about these results see Section 9.9.4.

Part Three: Errors of Different Kinds (Particle Migration)

Different types of errors that affect the measured rheological values have been con-
sidered. For the concrete batches of this thesis, the error of particle migration has
been analyzed (Chapter 10). Realizing the nature of this error, some corrections
are applied. However, with these corrections, one is only extracting the viscometric
values of a “fat” concrete that surrounds the inner cylinder of the viscometer after
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the particle migration is basically complete, and not of the concrete in the original
homogenous state. In Section 6.3, a good relationship between the Abrams slump
cone and the viscometer is established (see Figure 6.22, Page 123), indicating that
the “fat” concrete simulates well the behavior of the concrete in a homogeneous state.
For further details about these results see Sections 10.2.3, 10.3.8 and 6.3.

The errors resulting from plug flow (Section 3.5.3) and air entrainment (Sec-
tion 5.5.3) are considered for the mortar measurements. For the given geometry and
angular velocity of viscometer, the error generated from plug flow is demonstrated to
be small when τo/µ ≤ 100 s−1. This condition applies in most cases in this thesis.
When present, air instability (by air entrainment during (re)mixing) is shown to affect
the plastic viscosity µ evolution to some significant degree. However, in such cases
the yield value τo is more or less not affected.
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Chapter 1

Introduction

1.1 Background and Short Review

Short Historical Background of Concrete [16, 86, 88]

Ever since civilizations first started to build, the human race have sought a mate-
rial that bind stones into solid formed mass. The Romans mixed lime (i.e. burned
limestone) with volcanic ash from Mount Vesuvius. This produced structures of re-
markable durability. During the Middle Ages, the art of making hydraulic cement
(cement which hardens when it comes in contact with water) became lost and it
was not until the year of 1824 that the hydraulic cement (now commonly known as
Portland cement) reappeared when it was patented by a Leeds builder named Joseph
Aspdin. The name “Portland cement” is given originally due to the resemblance of
the color and quality of the hardened cement to Portland stone (limestone quarried
in Dorset).

Concrete and Rheology [88, 128]

After the rediscovery of cement, the concrete (essentially a mixture of Portland ce-
ment, water and aggregates) has become the most commonly used structural material
in modern civilizations (see Figure 1.1). The quality of the concrete structure is of
course dependent on the quality of each constituent that is used in the concrete mix.
However, this is not the only controlling factor. The quality is also much depen-
dent on the rheological properties of the fresh concrete during placement into the
formwork. That is, the concrete must be able to flow into all corners of the mold
or formwork to fill it completely. This is a process that might be made more diffi-
cult by the presence of awkward sections or congested reinforcement (see the right
illustration of Figure 1.1). Tragic results often originate from concrete of unsuitable
consistency, hardening into a honeycombed, non-homogenous mass. Therefore, one
of the primary criteria for a good concrete structure is that the fresh concrete has
satisfactory rheological properties during casting. With satisfactory properties, it is
meant that the concrete can be placed into the mold or formwork without excessive
effort, or sometimes without an effort at all. The latter type of concrete is known as
self-compacting concrete. In addition, the concrete batch must always be such that
it does not segregate during and after casting. This is the requirement of “stability”.
Unfortunately, such stability is not always achieved in reality at building sites.

1
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Concrete has become the most commonly used structural material used in modern
civilizations. To the left is a typical concrete structure, while center demonstrates a construction
of oil-platform, made of concrete. To the right: The flow of concrete inside a formwork is often
made more difficult by the presence of congested reinforcement.

Workability, Consistency, Flowability, Mobility and Pumpability

From the above, it is clear that the rheological properties must be well defined prior to
casting. In practice, concrete that can be readily placed into a formwork is referred to
as workable. This is a rather loose description of the rheological behavior of concrete
and can also be very subjective, depending on type of formwork, type of concrete
and the means of compaction available at building site [88]. Terms like workability1,
consistency2, flowability, mobility and pumpability have been used to describe the
rheological behavior of the fresh concrete. These terms are more reflected by personal
viewpoint rather than of scientific precision [88, 128]. An interesting discussion about
the subjectiveness of the term “workability”, is given in a textbook by Tattersall and
Banfill [128]. Other similar terms are also discussed there. The primary problem
is that there is no guarantee that such a particular term means the same thing to
different people. In fact, there has been a disagreement between different workers
about the exact meaning of the term “workability” [87].

Even in ready-mixed plants, it is common for the final decision on water addition
(to increase workability) to be made by the batcher-man on the basis of his own obser-
vation of the concrete behavior in the mixer and/or at discharge [128]. In some plants
he is assisted in this task by the readings of a wattmeter or ammeter connected in the
power supply line to the mixer, and by some empirical knowledge of the relationship
between that reading and a certain slump of the concrete [128].

Rheological Measurements on Concrete

During the course of time, rheometers of different types and quality have been de-
veloped and used, to give some kind of rheological description of the fresh concrete.
One of the most famous, oldest and currently most used empirical test is the so-called
slump test. As is described in Section 4.4.2, it gives only a single value, namely the
slump value S. The test was developed in the USA around 1910 [10]. It is believed
that it was first used by Chapman [22] although in many countries the test apparatus
is associated with Abrams [1, 10]. After this, other different empirical rheological

1One definition of the term “workability” is [ASTM C 125-93]: A property, determining the effort
required to manipulate a freshly mixed quantity of concrete with minimum loss of homogeneity.

2One definition of the term “consistency” is [ASTM E24-58T]: The resistance of a non-Newtonian
material to deformation.

URN:NBN:no-3374



1.1. BACKGROUND AND SHORT REVIEW 3

tests have been developed like the flow/spread table test, which was developed in
Germany in 1933 by Graf [37]. Other rheometers have followed since then, which
have in common that they only provide a single rheological value. For example, the
flow/spread table test gives a “flow diameter”. Tattersall et al. [127, 128, 129] have
criticized such workability tests on the grounds that they measure only one parameter.
It is pointed out [127, 128, 129] that all empirical rheological tests are single-point
tests, i.e. the result is a single number. One of the problem with such a number is
that the same number may be produced by two concretes with quite different rhe-
ological characteristics. It is also mentioned that the empirical tests are very often
operator-sensitive, in the sense that minor variations in the technique of carrying out
the test, gives a different result. In the same literature [127, 128, 129] it is discussed
the need for describing the rheological properties of fresh concrete in terms of funda-
mental physical quantities, not depending on the details of the apparatus with which
they are measured. It is argued [127, 128, 129] that the concrete can, with good
accuracy, be considered as Bingham fluid. In fact, then for the past 25 years, this has
been demonstrated for fresh concrete, mortar and cement paste [28]. However, the
Bingham model is not the only one that can been applied to cement based materi-
als. For example, in [26, 31], it is concluded that fresh concrete corresponds to the
Herschel-Bulkley model, rather than to the Bingham model. Also, Papo [94] gives a
review of some of the models that have been applied to cement pastes. In Chapter 9
of this thesis, a new rheological model is represented and successfully used for cement
pastes of thixotropic nature. This model is based on the Hattori-Izumi theory [42, 41]
(see Section 2.4.2 about the Hattori-Izumi theory).

According to Tattersall and Banfill [128], a coaxial cylinders viscometer was not
used for concrete until after about 1970. Motivated by the fact that such instrument
had already been used for mortar and cement paste for quite a while before this,
Tattersall made an attempt to apply a coaxial cylinders geometry to measure the
rheological properties of fresh concrete [128]. Unfortunately, he was not successful.
After this, in 1973, he introduced the use of a modified food mixer [125, 127, 128],
to extract the Bingham parameters, namely the plastic viscosity3 µ and the yield
value τo. This configuration is known as the Mk I. A further development of the
Mk I resulted in the famous Mk II and Mk III devices [128]. The Mk II is for
highly workability concretes while the Mk III is for lower workability concretes. For
all devices, empirical values G and H are measured. Through special calibration
techniques [128], G and H are converted into fundamental physical quantities, namely
the yield value τo and plastic viscosity µ. The Mk-systems are still being used and are
continously going through some improvments as reported in different papers [28, 126,
129]. TheMk-systems are also known simply as the “two-point” and are commercially
available. One of the newest Mk-system is shown in the left illustration of Figure 1.2.

In the beginning of the 1970’s, trials were made by others [82, 140] using the
coaxial cylinders system, which were reported to be somewhat more successful than
the work by Tattersall. The inner and outer cylinders consisted of vanes, similar to
what is shown in Figure 3.5 (Page 56). This was done to avoid slippage. In the late
1980’s, a further improvement of the coaxial cylinders geometry was made in Norway
[145, 147], which among other things consisted of that the bottom part of the inner
cylinder did not measure torque (i.e. the “inner cylinder, lower unit” in Figure 3.4,
Page 55). This was done to avoid the effect of shear stress τ generated from the
lower part of the geometrical system used. This approach is validated in this thesis

3With Equation 3.3 (Page 53) the Bingham model is described.
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4 CHAPTER 1. INTRODUCTION

by numerical simulations (see Sections 8.7 and 9.5). This viscometer is named the
ConTec BML Viscometer 3, and is commonly known as the BML viscometer
(see the right illustration of Figure 1.2). Ever since its first introduction, the ConTec

BML Viscometer 3 has been continously going through improvements, in terms of
more accurate instrumentation’s and enhanced software (FreshWin) for controlling
the viscometer. The viscometer is commercially available.

In 1996 a viscometer for fresh concrete, using parallel plates, was developed in
France [50, 51] and is also commercially available. This viscometer is designated as
BTRHEOM and is shown in the center illustration of Figure 1.2. A numerical sim-
ulation of this device is made in this thesis (see for example Figure 10.23, Page 257).

Figure 1.2: The Mk-system (to the left), the BTRHEOM (center) and the ConTec BML
Viscometer 3 (to the right). See Figure 1.3 for comparison of rheological values.
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Figure 1.3: Comparison of rheological values measured by the Mk-system, ConTec BML
Viscometer 3 and the BTRHEOM. The same batch is applied in each case. From [8].

The Mk-system, ConTec BML Viscometer 3 and the BTRHEOM all mea-
sure the rheological properties of fresh concrete in terms of fundamental physical
quantities, namely in yield value τo and plastic viscosity µ. A comparison of these
viscometers were made in France in October 2000, where the same concrete batch
was simultaneously tested in the three devices [8]. Ideally, one should expect that the
same set of rheological values (τo, µ) should be measured by all viscometers, whereas
in reality this was not so. This is shown in Figure 1.3. Although the same changes in
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1.1. BACKGROUND AND SHORT REVIEW 5

rheological behavior are roughly measured from batch to batch, the absolute values of
τo and µ differ somewhat, however, with the best agreement between the Mk-system
and the ConTec BML Viscometer 3.

Rheological Measurements on Mortar and Cement Paste

Because rheological measurements on concrete requires large resources in terms of
test material, labor and time, it is not practical to apply a complete laboratory test
program to concrete. Rather, mortar and/or cement paste are used. This is done
in the anticipation that the mortar and cement paste will simulate the rheological
behavior of the concrete. By this approach, it is possible to create a larger and
more complicated test program, to for example investigate the rheological effects of
different admixture types. For such cases, different viscometers of smaller dimensions
are usually used. In this thesis, the ConTec Viscometer 4 is used for such purpose.
It is considerable smaller than the ConTec BML Viscometer 3 (see Figure 3.1,
Page 51). The ConTec Viscometer 4 was introduced4 in 1997 [146]. The use of
coaxial cylinders geometry, when measuring the rheological properties of mortar and
cement paste goes back to 1941, with the use of the Plastometer developed by
Powers and Wiler [96, 97].

Mortar batches are not only mixed for academic purposes. They are also used
at building site, as for example, bricklaying mortars, mortars for repair, patching or
filling, whether premixed and packaged or mixed at the point of use; floor screeds and
leveling compounds; decorative and waterproofing finishes [5]. Hence, the rheological
properties of mortar can be more relevant than indicated in the previous paragraph.

Admixtures: Water-Reducers (P) and Superplasticizers (SP)

Almost always, some amount of chemical admixtures are added to the concrete batch
during mixing. The reason for the use of such admixture5 is that they are capable
of imparting considerable physical and economical benefits to the concrete, mortar
or cement paste. Traditionally, concrete has often contained minor addition of inor-
ganic and organic materials. The use of naturally occuring hydraulic binders such as
pozzolanas and lime was made by the Romans [16, 86, 88]. The use of blood as an
air-entraining agent, as well as goat’s milk and pig’s fat to improve the workability
was used in these early concretes [29]. Also, urine was applied to vary the rates of
setting and hardening [29].

After the rediscovery of Portland cement in 1824, different admixtures for different
purposes have been specifically developed for concrete, mortar and cement paste. A
summary and discussion of the existing types is given in [29, 131]. In this thesis, only
admixtures categorized as plasticizers (i.e. water-reducers) and superplasticizers are
considered. These are lignosulfonates of various types and a sulfonated naphthalene
formaldehyde. The purposes of using plasticizers6 [89] (P) may be either of the
following: 1) to achieve a higher strength by decreasing the water/cement-ratio (i.e.

4Recently, additional viscometers have been introduced into the ConTec family. In the year of
2001, ConTec Viscometer 5 was released, and year later the ConTec Viscometer 6 was released
(see also http://www.contec.is).

5Admixture implies addition at the mixing stage, while additive refers to a substance which is
added at the cement manufacturing stage [89].

6The plasticizers used in this thesis are designated as LMW Na, LMW Ca and LMWFS Ca.
The superplasticizers are however designated as VHMW Na, HMW Na and HMW Ca (and also
SNF). For further readings about these admixtures, see Section 4.2.2.
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6 CHAPTER 1. INTRODUCTION

w/c-ratio) at the same workability as an admixture-free mix; 2) to maintain the
same workability at lower cement content; 3) to increase the workability so as to ease
placing.

The superplasticizers (SP) are more effective type of water-reducers (i.e. plasti-
cizers) and are also known as high-range water-reducers [89]. The dosage levels are
usually higher than with conventional plasticizers since the undesirable side-effect of
excessive retardation is considerably reduced [89, 105]. In this manner, they allow
much greater water reduction than plasticizers, or alternatively allow extreme work-
ability of the cement based material.

The earliest known published reference of plasticizers to increase workability, was
made in 1932 [105]. During the mid 1930’s to early 1940’s, the use of lignosul-
fonates as plasticizers started [105]. Considerably later, or in the 1960’s, superplasti-
cizers for cement based material emerged [105]. These were the sulfonated naphtha-
lene formaldehyde in 1963 (SNF) and the sulfonated melamine formaldehyde in 1964
(SMF) [29, 105]. Today, some special types of lignosulfonates are also categorized
as superplasticizers. In this thesis, such types of lignosulfonates are tested and com-
pared. In addition, SNF is also tested here as a reference. Many different plasticizers
and superplasticizers are available. These are the SNF, SMF and lignosulfonates of
different quality and types. Frequently, some of these are blended together and sold
as a new product.

In his earlier work [144], Wallevik measured
the relationships between the rheological para-
meters for concrete τo and µ and plasticizers (P)
and superplasticizers (SP). The result is shown
in the schematic figure to the right (reproduced
from [144]): With increasing P or SP, the yield
value τo reduces, while the plastic viscosity µ
remains roughly unchanged. Also shown is the
effect of increased air in the concrete. Within
a certain range, increased air content mostly in-
fluences the plastic viscosity µ, while the yield
value τo remains roughly unchanged. However, with sufficient large air content, the
yield value is also affected.

Fresh Concrete, Mortar and Cement Paste as Particle Suspensions

In terms of rheology, it is natural to consider fresh concrete, mortar and cement paste
as different types of suspensions. Other examples of suspensions are paint, printing
inks, coal slurries and drilling muds [9]. Traditionally, a particle suspension consist
of two phases, namely the suspended particles and the matrix.

As shown in the right illustration of Figure 1.4, fresh concrete consists of particles
with a broad range of mass, dimension, shape and surface texture, suspended in a
matrix (this applies also for mortar and cement paste). The distinction between ma-
trix and suspended particles is a matter of choice, in contrast to the more traditional
suspension of spheres submerged in a Newtonian liquid. For concrete, the matrix is
defined here by pure convenience to be the 0− 2mm mortar inside it (Chapters 4, 5,
6 and 10); i.e. the 0 − 2mm aggregates and cement particles are considered to only
have a thickening effect on the water phase, as discussed in [9]. Such an approach is
quite common. For example, Mørtsell [80, 81] treats the 0− 0.125mm filler modified
cement paste as matrix, instead of the pre-mentioned mortar. In Chapter 9, when
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1.2. OBJECTIVES OF THIS THESIS 7

Figure 1.4: To the left: Casting of fresh concrete into a formwork [24]. To the right: Schematic
presentation of the concrete. This particular illustration is also used in Figure 2.2 (Page 12) when
underlying the basis for describing the concrete, mortar and cement paste as a pure continuum.

investigating the rheological properties of cement paste, its matrix is defined as the
(free) water (see Footnote 19, Page 25 about the definition of free water).

Traditionally, when treating suspensions, one consider a shear viscosity function
dependent on the phase volume Φ. For example, in 1905, Einstein showed that the
shear viscosity of a very dilute suspension consisted7 of η = η◦(1 + 2.5Φ) [9, 123].
The term η◦ is the shear viscosity of the matrix, while Φ is the phase volume (or solid
volume fraction), defined as Φ = Vp/(Vp + Vm) [9]. The term Vp is the volume of
the suspended particles and Vm is the volume of the matrix. Different types of shear
viscosity functions η for different suspensions are presented in a textbook by Barnes
et al. [9]. Generating a shear viscosity function η dependent on the phase volume Φ is
not attempted in this thesis. However, such consideration has been recently made by
de Larrard [25] in his new published textbook. As will be clear shortly, the objectives
of this thesis is rather to investigate how the different lignosulfonate types changes the
rheological behavior as a function of temperature and time, where the phase volume
Φ (regardless of how defined) is the same for the two compared batches.

1.2 Objectives of this Thesis

There are three main objectives of this thesis, and it is consequently divided into three
parts. The parts are independent in a certain sense, but in another sense dependent
on each other. The ConTec BML Viscometer 3 is used to measure concrete,
while the ConTec Viscometer 4 is for mortar and cement paste.

1.2.1 The First Objective: Effects of Lignosulfonates

This topic is the subject of Chapters 2, 3, 4, 5 and 6. The objective is to determine
how the different lignosulfonate types changes the rheological properties of the cement
based material as a function of temperature and time. In particular:

1. Investigate the change in rheological behavior of mortar and concrete as a func-
tion of time, using the different types of lignosulfonates (see Section 4.2.2).
For mortar, this investigation is made at three different temperatures, namely
5◦C, 23◦C and 38◦C. The effects of a SNF product is also investigated for

7Einstein’s equation neglects the effects of other particles. When particle-particle interactions are
included, a higher order terms in Φ is generated [9, 123].
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8 CHAPTER 1. INTRODUCTION

comparison. The results of the investigations are shown in Section 6.4 and is
summarized in Section 6.5.3.

2. Investigate the rheological relationship between concrete and mortar. The mix
design of the mortar is calculated from the concrete according to Section 4.3.2.
The results of this investigation are shown in Section 6.3.2.

3. Investigate the relationship between rheological values generated by the Con-

Tec BML Viscometer 3 with the values generated with the Abrams slump
test (see Section 4.4.2 about the slump test). The results of this investigation
are shown in Section 6.3.1.

1.2.2 The Second Objective: Thixotropy

This topic is the subject of Chapters 2, 3, 7, 8 and 9. The objective is to identify
some of the parameters affecting the shear viscosity η. The result of this investigation
is helpful, when considering the rheological behavior of the cement based materials,
presented in Chapter 6. In more exact terms, the second objective of this thesis is:

4. To investigate the thixotropic behavior of cement paste and in doing so, inves-
tigate if the Hattori-Izumi theory works. In Section 2.4.2, a description is made
of the physics behind this theory. In the experiments, three different types of
lignosulfonates are used. The SNF product is also used. The results of this
investigation are summarized in Section 9.9.4.

1.2.3 The Third Objective: Particle Migration

This topic is the subject of Chapters 7, 8 and 10. Migration of suspended particles
from a region of high shear rate, to the region of low shear rate has been reported
elsewhere [9, 70]. In this thesis, such a phenomenon is observed when conducting a
rheological measurement on concrete. It is the gravel particles (here, the 2 − 16mm
aggregates) that are moved from the region of high shear rate to the region of low shear
rate. Hence, in this work, the process will be often referred to as gravel migration,
but generally in the literature, such process is usually designated as particle migration
[9, 70]. The results of this investigation are used in Chapters 5 and 6. More precisely,
the third objective of this thesis is as listed below:

5. Investigate and analyze how much the phenomenon of gravel migration influ-
ences the viscometric values retrieved by the ConTec BML Viscometer 3.
The results of this investigation are summarized in Section 10.2.3.

6. Other types of viscometers are investigated in relation to gravel migration. The
purpose is to find a geometry that gives small potential for gravel migration.
This investigation is based on numerical calculations alone. The results of this
investigation are summarized in Section 10.3.8.

1.3 What is not Included in this Thesis

In Section 1.1, a short review was given on the rheology of cement based materials.
The subject goes at least back to 1910 with the slump test. Since then, a large amount
of discovery, suggestions, failures and improvements have been made. Obviously, a
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1.3. WHAT IS NOT INCLUDED IN THIS THESIS 9

review of all the work carried out would be a rather comprehensive task and the text of
Section 1.1 only scrapes the surface of the most important issues in this field of science.
Instead of making a comprehensive review, the main effort has been focused on the
three basic objectives of the thesis, given in Section 1.2. Basically, one could state that
the work done here is based on the previous work done by Tattersall [127, 128, 129],
Hattori and Izumi [42, 41]. Tattersall introduced the idea of using the Bingham model
for the cement based material and retrieving the corresponding Bingham parameters
by a viscometer. Hattori and Izumi introduced the idea of consider thixotropy as a
result of coagulation and dispersion of the cement particles (in Section 9.1, a short
review about the thixotropy is given). Obviously, the work of many others is also
involved in this thesis and appropriate references are given.
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Chapter 2

Description of Fluid

2.1 Introduction

In this thesis, the fluid state (or more precisely, the viscoplastic state) of the fresh
concrete, mortar and cement paste will be the main topic. Consequently, it is only
natural to begin with the question what is a fluid. When considering a large collection
of rock and ice fragments, as in the rings of Saturn1, or a large collection of sea ice
floes in the Icelandic waters (see Figure 2.1), one might have difficulties in accepting
those two systems as fluids. Of course, in their isolated state, a single rock or ice
fragment, or a single sea ice floe, does not represent such state. But with a large
collection of these solid particles, those two separated systems can be presented as
two different types of fluid. They are classified and characterized by their potential
solid ice/rock and sea ice interactions through parameters called viscosity.

Figure 2.1: Two different types of fluid. To the left: The rings of Saturn, composed of rock
and ice fragments [119]. To the right: Sea ice floes in the Icelandic waters [57].

With the introduction shown in the following section, it will be clear that the
fluid approach consist of calculating the motion of a large number of solid particles,
without going into the detailed motion of every single one of them. For example, in
the case of fresh concrete, where the solid particles consist of a broad range in mass,
dimension, shape and surface texture (see Figure 2.2), the largest solid particles (i.e.

1The rings of Saturn are mostly made of ice fragments, ranging from few centimeters to few
meters across, but there are also some traces of silicate and carbon minerals, indicating that rock
fragments are also present [3].

11
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12 CHAPTER 2. DESCRIPTION OF FLUID

the largest gravel particles) are treated in the exactly the same manner as the smallest
ones (i.e. the water molecules). In this perception, both the suspended particles and
the matrix are treated in exactly the same manner, namely together as a group of
solid particles. No distinction is made between the two phases.

2.2 The Governing Equation

When dealing with the motion of a (enormously) large collection of solid particles,
the concept of a particle must be redefined. The reason is that it is rather difficult, if
not impossible, to gain a solution for multi particle system by looking at every single
solid particle2 as the working particle of the system. That is, by using Newton’s 2nd

law (dpI/dt = FI +mI g) on every such particle, some set of problems arises, which
are explained in Appendix B.2.1. Instead of directly using the solid particle, an
alternative approach is to create a new kind of particle, namely the The Continuum

Particle
3 (CP). In doing so, the pre-mentioned large collection of solid particles

has now the designation: The Continuum. The continuum and its boundary will
be designated here with the symbols Ω and ∂Ω, receptively. The CP is composed of
large amount of solid particles (see Figure 2.2). For example, in the case of pure water
continuum, the CP consists of vast amount of water molecules. As for homogeneous4

fresh concrete, every CP must consist of collection of aggregates, cement grains, water
molecules and so forth, as shown in Figure 2.2 to the left.

Figure 2.2: To the left: A cross section of a particle suspension, like of the fresh concrete, the
rings of Saturn or of the sea ice floes. A CP is composed of all the solid particles that are confined
within the CP boundary, shown with the black solid line. To the right: Graphical illustration for
Equation 2.7. Illustration from the left to the right, demonstrates the transition from the solid
particle-approach to the CP-approach. [⊕ designates the center of mass of a CP].

The CP is defined here as such that it always consists of the same magnitude of
mass δm for the time domain of calculation. In mathematical terms this means:

δm = constant (2.1)

As shown in the left illustration of Figure 2.2, the CP is composed of a large collec-
tion of solid particles. In the derivations that now follows, it is assumed that for a

2For example, looking at every single aggregate, cement grain, water molecule and so forth.
3The term Continuum Particle is not the only one used in the literature of fluid and continuum

mechanics. To mention few, Material Point [43, 53, 93], Fluid Particle [93] and Fluid Parcel [20] are
terms also used in various textbooks.

4With homogeneous suspension, it is meant that all constituents are (more or less) equally dis-
tributed throughout the continuum. If bleeding or segregation occurs, such condition does not apply.
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2.2. THE GOVERNING EQUATION 13

given period of time, their total number is N. Each such solid particle, changes their
momentum according to Newton’s 2nd law, as shown with Equation 2.2.

dpI
dt

= FI +mI g ∀ I ∈ [1,N] (2.2)

The term pI = mIvI is the momentum of the solid particle number I. vI = drI/dt, rI
andmI represents its velocity, vector position and mass, respectively. Finally, FI is the
sum of external surface forces applied to this solid particle, from its surrounding solid
particles and mI g is the body force (or gravity force) applied to it. The summation
of Equation 2.2 for all I from 1 to N, gives the equation of motion for the specific CP
in question. This equation is shown below:

d

dt

N∑
I=1

pI =
N∑
I=1

(FI +mI g) =
N∑
I=1

FI + δmg (2.3)

where
∑N
I=1mI ≡ δm. As demonstrated with the simple example in Figure B.1

(Page 378), the Newton’s 3rd law, the law of action and reaction, always governs
between the solid particles located at the interior of the CP. As such, the internal
surface forces (i.e. inside the CP) will summarize to zero. However the external surface
forces applied to solid particles located at the boundary of this CP, will remain. This
result is fundamental in the sense that it applies regardless of the type of forces that
interact between the solid particles. [The type of forces that could be involved are for
example the mechanical collisions forces and/or forces of attractive/repulsive potential
energy]. With this, one can rewrite Equation 2.3 as shown with Equation 2.4.

d

dt

N∑
I=1

pI = F+ δmg (2.4)

As indicated above, the force F represents the sum of external surface forces applied
to the CP from its surroundings. The term δmg is the body force applied to the CP.

Multiplying the expression “1 =
∑N
I=1mI/

∑N
I=1mI” with the left side of Equa-

tion 2.4, followed by some5 rearrangement, results in Equation 2.5.(
N∑
I=1

mI

)[
d

dt

(∑N
I=1mIvI∑N
I=1mI

)]
= F+ δmg (2.5)

From the previous definition, the above can equally be rewritten as follows:

δm
dv
dt

= F+ δmg where v =
∑N
I=1mIvI∑N
I=1mI

(2.6)

One can see that when considering the velocity v of a CP, it is meant the mass average
velocity of all the solid particles composing the specific CP. Hence, any random and
spontaneous velocity contributions from the individual solid particles are summarized
out6 in the averaging and only the relevant smooth motion of the continuum will

5 N
I=1mI ≡ δm = constant, c.f. Equation 2.1.

6When going from the step of Equation 2.2 to Equation 2.4, another equation is also implicitly
formed in the background. This equation deals only with the random part of the velocity vI, namely
the [vI −v] part (see Footnote 3, Page 378). This equation is generally known as the internal energy
equation and is in the form of ρ du/dt = ρ c dT/dt = η γ̇2 (see Equation B.40 on Page 391) where

u = c T ∝ N
I=1

1
2
mI (vI − v)2/δm.

URN:NBN:no-3374



14 CHAPTER 2. DESCRIPTION OF FLUID

remain. The same consideration goes for the external surface force F: Any random and
spontaneous force contributions from the individual solid particles, are summarized
out in the calculation of

∑N
I=1FI. Hence, only the relevant smooth external surface

force F = F(. . . ) will remain (namely F = δV ∇·σ, c.f. Equation B.10 on Page 381).
The velocity v represents the velocity of the center of mass (CM) for the CP. This

is apparent from the definition of the center of mass (see also Figure 2.2):

rCM =
∑N
I=1mIrI∑N
I=1mI

⇒ drCM

dt
=
∑N
I=1mI

drI
dt∑N

I=1mI
=
∑N
I=1mIvI∑N
I=1mI

= v (2.7)

The vector rCM designates the CM vector position of the CP. Now, instead of labeling
each and every CP with, for example, a specific number, color or whatever, it is
customary to mark them with their initial coordinatesX [74]. Hence, the CM-position
of a CP that has the label X, is defined by Equation 2.8.

rCM = x = x(X, t) = xi(Xj, t)ii (2.8)

To repeat, the above equation inform about the CM-position x of a CP at the time
t ≥ 0, which had the CM-position X at time t = 0. Equation 2.8 is referred to as
the Lagrange formulation, since the initial position X of the CP acts now as the
independent variable. In mathematical terms, X is defined by [74]:

X = X(x, t) = Xi(xj, t)ii (2.9)

The above equation can be viewed as one which provides a tracing of the CP from
its current position x to its original position X [74]. Equation 2.9 is referred to as
the Eulerian formulation, since the current position7 of the CP acts now as the
independent variable.

With the above labeling method in mind, let v(X, t) designate the smooth CM-
velocity of a CP that is labeled with its initial coordinates X (that is, with: X =
“a specific constant”). Furthermore, let δm(X) designate its mass and F(X, t) the
sum of external surface forces applied to it, from its surroundings. With these defini-
tions, then from Equation 2.6, the governing equation for this particular CP becomes:

δm(X)
dv(X, t)

dt
= F(X, t) + δm(X)g X = “a specific constant” (2.10)

The above equation can equally apply for another CP, inside the continuum (that is,
with: X = “a different constant”). In fact, with this property, Equation 2.10 can be
used on any CP inside the continuum (that is, with: X ∈ Ω). Hence, all the governing
equations of every CP, can be compressed so to speak, into only one equation:

δm(X)
dv(X, t)

dt
= F(X, t) + δm(X)g ∀ X ∈ Ω (2.11)

With the above equation, then instead of working with multiple governing equations
(one governing equation for each and every CP), one is now working with multiple
coordinatesX (one coordinatesX for each and every CP) and with only one governing
equation.

7An example of the Lagrangian description of the CM-position for a specific CP can be given by the
following equations: x1(X, t) = X1 +X2 (et − 1); x2(X, t) = X1 (e−t − 1) +X2 and x3(X, t) = X3.
Accordingly, its (inverse) Eulerian position is then given by: X1(x, t) = f(t) (−x1 + x2 (et − 1));
X2(x, t) = f(t) (x1 (e−t − 1) − x2) and X3(x, t) = x3 where f(t) = 1/(1 − et − e−t) [74].
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2.2. THE GOVERNING EQUATION 15

With Equation 2.9, one can transform any variable from Lagrangian description
to the Eulerian description [74]. For example in case of the velocity in Equation 2.11,
the following can be applied: v(X, t) = v(X(x, t), t) = v(x, t). The mathematical
functional form of the velocity term is generally not the same before and after such
transformation. This is shown with Footnote 7. To emphasize this difference, a sub-
script is sometimes added: vL(X, t) = vL(X(x, t), t) = vE(x, t), but this is redundant,
since the difference is automatically understood by looking at the independent vari-
able of the function in question. Now, after applying the same procedure to the rest
of the variables in Equation 2.11, the following is produced:

δm(x, t)
dv(x, t)
dt

= F(x, t) + δm(x, t)g ∀ x(X, t) ∈ Ω (2.12)

This is the governing equation for a CP (labeled with X) that is passing through
the position x = x(X, t) at the time t. At a later time t + ∆t, the coordinates x is
occupied by another CP (i.e. a different X), which could have a different amount of
mass δm(X). Hence the time dependency in the mass function m(x, t).

Dividing Equation 2.12 with the volume8 δV (X, t) = δV (X(x, t), t) = δV (x, t) of
a CP that is passing through the coordinates x at the time t, gives Equation 2.13.

δm(x, t)
δV (x, t)

dv(x, t)
dt

=
F(x, t)
δV (x, t)

+
δm(x, t)
δV (x, t)

g (2.13)

The mass of the CP divided by its volume is called density and is designated with
ρ. Equation 2.14 defines density in both Lagrangian and Eulerian formulation.

ρ(X, t) ≡ δm(X)
δV (X, t)

=
δm(x, t)
δV (x, t)

≡ ρ(x, t) (2.14)

Using the general chain rule of calculus [30] on the acceleration term in Equation 2.13,
produces the following equation:

dv(x, t)
dt

=
∂v(x, t)
∂t

∣∣∣∣
x

dt

dt
+
∂v(x, t)
∂x

∣∣∣∣
t

· dx(X, t)
dt

(2.15)

where ∂v/∂x ≡ ∇v. The last part in the above equation dx(X, t)/dt, is the velocity
of the CP in Lagrangian description v(X, t), which can be transformed to Eulerian
description: v(X, t) = v(X(x, t), t) = v(x, t). Now, defining f(x, t) ≡ F(x, t)/δV (x, t)
as the sum of external surface forces per unit volume9 and thereupon combining
Equations 2.13, 2.14 and 2.15, the following is generated:

ρ(x, t)
(
∂v(x, t)
∂t

+ v(x, t) · ∇v(x, t)
)
= f(x, t) + ρ(x, t)g (2.16)

This is the governing equation for a CP (labeled with X) that is passing10 through
the position x = x(X, t) at the time t. As such, it is important to bear in mind, that

8The time dependence in the function δV (X, t) is only factual if the continuum (or equally, all
the CPs that composes the continuum) is compressible, for example what applies for gases.

9In simplifying text, f will also be frequently referred as the sum of external surface forces.
10With the overall steps done from Equation 2.10 to Equation 2.16, it is clear that the operator

d/dt = ∂/∂t + v · ∇ used in Equation 2.16, expresses the time derivative following a CP, which is
labeled with its initial coordinates X. This operator have been given different names like substantial
derivative, material derivative [36, 48], total derivative [20, 36, 48], convective derivative [11] and
Eulerian derivative [36]. In this thesis simply the term time derivative (contrary to the term partial
time derivative ∂/∂t) will suffice for this operator.
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16 CHAPTER 2. DESCRIPTION OF FLUID

the coordinates x is the current CM-position x(X, t) of a specific CP, labeled with
X. When the independent variables in the above equation are omitted, this should be
automatically understood.

In Appendix B.3, the sum of external surface forces applied to the CP from its
surroundings is calculated as f = F/δV = ∇ · σ (see Equation B.10, Page 381).
Putting this result in Equation 2.16, gives the following:

ρ(x, t)
(
∂v(x, t)
∂t

+ v(x, t) · ∇v(x, t)
)
= ∇ · σ(x, t) + ρ(x, t) g (2.17)

To conclude, Equations 2.17 and 2.3 are two different representations of the same
principle, namely the Newton’s 2nd law applied on a large collection of solid particles:

d

dt

N∑
I=1

pI =
N∑
I=1

(FI +mI g) ⇔ ρ

(
∂v
∂t

+ v · ∇v
)
= ∇ · σ + ρ g (2.18)

An example of a large collection of solid par-
ticles would be the rings of Saturn, consist-
ing of a solid ice and rock fragments. Their
dimensions range from few centimeters to
few meters across [3]. Utilization of Equa-
tion 2.17 on the rings is done in Appen-
dix B.5. Using this equation on these set
of solid particles, is done to highlight that
the fluid approach is in essence the theory
of collective motion of a very large number
of solid particles (see figure to the right11),
without going into the detailed motion of
every single one of them. The largest solid
particles are treated in the exactly the same manner as the smallest ones. Equa-
tion 2.17 can equally be applied to other “bizarre” fluids, like the sea ice floes in the
Icelandic waters (see Figure 2.3) or to the fresh concrete flowing inside a formwork
(see Figure 3.2, Page 54) or inside a viscometer (see Figure 3.8, Page 62).

2.3 The Constitutive Equation

For many fluids, the constitutive equation is represented as σ = −p I+T [9], where
the second order tensor T = Tijiiij is known as the extra stress tensor and p is the
pressure. The term I, is known as the unit dyadic and its index equivalence is the
Kronecker delta, written as δij where δij = 1 if i = j and δij = 0 if i �= j [53, 74]. In
index notation, the tensor σ is written as: σij = −pδij + Tij. According to customary
understanding, σij designates a stress in j-direction on a plane that has a normal unit
vector pointing in i-direction [9, 53, 72, 74]. Furthermore, it can be shown that this
tensor is symmetric: σij = σji [72, 74]. The same considerations applies for Tij. In
Section 2.4.1, this tensor is associated with the exchange of momentum between solid
particles of the continuum.

There is a branch in rheology that consists of determining the function form of
the extra stress tensor T for the different types of fluid. An English introductory text

11This illustration is also shown in Appendix B.5 in its original state.
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2.3. THE CONSTITUTIVE EQUATION 17

about the subject can be seen in a textbook after Barnes et al. [9]. For example, the
tensor T for linear viscoelastic fluid is written in the form [9, 55]:

T(x, t) = 2
∫ t

−∞
φ(t− t′) ε̇(x, t′) dt′ (2.19)

The variable φ is the relaxation function, t is the present time and t′ is the earlier
time. The tensor ε̇ = ε̇ij iiij is called the strain rate tensor and is given by:

ε̇ =
1
2
(∇v + (∇v)T

)
=
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
iiij (2.20)

In the last part of the above, a so-called indicial notation [74, 72] in Cartesian coor-
dinate system, is used. The velocity gradient tensor ∇v = [∂vi/∂xj]iiij can be looked
upon as a comparison of velocities between CPs, placed around the CP in question.
For example, ∂v1/∂x3 can be looked at as a comparison of the velocity component in
the i1-direction, between two CPs, placed above and below the CP in question. They
are separated by the distance 2δx3, relative to their CM as shown with Equation 2.21
and with the left illustration of Figure B.4 (Page 383).

∂v1
∂x3

= lim
∆x3→δx3

v1(x1, x2, x3 +∆x3, t)− v1(x1, x2, x3 −∆x3, t)
2∆x3

(2.21)

Another example of a constitutive equation is given with Equation 2.22. This equation
have been used when predicting the flow of the two dimensional sea ice continuum
[45, 46]. There the corresponding CP consists of large collection of sea ice floes12,
where each of them can have a horizontal dimension of several to tens of kilometers.
Figure 2.3 demonstrate results from a numerical simulation when predicting the sea
ice movement on Icelandic waters according to Equations 2.17 and 2.22 [142].

σ(x, t) = −P (x, t)
2

I+ κ tr (ε̇(x, t)) I+ 2 η
[
ε̇(x, t)− tr (ε̇(x, t))

2
I
]

(2.22)

The term P/2 is rather complex to be described in a short introductory text, but a
short explanation would be that it plays a similar role as pressure p in more casual
system of fluid flow. The terms κ = κ(P, ε̇) and η = η(P, ε̇) are the bulk viscosity
and the shear viscosity, respectively.

The constitutive equation that is successfully used in this thesis (and elsewhere),
has the following functional form:

σ(x, t) = −p(x, t)I+T(x, t) ∧ T(x, t) = 2 η(x, t) ε̇(x, t) (2.23)

where p is the mechanical pressure13 and η is the shear viscosity. As an example
of a shear viscosity function that could be used in Equation 2.23 is the one for the
Bingham model: η = µ+τo/γ̇, where τo and µ are known as the yield value [128] (or

12This field of theory does not include the icebergs. Ice floes are generated on water and can
have maximum thickness of several meters, but icebergs are generated on land as glaciers and later
transported to the sea. The latter can have a thickness of several hundreds meters [124].

13In this work it will be assumed that the density of the fresh concrete, mortar and cement paste
is a constant and not a thermodynamic variable. This assumption can be made since acoustic
phenomenon is not of interests here. The mechanical pressure is defined by the average of normal
stresses: pm ≡ −tr(σ)/3 [93]. With Equation 2.23 and the pre-mentioned incompressibility (dρ/dt =
−ρ tr(ε̇) = 0), then pm = −[tr(−p I) + 2 η tr(ε̇)]/3 = p.
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Figure 2.3: Total ice compactness in percentages on Icelandic waters. Initial condition is taken
from the 18th of January 1997 at 12.00GMT (0 hours). From left to right and from top to
bottom are simulation results at 24, 72, 120 and 160 hours [142].

yield stress [9]) and the plastic viscosity [9, 128], respectively. Other types of shear
viscosity function η might apply as well, depending on nature of the fluid material in
question. The term γ̇ is known as the shear rate and is a function of the strain rate
tensor as shown with Equation 2.24 [55, 66].

γ̇ =
√
2 ε̇ : ε̇ =

√
2 ε̇ijε̇ij (2.24)

Figures 2.4 and 2.5 demonstrates a result from a numerical simulation of a Bingham
fluid inside the ConTec BML Viscometer 3 by using Equations 2.17 and 2.23
(see Chapter 8). Both illustrations are from the same calculation. The former figure
demonstrates the velocity profile14 v = vθ iθ, while the second one shows the profile15

of von Mises shear stress τ =
√
(T : T)/2 (see Section 3.2). The angular velocity

of the outer cylinder for this calculation is ωo = 3 rad/s and the viscometric values
used, are τo = 1200Pa and µ = 120Pa · s. When considering a particle suspension
like of concrete with maximum aggregate size of Dmax = 16mm, the smooth velocity
profile shown in the first figure, does not represent the velocity for the individual
solid particles (i.e. of the individual aggregate, cement grain or water molecule). This
is because the latter type of motion is on a scale below what can be provided by
Equation 2.17. The velocity profile of the individual solid particles is much more
discontinuous and random than presented in this figure. Instead, Figure 2.4 shows

14The isolines start at vθ = 5 cm/s near the inner cylinder and with equal increments of 5 cm/s,
ends at 40 cm/s near the outer cylinder.

15The isolines start at τ = 300Pa near the outer cylinder and with equal increments of 300 Pa,
ends at 4800 Pa around the corner of inner cylinder.
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Figure 2.4: Velocity profile v = vθ iθ (in cm/s) inside the ConTec BML Viscometer 3 when
using the Bingham model η = µ+ τo/γ̇, with τo = 1200Pa, µ = 120Pa · s and ωo = 3 rad/s.
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Figure 2.5: Profile of τ = (T : T)/2 (in Pa) inside the ConTec BML Viscometer 3 when
using the Bingham model η = µ+ τo/γ̇, with τo = 1200Pa, µ = 120Pa · s and ωo = 3 rad/s.

the velocity profile of CPs with the CM coordinates at the corresponding spatial
points x = (r, z). As shown with Equation 2.6, this type of velocity consists of the
mass averaged velocity of all the solid particles composing the CP. Therefore, a spatial
point in the figure x = (r, z) represents the average velocity of all the solid particles
at and surrounding this point. As such, any random and discontinuous velocity
contribution from the individual solid particles are summarized out, resulting in the
smooth velocity profile shown in this figure. The above discussion applies equally for
water. One cannot use the Navier-Stokes Equation B.18 (Appendix B.6) to predict
the random (i.e. thermal) motion of the individual water molecule, because such a
motion is on a scale below what can be provided by this equation. This lack of
resolution (or sharpness) of the material space is a direct consequence of the steps done
from Equation 2.2 to Equation 2.4. When going through these last-mentioned steps,
another equation is also implicitly formed in the background. This equation deals
only with the random and the spontaneous part of the velocity vI of the individual
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20 CHAPTER 2. DESCRIPTION OF FLUID

solid particles and is generally known as the internal energy equation (see Footnote 3,
Page 378 and Footnote 6, Page 13). As shown with Equation B.41 (Page 391), this
equation basically consist of ρ c dT/dt = η γ̇2.

2.4 Solid Particle Interaction and Viscosity

Background

It is clear from Section 2.2, that the CP consists of a large number of solid particles.
These solid particles interact with each other by collisions that continuously occur
between them (see Figure B.1, Page 378). For each collision that occurs, a momentum
is transferred from one solid particle to the next. With this perception in mind,
Bagnold [4] made a derivation of shear stress τ , where the momentum transfer from
one solid particle to the next plays a primary role. In several papers [114, 113, 59, 93],
his theory has been successfully used. In Bagnold’s theory, only the effect from the
linear momentum is taken into account. However, in some literature [114] ([113]), the
effect of the angular momentum is also included. Sometimes, the angular momentum
contribution is unimportant. For example, in the case of ideal gas, the shear stress can
be calculated quite accurately without introducing such term into the mathematical
analyze [93]. It is not clear how important the effect of angular momentum is to the
cement paste. For simplicity reasons, its contribution is ignored here.

Objectives

In Section 2.4.1, a derivation of the shear stress τ and the shear viscosity η is made for
a cement paste. This derivation is based on the above-mentioned momentum transfer.
First, the direct momentum exchange between the larger cement particles is consid-
ered. This part is more or less a repetition from what Bagnold [4] made in his original
paper. Thereafter, the effect of the smaller cement particles, which are in-between
the larger ones, is considered. The main objective of the overall calculation presented
here, is not to calculate the correct shear viscosity η, but rather to understand how it
originates and how coagulation and hydration inflict its value (see discussion below,
about coagulation and hydration). To keep the text here as simple as possible and
still keeping the original objectives, some number of simplifications are made. Some
of these are mentioned explicitly, while others are not.

Since the rheological properties of mortar and concrete are direct functions of the
viscometric values of the cement paste (see for example [80]), the current text will
also be valuable when considering the experimental results given in Chapter 6.

Coagulation (Reversible and Permanent)

The word “coagulation” will appear frequently and it describes the occurrence when
two (or more) cement particles come into a solid-surface-to-solid-surface contact with
each other for some duration of time; i.e. when the cement particles become “glued”
to each other, and work is required to separate them. There are basically two kinds
of coagulation. The first type is the reversible coagulation, where two coagulated
cement particles can be separated (i.e. dispersed) again for the given rate of work
ẇ available to the suspension (see Equation B.34, Page 390). The second type of
coagulation is the permanent coagulation, where the two cement particles cannot
be separated for the given power ẇ available. In either case of reversible coagulation
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or of permanent coagulation, the effect on the shear viscosity η is the same, namely
increasing its value.

In Section 2.4.2, a theory about the reversible coagulation is presented. Basically,
this theory is about the bookkeeping of the number of reversible coagulated connec-
tions between the cement particles. These connections are often named “junctions”
and is represented with the term Jt. Likewise, permanent connection is designated
with Jpt . Hence, the total number of connections between coagulated cement particles
(in a suspension) is J tott = Jpt + Jt (see also Figure 2.11 about J

p
t and Jt).

Hydration

When cement particles and water are intermixed, thus forming a cement particle
suspension, complex chemical reactions16 start to occur, generally designated as hy-
dration. In chemical terms, hydration is a reaction of an anhydrous compound with
water, yielding a new compound, a hydrate. During the first 15 minutes after the first
contact with water (the pre-dormant period), the hydrate quickly covers the cement
particle surface. Basically, this hydrate consists of so-called C-S-H gel (of type E)
and of ettringite. The thickness of the hydrate increases with time, at different rate,
during both the pre-dormant and the dormant17 period. The thickness of the C-S-H
gel has been reported to be about 50 nm on an alite18 surface after 15 minutes from
water addition [134]. Roughly at the same time, stubby rods of ettringite are present,
typically 250 nm long and 100 nm thick [131]. They appear both on the cement par-
ticle surface, and at some distance away, in the solution water between the cement
particles [131]. They are more abundant near the surface of the aluminate phase, and
appear to nucleate in the solution and on the outer surface of the pre-mentioned layer
of C-S-H gel [131]. Figure 2.17 (Page 38) shows an example of how the hydrate covers
the unhydrated part of the cement particle, as a function of time.

A more detailed description about the chemical reactions between cement particles
and water, is presented in Section 2.5.1.

2.4.1 Shear Viscosity η of Cement Particle Suspension

Momentum Transfer Across a Plane δA

Consider an imaginary plane of area δA, inside a cement particle suspension (i.e.
inside a cement paste) as shown with illustration A in Figure 2.6. The idea is to
calculate the rate of momentum transfer ∆ṗ[δA] across this plane, since divided by
the area δA, it gives the shear stress τ [93, 36]. More precisely, the shear stress can
be calculated according to τ = T31 = ∆ṗ[δA]/δA, where ∆ṗ[δA] is a x1-component of
collision momentum, that is transferred across the plane δA in the x3-direction.

Since it is hard to work directly with the reality shown with illustration A in
Figure 2.6, some geometrical simplifications are necessary. These simplifications do

16Chemical shrinkage is a general phenomenon for any chemical reactions, where the products
have as smaller volume than the reactants. For the hydration process involved here, such chemical
shrinkage applies. This leads to an external contraction of the cement suspension, during the pre-
dormant and dormant period (i.e. during the first hours after water addition). Depending on the
cement type, the w/c-ratio, type of admixture and so forth, this shrinkage varies in magnitude from
about zero to roughly 0.5% of total volume, during the first 100 minutes (see for example [64, 65]).

17As shown in Figure 2.15, the dormant period starts after the pre-dormant period, and usually
lasts for 1 to 3 hours.

18The unhydrated cement particle consists of four mineral component, named alite, belite, alumi-
nate and ferrite (see Page 34), which of the alit is the most abundant (50-70% by mass).
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not interrupt the main objectives here, namely to understand how shear viscosity η
originates and how coagulation and hydration inflict its value. Illustration C, demon-
strates the geometrical simplification applied.

As is discussed in Section 2.5.1, the cement particles are poly-dispersed in size, with
diameter ranging from 1µm to 100µm. Illustration A in Figure 2.6, demonstrates
such polydispersity. The white and black spherical particles shown in illustration C,
are ideal representation of the larger cement particles in the suspension, say above
40µm in diameter. As is mentioned in the DLVO part of this chapter (see Page 42),
because of their larger inertia, the larger cement particles interact more with each
other by a hard sphere collision factor, rather than by coagulation/dispersion inter-
actions. That is, the white and black particles seldom/newer coagulate. It is rather
the smaller cement particles (say below 40µm in diameter) that are effected by their
mutual potential energy VT and therefore interact with each other by coagulation and
dispersion. To begin with, only the larger cement particles are treated. It will not be
until on Page 25, that the effect of the smaller cement particles are considered.

Figure 2.6: Two CPs and a plane δA (the horizontal line) inside a suspension. All three
illustrations are of the same system: Illustration A represents a real condition of the suspension,
while illustration C represents simplified and idealized picture of this reality. Illustration B
demonstrates that the two velocities vw i1 and vb i1 are calculated according to Equation 2.6.

The Assumed Velocity Profile: v = v1(x3, t)i1

It will be assumed that the flow takes place in layers that are in motion relative to one
another, as a result of the shear rate γ̇ shown with illustrationB in Figure 2.6. In other
words, the velocity profile of the suspension is assumed to be v = v1(x3, t)i1. Hence,
the strain rate tensor becomes ε̇ = [∂v1(x3, t)/∂x3](i3i1 + i1i3)/2 (see Equation 2.20)
and accordingly, the shear rate develop into γ̇ = |∂v1/∂x3| = ∂v1/∂x3 ≥ 0 (see
Equation 2.24).

Velocity of the Two Layers: vw i1 ∧ vb i1

The velocity of the white and black particles (the two layers of large cement parti-
cles under consideration) will be designated with vw and vb, respectively. These two
velocity components are extracted from the real condition of illustration A in Fig-
ure 2.6. More precisely, the two velocity vectors v|(x3=w) = vw i1 and v|(x3=b) = vb i1
are the mass averaged velocity of two CPs, with a center of mass (CM) position at the
same height x3, as the white and the black particles, respectively. Hence, the velocity
components vw and vb are calculated according to Equation 2.6. This is shown with
illustration B in Figure 2.6.
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Smooth and Random Velocity Contribution

As mentioned in Footnote 3 (Page 378), the velocity vI of a single solid particle,
labeled with I, consist of two components, namely v and vI − v (that is, vI = v +
[vI − v]). The former velocity component is the smooth velocity of a CP at the same
center of mass (CM) location as the solid particle in question, calculated according to
Equation 2.6. The latter velocity component, namely vI − v, is the random velocity
contribution of this same solid particle. Here, the random velocity contribution is
mainly responsible for the (direct) collisions between the solid particles.

Focusing on Two Particles

Focusing now only on two large cement particles that are passing by each other, one
white and the other black, as shown with illustration A in Figure 2.7. In addition
to their colors, these two particles are labeled as I and I + 1, respectively. In the
same fashion as mentioned above, each of them will have two velocity component.
One is of the smooth type and the other of the random type. For the white particle,
its velocity is vI = vw i1 + [vI − vw i1] and for the black particle, its velocity is
vI+1 = vb i1 + [vI+1 − vb i1]. Concentrating on the bypass of the white particle
relative to the black particle, as shown with illustration B in Figure 2.7. In this
frame of reference, the black particles is motionless while the white particles has the
smooth velocity contribution vsmooth = v|(x3=w) − v|(x3=b) = (vw − vb) i1 and the
random velocity contribution vrand = (vI− vw i1)− (vI+1− vb i1). Hence, the motion
of the white particle relative to the black one, is vsmooth + vrand = vI − vI+1.

Figure 2.7: To the left: Each solid particle has two velocity component, one of the smooth
type and the other of a random type. Center: Same as the left illustration, however motion is
presented relative to the black particle. To the right: Rearrangement of the white and the black
particles (i.e. the larger cement particles) in the vicinity to the plane δA. The lengths l1, l2 and
l3 are assumed to be larger than the diameter of the black and white particles.

Number of Bypass per Unit Time Ṅ

In the above-mentioned frame of reference, the white particle will have the (smooth)
bypassing speed of vw−vb as shown with illustrationB in Figure 2.7. As demonstrated
with illustration C (and B) in the same figure, the average CM distance between the
spherical particles is l1 and l3 in the x1- and x3-direction, respectively. With the
relative bypassing speed of vw − vb and the bypassing length of l1, it is suitable to
define a number of bypass per unit time: Ṅ ≡ (vw − vb)/l1. For example, with
Ṅ = 5 s−1 the white particle will travel the distance of 5 l1, relative to the original
black particle, during one second. That is, during the time interval of 1/Ṅ = 0.2
seconds, a single white particle will bypass a single black particle (i.e. travel the
relative distance of l1).
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Number of Direct Collisions per Unit Bypass Ñdc

Although there is an average CM distance of l1 and l3 (and l2 in the x2-direction)
between all the larger cement particles (see illustration C in Figure 2.7), each of them
deviate constantly from this average distance, resulting in their collisions in-between.
It is the random motion vrand that is mainly responsible for the collisions. Now, let
Ñdc be the average number of collisions that occur between a single white particle
and a single black particle, as the former is bypassing the latter (i.e. as the former
is traveling the distance of l1, relative to the latter). That is, Ñdc represents the
number of direct collisions per unit bypass. The subscript “dc” is an acronym for
“direct collision”. With illustrations A, B and C in Figure 2.8, some examples of Ñdc
values are given.

Figure 2.8: Illustrations A, B and C gives some examples of Ñdc values. Illustration D
demonstrates how the smaller solid particles, in-between the black and white particles, act as a
conduit for an indirect and multiple collisions. The number of such indirect collisions per unit
bypass, is designated here with Ñic (see discussion shortly).

Momentum Transfer by Direct Collisions (Ṅ Ñdc)∆pdc

For a single collision between a white particle and a black particle (i.e. between a
pair of large cement particles), the latter increases its momentum (in the average)
by ∆pdc = αdcm (vw − vb) in the x1-direction. Similar contribution will also go in
the x2- and x3-direction, depending on collision condition. However, for the sake
of simplicity, the two last-mentioned contributions are ignored here. The interested
reader is rather referred to the Bagnold’s [4] original paper. With the momentum
increase of ∆pdc = αdcm (vw − vb) for the black particle, the white particle will
lose this amount. It will be assumed that the white particles will quickly retain its
original momentum after the impact, with the help of some external machinery. This
is a common setup in viscometers. For example in the case of the ConTec BML
Viscometer 3 (see Figure 3.1, Page 51), its outer cylinder is kept at rotational
motion with the help of an external machinery. This results in that the outer most
particles near the outer cylinder (or in this case, the white particles) do not lose
momentum in the average, during the collision process with the inner ones (i.e. with
the black particles).

The term m used in the momentum contribution ∆pdc = αdcm (vw − vb), desig-
nates the (average) mass of the larger cement particles. The value αdc is a material
parameter, depending among other factors, on the cement particle surface roughness,
and on angle of collision. See Bagnold’s [4] original paper about the angle of collision.
Increased hydration results in a larger surface roughness, which results in a better
grip between two colliding particles. This gives a larger momentum transfer between
two colliding particles and is mathematically described with a larger αdc value.

With the number of bypass per unit time Ṅ and the number of direct collisions per
unit bypass Ñdc, the product Ṅ Ñdc = ṅdc describes the number of direct collisions per
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unit time (or the direct collision rate), between a white particle and a black particle.
Hence, the rate of momentum transfer due to direct collisions is (Ṅ Ñdc)∆pdc.

Momentum Transfer by Indirect Collisions (Ṅ Ñic)∆pic

Now, some consideration must be taken into account for the smaller cement particles,
present in-between the white and black particles (i.e. between the larger cement par-
ticles). This condition is shown with illustration D of Figure 2.8. These smaller solid
particles act as a conduit for “collisions” (or rather momentum transfer) that occur
between a white and a black particle, without the latter actually bumping into each
other. The number of such indirect collisions per unit bypass, is designated here with
Ñic. The subscript “ic” is an acronym for “indirect collision”.

It is perhaps a bit difficult to describe in exact terms, what an indirect collision
consist of. As a first approximation, one could describe such collision as a momentary
formation of a single and continuous bridge of the smaller cement particles. Being si-
multaneously in contact with both a white and a black particle, such bridge would act
as a conduit for momentum transfer between them. With larger degree of coagulation
(right illustration of Figure 2.9), such type of bridges forms more frequently and are
of a longer duration, relative to the seldom formed and shorter lived bridges of fully
dispersed cement particles (center illustration of Figure 2.9). Hence, with increased
coagulation, the value of Ñic will increase.

Figure 2.9: With larger degree of coagulation (right illustration), formation of bridges occurs
more frequently resulting in a more frequent indirect collisions Ñic per unit bypass, than would
have been a reality if these particles where fully dispersed (center illustration). Both a permanent
(Jp

t ) and a reversible (Jt) junctions (or connections) can be present in the right illustration.

With the chemical reactions between the cement particles and water, the cement
particles will grow in size, while the amount of free water19 will be reduced. An
example of such growth is shown in Figure 2.17 (Page 38). This will result in a
reduced maneuverability of the individual smaller cement particle, in avoiding the
formation of a continuous bridge between the white and black particles (see the center
illustration of Figure 2.10). Hence, with increased hydration, the value of Ñic will
increase. In addition to this, with large coagulation state J tott = Jpt + Jt (permanent
and/or reversible), such bridges forms even more frequently and are of considerable
longer duration. This is shown with the right illustration of Figure 2.10.

For each indirect collision that occur, the black particle will increase its momentum
(in the average) by ∆pic = αicm (vw−vb) in the x1-direction, and correspondingly the

19Free water gives the possibility for the cement particles to have a certain average distance between
them, as shown for example in Figure 2.9. As such, the free water is defined as the matrix. The free
water (or rather the solution of free water and different ionic species) is not to be confused bound
water (physically or chemically) to the surface of the cement particle. The total water inside the
suspension is the sum of free water and physically bound water. In accordance with Reactions 2.47,
2.48, 2.49 and 2.50, the amount of total water is decreasing with increasing hydration; i.e. more and
more water molecules of the total water, becomes chemically bound during the hydration process.
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Figure 2.10: With larger degree of hydration (center illustration), formation of bridges occurs
more frequently resulting in a more frequent indirect collisions Ñic per unit bypass, than would
have been a reality if these particles where not hydrated at all (center illustration in Figure 2.9).
In addition to hydration, with coagulated cement particles (right illustration), bridges will form
even more frequently, resulting in a still larger Ñic value. Both a permanent (Jp

t ) and a reversible
(Jt) junctions (or connections) can be present in the right illustration.

white particle will lose this amount. As before, the white particles will quickly retain
its original momentum after the impact, with the help of some external machinery.
The value αic is a material parameter, depending among other factors, on the time
duration of the pre-mentioned bridge and surface roughness of the cement particles.
With increasing surface roughness, a better connection (or grip) exists between the
larger cement particles and the bridges of smaller cement particles.

With the number of bypass per unit time Ṅ and the number of indirect colli-
sions per unit bypass Ñic, the product Ṅ Ñic = ṅic describes the number of indirect
collisions per unit time (or the indirect collision rate), between a white particle and
a black particle. Hence, the rate of momentum transfer due to indirect collisions is
(Ṅ Ñic)∆pic.

Shear Stress τ and Shear Viscosity η

From the above, it is apparent that the rate of momentum transfer between a white
and a black particle, becomes ∆ṗ = (Ñdc∆pdc + Ñic∆pic) Ṅ . Since the number of
white-black-particle-pair is δA/(l1 l2) (see illustration C in Figure 2.7), the total rate
of momentum transfer across the plane δA is ∆ṗ[δA] = [δA/(l1 l2)]∆ṗ. Hence, the
shear stress is calculated as τ = ∆ṗ[δA]/δA = ∆ṗ/(l1 l2). Assuming an equal CM
distance between the white and black particles l1 = l2 = l3 = l, the bypassing rate
becomes Ṅ = (vw − vb)/l3 ≈ ∂v1/∂x3 = γ̇. Therefore, the shear stress becomes
equal to τ = ∆ṗ/l2 ≈ [(Ñdc∆pdc + Ñic∆pic)/l2] γ̇. Now, using20 τ = η γ̇, the shear
viscosity can be extracted and is given by Equation 2.25.

η ≈ (Ñdc∆pdc + Ñic∆pic)/l2 (2.25)

In removing all the black and white particles, by taking the limit l → ∞, the above
shear viscosity becomes zero. This is an incorrect result because the remaining smaller
cement particles, present in-between the previous black and white particles, will al-
ways make their own shear viscosity contribution. Again, in keeping the current text
as simple as possible, their contribution (and others) will not be calculated here. In
spite of its limitation, Equation 2.25 will suffice for the discussion that now follows.

Experimental Shear Viscosity η of Cement Particle Suspension

In Chapter 9, the (thixotropic) shear viscosity η of cement paste is extracted. This
is done by a combination of computational calculations and experimental measure-

20See the paragraph just above Equation 7.5 on Page 156.
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ments. The objectives of this particular chapter is to test the Hattori-Izumi theory
(Section 2.4.2) and its modification (Section 9.3). In addition to this, the functional
form of the shear viscosity function η = η(x, t) that is created, is of great interest. Fi-
nally, some supplementary information is extracted, about the effects of the polymers
used in this thesis. In reproducing the behavior of the cement pastes by numerical
means, the shear viscosity function had to have the form presented in Equation 2.26.

η = [µ+ µ̃+mγ̇n] +
[τo + τ̃o]

γ̇
(2.26)

With the idea behind Equation 2.25 in mind, some discussion about the viscometric
parameters µ, τo, µ̃ and τ̃o can be made. This is done with the following items. In
this explanation, illustrations A, B, C and D in Figure 2.11 is provided as an aid.

Figure 2.11: Explanation of the viscometric values µ, µ̃, τo and τ̃o in Equation 2.26. Note that

the values µmin, τmin
o , ∆µ(1) and ∆τ

(1)
o are related to the contribution of free particles. Since

the number of such particles are reducing in illustrations C and D, then so are the values of
these last-mentioned viscometric parameters.

• Illustration A: The parameters µ and τo are related to the basic momentum
transfer between the white and black particles (i.e. the larger cement particles),
when the smaller cement particles (in-between) are fully dispersed. These are
the direct collisions that occur between the white and black particles (see also
Figure 2.8) and the indirect collisions between them. As explained previously,
the latter type of collision consist of momentum transfer through a short lived
bridges that act as a momentum conduit (see center illustration of Figure 2.9).

• Illustration B: With the cement particle growth (due to hydration), the num-
ber of indirect collision per unit bypass Ñic increases. This is because of how
the bridges of the smaller cement particles form more easily as a result of the
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concomitant loss in maneuverability in avoiding such formation (see center il-
lustration of Figure 2.10). Also, increased hydration results in a larger surface
roughness, which again results in a better grip between two colliding cement
particles. This gives a larger momentum transfer ∆pdc and ∆pic between two
such colliding particles. All the above results in a larger τo and/or µ values.

• Illustration C: In addition to the above point, when the cement particles un-
dergo a permanent coagulation, a larger occurence of the above-mentioned bridges
is a reality. This results in a still larger τo and/or µ values. The size and number
of the bridges are related to the permanent junction number Jpt .

• Illustration D: The viscometric parameters µ̃ and τ̃o are related to the increased
momentum transfer between the white and black particles, with bridges that
can be broken down at later times. The size and number of such bridges are di-
rectly related to the reversible junction number Jt. Since the reversible junction
number can increase and decease, then so can also the µ̃ and τ̃o values. Both
illustrations C and D can correspond to the right illustration of Figure 2.10.

As Equation 2.26 is based on experimental results, the isolated shear viscosity
contribution of the smaller cement particle, which was not included in Equation 2.25,
is now taken into account. The term mγ̇n in Equation 2.26, is sometimes included
in the numerical simulations, to account for shear-thickening effect. This typically
results from dilatancy behavior of the test material [9].

2.4.2 The Hattori-Izumi Theory

In this section, only the relevant part of the Hattori-Izumi theory [42, 41] is pre-
sented. For further information about this theory, the reader must consult with the
original papers. The notation of the individual variables is kept as unchanged as
possible from the authors. Here in Section 2.4.2, the word “coagulation” will appear
frequently. With this it is meant the reversible coagulation only, where two coagu-
lated cement particles can be separated again for the given rate of work ẇ available
to the suspension (see Equation B.34, Page 390). The number of junctions created
by a reversible coagulation, is designated with Jt. As has been mentioned previously,
when the two cement particles cannot be separated, the phrase “permanent coag-
ulation” is used. The number of junctions created by a permanent coagulation, is
designated with Jpt . Permanent coagulation or permanent junction, is not an issue in
Section 2.4.2.

Shear Viscosity

Basically, the theory of Hattori and Izumi consists of calculating the shear viscosity
η for a cement particle suspension. It is assumed that the shear viscosity η is mostly
dependent on the reversible coagulation state Jt. More precisely, the Hattori-Izumi
theory assumes a shear viscosity of the form shown with Equation 2.27 [42, 41].

ηHI = B3 J
2/3
t + {other less relevant terms} ≈ B3 J

2/3
t (2.27)

The term B3 is a so-called friction coefficient between the primary particles and has
the physical unit of [N · s]. The important variable Jt is explained below.
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Junctions Between Primary Particles

The term Jt ≡ J3, in Equation 2.27, represents the number of junctions (or connec-
tions) between the primary particles, per unit volume (see Figure 2.12). As such,
this variable has the physical unit of [m−3] (as applies for J tott and Jpt ). The number
of primary particles per unit volume is represented with n3. It is assumed that the
value of Jt increases by a naturally occurring perikinetic21 coagulation only. Also, it is
assumed that the cement particles dissociate (or disperse) by orthokinetic22 process.
Consequently, reduction in junctions Jt results by a stirring process only.

As shown with Figure 2.12, two initial states of suspension can be defined. One
consists of a completely dispersed state (illustration A) and the other of a completely
coagulated state (illustration C). It is assumed that the coagulated particles form
a kind of open-chain-structure, rather than closely interconnecting spherical/cubical
structure (with multiple internal cross-junctions). If coagulation occurs fast, then this
could be an acceptable assumption, since rapid coagulation (i.e. a large H) forms a
very loose and open structure, with a large amount of entrained water [52]. Slowly
coagulated systems may take much longer time to form, but it will be much more
compact [52].

Figure 2.12: Relationship between number of primary particles n3, number of particles nt

and junctions Jt (assuming a reference volume of 1m−3): A) nt = 60m−3, Jt = 0m−3,
n3 = nt + Jt = 60m−3 and U3 = Jt/n3 = 0. B) nt = 27m−3, Jt = 33m−3, n3 = nt + Jt =
60m−3 and U3 = Jt/n3 = 0.55. C) nt = 1m−3, Jt = 59m−3, n3 = nt + Jt = 60m−3 and
U3 = Jt/n3 = 0.98 ≈ 1. Illustration A corresponds to illustrations A, B and C in Figure 2.11.
Illustration C corresponds to illustration D in Figure 2.11.

As is demonstrated with Figure 2.12, the relationship between number of primary
particles n3, number of particles nt and junctions Jt is given by the following:

n3 = nt + Jt (2.28)

All the above variables have the physical unit of [m−3]. This means that the term n3
represents the number of primary particles per unit volume, and nt the number of
particles per unit volume.

Here, the perikinetic coagulation rate theory, established by Verwey and Overbeek
is employed [141, 42, 41]. In their calculation, the decreasing number of particles nt

21Perikinetic ⇒ no stirring ⇒ γ̇ = 0.
22Orthokinetic ⇒ with stirring ⇒ γ̇ �= 0.
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(in the suspension) is expressed as follows:

−dnt
dt

=
H n2t
n3

(γ̇ = 0) (2.29)

The constant H in the above, is known as the coagulation rate constant. Integrating
this equation from nt(0) = n3 to nt(t) = nt, results in the equation shown below.

nt =
n3

H t+ 1
(γ̇ = 0) (2.30)

Combining Equation 2.28 and 2.30, yields the important result:

Jt = n3

(
H t

H t+ 1

)
(γ̇ = 0) (2.31)

Because of the use of Equation 2.30, the above equation applies only when the primary
particles n3 are completely dispersed at t = 0. That is, at t = 0 there exists no
junctions (Jt|t=0 = 0) and hence all the particles nt consist of primary particles
(nt = n3). This situation is presented with illustration A in Figure 2.12.

For a completely coagulated system (nt|t=0 = 1), the authors argue [42, 41] that
the reduction in junctions Jt due to stirring (γ̇ �= 0) must result in a kind of opposite
functional relationship to what is shown with Equation 2.31. As such they come
up with the conclusion that the reduction in junctions Jt is given by the following
equation [42, 41]:

Jt = n3

(
1− γ̇ t

γ̇ t+ 1

)
(H = 0) (2.32)

The above applies only when the primary particles n3 are completely coagulated at
t = 0. That is, at t = 0 there exists no isolated primary particle (nt = 1) and hence the
number of junctions is equal to the number of primary particles (Jt|t=0 = n3−nt = n3,
c.f. n3 � nt = 1). This situation is presented with illustration C in Figure 2.12.

Equations 2.31 and 2.32 apply to totally different initial states: The former equa-
tion assumes complete dispersion at t = 0, while the latter assumes a complete coagu-
lation. Also, they apply to totally different physical conditions: The former equation
applies when the condition H �= 0 ∧ γ̇ = 0 is valid, while the latter applies when the
opposite condition H = 0 ∧ γ̇ �= 0 is valid. However, in spite of their differences,
by using those two equations in a certain combination the authors conclude, with a
small paragraph, that the total number of junction Jt for an intermediate state, must
comply with Equation 2.33.

Jt =
n3 [Uo(γ̇ H t2 + 1) +H t]

(H t+ 1)(γ̇ t+ 1)
(2.33)

The term Jo = n3 Uo in the above, is the junction number that exists at the start of
observation (t = 0), which is the condition shown with illustration B in Figure 2.12.
For the above equation, coagulation and dispersion can now be occurring at the same
time (H �= 0 ∧ γ̇ �= 0).

What now follows is a more detailed and comprehensive derivation of Equa-
tion 2.33, than is made in the original paper. After a number of mathematical steps,
the same result is nevertheless produced. As was done in the original paper, the
number of junctions originating from the no particles, namely J1, is first calculated.
Thereafter, the junctions originating from the Jo junctions, namely J2, is found. In
the end, the total number of junctions Jt = J1 + J2 is calculated.
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The Junction Number J1 (Junctions Originating From the no Particles)

As mentioned previously, Equation 2.32 applies when the primary particles n3 are
completely coagulated at t = 0; i.e. at t = 0, the number of junctions Jt is equal to
the number of primary particles Jt|t=0 = n3 − nt = n3 (c.f. n3 � nt = 1). Using this
fact in this last-mentioned equation, gives Equation 2.34.

Jt = Jt|t=0
(
1− γ̇ t

γ̇ t+ 1

)
(H = 0) (2.34)

For the given physical condition H �= 0 and γ̇ �= 0, a suspension usually never consists
of complete coagulated or of complete dispersed state. Rather it is in an intermediate
state, where the number of junctions is Jo and the number of particles is no (see
illustration B in Figure 2.12). With this, it is convenient to redefine the time axis
in such a way that Jt = Jo and nt = no at the time te = 0 (that is, Jt|te=0 ≡ Jo;
nt|te=0 ≡ no; U3|te=0 ≡ Uo). This time axis is called the “experimental time” in
[42, 41] and hence the subscript “e” in the time notation t. With the above, the same
relationship as is presented in Figure 2.12 can be produced (see also Equation 2.28):

Jt + nt = n3 ∧ U3 = Jt/n3 ⇒ Jo + no = n3 ∧ Uo = Jo/n3 (2.35)

One can make direct use of Equation 2.31 for this intermediate state, to calculate
the additional junctions Jnew1 (to the already existing junctions Jo), created due to
coagulation (H �= 0). This process is shown with illustration A and B in Figure 2.13.

Jnew1 = no

(
H te

H te + 1

)
⇒ Condition A → B in Figure 2.13 (2.36)

Figure 2.13: A → B: Because of the coagulation H �= 0, additional two new junctions are
created Jnew

1 = 2, namely the junctions α and β. Then there afterwards, B → C, the junction
β is terminated because of the agitation γ̇ �= 0. Note that the two steps A → B and B → C
are mathematical ones. The physical step consists of A → C (from te = 0 to te = dt).

As applies for Equation 2.31, Equation 2.36 is only valid when the condition γ̇ = 0
applies. Hence, it makes an overestimation of the number of junctions created. Be-
cause of the concomitant agitation (γ̇ �= 0), some of the calculated junctions Jnew1
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are never actually formed. However, by using Jnew1 as an initial condition in Equa-
tion 2.34, the effect of agitation (or stirring) is taken into account for:

J1 = Jnew1

(
1− γ̇ te

γ̇ te + 1

)
⇒ Condition B → C in Figure 2.13 (2.37)

Now, putting the outcome from Equation 2.36 into the above, results in Equation 2.38.

J1 = no

(
H te

H te + 1

)(
1− γ̇ te

γ̇ te + 1

)
=

noH te
(H te + 1)(γ̇ te + 1)

=

=
n3(1 − Uo)H te

(H te + 1)(γ̇ te + 1)
⇒ Condition A → C in Figure 2.13 (2.38)

The last part in the above equation is gained by using the relationship no = n3−Jo =
n3(1 − Uo) as described by Equation 2.35. Note that the two separated steps in
Equations 2.36 and 2.37 (A → B and B → C) are mathematical ones. This is
because of their difference in physical condition, to which they apply. The physical
step consists of A → C and occurs over the time period from te = 0 to te = dt.

The Junction Number J2 (Junctions Originating From the Jo Junctions)

From Equation 2.38, one could suggest that the total number of junctions Jt for a
suspension, is given by Jt = J1 + Jo. This equation would only be valid if the no
particles could never disperse (i.e. disconnect) to reduce the total number of junctions
Jt. Such a case is shown with Figure 2.13. However, Figure 2.14 demonstrates
how the original no particles can (internally) disperse, to increase their number from
nt = no = 3 to nt = no + nadd = 6 (A → B), and then to nt = 4 (B → C).

Figure 2.14: A → B: Because of agitation γ̇ �= 0, the original no particles disperse (or
disconnect), to increase their number from nt = no = 3 to nt = no+nadd = 6 (nadd = 3). Then
there afterwards, B → C, the total number of particles are reduced because of the coagulation
H �= 0. Note, as before, the two steps A→ B and B→ C are mathematical ones. The physical
step consist of A → C (from te = 0 to te = dt).

When the original no particles disperse (internally) to increase their number from
nt = no to nt = no + nadd, a reduction in junctions must occur at the same time
(condition A → B in Figure 2.14). As always stated, at the time te = 0, the total
number of junctions is Jt = Jo (illustration A in Figures 2.13 and 2.14). Hence, the
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reduction in junction from the original Jo junctions, due to (internal) dispersion of
the original no particles, can be extracted from Equation 2.34:

Jo2 = Jo

(
1− γ̇ te

γ̇ te + 1

)
⇒ Condition A → B in Figure 2.14 (2.39)

Now, according to Equation 2.35, the following applies (see Figure 2.14):

Jo = n3 − no (2.40)
Jo2 = n3 − (no + nadd) (2.41)

The term nadd is the number of new particles, “created” as a consequence of the
reduction in junctions from the original Jo junctions to the Jo2 junctions. Subtracting
Equation 2.41 from Equation 2.40, with the concomitant use of Equation 2.39, results
in a formula giving the number of these new particles:

nadd = Jo

[
1−

(
1− γ̇ te

γ̇ te + 1

)]
= Jo

(
1− 1

γ̇ te + 1

)
(2.42)

Because of the condition H �= 0, these new additional particles nadd will coagulate,
resulting in a new additional junctions Jnew2 (to the already existing junctions Jo2 ).
[Note that the (“external”) coagulation or dispersion of the original no particles is
not of concern here, because that case is already taken care of with J1, as shown in
Figure 2.13]. Using nadd as an initial condition in Equation 2.31, the new additional
junctions Jnew2 can be calculated as shown with Equation 2.43 (condition B → C in
Figure 2.14).

Jnew2 = nadd

(
H te

H te + 1

)
= Jo

(
1− 1

γ̇ te + 1

)(
H te

H te + 1

)
(2.43)

Therefore, the change in junction number relative to the original Jo junctions is given
as (condition A → C in Figure 2.14):

J2 = Jo2 + Jnew2 = Jo

(
1− γ̇ te

γ̇ te + 1

)
+ Jo

(
1− 1

γ̇ te + 1

)(
H te

H te + 1

)
=

= Jo

[
H γ̇ t2e +H te + 1
(H te + 1)(γ̇ te + 1)

]
= n3 Uo

[
H γ̇ t2e +H te + 1
(H te + 1)(γ̇ te + 1)

]
(2.44)

The last part in the above is gained by using the relationship Jo = n3 Uo as is described
by Equation 2.35.

The Final Junction Number Jt = J1 + J2

The processes presented with Figure 2.13 (⇒ J1) and Figure 2.14 (⇒ J2), occur
simultaneously over the time period from te = 0 to te = dt. As such, the total number
of junctions Jt is gained simply by adding23 J1 and J2. Hence, from Equations 2.44
and 2.38, the total number of junctions Jt for a particle suspension, is given by:

Jt = J1 + J2 =
n3 [Uo(γ̇ H t2 + 1) +H t]

(H t+ 1)(γ̇ t+ 1)
(2.45)

23It should be clear that the contribution of Jo is included in J2 term. This is apparent by putting
te = 0 in Equation 2.44, giving J2 = Jo. Therefore, the total junction number is not calculated as
Jt = J1 + J2 + Jo, but rather as Jt = J1 + J2.
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In the above, the experimental time te is replaced with t. Putting the above into
Equation 2.27, gives the shear viscosity, predicted by Hattori and Izumi:

ηHI = B3

[
n3 [Uo(γ̇ H t2 + 1) +H t]

(H t+ 1)(γ̇ t+ 1)

]2/3
(2.46)

Using this equation in a numerical simulation, to reproduce experimental observations,
resulted in a complete failure (see Figure 9.1, Page 208). But as is demonstrated in
Chapter 9, with some modifications, the above equation becomes a quite useful tool.

2.5 Coagulation Rate H

In this section, an overview of the relevant theories that are related to the coagula-
tion rate H are presented. These include the chemical reactions between the cement
particles and water (Section 2.5.1) and the concomitant change in potential energy
VT between the cement particles (Section 2.5.2) as a result of these reactions. Fi-
nally (Section 2.5.3), a relationship between the coagulation rate H and the potential
energy VT is presented for the perikinetic case (γ̇ = 0). In the end, some necessary
modifications to the coagulation rate H are introduced, to apply for the orthokinetic
case (γ̇ �= 0). These modifications and the theory presented in Section 2.4.2, will be
used in Chapter 9.

2.5.1 Chemical Reactions of the Cement Particle and Water

When cement particles and water are intermixed, thus forming a cement particle
suspension (i.e. forming a cement paste), complex chemical reactions start to occur,
generally designated as hydration. In strictly chemical terms, hydration is a reaction
of an anhydrous compound with water, yielding a new compound, a hydrate [91].
As Portland cement is a multi-component system, its hydration is a rather complex
process, consisting of a series of individual chemical reactions that take place both
in parallel and successively [91]. For the sake of clarity, only the most important
reactions are considered here. These are the ones related to coagulation rate H in
the pre-dormant and dormant period. Also, the effect of lignosulfonate on the cement
hydration is not discussed in this section. This is rather done in Section 6.4.1.

A further discussion about the overall complex chemical reactions involved in
cement hydration, can for example be found in the textbook edited by Hewlett [91].

The Cement Clinker

Clinker consists of the combined minerals, which the cement particle is made from.
It consists mainly of crystallized calcium silicates24, C3S and (β-) C2S surrounded by
interstitial calcium aluminate C3A and calcium aluminoferrite C4AF. Because of the
impurities in these compounds, one often refers to their impure state: alite, belite,
aluminate and ferrite, respectively [131]. The average magnitude of each constituents
inside the cement particles is a variable depending on the cement type. Typically,
the alite constitutes for about 50-70% by mass, while belite, aluminate and ferrite

24C3S ⇒ Tricalcium Silicate; C2S ⇒ Dicalcium Silicate; C3A ⇒ Tricalcium Aluminate; C4AF ⇒
Tetracalcium Aluminoferrite (a mean composition of a solid solution series ranging from C6A2F to
C6AF2) [152]. Following abbreviations for the oxides are used: C = CaO; S = SiO2; A = Al2O3;
F = Fe2O3; H = H2O; S̄ = SO3; N = Na2O; K = K2O; M = MgO.
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constitutes only for about 15-30%, 5-10% and 5-15%, respectively [131]. The left
illustration of Figure 2.15 shows a typical cement particle submerged in water [112].
In this figure the alite is the predominant clinker phase. The belite forms well defined
regions that are rounded, striated and darker than the alite. The interstitial material
present, for example in a vertical band left of center within the large particle, consist
mainly of ferrite (light) and aluminate (dark). From this illustration, it is clear that
the cement grain is not a perfect sphere as shown in Figure 2.12. However, it should be
noted that no specific geometrical form is explicitly assumed in the theory presented
in Section 2.4.2.

Figure 2.15: To the left: A typical cement grain in fresh paste [112]. To the right: Schematic
figure displaying the heat of hydration ḣ when cement particles and water are intermixed [152,
98, 29]. In Stage I, there is an initial rapid reaction, which is completed within about 15 minutes.
It is followed by the dormant period, which lasts typically for about 1 to 3 hours (Stage II). First
and final setting is in Stage III (typically occurring after 2 to 8 hours) and the early development
of strength starts in the beginning at Stage IV. The rate of heat ḣ is defined in Appendix B.7.2.

The creation of cement clinker consists of burning calcareous material, such as
limestone CaCO3, and of silica and alumina rich materials such as clay or shale
[89]. First, the raw materials are crushed into very fine powder and then intimately
mixed in predetermined proportions [68]. Thereafter the powder is burned in a large
rotary kiln at a temperature of about 1400 to 1450◦C where the material sinters and
partially fuses into clinker [89, 131]. After rapid cooling, the clinker is ground in mills
and intermixed with gypsum CS̄H2 (2.5-5% by total weight of cement) to control
the hydration of C3A. At first contact with water, the gypsum dissolves into Ca+2,
SO−2

4 and water. It is the sulfate ion SO−2
4 that controls the hydration of the C3A

compound [152].
Additional oxides are also present in the cement particle like K2O, Na2O (“the

alkalis”) and MgO, but only in minor amount. The alkalis are often found in the
mineral K3NS̄4 or as solid solution in the main minerals [61]. Free CaO (i.e. free
lime) is also found in the cement particle due to insufficient reactions in the kiln,
and/or due to the decomposition C3S → C2S + CaO [109, 110]. The latter reaction
appears if the cooling rate of the clinker is too slow inside the kiln [110, 61].

The cement particles are poly-dispersed in size, with diameters ranging from 1µm
to 100µm [131]. Typically 7-9% by weight are smaller than 2µm and 0-4% by weight
coarser than 90µm [131]. The mass averaged size of the cement particles is reported
to be typically 22µm [118].
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Hydration of the Cement Particle

Since all relevant reactions of Portland cement are exothermic, cement hydration is
well described with the rate of heat development from isothermal calorimetry as a
function of time [152, 98, 29]. A schematic illustration of such curve is shown in
Figure 2.15. On first contact with water, a heat of hydration peak appears instanta-
neously as shown in this figure (Stage I). This peak is caused by dissolution of alkali
sulfates K3NS̄4, present in the clinker, which dissolves completely within seconds con-
tributing K+, Na+ and SO−2

4 to the solution between the cement particles [91]. This
is followed by the dissolution of Ca+2, OH− and SiO−4

4 ions from the C3S and C2S
part of the cement grain [91, 152]. The pH-value rises to over 12 within few minutes
[152]. This hydrolysis slows down quickly but still continues to some extent, through-
out the dormant period (Stage II in Figure 2.15) [152]. As shown in Figure 2.16,
a rapid change in concentration of the above ions is a reality in the early stages of
hydration [132, 128].

Figure 2.16: Concentration of ions in solution, plotted against time. To the left: Hydration of
pure C3S at w/c = 5. To the right: Hydration of ordinary Portland cement at w/c = 2. Both
illustration are reproduced from the textbook of Tattersall and Banfill [128], however the findings
are originally reported by Thomas et al. [132].

The first peak in Figure 2.15 (Stage I), consists also of ettringite formation (that
is, Al2O3-Fe2O3-trisulfate, or simply AFt) according to Reactions 2.47 and 2.48 [152].

C3A+ 3CS̄H2 + 26H→ C3A · 3CS̄ ·H32 (2.47)

3C4AF + 12CS̄H2 + 110H→ 4[C3(A,F) · 3CS̄ ·H32] + 2(A,F)H3 (2.48)

As shown with the two above reactions, C3A and C4AF are in competition for the
available sulfate ions SO−2

4 present in the solution. Because the latter compound
reacts much slower than the former, most of the sulfate will go in production of
C3A · 3CS̄ · H32 by Reaction 2.47 [152]. This product is in most part created in the
bulk solution, and quickly precipitates at the C3A and C4AF surface of the cement
particle [29, 62]. The parentheses in Reaction 2.48 stand for when Al can partly or
completely be replaced by Fe. Both above reactions are slowed down as AFt phases
create a diffusion barrier between the water and the C3A and C4AF part of the cement
grain and stays at a minimum through the dormant period (Stage II) [152].
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Stage III in Figure 2.15, consists of stiffening that occurs within the cement paste
after few hours, followed by Stage IV where the subsequent development of strength
starts [152]. Both phenomena are due to the following reactions [152]:

2C3S + 7H→ C3S2H4 + 3CH (2.49)

2C2S + 5H→ C3S2H4 +CH (2.50)

The stoichiometric Reactions 2.47 to 2.50 are ideal, meaning that they resemble an
average reactions. For example, in Reactions 2.49 and 2.50, the stoichiometric values
3, 2 and 4 in the product C3S2H4 can vary. A more accurate presentation of the
product would be CaSbHc where the values a, b and c generally vary considerably
with w/c-ratio and time after water addition [63]. It has been shown that the product
C-S-H is in the form of extremely small interlocking crystals that are measured in
nanometers [14]. Therefore the C-S-H structure is often described as gel [88]. As
stated above, the Reactions 2.49 and 2.50 start to occur in their full rate, in the end
of dormant period. However, during the pre-dormant period, the dissolution rate of
the C3S compound is faster than diffusion can carry the dissolved ions (Ca+2, OH−,
SiO−4

4 ) away from the C3S surface, causing a concentration gradient in its vicinity
[91]. Here, the liquid phase near the surface, quickly becomes oversaturated with
respect to calcium silicate hydrate and a layer of a C-S-H product (of type E [35])
start to precipitate at this surface [91, 128, 35]. In this last-mentioned theory, it
is assumed that all chemical species of the C3S mineral, which are in direct contact
with water, dissolve into the solution. This process is known as congruent dissolution.
However, there is another theory present to this, which does not involve congruent
dissolution [91, 35]: Initial dissolution is rather considered to be incongruent, with
Ca+2 and OH− moving rabidly into the solution and leaving a silica-rich surface layer.
Subsequent re-adsorption of Ca+2 on the now negatively charged surface creates an
electrical double-layer [91, 35]. Continued incongruent dissolution should increase the
thickness of this silica-rich layer, which eventually reorganizes into C-S-H [35].

Since the overall chemistry of the C2S is similar to the C3S, however at a slower
rate [91, 152], similar chemical occurrence could be expected at the C2S surface.

Summary

From the above text, it appears that in the pre-dormant period, the cement particles
are coated by hydration products, namely of both AFt and C-S-H products. The C-S-
H product is of type E and continues to develop on the C3S and C2S surface, through
the dormant period [35, 91, 152]. The formation of the AFt and C-S-H products are
slowed down trough the dormant period [152, 91].

Trettin [134] used an atomic force microscopy (AFM) to show that the (isolated)
alite crystals build up about 50 nm thick C-S-H layer, during the pre-dormant period.
During the same time period, stubby rods of ettringite (i.e. AFt) develops, typically
250 nm long and 100 nm thick [131]. They appear both on the cement particle surface,
and at some distance away, in the solution water between the cement particles [131].
They are more abundant near the surface of the aluminate phase, and appear to
nucleate in the solution and on the outer surface of the above-mentioned layer of
C-S-H product [131]. Figure 2.17 [111] shows an example of how the hydrate covers
the unhydrated part of the cement particle, as a function of time.

The most significant events occurring in the pre-dormant and dormant period, may
be viewed as the hydrate coating of the cement particles and the solubilization of a
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Figure 2.17: The condition of a cement particle at different times from water addition. The
illustrations demonstrate how the hydrate (i.e. C-S-H, AFt and more) covers the unhydrated part
of the cement particle (i.e. C3S, C2S, C3A and C4AF) as a function of time. The figure is from
Scrivener [111]. See the center illustration of Figure 2.10 (Page 26) about the direct effect of
hydrate cover (basically C-S-H-gel and AFt) on the shear viscosity η.

variety of ionic species into the solution between them. More precisely, the chemical
process of interests are first of all, the ejection of ions, like of K+, Na+, SO−2

4 , Ca+2,
OH− and SiO−4

4 into the solution, between the cement particles (see Figure 2.16). This
gives the bulk solution a specific ionic strength I, defined with Equation 2.54. Also,
as a result of this ion-ejection, the cement particles becomes coated with hydration
products and gains a surface charge. Both negative and positive charges are present
at the surface of a given cement particle [29]. However, depending on literature, the
total charge is either reported as positive or as negative. For example, the total charge
of circa +10mV is reported by Edmeades et al. [29] and of −2mV by Gustafsson [39].

2.5.2 Potential Energy VT Between Cement Particles

Electrostatic Repulsive Potential Energy VR Between Charged Particles

With both negative and positive charges at the surface of a cement particle, two such
particles have a very strong tendency in coagulating. This is due to the electrostatic
attraction between the opposite charged surfaces. This leads quickly to a very large
coagulation state J tott = Jpt + Jt (permanent and/or reversible), which results in a
larger shear viscosity η as shown with Figure 2.11. However, with the introduction of
negatively charged polymers that adsorbs to the positive charged surfaces, both the
cement particles become negatively charged, resulting in their electrostatic repulsion
and hence in reduced coagulation rate H (which results in a smaller J tott value).

For the specific case shown in Figure 2.18, the adsorbed polymer is treated as
a part of the solid surface25. Ions of opposite charge (counter-ions), like Ca+2, are

25In this thesis, the solid surface is defined as the outer boundary of the hydrate products AFt and
C-S-H (these products covers the unhydrated part of the cement particle, c.f. Section 2.5.1). This
boundary includes the part of the polymer that is absorbed (or fused) into the hydrate, either by
the hydrate “growth” or by adsorption into “canyons”, like shown in Figure 2.20, to the left. The
part of the adsorbed polymer that is not fused into the hydrate, is not a part of the solid surface.
With this definition, the solid surface defines the outer boundary of the cement particle. As such,
the distance between two approaching cement particles is defined as between their solid surfaces.
This solid-surface-to-solid-surface distance is represented with Ds (see Figure 2.22, Page 45).
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attracted toward the solid surface and ions of like charge (co-ions), like SO−2
4 , are

repelled away from the solid surface [115]. This together with the mixing tendency of
thermal motion, leads to the formation of electric double-layer [115]. The electric
double-layer can be regarded as consisting of two regions. An inner region (of thickness
δ) called the Stern layer, and a outer region (of effective thickness 1/κ) called the
diffuse layer. In the diffuse layer, ions are distributed according to the influence
of electrical force and random thermal motion [115]. As shown in Figure 2.18, the
thickness of Stern layer δ, is equal to the radius of ions that are adsorbed to the solid
surface (namely, the Ca+2 ion for this specific case).

Figure 2.18: Top left and bottom: Schematic representation of the structure of the electric
double-layer according to Stern’s theory [115]. In this theory, the adsorbed lignosulfonate polymer
(LS) is treated as a part of the solid surface. Its size drawn here, is severely underestimated for
convenience. The correct diameter is about 10 nm [18]. Also, not all ions involved are shown.
Top right: Zeta potential ζ as a function of polymer dosage in stirred OPC pastes (w/c = 0.5),
20 minutes after water additions [39, 18]. The markings “LMW”, “HMW” and “SNF” are
defined in Section 4.2.2. The bottom right illustration is extracted from Figure 2.11.

The change in electrostatic potential ψ in a charged medium, from a charged solid
surface, can be calculated with one of the (inhomogeneous) Maxwell’s equations,
presented with Equation 2.51 [23, 117].

∇ ·E = ∇ · (−∇ψ) = ρe/ε ⇒ ∇2ψ = −ρe/(εoεr) (2.51)

The above equation is frequently referred as Poisson equation [115, 52, 79], because
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of its mathematical26 form. The term E [V/m] is the electric field, and has similar
functionality as gravity g [m/s2] in the physics of mechanics. As mentioned previously,
the term ψ [V] is designated as electrostatic potential. It plays a similar role as the
geopotential Φ [m2/s2] in Equation B.26, Page 387 (E = −∇ψ ⇔ g = −∇Φ). Finally,
the terms ρe, εo and εr are the charge density [C/m3], the permittivity of vacuum
[F/m] and the relative permittivity [unit less], respectively.

With various simplifications and approximations, Equation 2.51 can be solved by
analytical means for a single isolated charged (cement) particle. First, by applying the
Gouy-Chapman approximations, followed by some improvement from the Stern’s the-
ory, an approximated electrostatic potential ψ = ψ(x) results [115, 52, 79]. With the
solution ψ = ψ(x), one can calculate the electrostatic potential energy V [J] between
the cement particle and an unit charge q with V = q ψ(x) [92]. With dψ(x)/dx ≥ 0 ∀
x, as shown in Figure 2.18, an electrostatic repulsive potential energy VR = −e ψ(x)
results between a negative charged cement particle and a negative charged ion, like of
the OH−, pushing the ion away from the solid surface. The repulsive force that exits
between them is given by F = −∇VR = −dVR/dx ix. Calculating the repulsive poten-
tial energy VR = VR(ψ1, ψ2, . . . ) that builds up between two charged cement particles
1 and 2 when their diffuse layers (1/κ) start to overlap, is much more complicated.
However, this is possible with some additional approximations [79]. For example, the
repulsive potential energy between two spherical surfaces of the same radius Rc is
given by [141]:

VR = 2 π εo εrRc ψ2δ ln (1 + exp (−κDs)) (κRc � 1) (2.52)

The term ψδ is called the Stern potential, and is usually approximated with the zeta
potential ψδ ≈ ζ (see Figure 2.18), because of the uncertainties and difficulties in
measuring the former [79]. Ds is the solid-surface-to-solid-surface distance between
the cement particles (see Footnote 25). The parameter κ is called the Debye-Hückel
parameter, and is given by Equation 2.53 [52]. With this parameter, one can calculate
the (effective) thickness of the diffuse layer with 1/κ [52, 79]. The four parameters
ψδ, ζ, Ds and 1/κ are shown in Figure 2.18.

κ =
[
2000F 2d
εoεrRT

] 1
2 √

I in units of m−1 (2.53)

The term Fd in the above equation, is the Faraday’s constant and I is the ionic
strength (in the bulk solution, between the cement particles), and is given with [52]:

I =
1
2

∑
i

ciz
2
i (2.54)

The summation is over all the species of ion present in the bulk solution, between the
cement particles [52]. The term ci is the ionic concentration27 in the bulk solution
[mol/l] and zi is the ion valence. When calculating the ionic strength I, the ionic
consecration [mol/l] near and at the solid surface may not be included (see for example
the textbook by Hunter [52]). The phrase “bulk solution” is used here, instead of just
“solution”, to highlight this.

26Mathematical function of the type ∇2u = f is generally referred as a Poisson equation [117].
27If ci is represented with the unit of [mol/m3] when calculating the ionic strength I, Equation 2.53

must be replaced with κ = [(2F 2
d )/(εoεr RT )]

1/2
√
I.
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Attractive Potential Energy VA Between Particles

There is also an attractive force FA = −∇VA that exists between two cement particles.
This force consists of three types of intermolecular attraction28, namely the Keesom,
the Debye and the London-dispersion forces [12, 79, 115]. These three forces are
usually referred as the van der Waals forces [115, 79, 56]. A short description of these
forces will now follow:

Keesom force: A force between two molecules with a permanent electric dipole
moments. They mutually orientate each other in such way that ends of opposite sign
are adjacent. In this orientation, the molecules strongly attract each other.

Debye force: A force which forms when molecule with permanent dipole induces
a dipoles in the neighboring nonpolar molecule in such way that, on the average,
attraction results between them.

London dispersion force: The electron distribution in a nonpolar molecule is sym-
metric on the average. However, the electrons themselves are in constant motion
and at any given instant, one part of the molecule has an excess of them. When
two nonpolar molecules are close enough, their fluctuation charge distribution tend
to shift together, adjacent ends always having opposite sign and so always causing an
attractive force.

Usually, it is the London dispersion force that is of most important to the overall
van der Waals forces [115, 79]. For such a case, J. C. Hamaker (1937) derived an
expression for the attractive potential energy VA [115, 79] shown with Equation 2.55.
This expression applies for two particles with radiuses r1 and r2, separated by the
solid-surface-to-solid-surface distance Ds in vacuum [115, 79].

VA = −A
6

[
2 r1 r2
s̃− x̃

+
2 r1 r2
s̃− ỹ

+ ln
(
s̃− x̃

s̃− ỹ

)]
(2.55)

The term A is the Hamaker constant and is usually in the range between 10−19 and
10−20 J [79]. The terms x̃, ỹ and s̃ are given with x̃ = (r1 + r2)2, ỹ = (r1 − r2)2

and s̃ = (r1 + r2 + Ds)2. The above equation can also apply between two particles
submerged in a liquid dispersion medium (here, the solution between the cement
particles). In doing so, the constant A must be replaced with the effective Hamaker
constant A131 [115]. When one is considering a two equal sized cement particles
r1 = r2 = Rc, the above equation becomes:

VA = −A131
6

[
2R2c
s̃− x̃

+
2R2c
s̃

+ ln
(
s̃− x̃

s̃

)]
(2.56)

where x̃ = 4R2c and s̃ = (2Rc +Ds)2. As the distance between two cement particles,
approaches zero (Ds → 0), the above energy potential approaches minus infinite
(VA → −∞). However, repulsion due to overlapping of electron clouds, named the
Born repulsion, predominates at very small distances when the particles come into
contact [115]. This means that the real total potential energy VT = VR+VA+VS, never
goes to such extreme minimum as predicted by Equation 2.56 or by Equation 2.55.

The DLVO Theory: VT = VR + VA

With the double-layer repulsive potential energy VR (Equation 2.52) and the van
der Waals attractive potential energy VA (Equation 2.56) acting together, the total

28These three types of forces where postulated by van der Waals to explain non-ideal gas behavior.
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potential energy VT = VR+VA can be formed between two charged spherical particles
of radius Rc. This result is a part of the well-known DLVO theory [115, 52, 79, 56].
The left illustration of Figure 2.19, demonstrates an example of total potential energy
VT between two cement particles29 of radius Rc = 20µm. This radius is roughly
equal to the radius of the cement particle shown in Figure 2.15 (diameter ≈ 40µm).
Other values used are εo = 8.854 · 10−12 F/m, εr = 78.5 (water), ψδ ≈ ζ = −15mV
(see Figure 2.18), T = 293.15K, Fd = 96486C/mol, R = 8.3143 J/(K ·mol) and
A131 = 5.24 · 10−22 J. The value of the Hamaker constant A131 used in this specific
example, is extracted from Hattori [41]. The ionic strength I values used, are in the
range what has been measured in cement pastes (see for example [78, 150]).
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Figure 2.19: Total potential energy VT without (to the left) and with (to the right) a steric
effect VS. The dashed dotted line in the left illustration demonstrates the value of VS used.

As shown with the left illustration of Figure 2.19, the energy barrier V maxT against
coagulation consist of 8 · 10−18 J. This means that one of the cement particles only
requires a speed30 of v = 3.9 · 10−4m/s (Rc = 20µm) to overcome this barrier.
However, when in a coagulated state, a much larger amount of kinetic energy is
required for separating these two cement particles. This is due to how the energy
minimum |V minT | is much larger in magnitude, than the maximum value V maxT . With
smaller cement particles, repulsive potential energy VR is much more effective in
inhibiting a coagulation. For example with Rc = 1µm, the cement particles requires
a speed of v = 3.5 cm/s (V maxT = 3.9 · 10−19 J) to make the coagulation a reality.

Traditionally, the particles that are influenced by the DLVO effects are considered
to be of colloid particles. General definition of such particles is that at least one di-
mension is in the size range from 1 nm to 1µm [115, 52, 79]. However, there is no clear
distinction between the behavior of particles with somewhat larger dimensions than

29It should be clear that with the given approximations and assumptions made in forming Equa-
tions 2.52 and 2.56, the total potential energy VT shown, is only an approximation of the actual
potential energy that exists between two cement particles.

30 1
2
mv2 = V max

T ⇒ v = [2 (8 · 10−18 J)/1.05 · 10−10 kg]1/2 = 3.9 · 10−4 m/s; (ρ = 3120 kg/m3).
With this calculation it is assumed that coagulation should occur between two particles if they have
sufficient mutual kinetic energy to surmount the potential energy barrier VT that separates them. For
perikinetic condition (γ̇ = 0), such a procedure can be shown to be inadequate because any particle
having such a large amount of energy would lose it by frictional interactions with the dispersion
medium (here, the solution between the cement particles) long before it is able to penetrate through
the barrier [52]. However, under orthokinetic condition (γ̇ �= 0), it can be argued that the loss of
kinetic energy by this manner, is at least in part counterweighted by the gain due to the overall
stirring of the suspension.
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of the traditional colloidal particle [52]. As is shown with the example of the previous
paragraph, cement particles as large as Rc = 20µm seem to be able to “behave” as a
colloid particle, controlled by the action of the DLVO influence. However, when con-
sidering the pair of cement particles somewhat larger than Rc = 20µm, their kinetic
energy (or inertia) starts to be sufficiently large in overcoming their mutual energy
barrier V maxT against coagulation, and their energy barrier V maxT + |V minT | against
dispersion. When this condition applies, coagulation does not occur and the cement
particles interact with each other rather by a pure hard sphere collision factor.

Steric Repulsive Potential Energy VS

There is another potential energy effect that is also present, namely the steric repulsive
potential energy VS [J]. This effect basically consists of that the adsorbed plasticizing
polymer (marked as “LS” in Figure 2.18) inhibits the cement particles to physically
approach each other so closely as before [128]. The adsorbed skin of polymers thus
forms a steric barrier against close contact. If this barrier is thicker than the distance
to the potential energy minimum, the cement particles cannot approach each other
close enough to stick [128]. In this manner, a coagulation is prevented [128]. The
overall effect is usually referred as a steric31 hindrance.

The dashed dotted line in the left illustration of Figure 2.19, demonstrates an ex-
ample of VS. The resulting total potential energy VT(Ds) = VR(Ds)+VA(Ds)+VS(Ds)
is shown in the right illustration. When plotting this last-mentioned illustration, it is
assumed that the polymer contributing to steric hindrance, is without a surface charge
(i.e. without an active anion), and that the polymer contribution to the zeta potential
ζ is a part of the solid surface. Such condition is shown in the left illustration of Fig-
ure 2.20. In other words, if the potential energy VT(Ds) = VR(Ds)+VA(Ds)+VS(Ds)
plotted in the right illustration of Figure 2.19 is to be valid, the condition shown in the
left illustration of Figure 2.20 must apply. This condition is not very realistic, since
all lignosulfonate polymers contains surface charge and since they do not necessarily
arrange themselves as conveniently as shown in this illustration.

Figure 2.20: To the left: The condition that must apply if the right illustration of Figure 2.19,
or illustration B in Figure 2.21, are to be correct. To the right: A more realistic presentation of
adsorption. This configuration corresponds to illustration C in Figure 2.21. In this last mentioned
illustration, the dashed line corresponds to electrostatic repulsion (VR + VA) and the solid line
corresponds to steric and electrostatic repulsion (VR + VA + VS).

Since the lignosulfonate polymer has a surface charge (consisting of SO−
3 , C6H5O

−

and COO− groups), the surface potential ψo (see top left illustration of Figure 2.18)
31If present at relevant magnitude, the function VS will also include the effect from the hydration

(or structural) force. See [52, 56] about the (repulsive) hydration force.
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is moved away from the solid surface to the outer boundary of the polymer. This
is shown with the right illustration of Figure 2.20. With this, the electric double-
layer (of thickness δ + 1/κ ≈ 1/κ) is also moved by the same distance. Therefore,
if the thickness of the adsorbed polymers is designated with Dpol, the electrostatic
repulsive potential energy VR(Ds) must be shifted by the distance of 2Dpol. This is
done by replacing VR(Ds) with VR(Ds − 2Dpol). Hence, the total potential energy
rather consists of VT(Ds) = VR(Ds − 2Dpol) + VA(Ds) + VS(Ds). The reason for the
shift of 2Dpol instead of just Dpol will be explained shortly.
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Figure 2.21: To the left: The potential energy contributions VR, VA and VS. Center: VT(Ds) =
VR(Ds) + VA(Ds) + VS(Ds). To the right: VT(Ds) = VR(Ds − 2Dpol) + VA(Ds) + VS(Ds).

Illustration A in Figure 2.21 demonstrates the individual potential energy con-
tributions VR, VA and VS. These plots are generated by applying the values used in
Figure 2.19, with the ionic strength of I = 0.40mol/l. The steric potential used here,
is larger than the one shown in Figure 2.19. Illustration B in Figure 2.21 demon-
strates the resulting potential energy VT(Ds) = VR(Ds) + VA(Ds) + VS(Ds), while
illustration C demonstrates plot of VT(Ds) = VR(Ds − 2Dpol) + VA(Ds) + VS(Ds).
The functional form of the plot shown in illustration C, does not necessarily have to
be fully correct. Rather, the main objectives with it, is to demonstrate that the reach
of the total potential energy VT is not just 2Dpol, but rather 2Dpol + 2/κ.

The Reach of the Total Potential Energy VT = VR + VA + VS

As mentioned previously, the (effective) thickness of the diffuse layer at the solid
surface is 1/κ. This is also shown in the top left illustration of Figure 2.22. Because of
diffuse layer overlapping, an electrostatic repulsion (VR) starts to build up between two
approaching cement particles, when their distance Ds becomes low as 2/κ. Relative
to this, it is possible to state that the reach of the repulsion VR is 2/κ.

As is mentioned in Section 6.4.1, a multi-layer polymer adsorption could be factual,
rather than a mono-layer adsorption. This indicates that a negative charged polymer
can also adsorb on a negative charged solid surface. Given the hydrophobic properties
of the lignosulfonate core, then this is possible (see Section 4.2.2 about the structure
of the lignosulfonate polymer). Such adsorption is shown in the right illustration of
Figure 2.22. With this in mind, it is convenient to redefine the term Dpol to such that
it describes the average thickness of the adsorbed polymer on the cement particles.
In accordance with Footnote 25 (Page 38), the part of the polymers that are fused
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Figure 2.22: The top left illustration corresponds to the dashed line in illustration C of Fig-
ure 2.21. The right illustration corresponds to the solid line in illustration C of Figure 2.21.

into the solid surface, do not contribute to the thickness Dpol. This is indicated with
the right illustration of Figure 2.22.

Consider two cement particles that are covered with polymers of (average) thick-
ness Dpol and are approaching each other. As their distance Ds becomes lower than
2Dpol, a steric repulsive potential energy VS starts to build up between them. Relative
to this, it is possible to state that the reach of the repulsion VS is 2Dpol.

By polymer adsorption, the surface potential ψo is moved by the distance Dpol,
away from the solid surface. Hence, the electric double-layer (of thickness δ + 1/κ ≈
1/κ) is moved by the same distance. Therefore, the reach of the electrostatic (VR) and
steric (VS) repulsion can be considered as additive. As shown in the right illustration
of Figure 2.22, this gives a reach of 2Dpol + 2/κ for the total potential energy VT.

2.5.3 Coagulation Rate H and Potential Energy VT

The rate at which cement particles coagulate (permanently or reversibly), depends on
the number of collisions per unit time, between them [115, 52, 79]. It also depends on
the probability that their individual kinetic energy is sufficient to overcome the poten-
tial energy barrier V maxT that separates these particles [115, 52, 79]. As mentioned in
Section 2.4.2, the Hattori-Izumi uses the perikinetic (γ̇ = 0) coagulation rate theory,
established by Verwey and Overbeek [141, 42, 41]. This theory was presented with
Equation 2.29 and is reproduced below.

−dnt
dt

=
H n2t
n3

(2.57)

The coagulation rate constant H in the above equation is given by [141, 42, 41]:

H =
4KsmRc n3

(2/κ) exp(V maxT /k T )
γ̇ = 0 ∧ Rc < 20µm (2.58)

The term k is the Boltzmann’s constant and Ksm is the Smoluchowski’s rapid coag-
ulation rate constant, equal to Ksm = (4 k T )/(3 ηl), where the term ηl is the shear
viscosity of the liquid dispersion medium (here, the solution between the cement par-
ticles). The total potential energy used in the above equation is of VT = VR + VA;
i.e. the steric contribution is not taken into account for. To include the steric effects,
an empirical modification of the above equation could be made. This could consist
of replacing (2/κ) with (2/κ+ 2Dpol), where Dpol is the pre-mentioned thickness of
the adsorbed polymers. Also, the total potential energy VT would have to consist of
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something like what is shown in illustration C of Figure 2.21. The resulting modified
coagulation rate constant H is given by Equation 2.59.

H =
4 f(Ksm, Rc, n3)

(2/κ+ 2Dpol) exp(V maxT /k T )
γ̇ = 0 ∧ Rc < 20µm (2.59)

The term f in the above equation, is some unknown function.
By using Equations 2.57 and 2.58 (or 2.59) in the theory of Section 2.4.2, it is

assumed that the total number of reversible junctions Jt increases by a naturally oc-
curring perikinetic coagulation only. In other words, it is assumed that the coagulation
rate H exists only because of the Brownian motion of the cement particles. However,
as discussed in a textbook by Hunter [52], the coagulation rate H is greatly influenced
by the stirring of the suspension ⇒ H = H(γ̇). The stirring causes the particles to
be thrown together at a larger rate than the normal diffusion32 rate, and hence the
orthokinetic processes increases coagulation. An explanation of the problem is given
by Smoluchowski and is reproduced in the pre-mentioned textbook [52]. There, it is
shown that the orthokinetic process becomes increasingly important with increasing
particle size. With larger particles, such as in emulsions (droplet diameter ∝ 10−7m),
orthokinetic coagulation can occur at up to as much as 104 times the perikinetic rate
[115]. With particles at the lower end of the colloidal size range (diameter ∝ 10−9m),
stirring has relatively little effect on their rate of coagulation [115]. Since non-hydrated
cement particles are in the size range from 1 · 10−6m to 100 · 10−6m [131] in diame-
ter, the orthokinetic coagulation process plays an important role in determining the
correct coagulation rate H and hence in determining the correct junction number Jt.
As such, for cement particles, Equations 2.58 and 2.59 can only be valid under periki-
netic condition. This is indicated by writing “γ̇ = 0” beside those two equations.
Also written is “Rc < 20µm”, indicating that those equations are not relevant for
particles larger than 20µm in “radius”: As mentioned on Page 42, for particles with
larger radius than 20µm, coagulation between two such particles does generally not
occur. Rather, they interact with each other by a hard sphere collision factor alone.

In simulating experimental results by numerical means, the term “H t” is replaced
with the memory module Θ̃ in Chapter 9. The latter variable is defined with Equa-
tion 2.60 and is reproduced from Equation 9.4 (Page 210).

Θ̃(t) =
∫ t

0

β(t− t′) H(γ̇, t′) dt′ (2.60)

The term β is a memory function, defined in Section 9.3.1. After a large number
of trials, the most successful coagulation rate function is retrieved. This function is
shown in Equation 2.61 and is reproduced from Equation 9.10 (Page 213).

H(γ̇, t) =
K(t)
γ̇2 + l

γ̇ �= 0 ∧ Rc ∈ [0.01, 20]µm (2.61)

The term l in the above equation, is an empirical constant, kept equal to l = 1 s−2

at all times. This equation applies under orthokinetic condition, as indicated by
writing “γ̇ �= 0” beside it. Also written is “Rc ∈ [0.01, 20]µm”, indicating the size
domain of the particles, which this equation applies to, when orthokinetic condition
is valid; i.e. for particles with somewhat lower dimension than 0.01µm, Equation 2.58
or Equation 2.59 start rather to apply (see previous discussion).

32Brownian motion is observed macroscopically as diffusion [79].
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Ideally, Equation 2.61 should converge to Equation 2.58 or Equation 2.59, in the
limit of γ̇ → 0. Hence, it can be suggested that at least K (and possible also β) is
dependent on the important variables Rc, 2/κ+ 2Dpol and V maxT , giving:

K =
4 f1(Ksm, Rc, n3, t, . . . )

(2/κ+ 2Dpol) exp(V maxT /[k T + f2(γ̇)])
(2.62)

β = β(t− t′, 2/κ+ 2Dpol, V maxT , . . . ) (2.63)

where f1 and f2 are some material functions. An example of total potential energy
function VT used in Equation 2.62, is shown in illustration C of Figure 2.21. In the
limitation of the theoretical and experimental work done in this thesis, the above
functions K and β are extracted by pure empirical means. This is apparent with
Equations 9.6 and 9.11 (Page 210).

2.6 Summary

2.6.1 Section 2.2: The Governing Equation

In this part, the governing equation for the particle suspension is derived. In this
derivation, both the suspended particles and the matrix are treated in the exactly
the same manner, namely together as a group of solid particles. No distinction is
made between the two phases. Examples of “fluids” that benefit from this derivation
are the rings of Saturn, consisting of a solid ice and rock fragments (see Figures B.5
and B.6, Page 384), the sea ice floes in the Icelandic waters (see Figure 2.3, Page 18)
and the fresh concrete flowing inside a formwork (see Figure 3.2, Page 54) or inside
a viscometer (see Figure 3.8, Page 62). Flow of mortars and cement pastes inside
viscometers are additional examples.

2.6.2 Section 2.3: The Constitutive Equation

In this part, the constitutive equation to be used in the following chapters is presented.
It consist of σ = −p I+T, where T is the extra stress tensor. Few other constitutive
equations are also presented. In this thesis, the extra stress tensor is equal to T =
2 η ε̇. In Chapters 3, 5, 6, 8 and 10, the shear viscosity function η used in the extra
stress tensor is the one for the Bingham model η = µ+ τo/γ̇. However, in Chapter 9,
a more complicated shear viscosity model is used, as explained in Section 2.6.3.

2.6.3 Section 2.4 to Section 2.5: The Shear Viscosity

In a cement paste, the cement particles are continously colliding with each other.
For each collision, a momentum is transferred from one cement particle to the next.
With Equation 2.25 (Page 26), this momentum transfer is directly related to the shear
viscosity η of the cement paste.

In Section 2.5.1, it was discussed how complex chemical reactions occur between
the cement particles and water (generally designated as hydration). From Section 2.4.1,
these reactions increase the above-mentioned momentum transfer and thus increase
the shear viscosity η as a function of time. More precisely, the hydration will increase
the shear viscosity η by (at least) three effects. These are by the increased phase
volume Φ, surface roughness and coagulation state J tott = Jpt + Jt.
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Phase Volume Φ and Surface Roughness (Direct Hydration Effect)

As hydration goes on with time, the following properties of the suspension are changed:

• Phase Volume Φ: With time, the cement particles become more and more
coated with hydration products (namely C-S-H and AFt) as shown in Fig-
ure 2.17 (Page 38). This results in an increased “radius” Rc of all cement
particles and in reduced free water (see Footnote 19, Page 25 about free water).
In a more strict rheological terms, this means that the phase volume33 Φ is
increasing with time (however at different rate). This will result in a reduced
maneuverability of the individual smaller cement particle, in avoiding the forma-
tion of a continuous bridge between the larger cement particles (see the center
illustration of Figures 2.9 and 2.10, Page 25). Hence, with increased hydration,
the value of Ñic will increase, which again will give an increased shear viscosity
η as shown with Equation 2.25 (Page 26).

• Surface Roughness: As the cement particles become more and more coated
with hydration products, their surface roughness increases. This results in a
better grip (or contact) between two colliding cement particles and hence gives
a larger momentum transfer (∆pic and ∆pdc) between them during a (direct or
indirect) collision. As shown with Equation 2.25, this results in an increased
shear viscosity η.

Coagulation State Jtot
t = Jp

t + Jt (Indirect Hydration Effect)

When looking at Equation 2.59, it is clear that the variables Rc, 2/κ + 2Dpol and
V maxT controls the coagulation rate H , when perikinetic condition apply (i.e. when
γ̇ = 0). The same could be expected for the orthokinetic condition (i.e. when γ̇ �= 0)
as indicated with Equation 2.62. Because of the chemical reactions between cement
particles and water, the variables Rc, 2/κ+ 2Dpol and V maxT will change with time.
This will result in a different coagulation rate H as a function of time. More precisely,
during hydration the following occurs:

• Polymer Damage/Degrade: With time, the cement particles become more
and more coated with hydration products (namely C-S-H and AFt). This results
in the following:

- Increased “radius” Rc of all cement particles.

- Possible decreased Dpol, since larger part of the polymers could be inte-
grated (or fused) into the solid surface of the cement particle (see the right
illustration of Figure 2.22, Page 45).

33According to Barnes et at. [9], the phase volume Φ is defined as fraction of space of the total
suspension that is occupied by the suspended particles, or equally as Φ = Vp/(Vp + Vm). The term
Vp is the volume of the suspended particles and Vm is the volume of the matrix. Total volume of the
suspension is given as Vt = Vp+Vm and is slightly decreasing with time due to the chemical shrinkage
as mentioned in Footnote 16 (Page 21). Here, the suspended particles consist of the cement particles,
and hence, the free water defines the matrix for this particular case (see Footnote 19, Page 25 about
the free water). When the suspension consists of solid particles of a broad range in mass, dimension,
shape and surface texture, with no distinct boundary to a matrix, the phase volume becomes a
more relative term, defined by convenience. Here, the matrix is defined as the free water, while in
Chapter 10, it is defined as all particles below 2mm in diameter (see Footnote 1, Page 238).
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- Other types of continuous degradation/damage of the adsorbing polymer
could also be present as a direct or indirect result of hydration. This means
that there could be a reduction in the steric repulsive potential energy VS
as a function of time. If so, this results in a diminished maximum value of
the total potential energy V maxT as a function of time.

- The zeta potential ζ (≈ ψδ) could also be reduced because of the pre-
mentioned degrade/damage to the adsorbing polymer. This would mean
that there is a reduction in the electrostatic repulsive potential energy VR
as a function of time (see Equation 2.52, Page 40). If so, this results in a
further reduction in the maximum value of total potential energy V maxT as
a function of time.

• Ionic Strength I: As a part of the hydration process, ejection of ions like
of K+, Na+, SO−2

4 , Ca+2, OH− and SiO−4
4 occurs into the solution, between

the cement particles (see Figure 2.16, Page 36). This gives the bulk solution
a specific ionic strength I that is changing with time. With increasing ionic
strength I, as a function if time, the following occurs:

- The (effective) thickness of the diffuse layer 1/κ will be reduced. This is
apparent with Equation 2.53 (Page 40).

- The electrostatic repulsive potential energy VR will be diminished (Equa-
tions 2.52 and 2.53, Page 40). If so, this results in a diminished maximum
value of the total potential energy V maxT as a function of time. This is shown
with the left illustration of Figure 2.19 (Page 42) where it is demonstrated
how increased ionic strength, from I = 0.1mol/l to 0.4mol/l, results in a
reduced energy barrier V maxT (and reach 2/κ).

From the above points, it is to be expected that the value of Rc is increasing, while
the values of 2/κ+2Dpol and V maxT are decreasing with time (i.e. with hydration). As
shown with Equations 2.59, 2.61 and 2.62, this results in an increased coagulation rate
H , which again gives an increased coagulation state J tott = Jpt + Jt. The relationship
between H and J tott is perhaps more obvious under perikinetic condition (γ̇ = 0), by
using the coagulation rate theory established by Verwey and Overbeek [141] (see also
Equation 2.30, Page 30):

ntott =
ntot3

H t+ 1
(γ̇ = 0) (2.64)

The term ntot3 is the total number of (primary) cement particles, per unit volume,
which can coagulate (i.e. “effective” total number of primary particles in the suspen-
sion). The term ntott is their number34 at later time t > 0. One should bear in mind
from Page 42, that not all cement particles can coagulate. Therefore, the value of ntot3
is not necessarily equal to the total number of cement particles present in the sus-
pension (i.e. in the cement paste). From Equation 2.28 (Page 29), assuming that the
condition ntot3 = ntott + J tott applies, Equation 2.64 can be rewritten to the following:

34The same type of relationship applies, between ntot
3 and ntot

t , as between n3 and nt in Figure 2.12
(Page 29). It should be noted that n3 and nt are related to reversible coagulation only, while ntot

3
and ntot

t are related to both reversible and permanent coagulation.
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J tott = ntot3

(
H t

H t+ 1

)
=

Jp
t︷ ︸︸ ︷

np3

(
H t

H t+ 1

)
+

Jt︷ ︸︸ ︷
(ntot3 − np3)︸ ︷︷ ︸

n3

(
H t

H t+ 1

)
(2.65)

As indicated with the latter part of the above35 equation, the term ntot3 can be written
as ntot3 = np3+(n

tot
3 −np3) = np3+n3, where the term np3 describes the total number of

(primary) cement particles that can undergo a permanent coagulation. The remaining
number ntot3 −np3 = n3 describes then the total number of (primary) cement particles
that can undergo a reversible coagulation. The last part of the above equation, namely
Jt = n3H t/(H t+ 1), is exactly the same as Equation 2.31 (Page 30).

From Equation 2.65, it is clear that increased coagulation rateH results in a larger
coagulation state J tott = Jpt + Jt at the given time t. In either case of permanent co-
agulation state Jpt or reversible coagulation state Jt, bridges of small cement particles
will form more frequently between the larger ones, as shown36 in illustrations C and
D of Figure 2.11 (Page 27). Being simultaneously in contact with two large cement
particles, such bridge acts as a conduit for momentum transfer between them. With
the more frequent formation of bridges between the larger cement particles, a larger
value of Ñic will result, which again results in an increased shear viscosity η. This is
shown with Equation 2.25 (Page 26).

In Section 2.4.2, a theory about the bookkeeping of the number of reversible
junctions Jt is presented. With some important modifications, this last-mentioned
theory is used in the computational part of this thesis, or more precisely in Chapter 9.
That two types of coagulation are occurring simultaneously, namely the permanent
coagulation (Jpt ) and the reversible coagulation (Jt), does not pose any real problem in
Chapter 9. The issue of how these two types of coagulation are dealt with separately,
is explained in the latter part of Section 9.3.2.

Summarizing the above text: In Section 2.4.1, the shear viscosity η of cement
paste, is directly related to momentum exchange (by direct and indirect collisions)
between cement particles. With the chemical reactions between cement particles and
water, this momentum exchange will increase in a special manner, as explained above.
With increasing momentum exchange, an increased shear viscosity η will result.

35The variables Jtot
t , Jp

t , Jt, ntot
3 , np

3 and n3 have all the physical unit of [m−3] for consistency
with the theory presented in Section 2.4.2.

36See also the right illustration of Figures 2.9 and 2.10, Page 25.
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Chapter 3

Coaxial Cylinders Viscometer

3.1 Introduction

The coaxial cylinders viscometers used in this work have a stationary inner cylinder
and rotating outer cylinder. They are designated as the ConTec BML Viscome-

ter 3 [145, 147] and ConTec Viscometer 4, and are shown in Figure 3.1. The
former (with the geometry of: (Ri, Ro, h) = (10, 14.5, 19.9) cm) is used when measuring
fresh concrete, while the latter (with the geometry of: (Ri, Ro, h) = (8.5, 10.1, 11.6) cm)
is used when measuring fresh mortar and cement paste. When rheological measure-
ments are conducted on a Bingham fluid with either device, then by measuring the
applied torque on the inner cylinder at the different angular velocities ωo, one can
connect these measured values with one straight line. From its slope H and its point
of intersection with the ordinate G, the plastic viscosity µ and the yield value τo of
the tested material are calculated. When representing the rheological results of this
thesis, the parameters τo and µ are used in favor to the G and H values. The reason
is that the latter two are not solely dependent on the flow characteristics of the test
material, but rather also dependent on the geometry of the viscometer.

Figure 3.1: The ConTec BML Viscometer 3 (to the left) and ConTec Viscometer 4

(center). To the right is a schematic top view of both viscometers.

The objectives of this chapter are as follows: 1) Section 3.2: Classifying a solid
state (i.e. a plug state) and a viscoplastic state inside a viscoplastic material. The
result produced are later used in Sections 3.5.2 and 7.9, and also in some places in

51
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Chapters 9 and 10. With their yield value properties, the fresh concrete, mortar and
cement paste are classified as a viscoplastic fluid (see for example the textbook by
Malvern about viscoplastic fluids [72]).

2) Section 3.3: Demonstrating the underlying physics when converting measured
data H and G to the material properties µ and τo. The equation used in this conver-
sion is known as the Reiner-Riwlin equation. The result of this equation is applied in
Chapters 5, 6 and 10.

3) Section 3.4: Explaining how the measured data H and G are produced by the
viscometers. Depending on the viscometer and on the type of test material, different
approaches are applied. This information is used in Chapters 5, 6 and 10.

4) Section 3.5: Constructing an estimate of the error generated when plug (i.e.
solid state) is occurring inside the test material, during a measurement. The back-
ground of this part is related to the concern for some of the mortar mixes in this thesis,
which had a rather high ratios of yield value to plastic viscosity, τo/µ. Such materials
are prone to form a plug during the viscometric measurement. The conclusions of
this section is (implicitly) used in Chapters 5 and 6.

3.2 Viscoplastic Fluid

3.2.1 von Mises Yield Condition

The viscoplastic material can generally be divided into two domains. One domain Ωp
is in a viscoplastic state, while the other domain Ωe is in a solid state1. When in a
viscoplastic state, the continuum behaves as a viscous fluid. When in a solid state,
the continuum behaves as a rigid body (from a fluid perspective). Here, it will be
assumed that this solid state corresponds to Hooke’s law for an isotropic continuum,
described with Equation 3.1. A more detailed or accurate description of the solid state
is not necessary, since it can also be described with a rigid body motion (something
which is only needed from the perspective of fluid flow). Therefore, for the sake of
simplicity, Hooke’s law is assumed to be sufficient description.

σE = λ̃e tr(ε) I+ 2µ̃e ε ∀ x ∈ Ωe (3.1)

The parameters λ̃e and µ̃e are the Lamé constants of elasticity [74]. The term ε is the
(Eulerian infinitesimal) strain tensor ε = 1

2

(∇u+ (∇u)T
)
, and I is the unit dyadic.

The term u is known as the displacement vector [74] and is given by u = x −X
(see Equation 2.8, Page 14 about x andX). For the viscoplastic state, the constitutive
equation will be described with Equation 2.23 (Page 17), reproduced below.

σP = −p I+T ∧ T = 2 η ε̇ ∀ x ∈ Ωp (3.2)

As indicated with the two above equations, the zone that is in a solid state is al-
ways designated with Ωe, while the region of viscoplastic state is designated by Ωp.
Consequently, the symbol Ω ∈ [Ωe ∪ Ωp] represents the whole continuum of interest.

Earlier studies report that the flow behavior of fresh concrete, mortar and cement
paste can be closely approximated with a Bingham model [28, 128]. Using this model,

1In this thesis the terms solid state and consolidated state have a different meaning. The
latter starts to appear in the end of the dormant period because of hydration of the cement clinker
(see Reactions 2.49 and 2.50, Page 37), whereas the former applies whenever the shear rate is zero
γ̇ = 0 (see Equation 3.5).
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the shear viscosity function η will have the following form:

η = µ+
τo
γ̇

(3.3)

where the shear rate γ̇ is given by Equation 2.24 (Page 18). As mentioned in Sec-
tion 2.3, the terms τo and µ are known as the yield value [128] (or yield stress [9])
and plastic viscosity [9, 128], respectively. In this chapter, the yield value will also
be refereed to as the dynamic yield value, to distinguish from the static yield value.

The deviator stress tensor is defined with: S = σ − (tr(σ)/3) I [74]. One of
its characteristics is that2 tr(S)=0. This tensor can be used to distinguish between
the solid state (σE) and the viscoplastic state (σP) by using the von Mises yield
condition, as is shown in the following equation:

σ =
{

σP if (SE : SE)/2 ≥ τ2y
σE if (SP : SP)/2 ≤ τ2o

(3.4)

The terms τy and τo are the static and the dynamic yield value, to be explained
shortly. The von Mises yield condition is usually written3 as: −IIS = Cy [74], where
IIS = (tr(S) tr(S)−S : S)/2 = −(S : S)/2 is the second deviator stress invariant
and Cy is the yield constant, equal to either τ2y or τ

2
o in this thesis.

According to Equation B.21 (Page 387), the condition tr(ε̇)= 0 applies due to the
incompressibility of the cement based material and hence tr(T)= 2 η tr(ε̇) = 0. This
means that the extra stress tensor T is also a deviator stress tensor4: SP = T. Since5

(T : T)/2 = (µ γ̇+ τo)2, the condition for a solid state (T : T)/2 ≤ τ2o , can equally be
replaced with6 γ̇ = 0. Also, by recognizing the term (T : T)/2 = τ2 as the von Mises
shear stress, the condition τ ≤ τo can also be used. To summarize, the transition
from a viscoplastic state to a solid state (also known as plug state) has taken place
when the equivalent conditions becomes valid:

(T : T)/2 ≤ τ2o ⇔ γ̇ = 0 ⇔ τ ≤ τo (3.5)

3.2.2 The Static and the Dynamic Yield Value

There are two types of yield values that can be related to concrete, mortar and cement
paste, namely the static yield value τy and the dynamic yield value τo [145, 40]. The
former is related to the amount of shear necessary to make the test material start
flowing (i.e. the transformation from a solid state to a viscoplastic state), and the
latter is more responsible for stopping a flowing test material (i.e. the transformation
from a viscoplastic state, back to the solid state).

In this thesis, the main focus will be on the dynamic yield value τo rather than the
static one τy. This is because of how the former value is more responsible for stopping
the flowing concrete inside the mold or formwork (see Figure 3.2). The static yield
value τy is also important, for example in determining the pressure exerted by the fresh
concrete on the formwork (see Section 9.9.4). In the limitation of the experimental
work done here, the static yield value is only measured for the cement paste, then

2tr(S)= tr(σ)− (tr(σ)/3) tr(I) = 0 since tr(I)=3.
3In some literature, this invariant is defined as IIS = −(tr(S) tr(S)−S : S)/2, and correspondingly

the von Mises yield condition then becomes IIS = Cy [72].
4SP = σP − (tr(σP)/3) I = (−p I+T)− ([−p 3 + tr(T)]/3) I = T
5(T : T)/2 = (2 η)2 ε̇ : ε̇/2 = η2 (2 ε̇ : ε̇) = (µ + τo/γ̇)2 γ̇2 = (µ γ̇ + τo)2
6Because the condition γ̇ < 0 does not exist, one cannot write γ̇ ≤ 0.
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Figure 3.2: Different types of casting of the fresh concrete [24]. Here it is the dynamic yield
value τo that is more responsible for stopping the flowing concrete inside the formwork.

given as τy = τo+τ̃o (see Equation 9.9 on Page 211). That is, the difference τy−τo = τ̃o
is related to thixotropic rebuild, as a consequence of (reversible) coagulation of the
cement particles (see Section 9.3 about the reversible coagulation).

The difference τy − τo can also be related to the additional resistance, because of
the concomitant change in particle packing, when going from zero rate of deformation
state ε̇ = 0 (or γ̇ = 0) to non-zero rate of deformation state ε̇ �= 0 (or γ̇ > 0). This
transformation is shown with the step from condition A to B in Figure 3.3. If the
term τ̃d designates the additional shear resistance created during this step, the static
yield value can be written as τy = τo + [τ̃o + τ̃d].

Figure 3.3: Condition A demonstrates a closed packed configuration and condition B an open
one. The figure to the right demonstrates the corresponding shear stress as a function of shear
rate γ̇ [145] (assuming that Bingham model applies τ = µ γ̇ + τo, when in viscoplastic state).

If the concrete batch consist of sufficient amount of binder (see the definition of
binder in Footnote 2, Page 77) that surrounds the aggregates, the condition B will
always prevail, meaning that τ̃d = 0. In addition to this, if the thixotropic yield value
is at minimum (τ̃o = 0) because of a recent agitation, the static yield value will be in
principle equal to the dynamic one τy − τo = [τ̃o+ τ̃d] = 0. Accordingly, Equation 3.6
can then be written into the following form:

σ =
{

σP if (SE : SE)/2 ≥ τ2o
σE if (SP : SP)/2 < τ2o

(3.6)

According to Tanigawa and coworkers [121], for a relatively dry mixed fresh con-
crete (the condition A in Figure 3.3), the onset of viscoplastic state (SE : SE)/2 ≥ τ2y
becomes quite dependent on the stress state σ (meaning τy = τy(σ)), contrary to for
the onset of solid state (SP : SP)/2 ≤ τ2o = constant. A equation for the static yield
value that describes this kind of dependency, can be given by the yield condition of
Drucker and Prager [121, 78]: τy = k − α Iσ, where Iσ = tr(σ) is the first invariant
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of the stress tensor σ (see for example [74]). The variables α and k are given by
α = tan(Φ)/

√
9 + 12 tan2(Φ) and k = 3C/

√
9 + 12 tan2(Φ). The term C is known

as the cohesive strength and Φ is the angle of internal friction [99, 121]. To determine
the onset of a viscoplastic state, the yield condition of Drucker and Prager is put into
Equation 3.4. That is by writing −IIES = (SE : SE)/2 = τ2y = (k − α Iσ)2 and then
rearranging, the following is produced:

−IIS = τ2y ⇒ F =
√
−IIS ± (α Iσ − k) = 0 (3.7)

The latter part of Equation 3.7 might be a more familiar presentation of the yield
condition by Drucker and Prager. When F ≥ 0, the onset of viscoplastic state occurs.
However, if the condition F < 0 prevails, the solid state will be present.

For the experimental results shown in Chapters 3, 5 and 6, thixotropic contribution
is minimized (τ̃o ≈ 0). Also, since the stepwise decreasing shear rate sequence [67] is
applied (see Figure 3.6), the condition B in Figure 3.3 is present at the beginning of
an experiment (τ̃d ≈ 0). Hence, it is only the dynamic yield value τo that is measured
for concrete and mortar. In Chapter 9, both τo and τ̃o are measured for cement paste.

3.3 Reiner-Riwlin Equation

The objectives of this part is to demonstrate the underlying physics when converting
H and G into µ and τo, respectively. The equation used in this conversion is known
as the Reiner-Riwlin equation [100]. As will be demonstrated, it can be used for both
ConTec viscometers. In either case, it is the outer cylinder (with radius Ro) that
rotates at different angular velocities ωo, while the inner cylinder (with radius Ri) is
stationary and registers the applied torque T̂ from the test material.

Figure 3.4: The assembly of inner cylinder to the ConTec BML Viscometer 3 [34]. The
same configuration is used for the ConTec Viscometer 4.

As shown in Figure 3.4, the inner cylinder consists of three parts; the upper
unit (measuring unit), the lower unit and the top-ring. It is only the upper unit
that measures torque. The function of the lower unit is to eliminate the influence of
shearing from the bottom plate of the outer cylinder (see Figure 3.5, in the middle). In
this way, height independence can be assumed in the velocity function. The function of
the top ring is somewhat less important, since its main objectives is to keep a constant
height h where torque is measured, as shown in Figure 3.4, to the right. When using
the ConTec Viscometer 4 (i.e. when doing a measurement on mortar or cement
paste), the top ring is not used. The reason for this is explained in Section 5.3.3.
Consequently, the height h is manually measured for each viscometric test.
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Figure 3.5: Both the inner (to the left) and outer cylinder (center) of ConTec BML Vis-

cometer 3, consists of ribs (or vanes) aligned as a cylinder. As shown, the outer cylinder
consists of a bucket. Same system is used for ConTec Viscometer 4 (to the right).

As demonstrated in Figure 3.5, the inner and outer cylinder consists of ribs aligned
as a cylinder. In this way, it is the test material that will form the cylinders7. This
leads to a larger cohesion (or stickiness) between the two cylinders and the test ma-
terial in-between. This configuration reduces the danger for slippage.

3.3.1 Velocity Profile

For convenience, cylindrical coordinates will be used here. By using the general
velocity field v = vr(r, θ, z, t) ir + vθ(r, θ, z, t) iθ + vz(r, θ, z, t) iz, it is only possible to
obtain solution by numerical means. However, some reasonable assumptions about
the flow can be made, which makes an analytical approach possible:

1. With low Reynolds number (i.e. with low speed and high shear viscosity η) the
flow is stable8 and it is possible to assume a flow symmetry around the z-axis:
v = vr(r, θ, z, t) ir + vθ(r, θ, z, t) iθ.

2. With the lower unit of the inner cylinder (see Figure 3.4), the effect of shearing
from the bottom plate is eliminated. Therefore a height independence can be
assumed in the velocity function: v = vr(r, θ, t) ir+ vθ(r, θ, t) iθ. For both Con-

Tec viscometers, this assumption is verified by numerical means in Chapter 8
(see Figure 8.16, Page 197 and Figure 8.21, Page 200).

3. Due to the circular geometry of a coaxial cylinders viscometer (see Figure 3.1)
it is reasonable to assume pure circular flow with θ-independence. Also with
time independence at each discrete angular velocity ωo, the final velocity profile
is given by:

v = vθ(r) iθ (3.8)

A physical description of velocity v is given by Equation 2.6 on Page 13 (see also
the discussion below Equation 2.6).

7This is possible due to its Bingham properties. That is, between the ribs, the condition γ̇ = 0
applies and hence according to Equation 3.5, a solid state exists there.

8As random motion (Brownian motion) of water molecules (in water) is not understood as fluid
mechanical turbulence, then neither are the random and spontaneous velocity contributions of indi-
vidual solid particles (in suspension) understood as such. Rather, when groups of continuum particles
(CPs), inside the continuum, start to travel coherently in circular paths, as a part of eddies or vortices
of varying size, it is possible to define turbulence. More precisely, turbulent flow is characterized by
a mixing action caused by eddies of varying size, throughout the continuum [106].
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From here on, it is assumed that the outer cylinder ro-
tates counterclockwise, giving vθ(r) ≥ 0. This is done to
simplify the calculations that follow. For both ConTec vis-
cometers involved, the outer cylinder actually rotates clock-
wise. Nevertheless, the calculations apply fully for either
clockwise or counterclockwise rotating outer cylinder. In
addition, all the results that now follow apply only to the
region in the gray area, shown in the right illustration.

3.3.2 Shear Stress and Torque

From Equation 3.8 the velocity gradient tensor ∇v can be calculated, which through
Equation 2.20 (Page 17), gives the strain rate tensor:

ε̇ =
1
2

(
dvθ(r)
dr

− vθ(r)
r

)
(iriθ + iθir) (3.9)

Substituting the result from Equation 3.9 into Equation 2.24 (Page 18) gives the shear
rate that applies inside the test material.

γ̇ =
∣∣∣∣dvθ(r)

dr
− vθ(r)

r

∣∣∣∣ (3.10)

Combining Equations 3.2 and 3.9, yields the extra stress tensor:

T = η(γ̇)
(
dvθ(r)
dr

− vθ(r)
r

)
(iriθ + iθir) (3.11)

The term Trθ is now extracted directly from Equation 3.11:

Trθ(r) = η(γ̇)
(
dvθ(r)
dr

− vθ(r)
r

)
∀ r ∈ [Ri, Rs] (3.12)

The term Rs in the above, designates the boundary between the viscoplastic zone Ωp
and the solid zone Ωe. Generally the condition Ri < Rs < Ro applies. However when
no plug is occurring inside the test material, the condition Rs = Ro becomes valid.
Now, consider the test material (inside the coaxial cylinders viscometer) to be divided
into cylindrical shells, each with the thickness δR. The equation of rotational motion
for each such shell is written as [73]:

IR
dω(r, t)
dt

= T̂ = T̂ (r + δR/2, t) iz − T̂ (r − δR/2, t) iz (3.13)

where the term IR is the moment of inertia of the specific shell. The relationship
between angular velocity ω and velocity vθ is ω = ir×vθ(r, t) iθ/r = vθ(r, t)/r iz. The
term T̂ designates the sum of external torques applied to the cylindrical shell, from its
surroundings. The torque term T̂ (r + δR/2, t) iz accelerates the rotational motion of
the cylindrical shell, because of positive work done by the outer and rotating cylinder
(which is driven by an engine). On the other hand, the torque term −T̂ (r−δR/2, t) iz
slows down this shell because of negative work from the inner and stationary cylinder.
With the steady state vθ = vθ(r)⇒ dω/dt = 0, the above equation becomes:

T̂ (r +
δR

2
) = T̂ (r − δR

2
) (3.14)
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Equation 3.14 applies at the arbitrary distance r, anywhere inside the test material.
Therefore, as long as there is time independence for the given measurement, the torque
is a constant inside the test material.

T̂ = constant ∀ r ∈ [Ri, Ro] (3.15)

The above result applies regardless if plug is occurring or not.
The torque applied on a cylindrical shell from its outer material, can be calculated

with the help of Cauchy’s stress principle [72]:

T̂ = T̂ iz =
∫ h

0

∫ 2 π

0

r ir × (ir · σ(r) r dθ dz) = 2 π r2 hTrθ(r) iz (3.16)

The term h is the height of the cylindrical shell. This term is for example shown in
Figure 3.4. Using the above result in calculating the torque applied from the test
material on the inner cylinder, gives:

T̂ = 2 π R2i hTrθ(Ri) (3.17)

Solving for Trθ(r) in Equation 3.16 and then combining the result with Equation 3.12,
produces Equation 3.18.

η(γ̇)
(
dvθ(r)
dr

− vθ(r)
r

)
= Trθ(r) =

T̂

2 π r2 h
∀ r ∈ [Ri, Rs] (3.18)

3.3.3 Shear Rate

Since it is the test material that is trying to get the inner and stationary cylinder to
rotate counterclockwise by applying torque on it, then T̂ in Equation 3.17 must be
positive. With Equations 3.15 and 3.16, this leads to Trθ ≥ 0 ∀ r ∈ [Ri, Rs]. With
η > 0 and Trθ ≥ 0 then from Equation 3.18, it is apparent that (dvθ/dr − vθ/r) ≥ 0,
meaning that it is possible to dismiss the absolute sign in Equation 3.10:

γ̇ =
∣∣∣∣dvθ(r)

dr
− vθ(r)

r

∣∣∣∣ = dvθ(r)
dr

− vθ(r)
r

∀ r ∈ [Ri, Rs] (3.19)

Assuming that the Bingham model applies for the test material: η(γ̇) = µ + τo/γ̇
(see Equation 3.3), then from Equation 3.18 the differential equation to be solved is
produced and given by Equation 3.20.

dvθ(r)
dr

− vθ(r)
r

+
τo
µ
=

T̂

2 π µ r2 h
∀ r ∈ [Ri, Rs] (3.20)

Now, using the above result one can rewrite Equation 3.19 as follows:

γ̇ =
dvθ(r)
dr

− vθ(r)
r

=
T̂

2 π µ r2 h
− τo

µ
∀ r ∈ [Ri, Rs] (3.21)

3.3.4 Analytical Results

Because of the no-slip condition9 at the boundary between the solid and the test
material in a viscoplastic state, the boundary condition for the velocity is vθ(Ri) = 0

9no-slip condition: The velocity of a fluid at the solid surface is equal to the velocity of the
surface; i.e. the fluid sticks to the surface and does not slip relative to it [36]. As demonstrated
in Figure 3.5, the inner and outer cylinder consists of ribs aligned as a cylinder. In this way, the
test material will form the cylinders. This leads to a larger cohesion (or stickiness) between the two
cylinders and the test material in-between.
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at the inner cylinder, and vθ(Rs) = Rsωo at the outer solid boundary. In other words,
it is the Dirichlet boundary condition that is used when solving Equation 3.20:

vθ(Ri) = 0 ∧ vθ(Rs) = Rsωo (3.22)

By dividing Equation 3.20 by r, it becomes d(vθ/r)/dr = T̂ /(2 π µ r3 h) − τo/(µ r).
By integration then one gets vθ/r = −T̂ /(4 π µ r2 h) − (τo/µ) ln(r) + C, where C is
the constant of integration. Thereafter, using the condition vθ(Ri) = 0 to solve for C
produces the following:

vθ(r) =
T̂ r

4 π µh

(
1
R2i

− 1
r2

)
− τo r

µ
ln
(
r

Ri

)
∀ r ∈ [Ri, Rs] (3.23)

Using the condition vθ(Rs) = Rsωo in the above, and solving for the torque T̂ gives:

T̂ =
4 π µh

1/R2i − 1/R2s
ωo +

4 π τo h
1/R2i − 1/R2s

ln
(
Rs
Ri

)
(3.24)

Because of the boundary condition used, the above two equations are only valid in
the domain r ∈ [Ri, Rs]. However, the result from the latter equation can be used
in the domain r ∈ [Rs, Ro] due to Equation 3.15. Equations 3.23 and 3.24 includes
the possibility that the plug is propagating towards the inner cylinder as the angular
velocity ωo is reducing (see Figure 3.10). If no such event is occurring, the condition
Rs = Ro = constant applies, resulting in the equation shown below.

T̂ =
4 π µh

1/R2i − 1/R2o
ωo +

4 π τo h
1/R2i − 1/R2o

ln
(
Ro
Ri

)
= H ωo +G (3.25)

By solving for ωo in the above, the well known Reiner-Riwlin10 equation [15, 100]
is produced. By plotting the measured torque T̂ as a function of angular velocity ωo,
one can connect these measured values with a straight line: T̂ = H ωo + G. From
its slope H and its point of intersection with the ordinate G, one can calculate the
plastic viscosity µ and the yield value τo. By algebraic maneuver of Equation 3.25,
the plastic viscosity is calculated according to:

µ =
H (1/R2i − 1/R2o)

4 π h
∨ µ =

H (1/R2i − 1/R2o)
8 π2 h

(3.26)

The latter equation of the above, is to be used if rotational frequency fo is used (⇒
T̂ = H fo+G) rather than angular velocity ωo (⇒ T̂ = H ωo+G). The relationship
is simply ωo = 2 π fo. In similar fashion, the yield value is calculated as shown below.

τo =
G (1/R2i − 1/R2o)
4 π h ln(Ro/Ri)

(3.27)

Combining Equations 3.21 and 3.24 gives the equation for the shear rate:

γ̇ =
2
r2

(
1
R2i

− 1
R2s

)−1 [
ωo +

τo
µ
ln
(
Rs
Ri

)]
− τo

µ
∀ r ∈ [Ri, Rs] (3.28)

10The Reiner-Riwlin equation is sometimes confused with the Reiner-Rivlin equation. The
latter is a constitutive equation, which is on the form T = −f1(IIε̇, IIIε̇) ε̇−f2(IIε̇, IIIε̇) ε̇ · ε̇ (see for
example textbook by Bird et al. [15]). The terms IIε̇ and IIIε̇ are the second and the third invariant
of the strain rate tensor ε̇.
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From Equation 3.28, it is clear that the shear rate is not a constant within the test
sample. It is known that suspended particles have the tendency to migrate from
region of a high shear rate to the region of low shear rate [9]. As such, the gradient
of the shear rate ∇γ̇ = dγ̇/dr ir within the test sample, plays an important role when
discussing the possibility of particle migration (see Chapter 10).

dγ̇

dr
= − 4

r3

(
1
R2i

− 1
R2s

)−1 [
ωo +

τo
µ
ln
(
Rs
Ri

)]
∀ r ∈ [Ri, Rs] (3.29)

With increasing ωo, the difference in shear rate ∇γ̇ = dγ̇/dr ir within the test sample
will increase, which results in a larger likelihood of particle migration.

3.4 Data Processing

After explaining how the values H and G are converted to the material properties µ
and τo, it is now natural to clarify how these measured data H and G are actually
produced. Depending on the viscometer and on the type of test material, different
approaches are applied in this thesis.

3.4.1 Mortar and Cement Paste in ConTec Viscometer 4

Figure 3.6 demonstrates the measured torque T̂ as a function of time in the ConTec

Viscometer 4. The left illustration demonstrates a mortar measurement (Chap-
ter 6), while the right illustration demonstrates a thixotropic measurement on ce-
ment paste (the issue of thixotropy and thixotropic measurements are dealt with in
Chapter 9). Figure 3.7, demonstrates further data processing for the mortar case.
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Figure 3.6: Measured torque from the ConTec Viscometer 4. To the left: Mortar with
Dmax = 2mm. To the right: Thixotropic measurement on cement paste (Dmax ≈ 100µm).

As shown in the left illustration of Figure 3.6, the rotational frequency fo is de-
creased in steps, while torque is being logged as a function of time. This approach
is designated as stepwise decreasing shear rate sequence [67]. The intention of this
approach, is to filter out thixotropic effects of the test sample so fast as possible [67].

As shown with Figure 3.7, each discrete rotational frequency fo has its own du-
ration, designated as total time. During this time interval, a number of 150 distinct
torque points are logged. This time duration is further divided in two parts [34], the
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Figure 3.7: To the left: Logged torque at the sampling time interval. The whole series is shown
in Figure 3.6. To the right: After processing the data, the torque T̂ as a function of rotational
frequency fo, is generated: T̂ = H fo +G.

transient time interval and the sampling time interval, which of the latter consist of
50 torque points. The average of these 50 points are then used in forming a single
torque point T̂ . A number of 2 · 7 = 14 such points are shown in the right illustration
of Figure 3.7. The reason for using only the last 50 logged points of the total 150, is
to give the test sample time to reach equilibrium state11, i.e. time independence in
the velocity function vθ, prior to data processing. Now, with these 2 · 7 = 14 torque
points, it is possible to construct two functions of the type T̂ = H fo +G, through a
linear regression. For example, at “10 min” the values produced are H = 0.688Nm · s
and G = 0.102Nm. Using Equations 3.26 and 3.27, with the geometry of Ri = 8.5 cm,
Ro = 10.1 cm and h = 11.6 cm, results in µ = 3.03Pa · s and τo = 16.4Pa.

3.4.2 Concrete in ConTec BML Viscometer 3

Barrier Restraint of the Inner and Outer Cylinder

When using the ConTec BML Viscometer 3, the characteristic thickness of the
flow is Dflow = ∆R = Ro − Ri = 14.5 cm − 10 cm = 45mm. Using fresh concrete
with Dmax = 16mm as a test sample, means that the condition of Dflow ≈ 3Dmax is
achieved. [The term Dflow is the characteristic thickness of the flow, while Dmax is
the diameter of the largest solid particle]. There is one drawback with the condition
of Dflow ≈ 3Dmax: With a barrier restraint of the inner and outer cylinder, combined
with the lack of space for the larger aggregate particles, these solid particles will
have a larger and a more frequent momentum exchange with each other for the given
rotational frequency fo (i.e. larger ∆pdc and Ñdc values; see the next paragraph).
This is due to their lack of motional freedom in avoiding such a strong mechanical
solid particle interaction; i.e. due to the lack of space that is needed for the larger
aggregate particles to move freely around and in such manner, avoid an abnormal
high momentum exchange.

In Section 2.4.1, the shear viscosity η for cement paste is generated. This is shown
with Equation 2.25 on Page 26. With this equation, it is demonstrated that the
momentum exchange ∆pdc by direct collision, between the larger cement particles,

11In each and every mortar test, equilibrium was checked by plotting illustrations like what is
shown in Figure 3.6. When equilibrium is not present, the corresponding torque point T̂ is omitted.
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Figure 3.8: A CP of concrete, inside the ConTec BML Viscometer 3 (to the left) and
formation of a bridge of the larger aggregates inside the same viscometer (to the right).

is one of the physical processes that generates shear viscosity η. Also, the number
of such collisions Ñdc plays an equally important role. Extrapolate this result to
the fresh concrete, its shear viscosity becomes as η ∝ Ñdc∆pdc, where ∆pdc is now
the momentum exchange between the larger aggregate particles by direct collision.
With the above-mentioned barrier restraint of the inner and outer cylinder, a larger
and a more frequent momentum exchange will result between the larger aggregate
particles (i.e. larger ∆pdc and Ñdc values). This results in a larger shear viscosity
η → η +∆η than actually applies for the concrete when flowing more freely inside a
mold or formwork.

Additional consequence of the above-mentioned barrier restraint is that a bridge of
the larger aggregates forms frequently between the outer and inner cylinder, resulting
in direct torque transportation from the outer cylinder to the inner cylinder. This is
shown with the right illustration of Figure 3.8. In this case, the momentum exchange
between the larger aggregate particles ∆pdc is at maximum, for the given rotational
frequency fo.

It is clear that the barrier restraint of the inner and outer cylinder, gives a larger
and more frequent momentum exchange between the larger aggregate particles. This
results in a fluctuation in logged torque as shown in Figure 3.9. With this type of
increased momentum exchange (that elevates the torque curve T̂ → T̂+∆T̂ ) and using
the average of the 50 distinct logged torque points (as is done for the mortar case),
a larger shear viscosity η → η + ∆η will be measured. To reduce the addition ∆η,
only the average of the 10 lowest torque points (of the pre-mentioned 50) is used
when forming a single torque point T̂ . This approach has always been (and is still)
provided in the software FreshWin, that is supplied with the ConTec viscometers.

When using the ConTec Viscometer 4, the characteristic thickness of the flow
is Dflow = ∆R = Ro − Ri = 10.1 cm− 8.5 cm = 16mm. Using mortar with Dmax =
2mm as a test sample, means that the condition Dflow = 8Dmax is achieved. Hence,
there is a much larger motional freedom present for the individual solid particles
in avoiding an abnormal high momentum exchange. This is clear with Figure 3.6,
which shows a much smoother torque curve, relative to Figure 3.9. In some literature
[17], the condition of Dflow ≥ 10Dmax is generally recommended for coaxial cylinders
viscometers. Relative to the current text, the condition of Dflow ≥ 8Dmax seems to
be sufficient. As such, for mortar, the average of the data produced in the sampling
time interval (the pre-mentioned 50 logged torque points) can be assumed to represent
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the actual response of the test material (when flowing inside a formwork) and is
therefore used when forming a single torque point T̂ , shown in the right illustration
of Figure 3.7. For the cement paste in Chapter 9, the condition Dflow ≈ 160Dmax is
valid, since Dmax ≈ 100µm. Therefore, a discrete logged torque point is assumed to
represent the correct response of the test material.

0 11 22 33 44 55 66 77 88
5

6

7

8

9

10

11

12

13

14

15

16

T
or

qu
e 

[N
m

]

Time [seconds]

0.50

0.43

0.37

0.30

0.23

0.16

0.33
Rotational Frequency f° [rps]

Slump = 120 mm (40 min)
Slump = 60 mm   (70 min)

0 11 22 33 44 55 66 77 88
5

6

7

8

9

10

11

12

13

14

15

16

T
or

qu
e 

[N
m

]

Time [seconds]

0.50

0.43

0.37

0.30

0.23

0.16

0.09

0.33
Rotational Frequency f° [rps]

Slump = 110 mm (10 min)
Slump = 55 mm   (40 min)

Figure 3.9: A raw measuring data from the ConTec BML Viscometer 3 [w/c = 0.6;
0.1% sbwc of VHMW Na]. The same mix design applies for both illustrations (Table 4.3 on
Page 78), however with Dmax = 16mm to the left and Dmax = 11mm to the right. As is
apparent in both illustrations, no “equilibrium state” is present for the concrete results shown
here. The continuous decrease in torque is related to gravel migration, as discussed in Chapter 10.

When replacing the 11 − 16mm aggregates with the 8 − 11mm ones (see Sec-
tion 4.2.3), the condition Dflow ≈ 3Dmax is changed to Dflow ≈ 4Dmax. Figure 3.9
demonstrates that the registered fluctuation in torque becomes smaller after such re-
placement. This is to be expected since with Dflow ≈ 4Dmax, the larger solid particles
gain a larger motional freedom in avoiding the abnormal high momentum exchange.
The fluctuation in logged torque could be further reduced by increasing the amount
of binder and/or by increasing the amount plasticizer. The former would increase the
average distance between the larger solid particles, while the latter would result in a
better lubrication between these particles.

Gravel Migration

According to Barnes and coworkers [9], migration of the suspended particles frequently
occurs, from the region of high shear rate, to the region of low shear rate (i.e. in
the direction of −∇γ̇). This phenomenon was always observed after a viscometric
measurement on the concrete batches of this thesis (see Figure 10.2, Page 238). In
Chapter 10, it is investigated how much this phenomenon influence the test results.
It is concluded in Section 10.2.3, that the best way to calculate the viscometric values
is first by replacing Ro = 14.5 cm with Ro = 12 cm in Equations 3.26 and 3.27. Also,
when generating the slope H and the point of intersection with the ordinate G, only
the last 5 torque points T̂ (of total 7) is used. For the particular case in Figure 3.9,
this means that selected12 logged torque values only between 22 and 77 seconds are
used. In Chapter 10, the resulting new viscometric values are designated with τ♣o and
µ♣. In all other chapters of this thesis, these values are always designated with τo

12Data from the sampling time interval is only used (see Figure 3.7).
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and µ. In Chapter 10, four different ways are used when calculating the viscometric
values. Three of them are listed below. In these calculations the geometrical values
Ri = 10 cm and h = 19.9 cm are always used.

1. τ©
o ∧ µ©: In generating H and G, the 5 torque points T̂ (of total 7) are used.
Using H and G in Equations 3.26 and 3.27 and using Ro = 14.5 cm as the outer
cylinder, gives the viscometric values τ©

o ∧ µ©.

2. τ♣o ∧ µ♣ (≈ τ♦o ∧ µ♦): In generating H and G, the 5 torque points T̂ (of total
7) are used. Using H and G in Equations 3.26 and 3.27 and using Ro = 12 cm
as the outer cylinder, gives the two viscometric values τ♣o ∧ µ♣. This approach
is used in Chapters 5 and 6.

3. τ�	o ∧ µ�	: In generating H and G, all the 7 torque points T̂ (of total 7) are used.
Using H and G in Equations 3.26 and 3.27 and using Ro = 14.5 cm as the outer
cylinder, gives the two viscometric values τ�	o ∧ µ�	. If the fresh concrete were
in a homogeneous state (meaning that no gravel migration is occurring and no
segregation of any kind) and without any thixotropic behavior, this approach
would give the correct viscometric values.

3.4.3 Parameter Setup

As shown in Table 3.1, for concrete, mortar and cement paste, different parameters
are used in controlling for how long time the torque is logged and then processed.
Many of the values shown are chosen from the default setup of the viscometers.

The total time for concrete, consist of 9 seconds, with transient time interval and
sampling time interval of 3.3 and 5.7 seconds, respectively. However, for the concrete
sample in Chapter 10, the total time consist of 11 seconds, with transient time interval
and sampling time interval of 3.7 and 7.3 seconds, respectively.

Table 3.1: Parameter setup used in the ConTec viscometers.

Concrete Concrete Mortar Cement Paste
(Chapter 10)

Transient time interval 3.3 s 3.7 s 1.67 s 0 s
Sampling time interval 5.7 s 7.3 s 0.83 s 5 s
Number of logged points 50 50 (150) 50 (150) 150

Data processing 10 lowest 10 lowest average thixotropic
Total time 9 s 11 s 2.5 s 5 s
Pre-rotation ≈ 10 s ≈ 10 s 0 s 0 s

fmax 0.50 rps 0.50 rps 0.45 rps 0.65 rps
fmin 0.09 rps 0.09 rps 0.05 rps 0.10 rps

Number of T̂ points 5 (7) 5 and 7 7 continuous

With the parameter setup used for the ConTec BML Viscometer 3, the outer
cylinder always rotates for about 10 seconds at 0.5 rps prior to any data logging. This
is shown in Table 3.1 with the row “Pre-rotation”. However, this type of pre-rotation
is never applied for the ConTec Viscometer 4. The terms fmax and fmin describes
the maximum and minimum rotational frequency applied to the outer cylinder. For
concrete and mortar, these values are determined in Section 4.4.1. The “Number of
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T̂ points” describes how many torque points are generally used in extracting the G
and H values. For example in Figure 3.7, the number is 7 for mortar. For cement
paste, this field is marked as “continuous”, meaning that all available logged torque
points (10 · 150 = 1500) is used when analyzing the thixotropic properties of the test
material (see for example Figure 9.3 on Page 214).

3.5 Influence of Plug State

3.5.1 Introduction

The background of this section is related to the concern when some of the mortar
mixes in this thesis, consist of rather high ratio of yield value to plastic viscosity
τo/µ. Such material is prone to form a plug during the viscometric measurement.
With a plug, it is meant a solid state as defined in Section 3.2. The material in the
solid state rotates as a rigid body, inside the viscometer (vθ = r ωo).

Eliminating the plug state simply by increasing the angular velocity ωo, is not
considered to be a good idea, because according to Equation 3.29, such action would
increase the difference in the shear rate ∇γ̇ = dγ̇/dr ir within the test sample. With
such increase, migration of the larger sand particles would be more likely, from the
region of high shear rate to the region of low shear rate (see the discussion in Sec-
tion 10.1). In some very rear occasions, particle migration occurred for the mor-
tars of this thesis. This occurred only with a very large τo/µ-ratio. As shown with
Equation 3.29, increased τo/µ-ratio results in a larger difference in the shear rate
∇γ̇ = dγ̇/dr ir. The left illustration of Figure 10.2 (Page 238) shows an example of
such particle migration for mortar, using the standard rotational frequency fo shown
for example in the left illustration of Figure 3.6.

The effect of plug in concrete measurements is not considered, because the pre-
mentioned gravel migration is dominating in introducing an error to the viscometric
values τo and µ (see the center illustration of Figure 10.2).

3.5.2 Classification of Plug

With plug state it is meant that some part of the test material is in a solid state. This
is shown with Figure 3.10, where the plug state exist in the domain r ∈ [Rs, Ro]. With
Equation 3.28, it is apparent that the shear rate γ̇ decreases with increasing radii r.
Therefore, when applying the stepwise decreasing shear rate sequence (Section 3.4.1),
the condition γ̇ = 0 will begin at the outer cylinder. According to Equation 3.5, this
means that the plug will begin at the outer cylinder and propagate towards the inner
cylinder as the angular velocity ωo is further decreased (ωo = 2 π fo). Designating the
location of the boundary between a viscoplastic and a solid state with r = Rs and
writing γ̇|r=Rs = 0 in Equation 3.28, gives Equation 3.30 after some simple algebraic
maneuvers.

ωo =
τo
µ

[
1
2

(
R2s
R2i

− 1
)
− ln

(
Rs
Ri

)]
(3.30)

By creating a vector that represents the potential plug radii Rs = [Ri, . . . Ro] and
putting it in Equation 3.30, one creates a corresponding vector of angular velocity
ωo(Rs) = [ωo|Rs=Ri , . . . ωo|Rs=Ro ] where plug state is active. From this it is apparent
that each element in the vectors Rs and ωo corresponds to each other. The last
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element in the vector ωo(Rs) represents the angular velocity when plug state starts
to form at the outer cylinder r = Ro and is designated with ωpo . In other words,
the definition ωpo ≡ ωo|Rs=Ro applies relative to Equation 3.30. Putting the two
vectors Rs and ωo(Rs) in Equation 3.24, produces the corresponding torque vector
T̂(Rs,ωo). Plotting T̂(Rs,ωo) as a function of ωo(Rs) produces the torque profile
when the plug state is extending from the outer cylinder Ro towards the inner cylinder
Ri. An example of such torque profile is shown in Figure 3.10.
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Figure 3.10: Plot of T̂(Rs,ωo) as a function of ωo(Rs). The viscometric values are
τo = 245.3Pa and µ = 3.05Pa · s and as such, then ωpo = 2.7 rad/s. The geometry
consist of (Ri, Ro, h) = (8.5, 10.1, 11.6) cm.

The dashed line in Figure 3.10 is an extrapolation from the torque when no plug
is occurring, which is readily seen with the small incorporated figure. This line is
generated by using Equation 3.25. Each circle © represent a discrete torque point, as
would be measured when the plugged zone is extending towards the inner cylinder.

If a result like the solid line shown in Figure 3.10 is available, it is possible to
calculate the yield value from the new point of intersection alone. Putting Equa-
tion 3.30 in Equation 3.24 and then taking the limit “limRs→Ri T̂ = Go”, where Go is
the new point of intersection, gives the following: τo = Go/(2 πR2i h). By also using
Equation 3.27, the relationship G/Go = 2 ln(Ro/Ri)/(1−R2i /R

2
o) is produced.

The torque T̂ (ωpo ) in which plug first occurs can be calculated by combining Equa-
tions 3.30 and 3.24, and using Rs = Ro. The result is T̂ (ωpo ) = 2 πR2o h τo. Hence the
relationship between T̂ (ωpo ) and Go is given by T̂ (ω

p
o )/Go = R2o/R

2
i . For the example

in Figure 3.10, then Go = 1.29Nm, G = 1.53Nm and T̂ (ωpo ) = 1.82Nm.
For the given angular velocity ωo, the location of the solid boundary Rs can be

calculated by applying the Newton-Raphson iteration algorithm [21] on Equation 3.30,
or more precisely on Equation 3.31, shown below.

f̃(Rs) =
τo
µ

[
1
2

(
R2s
R2i

− 1
)
− ln

(
Rs
Ri

)]
− ωo = 0 (3.31)

Basically this algorithm consist of iterating Equation 3.32, until |Rn+1s − Rns | is less
than some specific value (n is the iteration index). The first guess usually consists of
either the inner R0s = Ri or the outer R0s = Ro radius.

Rn+1s = Rns −
f̃(Rns )

df̃(Rns )/dRs
(3.32)
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Equations 3.31 and 3.32 are frequently used in Chapter 8, when verifying the numeri-
cal result produced by the software Viscometric-ViscoPlastic-Flow. These two
equations are also used in Chapter 10.

3.5.3 Error Generated by Plug Flow

Figure 3.11 shows measured torque T̂ as a function of angular velocity ωo for the same
mortar specimen at four different times, using the ConTec Viscometer 4. The test
material is a 0−2mm mortar with lignosulfonate [LMW Na; 0.6% sbwc; To = 38◦C;
w/c = 0.4; OPC]. The measurements are made at 10, 40, 70 and 100 minutes after
water addition. The measured torque T̂ increases with these four time points because
of the chemical reactions of the cement clinker and water (see Section 2.5.1).

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Angular Velocity [rad/s]

T
or

qu
e 

[N
m

]

t = 10min

t = 40min

t = 70min

t = 100min

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Angular Velocity [rad/s]

T
or

qu
e 

[N
m

]

Figure 3.11: To the left: Measured torque on the same mortar sample. The thick
vertical lines pinpoint the angular velocity when plug state starts to form (i.e. ωpo ),
assuming that the two viscometric values τo and µ are correct. To the right: Plot of
T̂(Rs,ωo) as a function of ωo(Rs). Both illustrations are from [143].

From the slope H and the point of intersection with the ordinate G of the lines
in Figure 3.11, one can calculate the plastic viscosity µ and the yield value τo with
Equations 3.26 and 3.27 ((Ri, Ro, h) = (8.5, 10.1, 11.6) cm). The resulting viscometric
values are shown in Table 3.2. The term R2 shown there, is the coefficient of deter-
mination [148] (R is referred as the correlation coefficient [148]). Also shown is the
term ωpo , which is the angular velocity when plug state starts to form at the outer
cylinder. This ωpo -calculation is based on the assumption that the viscometric values
τo and µ are correct to begin with. The location of the ωpo values are marked with a
thick vertical lines in Figure 3.11.

Table 3.2: Measured viscometric values.
Minutes 10 40 70 100
τo [Pa] 92.2 163.5 194.1 245.3
µ [Pa · s] 2.96 3.00 3.22 3.05
R2 0.994 0.998 0.998 0.998

ωpo [rad/s] 1.04 1.83 2.02 2.70

Using the values in Table 3.2 when plotting T̂(Rs,ωo) as a function of ωo(Rs),
in the same manner as demonstrated with Figure 3.10, provides the result shown in
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the right illustration of Figure 3.11. The markers represent the discrete torque points
as they should be measured if the τo and µ values in Table 3.2 where correct (the
dashed line is the same as the solid line shown in the left illustration). By comparing
the markers in the left and the right illustration of Figure 3.11, it is clear that they
do not always overlap each other. Therefore, it is evident that some of the τo and µ
values in Table 3.2 are incorrect to begin with. This applies especially for the test
conducted at 100 minutes after water addition. The solid straight lines in the right
illustration, are linear regression of the markers. Putting the slopes H and the point
of intersections G of these solid lines, into Equations 3.26 and 3.27, produces a new
set of yield value τ (2)o and plastic viscosity µ(2), shown in Table 3.3.

Table 3.3: Recalculated viscometric values.
Minutes 10 40 70 100

τ
(2)
o [Pa] 91.9 160.3 189.5 235.7
Errτ [%] 0.3 2 2.4 3.9
µ(2) [Pa · s] 2.98 3.24 3.56 3.71
Errµ [%] 0.7 8 10.4 21.9

R2 1.000 0.998 0.996 0.994

Since the correct values of the tested sample are unknown to begin with, it is
difficult to calculate exact magnitude of error to accompany the values in Table 3.2.
However by comparing the values in Tables 3.2 and 3.3, one could gain an estima-
tion of the error, at least in the order of magnitude. The term “Err” shown in
this table represents the percentage difference between the values in both tables (see
Equation 3.33).

Errτ = (|τo − τ (2)o |/τo) · 100% ∧ Errµ = (|µ− µ(2)|/µ) · 100% (3.33)
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Figure 3.12: By changing the viscometric values from (τo ∧ µ) to (τo+∆τo ∧ µ−∆µ),
the torque profile T̂(Rs,ωo) can overlap the measured torque points. The viscometric
values τo and µ are calculated by Equations 3.26 and 3.27. These two equations
assumes that no plug is occurring inside the test material.

There exists a time consuming method in extracting a more correct viscometric
values τo and µ from the tested material. It consist of manually changing the τo and
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µ values until the torque profile T̂(Rs,ωo) overlaps the measured torque points. This
is done in Figure 3.12. The left illustration is the same experimental case, as the
“t = 100min”-case in Figure 3.11. For this particular case, the initial yield value
has to be increased by 4.9% and the plastic viscosity decreased by 24.6% to make
the torque profile T̂(Rs,ωo) overlap most of the measured torque points. These two
percentage values are approximately the same as shown in Table 3.3, indicating that
the error estimation made in this table is not so bad. The initial τo/µ-ratio for this
case, is about 245.3Pa/3.05Pa · s = 80 s−1. As will be apparent in Section 6.4, the
condition τo/µ ≤ 100 s−1 will apply in most cases for mortar. Hence, most often, it is
not to be expected that the plug flow will generate any error of dramatic magnitude.
However, in a few occasions, the τo/µ-ratio will become as high as around 300 s−1. The
right illustration of Figure 3.12 demonstrates such incidence. For this particular case,
the initial yield value has to be increased by 11.9% and the plastic viscosity decreased
by 62.5% to make the torque profile T̂(Rs,ωo) overlap most of the measured torque
points. Fortunately, such a high τo/µ-ratio applies rarely and as such, plug flow is
not considered to produce too much of a problem.

Discussion and Conclusion

Table 3.4 shows the viscometric values from Table 3.2 with the errors from Table 3.3.
These errors are presented as an order of magnitude rather than of the actual (and
unknown) values. From Table 3.4, it is clear that the plastic viscosity is more sensitive
to the error produced by plug, relative to the yield value. When plug is occurring and
the viscometric values are extracted by Equations 3.26 and 3.27, the resulting τo value
becomes lower (by about 1%) than the true yield value of the tested material. Also,
the resulting µ value becomes larger (by about 10%) than the true plastic viscosity
of the tested material (see also the left illustration of Figure 3.12). This is because
of how Equations 3.26 and 3.27 do not include the possibility of plug flow. Since
the viscometric values shown in Table 3.4, are quite typical in this work, it can be
concluded that even if plug is occurring in some of the measurements, it does not
introduce a very large error to the viscometric values τo and µ.

In some extreme cases, a yield value of around τo ≈ 700Pa and plastic viscosity
of around µ ≈ 3Pa · s is measured. In such cases, the order of magnitudes in error
produced, are 10% and 100%, respectively (see the right illustration of Figure 3.12).

Table 3.4: Measured viscometric values.
Minutes 10 40 70 100
τo [Pa] 92 164 194 245
Error [%] 10−1 1 1 1
µ [Pa · s] 3.0 3.0 3.2 3.1
Error [%] 1 10 10 10

A discussion about the errors made by plug flow and by air entrainment (Sec-
tion 5.5) is made in Section 6.4, before considering the overall experimental results of
mortars.
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Chapter 4

Experimental Program

4.1 Introduction

The batches of this thesis are basically made of four constituents, namely cement,
water, aggregates and lignosulfonates (however, in Chapter 9, the aggregates are not
included). When mixed together, these constituents form the particle suspension of
interest. This is demonstrated with Figure 4.1.

Figure 4.1: When mixing the different constituents, namely the water, cement, lignosulfonate
and aggregates, the particles suspension is formed (see also Figure 2.2, Page 12).

Four issues are dealt with in Chapter 4. First, a description about each constituent
is made, which are used in the batches. Secondly, the mix design of the different
batch type is described. With mix design, it is meant the relative proportions of each
constituent used in the different type of batch. Thirdly, the test methods used, in
classifying the rheological behavior of the batches is described. Finally, the overall
test program of this thesis is introduced. The purpose of the test program is presented
in Section 1.2.1 and the result of these tests are shown in Chapters 5 and 6.

4.2 Constituents

4.2.1 Cement Types (OPC, FAC)

Two different cement types are used in this project and are both produced byNorcem

AS, which is part of the German cement and building materials groupHeidelberger

Zement AG. The two cement types are the Norcem Standard Cement (OPC)

71
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and the Norcem Fly Ash Cement (FAC). These two cements are one of the most
common types used in Norway.

The Norcem Standard Cement (EN 197-1 CEM I 42.5R) is Ordinary Portland
Cement. As such, this cement type will be often designated as OPC in this thesis.
The loss of ignition for this cement is 2.4%. About 5% of the OPC consist of gypsum,
i.e. of CS̄H2. The density and fineness (Blaine) of the OPC is ρopc = 3120 kg/m3

and 340m2/kg, respectively. Table 4.1 demonstrates the magnitude of the different
clinker constituents used in the Norcem Standard Cement. A description about
the clinker minerals is made in Section 2.5.1 (see also Footnote 24, Page 34 about the
clinker minerals C3S, (β-) C2S, C3A and C4AF).

Table 4.1: Clinker constituents used in the OPC.
C3S C2S C3A C4AF Na2O-eqv
60% 15% 7.5% 10% 0.95%

The Norcem Fly Ash Cement (EN 197-1 CEM II A/V 42.5R) consist of the
same clinker type as used in the Norcem Standard Cement (see Table 4.1). This
cement type will be frequently designated as FAC in this thesis. The FAC consist
of about 80% OPC and of 20% fly ash (imported from Denmark). The density and
fineness (Blaine) of the FAC is ρfac = 2950 kg/m3 and 437m2/kg, respectively. The
loss of ignition is 1.3%.

4.2.2 Lignosulfonates

The lignosulfonates used in this thesis are produced by Borregaard LignoTech,
Norway (a member of the Orkla group). Six types of lignosulfonates (LS) are used
in this work, and the right illustration of Figure 4.2 gives a schematic illustration of
how the different polymer types originate from the same base lignosulfonate product
LMWFS Ca. The following designations will be used for the different lignosulfonate
products:

• VHMW Na ⇒ Very High Molecular Weight Na-Lignosulfonate

• HMW Na ⇒ High Molecular Weight Na-Lignosulfonate

• HMW Ca ⇒ High Molecular Weight Ca-Lignosulfonate

• LMW Na ⇒ Low Molecular Weight Na-Lignosulfonate

• LMW Ca ⇒ Low Molecular Weight Ca-Lignosulfonate

• LMWFS Ca ⇒ Low Molecular Weight Full Sugar Ca-Lignosulfonate

Within the recomendend dosage by Borregaard LignoTech, then according to
ASTM C494, both the HMW Na and HMW Ca are designated as retarding high-
range water-reducer (superplasticizer) of type G. No ASTM designation is assigned
to the VHMW Na lignosulfonate, since it is an experimental product, but the
performance is typical of type F. According to ASTM C494, the LMW Na and
LMW Ca are designated as retarding water-reducer of type A. The LMWFS Ca
is also an ASTM C494 type A performing lignosulfonate.

Description about the chemical and physical properties of these six lignosulfonate
types will now follow.
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General Properties

The raw material for production of the lignosulfonate samples is spruce, which is a
softwood [18]. The wood cell of spruce (and all other tree types) consist of mainly
cellulose, hemicellulose and lignin. A simplified picture describes a skeleton of cellulose
surrounded by other substances functioning as matrix (hemicellulose) and encrusting
material (lignin). The word lignin is derived from the Latin word lignum, meaning
wood. The important role of lignin is to acts as an encrusting or a binder for the wood
cell, giving the tree its structural strength. In addition, it performs other functions
which are essential [107].

At the Borregaard plant in Norway, the spruce wood is processed to liberate the
cellulose fibers. The latter is further processed to give cellulose of different quality
and properties. The cellulose is liberated from the lignin and from the hemicellulose
by a chemical pulping process. This chemical process consist of mixing a solution of
calcium-hydrogen-sulphite (CaHSO−

3 ) and water, with grind spruce wood [19]. Under
the condition of 140◦C and pH ≈ 1 to 2, the cellulose is effectively liberated. After the
liberation process, the cellulose is separated from the rest of the solution for further
treatment. The rest solution, which is called the lignosulfonate intermediate, contains
sulfonated lignin with a wide range of molecular size, sugars1 (mainly pentoses and
hexoses), inorganic salts and small amounts of other chemicals from the spruce wood.
Since the calcium (Ca) is the base in the above-mentioned chemical pulping process, all
salts produced are calcium salts [19]. This means that the base lignosulfonate product,
in the lignosulfonate intermediate, is a calcium-lignosulfonate. This lignosulfonate
intermediate is designated with LMWFS Ca. As shown in the right illustration
of Figure 4.2, three different processes are applied separately or in combination to
achieve or improve the special properties of LMWFS Ca [19].

Figure 4.2: To the left: A schematic illustration of ultrafiltration. To the right: All lignosul-
fonates used in this thesis, originates from the same base product, namely the LMWFS Ca.

The first process shown in Figure 4.2, is known as fermentation (or sugar reduc-
tion). There the hexose is converted into alcohol by fermentation and the alcohol is
then removed by distillation. Some amount of remaining sugars are converted into
sugar acid, which have a less retarding effect on cement hydration, than of sugar.
Since the LMWFS Ca product does not go under the fermentation process (i.e.
sugar reduction), its sugar content is high. This is indicated with the mark “FS”,
meaning Full Sugar.

The second process is the so-called ion exchange, which consist of adding sodium
sulfate into a solution of (fermented) calcium-lignosulfonate and water. The calcium

1The sugars have a retarding effect on the freshly mixed concrete (see Page 128).
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ion detach itself from the lignosulfonate core while the sodium ion takes its place
instead. Thereafter, calcium sulfate precipitate and is removed. Sugar content is
normally slightly reduced during this process and also the content of insoluble salts.

The third process is known as ultrafiltration. This method consist of molecular
filtration through a very fine membrane as shown in the left illustration of Figure 4.2.
During this process, large amount of sugars, monomers and smaller sized polymers
are removed. Also, the resulting high molecular weight product (the concentrate) will
have a higher lignin content than the feed.

Table 4.2, demonstrates the main characteristics of the lignosulfonates. The term
DOS is a designation for Degree of Sulfonation. It presents the utilization of avail-
able chemical groups (present in the lignosulfonate) in attaching the (active) anion
SO−

3 to it. The general trend is that as the molecular weight increases, then larger
proportion of these chemical groups are inside the bulk of the lignosulfonate and
hence are not available in attaching the (active) anion to it [18]. In this sense, the
DOS value describes the ratio of surface area to volume of the lignosulfonate [84].
For the given molecular weight (Mn and Mm), an increase in DOS will increase the
adsorption of the lignosulfonate on the cement particle surface [101, 102]. However,
with sufficiently large DOS value, the reverse will start to occur because of the in-
creased water solubility that follows at the same time [39]. The DOS value does not
account for other ionized groups that are also attached to the hydrophobic core of the
lignosulfonate, namely the phenolic (C6H5O−) and the carboxyl (COO−) groups.

Table 4.2: The main characteristics of the lignosulfonates used in this thesis.

Polymer DOS RCL Mn Mm PD Ca Na Sugar
VHMW Na ≈37% 100% 41600 183000 4.40 - - 0.05%
HMW Na 51% 85% 9900 84600 8.55 0.1% 6.9% 1.4%
HMW Ca 47% 85% 9900 74800 7.56 3.2% 1.1% 2.3%
LMW Na 64% 69% 7100 60900 8.58 0.4% 8.7% -
LMW Ca 53% 66% 7400 73100 9.88 3.3% 0.2% 7.1%

LMWFS Ca 52% 54% 6800 54800 8.06 2.8% 0.1% 22.2%

The term RCL, in Table 4.2, designatesRelative Content of Lignin. This value
is relative to VHMW Na, which has the largest amount of lignin. As mentioned
previously, this value increases under the process of ultrafiltration. The parameters
Mn, Mm and PD = Mm/Mn are the number average molecular weight, the mass
average molecular weight and polydispersity, respectively [115]. More precisely, the
terms Mn and Mm are defined with Equation 4.1 [115].

Mn =
∑
iNiMw,i∑
iNi

∧ Mm =

∑
iNiM

2
w,i∑

iNiMw,i
(4.1)

The term Ni is the number of polymers with the molecular weight ofMw,i. The phys-
ical unit used for the Mn, Mm and Mw is in [g/mol]. The method for determining
the molecular weight values Mn and Mm, is called Size Exclusion Chromatogra-
phy (SEC). Because of the sheer difficulty in measuring correct molecular weight,
the values shown in the above table are not precise. However, the relative differences
between those values are correct.

The last three columns in Table 4.2 are percentages, relative to the total weight of
the (dry) lignosulfonate sample. The terms Ca and Na presents the amount of calcium
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and sodium in the dry sample and sugar is the total sugar content, like hexose, pentose
and others.

Adsorption Behavior of Lignosulfonates

Lignosulfonates can be classified as hydrophobic polyelectrolytes. This description
refers to the fact that the polymer is dependent on its ionized groups for water sol-
ubility [39]. Lignosulfonates are in that respect similar to sulfonated naphthalene
formaldehyde (SNF), which is also intrinsically a hydrophobic polymer [39]. The
ionized groups (sometimes referred as the functional groups), attached to the hy-
drophobic core of the lignosulfonate, are basically the sulfonate (SO3), the phenolic
(C6H6O) and the carboxyl (COOH) groups [39]. In ionized state, they are as SO−

3 ,
C6H5O− and COO−, respectively. These charged groups are distributed mainly on
the polymer surface [105]. At pH = 7, the sulfonate group contributes to a negative
charge of the lignosulfonate [69], while at pH ≥ 9, the phenolic and carboxylic groups
contributes also to the (negative) surface charge density [38].

As shown in Table 4.2, each lignosulfonate type is very polydisperse (PD) with
respect to molecular weight, i.e. each such polymer type consist of both small lignosul-
fonate molecules (order of magnitude 1 nm) and large lignosulfonate molecules (say,
order of magnitude 100 nm). However, the amount of each fraction size is dependent
on polymer type. For example, the LMW Na polymer consist more of the small
sized lignosulfonate molecules, while the VHMW Na polymer consist more of the
large sized lignosulfonates. This is shown with the schematic illustration to the left
in Figure 4.3.

Figure 4.3: To the left: Schematic illustration of molecular weight distribution for the polymer
types of LMW Na, HMW Na and VHMW Na. To the right: The larger polymer tend to
adsorb to the cement surface, while the smaller ones tend to remain in the solution between the
cement particles (dimensions are exaggerated).

The lignosulfonate molecules are heavily crosslinked and its typical dimension is
reported to be in the order of 10 nm [18]. The larger molecular weight lignosulfonates
can be looked upon as roughly spherical microgel [29, 84, 105], while the smallest
fraction has more linear characteristics [84]. More precisely, as the molecular weight
increases, the shape goes from a simple linear polymer (small Mw), to a branched
polymer (medium Mw), to a more spherical microgel (large Mw) [84].

Investigations conducted by the scientists of Borregaard LignoTech, have
gained a strong evidence of that the smaller lignosulfonate molecules remains in the
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solution between the cement particles, while it is rather the larger lignosulfonate
molecules that are adsorbed on the cement particle surface [39]. This is schematically
shown with the right illustration of Figure 4.3 (dimensions are exaggerated). This
means that for the given polymer dosage of VHMW Na applied to the suspension,
a larger amount of lignosulfonate molecules are adsorbed to the surface of the cement
particles, compared to when using an equal amount of LMW Na. This is shown
with the vertical line marked with “2”, in the left illustration. Also, when increasing
the dosage of lignosulfonate, increased quantity of the large molecules start to appear
in the solution. This is demonstrated with the dashed vertical line marked with “3”.
The opposite occurs when the dosage is reduced as shown with the dashed vertical
line marked with “1”.

Polymer dosage (or sometimes, dosage of lignosulfonate) is represented as [sbwc],
and means “solid(s) by weight of cement”. This value is given as percentage. For
example, using 504 kg of FAC (see Table 4.6), with 0.6% sbwc of HMW Na, means
that 504 kg·0.006 ≈ 3 kg of dry lignosulfonate powder is used in the batch. The symbol
mdp/mc is sometimes used to designate the polymer dosage. The term mdp is the
mass of dry polymer andmc is the mass of cement; i.e.mdp/mc = 3kg/504 kg ≈ 0.6%.

4.2.3 Aggregates

The aggregates used in this project are supplied by NorStone AS, which is part of
the German cement and building materials group Heidelberger Zement AG. The
aggregates are taken from one and the same geological formation in Årdal, Norway.
The formation originates from a moraine and is sorted by a relatively short distance
by melt water from the corresponding glacier. At least 70% of the 0−8mm aggregates
consists of uncrushed materials. Aggregates larger than 8mm consists of about 30%
of natural and about 70% of crushed materials. The density of the aggregate sample
is ρa = 2670 kg/m3.
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Figure 4.4: The aggregate grading as percentage passing versus sieve size. To the left is the
grading curve used for the concrete mixes. To the right are the grading curve of the mortars.

The grading curves are shown in Figure 4.4. To the left is the grading used for
all the concrete batches, and to the right are the grading curves for the mortars. The
“0− 8mm aggregates”-grading curve shown in the right illustration, is the 0− 2mm
part of the 0−8mm aggregates used in the concrete mix. As will be apparent shortly,
it must be very similar to the 0− 2mm aggregates used in the OPC-mortar, marked
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as “0− 2mm (OPC)”. The “0− 2mm (FAC)”-grading curve shown, is the aggregate
grading used for the fly ash mortars.

The moisture content for the 0− 8mm aggregates are kept at 3.5% ± 0.5%. The
8 − 16mm aggregates are bone dry, i.e. measured with roughly 0% moisture. The
moisture content of the 0− 2mm aggregates are held at 2.7% ± 0.1%. The absorbing
capability of the 0− 2mm, 0 − 8mm and 8 − 16mm aggregates are 0.8%, 0.8% and
0.5% respectively (values are supplied by NorStone). It is assumed that absorbed
water is not part of the cement paste inside the concrete, or inside the mortar.

4.3 Mix Design

Because of how rheological measurements on concrete requires a large resources in
terms of test material, workforce and time, it is not practical to apply the whole test
program to concrete. Rather, the mix design of 0−2mm mortar, inside the concrete,
is calculated and thereafter used to a much larger test program. This is done in the
hope that the corresponding mortar batches will simulate the rheological behavior of
the concrete. By this approach, it possible to create a larger and more complicated
test program, to investigate the effects of the different lignosulfonate types.

A similar approach to the above, has been made by Mørtsell [80, 81]. There,
instead of calculating a 0 − 2mm mortar from the concrete, a 0 − 0.125mm filler
modified cement paste is rather calculated. There are two reasons for the use of mortar
rather than filler modified cement paste in this thesis. First, the dispersing mechanism
from the 0 − 2mm aggregates on the clumped and coagulated cement particles is
more similar to what applies from the 0 − 16mm aggregates in concrete. Secondly,
making a filler modified cement paste at w/c = 0.5 and 0.6 with the concomitant
use of plasticizers, generates a soup with too low shear viscosity η for the ConTec

Viscometer 4 to register.

4.3.1 Mix Design of Concrete (OPC)

When making the mix design for the concrete, it was preferred to have about the
same slump value (see Section 4.4.2) for the most of the mixes containing the different
polymer types. This was preferred when comparing their difference in workability and
workability retention. The goal was to gain an initial slump value around and above
200mm (see for example Figure 6.5, Page 108). For a given polymer dosage, the
amount of binder2 was increased until the requested slump value was gained.

Initially, a higher dosage of lignosulfonate and lower amount of binder was used in
the mix design. This was done to simulate a more realistic and economical concrete
mix. The concrete came out well in respect to flowability and stability. However,
the corresponding 0−2mm mortar batch had bleeding problems and also segregated.
The solution to the instability problem of the mortar was to make it more viscous,
by reducing the amount of polymer dosage. However, to maintain the slump value of
200mm at the same time for the concrete, a larger amount of binder had to be used.
The final mix design for the concrete at w/c = 0.4, 0.5 and 0.6 is shown in Table 4.3.

The amount of aggregates shown in Table 4.3 are in (bone) dry condition. The
γ̇m/γ̇-ratio is explained in Section 4.4.1. The mortar content shown in the table,
assumes an air content of 2%. This value is generally measured (see Section 5.5.1).

2Binder means the combined mix of cement, water and dry polymer (i.e. cement paste).
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Table 4.3: Mix design for the concrete at the different w/c-ratios on the 1m3 basis.

w/c Binder Mortar Cement mdp/mc Aggregates Density γ̇m
γ̇

0.4 320 l 574 l 442 kg 0.6% 1762 kg 2396 kg/m3 4.0
0.5 305 l 564 l 371 kg 0.3% 1802 kg 2372 kg/m3 4.1
0.6 295 l 558 l 320 kg 0.1% 1829 kg 2354 kg/m3 4.2

4.3.2 Calculating Mix Design of Mortar (OPC)

In the following is a short demonstration of how the 0 − 2mm mortar is calculated
from the concrete mix, at the w/c-ratio of 0.4. The same calculation scheme applies
for the other two mix design at w/c = 0.5 and 0.6. This calculation is made relative
to one cubic meter of batch. The resulting mix design is shown in Table 4.4.

As shown in the left illustration of Figure 4.4, the percentage passing at the
2mm sieve size is 35.4%. Therefore, the amount of 0 − 2mm aggregates in the
concrete is about 0.354 · 1762 kg = 624 kg (see Table 4.3). This corresponds to a
volume of 624 kg/ρa = 234 l. Now, from Table 4.3, the amount of binder in the
concrete is 320 l. With this, the volume of mortar inside the concrete is calculated as
234 l + 320 l + 20 l = 574 l (the volume of 20 l corresponds to 2% air, per cubic meter
of concrete batch). Hence, the relative amount of binder in the 0 − 2mm mortar
(inside the concrete) is 320 l/574 l = 55.8%. This means that in the mix design for
the mortar, the amount of binder must be 558 l on the 1m3 basis (shown in Table 4.4).
With 0.558m3 = mc/ρopc+mw/ρw+Vdp = mc/ρopc+0.4 ·mc/ρw+0.006 ·mc/ρdp and
then solving formc givesmc = 770 kg/m3. The terms Vdp and ρdp are the volume and
density of dry lignosulfonate polymer, respectively. Since the air content of concrete
is about 2%, the air content of mortar should be 20 l/574 l = 3.48% or 34.8 l. This
means that the amount of 0−2mm aggregates is (1000 l−558 l−34.8 l) ·ρa = 1087 kg.
Hence, density is 770 + 0.4 · 770 + 0.006 · 770 + 1087 + 0.008 · 1087 = 2178 kg/m3.
The value 0.6% · 770 kg is the mass of dry polymer and 0.8% · 1087 kg is the mass of
absorbed water, which is added to the already supplied water of 0.4 · 770 kg.

Table 4.4: Mix design for mortar at the different w/c-ratios on the 1m3 basis (OPC).

w/c Binder Cement mdp/mc Aggregates Density ma/mc

0.4 558 l 770 kg 0.6% 1087 kg 2178 kg/m3 1.4
0.5 541 l 658 kg 0.3% 1132 kg 2130 kg/m3 1.7
0.6 529 l 574 kg 0.1% 1162 kg 2090 kg/m3 2.0

The ma/mc-ratio shown in Table 4.4, describes the mass ratio of aggregates to
cement. This ratio can give a measure of grinding and dispersing effect from the
aggregates on the clumped and coagulated cement particles. A higher value means a
higher effect. This value is used in Chapter 5, when discussing reproducibility.

4.3.3 Mix Design of Mortar (FAC)

To begin with, the mix design of Table 4.4 was used when applying the FAC. The
resulting mix design for the FAC-case is shown in Table 4.5, and is constructed with
the same amount of binder as a constraint, namely 558 l.

As is discussed in Section 5.4, due to reproducibility problems when using the
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Table 4.5: Old mix design for mortar using the FAC.

w/c Binder Cement mdp/mc Aggregates Density ma/mc

0.4 558 l 751 kg 0.6% 1088 kg 2153 kg/m3 1.4

FAC, a different mix design is applied. This mix design is shown in Table 4.6. With
this change, a different batch of sand (from a specific big-bag) is used. The grading
of this sand is shown in Figure 4.4 and is marked as “0 − 2mm (FAC)”. For further
information about the aggregates, see Section 4.2.3.

Table 4.6: New mix design for mortar using the FAC.

w/c Binder Cement mdp/mc Aggregates Density ma/mc

0.57 460 l 504 kg 0.6% 1388 kg 2193 kg/m3 2.7
0.57 460 l 505 kg 0.3% 1388 kg 2193 kg/m3 2.7

4.4 Test Methods

4.4.1 ConTec Viscometers

Verification of Viscometers

Before the experimental part started it was necessary to verify that the ConTec

BML Viscometer 3 and the ConTec Viscometer 4 viscometer were working
properly. The verification is made on three frontiers. First check if the load cell (that
registers the torque T̂ , c.f. Equation 3.24 on Page 59) is working properly by applying
fixed loads directly to it and see if the software FreshWin

3 registers the correct
value. The second check consist of verifying that the rotational frequency of the outer
cylinder fo corresponds to what the software is registering. The third check consists
of measuring the shear viscosity η of a high viscous Newtonian fluid with known
viscosity value and verifying that the viscometer measures the correct value. The
above verification procedure is applied both to the ConTec BML Viscometer 3

and ConTec Viscometer 4.

Shear Rate of Concrete Inside the ConTec BML Viscometer 3

The aim is to make the magnitude of shear rate γ̇ for a concrete batch inside the
ConTec BML Viscometer 3, correspond to what applies in reality. During cast-
ing (see Figure 3.2 on Page 54), it is not unexpected if about 5 cm thick layer of
concrete is flowing with the speed ranging from about 0.1 to 0.5m/s. With this,
the shear rate is in the order of magnitude from γ̇ ∝ (10 cm/s)/(5 cm) ≈ 2 s−1 to
γ̇ ∝ (50 cm/s)/(5 cm) ≈ 10 s−1. Tests in the viscometer are made from fmin = 0.1 rps
to fmax = 0.5 rps and since the thickness of the concrete layer in this device is
∆R = Ro − Ri = 14.5 cm− 10 cm = 4.5 cm, the order of magnitude for shear rate is
from γ̇ ∝ (2π · fmin · Ro)/∆R ≈ 2 s−1 to γ̇ ∝ (2π · fmax · Ro)/∆R ≈ 10 s−1. Hence,
the values of fmin and fmax are considered to be correct. These values are shown in
Table 3.1 (Page 64).

3The software that controls the ConTec viscometers is named FreshWin.
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Shear Rate of Mortar Inside the ConTec Viscometer 4

Since the OPC-mortar is supposed to represent the 0−2mmmortar inside the concrete
(see Section 4.3.2), it is only natural to have the same shear rata condition inside the
ConTec Viscometer 4, as applies for the mortar inside a concrete. To calculate the
shear rate γ̇m for the mortar inside the concrete, one must make the use of Figure 2.6
(Page 22). In this figure, the black and white particles represent the larger cement
particles. Extrapolate this figure to concrete, the black and white particles now
represent the 2 − 16mm aggregates. The material in-between is now the 0 − 2mm
mortar. This configuration is shown in Figure 4.5. Illustration A is the same as
illustration C in Figure 2.6. Illustration B (in Figure 4.5) demonstrates how the
mortar layer goes under a larger shear rate (which is γ̇m) than the concrete as a
whole (which is γ̇). The term δD designates the average thickness of the mortar layer
and D the average diameter of the 2− 16mm aggregates.

Figure 4.5: Shear rate condition of mortar, inside the concrete. Illustration A is the same as
illustration C in Figure 2.6 (Page 22). Illustration B demonstrates in a more detail how the
shear rate of mortar γ̇m is larger than of the concrete as a whole γ̇. Illustration C represents a
“repeating unit” of the concrete sample.

With the assumed velocity profile of v = v1(x3, t)i1 for the concrete, the shear
rate develop into γ̇ = |∂v1/∂x3| = ∂v1/∂x3 ≥ 0. As such, γ̇ can be approximated
with (vw− vb)/(D+ δD). Likewise, the shear rate of the mortar (inside the concrete)
can be approximated with (vw − vb)/δD. This gives the following equation:

D + δD

δD
=

vw−vb
δD

vw−vb
D+δD

≈ γ̇m
γ̇

(4.2)

Illustration C in Figure 4.5 demonstrates a “repeating unit” of a concrete sample.
This leads to the relationship of D3/(D+δD)3 ∝ Va/Vt, where Va is the volume of the
2− 16mm aggregates (inside the concrete) and Vt is the total volume of the concrete
sample. With this, Equation 4.2 can be rewritten to the following:

γ̇m
γ̇
≈ D + δD

δD
=

1
1− D

D+δD

∝ 1
1− (Va/Vt) 1

3
(4.3)

The γ̇m/γ̇-ratio is shown in the last column in Table 4.3. There it is demonstrated
that the condition of γ̇m/γ̇ ∝ 4 applies, meaning that the same order of magnitude
of shear rate should apply for both concrete and mortar, but with the constraint of
that the γ̇m value should be larger than of γ̇.

Tests in the ConTec Viscometer 4 are made from fmin = 0.05 rps to fmax =
0.45 rps. Since the thickness of the mortar layer inside the viscometer is ∆R =
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Ro − Ri = 10.1 cm− 8.5 cm = 1.6 cm, the order of magnitude for shear rate is from
γ̇m ∝ (2π · fmin ·Ro)/∆R ≈ 5 s−1 to γ̇m ∝ (2π · fmax ·Ro)/∆R ≈ 20 s−1. This means
that the condition mentioned in the previous paragraph applies. Therefore, the values
of fmin and fmax can be considered to be relatively correct. These values are shown
in Table 3.1 (Page 64).

Tests With the ConTec Viscometers

How torque T̂ is generated and converted into plastic viscosity µ and yield value τo is
discussed in Section 3.4. In fact, the whole Chapter 3 is devoted to the description of
ConTec viscometers, relative to the Bingham fluid. For example, with Figures 3.6
and 3.7 (Page 60), a step by step description is made of how the continuous torque data
is filtered to create a set of discrete torque points T̂ , which is then used to calculate
the slope H and the point of intersection with the ordinate G, giving T̂ = H fo +G.
Using Equations 3.26 and 3.27, the G and H values are converted to the yield value
τo and the plastic viscosity µ.

4.4.2 Slump

Rheological behavior can be determined, to some degree, by the (Abrams) slump test.
This method is used extensively in site work all over the world. The slump test is
prescribed by ASTM C 143-90a and BS 1881:Part 102:1983. Additional information
about the slump test can for example be found in [10, 24, 88].

Because of its simplicity, the slump test remains the most widely used test for
characterizing concrete consistency. As shown in Figure 4.6, the apparatus consist
of a mould in the shape of a truncated metal cone, open at both ends. The internal
diameter of the slump cone, is 200mm at the base, 100mm diameter at the top and
has a height of 300mm. This device is usually provided with foot pieces and handles.

Figure 4.6: Slump measurement is made by placing the slump cone beside the slumped sample
and laying the tamping rod across the cone, extending over the specimen. Then the distance
from the bottom of the rod to the slumped concrete, gives the slump value S (from [24]).

Figure 4.6 demonstrates how the slump is measured. Basically the procedure
consist of filling the metal cone with concrete, by a specific procedure (see the left
illustration). Thereafter, the metal cone is lifted, leaving the concrete sample behind
which “slumps down” by the action of gravity g. This is shown with the center
and right illustrations. Being a viscoplastic fluid, the slump material stops flowing
downward when the condition (T : T)/2 ≤ τ2o becomes dominated (see Equation 3.5,
Page 53). Hence, it is not unexpected that there is a strong relationship between
the slump value S and the true yield value τo of the concrete sample. A relationship
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between the slump value S and the yield value τo measured with the ConTec BML
Viscometer 3, is presented in Section 6.3.1.

4.5 Test Program

The purpose of the test program is presented in Section 1.2.1. The test program
consists of testing the effects of seven different types of plasticizers/superplasticizers.
Six of them are lignosulfonates produced by Borregaard LignoTech, described
in Section 4.2.2. The other type of superplasticizer is a Naphthalene based product,
namely Sulfonated Naphthalene Formaldehyde (SNF). The SNF has the commercial
name Suparex M40 and is produced by Hodgson Chemicals Ltd. In addition
to this, a batch without any plasticizers/superplasticizers is always included when
conducting a mortar measurement. Such a batch is designated as Without P/SP.
Both the SNF andWithout P/SP serve mainly as a reference, in comparison to the
effects of lignosulfonates. From the results of this test program, other investigations
are also made, like the comparison of slump results with yield values τo, measured by
the ConTec BML Viscometer 3.

The above polymer types are used in mortar of two different cement types, namely
the OPC and FAC. A description about these cement types is made in Section 4.2.1.
However, no concrete batch is mixed or measured with FAC. This is shown in Ta-
ble 4.7, where only the “OPC-boxes” are marked with a “X”. A box with a X mark,
means that the specific batch is mixed and measured. An empty box means that no
measurement is made of the corresponding mix. This applies to all tables shown in
Section 4.5.

The test program is basically divided between the types of cement used, or more
precisely between the OPC and FAC. For the OPC-case, three different w/c-ratios are
used, namely of 0.4, 0.5 and 0.6. For each w/c-ratio, a specific dosage of plasticizing
polymer is applied. A different scheme is valid for the FAC-case. There the same
w/c-ratio is always applied (w/c = 0.57), however with a different polymer dosage,
either of 0.6% sbwc or of 0.3% sbwc. The mix design for the cases of concrete (OPC)
and mortar (OPC, FAC) is presented in Tables 4.3, 4.4 and 4.8 (Page 78).

Table 4.7: Concrete measurements at 23◦C (Viscometer and Slump).

Cement type → OPC OPC OPC FAC FAC
Polymer [sbwc] → 0.6% 0.3% 0.1% 0.6% 0.3%

w/c→ 0.4 0.5 0.6 0.57 0.57
VHMW Na X X X
HMW Na X X X
HMW Ca X X X
LMW Na X X X
LMW Ca X X X

LMWFS Ca X X X
SNF X X X

Without P/SP
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Table 4.8: Mortar measurements at 5◦C.
Cement type → OPC OPC OPC FAC FAC
Polymer [sbwc] → 0.6% 0.3% 0.1% 0.6% 0.3%

w/c→ 0.4 0.5 0.6 0.57 0.57
VHMW Na
HMW Na X X X
HMW Ca X
LMW Na X X X
LMW Ca

LMWFS Ca
SNF X X X

Without P/SP X X X

Table 4.9: Mortar measurements at 23◦C.
Cement type → OPC OPC OPC FAC FAC
Polymer [sbwc] → 0.6% 0.3% 0.1% 0.6% 0.3%

w/c→ 0.4 0.5 0.6 0.57 0.57
VHMW Na X X X X X
HMW Na X X X X X
HMW Ca X X X
LMW Na X X X X X
LMW Ca X X X X X

LMWFS Ca X X X X X
SNF X X X X X

Without P/SP X X X X X

Table 4.10: Mortar measurements at 38◦C.
Cement type → OPC OPC OPC FAC FAC
Polymer [sbwc] → 0.6% 0.3% 0.1% 0.6% 0.3%

w/c→ 0.4 0.5 0.6 0.57 0.57
VHMW Na X X X X
HMW Na X X X X
HMW Ca X X
LMW Na X X X
LMW Ca X X X

LMWFS Ca X X X
SNF X X X X

Without P/SP X X
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Chapter 5

Mixing Procedure and
Reproducibility

5.1 Introduction

In this thesis, a number of four, and sometimes three, repeated batches of the same
mix design are measured with the ConTec BML Viscometer 3, ConTec Vis-

cometer 4 and the Abrams cone. Thereafter, comparisons of the rheological values
are made, to see if the same outcome is reproduced. This is always done before actu-
ally starting with the measurements of interest and is intended to provide a (rough)
error estimation to the whole experiment. However, this is not the only reason. The
second objective is to reveal and compensate for different systematic errors that are
always present in this type of experimental work. The specific rheological behavior
shown in this chapter is not discussed until in Chapter 6.

In the progress of time, the reproducibility effort became a larger and larger part
of this thesis and hence is the subject of its own chapter.

5.2 Concrete Measurements (OPC)

5.2.1 Mixing and Measuring Procedure

A 50 liters mixer from Maschinenfabrik Gustav Eirich of type SKG1 is used in
(re)mixing of the concrete batches, prior to a rheological measurement. This mixer is
shown in the left illustration of Figure 5.1. Before mixing, the 0− 16mm aggregates
(beginning with the 11−16mm ones) and then the cement, are pored into the mixing
bowl. The lignosulfonate, the air-detraining agent1 TBEP and water, are premixed
before adding. It is a common experience that the plasticizing polymers are more
effective if added a few minutes after water addition (see for example [131]). To have
the mixing procedure for the different batches as equal as possible, such maneuver is
not made.

For all mixes with the Norcem Standard Cement (OPC), the mass ratio of
air-detraining agent versus polymer (i.e. the mtbep/mdp-ratio) is kept at 1%. This
is a magnitude that is generally applied [105]. This value is also used when making

1Tributoxyethyl phosphate ⇒ (C4H9OC2H4O)3PO
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a batch of mortar or cement paste using the OPC. However, the mtbep/mdp-ratio is
increased up to 1.5% for batches containing the Norcem Fly Ash Cement (FAC).

Figure 5.1: To the left is the Gustav Eirich concrete mixer and in the middle is the ConTec

BML Viscometer 3 with a plastic bag covering its inner cylinder. To the right is the Hobart

AE120 mixer and is used when mixing mortar or cement paste.

Themixing procedure and themeasuring procedure for the concrete batches
are given in Box 1 and 2, respectively. The mix design is shown in Table 4.3 (Page 78).
The variable t designates the time after water addition.

Box 1: Mixing procedure for concrete batches.

1. Dry mixing of the 0− 16mm aggregates and the cement for one minute, in the
time period of t ∈ [−1min, 0min].

2. Wet mixing, in the time period of t ∈ [0min, 1min]. The time “t = 0min” is
defined as the initial start of water addition. The water (which is premixed with
lignosulfonate) is pored into the mix in the time interval of about 30 seconds.

3. Rest, in the time period of t ∈ [1min, 3min] (i.e. for two minutes).

4. Mixing, in the time period of t ∈ [3min, 5min] (i.e. for two minutes).

Box 2: Measuring procedure for concrete batches.

1. t = 10min: Rheological measurement with the concrete viscometer.

2. t = 34min: Remixing for 2 minutes in the concrete mixer.

3. t = 40min: Rheological measurement with the concrete viscometer.

4. t = 64min: Remixing for 2 minutes in the concrete mixer.

5. t = 70min: Rheological measurement with the concrete viscometer.

6. t = 94min: Remixing for 2 minutes in the concrete mixer.

7. t = 100min: Rheological measurement with the concrete viscometer.

After each measurement with the ConTec BML Viscometer 3, the concrete
is placed back into the mixer to rest there. The resting time consist of less than 23
minutes until remixing occurs. Care is taken to ensure a minimum loss of moisture
(due to evaporation) for this time period (see Figure 5.1, to the left). Six minutes be-
fore making the second measurement on the same batch (at t = 40min), the concrete
is remixed for two minutes. Thereafter, the concrete is under manual agitation during
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the process of moving it from the mixing device to the viscometer. This applies also
before the measurements conducted at t = 70min and t = 100min.

After each measurement, a rough cleaning procedure is applied to the inner and
outer cylinder of the viscometer. This consisted of removing the remaining concrete
with manual force. Thereafter, the inner cylinder is covered with a plastic bag, to
inhibit a moisture loss from the remaining fine mortar, stuck on this cylinder. This is
shown with the center illustration of Figure 5.1. A plastic cover is also placed on top
of the outer cylinder, i.e. on the top of the bucket of the viscometer (see the center
illustration of Figure 3.5, Page 56).

5.2.2 Quest for Reproducibility

With the verification procedure described in Section 4.4.1, it is confirmed that the
viscometers are working correctly. This does however not ensure a correct viscometric
measurement. Errors related to the mixing and measuring procedure can be present.
Measuring the same rheological results from the different batches of the same mix
design, indicate that such errors are at minimum. To test if such reproducibility
exists, then for each mix design at w/c = 0.4, 0.5 and 0.6, number of four repeated
batches are made and measured. The results of these tests are shown in Figures 5.2,
5.3 and 5.4.
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Figure 5.2: Reproducibility results for concrete at w/c = 0.4, using HMW Na. The sequence
of numbers represents: Coefficient of variation; Average ± Standard deviation. To the left is the
slump value and to the right is the yield value τo (top) and plastic viscosity µ (bottom).

Due to some experimental error, the water content in the batch number 2, 3 and
4 of w/c = 0.4 [HMW Na; 0.6% sbwc], are larger than corresponds to the target
value of w/c = 0.4. Estimated w/c-ratio for these batches are shown in Figure 5.2.
The type of error that is responsible for this, is only present for these three batches.

The sequence of numbers shown in Figures 5.2 to 5.4 are the coefficient of vari-
ation2 of the measurements and the average ± standard deviation. These values
are frequently applied in Chapter 6, when representing the various rheological results.
There, the average value is always used as the actual value for the HMW Na-batch,
and its standard deviation is used in calculating the 95% confidence interval for that
particular case, based on t-distribution (see Section 6.2.2). As shown for example in
Figures 6.2 and 6.4 (Page 105), the confidence interval is plotted with four vertical

2Coefficient of variation = 100 · standard deviation/average (is expressed as a percentage) [133].
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Figure 5.3: Reproducibility results for concrete at w/c = 0.5, using HMW Na. To the left is
the slump value and to the right is the yield value τo (top) and plastic viscosity µ (bottom).
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Figure 5.4: Reproducibility results for concrete at w/c = 0.6, using HMW Na. To the left is
the slump value and to the right is the yield value τo (top) and plastic viscosity µ (bottom).

lines. In Figure 5.2, the batch number 4 is excluded when calculating the coefficient
of variation, average and standard deviation, as a consequence of the uncontrolled
increase in w/c-ratio, discussed just previously.

The rheological results of the concrete batches shown in Figures 5.2 to 5.4, are
more or less overlapping each other. For the measured yield value τo and plastic
viscosity µ, the coefficient of variation is roughly between 10 and 20%. For the slump
results, this coefficient is lower, or roughly between 5 and 10%. As such, the mixing
and measuring procedure of Box 1 and 2 can be considered to be acceptable. However,
regardless of this result, what is most important in Figures 5.2 to 5.4, are the values
of standard deviation. As mentioned above, they are used in the calculation of the
95% confidence interval, which again demonstrates the degree of significance between
the different rheological results shown in Chapter 6.

It is always the HMW Na polymer that is applied in the reproducibility tests
shown here. The reason for this is related to the importance of this polymer. It was
early pointed out by Borregaard LignoTech, that this lignosulfonate is one of the
most important one, of the types given to this work. As such, theHMW Na polymer
is also used in the following sections, when determining the reproducibility for the
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mortar batches. Because of how it requires large resources in terms of test material,
workforce and time, it is only for the HMW Na-case that the reproducibility is
measured. It would have enhanced this work if reproducibility were also tested using
other types of lignosulfonates. Since such data is not available, the 95% confidence
interval for the HMW Na-case is sometimes used as a rough error estimation for
other lignosulfonate cases. Fortunately, it is possible to calculate a 95% confidence
interval based on a single measurement. This is done for all batches of this work (see
for example Figure 6.2, Page 105). The calculation is explained in Section 6.2.2 and
is in accordance with a textbook by Tattersall and Banfill [128]. This maneuver gives
a clearer picture of the degree of significance between the different rheological results,
shown in Chapter 6. This consideration applies also for the mortar case.

5.3 Mortar Measurements (OPC)

5.3.1 Mixing Procedure

A Hobart AE120 mixer is used for all the mortar mixes. This device is shown in
the right illustration of Figure 5.1. It has three speed settings for the agitator and
the attachment (i.e. the whips) respectively: Speed 1: 106 and 61 rpm, Speed 2:
196 and 113 rpm and Speed 3: 358 and 205 rpm. The agitator rotates clockwise
and the attachment rotates counter clockwise. The attachment is a blade shaped
(like an open shield). Before mixing takes place, the 0 − 2mm aggregates and then
the cement, is pored into the mixing bowl. As when mixing a concrete batch, the
lignosulfonate, air-detraining agent TBEP and water are premixed before addition to
the mix of 0− 2mm aggregates and cement. The mixing procedure for the mortar
is currently nominally the same as the one used for the concrete:

Box 3: Mixing procedure for mortar batches (old).

1. Dry mixing of the 0− 2mm aggregates and the cement at speed 1, in the time
period of t ∈ [−1min, 0min].

2. Wet mixing at speed 1, in the time period of t ∈ [0min, 1min]. At the time
t = 0min is the start of water addition. The water (which is premixed with
lignosulfonate) is pored into the mix in the time interval of ca. 45 to 50 seconds.
Pouring all the water into the mix at a shorter time, gave a less efficient mixing.
In such cases, the formation of one (or more) big cement clump became a reality,
with about one third of the cement still not wetted.

3. Rest and hand mixing, for 2 minutes (t ∈ [1min, 3min]).

4. Mixing at speed 2, for 2 minutes (t ∈ [3min, 5min]).

The hand mixing in Item 3 above, is introduced in order to brake up slam layers
and coarsely coagulated cement clumps that resided at the bottom in the bowl. The
total mixing time, including dry mixing is six minutes. The anticipation was that the
above mixing procedure would be sufficient enough, since the 0 − 2mm aggregates
were expected to brake up any remaining small cement clumps, and then disperse the
residual of coagulated cement particles in an adequate manner.

5.3.2 Measuring Procedure

After each measurement with the ConTec Viscometer 4, the mortar is placed back
into the bowl of the Hobart mixer, to rest there. Care is taken to ensure a minimal
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loss of moisture (due to evaporation). Six minutes before repeating the measurement,
the mortar is remixed for two minutes, at speed two. With this procedure, the mortar
has the same resting time3 as applies for the concrete from remixing to repeating a
viscometric measurement. An overview of the measuring procedure is listed in the
following items. As applies on Page 86, the variable t designate the time elapsed from
the point of water addition.

Box 4: Measuring procedure for mortar batches (old).

1. t = 10min: Rheological measurement with the viscometer.

2. t = 34min: Remixing for 2 minutes in the Hobart mixer, at speed two.

3. t = 40min: Rheological measurement with the viscometer.

4. t = 64min: Remixing for 2 minutes in the Hobart mixer, at speed two.

5. t = 70min: Rheological measurement with the viscometer.

6. t = 94min: Remixing for 2 minutes in the Hobart mixer, at speed two.

7. t = 100min: Rheological measurement with the viscometer.

The mix designs of the mortars are shown in Table 4.4. As before, the HMW Na
polymer is always used. The reproducibility results are shown in Figures 5.5 and 5.6.
The sequence of numbers shown in both figures, are the coefficient of variation of
the measurements and the average ± standard deviation. The right illustration of
Figure 5.5, demonstrates the measured torque versus rotational frequency for batch 2
at w/c = 0.4, while the left illustration demonstrates the results in the usual compact
form, only showing the corresponding yield value τo and plastic viscosity µ. Figure 5.6
demonstrates reproducibility results that apply for w/c = 0.5 and w/c = 0.6.
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Figure 5.5: Reproducibility results at w/c = 0.4 for mortar using the mixing and measuring
procedure of Box 3 and 4. To the left: Yield value τo and plastic viscosity µ from four repeated
batches. To the right: The detailed result from the second batch. [OPC; To = 23◦C].

The worst problem with the result shown in Figure 5.5 is perhaps not in terms of
coefficient of variation (which are from about 5 to 30%), but rather in lack of time evo-
lution in rheological values. As is explained in Section 6.4.1, it is to be expected that
at least one of the rheological values τo or µ are increasing with time. As shown in the
figure, neither τo or µ seems to have such properties; i.e. the 95% confidence interval

3Five minutes resting before the first measurement and then four minutes there after.
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(in this case ±1.59·standard deviation, calculated according to Equation 6.2, Page 109
with ν = n − 1 = 3 giving t0.025 = 3.182) completely overshadows any changes in
viscometric values. This is perhaps more apparent with the right illustration, which
shows how the torque measurements are more of the random and fluctuating nature
(at least relative to what is shown in Figure 3.7, Page 61). This indicates that the
measuring and mixing procedure of Box 3 and 4 are not really good.
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Figure 5.6: Reproducibility results at w/c = 0.5 (to the left) and at w/c = 0.6 (to the right)
for mortar using the mixing and measuring procedure of Box 3 and 4. [OPC; To = 23◦C].

The exact reason(s) for the strange results in the w/c = 0.4 batches is unclear.
However, with the good reproducibility results for the w/c = 0.5 and w/c = 0.6 batch,
in terms of smaller coefficient of variation (1 to 10%) and in terms of a clear yield
value evolution with time, it can be suggested that the mixing procedure (see Box 3)
is not intensive enough. This can be proposed in the light of that the ma/mc-ratio4

is increasing from 1.4 to 2.0, when going from w/c = 0.4 to 0.6 (see Table 4.4), giving
the basis for an increased effect of grinding and dispersion of the cement particles.
Hence, the nominal same mixing procedure for the concrete and for the mortar at
w/c = 0.4, is suspected not to be equal in the respect to grinding of the smaller
cement clumps and in terms of dispersion of coagulated cement particles there after.
As mentioned in Section 4.3, one of the reasons for using mortar rather than filler
modified cement paste is to increase the grinding sufficiently, to be more similar to
what applies inside the concrete.

5.3.3 Change in the Mixing and Measuring Procedure (OPC)

From the results shown in Figures 5.5 to 5.6, with increasing ma/mc-ratio (from
w/c = 0.4 to w/c = 0.6), improved rheological results are produced. This is both in
terms of coefficient of variation and in terms of a clear yield value τo evolution with
time. However, the plastic viscosity µ remains unchanged as a function of time. With
this information, a new mixing procedure was constructed of the more intensive type.
An overview of this new mixing procedure, is shown in Box 5. The total mixing
time, including dry mixing is now 10 minutes.

4ma/mc = mass ratio of aggregates versus cement. This ratio can give a measure of grinding
and dispersing effect from the aggregates on the clumped and coagulated cement particles. A higher
value means a higher effect.
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As before, after each viscometric measurement, the mortar is placed back into the
bowl of the Hobart mixer to rest. The resting time consist of less than 27 minutes,
until remixing occurs. Care is taken to ensure a minimal loss of moisture (due to
evaporation). Three minutes before commencing a viscometric measurement, the
mortar is remixed for two minutes at speed 3. Therefore, the rest between a (re)mixing
and a measurement is reduced down to 1 minute (from the previous 5 and 4 minutes).
The modified measuring procedure is given in Box 6.

After each measurement, a crude cleaning procedure is applied, consisting of shak-
ing the inner cylinder and removing the remaining mortar with cloth. Thereafter, the
inner cylinder is covered with a plastic bag to inhibit a moisture loss from the remain-
ing mortar, stuck on it. A plastic cover is also placed on top of the outer cylinder (i.e.
the bucket of the viscometer). After two measurements, a more thorough cleaning
procedure is applied, with the use of water (shown in Item 4, Box 6). This is intro-
duced because a thin slam layers started to form on the inner cylinder, introducing
potential error to the experimental setup.

Box 5: New mixing procedure for mortar batches.

1. Dry mixing of the 0− 2mm aggregates and the cement at speed 1, in the time
period of t ∈ [−1min, 0min]. This applies also for the old mixing procedure.

2. Wet mixing at speed 1, in the time period of t ∈ [0min, 1min]. The time
t = 0min is defined as the initial start of water addition. The water (which is
premixed with lignosulfonate) is pored into the mix in the time interval of ca.
45 seconds. This applies also for the old mixing procedure.

3. Rest and hand mixing, in the time period of t ∈ [1min, 4min], i.e. for 3 minutes.
Previously, this period consisted of 2 minutes.

4. Mixing at speed 2, in the time period of t ∈ [4min, 7min], i.e. for 3 minutes.
Previously, this mixing was applied for 2 minutes.

5. Mixing at speed 3, in the time period of t ∈ [7min, 9min], i.e. for 2 minutes.
Relative to the old mixing procedure, this is a new addition.

Box 6: New measuring procedure for mortar batches.

1. t = 10min: Rheological measurement with the viscometer.

2. t = 37min: Remixing for 2 min at speed 3 in the Hobart mixer.

3. t = 40min: Rheological measurement with the viscometer.

4. Cleaning procedure applied to the inner and outer cylinder, with water.

5. t = 67min: Remixing for 2 min at speed 3 in the Hobart mixer.

6. t = 70min: Rheological measurement with the viscometer.

7. t = 97min: Remixing for 2 min at speed 3 in the Hobart mixer.

8. t = 100min: Rheological measurement with the viscometer.

With the new mixing and measuring procedure, the results shown in Figures 5.7
to 5.9 are produced. As shown in Figure 5.7, the reproducibility is much better
compared to what is shown in Figure 5.5. This is both in terms of smaller coefficient
of variation, and in terms of much clearer yield value evolution as a function of time.

The batch number 4 in Figure 5.7, demonstrates an unexpected low measured yield
value τo throughout the whole time. This phenomenon recurred for batch number 1
at w/c = 0.5, shown in Figure 5.8. Before starting with the reproducibility series at
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Figure 5.7: Reproducibility results at w/c = 0.4 for mortar using the mixing and measuring
procedure of Box 5 and 6. To the left: Yield value τo and plastic viscosity µ from five repeated
batches. To the right: The detailed result from the first batch. [OPC; To = 23◦C].
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Figure 5.8: Reproducibility results at w/c = 0.5 for mortar using the mixing and measuring
procedure of Box 5 and 6. To the left: Yield value τo and plastic viscosity µ from five repeated
batches. To the right: The detailed result from the second batch. The first measurements
occurred at 12 minutes after water addition. Previous two trials at 10 and 11 minutes gave a
horizontal line, similar to the third measurements. [OPC; To = 23◦C].

w/c = 0.6, the top ring of the ConTec Viscometer 4 is removed and the height h is
instead manually measured for each measurement (see Figures 3.4 and 3.5, Page 55).
The reason for the removal of the top ring, is due to the suspicion that some of
the aggregates became stuck between the top ring and the inner cylinder, and hence
inhibited the load cell from registering the correct torque. Such a phenomenon would
lead to the same type of readings as shown for batch 4 at w/c = 0.4 and for batch 1
at w/c = 0.5.

Another problem, suspected to be related to the top ring, is demonstrated for
the second batch at w/c = 0.5. This is shown in the right illustration of Figure 5.8:
At t = 70min, the measured yield value τo is somewhat higher than for the other
batches at the same time. In fact, the same phenomenon occurred at t = 10min
(first trial) and at t = 11min (second trial) for the same batch. With the third
attempt at t = 12min a reasonable result was finally gained. The exact reason for
this phenomenon is somewhat unclear, but it is suspected that it originated from some
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Figure 5.9: Reproducibility results at w/c = 0.6 for mortar using the mixing and measuring
procedure of Box 5 and 6. [OPC; To = 23◦C (to the left); To = 5◦C (to the right)].

kind of interactions between the inner cylinder and the top ring, with the help of the
0 − 2mm aggregates. After removing the top ring, none of the problems of batch 4
at w/c = 0.4, batch 1 or 2 at w/c = 0.5 reoccurred for the whole experimental work
of this thesis, and is therefore considered to be of a single incidence only. As a result
of this, when calculating the coefficient of variation, average and standard deviation
for the w/c = 0.4 and w/c = 0.5 batches, the abnormal values are not included.

The temperature change of each batch during the four measurements at 10, 40, 70
and 100 minutes, remains more or less a constant, with usually only minor variation
of about ±0.5◦C. However, a small variation is a reality from batch to batch, with
a minimum value down to 21◦C and maximum value of 24◦C. However, the usual
temperature was most often measured around 23◦C.

5.3.4 Reproducibility at 5◦C (OPC)

The mixing and measuring procedure are the same as used in Section 5.3.3 (Box 5
and 6). All the part materials, i.e. the cement, aggregates, water, plasticizers and the
air-detraining agent, are stored in a special room (the “cold room”) with the ambient
temperature around To = 5◦C. This was done at least 48 hours before mixing and
rheological testing. Also, the outer cylinder of the ConTec Viscometer 4, the bowl
and the whips of the Hobart mixer, are stored in this cold room, from the evening
before. The mixing of the mortar took place with ambient temperature of 23◦C. In
that period, the bowl of the Hobart mixer is immersed in cooling-water at 5◦C. Care
was taken to have always equal amount of cooling-water for all the batches made.

After each viscometric measurement (except the last one), the mortar is placed
back into the mixing bowl and stored in the cold room, for resting. The outer cylin-
der of the viscometer is also stored there, between measurements. Since remixing
consisted of only two minutes, the cooling-water is not applied in such case.

The reproducibility results at w/c = 0.6 is shown in the right illustration of
Figure 5.9. The w/c = 0.4 and w/c = 0.5 results are shown in Figure 5.10. For the
w/c = 0.4 case, there is a peculiar increase and then a small decrease in yield value τo
when using HMW Na. Such a profile is also produced when using the HMW Ca
polymer, as is shown in Figure 6.1 (Page 104). To test if this phenomenon is related
to the mixing procedure, additional measurement is commenced (batch 5), with a
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Figure 5.10: Reproducibility results at w/c = 0.4 (to the left) and at w/c = 0.5 (to the right)
for mortar using the mixing and measuring procedure of Box 5 and 6. [OPC; To = 5◦C].

more intensified mixing: The difference between this mixing procedure and the one
described in Box 5, is that the mixing speed of 3 is used instead of 2, in the time
period of t ∈ [4min, 7min]. Also, before the second measurement was made, the
mortar was premixed for 4 minutes instead of 2 minutes (see Box 6). In spite of these
changes, the peculiar evolution in yield value continued with the same trend.

The usual temperature for each batch at t = 10min is around 9◦C. With always
a slight increase, the temperature at t = 100min consist usually of about 10 to 11◦C.
The issue of temperature is considered further in Chapter 6.

5.3.5 Reproducibility at 38◦C (OPC)

The mixing and measuring procedure are the same as used in Section 5.3.3 (Box 5
and 6). All the part materials, i.e. the cement, aggregates, water, plasticizers and the
air-detraining agent, are stored in a special room (the “hot room”) with the ambient
temperature of To = 38◦C. This was done at least 48 hours before mixing and
rheological testing. Also, the Hobart mixer and the outer cylinder of the ConTec

Viscometer 4 are stored in the hot room, from the evening before. The mixing of the
mortar took place inside this room, hence the ambient temperature condition during
mixing is 38◦C. The viscometer is stored in another room with ambient temperature
of 23◦C. The time period that the test material is exposed to the latter temperature,
during each test and (de)mounting, is about 60 seconds.

The reproducibility results at 38◦C is shown in Figure 5.11. The batch at w/c =
0.6 is excluded in the overall “38◦C-series”, hence the reproducibility tests are con-
ducted only on mixes with w/c = 0.4 and w/c = 0.5.

The usual temperature for each batch at t = 10min is around 38◦C or just below.
With always a decrease, the temperature at t = 100min is 35 - 36◦C. At least two
factors contribute to this drop. First it is the heat convected from the test sample
to the surroundings qN (see Appendix B.7.2) when exposed to colder environment
during a viscometric measurement. Secondly, due to the continuous evaporation of
water, that costs heat (c.f. the heat of vaporization [154]), a drop in the temperature
results. The same considerations apply for the To = 5◦C and To = 23◦C-case, in
Sections 5.3.4 and 5.3.3, respectively.
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Figure 5.11: Reproducibility results at w/c = 0.4 (to the left) and at w/c = 0.5 (to the right)
for mortar using the mixing and measuring procedure of Box 5 and 6. [OPC; To = 38◦C].

5.4 Mortar Measurements (FAC)

The mixing and measuring procedure are the same as applies in Section 5.3.3 (Box 5
and 6). When beginning with the measurements for the To = 23◦C-case, the similar
mix design to Table 4.4 is used, with the same amount of binder as a constraint. The
resulting mix design is shown in Table 4.5. Figure 5.12 demonstrates the results for
the batch of w/c = 0.4. The coefficient of variation is roughly between 15 and 20%,
which is rather high relative to the results shown in Figure 5.7 (roughly 2 to 5%).
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Figure 5.12: Reproducibility results at w/c = 0.4 for mortar using the fly ash cement (FAC).
To the left: The mixing and measuring procedure of Box 5 and 6 is applied. To the right: A
more intensified mixing is applied. [FAC; To = 23◦C; Mix design is of Table 4.5].

The exact reason(s) for the lack of reproducibility in Figure 5.12 is unclear. How-
ever, in the light of the experience from Sections 5.3.2 and 5.3.3, a first attempt in
compensating for this error, is to intensify the mixing further, relative to what is
shown in Box 5 and 6. All mixing using speed 2 is increased up to speed 3 in the
two boxes. Only two batches are tested with this modification. The corresponding
rheological results are shown in the right illustration of Figure 5.12. As demonstrated,
no advantage seems to results from this maneuver.

Changing the mixing and measuring procedure back to its original state of Box 5
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and 6, and rather increasing the ratio of aggregates versus cement (ma/mc-ratio),
gives the outcome shown in the left illustration of Figure 5.13. In both illustrations
of this figure, the mix design is as shown in Table 4.6. As shown, the results improves
considerably by this modification; i.e. the coefficient of variation is decreased from
11− 24% down to 2− 9%. Same type of improvement is observed in Figures 5.5 and
5.6, as the ma/mc-ratio is increased from 1.4 to 2.0 (from w/c = 0.4 to w/c = 0.6). As
suggested there, with increased ma/mc-ratio, a better grinding and dispersion occurs
for the cement particles.

With the mix design of Table 4.6, the ma/mc-ratio is increased from 1.4 to 2.7.
After changing the mix design in this manner, a different bath of sand is used. The
grading of this sand is shown in Figure 4.4 and is marked as “0− 2mm (FAC)”.
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Figure 5.13: Reproducibility results at w/c = 0.57 for mortar using the mixing and measuring
procedure of Box 5 and 6. [FAC; To = 23◦C (to the left); To = 38◦C (to the right); 0.6% sbwc
HMW Na; Mix design is of Table 4.6]. For the results shown in this figure as well in all the
previous figures, the HMW Na polymer is only used, c.f. the discussion in Section 5.2.2.

In the right illustration of Figure 5.13, reproducibility results are shown when the
ambient temperature is To = 38◦C. The temperature evolution of the test sample in
the case of To = 23◦C and of To = 38◦C is as reported in the end of Sections 5.3.3
and 5.3.5, respectively.

5.5 Air Stability

When solving one problem, one is often creating a new one in the process. Unfor-
tunately, there are no exceptions here. As mentioned previously, the reproducibility
problems of mortars is solved by intensifying mixing, shown with Box 5 and 6. By
doing this, air entrainment into the mortar is increased. Since air can have a major
influence on rheological properties, the concern of air stability is a subject with its
own section, presented here.

When doing an air measurement on mortar, a separate batch must be made. This
is due to the limited volume capacity of theHobartmixer. Furthermore, there is only
sufficient material in each batch to make two air measurements. One measurement is
made at 10 minutes and the other at 100 minutes, after water addition. However, the
same mixing and measuring procedure is always applied as when doing a viscometric
measurement (Box 5 and 6). That is, remixing is also applied at 40 and 70 minutes
although no air measurements are conducted.
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5.5.1 Air Stability of Concrete

Only one measurement of air content is made for each concrete batch, when doing
a viscometric measurement. The air content is measured between the first and the
second viscometric measurement. The average air content for all concrete batches is
2.1% with the standard deviation of 0.33%. More specifically, then for the concrete
batches at the w/c-ratio of 0.4, 0.5 and 0.6, the air content is 1.9%± 0.27%, 2.3%±
0.30% and 2.2%± 0.17%, respectively (average±standard deviation). To investigate
the air stability of concrete mixes as a function of time, additional batches are mixed.
The results of this is shown in Table 5.1.

Table 5.1: Air measurements on concrete (To = 23◦C).

Polymer w/c 10min 40min 70min 100min Average
HMW Na 0.4 2.3% 2.0% 2.3% 2.2% 2.2%
VHMW Na 0.4 0.7% − − 2.0% 1.4%
VHMW Na 0.5 1.5% − − 2.0% 1.8%
LMW Ca 0.5 2.3% 2.0% 2.2% 2.2% 2.2%

VHMW Na 0.6 2.2% 2.2% 2.2% 2.4% 2.3%

Except for when using VHMW Na at w/c = 0.4, the air contents of all mixes are
relatively stable. For the VHMW Na-batch, the yield value at t = 10min is lowest
of all concrete measurements in this thesis. This is shown in Figure 6.1 (Page 104).

5.5.2 Air Stability of Mortar

Figure 5.14 shows the measured air content versus viscometric values τo and µ for
mortar, at w/c = 0.4 (OPC). Each point in this figure, is extracted from two dif-
ferent measurements of two different batches of the same mix design. One is the air
measurement and the other is the viscometric measurement. Relative to Table 5.1 for
concrete, there is a much larger difference in air content present for this mortar case.
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Figure 5.14: Air content plotted as a function of the yield value τo (to the left) and plastic
viscosity µ (to the right). [HMW Na ∧ LMWFS Ca; 0.6% sbwc; To = 23◦C ∧ To = 38◦C;
w/c = 0.4; OPC].

As shown with the left illustration of Figure 5.14, there is a strong relationship
between the air content and the yield value τo (R2 = 0.83), at w/c = 0.4 (OPC).
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More precisely, with increasing yield value τo, the air content increases (and equally,
vice versa). The right illustration shows also a strong relationship between air content
and plastic viscosity µ (R2 = 0.81), where with increasing plastic viscosity µ, the air
content decreases (and vise versa).

Figure 5.15 shows a plot of air content versus viscometric values τo and µ, at
w/c = 0.5 (OPC). As shown there, the relationship between air content and the
viscometric values is not as clear as in Figure 5.14; i.e. there seems to be no relationship
between viscometric values and air content at all. The coefficient of determination is
R2 = 0.22 in the left illustration, and R2 = 0.00 in the right one (R is referred as the
correlation coefficient [148]). Hence, there seems to be a good air stability present for
the case of [w/c = 0.5; OPC]. On the other hand, for the FAC-case at w/c = 0.57
(see Figure 5.16), there is a stronger relationship between the air content and yield
value τo, than initially shown in Figure 5.14. The coefficient of determination is large
as R2 = 0.91. However, the correlation is much lower between the air content and
plastic viscosity µ (R2 = 0.40) as shown in the right illustration of Figure 5.16.
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Figure 5.15: Air content plotted as a function of the yield value τo (to the left) and plastic
viscosity µ (to the right). [HMW Na ∧ LMWFS Ca; 0.3% sbwc; To = 23◦C ∧ To = 38◦C;
w/c = 0.5; OPC].
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Figure 5.16: Air content plotted as a function of the yield value τo (to the left) and plastic
viscosity µ (to the right). [HMW Na ∧ LMWFS Ca; 0.6% sbwc ∧ 0.3% sbwc; To = 23◦C
∧ To = 38◦C; w/c = 0.57; FAC].
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With an air content of about 2% for the concrete, it is desirable to have an air
content of about5 3.5% for the mortar. As shown in Figure 5.14, the measured air
content is below and above this value. For the mortar case of w/c = 0.5 (Figure 5.15),
the measured air content is somewhat lower than the target value. This could not be
adjusted by decreasing the air-detraining agent (TBEP), because the unwanted air
instability became then very much present.

5.5.3 Discussion and Conclusion

From Section 5.5.1, it is clear that the air content in concrete is not significantly
changing from batch to batch or with time. Hence, air stability for the case of
concrete is not a problem; i.e. τo and µ development is not caused by chancing air
contents. Actually, the same applies for the mortar case of [w/c = 0.5 ; OPC] as
shown in Figure 5.15. However, as shown in Figures 5.14 and 5.16, there is a certain
relationship between the measured viscometric values τo and µ at the one hand, and
the air content at the other. In relation to this, the immediate question is: How much
does the air content influence the viscometric values?

Since the air content in concrete is always around 2% in the present work, it is
safe to state that the change in viscometric values τo and µ, is not influenced by the
air content. However, as is apparent from the previous figures, for some of the mortar
batches, the air content is changing at the same time as other material parameters,
like of the polymer dosage and polymer type used. This makes it difficult to separate
the rheological effect of air content from the rheological effect of polymer type and
polymer dosage (the two last effects are of primary interest in this thesis). Since
there are no “air problems” for the concrete, it is interesting to plot the viscometric
results of concrete (with complete air stability) versus the viscometric results of the
corresponding mortar (with poor air stability). This is done in Figure 5.17. When
considering this figure, one has to bear in mind that the error generated by plug flow
for mortar (Section 3.5.3) and the error generated by the gravel migration for concrete
(Chapter 10) are to some degree responsible for the scattering of the data shown.
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Figure 5.17: Relationship between measured viscometric value of concrete and mortar.

As shown in the left illustration of Figure 5.17, there is a certain relationship
between the yield value τo of concrete and mortar. The correlation coefficient is

5For w/c-ratio at 0.4 and 0.5, the air content for the corresponding mortar should be 20 l/574 l =
3.48% and 20 l/564 l = 3.55%, respectively (values extracted from Table 4.3, Page 78).
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R = 0.88 (R2 = 0.77). With this relationship, it appears that the yield value τo
of mortar is not much influenced by the change in air content. This is because of
how the yield value behavior of mortar (with little air stability) can more or less
imitate the yield value behavior of concrete (with complete air stability). However,
for the plastic viscosity µ (the right illustration), the data is much more scattered
(R2 = 0.24), making it hard to ignore the possibility that the air content is changing
the plastic viscosity µ of the mortar batches. Generally, for the fresh concrete, it
has been demonstrated [144, 146] that the air content (within a certain range) has a
little influence on yield value τo, while the plastic viscosity µ is more affected (see the
illustration on Page 6). More precisely, with increased air content, the yield value τo
remains more or less a constant, while the plastic viscosity µ is reduced [144, 146].
This result is not in a conflict with the above text.

Conclusion

It is not unlikely that different air content is somewhat disturbing the measured
yield value τo of mortar. However, as is indicated from the above paragraph, this
disturbance seems not to be large. Unfortunately, the same does not apply for the
measured plastic viscosity µ. Rather, from Figures 5.14 and 5.16 it appears that with
increased air content, the plastic viscosity µ decreases (as applies for the concrete
case c.f. [144, 146]). The percentage error present in the measured plastic viscosity
µ because of this, is unknown. This means that care must be taken when comparing
plastic viscosity of two or more mortar batches. However, as is apparent in Figure 5.15
(Page 99), there exists a strong air stability for the case of [w/c = 0.5 ; OPC] in
mortar, at least in the yield value range of about τo ∈ [0, 160] Pa (and for a moderate
increase in yield value as a function of time). Therefore, for this case, the plastic
viscosity evolution µ can be considered reliable, when considering the effect of different
polymer type used. There are two exceptions for this, namely the SNF-case and the
Without P/SP-case, at the temperature of 38◦C. These two cases are discussed on
Page 113.

A discussion about the errors caused by plug flow (Section 3.5.3) and by air en-
trainment is made in the beginning of Section 6.4, before discussing the overall ex-
perimental results of mortars.
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Chapter 6

Experimental Results and
Discussion

6.1 Introduction

In Sections 3.3 and 3.4, it is described how the viscometric values are retrieved from
a single measurement. With the approach described, it is assumed that the test
material is of a Bingham fluid (defined in Section 3.2). When considering the mortar,
this assumption is acceptable as shown with the examples in Figures 5.7 and 5.8
(Page 93). However, at first consideration this assumption is harder to justify for the
fresh concrete because of an additional flow phenomenon that is also present during
a measurement. Realizing the nature of this additional flow phenomenon (done in
Chapter 10), the Bingham model seems to apply to the concrete as well. The Bingham
parameters for concrete are extracted in accordance with Section 3.4.2. The mixing
and measuring procedure used, to characterize the rheological behavior of each batch
as a function of time, is described in Chapter 5.

In Section 4.5, the test program of this thesis is presented. Its purpose is de-
scribed in Section 1.2.1 and basically is to investigate how the effect of the different
lignosulfonates changes as a function of temperature and time. In the current chapter
(i.e. Chapter 6), the rheological results of this test program is given. This chapter
is basically divided into two parts. First, in Section 6.2, an overview of all results is
presented. Thereafter, a more detailed presentation and discussion are made of some
interesting results of the first part.

6.2 Overview of Results

6.2.1 0.6% sbwc; w/c = 0.4; OPC

Yield Value τo

Figure 6.1 shows the measured yield value τo for all batches at w/c = 0.4 [0.6%
sbwc; OPC]. The top center illustration is designated as “Concrete To = 23◦C” and
demonstrates the results of the concrete measurements with temperature of 23◦C.
See Section 5.2 for further readings about the concrete measurements. The three
bottom figures, designated with “Mortar To = 5◦C”, “Mortar To = 23◦C” and

103
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Figure 6.1: Measured yield value τo of concrete and mortar, using the different types of polymers
(w/c = 0.4). The same results are shown in Figure 6.2 with error-bars and without markings.
The corresponding result of plastic viscosity µ is shown in Figure 6.3.

“Mortar To = 38◦C” demonstrates the results of the mortar measurements at the
corresponding temperature of 5◦C, 23◦C and 38◦C. For further readings about the
temperature, see Section 5.3.4 for the To = 5◦C-case, Section 5.3.3 for the To = 23◦C-
case and Section 5.3.5 for the To = 38◦C-case.

Figure 6.2 demonstrates the same results as Figure 6.1 does, however with error-
bars (namely ±∆τo) and without markings. The error-bar±∆τo of each measurement
represents 95% confidence interval based on t-distribution and is calculated according
to Equation 6.1 (Page 109). Also, in each illustration of Figure 6.2, there are number
of four thick vertical lines shown (±∆τ̆o), connected with a horizontal line and ordered
in a chronological order from left to right, applying at 10, 40, 70 and 100 minutes
after water addition. These vertical lines of ±∆τ̆o represents 95% confidence interval
generated from the reproducibility tests (at each w/c-ratio and at each temperature)
in Chapter 5, for mix using the HMW Na polymer (see also Equation 6.2).

As shown in Figure 6.2, the difference in yield value τo between the batches of
different polymers, are clearly significant for the mortar case. The difference for the
concrete case is somewhat less significant, however the same trend is created for the
concrete case as well for the mortar case at To = 23◦C.

Of the lignosulfonate products used in the concrete batches, it is interesting to
note the groupings in measured yield value τo in Figure 6.1. There are three distinct
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Figure 6.2: Measured yield value τo of concrete and mortar, using the different types of polymers
(w/c = 0.4). The same results are shown in Figure 6.1 with markings and without error-bars.
The corresponding result of plastic viscosity µ is shown in Figure 6.4.

different groups to be noted. The first one is the batch using the VHMW Na giv-
ing the lowest yield value measured. The second group consist of the batches using
HMW Na and HMW Ca. The third group is of the batches using LMW Na,
LMW Ca and LMWFS Ca polymers, giving the set of largest yield values mea-
sured. The characteristic difference between the polymers used, lies mainly in their
molecular weight valuesMn andMm, shown in Table 4.2 (Page 74). Also, when com-
paring the concrete illustration and the 23◦C-mortar illustration of Figure 6.1, the
same rearrangement between the different batches is produced. This is shown for ex-
ample with the crossing marked with the capital letters A and B in both illustration.
Comparing the cases of To = 23◦C and To = 38◦C of mortar, the same rearrangement
also exists, with the exception of the large temperature sensitivity of the batch using
the SNF polymer. This is apparent with the crossing marked with the capital letter
C. In the case of To = 5◦C, some different rearrangement exists between the different
batches, relative to the case of To = 23◦C.

The product Polymer BLT in Figure 6.1 is not mentioned in Chapter 4 because
it is applied only once. It is a 3rd generation of plasticizers, consisting of grafted
carboxylic synthetic polymers. This product is not produced from lignin as the lig-
nosulfonates are, and is therefore not a product of Borregaard LignoTech. The
name used here is just a designation and does not present its commercial name. The
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Figure 6.3: Measured plastic viscosity µ of concrete and mortar, using the different types of
polymers (w/c = 0.4). The same results are shown in Figure 6.4 with error-bars and without
markings. The corresponding result of yield value τo is shown in Figure 6.1.

amount of this polymer used, correspond to what was necessary to gain similar initial
slump value to what applies forHMW Na andHMW Ca. This was done to be able
to compare the workability loss between the polymers (see Figure 6.5). The amount
of polymer used in this case is therefore 0.3% sbwc, instead of the usual 0.6% sbwc.

Plastic Viscosity µ

Figure 6.3 illustrates the measured plastic viscosity µ for all batches at w/c = 0.4
[0.6% sbwc; OPC]. Figure 6.4 shows the same results, however with the error-bars
±∆µ and without markings. As before, the error-bar of each measurement represents
95% confidence interval, based on t-distribution and is calculated according to Equa-
tion 6.1. Also, in each illustration of Figure 6.4, there are number of four thick vertical
lines shown (±∆µ̆), connected with a horizontal line and ordered in a chronological
order from left to right and apply at 10, 40, 70 and 100 minutes. These vertical lines
of ±∆µ̆ represents 95% confidence interval generated from the reproducibility tests in
Chapter 5 for the mix using the HMW Na polymer. The confidence interval ±∆µ̆
is calculated according to Equation 6.2.

As shown in Figure 6.4, then for mortar at To = 23◦C and 38◦C there is a differ-
ence in plastic viscosity µ for the batches using the VHMW Na, HMW Na and
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Figure 6.4: Measured plastic viscosity µ of concrete and mortar, using the different types of
polymers (w/c = 0.4). The same results are shown in Figure 6.3 with markings and without
error-bars. The corresponding result of yield value τo is shown in Figure 6.2.

HMW Ca at the one hand, and for the batches using the LMW Na, LMW Ca
and LMWFS Ca at the other. However, this difference is somewhat reduced for
the mortar case at To = 5◦C. There is no significant difference in plastic viscosity
µ between the different batches of concrete. Going back to Figure 6.3 (and ignoring
confidence limits), similar rearrangement is produced for all mortar results and consist
of that the batches using VHMW Na, HMW Na and HMW Ca polymers gives
usually a larger plastic viscosity µ than the batches using LMW Na, LMW Ca
and LMWFS Ca polymers. Note the combination of high yield value τo and
low plastic viscosity µ that applies especially for the To = 23◦C and 38◦C-cases of
mortar. This type of combination is discussed in Section 6.2.3.

Slump Value S

Figure 6.5 demonstrates the measured slump value S for all batches at w/c = 0.4 [0.6%
sbwc; OPC]. Due to the nature of the measurement, the calculation of confidence
interval for a single slump measurement cannot be made. However, a 95% confidence
interval±∆S calculated from the reproducibility tests in Chapter 5 can be made. This
is from the mix using the HMW Na polymer (see the left illustration of Figure 5.2).
The calculation is done in the same manner as shown with Equation 6.2, namely with
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∆S = t0.025Pstd(S)/
√
n. The result ±∆S is presented with four thick vertical lines,

connected with a horizontal line. The lines are ordered in a chronological order from
left to right and apply at 10, 40, 70 and 100 minutes. The lines extend over a relatively
larger range, because of large t0.025 value when ν = n−1 = 2 (in Figure 5.2, the batch
4 is dismissed because of the uncontrolled increase in water content⇒ t0.025 = 4.303).
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Figure 6.5: Measured slump value of concrete, using the different types of polymer.

If the above-mentioned 95% confidence interval where true for all the batches in
Figure 6.5, there would not be a large significant difference between them. However,
in this figure, the same rearrangement between the different batches is made as in
Figure 6.1 (for both mortar and concrete), indicating the confidence limit shown
in Figure 6.5 could be somewhat overestimated. This is shown for example with the
crossing marked with the capital lettersA andB in both figures. Of the lignosulfonate
products used, there are three distinct different groups present in Figure 6.5 (as well
in Figure 6.1). The first group is the batch using the VHMW Na giving the largest
slump value measured. The second group consist of the batches using HMW Na
and HMW Ca. The third group is of the batches using LMW Na, LMW Ca and
LMWFS Ca polymers and are of the lowest slump values measured.
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Figure 6.6: Comparison of measured slump value versus the measured yield value τo (to the left)
and plastic viscosity µ (to the right). These results are also shwon in Figure 10.17 (Page 251).

With the good correspondence between the results in Figure 6.1 and in Figure 6.5,
a good relationship between the slump value and the yield value τo is a reality. This
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is shown in the left illustration of Figure 6.6. The right illustration demonstrates the
somewhat weaker relationship between the slump value and the plastic viscosity µ.
In both illustrations, the dashed dotted line represents the 95% confidence interval
(based on t-distribution) for the regressed lines S = b1 τo + a1 and S = b2 µ + a2.
That is, it is with 95% confidence that the true (and unknown) functions S = S(τo)
and S = S(µ) exists within the boundary of the two dashed dotted lines of each
illustration. The dotted lines represents the 95% prediction interval (based on t-
distribution); i.e. there is a 95% probability that the next measurement falls within
the boundary of the two dotted lines of each illustration. For further readings about
this type of statistical approach, see the textbook by Walpole et al. [148].

6.2.2 Calculation of Confidence Interval

In Figures 6.2 and 6.4, viscometric results are shown with error-bars. Also, in each
illustration there are number of four thick vertical lines shown, connected with a
horizontal line and ordered in a chronological order from left to right and apply at
10, 40, 70 and 100 minutes after water addition. In this section, a description and a
short demonstration of how these errors are calculated is given.

To calculate the 95% confidence interval of the slope H and the point of intersec-
tion with the ordinate G (see Equation 3.25, Page 59), one must first calculate their
standard error [128] αH = H

√
((1−R2)/R2)(1/(n− 1)) and αG = αH

√∑
f2o /n.

The term R is the correlation coefficient, n is the number of torque points used in each
measurement and

∑
f2o is the square sum of the rotational frequency1 applied. The

95% confidence interval of H and G is given as ∆H = t0.025 αH and ∆G = t0.025 αG
respectively [128]. The term t0.025 is the 95% confidence value of the t-distribution.
Depending on the degree of freedom ν = n − 2, the term t0.025 hold a different val-
ues. In the case of mortar with n = 7, the degree of freedom is ν = n − 2 = 5
giving t0.025 = 2.571. In the case of concrete with n = 5, the degree of freedom is
ν = n− 2 = 3 resulting in t0.025 = 3.182. Using Equations 3.26 and 3.27 to normalize
∆H and ∆G, in creating ∆µ and ∆τo, results in Equation 6.1.

∆µ =
∆H (R−2

i −R−2
o )

8 π2 h
∧ ∆τo =

∆G (R−2
i −R−2

o )
4 π h ln(Ro/Ri)

(ν = n− 2) (6.1)

Thus based on a single measurement, it is with 95% confidence that the true visco-
metric values are µ±∆µ and τo±∆τo. The error-bar of each measurement shown in
Figures 6.2 and 6.4, consist of ±∆τo and ±∆µ respectively.

In each illustration of Figures 6.2 and 6.4, there are number of four thick vertical
lines shown, connected with a horizontal line. The lines are ordered in a chronological
order from left to right and apply at 10, 40, 70 and 100 minutes. These lines are gen-
erated from the reproducibility tests in Chapter 5 and represents the calculated 95%
confidence interval for the mix using the HMW Na polymer. The 95% confidence
for the reproducibility tests are simply calculated with Equation 6.2 [148].

∆µ̆ =
t0.025Pstd(µ)√

n
∧ ∆τ̆o =

t0.025Pstd(τo)√
n

(ν = n− 1) (6.2)

The term Pstd is the standard deviation, shown for example in Figure 5.2 (Page 87).
Thus based on measurements of several repeated batches, it is with 95% confidence

1For mortar: f2
o = 0.452+0.382+0.322+0.252+0.182+0.122+0.052 = 0.56 s−2 (see Figure 3.6,

Page 60). For concrete: f2
o = 0.372 + 0.302 + 0.232 + 0.162 + 0.092 = 0.31 s−2 (see Figure 3.9).
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that the true viscometric values are µ̄ ± ∆µ̆ and τ̄o ± ∆τ̆o, where µ̄ and τ̄o are the
average values. When presenting the result of the HMW Na-case, it is always the
average values µ̄ and τ̄o that are shown. The values of ±∆µ̆ and ±∆τ̆o give a better
presentation of the actual error, than the values of ±∆µ and ±∆τo. This is because
of how the former values also include the additional errors generated by the operator
while weighing the sub-materials (water, cement and so forth) and in the mixing to
create the corresponding batch to be tested. Although the same mixing procedure is
always applied (see Box 5, Page 92), the mixing inside the Hobart mixer was observed
to vary somewhat from batch to batch.

6.2.3 0.3% sbwc; w/c = 0.5; OPC

Yield Value τo

Figure 6.7 illustrates the measured yield value τo for all batches at w/c = 0.5 [0.3%
sbwc; OPC]. Figure 6.8 shows the same results, however with the error-bars ±∆τo
(Equation 6.1) and the four vertical lines ∆τ̆o (Equation 6.2), and without markings.
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Figure 6.7: Measured yield value τo of concrete and mortar, using the different types of polymers
(w/c = 0.5). The same results are shown in Figure 6.8 with error-bars and without markings.
The corresponding result of plastic viscosity µ is shown in Figure 6.9.

As applies in Section 6.2.1, the error-bar ±∆τo of each measurement in Figure 6.8
represents 95% confidence interval, calculated according to Equation 6.1. The four
thick vertical lines ±∆τ̆o also shown, represents the 95% confidence interval calculated
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from the four (and sometimes, three) repeated batches using the HMW Na polymer
(extracted from the reproducibility tests of Chapter 5). The ∆τ̆o value is calculated
according to Equation 6.2. For example, in the case of mortar at To = 23◦C (the
bottom center illustration in Figure 6.8), these lines are calculated from the standard
deviation shown in the top left illustration of Figure 5.8 (Page 93), with ν = n− 1 =
4 − 1 = 3 degrees of freedom (there, the batch number 1 is excluded). In the case of
concrete, the degree of freedom for the four vertical lines is ν = n − 1 = 3, instead
of the previous 2 that applies in Section 6.2.1. It is interesting to note in Figure 6.8
how the ±∆τ̆o values are increasing with time from water addition. At 10 minutes,
the values of ±∆τ̆o extend over similar range as the value of ±∆τo. However at 100
minutes, the values of ±∆τ̆o ≈ ±200Pa ⇒ 400Pa extend almost over the half part
of the scale used in this illustration.

As shown in Figure 6.8, the difference in yield values between the batches of
different polymers, are clearly significant for the mortar case. The difference for the
concrete case is some less significant, however roughly the same trend is created for
the concrete case as well for the mortar case at To = 23◦C.
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Figure 6.8: Measured yield value τo of concrete and mortar, using the different types of polymers
(w/c = 0.5). The same results are shown in Figure 6.7 with markings and without error-bars.
The corresponding result of plastic viscosity µ is shown in Figure 6.10.

When considering the overall results shown in Figure 6.7, there is a less difference
between the different batches than applies in Figure 6.1. This is due to the less
amount of plasticizing polymer used (0.6%→ 0.3% sbwc) and the increased w/c-ratio

URN:NBN:no-3374



112 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

10 40 70 100
0

10

20

30

40

µ 
[P

a⋅
s]

Concrete T°=23°C

10 40 70 100

0.4

0.8

1.2

1.6

Time [minutes]

Mortar T°=38°C

10 40 70 100

0.4

0.8

1.2

1.6

Time [minutes]

Mortar T°=23°C

10 40 70 100
0

0.4

0.8

1.2

1.6

2

µ 
[P

a⋅
s]

Time [minutes]

Mortar T°=5°C

VHMW Na
HMW Na
HMW Ca
LMW Na
LMW Ca
LMWFS Ca
SNF
Without P/SP

Plastic Viscosity
µ [Pa⋅s]

w/c=0.5
0.3% sbwc
OPC

Figure 6.9: Measured plastic viscosity µ of concrete and mortar, using the different types of
polymers (w/c = 0.5). The same results are shown in Figure 6.10 with error-bars and without
markings. The corresponding result of yield value τo is shown in Figure 6.7.

used in each batch (w/c = 0.4 → 0.5). Peculiarly, here the VHMW Na polymer
performs equally as well as the HMW Na and HMW Ca polymers. This is not the
case in Figure 6.1.

The general trend of all illustrations in Figure 6.7, is that the there are roughly
two different groups. One is the batches using the VHMW Na, HMW Na and
HMW Ca giving the lowest yield value measured. The second group consist of
the batches using LMW Na, LMW Ca and LMWFS Ca polymers, giving the
set of largest yield values measured. A familiar crossing between the LMW Na,
LMW Ca-batches and the SNF-batch is measured and marked with the capital
letter C in Figure 6.7. In Figure 6.1, this crossing is also marked with C.

Plastic Viscosity µ

Figure 6.9 demonstrates measured plastic viscosity µ for all batches atw/c = 0.5 [0.3%
sbwc; OPC]. Figure 6.10 shows the same results, however with the error-bars ±∆µ
(Equation 6.1) and the four vertical lines ∆µ̆ (Equation 6.2), and without markings.

As shown in Figure 6.10, there is not much significant difference between the mea-
sured plastic viscosity µ of the different batches, either for concrete or mortar. As
such, there is not much basis for discussing these data. There is however one interest-
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Figure 6.10: Measured plastic viscosity µ of concrete and mortar, using the different types of
polymers (w/c = 0.5). The same results are shown in Figure 6.9 with markings and without
error-bars. The corresponding result of yield value τo is shown in Figure 6.8.

ing phenomenon that occurs at 38◦C, for the mortar cases of SNF and Without P/SP.
Both of them have a significant lower plastic viscosity µ, relative to the other batches
tested. That is, the batches of highest yield value τo (and of highest increase in yield
value) are also of lowest plastic viscosity µ. This type of trend is also observed when
comparing Figures 6.3 and 6.1 (w/c = 0.4), for the cases of SNF, Without P/SP and
LMWFS Na, at 38◦C. As mentioned in Sections 5.5.2 and 5.5.3, air entrainment has
a minor effect on the yield value τo of mortar. Also, as shown in the left illustration
of Figures 5.14 and 5.16 (Page 98), an increased yield value τo parallel an increased
air content. A plausible explanation of this could be that with increased yield value
τo, the buoyancy force of the entrained air (mostly entrained through mixing and
remixing of Box 5 and 6, Page 92) is not sufficient to allow it to surface; i.e. viscous
stresses are large enough to keep the air bubbles submerged. Hence, with increasing
yield value, more air remains in the mortar batches. From Sections 5.5.2 and 5.5.3, it
appears that with increasing air content, the plastic viscosity µ decreases (as applies
for the concrete case c.f. [144, 146]). Hence, from the above text, one could consider
the following sequence: Increased yield value τo as a function of time ⇒ Increased air
content as a function of time ⇒ Reduced plastic viscosity µ as a function of time. If
this sequence do apply, it would explain the combination of high yield value τo (and
high increase in yield value) and low plastic viscosity µ, as previously observed.
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Slump Value S

Figure 6.11 shows the measured slump value S for all batches of w/c = 0.5 [0.3%
sbwc; OPC]. Due to the nature of the measurement, the calculation of confidence
interval for a single slump measurement cannot be made. However, a 95% confidence
interval calculated from the reproducibility tests in Chapter 5 can be made. The
result is presented with four thick vertical lines, namely ±∆S = ±t0.025Pstd(S)/√n
(see Equation 6.2), connected with a horizontal line. The lines are ordered in a
chronological order from left to right and apply at 10, 40, 70 and 100 minutes after
water addition. These lines are generated from the mix using theHMW Na polymer
(see the left illustration of Figure 5.3, Page 88).
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Figure 6.11: Measured slump value of concrete, using the different types of polymer.

In Figure 6.11, the same rearrangement between the different batches is made as
for the case in Figure 6.7: There is a less variation between the different batches
than applies in Figure 6.5. This is most likely due to the less amount of plasticizing
polymer used (0.6% → 0.3% sbwc) and the increased w/c-ratio used in each batch
(w/c = 0.4 → 0.5). What is measured by the viscometer, is also observed with the
slump values. For example, the VHMW Na polymer is shown to perform equally
as well as the HMW Na and HMW Ca polymers, by both measurements.
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Figure 6.12: Comparison of measured slump value versus the measured yield value τo (to the
left) and plastic viscosity µ (to the right).
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With the good correspondence between the results in Figure 6.7 and in Figure 6.11,
a good relationship between the slump value and the yield value τo is a reality. This
is shown in the left illustration of Figure 6.12. The right illustration demonstrates the
considerable weaker relationship between the slump value and the plastic viscosity µ.
As discussed in Section 6.2.1, the dashed dotted line represents the 95% confidence
interval (based on t-distribution) for the regressed lines S = b1 τo + a1 and S =
b2 µ + a2. That is, it is with 95% confidence that the true (and unknown) functions
S = S(τo) and S = S(µ) exists within the boundary of the two dashed dotted lines of
each illustration. The dotted lines represents the 95% prediction interval (based on
t-distribution); i.e. there is a 95% probability that the next measurement falls within
the boundary of the two dotted lines of each illustration.

6.2.4 0.1% sbwc; w/c = 0.6; OPC

Yield Value τo and Plastic Viscosity µ

Figure 6.13 shows the measured yield value τo and plastic viscosity µ at w/c = 0.6
[0.1% sbwc; OPC]. Figure 6.14 illustrates the same results, however with the error-
bars ±∆τo (Equation 6.1) and the four vertical lines ∆τ̆o (Equation 6.2), and without
markings (see Section 6.2.2).
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Figure 6.13: Measured yield value τo and plastic viscosity µ of concrete and mortar, using the
different types of polymers (w/c = 0.6). The error-bars are shown in Figure 6.14.

As shown in Figure 6.14, the difference in yield value τo, or in plastic viscosity µ
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between the batches of different polymers, are not significant. As such, there is no
basis for discussing the effects of the polymers used for the overall mix of w/c = 0.6.
Because of the insignificant difference between the different batches, the experiment
with the temperature of To = 38◦C was not conducted.

As applies in Section 6.2.1, the error-bar±∆τo of each measurement in Figure 6.14
represents 95% confidence interval, calculated according to Equation 6.1. The four
thick vertical lines ±∆τ̆o also shown, represents the 95% confidence interval calcu-
lated from the four repeated batches using the HMW Na polymer (extracted from
the reproducibility tests of Chapter 5). The ∆τ̆o value is calculated according to
Equation 6.2.
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Figure 6.14: Measured yield value τo and plastic viscosity µ of concrete and mortar, using the
different types of polymers (w/c = 0.6). The markings are shown in Figure 6.13.

Slump Value S

Figure 6.15 demonstrates measured slump value S for all batches of w/c = 0.6 [0.1%
sbwc; OPC]. As mentioned before, due to the nature of the measurement, the calcu-
lation of confidence interval for a single slump measurement cannot be made. How-
ever, a 95% confidence interval calculated from the reproducibility tests in Chap-
ter 5 can be made. The result is presented with four thick vertical lines, namely
±∆S = ±t0.025Pstd(S)/√n (see Equation 6.2), connected with a horizontal line. As
always, the lines are ordered in a chronological order from left to right and apply
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at 10, 40, 70 and 100 minutes. These lines are generated from the mix using the
HMW Na polymer (see the left illustration of Figure 5.4).
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Figure 6.15: Measured slump value of concrete, using the different types of polymer.

From Figure 6.15 the same conclusion can be made as for the case in Figure 6.13,
namely that there is not much significant difference between the different batches.
This is likely due to the low amount of plasticizing polymer used (0.3%→ 0.1% sbwc)
in combination with high w/c-ratio (w/c = 0.5→ 0.6). Ignoring the confidence inter-
val ±∆τ̆o, the HMW Na and LMWFS Ca seems to give the best results, i.e. the
lowest workability loss. Similar results are also produced with the ConTec viscome-
ter. However, there seems to be a larger spread between the results in slump relative
to the results of yield value τo. Nevertheless, there is an overall good correspondence
between the results in Figure 6.13 and in Figure 6.15. This is shown in the left il-
lustration of Figure 6.16. The right illustration demonstrates the somewhat weaker
relationship between the slump value and the plastic viscosity µ.
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Figure 6.16: Comparison of measured slump value versus the measured yield value τo (to the
left) and plastic viscosity µ (to the right).

As discussed in Section 6.2.1, the dashed dotted line in Figure 6.16, represents the
95% confidence interval for the regressed lines S = b1 τo + a1 and S = b2 µ+ a2 and
the dotted lines represents the 95% prediction interval.
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6.2.5 0.6% sbwc ∧ 0.3% sbwc; w/c = 0.57; FAC

As mentioned in Section 5.4, to maintain reproducibility, it was necessary to modify
the mix design when using the fly ash cement (FAC); i.e. the mix design of FAC-mortar
is not calculated from a mix design of a concrete.

When going from Section 6.2.1 to Sections 6.2.3 and 6.2.4, several parameters are
changed simultaneously, namely the w/c-ratio, the amount of plasticizing polymer and
the amount of binders (see also Table 4.4, Page 78). Such approach is generally applied
in ready-mixed plants. This makes it a bit harder to compare the results between the
different sections. For example, comparing the effect of 0.6% sbwc dosage of polymer
(Section 6.2.1) with dosage of 0.3% sbwc (Section 6.2.3) becomes a bit hard, because
both the w/c-ratio and the amount of binders are also changing at the same time.
With this in mind, both the w/c-ratio and the binder content is now kept constant
for all the FAC-cases. Only the amount of polymer is now changed (see Table 4.6).

Yield Value τo

Figure 6.17 shows the measured yield value τo for all batches at w/c = 0.57 (FAC). In
the two top illustrations at To = 23◦C (to the left) and To = 38◦C (to the right), the
dosage of plasticizing polymer is 0.6% sbwc. However, for the two bottom illustrations,
the dosage is reduced down to 0.3% sbwc.
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Figure 6.17: Measured yield value τo of mortar, using the different types of polymers (w/c =
0.57). The same results are shown in Figure 6.18 with error-bars and without markings. The
corresponding result of plastic viscosity µ is shown in Figure 6.19.

Figure 6.18 shows the same results as Figure 6.17, however with the error-bars
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±∆τo (Equation 6.1) and the four vertical lines ∆τ̆o (Equation 6.2), and without
markings. As applies in Section 6.2.1, the error-bar ±∆τo of each measurement in
Figure 6.18 represents 95% confidence interval, calculated according to Equation 6.1.
The four thick vertical lines ±∆τ̆o also shown, represents the 95% confidence interval
calculated from the four repeated batches using the HMW Na polymer (extracted
from the reproducibility tests of Section 5.4). The ∆τ̆o value is calculated according to
Equation 6.2. For example, in the case of mortar at 0.6% sbwc and To = 23◦C (the top
left illustration in Figure 6.18), these lines are calculated from the standard deviation
shown in the top left illustration of Figure 5.13 (Page 97), with ν = n− 1 = 4− 1 = 3
degrees of freedom. As shown in Figure 6.18, the difference in yield values between
the batches of different polymers, are clearly significant.
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Figure 6.18: Measured yield value τo of mortar, using the different types of polymers (w/c =
0.57). The same results are shown in Figure 6.17 with markings and without error-bars. The
corresponding result of plastic viscosity µ is shown in Figure 6.20.

Comparing the top left illustration shown in Figure 6.17 [0.6% sbwc; To = 23◦C;
w/c = 0.57; FAC], with center bottom illustration in Figure 6.1 [0.6% sbwc; To =
23◦C; w/c = 0.4; OPC], the same rearrangement between different batches is pro-
duced. This is shown for example with the crossing of the different batches, marked
with the capital letters A and B in both illustrations. The same type of observations
exists also for the top right illustration shown in Figure 6.17 (To = 38◦C), except for
that the SNF-batch is less temperature sensitive, than what is shown in Figure 6.1.

The tendency of that the VHMW Na polymer performs equally as well as the
HMW Na polymer, when the polymer dosage is reduced from 0.6% sbwc down to
0.3% sbwc, is produced in Figure 6.17. As mentioned previously, this trend is also
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Figure 6.19: Measured plastic viscosity µ of mortar, using the different types of polymers
(w/c = 0.57). The same results are shown in Figure 6.20 with error-bars and without markings.
The corresponding result of yield value τo is shown in Figure 6.17.

produced when using the OPC. This is shown when comparing the case in Figure 6.1
[0.6% sbwc; w/c = 0.4; OPC] with Figure 6.7 [0.3% sbwc; w/c = 0.5; OPC].

Of the lignosulfonates, the general trend for the two top illustrations in Figure 6.17,
is that the there are three distinct different groups. First is the batch using the
VHMW Na polymer. Second group consist of the HMW Na-batch. The third
group consist of the batches using LMW Na, LMW Ca and LMWFS Ca poly-
mers, giving the set of largest yield values measured. This type of grouping is also
produced in some of the illustrations in Figure 6.1. For the bottom left illustration in
Figure 6.17, theVHMW Na-batch is merged into the same group as theHMW Na-
batch, hence only two groups exists for that particular case. This type of grouping is
also produced in some of the illustrations in Figure 6.7. Because of a very large yield
value τo that applies for the mix of 0.3% sbwc at To = 38◦C, only few batches where
tested for that case, namely the SNF, VHMW Na and HMW Na-batches.

Plastic Viscosity µ

Figure 6.19 shows the measured plastic viscosity µ for all batches at w/c = 0.57 (FAC).
As before, in the two top illustrations at To = 23◦C (to the left) and To = 38◦C (to
the right), the dosage of plasticizing polymer is 0.6% sbwc, while it is 0.3% sbwc for
the two bottom illustrations. Figure 6.20 shows the same results, however with the
error-bars ±∆µ (Equation 6.1) and the four vertical lines ∆µ̆ (Equation 6.2), and
without markings.
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Figure 6.20: Measured plastic viscosity µ of mortar, using the different types of polymers
(w/c = 0.57). The same results are shown in Figure 6.19 with markings and without error-bars.
The corresponding result of yield value τo is shown in Figure 6.18.

As shown in Figure 6.20, there is not much difference between the measured plastic
viscosity µ. As such, there is not much basis for discussing the effects of the polymers
on plastic viscosity µ in Figure 6.19. However, one interesting phenomenon is to be
noted in this figure (especially for the To = 38◦C-case) and has been observed and
discussed previously (see Page 113): The lower the yield value τo is, the higher the
plastic viscosity µ becomes.

6.3 Discussion of Results: Concrete

6.3.1 Slump and Yield Value τo

Abrams slump test is used extensively in site work all over the world. Because of its
simplicity, it remains the most widely used test for characterizing concrete consistency.
Hence, it is important to demonstrate a relationship between the measured slump S
and the viscometric values given by the ConTec BML Viscometer 3. There have
been several attempts to find such relationship for other viscometers. Tanigawa et al.
[120, 122] have proposed a graph showing the relationship between the slump and the
viscometric values τo and µ. There it is evident that the slump value is more sensitive
to the yield value τo than to the plastic viscosity µ. This result is in an agreement
with Figures 6.6, 6.12 and 6.16, which shows that there is a considerable stronger
relationship between yield value τo and slump than between plastic viscosity µ and
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slump.
Murata et al. [83] have proposed an equation that relates slump only with yield

value τo. This relationship is shown in Equation 6.3 below and is based on numerous
experiments, where the yield value is extracted from a coaxial cylinders viscometer.

τo = 714− 473 log(S/10) (6.3)

The unit of slump in the above equation is (as always) in mm. According to de Larrard
[25] it can be shown from a dimensional analysis that the slump is governed by the
quantity τo/(g ρsg), where g is gravity (see Equation B.26, Page 387) and ρsg = ρ/ρref
is the specific gravity. The term ρ is the density of the fresh concrete [kg/m3] and
ρref is the density of a reference fluid [36], which is (in this case) the density of water
at 4◦C, equal to 1000 kg/m3. In his doctoral thesis, Hu [50] proposed a relationship
between slump and yield value τo that includes density ρ, shown with Equation 6.3.
This equation is based on some number of numerical simulations.

S = 300− 270τo
ρ
= 300− 0.270 τo

ρsg
(6.4)

In a NIST report [31] Ferraris and de Larrard suggests a modification to Equation 6.4,
based on some numerous experiments, using the BTRHEOM viscometer (see Fig-
ure 1.2, Page 4). This modification is given with the equation below.

S = 300− 0.347(τo − 212)
ρsg

(6.5)

In his textbook [25], de Larrard adopts this equation for the range of slump higher
than 100mm. With a slight modification, the above equation can be applied for the
data shown in the left illustration of Figure 6.6 [0.6% sbwc; w/c = 0.4; OPC]. More
specifically, the following relationship can be extracted from this illustration:

S = 300− 0.416(τo + 394)
ρsg

(6.6)

The above equation falls within the boundary of the two dashed dotted line shown in
Figure 6.6 (this slump function is also plotted in Figure 6.21). The reason for the use
of “(τo + 394)” instead of “(τo − 212)” is because of the difference in yield value τo
that the BTRHEOM viscometer and the ConTec BML Viscometer 3 produces.
As shown in Figure 1.3 (Page 4), for the given concrete batch, the former viscometer
produces a larger yield value than the latter.

When considering the results for the w/c = 0.5 and the w/c = 0.6 case, Equa-
tion 6.6 becomes somewhat less valid. This is apparent when looking at the left
illustration of Figure 6.21, where all slump results of Figures 6.6, 6.12, and 6.16 are
combined in one illustration. There it is demonstrated how the three different mix
design of w/c = 0.4, w/c = 0.5 and w/c = 0.6 gives a slightly different relationship
between slump and yield value τo. The reason for this could be related to the different
amount of binders used in the three different mix design. The amount binders used in
each mix design is shown in Table 4.3 and in Figure 6.21. With lower binder content
and hence a closer distance between the larger aggregates, a self-bearing network of
aggregates could form more easily during the “slump-flow”. This self-bearing network
inhibits further slump-flow that gravity g cannot over win. This network is similar
to the bridging effect shown in Figure 3.8 (Page 62), except that the engine of the
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viscometer can brake up such formation, when gravity cannot in a slump-flow. With
this in mind, a small addition −0.0077 (τo−200)(320−Vb) is supplied to Equation 6.6.
The resulting equation is shown below.

S = 300− 0.416(τo + 394)
ρsg

− 0.0077 (τo − 200)(320− Vb) (6.7)

The term Vb in Equation 6.7, is the amount of binder used in the concrete mix and
its unit is in l/m3. For the w/c = 0.4 batch, the amount of binder is Vb = 320 l/m3

(Table 4.3, Page 78), hence −0.0077 (τo − 200)(320 − Vb) = 0, and no addition is
applied into Equation 6.6 for that case (see Footnote 2, Page 77 about binder).
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Figure 6.21: Comparison of measured slump value versus the measured yield value τo (to the
left) and versus the plastic viscosity µ (to the right). All values are extracted from Figures 6.6,
6.12, and 6.16. The correlation coefficient R is of all data points.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

R = 0.83 ∧  R2 = 0.69

S
lu

m
p 

[m
m

]

Calculated Slump [mm]

w/c = 0.4 ∧  320l
w/c = 0.5 ∧  305l
w/c = 0.6 ∧  295l

0 50 100 150 200 250 300
0

50

100

150

200

250

300

R = 0.93 ∧  R2 = 0.86

S
lu

m
p 

[m
m

]

Calculated Slump [mm]

w/c = 0.4 ∧  320l
w/c = 0.5 ∧  305l
w/c = 0.6 ∧  295l

Figure 6.22: Comparison between measured slump and calculated slump by Equation 6.6 (to
the left) and Equation 6.7 (to the right).

Plotting the measured slump versus the calculated slump by Equation 6.6, results
in the left illustration of Figure 6.22. The type of deviation from the one-to-one
correspondence shown in this illustration, is also reported by de Larrard [25] using
the BTRHEOM viscometer. In that case, the deviation is related to the amount
of plasticizing polymer used, rather than to the amount of binder. More specifically,
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batches without plasticizers gave a deviation of calculated slump, while batches with
plasticizers did not.

The right illustration of Figure 6.22 demonstrates the effect of the correction
−0.0077 (τo − 200)(320 − Vb) that is applied with Equation 6.7. With R2 = 0.86,
this illustration demonstrates that it is possible to gain a well established relation-
ship between the Abrams slump and the yield value τo measured by the ConTec

BML Viscometer 3. This good relationship exists in spite of the problem of gravel
migration (see Chapter 10) that occurs for the concrete batches of this thesis.

6.3.2 Relationship Between Mortar and Concrete

As mentioned in Section 4.3.2, the mix design of the 0− 2mm OPC-mortars used in
this thesis, are calculated directly from the mix design of the corresponding concrete
mixes. As such, it is to be expected that some kind of relationship exist between
their measured viscometric values. Figures 6.23 and 6.24 demonstrates the degree of
such relationship. Here, the terms τco and µc designates the viscometric values of the
concrete. Likewise, the terms τmo and µm designates the viscometric values of the
corresponding mortar.
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Figure 6.23: Relationship between measured yield value of concrete τ c
o and mortar τm

o . Both
illustrations demonstrate the same results, however plotted differently. The left plot is relative
to the type of polymer used and the right plot relative to the mix design.

Figure 6.23 demonstrates the relationship between measured yield value of con-
crete τco and mortar τmo . The dashed dotted line shown in the right illustration,
represents the 95% confidence interval for the regressed lines τco = 7.59 τmo +97.1 and
the dotted lines represents the 95% prediction interval (see Section 6.2.1). As shown
in this figure, there exits a good relationship between the measured yield value of
concrete τco and of mortar τ

m
o . However, when the yield value of mortar τ

m
o exceeds

about 100Pa, an underestimated yield value of the concrete τco exists, relative to the
straight line of τco = 7.59 τmo + 97.1. Combined error generated by plug flow (Sec-
tion 3.5.3) and air entrainment (Section 5.5.2) for mortar, and the error generated by
the gravel migration for concrete (Chapter 10), could be responsible for this. When
calculating the correlation coefficient R = 0.88, shown in Figure 6.23, the five yield
points shown in the small incorporated illustration are not taken into account.

Figure 6.24, demonstrates the relationship between measured plastic viscosity of
concrete µc and mortar µm. Unfortunately, there is not a clear relationship between
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Figure 6.24: Relationship between measured plastic viscosity of concrete µc and mortar µm.
Both illustrations demonstrate the same results, however plotted differently. The left plot is
relative to the type of polymer used and the right plot relative to the mix design.

µc and µm as exists for τco and τmo . For the w/c = 0.4 case, the results are quite
spread, and for the w/c = 0.5, a value of R2 = 0 is a reality.

6.4 Discussion of Results: Mortar

It should be noted that terminologies from Sections 2.4 and 2.5 are very much used
in the rest of this chapter. The subjects of these two sections are summarized in
Section 2.6.3. Also, in accordance to the definition done in Footnote 25 (Page 38),
when referring to a “cement particle”, it is meant both its hydrated and its unhydrated
part (see Figure 2.17, Page 38).

Quantity of Data Available

Because of the much larger quantity of data available for the mortar case, those will be
used when considering the effects of the different (super)plasticizers on viscometric
values, relative to the different conditions. In some cases, when appropriate, the
concrete results is also included for comparison.

In Section 6.3.2, it was established that there is a certain relationship between the
yield value τo of concrete and of mortar (see Figure 6.23). Hence, the results of yield
value presented in the following sections can be extrapolated to the concrete, which
again can be extrapolated to the slump value, as shown with Figure 6.22. Unfortu-
nately, as shown with Figure 6.24, the relationship between the plastic viscosity µ of
concrete and of mortar is not so clear. This poor correlation is most likely somewhat
related to the error generated by plug flow (see Section 3.5.3) and air entrainment (see
Section 5.5.3) from the mortar case. As has been previously mentioned, the plastic
viscosity µ is much more sensitive to these errors, relative to the yield value τo. Hence
a larger scatter in data results in Figure 6.24, relative to Figures 6.23. Gravel migra-
tion in concrete (Chapter 10) is probably also somewhat responsible for the overall
scatter of the data shown in Figures 6.23 and 6.24.

When considering the temperature effects, then in each illustration it will always
be referred to the ambient temperature condition To. But as discussed in the end of
each Sections 5.3.3, 5.3.4 and 5.3.5, the actual temperature T of the mortar batches
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deviates, at the most, only by few degrees from the ambient temperature To. There-
fore, the ambient temperature will be sufficient descriptor of the actual temperature
of the mortar batches (this applies for the whole Chapter 6). For further readings
about the temperature, see the end of each Sections 5.3.3, 5.3.4 and 5.3.5.

Error Generated by Plug Flow (in Mortar)

As mentioned in Section 3.5, under sufficiently large ratio of yield value versus plastic
viscosity τo/µ a plug will start to occur in the mortar sample, at the outer cylinder
of the viscometer. As the rotational frequency fo is reducing, the plug state will
propagate towards the inner cylinder as shown with the right illustration of Figure 3.10
(Page 66). Depending on the τo/µ-ratio, this flow phenomenon introduces an error
to the viscometric values τo and µ of mortar, when retrieved by Equations 3.26 and
3.27. However, as discussed in Section 3.5.3, for τo/µ ∝ 100 s−1, the error produced is
only about order of magnitude of 1% for the yield value τo and of 10% for the plastic
viscosity µ. As will be apparent in the following sections, the condition τo/µ ≤ 100 s−1

will apply in most cases and hence error generated by plug is generally not a real
problem. However, in a few occasions, this ratio becomes as high as around 300 s−1.
For example, this applies for some of the FAC-cases at 38◦C. Under such condition,
a larger error results, namely order of magnitude of 10% and 100% for the yield value
τo and plastic viscosity µ, respectively. Fortunately, such cases are rare.

Error Generated by Air Entrainment (in Mortar)

As mentioned in Sections 5.5.2 and 5.5.3, air entrainment has a minor effect on the
yield value τo of mortar. Unfortunately, the same does not apply for the measured
plastic viscosity µ. Rather, from Figures 5.14 [w/c = 0.4 ; OPC] and 5.16 [w/c = 0.57;
FAC] it appears that with increasing air content, the plastic viscosity µ decreases (as
applies for the concrete case c.f. [144, 146]). The resulting percentage error present
in plastic viscosity µ for each mortar batch is unknown, meaning that care must be
taken when comparing plastic viscosity of two or more mortar batches. However, as
is apparent in Figure 5.15 (Page 99), there exists a strong air stability for the case of
[w/c = 0.5 ; OPC] in mortar, at least in the yield value range of about τo ∈ [0, 160] Pa,
and for a moderate increase in yield value (as a function of time). Therefore, for this
case, the plastic viscosity evolution µ can be considered reliable, when considering
the effect of different polymer type used. There are two exceptions for this, namely
the SNF-case and the Without P/SP-case, at the temperature of 38◦C. These two
cases are discussed on Page 113.

Given the small influence of the plug flow and air entrainment on the yield value τo
for mortar, the error-bars ±∆τo and ±∆τ̆o (from Section 6.2.2) can be considered to
include these errors. However, given the large influence of plug flow and air entrain-
ment on the plastic viscosity µ, the error-bars ±∆µ and ±∆µ̆ might be somewhat
underestimated.

Yield Value τo versus Plastic Viscosity µ

When comparing the results of Figure 6.2 with Figure 6.4, Figure 6.8 with Figure 6.10,
and Figure 6.17 with Figure 6.19, three general results are observed:

1. Polymer Type: The effect of the different polymer types are mainly reflected
in the measured yield value τo, rather than in the measured plastic viscosity µ.
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Such result has been reported elsewhere when using lignosulfonates [128].

2. Polymer Dosage: Increased lignosulfonate addition reduces the yield value τo,
while the plastic viscosity µ is much less affected. This result is in an agreement
with other findings when using lignosulfonates [128, 146].

3. Time Effect: The plastic viscosity µ remains more or less a constant, or is
even reducing in some cases, as a function of time, while the yield value τo is
steadily increasing. Using the same type of lignosulfonates as in this thesis, such
tendency has been reported elsewhere [95].

From the above points, it is clear that the change in shear viscosity η = µ+τo/γ̇ is
mostly reflected by the change in yield value τo, rather than by the change in plastic
viscosity µ.

6.4.1 Increased Time ⇒ Increased Shear Viscosity η

Phase Volume Φ, Surface Roughness and Coagulation State Jtot
t = Jp

t +Jt

When creating the (limited) rheological model for the cement paste, presented in
Section 2.4.1 (see Equation 2.25, Page 26), it became clear that (at least) the phase
volume Φ, surface roughness and coagulation state J tott = Jpt +Jt, are the controlling
material parameters in changing the value of shear viscosity η = [µ+µ̃]+[τo+τ̃o]/γ̇ as a
function of time. As the cement paste is the far most chemically changing component
in mortar2, the same consideration can go for the shear viscosity η of mortar.

For the cement paste, inside the mortar, a viscometric contribution of the type µ̃
and τ̃o are more or less filtered out by the intensive (re)mixing3 procedure of Box 5
and 6 (Page 92) just prior to a measurement. That is, the reversible coagulated
cement particles, are more or less dispersed (i.e. Jt ≈ 0) just before a viscometric
measurement ⇒ µ̃ ≈ 0 ∧ τ̃o ≈ 0. Hence, the change in shear viscosity of cement
paste (inside the mortar) is rather a result of a change in phase volume Φ, surface
roughness and permanent coagulation state J tott ≈ Jpt + 0, giving a shear viscosity
of the type η = µ+ τo/γ̇ for the mortar (and concrete).

For each experiment that spans over only 20 seconds (see the left illustration of
Figure 3.7, Page 61), it is not to be expected that the change in number of permanent
junctions Jpt is large. It is rather during the time period of about 30 minutes, between
each experiment, that the number of permanent junctions Jpt are gradually increasing
as described with Equation 2.65 (Page 50). Of course, the number of reversible
junctions Jt are also gradually increasing during this same time period, as described
by the same equation. However, by the intensive (re)mixing procedure of Box 5 and
6 prior to a measurement, reversible coagulated cement particles, are more or less
dispersed, giving the condition Jt ≈ 0 just before and during a measurement; i.e. the
value of Jt is always reset to zero before each experiment.

As the phase volume Φ, surface roughness and permanent coagulation state Jpt
of the cement paste, inside the mortar, is always increasing with time (due to

2For mortar, coagulation of the smallest aggregate particles, say below 20µm in radius, can also
be an issue. This is because of how the van der Waals attractive potential energy VA is present
between any two particles in close vicinity of each other. However, because of the smaller quantity
of the 0− 100µm aggregates: 0.1 · 1200 kg/m3 = 120 kg/m3 relative to the 600 kg/m3 of cement (see
Figure 4.4 and Table 4.4) the former will inflict the shear viscosity η to a less degree than the latter.

3The larger solid particles of the 0 − 2mm aggregates, could also give an additional dispersing
and grinding effects on the (reversible) coagulated cement particles.
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hydration), then so is also the shear viscosity η = µ+ τo/γ̇ of mortar. [A summary of
how hydration changes the phase volume Φ, surface roughness and coagulation state
J tott = Jpt + Jt, is given in Section 2.6.3].

When looking at a shear viscosity function like of η = µ + τo/γ̇, the immediate
question is: Should both the internal parameters µ and τo also increase with time?
The answer to this is not straightforward. Assuming for a moment, that the plastic
viscosity µ is only related to momentum exchange between free cement particles (i.e.
not coagulated particles; see Figure 2.11, Page 27): As the phase volume Φ and surface
roughness increases, a single momentum exchange between two free particles will also
increase, which again will result in an increased contribution to the plastic viscosity µ.
However, with increasing time, the number of free particles is decreasing as a result
of their coagulation. Because of this decrease, the total momentum exchange between
free particles could actually be reducing. If so, the plastic viscosity µ would decrease
with increasing time. Assuming that the yield value τo is only related to momentum
exchange between, and by, coagulated cement particles, the value of τo would always
increase with time. This is because of how coagulation state J tott is always increasing
with time.

With always increasing phase volume Φ, surface roughness and coagulation state
J tott ≈ Jpt , the fundamental requirement is that the shear viscosity η = µ + τo/γ̇ is
increasing with time. How the internal parameter µ and τo should behave relative to
each other, to make sure of this, is an another issue and not so straightforward.

Smaller Phase Volume Φ and Surface Roughness with Retardation

As mentioned in Section 4.2.2, every lignosulfonate batch contains also isolated sugar
components (mainly pentose and hexose) that slows down hydration [105]. The slow-
ing mechanism of cement hydration is generally known as retardation. The lignosul-
fonate molecule itself has also a retarding influence on hydration [105]. With these
two slowing effects, the phase volume Φ and surface roughness will be smaller. From
Section 2.6.3, this results in a lower shear viscosity η for mortar (and also for cement
paste and concrete). However, too much retardation is undesirable. Apparently, the
magnitude of the clinker mineral C3A is very important in inhibiting a too long retar-
dation, when using lignosulfonates (see Section 2.5.1 about the C3A and C3S). For
example, the hydration of a pure C3S-paste can be completely inhibited by the addi-
tion of calcium lignosulfonate [LS: 0.5 wt% of C3S; w/C3S = 0.6] [76]. In the absence
of lignosulfonate, the pure C3S-paste are well hydrated with or without the presence
of C3A [151]. In the presence of lignosulfonate and 2% of C3A, it is reported for one
particular case [151] that even after half a year, no hydration occurs [LS: 0.8 wt% of
C3S; w/C3S = 0.6]. However, in this case, with the addition of 5% C3A, hydration
occurs within 14 days [LS: 0.8 wt% of C3S; w/C3S = 0.6] [151]. In the same reference,
it is shown that the amount of adsorbed lignosulfonate on the C3S-C3A-particle, in-
creases with increasing C3A content (apparently through preferential adsorption onto
C3A) [151]. When most lignosulfonate had been adsorbed, the hydration rate of the
paste was increased [151].

Smaller Coagulation State Jtot
t ≈ Jp

t with Rc, 1/κ + Dpol and V max
T

As is shown with Equations 2.58 and 2.59 (Page 45), there are (at least) three variables
that controls the coagulation rate H . These are the “radius” of the cement particle
Rc, the maximum value of total potential energy V maxT and its reach 2/κ + 2Dpol
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(see Page 44, about the reach). Increased coagulation rate H , results in an increased
coagulation state J tott (c.f. Equation 2.65, Page 50), which again results in an increase
shear viscosity η. The relationship between J tott and η is summarized in Section 2.6.3.

Zeta Potential ζ and Ionic Strength I

Increased zeta potential ζ (an approximation of the Stern potential ψδ) gives a larger
electrostatic potential energy VR (Equation 2.52, Page 40) and hence a larger energy
barrier V maxT (c.f. VT = VR+VA+VS). This results in a decreased coagulation rate H
(Equation 2.59, Page 46) and hence in a smaller coagulation state J tott (Equation 2.65,
Page 50). In accordance with Section 2.6.3, this gives a lower shear viscosity η.

As shown in the left illustration of Figure 2.19 (Page 42), increased ionic strength
I gives a reduced energy barrier V maxT and a smaller reach 2/κ. This results in a
larger coagulation rate H and hence in an increased coagulation state J tott , which is
then observed with a larger shear viscosity η.

In the limitation of the experimental work done here, neither ionic strength I
nor zeta potential ζ measurements are made. However, experiments conducted at
Borregaard LignoTech [103], give that no major changes in the ionic strength I
is measured from 10 minutes to 1 hour after water addition (pore water extracted from
concrete using OPC with lignosulfonates). Also, the zeta potential ζ during the first
90 minutes from water addition, is measured as a constant with time [39] (continuously
stirred cement paste at w/c = 0.5 using OPC with lignosulfonates). The value of zeta
potential ζ is only changed with different polymer type used in each batch [39]. With
constant ionic strength I and constant zeta potential ζ as a function of time in each
batch, there is seemingly no indication of a loss in electrostatic repulsive potential
energy VR that could parallel the measured increase in shear viscosity η = µ + τo/γ̇
[39]. This means, if the electric double-layer do provide an addition to the energy
barrier V maxT of relevant magnitude, it is a constant contribution with time (however,
apparently different constant contribution from batch to batch, using the different
type of polymer, c.f. the top right illustration of Figure 2.18, Page 39).

Steric Hindrance (VS and Dpol)

With adsorption of lignosulfonate polymers on the cement particle surface, the cement
particles are inhibited to physically approach each other so closely as before. This
effect is known as steric hindrance and is mathematically represented with the steric
repulsive potential energy VS. The maximum value of VS could be related to the degree
of polymer adsorption and to the compressive strength of the polymer. The reach of
this potential energy, namely 2Dpol, is dependent on the thickness of the adsorbed
layer of polymers on the cement particle surface. For a given mono-layer adsorption,
the value of Dpol represents the dimension of the polymer in the manner as shown
with the right illustration of Figure 2.22 (Page 45). Hence, with increasing molecular
weight values Mn and Mm (see Table 4.2, Page 74), the reach 2Dpol will increase.
Illustration C in Figure 2.21 demonstrates how the steric repulsion VS increases both
the value of the energy barrier V maxT and the reach 2/κ+2Dpol. This results in a lower
coagulation rate H and hence in a lower shear viscosity η as discussed in Section 2.6.3.

Uchikawa et al. [136, 137] reports (in line with [151]) that lignosulfonates adsorbs
more on the C3A compound, relative to the C3S compound. For this case, the thick-
ness of the adsorbed layer is reported to be Dpol = 100 nm on the C3S surface, while
Dpol = 200 nm on the C3A surface. With this, a multi-layer adsorption is considered
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to apply, instead of a mono-layer adsorption [136]. A 100 layers has been reported
in another particular case [105]. The degree of uneven adsorption between C3S and
C3A, depends on the type of organic admixture used [135, 137, 138]. Elsewhere, it is
not agreed that so many adsorbed layers exists in reality [85]: Adsorption is rather
considered to consist of only few layers at the most. Additional layers above the few
first ones, is rather defined as precipitation. The distinction between polymer adsorp-
tion and polymer precipitation, relays in the force keeping the polymers in place on
the cement particle. Adsorption relies on attractive forces between the substrate (i.e.
the cement particle solid surface) and the polymer, and will be substrate specific. For
precipitation, it is rather polymer-polymer (attractive) forces that keeps the polymers
in place. Precipitation is not substrate specific [85]. However, it is believed that both
the adsorbed and the precipitated polymers always remains more or less on the ce-
ment particle [85] and hence in either case, do provide a same kind of contribution to
the steric potential energy VS. As such, the term “adsorption” will mean both a true
adsorption and precipitation, in this thesis.

With increasing hydration, larger part of the polymers could be integrated into
the solid surface (of the cement particle), as it is more and more covered by a hydrate
(see Figure 2.22). This results in a decreased steric reach 2Dpol as a function of time,
which again results in an increased coagulation rate H (see Equation 2.59, Page 46)
that parallel the measured increase in shear viscosity η = µ + τo/γ̇ as a function of
time. Other type of degradation of the adsorbing polymer could also be present, giving
a larger loss in steric potential energy VS and hence in lower energy barrier V maxT .
This would give a still larger coagulation rate H (Equation 2.59) and therefore an
increased coagulation state J tott (c.f. Equation 2.65) and hence larger shear viscosity
η (c.f. Section 2.6.3).

Steric Hindrance VS versus Electrostatic Repulsion VR

The characteristic diameter of a lignosulfonate macromolecule is reported to be 10 nm
[18]. Hence, the reach of the steric potential VS is at least in the order of 2Dpol =
20 nm assuming a mono-layer adsorption, and most likely larger since multi-layer
adsorption seems to be a realty. With this in mind and looking at the left illustration
of Figure 2.19, which demonstrates that the (effective) thickness of the diffuse layer
1/κ is always less than 1 nm, it is clear that the reach 2Dpol of the steric hindrance
(VS) is far greater than the reach 2/κ of the electrostatic repulsion (VR). With this
small reach (i.e. small 2/κ), the relevance of the electrostatic potential energy VR
can be considered to be questionable. However, as will be apparent in the discussion
around Figure 6.29, then for the smaller lignosulfonates LMW Na and LMW Ca,
electrostatic contribution seems to be somewhat important. This is also discussed in
Section 6.4.8.

Experimental Results

In the coming sections, the rheological results of the mortar experiments are presented.
When discussing the results, the overall above theory will be used extensively. To
begin with, the reference batches (“Without P/SP”) are considered. Thereafter, the
mortar batches using the different lignosulfonate types are presented.
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6.4.2 Reference: Without P/SP

Before starting in examining the effects of the different types of lignosulfonates as
a function of temperature and time, it is interesting to first consider the reference
batches, namely the “Without P/SP” batches. These are the batches not using any
plasticizers or superplasticizers.

Increased Temperature ⇒ Increased Shear Viscosity η = µ + τo/γ̇

Generally, increased temperature accelerates the early rate of cement hydration, i.e. in
the pre-dormant and dormant period [58]. This results in a still larger phase volume
Φ and surface roughness. From Section 2.6.3, it is therefore to be expected that with
increased temperature, the shear viscosity η = µ+ τo/γ̇ will also increase.

Without Polymers ⇒ Largest Shear Viscosity ηmax = µ + τo/γ̇

Without polymers adsorbed on the cement particle, opposite electrically charged sur-
faces of two cement particles becomes naked to each other, resulting in their electro-
static attraction; i.e. the electrostatic repulsion VR, is either partially or completely
replaced by an electrostatic attraction V aR . This results in a larger coagulation rate
H than anticipated by the van der Walls attraction VA alone. Also, without the poly-
mers, no steric effects VS are present to keep the cement particles physically apart.
This results in an additional increase in coagulation rate H . From Equation 2.65
(Page 50), it is therefore to be anticipated that the coagulation state J tott will be of
the largest value, for mortars not using any polymers. In addition to this, without
the retarding sugar that is present with the lignosulfonate polymer (mainly pentose
and hexose, c.f. Section 4.2.2), cement hydration occurs more rapidly. This result in
a still larger increase in phase volume Φ and surface roughness. With the particular
relationship of surface roughness, phase volume Φ and coagulation state J tott with the
shear viscosity η (see Section 2.6.3), it is to be anticipated that the shear viscosity
η = µ+ τo/γ̇ will be of the largest value for mortars not using any polymers.

Experimental Results

Figure 6.25 shows the viscometric results τo and µ, as a function of temperature and
time when not using any polymers. Since the yield value τo is much larger than
the plastic viscosity µ, the former is more accountable for the large magnitude in
shear viscosity η = µ + τo/γ̇. As shown in this figure, the yield value τo increases
with increasing temperature and with increasing time. As mentioned above and in
Section 6.4.1, this temperature and time dependency is anticipated. The plastic
viscosity µ does however not show such a clear tendency. That is, the error-bars
surmounts the small changes in the plastic viscosity µ as a function of time and
temperature. However, in ignoring this, the case of w/c = 0.5 shows a somewhat
reversed temperature dependency relative the yield value. That is, with increasing
temperature, the plastic viscosity µ is (slightly) decreasing. The w/c = 0.4 results
of plastic viscosity are more randomly oriented, with some kind of increase in plastic
viscosity µ with increasing temperature. Given the influence of plug flow and air
entrainment on the plastic viscosity, it is not wise to make any physical hypothesis
about the plastic viscosity behavior, shown in Figure 6.25.
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Figure 6.25: Measured yield value τo (to the left) and plastic viscosity µ (to the right) of
mortar batches, not using any (super)plasticizers. The numbers 5, 23 and 38 demonstrates the
corresponding temperature. The error-bars shown, are calculated according to Equation 6.1.

Summary of Main Results

1. The plastic viscosity µ is not significantly changing with time or temperature.

2. The yield value τo increases with increasing temperature and time. Since the
plastic viscosity µ is more or less a constant, this yield value behavior is an-
ticipated. This is because of the pre-mentioned postulate about that the shear
viscosity η = µ+ τo/γ̇ must increase with time and temperature.

What now follows in the coming sections, is a comparison of viscometric values
between the batches using the different polymer types. In most cases, the mix design
is the same as for the batches shown in Figure 6.25. The exceptions are when using the
FAC (mix designs of mortar are shown in Tables 4.4 (OPC) and 4.6 (FAC), Page 78).
All the following figures are clearly labeled with OPC and/or FAC. Knowing how
the “Without P/SP” batches behaves as a function of temperature and time, it is
now interesting to examine how this behavior changes with the introduction of the
lignosulfonates into the mortar batches.
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6.4.3 HMW Na versus LMW Na

As mentioned in Section 4.2.2, the main differ-
ence between theHMW Na and the LMW Na
polymer is that the former has gone under an
ultrafiltration, while the latter has not (see Fig-
ure 4.2, Page 73). This means that their ba-
sic difference lies in the molecular weight distri-
bution. In other words, the HMW Na poly-
mer consist of larger molecules, relative to the
LMW Na polymer. This is more specifically
shown in Table 4.2 (Page 74), which demonstrates that there is a certain difference in
their number average molecular weight Mn and their mass average molecular weight
Mm (see Equation 4.1 for definition, Page 74). As is shown in Figure 4.3, this means
that for the given dosage of 0.6% sbwc, a larger portion of the HMW Na polymer is
adsorbed on the surface of the cement particles, relative to the LMW Na polymer.
With the larger adsorption and larger dimension of the HMW Na polymer, a larger
steric potential energy VS results between the cement particles, relative to when using
the LMW Na polymer. This gives a larger contribution to the energy barrier V maxT

and reach 2Dpol and therefore reduced coagulation rate H for the HMW Na-case
(see Equation 2.59, Page 46). From Section 2.6.3, this results in a lower shear viscosity
η = µ+ τo/γ̇.
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Figure 6.26: Measured yield value τo (to the left) and plastic viscosity µ (to the right) of
mortar, using either the HMW Na or the LMW Na polymer (OPC). The numbers 5, 23 and
38 demonstrates the corresponding temperature.

The measured viscometric values of the mortars using either the HMW Na poly-
mer or the LMW Na polymer are shown in Figure 6.26 (OPC). These results are
extracted from Section 6.2.1. All the error-bars shown in this figure are the same ones
as presented in Figures 6.2 and 6.4: The error-bars shown in the top left corner in
both illustrations in Figure 6.26, represents 95% confidence interval generated from
the reproducibility tests in Chapter 5 for mix using the HMW Na polymer. These
error-bars are calculated according to Equation 6.2. However, the error-bars shown
on each graph, are calculated according to Equation 6.1 (see Section 6.2.2).

The difference between the two above-mentioned polymer types is clearly reflected
in the left illustration of Figure 6.26. There it is shown an opposite yield value τo
behavior for the batches using the HMW Na polymer, relative to the ones using the
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LMW Na polymer: With increasing temperature, the batches of the HMW Na
polymer, gives an overall reduced yield value τo, while the batches of the LMW Na
polymer give an increased yield value τo. The latter case has the same type of “nat-
ural” yield value evolution as is shown in Figure 6.25.

In most cases, the yield value τo is always increasing with time from water addition.
The exception is the HMW Na-case at 5◦C, in which between 40 and 100 minutes
after water addition, no significant change is present (see also Figure 5.10, Page 95).

The temperature dependency of the HMW Na-batches, shown in Figure 6.26,
are quite remarkable and is something not to be expected at first consideration. Even
at the low dosage of 0.3% sbwc and at the higher water content of w/c = 0.5, there is
still a small decrease in yield value with increasing temperature, when using the OPC.
This is shown with the right illustration of Figure 6.27. However, this type of result is
changed when changing the mix design from [w/c = 0.4 ∧ 0.5; OPC] to [w/c = 0.57;
FAC]. This is shown in the same figure and demonstrates that when using the FAC
at 0.6% or 0.3% sbwc, the “natural” yield value evolution starts to appear.
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Figure 6.27: Measured yield value τo (the main illustrations) and plastic viscosity µ (small
incorporated figures) for the FAC- and OPC-cases, using the HMW Na polymer. To the left is
the dosage of 0.6% sbwc applied and to the right is the dosage 0.3% sbwc used.

Going back to Figure 6.26, an unexpected experimental result is made at 10 and 40
minutes at 5◦C. This is marked with the capital letters A and B in both illustrations.
The peculiar result consist of the fact that the same set of viscometric values τo and µ
are produced for both cases of HMW Na and LMW Na. This is unexpected given
the different properties of the two polymer types used in the different batches. This
could be related to a possible slower adsorption process for the HMW Na polymer,
relative to LMW Na, at the temperature of 5◦C.

For most parts, the plastic viscosity µ in Figure 6.26 is either slightly increasing
or simply is a constant as a function of time. The exception for this applies at 10
and 40 minutes, with temperature of 5◦C. These two points are marked with the
pre-mentioned capital letters A and B. In ignoring these two points, it is clear that
the time dependency of the shear viscosity η = µ + τo/γ̇ is mostly reflected by the
yield value τo, rather than by the plastic viscosity µ. However, when considering the
temperature dependency, then in either case of HMW Na or LMW Na, the plastic
viscosity µ increases somewhat with increased temperature and hence also contributes
to the temperature dependency of the shear viscosity η. Similar conclusion, as in the
above, can be drawn for the FAC-batches in Figure 6.27.
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The effect of plug flow and air entrainment on the plastic viscosity µ data, is
considered in Sections 6.4.5 and 6.4.8.

Before making additional discussion for the overall above measured viscometric
values, it is interesting to first consider the effects of theHMW Ca and the LMW Ca
polymers at the same w/c-ratio and polymer dosage. This is the issue of next section.
However, before this, a summary of the main results are given:

Summary of Main Results

1. The HMW Na polymer is more effective plasticizer than the LMW Na poly-
mer.

2. When using the HMW Na polymer at 0.6% sbwc [w/c = 0.4; OPC], a clear
reduction in yield value τo exists for the corresponding batches, with increasing
temperature. A smaller, and not so clear, reduction applies also when using the
lower dosage of 0.3% sbwc [w/c = 0.5; OPC].

3. The above behavior is however not universal: When using the HMW Na
polymer at 0.6% sbwc, with FAC (w/c = 0.57), a clear increase in yield value
τo exists, with increasing temperature. The same result applies when using the
dosage of 0.3% sbwc [w/c = 0.57; FAC].

4. The time dependency of the shear viscosity η = µ + τo/γ̇ is generally more
controlled by the yield value τo, rather than by the plastic viscosity µ. Some
temperature dependency is present for the plastic viscosity µ (OPC, FAC).
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6.4.4 HMW Ca versus LMW Ca

The main difference between theHMW Ca and
the LMW Ca polymer is that the former has
gone under an ultrafiltration, while the latter has
not (see Figure 4.2). This means that their basic
difference is the same as between theHMW Na
and the LMW Na polymer in the previous sec-
tion, and lies in their molecular weight numbers
Mn and Mm. With the larger adsorption (Fig-
ure 4.3, Page 75) and the larger dimension (Ta-
ble 4.2, Page 74) of the HMW Ca polymer, a larger steric potential energy VS
results between the cement particles, relative to when using the LMW Ca polymer.
This gives a larger contribution to the energy barrier V maxT and reach 2Dpol for the
HMW Ca-case, and hence results in a smaller coagulation rateH (see Equation 2.59,
Page 46). With a smaller coagulation rate H , a lower coagulation state J tott ≈ Jpt re-
sults (see Equation 2.65, Page 50). This is then observed with a lower shear viscosity
η = µ+ τo/γ̇ (the relationship between J tott and η is discussed in Section 2.6.3).
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Figure 6.28: Measured yield value τo (to the left) and plastic viscosity µ (to the right) of
mortar, using either the HMW Ca or the LMW Ca polymer (OPC). The numbers 5, 23 and
38 demonstrates the corresponding temperature.

The difference between the HMW Ca and the LMW Ca polymer is clearly
reflected in Figure 6.28 (OPC). More precisely, the similarities between this figure
and of Figure 6.26 are very large. Not only is there a same type of evolution in
measured yield value τo, but the measured plastic viscosity µ is almost identical in
both figures. This is visible with Figure 6.29, which demonstrates a comparison
plot of the result shown in Figure 6.26 (HMW/LMW-Na) with the result shown
in Figure 6.28 (HMW/LMW-Ca). If both last-mentioned figures where exactly
identical, all measured points would fall on the straight line (with the slope 1) shown
in both illustrations in Figure 6.29. Such condition applies almost for the measured
plastic viscosity µ and to some lesser degree for the measured yield value τo. This
demonstrates the overall large similarities between Figure 6.26 and Figure 6.28.

As is mentioned in Section 4.2.2, the only difference between the HMW/LMW-
Na polymers and theHMW/LMW-Ca polymers is the use of so-called ion exchange
in the manufacture at the Borregaard plant. In Figure 6.29, it is demonstrated that
there is roughly an one-to-one correspondence between theHMW/LMW-Na results
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Figure 6.29: Comparison of the results presented in Figure 6.26 and in Figure 6.28. If both
last-mentioned figure where identical, all measured points would fall on the straight line (with
the slope 1) shown in both the left and the right illustration.

and the HMW/LMW-Ca results, especially for the plastic viscosity µ. However,
when comparing the result between the LMW Na-case with the LMW Ca-case
in a more detail, some larger yield value τo appears for the latter case. Such result
has been reported elsewhere [105, 128]. With an (active) cation of valence zCa = 2
(LMW Ca → LMW−2n + nCa+2), a larger contribution to the ionic strength I
is likely (see Equation 2.54, Page 40). As mentioned on Page 129, increased ionic
strength I results in a larger coagulation rate H and hence in a larger shear viscosity
η = µ+ τo/γ̇ (reflected here by a larger yield value τo).

The ionic strength I can only influence the total potential energy VT through
the electrostatic potential energy VR. When this last-mentioned potential energy
is completely overshadowed by the steric potential energy VS (resulting in VT =
VR + VA + VS ≈ VA + VS), ionic strength I will only influence coagulation rate H
through 1/κ. With a condition of 2/κ+ 2Dpol ≈ 2Dpol for the HMW products (c.f.
Page 130), ionic strength I will in reality have no influence on the coagulation rate
H . As such, ionic strength I will neither have any effect on the shear viscosity η (see
Section 2.6.3 and 6.4.1). With the large molecular weight values Mn and Mm for the
HMW Na and the HMW Ca polymers (see Table 4.2), it is likely that the above-
mentioned ionic-strength-independence applies for the batches using these polymer
types. In Figure 6.29, it is shown that the yield value τo for the HMW Na-case is
generally higher than the HMW Ca-case. Relative to the overall above text, one
should avoid in explaining this difference with an ionic strength I (or zeta potential
ζ) considerations.

Now, it is clear from either Figure 6.26 or Figure 6.28 that at the dosage of 0.6%
sbwc and w/c = 0.4, the high molecular weight products HMW Na and HMW Ca
gives a reduced yield value τo with increasing temperature (OPC). Relative to the
“natural” yield value evolution shown in Figure 6.25, this is an unexpected behav-
ior. The reason for this unexpected yield value behavior, could lie in that the larger
lignosulfonate molecules have some kind of swelling capabilities that increases with
increasing temperature. If so, this would result in an enhanced steric potential en-
ergy VS, at least by its increased reach 2Dpol from the solid surface of the cement
particle. In a textbook by Nicholson [90], such swelling capabilites of crosslinked
macromolecules is somewhat discussed, however not discussed relative to tempera-

URN:NBN:no-3374



138 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

ture changes. This swelling hypothesis is shown with the left part of Figure 6.30.
Consisting of a great quantity of large crosslinked macromolecules, the HMW Na
and HMW Ca polymers fits this profile (see Section 4.2.2 about the structure of the
different lignosulfonate types).

Figure 6.30: Schematic presentation of the swelling (to the left) and of the adsorption theory
(to the right). The top right illustration is extracted from Figure 2.9 (Page 25). A more realistic
presentation of the cement particle is shown in Figure 2.17 (Page 38). Adsorption is drawn here
as a mono-layer. However as mentioned in Section 6.4.1, a multi-layer adsorption appears to be
more likely. Regardless of multi-layer or mono-layer adsorption, the principle shown here applies.

The other hypothesis for explaining the yield value behavior of theHMW Na- and
HMW Ca-batches in Figures 6.26 and 6.28, could be that the adsorbing capability
of the polymers (on the cement particles), increases with the increasing temperature.
In his doctoral thesis, Flatt [32] measures an increased adsorption of plasticizing poly-
mers (however, not lignosulfonates) on MgO particles, with increasing temperature
(pH = 12). In his work, he argue that with increased temperature, a larger number of
oppositely charged ions (relative to the particle surface) desorb with increased tem-
perature, leaving a larger surface area available for the polymers to adsorb on. This
adsorption theory is shown in the right illustration of Figure 6.30. Such adsorption
would enhance the steric repulsion VS, giving an additional contribution to the energy
barrier V maxT against coagulation rate H . If this theory is valid, then it seem not to
apply (or is at least less apparent) for the LMW Na- and LMW Ca-cases, as is
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evident by the experimental results shown in Figures 6.26 and 6.28.
As mentioned before, it is clear from either Figure 6.26 or Figure 6.28 that at the

dosage of 0.6% sbwc and w/c = 0.4, the high molecular weight products HMW Na
and HMW Ca gives a reduced yield value τo with increasing temperature (OPC).
However, as shown with Figure 6.27 for the HMW Na-case, this type of unexpected
yield value behavior is not universal: When using the FAC at w/c = 0.57, the “nat-
ural” yield value behavior starts to occur; i.e. the yield value increases with increasing
temperature. A possible start in understanding this, is by noticing the large quantity
of water, relative to cement content, that is always present when applying the FAC,
namely of w/c = 0.57. That is, the (relatively) large quantity of water could over-
shadow the pre-mentioned polymer behavior shown in Figure 6.30. Also, the fineness
of the FAC is 437m2/kg (Blaine), compared to the 340m2/kg for the OPC (see Sec-
tion 4.2.1). This means that a less mount of polymer is available per square meter of
cement particle surface. Hence, the effect of the increased adsorption and/or swelling
of the polymers could be overshadowed by a too large quantity of water and cement
particle surface area, present in the FAC-batches.

Given the large similarities in plastic viscosity µ, a discussion about these data has
been (implicitly) made in the previous section. However, the effect of plug flow and
air entrainment on the plastic viscosity µ is not considered until in the next section
and in Section 6.4.8.

Summary of Main Results

1. The HMW Ca polymer is more effective plasticizer than the LMW Ca poly-
mer.

2. When using the HMW Ca polymer at 0.6% sbwc [w/c = 0.4; OPC], a clear
decrease in yield value τo exists for the corresponding batches, with increasing
temperature. Almost identical result is produced for the HMW Na-case, as
shown in the previous section.

3. A possible explanation for this, is related to increased swelling and/or increased
adsorption of the polymers.

4. As shown with Figure 6.27, the type of result shown in point 1. above, is not
universal: When using the FAC at w/c = 0.57, a clear increase in yield value τo
exists for the corresponding batches, with increasing temperature.

5. The time dependency of the shear viscosity η = µ + τo/γ̇ is generally more
controlled by the yield value τo, rather than by the plastic viscosity µ (OPC).
Some temperature dependency is present for the plastic viscosity µ (OPC).
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6.4.5 HMW Na versus HMW Ca

As is shown in Table 4.2 (Page 74), there is
not much difference between the two polymers
HMW Na and HMW Ca. The sugar con-
tent and DOS values are almost the same. Also,
the number average molecular weight Mn is ex-
actly the same. However, the mass average mole-
cular weight Mm is about 13% larger for the
HMW Na polymer. With the few physical dif-
ferences between the two polymer types, it is to
expected that the viscometric values of the corresponding batches are more or less the
same. As is shown with Figure 6.31, this condition applies when using the dosage of
0.3% sbwc. However, increasing this value up to 0.6% sbwc (and reducing the water
content at the same time), some differences starts to occur for the mortar case. In all
cases of 5◦C and 23◦C for mortar, the batches of the HMW Ca has always a lower
yield value τo, relative to the HMW Na-batches. This is unexpected, given the sim-
ilarities in the molecular weight values Mn and Mm of the two polymer types. When
increasing the temperature from 23◦C to 38◦C, the situation is reversed. That is, the
HMW Na starts to perform slightly better. This could be related to the larger mass
average molecular weightMm of the HMW Na polymer. With this, a slightly larger
swelling and/or adsorption effect could be factual, with increasing temperature. See
Section 6.4.4 about the swelling/adsorption theory and its relationship to the shear
viscosity η = µ+ τo/γ̇.
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Figure 6.31: Measured yield value τo of concrete and mortar, using either the HMW Na or
the HMW Ca polymer (OPC).

As is mentioned on Page 126, the mortar batches of [0.3% sbwc; To = 23◦C ∧ To =
38◦C; w/c = 0.5; OPC] have a large air stability. Also, the condition τo/µ ≤ 100 s−1

applies mostly for this case. Hence, neither the plug flow nor the air entrainment will
introduce a large error to the plastic viscosity µ for such circumstances. Therefore, the
two bottom right illustrations of Figure 6.32 are considered to be relatively accurate.
As is shown in these two illustrations, the plastic viscosity µ is more or less a constant
with time for the case of mortar at 23◦C, and is somewhat increasing with time for the
38◦C-case [0.3% sbwc; w/c = 0.5; OPC]. Interestingly, the same behavior is measured
for the case of mortar of [0.6% sbwc; w/c = 0.4; OPC]. The only difference between
the two cases, is that the latter has roughly twice as large plastic viscosity µ, relative
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to the former case. This overall similarity could indicate that the error from air
entrainment and plug flow is not so large for the [0.6% sbwc; w/c = 0.4; OPC]-case
presented here. It is also interesting to note that for either 0.6% sbwc or 0.3% sbwc,
the plastic viscosity is always around order of magnitude smaller for the mortar case,
relative to the concrete case. That is, at 0.6% sbwc, the concrete batch has a plastic
viscosity of about µ = 20Pa · s, while for the mortar it is 2 Pa · s. Likewise, at 0.3%
sbwc, the values are 10Pa · s and 1Pa · s, respectively.
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Figure 6.32: Measured plastic viscosity µ of concrete and mortar, using either the HMW Na
or the HMW Ca polymer (OPC).

When comparing the concrete results with the correspondingmortar results (23◦C)
in Figure 6.31, one has to bear in mind the range of the error-bars±∆τ̆o (Equation 6.2)
that apply for the fresh concrete. These error-bars are shown in Figures 6.2 and 6.8.
As noted in these figures, the condition ∆τ̆o ≈ ∆τo is mostly valid for the case of
mortar, while for concrete, the condition ∆τ̆o > ∆τo is always valid. For further
readings about these error-limits (or rather, confidence interval), see Section 6.2.2.

Summary of Main Results

1. Batches using either the HMW Ca or the HMW Na polymer at [w/c = 0.5;
0.3% sbwc] results roughly in the same set of viscometric values. Given the
similarity between the two polymer types, this result is to be expected.

2. However, with [w/c = 0.4; 0.6% sbwc], some difference starts to emerge be-
tween the two polymer cases. At 5 and 23◦C, the HMW Ca polymer gives
somewhat better result, while at 38◦C the HMW Na polymer makes a better
performance.

3. The effect of the different polymer types is most often reflected by the measured
yield value τo, rather than by the measured plastic viscosity µ. Also, there is a
larger time and temperature dependency present for the yield value τo, relative
to the plastic viscosity µ. Error from air entrainment and plug flow, does not
seems to be much present for the plastic viscosity data shown in this section.
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6.4.6 VHMW Na versus HMW Na

As is shown in Table 4.2 (Page 74), the main dif-
ference between the VHMW Na polymer and
the HMW Na polymer, rests in the number
average molecular weight and the mass average
molecular weight Mn and Mm. As to be ex-
pected, the DOS value is somewhat smaller for
the VHMW Na polymer, and its sugar con-
tent is almost nil (see Section 4.2.2). For the
HMW Na polymer, the molecular weight val-
ues are Mn = 9900 g/mol and Mm = 84600 g/mol. For the VHMW Na polymer,
these values are high as Mn = 41600 g/mol and Mm = 183000 g/mol. As is shown
in Figure 4.3 (Page 75), this means that for the given dosage of 0.6% sbwc, a larger
portion of the VHMW Na polymer is adsorbed on the surface of the cement parti-
cles, relative to the HMW Na polymer. With the larger adsorption and much larger
dimension of the VHMW Na polymer, a considerable larger steric potential energy
VS is present between the cement particles using this polymer, compared to when
using the HMW Na polymer. This gives a larger contribution to the energy barrier
V maxT and increased reach 2/κ+ 2Dpol ≈ 2Dpol and therefore results in a smaller co-
agulation rate H (Equation 2.59). With this, a smaller coagulation state J tott ≈ Jpt is
a reality (Equation 2.65), giving a lower shear viscosity η = µ+ τo/γ̇ (Sections 2.6.3).
As should be apparent with the experimental results presented so far, the change in
shear viscosity η is mainly reflected by the change in yield value τo. Hence, with the
batches using the VHMW Na polymer, a lower yield value τo should be expected.

10 40 70 100
0

200

400

600

800

τ ° [P
a]

Time [minutes]

0.6% sbwc
T°=23°C

w/c = 0.4
OPC

10 40 70 100
0

200

400

600

800

τ ° [P
a]

Time [minutes]

0.3% sbwc
T°=23°C
w/c = 0.5

OPC
VHMW Na
HMW Na

10 40 70 100
0

10

20

30

40

µ 
[P

a⋅
s]

Time [minutes]

0.6% sbwc ∧  OPC
T°=23°C ∧  w/c = 0.4

VHMW Na
HMW Na

10 40 70 100
0

10

20

30

40
µ 

[P
a⋅

s]

Time [minutes]

0.3% sbwc
T°=23°C

w/c = 0.5
OPC

Figure 6.33: Measured yield value τo (to the left) and plastic viscosity µ (to the right) of
concrete, using either the HMW Na or the VHMW Na polymer (OPC).

As Figure 6.33 (concrete) and Figure 6.34 (mortar) shows, a lower yield value τo is
a reality for the batches using the VHMW Na polymer at the dosage of 0.6% sbwc
(OPC, FAC). As discussed above, this behavior is to be expected. However, reducing
the dosage down to 0.3% sbwc, approximately the same yield value τo is measured for
both cases ofVHMW Na andHMW Na (OPC, FAC). For the OPC-case, the water
content is increased (w/c = 0.4 → 0.5) at the same time as the polymer reduction
(0.6% sbwc→ 0.3%), and therefore this yield value behavior might be expected. More
precisely, with the combination of high w/c-ratio and low polymer dosage, the special
benefits of the VHMW Na polymer could be overshadowed by a too large quantity
of water present in the corresponding OPC-batches (at w/c = 0.5). The same could
apply for the FAC-case at 0.3% sbwc and w/c = 0.57 (see also the discussion in the
end of Section 6.4.4).

As is mentioned in Section 6.4.5, neither the plug flow nor the air entrainment is
considered to introduce a large error to the plastic viscosity µ for the mortar cases
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Figure 6.34: Measured yield value τo of mortar, using OPC and FAC with either theHMWNa
or the VHMW Na polymer.
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Figure 6.35: Measured plastic viscosity µ of mortar, using OPC and FAC with either the
HMW Na or the VHMW Na polymer.

of [0.3% sbwc; To = 23◦C ∧ To = 38◦C; w/c = 0.5; OPC]. Therefore, the two
bottom left illustrations of Figure 6.35 are considered to be relatively accurate. As
shown in these two illustrations, the plastic viscosity µ is more or less a constant
with time for the case of mortar at 23◦C, and is somewhat increasing with time for
the 38◦C-case [0.3% sbwc; w/c = 0.5; OPC]. Interestingly, as shown in the two top
left illustrations, the same behavior is measured for the case of mortar of [0.6% sbwc;
w/c = 0.4; OPC]. The only difference between the two cases, is that the latter has
a larger plastic viscosity values, relative to the former case. This overall similarity
could indicate that the error from air entrainment and plug flow is not so large for
the [0.6% sbwc; w/c = 0.4; OPC]-case presented here.

The FAC-batches show somewhat a similar plastic viscosity behavior, as for the
OPC-batches. However, an exception to this is shown in the bottom right illustration
of Figure 6.35 [0.3% sbwc; To = 38◦C; w/c = 0.57; FAC]. There it appears that the
plastic viscosity is somewhat decreasing with increasing time (but not significantly, c.f.
the extent of the error-bars). As shown in the corresponding illustration of Figure 6.34,
this specific case holds also the larger yield values. Relative to this, it is interesting
to bear in mind the text written on Page 113.
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Generally, for all plastic viscosity results µ shown in Figure 6.35, there is not
much significant difference present between the two different polymer cases. When
significant difference occurs, it is mostly the VHMW Na-batches that gives a larger
plastic viscosity µ. Also, quite frequently, little temperature and time dependency is
present for the plastic viscosity µ.

Summary of Main Results

1. At the dosage of 0.3% sbwc, the VHMW Na polymer performs equally as well
as the HMW Na polymer; i.e. the same or similar set of viscometric values τo
and µ is measured in either case of VHMW Na or HMW Na.

2. At higher dosage of 0.6% sbwc, the VHMW Na polymer starts to perform far
better than the HMW Na polymer. More precisely, different yield values τo
are measured for the two cases, while the plastic viscosity values µ are more or
less the same.
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6.4.7 LMWFS Ca versus LMW Ca

When comparing the LMWFS Ca polymer
with the LMW Ca polymer in Table 4.2, it is
apparent that the LMW Ca consist of larger
molecular weight values Mn and Mm by about
9% and 33%, respectively. DOS values are about
the same for both polymer types. With the im-
portance of the molecular weight towards the
steric hindrance VS, it is to be expected that the
LMWFS Ca-batches will have a higher yield
value τo (i.e. larger shear viscosity η = µ + τo/γ̇) relative to the LMW Ca-batches.
As shown in Figures 6.36 and 6.37, this is measured for most cases. However, when
dosage of 0.6% sbwc is used, the situation is somewhat reversed at 10 minutes after
water addition. That is, the yield value τo at 10 minutes is slightly lower for the
LMWFS Ca-batches. This might be related to the larger sugar content present in
the LMWFS Ca polymer (22% versus 7%), which results in slower hydration. The
point where the LMW Ca- and LMWFS Ca-batches have roughly the same yield
value τo, is marked with a small box in the corresponding illustrations.
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Figure 6.36: Measured yield value τo (to the left) and plastic viscosity µ (to the right) of
concrete, using either the LMW Ca or the LMWFS Ca polymer (OPC).
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Figure 6.37: Measured yield value τo of mortar, using OPC and FAC with either the LMW Ca
or the LMWFS Ca polymer.

Often, around and beyond 40 minutes, the difference in yield value τo between the
cases of LMW Ca and LMWFS Ca are somewhat larger than expected relative to
the (moderately small) difference in molecular weight valuesMn andMm. The reason
for this large difference is unclear. The large difference is in particular apparent for
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Figure 6.38: Measured plastic viscosity µ of mortar, using OPC and FAC with either the
LMW Ca or the LMWFS Ca polymer.

the cases of [0.6% sbwc; To = 38◦C; w/c = 0.4; OPC] and [0.3% sbwc; To = 23◦C;
w/c = 0.5; OPC].

As is mentioned in Section 6.4.5, neither the plug flow nor the air entrainment is
considered to introduce a large error to the plastic viscosity µ for the mortar cases of
[0.3% sbwc; To = 23◦C ∧ To = 38◦C; w/c = 0.5; OPC]. Therefore, the two bottom
left illustrations of Figure 6.38 are considered to be relatively accurate. As shown in
these two illustrations, the plastic viscosity µ is more or less a constant with time
for the case of mortar at 23◦C, and is slightly increasing with time for the 38◦C-case
[0.3% sbwc; w/c = 0.5; OPC]. This behavior is not reproduced for mortar of [0.6%
sbwc; w/c = 0.4; OPC], as is apparent with the two top left illustrations. There, it
is rather shown that with increasing time, the plastic viscosity µ is decreasing. On
Page 113, large increase in yield value τo, is related to decrease in plastic viscosity µ,
through air entrainment; i.e. the drop in plastic viscosity shown here, could be related
to error generated by air entrainment. A drop in plastic viscosity µ as a function of
time is also observed for the FAC-case, in the right illustration of Figure 6.38.

Generally, for Figure 6.36 (concrete) and Figure 6.38 (mortar), there is no sig-
nificant difference between the measured plastic viscosity µ of the batches using the
two polymer types LMWFS Ca and LMW Ca. Their difference rests rather in the
yield value τo.

Summary of Main Results

1. Generally, the yield value τo of the LMWFS Ca-batches is larger than of the
LMW Ca-batches. This is not unexpected, given the difference in molecular
weight numbers Mn and Mm between the two polymer types.

2. However, in some cases, the difference seems to be larger than can be explained
by the molecular weight values alone.
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6.4.8 LMW Na versus LMW Ca

The main difference between the LMW Na and
LMW Ca is that the former has gone under
an ion exchange while the latter has not (see
Figure 4.2). The interesting difference between
the two polymer types rests in the molecular
weight values Mn and Mm. For the LMW Na
polymer, the molecular weight values are Mn =
7100 g/mol and Mm = 60900 g/mol. For the
LMW Ca polymer, these values are slightly
higher and consist of Mn = 7400 g/mol and Mm = 73100 g/mol. Hence, one could
expect a slightly larger steric potential energy VS for the LMW Ca-case, resulting
in a slightly larger contribution to the energy barrier V maxT and reach 2Dpol (c.f.
VT = VR + VA + VS). If so, this would give a smaller coagulation rate H (see Equa-
tion 2.59, Page 46). With a smaller coagulation rate H , a smaller coagulation state
J tott ≈ Jpt results (c.f. Equation 2.65, Page 50), which again gives a lower shear vis-
cosity η (see Section 2.6.3). With this, then at first consideration, one could expected
that the LMW Ca-case should have a slightly lower shear viscosity η = µ + τo/γ̇,
relative to the LMW Na-case (then reflected with a slightly lower yield value τo).
Except for the case of [0.3% sbwc; To = 23◦C; w/c = 0.5; OPC], the opposite is
measured. That is, the LMW Na-case gives most often a lower yield value τo. This
is apparent with Figures 6.39 and 6.40.
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Figure 6.39: Measured yield value τo (to the left) and plastic viscosity µ (to the right) of
concrete, using either the LMW Na or the LMW Ca polymer (OPC).
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Figure 6.40: Measured yield value τo of mortar, using OPC and FAC with either the LMW Na
or the LMW Ca polymer.
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Figure 6.41: Measured plastic viscosity µ of mortar, using OPC and FAC with either the
LMW Na or the LMW Ca polymer.

The type of difference between the LMW Na- and LMW Ca-cases, shown in
Figures 6.39 and 6.40, has been reported elsewhere [105, 128]. This difference can per-
haps rather be explained through electrostatic considerations (VR): With an (active)
cation of valence zCa = 2 (LMW Ca → LMW−2n + nCa+2), a larger contribution
to the ionic strength I is likely. This is more apparent by examining Equation 2.54
(Page 40) in a more detail. With a valence of zi = zCa = 2, the calcium ion make a
four times larger contribution to the ionic strength (z2i = 4), relative to the sodium
ion with zi = zNa = 1 (LMW Na → LMW−n + nNa+). As shown in the left
illustration of Figure 2.19 (Page 42), increased ionic strength I gives a reduced en-
ergy barrier V maxT and a smaller reach 2/κ. This results in a larger coagulation rate
H and hence in an increased coagulation state J tott , which is then observed with a
larger shear viscosity η = µ+ τo/γ̇ (reflected here by a larger yield value τo shown in
Figures 6.39 and 6.40).

From the above, the electrostatic potential energy VR seem to be important, at
least for the low molecular weight polymers like of the LMW Na and LMW Ca.
As shown in Figure 4.3 (Page 75), smaller lignosulfonates gives a smaller adsorp-
tion. With a smaller adsorption and a smaller dimension of the low molecular weight
(LMW) lignosulfonates, a smaller reach 2Dpol and magnitude of the steric potential
energy VS results. With a diminished steric potential energy VS, the electrostatic
contribution VR becomes more important for the final outcome.

The rheological behavior of all the high molecular weight (HMW) batches shown
previously, has been successfully explained through the molecular weight values Mn

and Mm. This indicates that the steric potential energy VS is more or less overshad-
owing the electrostatic potential energy VR for such cases. As such, issues like ionic
strength I or zeta potential ζ becomes less important.

As is mentioned in Section 6.4.5, the plastic viscosity µ for mortar cases of [0.3%
sbwc; To = 23◦C ∧ To = 38◦C; w/c = 0.5; OPC] are considered to be relatively
accurate. The corresponding results are shown in the two bottom left illustrations of
Figure 6.41. As shown there, the plastic viscosity µ is more or less a constant with
time, for the case of mortar at 23◦C, and is slightly increasing with time for the 38◦C-
case [0.3% sbwc; w/c = 0.5; OPC]. This behavior is not so well reproduced for mortar
of [0.6% sbwc; w/c = 0.4; OPC], as is apparent with the two top left illustrations.
Rather, there is some indication of drop in plastic viscosity µ with increasing time.
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As mentioned in the previous section, this drop is related to increased air content
with time. This drop is more apparent for the FAC-case shown with the two top right
illustrations in Figure 6.41.

Generally, for Figure 6.39 (concrete) and Figure 6.41 (mortar), there is no signifi-
cant difference between the measured plastic viscosity µ of the batches using the two
polymer types LMW Na and LMW Ca. Their difference rests rather in the yield
value τo.

Summary of Main Results

1. The LMW Na polymer is somewhat more effective plasticizer than the LMW Ca
polymer.

2. The electrostatic potential energy VR seems to becomes more important for the
low molecular weight lignosulfonates, making issues like ionic strength I and/or
zeta potential ζ more relevant.
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6.4.9 SNF versus HMW Na

In the previous sections, the effect of different lignosulfonate types is compared inter-
nally. All of them are produced by Borregaard LignoTech. It is now interesting
to compare for example, the HMW Na polymer with a “outside” product, like of
the Sulfonated Naphthalene Formaldehyde (SNF). As mentioned in Chapter 4, the
SNF polymer has the commercial name Suparex M40 and is produced by Hodgson

Chemicals Ltd. Unfortunately, no (compatible) molecular weights valuesMn orMm

where available for this product, at the time of writing. This limits the discussion
somewhat. The comparison between the batches using the SNF and the HMW Na
polymer, is shown in Figure 6.42 to Figure 6.44.
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Figure 6.42: Measured yield value τo of concrete and mortar, using either the SNF or the
HMW Na polymer (OPC).
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Figure 6.43: Measured plastic viscosity µ of concrete and mortar, using either the SNF or the
HMW Na polymer (OPC).

In almost all cases, the SNF-batches have a faster increase in yield value τo with
time, relative the HMW Na-batches. This applies regardless of concrete, mortar,
w/c-ratio, cement type or temperature conditions. With little time evolution in plastic
viscosity µ (Figures 6.43 and 6.44), one could state that the workability retention for
the SNF-case is worse, relative to theHMW Na-case. This is perhaps more apparent
when observing the slump results shown in Figures 6.5 and 6.11 (Page 108).
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For the case of [0.6% sbwc; w/c = 0.4; OPC] in Figure 6.42, it is interesting
to note how the HMW Na-case and the SNF-case go their separate ways, with
increasing temperature. The for the SNF-case, there is a rapid increase in yield
value τo, with increasing temperature. However, for the HMW Na-case the reverse
trend is observed (see also Section 6.4.3). A similar, but not so as clear, tendency is
observed for the case of [0.3% sbwc; w/c = 0.5; OPC] in the same figure.

In Figures 6.42 and 6.44, it is interesting to note that the yield value τo is in most
cases lower for theHMW Na-batches at the dosage of 0.3% sbwc (OPC, FAC). At the
dosage of 0.6% sbwc, the SNF-batches has often equal or better initial performance
(i.e. lower yield value τo), but always a worse final performance at 100 minutes. This
is because of the pre-mentioned faster increase in yield value τo as a function of time.
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Figure 6.44: Measured yield value τo (to the left) and plastic viscosity µ (to the right) of
mortar, using either the SNF or the HMW Na polymer (FAC).

From Figures 6.43 and 6.44, there is seldom any significant difference between the
measured plastic viscosity µ of the batches using the two polymer types. In the few
cases when significant difference is present, it is the SNF-batches that have a lower
plastic viscosity µ. This difference could rather be related to error generated by air
entrainment for the SNF-case, rather than being a particular properties of the SNF
polymer (see Page 113).

Summary of Main Results

1. Similar rheological valuer are roughly measured at 10 minutes, using either the
SNF polymer or the HMW Na polymer. However, for the SNF-case there
is a larger increase in yield value τo as a function of time. That is, a larger
“workability loss” or “slump loss” is present for the SNF-case.

2. The effect of the two polymer types SNF and HMW Na, is more strongly
reflected by the yield value τo, than by the plastic viscosity µ.
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6.5 Summary and Conclusion

6.5.1 Section 6.2: The Overall Results

The change in shear viscosity η = µ+ τo/γ̇ as a function of time and temperature, is
more reflected by the change in yield value τo, than by the change in plastic viscosity
µ; i.e. the yield value τo is more sensitive to temperature and time, relative to the
plastic viscosity µ (see also the numbered items on Page 126).

The effect of the different polymer types is more reflected by the measured yield
value τo, than by the measured plastic viscosity µ; i.e. comparing the effect of two dif-
ferent polymer types gives usually a different yield value τo, while the plastic viscosity
µ is roughly the same for the two cases.

6.5.2 Section 6.3: The Concrete Results

With Equation 6.6 (Page 122), a certain relationship between the Abrams slump
cone and the ConTec BML Viscometer 3 is established. This relationship is
further enhanced by Equation 6.7. The right illustration of Figure 6.22 (Page 123)
demonstrates the use of the last-mentioned equation. With R2 = 0.86 between the
calculated slump by Equation 6.7 and the actual measured slump, a strong relation-
ship exits between the ConTec BML Viscometer 3 and the Abrams slump cone.
This applies even though the problem of gravel migration (Chapter 10) is occurring
for the concrete batches of this thesis.

As mentioned in Section 4.3.2, the mix design of the OPC-mortars used in this the-
sis, are calculated directly from the mix design of the corresponding concrete mixes.
As such, it is to be expected that some kind of relationship exists between their mea-
sured viscometric values. Figures 6.23 and 6.24 (Page 124) shows the degree of such
relationship. These figures demonstrate a strong relationship between the yield values
of concrete and mortar, and a weak relationship between the corresponding plastic
viscosity values. This poor correlation in plastic viscosity, is most likely somewhat
related to the error generated by plug flow (see Section 3.5.3) and by air entrainment
(see Section 5.5.3) in the mortar case. As has been previously mentioned, the plas-
tic viscosity µ is much more sensitive to these errors, relative to the yield value τo.
Hence a larger scatter in data results in Figure 6.24, relative to Figure 6.23. The
gravel migration in concrete (Chapter 10) is probably also somewhat responsible for
the scatter shown in Figures 6.23 and 6.24.

6.5.3 Section 6.4: The Mortar Results

Generally, the yield value τo is measured to be increasing with increasing time. Most
often, it is also increasing with increasing temperature. However, as mentioned in
Sections 6.4.3 and 6.4.4, there are exceptions to this: For mortar samples (OPC) using
the HMW Na and HMW Ca polymer at 0.6% sbwc, there is a clear decrease in
yield value τo with increasing temperature. A possible explanation for this, is related
to increased swelling and/or increased adsorption of the HMW Na and HMW Ca
polymers (see Figure 6.30, Page 138). The same characteristics could be expected
when using the VHMW Na polymer in mortar of [0.6% sbwc; OPC]. However,
since the yield value for such case is regardless always measured zero, no such effect
could be registered. This temperature effect does not occur for the case of FAC. The
reason for this may possible be related to that the swelling/adsorption properties of
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these polymers are overshadowed by a too large quantity of water (relative to cement
content) present in the FAC-batches (large fineness (Blaine) of the FAC could also
play a role here; see Section 4.2.1).

Reliable plastic viscosity data, gives that µ is either a constant with time, or is
slightly increasing with time. Occasionally, the plastic viscosity µ is also decreasing
with increasing time. This last-mentioned behavior is rather related to error gener-
ated by air entrainment, than being considered as an actual physical property of the
polymer used in the corresponding mortar batch (see discussion on Page 113).

The rheological behavior of mortar and concrete, using the high molecular weight
lignosulfonates (VHMW and HMW), are successfully explained through the mole-
cular weight values Mn and Mm. This indicates that the steric potential energy VS is
more or less overshadowing the electrostatic potential energy VR for such cases. As
such, issues like ionic strength I or zeta potential ζ becomes less important. How-
ever, the electrostatic potential energy VR seems to become more important for the
batches using the low molecular weight lignosulfonates (LMW), making issues like
ionic strength I and zeta potential ζ more relevant.

At the dosage of 0.6% sbwc, the VHMW Na polymer starts to perform far better
than the HMW Na polymer. More precisely, different yield values τo are measured
for the two cases, while the plastic viscosity values µ are more or less the same. This
is not unexpected given their difference in the molecular weight values Mn and Mm.
However, at the dosage of 0.3% sbwc, theVHMW Na polymer performs only equally
as well as the HMW Na polymer; i.e. the same or similar set of viscometric values τo
and µ are measured in either case of VHMW Na or HMW Na. This unexpected
result applies for both concrete and mortar, regardless of temperature, w/c-ratio or
cement type (OPC, FAC).

A faster increase in yield value τo with time, is present in the mortar batches when
using the SNF polymer, relative when using the HMW Na polymer (OPC, FAC).
This difference in workability loss is also observed by the slump data of concrete, as
shown in Figures 6.5 and 6.11 (Pages 108 and 114). This demonstrates the overall
good performance of the natural lignosulfonate product, over the synthetic produced
sulfonated naphthalene formaldehyde (or SNF). In fact, the (natural) VHMW Na,
HMW Na and HMW Ca polymers, demonstrate a far better performance in terms
of workability and workability retention, relative to the (synthetic) SNF polymer.
This is quite apparent with Figures 6.1 (Page 104), 6.7 (Page 110) and 6.17 (Page 118).

6.5.4 Rating of Polymer types

To conclude in a simple manner, the rating of the different polymer types from the best
type to the worst type is as follows: 1) VHMW Na (the best type); 2) HMW Ca;
3) HMW Na; 4) SNF; 5) LMW Na; 6) HMW Ca; 7) LMWFS Ca (worst).

6.5.5 Recommended Future Research

What is missing in this work, is the information about ionic strength I and zeta
potential ζ for each batch. With such information, a better evaluation of the electro-
static repulsive potential energy VR would be present, relative to the steric potential
energy VS, for the different polymer cases. If a similar research program to this is to
be conducted, it is recommended that in addition to the viscometric values τo and µ,
the I and ζ values should be measured in parallel. Of course information about the
molecular weight values of the polymers used should also be present.
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TheVHMW Na product is a new and an experimental product by Borregaard

LignoTech. At the dosage of 0.6% sbwc, its performance becomes quite remarkable.
However, at the dosage of 0.3% sbwc, it only performs similar to the HMW Na and
HMW Ca products. It would be very interesting to compare the VHMW Na and
HMW Na products at a tighter dosage interval, for example at 0.1%, 0.2%, 0.3%,
0.4%, 0.5% and 0.6% sbwc (and keeping other variables constant at the same time,
like the amount of cement and w/c-ratio). Such a test would give a clearer picture
of the degree of similarities and dissimilarities between the two products HMW Na
and VHMW Na. Including a 3rd generation of plasticizers, consisting of grafted
carboxylic synthetic polymers, into such an investigation would also be interesting.
It is recommended that not too high w/c-ratio is applied in such investigation. As
previously shown in Section 6.2.4, when applying the w/c-ratio of 0.6 with the low
dosage 0.1% sbwc, the effect of the polymers becomes overshadowed by a too large
quantity of water.
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Chapter 7

Computational Rheology

7.1 Introduction

In Chapters 8 and 9, a numerical simulation of the ConTec BML Viscometer 3

and ConTec Viscometer 4 is presented. The fluid consists of a viscoplastic ma-
terial, flowing either under steady state condition or under transient condition. The
objectives of the simulations are described in the introductory part of each chapter.
The overall theory presented in the current chapter, will be used in Chapters 8, 9 and
10 when simulating viscoplastic flow inside six different viscometers, listed below:

• ConTec BML Viscometer 3 (Chapter 8)

• ConTec Viscometer 4 (Figure 7.1, and Chapters 8 and 9)

• BTRHEOM (Chapter 10)

• A series of prototype viscometers presented in Chapter 10.

Simulation of a viscoplastic material is a challenging task. One reason for this, is
that such material can be in a two different states, namely the viscoplastic state and
the solid state. In the current work, a combination of several different techniques
is necessary to produce solution of the corresponding nonlinear partial differential
equation (PDE). The techniques used here are the Successive Substitution, the
Continuation Method (for steady state only) and the incorporation of the Reg-
ularization Parameter. Also, to save storage space and to be able to utilize the
Thomas Algorithm, the Alternating Direction Implicit (ADI) technique is
used. The method of Finite Differences is used when converting the PDE into its
algebraic counterpart.

7.2 Governing Equation

Going through the same steps as was done in Section 3.3, but now assuming a height
dependence z, gives the velocity profile described with Equation 7.1.

v = vθ(r, z, t) iθ (7.1)
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Figure 7.1: Velocity vector field v for a thixotropic fluid inside the ConTec Viscometer 4.
The particular result shown applies at t = 11 s after start of a measurement and is reproduced
from Figure 9.5 on Page 217 (VHMW Na ∧ t = 42min).

From Equation 7.1 the velocity gradient tensor ∇v can be calculated, which through
Equation 2.20 (Page 17), gives the strain rate tensor:

ε̇ =
1
2

(
∂vθ(r, z, t)

∂r
− vθ(r, z, t)

r

)
(iriθ + iθir) +

1
2
∂vθ(r, z, t)

∂z
(iziθ + iθiz) (7.2)

Substituting the above result in Equation 2.24 gives, after some derivations, the shear
rate that applies inside the viscometer:

γ̇ =

√[
∂vθ(r, z, t)

∂r
− vθ(r, z, t)

r

]2
+
[
∂vθ(r, z, t)

∂z

]2
(7.3)

According to Equations 2.23 and 7.2, the extra stress tensor T becomes:

T = η(r, z, t)
(
∂vθ(r, z, t)

∂r
− vθ(r, z, t)

r

)
(iriθ + iθir) +

+ η(r, z, t)
∂vθ(r, z, t)

∂z
(iziθ + iθiz) (7.4)

The von Mises shear stress τ (see previous discussion in Section 3.2.1) can either be
calculated with the help from Equation 7.4 or from Equation 7.3. This is apparent
since τ2 = −IIPS = (T : T)/2 = (2 η)2 ε̇ : ε̇/2 = η2 (2 ε̇ : ε̇) = (η γ̇)2. Both approaches
produce Equation 7.5.

τ = η(γ̇, t)

([
∂vθ(r, z, t)

∂r
− vθ(r, z, t)

r

]2
+
[
∂vθ(r, z, t)

∂z

]2) 1
2

(7.5)

By using Equations 2.23 and 7.4 in Equation 2.17 (Page 16) with the concomitant use
of the velocity profile described with Equation 7.1, the following governing equation
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is produced:

ρ
∂vθ(r, z, t)

∂t
=
∂Trθ(r, z, t)

∂r
+ 2

Trθ(r, z, t)
r

+
∂Tzθ(r, z, t)

∂z
(7.6)

The above equation applies in the θ-direction. In this derivation, two other equations
are also produced: 0 = −∂p(r, z, t)/∂z − ρ g and −ρv2θ(r, z, t)/r = −∂p(r, z, t)/∂r.
These apply in z- and r-directions, respectively. Fortunately, they are not directly
coupled to Equation 7.6 and hence need not to be included in the numerical simulation.
The terms Trθ and Tzθ in the above are extracted directly from Equation 7.4:

Trθ(r, z, t) = η(r, z, t)
(
∂vθ(r, z, t)

∂r
− vθ(r, z, t)

r

)
(7.7)

Tzθ(r, z, t) = η(r, z, t)
∂vθ(r, z, t)

∂z
(7.8)

When discretizing the governing Equation 7.6, one might be tempted to first put
Equations 7.7 and 7.8 into this equation and then expanding the velocity terms, for
example by converting the term ∂[η ∂vθ/∂z]/∂z into ∂vθ/∂z ∂η/∂z + η ∂2vθ/∂z

2.
According to Langtangen [66], such a procedure should be avoided when the shear
viscosity η is a variable and not a constant. Therefore a discretization of Equation 7.6
as it is, will be done. The method to be used when converting Equation 7.6 into
system of algebraic equations A · vk+1 = b(vk), is known as the method of finite
differences [2, 66, 33]. The term k represents the time index in such way that
t = k∆t represents the time and ∆t the time step.

7.3 Method of Finite Differences

7.3.1 Introduction

For the sake of continuity of the text, a short introduction to the method of finite
differences is given here. The general quest is to replace the relevant PDE with a sys-
tem of algebraic equations. In the method of finite differences, this means converting
the differential ∂f/∂x into its algebraic counterpart with the aid of Taylor series.

Taylor Approximation

The Taylor counterpart of a function f(x) at the point x = x0 +∆x is given by [30]:

f(x0 +∆x) =
n∑
k=0

f (k)(x)|x0

k!
∆xk +Rn(x0 +∆x) (7.9)

where f (k)(x)|x0 represents the n
th derivative of the function f at the point x0. The

term Rn(x) is called the nth degree remainder [30] for the function f . It is the error
produced when replacing f(x0 + ∆x) with its approximation

∑
f (k)(x)|x0∆x

k/k!.
In other words, Rn(x0 + ∆x) = f(x0 + ∆x) −∑ f (k)(x)|x0∆x

k/k! represents the
truncation error. An overestimate of the remainder is given by [30]:

|Rn(x0 +∆x)| ≤
∣∣f (n+1)(x)|z∣∣ ∆xn+1

(n+ 1)!
(7.10)
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where z ∈ [x0, x0 + ∆x] is chosen in such a way that the term
∣∣f (n+1)(x)|z∣∣ has the

largest value possible. Unfortunately, this value is not known and therefore it is only
possible to claim that the magnitude of error varies as ∆xn+1. Hence, truncating the
series after the nth term, yields the (truncation) error Rn(x0 + ∆x) = O(∆xn+1) ∝
∆xn+1.

Discretization

Discretization is the name of the process in converting the PDE into a system of
algebraic equations. For the method of finite differences, this means converting the
differential ∂f/∂x into its algebraic counterpart with the aid of Taylor series. Here, the
function f is assumed to be dependent on x, y, z, and t. However, only two variables,
namely x or t, are shown in the derivations that now follows. From Equation 7.9, the
2nd degree Taylor polynomials of the function f(x) at the spatial points x0 + ∆x/2
and x0 −∆x/2 are given by Equations 7.11 and 7.12.

f(x0 +
∆x
2
) = f(x0) +

∂f

∂x

∣∣∣∣
x0

∆x
2
+
1
2
∂2f

∂x2

∣∣∣∣
x0

[
∆x
2

]2
+O+(∆x3/8) (7.11)

f(x0 − ∆x
2
) = f(x0)− ∂f

∂x

∣∣∣∣
x0

∆x
2
+
1
2
∂2f

∂x2

∣∣∣∣
x0

[
∆x
2

]2
+O−(∆x3/8) (7.12)

Subtracting Equation 7.12 from Equation 7.11, and then solving for the differential
∂f/∂x, produces Equation 7.13,

∂f

∂x

∣∣∣∣
x0

=
f(x0 + ∆x

2 )− f(x0 − ∆x
2 )

∆x
+O(∆x2) (7.13)

where O(∆x2) = (O−(∆x3/8)−O+(∆x3/8))/∆x ∝ ∆x2. The above scheme is called
central difference in space [2, 77]. From Equation 7.9, the 1st degree Taylor
polynomial of the function f(t) at the time point t0+∆t/2 is given by Equation 7.14.

f(t0 +
∆t
2
) = f(t0) +

∂f

∂t

∣∣∣∣
t0

∆t
2
+O+(∆t2/4) (7.14)

Solving for the differential ∂f/∂t in the equation above, produces the following equa-
tion:

∂f

∂t

∣∣∣∣
t0

=
f(t0 + ∆t

2 )− f(t0)
∆t/2

+O(∆t) (7.15)

where O(∆t) = −O+(∆t2/4)/(∆t/2) ∝ ∆t. The above scheme is called forward
difference in time [2, 77].

7.3.2 Discretization of Trθ and Tzθ

When discretizing the terms Trθ and Tzθ, central difference in space is used. Accord-
ing to Equation 7.13, this scheme will produce a truncation error of O(∆r2)+O(∆z2).
Because of this type of error (see Section 7.6) plus any errors introduced by the nu-
merical treatment of the boundary conditions, it is to be expected that the (unknown)
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correct solution vθ(r, z, t) of the partial differential Equation 7.6 will differ from the
exact solution1 vki,j of the system of algebraic Equations 7.28 to 7.31, shown later
[2, 33]. This difference is represented with the term ekij = vθ(r, z, t)−vki,j and is known
as the discretization error [2]. The discrete counterpart of the terms vθ(r, z, t),
γ̇(r, z, t), η(r, z, t), Trθ(r, z, t) and Tzθ(r, z, t) are represented with vki,j, γ̇

k
i,j, η

k
i,j, T

k
i,j

and Zki,j, respectively. Now, discretizing Equation 7.7 according to the method of
finite differences, with central difference in space, gives Equation 7.16:

Ti,j = ηi,j

[
vi+ 1

2 ,j − vi− 1
2 ,j

∆r
− vi,j

ri

]
= ηi,j

[
vi+ 1

2 ,j − vi− 1
2 ,j

∆r
−
(vi+ 1

2 ,j + vi− 1
2 ,j)/2

(ri+ 1
2
+ ri− 1

2
)/2

]

= ηi,j

[
1
∆r

− 1
ri+ 1

2
+ ri− 1

2

]
vi+ 1

2 ,j − ηi,j

[
1
∆r

+
1

ri+ 1
2
+ ri− 1

2

]
vi− 1

2 ,j (7.16)

Since the origin (r, z, t) = (0, 0, 0) starts at the grid point (i, j, k) = (1, 1, 0), then
ri = (i− 1)∆r, zj = (j− 1)∆z and tk = k∆t. Using Equation 7.16 at the grid points
(i+ 12 ,j) and (i-

1
2 ,j) produces Equations 7.17 and 7.18.

Ti+ 1
2 ,j = ηi+ 1

2 ,j

[
1
∆r

− 1
ri+1 + ri

]
vi+1,j − ηi+ 1

2 ,j

[
1
∆r

+
1

ri+1 + ri

]
vi,j

= Ξi+1,jvi+1,j − Θi+1,jvi,j (7.17)

Ti− 1
2 ,j = ηi− 1

2 ,j

[
1
∆r

− 1
ri + ri−1

]
vi,j − ηi− 1

2 ,j

[
1
∆r

+
1

ri + ri−1

]
vi−1,j

= Ξi,jvi,j −Θi,jvi−1,j (7.18)

Figure 7.2 demonstrates a schematic figure of the grid system used in the above (and
all the remaining) discretization.

Figure 7.2: Schematic figure of the grid system used in this work (see also Figures 8.1, 8.2 and
10.22 on Pages 179, 180 and 256, respectively).

The discrete presentation of Equation 7.7, at the grid point (i,j) is shown by the

1The exact solution of the system of algebraic equations is obtained when no round-off error are
present in the numerical calculation. Such error exists because of the inaccuracy introduced after a
repetitive number of calculations in which the computer is constantly rounding the numbers to some
significant figure [2, 33].
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following equation:

Ti,j = ηi,j

[
vi+ 1

2 ,j − vi− 1
2 ,j

∆r
− vi,j

ri

]
= ηi,j

[ 1
2 (vi+1,j + vi,j)− 1

2 (vi,j + vi−1,j)
∆r

− vi,j
ri

]

= ηi,j

[
vi+1,j − vi−1,j

2∆r
− vi,j

ri

]
=

ηi,j
2∆r

vi+1,j − ηi,j
ri
vi,j − ηi,j

2∆r
vi−1,j

= Ψi,jvi+1,j − Λi,jvi,j −Ψi,jvi−1,j (7.19)

Also, for the term Z at the grid point (i,j+ 12 ) and (i,j-
1
2 ), a central difference is applied

as demonstrated with Equations 7.20 and 7.21.

Zi,j+ 1
2
= ηi,j+ 1

2

vi,j+1 − vi,j
∆z

=
ηi,j+ 1

2

∆z
vi,j+1 −

ηi,j+ 1
2

∆z
vi,j

= Υi,j+1vi,j+1 −Υi,j+1vi,j (7.20)

Zi,j− 1
2
= ηi,j− 1

2

vi,j − vi,j−1
∆z

=
ηi,j− 1

2

∆z
vi,j −

ηi,j− 1
2

∆z
vi,j−1

= Υi,jvi,j −Υi,jvi,j−1 (7.21)

7.4 Numerical Governing Equation

As applies for the terms T and Z, a central difference in space is used when discretizing
the governing Equation 7.6. For the time stepping, the Alternating Direction
Implicit (ADI) technique [2, 33, 77] is used, mainly to reduce memory consumption,
and also to be able to utilize the well known Thomas algorithm [2, 33]. When
solving a system of N algebraic equations, the Thomas algorithm is quite economical
and requires only 5N− 4 operations, i.e. multiplications and divisions [33]. The time
step is a forward differencing scheme (see Equation 7.15) with an accuracy of O(∆t).

With the ADI technique, the governing Equation 7.6 is now presented with two
different algebraic equations:

ρ
v
k+ 1

2
i,j − vki,j
∆t/2

=
T
k+ 1

2
i+ 1

2 ,j
− T

k+ 1
2

i− 1
2 ,j

∆r
+ 2

T
k+ 1

2
i,j

ri
+
Zk
i,j+ 1

2
− Zk

i,j− 1
2

∆z
(7.22)

ρ
vk+1i,j − v

k+ 1
2

i,j

∆t/2
=
T
k+ 1

2
i+ 1

2 ,j
− T

k+ 1
2

i− 1
2 ,j

∆r
+ 2

T
k+ 1

2
i,j

ri
+
Zk+1
i,j+1

2
− Zk+1

i,j− 1
2

∆z
(7.23)

By defining a new variable and two constants, namely θi = ∆t/ri, β = ∆t/(2∆r)
and χ = ∆t/(2∆z), and using them when rearranging the two above equations,
Equations 7.24 and 7.25 are produced.

v
k+ 1

2
i,j − vki,j =

β

ρ

[
T
k+ 1

2
i+ 1

2 ,j
− T

k+ 1
2

i− 1
2 ,j

]
+
θi
ρ
T
k+1

2
i,j +

χ

ρ

[
Zki,j+ 1

2
− Zki,j−1

2

]
(7.24)

vk+1i,j − v
k+ 1

2
i,j =

β

ρ

[
T
k+1

2
i+ 1

2 ,j
− T

k+ 1
2

i− 1
2 ,j

]
+
θi
ρ
T
k+ 1

2
i,j +

χ

ρ

[
Zk+1
i,j+ 1

2
− Zk+1

i,j− 1
2

]
(7.25)
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Substituting the result from Equations 7.17 to 7.21 into the above and then rearrang-
ing in order to isolate the individual velocity terms, gives the following two equations:

v
k+ 1

2
i,j − vki,j =

[
β

ρ
Ξk+

1
2

i+1,j +
θi
ρ
Ψk+

1
2

i,j

]
v
k+ 1

2
i+1,j +

−
[
β

ρ
Θk+

1
2

i+1,j +
β

ρ
Ξk+

1
2

i,j +
θi
ρ
Λk+

1
2

i,j

]
v
k+ 1

2
i,j +

+
[
β

ρ
Θk+

1
2

i,j − θi
ρ
Ψk+

1
2

i,j

]
v
k+ 1

2
i−1,j +

[
χ

ρ
Υki,j+1

]
vki,j+1 + (7.26)

−
[
χ

ρ
(Υki,j+1 +Υ

k
i,j)
]
vki,j +

[
χ

ρ
Υki,j

]
vki,j−1

vk+1i,j − v
k+ 1

2
i,j =

[
β

ρ
Ξk+

1
2

i+1,j +
θi
ρ
Ψk+

1
2

i,j

]
v
k+ 1

2
i+1,j +

−
[
β

ρ
Θk+

1
2

i+1,j +
β

ρ
Ξk+

1
2

i,j +
θi
ρ
Λk+

1
2

i,j

]
v
k+ 1

2
i,j +

+
[
β

ρ
Θk+

1
2

i,j − θi
ρ
Ψk+

1
2

i,j

]
v
k+ 1

2
i−1,j +

[
χ

ρ
Υk+1i,j+1

]
vk+1i,j+1 + (7.27)

−
[
χ

ρ
(Υk+1i,j+1 +Υ

k+1
i,j )

]
vk+1i,j +

[
χ

ρ
Υk+1i,j

]
vk+1i,j−1

To simplify the above nomenclature, new quantities A, B, C, D, E, F , K and L are
defined as demonstrated with Equations from 7.32 to 7.37. With those new definitions,
Equation 7.26 can now be rewritten to the following:

A
k+ 1

2
i,j v

k+ 1
2

i+1,j − (1 +B
k+ 1

2
i,j )vk+

1
2

i,j + C
k+ 1

2
i,j v

k+ 1
2

i−1,j = Kk
i,j (7.28)

where the term Kk
i,j is given by Equation 7.29.

Kk
i,j = −Dki,jvki,j+1 − (1− Eki,j)v

k
i,j − F ki,jv

k
i,j−1 (7.29)

In the same manner, Equation 7.27 can be rewritten as:

Dk+1i,j vk+1i,j+1 − (1 + Ek+1i,j )vk+1i,j + F k+1i,j vk+1i,j−1 = L
k+ 1

2
i,j (7.30)

where the term L
k+ 1

2
i,j is given by Equation 7.31.

L
k+ 1

2
i,j = −Ak+ 1

2
i,j v

k+ 1
2

i+1,j − (1 −B
k+ 1

2
i,j )vk+

1
2

i,j − C
k+ 1

2
i,j v

k+ 1
2

i−1,j (7.31)

The important quantities A, B, C, D, E and F are as follows:

A
k+ 1

2
i,j =

β

ρ
Ξk+

1
2

i+1,j +
θi
ρ
Ψk+

1
2

i,j = β̃ η
k+ 1

2
i+ 1

2 ,j

[
1
∆r

− 1
ri+1 + ri

]
+ θ̃i

η
k+ 1

2
i,j

2∆r
(7.32)

B
k+ 1

2
i,j =

β

ρ
Θk+

1
2

i+1,j +
β

ρ
Ξk+

1
2

i,j +
θi
ρ
Λk+

1
2

i,j = β̃ η
k+ 1

2
i+ 1

2 ,j

[
1
∆r

+
1

ri+1 + ri

]
+

+ β̃ η
k+ 1

2
i− 1

2 ,j

[
1
∆r

− 1
ri + ri−1

]
+ θ̃i

η
k+ 1

2
i,j

ri
(7.33)
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C
k+ 1

2
i,j =

β

ρ
Θk+

1
2

i,j − θi
ρ
Ψk+

1
2

i,j = β̃ η
k+ 1

2
i− 1

2 ,j

[
1
∆r

+
1

ri + ri−1

]
− θ̃i

η
k+ 1

2
i,j

2∆r
(7.34)

Dk+1i,j =
χ

ρ
Υk+1i,j+1 = χ̃

ηk+1
i,j+ 1

2

∆z
∧ Dki,j = χ̃

ηk
i,j+ 1

2

∆z
(7.35)

Ek+1i,j =
χ

ρ
(Υk+1i,j+1 +Υ

k+1
i,j ) = χ̃

ηk+1
i,j+ 1

2

∆z
+ χ̃

ηk+1
i,j− 1

2

∆z
∧ Eki,j = · · · (7.36)

F k+1i,j =
χ

ρ
Υk+1i,j = χ̃

ηk+1
i,j− 1

2

∆z
∧ F ki,j = χ̃

ηk
i,j− 1

2

∆z
(7.37)

In the above, additional new quantities have been defined: β̃ = β/ρ = ∆t/(2∆r ρ),
χ̃ = χ/ρ = ∆t/(2∆z ρ) and θ̃i = ∆t/(ri ρ).

7.5 Shear Rate

From Equations 7.32 to 7.37 it is apparent that information about the shear viscosity
η at the grid points (i+ 12 ,j) and (i-

1
2 ,j) (i,j) (i,j+

1
2 ) and (i,j-

1
2 ) is needed. Since ηi,j =

η(γ̇i,j, Γ̃i,j, Θ̃i,j, k∆t), one must first calculate the shear rate γ̇i,j at the corresponding
points (the terms Γ̃i,j and Θ̃i,j are memory modules, defined in Equations 7.63 and
7.64). Going through a similar procedure as was done for Equations 7.16 to 7.21,
when discretizing Equation 7.3, produces the following (see also Figure 7.2):

γ̇i,j =

√[
vi+1,j − vi−1,j

2∆r
− vi,j

ri

]2
+
[
vi,j+1 − vi,j−1

2∆z

]2
(7.38)

γ̇2i+ 1
2 ,j =

[
vi+1,j − vi,j

∆r
− vi+1,j + vi,j

ri+1 + ri

]2
+

+
[
(vi+1,j+1 + vi,j+1)/2− (vi+1,j−1 + vi,j−1)/2

2∆z

]2
(7.39)

γ̇2i− 1
2 ,j =

[
vi,j − vi−1,j

∆r
− vi,j + vi−1,j

ri + ri−1

]2
+

+
[
(vi,j+1 + vi−1,j+1)/2− (vi,j−1 + vi−1,j−1)/2

2∆z

]2
(7.40)

γ̇2i,j+ 1
2
=
[
(vi+1,j+1 + vi+1,j)/2− (vi−1,j+1 + vi−1,j)/2

2∆r
− vi,j+1 + vi,j

2 ri

]2
+

+
[
vi,j+1 − vi,j

∆z

]2
(7.41)

γ̇2i,j− 1
2
=
[
(vi+1,j + vi+1,j−1)/2− (vi−1,j + vi−1,j−1)/2

2∆r
− vi,j + vi,j−1

2 ri

]2
+

+
[
vi,j − vi,j−1

∆z

]2
(7.42)
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7.6 Consistency

When all the partial derivatives in Equations 7.6, 7.7 and 7.8 are replaced by the
finite differences quotients of Equations 7.13 and 7.15, then with the ADI technique,
the result is two algebraic equations, namely Equations 7.22 and 7.23. These two
equations are equivalent to the set of algebraic Equations 7.28 to 7.31 and as such,
the following discussion applies equally to the last two mentioned equations. All
these algebraic equations are called difference equations [2]. They are an alge-
braic representation of the PDE to be solved and is just an approximation of it, due
to the truncation error produced in the transformation. In other words, the differ-
ence equations are not the same as the original PDE as shown with the following:
Original PDE = System of Algebraic Equations+Truncation Error.

Substituting the terms of Equations 7.7 and 7.8 into Equation 7.6, without ex-
panding the velocity terms, produces the Original PDE, shown with Equation 7.58.
Making the same discretization on it as was done to produce either Equation 7.22 or
7.23, results in Equation 7.43. It should be noted that Equations 7.22 and 7.23 are
identical to the algebraic part of Equation 7.43.

0 = ρ
∂vθ

∂t
− ∂

∂r

[
η(vθ)

(
∂vθ

∂r
− vθ

r

)]
− 2 η(vθ)

r

(
∂vθ

∂r
− vθ

r

)
− ∂

∂z

(
η(vθ)

∂vθ

∂z

)

= ρ
v(to + ∆t

2 )− v(to)
∆t/2

+O(∆t) + (7.43)

−

[
η
(

v(ro+∆r)−v(ro)
∆r − v

r

)]∣∣∣
ro+

∆r
2

−
[
η
(

v(ro)−v(ro−∆r)
∆r − v

r

)]∣∣∣
ro−∆r

2

+O(∆r2)

∆r
+

− O(∆r2)− 2 η(ro)
ro

[
v(ro + ∆r

2 )− v(ro − ∆r
2 )

∆r
− v(ro)

ro

]
−O(∆r2) +

−

[
η
(

v(zo+∆z)−v(zo)
∆z

)]∣∣∣
zo+

∆z
2

−
[
η
(

v(zo)−v(zo−∆z)
∆z

)]∣∣∣
zo−∆z

2

+O(∆z2)

∆z
−O(∆z2)

In the above equation, the largest truncation error controls the actual truncation
error. As shown, it consists of O(∆r2)/∆r, O(∆z2)/∆z and O(∆t), i.e. the difference
between the Original PDE and the System of Algebraic Equations is O(∆t) +
O(∆r)+O(∆z) ∝ ∆t+∆r+∆z. It is apparent from this, that as the number of grid
points goes to infinity (∆t→ 0,∆r→ 0 and ∆z → 0), both algebraic Equations 7.22
and 7.23 (or equally, Equations 7.28 and 7.30) become equivalent to the original partial
differential Equation 7.6. With this characteristic, the finite difference representation
of the PDE, namely Equations 7.22 and 7.23, is said to be consistent [2, 33, 77].

In this work, the grid contains uniform spacing, ∆r = constant and ∆z = constant.
The majority of computational fluid dynamics (CFD) applications involve numerical
solutions on a grid which contains uniform spacing2 in each directions because this
greatly simplifies the programming of the solution, saves storage space, and usually
results in greater accuracy [2]. When calculating the fluid flow inside the ConTec

Viscometer 4, the spacing between grid points is set to be ∆r = ∆z = 0.5mm.
When solving for the ConTec BML Viscometer 3 and for the BTRHEOM, the

2This uniform spacing does not have to occur in the physical space. Often the numerical calcula-
tions are carried out in a transformed computational space that has uniform spacing and corresponds
to a nonuniform spacing in the physical plane [2].
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values of ∆r = ∆z = 1mm are used. For the prototype viscometers, two different
conditions are applied, namely ∆r = ∆z = 2mm and ∆r = 2mm ∧ ∆z = 1mm.

7.7 Auxiliary (Boundary and Initial) Conditions

As shown in Figure 7.3, the solution region which Equation 7.6 is solved, is designated
Ω. The boundary that envelopes this area is designated ∂Ω. Hence the total solution
region is Ωtot ∈ Ω ∪ ∂Ω. There are three types of boundary conditions used in
this work, namely the Dirichlet-, Neumann- and Robin boundary condition. Their
corresponding location is designated with ∂ΩD, ∂ΩN and ∂ΩR, respectively.

Figure 7.3: Schematic figure of the grid system and the corresponding boundary conditions to
be used: ∂ΩD, ∂ΩN and ∂ΩR.

Dirichlet Boundary Condition ∂ΩD (ConTec, BTRHEOM & prototype)

The Dirichlet boundary condition is the easiest condition to implement since it consist
of setting pre-known values v0 at the edge of the solution region: vθ(r, z, t) = vki,j =
v0(r, t) ∀ (r, z) ∈ ∂ΩD. According to Fletcher [33], for the ADI transient problem (i.e.
ADI with time dependence), the direct implementation of the boundary condition,
as shown here, will lead to an error of O(∆t). If it is desired to gain an accuracy of
O(∆t2), another type of implementation is required. Since the time step already has
the accuracy of only O(∆t) (c.f. Equation 7.43), such treatment is not required here.

The Dirichlet boundary condition is the one that is most used. For the time
independent problem, it consists of vθ(r, z) = vi,j = v0(r), and for the transient
problem, the condition consist of vθ(r, z, t) = vki,j = v0(r, t) ∀ (r, z) ∈ ∂ΩD.

Neumann Boundary Condition ∂ΩN (ConTec & prototype)

In this work, the Neumann boundary condition consists of ∂vθ(r, z, t)/∂z = 0 ∀
(r, z) ∈ ∂ΩN. Applying the central difference in space (see Equation 7.13) when con-
verting the above boundary condition into its algebraic counter part, gives (vi,j+1 −
vi,j−1)/(2∆z) = 0 ⇒ vi,j+1 = vi,j−1. With this result in mind and comparing Equa-
tion 7.41 with Equation 7.42, it is evident that γ̇i,j+ 1

2
= γ̇i,j− 1

2
, which furthermore

leads to ηi,j+ 1
2
= ηi,j− 1

2
. According to Equations 7.35 and 7.37, this gives Di,j = Fi,j.

Equations 7.28 and 7.31 remain unchanged when implementing the above bound-
ary condition. But in the case of Equations 7.29 and 7.30, the term Di,jvi,j+1 is
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replaced with Fi,jvi,j−1. Hence, the set of algebraic equations to be solved where
Neumann boundary condition rules, is given by Equations 7.44 to 7.47.

A
k+ 1

2
i,j v

k+ 1
2

i+1,j − (1 +B
k+ 1

2
i,j )vk+

1
2

i,j + C
k+ 1

2
i,j v

k+ 1
2

i−1,j = Kk
i,j (7.44)

Kk
i,j = −(1− Eki,j)v

k
i,j − 2F ki,jvki,j−1 ∧ vki,j+1 = vki,j−1 (7.45)

−(1 + Ek+1i,j )vk+1i,j + 2F k+1i,j vk+1i,j−1 = L
k+ 1

2
i,j ∧ vk+1i,j+1 = vk+1i,j−1 (7.46)

L
k+ 1

2
i,j = −Ak+ 1

2
i,j v

k+ 1
2

i+1,j − (1 −B
k+ 1

2
i,j )vk+

1
2

i,j − C
k+ 1

2
i,j v

k+ 1
2

i−1,j (7.47)

Robin Boundary Condition ∂ΩR (BTRHEOM; “Full-slippage-case”)

Here, the Robin condition consists of ∂vθ(r, z, t)/∂r = vθ/r ∀ (r, z) ∈ ∂ΩR. Rather
than implementing this condition algebraically in similar way as was done in Equa-
tions 7.44 to 7.47, it is enforced numerically. Whenever the Robin condition occurs,
the corresponding boundary values are first calculated according to Equations 7.56
and 7.57 and thereafter treated as Dirichlet condition when solving A ·vk+1 = b(vk).
This type of implementation is unconventional, and it nourishes very much on the
successive substitution method, described in Section 7.8. The nourishment consists of
that the boundary condition is recalculated (iterated) and hence (hopefully) refined
towards the correct value, for each successive iteration step. The calculation for the
next time step k+2 is not activated until the boundary value has reached some kind
of equilibrium value. Hence, both the solution of Equation 7.6 and the boundary
condition have to be stable if the next time step is to be calculated.

In the early stages of code development for the ConTec viscometers, the same ap-
proach was used for the Neumann condition (∂ΩN). This approach was implemented
with Equation 7.55 and produced a small error at and near the corresponding bound-
ary. Rather to have the correct condition ∂vθ/∂r = 0 at this zone, the peculiar con-
dition ∂vθ/∂r ≤ 0 was produced. This is shown with Figure 7.4, which demonstrates
an isoplot of the relative difference between velocity in the ConTec Viscometer

4 after (vnew) and before (vold) implementation of Equations 7.44 to 7.47. The iso-
lines consist of ((vnew −vold)/[ 12 (vnew + vold)])-values. The number of isolines are 12
and have the following values: [−2,−0.5, 0.1, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4] · 10−2, i.e.
the difference is in the order of magnitude of 1%. The flowing material used in this
analysis, consist of a Newtonian fluid, with the shear viscosity of η = 3Pa · s. The
rotational frequency applied for this example is fo = 0.3 rps.

The only time the Robin boundary condition is used, is when verifying a known
solution. Therefore, this crude and simple implementation can be accepted.

Implementation of the Robin Boundary Condition

As shown in the schematic Figure 7.3, at the boundary ∂Ω there is only one direction
to go, namely the direction away from it, into the solution area Ω. To maintain
the same accuracy as is achieved with Equation 7.13, a polynomial approach is used
to create the algebraic counterpart of the partial derivative ∂vθ/∂r. Assuming that
the velocity vθ, at the random location r, can be expressed with the polynomial
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Figure 7.4: Isoplot of the relative difference between velocity in the ConTec Viscometer 4

(see Figure 8.2 on Page 180 for orientation) after (vnew) and before (vold) implementation of
Equations 7.44 to 7.47. To the right is a three dimensional representation of the isoplot.

vθ = a + b r + c r2, its corresponding velocity vi,j at the boundary r = Ri, can be
represented with Equation 7.48.

vi,j = a+ bRi + cR2i (7.48)

Likewise, at the grid points just outside this boundary (i+1,j) and (i+2,j), the velocity
can be represented with Equations 7.49 and 7.50, respectively.

vi+1,j = a+ b (Ri +∆r) + c (Ri +∆r)2

= a+ bRi + b∆r + cR2i + c∆r2 + 2 cRi∆r (7.49)

vi+2,j = a+ b (Ri + 2∆r) + c (Ri + 2∆r)2

= a+ bRi + 2 b∆r + cR2i + 4 c∆r
2 + 4 cRi∆r (7.50)

To produce some sensible result from the two above equations, the second one (Equa-
tion 7.50) is multiplied by −1 and the first one by +4 (Equation 7.49). By adding
the two results together and then solving for b, gives the following:

b =
4 vi+1,j − vi+2,j − 3 vi,j

2∆r
− 2 cRi (7.51)

Finally, taking the derivative of vθ = a+b r+c r2 at r = Ri, with the concomitant use
of the above equation, the algebraic counterpart of the derivative ∂vθ/∂r is produced:

∂vθ

∂r

∣∣∣∣
Ri

= b+ 2 cRi =
4 vi+1,j − vi+2,j − 3 vi,j

2∆r
(7.52)

The above is called one-sided differences, because it expresses a derivative of the
velocity in terms of velocity values on only one side of that point.

What now remains, is to create the corresponding algebraic equation that applies
to the right r = Ro, in Figure 7.3. Creating a similar counterpart of Equation 7.48,
the velocity vi,j at r = Ro is given by vi,j = a+ bRo + cR2o. In the same fashion, the
velocity at r = Ro −∆r and r = Ro − 2∆r (i.e. at the grid points (i-1,j) and (i-2,j))
is given by vi−1,j = a+ b (Ro −∆r) + c (Ro −∆r)2 and vi−2,j = a+ b (Ro − 2∆r) +
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c (Ro − 2∆r)2, respectively. By going through the same procedure as was done to
produce Equation 7.52, the algebraic counterpart of the differential ∂vθ/∂r at r = Ro
becomes:

∂vθ

∂r

∣∣∣∣
Ro

=
−4 vi−1,j + vi−2,j + 3 vi,j

2∆r
(7.53)

The corresponding algebraic equation that applies on the top and bottom part of
Figure 7.3 (i.e. at z = H and z = 0), can be extracted directly from Equations 7.53
and 7.52, respectively:

∂vθ

∂z

∣∣∣∣
H

=
−4 vi,j−1 + vi,j−2 + 3 vi,j

2∆z
∧ ∂vθ

∂z

∣∣∣∣
0

=
4 vi,j+1 − vi,j+2 − 3 vi,j

2∆z
(7.54)

Knowing that Neumann boundary condition at the top consists of ∂vθ/∂z = 0, the
above expression is equal to zero. Solving for vi,j, gives Equation 7.55.

∂vθ

∂z

∣∣∣∣
H

= 0 ⇒ vi,j =
4 vi,j−1 − vi,j−2

3
(7.55)

With the help of Equation 7.9, it can be shown that Equations 7.52, 7.53 and 7.54 have
the accuracy (or truncation error) of O(∆r2) and O(∆z2), respectively [2]. Finally,
by using Equations 7.52 and 7.53, the algebraic presentation of the Robin boundary
condition can be calculated as shown by the two following results:[

∂vθ

∂r
=
vθ

r

]∣∣∣∣
Ri

⇒ vi,j =
4 vi+1,j − vi+2,j
3 + 2∆r/Ri

(7.56)

[
∂vθ

∂r
=
vθ

r

]∣∣∣∣
Ro

⇒ vi,j =
4 vi−1,j − vi−2,j
3− 2∆r/Ro (7.57)

Initial Condition

The initial condition vθ(r, z, 0) for the transient problem is created by calculating the
steady state case of the PDE with the boundary condition vθ = v0(r, 0). This is
shown in the algorithm presented in Section 7.11.2.

7.8 Iteration Scheme

The iteration scheme used, when solving the time independent problem, is called
The Pseudotransient Method [33]. It consists of gaining solution for the steady
state problem, by time marching the transient Equation 7.6 (then with a constant
boundary condition), until a steady state is reached (i.e. until ∂vθ/∂t is sufficiently
close to zero). As such, the time plays the role of iteration parameter. For the full
transient problem, the same approach is used, however with continuous changes in
the boundary condition: vθ(r, z, t) = v0(r, t) ∀ (r, z) ∈ ∂ΩD.

Combining Equations 7.6, 7.7 and 7.8, and keeping the discussion from Section 7.7
in mind, gives the overall problem to be solved, presented with the following PDE:

ρ
∂vθ

∂t
=

∂

∂r

[
η(vθ)

(
∂vθ

∂r
− vθ

r

)]
+
2 η(vθ)
r

(
∂vθ

∂r
− vθ

r

)
+

+
∂

∂z

(
η(vθ)

∂vθ

∂z

)
∀ (r, z) ∈ Ω (7.58)
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and with the succeeding auxiliary conditions. . .

vθ = vθ(r, z, 0) ∀ (r, z) ∈ Ω
vθ = v0(r, t) ∀ (r, z) ∈ ∂ΩD
∂vθ

∂z = 0 ∀ (r, z) ∈ ∂ΩN
∂vθ

∂r = vθ

r ∀ (r, z) ∈ ∂ΩR

(7.59)

As mentioned previously, for steady state (i.e. time independence), the Dirichlet
boundary condition consists of v0 = v0(r). However, for the transient case (i.e.
time dependence), this condition consists of v0 = v0(r, t). In the above, the Neumann
boundary condition (at ∂ΩN) and the Robin boundary condition (at ∂ΩR) will never
occur simultaneously in a particular problem. In this work, the boundary condition
consist of either Dirichlet and Neumann type, or of the Dirichlet and Robin type.

Equation 7.58 contains a term η(vθ) which is a function of the primary unknown.
Since this term is multiplied by the derivative of the primary unknown, this equation
is a nonlinear PDE [66, 117]. As such one cannot write the discrete Equations 7.28
and 7.30 in the form of a linear system: A · vk+1 = b(vk), since the quantities A,
B, C, D, E, and F (see Equations 7.32 to 7.37) are also dependent on the primary
unknown vk+1. Hence, the system of algebraic equations are nonlinear and are of the
form A(vk+1) · vk+1 = b(vk). To come around this problem, a so-called Successive
Substitution Method [66] is used. In basic terms, this method consists of converting
the nonlinear system A(vk+1) ·vk+1 = b(vk) into a sequence of linear ones A ·vk+1 =
b(vk). A short introduction to this method will now follow, but further information
about it can be found in a textbook by Langtangen [66].

For the given time step k + 1, the quest is to gain the solution vk+1. The idea
consists of starting with some guess of this solution, called v0. Here, it is always
the solution from the previous time step k that is used as a first guess v0 ← vk.
Inserting v0 into the terms A, B, C, D, E, and F converts the array A(vk+1) into
a known array A(v0). This means that Equations 7.28 and 7.30 become a system of
linear equations: A(v0) · vk+1 = b(vk). The solution of this equation can be named
v1. Of course, the solution v1 is not the correct solution vk+1 of Equations 7.28
and 7.30, since the array A(v0) was wrong to begin with. Hopefully, v1 is a better
approximation than v0 to the exact solution. The next step consists of inserting v1
into the corresponding array A and then solving the system A(v1) ·vk+1 = b(vk) all
over again to produce v2. The successive substitution method consists of repeating
this process until ‖vs−vs−1‖rms ≤ tol where the term “tol” is an acceptable difference
between two successive solutions (see Equations 7.73 and 7.74). The whole idea can
be summarized in the following iteration scheme:

A(vk+1s−1 ) · vk+1s = b(vk) ∧ vk+10 = vk ; s = 1, 2, 3, . . . (7.60)

Note that the above iteration is for a given (constant) time step k+1 and therefore
the iteration index s should not be confused with the time index k. In the algorithm
used in this work (see Section 7.11), the above equation is presented as:

A(vk+1i,j ) · vk+1i,j;NEW = b(vki,j) (7.61)

The term vk+1i,j , could equally have been represented with vk+1i,j;OLD in the above. Since
the PDE to be solved can be highly nonlinear due to the shear viscosity η(r, z, t),
the successive substitution method alone may diverge. Therefor the Continuation
Method [66] is also included into the main source code main.f90. The continuation
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parameter Λ is included into the shear viscosity in a such way that Λ = 0 gives a
constant shear viscosity, as applies for Newtonian fluid η = constant. For example,
in the case of Bingham fluid, the shear viscosity is now rewritten to η = µ + τΛo /γ̇
or η = µ + Λ τo/γ̇, where Λ = 1 recovers the original problem. The general idea is
to increase Λ in steps, from zero to unity (or in the case of Bingham fluid, slowly
increasing the yield value), using the solution to the most recent Λ values as the start
for a new nonlinear iteration. The disadvantage of this method is that it can only be
used when solving a steady state problem.

In this work, the experience indicated that stability was best dealt with by re-
ducing the time step ∆t. Therefore all the numerical computations are done in two
continuation steps only, starting by solving the Newtonian case (Λ = 0) and then
using it as an initial guess to the original problem (Λ = 1). However, before starting
with the first continuation step Λ = 0, a linear interpolation between Dirichlet bound-
ary values over the solution area is done to create an initial guess for the Newtonian
case. The overall solution algorithm is shown in Section 7.11.

7.9 The Regularization Parameter

The fluid in this work consists of a viscoplastic material. As such it can be in a two
different states, namely the viscoplastic state (Ωp) and the solid state (Ωe). These
two conditions are discussed in Section 3.2 (Page 52) and are best described with the
von Mises yield condition as shown with Equation 7.62.

σ =
{

σP if −IIES ≥ Cy
σE if −IIPS < Cy

(7.62)

In this thesis, the zone which is in a solid state (σ = σE), is designated with Ωe, while
the zone of viscoplastic state (σ = σP), is designated by Ωp and hence Ω ∈ [Ωe ∪Ωp].

In the above equation, the only assumption made for the stress tensor σP, is that
it depends at least on the strain rate tensor ε̇. For example, a pure Newtonian fluid
can be assumed: σP = −p I + 2µ ε̇, if suitable for the test material in question. In
this thesis, the stress tensor consist of σP = −p I + 2 η ε̇, where the shear viscosity
is on the form η = B(γ̇, Γ̃, Θ̃, t, . . . ) + [Cy(γ̇, Γ̃, Θ̃, t, . . . )]

1
2 /γ̇. Fortunately, the shear

viscosity η depends on the shear rate γ̇ in such manner that limγ̇→0 η = ∞. With
this characteristic, the stress tensor σP can be used in imitating the solid state. The
justification for this is more physical than mathematical: For example, when looking
at a window of glass, the immediate perception is that it presents a solid. In waiting
half a century or so, it becomes apparent that it deforms and flows downward under
the action of gravity g. When modeling such event, an extremely large shear viscosity
η must be used, which results in the extremely low shear rate γ̇ observed. With a stiffer
(or more rigid) glass, a still larger shear viscosity must be applied. In generalizing this
concept, the solid can be considered as fluid with a very large shear viscosity value
η, deforming under extremely low shear rate γ̇ ≈ 0. A perfect (or fully rigid) solid
would then have infinite3 shear viscosity η → ∞ and zero shear rate γ̇ = 0. This
specific characteristics automatically applies for the shear viscosity used in this work,
since limγ̇→0 η =∞.

3The perception that a perfect solid (or a rigid body movement of a fluid) consist of η → ∞ is
also made by Langtangen [66], when defining the Herschel-Bulkley model.
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However, the perfect solid state cannot be calculated by the means of fluid mechan-
ics. In trying to do so, leads to an incorrect result. For example, assuming the test ma-
terial consist of Bingham fluid, gives the shear stress of Trθ(r) = η (dvθ/dr− vθ/r) =
η γ̇ = µ γ̇ + τo (see Equation 3.12 on Page 57). Furthermore, according to Equa-
tion 3.16 the torque within the test sample is T̂ = 2 π r2 hTrθ = 2 π r2 h (µ γ̇ + τo).
Trying to utilize this result in r ∈ [Rs, Ro] (i.e. r ∈ Ωe) gives T̂ |γ̇=0 = 2 π r2 h τo ∝
r2 �= constant, which violates the condition described with Equation 3.15.

To calculate the solid state by means of fluid mechanics, a small modification must
be applied to shear viscosity. This consists of adding a small regularization para-
meter δ [13, 130] to the shear rate: η = B(γ̇, Γ̃, Θ̃, t, . . . )+[Cy(γ̇, Γ̃, Θ̃, t, . . . )]

1
2 /(γ̇+δ).

The objectives with this operation is to inhibit the possibility of infinite shear vis-
cosity η �→ ∞ and hence inhibit zero shear rate γ̇ �= 0. As such, the solid state no
longer consist of the condition γ̇ = 0, but rather of γ̇ ≈ 0. This is the basic role the
regularization parameter δ, namely to produce a nonzero and very small shear rate
(γ̇ ≈ 0) in the solid domain Ωe, to imitate the prefect solid state (γ̇ = 0).

Numerical results produced in this work, give that the smallest shear rate value
γ̇min in this zone, is often much smaller than the regularization parameter δ used.
Hence δ presents by no means the minimum shear rate allowed. However, as shown
with Figure 8.11 (Page 193), the general characteristics is that the smaller δ is, the
smaller the shear rate γ̇ becomes in the solid domain Ωe.

Strictly speaking, the overall numerical problem consists of solving Equation 7.58
in the viscoplastic domain, namely in Ωp. The solution in the solid zone Ωe is always
known and consist of velocity for a rotating solid vθ(r, z, t) = r ωo(t) and of zero
shear rate γ̇ = 0. Therefore, the boundary condition used between the two domains
Ωe and Ωp, must consist of the Dirichlet boundary condition vθ = r ωo. Since the
location of this boundary is unknown prior to the numerical calculation, it becomes
difficult to apply the Dirichlet condition at the correct grid points. To overcome this
dilemma, the regularization parameter is applied: When solving Equation 7.58 with
the shear viscosity of η = B(γ̇, Γ̃, Θ̃, t, . . . ) + [Cy(γ̇, Γ̃, Θ̃, t, . . . )]

1
2 /(γ̇ + δ), the test

material consists of a non-viscoplastic fluid that can imitate both a viscoplastic state
and a solid state. As such, the governing Equation 7.58 is rather solved over the whole
solution region Ω ∈ Ωp ∪ Ωe. Hence, the symbols Ωe and Ωp will now designate the
domain of the imitated solid state and the imitated viscoplastic state, respectively.
From here on, these two imitated states will be referred simply as the “solid state”
and the “viscoplastic state”. The validation of the overall above approach is tested
in Sections 8.5 and 8.6.

Since the computer and the solution algorithm have difficulty in working with
large values of shear viscosity η and large changes in its value ∆η, the regularization
parameter δ is usually kept between 10−3 s−1 and 5 · 10−3 s−1. Using a smaller regu-
larization parameter requires a smaller time step ∆t (and hence a longer computation
time) in order to maintain numerical stability. As shown in Sections 8.5 and 8.6,
the larger this parameter is, the more incorrect the solution becomes, i.e. a worse
imitation of the solid and viscoplastic state is produced.

7.10 Shear Viscosity with Fading Memory

In Chapter 9, a complex thixotropic analysis is made for some cement pastes us-
ing specific types of lignosulfonates. Basically, the analysis consists of reproducing
measured torque T̂ by numerical means, and in doing so, extracting a more detailed

URN:NBN:no-3374



7.10. SHEAR VISCOSITY WITH FADING MEMORY 171

shear viscosity function. To make this possible, it was necessary to introduce a fad-
ing memory into the shear viscosity function η = η(γ̇, U3, t), where U3 = U3(Γ̃, Θ̃, t)
describes the current (reversible) coagulation state of the cement particles (see Sec-
tion 2.4.2). It is the terms Γ̃ and Θ̃ that are the memory modules. They are defined
with Equations 7.63 and 7.64, receptively.

Γ̃(r, z, t) =
∫ t

0

α(t − t′) γ̇(r, z, t′) dt′ (7.63)

Θ̃(r, z, t) =
∫ t

0

β(t− t′) H(γ̇, r, z, t′) dt′ (7.64)

The terms α and β are memory functions. The variable H is the coagulation rate
coefficient, described in Sections 2.4.2 and 2.5.3. For a programming point of view, it
is very important to be able to split the memory functions α and β into two separate
components, as shown below:

α(t− t′) = e−(t−t′)/ma = e−t/ma et′/ma = αII(t)αI(t′) (7.65)

β(t− t′) = e−(t−t′)/mb = e−t/mb et′/mb = βII(t)βI(t′) (7.66)

As is described in Sections 2.4.2, the term U3|t=0 = Uo describes the (reversible) co-
agulation state of the cement particles, at the beginning of experimental observation.
In this thesis, the start always occurs at the time t = 0 and ends at t = 50 s. This
time is not to be confused with the time duration from mixing of water and cement
particles. The former time period spans only 50 seconds (see Figure 9.1, to the left),
while the latter spans the whole 102 minutes (see Section 9.2.3). The initial condition
Uo is dependent on the past history of shear rate and on the past history of coagula-
tion rate. That is, Uo depends on the memory modules Γ̃ and Θ̃ when the integration
is from t′ = −∞ to t′ = 0. Therefore, when calculating a new condition U3(t) for
the given initial condition U3(0) = Uo, the integration must begin from the start of
an experiment t′ = 0 to the current time t′ = t (where t ∈ [0, 50 s]) as is shown with
Equations 7.63 and 7.64.

The discrete counterpart of the terms Γ̃(r, z, t) and Θ̃(r, z, t) are presented with
Γ̃ki,j and Θ̃

k
i,j, and are given by Equations 7.67 and 7.68.

Γ̃ki,j = αII(k∆t)
k∑

k′=0

αI(k′∆t)γ̇k
′
i,j ∆t = αII(k∆t) FMSRki,j (7.67)

Θ̃ki,j = βII(k∆t)
k∑

k′=0

βI(k′∆t)H(γ̇k
′
i,j) ∆t = βII(k∆t) FMCRki,j (7.68)

In the above, the term FMSR stands for Fading Memory Shear Rate module, while
FMCR for Fading Memory Coagulation Rate module. They are both cumulative in
nature, and resides in the source code main.f90.

From Equation 7.67, it is apparent that the condition Γ̃(r, z, 0) = 0 applies, since
the integration from zero to zero, yield always a zero. This means that Γ̃0i,j must also
be equal to zero, which is enforced by setting ∆t = 0 at k = 0. This approach is
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self evident, since no time advancements ∆t exists at t = 0 (i.e. at k = 0). With the
above in mind, the condition of FMSR0i,j = 0 must also be valid. The same type of
consideration, as in the above, apply for the terms Θ̃(r, z, 0), Θ̃0i,j and FMCR

0
i,j.

The discrete counterpart of the terms Γ̃(r, z, t) and Θ̃(r, z, t) at the time step k+ 1
2

and k + 1 is calculated according to Equations 7.69 to 7.72.

Γ̃k+
1
2

i,j = αII((k + 1/2)∆t)
[
FMSRki,j + αI((k + 1/2)∆t) γ̇

k+ 1
2

i,j

∆t
2

]
(7.69)

Γ̃k+1i,j = αII((k + 1)∆t)
[
FMSRki,j + αI((k + 1)∆t) γ̇k+1i,j ∆t

]
(7.70)

Θ̃k+
1
2

i,j = βII((k + 1/2)∆t)
[
FMCRki,j + βI((k + 1/2)∆t)H(γ̇

k+ 1
2

i,j )
∆t
2

]
(7.71)

Θ̃k+1i,j = βII((k + 1)∆t)
[
FMCRki,j + βI((k + 1)∆t)H(γ̇k+1i,j )∆t

]
(7.72)

7.11 Algorithms

The algorithms for the steady state- and the transient flow calculation are shown in
Sections 7.11.1 and 7.11.2, respectively. In both algorithms, the term “tol” is used to
determine the termination of a successive substitution. As shown by Equation 7.73,
depending on the continuation parameter λ, this term can have two different values.

tol =
{
tol Newton if λ = 0
tol Plastic if λ > 0 (7.73)

The term “tol Plastic” needs always to be much smaller than “tol Newton”, because
of the much smaller difference between two successive steps in the former case. This is
so since smaller time step is required when calculating the viscoplastic flow, in order
to gain stability. The difference between two successive steps is monitored through
their root mean square difference as shown in Equation 7.74.

‖vk+1i,j − vk+1i,j;NEW‖rms ≡

√√√√√ 1
N

∑
(i,j) ∈ Ω

[
vk+1i,j − vk+1i,j;NEW

1
2 (v

k+1
i,j + vk+1i,j;NEW)

]2
(7.74)

In the above, the term N presents the number of grid points in the solution area Ω.
When the condition “‖vk+1i,j − vk+1i,j;NEW‖rms < tol” becomes valid, the calculation of
the next time step k + 2 is activated.

The above discussions apply for both the time independent and the transient case.
However, when calculating a time independent problem, an additional restriction is
required, namely the condition when determining a time independence. The term
“tol RMS active” is used in relation when determining time independence and hence
is being part of stopping calculations when appropriate. This variable can have two
values, given by Equation 7.75.

tol RMS active =
{
tol Newton if λ = 0
tol RMS if λ > 0 (7.75)
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The terms “tol Newton” and “tol RMS” are set by the user. After each time step, the
condition “‖vki,j− vk+1i,j ‖rms < tol RMS active” is checked if valid (see Equation 7.76).
If so, the calculations are stopped and all results are written into different files.

‖vki,j − vk+1i,j ‖rms ≡

√√√√√ 1
N

∑
(i,j) ∈ Ω

[
vki,j − vk+1i,j

1
2 (v

k
i,j + vk+1i,j )

]2
(7.76)

Sometimes, the term tol RMS active can be accidentally set to be too low, which leads
to that the condition “‖vki,j − vk+1i,j ‖rms < tol RMS active” becomes never valid. The
term “ZERO TIME” is used in avoiding such a situation. It determines the maximum
amount (pseudo) time iterations to be calculated. For example, using δt = 10−6 s and
ZERO TIME = 2 s, leads to 2·106 (pseudo) time iterations, at the most. This method
of termination is not shown in the algorithm of Section 7.11.1.
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7.11.1 Algorithm of Time Independent Code

Algorithm 1: Steady State Problem

Main variables: vki,j, v
k+ 1

2
i,j , vk+

1
2

i,j;NEW,v
k+1
i,j , vk+1i,j;NEW

Setting up linear approximation for vki,j at the time step k=0
Continuation method [66]:
do λ = 0, . . . 1 (CONTINUATION: DO . . . )
λ = 0⇒ Newtonian fluid ∧ λ > 0⇒ non-Newtonian fluid
Pseudotransient method [33]:
while ‖vki,j − vk+1ij ‖rms > tol RMS active do (ZERO TIME LOOP: DO WHILE . . . )

convergence = false

v
k+ 1

2
i,j ← vki,j ∧ vk+1i,j ← vki,j

Successive substitution [66]:
while not convergence, do (CONVERGE: DO WHILE . . . )

do j = 1,NY2
do i = 1,NX2 (CALL MATRIX UPDATE X(. . . ))
Calculate γ̇k = γ̇(vki,j) and γ̇

k+ 1
2 = γ̇(vk+

1
2

i,j ) from Equations 7.38 to
7.42. Calculate ηk = η(λ, γ̇k, k ∆t) and ηk+

1
2 = η(λ, γ̇k+

1
2 , (k + 1

2 )∆t).
Calculate A, B, C for the time step k + 1

2 (Equations 7.32 to 7.34).
Calculate D, E, F (Equations 7.35 to 7.37) and thereafter K
(Equation 7.29) for the time step k.

end do
Solve Equation 7.28 to calculate vk+

1
2

i,j;NEW (CALL MATRIX SOLVER(. . . ))
end do
v
k+ 1

2
i,j ← v

k+ 1
2

i,j;NEW

do i = 1,NX2
do j = 1,NY2 (CALL MATRIX UPDATE Y(. . . ))
Calculate γ̇k+

1
2 = γ̇(vk+

1
2

i,j ) and γ̇k+1 = γ̇(vk+1i,j ) from Equations 7.38
to 7.42. Calculate ηk+

1
2 = η(λ, γ̇k+

1
2 , (k + 1

2 )∆t) and η
k+1 =

η(λ, γ̇k+1, (k + 1)∆t). Calculate A, B, C (Equations 7.32 to 7.34)
and L (Equation 7.31) for the time step k + 1

2 . Calculate D, E, F
(Equations 7.35 to 7.37) for the time step k + 1.

end do
Solve Equation 7.30 to calculate vk+1i,j;NEW (CALL MATRIX SOLVER(. . . ))

end do
if ‖vk+1i,j − vk+1i,j;NEW‖rms ≤ tol then ⇒ convergence = true

vk+1i,j ← vk+1i,j;NEW

end while (END DO CONVERGE)
vki,j ← vk+1i,j;NEW

k ← k + 1
end while (END DO ZERO TIME LOOP)

end do (END DO CONTINUATION)
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7.11.2 Algorithm of Time Dependent Code

Algorithm 2: Transient Problem

Main variables: vki,j, v
k+ 1

2
i,j , vk+

1
2

i,j;NEW,v
k+1
i,j , vk+1i,j;NEW. The result from Algorithm 1 is

used as an initial condition for vki,j at the time step k = 0 (with the boundary
condition ωo = ωo(0)). Initial memory: Γ̃0i,j = FMSR0i,j = 0 ∧ Θ̃0i,j = FMCR0i,j = 0.
do k = 0,Ndt (TIME LOOP: DO k = 0,N dt)

convergence = false

v
k+ 1

2
i,j ← vki,j and update boundary condition ωo = ωo((k + 1

2 )∆t)
vk+1i,j ← vki,j and update boundary condition ωo = ωo((k + 1)∆t)
Successive substitution [66]:
while not convergence, do (TIME CONVERGE: DO WHILE . . . )

do j = 1,NY2
do i = 1,NX2 (CALL MATRIX UPDATE X(. . . ))

1) γ̇k = γ̇(vki,j) ∧ γ̇k+
1
2 = γ̇(vk+

1
2

i,j ) ← Equations 7.38 to 7.42
2) Γ̃ki,j ∧ Γ̃k+

1
2

i,j ∧ Θ̃ki,j ∧ Θ̃k+
1
2

i,j ← Equations 7.67, 7.69, 7.68 and 7.71
3) ηk = η(γ̇k, Γ̃ki,j, Θ̃

k
i,j, k∆t) ∧ ηk+

1
2 = η(γ̇k+

1
2 , Γ̃k+

1
2

i,j , Θ̃k+
1
2

i,j , (k + 1
2 )∆t)

4) Calculate A, B, C for the time step k + 1
2 (Equations 7.32 to 7.34).

Calculate D, E, F (Equations 7.35 to 7.37) and thereafter K
(Equation 7.29) for the time step k.

end do
Solve Equation 7.28 to calculate vk+

1
2

i,j;NEW (CALL MATRIX SOLVER(. . . ))
end do
v
k+ 1

2
i,j ← v

k+ 1
2

i,j;NEW

do i = 1,NX2
do j = 1,NY2 (CALL MATRIX UPDATE Y(. . . ))

1) γ̇k+
1
2 = γ̇(vk+

1
2

i,j ) ∧ γ̇k+1 = γ̇(vk+1i,j ) ← Equations 7.38 to 7.42
2) Γ̃k+

1
2

i,j ∧ Γ̃k+1i,j ∧ Θ̃k+ 1
2

i,j ∧ Θ̃k+1i,j ← Equations 7.69 to 7.72
3) ηk+

1
2 = η(γ̇k+

1
2 , Γ̃k+

1
2

i,j , Θ̃k+
1
2

i,j , (k + 1
2 )∆t) ∧ ηk+1 = · · ·

4) Calculate A, B, C (Equations 7.32 to 7.34) and L
(Equation 7.31) for the time step k + 1

2 . Calculate D, E, F
(Equations 7.35 to 7.37) for the time step k + 1.

end do
Solve Equation 7.30 to calculate vk+1i,j;NEW (CALL MATRIX SOLVER(. . . ))

end do
if ‖vk+1i,j − vk+1i,j;NEW‖rms ≤ tol then ⇒ convergence = true

vk+1i,j ← vk+1i,j;NEW

end while (END DO TIME CONVERGE)
FMSRk+1i,j = FMSRki,j + αI((k + 1)∆t) γ̇k+1i,j ∆t
FMCRk+1i,j = FMCRki,j + βI((k + 1)∆t)H(γ̇k+1i,j )∆t
vki,j ← vk+1i,j;NEW ∧ FMSRki,j ← FMSRk+1i,j ∧ FMCRki,j ← FMCRk+1i,j

end do (END DO TIME LOOP)
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Chapter 8

Simulation of the ConTec
Viscometers

8.1 Introduction

This chapter presents numerical simulations of ConTec BML Viscometer 3 and
ConTec Viscometer 4 based on the theories presented in Chapter 7. The objectives
of this chapter are mainly twofold. The first objective is to demonstrate the accuracy
of the numerical code, both as a function of grid resolution used and also as a function
of different magnitude of regularization parameter δ utilized. Issues like convergence,
numerical convergence, apparent stability and stability are dealt with here.

The second objective is to present some numerical results made, to investigate
how much z-dependency exists in the velocity function vθ(r, z, t) in the upper part
of the viscometer. This analysis has to do with justifying the assumption made in
Section 3.3.1 (Page 56) when deriving the well-known Reiner-Riwlin equation.

For the first objective, the geometry of the ConTec BML Viscometer 3 is
used. However for the second objective, both geometries are applied.

8.2 Source Code

Two softwares are presented in Appendix A. The first one is used when calculating
the viscoplastic flow inside both ConTec viscometers. The second software is used
in calculating the flow inside the C3P2-geometry (see Section 10.3.7). Both softwares
will have the same name, namely Viscometric-ViscoPlastic-Flow (or VVPF).
The reason for this is that both of them use much of the same subroutines, stored as
modules. This is done to reduce developing time, when writing new software for an
additional type of viscometer. The source codes are written in accordance with the
Fortran 90 standard (ANSI X3.198-1992 ∧ ISO/IEC 1539-1:1991 (E)) and as such,
can be used on any computer platform having a Fortran 90 compiler. These files are
shown in Appendix A. Viscometric-ViscoPlastic-Flow, is free software; which
can be redistributed and/or modified under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License,
or (at the users option) any later version. Viscometric-ViscoPlastic-Flow, is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
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without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

When calculating the viscoplastic flow inside the ConTec viscometers, the soft-
ware Viscometric-ViscoPlastic-Flow consists of seven files listed below.

1. param.f90 (MODULE): This code defines and sets all variables of relevance,
like Ri, Ro, h, ∆r, ∆z, ∆t, tol, tol RMS, fmin, fmax and so forth.

2. motion.f90 (MODULE): This file reads the basic information from param.f90
to produce angular velocity ωo = ωo(t). The information about the angular ve-
locity is requested by the routine main.f90.

3. viscous.f90 (MODULE): In this file, the shear viscosity function η = η(γ̇, t, . . . )
is defined and calculated. This information is requested by update.f90.

4. write2f.f90 (MODULE): This file takes care of writing all computed data into
the different files. It is only the source main.f90 that makes such request.

5. shear.f90 (MODULE): This routine calculates the shear rate γ̇c from the com-
puted velocity profile V k(i, j) iθ. It is the program update.f90 that makes the
request.

6. update.f90 (MODULE): This file sets up the system of algebraic Equations 7.28
to 7.31 (Page 161). This file also contains the Thomas algorithm that is used
in solving this system.

7. main.f90 (PROGRAM): This is the center of the whole software, holding and
passing information to and from the different subroutines. Some subroutines
interact directly with each other without going through the channels defined
by main.f90 (this applies mostly for the subroutines in the files update.f90,
shear.f90 and viscous.f90). The geometry of the viscometer, including the
bottom cone, is defined in this part of the software.

The user only interacts with two files in the above list, namely the param.f90
and viscous.f90. As such these files will be explained in more detail in Appendix A.
The above files can be compiled in the order shown in the above. The code has been
tested on 3 different compilers, listed below.

1. NAGWare FTN90, Version 2.191

2. Microsoft Fortran Powerstation 4.0

3. Compaq Visual Fortran 6.5 and 6.6 (the previous Digital Visual Fortran)

All of the above compile and link the source codes without incidence. However
while executing the program, then in some cases an abnormal termination occurs
when using binaries from the NAGWare compiler. Of the three, the Compaq
Visual Fortran is the most recommended one. Not only does it compile and link
without incidence, but the user has also a better opportunity to control in what way
the binaries are generated. Optimizing this compiler for speed, generates binaries
which executes considerable faster than either of the two other compilers mentioned.
The grid resolution (∆r ∧ ∆z) used, is in accordance to the CPU resources available
to this project.
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8.3 Solution Geometry & Boundary Conditions

8.3.1 ConTec BML Viscometer 3

Figure 8.1 demonstrates the solution geometry and boundary conditions used when
simulating the ConTec BML Viscometer 3. This array is 146×306 in size and the
spacing of grid points in r and z-direction are uniform and equal: ∆r = ∆z = 1.0mm.
This greatly simplifies the programming of the software, saves storage space and usu-
ally results in greater accuracy in the numerical calculation [2]. In the algorithm, the
viscometer is rotated by 90◦ clockwise to simplify array addressing. This is apparent
when comparing Figure 8.1 with the right illustration of Figure 8.15 (Page 197).

Referring to Figure 8.1: In the i-direction, the terms NX1 and NX2 designates the
coordinates of the inner and outer cylinder and are given by 101 and 146, respectively.
With these numbers, the geometry of the viscometer can be read directly from the
figure. The inner radius is Ri = (NX1 − 1)∆r = (101 − 1)1.0mm = 10.0 cm and
likewise the outer radius is Ro = (NX2− 1)∆r = (146− 1)1.0mm = 14.5 cm.

1 61 107 240 306

1

29

101

146
vθ = R°⋅ω°

vθ = 0

vθ  = 0

vθ  = r⋅ω
°

∂vθ /∂z=0

j−direction (z)

i−direction (r)

Figure 8.1: Geometry and boundary conditions for the ConTec BML Viscometer 3. This
information is put into the arrays (146× 306) VELOCITY k, VELOCITY kp12 and VELOC-
ITY kp1 of the source code main.f90. The lower left corner demonstrates the grid resolution
used. For the domain of calculation, there are about 19500 grid points.

In the j-direction, the term NY1 designates the start location of the inner cylinder
and NY2 designates the total height of the outer cylinder. These values are given by
NY1=61 and NY2=306. The total height of the inner cylinder can now be calculated:
H2 = (NY2 − NY1)∆z = (306 − 61)1.0mm = 24.5 cm. The term h ≡ H3 = 19.9 cm
designates the height where torque is measured and it starts at the j-grid point
NY2mH3 = NY2 − H3/∆z = 306− 19.9 cm/1mm = 107 and ends at NY2=306. All
the above number variables are shown in the source codesmain.f90 and param.f90.

Along the boundary (i,j) = (1:NX2,1)=(1:146,1) is the Dirichlet boundary con-
dition: vθ = r ωo(t), and at (i,j) = (NX2,1:NY2) = (146,1:306) the same type of
boundary condition applies vθ = Ro ωo(t). The open boundary (i.e. the interface
between air and concrete) is located at (i,j) = (NX1+1:NX2-1,NY2) = (102:145,306)
and there the Neumann boundary condition applies ∂vθ/∂z = 0, and its justification
will be discussed shortly. Everywhere else the boundary condition vθ = 0 is valid. All
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the Dirichlet boundary conditions are set in accordance with the no-slip condition1.
The combination of high viscosity of the fresh concrete and low rotational fre-

quency of the outer cylinder fmax = 0.5 rps, results in that little or no inclination of the
open boundary is observed, when making a rheological measurement2. Therefore, the
normal vector of this open (or surface) boundary (i.e. at (i,j)=(NX1+1:NX2-1,NY2))
is set to be n ∼= iz. Since practically no shearing is applied from the atmospheric air
onto the concrete at this boundary, then according to Cauchy’s stress principle [72],
applying the vector n = iz on Equation 7.4, must result in zero: iz · T = 0. This
means that the condition ∂vθ/∂z = 0 becomes valid3 at the open boundary.

8.3.2 ConTec Viscometer 4

Figure 8.2 demonstrates the solution geometry and boundary conditions used when
simulating the ConTec Viscometer 4. This array is 203×281 in size and the
spacing of grid points in r and z-direction are uniform and equal: ∆r = ∆z = 0.5mm.

Referring to Figure 8.2, then in the i-direction, the terms NX1 and NX2 desig-
nate the coordinates of the inner and outer cylinder and are given by 171 and 203,
respectively. Hence, the inner radius is Ri = (NX1−1)∆r = (171−1)0.5mm = 8.5 cm
and the outer radius is Ro = (NX2− 1)∆r = (203− 1)0.5mm = 10.1 cm.

1 21 49 80 120 160 200 240 281

1
10

49

80

100

120

140

171

203
vθ = R°⋅ω°

vθ = 0

vθ  = 0

vθ  = r⋅ω
°

∂vθ /∂z=0

j−direction (z)
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Figure 8.2: Solution geometry and boundary conditions for the viscometer. This information is
put into the arrays (203× 281) VELOCITY k, VELOCITY kp12 and VELOCITY kp1 in the
routine main.f90. The lower left corner demonstrates the grid resolution used. For the domain
of calculation, there are about 11000 grid points.

1The velocity of a fluid at the solid surface is equal to the velocity of the surface. I.e. the fluid
sticks to the surface and does not slip relative to it [36]. See also Footnote 9, Page 58.

2It is self evident that fluid material with η → ∞ (i.e. a rigid body) gives no inclination.
3Another way in justifying this condition at the open boundary, is simply postulating that the

velocity is not supposed to change with z in the top region of the viscometer. Since it is the shearing
(iz · T = Tzθ iθ) from the bottom plate (at (i,j)=(1:NX2,1)), that is responsible for z-dependence
in the velocity function vθ, it is only natural that this dependency should decrease with increasing
distance from this plate.
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In the j-direction (i.e. in z-direction), the term NY1 designates the start location
of the inner cylinder and NY2 designates the total height of the outer cylinder. These
values are given by NY1 = 21 and NY2 = 281. The total height of the inner cylinder
can now be calculated: H2 = (NY2−NY1)∆z = (281− 21)0.5mm = 13.0 cm. As be-
fore, the term h ≡ H3 = 11.6 cm designates the height where torque is measured and
it starts at the j-grid point NY2mH3 = NY2 − H3/∆z = 281 − 11.6 cm/0.5mm =
281 − 232 = 49 and ends at NY2 = 281. All the coordinates related to the bot-
tom cones are defined in main.f90. All other variables shown here, are defined in
param.f90.

Along the boundary (i,j)=(1:NX2,1)=(1:203,1) the Dirichlet boundary condition
vθ = r ωo(t) is valid. At (i,j)=(NX2,1:NY2)=(203,1:281) the same type of boundary
condition applies, namely vθ = Ro ωo(t).

The open boundary (i.e. the interface between air and mortar/cement paste) is
located at (i,j)=(NX1+1:NX2-1,NY2)=(172:202,281). At this boundary, the Neu-
mann boundary condition ∂vθ/∂z = 0 applies, and its justification was discussed in
Section 8.3.1. Everywhere else the condition vθ = 0 is valid.

8.4 Convergence and Stability

There is no guarantee that the exact solution4 vki,j of the system of algebraic Equa-
tions 7.28 to 7.31 (Page 161) is close to the (unknown) correct solution vθ(r, z, t) of
the partial differential Equation 7.58 (Page 167). When the exact solution vki,j is ap-
proaching the correct solution vθ(r, z, t) of the PDE as ∆t, ∆r and ∆z are approaching
zero, the exact solution is said to be converging [33, 66].

Note, in all the source codes presented in this thesis, the term “CONVERGENCE”
is used in a slightly different context. In this context the meaning is that V k(i,j) is
approaching (or converging) towards the exact solution vki,j with increasing (pseudo)
time iteration k, and as such is actually more related to stability.

Convergence is not to be confused with the stability of the computed solution
V k(i, j). When the computed solution V k(i,j) approaches the exact solution vki,j, for
the given ∆t, ∆r and ∆z, stability is achieved in the numerical calculations [33, 66].
More precisely, stability is the tendency for any spontaneous numerical perturbations
ξki,j in the computed solution V k(i, j) = vki,j−ξki,j to decay. These perturbations consist
mainly of the round-off error [2] and is not to be confused with the discretization
error eki,j = vθ(r, z, t)−vki,j, which is due to incorrect logic of the discretization method
used, as explained in Section 7.3.2 (Page 158).

8.4.1 Apparent Stability

The round-off error ξki,j = vki,j − V k(i, j) exists because the computer cannot give
answers to an infinite number of decimal places. Every calculation that is made,
is carried out to a finite number of significant figures, which introduces a round-off
error at each step of the computation [2, 33]. Hence, the computational solution
of the system of algebraic Equations 7.28 to 7.31, is V k(i, j) and not vki,j. From
the above, it is apparent that the relationship between the correct solution of the
PDE, namely vθ(r, z, t) and its computed counterpart V k(i, j) is given by vθ(r, z, t) =
V k(i, j) + [eki,j + ξki,j]. The computed shear rate γ̇c, shear viscosity ηc, and the von
Mises shear stress τc, are all calculated from V k(i,j) using the DOUBLE PRECISION

4See Footnote 1 on Page 159.
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declarations. In fact, all declarations in the different source codes, consist of DOUBLE
PRECISION rather than REAL, to reduce the error ξki,j in the computed velocity
profile V k(i,j). Also, a small time- and spatial steps ∆t, ∆r and ∆z are used (usually
with the constraint that ∆t/∆r2 ≤ 1 s/m2 and ∆t/∆z2 ≤ 1 s/m2) to reduce the
discretization error eki,j (see discussion in Section 7.3.2).

In estimating the round-off error ξki,j (or in other words, when investigating sta-
bility), the von Neumann- or matrix method is often used on a linearized version of
the governing equation. The equation has to be linearized because these methods are
strictly not applicable to non-linear equations [33]. In taking such approach here, the
regularization parameter δ (Page 169) is quickly filtered out in the process. Experi-
ence from Section 8.5, gives that this parameter has a very large influence on stability
and hence, such a linearized approach is useless at the best. When applying the
Bingham fluid, experience indicates that stability is mainly function of δ, ∆t/∆r2,
∆t/∆z2 and τo/µ. When applying a viscoplastic-thixotropic fluid (i.e. thixotropic
fluid with a yield value), additional viscosity parameters become also involved.

Since traditional stability analysis is not possible here, the root mean square of the
difference between the two solutions V k(i,j) and V kp1(i,j) is monitored as a function
of increasing (pseudo) time iteration k. This value serves as an indication to what
degree stability exists in the calculation. This value is designated with the term RMS
and is defined by Equation 7.76 (Page 173): RMS ≡ ‖V k(i, j) −V kp1(i, j)‖rms. In
this work, the phrase apparent stability means that the RMS value decreases to a
certain equilibrium value with increasing (pseudo) time iteration k.

Steady State Case: Output Files to Monitor Apparent Stability

The RMS value is written into a file called log.dat. The first column of this file con-
sists of the iteration number k and the second column consists of the RMS value. The
user can choose how often this file is written into, through the term k OUTPUT rms.
Investigating stability by monitoring the RMS value, is only possible when consider
the steady state case (i.e. time independence). Figure 8.3 demonstrates a typical
RMS evolution with (pseudo) time. The number of (pseudo) time iterations shown is
106, i.e. ∆t · 106 = 0.1 s. The first RMS entry written into the file log.dat is here at
k = 100 (since k OUTPUT rms = 100) and its value is 0.112 · 10−2. This value and
others that follows, are not shown in the figure to enhance the details. The minimum
RMS value in the file is at 0.665 · 10−11.

The oscillations of the RMS values shown in Figure 8.3 could indicate that a small
error (probably closely related to the round-off error ξki,j) is propagating back and
forth in the solution grid VELOCITY k (see Figure 8.1). The origin of this error
seem to be due to a very large values of shear viscosity ηc = µ+ τo/(γ̇c+ δ) produced
when both the shear rate γ̇c and the regularization parameter δ are very small. This
can be concluded since numerical experiments give that when a larger regularization
parameter δ is used, the oscillations reduce in amplitude. The same effect is produced
when increasing the rotational frequency fo, since it leads to a larger shear rate γ̇c.
As shown in the small left illustration of Figure 8.3, the RMS value generally consists
of different waves with distinct amplitudes and frequencies. Since k OUTPUT rms
is equal to 100 and not equal to 1, the true frequency and phase variance of the
RMS value are not shown. Using k OUTPUT rms = 1 for the given ∆r and ∆z, the
frequency of the RMS value seems to increase with decreasing (pseudo) time step ∆t.
When ∆r, ∆z and ∆t are all changing, the relationship between the frequency and
the terms ∆t/∆r2 ∧ ∆t/∆z2 becomes somewhat unclear.
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Figure 8.3: Registered RMS values extracted from the file log.dat. The physical parameters
used are τo = 170Pa, µ = 35Pa · s and fo = 0.1 rps. The regularization parameter used,
is δ = 10−3 s−1. Both ∆t/∆r2 and ∆t/∆z2 are at 0.1 s/m2. The number of (pseudo) time
iterations shown is 106.

To summarize, numerical experiments seem to indicate that the amplitude of the
RMS value is reduced with increasing δ and fo and with decreasing τo (or possibly
rather τo/µ), ∆t/∆r2 and ∆t/∆z2.

As is shown with Figure 8.4, when the amplitudes of the RMS value become
sufficiently large, an error becomes also visually apparent in the computed shear
rate profile γ̇c. This is evident when a wave like phenomenon starts to appear in
some of the solution region. Therefore, when doing a simulation, it is important to
examine these oscillations and make sure that the RMS amplitudes are on a minimum
level, and that the RMS evolution is approaching to a kind of equilibrium value as
shown with the left illustration of Figure 8.3. Such a result can be enforced either by
increasing the regularization parameter δ (which results in a worse imitation of the
plastic- and the solid state) and/or by decreasing the time step ∆t (which results in a
longer calculation time). Increasing grid spacing ∆r and ∆z, will also result in greater
stability. But as demonstrated in Sections 8.5 and 8.6, in doing so, a worse transition
between the viscoplastic state (Ωp) and solid state (Ωe) is produced. The example
in Figure 8.4 is taken from the BTRHEOM viscometer, presented Section 10.3.4.
The physical parameters used are τo = 200Pa, µ = 20Pa · s and ωt = 3 rad/s. The
regularization parameter is at δ = 10−3 s−1. Both ∆t/∆r2 and ∆t/∆z2 are set equal
to 100 s/m2. This figure demonstrates that although the velocity profile is apparently
smooth, it does not mean that there are no oscillations or errors in the calculations.
Both the RMS value and the computed shear rate γ̇c indicate strongly that some large
errors are influencing the calculations. One approach to produce a better result, is
reducing the existing time step ∆t = 10−4 s. Reducing it by an order of magnitude
results in smaller wave amplitudes in the computed shear rate γ̇c.

Transient Case: Output Files to Monitor Apparent Stability

For the transient case (i.e. the time dependent calculations), the user has to check sta-
bility by investigating the numerical solution visually. In the case ofConTec viscome-
ters, the software writes into 4 files for this purpose. These files are vel upper.dat,
vel corner.dat, ROS upper.dat, and ROS corner.dat and are cumulative in na-
ture, gathering velocity and shear rate information at chosen region inside the solution
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Figure 8.4: To the left: Registered RMS values extracted from the file log.dat. To the
right: Normalized velocity profile V k(i,j) and shear rate γ̇c, when solving for the BTRHEOM

viscometer (see Section 10.3.4). The peak values shown, consist of 36 cm/s and 20 s−1.

domain, as a function of time k ·∆t. The user can choose how often this file is written
into, with the term dt OUTPUT torque. In this work, dt OUTPUT torque is usu-
ally set equal to 0.1, meaning that at every 0.1 calculated second, the file is written
into. The file vel upper.dat consists of the velocity profile V k(i,j) at the top region,
namely at (i,j) = (NX2-50:NX2,NY2-50:NY2), while the file vel corner.dat consists
of velocity profile at the bottom region (i,j) = (NX2-50:NX2,1:51). From these values,
it is apparent that for every dt OUTPUT torque time, a segment of 51 × 51 array
is added into the files. The size of this segment can be increased or decreased in
the source code write2f.f90 (see the subroutines WRITE2FILE torque ZERO and
WRITE2FILE torque). The files ROS upper.dat and ROS corner.dat, consist
of the shear rate γ̇c at the same locations as for the corresponding two above veloc-
ity files. As shown by Figure 8.4, these files are better suited to detect unwanted
numerical oscillations.

8.4.2 Convergence

The PDE used in this work (i.e. Equation 7.6), cannot be solved directly by analytical
means, and therefore is converted to an equivalent system of algebraic equations. It
is a fundamental requirement of any numerical method that the exact solution vki,j
of the system of algebraic equations can converge to the correct solution vθ(r, z, t) of
the PDE, as the grid parameters ∆r, ∆z and ∆t, goes to zero [66]. With this, it is
proven that the exact solution vki,j are very close to the (unknown) correct solution
vθ(r, z, t). However, for non-linear PDE like the one presented in this work, conver-
gence is impossible to demonstrate theoretically [33]. Fortunately, it is possible to
go through a kind of indirect route, where the Lax Equivalence Theorem is used
as a necessary condition for convergence. It states “Given a properly posed linear
initial value problem and a finite difference approximation to it that satisfies the con-
sistency condition, stability is the necessary and sufficient condition for convergence”
[104] ([33, 77]). When working with non-linear PDE (as in this work), one cannot use
the Lax equivalence theorem as a sufficient condition. But it can be interpreted as

URN:NBN:no-3374



8.5. NUMERICAL CONVERGENCE 185

providing the necessary condition for convergence [33].
If apparent stability (Section 8.4.1), is sufficient to verify stability, then stability

applies for each numerical calculation in this work, unless otherwise stated. Also, in
Section 7.6 (Page 163), consistency is proven in this thesis. With these two condi-
tions, the Lax equivalence theorem can be applied, giving a necessary condition for
convergence.

8.5 Numerical Convergence (Steady State Only)

The objective of demonstrating a numerical convergence is to reveal and investigate
the capability of the numerical approach used in this work (see Chapter 7) in produc-
ing the correct solution of the PDE. Although the analysis here is applied only for
the ConTec BML Viscometer 3, it is a good indication for the potential quality
of the solution V k(i,j) of all the other cases, shown in Chapters 9 and 10. This is
because of how the same theory and same segments of source code is always used.

At the upper region of the ConTec viscometers, where z-independence exists
(∂vθ/∂z = 0), it is possible to gain an analytical solution vθ(r) when the test material
consist of Bingham5 fluid. The solution of such analytical case is shown in Chapter 3,
namely with Equation 3.23 (Page 59). For this case, it is possible to demonstrate a
numerical convergence by obtaining numerical solution on a successively refined
grid and compute the solution error RMSac, i.e. compute the difference between the
exact analytical result vθ(r) and the computed result V k(i, j) (with j = constant) [33].
If numerical convergence exists, the solution error RMSac will reduce with reducing
grid spacing [33]. This error is calculated according to Equation 8.1.

RMSac ≡
√√√√ 1
N

∑
i ∈ Ω

[
vθ(r) −V k(i, j)

1
2 (vθ(r) + V k(i, j))

]2
∀ r = [10.5:0.5:14.0]cm (8.1)

The RMSac value is calculated only at eight points, regardless of grid resolution
used. These points starts at r = 10.5 cm and with equal increments of 5mm, ends
at r = 14.0 cm. In doing this, the Dirichlet boundary points are not taken into
account. Table 8.1 demonstrates RMSac results, when the rotational frequency is at
fo = 0.02 rps, using different grid resolution ∆r from 5mm down to 0.5mm.

In Section 8.4.1, the relationship between the correct solution of the PDE, namely
vθ(r, z, t) and its computed counterpart V k(i, j) was given by vθ(r, z, t) = V k(i, j) +
[eki,j + ξki,j]. Both the discretization error eki,j and the round-off error ξki,j are inac-
curacies generated by mathematical and computational means. However, since the
computed solution V k(i,j), with δ �= 0, is compared with analytical case vθ using
δ = 0 (i.e. the ideal Bingham case), an additional error is presented here and is more
of a physical nature. Hence, the difference between the desired solution vθ(r, z, t)
(with δ = 0) and its computed counterpart V k(i, j) (with δ �= 0), is rather given
by vθ(r, z, t) = V k(i, j) + [eki,j + ξki,j + dki,j(δ, fo, . . . )]. The term dki,j(δ, fo, . . . ) will be
known as the regularization error and has the following distinct characteristics:
dki,j(0, fo, . . . ) = 0 ∧ ∂dki,j(δ, fo, . . . )/∂δ > 0 ∧ ∂dki,j(δ, fo, . . . )/∂fo < 0. Using δ = 0 in
the numerical calculation will produce dki,j = 0, however the round-off error ξki,j will
grow exponentially due to the extreme instabilities that will also be produced.

5This applies also when the test material consist of Newtonian fluid, but such a trivial case will
not be considered here.
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Table 8.1: Solution error when the rotational frequency is at fo = 0.02 rps.

∆t/∆r2 5.0mm 2.5mm 1.0mm 0.5mm δ

RMSac 0.1 sm−2 0.0090 0.0069 0.0044 0.0031 10−3 s−1

RMSac 1.0 sm−2 0.0669 0.0471 0.0295 0.0208 10−2 s−1

RMSac 1.0 sm−2 0.3251 0.2233 0.1388 0.0976 10−1 s−1

∆T̂ 0.1 sm−2 0.61% 0.47% 0.42% 0.41% 10−3 s−1

∆T̂ 1.0 sm−2 3.15% 2.95% 2.89% 2.89% 10−2 s−1

∆T̂ 1.0 sm−2 19.05% 18.52% 18.36% 18.34% 10−1 s−1

τc(Rs) 0.1 sm−2 172.1Pa 170.5Pa 169.5Pa 169.3Pa 10−3 s−1

τc(Rs) 1.0 sm−2 167.2Pa 165.7Pa 165.2Pa 165.1Pa 10−2 s−1

τc(Rs) 1.0 sm−2 139.7Pa 139.1Pa 138.9Pa 138.8Pa 10−1 s−1

The analytical torque “T̂ = constant” is calculated from Equation 3.24 and is
compared with the numerical torque T̂c(Ri) calculated from Equation 3.17 (Page 58),
where Trθ(Ri, z, t) is replaced with its corresponding numerical6 counterpart T ki,j. The
percentage difference is calculated according to Equation 8.2.

∆T̂ = 100 · T̂ − T̂c(Ri)
T̂

(8.2)

Always in this thesis, when calculating a partial derivative of any variable in the
bulk, for example ∂vθ/∂r, Equation 7.13 (Page 158) is used. As shown there, the
truncation error consist of O(∆r2). When calculating the same partial derivative
at the boundary r = Ri, Equation 7.52 (Page 166) is always used to maintain the
same truncation error. This approach applies for all other boundary points as well,
whenever a derivative needs to be calculated (see also Equations 7.53 and 7.54).

In investigating numerical convergence, the geometry of the ConTec BML Vis-

cometer 3 is used. Also, the yield value and plastic viscosity used in this calculations
consist of τo = 170Pa and µ = 35Pa · s. In this analysis, the bottom part of the vis-
cometer is deleted in the source code, to decrease the calculation time. In doing so,
the Neumann boundary condition ∂vθ/∂z = 0 is applied at the new bottom part of
the solution area. The implementation of this condition is done in the same manner
as is done for the upper part, shown in Section 7.7 (Page 164). Using fo = 0.02 rps,
∆r = ∆z = 1mm, ∆t = 10−6 s, and δ = 10−2 s−1, when comparing the solutions
generated with the above approach with the solution generated when bottom area
is included (with j = 245), demonstrates that no difference is encountered within
five significant figures. This means that the same RMSac value is produced, namely
RMSac = 0.0295.

Rotational Frequency at fo = 0.02 rps

By using Equation 3.32 (Page 66), the correct location of the boundary between the
viscoplastic state (Ωp) and the solid state (Ωe) is calculated. With the rotational
frequency of fo = 0.02 rps, this location is calculated to be Rs = 11.65 cm and is
shown with the solid vertical lines in Figure 8.5.

6Since the condition ∂vθ/∂z = 0 applies at the region in question and since (∂vθ/∂r− vθ/r) ≥ 0,
c.f. Section 3.3.3, it becomes apparent from Equations 7.5 and 7.7 (Page 156) that τ = Trθ. Therefore
the von Mises shear stress τ(r) = η(r) γ̇(r) is used here, rather than the shear stress component

Trθ(r), when calculating the torque. This means that T̂c = 2π r2 hTi,j = 2π r2 h τc.
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Table 8.1 demonstrates the RMSac and ∆T̂ values as a function of successively
refined grid spacing, starting at ∆r = 5.0mm and ending at ∆r = 0.5mm. Also,
the last three rows of this table shows the computed von Mises shear stress τc (see
Equation 7.5, Page 156) at r = Rs. Since the yield value of the test material is
τo = 170Pa, then accordingly the correct von Mises shear stress at this location
should also be τ(Rs) = τo = 170Pa. The reason for this is evident by Equation 3.6
(Page 54): When τ = −IIPS = (T : T)/2 = τ2o , a transition from viscoplastic state to
solid state (or visa versa) should occur. Because of the regularization parameter δ, the
shear viscosity used in the simulations, does not correspond to a pure Bingham fluid
(i.e. the δ = 0 case) and hence a difference between the correct von Mises shear stress
τ(Rs) = τo = 170Pa and the corresponding computed value τc(Rs) is evident (eki,j+ξ

k
i,j

contributes also to the difference). Although using a value large as δ = 10−2 s−1, the
difference between τc(Rs) and τ(Rs) is only at 2.9% in the worst case, as can be
calculated from the table. The difference in torque is only at 3.15% for the same case.
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Figure 8.5: Top: Velocity profile V k(i,j), when the grid spacing is ∆r = 0.5mm (to the
left) and ∆r = 5.0mm (to the right). Bottom: The corresponding von Mises shear stress τc.
The rotational frequency for all illustrations is fo = 0.02 rps. Dashed dotted lines represent the
analytical results: vθ(r) and τ (r).

Figure 8.5 demonstrates the velocity profile when using grid spacing of ∆r =
0.5mm (top left figure) and when using ∆r = 5.0mm (top right figure). As to be
expected, both illustrations show how the computed velocity profile V k(i,j) deviates
from the correct velocity profile vθ(r) as the regularization parameter δ is increased.
Only a small deviation is evident, when using δ = 10−2 s−1. Using δ = 10−3 s−1,
produces a computed solution V k(i,j) which is further closer the analytical value
vθ(r), however at the cost of larger computational time. This is so, because using a
smaller regularization parameter δ also means using a smaller (pseudo) time step ∆t
to maintain stability in the calculation.

Also shown in Figure 8.5, are the computed von Mises shear stress profile τc (solid
lines) and its analytical counterpart τ (dashed dotted line). The analytical shear stress
profile τ2 = (T : T)/2 = (η γ̇)2 is calculated with Equations 3.3 and 3.21 (Pages 53
and 58). For the reasons mentioned in Section 7.9 (Page 169), this calculation is
only valid in the viscoplastic zone r ∈ [Ri, Rs] (or r ∈ Ωp). The analytical von
Mises shear stress in the solid zone r ∈ [Rs, Ro] (or r ∈ Ωe) cannot be calculated
directly, since the constitutive equation σE and the displacement vector u in this
region is unknown (Equation 3.1 on Page 52, may or may not be valid in this region).
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However, with a known torque value T̂ (from Equations 3.24 and 3.32, Pages 59 and
66), that applies both in the viscoplastic zone (Ωp) and in the solid zone (Ωe) (c.f.
Equation 3.15, Page 58), it is possible to calculate the shear stress that applies in the
solid zone, simply with T̂ /(2 π r2 h). This particular shear stress profile is also plotted
in Figures 8.5 and 8.6 by the dashed dotted line.

The solid horizontal lines is the correct von Mises shear stress at the boundary
between the viscoplastic state and the solid state: τ(Rs) = τo = 170Pa. The correct
condition exists when the computed value τc goes through the crossing of the vertical
and the horizontal lines, as is the case when δ = 10−3 s−1 and ∆r = 0.5mm.

It is interesting to note that although the RMSac and T̂ values are decreasing
with decreasing grid spacing ∆r, for all δ values concern, such clear tendency is
not produced for τc(Rs). For δ = 10−3 s−1, the value of τc(Rs) is closest to 170Pa
when using ∆r = 2.5mm and ∆r = 1mm. For δ = 10−2 s−1 and δ = 10−1 s−1,
the best value is produced with the largest grid spacing, namely of ∆r = 5mm. At
first consideration, this result is not to be expected. However, the reason for this
peculiar tendency is as follows: First of all, the computed shear rate γ̇c is calculated
to be greater when using a coarse grid spacing. This increase ∆γ̇tc > 0 is simply a
consequence of the truncation error produced, as the information about the computed
velocity V k(i,j) in the very near vicinity of r = Rs is missing, when using the grid
spacing of ∆r = 5mm (see Equation 7.13, Page 158). Secondly, in estimating the
shear rate at r = Rs, a linear interpolation is always used between the two closest grid
points (see Figure 8.11) which elevates the computed shear rate further by ∆γ̇ic > 0.
Since dτ = [µ + τo δ/(γ̇ + δ)2] dγ̇ ≈ constant · dγ̇, the error ∆γ̇c = ∆γ̇tc + ∆γ̇ic > 0
results in an increase of ∆τc > 0 in the computed (or estimated) von Mises shear stress
τc(Rs). To summarize, with increased regularization parameter δ, the computed shear
stress τc decreases. However, with concomitant increase in grid spacing ∆r, the shear
stress value gains an addition of ∆τc > 0 due to the truncation (and interpolation)
error. Hence, using ∆r = 5mm with either δ = 10−2 s−1 or δ = 10−1 s−1 produces
the most correct result for the wrong reasons.

Rotational Frequency at fo = 0.1 rps

Again, using Equation 3.32 (Page 66), it becomes apparent that plug is also occurring
when the rotational frequency is at fo = 0.1 rps. The correct location of the boundary
between the plastic- and solid state is now calculated to be Rs = 13.79 cm. For
this particular case, Table 8.2 shows the RMSac and ∆T̂ values as a function of
successively refined grid spacing. Since the correct von Mises shear stress at r = Rs,
is not influenced by velocity of the test material, it has the same value here as for the
previous case, namely τ(Rs) = τo = 170Pa.

As mentioned earlier, because of the regularization parameter δ, the fluid used in
the simulations is not of a pure Bingham fluid and hence a difference between the
ideal von Mises shear stress τ(Rs) = τo = 170Pa and the corresponding computed
value τc(Rs) is evident (eki,j + ξki,j contributes also to the difference). This is shown
in Table 8.2 and Figure 8.6. As shown for the fo = 0.02 rps-case (Table 8.1), non
acceptable results are produced when the regularization parameter δ is as high as
10−1 s−1. Increasing the rotational frequency up to fo = 0.1 rps diminishes this error
significantly. This is apparent when looking at the figure, where a smaller difference
between the analytical result vθ(r) and its computed counterpart V k(i,j) is produced.
The reason for this is as follows: With increasing rotational frequency fo, the shear
rate γ̇ increases, which leads to η = µ+ τo/(γ̇+ δ) ≈ µ+ τo/γ̇. In other words, as the
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Table 8.2: Solution error when the rotational frequency is at fo = 0.1 rps.

∆t/∆r2 5.0mm 2.5mm 1.0mm 0.5mm δ

RMSac 0.1 sm−2 0.0025 0.0020 0.0013 0.0009 10−3 s−1

RMSac 1.0 sm−2 0.0172 0.0120 0.0075 0.0053 10−2 s−1

RMSac 1.0 sm−2 0.0822 0.0565 0.0352 0.0247 10−1 s−1

∆T̂ 0.1 sm−2 0.40% 0.22% 0.16% 0.15% 10−3 s−1

∆T̂ 1.0 sm−2 1.24% 1.05% 0.99% 0.98% 10−2 s−1

∆T̂ 1.0 sm−2 6.10% 5.89% 5.83% 5.82% 10−1 s−1

τc(Rs) 0.1 sm−2 172.3Pa 170.6Pa 169.9Pa 169.8Pa 10−3 s−1

τc(Rs) 1.0 sm−2 169.8Pa 168.7Pa 168.4Pa 168.4Pa 10−2 s−1

τc(Rs) 1.0 sm−2 160.8Pa 160.3Pa 160.1Pa 160.1Pa 10−1 s−1
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Figure 8.6: Top: Velocity profile V k(i,j), when the grid spacing is ∆r = 0.5mm (to the
left) and ∆r = 5.0mm (to the right). Bottom: The corresponding von Mises shear stress τc.
The rotational frequency for all illustrations is fo = 0.1 rps. Dashed dotted lines represent the
analytical results: vθ(r) and τ (r).

shear rate grows larger, the shear viscosity used in the numerical simulation becomes
more closer to the ideal Bingham shear viscosity.

As before, the RMSac and T̂ values are decreasing with decreasing grid spacing
∆r, for all δ values concern. Such clear tendency is not produced for τc(Rs) and this
is to be expected, c.f. the discussion for the fo = 0.02 rps-case.

Rotational Frequency at fo = 0.25 rps and fo = 0.5 rps

Increasing the rotational frequency further up to 0.25 rps, eliminates plug. This is
apparent when using Equation 3.32, which gives Rs > Ro for this particular case.
Therefore the numerical von Mises shear stress τc(Rs) is not shown in Table 8.3.
Since the ∆t/∆r2 value is kept at 1 s/m2 for all cases, its value is neither shown.

With fo = 0.25 rps and then with fo = 0.5 rps, the effect from the regularization
parameter becomes smaller and smaller. This is apparent from Table 8.3, where
the largest difference between the correct torque T̂ and the corresponding numerical
counterpart T̂c is only at 1.8%. The reason for this has been discussed previously and
is related to that the shear viscosity used in the simulation becomes more equal to the
ideal shear viscosity η of the Bingham fluid, as the shear rate γ̇ increases. In other
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Table 8.3: Solution error when the rotational frequency is at fo = 0.25 ∧ 0.5 rps.

fo [rps] 5.0mm 2.5mm 1.0mm 0.5mm δ

RMSac 0.25 4.01 ·10−4 1.39 ·10−4 0.65 ·10−4 0.43 ·10−4 10−3 s−1

RMSac 0.25 16.0 ·10−4 9.91 ·10−4 5.95 ·10−4 4.15 ·10−4 10−2 s−1

RMSac 0.25 126 ·10−4 85.0 ·10−4 53.0 ·10−4 37.0 ·10−4 10−1 s−1

∆T̂ 0.25 0.29% 0.09% 0.03% 0.02% 10−3 s−1

∆T̂ 0.25 0.44% 0.24% 0.17% 0.17% 10−2 s−1

∆T̂ 0.25 1.80% 1.59% 1.53% 1.52% 10−1 s−1

RMSac 0.50 2.40 ·10−4 0.56 ·10−4 0.15 ·10−4 0.09 ·10−4 10−3 s−1

RMSac 0.50 4.81 ·10−4 2.22 ·10−4 1.20 ·10−4 0.82 ·10−4 10−2 s−1

RMSac 0.50 28.0 ·10−4 18.0 ·10−4 11.0 ·10−4 7.89 ·10−4 10−1 s−1

∆T̂ 0.50 0.27% 0.08% 0.02% 0.01% 10−3 s−1

∆T̂ 0.50 0.32% 0.12% 0.06% 0.05% 10−2 s−1

∆T̂ 0.50 0.75% 0.55% 0.50% 0.48% 10−1 s−1
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Figure 8.7: Top: Velocity profile V k(i,j), when the grid spacing is ∆r = 0.5mm (to the
left) and ∆r = 5.0mm (to the right). Bottom: The corresponding von Mises shear stress τc.
The rotational frequency for all illustrations is fo = 0.25 rps. Dashed dotted lines represent the
analytical results: vθ(r) and τ (r).

words, the shear rate γ̇ overshadows the regularization parameter δ in the viscosity
function η. Figure 8.7 shows the calculated velocity profile V k(i,j) and the von Mises
shear stress τc when fo = 0.25 rps. A corresponding figure in the case of fo = 0.5 rps
is shown in Figure 8.8. There, all computed lines V k(i,j) coincide more or less with
each other and with the correct solution vθ(r).

Solution Error RMSac

When looking at Table 8.1 to Table 8.3 it becomes clear that solution error RMSac

becomes smaller with successively refined grid spacing ∆r. This result is produced re-
gardless of the magnitude of regularization parameter δ used. Figure 8.9 demonstrates
the result from the tables when the rotational frequency is at fo = 0.02 rps (to the
left) and at fo = 0.5 rps (to the right). There it becomes apparent how the solution
error RMSac decreases with 1) increased rotational frequency, 2) with decreasing
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Figure 8.8: Top: Velocity profile V k(i,j), when the grid spacing is ∆r = 0.5mm (to the
left) and ∆r = 5.0mm (to the right). Bottom: The corresponding von Mises shear stress τc.
The rotational frequency for all illustrations is fo = 0.5 rps. Dashed dotted lines presents the
analytical results: vθ(r) and τ (r).

regularization parameter δ and 3) with successively refined grid spacing ∆r.
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Figure 8.9: To the left: RMSac values at fo = 0.02 rps. To the right: RMSac values at
fo = 0.5 rps. Note that in this latter figure, the scale of the ordinate is in 10−3 as shown in
Table 8.3.

With the above, a numerical convergence is verified when using a Bingham fluid at
the top region of the viscometer. Since exactly the same type of boundary condition
and exactly the same programming routines are used in the bottom region of the
whole solution domain (and also for other types of viscometric geometries in this
work), it is reasonable to assume a numerical convergence applies also for this zone.

8.6 Imitation of the Viscoplastic and Solid State

In the viscoplastic zone r ∈ [Ri, Rs] (or r ∈ Ωp) and in the solid zone r ∈ [Rs, Ro]
(or r ∈ Ωe) the question is how well does the software Viscometric-ViscoPlastic-

Flow, simulate these two physical conditions, relative to applied torque T̂ . This
is the subject of current section. In investigating this topic, the same viscometric
values apply as was used in Section 8.5, namely τo = 170Pa and µ = 35Pa · s. Like
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before, the spacing between grid points in r- and z-direction is equal in this analysis
∆r = ∆z.

8.6.1 Imitation of the Solid State

In the plugged zone r ∈ [Rs, Ro] (or r ∈ Ωe), the question is how well does the
software simulate the solid state. In Section 8.5, comparison of numerical solution
V k(i, j) with known analytical solution vθ was made. The comparison was also made
for the solid region r ∈ [Rs, Ro], where V k(i, j) is compared with vθ = r ωo . With
the low solution error RMSac shown in Figure 8.9, it is apparent that solid state
is simulated in a quite satisfactory manner, when δ ≤ 10−2. However, since a real
viscometric measurement is based on logged torque, the quality of solid state might
be best verified by demonstrating that the computed torque is equal to the analytical
torque T̂c = T̂ and that it is a constant (i.e. T̂c = constant ∀ r ∈ [Ri, Ro]) as shown
in Equation 3.15 (Page 58). As proven there, the last condition must apply in both
the plastic- and the solid domain.
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Figure 8.10: Torque T̂c as a function of the radius r, when fo = 0.02 rps (to the left) and
fo = 0.1 rps (to the right). Same legends apply for both figures.

Figure 8.10 demonstrates the computed torque T̂c as a function of the radius r,
when fo = 0.02 rps (to the left) and fo = 0.1 rps (to the right). The solid vertical
lines demonstrate the correct location of the boundary between the plastic- and the
solid state r = Rs calculated with Equation 3.32 (see also Figures 8.5 and 8.6). With
fo = 0.02 rps, ∆r = 0.5mm and δ = 10−3 s−1, the computed torque T̂c is very close
to the correct analytical solution T̂ with only 0.4% difference. Using this smallest
grid spacing (∆r = 0.5mm) gives a torque profile which is constant ∀ r ∈ [Ri, Ro].
This result in not produced when using the largest grid spacing of 5.0mm. However,
the former grid spacing is much more computational expensive since more grid points
are present and also since a smaller time step ∆t is required to maintain stability.
With the smallest grid spacing, the computed torque T̂ is a constant, regardless of
regularization parameter δ used. When using the largest grid spacing, a “humpback”
near the correct boundary between the viscoplastic state and the solid state r = Rs
is produced for both δ = 10−3 s−1 and δ = 10−2 s−1. Also, at the outer cylinder
r = Ro, some additional deviations from the constant torque are produced. This type
of deviation is also produced at the inner cylinder r = Ri, but still at a much smaller
magnitude.
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When fo = 0.1 rps, the torque deviations at r = Rs and at r = Ro seem to be
added together since Rs ≈ Ro, which results in a larger error. This phenomenon does
not appear when the smallest grid spacing is used, which emphasis its benefits.

Going back to fo = 0.02 rps, the analytical torque is equal to T̂ = 2.885Nm
and with δ = 10−3 s−1 and δ = 10−2 s−1, the difference between the analytical value
T̂ (Rs) and its computed counterpart T̂c, when using the smallest grid spacing, is 0.4%
and 2.9%, respectively. However for δ = 10−1 s−1, the difference is large as 18.3%.
Increasing the rotational frequency up to fo = 0.1 rps gives smaller difference between
T̂ and T̂c. This is to be expected since with larger rotational frequency fo, the shear
rate γ̇ increases and hence: η = µ + τo/(γ̇ + δ) ≈ µ + τo/γ̇. For both illustrations
of Figure 8.10, then with δ = 10−1 s−1 and ∆r = 5mm, the torque seems to gain
a constant value across the boundary r = Rs. This is factual since the increased
δ results in a worse imitation of the solid state and hence the transition from the
viscoplastic state to the solid state becomes much smoother. This is apparent with
the much smoother shear rate profile γ̇c at r = Rs as shown in Figure 8.11.
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Figure 8.11: Shear rate γ̇c as a function of the radius r, when fo = 0.02 rps (to the left) and
fo = 0.1 rps (to the right). The thick solid line presents the analytical solution γ̇(r). Legends
are shown in the left illustration of Figure 8.10.

Another approach is possible in validating the imitation of the solid state. As is
shown with Equation 3.5 (Page 53), the shear rate must be zero γ̇ = 0 where pure
solid state exists, namely in the domain of Ωe. The computed shear rate γ̇c is shown
in Figure 8.11. With δ = 10−3 s−1, this condition is basically fulfilled. However, a
small deviation exists, around the boundary between the viscoplastic state and the
solid state. For δ = 10−2 s−1, the computed shear rate is not zero, but is close to it.

With δ = 10−1 s−1, the computed solution becomes unacceptably wrong. For
most of the numerical calculations done in this thesis, the regularization parameter is
set to be δ ≤ 5 · 10−3 s−1, which should produce a satisfactory imitation of the solid
state and at the same time, keeping the calculation time within tolerable limits.

8.6.2 Imitation of the Viscoplastic State

Increasing the rotational frequency further up to 0.25 rps, eliminates plug. This is
apparent when using Equation 3.32, which gives Rs > Ro for this particular case.
Therefore the whole domain r ∈ [Ri, Ro] consists solely of a viscoplastic state. In this
domain, the question is how well does the software simulate this condition. Figure 8.12
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demonstrates the computed shear rate γ̇c as a function of the radius r, when fo =
0.25 rps (to the left) and fo = 0.5 rps (to the right).
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Figure 8.12: Shear rate γ̇c as a function of the radius r, when fo = 0.25 rps (to the left) and
fo = 0.5 rps (to the right). The thick solid line presents the analytical solution γ̇(r). Legends
are shown in the left illustration of Figure 8.10.

As always, when calculating the shear rate at the boundaries r = Ri and r = Ro,
Equations 7.52 and 7.53 (Page 166) are applied as is shown with Equations 8.3 and
8.4 below. As mentioned in Section 8.5, then this is done to maintain a truncation
error of O(∆r2). This results in the smooth shear rate profile at these boundaries as
is shown in Figure 8.12.

γ̇c|Ri
=
4 vi+1,j − vi+2,j − 3 vi,j

2∆r
− vi,j
Ri

(8.3)

γ̇c|Ro
=
−4 vi−1,j + vi−2,j + 3 vi,j

2∆r
− vi,j
Ro

(8.4)

As shown in Figure 8.12, there is a very small difference between the computed shear
rate γ̇c and the analytical shear rate γ̇(r). This is to be expected, since with increasing
rotational frequency fo, the shear rate γ̇ increases, and overshadows the regularization
parameter δ in the viscosity function η. However, when using δ = 10−1 s−1, some
deviation exists near and at the boundaries r = Ri and r = Ro. This is apparent with
the two small incorporated figures shown in each illustration:

Near and at the inner cylinder r = Ri, the computed shear rate γ̇c is smaller
than the (correct) analytical shear rate γ̇(r). Around the outer cylinder r = Ro, the
opposite is true. This results applies regardless of spacing between grid points used
∆r = 0.5mm or ∆r = 5mm. However, this deviation is reduced when the rotational
frequency is increased up to fo = 0.5 rps. Using either δ = 10−2 s−1 or δ = 10−3 s−1,
this type of deviation is not noticeable for either case of fo = 0.25 rps or fo = 0.5 rps.

Looking back to Figure 8.11, the viscoplastic state is imitated in a quite sat-
isfactory manner, when plug is occurring in the neighborhood. This applies when
using either δ = 10−2 s−1 or δ = 10−3 s−1. Using larger regularization parameter
δ = 10−1 s−1 leads to an unacceptable imitation of the viscoplastic state. For this
last-mentioned case, the largest source of error is due to the incorrect boundary con-
dition that apply at r = Rs, as a result of the smooth transition in velocity across
this boundary (see Figures 8.5 and 8.6).

URN:NBN:no-3374



8.7. SOME NUMERICAL RESULTS 195

Figure 8.13 demonstrates the computed torque T̂c as a function of radius r, when
fo = 0.25 rps (to the left) and fo = 0.5 rps (to the right). As shown with the small
incorporated figure shown in each illustration, the computed torque T̂c is more or less
equal to the analytical torque T̂ for all cases. When applying the rotational frequency
of fo = 0.25 rps, a small deviation exists for the δ = 10−1 s−1 case. This difference is
further decreased when increasing the rotational frequency up to fo = 0.5 rps.
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Figure 8.13: Torque T̂c as a function of the radius r, when fo = 0.25 rps (to the left) and
fo = 0.5 rps (to the right). Legends are shown in the left illustration of Figure 8.10.

When using the largest spacing between grid points ∆r = 5mm, a drop in com-
puted torque becomes factual at each boundary points r = Ri and r = Ro. This is
peculiar since the same truncation error of O(∆r2) applies when calculating the shear
rate γ̇c in the bulk as when calculating it at the boundary points7. Nevertheless, this
drop consists of only 0.02/5.5 ≈ 0.3% in the worst case. When applying the smallest
grid spacing, namely ∆r = 0.5mm, this phenomenon is of no concern.

8.7 Some Numerical Results

The objective with this section is to examine how much z-dependency exists in the
velocity function vθ(r, z, t) in upper part of the viscometer. This is done by using the
software Viscometric-ViscoPlastic-Flow, shown in Appendix A. The inquiry
has to do with justifying the assumption made in Section 3.3.1 (Page 56) when deriving
the well-known Reiner-Riwlin equation. For Section 8.7.1, the viscometric values used
consist of τo = 200Pa, µ = 20Pa · s. However, for Section 8.7.2, they consist of
τo = 60Pa and µ = 10Pa · s. In both cases, the regularization parameter is set equal
to δ = 4 · 10−3 s−1.

8.7.1 ConTec BML Viscometer 3

Figures 8.14, 8.15 and 8.16 demonstrates three dimensional vector plot and isoplot of
the computed velocity V k(i,j) when the angular velocity ωo is 1 rad/s. For the last-
mentioned figure, the dashed dotted line demonstrates the (approximate) location of
the boundary between the solid state Ωe and the viscoplastic state Ωp. As discussed

7It is the shear rate γ̇c that the main dependent variable when calculating the torque T̂c =
2 π r2 h Ti,j = 2π r2 h τc = 2π r2 hη(γ̇c) γ̇c (see also Footnote 6 on Page 186).
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previously, the velocity profile of a pure solid state consist of vθ = r ωo and is produced
in the calculations, as noted with the even spaces between the isolines in the solid
domain Ωe.

Figure 8.14: Three dimensional vector plot of velocity v (same condition as in Figure 8.16).

Before proceeding, there is one issue related to the simulation results presented
in this section that needs to be discussed. The issue is apparent when observing a
rheological experiment of concrete inside the ConTec BML Viscometer 3. This is
perhaps also apparent when observing Figure 3.8 (Page 62), which demonstrates that
the test material consist of coarse particle suspension with the largest aggregate size
of Dmax = 16mm. When monitoring the velocity of such a large aggregate particle,
it is clear that its velocity vI is of a random and spontaneous nature. This type of
randomness is perhaps more present in the experiment because of the barrier restraint
of the inner and outer cylinder (see discussion in Section 3.4.2). This random velocity
is not to be confused with the smooth8 velocity v, which is shown for example in

8Discontinuities in the numerical velocity function V k(i,j) can be produced as a result of the
numerical error involved. Such discontinuities could mistakenly be understood as a correct solution
of the random and spontaneous velocity type vI of the individual solid particles. Any random and
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Figure 8.15: Vector plot of velocity v (same condition as in Figure 8.16).
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Figure 8.16: Velocity profile V k(i,j) when ωo = 1 rad/s. The isolines start at 2 cm/s near the
inner cylinder and with equal increments of 2 cm/s, ends at 14 cm/s near the outer cylinder.

Figure 8.16 and calculated by Equation 2.18 (Page 16). As shown in Equation 2.6
(Page 13), this velocity v consist of the mass averaged velocity of all the solid par-
ticles composing the CP, for example shown in Figure 3.8. Hence, any random and
spontaneous velocity contributions from the individual solid particles are summarized
out in the averaging and only the relevant smooth motion of the continuum will re-
main. More precisely, when considering a coarse particle suspension like of the fresh
concrete, the smooth velocity profile v = v(r, z) like shown in Figure 8.16, does not
represent the velocity for the individual solid particles (i.e. of the individual aggre-
gate, cement grain or water molecule). This is because the latter type of motion is on
a scale below what can be provided by Equation 2.18. The above discussion applies
equally for water. One cannot use the Navier-Stokes Equation B.18 (Appendix B.6)
to predict the random (i.e. thermal) motion of the individual water molecule, because

spontaneous velocity contribution cannot be calculated by Equation 2.18 (Page 16) because of the
filter process made in the steps from Equation 2.2 to Equation 2.6 (Page 13).
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such a motion is on a scale below what can be provided by this equation.
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Figure 8.17: Shear stress τc when ωo = 1 rad/s. The isolines start at 50Pa near the outer
cylinder and with equal increments of 50Pa, ends at 500Pa around the corner of inner cylinder.
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Figure 8.18: Computational analysis made at i ∈ [NX1 : NX2] = [101 : 146] and j = 270.
The figure demonstrates the velocity profile V k(i,j) (top left), shear rate γ̇c (top right), shear
stress τc (bottom left) and torque T̂c (bottom right). The angular velocity for all illustrations is
ωo = 1 rad/s. Dashed dotted lines represent the analytical results: vθ(r), γ̇(r), τ (r) and T̂ (r).

Figure 8.17 demonstrates isoplot of the computed von Mises shear stress τc, when
the angular velocity is ωo = 1 rad/s. The isoline of τc = τo = 200Pa demonstrates
the location of the boundary between the solid state Ωe and the viscoplastic state Ωp.
This boundary is also shown with a dashed dotted line in Figure 8.16 for the velocity
profile V k(i,j).

Figure 8.18 shows computational analysis made at (i, j) = ([NX1 : NX2], 270) =
([101 : 146], 270). Calculating the solution error at these points, in the same manner
as described in Equation 8.1, gives RMSac = 0.0028. This value could have been
anticipated from Table 8.2, given the similar conditions shown there. By using Equa-
tion 3.32 (Page 66), the correct location of the boundary between the plastic- and the
solid state is calculated to be Rs = 13.31 cm. The value of τc(Rs) = 199Pa, not far
away from the desired value of τo = 200Pa. This demonstrates that the computed
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Figure 8.19: Velocity profile V k(i,j) when ωo = 3 rad/s. The isolines start at 5 cm/s near the
inner cylinder and with equal increments of 5 cm/s, ends at 40 cm/s near the outer cylinder.
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Figure 8.20: Shear stress τc when ωo = 3 rad/s. The isolines start at 50Pa near the outer
cylinder and with equal increments of 50Pa, ends at 800Pa around the corner of inner cylinder.

von Mises shear stress of τc = τo with δ = 4 · 10−3 s−1 is a good representation of the
correct location of the boundary between the solid and the viscoplastic state.

The analytical torque T̂ = 4.432Nm is calculated from Equation 3.24, using
(Ri, Rs, h) = (10, 13.31, 19.9) cm. This equation assumes that the velocity vθ is not
changing with z (i.e. assumes z-independence). The numerical torque, calculated
in the software, with full z-dependency, gives T̂c = 4.425Nm. Comparing the two
values, results in a ∆T̂ = 100 · (T̂ − T̂c(Ri, h))/T̂ = 0.16% difference. Comparing
the analytical torque with the numerical torque T̂c(Ri) = 4.417Nm, however now
only using the velocity information at j = 270 (i.e. assuming z-independence), gives
∆T̂ = 100 · (T̂ − T̂c(Ri))/T̂ = 0.33%.

Figures 8.19 and 8.20 demonstrates isoplot of the computed velocity profile V k(i,j)
and the computed von Mises shear stress τc, when the angular velocity ωo has been
increased up to 3 rad/s. With the increased angular velocity, it is apparent that the
solid domain Ωe has been reduced as a result of the concomitant increase in the
computed von Mises shear stress τc.
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8.7.2 ConTec Viscometer 4

The viscometric values used in this section, consist of τo = 60Pa and µ = 10Pa · s.
The regularization parameter has the same value as previously, namely δ = 4·10−3 s−1.
Figure 8.21 demonstrates isoplot of the computed velocity V k(i,j) when the rotational
frequency fo is 0.1 rps. The dashed dotted line demonstrates the (approximate) loca-
tion of the boundary between the solid state Ωe and the viscoplastic state Ωp. As is ev-
ident, the solid region Ωe is rather small relative to the whole solution domain Ω. The
reason for this is due to the slimmer viscometric geometry of the ConTec Viscome-

ter 4: As is evident with Equation 3.30 (Page 65), the plug starts at the outer cylinder
(Ro), when the angular velocity ωo is low as ωpo = ωo|Rs=Ro = (τo/µ) · 0.03. However,
for the ConTec BML Viscometer 3 this value is equal to ωpo = (τo/µ) · 0.18.
Hence, a plug state is less likely to occur for the former viscometer, which results in
the relatively smaller solid domain Ωe.
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Figure 8.21: Velocity profile V k(i,j) when fo = 0.1 rps. The isolines start at 1 cm/s near the
inner cylinder and with equal increments of 1 cm/s, ends at 6 cm/s near the outer cylinder.

As mentioned in Section 8.7.1, when considering a suspension like mortar and
cement paste, one has to realize that the smooth velocity profile shown in Figure 8.21
does not represent the velocity profile for the individual solid particles. This is because
such type of motion is on a scale below what can be provided by Equation 2.18. The
velocity profile of the solid particles is much more discontinuous and random than
represented in this figure. Instead, Figure 8.21 shows the velocity profile of CPs with
the CM coordinates at the corresponding spatial points rCM ≡ x(X, t) = (r, θ, z, t).
As shown with Equation 2.6 (Page 13), this type of velocity consists of the mass
averaged velocity of all the solid particles composing the CP. Therefore, a spatial point
in the figure represents the average velocity of all the solid particles at and surrounding
the point (r, z). As such, any random and discontinuous velocity contribution from
the individual solid particles are summarized out, resulting in the smooth velocity
profile shown in this figure.

Figure 8.22 demonstrates isoplot of the computed von Mises shear stress τc, when
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Figure 8.22: Shear stress τc when fo = 0.1 rps. The isolines start at 30Pa near the outer
cylinder and with equal increments of 10Pa, ends at 200Pa around the corner of inner cylinder.

the rotational frequency fo is 0.1 rps. As before, the isoline of τc = τo = 60Pa
demonstrates the (approximate) location of the boundary between the solid state Ωe
and the viscoplastic state Ωp. This boundary is also shown with a dashed dotted line
in Figure 8.21 for the velocity profile V k(i,j).

Figure 8.23 shows computational analysis made at (i, j) = ([NX1 : NX2], 270) =
([171 : 203], 270). Calculating the solution error at these points, in the same manner as
described in Equation 8.1, gives RMSac = 0.0019. By using Equation 3.32 (Page 66),
the correct location of the boundary between the plastic- and solid state is calculated
to be Rs = 11.38 cm > Ro and hence no plug is occurring at the top region of the
viscometer ⇒ Rs = Ro = 10.1 cm.

The analytical torque T̂ = 0.652Nm is calculated from Equation 3.24, using
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Figure 8.23: Computational analysis made at i ∈ [NX1 : NX2] = [171 : 203] and j = 270.
Same description applies here as for Figure 8.18.
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Figure 8.24: Velocity profile V k(i,j) for the ConTec Viscometer 4 when fo = 0.5 rps. The
isolines start at 5 cm/s near the inner cylinder and with equal increments of 5 cm/s, ends at
30 cm/s near the outer cylinder.

(Ri, Ro, h) = (8.5, 10.1, 12.6) cm. As mentioned earlier, this equation assumes that
the velocity vθ is not changing with z (i.e. assumes z-independence). The numeri-
cal torque, calculated in the software, with full z-dependency, gives T̂c = 0.654Nm.
Comparing the two values, results in a ∆T̂ = 100 · (T̂ − T̂c(Ri, h))/T̂ = −0.31% dif-
ference. The numerical torque generated by only using the velocity information at
j = 270 (i.e. assuming z-independence), gives T̂c(Ri) = 0.652Nm. This value is equal
to the analytical torque T̂ .

Figures 8.24 and 8.25 demonstrates isoplot of the computed velocity V k(i,j) and
the computed von Mises shear stress τc, when the rotational frequency fo has been
increased up to 0.5 rps. With the increased angular velocity, it is apparent that the
solid domain Ωe has reduced as a result of the concomitant increase in the computed
von Mises shear stress τc. Almost the entire solution domain Ω, now consist of the
viscoplastic state Ωp.

8.8 Summary

With Sections 8.4, 8.5 and 8.6 it was demonstrated that the numerical software
Viscometric-ViscoPlastic-Flow produces accurate results, when simulating a
viscoplastic fluid. In some parts, this demonstrations is based on comparison of nu-
merical results with known analytical results of Section 3.3. For example, this was
done when verifying numerical convergence. But also, the accuracy of the software
was demonstrated with known mathematical tools: Issues like convergence, consis-
tency and (apparent) stability has been dealt with.

It is clear with the parallel isolines in Figure 8.16 to Figure 8.25 and from the few
torque calculations, that at the upper part of eitherConTec BML Viscometer 3 or
ConTec Viscometer 4, a z-independence can be assumed as is done when deriving
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Figure 8.25: Shear stress τc for the ConTec Viscometer 4 when fo = 0.5 rps. The isolines
start at 25Pa near the outer cylinder and with equal increments of 25Pa, ends at 600Pa around
the corner of inner cylinder.

the well-known Reiner-Riwlin equation (see Section 3.3.1 on Page 56).
In Chapter 9, the memory modules Γ̃ and Θ̃ will be used (see Section 7.10). This

means that the shear viscosity η will gain a memory of the recent events. However,
such a maneuver does not come without a cost. In activating the memory modules, the
calculation time increases to some large extent. This is not only due to the increased
number of calculations necessary at each time step, but also because of reduced time
step ∆t used in maintaining stability. Fortunately, with the demonstration of z-
independence, it is no longer necessary to include the bottom part of the solution
region Ω∪∂Ω. In deleting it, the Neumann boundary condition ∂vθ/∂z = 0 is applied
at the new bottom part of the solution domain. The implementation of this condition
is done in the same manner as is done for the upper part, shown in Section 7.7 (see
Pages 164 and 186). With this scheme, the calculation time is much reduced, making
a larger amount of numerical investigations possible.
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Chapter 9

Thixotropic Explorations of
Viscoplastic Fluid

9.1 Introduction

Background

The interest in thixotropic phenomena is nearly as old as modern rheology [75]. An
increasing number of real materials has been found to show these effects. Also, they
have been applied in various industrial applications. The term thixotropy was orig-
inally coined to describe an isothermal reversible, gel-sol (i.e. solid-liquid) transition
due to mechanical agitation [75]. In a textbook by Barnes et al. [9], thixotropy is
defined as “A decrease of the apparent viscosity under constant shear stress or shear
rate, followed by a gradual recovery when the stress or shear rate is removed. The
effect is time-dependent.” (with apparent viscosity it is meant the shear viscosity η).

The amount of theoretical literature on the above-mentioned time-dependent ma-
terial is limited [9], however, there is a comprehensive review article about the subject
done by Mewis [75]. In this paper, the various approaches used to measure thixotropy
is represented. For example, one approach mentioned is to measure the torque T̂ un-
der a linear increase and then decrease in the rotational frequency fo. If the test
sample is thixotropic, the two torque curves produced do not coincide, causing rather
a hysteresis loop. The area of a loop can then be used as a measure of the degree
of thixotropy. While hysteresis loops are useful as a preliminary indicator of behav-
ior, they do not provide a good basis for quantitative treatments [128]. However,
attempts can be made to quantify the thixotropic behavior with such torque curves,
by their integration [128, 6, 7]. Another approach possible in studying thixotropic
behavior, is by monitoring the decay of measured torque from an initial value T̂o
to an equilibrium value T̂e with time t, at a constant rotational frequency fo [128].
In some cases, a simple exponential relationship can be found, but other and more
complicated relationship can also exist. Lapasin et al. [67], makes the use of this ap-
proach, using a three different types of functions, however more complicated than the
simple exponential form. Nevertheless, extracting shear viscosity parameters by this
approach is very limited because the shear viscosity equation can only be valid when
only one constant rotational frequency is applied for each experiment. Considering a
shear viscosity equation extracted from such experiment and then using it in another
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experiment of much more complicated shear history, will render almost impossible.
As will be demonstrated in this chapter, for the latter case, such an equation must
depend on fading memory information of both the shear rate γ̇ (related to dispersion
rate) and of the coagulation rate H .

In the article by Mewis [75], different theoretical approaches are mentioned to cre-
ate a comprehensive thixotropic shear viscosity equation: 1) By the use of axiomatic
theory of continuum mechanics, 2) by using the theory of structural kinetics, 3) by
starting from the microstructure to calculate the rheological behavior and 4) by using
thermodynamic arguments to develop thixotropic theories. In this chapter, a combi-
nation of first and second approach is used. The axiomatic theory consists of using
Equation 9.7 (Section 9.3.2), while the theory of structural kinetics is extracted from
the modified Hattori-Izumi theory of Section 9.3.1. The validity of the approach used
here, is verified by reproducing the measured torque T̂ by numerical means, under a
very complex shear rate conditions.

Combination of Experimental and Numerical Approach

The underlying mathematics of the software Viscometric-ViscoPlastic-Flow is
presented in Chapter 7. In Chapter 8, the accuracy of the results produced by the
software, is demonstrated to be of a good quality. In the current chapter, this software
is used in a complex thixotropic analysis made on some cement pastes. Basically the
analysis consists of reproducing the measured torque T̂ by numerical means and in
doing so, extracting a more detailed shear viscosity function η for the test material.

The objectives of this chapter is to test the Hattori-Izumi theory (Section 2.4.2)
and its modification (Section 9.3). In doing this, one is also testing if the thixotropic
behavior of cement paste is governed by a combination of reversible coagulation, dis-
persion and re-coagulation of the cement particles. In addition to this, the functional
form of the shear viscosity function η = η(x, t) extracted in this chapter, is of great
interest. Finally, the purpose of this chapter is to produce supplementary informa-
tion about the effects of the polymers used in this thesis. The (super)plasticizers used
in the cement pastes are the VHMW Na (Section 9.4), HMW Na (Section 9.6),
HMW Ca (Section 9.7) and SNF (Section 9.8). Their characteristics are described
in Section 4.2.2.

The viscometer used is the ConTec Viscometer 4, hence its geometry is used
when making the numerical simulations. Here, the shear viscosity η must gain a
(fading) memory of the recent events. However, in making such mathematical ma-
neuver, the calculation time increases to some large extent. This is not only due to
the increased number of calculations necessary at each time step, but also because of
reduced time step ∆t used in maintaining stability. Fortunately, the bottom part of
the solution domain Ω∪ ∂Ω can be deleted without compromising accuracy. This ap-
proach is in accordance with the findings presented in Section 8.8. In doing this, the
calculation time is decreased significantly. Also, the spatial step ∆r = ∆z = 1mm
is used instead of ∆r = ∆z = 0.5mm, to decrease the calculation time still fur-
ther. Using a larger spatial step than 1mm results in an inaccurate outcome. The
effect of grid spacing on numerical results, when simulating a viscoplastic fluid, has
been previously discussed in Section 8.6.1. Unless otherwise stated, the regularization
parameter δ is always kept at 5 · 10−3 in this chapter.

For one particular case, namely when using the VHMW Na polymer, the bottom
part of the solution domain Ω∪∂Ω, is included in the numerical analysis. The results
are presented in Section 9.5. There the findings of Section 8.8 is verified.
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9.2 Experimental Setup

9.2.1 Mix Design

The water-cement ratio used for the cement paste is w/c = 0.3. The amount of
plasticizer used in each batch is 0.5% sbwc. The volume of the test sample is about
three liters, meaning that about 4.80 kg (1.54 l) of Norcem Standard Cement and
1.44 kg of water is used in each batch.

The initial phase volume is equal to Φ = (1.54 l)/(2.99 l) = 0.52 and it is always
increasing due to the growth of the cement particles and the reduction in free water,
as a result of their chemical reactions (see also Footnote 33, Page 48).

The density is calculated to be ρ = (4.80 kg + 1.44 kg)/(2.99 l) = 2.09 kg/l =
2090 kg/m3. When assigning density in the source code param.f90, it is the SI value
of 2090 that must be used.

9.2.2 Mixing Procedure

The fact that the test sample consist of only pure cement paste, results in a reduced
reproducibility. Formation of some small coagulated cement clumps, during the mix-
ing process of water and cement, has a serious effect on measured viscometric values.

At the start of mixing, pouring the whole 1.44 liter of water within 60 seconds,
into the 4.80 kg of cement, was shown to be catastrophic, creating coarsely coagulated
cement clumps, hard to brake apart. To avoid this, the water is rather added1 in small
portions for three minutes, while mixing at speed 1 (the speed settings are described
in Section 5.3.1). Hand mixing is also important in braking up slam layers and the
remaining coagulated cement clumps that resided at the bottom of the mixing bowl.
Previously, with mortars and concrete, such clump formation was of lesser concern,
since the gravel- and sand particles served as a grinding- and dispersing agents.

After some trial and error, the mixing procedure for the cement paste became
as listed below.

Mixing procedure for cement paste.

1. t ∈ [0 min, 3 min]: Mixing of cement and water at speed one. [As described in
Section 5.2.1, the water is premixed with lignosulfonate (or with SNF)]. Most
of the cement particles are (more or less) moistened within the first 60 seconds.

2. t ∈ [3 min, 6 min]: Hand mixing and resting.

3. t ∈ [6 min, 10 min]: Mixing at speed 2 (mixing at speed 3, resulted in too much
splashing in most cases).

4. t ∈ [10 min, 11 min]: Check with hand mixing, if the cement suspension is
homogeneous.

Still, the above mixing procedure only solved what is visible to the naked eye.
As will be apparent, for example in Figure 9.8, the issue of bad reproducibility is
never completely resolved. To solve (or rather reduce) this problem, three repeated
batches are mixed and tested, for each type of plasticizer used. The average of the
three results is then used to represent rheological behavior of the test material. For
example, in Figure 9.3 (or in Figure 9.8), the dotted lines represent each of the three
batches, the solid line demonstrates the average of these measurements and the double
line demonstrates the numerical simulation result.

1The cement is first placed into the mixing bowl and then the water is added.
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9.2.3 Measuring Procedure

At 12, 42, 72 and 102 minutes after the initial water addition, rheological measure-
ments with the ConTec Viscometer 4 is performed. Immediately after each mea-
surement, a remixing by hand is done to ensure homogeneous mixture. Right af-
terwards the measuring unit2 is submerged into the cement paste and stays in this
position until the next measurement is finished. Hence, a complete rest applies for
the test material prior to the coming measurement. The resting consisted of about 29
minutes and was considered to be sufficient time for the test sample to gain a com-
pletely coagulated state, at the start of the next measurement: U3|t=0 ≡ Uo = 1. No
remixing, with the Hobart mixer, applies between measurements. Since the objectives
is to investigate thixotropic effects of the cement suspension, it would be pointless to
use the Hobart mixer to disperse the coagulated cement particles and brake up the
structure that the viscometer is supposed to measure.

9.2.4 Rotational Frequency fo

The boundary condition that apply in the numerical simulation must always be the
same as in the real experiment. This means that the rotational frequency fo|exp
that the viscometer generates for the experiment, must be equal to the rotational
frequency fo|num used in the numerical simulation ⇒ fo = fo|exp = fo|num. This
condition applies here, and the rotational frequency used in either case is shown in
the left illustration of Figure 9.1. It is the source code motion.f90 that provides the
rotational frequency in the calculation and it is constructed with a series of exponential
functions. Using a series of arctan functions was also tested, but resulted in a worse
representation of the actual rotational frequency.
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Figure 9.1: To the left: Rotational frequency that is used in both the numerical simulation
and in the experiment. To the right: Torque curve T̂c calculated in the software Viscometric-

ViscoPlastic-Flow, using Equations 9.1 and 9.2.

Referring to the left illustration of Figure 9.1: In the time period between 0 and
25 seconds the stepwise increasing shear rate sequence is applied. This is followed
with the stepwise decreasing shear rate sequence in the time period between 25 and
45 seconds.

2The measuring unit is the inner cylinder as shown with the center illustration of Figure 3.1.

URN:NBN:no-3374



9.3. MODIFIED HATTORI-IZUMI THEORY 209

9.3 Modified Hattori-Izumi Theory

The viscosity of Hattori and Izumi is given by Equation 2.27 and is reproduced below.

ηHI = B3 J
2/3
t (9.1)

As mentioned in Section 2.4.2, the term Jt = n3 U3 represents the number of (re-
versible) junctions between primary cement particle that can undergo a reversible
coagulation (see the paragraph just below Equation 2.64, Page 49). [Both U3 and Jt
are also referred as the reversible coagulation state (see Section 2.6.3)]. The num-
ber of (reversible) junctions is calculated by Equation 2.45 and is reproduced with
Equation 9.2, below.

Jt ≡ J3 = n3 U3 =
n3 [Uo(γ̇ H t2 + 1) +H t]

(H t+ 1)(γ̇ t+ 1)
(9.2)

The variable H is the coagulation rate coefficient, described in Section 2.5.3. As is
mentioned in Sections 2.4.2, the term Jt|t=0 ≡ Jo = n3 Uo describes the number of
(reversible) junctions between the primary cement particles (that can undergo a re-
versible coagulation), at the beginning of an experiment t = 0. For each batch tested,
a number of four experiments are made, namely at 12, 42, 72 and 102 minutes after
initial water addition. Each experiment is made with the ConTec Viscometer 4

and begins at the (experimental) time t = 0 and ends at t = 50 s. This time variable
is not to be confused with the time duration from mixing of water and cement clinker.
The former time period spans only over 50 seconds as shown in Figure 9.1 to the left,
while the latter spans over the whole 102 minutes as discussed in Section 9.2.3.

The immediate problem with Equation 9.2 becomes apparent when taking the
limit t→∞. In such calculation, the condition Jt = n3 Uo is produced, regardless of
the values H or γ̇ that apply; i.e. under sufficiently large value of t, the time factor
will overshadow all physical processes described with the coagulation rate constant
H and the shear rate γ̇. A consequence of such unphysical characteristics, is shown
in the right illustration of Figure 9.1. This figure demonstrates an example of the
computed torque T̂c, using Equations 9.1 and 9.2 without any modifications. Suffice
to say, using a broad range of numerical values for B3, n3, Uo and H (also those
suggested by the original authors), it became impossible to reproduce the measured
torque T̂ .

In the following three sections, a description is made of some necessary modi-
fications applied to Equations 9.1 and 9.2. Much of these modifications are based
on (semi) empirical considerations, rather than of theoretical ones. They are made
with the sole purpose of being able to calculate a torque T̂c that is identical to the
measured torque T̂ (applied on the inner cylinder, from the test material). The com-
puted torque is calculated with T̂c = 2 π R2i h η γ̇c. This equation is extracted by
using Equations 2.23 (Page 17) and 7.4 (Page 156) when integrating Equation 3.16
(Page 58). The shear rate γ̇ is calculated according to Equation 7.3 (Page 156), and
shear viscosity η according to Equation 9.7.

9.3.1 First Modification: Fading Memory

Equation 9.2 is not far from being correct. By replacing the two terms γ̇ t andH t with
the memory modules Γ̃ and Θ̃, a better result starts to emerge. The last-mentioned
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two modules are defined by Equations 9.3 and 9.4 (these are the same equations as
presented in Section 7.10).

Γ̃(r, z, t) =
∫ t

0

α(t− t′) γ̇(r, z, t′) dt′ (9.3)

Θ̃(r, z, t) =
∫ t

0

β(t− t′) H(γ̇, r, z, t′) dt′ (9.4)

The two terms α and β are memory functions to be defined shortly. For the reasons
mentioned in Section 7.10, the integration must begin from the start of an experiment
t′ = 0 to the current time t′ = t (where t ∈ [0, 50 s]). With the above modification,
the current (reversible) coagulation state U3 = Jt/n3 is now controlled, not only by
the current coagulation H t and dispersion γ̇ t, but also by their past history. This is
shown with the equation below.

U3 =
Jt
n3

=
Uo(Γ̃ Θ̃ + 1) + Θ̃
(Θ̃ + 1)(Γ̃ + 1)

(9.5)

The issue of in what manner the shear viscosity η should memorize the past, is set
by the memory functions α and β. Here, they are defined with exponential function,
meaning that the shear viscosity will remember more the recent events, relative to the
far past. Such type of memeory is called fading memory. The memory functions
are given by Equation 9.6.

α(t − t′) = e−(t−t′)/ma ∧ β(t− t′) = e−(t−t′)/mb (9.6)

The termsma andmb determine how much the shear viscosity η should memorize the
past and as such, they have the physical unit of seconds. Often, the term ma is set
equal to 30 seconds, meaning that the shear viscosity η will have a good recollection
about the shear rate γ̇ for the past 30 seconds with increasing amnesia beyond that
time point. Using ma →∞ ∧ mb →∞ will result in α(t−t′) = β(t−t′) = 1, meaning
that the shear viscosity will always have a full recollection about its past.

9.3.2 Second Modification: Yield Value

As shown with Equation 9.1, the possibility for a yield value is discarded. However,
in the quest of reproducing the measured torque T̂ by numerical means, it became
necessary to include such a term into the shear viscosity function. This resulted
in the temporary shear viscosity function of ηtmp = a1 ηHI + a2 ηHI/γ̇. Both a1 ηHI
and a2 ηHI are related to the increased [decreased] momentum exchange between the
cement particles with increasing [decreasing] number of reversible junctions Jt. The
relationship between the reversible coagulation state Jt and the shear viscosity η, is
summarized in Section 2.6.3 (see also illustrationD in Figure 2.11, Page 27). In a fully
dispersed state, Jt = n3 U3 = 0, both terms a1 ηHI and a2 ηHI are zero. This means
that the temporary shear viscosity ηtmp becomes also zero. However, as discussed
in Section 2.4.1, in a fully dispersed state (Jt = 0) the cement particles will still
interact with each other by collisions (i.e. by momentum exchange), that will result
in a certain minimum and non-zero shear viscosity. This is more specifically shown
with illustrations A and B in Figure 2.11 (see also Figures 2.9 and 2.10). With this
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in mind, it is only natural to include two constant terms into the shear viscosity
equation, which takes such contribution into account. That is, the shear viscosity
now consist of η = ηtmp+(µ+ τo/γ̇) = (µ+ a1 ηHI) + (τo+ a2 ηHI)/γ̇. More precisely,
with the these modifications, the shear viscosity becomes as shown with Equation 9.7.

η = B +

√
Cy

γ̇
(9.7)

The viscometric values B and
√
Cy will be referred as the effective (or actual)

plastic viscosity and the effective (or actual) yield value, respectively. They are
given by Equations 9.8 and 9.9, shown below.

B = µ+ (a1 B3 n
2/3
3 )U2/33 = µ+ µ̃ (9.8)√

Cy = τo + (a2B3 n
2/3
3 )U2/33 = τo + τ̃o (9.9)

The role that the two viscometric terms µ and τo play in Equation 9.7, is somewhat
more complicated than mentioned above. This is because of how it is possible to
categorize two types of coagulation. First is the reversible coagulation, meaning
that the coagulated cement particles can disperse from each other, for the given
available power ẇ to the suspension (see Equation B.34, Page 390); i.e. the power ẇ
is equal to or greater than the work required to continuously separate cement particles,
that are glued together by the energy barrier V maxT +|V minT | (see Figure 2.19, Page 42).
This power will become more and more insufficient in dispersing all coagulated cement
particles because of how the potential energy barrier V maxT + |V minT |, that keeps the
cement particles glued together in a coagulated state, is increasing in depth (see the
DLVO theory on Page 41). The depth of V maxT + |V minT | will increase as a result of the
chemical reactions between the cement particles and water, and possibly also because
of some damage to the adsorbed polymer, at the same time. When this barrier has
gained such a depth that available power ẇ cannot brake two coagulated cement
particles apart, then these particles have entered a permanent coagulation. This
is the second type of coagulation.

At first consideration, the two terms µ and τo describes only the minimum value
that the shear viscosity η can have when the cement particles are fully dispersed; i.e.
these two terms describes a certain basic minimum momentum transfer between the
cement particles, which the process of coagulation and dispersion is not part of. This is
shown with illustrations A and B in Figure 2.11 (Page 27). However, with permanent
coagulation (see illustrationC in Figure 2.11), these basic interactions becomes larger,
resulting in a certain contribution to µ and τo. The number of permanent junctions J

p
t

that is created in the process, is not a part of the “bookkeeping”made by Equation 9.5.
This is because of how the theory of Section 2.4.2 does not account for the possibility
of permanent coagulation3. As such, the calculated value of U3 (by Equation 9.5) is
only relative to reversible coagulated cement particles. From one experiment (say at
12min) to the next (at 42min), more and more cement particles becomes permanently
coagulated, i.e. the value of Jpt increases steadily during the time period of 29 minutes.
This means that the total number of (primary) cement particles, that can undergo
a reversible coagulation (designated with n3), is decreasing from one experiment to
the next. For each experiment that spans over only 50 seconds, it can be assumed
that very few cement particles undergo a permanent coagulation (i.e. the value of

3This is apparent since the number of reversible junctions Jt can theoretically always go back to
zero, while experimentally the total number of junctions Jtot

t = Jp
t + Jt (in the suspension) can not.
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Jpt is roughly a constant). This can be assumed because of how both µ and τo are
a constant over the short time interval of 50 seconds, while a measurement is being
conducted. This means that the number of reversible primary particles n3 is (more
or less) a constant during a single experiment, as is assumed in Section 2.4.2 and
hence in Equation 9.5. However, the value of n3 is a different (or rather a reducing)
constant, from one experiment to the next.

It is rather during the time period of 29 minutes, between each experiment, that
the number of permanent junctions Jpt are gradually increasing, giving a gradual
increase in either or both µ and τo. As shown with Equation 2.65, the number of
reversible junctions Jt are also gradually increasing during this same time period,
resulting in an increase for both µ̃ and τ̃o (or equally, contributing to the initial
value Jo = n3 Uo that will be used in the coming experiment). Coagulation rate H
during this period of 29 minutes, is given by Equation 2.59 (Page 46). During a single
measurement (that spans over 50 seconds), both µ̃ and τ̃o are rapidly changing because
of the dispersion and the (reversible) re-coagulation of cement particles. Coagulation
rate H during this short period of time, is then given by Equation 2.61, or more
precisely by Equation 9.10 shown shortly.

9.3.3 Third Modification: Coagulation Rate

In the Hattori-Izumi theory, it is assumed that the coagulation rate H is constant,
only dependent on Brownian motion (i.e. on temperature T ). As mentioned in Sec-
tion 2.5.3, such an assumption cannot hold for an orthokinetic4 conditions. The
stirring (γ̇ �= 0) causes the cement particles to be thrown together at a larger rate
than the normal diffusion rate, and hence the orthokinetic processes increases coagu-
lation. In Section 2.5.3, it is pointed out that orthokinetic coagulation process plays
an important role in determining the coagulation rate H for the cement particles and
hence in determining the correct coagulated state U3. From this, it is clear that the
coagulation rate coefficient is dependent on stirring H = H(γ̇).

Since the stirring causes the cement particles to be thrown together at a larger rate
than the normal diffusion rate, it is to be expected that the condition dH(γ̇)/dγ̇ ≥ 0
applies ∀ γ̇ ≥ 0. However, it can be argued that with continuously increasing shear
rate γ̇, the mutual kinetic energy of two cement particles that are about to collide, will
also increase in the process. There will come a condition (designated with γ̇cr) where
this kinetic energy is sufficient to overcome the potential energy barrier V maxT + |V minT |
that can hold them together in a coagulated state. The rate of collisions between the
cement particles will always increase with increasing shear rate γ̇. However, beyond
the point of γ̇cr, fewer and fewer of these collisions will result in actual coagulation.
This means that the coagulation rate will start to decrease with further increase in
shear rate⇒ dH/dγ̇ ≤ 0 ∀ γ̇ ≥ γ̇cr. Hence the overall characteristics of the coagulation
rate function could be anticipated as dH/dγ̇ > 0 ∀ γ̇ < γ̇cr and dH/dγ̇ ≤ 0 ∀ γ̇ ≥ γ̇cr.
An example of a function that hold such a properties would be of an exponential
form: H = Ho e

−(γ̇−γ̇cr)
2
.

In this thesis, several functions where tested, like of H = a γ̇b or H = a e−(γ̇−b)2

(a > 0 ∧ b > 0). However, after a large number of trials in reproducing the measured
torque in the best manner, the coagulation rate function had to have the functional
form described with Equation 9.10. This function is rather peculiar, because it holds
the condition dH/dγ̇ ≤ 0 ∀ γ̇ ≥ 0. With the above text in mind, this is only the half

4Orthokinetic ⇒ with stirring ⇒ γ̇ �= 0 (Perikinetic ⇒ no stirring ⇒ γ̇ = 0).

URN:NBN:no-3374



9.3. MODIFIED HATTORI-IZUMI THEORY 213

of the characteristics that was to be expected to be necessary in the calculations.

H(γ̇, t) =
K(t)
γ̇2 + l

∀ t > 0 ∧ H(γ̇, 0) =
k1 (1− Uo)

4 l
(9.10)

The term l in the above equation, is an empirical constant, kept equal to l = 1 s−2 at
all times. The function K(t) is an empirical step-function that increases and decreases
parallel to the angular velocity ωo(t) of the outer cylinder. In the time period from 0
to 25 seconds after the start of measurements, the angular velocity ωo(t) is increasing
in steps as shown with the left illustration of Figure 9.1. In this period the function
K holds the value k1. From 25 to 45 seconds, the angular velocity ωo(t) is decreasing,
and hence the value of K is changed to k2. Between the time 45 to 50 seconds, the
angular velocity is increased again, resulting in K = k3. Summarizing the above text
with an equation, gives the following:

K(t) =




k1 = 0.005 s−3 if dωo(t)/dt ≥ 0 ⇒ 0 ≤ t < 25 s
k2 = 0.1 s−3 if dωo(t)/dt ≤ 0 ⇒ 25 ≤ t < 45 s
k3 = 0.005 s−3 if dωo(t)/dt ≥ 0 ⇒ 45 ≤ t ≤ 50 s

(9.11)

Unless otherwise stated, the values of k1, k2 and k3 remain as shown above.
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Figure 9.2: Calculated coagulation rate function H = H(γ̇, t) that exists at the inner cylinder
r = Ri, using Equations 9.10 and 9.11. To the left is the result produced when using HMW Na
(t = 72min), while to the right is the result produced when using HMW Ca (t = 42min).

Figure 9.2 demonstrates a plot of the coagulation rate function H = H(γ̇, t) that
is calculated at the inner cylinder (r = Ri), using Equations 9.10 and 9.11. Hattori
and Izumi report values of coagulation rate constant ranging from H = 10−9 s−1 to
H = 10−2 s−1, depending on the mix design of the suspension in question [42, 41].
As shown in Figure 9.2, the value of the coagulation function is below 5 · 10−4 s−1 at
the inner cylinder (r = Ri). Interestingly, this range is within the values reported by
Hattori and Izumi. However, to reproduce the measured torque in the best manner,
the largest value that the coagulation function must hold in this thesis, is Hmax =
k2/l = 10−1 s−1. This maximum value frequently appears near the outer cylinder
(r = Ro), where the shear rate is at its lowest value γ̇ ≈ 0. Hence, the coagulation
rate function H(γ̇, t) can hold a value that is an order of magnitude larger than the
maximum value reported.
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9.4 VHMW Na

Figure 9.3 demonstrates both the experimental results given by the ConTec Vis-

cometer 4 and the numerical simulation results given by the softwareViscometric-

ViscoPlastic-Flow, using the values in Table 9.1. Four illustrations are presented,
marked with “t = 12min”, “t = 42min”, “t = 72min” and “t = 102min” and
represents the time from the initial water addition. The dotted line represents all
experimental results of the three repeated batches. The solid line demonstrates the
average of these measurements and the double line demonstrates the numerical result.
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Figure 9.3: Measured- and computed torque T̂ ∧ T̂c, for a cement paste using VHMW Na.

Table 9.1: Viscometric parameters used in the numerical simulations.

VHMW Na µ a1B3 n
2/3
3 τo a2B3 n

2/3
3 Uo ma mb

[Pa · s] [Pa · s] [Pa] [Pa] - [s] [s]
t = 12min 0.70 15 0 0 5 · 10−3 1 0
t = 42min 0.60 30 0 12 1 30 0
t = 72min 0.65 33 0 24 1 30 0
t = 102min 0.65 33 0 24 1 30 0

As shown in Figure 9.3, there is an excellent correspondence between the measured
torque T̂ and its numerical counterpart T̂c. This applies for all four illustrations. As
mentioned above, the viscometric values used in calculating the torque T̂c is shown
in Table 9.1. All the values in this table are extracted by the means of “trial and
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error”. That is, all the values are systematically changed until the computed torque
can completely overlap the measured torque (this is a rather time consuming process).
There are two issues about this method of trial and error that should be clear to the
reader:

1. Very few variables are allowed to change from one experiment to the next. They
are at the most seven, as shown in Table 9.1. Many of these free variables do
not have to be changed at all, from one experiment to the next. This means
that the degree of freedom is even lower than indicated by the pre-mentioned
table. It is rather the physics of Section 9.3 that controls the computed torque
behavior (however, through the few values of Table 9.1).

2. The same computed torque curve (or rather solution v = vθ(r, z, t) iθ) cannot
be extracted by two different sets of viscometric values [µ, τo, Uo, ma, mb,. . . ]
= [a, b, c, d, e, . . . ] and [µ, τo, Uo, ma, mb,. . . ] = [x, y, z, u, v, . . . ]. This be-
came quite clear in the process of the above-mentioned trial and error, where
the different viscometric values in Table 9.1, gave a very specific and different
computed torque response. This behavior is also a requirement for well-posed
problems; i.e. the theory of existence, uniqueness and stability for a solution
of PDE, require this kind of behavior (see for example the textbook by Strauss
[117]). Hence, the values shown in Table 9.1 are not just a coincidence, but
rather correspond to the cement paste rheological response. This is perhaps
more apparent in Section 9.9.4, when summarizing all such data in this chapter
into one figure. There, some familiar trends from Chapter 6 reappears.

The above two points applies also for Table 9.2 (HMW Na), Table 9.3 (HMW Ca)
and Table 9.4 (SNF), shown in the coming sections.

In reproducing the measured torque in the best fashion, the coagulation-memory
mb is set equal to zero for all experiments. According to Equations 9.6 and 9.4,
this means that β and therefore Θ̃ are also equal to zero. Physically, with mb = 0
it is assumed that no re-coagulation is occurring during a single experiment of 50
seconds. That is, the shear viscosity is not allowed to remember that a re-coagulation
is occurring, since apparently no such re-coagulation is taking place to begin with.

A very similar condition applies for the dispersion-memoryma, for the experiment
at 12 minutes after water addition. With the very effective dispersing mechanism
of the VHMW Na polymer and with the very recent agitation from the initial
mixing inside the Hobart mixer (see Section 9.2.2), the cement particles are very
much dispersed at the start of the experiment. As such, the value of ma must be
small, because the shear viscosity cannot5 be allowed to remember a dispersion that
cannot take place to begin with. With the pre-mentioned condition of Θ̃ = 0, no re-
coagulation is either occurring and hence no dispersion of newly formed coagulated
cement particles, can either occur.

In the source code viscous.f90, the amnesia in coagulation is enforced not by
using mb = 0, but rather by implementing Θ̃ = 0 directly.

The left illustration of Figure 9.4 demonstrates6 how the (reversible) coagulation
state U3 is uniformly dropping as a function of time at all spatial points and is a
direct consequence of the condition Θ̃ = 0 that applies. The particular result shown

5The dispersion cannot take place because most of the cement particles are already dispersed.
6It should be noted that the first U3 value shown in the figure, is always just below 1. This

is because it applies at 0.01 second after start of the experiment. At the start of the experiment
(t = 0 s), the value of U3 always hold the value of Uo, which is equal to 1 in this case.
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Figure 9.4: The coagulation state U3 (to the left) and computed shear rate γ̇c (to the right)
as a function of radius r and time t, when using VHMW Na (t = 72min ∧ t = 102min).

in this figure, apply for the experiment conducted at 72 and 102 minutes after water
addition. Very similar result is produced after 42 minutes.

For the experiment conducted at 12 minutes after water addition, the initial co-
agulation state Uo cannot be set equal to 1. This is so because of the very recent
agitation from the initial mixing inside the Hobart mixer (see Section 9.2.2). The
initial value of Uo = 5 · 10−3 in Table 9.1, is not determined by theoretical means,
but rather it is determined (in the same manner as all the other viscometric values)
in the process of reproducing the measured torque in the best manner.

In Table 9.1, it is interesting to note how little evolution there is in the viscomet-
ric values as a function of time from water addition. The greatest difference exists
between the measurement conducted at 12 minutes after water addition and the rest
of the measurements, conducted at 42, 72 and 102 minutes after water addition. The
yield value τo is always equal to zero and the plastic viscosity µ is approximately a
constant, equal to 0.65Pa · s. The same behavior applies when using the same type
of polymer, in mortar case of [0.6% sbwc; To = 23◦C; w/c = 0.4; OPC], shown in
Section 6.4.6.

Summary of Main Results

1. The good results shown in Figure 9.3, demonstrate that the theory of Section 9.3
comes a long way in describing the mechanism occurring inside the cement paste.

2. No re-coagulation was needed (during the experiment) in the numerical simu-
lations shown in Figure 9.3 (Θ̃ = 0).
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9.5 Height Dependency (VHMW Na)

As mentioned in the introductory part of this chapter, the bottom part of the solution
domain Ω ∪ ∂Ω is deleted. According with the findings presented in Section 8.8, this
can be done without compromising accuracy. Since the result in the last-mentioned
section is based on steady state calculations only, it is natural to make the same type
of analysis when a severe time dependency is present.

Figure 9.5 demonstrates the velocity field, when the whole solution domain Ω∪∂Ω
is used, in a time dependent calculation. This particular velocity field applies at the
moment of t = 11 s after start of the second experiment. The magnitude of the largest
velocity vector shown (i.e. the largest cone) for this particular case, is 23.9 cm/s.

Figure 9.5: Three dimensional vector plot of velocity v at the moment of t = 11 s after start of
the second experiment. The whole solution domain Ω∪∂Ω is used (VHMWNa ∧ t = 42min).

As mentioned in Section 8.3.2, when the whole solution domain is included, the
applied torque is calculated from the j-grid point NY2mH3 = 49 to NY2 = 281,
with i = 171 (see Figure 8.2, Page 180). This torque will be designated here as T̂cA
to distinguish from the torque T̂cB calculated when the bottom part of the solution
domain Ω ∪ ∂Ω is deleted. The value of T̂cB is extracted from Figure 9.3.

Figure 9.6 demonstrates a comparison of the computed torque T̂cA and T̂cB. The
left illustration demonstrates the difference in torque T̂cA − T̂cB. As shown, the
torque T̂cA is always larger than T̂cB. This is likely because of the additional shear
stresses that originates from the bottom plate of the viscometer. The right illustration
of Figure 9.6 demonstrates the plot of all values, both T̂cA and T̂cB. With this
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comparison, it is evident that very little (or practically no) difference exists between
torque values, generated with or without the bottom part of the solution domain
Ω ∪ ∂Ω (i.e. with or without the bottom part of the viscometric geometry).
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Figure 9.6: Comparison of calculated torque with (T̂cA) and without (T̂cB) the bottom part.
The T̂cB values are extracted directly from Figure 9.3. To the left: Graphical presentation of the
difference T̂cA − T̂cB. To the right: All values presented, both T̂cA and T̂cB.

Figure 9.7 demonstrates the relative difference between T̂cA and T̂cB. The values
shown are calculated as 100 · (T̂cA − T̂cB)/T̂cA. As shown, the maximum difference is
only around 0.4% to 0.5%.
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Figure 9.7: Relative difference between T̂cA and T̂cB (calculated as 100 · (T̂cA − T̂cB)/T̂cA).

Summary of Main Results

1. The bottom part of the solution domain Ω ∪ ∂Ω can be deleted without com-
promising accuracy.

2. This result is in an accordance with the findings presented in Section 8.8.
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9.6 HMW Na

Figure 9.8 demonstrates both the experimental results given by the viscometer and
the numerical results given by the software, using the values in Table 9.8. The same
markings apply in this figure, as in Figure 9.3.
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Figure 9.8: Measured- and computed torque T̂ ∧ T̂c, for a cement paste using HMW Na.

Table 9.2: Viscometric parameters used in the numerical simulations.

HMW Na µ a1B3 n
2/3
3 τo a2B3 n

2/3
3 Uo ma mb

[Pa · s] [Pa · s] [Pa] [Pa] - [s] [s]
t = 12min 0.8 40 70 0 0.4 25 15
t = 42min 1.0 45 104 90 1 40 10
t = 72min 0.8 60 124 100 1 40 10
t = 102min 0.8 60 130 75 1 40 10

As shown in Figure 9.8, there is an excellent correspondence between the measured
torque T̂ and its numerical counterpart T̂c in the first 30 to 35 seconds. Thereafter, the
two torque terms T̂ and T̂c start to deviate from each other. In particular, in the time
period between 35 and 45 seconds, the test material creates a larger “rebuild” than
is anticipated with the theory of Section 9.3. Changing the viscometric parameter in
such manner that the computed torque T̂c coincide with the measured torque T̂ for
this particular time period, was rendered impossible with the current theory. Several
ideas have been tested to resolve the matter, but without any real success. These
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ideas will be discussed in Section 9.7.
As is shown in Table 9.2, the “coagulation memory” mb is no longer zero. This

means that the memory module Θ̃ is also no longer kept equal to zero. The necessity of
using a non-zeromb term, means that re-coagulation is occurring while the experiment
is taking place.
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Figure 9.9: The coagulation state U3 (to the left) and computed shear rate γ̇c (to the right)
as a function of radius r and time t, when using HMW Na (t = 72min).

The left illustration of Figure 9.9 demonstrates how the (reversible) coagulation
state U3 is changing rapidly as a function of time t and radius r. This is a different
case than applies for Figure 9.4 previously. The increase in coagulation U3 at different
locations is a direct consequence of the condition Θ̃ �= 0 that applies in the calculation.
When considering how the coagulation (or kinetics of the structural rebuilding) is
slower in comparison with that of dispersion (or structural breakdown) [67], the severe
increase in U3 between 30 and 45 seconds, could be unphysical and something that
needs to be corrected. Several approaches will be considered in the later part of
Section 9.7. The particular result shown in Figure 9.9, applies at 72 minutes after
water addition. Only a slightly different profile of U3 = U3(r, t) is produced for the
experiment conducted after 42 and 102 minutes. This is (among other things) because
of the small difference in shear rate γ̇ produced as a result of the small difference in
viscometric values used. A larger difference exists between the measurement at 12
minutes and the rest of the experiments, as is shown when comparing Figure 9.9
with Figure 9.10. The reason for the low coagulation state U3 in the latter figure, is
because of the low initial value Uo used.

As is shown in Table 9.2 (and also in Figure 9.10), for the experiment conducted
at 12 minutes after water addition, the initial coagulation state was set equal to
Uo = 0.4. This is a somewhat larger value than used in Section 9.4, where the initial
value was set equal to Uo = 5 · 10−3. Here, the difference between the effectiveness of
the VHMW Na over the HMW Na polymer, becomes evident. In both cases, the
same recent agitation applies from the Hobart mixer (see Section 9.2.2). But still,
as is evident with the value of Uo, a much larger coagulation state is factual for the
HMW Na-case, at the start of the first experiment.

In Table 9.2, it is interesting to note how little evolution there is in the plastic
viscosity µ ≈ 0.85Pa · s as a function of time from water addition. The changes is
more rapid for the yield value τo, where it is increasing from 70 to 130Pa. This
type of behavior is also observed when using the same type of polymer in mortar at
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Figure 9.10: The coagulation state U3 (to the left) and computed shear rate γ̇c (to the right)
as a function of radius r and time t, when using HMW Na (t = 12min).

w/c = 0.4 (0.6 sbwc), shown in Section 6.2.1.
The right illustration of Figures 9.4, 9.9 and 9.10 demonstrates the computed shear

rate γ̇c as a function of radius r and time t. The white line on the γ̇ = 0 plane in
Figure 9.9, demonstrates the boundary between the solid state Ωe and the viscoplastic
state Ωp. It is localized by plotting the function −IIPS = Cy. More specifically7, this
boundary is localized by plotting (η γ̇)2 = Cy, using Equation 9.7. When comparing
these figures, one can see how great impact the shear viscosity η has on shear rate
the γ̇. With the different viscometric values applied (shown in Tables 9.1 and 9.2),
the different shear rates γ̇ becomes evident. Same type of conclusion is evident, when
using a pure Bingham fluid in a steady state conditions, as is shown with Equation 3.28
(Page 59).

Summary of Main Results

1. A peculiar deviation exists between the computed torque T̂c and the measured
torque T̂ between 35 and 50 seconds.

2. In present section, a re-coagulation (during the experiment) is needed to simu-
late the measured torque in the best fashion (Θ̃ �= 0).

7⇒ −IIPS = (T : T)/2 = (2 η)2 ε̇ : ε̇/2 = η2 (2 ε̇ : ε̇) = (η γ̇)2
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9.7 HMW Ca

Figure 9.11 demonstrates both the experimental results given by the ConTec Vis-

cometer 4 and the numerical simulation results given by the softwareViscometric-

ViscoPlastic-Flow, using the values in Table 9.3. The same markings apply in
this figure, as in Figure 9.3.
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Figure 9.11: Measured- and computed torque T̂ ∧ T̂c, for a cement paste using HMW Ca.

Table 9.3: Viscometric parameters used in the numerical simulations.

HMW Ca µ a1B3 n
2/3
3 τo a2B3 n

2/3
3 Uo ma mb

[Pa · s] [Pa · s] [Pa] [Pa] - [s] [s]
t = 12min 0.8 40 80 0 0.4 15 30
t = 42min 1.0 45 120 45 1 15 15
t = 72min 0.5 60 140 50 1 15 15
t = 102min 0.5 66 145 110 1 15 15

As applies for Figure 9.8, there is an excellent correspondence between the mea-
sured torque T̂ and its numerical counterpart T̂c for the first 35 seconds. Thereafter,
the two torque terms T̂ and T̂c start to deviate from each other. As before, in the
time period between 35 and 45 seconds, the test material creates a larger “rebuild”
than is anticipated with the theory of Section 9.3, while between 45 and 50 seconds,
the test material creates a larger “breakdown”. This issue will be discussed shortly.

The time evolution of the effective (or the actual) plastic viscosity B and yield
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value
√
Cy (see Equations 9.8 and 9.9) for the four cases in Table 9.3, are shown

in Figures 9.12 and 9.13. More precisely, these two figures demonstrates the time
evolution (from water addition) of these two viscometric values as a function of (ex-
perimental) time t and radius r. The lowest “sheath” always applies at 12 minutes
after water addition, and the remaining sheaths applies in chronological order, at 42,
72 and finally at 102 minutes, which consists of the highest sheath. From the two
figures, it is interesting to note how the two values B and

√
Cy are rapidly chang-

ing, both with location r and time t. The exception applies for the effective yield
value at 12 minutes after water addition. There, this value is a constant, equal to√
Cy = τo = 80Pa and therefore appears as a horizontal plane in Figure 9.13.

8.5
9

9.5
10 0 10 20 30 40 50

0

10

20

30

40

50

60

Time [seconds]

r [cm]

B
 [P

a⋅
s]

8.599.510 01020304050

0

10

20

30

40

50

60

Time [seconds]
r [cm]

B
 [P

a⋅
s]

Figure 9.12: The effective plastic viscosity B as a function of radius r and time t. The two
illustrations are of the same plot, however from two different angles. The polymer used consist
of HMW Ca and the results shown, apply at 12, 42, 72 and 102 minutes after water addition.
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Figure 9.13: The effective yield value Cy as a function of radius r and time t. The two
illustrations are of the same plot, however from two different angles. The polymer used consist
of HMW Ca and the results shown, apply at 12, 42, 72 and 102 minutes after water addition.

Secondary Effect

A common characteristics in Figure 9.8 (HMW Na) and Figure 9.11 (HMW Ca) is
apparent: In both cases, there is a deviation between the measured torque T̂ and the
computed torque T̂c. This deviation exists for most part in the time period between
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35 and 50 seconds, and consist of two different types of deviations. The first type
occurs in the time period between 35 and 45 seconds, where the test material creates
a larger “rebuild” than is anticipated with the theory of Section 9.3. The second
type occurs between 45 and 50 seconds. There the opposite problem exists, namely
that the computed torque T̂c fails to reproduce the same amount of “breakdown” as
is measured. The latter problem can be solved, as is shown in the last part of this
section. Unfortunately, the first problem remains unsolved in this thesis.

When calculating the number of connections Jt in Equation 9.5, it is assumed that
the coagulated cement particles form a kind of open-chain-structure (i.e. a “string-
of-pearls-structure”), rather than closely interconnecting spherical/cubical structure
(with multiple internal cross-junctions). This assumption is implemented with Equa-
tion 2.35 (or Equation 2.28) on Page 31. Since the first 35 seconds of the experi-
ment can be reproduced numerically, this assumption seems to be valid. That all
experiments for the VHMW Na-case can be reproduced numerically, validates this
assumption further. This is actually quite remarkable when considering how large
the phase volume Φ actually is. Using w/c = 0.3, it is calculated to be 0.52 (see Sec-
tion 9.2.1) and is always increasing from the time of water addition due to the chemical
reactions (Φ ≥ 0.52). [It should be nevertheless clear that the modifications shown
in Section 9.3, could implicitly account for a closely interconnecting spherical/cubical
structure].

Equation 9.5 can also (roughly) be valid8, when the coagulated cement particles
form a “near-spherical-structure” (without multiple internal cross-junctions) as shown
with illustration I of Figure 9.15. This means that regardless if the flocks of cement
particles consist of the string-of-pearls-structure (illustration A), or of near-spherical-
structure (illustration I), the same theory that counts the number of reversible junc-
tions Jt between the cement particles, can be applied. However, for the given junction
number Jt = n3 U3 and rotational frequency fo, those two different structures could
produce two different types of shear viscosity response η. With the near-spherical-
structure, an additional viscosity contribution could be created, because of how free
water is more immobilized (see illustration I in Figure 9.15). This results in a larger
apparent phase volume Φ and thus gives a higher shear viscosity η than expected.
This effect is somewhat discussed in a textbook by Barnes et al. [9]. Also, with in-
creasing apparent phase volume Φ in an already packed suspension, some additional
dilatancy effect (or “crowding” effect) could be a reality, that affects the shear vis-
cosity η. The above idea is just a hypothesis. But regardless of the physical reason
for the deviation between T̂c and T̂ in 35 s ≤ t ≤ 45 s, the effect that is responsible
for this, is designated here as the secondary effect.

The fact that the above-mentioned secondary effect is never present when using
theVHMW Na polymer (Section 9.4), indicates that this effect is strongly related to
the re-coagulation process that occurs in the end of each experiment. This is because
of how experimentally, no rebuild in torque appears for the VHMW Na-case, and
because of how numerically, the re-coagulation must be set equal to zero to imitate
this measured torque.

As is shown with the arrow in the left illustration of Figure 9.14, the measured
torque T̂ in the time period from 40 to 45 seconds (fo = 0.1 rps) gains almost the
same equilibrium value as in the time period from 35 to 40 seconds (fo = 0.24 rps).
Actually this tendency is measured for all cases in Figures 9.8 and 9.11. This tendency
is quite peculiar because in the former case, the rotational frequency fo is less than

8Valid in the sense that Equation 2.35 (or Equation 2.28), more or less still apply.
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half of the latter case (see Figure 9.1). It is not to be expected that coagulation
per-se, is alone responsible for this large increase in measured torque. This is because
of how coagulation (or kinetics of the structural rebuilding) is slower in comparison
with that of dispersion (or structural breakdown) [67]; i.e. coagulation alone cannot
produce the same rapid changes in torque T̂ as dispersion does. Rather, the idea
is that this large torque increase is a byproduct of coagulation, namely the above-
mentioned secondary effect. More precisely, it can be suggested that some kind of
new structure is forming as a result of the re-coagulation in the end of an experiment,
when the shear rate γ̇ starts to decrease. The result of this effect is sketched in the
right illustration of Figure 9.14 and is marked as “Secondary Effects”. For now, no
explanation is given for the deviation that exists in the time period between 45 and
50 seconds, and is therefore marked with “Unknown Effect”.
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Figure 9.14: To the left: Measured torque T̂ , where the alphabetic markings corresponds to
the ones shown in Figure 9.15. To the right: Illustration of the consequence for the secondary
effect. (HMW Ca ∧ t = 42min).

Figure 9.15: A schematic illustration of the change in structure for the flocks of coagulated
cement particles. Illustrations F to J are (most likely) exaggerated in the sense that the number
of junctions Jt is too high. However, the idea of spatial reconfiguration applies regardless.

With the above, it could be suggested that the string-of-pearls-structure applies
for the first part of the experiment 0 ≤ t < 25 s, while the near-spherical-structure
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starts to appear in the time period of 25 s ≤ t ≤ 45 s. A (exaggerated) schematic
illustration of this idea is shown in Figure 9.15. The alphabetic markings in this
figure, corresponds to the markings shown in Figure 9.14. In illustrations A to E
of Figure 9.15, it is shown how the string-of-pearl-structure is broken down into
smaller components (occurring at increased rotational frequency fo). However, when
the newly dispersed cement particles (or small flocks of cement particles) start to
coagulate again (occurring at reduced rotational frequency fo), they form a kind of
near-spherical-structure as shown with illustrations F to I. For the latter case, a
much higher apparent phase volume is formed than anticipated. This results in a
larger shear viscosity η and hence in larger measured torque T̂ than anticipated with
the theory presented in Section 9.3.

Of course, the above text is just a hypothesis. Nevertheless, it should be clear that
it is not unlikely that there exists a difference between the type of structure for the
cement flocks at the beginning and at the end of the experiment. The first structure
has about 29 minutes to form and do so under perikinetic conditions, while the latter
have only tens of seconds to form and do so under orthokinetic conditions.

Attempt to Compensate for Secondary Effect

The above-mentioned difference between the experimental- and the computed torque
occurs because the theory of Section 9.3 does not account for any secondary effect.
One way to compensate for this effect is by modifying the viscometric values B and√
Cy (see Equations 9.9 and 9.8). The idea is to include the additions µse and τ seo

into these two viscometric values. This is shown with the Equations 9.12 and 9.13.
It should be clear that the general form of the shear viscosity Equation 9.7 always
remains unchanged, when making this type of maneuver.

B = µ+ µ̃+ µse (9.12)√
Cy = τo + τ̃o + τ seo (9.13)

Some number of µse and τ seo functions have been tested to compensate for the sec-
ondary effect, but without any real success. Some of these are listed below.{

µse =
p e−(γ̇/q)

γ̇2 + 1
∧ τ seo = 0

}
∨

{
µse = 0 ∧ τ seo =

p e−(γ̇/q)

γ̇2 + 1

}
(9.14)

{
µse = p

Θ̃
Θ̃ + 1

∧ τ seo = 0

}
∨

{
µse = 0 ∧ τ seo = p

Θ̃
Θ̃ + 1

}
(9.15)

{µse = pU q
3 ∧ τ seo = 0} ∨ {µse = 0 ∧ τ seo = pU q

3} (9.16)

{µse = mγ̇n ∧ τ seo = 0} ∨ {µse = 0 ∧ τ seo = mγ̇n} (9.17)

The most successful modification (however, with only a slight success) consists of
using a shear-thickening term in the effective plastic viscosity B. That is, by using
µse = mγ̇n and τ seo = 0, the best result was produced. With this modification, the
shear viscosity Equation 9.7 has the following form:

η = B +

√
Cy

γ̇
= [µ+ µ̃+mγ̇n] +

√
Cy

γ̇
(9.18)
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Using a constant value of m in the shear-thickening term mγ̇n, produces a much
larger difference between T̂ and T̂c than is already present in Figure 9.11. After
some trials, using a non constant m term, dependent on shear rate, seemed to give
a (slightly) better result. In particular, by using m(γ̇) = p exp(−[γ̇/γ̇cr]q) a slight
improvement over the existing result is produced (p > 0 ∧ q > 0). The term γ̇cr
designates a critical shear rate: The idea is that when the shear rate γ̇ has dropped
down to a certain value γ̇cr, the pre-mentioned secondary effect starts to appear;
i.e. when γ̇ has dropped down to γ̇cr, sufficient coagulation has occurred to allow the
secondary effect to appear in its full strength. Of course, it would have been more
natural to use the function of the type m = m(U3), but surprisingly with the various
types of functions tested, such a maneuver resulted in a worse outcome.
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Figure 9.16: Torque T̂c generated without (to the left) and with (to the right) a shear-thickening
effect m γ̇n, using p = 0.8 Pa · sn+1, q = 3, γ̇cr = 10 s−1 ∧ n = 0.6 (HMW Ca ∧ t = 42min).

A comparison of numerical result where the shear-thickening effect is included, is
shown in Figure 9.16. The computed torque T̂c generated without a shear-thickening
effect is shown in the left illustration, while the right illustration shown a result where
such an effect is included. For both illustrations, almost the same viscometric values
are used as shown in Table 9.3. The exception is the a1B3 n

2/3
3 term, where it holds

the value of 45 Pa · s when shear-thickening effect is not included, while it holds the
value of 40.5Pa · s when included. With the inclusion of m(γ̇) γ̇n, a smaller difference
exists between T̂c and T̂ in the time period between 35 and 45 seconds (the region
of arrow C). However, as is shown with the arrows A and B, there is now a larger
difference between T̂c and T̂ in the beginning of the experiment. This last-mentioned
difference could be omitted if the shear-thickening term where only active when the
condition dωo/dt ≤ 0 applies. In taking such an approach, a larger degree of freedom
exists in increasing the parameter q without compromising the computed torque in the
beginning of the experiment and hence without the need of changing the viscometric
values in Table 9.3. However, in taking the liberty of increasing this value without
restrictions, some discontinuity in computed torque (and shear rate) starts to appear.
In avoiding this, the difference between T̂ and T̂c always remains.

Lower Coagulation State?

As mentioned previously in this chapter, all viscometric values are determined with
the objectives of reproducing the measured torque T̂ , by numerical means in the best

URN:NBN:no-3374



228 CHAPTER 9. THIXOTROPIC EXPLORATIONS

8.5
9

9.5
10 0 10 20 30 40 50

0

20

40

60

80

Time [seconds]

r [cm]

S
he

ar
 R

at
e 

[1
/s

]

8.5
9

9.5
10 0 10 20 30 40 50

0

20

40

60

80

Time [seconds]

r [cm]

S
he

ar
 R

at
e 

[1
/s

]

Figure 9.17: Computed shear rate γ̇c generated without (to the left) and with (to the right) a
shear-thickening effect m γ̇n. The same conditions applies here as in Figure 9.16.

fashion. In doing so, the function K(t) is increased by 20 times in the time period
between 25 s ≤ t < 45 s, by using k2 = 20 k1 = 20 k3 = 0.1 s−3 (see Equations 9.10
and 9.11). This was done to reduce the difference between T̂ and T̂c in the time
period between 35 and 45 seconds. With the idea about the pre-mentioned secondary
effect in mind, this approach might be somewhat incorrect. Figure 9.18 demonstrates
the computed results when using k2 = k1 = k3 = 5 · 10−3 s−3. The same viscometric
values are used as presented in Table 9.3. Only the k2 term is changed, relative to
the results presented in Figure 9.11. Also, the shear-thickening term mγ̇n is never
used in Figure 9.18.
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Figure 9.18: Measured- and computed torque T̂ ∧ T̂c at t = 42min (to the left) and at
t = 72min (to the right), after the k2 term is reduced down to 5 · 10−3 s−3 (HMW Ca).

As shown with Figure 9.18, by using k2 = k1 = k3 = 5 · 10−3 s−3, a larger
difference between the measured torque T̂ and the computed torque T̂c exists in the
period between 25 and 45 seconds. However, in taking this approach the difference
is reduced in the period between 45 and 50 seconds. Previously in Figure 9.14,
the difference for this time period was marked as “Unknown Effect” because it was
inconsistent with the model of secondary effect. But now, in Figure 9.18 the difference
is consistent in the sense that the computed torque T̂c is (almost) always lower than
measured torque T̂ , for the whole time period of 30 s ≤ t ≤ 50 s. The markings
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“Breakdown of Secondary Effects” shown in Figure 9.18, corresponds to the steps
from I to J in Figure 9.15.

By reducing k2 from 0.1 s−3 down to 5 · 10−3 s−3 (the default values are shown in
Equation 9.11, Page 213), the coagulation rate function H is decreased in the time
period of 25 s ≤ t < 45 s. This gives a lower reversible coagulation state U3, as shown
in the right illustration of Figure 9.19. This figure demonstrates a comparison of
(reversible) coagulation state U3 with and without the change in k2 value. When
considering how the coagulation is slower in comparison with that of dispersion [67],
the severe increase in U3 shown in the left illustration (between 30 and 45 seconds)
could be somewhat overestimated. If so, a value of k2 = 0.1 s−3 could be too large.
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Figure 9.19: The coagulation state U3 when using k2 = 20 k1 = 20 k3 = 0.1 s−3 (to the left)
and when using k2 = k1 = k3 = 5 · 10−3 s−3 (to the right). (HMW Ca ∧ t = 72min).
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Figure 9.20: Computed torque T̂c (to the left) and coagulation state U3 (to the right), using
mb = 0.4 s and k2 = k1 = 8 k3 = 0.4 s−3 (HMW Ca ∧ t = 72min).

There is also another method in reducing the (reversible) coagulation state U3.
Rather than by reducing the value of k2, a similar effect is gained by reducing the
coagulation-memory mb. In either case of reduced k2 value (results in lower H)
or reduced mb value (results in lower β), the same effect is inflicted on the mem-
ory module Θ̃, namely a reduction in its value (see Equation 9.4). As shown with
Equation 9.5, lower memory module Θ̃ gives a lower calculated coagulation state U3.
However, a different computed torque profile T̂c and a different coagulation state
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profile U3 = U3(r, t) are produced with the two different approaches of reduced k2
and mb. This is shown when comparing the right illustration of Figure 9.19 with
the right illustration of Figure 9.20. Both illustrations demonstrate the coagulation
state U3 for the experiment conducted at 72 minutes after water addition. In Fig-
ure 9.19, the values of Table 9.3 are used. The same applies for Figure 9.20, except
the coagulation-memory mb is reduced from 15 s down to 0.4 s. Also, the condition
of k2 = k1 = 8 k3 = 0.4 s−3 is valid in this last mentioned figure; i.e. the values of k1,
k2 and k3 are all significantly increased, resulting in a much larger coagulation rate
H , than previously used. The shear viscosity Equation 9.18 is used in Figure 9.20,
where m(γ̇) = p exp(−[γ̇/γ̇cr]q) is applied, with p = 0.8Pa · sn+1, q = 3, γ̇cr = 10 s−1

and n = 0.6.

Summary of Main Results

1. The deviation between the computed torque T̂c and the measured torque T̂
between 35 and 45 seconds is a result of a (unknown) mechanism, called the
secondary effect.

2. The fact that the above-mentioned secondary effect is never present when using
the VHMW Na polymer (Section 9.4), indicates that this effect is strongly
related to the re-coagulation process that occurs in the end of each experiment.

3. Some effort has been made in this section to compensate for this secondary
effect, but without any real success.
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9.8 SNF

Figure 9.21 demonstrates both the experimental results given by the viscometer and
the numerical results given by the software, using the values in Table 9.4. With one
exception, the same markings apply in this figure as in Figure 9.3. The exception is in
the fourth illustration, marked with “t = 102min”. There the dotted line represents
the result from the second and third batch, while the solid line demonstrates the result
from the first batch. The average of these measurements is presented with the dashed
dotted line and the double line demonstrates (as always) the numerical result. The
reason for this slight change in markings, is that the result produced at 102 minutes
after water addition, became quite strange for the second and third batch. As shown,
a kind of humpback was formed in the beginning that became impossible to reproduce
numerically. Because of this, the numerical simulation consisted of reproducing the
measured torque from the first batch only, represented with the solid line.
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Figure 9.21: Measured- and computed torque T̂ ∧ T̂c, for a cement paste using SNF.

Some slight difficulties exist in reproducing the measured torque T̂ by numerical
means for the experiment conducted at 12 minutes after water addition. The low
starting torque for this experiment is due to the recent mixing with the Hobart mixer
and the good initial dispersing properties of the SNF polymer. The difference in the
torque T̂ |t=4.9 s < T̂ |t=44.9 s is a result of coagulation and (most likely) its byproduct,
namely the pre-mentioned secondary effect.

Generally, the secondary effect is much less apparent when using SNF, relative to
when using HMW Na and HMW Ca. In particular, for the experiment conducted
at 72 minutes after water addition, almost a complete match is gained between the
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measured torque T̂ and the computed torque T̂c. In generating all illustrations of this
figure, the shear-thickening term mγ̇n is never used. Also, the k2 term is kept to its
usual value, namely at k2 = 20 k1 = 20 k3 = 0.1 s−3. Other viscometric values used
when generating the computed torque T̂c, is shown in Table 9.4.

Table 9.4: Viscometric parameters used in the numerical simulations.

SNF µ a1B3 n
2/3
3 τo a2B3 n

2/3
3 Uo ma mb

[Pa · s] [Pa · s] [Pa] [Pa] - [s] [s]
t = 12min 0.5 30 41 0 5 · 10−2 40 10
t = 42min 1.0 30 73 30 1 40 4
t = 72min 0.5 67.5 110 22.5 1 30 1
t = 102min 0.1 75 170 22.5 1 30 0

Figure 9.22 demonstrates the reversible coagulation state U3 and the computed
shear rate γ̇c for the experiment conducted at 72 minutes after water addition. What
is immediately apparent when looking at the left illustration, is how low coagulation
state U3 exists although the value of k2 = 20 k1 = 20 k3 = 0.1 s−3 is applied. The
reason for this is the low coagulation-memory of mb = 1 s that is applied in the calcu-
lation. As was discussed in the last part of Section 9.7, the formation of new junctions
Jt due to coagulation, is controlled by the memory module Θ̃ (see Equations 9.4 and
9.5). This means that the coagulation state U3 can be reduced either by using a lower
coagulation rate H (implemented by using lower k1, k2 and k3 values) or by reducing
the value of the memory function β (implemented by using lower mb value).
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Figure 9.22: The coagulation state U3 (to the left) and shear rate γ̇ (to the right) as a function
of radius r and time t, when using SNF (t = 72min).

Summary of Main Results

1. Generally, the secondary effect is much less apparent when using SNF, relative
to when using HMW Na and HMW Ca.

2. In particular, for the experiment conducted at 72 minutes after water addition,
almost a complete match is gained between the measured torque T̂ and the
computed torque T̂c.

URN:NBN:no-3374



9.9. SUMMARY AND CONCLUSION 233

9.9 Summary and Conclusion

9.9.1 General Findings

In reproducing the measured torque by numerical means, it was necessary to introduce
a fading memory into the shear viscosity equation η (Section 9.3.1). The resulting
two memory modules used, are defined by Equations 9.3 and 9.4 (Page 210). Also,
the introduction of yield value into the shear viscosity η was necessary (Section 9.3.2).
Two types of yield values are presented, namely τo and τ̃o. The former (τo) is related
to the permanent coagulation state Jpt of the cement particles, while the latter (τ̃o) is
related to the reversible coagulation state Jt. The same type of relationship applies
for the plastic viscosity µ and its thixotropic counterpart µ̃.

The coagulation rate function H used in the simulation, could not be presented
with a constant. After some number of tests, a function ofH(γ̇, t) = K(t)/(γ̇2+l) gave
the best result (see Equation 9.10, Page 213). This function contains the properties
of dH/dγ̇ ≤ 0 ∀ γ̇ ≥ 0, something not to be expected, at least by a first consideration
(see Section 9.3.3).

9.9.2 Coagulation, Dispersion and Re-Coagulation

The excellent results shown in Section 9.4 (VHMW Na) and in Section 9.8 (SNF),
demonstrate that the theory of Section 9.3 comes a long way in describing the mech-
anism occurring inside the cement paste. More precisely, this accomplishment gives
a good indication of that thixotropy is governed by a combination of reversible co-
agulation, dispersion and then re-coagulation of the cement particles. This is so,
since the computed torque T̂c does overlap the measured torque T̂ . However, in Sec-
tion 9.6 (HMW Na) and Section 9.7 (HMW Ca), a peculiar deviation between the
computed torque T̂c and the measured torque T̂ start to appear in the time period
between 35 and 50 seconds.

The fact that the above-mentioned deviation between T̂c and T̂ is never present
when using the VHMW Na polymer (Section 9.4), indicates that this torque de-
viation is somehow related to the re-coagulation process that occurs in the end of
the experiment. This is so since the only time when there is a good match between
the measured torque T̂ and the computed torque T̂c, is when re-coagulation is non
existent (VHMW Na) or is very small (SNF).

9.9.3 Shear Rate

With Figures 9.4, 9.9, 9.10 and 9.17, it becomes evident what a great impact the shear
viscosity η has on the shear rate γ̇. With the different rheological values applied, the
different shear rates γ̇ are produced. The same type of conclusion is a fact, when
using a pure Bingham fluid in a steady state condition, as shown with Equation 3.28
(Page 59). Also, the rapidly changing boundary Rs between the solid state Ωe and
the viscoplastic state Ωp is very much dependent on the rapidly changing viscomet-
ric values B and

√
Cy that apply for the cement paste (see Figures 9.12 and 9.13,

Page 223). This movement of the solid boundary, provides an additional influence
on the shear rate γ̇. When present, the boundary is shown with a white line and is
localized by plotting the function −IIPS = Cy (see Figures 9.9, 9.17 and 9.22).

When using a rotating type of viscometer, where the velocity profile can be de-
scribed with v = vθ(r, z, t) iθ, the shear rate γ̇ and the viscoplastic shear viscosity η
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must be solved simultaneously through the governing Equation 7.6 (Page 157). This
approach is in accordance with the theory of continuum mechanics, and is the only
way in calculating the correct shear rate γ̇, shear viscosity η and hence the correct
torque T̂ . Of course, because of the sheer complexity of the governing equation, it
must solved by numerical means, giving the computed counterparts γ̇c, η(γ̇c) and
T̂c. Different workers seem not to appreciate the importance of this approach. Some
authors give no information about how the shear rate is calculated, giving the impres-
sion that it is calculated by analytical means and then as a function of geometry and
angular velocity ωo alone. Under steady state condition, and when the test material
consists of a Newtonian fluid (η = constant), such an approach becomes valid. This
is apparent when using τo = 0 in Equation 3.28, which results in Equation 9.19

γ̇n =
2ωo
r2

(
1
R2i

− 1
R2o

)−1
[when η = µ = constant ∧ ∂vθ/∂t = 0] (9.19)

Figure 9.23 demonstrates a comparison between the shear rate γ̇n|r=Ri calculated by
Equation 9.19 (Newtonian fluid under steady state condition), with the shear rate
γ̇c|r=Ri extracted by solving Equation 7.6 (viscoplastic fluid under transient condi-
tion). The computed shear rate γ̇c|r=Ri is extracted from the HMW Ca-case (to
the left) and from the SNF-case (to the right). Both results apply at t = 72min,
and the viscometric values used, are shown in Tables 9.3 and 9.4. From this figure it
is evident that by using an equation, like Equation 9.19, when calculating the shear
viscosity η and torque T̂ = 2 πR2i h τ |r=Ri = 2 πR2i h (η γ̇)|r=Ri of a viscoplastic fluid,
an incorrect result will be imminent.
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Figure 9.23: Comparison of a “Newtonian” shear rate γ̇n|r=Ri (marked as “Analytical”) with
computed shear rate γ̇c|r=Ri of viscoplastic fluid (marked as “Numerical”). The former is gen-
erated by using Equation 9.19, while the latter by solving Equation 7.6. To the left is the
HMW Ca-case, while to the right is the SNF-case. Both results apply at t = 72min.

9.9.4 Viscometric Values

With the overall adequate results of this chapter, the theory of Section 9.3 comes a
long way in describing the actual occurrences in the cement particle suspension (i.e.
in the cement paste). Therefore, the viscometric values shown in Tables 9.1, 9.2, 9.3
and 9.4 can be considered to represent a good estimation of the rheological response
of the cement pastes. These values are plotted in Figure 9.24.

URN:NBN:no-3374



9.9. SUMMARY AND CONCLUSION 235

It is interesting to note in Figure 9.24, how small values and little changes apply
for the plastic viscosity µ. The same behavior is observed for the mortar experiments,
as is shown in Section 6.2. A familiar crossing in yield value τo is present between
SNF-case at the one hand, and the cases of HMW Na and HMW Ca at the
other. This crossing is marked with a box, shown in Figure 9.24. This crossing is also
observed for the mortar case, and is marked with the capital letter A in Figure 6.1
(Page 104) and in Figure 6.17 (Page 118). Also, roughly the same rearrangement
in yield value τo exists between the different polymer cases. This overall similarity
between the mortar and cement paste is not unexpected, given their relationship as
discussed in the beginning of Section 6.4.1.

12 42 72 102
0

1

2

3

4

µ 
[P

a⋅
s]

Time [minutes]

VHMW Na
HMW Na
HMW Ca
SNF

12 42 72 102
0

50

100

150

200

τ ° [P
a]

Time [minutes]
12 42 72 102

0

20

40

60

80

a 1B
3n 32/

3   [
P

a⋅
s]

Time [minutes]
12 42 72 102

0

40

80

120

160

a 2B
3n 32/

3   [
P

a]

Time [minutes]

Figure 9.24: Plot of the four primary rheological values µ, τo, µ̃ = (a1B3 n
2/3
3 )U

2/3
3 and

τ̃o = (a2B3 n
2/3
3 )U

2/3
3 (using U3 = 1). Values are extracted from Tables 9.1, 9.2, 9.3 and 9.4.

A plot of the thixotropic terms τ̃o = (a2B3 n
2/3
3 )U2/33 and µ̃ = (a1B3 n

2/3
3 )U2/33 ,

using U3 = 1, is made in the two right illustrations of Figure 9.24. The much larger
value of µ̃, relative to µ, is generally not valid near the inner cylinder, because of how
the reversible coagulation state U3 = Jt/n3 becomes quickly very low. This is shown
for example in Figures 9.9 and 9.10 (Page 220), and in Figure 9.22 (Page 232).

Although the yield value τo in Figure 9.24 is always zero for theVHMW Na-case,
then this is not true for its thixotropic counterpart τ̃o. For self-compacting concrete,
it is desirable to keep its yield value τo small (to make the concrete self-flowing/self-
leveling), and the thixotropic counterpart τ̃o large: During casting of such concrete,
then by the recent agitation9, the τ̃o value is low, meaning that the sum τ̃ + τ̃o is
also low. This makes the concrete self-leveling. Since the formwork is gradually
filled with concrete (i.e. not filled all at once), the cement particles of the first placed
concrete will have time to re-coagulate, resulting in a relatively quick increase in
τ̃o. By this, the first layers of concrete will quickly become more self-bearing. With
additional layers of concrete, which also quickly re-coagulate, the result will be in
an overall lower formwork-pressure10 (compared to the hydrostatic pressure). This
is very important in relation to cost in formwork construction and/or in terms of
allowing larger formwork to be filled with concrete during the same day. In this
sense, it is beneficial to have a small τo value and larger τ̃o value. Such condition
applies for the VHMW Na-case, but not for the cases of HMW Na or HMW Ca,
and applies least for the SNF-case. This gives that the VHMW Na polymer is
promising for use in self-compacting concrete. Also, increasing µ̃ and τ̃o values after
the cast, will reduce the possibility for segregation of the larger aggregates.

9That is, by the recent dispersion of the cement particles, inside the concrete (Jt ≈ 0).
10In terms of mathematics, this means that the condition (SE : SE)/2 < τ2

y = (τo + τ̃o)2 becomes
valid, because of the continuous increase in τ̃o value. This condition inhibits the viscoplastic state in
becoming valid and eliminates the concern for the onset of a much larger pressure on the formwork,
namely the onset of hydrostatic pressure. The transition from a solid state to a viscoplastic state is
described with Equation 3.4 (Page 53).
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The strange drop in τ̃o for the HMW Na-case at 102 minutes, might rather be
related to some experimental error. Because of how the current approach, in retrieving
the rheological values in Tables 9.1, 9.2, 9.3 and 9.4, is very time consuming (both
in terms of computations and in terms of “tuning in” the correct viscometric values),
then no error estimation is made for these values.

It should be clear that the τ̃o and µ̃ values are not only dependent on the reversible
coagulation state Jt. Just as applies for τo and µ, they are also (at least) dependent
on phase volume Φ and surface roughness. This dependency is then present in the
variables a1B3 and a2B3. When creating the (limited) rheological model for the
cement paste, presented in Section 2.4.1 (see Equation 2.25, Page 26), it became
clear that (at least) the phase volume Φ, surface roughness and coagulation state
J tott = Jpt + Jt, are the controlling material parameters in changing the value of the
overall shear viscosity η = [µ+ µ̃] + [τo + τ̃o]/γ̇ as a function of time. A summary of
this is given in Section 2.6.3. The exact relationship between Jt and η has been the
subject of this chapter.

9.9.5 Recommended Future Research

The good results shown in this chapter demonstrate that the theory of Section 9.3
comes a long way in describing the mechanism occurring inside the cement paste.
However, the issue about the secondary effect is not resolved in this thesis. The
number of different possibilities in changing the shear viscosity η in the attempt
to compensate for this, is virtual infinite. Rather than focusing on the functional
form of the shear viscosity η, it is the author’s opinion that the best next step is
by concentrating on Equation 9.11 (Page 213). In the beginning of this work, it
was believed that the change in shear rate γ̇ would follow the change in the angular
velocity ωo of the outer cylinder (Ro), i.e. if γ̇ would be increasing, then so would
ωo (and vise versa). When observing animation movies of the numerical results,
then this is apparently not so. Often, when the angular velocity ωo is decreasing,
the shear rate γ̇ is increasing at some locations. The reason for this is related to
the movement of the boundary between the viscoplastic state Ωp and the solid state
Ωe during re-coagulation (i.e. during stiffening) of the test material. As such, the
function K(t) (Equation 9.11) should rather depend on dγ̇/dt instead of on dωo/dt.
Implementing such condition and then testing it, is a bit time consuming, and time
for such maneuver was not present in the end.
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Chapter 10

Particle Migration

10.1 Introduction

Changes in Shear Rate

As is apparent with Equation 3.28 (Page 59), the shear rate γ̇ in the ConTec vis-
cometers is rapidly changing with location. This is also evident in Figure 10.1, which
shows isoplot of the computed shear rate γ̇c, calculated from the numerical velocity
profile V k(i,j) of Figure 8.19 (Page 199). As demonstrated in this figure, the shear
rate is highest near the inner cylinder and lowest near the outer cylinder.
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Figure 10.1: Gradient field of shear rate: q/ϑ = −∇γ̇c. The length of the vector, shown
inside the inner cylinder, is ‖∇γ̇‖ = 103 m−1s−1. The vector concentration in z ∈ [20, 25] cm
is diluted so their actual length can be observed. The isolines are of the shear rate γ̇c and
consist of the following values: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30] s−1.
The dashed dotted line demonstrates the boundary between a solid state and a viscoplastic state.

Physical Aspects of Particle Migration

The fresh concrete is a (coarse) particle suspension, where it is the gravel particles
(here, the 2− 16mm aggregates) that can be modeled as the suspended particles and

237
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with the 0 − 2mm mortar as the surrounding matrix1. Migration of the suspended
particles from the region of high shear rate, to the region of low shear rate has been
reported [9, 70]. The reason for this phenomenon is related to a certain kind of
diffuse process, induced by shearing [70]. Here, this phenomenon is rather related to
the following: In Section 2.4.1, the (direct and indirect) collision rate ṅ between the
cement particles is calculated as ṅ = (Ñdc+Ñic) Ṅ = (Ñdc+Ñic) γ̇ ∝ γ̇ (Page 26); i.e.
the collision rate ṅ is directly proportional to the shear rate γ̇. Extrapolate this result
to concrete, one could argue that the collision rate ṅ between the gravel particles is
proportional to the shear rate: ṅ ∝ γ̇. If so, the collision rate ṅ is also decreasing
with increasing radii r (as applies for the shear rate γ̇). This means that the gravel
particles are “pushed” by collisions away from the region of highest collision rate ṅ,
towards the outer cylinder and into the serrated region of inner cylinder. This process
is observed as gravel migration, leaving a concrete that is very rich in mortar, behind
in the region near the inner cylinder. This is shown in Figures 10.2 and 10.3. Also,
for the gravel particles to be able to migrate towards the outer cylinder and into the
serrated region of inner cylinder, the mortar that resides there, between the gravel
particles, has to be consequently squeezed toward the region near the inner cylinder.

Figure 10.2: To the left: In some rear occasions, particle migration inside the ConTec Vis-

cometer 4 occurred. The thickness of the migrated layer shown, is measured to be around
5mm. Center: Gravel migration inside the ConTec BML Viscometer 3, for the stiffer
type of concrete batches of this thesis. To the right: Schematic figure of gravel distribution
Φ = Φ(r, z) after a viscometric measurement (the white tube shown, will be discussed shortly).

Another physical phenomenon could be present at the same time, also responsible
for the particle (or gravel) migration. This is the effect of dilatancy and is slightly
mentioned in Section 3.2.2 (see Figure 3.3, Page 54). In a suspension of densely
packed suspended particles (i.e. large phase volume Φ), like what is present here,
the gravel distribution Φ must change to permit the gravel particles to flow past one
another. This means a withdrawal (or rather suction) of matrix, from the region of
smallest deformation (or smallest γ̇) into region of largest deformation (or largest γ̇)
and hence, change the gravel concentration in the process. This phenomenon would
continue until a sufficient amount of matrix exists between the gravel particles, in the
region near the inner cylinder. More precisely, this means that the matrix near the

1In this chapter, the matrix is defined as all particles below 2mm in diameter. This means the
0−2mm aggregates, cement particles, water and other solid particles in the same size range, defines
the matrix. Because there is no distinct physical boundary between the suspended particles and the
matrix, it is difficult to define the “true” matrix. With this definition, the phase volume Φ [9] is
then equal to Φ = δV2−16/δV where δV2−16 is the amount of volume occupied by gravel particles
inside the continuum particle (CP). The term δV has been defined previously and represents the
total volume of the CP. The phase volume of cement paste is discussed in Footnote 33, Page 48.
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outer cylinder and in the serrated region of inner cylinder are sucked into the area
of the highest shear rate, namely in the direction of ∇γ̇. With a (observed) constant
volume of the overall suspension, the gravel particles must be consequently pushed
in the opposite direction, namely in the direction of −∇γ̇. A interesting experiment
has been made by Mork [78] in his doctoral thesis, in measuring this phenomenon.
Basically it consist of submerging a tube filled with liquid, into a concrete sample.
The tube configuration is shown in the right illustration of Figure 10.2: The tube is
in a vertical position, placed near the inner cylinder. Both ends of the tube are open.
On measurement, the liquid inside the tube is sucked into the zone near the inner
cylinder. In repeating the same experiment right afterwards, when the concrete batch
is in a migrated state, the liquid remained in the tube.

A third physical phenomenon could also be accountable for the particle migration.
This will be called the “confinement effect”, and becomes apparent at low ratio of
Dflow/Dmax. This effect will be discussed in Section 10.3.1. The mechanism for the
collision, dilatancy and the confinement effect are summarized in Section 10.3.8.

Figure 10.3: An extreme case of gravel migration inside the ConTec BML Viscometer 3,
for a very fluid fresh concrete (this batch is however not of this thesis). The gravel particles have
migrated from the zone of high shear rate, towards the zone of low shear rate.

In this work, the change in gravel concentration, from Φ = constant to Φ = Φ(r, z),
during a measurement, will be often referred to as gravel migration, but generally
in the literature, such process is usually designated as particle migration [9, 70].
In mathematical terms, this experience can be stated with q = −ϑ∇γ̇, where the
migration coefficient ϑ describes how much amount of gravel particles q should migrate
for the given difference in shear rate ∇γ̇ (this principle is similar to the Fourier law of
heat flux: q = −k∇T given in Appendix B.7.2). Using this approach, it is apparent
that the direction and the potential magnitude of gravel migration is related to the
gradient of shear rate q/ϑ = −∇γ̇, plotted as arrows in Figure 10.1.

Experimental Observation

The objective of Chapter 10, is not to prove that gravel migration occurs. Rather, the
objective here is to characterize and analyze how much this phenomenon influences
the viscometric values retrieved. In this thesis, a “proof” of gravel migration is never
made in a systematic sense, by direct measurements. However, this phenomenon
was always observed after a viscometric measurement on the concrete batches of this
thesis. This was done both with a direct observation like presented in Figure 10.2
and especially when emptying the test material back to the Gustav Eirich mixer.
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240 CHAPTER 10. PARTICLE MIGRATION

For the latter case, gravel migration became quite apparent with the difficulty in
cleaning the area near the outer cylinder (r = Ro) and near the bottom part of the
bucket (z = 0), due to the high gravel concentration Φ there (the bucket is shown
in the center illustration of Figure 3.5 on Page 56). Regardless of the above visual
observations, it would have enhanced this thesis if a more systematic analysis on the
gravel concentration would have been made. For example, letting the fresh concrete
harden to some extent after a viscometric measurement and then taking a cross section
of it, to measure the gravel concentration as a function of location: Φ = Φ(r, z). This
would have given a clearer picture of the extent of gravel migration.

Particle migration inside the ConTec Viscometer 4, when measuring the 0−
2mm mortar, is almost never observed in this work. But like what is shown in the
left illustration of Figure 10.2, in some rear occasions this phenomenon occurred.
The thickness of the migrated layer shown, is measured to be around 5mm. This
phenomenon is mostly observed when using the fly ash cement at 38◦C degrees tem-
perature. There the ratio of yield value to plastic viscosity started to reach around
and above τo/µ ≈ 200 s−1. As will be discussed in Section 10.3.1, the higher the ratio
τo/µ becomes, the larger the gradient in shear rate −∇γ̇ is formed and hence a larger
possibility for particle migration q = −ϑ∇γ̇.

None of the concrete batches in this project segregated under manual agitation,
since they were designed in such manner. Therefore, gravel migration could not be
caused by centrifugal force in the viscometer: Since the concrete could withstand a
manual agitation without segregating, it could also (at least) tolerate an acceleration
of g = 9.81m/s2. With fmax = 0.5 rps, the maximum centripetal acceleration near
the inner cylinder is Ri ω2o = 0.1m (2π 0.5rps)2 = 0.99m/s2. This simple calculation
demonstrates that the gravitational acceleration is about ten times larger than the
centripetal acceleration and therefore it can be concluded that the latter acceleration
cannot be responsible for the horizontal segregation observed.

Particle Migration Inside Other Types of Viscometers

Gravel migration is by no means something that applies only to the ConTec BML
Viscometer 3. For example, this potential is also present inside the BTRHEOM

viscometer (a description of this viscometer is given in [50, 51, 27]). Since such process
would occur well within the test material (see Figure 10.24), visual observations like
presented in Figures 10.2 and 10.3 are hard to gain for the BTRHEOM viscometer.

Objectives

The first objective (Section 10.2) of this chapter, is to quantify the effect of gravel
migration by observing the rotational frequency f , 2 cm away from the inner cylinder
Ri. In doing this type of investigation, one can gain some idea about how gravel
migration influences the true (and unknown) rheological values τo and µ of the con-
crete, in a homogeneous state. This investigation is only applied to the ConTec

BML Viscometer 3, since particle migration inside the ConTec Viscometer 4,
is almost never observed.

The second objective (Section 10.3) is to explore the possibility for a more suitable
viscometric geometry to the ConTec BML Viscometer 3, in minimizing the prob-
ability of gravel migration. This analysis will be based on the gradient in shear rate
q/ϑ = −∇γ̇, where the geometry that produces the lowest difference in the shear rate,
i.e. has the smallest vectors (see Figure 10.1), is considered to be the best solution.
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10.2. MEASURING THE EFFECT OF PARTICLE MIGRATION 241

10.2 Measuring the Effect of Particle Migration

The objective of this section is to quantify the effect of gravel migration, by measuring
the rotational frequency, 2 cm away from the inner cylinder, inside the ConTec BML
Viscometer 3. To do this, some modifications of the viscometer are made as shown
in Figures 10.4 and 10.5. The point is that while gravel migrations is occurring, the
rotational frequency f (and hence velocity vθ iθ) should be additionally increasing
from what is given by Equation 3.23 (Page 59), due to the plug that is forming. The
plug state is now more related to the concentration increase in gravel content Φ near
the outer cylinder.

The mechanism for the onset of plug, discussed in Section 3.5 applies only for a
homogenous test sample (Φ = constant), where for example, it is the shear rate γ̇
that marks the onset of plug, then with γ̇ = 0. However, in this chapter, it is also
the change in gravel concentration Φ that can mark the onset of plug. When this
concentration has increased to a certain value, a rigid body motion will result.

Figure 10.4: To the left: The three basic elements of the velocity measuring device. To the
right: After mounting this device on the viscometer, total of four needles are aligned in a vertical
position. This is also shown in the right illustration of Figure 10.5.

Figure 10.5: The photocell system during developing stage (to the left) and in the final stage
(center). To the right is a schematic illustration of the velocity measuring device.

As Figures 10.4 and 10.5 demonstrate, the velocity measuring device basically
consists of three objects: Four needles that are submerged into the concrete sample, a
freely rotating plastic disc to which the needles are attached, and finally, a photocell
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242 CHAPTER 10. PARTICLE MIGRATION

that records the rotational frequency fdisc of the plastic disc. The mix design of
the concrete batches used here, is as described in Section 4.3.1. The mixing and
measuring procedure is as described in Section 5.2.1. The parameter setup used for
the viscometer is as shown with Table 3.1 (Page 64).

The results that now follow are of six different concrete batches collected in two
groups, marked with the type of lignosulfonates used. The two groups are named
“HMW Na & LMW Na” and “VHMW Na”.

10.2.1 HMW Na & LMW Na

Measured Case: Figure 10.6 shows a result from rheological measurements made
on fresh concrete, using 0.6% sbwc of HMW Na at w/c = 0.4. The left illus-
tration demonstrates the measured torque T̂ as a function of time. Also shown, is
the rotational frequency fo applied for the given time period. The right illustration
demonstrates the percentage difference between measured rotational frequency fdisc
of the test sample, at r = Ri + 2 cm, and the rotational frequency of a solid fo. The
difference is calculated as 100 · (fo − fdisc)/fo and is marked as “Measured:”.
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Figure 10.6: Test sample: Fresh concrete, using 0.6% sbwc of HMW Na at w/c = 0.4. To
the left is the measured torque T̂ and to the right is the percentage difference between rotational
frequency at r = Ri + 2 cm and the rotational frequency of a solid fo (i.e. of a rigid body).

Bingham Case: Assuming that no gravel migration is occurring (Φ = constant
∀ t) and therefore using all torque data available when making the data processing
(described in Section 3.4.2), the yield values produced are τ�	o = 123, 177, 305, and
415Pa. Likewise, the plastic viscosities produced consist of µ�	 = 41.3, 41.9, 40.0, and
46.9Pa · s. As mentioned in Section 5.2.1, these values apply at 10, 40, 70, and 100
minutes after water addition. Through2 Equations 3.23 and 3.24 (Page 59), these
viscometric values are then used in calculating the rotational frequency f(Ri + 2 cm)
that should be measured if these values were correct. Prior to this type of calculation,
Equation 3.32 (Page 66) is always applied in order to calculate the solid boundary
Rs, whenever (theoretical) plug is occurring. This result is used in Equation 3.24.
The rotational frequency that is calculated with the above approach, is designated
here with fb. The difference 100 · (fo − fb)/fo is shown in Figure 10.6 and is marked
as “Bingham case:”. This is the difference that should be measured if the values τ�	o

2The relationship between vθ and f is ω = 2π f iz = ir × vθ(r, t) iθ/r = vθ(r, t)/r iz.
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10.2. MEASURING THE EFFECT OF PARTICLE MIGRATION 243

∧ µ�	 represented the correct (and unknown) viscometric values τo ∧ µ of the fresh
concrete, in a homogenous state.

Newtonian Case: For the values marked with “Newtonian case:”, the yield value
τo is set equal to zero, which produces a velocity profile of vθ independent on visco-
metric values: fn = ω/(2 π) = vθ/(2 π r) = fo (1−R2i /r2)/(1−R2i /R2o). The difference
100 · (fo − fn)/fo is equal to 100 · [1− (1−R2i /(Ri + 2 cm)

2)/(1−R2i /R
2
o)] = 42%.

As pointed out previously, in the process of gravel migration, the outer region of
the test sample (i.e. outside the circle of r = Ri + 2 cm) becomes more and more
packed with gravel particles and therefore resembles more and more a solid. In other
words, a plug state (i.e. rigid body motion) is achieved at the outer region due to
the accumulations of gravel particles there. The result of such process is that the
test material there starts to approach the same rotational frequency as the outer
cylinder, namely approaching fo. As is shown in Figure 10.6, this phenomenon is
indeed observed: The percentage difference between fdisc and fo is below 10% for all
cases. This is a much lower difference then should be measured as is shown either
with the “Bingham case:” or with the “Newtonian case:”.

As shown in Figure 10.6, the characteristics of the “Bingham case:”, is that the
difference 100 · (fo − fb)/fo approaches the “Newtonian case:” with larger rotational
frequency fo. This is to be expected, since with higher rotational frequency fo, the
shear rate γ̇ increases, leading to η = µ+ τo/γ̇ ≈ µ. The same effect is produced with
decreasing yield value τo.
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Figure 10.7: Test sample: Fresh concrete, using 0.3% sbwc of LMW Na at w/c = 0.5. To
the left is the measured torque T̂ and to the right is the percentage difference between rotational
frequency at r = Ri + 2 cm and the rotational frequency of a solid fo.

Figure 10.7 shows a result from rheological measurement made on fresh concrete,
using 0.3% sbwc of LMW Na at w/c = 0.5. The left illustration demonstrates the
raw torque data T̂ , while the right illustration demonstrates the percentage difference
between measured rotational frequency fdisc of the test sample at r = Ri + 2 cm and
the rotational frequency of a solid fo. The same remarks applies in Figure 10.7 as
for Figure 10.6. The viscometric values produced here are τ�	o = [323, 316] Pa and
µ�	 = [19.6, 48.2] Pa · s.

The one thing that is distinct with the left illustration of Figure 10.7 is the con-
tinuous decrease in torque T̂ , even at the given constant rotational frequency fo.
One cannot argue that this decrease is due to thixotropic behavior alone (of the ce-
ment paste inside the concrete). Rather, this “breakdown” is (also) related to gravel
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244 CHAPTER 10. PARTICLE MIGRATION

migration (this perception is in an agreement with earlier work [129]). This is ap-
parent with the result from Figure 10.8, which demonstrates the measured torque T̂
for the corresponding mortar mix, designed from the concrete batch (according to
Section 4.3.2). The left illustration demonstrates two measurements made with the
mixing and measuring procedure of Section 5.3.3, while the right illustration with the
mixing and measuring procedure of Section 5.3.1. The latter mixing and measuring
procedure is nominally identical to what applies for concrete. As shown with either
illustration in Figure 10.8, no apparent thixotropic breakdown exists for the corre-
sponding mortar. If anything, there is rather a slow thixotropic rebuild occurring, by
the re-coagulation process. Since, the mortar inside the concrete, is under similar (or
larger) agitation as the mortar in Figure 10.8 (see Section 4.4.1) and since there is
no apparent thixotropic breakdown shown in Figure 10.8, then it can be argued that
no (or only small) thixotropic breakdown should be present for the corresponding
concrete batch in Figure 10.7.
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Figure 10.8: Test sample: Mortar, using LMW Na at w/c = 0.5. Mixing and measuring
procedure used are of Section 5.3.3 (to the left) and of Section 5.3.1 (to the right).
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Figure 10.9: Test sample: Mortar, using HMW Na at w/c = 0.4. Mixing and measuring
procedure used are of Section 5.3.3 (to the left) and of Section 5.3.1 (to the right). For both
illustrations, the average of 4 batches is used in generating each line.

The same arguments apply for the concrete batch in Figure 10.6. This is apparent
with the result shown in Figure 10.9, which demonstrates the measured torque for the
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10.2. MEASURING THE EFFECT OF PARTICLE MIGRATION 245

corresponding mortar mix. There, the thixotropic breakdown is finished within 2.5
seconds for the mortar, while the continuous reduction in torque, for the corresponding
concrete batch, goes on for at least 22 seconds. The same type of result applies for
the concrete batches in Figures 10.11, 10.13 and 10.14, however only based on the
mixing and measuring procedure of Section 5.3.3.

It should also be noted that prior to any torque logging, the fresh concrete is
pre-rotated for about 10 seconds (see Table 3.1). This means that at the first torque
logging (at “t = 0 seconds” in the left illustration of Figure 10.7), a great deal of
thixotropic breakdown should be finished.

The right illustration of Figure 10.7, demonstrates that the difference between
the rotational frequency of the test material fdisc and of a solid fo (i.e. of the outer
cylinder) is below only 4% at all times, indicating that gravel saturation Φ outside the
circle of r = Ri+2 cm occurs apparently very fast. However, as mentioned previously,
prior to any torque logging, the fresh concrete is pre-rotated for about 10 seconds.
This (default) setup is unfortunate because important information about the torque
is missing in this period, namely when the largest changes is gravel concentration Φ is
occurring. Hence, if all torque information were available, larger difference than 4%
could be anticipated at the beginning (i.e. from t = −10 seconds to t = 0 seconds).

Since the difference between fdisc and fo is always below 4% in Figure 10.7, the
reduction in torque T̂ shown in the left illustration is most likely due to the continuous
gravel migration within the circle of r = Ri + 2 cm. The possibility for that this
reduction is also related to thixotropic breakdown of the remaining fat concrete within
the circle, is not completely discarded. However, as demonstrated with Figures 10.8
and 10.9 thixotropic behavior is not expected to be the dominating effect. Thixotropic
breakdown could rather be related to the reduction in torque, shown between 77 and
88 seconds in Figure 10.7, since it is expected that gravel migration is long finished
before that time period.
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Figure 10.10: Results from the different ways in calculating the viscometric values τo and µ of
the fresh concrete: τ��o ∧ µ��; τ©

o ∧ µ©; τ♦o ∧ µ♦. The two illustrations to the left consist of
HMW Na at w/c = 0.4, while the two to the right consist of LMW Na at w/c = 0.5.

With the information presented here, it is possible to calculate the viscometric
values of the remaining fat concrete sample within the r = Ri+2 cm circle. First, only
the torque values between 22 and 77 seconds are used, since the majority of migration
seems to be finished after 22 seconds. Plotting the remaining five torque points versus
fdisc, and otherwise using the same data processing method of Section 3.4.2, gives the
results shown in Figure 10.10, marked with a diamond ♦ (⇒ τ♦o ∧ µ♦) and designated
as “Ro = 12 cm”. This designation is used, since outer radius of Ro = 12 cm must be
used, instead of Ro = 14.5 cm. This is so since fdisc is now applied instead of fo.

With the results designated as “Ro = 14.5 cm” in Figure 10.10, two different ap-
proaches are used when calculating viscometric values, marked with a box � (⇒ τ�	o
∧ µ�	) and a circle © (⇒ τ©

o ∧ µ©). Their calculations are explained in Section 3.4.2.
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The “Mortar” measurement is marked with a triangle ! and designates the corre-
sponding mortar mix, using the mixing and measuring procedure of Section 5.3.3.

Figure 10.10 demonstrates that the viscometric values of the mortar ! is much
lower than of the remaining fat concrete sample ♦ within the circle of r = Ri+2 cm.
This indicates that this fat concrete is far from being completely depleted of gravel
particles. This is also apparent with the fact that the fluctuating torque (i.e. the
amplitude of the random oscillations in torque) are not diminishing with time as
shown for example in Figure 10.7. The fluctuation in torque is most likely generated
by continuous formation of gravel-bridges as described in Section 3.4.2.

The yield value τ♦o (or the shear viscosity η♦) of the fat concrete within the circle
of r = Ri+2 cm is in reality lower than the (unknown) yield value of the concrete in a
homogeneous state3. However, as is shown in Figure 10.10, this is not measured; i.e.
the yield values designated as “Ro = 14.5 cm” and marked with © and � (which are
supposed to produced the viscometric values for the concrete in a homogenous state)
are always measured with a lower yield value τo, than measured for the fat concrete
♦ within the circle. Because of this, it is apparent that the values of “Ro = 14.5 cm”
are lower than the true and the desired yield value τo of a homogenous fresh concrete.

10.2.2 VHMW Na

Figure 10.11 shows a result of rheological measurements conducted on fresh concrete,
using 0.6% sbwc of VHMW Na at w/c = 0.4. At 10 minutes after water addition,
this batch had the characteristics of a self-compacting concrete with the slump of
265mm and slump flow of 620mm. Applying the usual data processing for this
measurement, produces a negative yield value of τ�	o = −11.8Pa (the resulting torque
T̂ as a function of fo is shown in Figure 10.18). Overall, the viscometric values
produced are τ�	o = [−11.8, 12.4, 55.4, 114] Pa and µ�	 = [36.7, 37.3, 38.7, 43.3] Pa · s.
The same remarks applies in Figure 10.11 as for Figure 10.6.
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Figure 10.11: Test sample: Fresh concrete, using 0.6% sbwc of VHMWNa at w/c = 0.4. To
the left is the measured torque T̂ and to the right is the percentage difference between rotational
frequency at r = Ri + 2 cm and the rotational frequency of a solid fo (i.e. of a rigid body). No
thixotropic rebuild or breakdown where observed for the corresponding mortar mix.

3This is so, since the homogeneous concrete has a higher gravel consternation Φ in a shearing zone.
This results in a larger momentum exchange between the gravel particles for this concrete, which
again gives a larger shear viscosity η. A summary is given in Section 2.6.3, about the relationship
between the momentum exchange and the shear viscosity η, for cement paste.
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When calculating the term fb (Bingham), for the case of 10 minutes after water
addition, the yield value of zero is used rather than of −11.8Pa. This results in
that fb becomes equal to fn (Newtonian) for that particular case. As shown in the
right illustration of Figure 10.11, then at 10 and 40 minutes after water addition, the
difference between fdisc and fo is much higher than measured previously, indicating
that plug near the location of r = Ri + 2 cm is not occurring. Nevertheless, these
two measurements were somewhat inflected by gravel migration. This was observed
visually after the rheological test and especially when emptying the bucket (i.e. the
outer cylinder) of this batch into the Gustav Eirich mixer, where (like always) one
could feel how the gravel concentration was higher at the sides and at the bottom of
the bucket, as predicted by Figure 10.1. However, for the first two measurements at
10 and 40 minutes, gravel migration were not as visually apparent as for the other
concrete measurements conducted in this thesis. The reason for this is related to the
small τo/µ-ratio that applies for this batch. The relationship between the τo/µ-ratio
and the potential gravel migration, is discussed in Section 10.3.1.

In the right illustration of Figure 10.11, the value 100 · (fo − fdisc)/fo increases
or remains constant with decreasing fo. This type of result is often produced and
seems to be one of the characteristics of gravel migration. This trend is reversed for
the Bingham case, where 100 · (fo − fb)/fo is actually decreasing with decreasing
rotational frequency fo of the outer cylinder.

Figure 10.12 displays the viscometric values τ♦o ∧ µ♦ of the remaining fat concrete
sample within the r = Ri + 2 cm circle (marked with ♦). This calculation is done in
the same manner as is made for Figure 10.10. The same findings are made here as is
done for the last-mentioned figure. The yield value of the mortar ! is lower than of
the remaining fat concrete sample within the r = Ri + 2 cm circle ♦. This indicates
that this fat concrete is not depleted of gravel particles. Also, the results designated
as “Ro = 14.5 cm” and marked with © and � are always measured with a lower yield
value than measured for the fat concrete ♦ within the circle of r = Ri + 2 cm.
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Figure 10.12: Results from the different ways in calculating the viscometric values τo and µ of
the fresh concrete: τ��o ∧ µ��; τ©

o ∧ µ©; τ♦o ∧ µ♦. Mix design: VHMW Na at [0.6% sbwc;
w/c = 0.4] (top), [0.3% sbwc; w/c = 0.5] (left) and [0.1% sbwc; w/c = 0.6] (right).

In relation to Figure 10.11, with the results at 10, 40 and 70 minutes after water
addition, one can see how the fluctuating torque (i.e. the amplitude of the random
oscillations in torque) are diminishing with time. This does not have to be due to
the depletion of gravel particles within the circle, but rather due to the lower solid
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particle interactions as a result of lower rotational frequency fo. This is apparent
when looking at how the fluctuation increase again between 77 and 88 seconds, when
the rotational frequency fo is increased from 0.09 rps upto 0.33 rps.
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Figure 10.13: Test sample: Fresh concrete, using 0.3% sbwc of VHMWNa at w/c = 0.5. To
the left is the measured torque T̂ and to the right is the percentage difference between rotational
frequency at r = Ri + 2 cm and the rotational frequency of a solid fo.
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Figure 10.14: Test sample: Fresh concrete, using 0.1% sbwc of VHMWNa at w/c = 0.6. To
the left is the measured torque T̂ and to the right is the percentage difference between rotational
frequency at r = Ri + 2 cm and the rotational frequency of a solid fo.

Figures 10.13 and 10.14 shows rheological results from fresh concrete of [0.3%
sbwc; w/c = 0.5] and [0.1% sbwc; w/c = 0.6] using the VHMW Na polymer. The
yield values produced for the w/c = 0.5 case are τ�	o = 219, 281, 376 and 546Pa and
likewise, the plastic viscosities produced consist of µ�	 = 23.6, 30.8, 38.8 and 36.8Pa · s.
For the w/c = 0.6 case, the viscometric values produced4 are τ�	o = [178, 246, 311] Pa
and µ�	 = [20.6, 24.7, 37.7] Pa · s. As shown with the right illustration of either figure,
the difference 100 ·(fo−fb)/fo is below 4% for most cases, indicating a plug condition
in the vicinity of the circle of r = Ri + 2 cm.

Figure 10.15 demonstrates an additional experiment that is done. It consists of
using the same mix design as in Figure 10.14, except for that the 11−16mm aggregates

4For the measurement at 70 minutes after water addition, the logged torque data T̂ between 66
and 77 seconds, are ignored in the data processing when generating the viscometric values.
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Figure 10.15: Same type of batch as in Figure 10.14, except for that the 11−16mm aggregates
are replaced with the 8− 11mm aggregates, giving now Dmax = 11mm.

are replaced with the 8 − 11mm aggregates, giving now Dmax = 11mm. In doing
this, the value of Dflow/Dmax = (Ro − Ri)/Dmax is increased from 2.8 to 4. As is
apparent with the right illustration, regardless of the increased motional freedom (for
the larger solid particles), the gravel migration still occurs (see Section 3.4.2, about
the “motional freedom” of the aggregates).

10.2.3 Summary and Conclusion (Part I)

The General Trend

Gravel migration q is not only governed by the gradient5 in shear rate −∇γ̇, but also
by some internal and external properties, described with the migration coefficient
ϑ. In the process of gravel migration, the remaining concrete, surrounding the inner
cylinder Ri, becomes fatter and fatter. Its matrix content 1−Φ increases, resulting in a
decrease in its shear viscosity η. Hence, with Equations 3.12, 3.17 and 3.19 (Page 58),
this will also result in the decrease of measured torque T̂ = 2 πR2i h η(Ri) γ̇(Ri),
usually giving some kind of curvature in torque profile, as shown with Figure 10.18.

Measurements indicate that outside the circle of r = Ri+2 cm, the gravel concen-
tration Φ reaches a saturation value Φmax within, say 10 - 15 seconds after start in
rotation of the outer cylinder Ro. With the condition Φ = Φmax outside this circle,
a rigid body motion results. This is measured with the plastic disc: fdisc ≈ fo. After
this time period, the gravel migration seems to continue only within this circle (i.e.
between Ri and Ri + 2 cm), for about additional 20 seconds or so. This is evident
with the ongoing nonlinear decrease in torque T̂ for this same time period.

The measurements of the corresponding mortar mix, indicate only a thixotropic
breakdown within the first 2.5 seconds of data logging (i.e. within the first 2.5 seconds
of rotation of the outer cylinder). Hence, it could be suggested that thixotropic
breakdown of the concrete should be finished well within the 2.5 seconds of rotation,
or long before any data logging is made with the ConTec BML Viscometer 3 (c.f.
the pre-rotation in Table 3.1).

After processing the raw torque data as described in Section 3.4 and thereafter
plotting the resulting discrete torque points T̂ as a function of rotational frequency fo,

5As should be apparent with Equation 3.23 (Page 59), the gradient of shear rate −∇γ̇ is dependent
on overall viscometric values τo and µ of the test sample and on the rotational frequency fo.
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the results like presented with the left illustration of Figure 10.18 are produced. The
type of curves shown there are just a direct consequence of the curves demonstrated,
for example, in the left illustration of Figure 10.6.

Rheological Results Shown in Chapter 6

From the above, it should be clear that the viscometric
values of the concrete measurements of this thesis are
somewhat incorrect due to gravel migration. As shown
with the schematic figure to the right, the yield values
τo are measured lower than the true ones, but the effect
on the plastic viscosity µ is unclear. When gravel migra-
tion occurs, the best way to process the logged torque
data, is to dismiss the first torque points T̂ , when gravel
concentration Φ = Φ(r, z, t) is changing most rapidly.
This usually means only using the five torque points T̂ ,
generated when the rotational frequency is going from
fo = 0.37 rps down to fo = 0.09 rps (see Figure 10.18). However, in taking this
approach, one is only extracting the viscometric values related to the remaining fat
concrete (that surrounds the inner cylinder), and not of the concrete as a whole, in
a homogenous state. The set of viscometric values τ♦o ∧ µ♦ represents the most cor-
rect values for this fat concrete. The corresponding G and H values are calculated
by linear regression of the pre-mentioned five torque points T̂ versus the rotational
frequency of the disc fdisc. Thereafter the radius of Ro = 12 cm is used when applying
Equations 3.26 and 3.27 (Ri = 10 cm ∧ h = 19.9 cm). This is because the needles that
are submerged into the concrete sample are located at r = Ri + 2 cm. This approach
has been previously used in relation to Figures 10.10 and 10.12 (marked with ♦).

As is evident with the results presented in Figures 10.6, 10.7, 10.11, 10.13, 10.14
and 10.15, the rotational frequency of the disc fdisc is often very close to the rotational
frequency of the outer cylinder fo. This result gives the possibility of extracting
an accurate viscometric values for the remaining fat concrete, of batches where the
information about fdisc is not available: First, the G and H values are calculated by
linear regression of the above-mentioned five torque points T̂ versus the rotational
frequency of the outer cylinder fo (≈ fdisc). Thereafter, the radius of Ro = 12 cm
is used when applying Equations 3.26 and 3.27 (Ri = 10 cm ∧ h = 19.9 cm). This
results in the viscometric values τ♣o ∧ µ♣ (≈ τ♦o ∧ µ♦).

To investigate the validity of τ♣o ∧ µ♣ and τ©
o ∧ µ© (see Section 3.4.2), relative

to τ♦o ∧ µ♦, number of four calculations are made, listed below. The result of these
calculations are presented in Figure 10.16.

• Calculation 1: Plot of [100 · (τ♦o − τ©
o )/τ♦o ] versus [τ©

o /µ
©]

• Calculation 2: Plot of [100 · (τ♦o − τ♣o )/τ
♦
o ] versus [τ

♣
o /µ

♣]

• Calculation 3: Plot of [100 · (µ♦ − µ©)/µ♦] versus [τ©
o /µ

©]

• Calculation 4: Plot of [100 · (µ♦ − µ♣)/µ♦] versus [τ♣o /µ♣]

Figure 10.16 shows that there is a small difference between the viscometric values
τ♦o ∧ µ♦ and τ♣o ∧ µ♣. This is to be expected, since fdisc ≈ fo applies for most cases.
As such, the values τ♣o ∧ µ♣ represent a better result, relative to the values τ©

o ∧
µ© when extracting the viscometric values of the remaining fat concrete surrounding
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Figure 10.16: Percentage difference between viscometric values, processed in a different manner.

the inner cylinder. Figure 10.17 demonstrates a plot of the slump value (the actual
response of the fresh concrete as a whole) versus the two viscometric values τ♣o and
µ♣ of the fat concrete that surrounds the inner cylinder. This figure shows that
although the two values τ♣o and µ♣ do not represent the viscometric response of the
fresh concrete as a whole, there is a very good relationship between the yield value
τ♣o and slump. There is however a weaker relationship between slump and the plastic
viscosity µ♣. The same type of plot is also available for w/c = 0.5 and w/c = 0.6
in Chapter 6. For further discussion about the overall fine quality of the rheological
results made by the ConTec BML Viscometer 3, see Section 6.3.
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Figure 10.17: Comparison of measured slump value versus the yield value τ♣o (to the left) and
plastic viscosity µ♣ (to the right). These results are extracted from Figure 6.6 (Page 108).

Herschel-Bulkley Model?

When making a detailed analysis on the fresh concrete, the effect of gravel migra-
tion will inflect and damage the viscometric results. Such typical analysis would be:
1) When modulating a new type of flow model. A non-linear torque T̂ generated by
gravel migration, could incorrectly lead to the suggestion that a new material model
applies, for example of the Herschel-Bulkley model η = µ γ̇n−1+τo/γ̇. 2)When trying
to measure a thixotropic behavior in the fresh concrete. Doing a stepwise increasing
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shear rate sequence followed by a stepwise decreasing shear rate sequence, produces a
hysteresis loop, which could be understood as thixotropic breakdown, when in fact it
is also a result of continuous gravel migration. If occurring simultaneously, separating
the two is a challenging task. An interesting discussion about the two phenomena
when occurring simultaneously, is made by Wesche et al. [149]. 3) Often, it is in-
teresting to create a shear viscosity function of a suspension η = η(ηm), dependent
on viscometric values of its matrix phase ηm (i.e. creating a particle-matrix model).
However, such model can be somewhat damaged, when gravel migration is occurring.
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Figure 10.18: Regression analysis assuming the Herschel-Bulkley model applies. To the left are
torque points used from the figures in Section 10.2. To the right is data presented by Ferraris and
de Larrard [31], produced with the BTRHEOM viscometer. For both illustrations, the stepwise
decreasing shear rate sequence is applied.

As mentioned in the introduction of this chapter, gravel migration can also occur
in other types of viscometers, for example the BTRHEOM (see Section 10.3.4). In
fact, for this last-mentioned viscometer, a curve in torque T̂ has been produced as
shown with the right illustration of Figure 10.18. For such instances, it is concluded
that fresh concrete corresponds to the Herschel-Bulkley model [26, 31].

10.3 Suggestions to Geometrical Changes

In mathematical terms, gravel migration can be stated with q = −ϑ∇γ̇, where the
migration coefficient ϑ = ϑ(Φ, ηm, Dflow/Dmax, . . . ) describes how much amount of
gravel should migrate q for the given change in shear rate ∇γ̇. Using this approach,
it is apparent that the direction and the potential magnitude of gravel migration is
controlled by the gradient of shear rate q/ϑ = −∇γ̇, plotted as arrows in Figure 10.1.
The direction of gravel migration as predicted in this figure, is experimentally observed
as is shown in Figures 10.2 and 10.3. With this in mind, one can explore the possibility
for a more suitable viscometric geometry to the ConTec BML Viscometer 3, in
minimizing the probability of gravel migration; i.e. the following analysis will be based
on the gradient of shear rate q/ϑ = −∇γ̇, where the geometry that has the lowest
difference in shear rate (i.e. has the has smallest vectors), is considered to be the best
solution. Like before, the numerical calculation conducted in this chapter, consist
of solving the problem described with Equations 7.58 (or equally 7.6) and 7.59 on
Page 167.
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10.3.1 Modifying the Current Configuration

Fortunately, it is possible to reduce the gradient in shear rate −∇γ̇ inside the coaxial
cylinders viscometers and hence lessen the possibility for gravel migration. However,
the magnitude in this reduction depends very much on the ratio of yield value to
plastic viscosity τo/µ. Applying Equations 3.29 and 3.32 together (see Pages 60 and
66) produces results like shown in Figure 10.19: Using τo/µ = 10 s−1 ∧ ωo = 3 rad/s
(fo = 0.48 rps) and then changing the geometry from (Ri, Ro) = (10, 14.5) cm to
(Ri, Ro) = (14, 22) cm [(b) → (d)], leads to a slight reduction in shear rate gradient
−∇γ̇ = −dγ̇/dr ir. Reducing the angular velocity down to ωo = 0.5 rad/s (fo =
0.08 rps) does not generate as much improvements as one would like, due to the
concomitant plug formation [(b) → (a) ∧ (d) → (c)]. However, if the test material
consist of τo/µ = 1 s−1 [(e),(f),(g) ∧ (h)], plug does not occur and hence reducing the
angular velocity ωo is very beneficial [(f) → (e) ∧ (h) → (g)].
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Figure 10.19: Gradient of shear rate −∇γ̇ inside a coaxial cylinder viscometer using different
geometry Ri ∧ Ro and using different ratio of yield value and plastic viscosity τo/µ. The case
of illustration (b) is also present in Figure 10.1.
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Figure 10.20: A continuation of Figure 10.19.

It is interesting to note how heavily the gradient −∇γ̇ is dependent on the ratio
τo/µ. Decreasing this ratio from τo/µ = 10 s−1 down to τo/µ = 1 s−1, reduces the gra-
dient by about half if plug is not present [(b)→ (f) ∧ (d) → (h)]. If plug is occurring
for the τo/µ = 10 s−1-case, then this reduction becomes even larger [(a) → (e) ∧ (c)
→ (g)]. With this information in mind, it is possible to solve the problem of gravel mi-
gration when the ratio τo/µ is sufficiently low, say below 2 s−1. Such condition applies
frequently for self-compacting concrete. The potential for gravel migration could be
further reduced by also reducing the maximum value of the rotational frequency, from
fmax = 0.5 rps down to fmax = 0.25 rps. However in making this step, care must be
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taken to ensure that the smallest time possible, passes between the end of (re)mixing
and the start of a measurement. If not, thixotropic effects could damage the result.
For the τo/µ = 1 s−1-case, there is only minor reduction in the shear rate gradient
−∇γ̇ = −dγ̇/dr ir, when changing the geometry from (Ri, Ro) = (10, 14.5) cm to
(Ri, Ro) = (14, 22) cm [(e) → (g) ∧ (f) → (h)]. As such, there does not seem to be
much benefit in using the larger geometry.

As stated in Section 10.1, gravel migration is partly related to the difference in
collisions rate −∇ṅ, which is again related to the difference in shear rate −∇γ̇. Conse-
quently, the gravel particles are “pushed” by collisions, towards the outer cylinder and
also into the serrated region of inner cylinder, where the shear rate γ̇ has the smallest
value. With the relative small gap system of (Ri, Ro) = (10, 14.5) cm, which results in
the condition Dflow/Dmax ≈ 3, the gravel particles could collide more strongly with
each other due to their lack of motional freedom in avoiding such a direct and strong
mechanical interactions (see Section 3.4.2). This could result in a stronger “pushing
mechanism”, than first anticipated. If this is the case, increasing the gap between
the inner and outer cylinder Dflow = Ro − Ri would be much more beneficial than
indicated by the steps of (e) → (g) and (f) → (h), shown in Figure 10.19.

10.3.2 Exploring Cone and Parallel Plates Geometries

It is relatively easy to apply different viscometric geometries to the ConTec BML
Viscometer 3. An example of such modification is shown in Figures 10.21 and 10.31
(see also Figure 3.4, Page 55). With this option, it is only natural to explore other
geometrical possibilities in minimizing the potential for gravel migration q = −ϑ∇γ̇.
This is the subject of Sections 10.3.4, 10.3.5, 10.3.6 and 10.3.7, which now follows.
Unless otherwise stated, for all figures represented in these sections, the following
parameters apply: µ = 20Pa · s, τo = 200Pa, δ = 4 · 10−3 s−1 and ωo = ωt = 3 rad/s.
The dashed dotted line for these figures, always demonstrates the boundary between a
solid state Ωe and a viscoplastic state Ωp, plotted with a single isoline of τc = 200Pa.
The above values are also used for the result shown in Figure 10.1. For all figures that
demonstrate an isoplot of shear rate γ̇c, the following values apply for the isolines:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30] s−1. The arrows also shown
for such cases, are the vectors of the shear rate gradient −∇γ̇. The reference vector,
displayed inside a corresponding geometry of each such figure, always consists of
‖∇γ̇‖ = 103m−1s−1. This is done to ease the comparison between figures.

Figure 10.21: The assembly of BTRHEOM-geometry (a kind of parallel plates geometry) to
the ConTec BML Viscometer 3. An enhancement of this geometry would simply consist of
removal of the center rod unit as is shown with the most right illustration.
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10.3.3 Velocity Profile

By using the general velocity field v = vr(r, θ, z, t) ir + vθ(r, θ, z, t) iθ + vz(r, θ, z, t) iz,
a very complex system- and a very large number of algebraic equations are produced,
when converting Equation 2.17 (Page 16) to its algebraic counterpart. This means
that the calculation time becomes very large, allowing only handful of numerical
analysis to be made for the given computer hardware available. But fortunately, some
reasonable assumptions about the flow can be made, resulting in Equation 10.1. This
reduces the number of algebraic equations down to what is shown with Equations 7.26
and 7.27 (Page 161) and makes each calculation a great deal faster. Equation 10.1 is
extracted from the following items. These items are assumed to be valid for all the
viscometers presented in Sections 10.3.4, 10.3.5, 10.3.6 and 10.3.7.

1. With low Reynolds number (i.e. with low speed and high shear viscosity η) the
flow is stable6 and it is possible to assume a flow symmetry around the z-axis:
v = vr(r, θ, z, t) ir + vθ(r, θ, z, t) iθ.

2. Due to the circular geometry of the parallel plates and of the cylinder geometries
that are involved (see for example Figures 10.23 and 10.30), it is reasonable to
assume pure circular flow with θ-independence:

v = vθ(r, z, t) iθ (10.1)

With the above velocity field, all the results of Chapter 7 can be applied.

10.3.4 BTRHEOM-Geometry

Solution Geometry and Boundary Condition

The left illustration of Figure 10.22 demonstrates the solution geometry and boundary
conditions used when simulating the BTRHEOM viscometer. The solution array is
121×101 in size and the spacing of grid points in r- and z-direction are uniform
and equal ∆r = ∆z = 1.0mm. As mentioned in Chapter 7, this greatly simplifies
the programming of the solution and save storage space. Usually, this also results
in greater accuracy [2]. In the solution algorithm, the viscometer is rotated by 90◦

clockwise to simplify array addressing. This is apparent with the right illustration of
Figure 10.22 and is perhaps more apparent with Figure 10.23, which demonstrates a
three dimensional vector plot of velocity v inside the BTRHEOM viscometer (no-
slippage-case). As shown, it consist of a rotating top part (that measures applied
torque from the test material) and a stationary bottom part.

Referring to the left illustration of Figure 10.22, at the top- and bottom plates
(i.e. at (i, j) = (21 : 121, 101) ∧ (i, j) = (21 : 121, 1)), the Dirichlet boundary conditions
vθ = r ωt and vθ = 0 applies, respectively. These conditions are valid for both the
no-slippage-case and the full-slippage-case.

The outer cylinder Ro and the inner cylinder Ri (located at (i, j) = (121, 1 : 101) ∧
(i, j) = (21, 1 : 101)), will be designated as the “wall boundary”. At this wall bound-
ary, one of two different types of boundary condition applies. First is the Dirichlet
boundary condition, consisting of vθ = Ro ωt for the rotating part of the “right wall”
and of vθ = Ri ωt for the rotating part of the “left wall” (see the left illustration of
Figure 10.22). The rest of the wall boundary has the boundary condition vθ = 0.

6See Footnote 8 on Page 56.
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Figure 10.22: To the left: Solution geometry for the BTRHEOM viscometer. The upper right
corner demonstrates the grid density used. To the right: A relative velocity profile, with the
unit vectors of the wall boundaries and of the bottom and top plates. [(τo, µ) = (200, 20s)Pa;
ωt = 3rad/s; δ = 4 · 10−3s−1; (∆r,∆z) = (1, 1)mm; ∆t = 4 · 10−9s].

These conditions apply when the no-slippage-case (ns) is valid. For the full-slippage-
case (fs), the boundary condition is of the Robin type, described with Equations 7.56
and 7.57 (Page 167). When used, this condition applies equally to all parts of the
wall boundary.

For the no-slippage-case (ns), then at the right wall (as well for the left wall), the
rotating part vθ = Ro ωt and the stationary part (vθ = 0) are connected with a arctan
function. As shown with the left illustration of Figure 10.22, this connection occurs
at the points (i, j) = (121, 31) and (i, j) = (121, 71) (similar applies for the left wall).
The arctan function is used, to have a smooth transition between the rotating part
and the non-rotating part of the viscometer.

The total torque applied from the test material, on the rotating part (i.e. on
the measuring unit) of the viscometer, is T̂ = T̂lw + T̂tp + T̂rw. The term T̂tp is
the torque applied from the test material, on the top plate. With the condition of
(τo, µ) = (200, 20s)Pa and ωt = 3 rad/s, this term is calculated with the following:

T̂tp =
∫ Ro

Ri

∫ 2π

0

r ir × (−iz ·T|z=h r dθ dr) =
{ −0.48Nm iz (ns)

−0.92Nm iz (fs)
(10.2)

The normal vector used in the above equation is shown in the right illustration of
Figure 10.22. The designation ns means no-slippage-case and fs means full-slippage-
case. Since ir × (−iz · T) ≤ 0 in the above, the resulting torque value becomes
negative7. This is to be expected since the test material is always trying to slow
down the rotating part of the viscometer. The same consideration applies for the two
following equations.

7A positive torque value would be gained if the torque applied from the rotating part (i.e. from the
measuring unit) of the viscometer, on the test material would be calculated (since ir × (iz ·T) ≥ 0).
Nevertheless, the same absolute torque value is gained in either case.
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Figure 10.23: Three dimensional vector plot of velocity v, inside the BTRHEOM viscometer
when the no-slippage-case applies. [(τo, µ) = (200, 20s)Pa; ωt = 3rad/s; δ = 4 · 10−3s−1;
(∆r,∆z) = (1, 1)mm; ∆t = 4 · 10−9s].

The term T̂lw represents is the torque applied from the test material, on the (upper
and rotating) left wall. This term is calculated by the following:

T̂lw =
∫ h

h/2

∫ 2 π

0

Ri ir × (ir ·T|r=Ri Ri dθ dz) =
{ −0.03Nm iz (ns)

0Nm iz (fs)
(10.3)

Finally, the term T̂rw is the torque applied from the test material, on the (upper and
rotating) right wall. It is calculated by Equation 10.4.

T̂rw =
∫ h

h/2

∫ 2π

0

Ro ir × (−ir ·T|r=Ro Ro dθ dz) =
{ −1.05Nm iz (ns)

0Nm iz (fs)
(10.4)

For the no-slippage-case of (τo, µ) = (200, 20s)Pa and ωt = 3 rad/s, the total torque
applied on the rotating part of the viscometer is equal to T̂ = T̂lw + T̂tp + T̂rw =
−1.56Nm iz. For the full-slippage-case the total torque is −0.92Nm iz (calculated
either by the software or by Equation B.51). It is this rotating part of theBTRHEOM

viscometer that measures the torque. As such, this device should measure a 70%
increase in torque when going from the full-slippage-case to the no-slippage-case.
This result is in contradiction to the finite element analysis made by Hu et al. [51]:
With the same conditions of (τo, µ) = (200, 20s)Pa and ωt = 3 rad/s as in the above,
it is demonstrated that a very similar torque values should be measured for both the
full-slippage-case and the no-slippage-case (i.e. close to 0.92Nm).

As a rough quality check of the numerical calculation done in this section, the
total torque applied from the test material on the viscometer is calculated, both on
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the rotating part (the measuring unit) and on the stationary part (the non-measuring
unit). Since the test material is not an engine, it cannot perform a work by it self
and hence the total torque from the test material on the viscometer should be zero.
For the no-slippage-case, this value is equal to −1.36 · 10−11Nm iz, while for the full-
slippage-case, it consist of −6.15 · 10−15Nm iz. Relative to the applied torque on the
rotating part of the viscometer, this means 1.36 · 10−11Nm/1.56Nm ≈ 10−11 and
6.15 · 10−15Nm/0.92Nm ≈ 10−14, respectively.

Figure 10.24 demonstrates computed shear rate γ̇c for the no-slippage-case (to the
left) and for the full-slippage-case (to the right). This computation is made from the
same numerical result shown in Figures 10.22 and 10.23. When the no-slippage-case
applies for this device, there is a very large potential for gravel migration. In fact,
the length of the vectors −∇γ̇c are the largest calculated in the overall analysis of
Chapter 10. This means that formation of a shearing zone filled with fat concrete
could occur in the zone of large vectors, while a measurement is being conducted.
This migration would appear in the most critical area of the viscometer: As is shown
with Equation 10.4 (ns), the largest torque is generated in the vicinity of this zone,
resulting in a large influence of gravel migration on logged torque T̂ . If occurring, the
result presented in Figure 10.18 would most likely be produced.
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Figure 10.24: Gradient field of shear rate: q/ϑ = −∇γ̇c. The length of the vector, shown inside
the inner cylinder, is ‖∇γ̇‖ = 103 m−1s−1. The isoplot is of shear rate γ̇c and the dashed dotted
line shows the boundary between a solid state and a viscoplastic state. [(τo, µ) = (200, 20s)Pa;
ωt = 3rad/s; δ = 4 · 10−3s−1; (∆r,∆z) = (1, 1)mm; ∆t = 4 · 10−9s].

For the full-slippage-case (the right illustration of Figure 10.24), the ideal and the
most wanted shear rate condition is achieved. The gradient of shear rate is virtual
zero −∇γ̇c ≈ 0, and hence virtual no potential for gravel migration is present. The
computed shear rate profile γ̇c shown there, is identical to the analytical shear rate
γ̇, as calculated with Equation B.49 (Page 393).

The full-slippage-case inside the BTRHEOM-geometry, is allegedly [51] imple-
mented by using a smooth surface at the wall boundary. With a very adhesive ma-
terial like that of the fresh concrete, such a boundary condition is not necessarily
achieved. It is evident from the above analysis that there is a large difference between
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the full-slippage-case and the no-slippage-case, relative to the potential of gravel mi-
gration and also relative to the applied torque T̂ = T̂lw + T̂tp + T̂rw. Therefore, it
is not considered a good idea to make the use of smooth surface in the analysis that
now follow in the hope of generating the full-slippage boundary condition (for the
corresponding experiment with concrete). Instead, geometry with rough or serrated
surfaces is introduced at all solid boundaries, so that it is know with good confidence,
that the no-slippage-case always applies.

10.3.5 Cone-Geometry

The left illustration of Figure 10.25 demonstrates the solution geometry and bound-
ary conditions used when simulating the cone-type viscometer. For this particular
figure, the solution array is 110×92 in size. As always, in the software algorithm, the
viscometer is rotated by 90◦ clockwise to simplify array addressing. This is apparent
when comparing the left part of Figure 10.25 with Figure 10.26.
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Figure 10.25: Solution geometry and boundary conditions for the cone viscometer (to the left)
and the parallel plates viscometer (to the right). The lower part of both illustrations demonstrates
the grid density used.

Figure 10.26: Computed shear rate profile γ̇c for the cone viscometer. This result is taken from
the right illustration of Figure 10.27.

At the open boundary (i, j) = (82 : 109, 92), the Neumann boundary condition of
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∂vθ/∂z = 0 is used: The combination of high shear viscosity of the fresh concrete8 and
low rotational frequency of the viscometer fmax ≈ 0.5 rps, it is reasonable to assume
that little or no inclination of the open boundary will be observed while making a
rheological measurement. Therefore, the normal vector of this open boundary (i.e. at
(i,j)=(82:109,92)) is set to n ∼= iz. Since practically no shearing is applied from the
atmospheric air onto the concrete at this boundary, then according to Cauchy’s stress
principle [72], applying the vector n = iz on Equation 7.4 (Page 156), must result in
zero: iz ·T = 0. This means that the condition ∂vθ/∂z = 0 becomes valid at the open
boundary.

In the following discussion, then with the phrase “the side of the top plate”, it is
meant the boundary of (i, j) = (81, 82 : 92). Likewise with the phrase “the bottom of
the top plate”, it is meant the boundary of (i, j) = (1 : 81, 82). With “the corner of
the top plate” it is meant the point of (i, j) = (81, 82) (see Figure 10.25).
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Figure 10.27: Gradient field of shear rate: q/ϑ = −∇γ̇c when the cone is 16 cm (to the left)
and 8 cm (to the right) in height. The length of the vector, shown inside the top plate, is
‖∇γ̇‖ = 103 m−1s−1. The isoplot is of shear rate γ̇c and the dashed dotted line shows the
boundary between a solid state and a viscoplastic state. [(τo, µ) = (200, 20s)Pa; ωo = 3rad/s;
δ = 4 · 10−3s−1; (∆r,∆z) = (2, 2 ∧ 1)mm; ∆t = 10−6s (left) ∧ 0.5 · 10−6s (right)].

Figure 10.27, shows the gradient field of shear rate q/ϑ = −∇γ̇c when the cone
is hcone = 16 cm (to the left) and hcone = 8 cm (to the right) in height. The height
of the latter cone is reduced by half, using ∆z = 1mm, instead of ∆z = 2mm. In
both simulations the spacing of grid points in r-direction is ∆r = 2mm. The isoplot
is of shear rate γ̇c and the smallest isoline is near to the outer cylinder and increases
towards the corner of the top plate.

What is immediately apparent for both illustrations in Figure 10.27 is how small
the gradients q/ϑ = −∇γ̇c are, below the bottom of the top plate. This means that
there is a little potential for gravel migration in this zone. However, in both cases
of hcone = 16 cm or hcone = 8 cm, there is a large potential for gravel migration in
the zone around the corner and near the side of the top plate. This is demonstrated
with the large vectors of −∇γ̇ shown there. This is not a positive result, since a

8It is clear that a test material with η → ∞ (i.e. a rigid body motion) gives no inclination.
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large amount of torque is generated at the side of the top plate. In both cases of
hcone = 16 cm ((z1, z2) = (16.2, 18.2) cm) and hcone = 8 cm ((z1, z2) = (8.2, 10.2) cm),
the torque applied from the test material, on the side of the top plate, is about:

T̂ = T̂ iz =
∫ z2

z1

∫ 2π

0

Ri ir × (ir ·T|r=Ri Ri dθ dz) ≈ 2.6Nm iz (10.5)

and likewise the torque applied on the bottom of the top plate is

T̂ = T̂ iz =
∫ Ri

0

∫ 2π

0

r ir × (−iz ·T|z=z1 r dθ dr) ≈ 3.9Nm iz (10.6)

Hence, the total torque applied on the top plate is approximately 6.5Nm. This
means that the torque applied on the side is about 40% of the total torque. As such,
the logged torque T̂ could be decreasing by about 40% during a measurement. For
stepwise decreasing shear rate sequence, this would again lead to a torque curve similar
to what is shown in Figure 10.18, resulting in a smaller yield value τo. The effect on
the plastic viscosity µ would be unclear (see the illustration on Page 250).

10.3.6 Parallel Plates-Geometry

The solution geometry and boundary condition is represented with the right illus-
tration of Figure 10.25. Figure 10.28, demonstrates the gradient field of shear rate
q/ϑ = −∇γ̇c when the gap between the bottom- and the top plate is 16.2 cm (to the
left) and 8.2 cm (to the right). As before, the gap of the latter is reduced by half,
using ∆z = 1mm, instead of ∆z = 2mm.
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Figure 10.28: Gradient field of shear rate: q/ϑ = −∇γ̇c when the total gap width is 16.2 cm
(to the left) and 8.2 cm (to the right). The length of the vector, shown inside the top plate,
is ‖∇γ̇‖ = 103 m−1s−1. The isoplot is of shear rate γ̇c and the dashed dotted line shows the
boundary between a solid state and a viscoplastic state. [(τo, µ) = (200, 20s)Pa; ωo = 3rad/s;
δ = 4 · 10−3s−1; (∆r,∆z) = (2, 2 ∧ 1)mm; ∆t = 10−6s (left) ∧ 0.5 · 10−6s (right)].

Relative to potential gravel migration, the difference between the results produced
in Figures 10.27 and 10.28 are not large. Approximately the same directions and
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lengths of the vectors q/ϑ = −∇γ̇c are produced for all cases. Also, the amount of
torque applied on the top plate is more or less the same as for Figures 10.27 and
10.28; i.e. the torque applied on the side of the top plate is about 2.6Nm and the
total torque applied on the top plate, as a whole, is about 6.5Nm. The torque is now
positive, in contradiction to what is shown in Section 10.3.4. This is because of how
the test material is now trying to rotate the stationary top plate (i.e. the measuring
unit). More precisely, in Section 10.3.4, the test material was always trying to slow
down the rotating top plate and hence a negative torque value resulted there.

The above demonstrates that there is no apparent benefit in using the cone-
geometry relative to the parallel plates-geometry. Since it is easier to construct the
parallel plates configuration, the latter9 will be considered further in the next section.

10.3.7 The C3P2-Geometry

The Characteristic Thickness of the Flow Dflow

To avoid the type of problem mentioned in Section 3.4.2, namely the problem of
barrier restraint of the inner and outer cylinder, it is best to have the characteristic
thickness of the flow Dflow larger or equal to 8Dmax. With this in mind, a shearing
zone of Dflow = 8.2 cm (right illustration of Figure 10.28) is not considered to be the
best option. For example, using Dmax = 16mm, the condition Dflow = 5Dmax is
achieved. With the pre-mentioned cone-geometry, even still worse condition would
appear around the top part of the cone, namely Dflow ≈ 0. Using a shearing zone
of 16.2 cm (see the left illustration of Figure 10.28), will require a test sample of
π R2o htot = π (21.8 cm)2 18.2 cm ≈ 30 liters. In keeping the amount of test sample
around 20 liters and having the condition of Dflow = 8Dmax, the shearing zone is
rather set to be Dflow = 12.0 cm.

Solution Geometry and Boundary Condition

The left illustration of Figure 10.29 demonstrates the solution geometry and boundary
condition used for the new dimensions. The spacing of grid points in r- and z-direction
are uniform and equal to ∆r = ∆z = 2mm. With this new geometry, the corner of
the top plate is replaced with a (part) cone-geometry. This is done in the attempt
to reduce the large shear rate values that always appear when a corner is present.
As such, the overall viscometric geometry now used, is actually a combination of
three types of geometries, the Cone, the Coaxial Cylinders and the Parallel Plate
type. Therefore its designation given here will be the CCCPP-geometry, or simply
the C3P2-geometry. Figure 10.30 demonstrates a three dimensional vector plot of
velocity v inside the C3P2-geometry. As shown, it consist of a rotating bottom part
and a stationary top part.

Shear Rate

The right illustration of Figure 10.29 presents the computed gradient field of shear rate
q/ϑ = −∇γ̇c. The replacement of the corner (of the top plate) with a cone-geometry,
is somewhat less successful than was hoped for. Comparing the above-mentioned

9This decision is also made in the light of the possible and unwanted direct torque transportation
from the rotating top part of the cone, to the measuring unit, similar to what is shown in Figure 3.8
(Page 62). As discussed in Section 3.4.2, such process results in a larger measured shear viscosity
η → η +∆η.
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Figure 10.29: To the left: Solution geometry and boundary condition for the C3P2-geometry.
To the right: Gradient field of shear rate: q/ϑ = −∇γ̇c. The length of the vector, shown inside
the top plate, is ‖∇γ̇‖ = 103 m−1s−1. The isoplot is of shear rate γ̇c and the dashed dotted
line shows the boundary between a solid state and a viscoplastic state. [(τo, µ) = (200, 20s)Pa;
ωo = 3rad/s; δ = 2 · 10−3s−1; (∆r,∆z) = (2, 2)mm; ∆t = 10−5s].

result with the results shown in Figures 10.27 and 10.28 demonstrates only a slight
reduction in the shear rate gradient. This means that almost the same large potential
for gravel migration is still present. As mentioned before, this potential occurs at the
worst location possible, namely where the largest torque (per unit area) is generated
(c.f. Equation 10.5).

Change in Velocity Profile

Because of the potential gravel migration around the cone-geometry and near the side
of the top plate, the measuring unit will not consist of the whole top plate. Rather,
it will only consist a part of it, as shown with the green line in the right illustration
of Figure 10.29. This is more apparent with Figure 10.31, where the top plate is
divided into a measuring unit and a filter unit. More specifically, the measuring unit
consist of the boundary (i, j) = (1 : 76, 61). The radius at which the torque is applied,
from the test material, is designated with Rm = (76 − 1)∆r = 15 cm. This torque is
calculated with Equation 10.7.

T̂ = T̂ iz =
∫ Rm

0

∫ 2π

0

r ir × (−iz ·T|z=12 cm r dθ dr) (10.7)

It should be noted that the above torque-compensation will be only in part effective.
This is so because gravel migration will change the velocity profile vθ(r, z), beyond
what can be predicted by Equation 7.6 (Page 157) alone. Hence, a different torque
will be generated at the measuring unit, than predicted with the calculated velocity
profile vθ(r, z). The difference will occur although no gravel migration is occurring
near and at the measuring unit. However, as has been mentioned in Section 10.1,
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Figure 10.30: Three dimensional vector plot of velocity v, inside the C3P2-geometry. [(τo, µ) =
(200, 20s)Pa; ωo = 3rad/s; δ = 2 · 10−3s−1; (∆r,∆z) = (2, 2)mm; ∆t = 10−5s].

gravel migration q is not only governed by the gradient in shear rate −∇γ̇, but also
by some internal and external properties, described with the migration coefficient ϑ.
More precisely, gravel migration can be stated with q = −ϑ∇γ̇, where the migration
coefficient ϑ = ϑ(Φ, ηm, Dflow/Dmax, . . . ) describes how much amount of gravel should
migrate q for the given difference in shear rate ∇γ̇. For the reason mentioned in
Section 10.3.8, one could assume that the migration coefficient ϑ is smaller inside the
C3P2-geometry, compared to (for example) the coaxial cylinders-geometry shown in
Figure 10.3. With this in mind, the C3P2-geometry is explored further.

Figure 10.31: The assembly of the C3P2-geometry to the ConTec BML Viscometer 3.

Applied Torque

The shear stress τ =
√
(T : T)/2 is given by τ = η γ̇ = µ γ̇ + τo. Since there is a

linear relationship between τ and γ̇, one could expect that the same would apply for
the measured torque T̂ and the rotational frequency fo. In other words, one could
expect a relationship of the type T̂ = H fo + G. As such, it can be assumed that
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there is one-to-one correspondence between τo and G at the one hand, and between
µ and H at the other.

The immediate problem with the C3P2-geometry is that there is no analytical
approach available in converting the G and H values to yield value τo and plastic
viscosity µ (like what is shown with Equations 3.26 and 3.27, Page 59). However,
because of the pre-mentioned one-to-one correspondence, there is a way around this.
It consists of making series of numerical simulations with different sets of viscometric
values (τo, µ) to produce the different sets of (G,H) values. With this approach, it
is possible to produce a table (or a figure) that maps the relationship between the
measured G and H values, with the actual viscometric values τo and µ of the test
sample. An example of such approach is shown in Figure 10.32. The results of this
figure will be discussed shortly.
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Figure 10.32: Relationship between τo and G (to the left) and µ and H (to the right) for the
C3P2-geometry. Total number of 140 simulations where used in generating the two illustrations.

Effect of Plug on Measured Torque

Figure 10.33 demonstrates the plug propagation inside the C3P2-geometry, with de-
creasing rotational frequency: fo = ωo/(2 π) = 0.5, 0.4, 0.3, 0.2 and 0.1 rps. The
solid isolines demonstrate the velocity profile. These lines start with the value of
vθ = 1 cm/s near the center of the geometry (i.e. near r = 0) and has an equal in-
crement of ∆vθ = 5 cm/s towards the outer cylinder (i.e. vθ = [1, 6, 11, . . . ] cm/s).
The dashed dotted isoline is of τc = τo = 200Pa and demonstrates the location of
the boundary between the solid state Ωe and the viscoplastic state Ωp. As discussed
previously, the velocity profile of a pure solid state consists of vθ = r ωo. This is pro-
duced in the calculations as noted with the even spaces between the isolines present
in the solid domain Ωe. The regularization parameter now consists of δ = 2 ·10−3 s−1.

When the stepwise decreasing shear rate sequence approach is used, the condition
γ̇ = 0 (i.e. solid state) is expected to start at the bottom plate and propagate towards
the top plate with decreasing rotational frequency fo. This result is produced in
Figure 10.33 with the movement of the boundary between the solid state Ωe and
the viscoplastic state Ωp. Because of this, a kind of downward torque profile results,
similar to what is shown with the left illustration of Figure 3.10 (Page 66). The
bottom-right illustration of Figure 10.33 demonstrates two torque profiles. One of
them is marked with circles © and demonstrates the simulated result at fo = 0.5 rps
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Figure 10.33: Plug propagation inside theC3P2-geometry with reducing rotational frequency fo.
Making a linear regression through all the torque points, gives the slope H = 2.42Nm · s and the
point of intersection with the ordinate G = 1.71Nm. [(τo, µ) = (200, 20s)Pa; δ = 2 · 10−3s−1;
(∆r,∆z) = (2, 2)mm; ∆t = 10−5s].

and down to 0.1 rps. Making a linear regression through these torque points (T̂ =
H fo + G), produces the slope H = 2.42Nm · s and the point of intersection with
the ordinate G = 1.71Nm. The torque profile marked with the black solid line is an
extrapolation from the result produced in Figure 10.34. The same viscometric values
τo and µ are applied for this latter case and as such, the same G and H value should
be produced in Figures 10.33 and 10.34. But due to plug, this is not the case. With
almost no plug occurring for the case in Figure 10.34, different values H = 1.77Nm · s
and G = 2.12Nm are obtained, which are more correct. Their difference is calculated
to be: ∆H/H = −36.7% and ∆G/G = 19.3%. This could be considered acceptable,
as a worst case scenario. This is so since often the condition τo/µ ≤ 10 s−1 applies
for the test material, which gives a less plug state. This is especially true for the new
generation of concrete, namely the self-compacting concrete.

The isolines in Figure 10.34 start with the value of vθ = 1 cm/s near the center of
the geometry (i.e. near r = 0) and have an equal increment of ∆vθ = 25 cm/s towards
the outer cylinder (i.e. vθ = [1, 26, 51, . . . ] cm/s).

Figure 10.32 demonstrates a mapping, or a relationship between the “measured”

URN:NBN:no-3374



10.3. SUGGESTIONS TO GEOMETRICAL CHANGES 267

z (j−direction)

r (i−
direction)

f
°
 = 1.0 rps

ΩpΩe

z (j−direction)

r (i−
direction)

f
°
 = 2.0 rps

z (j−direction)

r (i−
direction)

f
°
 = 3.0 rps

z (j−direction)

r (i−
direction)

f
°
 = 4.0 rps

z (j−direction)

r (i−
direction)

f
°
 = 5.0 rps

1 2 3 4 5
0

3

6

9

12

f
°
 [rps]

T
or

qu
e 

[N
m

]

Figure 10.34: Torque profile generated when almost no plug is occuing inside the C3P2-
geometry with reducing rotational frequency fo. Making a linear regression through all the
torque points, gives the slope H = 1.77Nm · s and the point of intersection with the ordinate
G = 2.12Nm. [(τo, µ) = (200, 20s)Pa; δ = 2 · 10−3s−1; (∆r,∆z) = (2, 2)mm; ∆t = 10−5s].

G and H values, with the actual viscometric values τo and µ used in the numerical
simulations. The two lines shown in each illustration do not coincide because of how
plug influences the calculation of G and H values to the different degree. However,
with these two illustrations it is possible to obtain τo and µ, from measured G and
H values. For example, measuring H ≈ 2.3Nm · s gives µ ≈ 20Pa · s from the right
illustration of Figure 10.32. Then with measured G ≈ 1.3Nm, the left illustration
gives τo ≈ 150Pa (extracted by using the “µ = 20Pa · s”-line). Obviously, more
simulations are needed to gain a more complete map between (τo,µ) and (G,H).

10.3.8 Summary and Conclusion (Part II)

As has been mentioned in this chapter, gravel migration q (or particle migration
in general) is not only governed by the gradient in shear rate −∇γ̇ alone, but also
by some internal and external properties, described with the migration coefficient ϑ.
More precisely, gravel migration can be stated with q = −ϑ∇γ̇, where the migration
coefficient ϑ = ϑ(Φ, ηm, Dflow/Dmax, . . . ) describes how much amount of gravel should
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migrate q for the given difference in shear rate ∇γ̇. In Sections 10.1 and 10.3.1, gravel
migration is related to three different physical processes. These are summarized in
the following box. All these processes are included in the (total) migration coefficient
ϑ, which is suggested here, to be of the functional form ϑ = ϑbg + ϑdt + ϑcf .

Possible reasons for particle migration (ϑ = ϑbg + ϑdt + ϑcf ).

1. Background Effect (ϑbg): The background effect is related to the differ-
ence in collision rate −∇ṅ by freely moving particles (given with the condition
Dflow/Dmax ≥ 8, c.f. Section 3.4.2). With the difference in collision rate −∇ṅ
that each suspended particle “feels”, they are pushed (by collisions) away from
the region of highest collision rate, namely into the direction of −∇γ̇ ∝ −∇ṅ.

2. Dilatancy Effect (ϑdt): The second process is related to a dilatancy effect of
densely packed suspended particles (large phase volume Φ). In such suspension
the particle distribution Φ must change to permit the suspended particles to
flow past one another (see Figure 3.3, Page 54). This means a withdrawal (or
suction) of matrix, from the region of smallest deformation (or smallest γ̇) into
region of largest deformation (or largest γ̇); i.e. the matrix must move in the
direction of ∇γ̇. With a (observed) constant volume of the overall suspension
(inside the viscometer), the suspended particles must move in the opposite
direction at the same time, namely in the direction of −∇γ̇.

3. Confinement Effect (ϑcf ): The gravel migration shown in Figure 10.2, could
be more as a result of the relative small gap system of (Ri, Ro) = (10, 14.5) cm,
giving the condition of Dflow/Dmax ≈ 3. As mentioned in Section 3.4.2, such
condition results in a harder and more frequent collisions between the larger
aggregate particles. This could result in a stronger “pushing mechanism” than
anticipated in Item 1 above. In this case, the suspended particles are assumed
to be pushed in the direction of −∇γ̇, just as applies in Item 1.

In Sections 10.3.4, 10.3.5, 10.3.6, and 10.3.7, the possibility for a different geometry
is explored for the ConTec BML Viscometer 3. This was done in the anticipation
of solving the problem of gravel migration. The analysis is based on the gradient of
shear rate q/ϑ = −∇γ̇, where the geometry that has the lowest difference in shear
rate (i.e. has the has smallest vectors), is considered to be the best solution. Since
no geometry gave a real reduction in shear rate gradient, the overall investigations
became somewhat less successful in that respect than was hoped for. However, in
the above box, three different processes are related to the gravel migration. Of the
three, the last one could be the most dominating for what is shown in Figure 10.2,
i.e. ϑcf � ϑbg + ϑdt meaning ϑ ≈ ϑcf . With the condition of Dflow/Dmax = 8, the
modification shown in Section 10.3.7 might be more successful than indicated with the
right illustration of Figure 10.29. In relation to this, increasing the current geometry
of the ConTec BML Viscometer 3 could also be very much beneficial, however
would require a larger test sample. Such maneuver is discussed in Section 10.3.1.

In Section 10.3.4, the BTRHEOM-geometry was considered for the ConTec

BML Viscometer 3. Since the difference between the full-slippage-case and the no-
slippage-case is very large relative to the potential gravel migration, and also relative
to the applied torque, there are some serious uncertainties related to this geometry.
Because of these two uncertainties, the BTRHEOM-geometry is not considered to
be better than the other parallel plates-geometries, investigated in this thesis.

The summary of the experimental part of this chapter is in Section 10.2.3.
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10.3.9 Recommended Future Research

In this thesis, gravel migration was only investigated on “classical” concretes, with
slump about 200mm and below. It would be very interesting to investigate this
phenomenon on the new type of concrete, namely the self-compacting concrete. There,
the ratio of τo/µ would be much lower than present in the current work and hence,
gravel migration should be less present. Testing this hypothesis would be a good next
step.

With the large shearing zone of the C3P2-geometry, it would be very interesting
to construct this viscometric geometry and then using it on the ConTec BML
Viscometer 3 as demonstrated in Figure 10.31. As shown with Figure 10.32, a
relationship between the measured G and H values and the actual viscometric values
τo and µ can be established, which makes this geometry quite usable. The interested
reader can create a more extensive relationship between (G,H) and (τo, µ) as the
source code for the C3P2-geometry is available in Appendix A.
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Chapter 11

Summary and Final Remarks

11.1 Summaries and Conclusions (Parts I to III)

Three major subjects are considered in this thesis, and consequently it is divided into
three parts. The first part concerns how the different lignosulfonate types changes
the rheological properties of the cement based material as a function of temperature
and time (Section 1.2.1). This investigation is made with help from the second part
of this thesis, which identifies some of the parameters affecting the shear viscosity
η = η(Jt, J

p
t , . . . ) of the cement based material. This is done by investigating the

thixotropic behavior of cement paste (Section 1.2.2). An experimental error is present
during a viscometric measurement on concrete. The error is generated by gravel
migration. Investigating and compensating for this error constitutes the third part
of this thesis (Section 1.2.3).

Given the overall structure of this thesis, a summary and conclusion is provided
at the end of each part. More precisely, the summary and conclusion for the first
part (the effects of lignosulfonates) is given in Section 6.5 (Page 152). The summary
and conclusion for the second part (thixotropy) is given in Section 9.9 (Page 233).
Finally, for the issue of gravel migration (the third part), the summary and con-
clusion is given in Section 10.2.3 (the experimental part) and in Section 10.3.8 (the
numerical part), on Pages 249 and 267, respectively. Recommended future research
is also given at the end of each part of this thesis.

In the following, the most important conclusions for each part are given:

Conclusions of the first part: Effects of lignosulfonates (Section 6.5).

1. The rheological effects of the lignosulfonates are basically determined by their
molecular weights. The largest molecular weight product gives the best result
in terms of workability and workability retention.

2. For the high molecular weight lignosulfonates (HMW andVHMW), the steric
potential energy VS is more or less overshadowing the electrostatic potential
energy VR (in the process of dispersing the cement particles). For such a case,
issues like ionic strength I or zeta potential ζ becomes less important.

3. For the low molecular weight lignosulfonates (LMW), the steric potential VS is
lower, allowing the electrostatic potential energy VR to become more important.

4. The effects of the different lignosulfonate types are primarily reflected in the
measured yield value τo. The measured plastic viscosity µ changes little.
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Conclusions of the second part: Thixotropy (Section 9.9).

5. Thixotropy is mostly governed by a combination of reversible coagulation, dis-
persion and then re-coagulation of the cement particles.

6. In numerical simulation of the thixotropic behavior of the cement paste, it was
necessary to introduce a fading memory of shear rate γ̇ and of coagulation rate
H , into the shear viscosity equation η (Section 9.3.1).

7. Also, two types of yield values had to be introduced into the simulation, namely
τo and τ̃o. The former (τo) is related to the permanent coagulation state Jp

t of
the cement particles, while the latter (τ̃o) is related to the reversible coagulation
state Jt (see Figure 2.11, Page 27). The same type of relationship applies for
the plastic viscosity µ and its thixotropic counterpart µ̃.

Conclusions of the third part: Gravel migration (Section 10.2.3).

8. The measured viscometric values of concrete are somewhat incorrect due to
gravel migration.

9. Usually, gravel migration was finished after about 20 to 30 seconds after start of
rotation of the outer cylinder Ro. [Elsewhere, this time duration could be longer
or shorter, depending on type of test material, viscometer, angular velocity and
so forth].

10. The best way to process the logged torque data, is to dismiss the first torque
points T̂ , when gravel concentration Φ = Φ(r, z, t) (i.e. phase volume) is chang-
ing most rapidly. In taking this approach, one is only extracting the viscometric
values related to the remaining fat concrete that surrounds the inner cylinder
(Ri), and not of the concrete in a homogenous state.

11. However, in Section 6.3, a good relationship between the Abrams slump and
the viscometer is established, indicating that the fat concrete simulates well the
behavior of the concrete in a homogeneous state. Hence, regardless of gravel
migration, concrete viscometers are still of large relevance, although they do
not provide correct absolute values for such cases.

12. Gravel migration does not necessarily have to occur. In a different project
concerning self-compacting concrete, gravel migration was much less present
and often not observed at all. The same viscometer was used as in this thesis.

11.2 Experimental Errors of Different Types

Different types of errors have been considered, which affect the measured rheological
values in the first part of this thesis. For the concrete case, the error of gravel
migration has been present (Chapter 10), while for the mortar case, the issues of
plug flow (Section 3.5.3) and air entrainment (Section 5.5.3) have been the main
problems. Investigating these errors has been rather time consuming, and frequently
it has been tempting to ignore these errors altogether, and dive directly into the main
investigation at hand. That is, to investigate the effects of the different lignosulfonates
on the rheological behavior of the cement based material.

Compensating for One Error and Making Room for Another

Compensating for one experimental error can easily result in a new and even worse
error. For example, if the problem of plug flow is present, one might be tempted
to increase the maximum value of angular velocity ωmax = 2 π fmax to compensate
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for this (see Table 3.1, Page 64). However, such a maneuver could result in particle
migration (see discussion in Section 3.5.1). The latter error is a worse type of error
because of its unknown magnitude. In Section 3.5.3, the magnitude of the error
produced by plug flow is successfully estimated. This does not apply for the error
produced by particle migration in Chapter 10. There, only the viscometric values of
the fat concrete near the inner cylinder, is obtained. The viscometric values of the
fresh concrete in a homogenous state is not available. Hence, the magnitude of the
gravel migration error cannot be estimated.

Segregation and Stability

None of the batches in this thesis segregated under manual agitation, since they were
designed in such manner. Therefore, the effect of normal (vertical) segregation is
not of concern in this work. With this degree of stability, all the batches could at
least tolerate an acceleration of g = 9.81m/s2. As shown with the simple example on
Page 240, gravitational acceleration g is about ten times larger than centripetal accel-
eration. Therefore, centripetal acceleration could not be responsible for the observed
horizontal segregation (i.e. particle migration).

Particle Migration and the Herschel-Bulkley Model

Generally, particle migration can be present for any viscometer used for testing par-
ticle suspensions. When occurring, a different torque curve T̂ results, compared to
what would be measured for the suspension in a homogeneous state. Hence, such
particle migration will influence the viscometric results. For example, a non-linear
torque T̂ generated by particle migration, could incorrectly lead to the suggestion
that the Herschel-Bulkley model applies η = µ γ̇n−1 + τo/γ̇, when in fact the tested
material corresponds to Bingham model η = µ+τo/γ̇ (when in a homogeneous state).

Particle Migration, Thixotropy and Hysteresis Loop

Thixotropy is frequently investigated by measuring the torque T̂ under a linear in-
crease and then decrease in angular velocity ωo. The casual perception is that if the
two torque curves produced do not coincide, but form a hysteresis loop, the tested
sample is thixotropic (the area of a loop is then used as a measure of the degree of
thixotropy). It is very important to note that such hysteresis loop can also be caused
by particle migration during the experiment. If thixotropic behavior and particle mi-
gration are occurring simultaneously, separating the two would be a challenging task.
One could wait a while until particle migration is finished and thereafter measure
(then diminished) thixotropic behavior.

In this thesis, the duration of particle migration was 20 to 30 seconds. In few
cases (see Figures 10.7 and 10.11, Pages 243 and 246), some thixotropic behavior was
observed after this time and was considered to be thixotropy of the remaining fat
concrete that surrounds the inner cylinder (Ri).

Particle Migration versus Plug Flow

Generally, particle migration can be present for any viscometer used for testing parti-
cle suspensions. When occurring, the resulting torque curve could easily be mistaken
for a thixotropic property of the tested material. When making a thixotropic analy-
sis, it must be ascertained that the test material is homogenous before and after a
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measurement. If particle migration is occurring, a reduction in maximum value of
angular velocity ωmax = 2 π fmax must be made (see Table 3.1, Page 64), with the
constraint that the corresponding shear rate γ̇ is still of relevance, c.f. Section 4.4.1.
Such maneuver could however result in plug flow. This is sometimes the case in Chap-
ter 9, but there the plug flow is not a problem, since it is included and accounted for
in the numerical simulations. The experience of this thesis is that plug flow is more
easily treated and compensated for than particle migration.

11.3 The Relevance of Viscometers

In Chapter 6, the change in shear viscosity η = µ + τo/γ̇ as a function of time and
temperature, reflects changes in the yield value τo, rather than in the plastic viscosity
µ. That is, the yield value τo is more sensitive to temperature and time, compared to
the plastic viscosity µ (see also the numbered items on Page 126). Also, the different
lignosulfonate types influence the yield value τo much more than the plastic viscosity
µ. That is, comparing the effect of two different lignosulfonate types gives usually a
different yield value τo, while the plastic viscosity µ is roughly the same. Therefore, for
the mixes tested in Chapter 6, the characteristics can be described with only a single
parameter, namely with the yield value τo. In Section 6.3.1, a strong relationship
between yield value τo and slump value S was established. This indicates that the
whole research program on lignosulfonates could have been carried out using only
slump measurements. Of course, such a statement does not have general validity for
the following reasons:

• That the lignosulfonates are more affecting the yield value τo compared to the
plastic viscosity µ, is an important result by itself. In fact, such result has been
reported elsewhere when using lignosulfonates [128]. This type of result could
never been gained by slump measurements alone.

• When comparing the plastic viscosity µ between the different batch types, dif-
ferent values result. For example, the OPC-batches of w/c = 0.5 (Figure 6.9,
Page 112) gives µ ≈ 1 Pa · s, while the FAC-batches of w/c = 0.57 (Figure 6.19,
Page 120) gives µ ≈ 4Pa · s.

• For the past 25 years, it has been demonstrated that fresh concrete, mortar and
cement paste can, with good accuracy, be considered as Bingham materials [28].
That is, the cement based materials can successfully be described with the yield
value τo and plastic viscosity µ. With small and roughly constant µ, the present
concrete and mortar mixes can be characterized by τo alone (see Chapter 6).
This is analogous to a Newtonian liquid, which is characterized by µ alone (τo
is zero). Thus for a given type of concrete, one parameter may be sufficient,
but this can only be ascertained by viscometric tests.

• The type of rheological investigations done in Chapter 9, could never been made
with the simple slump test. This underlines the importance of viscometers
above the more traditional slump measuring devise.

• In general, the plastic viscosity µ is more changeable than seen for the mixes
in this thesis. For example, in certain cases of self-compacting concrete, the
plastic viscosity µ plays an extremely important role. There, the yield value τo
is very low, while the rheological characteristic of the concrete is more given by
the plastic viscosity µ.
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Appendix A

Source Code

A.1 License Terms and Warranty

Two softwares are presented in this appendix. The first one is used when calculating
the viscoplastic flow inside both ConTec viscometers (Appendix A.2). The second
software is used when calculating the flow inside the C3P2-geometry (Appendix A.3).
Both softwares will have the same name, namelyViscometric-ViscoPlastic-Flow

(or VVPF). The reason for this is that both of them use much of the same or similar
subroutines, stored as modules. The source codes are written in accordance with the
Fortran 90 standard (ANSI X3.198-1992 ∧ ISO/IEC 1539-1:1991 (E)) and as such,
can be used on any computer platform having a Fortran 90 compiler. All the source
files shown here are protected by the GNU General Public License (GNU GPL)
as shown in the individual source code.

Viscometric-ViscoPlastic-Flow, is free software; which can be redistributed
and/or modified under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at the users option)
any later version. Viscometric-ViscoPlastic-Flow, is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License in Appendix A.4 for more details.

A.2 ConTec Viscometers

When calculating the viscoplastic flow inside theConTec viscometers,Viscometric-

ViscoPlastic-Flow consists of seven files listed below.

1. param.f90 (MODULE): This code defines and sets all variables of relevance,
like Ri, Ro, h, ∆r, ∆z, ∆t, tol, tol RMS, fmin, fmax and so forth.

2. motion.f90 (MODULE): This file reads the basic information from param.f90
to produce angular velocity ωo = ωo(t). The information about the angular ve-
locity is requested by the routine main.f90.

3. viscous.f90 (MODULE): In this file, the shear viscosity function η = η(γ̇, t, . . . )
is defined and calculated. This information is requested by update.f90.
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4. write2f.f90 (MODULE): This file takes care of writing all computed data into
the different files. It is only the source main.f90 that makes such request.

5. shear.f90 (MODULE): This routine calculates the shear rate γ̇c from the com-
puted velocity profile V k(i, j) iθ. It is the program update.f90 that makes the
request.

6. update.f90 (MODULE): This file sets up the system of algebraic Equations 7.28
to 7.31 (Page 161). This file also contains the Thomas algorithm that is used
in solving this system.

7. main.f90 (PROGRAM): This is the center of the whole software, holding and
passing information to and from the different subroutines. Some subroutines
interact directly with each other without going through the channels defined
by main.f90 (this applies mostly for the subroutines in the files update.f90,
shear.f90 and viscous.f90). The geometry of the viscometer, including the
bottom cone, is defined in this part of the software.

The user only interacts with two files in the above list, namely the param.f90 and
viscous.f90. Hence, these files are explained in a more detail relative to other source
codes. All the files can be compiled and linked in the order shown in the above.

A.2.1 ConTec BML Viscometer 3

Figure A.1 demonstrates the solution geometry and boundary conditions used when
simulating the ConTec BML Viscometer 3. This array is 146×306 in size and the
spacing of grid points in r and z-direction are uniform and equal: ∆r = ∆z = 1.0mm.
This greatly simplifies the programming of the software, saves storage space and usu-
ally results in greater accuracy in the numerical calculation [2]. In the algorithm, the
viscometer is rotated by 90◦ clockwise to simplify array addressing. This is apparent
when comparing Figure A.1 with the left illustration of Figure 8.15 (Page 197).

1 61 107 240 306

1

29

101

146
vθ = R°⋅ω°

vθ = 0

vθ  = 0

vθ  = r⋅ω
°

∂vθ /∂z=0

j−direction (z)

i−direction (r)

Figure A.1: Geometry and boundary conditions for the ConTec BML Viscometer 3.
This information is put into the arrays (146 × 306) VELOCITY k, VELOCITY kp12 and
VELOCITY kp1 of the source code main.f90. The lower left corner demonstrates the grid
resolution used. For the domain of calculation, there are about 19500 grid points.
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Referring to Figure A.1, then in i-direction (i.e. in r-direction) the following
numbers specify the geometry of the bottom cone in the viscometer: NX1 cone=1,
NX cone ∈ [2, 26], NX2 cone=27. The parameters NX1 cone+1 and NX2 cone+1
designates the beginning and the end coordinates of the bottom cone. Also, the
terms NX1 and NX2 designates the coordinates of the inner and outer cylinder and
are given by 101 and 146, respectively. The geometry of the viscometer can be read
directly from the figure. For example, the inner radius is Ri = (NX1 − 1)∆r =
(101 − 1)1.0mm = 10.0 cm and likewise the outer radius is Ro = (NX2 − 1)∆r =
(146−1)1.0mm = 14.5 cm. All these variables are used inmain.f90 and param.f90.

In the j-direction (i.e. in z-direction) the corresponding bottom-cone-numbers are:
NY1 cone=21, NY2 cone ∈ [22, 60], where NY1 cone and last element of NY2 cone
designates the beginning and the end coordinates of the bottom cone, respectively.
The term NY1 designates the start location of the inner cylinder and NY2 desig-
nates the total height of the outer cylinder. These values are given by NY1=61
and NY2=306. The total height of the inner cylinder can now be calculated: H2 =
(NY2 − NY1)∆z = (306 − 61)1.0mm = 24.5 cm. The term h ≡ H3 = 19.9 cm
designates the height where torque is measured and it starts at the j-grid point
NY2mH3 = NY2 −H3/∆z = 306− 19.9 cm/1mm = 107 and ends at NY2=306.

A.2.2 ConTec Viscometer 4

Figure A.2 demonstrates the solution geometry and boundary conditions used when
simulating the ConTec Viscometer 4. For the particular case shown, the solution
array is 203×301 in size (h ≡ H3 = 12.6 cm). In Figure 8.2 (Page 180) it was chosen
to be 203×281 (h ≡ H3 = 11.6 cm). In either case, the spacing of grid points in r and
z-direction are uniform and equal: ∆r = ∆z = 0.5mm.

1 21 49 80 120 160 200 240 280 301

1
10

49

80

100

120

140

171

203
vθ = R°⋅ω°
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i−
direction (r)

Figure A.2: Solution geometry and boundary conditions for the viscometer. This information is
put into the arrays (203× 301) VELOCITY k, VELOCITY kp12 and VELOCITY kp1 in the
routine main.f90. The lower left corner demonstrates the grid resolution used. For the domain
of calculation, there are about 12000 grid points.
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Referring to Figure A.2, then in i-direction (i.e. in r-direction) the following
numbers specify the geometry of the bottom cone in the viscometer: NX1 cone=9,
NX cone ∈ [12, 44], NX2 cone=47. The parameters NX1 cone+1 and NX2 cone+1
designates the beginning and the end coordinates of the bottom cone. Also, the terms
NX1 and NX2 designates the coordinates of the inner and outer cylinder and are given
by 171 and 203, respectively. Hence, the inner radius is Ri = (NX1− 1)∆r = (171−
1)0.5mm = 8.5 cm and the outer radius is Ro = (NX2 − 1)∆r = (203 − 1)0.5mm =
10.1 cm.

In j-direction (i.e. in z-direction) the corresponding bottom-cone-numbers are:
NY1 cone=5, NY2 cone ∈ [6, 20], where NY1 cone and the last element of NY2 cone
designates the beginning and the end coordinates of the bottom cone, respectively.
The term NY1 designates the start location of the inner cylinder and NY2 desig-
nates the total height of the outer cylinder. These values are given by NY1=21
and NY2=301. The total height of the inner cylinder can now be calculated: H2 =
(NY2−NY1)∆z = (301−21)0.5mm= 14.0 cm. As before, the term h ≡ H3 = 12.6 cm
designates the height where torque is measured and it starts at the j-grid point
NY2mH3 = NY2 − H3/∆z = 301 − 12.6 cm/0.5mm = 301 − 252 = 49 and ends at
NY2=301. In Section 8.3.2, this height was equal to h ≡ H3 = 11.6 cm and hence
the solution array for that particular case consisted of 203×281 instead of 203×301.
All the coordinates related to the bottom cones are defined in main.f90. All other
variables shown here are defined in param.f90. This applies also when calculating
the viscoplastic flow inside the ConTec BML Viscometer 3 (Appendix A.2.1).

A.2.3 param.f90

! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: param.f90 (MODULE) !
! This code defines and sets all variables of relevance, like R_i, R_o, h, dr, dz, !
! dt, tol, tol_RMS, f_min, f_max and so forth. !
! The specific values for the different parameters shown here, corresponds to the !
! case of VHMW Na, at t = 72 min and t = 102 min, in Section 9.5 (and Section 9.4). !
! --------------------------------------------------------------------------------- !
! rho => density of the test material in kg/m^3
! ------------
! ZERO_TIME (Section 7.11): maximum iteration time in seconds when solving the
! elliptical problem: Pseudotransient method is used. It will either be this
! time or the term "tol_Plastic" that will terminate the elliptical iteration.
! ------------
! "REAL_TIME": real time duration of iteration when solving the parabolic problem:
! ------------
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! CALCULATE_TIME_DEPENDENT_PROBL: Inform the main routine if parabolic problem
! should be solved.
! ------------
! tol_Newton, tol_Plastic and tol_RMS: See Equation 7.73.
! tol => Tolerance to tell when to quit the successive substitution iteration and
! when, in the end, to quit iteration for the complete elliptical problem:
! Pseudotransient Method is used.
! ------------
! dt_Newton, dt_Plastic, dt => Time step. When solving for viscoplastic fluid,
! then much smaller time step is required compared to when solving for
! Newtonian fluid.
! ------------
! k_max = IDNINT(ZERO_TIME/dt_Plastic): Maximum amount of time steps
! when solving the elliptical problem.
! ------------
! NUMBER_OF_TIME_ITERATIONS = IDNINT(REAL_TIME/dt_Plastic)
! Number of time steps when solving the parabolic problem.
! ------------
! count_max => Maximum number of iterations for each successive substitution.
! --------------------------------------------------------------------------------- !
MODULE CONSTANTS_AND_PARAMETERS

IMPLICIT NONE
PRIVATE
PUBLIC :: WHAT_TYPE_OF_VISCOMETER,ConTec_CONSTANTS,VELOCITY_AND_TIME_ConTec,&

BML_CONSTANTS,VELOCITY_AND_TIME_BML
CONTAINS
! ================================================================================= !
SUBROUTINE WHAT_TYPE_OF_VISCOMETER(ConTec_v4,ConTec_BML_v3)
! ------------
LOGICAL,INTENT(OUT) :: ConTec_v4,ConTec_BML_v3
! ------------
ConTec_v4 = .TRUE.
ConTec_BML_v3 = .FALSE.
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE WHAT_TYPE_OF_VISCOMETER
! ================================================================================= !
SUBROUTINE ConTec_CONSTANTS(rho,REAL_TIME,CALCULATE_TIME_DEPENDENT_PROBL,&

ZERO_TIME,tol_Newton,tol_Plastic,tol_RMS,&
dt_Plastic,dt_Newton,count_max,R_i,R_o,h1,H2,H3)

DOUBLE PRECISION,INTENT(OUT) :: rho,REAL_TIME,ZERO_TIME,tol_Newton,&
tol_Plastic,tol_RMS,&
dt_Plastic,dt_Newton,R_i,R_o,h1,H2,H3

LOGICAL,INTENT(OUT) :: CALCULATE_TIME_DEPENDENT_PROBL
INTEGER,INTENT(OUT) :: count_max

DOUBLE PRECISION :: TIME_INTERVAL,f,f_min,f_max,PERC
INTEGER :: NUMBER_OF_POINTS
LOGICAL :: SMOOTH
! --------------------------------------------------------------------------------- !
! Only ZERO_TIME and REAL_TIME are used from the
! call statement below:
CALL VELOCITY_AND_TIME_ConTec(ZERO_TIME,REAL_TIME,&

TIME_INTERVAL,f,f_min,f_max,PERC,NUMBER_OF_POINTS,SMOOTH)
! ---------------------------------------------------------
rho = 2090D0 ! Density of the test material in kg/m^3.
! ---------------------------------------------------------
! CALCULATE_TIME_DEPENDENT_PROBL = .FALSE.
CALCULATE_TIME_DEPENDENT_PROBL = .TRUE.
! ---------------------------------------------------------
tol_Newton = 0.5D-4 ! Used as condition for time independence in the Newtonian case.

! Also used as tolerance for the successive substitution
! (in this case it acts as a dummy variable since always two
! successive steps are made for the Newtonian case).

tol_Plastic = 0.5D-5 ! For the successive substitution tolerance (Equation 7.73).
tol_RMS = 1.0D-15 ! Condition for time independence (Equation 7.75).
! ---------------------------------------------------------
dt_Newton = 1.0D-3
dt_Plastic = 0.1D-4
count_max = 15 ! Maximum number of successive (substitution) iterations, for each

! time step k.
R_i = 0.085D0 ! => 8.5 cm = Inner radius of viscometer.
R_o = 0.101D0 ! => 10.1 cm = Outer radius of viscometer.
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h1 = 0.002D0 ! => 0.2 cm = Distance between bottom plate of viscometer and the
! lowest part of cone.

H2 = 0.130D0 ! => 13.0 cm = Total height of inner cylinder.
H3 = 0.116D0 ! => 11.6 cm = Height where torque is measured (from top and downward).
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE ConTec_CONSTANTS
! ================================================================================= !
SUBROUTINE VELOCITY_AND_TIME_ConTec(ZERO_TIME,REAL_TIME,&

TIME_INTERVAL,f,f_min,f_max,PERC,NUMBER_OF_POINTS,SMOOTH)

DOUBLE PRECISION,INTENT(OUT) :: ZERO_TIME,REAL_TIME,&
TIME_INTERVAL,f,f_min,f_max,PERC

INTEGER,INTENT(OUT) :: NUMBER_OF_POINTS
LOGICAL,INTENT(OUT) :: SMOOTH
! --------------------------------------------------------------------------------- !
! If the condition "(DABS(VELOCITY_kp1(i,j) - VELOCITY_k(i,j)) > tol)", in
! "main.f90", never gets fulfilled, then it will be ZERO_TIME
! that will terminate the pseudotransient iteration (i.e. elliptical iteration).
ZERO_TIME = 0.5D0
! ---------------------------------------------------------
! Time interval for each constant angular velocity (in seconds).
! The total time is then TIME_INTERVAL*(NUMBER_OF_POINTS + 1)
!(Only used if CALCULATE_TIME_DEPENDENT_PROBL = .TRUE.)
TIME_INTERVAL = 5.0D0
! ---------------------------------------------------------
! Total number of measuring points (up and down).
! This number must be an odd number, beginning with 3: 3,5,7,9,...
!(Only used if CALCULATE_TIME_DEPENDENT_PROBL = .TRUE.)
NUMBER_OF_POINTS = 9
! ---------------------------------------------------------
! Total time of measurements (simulation), in seconds:
!(Only used if CALCULATE_TIME_DEPENDENT_PROBL = .TRUE.)
REAL_TIME = TIME_INTERVAL*DBLE(NUMBER_OF_POINTS+1)
! ---------------------------------------------------------
! Only used if CALCULATE_TIME_DEPENDENT_PROBL = .FALSE.
f = 0.10D0 ! -> Rotational frequency of the outer cylinder in 1/s (or rps).
! ---------------------------------------------------------
! Only used if CALCULATE_TIME_DEPENDENT_PROBL = .TRUE.
f_min = 0.10D0 ! -> Minimum rotational frequency of the outer cylinder in 1/s (or rps).
f_max = 0.65D0 ! -> Maximum rotational frequency of the outer cylinder in 1/s (or rps).
PERC = 0.18D0 !
SMOOTH = .TRUE. ! SMOOTH = .FALSE.
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE VELOCITY_AND_TIME_ConTec
! ================================================================================= !
SUBROUTINE BML_CONSTANTS(rho,REAL_TIME,CALCULATE_TIME_DEPENDENT_PROBL,&

ZERO_TIME,tol_Newton,tol_Plastic,tol_RMS,&
dt_Plastic,dt_Newton,count_max,R_i,R_o,h1,H2,H3)

DOUBLE PRECISION,INTENT(OUT) :: rho,REAL_TIME,ZERO_TIME,tol_Newton,&
tol_Plastic,tol_RMS,&
dt_Plastic,dt_Newton,R_i,R_o,h1,H2,H3

LOGICAL,INTENT(OUT) :: CALCULATE_TIME_DEPENDENT_PROBL
INTEGER,INTENT(OUT) :: count_max

DOUBLE PRECISION :: TIME_INTERVAL,f,f_min,f_max,PERC
INTEGER :: NUMBER_OF_POINTS
LOGICAL :: SMOOTH
! --------------------------------------------------------------------------------- !
! Only ZERO_TIME and REAL_TIME are used from the
! call statement below:
CALL VELOCITY_AND_TIME_BML(ZERO_TIME,REAL_TIME,&

TIME_INTERVAL,f,f_min,f_max,PERC,NUMBER_OF_POINTS,SMOOTH)
! ---------------------------------------------------------
rho = 2354D0 ! kg/m^3
! ---------------------------------------------------------
CALCULATE_TIME_DEPENDENT_PROBL = .FALSE.
! CALCULATE_TIME_DEPENDENT_PROBL = .TRUE.
! ---------------------------------------------------------
tol_Newton = 1.0D-3 ! Used as condition for time independence in the Newtonian case.

! Also used as tolerance for the successive substitution
! (in this case it acts as a dummy variable since always two
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! successive steps are made for the Newtonian case).
tol_Plastic = 1.0D-10 ! For the successive substitution tolerance (Equation 7.73).
tol_RMS = 1.0D-30 ! Condition for time independence (Equation 7.75).
! ---------------------------------------------------------
dt_Newton = 1.0D-1
dt_Plastic = 0.1D-6
count_max = 15 ! Maximum number of successive (substitution) iterations, for each

! time step k.
R_i = 0.100D0 ! => 10.0 cm = Inner radius of viscometer.
R_o = 0.145D0 ! => 14.5 cm = Outer radius of viscometer.
h1 = 0.020D0 ! => 2.0 cm = Distance between bottom plate of viscometer and the

! lowest part of cone.
H2 = 0.245D0 ! => 24.5 cm = Total height of inner cylinder
H3 = 0.199D0 ! => 19.9 cm = Height where torque is measured (from top and downward).
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE BML_CONSTANTS
! ================================================================================= !
SUBROUTINE VELOCITY_AND_TIME_BML(ZERO_TIME,REAL_TIME,&

TIME_INTERVAL,f,f_min,f_max,PERC,NUMBER_OF_POINTS,SMOOTH)

DOUBLE PRECISION,INTENT(OUT) :: ZERO_TIME,REAL_TIME,&
TIME_INTERVAL,f,f_min,f_max,PERC

INTEGER,INTENT(OUT) :: NUMBER_OF_POINTS
LOGICAL,INTENT(OUT) :: SMOOTH
! --------------------------------------------------------------------------------- !
! If the condition "(DABS(VELOCITY_kp1(i,j) - VELOCITY_k(i,j)) > tol)", in
! "main.f90", never gets fulfilled, then it will be ZERO_TIME
! that will terminate the pseudotransient iteration (i.e. elliptical iteration).
ZERO_TIME = 1.0D0
! ---------------------------------------------------------
! Time interval for each constant angular velocity (in seconds).
! The total time is then TIME_INTERVAL*(NUMBER_OF_POINTS + 1)
!(Only used if CALCULATE_TIME_DEPENDENT_PROBL = .TRUE.)
TIME_INTERVAL = 5.0D0
! ---------------------------------------------------------
! Total number of measuring points (up and down).
! This number must be an odd number, beginning with 3: 3,5,7,9,...
!(Only used if CALCULATE_TIME_DEPENDENT_PROBL = .TRUE.)
NUMBER_OF_POINTS = 9
! ---------------------------------------------------------
! Total time of measurements (simulation), in seconds:
!(Only used if CALCULATE_TIME_DEPENDENT_PROBL = .TRUE.)
REAL_TIME = TIME_INTERVAL*DBLE(NUMBER_OF_POINTS+1)
! ---------------------------------------------------------
! Only used if CALCULATE_TIME_DEPENDENT_PROBL = .FALSE.
! f = 0.50D0 ! -> Rotational frequency of the outer cylinder in 1/s (or rps).
f = 3.0D0/(2.0D0*DACOS(-1.0D0)) ! -> omega = 3 rad/s (PI = DACOS(-1.0D0))
! ---------------------------------------------------------
! Only used if CALCULATE_TIME_DEPENDENT_PROBL = .TRUE.
f_min = 0.10D0 ! -> Minimum rotational frequency of the outer cylinder in 1/s (or rps).
f_max = 0.65D0 ! -> Maximum rotational frequency of the outer cylinder in 1/s (or rps).
PERC = 0.18D0 ! 0.30D0
SMOOTH = .TRUE. ! SMOOTH= .FALSE.
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE VELOCITY_AND_TIME_BML
! ================================================================================= !
END MODULE CONSTANTS_AND_PARAMETERS
! --------------------------------------------------------------------------------- !
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A.2.4 viscous.f90

! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: viscous.f90 (MODULE) !
! In this file, the shear viscosity function ETA = ETA(SR,t,...) is defined and !
! calculated. This information is requested by update.f90. !
! --------------------------------------------------------------------------------- !
MODULE SHEAR_VISCOSITY

IMPLICIT NONE
PRIVATE
PUBLIC :: ETA,VISCOSITY,FMSR_FMCR

CONTAINS
! ================================================================================= !
SUBROUTINE ETA(dt,time,Lambda,SR_ij,SR_ip12j,SR_im12j,SR_ijp12,SR_ijm12,&

FMSR_ij,FMSR_ip12j,FMSR_im12j,FMSR_ijp12,FMSR_ijm12,&
FMCR_ij,FMCR_ip12j,FMCR_im12j,FMCR_ijp12,FMCR_ijm12,&
ETA_ij,ETA_ip12j,ETA_im12j,ETA_ijp12,ETA_ijm12)

! --------------------------------------------------------------------------------- !
DOUBLE PRECISION,INTENT(IN) :: dt,time,Lambda,&

SR_ij,SR_ip12j,&
SR_im12j,SR_ijp12,SR_ijm12,&
FMSR_ij,FMSR_ip12j,&
FMSR_im12j,FMSR_ijp12,FMSR_ijm12,&
FMCR_ij,FMCR_ip12j,&
FMCR_im12j,FMCR_ijp12,FMCR_ijm12

DOUBLE PRECISION,INTENT(OUT) :: ETA_ij,ETA_ip12j,ETA_im12j,ETA_ijp12,&
ETA_ijm12

! --------------------------------------------------------------------------------- !
CALL VISCOSITY(dt,time,Lambda,SR_ij,FMSR_ij,FMCR_ij,ETA_ij)
CALL VISCOSITY(dt,time,Lambda,SR_ip12j,FMSR_ip12j,FMCR_ip12j,ETA_ip12j)
CALL VISCOSITY(dt,time,Lambda,SR_im12j,FMSR_im12j,FMCR_im12j,ETA_im12j)
CALL VISCOSITY(dt,time,Lambda,SR_ijp12,FMSR_ijp12,FMCR_ijp12,ETA_ijp12)
CALL VISCOSITY(dt,time,Lambda,SR_ijm12,FMSR_ijm12,FMCR_ijm12,ETA_ijm12)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE ETA
! ================================================================================= !
SUBROUTINE VISCOSITY(dt,time,Lambda_tmp,SR,FMSR,FMCR,ETA)

DOUBLE PRECISION,INTENT(IN) :: dt,time,Lambda_tmp,SR,FMSR,FMCR
DOUBLE PRECISION,INTENT(OUT) :: ETA
DOUBLE PRECISION :: mu,tau,a_1,a_2,mu_tmp,tau_tmp,delta,Lambda,&

B3_n3_23,U_o,U_3,memory_alpha,memory_beta,H,&
Gamma,Theta,BETA_I,BETA_II,ALPHA_I,ALPHA_II

! --------------------------------------------------------------------------------- !
CALL FMSR_FMCR(time,SR,U_o,memory_alpha,memory_beta,H)
! --------------------------------------------------------------------------------- !
! "Lambda >= 0" (Lambda_tmp.GT.-0.5D0) means that time independent calculations is
! present, with a constant shear viscosity ETA = constant. In this case, "Lambda" is
! related to the Continuation Method (see Section 7.8).
! "Lambda = -1" (Lambda_tmp.LT.-0.5D0) means that time dependent calculations
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! (basically thixotropic) have begun with time dependent shear viscosity ETA = ETA(r,z,t).
! --------------------------------------------------------------------------------- !
IF (Lambda_tmp.GT.-0.5D0) THEN ! -> Time independent calculations.

Lambda = Lambda_tmp ! Lambda = continuation parameter.
Gamma = 0.0D0
Theta = 0.0D0

ELSE IF (Lambda_tmp.LT.-0.5D0) THEN ! -> Time dependent calculations.
Lambda = 1.0D0 ! Lambda = dummy variable.
! ----
ALPHA_I = DEXP(time/memory_alpha)
ALPHA_II = DEXP(-time/memory_alpha)
Gamma = ALPHA_II*(FMSR + ALPHA_I*SR*dt) ! Equations 7.69 to 7.70 (Equation 9.3)
! ----
BETA_I = DEXP(time/memory_beta)
BETA_II = DEXP(-time/memory_beta)
Theta = BETA_II*(FMCR + BETA_I*H*dt) ! Equations 7.71 to 7.72 (Equation 9.4)
Theta = 0.0D0 ! <- This condition is only used for the VHMW Na-case. With

! "Theta = 0.0D0", the re-coagulation is set equal to zero, as is
! done in Sections 9.4 and 9.5. In Sections 9.6 to 9.8, the
! re-coagulation is non-zero and hence, Theta is calculated
! according to Equation 9.4 as "BETA_II*(FMCR + BETA_I*H*dt)".

END IF
! --------------------------------------------------------------------------------- !
delta = 0.005D0 ! <- The regularization parameter (see Section 7.9).
! ---------------------------------------------------------
! Values from Table 9.1 are shown here (t = 72 min and t = 102 min):
mu = 0.650D0
a_1 = 1.100D0
B3_n3_23 = 30.000D0
tau = 0.000D0
a_2 = 0.800D0
! ---------------------------------------------------------
! Equation 9.5:
U_3 = (U_o*(Theta*Gamma + 1.0D0) + Theta)/((Theta + 1.0D0)*(Gamma + 1.0D0))
! ---------------------------------------------------------
mu_tmp = mu + a_1*(B3_n3_23*(U_3**(2.0D0/3.0D0))) ! Equation 9.8
tau_tmp = tau + a_2*(B3_n3_23*(U_3**(2.0D0/3.0D0))) ! Equation 9.9
ETA = mu_tmp + (tau_tmp*Lambda)/(SR + delta) ! Equation 9.7
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE VISCOSITY
! ================================================================================= !
SUBROUTINE FMSR_FMCR(time,SR,U_o,memory_alpha,memory_beta,H)

DOUBLE PRECISION,INTENT(IN) :: time,SR
DOUBLE PRECISION,INTENT(OUT) :: U_o,memory_alpha,memory_beta,H
DOUBLE PRECISION :: k_1,k_2,k_3
! --------------------------------------------------------------------------------- !
! As Theta = 0.0D0, then memory_beta is not used (Sections 9.4 and 9.5, only).
U_o = 1.0D0
memory_alpha = 30.0D0
memory_beta = 18.0D0
! ---------------------------------------------------------
! As Theta = 0.0D0, then k_1, k_2 and k_3 are not used (Sections 9.4 and 9.5, only).
k_1 = 0.005D0
k_2 = 0.100D0
k_3 = 0.005D0
! ---------------------------------------------------------
! Equations 9.10 and 9.11:
IF (time.EQ.0.0D0) THEN

H = k_1*(1 - U_o)/4.0D0
ELSE IF ((time.GT. 0.0D0).AND.(time.LT.25.0D0)) THEN

H = k_1/(SR**2 + 1.0D0)
ELSE IF ((time.GE.25.0D0).AND.(time.LT.45.0D0)) THEN

H = k_2/(SR**2 + 1.0D0)
ELSE IF ((time.GE.45.0D0).AND.(time.LE.50.0D0)) THEN

H = k_3/(SR**2 + 1.0D0)
END IF
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE FMSR_FMCR
! ================================================================================= !
END MODULE SHEAR_VISCOSITY
! --------------------------------------------------------------------------------- !
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A.2.5 main.f90

! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: main.f90 (PROGRAM) !
! This is the center of the whole software, holding and passing information to and !
! from the different subroutines. Some subroutines interact directly with each !
! other without going through the channels defined by main.f90 (this applies mostly !
! for the subroutines in the files update.f90, shear.f90 and viscous.f90). !
! The geometry of the viscometer, including the bottom cone, is defined in this !
! part of the software. !
! --------------------------------------------------------------------------------- !
PROGRAM MAIN_ROUTINE

USE CONSTANTS_AND_PARAMETERS
USE SHEAR_VISCOSITY
USE ROTATION
USE MATRIX
USE WRITE_INFORMATION

IMPLICIT NONE

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:,:) :: MX1,MX2,MY1,MY2
DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: K1,K2,L1,L2,DUMMY_2

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:,:) :: VELOCITY_k,VELOCITY_kp12,VELOCITY_kp12_new,&
VELOCITY_kp1_new,VELOCITY_kp1,SR,H,FMSR,FMCR

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: v1r_ijp1k,v1r_ijk,v1r_ijm1k,&
v1r_ijp1kp12,v1r_ijkp12,v1r_ijm1kp12,&
v1r_c_ijp1k,v1r_c_ijk,v1r_c_ijm1k,&
v1r_c_ijp1kp12,v1r_c_ijkp12,v1r_c_ijm1kp12,&
v2r_ijp1k,v2r_ijk,v2r_ijm1k,&
v2r_ijp1kp12,v2r_ijkp12,v2r_ijm1kp12

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: FMSR1r_ijp1,FMSR1r_ij,FMSR1r_ijm1,&
FMSR1r_c_ijp1,FMSR1r_c_ij,FMSR1r_c_ijm1,&
FMSR2r_ijp1,FMSR2r_ij,FMSR2r_ijm1

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: FMCR1r_ijp1,FMCR1r_ij,FMCR1r_ijm1,&
FMCR1r_c_ijp1,FMCR1r_c_ij,FMCR1r_c_ijm1,&
FMCR2r_ijp1,FMCR2r_ij,FMCR2r_ijm1

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: v1r_ijkp12_new,v2r_ijkp12_new

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: v1z_ip1jkp12,v1z_ijkp12,v1z_im1jkp12,&
v1z_ip1jkp1,v1z_ijkp1,v1z_im1jkp1,&
v1z_c_ip1jkp12,v1z_c_ijkp12,v1z_c_im1jkp12,&
v1z_c_ip1jkp1,v1z_c_ijkp1,v1z_c_im1jkp1,&
v2z_ip1jkp12,v2z_ijkp12,v2z_im1jkp12,&
v2z_ip1jkp1,v2z_ijkp1,v2z_im1jkp1

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: FMSR2z_ip1j,FMSR2z_ij,FMSR2z_im1j,&
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FMSR1z_ip1j,FMSR1z_ij,FMSR1z_im1j,&
FMSR1z_c_ip1j,FMSR1z_c_ij,FMSR1z_c_im1j

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: FMCR2z_ip1j,FMCR2z_ij,FMCR2z_im1j,&
FMCR1z_ip1j,FMCR1z_ij,FMCR1z_im1j,&
FMCR1z_c_ip1j,FMCR1z_c_ij,FMCR1z_c_im1j

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: v1z_ijkp1_new,v2z_ijkp1_new
INTEGER,ALLOCATABLE,DIMENSION(:) :: x_cone,y_cone,y_cone_dynamic

DOUBLE PRECISION :: dr,dz,dt,rho,omega,Lambda,R_i,r_i_cone,R_o,h1,H2,H3,tol,a,b,&
dt_Newton,dt_Plastic,tol_Newton,tol_Plastic,tol_RMS,&
tol_RMS_active,ZERO_TIME,REAL_TIME,H_cone,h1_static,dt_OUTPUT,&
dt_OUTPUT_torque,RMS,vel_norm,small_zero,EPS,ZERO_TIME_tmp,&
REAL_TIME_tmp,TIME_INTERVAL,f,f_min,f_max,PERC,time,&
memory_beta,memory_alpha,BETA_I,ALPHA_I,SR_tmp,H_tmp,U_o

INTEGER :: i,j,k,error,problem,NX,NX1,NX2,NY1,NY2,N_Lambda,N_Lambda_MAX,&
count,MAX_NUMBER_OF_ITERATIONS,count_max,NX1_Cone,&
NX2_Cone,NX_cone,NY1_Cone,NY2_cone,NX2mNX_cone,&
NUMBER_OF_TIME_ITERATIONS,N_cone_x,N_cone_y,&
NUMBER_OF_POINTS,N_dt,count_rms,NX1_cone_rms,k_OUTPUT_rms,&
k_OUTPUT_torque,k_OUTPUT,NY2mH3,DUMMY_1

LOGICAL :: CONVERGENCE,TIME_INDEPENDENCE,WARNING_SIGN,ConTec_v4,&
ConTec_BML_v3,CALCULATE_TIME_DEPENDENT_PROBL,SMOOTH,&
FALSE_CONVERGENCE

CHARACTER :: IGNORED_INPUT
! --------------------------------------------------------------------------------- !
PRINT *, " _______________________________________________ "
PRINT *, " Viscometric-ViscoPlastic-Flow v1.0 (CT3 & CT4) "
PRINT *, " "
PRINT *, " Copyright (C) 2002, Jon E. Wallevik, "
PRINT *, " (jon.wallevik@bygg.ntnu.no) "
PRINT *, " The Norwegian University of Science and Technology (NTNU) "
PRINT *, " Department of Structural Engineering "
PRINT *, " __________________________________________________________ "
PRINT *, " "
PRINT *, " This software is free software; you can redistribute it "
PRINT *, " and/or modify it under the terms of the GNU General Public "
PRINT *, " License as published by the Free Software Foundation; "
PRINT *, " either version 2 of the License, or (at your option) any "
PRINT *, " later version. This software is distributed in the hope "
PRINT *, " that it will be useful, but WITHOUT ANY WARRANTY; without "
PRINT *, " even the implied warranty of MERCHANTABILITY or FITNESS "
PRINT *, " FOR A PARTICULAR PURPOSE. "
PRINT *, " See the GNU General Public License for more details. "
PRINT *, " __________________________________________________________ "
PRINT *, " "
WRITE(*,"(A)",ADVANCE="NO") " PRESS ’ENTER’ TO CONTINUE"
PRINT *, " "
READ (*,"(A)") IGNORED_INPUT
PRINT *, " "
! --------------------------------------------------------------------------------- !
CALL WHAT_TYPE_OF_VISCOMETER(ConTec_v4,ConTec_BML_v3)
! ---------------------------------------------------------
IF ((ConTec_v4).AND.(ConTec_BML_v3)) THEN

PRINT *, " ERROR: Both ConTec_v4 AND ConTec_BML_v3 = .TRUE. "
STOP

ELSE IF ((.NOT.ConTec_v4).AND.(.NOT.ConTec_BML_v3)) THEN
PRINT *, " ERROR: Both ConTec_v4 AND ConTec_BML_v3 = .FALSE. "
STOP

END IF
! --------------------------------------------------------------------------------- !
IF (ConTec_v4) THEN

PRINT ’(7X,A43)’, "==========================================="
PRINT ’(7X,A43)’, " Solving for ConTec Viscometer 4 "
PRINT ’(7X,A43)’, "==========================================="
PRINT ’(7X,A43)’, " "

CALL ConTec_CONSTANTS(rho,REAL_TIME,CALCULATE_TIME_DEPENDENT_PROBL,&
ZERO_TIME,tol_Newton,tol_Plastic,tol_RMS,&
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dt_Plastic,dt_Newton,count_max,R_i,R_o,h1,H2,H3)

CALL VELOCITY_AND_TIME_ConTec(ZERO_TIME_tmp,REAL_TIME_tmp,&
TIME_INTERVAL,f,f_min,f_max,PERC,NUMBER_OF_POINTS,SMOOTH)

dr = 0.5D-3 ! => 0.5 mm = Spacing between grid points in r-direction.
dz = 0.5D-3 ! => 0.5 mm = Spacing between grid points in z-direction.

H_cone = DBLE(21 - 5)*dz ! -> Static (non changeable) variable:: 0.8 cm.
h1_static = DBLE(5 - 1)*dz ! -> Static (non changeable) variable:: 0.2 cm.

N_cone_x = 16 ! -> Static (non changeable) variable
N_cone_y = 39 ! -> Static (non changeable) variable

ALLOCATE(x_cone(N_cone_x),y_cone(N_cone_y),y_cone_dynamic(N_cone_y),&
stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 0 in main and execution terminated! "
STOP

END IF

! NX1=171;NX2=203;NY1=21;NY2=301;NX=NX2-NX1+1=203-171+1=33;
x_cone = (/9,12,14,17,19,22,24,27,29,32,34,37,39,42,44,47/)
NX1_cone = x_cone(1)
NX2_cone = x_cone(16)

y_cone = (/5,6,6,6,7,7,8,8,8,9,9,10,10,10,11,11,12,12,12,13,13,&
14,14,14,15,15,16,16,16,17,17,18,18,18,19,19,20,20,20/)

y_cone_dynamic = y_cone - IDNINT((h1_static - h1)/dz)
y_cone = y_cone_dynamic
NY1_cone = y_cone(1)

! NY2_cone = is defined elsewhere!
! --------------------------------------------------------------------------------- !
ELSE IF (ConTec_BML_v3) THEN

PRINT ’(4X,A49)’, "================================================="
PRINT ’(4X,A49)’, " Solving for ConTec BML Viscometer 3 "
PRINT ’(4X,A49)’, "================================================="
PRINT ’(4X,A49)’, " "

CALL BML_CONSTANTS(rho,REAL_TIME,CALCULATE_TIME_DEPENDENT_PROBL,&
ZERO_TIME,tol_Newton,tol_Plastic,tol_RMS,&
dt_Plastic,dt_Newton,count_max,R_i,R_o,h1,H2,H3)

CALL VELOCITY_AND_TIME_BML(ZERO_TIME_tmp,REAL_TIME_tmp,&
TIME_INTERVAL,f,f_min,f_max,PERC,NUMBER_OF_POINTS,SMOOTH)

dr = 1.0D-3 ! => 1.0 mm = Spacing between grid points in r-direction.
dz = 1.0D-3 ! => 1.0 mm = Spacing between grid points in z-direction.

H_cone = DBLE(61 - 21)*dz ! -> Static (non changeable) variable:: 4.0 cm.
h1_static = DBLE(21 - 1)*dz ! -> Static (non changeable) variable:: 2.0 cm.

N_cone_x = 40
N_cone_y = 27

ALLOCATE(x_cone(N_cone_x),y_cone(N_cone_y),y_cone_dynamic(N_cone_y),&
stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 0 in main and execution terminated! "
STOP

END IF

! NX1=101;NX2=146;NY1=61;NY2=306;NX=NX2-NX1+1=146-101+1=46;
x_cone = (/1,2,2,3,4,4,5,6,6,7,8,8,9,10,10,11,12,12,13,14,14,15,&

16,16,17,18,18,19,20,20,21,22,22,23,24,24,25,26,26,27/)
NX1_cone = x_cone(1)
NX2_cone = x_cone(40)

y_cone = (/21,22,24,25,27,28,30,31,33,34,36,37,39,40,42,43,&
45,46,48,49,51,52,54,55,57,58,60/)

y_cone_dynamic = y_cone - IDNINT((h1_static - h1)/dz)
y_cone = y_cone_dynamic
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NY1_cone = y_cone(1)
! NY2_cone = is defined elsewhere!

END IF
! --------------------------------------------------------------------------------- !
NX1 = IDNINT(R_i/dr) + 1 ! 171 for CT and 101 for BML
NX2 = IDNINT(R_o/dr) + 1 ! 203 for CT and 146 for BML
NX = NX2 - NX1 + 1 ! NX=203-171+1=33 for CT and NX=146-101+1=46 for BML
NY1 = IDNINT((h1 + H_cone)/dz) + 1 ! = 21 for CT and 61 for BML
NY2 = IDNINT((h1 + H_cone + H2)/dz) + 1 ! = 301 for CT and 306 for BML
NY2mH3 = NY2 - IDNINT(H3/dz)

R_i = dr*DBLE(NX1-1)
R_o = dr*DBLE(NX2-1)
! --------------------------------------------------------------------------------- !
CALL ANGULAR_VELOCITY(0.0D0,dt,omega)
! ---------------------------------------------------------
14 FORMAT(10X,"NX1 = ",(I3,2X),"; NX2 = ",(I3,2X),"; dr = ",F6.4,"m")
15 FORMAT(10X,"R_i = ",F6.4,"m ; R_o = ",F6.4,"m")
19 FORMAT(10X,"NY2mH3 = ",(I3,2X)," ; NX = ",(I3,2X))
16 FORMAT(10X,"NY1 = ",(I3,2X),"; NY2 = ",(I3,2X),"; dz = ",F6.4,"m")
17 FORMAT(10X,"dt_Plastic = ",E9.3,"s; f_o = ",F6.4,"rps")
PRINT ’(8X,A26)’,"Geometric and time values:"
PRINT 14, NX1,NX2,dr
PRINT 16, NY1,NY2,dz
PRINT 19, NY2mH3,NX
PRINT 15, R_i,R_o
PRINT 17, dt_Plastic,omega/(2.0D0*ACOS(-1.0D0))
PRINT *, " "
! --------------------------------------------------------------------------------- !
IF (NX1.GE.NX2) THEN

PRINT *, " Inner radius ’R_i’ is larger than the outer radius ’R_o’! "
PRINT *, " TERMINAL ERROR! "
STOP

END IF

IF ((NX2_cone+2).GE.NX1) THEN
PRINT *, " Inner radius ’R_i’ is smaller than the largest radius "
PRINT *, " of the bottom cone r_cone^max=((NX2_cone+2)-1)*dr! "
PRINT *, " TERMINAL ERROR! "
STOP

END IF

IF (h1.LT.2.0D0*dz) THEN
PRINT *, " The variable ’h1’ in ’param.f90’ is too small! "
PRINT *, " Minimum height of h1 must be 2*dz, "
PRINT *, " otherwise a logical error will occur. "
PRINT *, " [h1(ConTec) = 0.001 (0.1 cm) ; dz=0.5 mm]; "
PRINT *, " [h1(BML) = 0.002 (0.2 cm) ; dz=1.0 mm]; "
PRINT *, " TERMINAL ERROR! "
STOP

END IF

IF (H2.LT.2.0D0*dz) THEN
PRINT *, " The variable ’H2’ in ’param.f90’ is too small! "
PRINT *, " Minimum height of h1 must be 2*dz, "
PRINT *, " otherwise a logical error will occur. "
PRINT *, " [h1(ConTec) = 0.001 (0.1 cm) ; dz=0.5 mm]; "
PRINT *, " [h1(BML) = 0.002 (0.2 cm) ; dz=1.0 mm]; "
PRINT *, " TERMINAL ERROR! "
STOP

END IF
! --------------------------------------------------------------------------------- !
CALL WARNING_FOR_WRITING(NY2)

MAX_NUMBER_OF_ITERATIONS = IDNINT(ZERO_TIME/dt_Plastic)
NUMBER_OF_TIME_ITERATIONS = DINT(REAL_TIME/dt_Plastic)

PRINT *, " ------------------------------------------- "
PRINT "( ’ MAX_NUMBER_OF_ITERATIONS: ’, I10 ) ",&

MAX_NUMBER_OF_ITERATIONS
PRINT *, " ------------------------------------------- "
PRINT *, " "
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IF (CALCULATE_TIME_DEPENDENT_PROBL) THEN
PRINT *, " ------------------------------------------- "
PRINT "( ’ NUMBER_OF_TIME_ITERATIONS: ’, I10 ) ",&

NUMBER_OF_TIME_ITERATIONS
PRINT *, " ------------------------------------------- "
PRINT *, " "

END IF

PRINT *, " ___________________________ "
WRITE(*,"(A)",ADVANCE="NO") " PRESS ’ENTER’ TO CONTINUE"
PRINT *, " "
READ (*,"(A)") IGNORED_INPUT
PRINT *, " "
! --------------------------------------------------------------------------------- !
k_OUTPUT_rms = 25 ! -> Information output every dt_OUTPUT_rms

! times (to console and file).
! --------------------------------------------------------------------------------- !
! The term "small_zero" does usually not have to be changed.
small_zero = 0.1D-7 ! -> Used in relation to screen and file output.
EPS = 1.0D-15 ! -> Used in relation to vel_norm.
! --------------------------------------------------------------------------------- !
DUMMY_1 = IDNINT(0.8D0*DBLE(NY2))
! --------------------------------------------------------------------------------- !
! Creating log file and making the first entry:
OPEN(unit=8,file="log.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: log.dat! "
STOP

ELSE
WRITE (unit=8,fmt=*) 0,0.0D0

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
ALLOCATE(MX1(NX2-2,NX2-2),MX2(NX-2,NX-2),MY1(NY1-2,NY1-2),MY2(NY2-2,NY2-2),&

VELOCITY_k(NX2,NY2),VELOCITY_kp12(NX2,NY2),VELOCITY_kp12_new(NX2,NY2),&
VELOCITY_kp1(NX2,NY2),VELOCITY_kp1_new(NX2,NY2),SR(NX2,NY2),H(NX2,NY2),&
FMSR(NX2,NY2),FMCR(NX2,NY2),stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 1 in main and execution terminated! "
STOP

END IF

ALLOCATE(K1(NX2-2),K2(NX-2),L1(NY1-2),L2(NY2-2),DUMMY_2(NX),stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 2 in main and execution terminated! "
STOP

END IF

ALLOCATE(v1r_ijp1k(NX2),v1r_ijk(NX2),v1r_ijm1k(NX2),v1r_ijp1kp12(NX2),&
v1r_ijkp12(NX2),v1r_ijm1kp12(NX2),v1r_c_ijp1k(NX2),v1r_c_ijk(NX2),&
v1r_c_ijm1k(NX2),v1r_c_ijp1kp12(NX2),v1r_c_ijkp12(NX2),&
v1r_c_ijm1kp12(NX2),v2r_ijp1k(NX),v2r_ijk(NX),v2r_ijm1k(NX),&
v2r_ijp1kp12(NX),v2r_ijkp12(NX),v2r_ijm1kp12(NX),stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 3a in main and execution terminated! "
STOP

END IF

ALLOCATE(FMSR1r_ijp1(NX2),FMSR1r_ij(NX2),FMSR1r_ijm1(NX2),&
FMSR1r_c_ijp1(NX2),FMSR1r_c_ij(NX2),FMSR1r_c_ijm1(NX2),&
FMSR2r_ijp1(NX),FMSR2r_ij(NX),FMSR2r_ijm1(NX),stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 3b in main and execution terminated! "
STOP

END IF

ALLOCATE(FMCR1r_ijp1(NX2),FMCR1r_ij(NX2),FMCR1r_ijm1(NX2),&
FMCR1r_c_ijp1(NX2),FMCR1r_c_ij(NX2),FMCR1r_c_ijm1(NX2),&
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FMCR2r_ijp1(NX),FMCR2r_ij(NX),FMCR2r_ijm1(NX),stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 3c in main and execution terminated! "
STOP

END IF

ALLOCATE(v1r_ijkp12_new(NX2-2),v2r_ijkp12_new(NX-2),stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 4 in main and execution terminated! "
STOP

END IF

ALLOCATE(v1z_ip1jkp12(NY1),v1z_ijkp12(NY1),v1z_im1jkp12(NY1),v1z_ip1jkp1(NY1),&
v1z_ijkp1(NY1),v1z_im1jkp1(NY1),v1z_c_ip1jkp12(NY1),v1z_c_ijkp12(NY1),&
v1z_c_im1jkp12(NY1),v1z_c_ip1jkp1(NY1),v1z_c_ijkp1(NY1),&
v1z_c_im1jkp1(NY1),v2z_ip1jkp12(NY2),v2z_ijkp12(NY2),v2z_im1jkp12(NY2),&
v2z_ip1jkp1(NY2),v2z_ijkp1(NY2),v2z_im1jkp1(NY2),stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 5a in main and execution terminated! "
STOP

END IF

ALLOCATE(FMSR1z_ip1j(NY1),FMSR1z_ij(NY1),FMSR1z_im1j(NY1),&
FMSR1z_c_ip1j(NY1),FMSR1z_c_ij(NY1),FMSR1z_c_im1j(NY1),&
FMSR2z_ip1j(NY2),FMSR2z_ij(NY2),FMSR2z_im1j(NY2),stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 5b in main and execution terminated! "
STOP

END IF

ALLOCATE(FMCR1z_ip1j(NY1),FMCR1z_ij(NY1),FMCR1z_im1j(NY1),&
FMCR1z_c_ip1j(NY1),FMCR1z_c_ij(NY1),FMCR1z_c_im1j(NY1),&
FMCR2z_ip1j(NY2),FMCR2z_ij(NY2),FMCR2z_im1j(NY2),stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 5c in main and execution terminated! "
STOP

END IF

ALLOCATE(v1z_ijkp1_new(NY1-2),v2z_ijkp1_new(NY2-2),stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 5d in main and execution terminated! "
STOP

END IF
! --------------------------------------------------------------------------------- !
! Initialization:
! ================================================================================= !
SR = 0.0D0
H = 0.0D0
FMSR = 0.0D0
FMCR = 0.0D0
! ================================================================================= !
MX1 = 0.0D0
MX2 = 0.0D0
K1 = 0.0D0
K2 = 0.0D0

VELOCITY_k = 0.0D0
VELOCITY_kp12 = 0.0D0
VELOCITY_kp12_new = 0.0D0
! --------------------------------------------------------------------------------- !
v1r_ijkp12_new = 0.0D0
v2r_ijkp12_new = 0.0D0

! v1r is used in K1 and MX1 -> K1=K1(v1r) and MX1=MX1(v1r) to solve the system
! MX1*v1r_new=K1. "v1r" could be called "v1r_old" since it is the velocity
! from the previous iteration.
v1r_ijp1k = 0.0D0 ! v1r -> K1 & MX1*v1r_new=K1
v1r_ijk = 0.0D0
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v1r_ijm1k = 0.0D0
v1r_ijp1kp12 = 0.0D0
v1r_ijkp12 = 0.0D0
v1r_ijm1kp12 = 0.0D0
! --------------------------------------------------------------------------------- !
FMSR1r_ijp1 = 0.0D0
FMSR1r_ij = 0.0D0
FMSR1r_ijm1 = 0.0D0

FMCR1r_ijp1 = 0.0D0
FMCR1r_ij = 0.0D0
FMCR1r_ijm1 = 0.0D0
! --------------------------------------------------------------------------------- !
v1r_c_ijp1k = 0.0D0 ! v1r_c -> K1(1:x) & MX1(1:x)*v1r_c_new(1:x)=K1(1:x)
v1r_c_ijk = 0.0D0 ! ..._c -> ..._cone
v1r_c_ijm1k = 0.0D0
v1r_c_ijp1kp12 = 0.0D0
v1r_c_ijkp12 = 0.0D0
v1r_c_ijm1kp12 = 0.0D0
! --------------------------------------------------------------------------------- !
FMSR1r_c_ijp1 = 0.0D0
FMSR1r_c_ij = 0.0D0
FMSR1r_c_ijm1 = 0.0D0

FMCR1r_c_ijp1 = 0.0D0
FMCR1r_c_ij = 0.0D0
FMCR1r_c_ijm1 = 0.0D0
! --------------------------------------------------------------------------------- !
v2r_ijp1k = 0.0D0 ! v2r -> K2 & MX2*v2r_new=K2
v2r_ijk = 0.0D0
v2r_ijm1k = 0.0D0
v2r_ijp1kp12 = 0.0D0
v2r_ijkp12 = 0.0D0
v2r_ijm1kp12 = 0.0D0
! --------------------------------------------------------------------------------- !
FMSR2r_ijp1 = 0.0D0
FMSR2r_ij = 0.0D0
FMSR2r_ijm1 = 0.0D0

FMCR2r_ijp1 = 0.0D0
FMCR2r_ij = 0.0D0
FMCR2r_ijm1 = 0.0D0
! ================================================================================= !
MY1 = 0.0D0
MY2 = 0.0D0
L1 = 0.0D0
L2 = 0.0D0

VELOCITY_kp1 = 0.0D0
VELOCITY_kp1_new = 0.0D0
! --------------------------------------------------------------------------------- !
v1z_ijkp1_new = 0.0D0
v2z_ijkp1_new = 0.0D0

! v1z is used in L1 and MY1 -> L1=L1(v1z) and MY1=MY1(v1z) to solve the system
! MY1*v1z_new=L1. "v1z" could be called "v1z_old" since it is the velocity
! from the previous iteration.
v1z_ip1jkp12 = 0.0D0 ! v1z -> L1 & MY1*v1z_new=L1
v1z_ijkp12 = 0.0D0
v1z_im1jkp12 = 0.0D0
v1z_ip1jkp1 = 0.0D0
v1z_ijkp1 = 0.0D0
v1z_im1jkp1 = 0.0D0
! --------------------------------------------------------------------------------- !
FMSR1z_ip1j = 0.0D0
FMSR1z_ij = 0.0D0
FMSR1z_im1j = 0.0D0

FMCR1z_ip1j = 0.0D0
FMCR1z_ij = 0.0D0
FMCR1z_im1j = 0.0D0
! --------------------------------------------------------------------------------- !
v1z_c_ip1jkp12 = 0.0D0 ! v1z_c -> L1(1:y) & MY1(1:y)*v1z_c_new(1:y)=L1(1:y)
v1z_c_ijkp12 = 0.0D0 ! ..._c -> ..._cone
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v1z_c_im1jkp12 = 0.0D0
v1z_c_ip1jkp1 = 0.0D0
v1z_c_ijkp1 = 0.0D0
v1z_c_im1jkp1 = 0.0D0
! --------------------------------------------------------------------------------- !
FMSR1z_c_ip1j = 0.0D0
FMSR1z_c_ij = 0.0D0
FMSR1z_c_im1j = 0.0D0

FMCR1z_c_ip1j = 0.0D0
FMCR1z_c_ij = 0.0D0
FMCR1z_c_im1j = 0.0D0
! --------------------------------------------------------------------------------- !
v2z_ip1jkp12 = 0.0D0 ! v2z -> L2 & MY2*v2z_new=L2
v2z_ijkp12 = 0.0D0
v2z_im1jkp12 = 0.0D0
v2z_ip1jkp1 = 0.0D0
v2z_ijkp1 = 0.0D0
v2z_im1jkp1 = 0.0D0
! --------------------------------------------------------------------------------- !
FMSR2z_ip1j = 0.0D0
FMSR2z_ij = 0.0D0
FMSR2z_im1j = 0.0D0

FMCR2z_ip1j = 0.0D0
FMCR2z_ij = 0.0D0
FMCR2z_im1j = 0.0D0
! ================================================================================= !
WARNING_SIGN = .FALSE.
FALSE_CONVERGENCE = .FALSE.
! --------------------------------------------------------------------------------- !
! Initialization of boundary condition at t = 0.0 sec:
CALL ANGULAR_VELOCITY(0.0D0,dt,omega)
! Dirichlet boundary condition:
DO i = 1,NX2

VELOCITY_k(i,1) = omega*DBLE(i-1)*dr
END DO
VELOCITY_k(1:NX1,NY1) = 0.0D0
VELOCITY_k(1,1:NY1) = 0.0D0
VELOCITY_k(NX1,NY1:NY2) = 0.0D0
VELOCITY_k(NX2,:) = R_o*omega

! ################################################################################# !
! In Section 7.11.1 is a detailed description of the algorithm, which is used in !
! the following. !
! --------------------------------------------------------------------------------- !
! Linear approximation to speed up convergence:
DO i = 2,NX1_cone+1

a = VELOCITY_k(i,1)
b = VELOCITY_k(i,NY1_cone)
DO j = 2,NY1_cone-1

VELOCITY_k(i,j) = a - (a - b)*DBLE(j-1)/DBLE(NY1_cone-1)
END DO

END DO

DO i = NX1_cone+2,NX2_cone+1
a = VELOCITY_k(i,1)
b = VELOCITY_k(i,y_cone(i-NX1_cone))
DO j = 2,y_cone(i-NX1_cone)-1

VELOCITY_k(i,j) = a - (a - b)*DBLE(j-1)/DBLE(y_cone(i-NX1_cone)-1)
END DO

END DO

DO i = NX2_cone+2,NX1
a = VELOCITY_k(i,1)
b = VELOCITY_k(i,NY1)
DO j = 2,NY1-1

VELOCITY_k(i,j) = a - (a - b)*DBLE(j-1)/DBLE(NY1-1)
END DO

END DO

DO j = 2,NY2-1
a = VELOCITY_k(NX1,j)
b = VELOCITY_k(NX2,j)
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DO i = NX1+1,NX2-1
VELOCITY_k(i,j) = a - (a - b)*DBLE(i-NX1)/DBLE(NX2-NX1)

END DO
END DO

! Neumann boundary condition:
VELOCITY_k(NX1+1:NX2-1,NY2) = (4.0D0 * &

VELOCITY_k(NX1+1:NX2-1,NY2-1) - &
VELOCITY_k(NX1+1:NX2-1,NY2-2))/3.0D0

! CHECK OUT IF VELOCITY_k IS OK:
! CALL WRITE2FILE_k(VELOCITY_k,NX2)
! STOP
! ================================================================================= !
! ============================ Begin of CONTINUATION ============================== !
! ================================================================================= !
N_Lambda_MAX = 1
CONTINUATION: DO N_Lambda = 0,N_Lambda_MAX
! Lambda => The Continuation Method (see Section 7.8).
Lambda = DBLE(N_Lambda)/DBLE(N_Lambda_MAX)
PRINT *,"________________________________________________________"
PRINT *,"CONTINUATION:",Lambda

IF (N_Lambda == 0) THEN
dt = dt_Newton
tol = tol_Newton
tol_RMS_active = tol_Newton ! -> See Equation 7.75.

ELSE
dt = dt_Plastic
tol = tol_Plastic
tol_RMS_active = tol_RMS ! -> See Equation 7.75.

END IF

TIME_INDEPENDENCE = .FALSE.
! Initializing time for each CONTINUATION step:
k = 0
! ================================================================================= !
! =========================== Begin of the time loop ============================== !
! ================================================================================= !
ZERO_TIME_LOOP: DO WHILE (.NOT.TIME_INDEPENDENCE)
CONVERGENCE = .FALSE.
IF (ABS(MOD((k+1),k_OUTPUT_rms)).LT.small_zero) THEN

PRINT *,"______________________________________________________"
PRINT *," "
PRINT *," PSEUDO-TRANSIENT time step: k+1 = ",k+1
PRINT *,"------------------------------------------------------"

END IF
! --------------------------------------------------------------------------------- !
! VELOCITY_kp12 = VELOCITY_k
! VELOCITY_kp1 = VELOCITY_k
! VELOCITY_kp1_new = VELOCITY_kp1
! The following routines are to update the Dirichlet and Neumann boundary
! conditions for the time step k+1/2 and k+1. Most of these routines are
! redundant since the boundary conditions are not changing with time. However
! it is a good practice to include them, if by some unfortunate accident
! some of the boundary values are overwritten.
! --------------------------------------------------------------------------------- !
! A guess for the time step k+1/2
VELOCITY_kp12 = VELOCITY_k

! Updating boundary condition at k+1/2:
CALL ANGULAR_VELOCITY(0.0D0,dt,omega)

! Dirichlet boundary condition:
DO i = 1,NX2

VELOCITY_kp12(i,1) = omega*DBLE(i-1)*dr
END DO
VELOCITY_kp12(1:NX1,NY1) = 0.0D0
VELOCITY_kp12(1,1:NY1) = 0.0D0
VELOCITY_kp12(NX1,NY1:NY2) = 0.0D0
VELOCITY_kp12(NX2,:) = R_o*omega

! Neumann boundary condition:
VELOCITY_kp12(NX1+1:NX2-1,NY2) = (4.0D0 * &
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VELOCITY_kp12(NX1+1:NX2-1,NY2-1) - &
VELOCITY_kp12(NX1+1:NX2-1,NY2-2))/3.0D0

! Also updating boundary condition for "..._new":
VELOCITY_kp12_new = VELOCITY_kp12
! --------------------------------------------------------------------------------- !
! A guess for the time step k+1
VELOCITY_kp1 = VELOCITY_k

! Updating boundary condition at k+1:
CALL ANGULAR_VELOCITY(0.0D0,dt,omega)

! Dirichlet boundary condition:
DO i = 1,NX2

VELOCITY_kp1(i,1) = omega*DBLE(i-1)*dr
END DO
VELOCITY_kp1(1:NX1,NY1) = 0.0D0
VELOCITY_kp1(1,1:NY1) = 0.0D0
VELOCITY_kp1(NX1,NY1:NY2) = 0.0D0
VELOCITY_kp1(NX2,:) = R_o*omega

! Neumann boundary condition:
VELOCITY_kp1(NX1+1:NX2-1,NY2) = (4.0D0 * &

VELOCITY_kp1(NX1+1:NX2-1,NY2-1) - &
VELOCITY_kp1(NX1+1:NX2-1,NY2-2))/3.0D0

! Also updating boundary condition for "..._new":
VELOCITY_kp1_new = VELOCITY_kp1
! --------------------------------------------------------------------------------- !
count = 0
! ================================================================================= !
! ====================== BEGIN OF SUCCESSIVE SUBSTITUTION ========================= !
! ================================================================================= !
! The iteration loop here is because of the non-linearity of the governing
! Equations 7.22 and 7.23. To come around this problem, the successive substitution
! approach is used (see Section 7.8).
CONVERGE: DO WHILE (.NOT.CONVERGENCE)

! If convergence is a problem, then this might help:
! VELOCITY_kp12 = (VELOCITY_k + VELOCITY_kp1_new)/2
count = count + 1
10 FORMAT(4X,"Successive substitution number = ",1(I3,1X))

IF (ABS(MOD((k+1),k_OUTPUT_rms)).LT.small_zero) THEN
PRINT 10, count

END IF

!======================== BEGIN OF X-ITERATION =========================
! Iteration is made along r-direction (i.e. along the i-direction as
! in A(i,j)). It starts at the bottom of the viscometer i=(2:NX2-1) at
! j = 2 and then move upward with increasing j (see Figures 8.1 and 8.2).

DO j = 2,NY1_cone-1
v1r_ijp1k = VELOCITY_k(:,j+1)
v1r_ijk = VELOCITY_k(:,j)
v1r_ijm1k = VELOCITY_k(:,j-1)
v1r_ijp1kp12 = VELOCITY_kp12(:,j+1)
v1r_ijkp12 = VELOCITY_kp12(:,j)
v1r_ijm1kp12 = VELOCITY_kp12(:,j-1)

FMSR1r_ijp1 = FMSR(:,j+1)
FMSR1r_ij = FMSR(:,j)
FMSR1r_ijm1 = FMSR(:,j-1)

FMCR1r_ijp1 = FMCR(:,j+1)
FMCR1r_ij = FMCR(:,j)
FMCR1r_ijm1 = FMCR(:,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,0.0D0,dz,NX2,v1r_ijp1k,v1r_ijk,&
v1r_ijm1k,v1r_ijp1kp12,v1r_ijkp12,v1r_ijm1kp12,&
FMSR1r_ijp1,FMSR1r_ij,FMSR1r_ijm1,&
FMCR1r_ijp1,FMCR1r_ij,FMCR1r_ijm1,MX1,K1)

CALL MATRIX_SOLVER(MX1,K1,v1r_ijkp12_new,NX2-2)
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VELOCITY_kp12_new(2:NX2-1,j) = v1r_ijkp12_new
END DO

! -------------------------- BEGIN OF X-CONE ------------------------
DO j = NY1_cone,NY1-1

NX_cone = x_cone(j + 1 - NY1_cone)
r_i_cone = NX_cone*dr
NX2mNX_cone = NX2 - NX_cone
v1r_c_ijp1k(1:NX2mNX_cone) = VELOCITY_k(NX_cone+1:NX2,j+1)
v1r_c_ijk(1:NX2mNX_cone) = VELOCITY_k(NX_cone+1:NX2,j)
v1r_c_ijm1k(1:NX2mNX_cone) = VELOCITY_k(NX_cone+1:NX2,j-1)
v1r_c_ijp1kp12(1:NX2mNX_cone) = VELOCITY_kp12(NX_cone+1:NX2,j+1)
v1r_c_ijkp12(1:NX2mNX_cone) = VELOCITY_kp12(NX_cone+1:NX2,j)
v1r_c_ijm1kp12(1:NX2mNX_cone) = VELOCITY_kp12(NX_cone+1:NX2,j-1)

FMSR1r_c_ijp1(1:NX2mNX_cone) = FMSR(NX_cone+1:NX2,j+1)
FMSR1r_c_ij(1:NX2mNX_cone) = FMSR(NX_cone+1:NX2,j)
FMSR1r_c_ijm1(1:NX2mNX_cone) = FMSR(NX_cone+1:NX2,j-1)

FMCR1r_c_ijp1(1:NX2mNX_cone) = FMCR(NX_cone+1:NX2,j+1)
FMCR1r_c_ij(1:NX2mNX_cone) = FMCR(NX_cone+1:NX2,j)
FMCR1r_c_ijm1(1:NX2mNX_cone) = FMCR(NX_cone+1:NX2,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,r_i_cone,dz,NX2mNX_cone,v1r_c_ijp1k,v1r_c_ijk,&
v1r_c_ijm1k,v1r_c_ijp1kp12,v1r_c_ijkp12,v1r_c_ijm1kp12,&
FMSR1r_c_ijp1,FMSR1r_c_ij,FMSR1r_c_ijm1,&
FMCR1r_c_ijp1,FMCR1r_c_ij,FMCR1r_c_ijm1,MX1,K1)

CALL MATRIX_SOLVER(MX1,K1,v1r_ijkp12_new,NX2mNX_cone-2)
! CALL WRITE2FILE_debug(MX1,K1,v1r_ijkp12_new,NX2mNX_cone-2)
! STOP

VELOCITY_kp12_new(NX_cone+2:NX2-1,j) = v1r_ijkp12_new(1:NX2mNX_cone-2)
END DO
! --------------------------- END OF X-CONE -------------------------

DO j = NY1,NY2-1
v2r_ijp1k = VELOCITY_k(NX1:NX2,j+1)
v2r_ijk = VELOCITY_k(NX1:NX2,j)
v2r_ijm1k = VELOCITY_k(NX1:NX2,j-1)
v2r_ijp1kp12 = VELOCITY_kp12(NX1:NX2,j+1)
v2r_ijkp12 = VELOCITY_kp12(NX1:NX2,j)
v2r_ijm1kp12 = VELOCITY_kp12(NX1:NX2,j-1)

FMSR2r_ijp1 = FMSR(NX1:NX2,j+1)
FMSR2r_ij = FMSR(NX1:NX2,j)
FMSR2r_ijm1 = FMSR(NX1:NX2,j-1)

FMCR2r_ijp1 = FMCR(NX1:NX2,j+1)
FMCR2r_ij = FMCR(NX1:NX2,j)
FMCR2r_ijm1 = FMCR(NX1:NX2,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,R_i,dz,NX,v2r_ijp1k,v2r_ijk,&
v2r_ijm1k,v2r_ijp1kp12,v2r_ijkp12,v2r_ijm1kp12,&
FMSR2r_ijp1,FMSR2r_ij,FMSR2r_ijm1,&
FMCR2r_ijp1,FMCR2r_ij,FMCR2r_ijm1,MX2,K2)

CALL MATRIX_SOLVER(MX2,K2,v2r_ijkp12_new,NX-2)
VELOCITY_kp12_new(NX1+1:NX2-1,j) = v2r_ijkp12_new

END DO

j = NY2
v2r_ijp1k = VELOCITY_k(NX1:NX2,j-1) ! => v(i,j+1) = v(i,j-1)
v2r_ijk = VELOCITY_k(NX1:NX2,j)
v2r_ijm1k = VELOCITY_k(NX1:NX2,j-1)
v2r_ijp1kp12 = VELOCITY_kp12(NX1:NX2,j-1) ! => v(i,j+1) = v(i,j-1)
v2r_ijkp12 = VELOCITY_kp12(NX1:NX2,j)
v2r_ijm1kp12 = VELOCITY_kp12(NX1:NX2,j-1)

FMSR2r_ijp1 = FMSR(NX1:NX2,j-1) ! => v(i,j+1) = v(i,j-1)
FMSR2r_ij = FMSR(NX1:NX2,j)
FMSR2r_ijm1 = FMSR(NX1:NX2,j-1)

FMCR2r_ijp1 = FMCR(NX1:NX2,j-1) ! => v(i,j+1) = v(i,j-1)
FMCR2r_ij = FMCR(NX1:NX2,j)
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FMCR2r_ijm1 = FMCR(NX1:NX2,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,R_i,dz,NX,v2r_ijp1k,v2r_ijk,&
v2r_ijm1k,v2r_ijp1kp12,v2r_ijkp12,v2r_ijm1kp12,&
FMSR2r_ijp1,FMSR2r_ij,FMSR2r_ijm1,&
FMCR2r_ijp1,FMCR2r_ij,FMCR2r_ijm1,MX2,K2)

CALL MATRIX_SOLVER(MX2,K2,v2r_ijkp12_new,NX-2)
VELOCITY_kp12_new(NX1+1:NX2-1,j) = v2r_ijkp12_new

! --------- PAUSE FOR DEBUGGING ---------
! CALL WRITE2FILE_k(VELOCITY_kp12_new,NX2)
! WRITE(*,"(A)",ADVANCE="NO") " PRESS ’ENTER’ TO CONTINUE "
! PRINT *, " "
! READ (*,"(A)") IGNORED_INPUT
! PRINT *, " "

!========================= END OF X-ITERATION =========================

! Updating ..._kp12:
VELOCITY_kp12 = VELOCITY_kp12_new

!======================== BEGIN OF Y-ITERATION ========================
! Iteration is made along z-direction (i.e. along the j-direction as
! in A(i,j)). It starts at the right side of the viscometer j=(2:NY2-1) at
! i = NX2-1 and then moves to the left with decreasing i
! (see Figures 8.1 and 8.2).
DO i = NX2-1,NX1+1,-1

v2z_ip1jkp12 = VELOCITY_kp12(i+1,:)
v2z_ijkp12 = VELOCITY_kp12(i,:)
v2z_im1jkp12 = VELOCITY_kp12(i-1,:)
v2z_ip1jkp1 = VELOCITY_kp1(i+1,:)
v2z_ijkp1 = VELOCITY_kp1(i,:)
v2z_im1jkp1 = VELOCITY_kp1(i-1,:)

FMSR2z_ip1j = FMSR(i+1,:)
FMSR2z_ij = FMSR(i,:)
FMSR2z_im1j = FMSR(i-1,:)

FMCR2z_ip1j = FMCR(i+1,:)
FMCR2z_ij = FMCR(i,:)
FMCR2z_im1j = FMCR(i-1,:)

CALL MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY2,v2z_ip1jkp12,v2z_ijkp12,&
v2z_im1jkp12,v2z_ip1jkp1,v2z_ijkp1,v2z_im1jkp1,&
FMSR2z_ip1j,FMSR2z_ij,FMSR2z_im1j,&
FMCR2z_ip1j,FMCR2z_ij,FMCR2z_im1j,MY2,L2,.TRUE.)

CALL MATRIX_SOLVER(MY2,L2,v2z_ijkp1_new,NY2-2)
VELOCITY_kp1_new(i,2:NY2-1) = v2z_ijkp1_new

END DO

! v(i,j+1) = v(i,j-1) =>
VELOCITY_kp1_new(NX1+1:NX2-1,NY2) = VELOCITY_kp1_new(NX1+1:NX2-1,NY2-2)

DO i = NX1,NX2_cone+2,-1
v1z_ip1jkp12 = VELOCITY_kp12(i+1,1:NY1)
v1z_ijkp12 = VELOCITY_kp12(i,1:NY1)
v1z_im1jkp12 = VELOCITY_kp12(i-1,1:NY1)
v1z_ip1jkp1 = VELOCITY_kp1(i+1,1:NY1)
v1z_ijkp1 = VELOCITY_kp1(i,1:NY1)
v1z_im1jkp1 = VELOCITY_kp1(i-1,1:NY1)

FMSR1z_ip1j = FMSR(i+1,1:NY1)
FMSR1z_ij = FMSR(i,1:NY1)
FMSR1z_im1j = FMSR(i-1,1:NY1)

FMCR1z_ip1j = FMCR(i+1,1:NY1)
FMCR1z_ij = FMCR(i,1:NY1)
FMCR1z_im1j = FMCR(i-1,1:NY1)

CALL MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY1,v1z_ip1jkp12,v1z_ijkp12,&
v1z_im1jkp12,v1z_ip1jkp1,v1z_ijkp1,v1z_im1jkp1,&
FMSR1z_ip1j,FMSR1z_ij,FMSR1z_im1j,&
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FMCR1z_ip1j,FMCR1z_ij,FMCR1z_im1j,MY1,L1,.FALSE.)

CALL MATRIX_SOLVER(MY1,L1,v1z_ijkp1_new,NY1-2)
VELOCITY_kp1_new(i,2:NY1-1) = v1z_ijkp1_new

END DO

! -------------------------- BEGIN OF Y-CONE ------------------------
DO i = NX2_cone+1,NX1_cone+2,-1

NY2_cone = y_cone(i-NX1_cone)
v1z_c_ip1jkp12(1:NY2_cone) = VELOCITY_kp12(i+1,1:NY2_cone)
v1z_c_ijkp12(1:NY2_cone) = VELOCITY_kp12(i,1:NY2_cone)
v1z_c_im1jkp12(1:NY2_cone) = VELOCITY_kp12(i-1,1:NY2_cone)
v1z_c_ip1jkp1(1:NY2_cone) = VELOCITY_kp1(i+1,1:NY2_cone)
v1z_c_ijkp1(1:NY2_cone) = VELOCITY_kp1(i,1:NY2_cone)
v1z_c_im1jkp1(1:NY2_cone) = VELOCITY_kp1(i-1,1:NY2_cone)

FMSR1z_c_ip1j(1:NY2_cone) = FMSR(i+1,1:NY2_cone)
FMSR1z_c_ij(1:NY2_cone) = FMSR(i,1:NY2_cone)
FMSR1z_c_im1j(1:NY2_cone) = FMSR(i-1,1:NY2_cone)

FMCR1z_c_ip1j(1:NY2_cone) = FMCR(i+1,1:NY2_cone)
FMCR1z_c_ij(1:NY2_cone) = FMCR(i,1:NY2_cone)
FMCR1z_c_im1j(1:NY2_cone) = FMCR(i-1,1:NY2_cone)

CALL MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY2_cone,v1z_c_ip1jkp12,v1z_c_ijkp12,&
v1z_c_im1jkp12,v1z_c_ip1jkp1,v1z_c_ijkp1,v1z_c_im1jkp1,&
FMSR1z_c_ip1j,FMSR1z_c_ij,FMSR1z_c_im1j,&
FMCR1z_c_ip1j,FMCR1z_c_ij,FMCR1z_c_im1j,MY1,L1,.FALSE.)

CALL MATRIX_SOLVER(MY1,L1,v1z_ijkp1_new,NY2_cone-2)
VELOCITY_kp1_new(i,2:NY2_cone-1) = v1z_ijkp1_new(1:NY2_cone-2)

END DO

DO i = NX1_cone+1,2,-1
v1z_c_ip1jkp12(1:NY1_cone) = VELOCITY_kp12(i+1,1:NY1_cone)
v1z_c_ijkp12(1:NY1_cone) = VELOCITY_kp12(i,1:NY1_cone)
v1z_c_im1jkp12(1:NY1_cone) = VELOCITY_kp12(i-1,1:NY1_cone)
v1z_c_ip1jkp1(1:NY1_cone) = VELOCITY_kp1(i+1,1:NY1_cone)
v1z_c_ijkp1(1:NY1_cone) = VELOCITY_kp1(i,1:NY1_cone)
v1z_c_im1jkp1(1:NY1_cone) = VELOCITY_kp1(i-1,1:NY1_cone)

FMSR1z_c_ip1j(1:NY1_cone) = FMSR(i+1,1:NY1_cone)
FMSR1z_c_ij(1:NY1_cone) = FMSR(i,1:NY1_cone)
FMSR1z_c_im1j(1:NY1_cone) = FMSR(i-1,1:NY1_cone)

FMCR1z_c_ip1j(1:NY1_cone) = FMCR(i+1,1:NY1_cone)
FMCR1z_c_ij(1:NY1_cone) = FMCR(i,1:NY1_cone)
FMCR1z_c_im1j(1:NY1_cone) = FMCR(i-1,1:NY1_cone)

CALL MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY1_cone,v1z_c_ip1jkp12,v1z_c_ijkp12,&
v1z_c_im1jkp12,v1z_c_ip1jkp1,v1z_c_ijkp1,v1z_c_im1jkp1,&
FMSR1z_c_ip1j,FMSR1z_c_ij,FMSR1z_c_im1j,&
FMCR1z_c_ip1j,FMCR1z_c_ij,FMCR1z_c_im1j,MY1,L1,.FALSE.)

CALL MATRIX_SOLVER(MY1,L1,v1z_ijkp1_new,NY1_cone-2)
VELOCITY_kp1_new(i,2:NY1_cone-1) = v1z_ijkp1_new(1:NY1_cone-2)

END DO
! --------------------------- END OF Y-CONE -------------------------

!========================= END OF Y-ITERATION =========================

CONVERGENCE = .TRUE.

! Settings for testing of convergence (or rather stability):
RMS = 0.0D0
vel_norm = 1.0D0

S1: DO j = 2,NY1_cone-1
DO i = 2,NX2_cone+2

vel_norm = (VELOCITY_kp1_new(i,j) + VELOCITY_kp1(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1_new(i,j) - VELOCITY_kp1(i,j))/vel_norm)**2.0D0
IF (RMS > tol) THEN

CONVERGENCE = .FALSE.
EXIT S1
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END IF
END DO

END DO S1

IF (CONVERGENCE) THEN
S2: DO j = NY1_cone,NY1-1

NX1_cone_rms = x_cone(j-NY1_cone+1) + 2
DO i = NX1_cone_rms,NX2_cone+2
vel_norm = (VELOCITY_kp1_new(i,j) + VELOCITY_kp1(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1_new(i,j) - VELOCITY_kp1(i,j))/vel_norm)**2.0D0
IF (RMS > tol) THEN

CONVERGENCE = .FALSE.
EXIT S2

END IF
END DO

END DO S2
END IF

IF (CONVERGENCE) THEN
S3: DO j = 2,NY1-1

DO i = NX2_cone+3,NX2-1
vel_norm = (VELOCITY_kp1_new(i,j) + VELOCITY_kp1(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1_new(i,j) - VELOCITY_kp1(i,j))/vel_norm)**2.0D0
IF (RMS > tol) THEN

CONVERGENCE = .FALSE.
EXIT S3

END IF
END DO

END DO S3
END IF

IF (CONVERGENCE) THEN
S4: DO j = NY1,NY2

DO i = NX1+1,NX2-1
vel_norm = (VELOCITY_kp1_new(i,j) + VELOCITY_kp1(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1_new(i,j) - VELOCITY_kp1(i,j))/vel_norm)**2.0D0
IF (RMS > tol) THEN

CONVERGENCE = .FALSE.
EXIT S4

END IF
END DO

END DO S4
END IF

! Updating ..._kp1
VELOCITY_kp1 = VELOCITY_kp1_new

! CALL WRITE2FILE_k(VELOCITY_k,NX2)

IF (count == count_max) THEN
CONVERGENCE = .TRUE.
FALSE_CONVERGENCE = .TRUE.
PRINT *, " WARNING: FALSE CONVERGENCE! TIME STEP k = ", k
PRINT *, " Maximum amount of successive substitutions is = ", count_max
PRINT *, " ----------------------------------------------------------- "
PRINT *, " RECOMMENDATION: Kill this application and reduce the time "
PRINT *, " step by an order of magnitude: dt -> dt/10 "
PRINT *, " ----------------------------------------------------------- "

END IF

END DO CONVERGE
! ================================================================================= !
! ======================= END OF SUCCESSIVE SUBSTITUTION ========================== !
! ================================================================================= !
! Checking for time independence:
count_rms = 0
RMS = 0.0D0
vel_norm = 1.0D0

DO j = 2,NY1_cone-1
DO i = 2,NX2_cone+2

count_rms = count_rms + 1
vel_norm = (VELOCITY_kp1(i,j) + VELOCITY_k(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1(i,j) - VELOCITY_k(i,j))/vel_norm)**2.0D0 + RMS
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END DO
END DO

DO j = NY1_cone,NY1-1
NX1_cone_rms = x_cone(j-NY1_cone+1) + 2
DO i = NX1_cone_rms,NX2_cone+2
count_rms = count_rms + 1
vel_norm = (VELOCITY_kp1(i,j) + VELOCITY_k(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1(i,j) - VELOCITY_k(i,j))/vel_norm)**2.0D0 + RMS

END DO
END DO

DO j = 2,NY1-1
DO i = NX2_cone+3,NX2-1
count_rms = count_rms + 1
vel_norm = (VELOCITY_kp1(i,j) + VELOCITY_k(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1(i,j) - VELOCITY_k(i,j))/vel_norm)**2.0D0 + RMS

END DO
END DO

DO j = NY1,NY2
DO i = NX1+1,NX2-1
count_rms = count_rms + 1
vel_norm = (VELOCITY_kp1(i,j) + VELOCITY_k(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1(i,j) - VELOCITY_k(i,j))/vel_norm)**2.0D0 + RMS

END DO
END DO

RMS = DSQRT(RMS/count_rms)

IF (ABS(MOD((k+1),k_OUTPUT_rms)).LT.small_zero) THEN
PRINT *, " RMS =", RMS
CALL WRITE2FILE_rms(k+1,RMS)

END IF

IF (RMS.LT.tol_RMS_active) THEN
TIME_INDEPENDENCE = .TRUE.

ELSE
TIME_INDEPENDENCE = .FALSE.

END IF

IF (k == MAX_NUMBER_OF_ITERATIONS) THEN
TIME_INDEPENDENCE = .TRUE.
WARNING_SIGN = .TRUE.

END IF

VELOCITY_k = VELOCITY_kp1_new

k = k + 1

END DO ZERO_TIME_LOOP
! ================================================================================= !
! ============================ End of the time loop =============================== !
! ================================================================================= !
END DO CONTINUATION
! ================================================================================= !
! ============================= End of CONTINUATION =============================== !
! ================================================================================= !
IF (WARNING_SIGN) THEN

PRINT *, " --------------------------------------------------------- "
PRINT *, " WARNING: k = MAX_NUMBER_OF_ITERATIONS; See log.dat "
PRINT *, " RECOMMENDATIONS: "
PRINT *, " I) Rerun this application with reduced time step. "
PRINT *, " Try order of magnitude less: dt -> dt/10. "
PRINT *, " II) Increase ZERO_TIME in the file param.f90. "
PRINT *, " --------------------------------------------------------- "

END IF

IF (FALSE_CONVERGENCE) THEN
PRINT *, " --------------------------------------------------------- "
PRINT *, " WARNING: FALSE CONVERGENCE WAS ACHIEVED. Reduce the time "
PRINT *, " step by order of magnitude: dt -> dt/10 and then rerun "
PRINT *, " the application. "
PRINT *, " --------------------------------------------------------- "
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END IF

PRINT *, " PSEUDO-TRANSIENT CALCULATION FINISHED! "
PRINT *, " -------------------------------------- "
! --------------------------------------------------------------------------------- !
IF (.NOT.CALCULATE_TIME_DEPENDENT_PROBL) THEN

PRINT *, " Number of grid points (not including Dirichlet "
PRINT *, " boundary points) = ", count_rms
PRINT *, " "
PRINT *, " NO TIME DEPENDENT CALCULATION IS DONE SINCE "
PRINT *, " CALCULATE_TIME_DEPENDENT_PROBL = .FALSE. "
PRINT *, " "
PRINT *, " WRITING INFORMATION TO FILE, STAND BY... "
CALL WRITE2FILE_k(VELOCITY_k,NX2)
CALL WRITE2FILE_kp1(VELOCITY_kp1_new,NX1,NY1,NX2,NY2,dr,dz)
CALL WRITE2FILE_torque_ZERO(VELOCITY_k,NX1,NX2,NY1,NY2,0,dt,Lambda,dr,dz,H3,omega)
PRINT *, " ...DONE! "

! CLEARING SOME MAJOR VARIABLES FROM THE RANDOM ACCESS MEMORY:
DEALLOCATE(x_cone,y_cone,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 6 in main and execution terminated! "

END IF

DEALLOCATE(MX1,MX2,MY1,MY2,VELOCITY_k,VELOCITY_kp12,VELOCITY_kp12_new,&
VELOCITY_kp1,VELOCITY_kp1_new,stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 7 in main! "

END IF

DEALLOCATE(K1,K2,L1,L2,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 8 in main! "

END IF

DEALLOCATE(v1r_ijp1k,v1r_ijk,v1r_ijm1k,v1r_ijp1kp12,v1r_ijkp12,&
v1r_ijm1kp12,v1r_c_ijp1k,v1r_c_ijk,v1r_c_ijm1k,&
v1r_c_ijp1kp12,v1r_c_ijkp12,v1r_c_ijm1kp12,&
v2r_ijp1k,v2r_ijk,v2r_ijm1k,v2r_ijp1kp12,&
v2r_ijkp12,v2r_ijm1kp12,stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 9 in main! "

END IF

DEALLOCATE(v1r_ijkp12_new,v2r_ijkp12_new,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 10 in main! "

END IF

DEALLOCATE(v1z_ip1jkp12,v1z_ijkp12,v1z_im1jkp12,v1z_ip1jkp1,v1z_ijkp1,&
v1z_im1jkp1,v1z_c_ip1jkp12,v1z_c_ijkp12,v1z_c_im1jkp12,&
v1z_c_ip1jkp1,v1z_c_ijkp1,v1z_c_im1jkp1,&
v2z_ip1jkp12,v2z_ijkp12,v2z_im1jkp12,&
v2z_ip1jkp1,v2z_ijkp1,v2z_im1jkp1,stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 11 in main! "

END IF

DEALLOCATE(v1z_ijkp1_new,v2z_ijkp1_new,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 12 in main! "

END IF

PRINT *, " EXECUTION FINISHED! "
STOP

END IF
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! ================================================================================= !
! ================================================================================= !
! ================================================================================= !
dt = dt_Plastic
tol = tol_Plastic

! "Lambda = -1" means that time dependent calculations (basically thixotropic)
! have begun with time dependent shear viscosity ETA = ETA(SR,t,...).
Lambda = - 1.0D0

! Note that at the moment, then VELOCITY_k = VELOCITY_kp1_new.
PRINT *, " "
PRINT *, " WRITING ’t=0’ INFORMATION TO FILE, STAND BY... "
CALL WRITE2FILE_k(VELOCITY_k,NX2)
CALL WRITE2FILE_kp1(VELOCITY_kp1_new,NX1,NY1,NX2,NY2,dr,dz)
CALL WRITE2FILE_torque_ZERO(VELOCITY_k,NX1,NX2,NY1,NY2,0,dt,Lambda,dr,dz,H3,omega)
PRINT *, " ...DONE! "

PRINT *, " NOW FINALLY, BEGINNING WITH THE TIME DEPENDENT PROBLEM... "

! ################################################################################# !
! In Section 7.11.2 is a detailed description of the algorithm, which is used in !
! the following. !
! --------------------------------------------------------------------------------- !
! In this software, ’k’ corresponds to t=(k+1/2)*dt and t=(k+1)*dt, and hence ’k = 0’
! means t = (1/2)*dt and t = 1*dt.
! This is due to the calling routine of the angular velocity:
! ’CALL ANGULAR_VELOCITY(DBLE(k)+1.0D0/2.0D0,dt,omega)’ and
! ’CALL ANGULAR_VELOCITY(DBLE(k)+1.0D0,dt,omega)’.

! The fading memory modules are zero at k=0 (see Section 9.3.1):
FMSR = 0.0D0
FMCR = 0.0D0

N_dt = (NUMBER_OF_TIME_ITERATIONS - 1)
! ================================================================================= !
! ======================= Begin of the time loop (TIME) =========================== !
! ================================================================================= !
TIME_LOOP: DO k=0,N_dt

CONVERGENCE = .FALSE.

IF (ABS(MOD((k+1),k_OUTPUT_rms)).LT.small_zero) THEN
PRINT *,"______________________________________________________________________"
PRINT *,"______________________________________________________________________"
PRINT *," "
PRINT *," Calculating now for the time step: k+1/2 and k+1 = ",k+1," -> -> "
PRINT *," time = (k+1/2)dt = ",(DBLE(k)+1.0D0/2.0D0)*dt," SEC"
PRINT *," time = (k+1)dt = ",(DBLE(k)+1.0D0)*dt," SEC"
PRINT *,"----------------------------------------------------------------------"

END IF
! --------------------------------------------------------------------------------- !
! A guess for the time step k+1/2
VELOCITY_kp12 = VELOCITY_k

! Updating boundary condition at k+1/2:
! CALL ANGULAR_VELOCITY(k+1/2,dt,omega)
CALL ANGULAR_VELOCITY(DBLE(k)+1.0D0/2.0D0,dt,omega)

! Dirichlet boundary condition:
DO i = 1,NX2

VELOCITY_kp12(i,1) = omega*DBLE(i-1)*dr
END DO
VELOCITY_kp12(1:NX1,NY1) = 0.0D0
VELOCITY_kp12(1,1:NY1) = 0.0D0
VELOCITY_kp12(NX1,NY1:NY2) = 0.0D0
VELOCITY_kp12(NX2,:) = R_o*omega

! Neumann boundary condition (this is actually redundant since the new
! information of "omega" cannot reach "VELOCITY_kp12(NX1+1:NX2-1,NY2-1)"
! or "VELOCITY_kp12(NX1+1:NX2-1,NY2-2)":
VELOCITY_kp12(NX1+1:NX2-1,NY2) = (4.0D0 * &

VELOCITY_kp12(NX1+1:NX2-1,NY2-1) - &
VELOCITY_kp12(NX1+1:NX2-1,NY2-2))/3.0D0
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! Also updating boundary condition for "..._new":
VELOCITY_kp12_new = VELOCITY_kp12
! --------------------------------------------------------------------------------- !
! A guess for the time step k+1
VELOCITY_kp1 = VELOCITY_k

! Updating boundary condition at k+1:
! CALL ANGULAR_VELOCITY(k+1,dt,omega)
CALL ANGULAR_VELOCITY(DBLE(k)+1.0D0,dt,omega)

! Dirichlet boundary condition:
DO i = 1,NX2

VELOCITY_kp1(i,1) = omega*DBLE(i-1)*dr
END DO
VELOCITY_kp1(1:NX1,NY1) = 0.0D0
VELOCITY_kp1(1,1:NY1) = 0.0D0
VELOCITY_kp1(NX1,NY1:NY2) = 0.0D0
VELOCITY_kp1(NX2,:) = R_o*omega

! Neumann boundary condition (this is actually redundant since the new
! information of "omega" cannot reach "VELOCITY_kp12(NX1+1:NX2-1,NY2-1)"
! or "VELOCITY_kp12(NX1+1:NX2-1,NY2-2)":
VELOCITY_kp1(NX1+1:NX2-1,NY2) = (4.0D0 * &

VELOCITY_kp1(NX1+1:NX2-1,NY2-1) - &
VELOCITY_kp1(NX1+1:NX2-1,NY2-2))/3.0D0

! Also updating boundary condition for "..._new":
VELOCITY_kp1_new = VELOCITY_kp1
! --------------------------------------------------------------------------------- !
count = 0
! ================================================================================= !
! =================== BEGIN OF SUCCESSIVE SUBSTITUTION (TIME) ===================== !
! ================================================================================= !
! The iteration loop here is because of the non-linearity of the governing
! Equations 7.22 and 7.23. To come around this problem, the successive substitution
! approach is used (see Section 7.8).
TIME_CONVERGE: DO WHILE (.NOT.CONVERGENCE)

! If convergence is a problem, then this might help:
! VELOCITY_kp12 = (VELOCITY_k + VELOCITY_kp1_new)/2
count = count + 1
12 FORMAT(4X,"Successive substitution (time) number = ",1(I3,1X))

IF (ABS(MOD((k+1),k_OUTPUT_rms)).LT.small_zero) THEN
PRINT 12, count

END IF

!======================== BEGIN OF X-ITERATION (TIME) =========================
! Iteration is made along r-direction (i.e. along the i-direction as
! in A(i,j)). It starts at the bottom of the viscometer i=(2:NX2-1) at
! j = 2 and then move upward with increasing j (see Figures 8.1 and 8.2).

DO j = 2,NY1_cone-1
v1r_ijp1k = VELOCITY_k(:,j+1)
v1r_ijk = VELOCITY_k(:,j)
v1r_ijm1k = VELOCITY_k(:,j-1)
v1r_ijp1kp12 = VELOCITY_kp12(:,j+1)
v1r_ijkp12 = VELOCITY_kp12(:,j)
v1r_ijm1kp12 = VELOCITY_kp12(:,j-1)

FMSR1r_ijp1 = FMSR(:,j+1)
FMSR1r_ij = FMSR(:,j)
FMSR1r_ijm1 = FMSR(:,j-1)

FMCR1r_ijp1 = FMCR(:,j+1)
FMCR1r_ij = FMCR(:,j)
FMCR1r_ijm1 = FMCR(:,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,0.0D0,dz,NX2,v1r_ijp1k,v1r_ijk,&
v1r_ijm1k,v1r_ijp1kp12,v1r_ijkp12,v1r_ijm1kp12,&
FMSR1r_ijp1,FMSR1r_ij,FMSR1r_ijm1,&
FMCR1r_ijp1,FMCR1r_ij,FMCR1r_ijm1,MX1,K1)
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CALL MATRIX_SOLVER(MX1,K1,v1r_ijkp12_new,NX2-2)
VELOCITY_kp12_new(2:NX2-1,j) = v1r_ijkp12_new

END DO

! -------------------------- BEGIN OF X-CONE ------------------------
DO j = NY1_cone,NY1-1

NX_cone = x_cone(j + 1 - NY1_cone)
r_i_cone = NX_cone*dr
NX2mNX_cone = NX2 - NX_cone
v1r_c_ijp1k(1:NX2mNX_cone) = VELOCITY_k(NX_cone+1:NX2,j+1)
v1r_c_ijk(1:NX2mNX_cone) = VELOCITY_k(NX_cone+1:NX2,j)
v1r_c_ijm1k(1:NX2mNX_cone) = VELOCITY_k(NX_cone+1:NX2,j-1)
v1r_c_ijp1kp12(1:NX2mNX_cone) = VELOCITY_kp12(NX_cone+1:NX2,j+1)
v1r_c_ijkp12(1:NX2mNX_cone) = VELOCITY_kp12(NX_cone+1:NX2,j)
v1r_c_ijm1kp12(1:NX2mNX_cone) = VELOCITY_kp12(NX_cone+1:NX2,j-1)

FMSR1r_c_ijp1(1:NX2mNX_cone) = FMSR(NX_cone+1:NX2,j+1)
FMSR1r_c_ij(1:NX2mNX_cone) = FMSR(NX_cone+1:NX2,j)
FMSR1r_c_ijm1(1:NX2mNX_cone) = FMSR(NX_cone+1:NX2,j-1)

FMCR1r_c_ijp1(1:NX2mNX_cone) = FMCR(NX_cone+1:NX2,j+1)
FMCR1r_c_ij(1:NX2mNX_cone) = FMCR(NX_cone+1:NX2,j)
FMCR1r_c_ijm1(1:NX2mNX_cone) = FMCR(NX_cone+1:NX2,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,r_i_cone,dz,NX2mNX_cone,v1r_c_ijp1k,v1r_c_ijk,&
v1r_c_ijm1k,v1r_c_ijp1kp12,v1r_c_ijkp12,v1r_c_ijm1kp12,&
FMSR1r_c_ijp1,FMSR1r_c_ij,FMSR1r_c_ijm1,&
FMCR1r_c_ijp1,FMCR1r_c_ij,FMCR1r_c_ijm1,MX1,K1)

CALL MATRIX_SOLVER(MX1,K1,v1r_ijkp12_new,NX2mNX_cone-2)
! CALL WRITE2FILE_debug(MX1,K1,v1r_ijkp12_new,NX2mNX_cone-2)
! STOP
VELOCITY_kp12_new(NX_cone+2:NX2-1,j) = v1r_ijkp12_new(1:NX2mNX_cone-2)

END DO
! --------------------------- END OF X-CONE -------------------------

DO j = NY1,NY2-1
v2r_ijp1k = VELOCITY_k(NX1:NX2,j+1)
v2r_ijk = VELOCITY_k(NX1:NX2,j)
v2r_ijm1k = VELOCITY_k(NX1:NX2,j-1)
v2r_ijp1kp12 = VELOCITY_kp12(NX1:NX2,j+1)
v2r_ijkp12 = VELOCITY_kp12(NX1:NX2,j)
v2r_ijm1kp12 = VELOCITY_kp12(NX1:NX2,j-1)

FMSR2r_ijp1 = FMSR(NX1:NX2,j+1)
FMSR2r_ij = FMSR(NX1:NX2,j)
FMSR2r_ijm1 = FMSR(NX1:NX2,j-1)

FMCR2r_ijp1 = FMCR(NX1:NX2,j+1)
FMCR2r_ij = FMCR(NX1:NX2,j)
FMCR2r_ijm1 = FMCR(NX1:NX2,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,R_i,dz,NX,v2r_ijp1k,v2r_ijk,&
v2r_ijm1k,v2r_ijp1kp12,v2r_ijkp12,v2r_ijm1kp12,&
FMSR2r_ijp1,FMSR2r_ij,FMSR2r_ijm1,&
FMCR2r_ijp1,FMCR2r_ij,FMCR2r_ijm1,MX2,K2)

CALL MATRIX_SOLVER(MX2,K2,v2r_ijkp12_new,NX-2)
VELOCITY_kp12_new(NX1+1:NX2-1,j) = v2r_ijkp12_new

END DO

j = NY2
v2r_ijp1k = VELOCITY_k(NX1:NX2,j-1) ! => v(i,j+1) = v(i,j-1)
v2r_ijk = VELOCITY_k(NX1:NX2,j)
v2r_ijm1k = VELOCITY_k(NX1:NX2,j-1)
v2r_ijp1kp12 = VELOCITY_kp12(NX1:NX2,j-1) ! => v(i,j+1) = v(i,j-1)
v2r_ijkp12 = VELOCITY_kp12(NX1:NX2,j)
v2r_ijm1kp12 = VELOCITY_kp12(NX1:NX2,j-1)

FMSR2r_ijp1 = FMSR(NX1:NX2,j-1) ! => v(i,j+1) = v(i,j-1)
FMSR2r_ij = FMSR(NX1:NX2,j)
FMSR2r_ijm1 = FMSR(NX1:NX2,j-1)

FMCR2r_ijp1 = FMCR(NX1:NX2,j-1) ! => v(i,j+1) = v(i,j-1)

URN:NBN:no-3374



A.2. CONTEC VISCOMETERS 313

FMCR2r_ij = FMCR(NX1:NX2,j)
FMCR2r_ijm1 = FMCR(NX1:NX2,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,R_i,dz,NX,v2r_ijp1k,v2r_ijk,&
v2r_ijm1k,v2r_ijp1kp12,v2r_ijkp12,v2r_ijm1kp12,&
FMSR2r_ijp1,FMSR2r_ij,FMSR2r_ijm1,&
FMCR2r_ijp1,FMCR2r_ij,FMCR2r_ijm1,MX2,K2)

CALL MATRIX_SOLVER(MX2,K2,v2r_ijkp12_new,NX-2)
VELOCITY_kp12_new(NX1+1:NX2-1,j) = v2r_ijkp12_new

! --------- PAUSE FOR DEBUGGING ---------
! CALL WRITE2FILE_k(VELOCITY_kp12_new,NX2)
! WRITE(*,"(A)",ADVANCE="NO") " PRESS ’ENTER’ TO CONTINUE "
! PRINT *, " "
! READ (*,"(A)") IGNORED_INPUT
! PRINT *, " "

!========================= END OF X-ITERATION (TIME) =========================

! Updating ..._kp12:
VELOCITY_kp12 = VELOCITY_kp12_new

!======================== BEGIN OF Y-ITERATION (TIME) ========================
! Iteration is made along z-direction (i.e. along the j-direction as
! in A(i,j)). It starts at the right side of the viscometer j=(2:NY2-1) at
! i = NX2-1 and then moves to the left with decreasing i
! (see Figures 8.1 and 8.2).

DO i = NX2-1,NX1+1,-1
v2z_ip1jkp12 = VELOCITY_kp12(i+1,:)
v2z_ijkp12 = VELOCITY_kp12(i,:)
v2z_im1jkp12 = VELOCITY_kp12(i-1,:)
v2z_ip1jkp1 = VELOCITY_kp1(i+1,:)
v2z_ijkp1 = VELOCITY_kp1(i,:)
v2z_im1jkp1 = VELOCITY_kp1(i-1,:)

FMSR2z_ip1j = FMSR(i+1,:)
FMSR2z_ij = FMSR(i,:)
FMSR2z_im1j = FMSR(i-1,:)

FMCR2z_ip1j = FMCR(i+1,:)
FMCR2z_ij = FMCR(i,:)
FMCR2z_im1j = FMCR(i-1,:)

CALL MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY2,v2z_ip1jkp12,v2z_ijkp12,&
v2z_im1jkp12,v2z_ip1jkp1,v2z_ijkp1,v2z_im1jkp1,&
FMSR2z_ip1j,FMSR2z_ij,FMSR2z_im1j,&
FMCR2z_ip1j,FMCR2z_ij,FMCR2z_im1j,MY2,L2,.TRUE.)

CALL MATRIX_SOLVER(MY2,L2,v2z_ijkp1_new,NY2-2)
VELOCITY_kp1_new(i,2:NY2-1) = v2z_ijkp1_new

END DO

! v(i,j+1) = v(i,j-1) =>
VELOCITY_kp1_new(NX1+1:NX2-1,NY2) = VELOCITY_kp1_new(NX1+1:NX2-1,NY2-2)

DO i = NX1,NX2_cone+2,-1
v1z_ip1jkp12 = VELOCITY_kp12(i+1,1:NY1)
v1z_ijkp12 = VELOCITY_kp12(i,1:NY1)
v1z_im1jkp12 = VELOCITY_kp12(i-1,1:NY1)
v1z_ip1jkp1 = VELOCITY_kp1(i+1,1:NY1)
v1z_ijkp1 = VELOCITY_kp1(i,1:NY1)
v1z_im1jkp1 = VELOCITY_kp1(i-1,1:NY1)

FMSR1z_ip1j = FMSR(i+1,1:NY1)
FMSR1z_ij = FMSR(i,1:NY1)
FMSR1z_im1j = FMSR(i-1,1:NY1)

FMCR1z_ip1j = FMCR(i+1,1:NY1)
FMCR1z_ij = FMCR(i,1:NY1)
FMCR1z_im1j = FMCR(i-1,1:NY1)

CALL MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY1,v1z_ip1jkp12,v1z_ijkp12,&
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v1z_im1jkp12,v1z_ip1jkp1,v1z_ijkp1,v1z_im1jkp1,&
FMSR1z_ip1j,FMSR1z_ij,FMSR1z_im1j,&
FMCR1z_ip1j,FMCR1z_ij,FMCR1z_im1j,MY1,L1,.FALSE.)

CALL MATRIX_SOLVER(MY1,L1,v1z_ijkp1_new,NY1-2)
VELOCITY_kp1_new(i,2:NY1-1) = v1z_ijkp1_new

END DO

! -------------------------- BEGIN OF Y-CONE ------------------------
DO i = NX2_cone+1,NX1_cone+2,-1

NY2_cone = y_cone(i-NX1_cone)
v1z_c_ip1jkp12(1:NY2_cone) = VELOCITY_kp12(i+1,1:NY2_cone)
v1z_c_ijkp12(1:NY2_cone) = VELOCITY_kp12(i,1:NY2_cone)
v1z_c_im1jkp12(1:NY2_cone) = VELOCITY_kp12(i-1,1:NY2_cone)
v1z_c_ip1jkp1(1:NY2_cone) = VELOCITY_kp1(i+1,1:NY2_cone)
v1z_c_ijkp1(1:NY2_cone) = VELOCITY_kp1(i,1:NY2_cone)
v1z_c_im1jkp1(1:NY2_cone) = VELOCITY_kp1(i-1,1:NY2_cone)

FMSR1z_c_ip1j(1:NY2_cone) = FMSR(i+1,1:NY2_cone)
FMSR1z_c_ij(1:NY2_cone) = FMSR(i,1:NY2_cone)
FMSR1z_c_im1j(1:NY2_cone) = FMSR(i-1,1:NY2_cone)

FMCR1z_c_ip1j(1:NY2_cone) = FMCR(i+1,1:NY2_cone)
FMCR1z_c_ij(1:NY2_cone) = FMCR(i,1:NY2_cone)
FMCR1z_c_im1j(1:NY2_cone) = FMCR(i-1,1:NY2_cone)

CALL MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY2_cone,v1z_c_ip1jkp12,v1z_c_ijkp12,&
v1z_c_im1jkp12,v1z_c_ip1jkp1,v1z_c_ijkp1,v1z_c_im1jkp1,&
FMSR1z_c_ip1j,FMSR1z_c_ij,FMSR1z_c_im1j,&
FMCR1z_c_ip1j,FMCR1z_c_ij,FMCR1z_c_im1j,MY1,L1,.FALSE.)

CALL MATRIX_SOLVER(MY1,L1,v1z_ijkp1_new,NY2_cone-2)
VELOCITY_kp1_new(i,2:NY2_cone-1) = v1z_ijkp1_new(1:NY2_cone-2)

END DO

DO i = NX1_cone+1,2,-1
v1z_c_ip1jkp12(1:NY1_cone) = VELOCITY_kp12(i+1,1:NY1_cone)
v1z_c_ijkp12(1:NY1_cone) = VELOCITY_kp12(i,1:NY1_cone)
v1z_c_im1jkp12(1:NY1_cone) = VELOCITY_kp12(i-1,1:NY1_cone)
v1z_c_ip1jkp1(1:NY1_cone) = VELOCITY_kp1(i+1,1:NY1_cone)
v1z_c_ijkp1(1:NY1_cone) = VELOCITY_kp1(i,1:NY1_cone)
v1z_c_im1jkp1(1:NY1_cone) = VELOCITY_kp1(i-1,1:NY1_cone)

FMSR1z_c_ip1j(1:NY1_cone) = FMSR(i+1,1:NY1_cone)
FMSR1z_c_ij(1:NY1_cone) = FMSR(i,1:NY1_cone)
FMSR1z_c_im1j(1:NY1_cone) = FMSR(i-1,1:NY1_cone)

FMCR1z_c_ip1j(1:NY1_cone) = FMCR(i+1,1:NY1_cone)
FMCR1z_c_ij(1:NY1_cone) = FMCR(i,1:NY1_cone)
FMCR1z_c_im1j(1:NY1_cone) = FMCR(i-1,1:NY1_cone)

CALL MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY1_cone,v1z_c_ip1jkp12,v1z_c_ijkp12,&
v1z_c_im1jkp12,v1z_c_ip1jkp1,v1z_c_ijkp1,v1z_c_im1jkp1,&
FMSR1z_c_ip1j,FMSR1z_c_ij,FMSR1z_c_im1j,&
FMCR1z_c_ip1j,FMCR1z_c_ij,FMCR1z_c_im1j,MY1,L1,.FALSE.)

CALL MATRIX_SOLVER(MY1,L1,v1z_ijkp1_new,NY1_cone-2)
VELOCITY_kp1_new(i,2:NY1_cone-1) = v1z_ijkp1_new(1:NY1_cone-2)

END DO
! --------------------------- END OF Y-CONE -------------------------

!========================= END OF Y-ITERATION (TIME) =========================

CONVERGENCE = .TRUE.

! Settings for testing of convergence (or rather stability):
RMS = 0.0D0
vel_norm = 1.0D0

S5: DO j = 2,NY1_cone-1
DO i = 2,NX2_cone+2

vel_norm = (VELOCITY_kp1_new(i,j) + VELOCITY_kp1(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1_new(i,j) - VELOCITY_kp1(i,j))/vel_norm)**2.0D0
IF (RMS > tol) THEN
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CONVERGENCE = .FALSE.
EXIT S5

END IF
END DO

END DO S5

IF (CONVERGENCE) THEN
S6: DO j = NY1_cone,NY1-1

NX1_cone_rms = x_cone(j-NY1_cone+1) + 2
DO i = NX1_cone_rms,NX2_cone+2
vel_norm = (VELOCITY_kp1_new(i,j) + VELOCITY_kp1(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1_new(i,j) - VELOCITY_kp1(i,j))/vel_norm)**2.0D0
IF (RMS > tol) THEN

CONVERGENCE = .FALSE.
EXIT S6

END IF
END DO

END DO S6
END IF

IF (CONVERGENCE) THEN
S7: DO j = 2,NY1-1

DO i = NX2_cone+3,NX2-1
vel_norm = (VELOCITY_kp1_new(i,j) + VELOCITY_kp1(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1_new(i,j) - VELOCITY_kp1(i,j))/vel_norm)**2.0D0
IF (RMS > tol) THEN

CONVERGENCE = .FALSE.
EXIT S7

END IF
END DO

END DO S7
END IF

IF (CONVERGENCE) THEN
S8: DO j = NY1,NY2

DO i = NX1+1,NX2-1
vel_norm = (VELOCITY_kp1_new(i,j) + VELOCITY_kp1(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1_new(i,j) - VELOCITY_kp1(i,j))/vel_norm)**2.0D0
IF (RMS > tol) THEN

CONVERGENCE = .FALSE.
EXIT S8

END IF
END DO

END DO S8
END IF

! Updating ..._kp1:
VELOCITY_kp1 = VELOCITY_kp1_new

IF (count == count_max) THEN
CONVERGENCE = .TRUE.
FALSE_CONVERGENCE = .TRUE.
PRINT *, " WARNING: FALSE CONVERGENCE! TIME STEP k= ", k
PRINT *, " Maximum amount of successive substitutions is = ", count_max
PRINT *, " ----------------------------------------------------------- "
PRINT *, " RECOMMENDATION: Kill this application and reduce the time "
PRINT *, " step by an order of magnitude: dt -> dt/10 "
PRINT *, " ----------------------------------------------------------- "

END IF

END DO TIME_CONVERGE
! ================================================================================= !
! ==================== END OF SUCCESSIVE SUBSTITUTION (TIME) ====================== !
! ================================================================================= !
VELOCITY_k = VELOCITY_kp1_new
! ---------------------------------------------------------
CALL ROS_PROFILE(VELOCITY_k,NX1,NX2,NY1,NY2,DUMMY_1,dr,dz,SR,DUMMY_2)
time = (DBLE(k)+1.0D0)*dt
! ---------------------------------------------------------
DO i = 1,NX2

DO j = 1,NY1
SR_tmp = SR(i,j)
CALL FMSR_FMCR(time,SR_tmp,U_o,memory_alpha,memory_beta,H_tmp)
H(i,j) = H_tmp
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END DO
END DO
DO i = NX1,NX2

DO j = NY1+1,NY2
SR_tmp = SR(i,j)
CALL FMSR_FMCR(time,SR_tmp,U_o,memory_alpha,memory_beta,H_tmp)
H(i,j) = H_tmp

END DO
END DO
! ---------------------------------------------------------
ALPHA_I = DEXP(time/memory_alpha)
FMSR = ALPHA_I*SR*dt_Plastic + FMSR
! The above implicitly consists of two steps:
! 1) FMSR_kp1 = ALPHA_I*SR*dt_Plastic + FMSR_k (hence, time=(k+1)dt)
! 2) FMSR_k = FMSR_kp1 <- Updating for the next time step,
! just as the velocity was updated in the above =>
! VELOCITY_k = VELOCITY_kp1_new (k <- k+1).
! ---------------------------------------------------------
BETA_I = DEXP(time/memory_beta)
FMCR = BETA_I*H*dt_Plastic + FMCR
! The above implicitly consists of two steps:
! 1) FMCR_kp1 = BETA_I*H*dt_Plastic + FMCR_k (hence, time=(k+1)dt)
! 2) FMCR_k = FMCR_kp1 <- Updating for the next time step,
! just as the velocity was updated in the above =>
! VELOCITY_k = VELOCITY_kp1_new (k <- k+1).
! --------------------------------------------------------------------------------- !
! NOTE THAT THE VARIABLE "VELOCITY_k" NOW CONTAINS THE VELOCITY AT THE TIME
! STEP k+1, C.F. "VELOCITY_k = VELOCITY_kp1_new", JUST ABOVE!
! ---------------------------------------------------------
! Small output every 0.1 second (vel_corner.dat and vel_upper.dat):
! See Section 8.4.1 about vel_corner.dat and vel_upper.dat.
dt_OUTPUT_torque = 0.1D0
k_OUTPUT_torque = IDNINT(dt_OUTPUT_torque/dt)
IF (ABS(MOD((k+1),k_OUTPUT_torque)).LT.small_zero) THEN

PRINT *, " =================================================================== "
PRINT *, " WRITING THE COMPACT DATA AT TIME ", DBLE(k+1)*dt
PRINT *, " SECONDS TO FILE, STAND BY... "
CALL WRITE2FILE_torque(VELOCITY_k,FMSR,FMCR,NX1,NX2,NY1,NY2,k+1,dt,Lambda,dr,dz,H3,omega)
PRINT *, " ...DONE! "
PRINT *, " =================================================================== "

END IF

! Large output every 1 second (the whole domain of calculation -> vel_k.dat):
dt_OUTPUT = 1.0D0
k_OUTPUT = IDNINT(dt_OUTPUT/dt) ! = 100000
IF (ABS(MOD((k+1),k_OUTPUT)).LT.small_zero) THEN

PRINT *, " =================================================================== "
PRINT *, " WRITING LARGE DATA AT TIME ", DBLE(k+1)*dt
PRINT *, " SECONDS TO FILE, STAND BY... "
CALL WRITE2FILE_time(VELOCITY_k,NX2,k+1,dt)
PRINT *, " ...DONE! "
PRINT *, " =================================================================== "

END IF

END DO TIME_LOOP
! ================================================================================= !
! ======================== End of the time loop (TIME) ============================ !
! ================================================================================= !
IF (WARNING_SIGN) THEN

PRINT *, " --------------------------------------------------------- "
PRINT *, " WARNING: For the time independent case, then: "
PRINT *, " k = MAX_NUMBER_OF_ITERATIONS; See log.dat "
PRINT *, " --------------------------------------------------------- "

END IF

IF (FALSE_CONVERGENCE) THEN
PRINT *, " --------------------------------------------------------- "
PRINT *, " WARNING: For the time independent case, then: "
PRINT *, " FALSE CONVERGENCE WAS ACHIEVED. Reduce the time "
PRINT *, " step by order of magnitude: dt -> dt/10 and then rerun "
PRINT *, " the application. "
PRINT *, " --------------------------------------------------------- "

END IF
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! --------------------------------------------------------------------------------- !
! CLEARING SOME MAJOR VARIABLES FROM THE RANDOM ACCESS MEMORY:
DEALLOCATE(x_cone,y_cone,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 6 in main and execution terminated! "

END IF

DEALLOCATE(MX1,MX2,MY1,MY2,VELOCITY_k,VELOCITY_kp12,VELOCITY_kp12_new,&
VELOCITY_kp1,VELOCITY_kp1_new,stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 7 in main! "

END IF

DEALLOCATE(K1,K2,L1,L2,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 8 in main! "

END IF

DEALLOCATE(v1r_ijp1k,v1r_ijk,v1r_ijm1k,v1r_ijp1kp12,v1r_ijkp12,&
v1r_ijm1kp12,v1r_c_ijp1k,v1r_c_ijk,v1r_c_ijm1k,&
v1r_c_ijp1kp12,v1r_c_ijkp12,v1r_c_ijm1kp12,&
v2r_ijp1k,v2r_ijk,v2r_ijm1k,v2r_ijp1kp12,&
v2r_ijkp12,v2r_ijm1kp12,stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 9 in main! "

END IF

DEALLOCATE(v1r_ijkp12_new,v2r_ijkp12_new,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 10 in main! "

END IF

DEALLOCATE(v1z_ip1jkp12,v1z_ijkp12,v1z_im1jkp12,v1z_ip1jkp1,v1z_ijkp1,&
v1z_im1jkp1,v1z_c_ip1jkp12,v1z_c_ijkp12,v1z_c_im1jkp12,&
v1z_c_ip1jkp1,v1z_c_ijkp1,v1z_c_im1jkp1,&
v2z_ip1jkp12,v2z_ijkp12,v2z_im1jkp12,&
v2z_ip1jkp1,v2z_ijkp1,v2z_im1jkp1,stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 11 in main! "

END IF

DEALLOCATE(v1z_ijkp1_new,v2z_ijkp1_new,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 12 in main! "

END IF

PRINT *, " Number of grid points (not including Dirichlet "
PRINT *, " boundary points) = ", count_rms
PRINT *, " "
PRINT *, " EXECUTION FINISHED! "
! --------------------------------------------------------------------------------- !
END PROGRAM MAIN_ROUTINE
! --------------------------------------------------------------------------------- !
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A.2.6 shear.f90

! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: shear.f90 (MODULE) !
! This routine calculates the shear rate SR(i,j) from the computed velocity profile !
! VELOCITY_k(i,j). It is the program update.f90 that makes the request. !
! See Section 7.5 about the formulas for the shear rate (SR). Note that ROS and SR !
! means the same thing: ROS = rate of shear = SR = shear rate. !
! --------------------------------------------------------------------------------- !
MODULE RATE_OF_SHEAR

IMPLICIT NONE
PRIVATE
PUBLIC :: ROS

CONTAINS
! ================================================================================= !
SUBROUTINE ROS(rp1,r,rm1,dr,dz,V_ij,V_ip1j,V_im1j,V_ijp1,V_ijm1,V_ip1jp1,V_ip1jm1,&

V_im1jp1,V_im1jm1,SR_ij,SR_ip12j,SR_im12j,SR_ijp12,SR_ijm12)

DOUBLE PRECISION,INTENT(IN) :: rp1,r,rm1,dr,dz,V_ij,V_ip1j,V_im1j,V_ijp1,&
V_ijm1,V_ip1jp1,V_ip1jm1,V_im1jp1,V_im1jm1

DOUBLE PRECISION,INTENT(OUT) :: SR_ij,SR_ip12j,SR_im12j,&
SR_ijp12,SR_ijm12

DOUBLE PRECISION :: SR1_ij,SR2_ij,SR1_ip12j,SR2_ip12j,&
SR1_im12j,SR2_im12j,SR1_ijp12,&
SR2_ijp12,SR1_ijm12,SR2_ijm12

! --------------------------------------------------------------------------------- !
SR1_ij = (V_ip1j - V_im1j)/(2.0D0*dr) - V_ij/r
SR2_ij = (V_ijp1 - V_ijm1)/(2.0D0*dz)
SR_ij = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

SR1_ip12j = (V_ip1j - V_ij)/dr - (V_ip1j + V_ij)/(rp1 + r)
SR2_ip12j = (V_ip1jp1 + V_ijp1 - V_ip1jm1 - V_ijm1)/(4.0D0*dz)
SR_ip12j = DSQRT(SR1_ip12j**2.0D0 + SR2_ip12j**2.0D0)

SR1_im12j = (V_ij - V_im1j)/dr - (V_ij + V_im1j)/(r + rm1)
SR2_im12j = (V_ijp1 + V_im1jp1 - V_ijm1 - V_im1jm1)/(4.0D0*dz)
SR_im12j = DSQRT(SR1_im12j**2.0D0 + SR2_im12j**2.0D0)

SR1_ijp12 = (V_ip1jp1 + V_ip1j - V_im1jp1 - &
V_im1j)/(4.0D0*dr) - (V_ijp1 + V_ij)/(2.0D0*r)

SR2_ijp12 = (V_ijp1 - V_ij)/dz
SR_ijp12 = DSQRT(SR1_ijp12**2.0D0 + SR2_ijp12**2.0D0)

SR1_ijm12 = (V_ip1j + V_ip1jm1 - V_im1j - &
V_im1jm1)/(4.0D0*dr) - (V_ij + V_ijm1)/(2.0D0*r)

SR2_ijm12 = (V_ij - V_ijm1)/dz
SR_ijm12 = DSQRT(SR1_ijm12**2.0D0 + SR2_ijm12**2.0D0)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE ROS
! ================================================================================= !
END MODULE RATE_OF_SHEAR
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A.2.7 motion.f90

! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: motion.f90 (MODULE) !
! This file reads the basic information from param.f90 to produce the angular !
! velocity "omega". The information about the angular velocity is requested by the !
! routine main.f90. !
! --------------------------------------------------------------------------------- !
MODULE ROTATION

USE CONSTANTS_AND_PARAMETERS
IMPLICIT NONE
PRIVATE
PUBLIC :: ANGULAR_VELOCITY

CONTAINS
! ================================================================================= !
SUBROUTINE ANGULAR_VELOCITY(double_prec_k,dt,omega)

DOUBLE PRECISION,INTENT(IN) :: double_prec_k,dt
DOUBLE PRECISION,INTENT(OUT) :: omega

DOUBLE PRECISION :: rho,REAL_TIME,ZERO_TIME,tol_Newton,&
tol_Plastic,tol_RMS,dt_Plastic,dt_Newton,&
R_i,R_o,h1,H2,H3

INTEGER :: count_max
LOGICAL :: ConTec_v4,ConTec_BML_v3,&

CALCULATE_TIME_DEPENDENT_PROBL
! --------------------------------------------------------------------------------- !
CALL WHAT_TYPE_OF_VISCOMETER(ConTec_v4,ConTec_BML_v3)
! ---------------------------------------------------------
IF ((ConTec_v4).AND.(ConTec_BML_v3)) THEN

PRINT *, " ERROR: Both ConTec_v4 AND ConTec_BML_v3 = .TRUE. "
STOP

ELSE IF ((.NOT.ConTec_v4).AND.(.NOT.ConTec_BML_v3)) THEN
PRINT *, " ERROR: Both ConTec_v4 AND ConTec_BML_v3 = .FALSE. "
STOP

END IF
! ---------------------------------------------------------
IF (ConTec_v4) THEN

CALL ConTec_CONSTANTS(rho,REAL_TIME,CALCULATE_TIME_DEPENDENT_PROBL,&
ZERO_TIME,tol_Newton,tol_Plastic,tol_RMS,&
dt_Plastic,dt_Newton,count_max,R_i,R_o,h1,H2,H3)

END IF

IF (ConTec_BML_v3) THEN
CALL BML_CONSTANTS(rho,REAL_TIME,CALCULATE_TIME_DEPENDENT_PROBL,&

ZERO_TIME,tol_Newton,tol_Plastic,tol_RMS,&
dt_Plastic,dt_Newton,count_max,R_i,R_o,h1,H2,H3)

END IF
! ---------------------------------------------------------
IF (CALCULATE_TIME_DEPENDENT_PROBL) THEN

CALL STANDARD_OMEGA_UP_DOWN(double_prec_k,dt,omega)
ELSE
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CALL CONSTANT_OMEGA(omega)
END IF
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE ANGULAR_VELOCITY
! ================================================================================= !
SUBROUTINE CONSTANT_OMEGA(omega)

DOUBLE PRECISION,INTENT(OUT) :: omega

DOUBLE PRECISION :: PI,ZERO_TIME,REAL_TIME,&
TIME_INTERVAL,f,f_min,f_max,PERC

INTEGER :: NUMBER_OF_POINTS
LOGICAL :: ConTec_v4,ConTec_BML_v3,SMOOTH
! --------------------------------------------------------------------------------- !
PI = DACOS(-1.0D0)
! ---------------------------------------------------------
CALL WHAT_TYPE_OF_VISCOMETER(ConTec_v4,ConTec_BML_v3)
! ---------------------------------------------------------
IF ((ConTec_v4).AND.(ConTec_BML_v3)) THEN

PRINT *, " ERROR: Both ConTec_v4 AND ConTec_BML_v3 = .TRUE. "
STOP

ELSE IF ((.NOT.ConTec_v4).AND.(.NOT.ConTec_BML_v3)) THEN
PRINT *, " ERROR: Both ConTec_v4 AND ConTec_BML_v3 = .FALSE. "
STOP

END IF
! ---------------------------------------------------------
IF (ConTec_v4) THEN
CALL VELOCITY_AND_TIME_ConTec(ZERO_TIME,REAL_TIME,&

TIME_INTERVAL,f,f_min,f_max,PERC,NUMBER_OF_POINTS,SMOOTH)
END IF

IF (ConTec_BML_v3) THEN
CALL VELOCITY_AND_TIME_BML(ZERO_TIME,REAL_TIME,&

TIME_INTERVAL,f,f_min,f_max,PERC,NUMBER_OF_POINTS,SMOOTH)
END IF
! ---------------------------------------------------------
omega = 2.0D0*PI*f
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE CONSTANT_OMEGA
! ================================================================================= !
SUBROUTINE STANDARD_OMEGA_UP_DOWN(double_prec_k,dt,omega)

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: omega_POINT,TIME_POINT,&
omega_POINT_correction

INTEGER,ALLOCATABLE,DIMENSION(:) :: OMEGA_STEP_VECTOR

DOUBLE PRECISION,INTENT(IN) :: double_prec_k,dt
DOUBLE PRECISION,INTENT(OUT) :: omega

DOUBLE PRECISION :: PI,f,f_min,f_max,OMEGA_MIN,OMEGA_MAX,&
TIME_INTERVAL,REAL_TIME,OMEGA_STEP,&
ZERO_TIME,PERC,EPS,time,SLOPE,step,&
value,value_1,value_2,value_3,value_4,&
f_start,f_end,OMEGA_start,OMEGA_end,&
PERC_static_begin,PERC_static_end

INTEGER :: NUMBER_OF_POINTS,NT_LOCK,problem,I,J,L

LOGICAL :: ConTec_v4,ConTec_BML_v3,SMOOTH
! --------------------------------------------------------------------------------- !
CALL WHAT_TYPE_OF_VISCOMETER(ConTec_v4,ConTec_BML_v3)
! ---------------------------------------------------------
IF ((ConTec_v4).AND.(ConTec_BML_v3)) THEN

PRINT *, " ERROR: Both ConTec_v4 AND ConTec_BML_v3 = .TRUE. "
STOP

ELSE IF ((.NOT.ConTec_v4).AND.(.NOT.ConTec_BML_v3)) THEN
PRINT *, " ERROR: Both ConTec_v4 AND ConTec_BML_v3 = .FALSE. "
STOP

END IF
! ---------------------------------------------------------
IF (ConTec_v4) THEN
CALL VELOCITY_AND_TIME_ConTec(ZERO_TIME,REAL_TIME,&
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TIME_INTERVAL,f,f_min,f_max,PERC,NUMBER_OF_POINTS,SMOOTH)
END IF

IF (ConTec_BML_v3) THEN
CALL VELOCITY_AND_TIME_BML(ZERO_TIME,REAL_TIME,&

TIME_INTERVAL,f,f_min,f_max,PERC,NUMBER_OF_POINTS,SMOOTH)
END IF
! --------------------------------------------------------------------------------- !
time = double_prec_k*dt
PI = DACOS(-1.0D0)
EPS = 1.0D-9
! ---------------------------------------------------------
! Parameters that should be ported into param.f90 in future:
f_start = 0.02D0 ! rps
f_end = (7.8D0/11.7D0)*f_max ! rps

PERC_static_begin = 0.12D0
PERC_static_end = 0.21D0
! --------------------------------------------------------------------------------- !
ALLOCATE(omega_POINT_correction(NUMBER_OF_POINTS+1),stat=problem)
IF (problem/=0) THEN

PRINT *, " PROGRAM COULD NOT ALLOCATE SPACE FOR THE VECTOR "
PRINT *, " omega_POINT_correction! "
PRINT *, " EXECUTION TERMINATED! "
STOP

END IF

! Here, omega_POINT_correction is in rps.
omega_POINT_correction = (/ -0.00061363240021D0,0.00012914263445D0,&

0.00138781741912D0,0.00249033048894D0,&
0.00323310552361D0,0.00266225011894D0,&
0.00138781741912D0,0.00030113269445D0,&

-0.00061363240021D0,0.00170215702079D0/)

! omega_POINT_correction = 0.0D0
! ---------------------------------------------------------
IF (PERC_static_begin.LT.EPS) THEN

f_start = f_min
END IF

! Converting omega_POINT_correction from rps to rad/s:
omega_POINT_correction = 2.0D0*PI*omega_POINT_correction

OMEGA_start = 2.0D0*PI*f_start ! rad/s
OMEGA_end = 2.0D0*PI*f_end ! rad/s
OMEGA_MIN = 2.0D0*PI*f_min ! rad/s
OMEGA_MAX = 2.0D0*PI*f_max ! rad/s
OMEGA_STEP = (OMEGA_MAX - OMEGA_MIN)/(DBLE(NUMBER_OF_POINTS - 1)/2.0D0)
! --------------------------------------------------------------------------------- !
ALLOCATE(OMEGA_STEP_VECTOR(NUMBER_OF_POINTS),stat=problem)
IF (problem/=0) THEN

PRINT *, " PROGRAM COULD NOT ALLOCATE SPACE FOR THE VECTOR "
PRINT *, " OMEGA_STEP_VECTOR! "
PRINT *, " EXECUTION TERMINATED! "
STOP

END IF

OMEGA_STEP_VECTOR = 0

DO I=0,((NUMBER_OF_POINTS-1)/2),1
OMEGA_STEP_VECTOR(I+1) = I

END DO

DO I=(((NUMBER_OF_POINTS-1)/2)-1),0,-1
OMEGA_STEP_VECTOR(NUMBER_OF_POINTS-I) = I

END DO
! ---------------------------------------------------------
ALLOCATE(omega_POINT(2*(NUMBER_OF_POINTS+1)+1),&

TIME_POINT(2*(NUMBER_OF_POINTS+1)+1),stat=problem)
IF (problem/=0) THEN

PRINT *, " PROGRAM COULD NOT ALLOCATE SPACE FOR THE VECTOR "
PRINT *, " omega_POINT OR TIME_POINT! "
PRINT *, " EXECUTION TERMINATED! "
STOP
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END IF

omega_POINT = 0.0D0
TIME_POINT = 0.0D0
! --------------------------------------------------------------------------------- !
DO J=3,2*NUMBER_OF_POINTS-1,2 ! J=1,19,2

TIME_POINT(J) = DBLE((J+1)/2-1)*TIME_INTERVAL
TIME_POINT(J+1) = TIME_POINT(J)+PERC*TIME_INTERVAL
IF (J <= (NUMBER_OF_POINTS+1)) THEN
omega_POINT(J) = (OMEGA_MIN+OMEGA_STEP*&

DBLE(OMEGA_STEP_VECTOR((J+1)/2)-1))
omega_POINT(J+1) = (OMEGA_MIN+OMEGA_STEP*&

DBLE(OMEGA_STEP_VECTOR((J+1)/2)))
ELSE
omega_POINT(J) = (2.0D0*OMEGA_STEP+OMEGA_MIN+OMEGA_STEP*&

DBLE(OMEGA_STEP_VECTOR((J+1)/2)-1))
omega_POINT(J+1) = (OMEGA_MIN+OMEGA_STEP*&

DBLE(OMEGA_STEP_VECTOR((J+1)/2)))
END IF

END DO

J = 1
TIME_POINT(J) = DBLE((J+1)/2-1)*TIME_INTERVAL
TIME_POINT(J+1) = TIME_POINT(J) + PERC_static_begin*TIME_INTERVAL
omega_POINT(J) = OMEGA_start
omega_POINT(J+1) = OMEGA_MIN

J = 2*NUMBER_OF_POINTS + 1
TIME_POINT(J) = DBLE((J+1)/2-1)*TIME_INTERVAL ! 45 sec
TIME_POINT(J+1) = TIME_POINT(J) + PERC_static_end*TIME_INTERVAL
omega_POINT(J) = OMEGA_MIN
omega_POINT(J+1) = OMEGA_end

J = 2*NUMBER_OF_POINTS + 3
TIME_POINT(J) = DBLE((J+1)/2-1)*TIME_INTERVAL
omega_POINT(J) = OMEGA_end

DO J=2,2*NUMBER_OF_POINTS+2,2
omega_POINT(J) = omega_POINT(J) + omega_POINT_correction(J/2)
omega_POINT(J+1) = omega_POINT(J+1) + omega_POINT_correction(J/2)

END DO

! Legacy from debugging period (might come in use again):
! DO J=1,2*NUMBER_OF_POINTS+2
! PRINT "( ’ ’, (F8.5,5X,F8.5) ) ",TIME_POINT(J),omega_POINT(J)
! END DO
! PRINT *, "time"
! READ *,time

DO L=1,2*NUMBER_OF_POINTS+2
IF ((TIME_POINT(L).LE.time).AND.(TIME_POINT(L+1).GE.time)) THEN
NT_LOCK=L

END IF
END DO

L = NT_LOCK
! --------------------------------------------------------------------------------- !
! The following is to be used if smoothing is to be applied in only "one directions".
! EXP() - function is used.
! ---------------------------------------------------------
! When PERC = 0.17D0
value_1 = 5.8D0
value_2 = 7.0D0
value_3 = 6.5D0
value_4 = 6.0D0
! ---------------------------------------------------------
SLOPE = (omega_POINT(L+1) - omega_POINT(L))/(TIME_POINT(L+1) - TIME_POINT(L) + EPS)

OMEGA_STEP = DABS(omega_POINT(L+1) - omega_POINT(L))

IF (SMOOTH) THEN
! ---------------------------------------------------------

IF (DABS(SLOPE).LT.1D-5) THEN
omega = omega_POINT(L)
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ELSE
IF (L.LT.2) THEN

step = (time - TIME_POINT(L))/(TIME_POINT(L+1) - TIME_POINT(L)) ! \in [0,1]
value = (1.0D0 - DEXP(-step*value_1)) ! \in [0,1]
omega = OMEGA_STEP*value + omega_POINT(L)

ELSE IF (L.LT.(NUMBER_OF_POINTS+1)) THEN !10
step = (time - TIME_POINT(L))/(TIME_POINT(L+1) - TIME_POINT(L)) ! \in [0,1]
value = (1.0D0 - DEXP(-step*value_2)) ! \in [0,1]
omega = OMEGA_STEP*value + omega_POINT(L)

ELSE IF (L.LT.(2*NUMBER_OF_POINTS)) THEN !18
step = (time - TIME_POINT(L))/(TIME_POINT(L+1) - TIME_POINT(L))
value = - (1.0D0 - DEXP(-step*value_3))
omega = OMEGA_STEP*value + omega_POINT(L)

ELSE
step = (time - TIME_POINT(L))/(TIME_POINT(L+1) - TIME_POINT(L))
value = (1.0D0 - DEXP(-step*value_4))
omega = OMEGA_STEP*value + omega_POINT(L)

END IF
END IF

! ---------------------------------------------------------
ELSE

omega = omega_POINT(L) + SLOPE*(time - TIME_POINT(L))
END IF
! --------------------------------------------------------------------------------- !
DEALLOCATE(OMEGA_STEP_VECTOR,stat=problem)
IF (problem/=0) THEN

PRINT *, " PROGRAM COULD NOT DEALLOCATE SPACE FOR THE VECTOR "
PRINT *, " OMEGA_STEP_VECTOR! "

END IF

DEALLOCATE(omega_POINT,omega_POINT_correction,TIME_POINT,stat=problem)
IF (problem/=0) THEN

PRINT *, " PROGRAM COULD NOT DEALLOCATE SPACE FOR THE VECTOR "
PRINT *, " omega_POINT OR TIME_POINT! "

END IF
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE STANDARD_OMEGA_UP_DOWN
! ================================================================================= !
END MODULE ROTATION
! --------------------------------------------------------------------------------- !
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A.2.8 update.f90

! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: update.f90 (MODULE) !
! This file sets up the system of algebraic Equations 7.28 to 7.31. This file also !
! contains the Thomas algorithm that is used in solving this system. !
! --------------------------------------------------------------------------------- !
MODULE MATRIX

USE RATE_OF_SHEAR
USE SHEAR_VISCOSITY
IMPLICIT NONE
PRIVATE
PUBLIC :: MATRIX_UPDATE_X,MATRIX_UPDATE_Y,MATRIX_SOLVER

CONTAINS
! ================================================================================= !
SUBROUTINE MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,R_i,dz,NX,vr_ijp1k,vr_ijk,&

vr_ijm1k,vr_ijp1kp12,vr_ijkp12,vr_ijm1kp12,&
FMSR_ijp1_t,FMSR_ij_t,FMSR_ijm1_t,&
FMCR_ijp1_t,FMCR_ij_t,FMCR_ijm1_t,M,K_M)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(OUT) :: M
DOUBLE PRECISION,DIMENSION(:),INTENT(OUT) :: K_M

DOUBLE PRECISION,DIMENSION(:),INTENT(IN) :: vr_ijp1k,vr_ijk,&
vr_ijm1k,vr_ijp1kp12,&
vr_ijkp12,vr_ijm1kp12,&
FMSR_ijp1_t,FMSR_ij_t,&
FMSR_ijm1_t,&
FMCR_ijp1_t,FMCR_ij_t,&
FMCR_ijm1_t

DOUBLE PRECISION,INTENT(IN) :: dt,dr,R_i,dz,Lambda,rho
INTEGER,INTENT(IN) :: k,NX

DOUBLE PRECISION :: BETA,THETA,CHI,rp1,r,rm1

DOUBLE PRECISION :: V_ijk,V_ip1jk,V_im1jk,V_ijp1k,V_ijm1k,&
V_ip1jp1k,V_ip1jm1k,V_im1jp1k,V_im1jm1k,&
V_ijkp12,V_ip1jkp12,V_im1jkp12,V_ijp1kp12,V_ijm1kp12,&
V_ip1jp1kp12,V_ip1jm1kp12,V_im1jp1kp12,V_im1jm1kp12

DOUBLE PRECISION :: SR_ijk,SR_ip12jk,SR_im12jk,&
SR_ijp12k,SR_ijm12k,SR_ijkp12,&
SR_ip12jkp12,SR_im12jkp12,SR_ijp12kp12,&
SR_ijm12kp12

DOUBLE PRECISION :: FMSR_im1j,FMSR_ij,FMSR_ip1j,FMSR_im1jp1,FMSR_ijp1,FMSR_ip1jp1,&
FMSR_im1jm1,FMSR_ijm1,FMSR_ip1jm1,FMSR_ip12jp12,FMSR_ip12jm12,&
FMSR_im12jp12,FMSR_im12jm12,FMSR_ip12j,FMSR_im12j,&
FMSR_ijp12,FMSR_ijm12
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DOUBLE PRECISION :: FMCR_im1j,FMCR_ij,FMCR_ip1j,FMCR_im1jp1,FMCR_ijp1,FMCR_ip1jp1,&
FMCR_im1jm1,FMCR_ijm1,FMCR_ip1jm1,FMCR_ip12jp12,FMCR_ip12jm12,&
FMCR_im12jp12,FMCR_im12jm12,FMCR_ip12j,FMCR_im12j,&
FMCR_ijp12,FMCR_ijm12

DOUBLE PRECISION :: ETA_ijk,ETA_ip12jk,ETA_im12jk,ETA_ijp12k,&
ETA_ijm12k,ETA_ijkp12,ETA_ip12jkp12,&
ETA_im12jkp12,ETA_ijp12kp12,ETA_ijm12kp12

DOUBLE PRECISION :: A_kp12,B_kp12,C_kp12,D_k,E_k,F_k,KK
DOUBLE PRECISION :: TIME_k,TIME_kp12
INTEGER :: i
! --------------------------------------------------------------------------------- !
BETA = dt/(2.0D0*dr*rho)
CHI = dt/(2.0D0*dz*rho)
TIME_k = DBLE(k)*dt
TIME_kp12 = (DBLE(k) + 0.5D0)*dt

M = 0.0D0
K_M = 0.0D0
! --------------------------------------------------------------------------------- !
! i = 1 => i = 2 in main.f90, i.e. near the center of the viscometer.
! i = NX-2 => j = NX2-1 in main.f90, i.e. near the outer cylinder.
DO i = 1,NX-2

rp1 = DBLE(i+1)*dr + R_i
r = DBLE(i)*dr + R_i
rm1 = DBLE(i-1)*dr + R_i
THETA = dt/(r*rho)

V_im1jk = vr_ijk(i)
V_ijk = vr_ijk(i+1)
V_ip1jk = vr_ijk(i+2)
V_im1jp1k = vr_ijp1k(i)
V_ijp1k = vr_ijp1k(i+1)
V_ip1jp1k = vr_ijp1k(i+2)
V_im1jm1k = vr_ijm1k(i)
V_ijm1k = vr_ijm1k(i+1)
V_ip1jm1k = vr_ijm1k(i+2)

V_im1jkp12 = vr_ijkp12(i)
V_ijkp12 = vr_ijkp12(i+1)
V_ip1jkp12 = vr_ijkp12(i+2)
V_im1jp1kp12 = vr_ijp1kp12(i)
V_ijp1kp12 = vr_ijp1kp12(i+1)
V_ip1jp1kp12 = vr_ijp1kp12(i+2)
V_im1jm1kp12 = vr_ijm1kp12(i)
V_ijm1kp12 = vr_ijm1kp12(i+1)
V_ip1jm1kp12 = vr_ijm1kp12(i+2)

FMSR_im1j = FMSR_ij_t(i)
FMSR_ij = FMSR_ij_t(i+1)
FMSR_ip1j = FMSR_ij_t(i+2)
FMSR_im1jp1 = FMSR_ijp1_t(i)
FMSR_ijp1 = FMSR_ijp1_t(i+1)
FMSR_ip1jp1 = FMSR_ijp1_t(i+2)
FMSR_im1jm1 = FMSR_ijm1_t(i)
FMSR_ijm1 = FMSR_ijm1_t(i+1)
FMSR_ip1jm1 = FMSR_ijm1_t(i+2)

FMSR_ip12jp12 = (FMSR_ij + FMSR_ip1j + FMSR_ip1jp1 + FMSR_ijp1)/4.0D0
FMSR_ip12jm12 = (FMSR_ij + FMSR_ip1j + FMSR_ip1jm1 + FMSR_ijm1)/4.0D0
FMSR_im12jp12 = (FMSR_ij + FMSR_im1j + FMSR_im1jp1 + FMSR_ijp1)/4.0D0
FMSR_im12jm12 = (FMSR_ij + FMSR_im1j + FMSR_im1jm1 + FMSR_ijm1)/4.0D0

FMSR_ip12j = (FMSR_ij + FMSR_ip1j + FMSR_ip12jp12 + FMSR_ip12jm12)/4.0D0
FMSR_im12j = (FMSR_im1j + FMSR_ij + FMSR_im12jp12 + FMSR_im12jm12)/4.0D0
FMSR_ijp12 = (FMSR_ij + FMSR_ijp1 + FMSR_ip12jp12 + FMSR_im12jp12)/4.0D0
FMSR_ijm12 = (FMSR_ijm1 + FMSR_ij + FMSR_ip12jm12 + FMSR_im12jm12)/4.0D0

FMCR_im1j = FMCR_ij_t(i)
FMCR_ij = FMCR_ij_t(i+1)
FMCR_ip1j = FMCR_ij_t(i+2)
FMCR_im1jp1 = FMCR_ijp1_t(i)
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FMCR_ijp1 = FMCR_ijp1_t(i+1)
FMCR_ip1jp1 = FMCR_ijp1_t(i+2)
FMCR_im1jm1 = FMCR_ijm1_t(i)
FMCR_ijm1 = FMCR_ijm1_t(i+1)
FMCR_ip1jm1 = FMCR_ijm1_t(i+2)

FMCR_ip12jp12 = (FMCR_ij + FMCR_ip1j + FMCR_ip1jp1 + FMCR_ijp1)/4.0D0
FMCR_ip12jm12 = (FMCR_ij + FMCR_ip1j + FMCR_ip1jm1 + FMCR_ijm1)/4.0D0
FMCR_im12jp12 = (FMCR_ij + FMCR_im1j + FMCR_im1jp1 + FMCR_ijp1)/4.0D0
FMCR_im12jm12 = (FMCR_ij + FMCR_im1j + FMCR_im1jm1 + FMCR_ijm1)/4.0D0

FMCR_ip12j = (FMCR_ij + FMCR_ip1j + FMCR_ip12jp12 + FMCR_ip12jm12)/4.0D0
FMCR_im12j = (FMCR_im1j + FMCR_ij + FMCR_im12jp12 + FMCR_im12jm12)/4.0D0
FMCR_ijp12 = (FMCR_ij + FMCR_ijp1 + FMCR_ip12jp12 + FMCR_im12jp12)/4.0D0
FMCR_ijm12 = (FMCR_ijm1 + FMCR_ij + FMCR_ip12jm12 + FMCR_im12jm12)/4.0D0

CALL ROS(rp1,r,rm1,dr,dz,V_ijk,V_ip1jk,V_im1jk,V_ijp1k,V_ijm1k,&
V_ip1jp1k,V_ip1jm1k,V_im1jp1k,V_im1jm1k,&
SR_ijk,SR_ip12jk,SR_im12jk,SR_ijp12k,SR_ijm12k)

CALL ROS(rp1,r,rm1,dr,dz,V_ijkp12,V_ip1jkp12,V_im1jkp12,V_ijp1kp12,V_ijm1kp12,&
V_ip1jp1kp12,V_ip1jm1kp12,V_im1jp1kp12,V_im1jm1kp12,&
SR_ijkp12,SR_ip12jkp12,SR_im12jkp12,SR_ijp12kp12,SR_ijm12kp12)

! FMSR is relative to k and since we are calculating ETA_k, the "ALPHA_I*SR*dt"
! term must be set equal to zero! -> dt = 0.0D0.
! We use dt = 0.0D0 because we are calculating ETA for the time step k. I.e.
! we want to have Gamma = ALPHA_II*FMSR and not Gamma = ALPHA_II*(FMSR + ALPHA_I*SR*dt),
! because FMSR is already fully updated relative to the time step k.
! [ The same consideration applies for FMCR, BETA_I, BETA_II and H(SR) ].
CALL ETA(0.0D0,TIME_k,Lambda,SR_ijk,SR_ip12jk,SR_im12jk,SR_ijp12k,SR_ijm12k,&

FMSR_ij,FMSR_ip12j,FMSR_im12j,FMSR_ijp12,FMSR_ijm12,&
FMCR_ij,FMCR_ip12j,FMCR_im12j,FMCR_ijp12,FMCR_ijm12,&
ETA_ijk,ETA_ip12jk,ETA_im12jk,ETA_ijp12k,ETA_ijm12k)

! FMSR is relative to k and since we are calculating ETA_kp12, the "ALPHA_I*SR*dt"
! term must be set equal to "ALPHA_I*SR*(dt/2)"! -> dt = dt/2.
! FMSR is relative to k and we are only proceeding from k to k+1/2, hence dt -> dt/2.
! [ The same consideration applies for FMCR, BETA_I, BETA_II and H(SR) ].
CALL ETA(dt/2.0D0,TIME_kp12,Lambda,SR_ijkp12,SR_ip12jkp12,SR_im12jkp12,&

SR_ijp12kp12,SR_ijm12kp12,FMSR_ij,FMSR_ip12j,FMSR_im12j,&
FMSR_ijp12,FMSR_ijm12,FMCR_ij,FMCR_ip12j,FMCR_im12j,&
FMCR_ijp12,FMCR_ijm12,ETA_ijkp12,ETA_ip12jkp12,&
ETA_im12jkp12,ETA_ijp12kp12,ETA_ijm12kp12)

! Equations 7.32 to 7.34:
A_kp12 = (BETA*ETA_ip12jkp12)*(1.0D0/dr - 1.0D0/(rp1+r)) + (THETA*ETA_ijkp12)/(2.0D0*dr)
B_kp12 = (BETA*ETA_ip12jkp12)*(1.0D0/dr + 1.0D0/(rp1+r)) + &

(BETA*ETA_im12jkp12)*(1.0D0/dr - 1.0D0/(r+rm1)) + (THETA*ETA_ijkp12)/r
C_kp12 = (BETA*ETA_im12jkp12)*(1.0D0/dr + 1.0D0/(r+rm1)) - (THETA*ETA_ijkp12)/(2.0D0*dr)

! Equations 7.35 to 7.37:
D_k = (CHI*ETA_ijp12k)/dz
E_k = (CHI*ETA_ijp12k)/dz + (CHI*ETA_ijm12k)/dz
F_k = (CHI*ETA_ijm12k)/dz

! Equation 7.29:
KK = - D_k*V_ijp1k - (1.0D0 - E_k)*V_ijk - F_k*V_ijm1k

! Equation 7.28:
IF (i == 1) THEN
M(i,i) = -(1.0D0 + B_kp12)
M(i,i+1) = A_kp12
K_M(i) = KK - C_kp12*V_im1jkp12

ELSE IF (i == NX-2) THEN
M(i,i-1) = C_kp12
M(i,i) = -(1.0D0 + B_kp12)
K_M(i) = KK - A_kp12*V_ip1jkp12

ELSE
M(i,i-1) = C_kp12
M(i,i) = -(1.0D0 + B_kp12)
M(i,i+1) = A_kp12
K_M(i) = KK

END IF
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END DO
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE MATRIX_UPDATE_X
! ================================================================================= !
SUBROUTINE MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY,vz_ip1jkp12,vz_ijkp12,&

vz_im1jkp12,vz_ip1jkp1,vz_ijkp1,vz_im1jkp1,&
FMSR_ip1j_t,FMSR_ij_t,FMSR_im1j_t,&
FMCR_ip1j_t,FMCR_ij_t,FMCR_im1j_t,M,L,Neumann)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(OUT) :: M
DOUBLE PRECISION,DIMENSION(:),INTENT(OUT) :: L

DOUBLE PRECISION,DIMENSION(:),INTENT(IN) :: vz_im1jkp12,vz_ijkp12,&
vz_ip1jkp12,vz_im1jkp1,&
vz_ijkp1,vz_ip1jkp1,&
FMSR_ip1j_t,FMSR_ij_t,&
FMSR_im1j_t,&
FMCR_ip1j_t,FMCR_ij_t,&
FMCR_im1j_t

DOUBLE PRECISION,INTENT(IN) :: dt,dr,dz,Lambda,rho
INTEGER,INTENT(IN) :: k,NY,i

LOGICAL,INTENT(IN) :: Neumann

DOUBLE PRECISION :: BETA,THETA,CHI,rp1,r,rm1

DOUBLE PRECISION :: V_ijkp12,V_ip1jkp12,V_im1jkp12,V_ijp1kp12,V_ijm1kp12,&
V_ip1jp1kp12,V_ip1jm1kp12,V_im1jp1kp12,V_im1jm1kp12,&
V_ijkp1,V_ip1jkp1,V_im1jkp1,V_ijp1kp1,V_ijm1kp1,&
V_ip1jp1kp1,V_ip1jm1kp1,V_im1jp1kp1,V_im1jm1kp1

DOUBLE PRECISION :: SR_ijkp12,SR_ip12jkp12,SR_im12jkp12,&
SR_ijp12kp12,SR_ijm12kp12,SR_ijkp1,&
SR_ip12jkp1,SR_im12jkp1,SR_ijp12kp1,&
SR_ijm12kp1

DOUBLE PRECISION :: FMSR_im1j,FMSR_ij,FMSR_ip1j,FMSR_im1jp1,FMSR_ijp1,FMSR_ip1jp1,&
FMSR_im1jm1,FMSR_ijm1,FMSR_ip1jm1,FMSR_ip12jp12,FMSR_ip12jm12,&
FMSR_im12jp12,FMSR_im12jm12,FMSR_ip12j,FMSR_im12j,&
FMSR_ijp12,FMSR_ijm12

DOUBLE PRECISION :: FMCR_im1j,FMCR_ij,FMCR_ip1j,FMCR_im1jp1,FMCR_ijp1,FMCR_ip1jp1,&
FMCR_im1jm1,FMCR_ijm1,FMCR_ip1jm1,FMCR_ip12jp12,FMCR_ip12jm12,&
FMCR_im12jp12,FMCR_im12jm12,FMCR_ip12j,FMCR_im12j,&
FMCR_ijp12,FMCR_ijm12

DOUBLE PRECISION :: ETA_ijkp12,ETA_ip12jkp12,ETA_im12jkp12,ETA_ijp12kp12,&
ETA_ijm12kp12,ETA_ijkp1,ETA_ip12jkp1,&
ETA_im12jkp1,ETA_ijp12kp1,ETA_ijm12kp1

DOUBLE PRECISION :: A_kp12,B_kp12,C_kp12,D_kp1,E_kp1,F_kp1,LL
DOUBLE PRECISION :: TIME_kp12,TIME_kp1
INTEGER :: j
! --------------------------------------------------------------------------------- !
BETA = dt/(2.0D0*dr*rho)
CHI = dt/(2.0D0*dz*rho)
TIME_kp12 = (DBLE(k) + 0.5D0)*dt
TIME_kp1 = (DBLE(k) + 1.0D0)*dt

M = 0.0D0
L = 0.0D0

rp1 = DBLE(i)*dr
r = DBLE(i-1)*dr
rm1 = DBLE(i-2)*dr
THETA = dt/(r*rho)
! --------------------------------------------------------------------------------- !
! j = 1 => j = 2 in main.f90, i.e. near the bottom plate of the viscometer.
! j = NY-2 => j = NY2-1 in main.f90, i.e. near the top of the viscometer.
DO j = 1,NY-2
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V_im1jkp12 = vz_im1jkp12(j+1)
V_ijkp12 = vz_ijkp12(j+1)
V_ip1jkp12 = vz_ip1jkp12(j+1)
V_im1jp1kp12 = vz_im1jkp12(j+2)
V_ijp1kp12 = vz_ijkp12(j+2)
V_ip1jp1kp12 = vz_ip1jkp12(j+2)
V_im1jm1kp12 = vz_im1jkp12(j)
V_ijm1kp12 = vz_ijkp12(j)
V_ip1jm1kp12 = vz_ip1jkp12(j)

V_im1jkp1 = vz_im1jkp1(j+1)
V_ijkp1 = vz_ijkp1(j+1)
V_ip1jkp1 = vz_ip1jkp1(j+1)
V_im1jp1kp1 = vz_im1jkp1(j+2)
V_ijp1kp1 = vz_ijkp1(j+2)
V_ip1jp1kp1 = vz_ip1jkp1(j+2)
V_im1jm1kp1 = vz_im1jkp1(j)
V_ijm1kp1 = vz_ijkp1(j)
V_ip1jm1kp1 = vz_ip1jkp1(j)

FMSR_im1j = FMSR_im1j_t(j+1)
FMSR_ij = FMSR_ij_t(j+1)
FMSR_ip1j = FMSR_ip1j_t(j+1)
FMSR_im1jp1 = FMSR_im1j_t(j+2)
FMSR_ijp1 = FMSR_ij_t(j+2)
FMSR_ip1jp1 = FMSR_ip1j_t(j+2)
FMSR_im1jm1 = FMSR_im1j_t(j)
FMSR_ijm1 = FMSR_ij_t(j)
FMSR_ip1jm1 = FMSR_ip1j_t(j)

FMSR_ip12jp12 = (FMSR_ij + FMSR_ip1j + FMSR_ip1jp1 + FMSR_ijp1)/4.0D0
FMSR_ip12jm12 = (FMSR_ij + FMSR_ip1j + FMSR_ip1jm1 + FMSR_ijm1)/4.0D0
FMSR_im12jp12 = (FMSR_ij + FMSR_im1j + FMSR_im1jp1 + FMSR_ijp1)/4.0D0
FMSR_im12jm12 = (FMSR_ij + FMSR_im1j + FMSR_im1jm1 + FMSR_ijm1)/4.0D0

FMSR_ip12j = (FMSR_ij + FMSR_ip1j + FMSR_ip12jp12 + FMSR_ip12jm12)/4.0D0
FMSR_im12j = (FMSR_im1j + FMSR_ij + FMSR_im12jp12 + FMSR_im12jm12)/4.0D0
FMSR_ijp12 = (FMSR_ij + FMSR_ijp1 + FMSR_ip12jp12 + FMSR_im12jp12)/4.0D0
FMSR_ijm12 = (FMSR_ijm1 + FMSR_ij + FMSR_ip12jm12 + FMSR_im12jm12)/4.0D0

FMCR_im1j = FMCR_im1j_t(j+1)
FMCR_ij = FMCR_ij_t(j+1)
FMCR_ip1j = FMCR_ip1j_t(j+1)
FMCR_im1jp1 = FMCR_im1j_t(j+2)
FMCR_ijp1 = FMCR_ij_t(j+2)
FMCR_ip1jp1 = FMCR_ip1j_t(j+2)
FMCR_im1jm1 = FMCR_im1j_t(j)
FMCR_ijm1 = FMCR_ij_t(j)
FMCR_ip1jm1 = FMCR_ip1j_t(j)

FMCR_ip12jp12 = (FMCR_ij + FMCR_ip1j + FMCR_ip1jp1 + FMCR_ijp1)/4.0D0
FMCR_ip12jm12 = (FMCR_ij + FMCR_ip1j + FMCR_ip1jm1 + FMCR_ijm1)/4.0D0
FMCR_im12jp12 = (FMCR_ij + FMCR_im1j + FMCR_im1jp1 + FMCR_ijp1)/4.0D0
FMCR_im12jm12 = (FMCR_ij + FMCR_im1j + FMCR_im1jm1 + FMCR_ijm1)/4.0D0

FMCR_ip12j = (FMCR_ij + FMCR_ip1j + FMCR_ip12jp12 + FMCR_ip12jm12)/4.0D0
FMCR_im12j = (FMCR_im1j + FMCR_ij + FMCR_im12jp12 + FMCR_im12jm12)/4.0D0
FMCR_ijp12 = (FMCR_ij + FMCR_ijp1 + FMCR_ip12jp12 + FMCR_im12jp12)/4.0D0
FMCR_ijm12 = (FMCR_ijm1 + FMCR_ij + FMCR_ip12jm12 + FMCR_im12jm12)/4.0D0

CALL ROS(rp1,r,rm1,dr,dz,V_ijkp12,V_ip1jkp12,V_im1jkp12,V_ijp1kp12,V_ijm1kp12,&
V_ip1jp1kp12,V_ip1jm1kp12,V_im1jp1kp12,V_im1jm1kp12,&
SR_ijkp12,SR_ip12jkp12,SR_im12jkp12,SR_ijp12kp12,SR_ijm12kp12)

CALL ROS(rp1,r,rm1,dr,dz,V_ijkp1,V_ip1jkp1,V_im1jkp1,V_ijp1kp1,V_ijm1kp1,&
V_ip1jp1kp1,V_ip1jm1kp1,V_im1jp1kp1,V_im1jm1kp1,&
SR_ijkp1,SR_ip12jkp1,SR_im12jkp1,SR_ijp12kp1,SR_ijm12kp1)

! FMSR is relative to k and since we are calculating ETA_kp12, the "ALPHA_I*SR*dt"
! term must be set equal to "ALPHA_I*SR*(dt/2)"! -> dt = dt/2.
! FMSR is relative to k and we are only proceeding from k to k+1/2, hence dt -> dt/2.
! [ The same consideration applies for FMCR, BETA_I, BETA_II and H(SR) ].
CALL ETA(dt/2.0D0,TIME_kp12,Lambda,SR_ijkp12,SR_ip12jkp12,SR_im12jkp12,&

SR_ijp12kp12,SR_ijm12kp12,FMSR_ij,FMSR_ip12j,FMSR_im12j,&
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FMSR_ijp12,FMSR_ijm12,FMCR_ij,FMCR_ip12j,FMCR_im12j,&
FMCR_ijp12,FMCR_ijm12,ETA_ijkp12,ETA_ip12jkp12,&
ETA_im12jkp12,ETA_ijp12kp12,ETA_ijm12kp12)

! FMSR is relative to k and since we are calculating ETA_kp1, the "ALPHA_I*SR*dt"
! term must be set equal to "ALPHA_I*SR*dt"! -> dt = dt.
! FMSR is relative to k and we are now proceeding from k to k+1, hence dt -> dt.
! [ The same consideration applies for FMCR, BETA_I, BETA_II and H(SR) ].
CALL ETA(dt,TIME_kp1,Lambda,SR_ijkp1,SR_ip12jkp1,SR_im12jkp1,SR_ijp12kp1,SR_ijm12kp1,&

FMSR_ij,FMSR_ip12j,FMSR_im12j,FMSR_ijp12,FMSR_ijm12,&
FMCR_ij,FMCR_ip12j,FMCR_im12j,FMCR_ijp12,FMCR_ijm12,&
ETA_ijkp1,ETA_ip12jkp1,ETA_im12jkp1,ETA_ijp12kp1,ETA_ijm12kp1)

! Equations 7.32 to 7.34:
A_kp12 = (BETA*ETA_ip12jkp12)*(1.0D0/dr - 1.0D0/(rp1+r)) + (THETA*ETA_ijkp12)/(2.0D0*dr)
B_kp12 = (BETA*ETA_ip12jkp12)*(1.0D0/dr + 1.0D0/(rp1+r)) + &

(BETA*ETA_im12jkp12)*(1.0D0/dr - 1.0D0/(r+rm1)) + (THETA*ETA_ijkp12)/r
C_kp12 = (BETA*ETA_im12jkp12)*(1.0D0/dr + 1.0D0/(r+rm1)) - (THETA*ETA_ijkp12)/(2.0D0*dr)

! Equations 7.35 to 7.37:
D_kp1 = (CHI*ETA_ijp12kp1)/dz
E_kp1 = (CHI*ETA_ijp12kp1)/dz + (CHI*ETA_ijm12kp1)/dz
F_kp1 = (CHI*ETA_ijm12kp1)/dz

! Equation 7.31:
LL = - A_kp12*V_ip1jkp12 - (1.0D0 - B_kp12)*V_ijkp12 - C_kp12*V_im1jkp12

! Equation 7.30:
IF (j == 1) THEN

M(j,j) = -(1.0D0 + E_kp1)
M(j,j+1) = D_kp1
L(j) = LL - F_kp1*V_ijm1kp1

ELSE IF ((j.EQ.NY-2).AND.Neumann) THEN ! (Equation 7.46)
M(j,j-1) = 2.0D0*F_kp1
M(j,j) = -(1.0D0 + E_kp1)
L(j) = LL

ELSE IF (j == NY-2) THEN
M(j,j-1) = F_kp1
M(j,j) = -(1.0D0 + E_kp1)
L(j) = LL - D_kp1*V_ijp1kp1

ELSE
M(j,j-1) = F_kp1
M(j,j) = -(1.0D0 + E_kp1)
M(j,j+1) = D_kp1
L(j) = LL

END IF

END DO
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE MATRIX_UPDATE_Y
! ================================================================================= !
SUBROUTINE MATRIX_SOLVER(M,D,v,dim)
! Subroutine that solves the trigonal system "M * v = D" with the
! Thomas algorithm (also known as the "Crout reduction for tridiagonal linear
! systems" - algorithm).
! M -> Left side of the linear system (a tridiagonal array).
! D -> Right side of the linear system (a vector).
! v -> The variable to be solved: v = (M)^(-1) * D.

DOUBLE PRECISION,DIMENSION(:,:),INTENT(INOUT) :: M
DOUBLE PRECISION,DIMENSION(:),INTENT(INOUT) :: D
DOUBLE PRECISION,DIMENSION(:),INTENT(OUT) :: v
INTEGER,INTENT(IN) :: dim

DOUBLE PRECISION :: coef
INTEGER :: i
! --------------------------------------------------------------------------------- !
v = -1.0D0
! --------------------------------------------------------------------------------- !
! Forward and then back substitution:
DO i = 1,dim-1

coef = M(i+1,(i-1)+1)/M(i,i)
M(i+1,i+1) = M(i+1,i+1) - coef*M(i,i+1)
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D(i+1) = D(i+1) - coef*D(i)
END DO
v(dim) = D(dim)/M(dim,dim)
DO i = dim-1,1,-1

v(i) = (D(i) - M(i,i+1)*v(i+1))/M(i,i)
END DO
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE MATRIX_SOLVER
! ================================================================================= !
END MODULE MATRIX
! --------------------------------------------------------------------------------- !

URN:NBN:no-3374



A.2. CONTEC VISCOMETERS 331

A.2.9 write2f.f90

! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: write2f.f90 (MODULE) !
! This file takes care of writing all computed data into the different files. !
! It is only the source main.f90 that makes such request. !
! --------------------------------------------------------------------------------- !
MODULE WRITE_INFORMATION

USE SHEAR_VISCOSITY
IMPLICIT NONE
PRIVATE
PUBLIC :: WARNING_FOR_WRITING,WRITE2FILE_k,WRITE2FILE_kp1,WRITE2FILE_time,&

WRITE2FILE_torque_ZERO,WRITE2FILE_torque,WRITE2FILE_debug,&
WRITE2FILE_rms,ROS_PROFILE

CONTAINS
! ================================================================================= !
SUBROUTINE WARNING_FOR_WRITING(NY)
INTEGER,INTENT(IN) :: NY

IF (NY > 500) THEN
PRINT *, " ERROR: NY2 > 500 ( NY2 = ",NY,")"
PRINT *, " FORMAT STATEMENT IN THE FILE ’write2f.f90’ IS TO SHORT: "
PRINT *, " ERROR -> 10 FORMAT(1X,500(F7.4,1X)) "
PRINT *, " PLEASE MAKE THE NECESSARY ADJUSTMENT IN ALL THE SUBROUTINES "
PRINT *, " OF THIS FILE. TERMINAL ERROR! "
STOP

END IF

RETURN
END SUBROUTINE WARNING_FOR_WRITING
! ================================================================================= !
SUBROUTINE WRITE2FILE_k(VELOCITY,NX)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: VELOCITY
INTEGER,INTENT(IN) :: NX
INTEGER :: problem,i
! --------------------------------------------------------------------------------- !
10 FORMAT(1X,500(F7.4,1X))
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="vel_time.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: vel_time.dat! "
RETURN

ELSE
DO i = 1,NX

WRITE (unit=8,fmt=10) VELOCITY(i,:)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
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! Creating file to log time, for the transient calculation:
OPEN(unit=8,file="time_k.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: time_k.dat! "
RETURN

ELSE
WRITE (unit=8,fmt=10) 0.0D0

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE WRITE2FILE_k
! ================================================================================= !
SUBROUTINE WRITE2FILE_kp1(V,NX1,NY1,NX2,NY2,dr,dz)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: V
INTEGER,INTENT(IN) :: NX1,NY1,NX2,NY2
DOUBLE PRECISION,INTENT(IN) :: dr,dz

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:,:) :: SR,ETA,von_Mises
DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: SR_r

DOUBLE PRECISION :: ETA_tmp,SR_tmp,TIME,Lambda
INTEGER :: problem,i,j,NX,NYt08
! --------------------------------------------------------------------------------- !
NYt08 = IDNINT(0.8D0*DBLE(NY2))
NX = NX2 - NX1 + 1
! --------------------------------------------------------------------------------- !
ALLOCATE(SR(NX2,NY2),SR_r(NX),ETA(NX2,NY2),von_Mises(NX2,NY2),stat=problem)
IF (problem/=0) THEN

PRINT *," WRITE2FILE_kp1: The program could not allocate space! "
PRINT *," Error code 1 in write2f and execution terminated! "
STOP

END IF

SR = 0.0D0
ETA = 0.0D0
von_Mises = 0.0D0

TIME = 0.0D0
Lambda = 1.0D0
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR RATE AT ALL POINTS: SR
! Rate of shear at z = NYt08 as function of r: SR_r (not used here!)
CALL ROS_PROFILE(V,NX1,NX2,NY1,NY2,NYt08,dr,dz,SR,SR_r)
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR VISCOSITY AT ALL POINTS:
ETA_tmp = 0.0D0

DO i=1,NX2
DO j=1,NY2
SR_tmp = SR(i,j)
! Using dt = 0.0D0 here, because there is no iteration forward in time. The objectives
! here is simply to write the last data (of time = k*dt, where k=0) to the hard drive.
! I.e. we want to have Gamma=ALPHA_II*(FMSR+ALPHA_I*SR*dt)=ALPHA_II*(0+ALPHA_I*SR*0)=0,
! because no shear rate history exists at k = 0 (FMSR is already fully updated at k=0).
! [ The same consideration applies for FMCR, BETA_I, BETA_II and H(SR) ].
CALL VISCOSITY(0.0D0,TIME,Lambda,SR_tmp,0.0D0,0.0D0,ETA_tmp)
ETA(i,j) = ETA_tmp

END DO
END DO
! --------------------------------------------------------------------------------- !
! CALCULATING THE von Mises SHEAR STRESS AT ALL POINTS:
DO i=1,NX2

DO j=1,NY2
von_Mises(i,j) = SR(i,j)*ETA(i,j)

END DO
END DO
! --------------------------------------------------------------------------------- !
10 FORMAT(1X,500(F10.4,1X))
16 FORMAT(1X,500(F14.4,1X))
! --------------------------------------------------------------------------------- !
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OPEN(unit=8,file="vel_t0.dat",status="replace",action="write",&
position="rewind",iostat=problem)

IF (problem/=0) THEN
PRINT *," Could not create the file: vel_t0.dat! "
RETURN

ELSE
DO i = 1,NX2

WRITE (unit=8,fmt=10) V(i,:)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="ROS_t0.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: ROS_t0.dat! "
RETURN

ELSE
DO i = 1,NX2

WRITE (unit=8,fmt=10) SR(i,:)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="ETA_t0.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: ETA_t0.dat! "
RETURN

ELSE
DO i = 1,NX2

WRITE (unit=8,fmt=16) ETA(i,:)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="vonMises_t0.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: vonMises_t0.dat! "
RETURN

ELSE
DO i = 1,NX2

WRITE (unit=8,fmt=10) von_Mises(i,:)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
DEALLOCATE(SR,SR_r,ETA,von_Mises,stat=problem)
IF (problem/=0) THEN

PRINT *," WRITE2FILE_kp1: The program could not deallocate space! "
PRINT *," Error code 2 in write2f! "

END IF
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE WRITE2FILE_kp1
! ================================================================================= !
SUBROUTINE WRITE2FILE_time(VELOCITY,NX,kp1,dt)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: VELOCITY
DOUBLE PRECISION,INTENT(IN) :: dt
INTEGER,INTENT(IN) :: NX,kp1
INTEGER :: problem,i
! --------------------------------------------------------------------------------- !
10 FORMAT(1X,500(F7.4,1X))
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="vel_time.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: vel_time.dat! "
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RETURN
ELSE

DO i = 1,NX
WRITE (unit=8,fmt=10) VELOCITY(i,:)

END DO
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="time_k.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: time_k.dat! "
RETURN

ELSE
WRITE (unit=8,fmt=10) DBLE(kp1)*dt

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE WRITE2FILE_time
! ================================================================================= !
SUBROUTINE WRITE2FILE_rms(k,rms)

DOUBLE PRECISION,INTENT(IN) :: rms
INTEGER,INTENT(IN) :: k
INTEGER :: problem
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="log.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: log.dat! "
RETURN

ELSE
WRITE (unit=8,fmt=*) k,rms

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE WRITE2FILE_rms
! ================================================================================= !
SUBROUTINE WRITE2FILE_torque_ZERO(V,NX1,NX2,NY1,NY2,kp1,dt,Lambda,dr,dz,H3,omega)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: V
DOUBLE PRECISION,INTENT(IN) :: dt,Lambda,dr,dz,H3,omega
INTEGER,INTENT(IN) :: NX1,NX2,NY1,NY2,kp1

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:,:) :: SR,ETA
DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: SR_r,ETA_r,ROS_torque,ETA_torque,&

TORQUE_ON_INNER_CYLINDER,&
TORQUE_ON_OUTER_CYLINDER,&
TORQUE_ON_BOTTOM_PLATE

DOUBLE PRECISION :: ETA_tmp,SR_tmp,&
TIME,TORQUE_sum_Ri,&
TORQUE_sum_work

INTEGER :: NY2mH3,NYt08,problem,i,j,NX,NY,&
count_i,count_j,NY_write

! --------------------------------------------------------------------------------- !
NYt08 = IDNINT(0.8D0*DBLE(NY2))
NY2mH3 = NY2 - IDNINT(H3/dz)
NY_write = 50
NX = NX2 - NX1 + 1 ! -> Same as in main.f90
NY = NY2 - NY2mH3 + 1 ! -> Or equally, NY = IDNINT(H3/dz) + 1
TIME = DBLE(kp1)*dt

IF (NY2mH3.LT.NY1+1) THEN
PRINT *, "-----------------------------------------------"
PRINT *, " ERROR: "
PRINT *, " write2f.f90 says: Something is wrong! "
PRINT *, " NY2-H3/dz < NY1+1. Check out if H3 "
PRINT *, " (in the file param.f90) is correct! "
PRINT *, "-----------------------------------------------"
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STOP
END IF

ALLOCATE(SR(NX2,NY2),ETA(NX2,NY2),SR_r(NX),ETA_r(NX),ROS_torque(NY),&
ETA_torque(NY),TORQUE_ON_INNER_CYLINDER(NY),&
TORQUE_ON_OUTER_CYLINDER(NY2),TORQUE_ON_BOTTOM_PLATE(NX2),&
stat=problem)

IF (problem/=0) THEN
PRINT *," WRITE2FILE_torque_ZERO: The program could not allocate space! "
PRINT *," Error code 3 in write2f and execution terminated! "
STOP

END IF

SR = 0.0D0
ETA = 0.0D0
SR_r = 0.0D0
ETA_r = 0.0D0
ROS_torque = 0.0D0
ETA_torque = 0.0D0

TORQUE_ON_INNER_CYLINDER = 0.0D0
TORQUE_ON_OUTER_CYLINDER = 0.0D0
TORQUE_ON_BOTTOM_PLATE = 0.0D0
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR RATE AT ALL POINTS: SR
! Rate of shear at z = NYt08 as function of r: SR_r
CALL ROS_PROFILE(V,NX1,NX2,NY1,NY2,NYt08,dr,dz,SR,SR_r)
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR VISCOSITY AT ALL POINTS: ETA
! Shear viscosity at z = NYt08 as function of r: ETA_r
ETA_tmp = 0.0D0
DO i=1,NX2

DO j=1,NY2
SR_tmp = SR(i,j)
! Using dt = 0.0D0 here, because there is no iteration forward in time. The objectives
! here is simply to write the last data (of time = k*dt, where k=0) to the hard drive.
! I.e. we want to have Gamma=ALPHA_II*(FMSR+ALPHA_I*SR*dt)=ALPHA_II*(0+ALPHA_I*SR*0)=0,
! because no shear rate history exists at k = 0 (FMSR is already fully updated at k=0).
! [ The same consideration applies for FMCR, BETA_I, BETA_II and H(SR) ].
CALL VISCOSITY(0.0D0,TIME,Lambda,SR_tmp,0.0D0,0.0D0,ETA_tmp)
ETA(i,j) = ETA_tmp

END DO
END DO
ETA_tmp = 0.0D0
DO i=1,NX

SR_tmp = SR_r(i)
! Using dt = 0.0D0 here, because there is no iteration forward in time. The objectives
! here is simply to write the last data (of time = k*dt, where k=0) to the hard drive.
! I.e. we want to have Gamma=ALPHA_II*(FMSR+ALPHA_I*SR*dt)=ALPHA_II*(0+ALPHA_I*SR*0)=0,
! because no shear rate history exists at k = 0 (FMSR is already fully updated at k=0).
! [ The same consideration applies for FMCR, BETA_I, BETA_II and H(SR) ].
CALL VISCOSITY(0.0D0,TIME,Lambda,SR_tmp,0.0D0,0.0D0,ETA_tmp)
ETA_r(i) = ETA_tmp

END DO
! --------------------------------------------------------------------------------- !
! CALCULATING TORQUE APPLIED ON THE INNER CYLINDER, ON THE OUTER CYLINDER
! AND ON THE BOTTOM PLATE, FROM THE TEST MATERIAL:
CALL TORQUE(V,ETA,NX1,NX2,NY1,NY2,NY2mH3,dr,dz,TORQUE_ON_INNER_CYLINDER,&

TORQUE_ON_OUTER_CYLINDER,TORQUE_ON_BOTTOM_PLATE)
! ---------------------------------------------------------
! ... AND THEN SUMMARIZING ALL THE TORQUE ELEMENTS
! for all z in H3 (i.e. at where torque is measured),...
TORQUE_sum_Ri = 0.0D0
DO j=1,NY

TORQUE_sum_Ri = TORQUE_ON_INNER_CYLINDER(j) + TORQUE_sum_Ri
END DO
! ---------------------------------------------------------
! ... AND FOR WORK CALCULATIONS:
TORQUE_sum_work = 0.0D0
DO j=1,NY2

TORQUE_sum_work = TORQUE_ON_OUTER_CYLINDER(j) + TORQUE_sum_work
END DO
DO i=1,NX2

TORQUE_sum_work = TORQUE_ON_BOTTOM_PLATE(i) + TORQUE_sum_work
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END DO
! --------------------------------------------------------------------------------- !
! WRITING INFORMATION TO FILES:
! --------------------------------------------------------------------------------- !
10 FORMAT(1X,500(F9.5,1X))
12 FORMAT(1X,2(F9.5,1X))
14 FORMAT(1X,500(F5.3,1X))
16 FORMAT(1X,(F6.2,1X),(F8.5,1X),(F10.5,1X),(F11.5,1X))
18 FORMAT(1X,500(F7.3,1X))
! --------------------------------------------------------------------------------- !
! WRITING INNER AND OUTER CYLINDER TO FILE:
OPEN(unit=8,file="RiRo_dr.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: RiRo_dr.dat! "
ELSE

WRITE (unit=8,fmt=12) DBLE(NX1-1)*dr,DBLE(NX2-1)*dr
WRITE (unit=8,fmt=12) dr,dz

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING ANGULAR VELOCITY TO FILE:
OPEN(unit=8,file="time_omega.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: time_omega.dat! "
ELSE

WRITE (unit=8,fmt=12) DBLE(kp1)*dt,omega
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING VELOCITY TO FILE:
OPEN(unit=8,file="velocity_r.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: velocity_r.dat! "
ELSE

WRITE (unit=8,fmt=10) V(NX1:NX2,NYt08)
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING SHEAR RATE TO FILE:
OPEN(unit=8,file="ros_r.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: ros_r.dat! "
ELSE

WRITE (unit=8,fmt=10) SR_r(:)
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING SHEAR VISCOSITY TO FILE:
OPEN(unit=8,file="eta_r.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: eta_r.dat! "
ELSE

WRITE (unit=8,fmt=10) ETA_r(:)
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING TORQUE TO FILE:
OPEN(unit=8,file="torque_z.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: torque_z.dat! "
ELSE

WRITE (unit=8,fmt=10) TORQUE_ON_INNER_CYLINDER(:)
END IF
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CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING TORQUE TO FILE:
OPEN(unit=8,file="torque.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: torque.dat! "
ELSE

WRITE (unit=8,fmt=12) DBLE(kp1)*dt,TORQUE_sum_Ri
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING WORK DONE BY THE OUTER CYLINDER AND BOTTOM PLATE, TO FILE:
OPEN(unit=8,file="work.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: work.dat! "
ELSE

WRITE (unit=8,fmt=16) DBLE(kp1)*dt,omega,-TORQUE_sum_work,-TORQUE_sum_work*omega
! See the comment in the SUBROUTINE TORQUE about why the term "TORQUE_sum_work"
! is written with a negative value into the file "work.dat".

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING VELOCITY OF CORNER TO FILE:
OPEN(unit=8,file="vel_corner.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: vel_corner.dat! "
ELSE
!NX1_begin = NX1/2 + DNINT(0.5D0*DBLE(NX1/2))

DO i = NX2-50,NX2
WRITE (unit=8,fmt=14) V(i,1:NY_write+1)

END DO
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING VELOCITY OF UPPER PART TO FILE:
OPEN(unit=8,file="vel_upper.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: vel_upper.dat! "
ELSE

DO i = NX2-50,NX2
WRITE (unit=8,fmt=14) V(i,NY2-NY_write:NY2)

END DO
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING SHEAR RATE (SR) OF CORNER TO FILE:
OPEN(unit=8,file="ROS_corner.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: ROS_corner.dat! "
ELSE
!NX1_begin = NX1/2 + DNINT(0.5D0*DBLE(NX1/2))

DO i = NX2-50,NX2
WRITE (unit=8,fmt=18) SR(i,1:NY_write+1)

END DO
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING SHEAR RATE (SR) OF UPPER PART TO FILE:
OPEN(unit=8,file="ROS_upper.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: ROS_upper.dat! "
ELSE
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DO i = NX2-50,NX2
WRITE (unit=8,fmt=18) SR(i,NY2-NY_write:NY2)

END DO
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
DEALLOCATE(SR,ETA,SR_r,ETA_r,ROS_torque,ETA_torque,&

TORQUE_ON_INNER_CYLINDER,TORQUE_ON_OUTER_CYLINDER,&
TORQUE_ON_BOTTOM_PLATE,stat=problem)

IF (problem/=0) THEN
PRINT *," WRITE2FILE_torque_ZERO: The program could not deallocate space! "
PRINT *," Error code 4 in write2f! "

END IF
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE WRITE2FILE_torque_ZERO
! ================================================================================= !
SUBROUTINE WRITE2FILE_torque(V,FMSR,FMCR,NX1,NX2,NY1,NY2,kp1,dt,Lambda,dr,dz,H3,omega)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: V,FMSR,FMCR
DOUBLE PRECISION,INTENT(IN) :: dt,Lambda,dr,dz,H3,omega
INTEGER,INTENT(IN) :: NX1,NX2,NY1,NY2,kp1

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:,:) :: SR,ETA
DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: SR_r,ETA_r,ROS_torque,ETA_torque,&

TORQUE_ON_INNER_CYLINDER,&
TORQUE_ON_OUTER_CYLINDER,&
TORQUE_ON_BOTTOM_PLATE

DOUBLE PRECISION :: ETA_tmp,SR_tmp,TIME,&
TORQUE_sum_Ri,FMSR_tmp,&
FMCR_tmp,TORQUE_sum_work

INTEGER :: NY2mH3,NYt08,problem,i,j,NX,NY,&
count_i,count_j,NY_write

! --------------------------------------------------------------------------------- !
NYt08 = IDNINT(0.8D0*DBLE(NY2))
NY2mH3 = NY2 - IDNINT(H3/dz)
NY_write = 50
NX = NX2 - NX1 + 1 ! -> Same as in main.f90
NY = NY2 - NY2mH3 + 1 ! -> Or equally, NY = IDNINT(H3/dz) + 1
TIME = DBLE(kp1)*dt

ALLOCATE(SR(NX2,NY2),ETA(NX2,NY2),SR_r(NX),ETA_r(NX),ROS_torque(NY),&
ETA_torque(NY),TORQUE_ON_INNER_CYLINDER(NY),&
TORQUE_ON_OUTER_CYLINDER(NY2),TORQUE_ON_BOTTOM_PLATE(NX2),&
stat=problem)

IF (problem/=0) THEN
PRINT *," WRITE2FILE_torque: The program could not allocate space! "
PRINT *," Error code 5 in write2f and execution terminated! "
STOP

END IF

SR = 0.0D0
ETA = 0.0D0
SR_r = 0.0D0
ETA_r = 0.0D0
ROS_torque = 0.0D0
ETA_torque = 0.0D0

TORQUE_ON_INNER_CYLINDER = 0.0D0
TORQUE_ON_OUTER_CYLINDER = 0.0D0
TORQUE_ON_BOTTOM_PLATE = 0.0D0
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR RATE AT ALL POINTS: SR
! Rate of shear at z = NYt08 as function of r: SR_r
CALL ROS_PROFILE(V,NX1,NX2,NY1,NY2,NYt08,dr,dz,SR,SR_r)
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR VISCOSITY AT ALL POINTS: ETA
! Shear viscosity at z = NYt08 as function of r: ETA_r
ETA_tmp = 0.0D0
DO i=1,NX2

DO j=1,NY2
SR_tmp = SR(i,j)
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FMSR_tmp = FMSR(i,j)
FMCR_tmp = FMCR(i,j)
! Using dt = 0.0D0 here, because there is no iterating forward in time. The objectives
! here is simply to write the last data (of time = (k+1)*dt) to the hard drive.
! I.e. we want to have Gamma=ALPHA_II*FMSR and not Gamma=ALPHA_II*(FMSR+ALPHA_I*SR*dt),
! because FMSR is already fully updated relative to k+1.
! [ The same consideration applies for FMCR, BETA_I, BETA_II and H(SR) ].
CALL VISCOSITY(0.0D0,TIME,Lambda,SR_tmp,FMSR_tmp,FMCR_tmp,ETA_tmp)
ETA(i,j) = ETA_tmp

END DO
END DO
ETA_tmp = 0.0D0
DO i=1,NX

SR_tmp = SR_r(i)
FMSR_tmp = FMSR((NX1-1)+i,NY2mH3)
FMCR_tmp = FMCR((NX1-1)+i,NY2mH3)
! Using dt = 0.0D0 here, because there is no iterating forward in time. The objectives
! here is simply to write the last data (of time = (k+1)*dt) to the hard drive.
! I.e. we want to have Gamma=ALPHA_II*FMSR and not Gamma=ALPHA_II*(FMSR+ALPHA_I*SR*dt),
! because FMSR is already fully updated relative to k+1.
! [ The same consideration applies for FMCR, BETA_I, BETA_II and H(SR) ].
CALL VISCOSITY(0.0D0,TIME,Lambda,SR_tmp,FMSR_tmp,FMCR_tmp,ETA_tmp)
ETA_r(i) = ETA_tmp

END DO
! --------------------------------------------------------------------------------- !
! CALCULATING TORQUE APPLIED ON THE INNER CYLINDER, ON THE OUTER CYLINDER
! AND ON THE BOTTOM PLATE, FROM THE TEST MATERIAL:
CALL TORQUE(V,ETA,NX1,NX2,NY1,NY2,NY2mH3,dr,dz,TORQUE_ON_INNER_CYLINDER,&

TORQUE_ON_OUTER_CYLINDER,TORQUE_ON_BOTTOM_PLATE)
! ---------------------------------------------------------
! ... AND THEN SUMMARIZING ALL THE TORQUE ELEMENTS
! for all z in H3 (i.e. at where torque is measured),...
TORQUE_sum_Ri = 0.0D0
DO j=1,NY

TORQUE_sum_Ri = TORQUE_ON_INNER_CYLINDER(j) + TORQUE_sum_Ri
END DO
! ---------------------------------------------------------
! ... AND FOR WORK CALCULATIONS:
TORQUE_sum_work = 0.0D0
DO j=1,NY2

TORQUE_sum_work = TORQUE_ON_OUTER_CYLINDER(j) + TORQUE_sum_work
END DO
DO i=1,NX2

TORQUE_sum_work = TORQUE_ON_BOTTOM_PLATE(i) + TORQUE_sum_work
END DO
! --------------------------------------------------------------------------------- !
! WRITING INFORMATION TO FILES:
! --------------------------------------------------------------------------------- !
10 FORMAT(1X,500(F9.5,1X))
12 FORMAT(1X,2(F9.5,1X))
14 FORMAT(1X,500(F5.3,1X))
16 FORMAT(1X,(F6.2,1X),(F8.5,1X),(F10.5,1X),(F11.5,1X))
18 FORMAT(1X,500(F7.3,1X))
! --------------------------------------------------------------------------------- !
! WRITING ANGULAR VELOCITY TO FILE:
OPEN(unit=8,file="time_omega.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: time_omega.dat! "
ELSE

WRITE (unit=8,fmt=12) DBLE(kp1)*dt,omega
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING VELOCITY TO FILE:
OPEN(unit=8,file="velocity_r.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: velocity_r.dat! "
ELSE

WRITE (unit=8,fmt=10) V(NX1:NX2,NYt08)
END IF
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CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING SHEAR RATE TO FILE:
OPEN(unit=8,file="ros_r.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: ros_r.dat! "
ELSE

WRITE (unit=8,fmt=10) SR_r(:)
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING SHEAR VISCOSITY TO FILE:
OPEN(unit=8,file="eta_r.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: eta_r.dat! "
ELSE

WRITE (unit=8,fmt=10) ETA_r(:)
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING TORQUE TO FILE:
OPEN(unit=8,file="torque_z.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: torque_z.dat! "
ELSE

WRITE (unit=8,fmt=10) TORQUE_ON_INNER_CYLINDER(:)
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING TORQUE TO FILE:
OPEN(unit=8,file="torque.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: torque.dat! "
ELSE

WRITE (unit=8,fmt=12) DBLE(kp1)*dt,TORQUE_sum_Ri
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING WORK DONE BY THE OUTER CYLINDER AND BOTTOM PLATE, TO FILE:
OPEN(unit=8,file="work.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: work.dat! "
ELSE

WRITE (unit=8,fmt=16) DBLE(kp1)*dt,omega,-TORQUE_sum_work,-TORQUE_sum_work*omega
! See the comment in the SUBROUTINE TORQUE about why the term "TORQUE_sum_work"
! is written with a negative value into the file "work.dat".

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING VELOCITY OF CORNER TO FILE:
OPEN(unit=8,file="vel_corner.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: vel_corner.dat! "
ELSE

DO i = NX2-50,NX2
WRITE (unit=8,fmt=14) V(i,1:NY_write+1)

END DO
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING VELOCITY OF UPPER PART TO FILE:
OPEN(unit=8,file="vel_upper.dat",status="old",action="write",&
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position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: vel_upper.dat! "
ELSE

DO i = NX2-50,NX2
WRITE (unit=8,fmt=14) V(i,NY2-NY_write:NY2)

END DO
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING SHEAR RATE (SR) OF CORNER TO FILE:
OPEN(unit=8,file="ROS_corner.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: ROS_corner.dat! "
ELSE
!NX1_begin = NX1/2 + DNINT(0.5D0*DBLE(NX1/2))

DO i = NX2-50,NX2
WRITE (unit=8,fmt=18) SR(i,1:NY_write+1)

END DO
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
! WRITING SHEAR RATE (SR) OF UPPER PART TO FILE:
OPEN(unit=8,file="ROS_upper.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: ROS_upper.dat! "
ELSE

DO i = NX2-50,NX2
WRITE (unit=8,fmt=18) SR(i,NY2-NY_write:NY2)

END DO
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
DEALLOCATE(SR,ETA,SR_r,ETA_r,ROS_torque,ETA_torque,&

TORQUE_ON_INNER_CYLINDER,TORQUE_ON_OUTER_CYLINDER,&
TORQUE_ON_BOTTOM_PLATE,stat=problem)

IF (problem/=0) THEN
PRINT *," WRITE2FILE_torque: The program could not deallocate space! "
PRINT *," Error code 6 in write2f! "

END IF
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE WRITE2FILE_torque
! ================================================================================= !
SUBROUTINE WRITE2FILE_debug(M,K_M,v_new,N)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: M
DOUBLE PRECISION,DIMENSION(:),INTENT(IN) :: K_M,v_new
INTEGER,INTENT(IN) :: N
INTEGER :: problem,i
! --------------------------------------------------------------------------------- !
10 FORMAT(1X,201(F10.4,1X))
11 FORMAT(1X,F10.4)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="MM_debug.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: MM_debug.dat! "
RETURN

ELSE
DO i = 1,N

WRITE (unit=8,fmt=10) M(i,:)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="KK_debug.dat",status="replace",action="write",&

position="rewind",iostat=problem)
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IF (problem/=0) THEN
PRINT *," Could not create the file: KK_debug.dat! "
RETURN

ELSE
DO i = 1,N
WRITE (unit=8,fmt=11) K_M(i)

END DO
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="vel_debug.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: vel_debug.dat! "
RETURN

ELSE
DO i = 1,N
WRITE (unit=8,fmt=11) v_new(i)

END DO
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE WRITE2FILE_debug
! ================================================================================= !
SUBROUTINE ROS_PROFILE(V,NX1,NX2,NY1,NY2,NYt08,dr,dz,SR,SR_r)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: V
DOUBLE PRECISION,DIMENSION(:,:),INTENT(OUT) :: SR
DOUBLE PRECISION,DIMENSION(:),INTENT(OUT) :: SR_r
INTEGER,INTENT(IN) :: NX1,NY1,NX2,NY2,NYt08
DOUBLE PRECISION,INTENT(IN) :: dr,dz

INTEGER :: i,j
DOUBLE PRECISION :: r,SR1_ij,SR2_ij,EPS
! --------------------------------------------------------------------------------- !
EPS = 1.0D-15
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR RATE IN THE BULK:
! See Section 7.5 about the formulas for the shear rate (SR). Note that ROS and SR
! means the same thing: ROS = rate of shear = SR = shear rate.
! --------------------------------------------------------------------------------- !
DO i=2,NX2-1

r = DBLE(i-1)*dr
DO j=2,NY2-1
SR1_ij = (V(i+1,j) - V(i-1,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (V(i,j+1) - V(i,j-1))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
END DO
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE ON THE "LEFT" WALL (r=R_i):
! SR2_ij is actually zero since the Dirichlet boundary
! condition is not chancing with z!
i = NX1
r = DBLE(i-1)*dr
DO j=NY1+1,NY2-1

SR1_ij = (4.0D0*V(i+1,j) - V(i+2,j) - 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (V(i,j+1) - V(i,j-1))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE ON THE "RIGHT" WALL (r=R_o):
! SR2_ij is actually zero since the Dirichlet boundary
! condition is not chancing with z!
i = NX2
r = DBLE(i-1)*dr
DO j=2,NY2-1

SR1_ij = (-4.0D0*V(i-1,j) + V(i-2,j) + 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (V(i,j+1) - V(i,j-1))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
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! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE ON THE BOTTOM PLATE (z=0):
j = 1
DO i=2,NX2-1

r = DBLE(i-1)*dr
SR1_ij = (V(i+1,j) - V(i-1,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (4.0D0*V(i,j+1) - V(i,j+2) - 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE BELOW THE INNER CYLINDER (z=H3-H2):
j = NY1
DO i=NX1-50,NX1-1

r = DBLE(i-1)*dr
SR1_ij = (V(i+1,j) - V(i-1,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (-4.0D0*V(i,j-1) + V(i,j-2) + 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE AT THE OPEN BOUNDARY (z=H):
j = NY2
DO i=NX1+1,NX2-1

r = DBLE(i-1)*dr
SR1_ij = (V(i+1,j) - V(i-1,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (-4.0D0*V(i,j-1) + V(i,j-2) + 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR RATE AT THE CENTER OF THE BOTTOM PLATE (r=0,z=0):
! This calculation is redundant since the rate of shear at the center line
! ($r=0 \forall z \in [0,H]$) is zero due to symmetry in the r-direction and
! due to the Dirichlet boundary condition $v_{\rm i,j}=0$ at the center line.
! i = 1
! j = 1
! r = DBLE(i-1)*dr
! SR1_ij = (V(i+1,j) - V(i+1,j))/(2.0D0*dr) - V(i,j)/r ! due to symmetry
! SR2_ij = ( 4.0D0*V(i,j+1) - V(i,j+2) - 3.0D0*V(i,j))/(2.0D0*dz)
! SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)
! ------------
! Rather enforcing a zero rate of shear at the center line:
SR(1,1:NY2) = 0.0D0
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR RATE ON THE LOWER RIGHT CORNER (r=R_o,z=0):
i = NX2
j = 1
r = DBLE(i-1)*dr
SR1_ij = (-4.0D0*V(i-1,j) + V(i-2,j) + 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = ( 4.0D0*V(i,j+1) - V(i,j+2) - 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE ON THE TOP RIGHT CORNER (r=R_o,z=H):
i = NX2
j = NY2
r = DBLE(i-1)*dr
SR1_ij = (-4.0D0*V(i-1,j) + V(i-2,j) + 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (-4.0D0*V(i,j-1) + V(i,j-2) + 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE ON THE TOP LEFT CORNER (r=R_i,z=H):
i = NX1
j = NY2
r = DBLE(i-1)*dr
SR1_ij = ( 4.0D0*V(i+1,j) - V(i+2,j) - 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (-4.0D0*V(i,j-1) + V(i,j-2) + 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE AT CORNER OF INNER CYLINDER (r=R_i,z=h_1+h_cone):
i = NX1
j = NY1
r = DBLE(i-1)*dr
SR1_ij = ( 4.0D0*V(i+1,j) - V(i+2,j) - 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (-4.0D0*V(i,j-1) + V(i,j-2) + 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)
! --------------------------------------------------------------------------------- !
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SR_r = SR(NX1:NX2,NYt08)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE ROS_PROFILE
! ================================================================================= !
SUBROUTINE TORQUE(V,ETA,NX1,NX2,NY1,NY2,NY2mH3,dr,dz,TORQUE_ON_INNER_CYLINDER,&

TORQUE_ON_OUTER_CYLINDER,TORQUE_ON_BOTTOM_PLATE)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: V,ETA
DOUBLE PRECISION,DIMENSION(:),INTENT(OUT) :: TORQUE_ON_INNER_CYLINDER,&

TORQUE_ON_OUTER_CYLINDER,&
TORQUE_ON_BOTTOM_PLATE

INTEGER,INTENT(IN) :: NX1,NY1,NX2,NY2,NY2mH3
DOUBLE PRECISION,INTENT(IN) :: dr,dz

INTEGER :: i,j,count_j
DOUBLE PRECISION :: shear_stress_theta_r_i,shear_stress_theta_r_o,&

shear_stress_theta_r,r,PI
! --------------------------------------------------------------------------------- !
PI = DACOS(-1.0D0)
! --------------------------------------------------------------------------------- !
! The elements "TORQUE_ON_OUTER_CYLINDER", "TORQUE_ON_BOTTOM_PLATE"
! and "TORQUE_ON_INNER_CYLINDER" are the torque applied ON the
! corresponding wall boundary FROM the test material. The first two
! elements "TORQUE_ON_OUTER_CYLINDER" and "TORQUE_ON_BOTTOM_PLATE" are
! used when generating the file "work.dat". There it is desired to
! gain the torque applied FROM the wall boundary ON the test material.
! As such, when writing data into the file "work.dat", both the torque
! elements will be written with an opposite sign (i.e. "+" -> "-").
! No corresponding considerations are needed for the toque element
! "TORQUE_ON_INNER_CYLINDER".
! --------------------------------------------------------------------------------- !
! CALCULATING THE TORQUE ON THE RIGHT WALL, FROM THE TEST MATERIAL (r=R_o):
i = NX2
r = DBLE(i-1)*dr
DO j=2,NY2-1

shear_stress_theta_r_o = - ETA(i,j)*((-4.0D0*V(i-1,j) + V(i-2,j) &
+ 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r)

TORQUE_ON_OUTER_CYLINDER(j) = r*(shear_stress_theta_r_o*dz*(2*PI*r))
END DO
! --------------------------------------------------------------------------------- !
! CALCULATING THE TORQUE ON TOP RIGHT WALL, FROM THE TEST MATERIAL (r=R_o;z=H):
i = NX2
j = NY2
r = DBLE(i-1)*dr
shear_stress_theta_r_o = - ETA(i,j)*((-4.0D0*V(i-1,j) + V(i-2,j) &

+ 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r)
TORQUE_ON_OUTER_CYLINDER(j) = r*(shear_stress_theta_r_o*(dz/2)*(2*PI*r))
! ---------------------------------------------------------
! CALCULATING THE TORQUE ON BOTTOM RIGHT WALL, FROM THE TEST MATERIAL (r=R_o;z=0):
i = NX2
j = 1
r = DBLE(i-1)*dr
shear_stress_theta_r_o = - ETA(i,j)*((-4.0D0*V(i-1,j) + V(i-2,j) &

+ 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r)
TORQUE_ON_OUTER_CYLINDER(j) = r*(shear_stress_theta_r_o*(dz/2)*(2*PI*r))
! ---------------------------------------------------------
! CALCULATING THE TORQUE ON THE BOTTOM PLATE, FROM THE TEST MATERIAL (z=0):
j = 1
DO i=2,NX2-1

r = DBLE(i-1)*dr
shear_stress_theta_r = ETA(i,j)*((4.0D0*V(i,j+1) - V(i,j+2) &

- 3.0D0*V(i,j))/(2.0D0*dz))
TORQUE_ON_BOTTOM_PLATE(i) = r*(shear_stress_theta_r*dr*(2*PI*r))

END DO
! ---------------------------------------------------------
! CALCULATING THE TORQUE ON THE BOTTOM PLATE - RIGHT CORNER, FROM THE
! TEST MATERIAL (r=R_o;z=0):
j = 1
i = NX2
r = DBLE(i-1)*dr
shear_stress_theta_r = ETA(i,j)*((4.0D0*V(i,j+1) - V(i,j+2) &

- 3.0D0*V(i,j))/(2.0D0*dz))
TORQUE_ON_BOTTOM_PLATE(i) = r*(shear_stress_theta_r*(dr/2)*(2*PI*r))
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! --------------------------------------------------------------------------------- !
! CALCULATING THE TORQUE ON THE LEFT WALL, FROM THE TEST MATERIAL (r=R_i):
! for all z in H3 (i.e. at where torque is measured):
i = NX1
r = DBLE(i-1)*dr
count_j = 0
DO j=NY2mH3,NY2

count_j = count_j + 1
shear_stress_theta_r_i = ETA(i,j)*((4.0D0*V(i+1,j) - V(i+2,j) &

- 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r)
IF ((j.EQ.NY2mH3).OR.(j.EQ.NY2)) THEN

TORQUE_ON_INNER_CYLINDER(count_j) = r*(shear_stress_theta_r_i*(dz/2)*(2*PI*r))
ELSE

TORQUE_ON_INNER_CYLINDER(count_j) = r*(shear_stress_theta_r_i*dz*(2*PI*r))
END IF

END DO
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE TORQUE
! ================================================================================= !
END MODULE WRITE_INFORMATION
! --------------------------------------------------------------------------------- !

A.3 The C3P2-Geometry

The left illustration of Figure A.3 demonstrates the solution geometry and boundary
condition used for the C3P2-geometry. The spacing of grid points in r- and z-direction
are uniform and equal to ∆r = ∆z = 2mm. With this geometry, the corner of the top
plate consist of a (part) cone-geometry. As such, the overall viscometric geometry, is
actually a combination of three types of geometries, the Cone, the Coaxial Cylinders
and the Parallel Plate type. Therefore its designation given is the CCCPP-geometry,
or simply the C3P2-geometry.

1 21 41 61 7177
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vθ = R°⋅ω°

vθ  =
 0
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Figure A.3: To the left: Solution geometry and boundary condition for the C3P2-geometry.
To the right: Vector plot of velocity v, inside the C3P2-geometry (side and bottom view). The
same condition applies here as in Figure 10.30, Page 264.

Referring to the left illustration of Figure A.3: In i-direction (i.e. in r-direction)

URN:NBN:no-3374



346 APPENDIX A. SOURCE CODE

the following numbers specify the C3P2-geometry. The parameter NX1 = 76 des-
ignates the end coordinate of the top plate that measures torque (see discussion in
Section 10.3.7). The term NX1 corner = 86 designates the radius of the inner cylinder
Ri. The term NX2 = 110 designates the coordinate of the outer cylinder Ro. In the
j-direction (i.e. in z-direction) the horizontal top plate begins at NY1 corner = 61.
This point defines also the start location of the cone-geometry. This cone ends at
NY1 = 71. The total height of the C3P2-geometry is defined with NY2 = 77. All the
above number variables are used in the source code main.f90. With these numbers,
the geometry in Figure A.3 can be read directly:

• Rm = (NX1 − 1)∆r = (76− 1) 2.0mm = 15.0 cm

• Ri = (NX1 corner− 1)∆r = (86− 1) 2.0mm = 17.0 cm

• Ro = (NX2 − 1)∆r = (110− 1) 2.0mm = 21.8 cm

• hgap = (NY1 corner− 1)∆z = (61− 1) 2.0mm = 12.0 cm

• hcorner = (NY1 −NY1 corner)∆z = (71− 61) 2.0mm = 2.0 cm

• htot = (NY2 − 1)∆z = (77− 1) 2.0mm = 15.2 cm.

When calculating the viscoplastic flow inside the C3P2-Geometry, Viscometric-

ViscoPlastic-Flow consists of six files listed below. They are all very similar to
what has already been shown in Appendix A.2, however somewhat simpler since time
dependency is not of concern. That is, the following is based only on the algorithm
shown in Section 7.11.1 (and not of Section 7.11.2).

1. motion.f90 (MODULE): This file sets the (constant) angular velocity to be
used ωo = 2 π fo (i.e. ωo = constant for each simulation).

2. viscous.f90 (MODULE): In this file, the (time independent) shear viscosity
function η = η(γ̇) is defined and calculated. This information is requested by
the module update.f90.

3. write2f.f90 (MODULE): This file takes care of writing all computed data into
the different files. It is only the source main.f90 that makes such request.

4. shear.f90 (MODULE): This routine calculates the shear rate γ̇c from the com-
puted velocity profile V k(i, j) iθ. It is the program update.f90 that makes the
request.

5. update.f90 (MODULE): This file sets up the system of algebraic Equations 7.28
to 7.31 (Page 161). This file also contains the Thomas algorithm that is used
in solving this system.

6. main.f90 (PROGRAM): This is the center of the whole software, holding and
passing information to and from the different subroutines. Some subroutines
interact directly with each other without going through the channels defined
by main.f90 (this applies mostly for the subroutines in the files update.f90,
shear.f90 and viscous.f90). The geometry of the viscometer is defined in this
part of the software. This code also defines and sets all variables of relevance,
like Ri, Ro, h, ∆r, ∆z, ∆t, tol, tol RMS and so forth.

All the files shown in the above list, can be compiled and linked in the order
presented in the above. In the following, each source code is presented.
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A.3.1 viscous.f90
! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: viscous.f90 (MODULE) !
! In this file, the shear viscosity function ETA = ETA(SR) is defined and !
! calculated. This information is requested by update.f90. !
! --------------------------------------------------------------------------------- !
MODULE SHEAR_VISCOSITY

IMPLICIT NONE
PRIVATE
PUBLIC :: ETA,VISCOSITY

CONTAINS
! ================================================================================= !
SUBROUTINE ETA(TIME,Lambda,ROS_ij,ROS_ip12j,ROS_im12j,ROS_ijp12,&

ROS_ijm12,ETA_ij,ETA_ip12j,ETA_im12j,ETA_ijp12,ETA_ijm12)

DOUBLE PRECISION,INTENT(IN) :: TIME,Lambda,ROS_ij,ROS_ip12j,ROS_im12j,&
ROS_ijp12,ROS_ijm12

DOUBLE PRECISION,INTENT(OUT) :: ETA_ij,ETA_ip12j,ETA_im12j,ETA_ijp12,&
ETA_ijm12

! --------------------------------------------------------------------------------- !
CALL VISCOSITY(TIME,Lambda,ROS_ij,ETA_ij)
CALL VISCOSITY(TIME,Lambda,ROS_ip12j,ETA_ip12j)
CALL VISCOSITY(TIME,Lambda,ROS_im12j,ETA_im12j)
CALL VISCOSITY(TIME,Lambda,ROS_ijp12,ETA_ijp12)
CALL VISCOSITY(TIME,Lambda,ROS_ijm12,ETA_ijm12)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE ETA
! ================================================================================= !
SUBROUTINE VISCOSITY(TIME_tmp,Lambda_tmp,ROS,ETA)

DOUBLE PRECISION,INTENT(IN) :: TIME_tmp,Lambda_tmp,ROS
DOUBLE PRECISION,INTENT(OUT) :: ETA
DOUBLE PRECISION :: mu,tau,delta,Lambda
! --------------------------------------------------------------------------------- !
! Lambda => Continuation Method (see Section 7.8).
Lambda = Lambda_tmp
! ---------------------------------------------------------
mu = 20.0D0 ! Plastic viscosity [Pa.s].
tau = 150.0D0 ! Yield value [Pa].
delta = 2.0D-3 ! <- The regularization parameter (see Section 7.9).
! ---------------------------------------------------------
ETA = mu + (tau*Lambda)/(ROS + delta)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE VISCOSITY
! ================================================================================= !
END MODULE SHEAR_VISCOSITY
! --------------------------------------------------------------------------------- !
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A.3.2 main.f90

! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: main.f90 (PROGRAM) !
! This is the center of the whole software, holding and passing information to and !
! from the different subroutines. Some subroutines interact directly with each !
! other without going through the channels defined by main.f90 (this applies mostly !
! for the subroutines in the files update.f90, shear.f90 and viscous.f90). !
! The geometry of the viscometer is defined in this part of the software. !
! --------------------------------------------------------------------------------- !
PROGRAM MAIN_ROUTINE

USE ROTATION
USE MATRIX
USE WRITE_INFORMATION

IMPLICIT NONE

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:,:) :: MX1,MX2,MY1,MY2
DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: K1,K2,L1,L2

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:,:) :: VELOCITY_k,VELOCITY_kp12,&
VELOCITY_kp12_new,&
VELOCITY_kp1_new,VELOCITY_kp1

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: &
v1r_ijp1k, v1r_ijk, v1r_ijm1k,&
v1r_ijp1kp12, v1r_ijkp12, v1r_ijm1kp12,&
v1r_c_ijp1k, v1r_c_ijk, v1r_c_ijm1k,&
v1r_c_ijp1kp12, v1r_c_ijkp12, v1r_c_ijm1kp12,&
v2r_ijp1k, v2r_ijk, v2r_ijm1k,&
v2r_ijp1kp12, v2r_ijkp12, v2r_ijm1kp12

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: v1r_ijkp12_new,v2r_ijkp12_new,&
v1r_c_ijkp12_new

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: &
v1z_ip1jkp12, v1z_ijkp12, v1z_im1jkp12,&
v1z_ip1jkp1, v1z_ijkp1, v1z_im1jkp1,&
v1z_c_ip1jkp12, v1z_c_ijkp12, v1z_c_im1jkp12,&
v1z_c_ip1jkp1, v1z_c_ijkp1, v1z_c_im1jkp1,&
v2z_ip1jkp12, v2z_ijkp12, v2z_im1jkp12,&
v2z_ip1jkp1, v2z_ijkp1, v2z_im1jkp1

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: v1z_ijkp1_new,v2z_ijkp1_new,&
v1z_c_ijkp1_new

INTEGER,ALLOCATABLE,DIMENSION(:) :: x_corner,y_corner

DOUBLE PRECISION :: dr,dz,dt,dt_Plastic,dt_Newton,ZERO_TIME,rho,omega,R_i,&
R_i_corner,R_o,h_gap,h_corner,h_R_i,tol,tol_Newton,tol_Plastic,&
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tol_RMS,tol_RMS_active,RMS,vel_norm,small_zero,EPS,a,b,Lambda

INTEGER :: NX,NX_corner,NX1,NX1_corner,NX2,NX2mNX_corner,NY_corner,NY1,&
NY1_corner,NY2,NXY_corner,i,j,k,k_OUTPUT_rms,N_Lambda_MAX,&
N_Lambda,MAX_NUMBER_OF_ITERATIONS,problem,count,count_max,count_rms

LOGICAL :: CONVERGENCE,TIME_INDEPENDENCE,WARNING_SIGN,FALSE_CONVERGENCE

CHARACTER :: IGNORED_INPUT
! --------------------------------------------------------------------------------- !
PRINT *, " ______________________________________________ "
PRINT *, " Viscometric-ViscoPlastic-Flow v1.0 (C3P2) "
PRINT *, " "
PRINT *, " Copyright (C) 2002, Jon E. Wallevik, "
PRINT *, " (jon.wallevik@bygg.ntnu.no) "
PRINT *, " The Norwegian University of Science and Technology (NTNU) "
PRINT *, " Department of Structural Engineering "
PRINT *, " __________________________________________________________ "
PRINT *, " "
PRINT *, " This software is free software; you can redistribute it "
PRINT *, " and/or modify it under the terms of the GNU General Public "
PRINT *, " License as published by the Free Software Foundation; "
PRINT *, " either version 2 of the License, or (at your option) any "
PRINT *, " later version. This software is distributed in the hope "
PRINT *, " that it will be useful, but WITHOUT ANY WARRANTY; without "
PRINT *, " even the implied warranty of MERCHANTABILITY or FITNESS "
PRINT *, " FOR A PARTICULAR PURPOSE. "
PRINT *, " See the GNU General Public License for more details. "
PRINT *, " __________________________________________________________ "
PRINT *, " "
WRITE(*,"(A)",ADVANCE="NO") " PRESS ’ENTER’ TO CONTINUE"
PRINT *, " "
READ (*,"(A)") IGNORED_INPUT
PRINT *, " "
! --------------------------------------------------------------------------------- !
PRINT ’(4X,A49)’, "================================================="
PRINT ’(4X,A49)’, " Solving for the C3P2-Geometry "
PRINT ’(4X,A49)’, "================================================="
PRINT ’(4X,A49)’, " "
! --------------------------------------------------------------------------------- !
! ------------------------- BEGIN OF VARIABLE DECLARATION ------------------------- !
! --------------------------------------------------------------------------------- !
rho = 2354D0 ! kg/m^3 ! <- Note that for a time independent calculations, then

! the value of rho is not physically important (i.e.
! mass inertia plays no role).

! ------------
tol_Newton = 1.0D-3 ! Used as condition for time independence in the Newtonian case.

! Also used as tolerance for the successive substitution
! (in this case it acts as a dummy variable since always two
! successive steps are made for the Newtonian case).

tol_Plastic = 1.0D-10 ! For the successive substitution tolerance (Equation 7.73).
tol_RMS = 1.0D-30 ! Condition for time independence (Equation 7.75).
! ------------
dt_Newton = 1.0D-1
dt_Plastic = 1.0D-5
count_max = 15 ! Maximum number of successive (substitution) iterations,

! for each (pseudotransient) time step k.
R_i = 0.170D0 ! => 17.0 cm = Inner radius of viscometer.
R_o = 0.218D0 ! => 21.8 cm = Outer radius of viscometer.
h_gap = 12.0D-2 ! The gap between the parallel plates -> 12 cm.
h_R_i = 12.0D-3 ! Top edge = 12 mm -> 12.0D-3
h_corner = 2.0D-2 ! Size of corner in z-direction (for example 2.0D-2 -> 2 cm).
dr = 2.0D-3 ! => 2.0 mm = Spacing between grid points in r-direction.
dz = 2.0D-3 ! => - " - = Spacing between grid points in z-direction.
! ------------
ZERO_TIME = 4.00D0
k_OUTPUT_rms = 100 ! -> Information output every dt_OUTPUT_rms times (to console and file).
! ------------
! The term "small_zero" does usually not have to be changed.
small_zero = 0.1D-7 ! -> Used in relation to screen and file output.
EPS = 1.0D-15 ! -> Used in relation to vel_norm.
! --------------------------------------------------------------------------------- !
! -------------------------- END OF VARIABLE DECLARATION -------------------------- !
! --------------------------------------------------------------------------------- !
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NXY_corner = IDNINT(h_corner/dz) ! -> 2.0/0.2 = 10
NX1_corner = IDNINT(R_i/dr) + 1 ! -> 17.0/0.2 + 1 = 86
NX1 = NX1_corner - NXY_corner ! -> 86 - 10 = 76
NX2 = IDNINT(R_o/dr) + 1 ! -> 21.8/0.2 + 1 = 110
NX = NX2 - NX1_corner + 1 ! -> 110 - 86 + 1 = 25
NY1_corner = IDNINT(h_gap/dz) + 1 ! -> 12.0/0.2 + 1 = 61
NY1 = NY1_corner + NXY_corner ! -> 61 + 10 = 71
NY2 = NY1 + IDNINT(h_R_i/dz) ! -> 71 + 4 = 75
R_i = dr*DBLE(NX1_corner-1)
R_o = dr*DBLE(NX2-1)
! --------------------------------------------------------------------------------- !
CALL ANGULAR_VELOCITY(0.0D0,dt,omega)
! --------------------------------------------------------------------------------- !
ALLOCATE(x_corner(NY1-NY1_corner),y_corner(NX1_corner-NX1),stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 0 in main and execution terminated! "
STOP

END IF
! --------------------------------------------------------------------------------- !
! x_corner = NX1_corner - (/11,10,9,8,7,6,5,4,3,2/)
DO j = NY1_corner,NY1-1

k = j - NY1_corner + 1 ! k=1,10
x_corner(k) = (NX1_corner - NX1 + 2) - k

! x_corner = (/11,10,9,8,7,6,5,4,3,2/)
END DO
x_corner = NX1_corner - x_corner
DO i = NX1,NX1_corner-1

k = i - NX1 + 1 ! k=1,10
y_corner(k) = (NY1 - NY1_corner + 1) - k

END DO
y_corner = NY1_corner + y_corner
! --------------------------------------------------------------------------------- !
12 FORMAT(8X,"NX1 = ",(I3,1X),"; NX1_corner = ",(I3,1X),"; NX2 = ",(I3,1X))
13 FORMAT(8X,"NY1 = ",(I3,1X),"; NY1_corner = ",(I3,1X),"; NY2 = ",(I3,1X))
14 FORMAT(8X,"R_i = ",F6.4,"m ; R_o = ",F6.4,"m")
15 FORMAT(8X,"NX = ",(I3,1X),"; dr = ",F7.5,"m","; dz = ",F7.5,"m")
16 FORMAT(8X,"h_gap = ",F6.4,"m ; h_R_i = ",F6.4,"m")
17 FORMAT(8X,"h_corner = ",F6.4,"m")
18 FORMAT(8X,"dt_Plastic = ",E9.3,"s; f_o = ",F6.4,"rps")
PRINT ’(7X,A26)’,"Geometric and time values:"
PRINT 12, NX1,NX1_corner,NX2
PRINT 13, NY1,NY1_corner,NY2
PRINT 14, R_i,R_o
PRINT 15, NX,dr,dz
PRINT 16, dz*(NY1_corner-1),dz*(NY2-NY1)
PRINT 17, dz*(NY1 - NY1_corner)
PRINT 18, dt_Plastic,omega/(2.0D0*ACOS(-1.0D0))
PRINT *, " "
! --------------------------------------------------------------------------------- !
IF (NX1_corner.GE.NX2) THEN

PRINT *, " Inner radius ’R_i’ is larger or equal to the outer radius ’R_o’! "
PRINT *, " TERMINAL ERROR! "
STOP

END IF

20 FORMAT(2X,"h_R_i = ",F7.5,"m (h_R_i < 3dz)")
21 FORMAT(2X,"Increase h_R_i up to ",F7.5,"m")
IF (h_R_i.LT.6.0D0*dz) THEN

PRINT 20, h_R_i
PRINT 21, 6.0D0*dz
PRINT *, " TERMINAL ERROR! "
STOP

END IF

CALL WARNING_FOR_WRITING(NY2)
! --------------------------------------------------------------------------------- !
MAX_NUMBER_OF_ITERATIONS = IDNINT(ZERO_TIME/dt_Plastic)

PRINT *, " ------------------------------------------- "
PRINT "( ’ MAX_NUMBER_OF_ITERATIONS: ’, I10 ) ",&

MAX_NUMBER_OF_ITERATIONS
PRINT *, " ------------------------------------------- "
PRINT *, " "
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PRINT *, " ___________________________ "
WRITE(*,"(A)",ADVANCE="NO") " PRESS ’ENTER’ TO CONTINUE"
PRINT *, " "
READ (*,"(A)") IGNORED_INPUT
PRINT *, " "
! --------------------------------------------------------------------------------- !
! Creating log file and making the first entry:
OPEN(unit=8,file="log.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: log.dat! "
STOP

ELSE
WRITE (unit=8,fmt=*) 0,0.0D0

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
ALLOCATE(MX1(NX2-2,NX2-2),MX2(NX-2,NX-2),MY1(NY1_corner-2,NY1_corner-2),&

MY2(NY2-2,NY2-2),VELOCITY_k(NX2,NY2),VELOCITY_kp12(NX2,NY2),&
VELOCITY_kp12_new(NX2,NY2),VELOCITY_kp1(NX2,NY2),&
VELOCITY_kp1_new(NX2,NY2),stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 1 in main and execution terminated! "
STOP

END IF

ALLOCATE(K1(NX2-2),K2(NX-2),L1(NY1_corner-2),L2(NY2-2),stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 2 in main and execution terminated! "
STOP

END IF

ALLOCATE(v1r_ijp1k(NX2), v1r_ijk(NX2), v1r_ijm1k(NX2),&
v1r_ijp1kp12(NX2), v1r_ijkp12(NX2), v1r_ijm1kp12(NX2),&
v1r_c_ijp1k(NX2), v1r_c_ijk(NX2), v1r_c_ijm1k(NX2),&
v1r_c_ijp1kp12(NX2), v1r_c_ijkp12(NX2), v1r_c_ijm1kp12(NX2),&
v2r_ijp1k(NX), v2r_ijk(NX), v2r_ijm1k(NX),&
v2r_ijp1kp12(NX), v2r_ijkp12(NX), v2r_ijm1kp12(NX),stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 3 in main and execution terminated! "
STOP

END IF

ALLOCATE(v1r_ijkp12_new(NX2-2),v1r_c_ijkp12_new(NX2-2),v2r_ijkp12_new(NX-2),stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 4 in main and execution terminated! "
STOP

END IF

ALLOCATE(v1z_ip1jkp12(NY1_corner), v1z_ijkp12(NY1_corner), v1z_im1jkp12(NY1_corner),&
v1z_ip1jkp1(NY1_corner), v1z_ijkp1(NY1_corner), v1z_im1jkp1(NY1_corner),&
v1z_c_ip1jkp12(NY2), v1z_c_ijkp12(NY2), v1z_c_im1jkp12(NY2),&
v1z_c_ip1jkp1(NY2), v1z_c_ijkp1(NY2), v1z_c_im1jkp1(NY2),&
v2z_ip1jkp12(NY2), v2z_ijkp12(NY2), v2z_im1jkp12(NY2),&
v2z_ip1jkp1(NY2), v2z_ijkp1(NY2), v2z_im1jkp1(NY2),stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 5 in main and execution terminated! "
STOP

END IF

ALLOCATE(v1z_ijkp1_new(NY1_corner-2),v1z_c_ijkp1_new(NY2-2),&
v2z_ijkp1_new(NY2-2),stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not allocate space! "
PRINT *," Error code 6 in main and execution terminated! "
STOP

END IF

URN:NBN:no-3374



352 APPENDIX A. SOURCE CODE

! --------------------------------------------------------------------------------- !
! Initialization:
! ================================================================================= !
MX1 = 0.0D0
MX2 = 0.0D0
K1 = 0.0D0
K2 = 0.0D0

VELOCITY_k = 0.0D0
VELOCITY_kp12 = 0.0D0
VELOCITY_kp12_new = 0.0D0
! --------------------------------------------------------------------------------- !
v1r_ijkp12_new = 0.0D0
v1r_c_ijkp12_new = 0.0D0
v2r_ijkp12_new = 0.0D0

! v1r is used in K1 and MX1 -> K1=K1(v1r) and MX1=MX1(v1r) to solve the system
! MX1*v1r_new=K1. "v1r" could be called "v1r_old" since it is the velocity
! from the previous iteration.
v1r_ijp1k = 0.0D0 ! v1r -> K1 & MX1*v1r_new=K1
v1r_ijk = 0.0D0
v1r_ijm1k = 0.0D0
v1r_ijp1kp12 = 0.0D0
v1r_ijkp12 = 0.0D0
v1r_ijm1kp12 = 0.0D0
! --------------------------------------------------------------------------------- !
v1r_c_ijp1k = 0.0D0 ! v1r_c -> K1(1:x) & MX1(1:x)*v1r_c_new(1:x)=K1(1:x)
v1r_c_ijk = 0.0D0 ! ..._c -> ..._corner
v1r_c_ijm1k = 0.0D0
v1r_c_ijp1kp12 = 0.0D0
v1r_c_ijkp12 = 0.0D0
v1r_c_ijm1kp12 = 0.0D0

v2r_ijp1k = 0.0D0 ! v2r -> K2 & MX2*v2r_new=K2
v2r_ijk = 0.0D0
v2r_ijm1k = 0.0D0
v2r_ijp1kp12 = 0.0D0
v2r_ijkp12 = 0.0D0
v2r_ijm1kp12 = 0.0D0
! ================================================================================= !
MY1 = 0.0D0
MY2 = 0.0D0
L1 = 0.0D0
L2 = 0.0D0

VELOCITY_kp1 = 0.0D0
VELOCITY_kp1_new = 0.0D0
! --------------------------------------------------------------------------------- !
v1z_ijkp1_new = 0.0D0
v1z_c_ijkp1_new = 0.0D0
v2z_ijkp1_new = 0.0D0

! v1z is used in L1 and MY1 -> L1=L1(v1z) and MY1=MY1(v1z) to solve the system
! MY1*v1z_new=L1. "v1z" could be called "v1z_old" since it is the velocity
! from the previous iteration.
v1z_ip1jkp12 = 0.0D0
v1z_ijkp12 = 0.0D0
v1z_im1jkp12 = 0.0D0
v1z_ip1jkp1 = 0.0D0
v1z_ijkp1 = 0.0D0
v1z_im1jkp1 = 0.0D0
! --------------------------------------------------------------------------------- !
v1z_c_ip1jkp12 = 0.0D0 ! v1z_c -> L1(1:y) & MY1(1:y)*v1z_c_new(1:y)=L1(1:y)
v1z_c_ijkp12 = 0.0D0 ! ..._c -> ..._corner
v1z_c_im1jkp12 = 0.0D0
v1z_c_ip1jkp1 = 0.0D0
v1z_c_ijkp1 = 0.0D0
v1z_c_im1jkp1 = 0.0D0

v2z_ip1jkp12 = 0.0D0 ! v2z -> L2 & MY2*v2z_new=L2
v2z_ijkp12 = 0.0D0
v2z_im1jkp12 = 0.0D0
v2z_ip1jkp1 = 0.0D0
v2z_ijkp1 = 0.0D0
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v2z_im1jkp1 = 0.0D0
! ================================================================================= !
WARNING_SIGN = .FALSE.
FALSE_CONVERGENCE = .FALSE.
! --------------------------------------------------------------------------------- !
! Initialization of boundary condition at t = 0.0 sec:
CALL ANGULAR_VELOCITY(0.0D0,dt,omega)
! Dirichlet boundary condition:

DO i = 1,NX2
VELOCITY_k(i,1) = omega*DBLE(i-1)*dr

END DO
VELOCITY_k(NX2,:) = R_o*omega

! ################################################################################# !
! In Section 7.11.1 is a detailed description of the algorithm, which is used in !
! the following. !
! --------------------------------------------------------------------------------- !
! Linear approximation to speed up convergence:
DO i = 2,NX1

a = VELOCITY_k(i,1)
b = VELOCITY_k(i,NY1_corner)
DO j = 2,NY1_corner-1

VELOCITY_k(i,j) = a - (a - b)*DBLE(j-1)/DBLE(NY1_corner-1)
END DO

END DO

DO i = NX1+1,NX1_corner
NY_corner = y_corner(NX1_corner - i + 1)
a = VELOCITY_k(i,1)
b = VELOCITY_k(i,NY_corner)
DO j = 2,NY_corner-1

VELOCITY_k(i,j) = a - (a - b)*DBLE(j-1)/DBLE(NY_corner-1)
END DO

END DO

DO j = 2,NY2-1
a = VELOCITY_k(NX1_corner,j)
b = VELOCITY_k(NX2,j)
DO i = NX1_corner+1,NX2-1

VELOCITY_k(i,j) = a - (a - b)*DBLE(i-NX1_corner)/DBLE(NX2-NX1_corner)
END DO

END DO

! Neumann boundary condition:
VELOCITY_k(NX1_corner+1:NX2-1,NY2) = (4.0D0 * &

VELOCITY_k(NX1_corner+1:NX2-1,NY2-1) - &
VELOCITY_k(NX1_corner+1:NX2-1,NY2-2))/3.0D0

! CHECK OUT IF VELOCITY_k IS OK:
! CALL WRITE2FILE_k(VELOCITY_k,NX2)
! STOP
! --------------------------------------------------------------------------------- !
VELOCITY_kp12 = VELOCITY_k
VELOCITY_kp12_new = VELOCITY_k
VELOCITY_kp1_new = VELOCITY_k
VELOCITY_kp1 = VELOCITY_k
! ================================================================================= !
! ============================ Begin of CONTINUATION ============================== !
! ================================================================================= !
N_Lambda_MAX = 1
CONTINUATION: DO N_Lambda = 0,N_Lambda_MAX
! Lambda => The Continuation Method (see Section 7.8).
Lambda = DBLE(N_Lambda)/DBLE(N_Lambda_MAX)
PRINT *,"________________________________________________________"
PRINT *,"CONTINUATION:",Lambda

IF (N_Lambda == 0) THEN
dt = dt_Newton
tol = tol_Newton
tol_RMS_active = tol_Newton

ELSE
dt = dt_Plastic
tol = tol_Plastic
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tol_RMS_active = tol_RMS
END IF

TIME_INDEPENDENCE = .FALSE.
! Initializing time for each CONTINUATION step:
k = 0
! ================================================================================= !
! =========================== Begin of the time loop ============================== !
! ================================================================================= !
ZERO_TIME_LOOP: DO WHILE (.NOT.TIME_INDEPENDENCE)
CONVERGENCE = .FALSE.
! ---------------------------------------------------------
IF (ABS(MOD((k+1),k_OUTPUT_rms)).LT.small_zero) THEN

PRINT *,"________________________________________________________"
PRINT *," "
PRINT *," PSEUDO-TRANSIENT time step: k+1 = ",k+1
PRINT *,"--------------------------------------------------------"

END IF
! --------------------------------------------------------------------------------- !
count = 0
! ================================================================================= !
! ====================== BEGIN OF SUCCESSIVE SUBSTITUTION ========================= !
! ================================================================================= !
! The iteration loop here is because of the non-linearity of the governing
! Equations 7.22 and 7.23. To come around this problem, the successive substitution
! approach is used (see Section 7.8).
SUBSTITUTION: DO WHILE (.NOT.CONVERGENCE)

! If convergence is a problem, then this might help:
! VELOCITY_kp12 = (VELOCITY_k + VELOCITY_kp1_new)/2
count = count + 1
10 FORMAT(4X,"Successive substitution number = ",1(I3,1X))

IF (ABS(MOD((k+1),k_OUTPUT_rms)).LT.small_zero) THEN
PRINT 10, count

END IF

! ========================== BEGIN OF X-ITERATION ======================= !
! Iteration is made along r-direction (i.e. along the i-direction as
! in A(i,j)). It starts at the bottom of the viscometer i=(2:NX2-1) at
! j = 2 and then move upward with increasing j (see Figure 10.29).

! -------------------------- BEGIN OF X-GAP-AREA ------------------------ !
DO j = 2,NY1_corner-1

v1r_ijp1k = VELOCITY_k(:,j+1)
v1r_ijk = VELOCITY_k(:,j)
v1r_ijm1k = VELOCITY_k(:,j-1)
v1r_ijp1kp12 = VELOCITY_kp12(:,j+1)
v1r_ijkp12 = VELOCITY_kp12(:,j)
v1r_ijm1kp12 = VELOCITY_kp12(:,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,0.0D0,dz,NX2,v1r_ijp1k,v1r_ijk,&
v1r_ijm1k,v1r_ijp1kp12,v1r_ijkp12,v1r_ijm1kp12,MX1,K1)

CALL MATRIX_SOLVER(MX1,K1,v1r_ijkp12_new,NX2-2)

VELOCITY_kp12_new(2:NX2-1,j) = v1r_ijkp12_new
END DO
! -------------------------- END OF X-GAP-AREA -------------------------- !

! -------------------------- BEGIN OF X-CORNER -------------------------- !
DO j = NY1_corner,NY1-1

NX_corner = x_corner(j - NY1_corner + 1)
R_i_corner = NX_corner*dr
NX2mNX_corner = NX2 - NX_corner
v1r_c_ijp1k(1:NX2mNX_corner) = VELOCITY_k(NX_corner+1:NX2,j+1)
v1r_c_ijk(1:NX2mNX_corner) = VELOCITY_k(NX_corner+1:NX2,j)
v1r_c_ijm1k(1:NX2mNX_corner) = VELOCITY_k(NX_corner+1:NX2,j-1)
v1r_c_ijp1kp12(1:NX2mNX_corner) = VELOCITY_kp12(NX_corner+1:NX2,j+1)
v1r_c_ijkp12(1:NX2mNX_corner) = VELOCITY_kp12(NX_corner+1:NX2,j)
v1r_c_ijm1kp12(1:NX2mNX_corner) = VELOCITY_kp12(NX_corner+1:NX2,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,R_i_corner,dz,NX2mNX_corner,v1r_c_ijp1k,&
v1r_c_ijk,v1r_c_ijm1k,v1r_c_ijp1kp12,v1r_c_ijkp12,v1r_c_ijm1kp12,MX1,K1)

CALL MATRIX_SOLVER(MX1,K1,v1r_c_ijkp12_new,NX2mNX_corner-2)
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VELOCITY_kp12_new(NX_corner+2:NX2-1,j) = v1r_c_ijkp12_new(1:NX2mNX_corner-2)
END DO
! -------------------------- END OF X-CORNER ---------------------------- !

! -------------------------- BEGIN OF X-OPEN-AREA ----------------------- !
DO j = NY1,NY2-1

v2r_ijp1k = VELOCITY_k(NX1_corner:NX2,j+1)
v2r_ijk = VELOCITY_k(NX1_corner:NX2,j)
v2r_ijm1k = VELOCITY_k(NX1_corner:NX2,j-1)
v2r_ijp1kp12 = VELOCITY_kp12(NX1_corner:NX2,j+1)
v2r_ijkp12 = VELOCITY_kp12(NX1_corner:NX2,j)
v2r_ijm1kp12 = VELOCITY_kp12(NX1_corner:NX2,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,R_i,dz,NX,v2r_ijp1k,v2r_ijk,&
v2r_ijm1k,v2r_ijp1kp12,v2r_ijkp12,v2r_ijm1kp12,MX2,K2)

CALL MATRIX_SOLVER(MX2,K2,v2r_ijkp12_new,NX-2)

VELOCITY_kp12_new(NX1_corner+1:NX2-1,j) = v2r_ijkp12_new
END DO

j = NY2
v2r_ijp1k = VELOCITY_k(NX1_corner:NX2,j-1) ! => v(i,j+1) = v(i,j-1)
v2r_ijk = VELOCITY_k(NX1_corner:NX2,j)
v2r_ijm1k = VELOCITY_k(NX1_corner:NX2,j-1) ! => v(i,j+1) = v(i,j-1)
v2r_ijp1kp12 = VELOCITY_kp12(NX1_corner:NX2,j-1) ! => v(i,j+1) = v(i,j-1)
v2r_ijkp12 = VELOCITY_kp12(NX1_corner:NX2,j)
v2r_ijm1kp12 = VELOCITY_kp12(NX1_corner:NX2,j-1) ! => v(i,j+1) = v(i,j-1)

CALL MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,R_i,dz,NX,v2r_ijp1k,v2r_ijk,&
v2r_ijm1k,v2r_ijp1kp12,v2r_ijkp12,v2r_ijm1kp12,MX2,K2)

CALL MATRIX_SOLVER(MX2,K2,v2r_ijkp12_new,NX-2)

VELOCITY_kp12_new(NX1_corner+1:NX2-1,j) = v2r_ijkp12_new
! -------------------------- END OF X-OPEN-AREA ------------------------- !

! --------- PAUSE FOR DEBUGGING ---------
! CALL WRITE2FILE_k(VELOCITY_kp12_new,NX2)
! WRITE(*,"(A)",ADVANCE="NO") " PRESS ’ENTER’ TO CONTINUE "
! PRINT *, " "
! READ (*,"(A)") IGNORED_INPUT
! PRINT *, " "

! ========================== END OF X-ITERATION ========================= !

! Updating ..._kp12:
VELOCITY_kp12 = VELOCITY_kp12_new

! ========================== BEGIN OF Y-ITERATION ======================= !
! Iteration is made along z-direction (i.e. along the j-direction as
! in A(i,j)). It starts at the right side of the viscometer j=(2:NY2-1) at
! i = NX2-1 and then moves to the left with decreasing i (see Figure 10.29).

! -------------------------- BEGIN OF Y-OPEN-AREA ----------------------- !
DO i = NX2-1,NX1_corner+1,-1

v2z_ip1jkp12 = VELOCITY_kp12(i+1,:)
v2z_ijkp12 = VELOCITY_kp12(i,:)
v2z_im1jkp12 = VELOCITY_kp12(i-1,:)
v2z_ip1jkp1 = VELOCITY_kp1(i+1,:)
v2z_ijkp1 = VELOCITY_kp1(i,:)
v2z_im1jkp1 = VELOCITY_kp1(i-1,:)

CALL MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY2,v2z_ip1jkp12,v2z_ijkp12,&
v2z_im1jkp12,v2z_ip1jkp1,v2z_ijkp1,v2z_im1jkp1,MY2,L2,.TRUE.)

CALL MATRIX_SOLVER(MY2,L2,v2z_ijkp1_new,NY2-2)

VELOCITY_kp1_new(i,2:NY2-1) = v2z_ijkp1_new
END DO

! v(i,j+1) = v(i,j-1) =>
VELOCITY_kp1_new(NX1_corner+1:NX2-1,NY2) = VELOCITY_kp1_new(NX1_corner+1:NX2-1,NY2-2)
! -------------------------- END OF Y-OPEN-AREA ------------------------- !

! -------------------------- BEGIN OF Y-CORNER -------------------------- !
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DO i = NX1_corner,NX1+1,-1
NY_corner = y_corner(NX1_corner - i + 1)
v1z_c_ip1jkp12(1:NY_corner) = VELOCITY_kp12(i+1,1:NY_corner)
v1z_c_ijkp12(1:NY_corner) = VELOCITY_kp12(i,1:NY_corner)
v1z_c_im1jkp12(1:NY_corner) = VELOCITY_kp12(i-1,1:NY_corner)
v1z_c_ip1jkp1(1:NY_corner) = VELOCITY_kp1(i+1,1:NY_corner)
v1z_c_ijkp1(1:NY_corner) = VELOCITY_kp1(i,1:NY_corner)
v1z_c_im1jkp1(1:NY_corner) = VELOCITY_kp1(i-1,1:NY_corner)

CALL MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY_corner,v1z_c_ip1jkp12,v1z_c_ijkp12,&
v1z_c_im1jkp12,v1z_c_ip1jkp1,v1z_c_ijkp1,v1z_c_im1jkp1,MY2,L2,.FALSE.)

CALL MATRIX_SOLVER(MY2,L2,v1z_c_ijkp1_new,NY_corner-2)

VELOCITY_kp1_new(i,2:NY_corner-1) = v1z_c_ijkp1_new(1:NY_corner-2)
END DO
! -------------------------- END OF Y-CORNER ---------------------------- !

! -------------------------- BEGIN OF Y-GAP-AREA ------------------------ !
DO i = NX1,2,-1

v1z_ip1jkp12 = VELOCITY_kp12(i+1,1:NY1_corner)
v1z_ijkp12 = VELOCITY_kp12(i,1:NY1_corner)
v1z_im1jkp12 = VELOCITY_kp12(i-1,1:NY1_corner)
v1z_ip1jkp1 = VELOCITY_kp1(i+1,1:NY1_corner)
v1z_ijkp1 = VELOCITY_kp1(i,1:NY1_corner)
v1z_im1jkp1 = VELOCITY_kp1(i-1,1:NY1_corner)

CALL MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY1_corner,v1z_ip1jkp12,v1z_ijkp12,&
v1z_im1jkp12,v1z_ip1jkp1,v1z_ijkp1,v1z_im1jkp1,MY1,L1,.FALSE.)

CALL MATRIX_SOLVER(MY1,L1,v1z_ijkp1_new,NY1_corner-2)

VELOCITY_kp1_new(i,2:NY1_corner-1) = v1z_ijkp1_new
END DO
! -------------------------- END OF Y-GAP-AREA -------------------------- !

! --------- PAUSE FOR DEBUGGING ---------
! CALL WRITE2FILE_k(VELOCITY_kp12_new,NX2)
! WRITE(*,"(A)",ADVANCE="NO") " PRESS ’ENTER’ TO CONTINUE "
! PRINT *, " "
! READ (*,"(A)") IGNORED_INPUT
! PRINT *, " "

! ========================== END OF Y-ITERATION ========================= !

CONVERGENCE = .TRUE.

! Settings for testing of convergence:
RMS = 0.0D0
vel_norm = 1.0D0

S1: DO j = 2,NY1_corner-1
DO i = 2,NX1_corner

vel_norm = (VELOCITY_kp1_new(i,j) + VELOCITY_kp1(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1_new(i,j) - VELOCITY_kp1(i,j))/vel_norm)**2.0D0
IF (RMS > tol) THEN

CONVERGENCE = .FALSE.
EXIT S1

END IF
END DO

END DO S1

IF (CONVERGENCE) THEN
S2: DO j = NY1_corner,NY1-1

NX_corner = x_corner(j - NY1_corner + 1)
DO i = NX_corner+2,NX1_corner

vel_norm = (VELOCITY_kp1_new(i,j) + VELOCITY_kp1(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1_new(i,j) - VELOCITY_kp1(i,j))/vel_norm)**2.0D0
IF (RMS > tol) THEN

CONVERGENCE = .FALSE.
EXIT S2

END IF
END DO

END DO S2
END IF
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IF (CONVERGENCE) THEN
S3: DO j = NY1_corner,NY2-1

DO i = NX1_corner+1,NX2-1
vel_norm = (VELOCITY_kp1_new(i,j) + VELOCITY_kp1(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1_new(i,j) - VELOCITY_kp1(i,j))/vel_norm)**2.0D0
IF (RMS > tol) THEN

CONVERGENCE = .FALSE.
EXIT S3

END IF
END DO

END DO S3
END IF

IF (count == count_max) THEN
CONVERGENCE = .TRUE.
FALSE_CONVERGENCE = .TRUE.
PRINT *, "WARNING: FALSE CONVERGENCE! TIME STEP k= ", k
PRINT *, "Maximum amount of successive substitutions is = ", count_max
PRINT *, " ---------------------------------------------------------- "
PRINT *, " RECOMMENDATION: Kill this application and reduce the time "
PRINT *, " step by an order of magnitude: dt -> dt/10 "
PRINT *, " ---------------------------------------------------------- "

END IF

! Updating ..._kp1
VELOCITY_kp1 = VELOCITY_kp1_new

! CALL WRITE2FILE_k(VELOCITY_k,NX2)

END DO SUBSTITUTION
! ================================================================================= !
! ======================= END OF SUCCESSIVE SUBSTITUTION ========================== !
! ================================================================================= !
count_rms = 0
RMS = 0.0D0
vel_norm = 1.0D0

DO j = 2,NY1_corner-1
DO i = 2,NX1_corner

count_rms = count_rms + 1
vel_norm = (VELOCITY_kp1(i,j) + VELOCITY_k(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1(i,j) - VELOCITY_k(i,j))/vel_norm)**2.0D0 + RMS

END DO
END DO

DO j = NY1_corner,NY1-1
NX_corner = x_corner(j - NY1_corner + 1)
DO i = NX_corner+2,NX1_corner

count_rms = count_rms + 1
vel_norm = (VELOCITY_kp1(i,j) + VELOCITY_k(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1(i,j) - VELOCITY_k(i,j))/vel_norm)**2.0D0 + RMS

END DO
END DO

DO j = NY1_corner,NY2-1
DO i = NX1_corner+1,NX2-1

count_rms = count_rms + 1
vel_norm = (VELOCITY_kp1(i,j) + VELOCITY_k(i,j))/2.0D0 + EPS
RMS = ((VELOCITY_kp1(i,j) - VELOCITY_k(i,j))/vel_norm)**2.0D0 + RMS

END DO
END DO

RMS = DSQRT(RMS/count_rms)
! ------------
IF (ABS(MOD((k+1),k_OUTPUT_rms)).LT.small_zero) THEN

PRINT *, " RMS =", RMS
CALL WRITE2FILE_rms(k+1,RMS)

END IF
! ------------
IF (RMS.LT.tol_RMS_active) THEN

TIME_INDEPENDENCE = .TRUE.
ELSE

TIME_INDEPENDENCE = .FALSE.
END IF
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! ------------
IF (k == MAX_NUMBER_OF_ITERATIONS) THEN

TIME_INDEPENDENCE = .TRUE.
WARNING_SIGN = .TRUE.

END IF
! ------------
VELOCITY_k = VELOCITY_kp1_new
k = k + 1
! ------------
! CALL WRITE2FILE_k(VELOCITY_k,NX2)
! STOP
END DO ZERO_TIME_LOOP
! ================================================================================= !
! ============================ End of the time loop =============================== !
! ================================================================================= !
END DO CONTINUATION
! ================================================================================= !
! ============================= End of CONTINUATION =============================== !
! ================================================================================= !
IF (WARNING_SIGN) THEN

PRINT *, " --------------------------------------------------------- "
PRINT *, " WARNING: k = MAX_NUMBER_OF_ITERATIONS; See log.dat "
PRINT *, " RECOMMENDATION: Rerun this application with reduced time "
PRINT *, " step. Try order of magnitude less: dt -> dt/10 "
PRINT *, " --------------------------------------------------------- "

END IF

IF (FALSE_CONVERGENCE) THEN
PRINT *, " --------------------------------------------------------- "
PRINT *, " WARNING: FALSE CONVERGENCE WAS ACHIEVED. Reduce the time "
PRINT *, " step by order of magnitude: dt -> dt/10 and then rerun "
PRINT *, " the application. "
PRINT *, " --------------------------------------------------------- "

END IF

PRINT *, " PSEUDO-TRANSIENT CALCULATION FINISHED! "
PRINT *, " -------------------------------------- "

PRINT *, " Number of grid points:", count_rms
PRINT *, " "
PRINT *, " WRITING INFORMATION TO FILE, STAND BY... "
CALL WRITE2FILE_k(VELOCITY_k,NX2)
CALL WRITE2FILE_kp1(VELOCITY_k,NX1,NX1_corner,NX2,NY1,NY1_corner,NY2,dr,dz)
PRINT *, " ...DONE! "

! --------------------------------------------------------------------------------- !
! CLEARING SOME MAJOR VARIABLES FROM THE RANDOM ACCESS MEMORY:
DEALLOCATE(x_corner,y_corner,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 7 in main and execution terminated! "

END IF

DEALLOCATE(MX1,MX2,MY1,MY2,VELOCITY_k,VELOCITY_kp12,VELOCITY_kp12_new,&
VELOCITY_kp1,VELOCITY_kp1_new,stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 8 in main! "

END IF

DEALLOCATE(K1,K2,L1,L2,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 9 in main! "

END IF

DEALLOCATE(v1r_ijp1k, v1r_ijk, v1r_ijm1k,&
v1r_ijp1kp12, v1r_ijkp12, v1r_ijm1kp12,&
v1r_c_ijp1k, v1r_c_ijk, v1r_c_ijm1k,&
v1r_c_ijp1kp12, v1r_c_ijkp12, v1r_c_ijm1kp12,&
v2r_ijp1k, v2r_ijk, v2r_ijm1k,&
v2r_ijp1kp12, v2r_ijkp12, v2r_ijm1kp12,stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
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PRINT *," Error code 10 in main! "
END IF

DEALLOCATE(v1r_ijkp12_new,v1r_c_ijkp12_new,v2r_ijkp12_new,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 11 in main! "

END IF

DEALLOCATE(v1z_ip1jkp12, v1z_ijkp12, v1z_im1jkp12,&
v1z_ip1jkp1, v1z_ijkp1, v1z_im1jkp1,&
v1z_c_ip1jkp12, v1z_c_ijkp12, v1z_c_im1jkp12,&
v1z_c_ip1jkp1, v1z_c_ijkp1, v1z_c_im1jkp1,&
v2z_ip1jkp12, v2z_ijkp12, v2z_im1jkp12,&
v2z_ip1jkp1, v2z_ijkp1, v2z_im1jkp1,stat=problem)

IF (problem/=0) THEN
PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 12 in main! "

END IF

DEALLOCATE(v1z_ijkp1_new,v1z_c_ijkp1_new,v2z_ijkp1_new,stat=problem)
IF (problem/=0) THEN

PRINT *," MAIN_ROUTINE says: The program could not deallocate space! "
PRINT *," Error code 13 in main! "

END IF

PRINT *, " EXECUTION FINISHED! "
! --------------------------------------------------------------------------------- !
END PROGRAM MAIN_ROUTINE
! --------------------------------------------------------------------------------- !
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A.3.3 shear.f90

! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: shear.f90 (MODULE) [is the same to what is shown in Appendix A.2.6] !
! This routine calculates the shear rate SR(i,j) from the computed velocity profile !
! VELOCITY_k(i,j). It is the program update.f90 that makes the request. !
! See Section 7.5 about the formulas for the shear rate (SR). Note that ROS and SR !
! means the same thing: ROS = rate of shear = SR = shear rate. !
! --------------------------------------------------------------------------------- !
MODULE SHEAR_RATE

IMPLICIT NONE
PRIVATE
PUBLIC :: SR

CONTAINS
! ================================================================================= !
SUBROUTINE SR(rp1,r,rm1,dr,dz,V_ij,V_ip1j,V_im1j,V_ijp1,V_ijm1,V_ip1jp1,V_ip1jm1,&

V_im1jp1,V_im1jm1,SR_ij,SR_ip12j,SR_im12j,SR_ijp12,SR_ijm12)

DOUBLE PRECISION,INTENT(IN) :: rp1,r,rm1,dr,dz,V_ij,&
V_ip1j, V_im1j, V_ijp1, V_ijm1,&
V_ip1jp1, V_ip1jm1, V_im1jp1, V_im1jm1

DOUBLE PRECISION,INTENT(OUT) :: SR_ij, SR_ip12j, SR_im12j, SR_ijp12, SR_ijm12
DOUBLE PRECISION :: SR1_ij, SR2_ij, SR1_ip12j, SR2_ip12j,&

SR1_im12j, SR2_im12j, SR1_ijp12,&
SR2_ijp12, SR1_ijm12, SR2_ijm12

! --------------------------------------------------------------------------------- !
SR1_ij = (V_ip1j - V_im1j)/(2.0D0*dr) - V_ij/r
SR2_ij = (V_ijp1 - V_ijm1)/(2.0D0*dz)
SR_ij = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

SR1_ip12j = (V_ip1j - V_ij)/dr - (V_ip1j + V_ij)/(rp1 + r)
SR2_ip12j = (V_ip1jp1 + V_ijp1 - V_ip1jm1 - V_ijm1)/(4.0D0*dz)
SR_ip12j = DSQRT(SR1_ip12j**2.0D0 + SR2_ip12j**2.0D0)

SR1_im12j = (V_ij - V_im1j)/dr - (V_ij + V_im1j)/(r + rm1)
SR2_im12j = (V_ijp1 + V_im1jp1 - V_ijm1 - V_im1jm1)/(4.0D0*dz)
SR_im12j = DSQRT(SR1_im12j**2.0D0 + SR2_im12j**2.0D0)

SR1_ijp12 = (V_ip1jp1 + V_ip1j - V_im1jp1 - &
V_im1j)/(4.0D0*dr) - (V_ijp1 + V_ij)/(2.0D0*r)

SR2_ijp12 = (V_ijp1 - V_ij)/dz
SR_ijp12 = DSQRT(SR1_ijp12**2.0D0 + SR2_ijp12**2.0D0)

SR1_ijm12 = (V_ip1j + V_ip1jm1 - V_im1j - &
V_im1jm1)/(4.0D0*dr) - (V_ij + V_ijm1)/(2.0D0*r)

SR2_ijm12 = (V_ij - V_ijm1)/dz
SR_ijm12 = DSQRT(SR1_ijm12**2.0D0 + SR2_ijm12**2.0D0)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE SR
! ================================================================================= !
END MODULE SHEAR_RATE
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A.3.4 motion.f90
! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: motion.f90 (MODULE) !
! The information about the (constant) angular velocity "omega" is requested by the !
! routine main.f90. !
! --------------------------------------------------------------------------------- !
MODULE ROTATION

IMPLICIT NONE
PRIVATE
PUBLIC :: ANGULAR_VELOCITY

CONTAINS
! ================================================================================= !
SUBROUTINE ANGULAR_VELOCITY(double_prec_k,dt,omega)

DOUBLE PRECISION,INTENT(IN) :: double_prec_k,dt
DOUBLE PRECISION,INTENT(OUT) :: omega
DOUBLE PRECISION :: PI,f
! --------------------------------------------------------------------------------- !
! The terms dt and double_prec_k are a legacy from Appendix A.2.
PI = DACOS(-1.0D0)
f = 0.5D0
omega = 2*PI*f ! rad/s (for example, omega = 3.0D0 rad/s)
! --------------------------------------------------------------------------------- !
END SUBROUTINE ANGULAR_VELOCITY
! ================================================================================= !
END MODULE ROTATION
! --------------------------------------------------------------------------------- !
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A.3.5 update.f90

! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: update.f90 (MODULE) !
! This file sets up the system of algebraic Equations 7.28 to 7.31. This file also !
! contains the Thomas algorithm that is used in solving this system. !
! --------------------------------------------------------------------------------- !
MODULE MATRIX

USE SHEAR_RATE
USE SHEAR_VISCOSITY
IMPLICIT NONE
PRIVATE
PUBLIC :: MATRIX_UPDATE_X,MATRIX_UPDATE_Y,MATRIX_SOLVER

CONTAINS
! ================================================================================= !
SUBROUTINE MATRIX_UPDATE_X(rho,k,dt,Lambda,dr,R_i,dz,NX,vr_ijp1k,vr_ijk,&

vr_ijm1k,vr_ijp1kp12,vr_ijkp12,vr_ijm1kp12,M,K_M)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(OUT) :: M
DOUBLE PRECISION,DIMENSION(:),INTENT(OUT) :: K_M

DOUBLE PRECISION,DIMENSION(:),INTENT(IN) :: vr_ijp1k,vr_ijk,&
vr_ijm1k,vr_ijp1kp12,&
vr_ijkp12,vr_ijm1kp12

DOUBLE PRECISION,INTENT(IN) :: dt,dr,R_i,dz,Lambda,rho
INTEGER,INTENT(IN) :: k,NX

DOUBLE PRECISION :: BETA,THETA,CHI,rp1,r,rm1

DOUBLE PRECISION :: V_ijk, V_ip1jk, V_im1jk,&
V_ijp1k, V_ijm1k, V_ip1jp1k,&
V_ip1jm1k, V_im1jp1k, V_im1jm1k,&
V_ijkp12, V_ip1jkp12, V_im1jkp12,&
V_ijp1kp12, V_ijm1kp12, V_ip1jp1kp12,&
V_ip1jm1kp12, V_im1jp1kp12, V_im1jm1kp12

DOUBLE PRECISION :: SR_ijk, SR_ip12jk, SR_im12jk,&
SR_ijp12k, SR_ijm12k,&
SR_ijkp12, SR_ip12jkp12, SR_im12jkp12,&
SR_ijp12kp12, SR_ijm12kp12

DOUBLE PRECISION :: ETA_ijk, ETA_ip12jk, ETA_im12jk,&
ETA_ijp12k, ETA_ijm12k,&
ETA_ijkp12, ETA_ip12jkp12, ETA_im12jkp12,&
ETA_ijp12kp12, ETA_ijm12kp12

DOUBLE PRECISION :: A_kp12,B_kp12,C_kp12,D_k,E_k,F_k,KK
DOUBLE PRECISION :: TIME_k,TIME_kp12
INTEGER :: i

BETA = dt/(2.0D0*dr*rho)
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CHI = dt/(2.0D0*dz*rho)

TIME_k = DBLE(k)*dt
TIME_kp12 = (DBLE(k) + 0.5D0)*dt

! --------------------------------------------------------------------------------- !
! The following resetting is very important in order to avoid programming !
! error when modifying the code. Incorrect programming will most likely lead !
! to an additional zeros being incorporated into M and K_M which in turn would !
! lead to singularity problems that would then be reported by MATRIX_SOLVER. !
! M = 0.0D0 ! Resetting matrix! !
! K_M = 0.0D0 ! Resetting vector! !
! --------------------------------------------------------------------------------- !

! --------------------------------------------------------------------------------- !
! i = 1 => i = 2 in main.f90, i.e. near the center of the viscometer.
! i = NX-2 => j = NX2-1 in main.f90, i.e. near the outer cylinder.
DO i = 1,NX-2

rp1 = DBLE(i+1)*dr + R_i
r = DBLE(i)*dr + R_i
rm1 = DBLE(i-1)*dr + R_i
THETA = dt/(r*rho)

V_im1jk = vr_ijk(i)
V_ijk = vr_ijk(i+1)
V_ip1jk = vr_ijk(i+2)
V_im1jp1k = vr_ijp1k(i)
V_ijp1k = vr_ijp1k(i+1)
V_ip1jp1k = vr_ijp1k(i+2)
V_im1jm1k = vr_ijm1k(i)
V_ijm1k = vr_ijm1k(i+1)
V_ip1jm1k = vr_ijm1k(i+2)

V_im1jkp12 = vr_ijkp12(i)
V_ijkp12 = vr_ijkp12(i+1)
V_ip1jkp12 = vr_ijkp12(i+2)
V_im1jp1kp12 = vr_ijp1kp12(i)
V_ijp1kp12 = vr_ijp1kp12(i+1)
V_ip1jp1kp12 = vr_ijp1kp12(i+2)
V_im1jm1kp12 = vr_ijm1kp12(i)
V_ijm1kp12 = vr_ijm1kp12(i+1)
V_ip1jm1kp12 = vr_ijm1kp12(i+2)

CALL SR(rp1,r,rm1,dr,dz,V_ijk,V_ip1jk,V_im1jk,V_ijp1k,V_ijm1k,&
V_ip1jp1k,V_ip1jm1k,V_im1jp1k,V_im1jm1k,&
SR_ijk,SR_ip12jk,SR_im12jk,SR_ijp12k,SR_ijm12k)

CALL SR(rp1,r,rm1,dr,dz,V_ijkp12,V_ip1jkp12,V_im1jkp12,V_ijp1kp12,V_ijm1kp12,&
V_ip1jp1kp12,V_ip1jm1kp12,V_im1jp1kp12,V_im1jm1kp12,&
SR_ijkp12,SR_ip12jkp12,SR_im12jkp12,SR_ijp12kp12,SR_ijm12kp12)

CALL ETA(TIME_k,Lambda,SR_ijk,SR_ip12jk,SR_im12jk,SR_ijp12k,SR_ijm12k,&
ETA_ijk,ETA_ip12jk,ETA_im12jk,ETA_ijp12k,ETA_ijm12k)

CALL ETA(TIME_kp12,Lambda,SR_ijkp12,SR_ip12jkp12,SR_im12jkp12,&
SR_ijp12kp12,SR_ijm12kp12,ETA_ijkp12,ETA_ip12jkp12,&
ETA_im12jkp12,ETA_ijp12kp12,ETA_ijm12kp12)

! Equations 7.32 to 7.34:
A_kp12 = (BETA*ETA_ip12jkp12)*(1.0D0/dr - 1.0D0/(rp1+r)) + (THETA*ETA_ijkp12)/(2.0D0*dr)
B_kp12 = (BETA*ETA_ip12jkp12)*(1.0D0/dr + 1.0D0/(rp1+r)) + &

(BETA*ETA_im12jkp12)*(1.0D0/dr - 1.0D0/(r+rm1)) + (THETA*ETA_ijkp12)/r
C_kp12 = (BETA*ETA_im12jkp12)*(1.0D0/dr + 1.0D0/(r+rm1)) - (THETA*ETA_ijkp12)/(2.0D0*dr)

! Equations 7.35 to 7.37:
D_k = (CHI*ETA_ijp12k)/dz
E_k = (CHI*ETA_ijp12k)/dz + (CHI*ETA_ijm12k)/dz
F_k = (CHI*ETA_ijm12k)/dz

! Equation 7.29:
KK = - D_k*V_ijp1k - (1.0D0 - E_k)*V_ijk - F_k*V_ijm1k

! Equation 7.28:
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IF (i == 1) THEN
M(i,i) = -(1.0D0 + B_kp12)
M(i,i+1) = A_kp12
K_M(i) = KK - C_kp12*V_im1jkp12

ELSE IF (i == NX-2) THEN
M(i,i-1) = C_kp12
M(i,i) = -(1.0D0 + B_kp12)
K_M(i) = KK - A_kp12*V_ip1jkp12

ELSE
M(i,i-1) = C_kp12
M(i,i) = -(1.0D0 + B_kp12)
M(i,i+1) = A_kp12
K_M(i) = KK

END IF

END DO
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE MATRIX_UPDATE_X
! ================================================================================= !
SUBROUTINE MATRIX_UPDATE_Y(rho,k,dt,Lambda,dr,i,dz,NY,vz_ip1jkp12,vz_ijkp12,&

vz_im1jkp12,vz_ip1jkp1,vz_ijkp1,vz_im1jkp1,M,L,Neumann)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(OUT) :: M
DOUBLE PRECISION,DIMENSION(:),INTENT(OUT) :: L

DOUBLE PRECISION,DIMENSION(:),INTENT(IN) :: vz_im1jkp12,vz_ijkp12,&
vz_ip1jkp12,vz_im1jkp1,&
vz_ijkp1,vz_ip1jkp1

DOUBLE PRECISION,INTENT(IN) :: dt,dr,dz,Lambda,rho
INTEGER,INTENT(IN) :: k,NY,i

LOGICAL,INTENT(IN) :: Neumann

DOUBLE PRECISION :: BETA,THETA,CHI,rp1,r,rm1

DOUBLE PRECISION :: V_ijkp12, V_ip1jkp12, V_im1jkp12,&
V_ijp1kp12, V_ijm1kp12, V_ip1jp1kp12,&
V_ip1jm1kp12, V_im1jp1kp12, V_im1jm1kp12,&
V_ijkp1, V_ip1jkp1, V_im1jkp1,&
V_ijp1kp1, V_ijm1kp1, V_ip1jp1kp1,&
V_ip1jm1kp1, V_im1jp1kp1, V_im1jm1kp1

DOUBLE PRECISION :: SR_ijkp12, SR_ip12jkp12, SR_im12jkp12,&
SR_ijp12kp12, SR_ijm12kp12,&
SR_ijkp1, SR_ip12jkp1, SR_im12jkp1,&
SR_ijp12kp1, SR_ijm12kp1

DOUBLE PRECISION :: ETA_ijkp12, ETA_ip12jkp12, ETA_im12jkp12,&
ETA_ijp12kp12, ETA_ijm12kp12,&
ETA_ijkp1, ETA_ip12jkp1, ETA_im12jkp1,&
ETA_ijp12kp1, ETA_ijm12kp1

DOUBLE PRECISION :: A_kp12,B_kp12,C_kp12,D_kp1,E_kp1,F_kp1,LL
DOUBLE PRECISION :: TIME_kp12,TIME_kp1
INTEGER :: j

BETA = dt/(2.0D0*dr*rho)
CHI = dt/(2.0D0*dz*rho)
TIME_kp12 = (DBLE(k) + 0.5D0)*dt
TIME_kp1 = (DBLE(k) + 1.0D0)*dt

! --------------------------------------------------------------------------------- !
! The following resetting is very important in order to avoid programming !
! error when modifying the code. Incorrect programming will most likely lead !
! to an additional zeros being incorporated into L and M which in turn would !
! lead to singularity problems that would then be reported by MATRIX_SOLVER. !
! M = 0.0D0 ! Resetting matrix! !
! L = 0.0D0 ! Resetting vector! !
! --------------------------------------------------------------------------------- !

rp1 = DBLE(i)*dr
r = DBLE(i-1)*dr
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rm1 = DBLE(i-2)*dr
THETA = dt/(r*rho)

! --------------------------------------------------------------------------------- !
! j = 1 => j = 2 in main.f90, i.e. near the bottom plate of the viscometer.
! j = NY-2 => j = NY2-1 in main.f90, i.e. near the top of the viscometer.
DO j = 1,NY-2

V_im1jkp12 = vz_im1jkp12(j+1)
V_ijkp12 = vz_ijkp12(j+1)
V_ip1jkp12 = vz_ip1jkp12(j+1)
V_im1jp1kp12 = vz_im1jkp12(j+2)
V_ijp1kp12 = vz_ijkp12(j+2)
V_ip1jp1kp12 = vz_ip1jkp12(j+2)
V_im1jm1kp12 = vz_im1jkp12(j)
V_ijm1kp12 = vz_ijkp12(j)
V_ip1jm1kp12 = vz_ip1jkp12(j)

V_im1jkp1 = vz_im1jkp1(j+1)
V_ijkp1 = vz_ijkp1(j+1)
V_ip1jkp1 = vz_ip1jkp1(j+1)
V_im1jp1kp1 = vz_im1jkp1(j+2)
V_ijp1kp1 = vz_ijkp1(j+2)
V_ip1jp1kp1 = vz_ip1jkp1(j+2)
V_im1jm1kp1 = vz_im1jkp1(j)
V_ijm1kp1 = vz_ijkp1(j)
V_ip1jm1kp1 = vz_ip1jkp1(j)

CALL SR(rp1,r,rm1,dr,dz,V_ijkp12,V_ip1jkp12,V_im1jkp12,V_ijp1kp12,V_ijm1kp12,&
V_ip1jp1kp12,V_ip1jm1kp12,V_im1jp1kp12,V_im1jm1kp12,&
SR_ijkp12,SR_ip12jkp12,SR_im12jkp12,SR_ijp12kp12,SR_ijm12kp12)

CALL SR(rp1,r,rm1,dr,dz,V_ijkp1,V_ip1jkp1,V_im1jkp1,V_ijp1kp1,V_ijm1kp1,&
V_ip1jp1kp1,V_ip1jm1kp1,V_im1jp1kp1,V_im1jm1kp1,&
SR_ijkp1,SR_ip12jkp1,SR_im12jkp1,SR_ijp12kp1,SR_ijm12kp1)

CALL ETA(TIME_kp12,Lambda,SR_ijkp12,SR_ip12jkp12,SR_im12jkp12,&
SR_ijp12kp12,SR_ijm12kp12,ETA_ijkp12,ETA_ip12jkp12,&
ETA_im12jkp12,ETA_ijp12kp12,ETA_ijm12kp12)

CALL ETA(TIME_kp1,Lambda,SR_ijkp1,SR_ip12jkp1,SR_im12jkp1,SR_ijp12kp1,SR_ijm12kp1,&
ETA_ijkp1,ETA_ip12jkp1,ETA_im12jkp1,ETA_ijp12kp1,ETA_ijm12kp1)

! Equations 7.32 to 7.34:
A_kp12 = (BETA*ETA_ip12jkp12)*(1.0D0/dr - 1.0D0/(rp1+r)) + (THETA*ETA_ijkp12)/(2.0D0*dr)
B_kp12 = (BETA*ETA_ip12jkp12)*(1.0D0/dr + 1.0D0/(rp1+r)) + &

(BETA*ETA_im12jkp12)*(1.0D0/dr - 1.0D0/(r+rm1)) + (THETA*ETA_ijkp12)/r
C_kp12 = (BETA*ETA_im12jkp12)*(1.0D0/dr + 1.0D0/(r+rm1)) - (THETA*ETA_ijkp12)/(2.0D0*dr)

! Equations 7.35 to 7.37:
D_kp1 = (CHI*ETA_ijp12kp1)/dz
E_kp1 = (CHI*ETA_ijp12kp1)/dz + (CHI*ETA_ijm12kp1)/dz
F_kp1 = (CHI*ETA_ijm12kp1)/dz

! Equation 7.31:
LL = - A_kp12*V_ip1jkp12 - (1.0D0 - B_kp12)*V_ijkp12 - C_kp12*V_im1jkp12

! Equation 7.30:
IF (j == 1) THEN

M(j,j) = -(1.0D0 + E_kp1)
M(j,j+1) = D_kp1
L(j) = LL - F_kp1*V_ijm1kp1

ELSE IF ((j.EQ.NY-2).AND.Neumann) THEN ! (Equation 7.46)
M(j,j-1) = 2.0D0*F_kp1
M(j,j) = -(1.0D0 + E_kp1)
L(j) = LL

ELSE IF (j == NY-2) THEN
M(j,j-1) = F_kp1
M(j,j) = -(1.0D0 + E_kp1)
L(j) = LL - D_kp1*V_ijp1kp1

ELSE
M(j,j-1) = F_kp1
M(j,j) = -(1.0D0 + E_kp1)
M(j,j+1) = D_kp1
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L(j) = LL
END IF

END DO
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE MATRIX_UPDATE_Y
! ================================================================================= !
SUBROUTINE MATRIX_SOLVER(M,D,v,dim)
! Subroutine that solves the trigonal system "M * v = D" with the
! Thomas algorithm (also known as the "Crout reduction for tridiagonal linear
! systems" - algorithm).
! M -> Left side of the linear system (a tridiagonal array).
! D -> Right side of the linear system (a vector).
! v -> The variable to be solved: v = (M)^(-1) * D.

DOUBLE PRECISION,DIMENSION(:,:),INTENT(INOUT) :: M
DOUBLE PRECISION,DIMENSION(:),INTENT(INOUT) :: D
DOUBLE PRECISION,DIMENSION(:),INTENT(OUT) :: v
INTEGER,INTENT(IN) :: dim

DOUBLE PRECISION :: coef
INTEGER :: i
! --------------------------------------------------------------------------------- !
v = -1.0D0
! --------------------------------------------------------------------------------- !
! Forward and then back substitution:
DO i = 1,dim-1

coef = M(i+1,(i-1)+1)/M(i,i)
M(i+1,i+1) = M(i+1,i+1) - coef*M(i,i+1)
D(i+1) = D(i+1) - coef*D(i)

END DO
v(dim) = D(dim)/M(dim,dim)
DO i = dim-1,1,-1

v(i) = (D(i) - M(i,i+1)*v(i+1))/M(i,i)
END DO
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE MATRIX_SOLVER
! ================================================================================= !
END MODULE MATRIX
! --------------------------------------------------------------------------------- !
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A.3.6 write2f.f90

! --------------------------------------------------------------------------------- !
! !
! Copyright (C) 2002, Jon E. Wallevik, The Norwegian University of !
! Science and Technology (NTNU). !
! !
! This file is part of Viscometric-ViscoPlastic-Flow (VVPF). !
! !
! Viscometric-ViscoPlastic-Flow, is free software; you can redistribute it !
! and/or modify it under the terms of the GNU General Public License as !
! published by the Free Software Foundation; either version 2 of the !
! License, or (at your option) any later version. !
! !
! Viscometric-ViscoPlastic-Flow, is distributed in the hope that it will be !
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty of !
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General !
! Public License for more details. !
! !
! You should have received a copy of the GNU General Public License !
! along with Viscometric-ViscoPlastic-Flow; if not, write to the Free !
! Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, !
! MA 02111-1307 USA !
! !
! --------------------------------------------------------------------------------- !
! File name: write2f.f90 (MODULE) !
! This file takes care of writing all computed data into the different files. !
! It is only the source main.f90 that makes such request. !
! --------------------------------------------------------------------------------- !
MODULE WRITE_INFORMATION

USE SHEAR_VISCOSITY
IMPLICIT NONE
PRIVATE
PUBLIC :: WARNING_FOR_WRITING,WRITE2FILE_k,WRITE2FILE_kp1,&

WRITE2FILE_debug,WRITE2FILE_rms
CONTAINS
! ================================================================================= !
SUBROUTINE WARNING_FOR_WRITING(NY)
INTEGER,INTENT(IN) :: NY

IF (NY > 500) THEN
PRINT *, " ERROR: NY2 > 500 ( NY2 = ",NY,")"
PRINT *, " FORMAT STATEMENT IN THE FILE ’write2f.f90’ IS TO SHORT: "
PRINT *, " ERROR -> 10 FORMAT(1X,500(F7.4,1X)) "
PRINT *, " PLEASE MAKE THE NECESSARY ADJUSTMENT IN ALL THE SUBROUTINES "
PRINT *, " OF THIS FILE. TERMINAL ERROR! "
STOP

END IF

RETURN
END SUBROUTINE WARNING_FOR_WRITING
! ================================================================================= !
SUBROUTINE WRITE2FILE_k(VELOCITY,NX)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: VELOCITY
INTEGER,INTENT(IN) :: NX
INTEGER :: problem,i
! --------------------------------------------------------------------------------- !
10 FORMAT(1X,500(F7.4,1X))
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="vel_testing.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: vel_testing.dat! "
RETURN

ELSE
DO i = 1,NX

WRITE (unit=8,fmt=10) VELOCITY(i,:)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
RETURN
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END SUBROUTINE WRITE2FILE_k
! ================================================================================= !
SUBROUTINE WRITE2FILE_kp1(V,NX1,NX1_corner,NX2,NY1,NY1_corner,NY2,dr,dz)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: V
INTEGER,INTENT(IN) :: NX1,NX1_corner,NX2,&

NY1,NY1_corner,NY2
DOUBLE PRECISION,INTENT(IN) :: dr,dz

DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:,:) :: SR,ETA,von_Mises
DOUBLE PRECISION,ALLOCATABLE,DIMENSION(:) :: TORQUE_ON_DISK

DOUBLE PRECISION :: ETA_tmp,SR_tmp,TIME,Lambda,r,PI,Measured_Torque,&
shear_stress_theta_r

INTEGER :: problem,i,j,k
! --------------------------------------------------------------------------------- !
PI = DACOS(-1.0D0)
! --------------------------------------------------------------------------------- !
ALLOCATE(SR(NX2,NY2),ETA(NX2,NY2),von_Mises(NX2,NY2),stat=problem)
IF (problem/=0) THEN

PRINT *," WRITE2FILE_kp1: The program could not allocate space! "
PRINT *," Error code 1 in write2f and execution terminated! "
STOP

END IF

ALLOCATE(TORQUE_ON_DISK(NX1),stat=problem)
IF (problem/=0) THEN

PRINT *," WRITE2FILE_kp1: The program could not allocate space! "
PRINT *," Error code 2 in write2f and execution terminated! "
STOP

END IF

SR = 0.0D0
ETA = 0.0D0
von_Mises = 0.0D0
TORQUE_ON_DISK = 0.0D0

TIME = 0.0D0
Lambda = 1.0D0
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR RATE AT ALL POINTS: SR
CALL SR_PROFILE(V,NX1,NX1_corner,NX2,NY1,NY1_corner,NY2,dr,dz,SR)
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR VISCOSITY AT ALL POINTS:
ETA_tmp = 0.0D0
DO i=1,NX2

DO j=1,NY2
SR_tmp = SR(i,j)
CALL VISCOSITY(TIME,Lambda,SR_tmp,ETA_tmp)
ETA(i,j) = ETA_tmp

END DO
END DO
! --------------------------------------------------------------------------------- !
! CALCULATING THE von Mises SHEAR STRESS AT ALL POINTS:
DO i=1,NX2

DO j=1,NY2
von_Mises(i,j) = SR(i,j)*ETA(i,j)

END DO
END DO
! --------------------------------------------------------------------------------- !
! CALCULATING THE TORQUE ON THE TOP PLATE (z = h_gap):
j = NY1_corner
DO i=2,NX1-1

r = DBLE(i-1)*dr
shear_stress_theta_r = - ETA(i,j)*((-4.0D0*V(i,j-1) + V(i,j-2) &

+ 3.0D0*V(i,j))/(2.0D0*dz))
TORQUE_ON_DISK(i) = r*(shear_stress_theta_r*dr*(2*PI*r))

END DO
! ---------------------------------------------------------
i = NX1
r = DBLE(i-1)*dr
shear_stress_theta_r = - ETA(i,j)*((-4.0D0*V(i,j-1) + V(i,j-2) &

+ 3.0D0*V(i,j))/(2.0D0*dz))
TORQUE_ON_DISK(NX1) = r*(shear_stress_theta_r*(dr/2)*(2*PI*r))
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! --------------------------------------------------------------------------------- !
Measured_Torque = 0.0D0
DO i=1,NX1

Measured_Torque = TORQUE_ON_DISK(i) + Measured_Torque
END DO
! --------------------------------------------------------------------------------- !
10 FORMAT(1X,500(F10.4,1X))
12 FORMAT(1X,500(F14.8,1X))
16 FORMAT(1X,500(F14.4,1X))
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="vel_t0.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: vel_t0.dat! "
RETURN

ELSE
DO i = 1,NX2

WRITE (unit=8,fmt=10) V(i,:)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="SR_t0.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: SR_t0.dat! "
RETURN

ELSE
DO i = 1,NX2

WRITE (unit=8,fmt=10) SR(i,:)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="ETA_t0.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: ETA_t0.dat! "
RETURN

ELSE
DO i = 1,NX2

WRITE (unit=8,fmt=16) ETA(i,:)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="vonMises_t0.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: vonMises_t0.dat! "
RETURN

ELSE
DO i = 1,NX2

WRITE (unit=8,fmt=10) von_Mises(i,:)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
PRINT *, " --------------------------------------------------------- "
PRINT *, " Measured torque (on the bottom disk plate): "
PRINT *, Measured_Torque, " Nm i_z "
PRINT *, " --------------------------------------------------------- "
PRINT *, " "
! --------------------------------------------------------------------------------- !
24 FORMAT(1X,"4) Measured torque (on the bottom disk plate) = ",(F14.10,1X),"Nm")
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="TORQUE_t0.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: TORQUE_t0.dat! "
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RETURN
ELSE

WRITE (unit=8,fmt=24) Measured_Torque
END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="TORQUE_disc.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: TORQUE_disc.dat! "
RETURN

ELSE
WRITE (unit=8,fmt=12) TORQUE_ON_DISK(1:NX1)

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
DEALLOCATE(SR,ETA,von_Mises,stat=problem)
IF (problem/=0) THEN

PRINT *," WRITE2FILE_kp1: The program could not deallocate space! "
PRINT *," Error code 3 in write2f! "

END IF

DEALLOCATE(TORQUE_ON_DISK,stat=problem)
IF (problem/=0) THEN

PRINT *," WRITE2FILE_kp1: The program could not deallocate space! "
PRINT *," Error code 4 in write2f! "

END IF
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE WRITE2FILE_kp1
! ================================================================================= !
SUBROUTINE WRITE2FILE_rms(k,rms)

DOUBLE PRECISION,INTENT(IN) :: rms
INTEGER,INTENT(IN) :: k
INTEGER :: problem
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="log.dat",status="old",action="write",&

position="append",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not write into the existing file: log.dat! "
RETURN

ELSE
WRITE (unit=8,fmt=*) k,rms

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE WRITE2FILE_rms
! ================================================================================= !
SUBROUTINE WRITE2FILE_debug(M,K_M,v_new,N)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: M
DOUBLE PRECISION,DIMENSION(:),INTENT(IN) :: K_M,v_new
INTEGER,INTENT(IN) :: N
INTEGER :: problem,i
! --------------------------------------------------------------------------------- !
10 FORMAT(1X,201(F10.4,1X))
11 FORMAT(1X,F10.4)
! --------------------------------------------------------------------------------- !
OPEN(unit=8,file="MM_debug.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: MM_debug.dat! "
RETURN

ELSE
DO i = 1,N
WRITE (unit=8,fmt=10) M(i,:)

END DO
END IF
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CLOSE (UNIT=8)
! ---------------------------------------------------------
OPEN(unit=8,file="KK_debug.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: KK_debug.dat! "
RETURN

ELSE
DO i = 1,N

WRITE (unit=8,fmt=11) K_M(i)
END DO

END IF

CLOSE (UNIT=8)
! ---------------------------------------------------------
OPEN(unit=8,file="vel_debug.dat",status="replace",action="write",&

position="rewind",iostat=problem)
IF (problem/=0) THEN

PRINT *," Could not create the file: vel_debug.dat! "
RETURN

ELSE
DO i = 1,N

WRITE (unit=8,fmt=11) v_new(i)
END DO

END IF

CLOSE (UNIT=8)
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE WRITE2FILE_debug
! ================================================================================= !
SUBROUTINE SR_PROFILE(V,NX1,NX1_corner,NX2,NY1,NY1_corner,NY2,dr,dz,SR)

DOUBLE PRECISION,DIMENSION(:,:),INTENT(IN) :: V
DOUBLE PRECISION,DIMENSION(:,:),INTENT(OUT) :: SR

INTEGER,INTENT(IN) :: NX1,NX1_corner,NX2,&
NY1,NY1_corner,NY2

DOUBLE PRECISION,INTENT(IN) :: dr,dz

INTEGER :: i,j,k,problem
DOUBLE PRECISION :: r,SR1_ij,SR2_ij,EPS
! --------------------------------------------------------------------------------- !
EPS = 1.0D-15
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR RATE IN THE BULK:
! See Section 7.5 about the formulas for the shear rate (SR). Note that ROS and SR
! means the same thing: ROS = rate of shear = SR = shear rate.
! --------------------------------------------------------------------------------- !
DO i=2,NX2-1

r = DBLE(i-1)*dr
DO j=2,NY2-1

SR1_ij = (V(i+1,j) - V(i-1,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (V(i,j+1) - V(i,j-1))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
END DO
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR RATE ON THE BOTTOM PLATE (z=0):
j = 1
DO i=2,NX2-1

r = DBLE(i-1)*dr
SR1_ij = (V(i+1,j) - V(i-1,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (4.0D0*V(i,j+1) - V(i,j+2) - 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE ON THE "LEFT" WALL (r=R_i):
! SR2_ij is actually zero since the Dirichlet boundary
! condition is not chancing with z!
i = NX1_corner
r = DBLE(i-1)*dr
DO j=NY1+1,NY2-1

SR1_ij = (4.0D0*V(i+1,j) - V(i+2,j) - 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r

URN:NBN:no-3374



372 APPENDIX A. SOURCE CODE

SR2_ij = (V(i,j+1) - V(i,j-1))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE ON THE "RIGHT" WALL (r=R_o):
! SR2_ij is actually zero since the Dirichlet boundary
! condition is not chancing with z!
i = NX2
r = DBLE(i-1)*dr
DO j=2,NY2-1

SR1_ij = (-4.0D0*V(i-1,j) + V(i-2,j) + 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (V(i,j+1) - V(i,j-1))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE ON TOP PLATE (z=h_gap):
j = NY1_corner
DO i=2,NX1-1

r = DBLE(i-1)*dr
SR1_ij = (V(i+1,j) - V(i-1,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (-4.0D0*V(i,j-1) + V(i,j-2) + 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE AT THE OPEN BOUNDARY (z=H):
j = NY2
DO i=NX1_corner+1,NX2-1

r = DBLE(i-1)*dr
SR1_ij = (V(i+1,j) - V(i-1,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (-4.0D0*V(i,j-1) + V(i,j-2) + 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR RATE AT THE CENTER OF THE BOTTOM PLATE (r=0,z=0):
! This calculation is redundant since the rate of shear at the center line
! ($r=0 \forall z \in [0,H]$) is zero due to symmetry in the r-direction and
! due to the Dirichlet boundary condition $v_{\rm i,j}=0$ at the center line.
! i = 1
! j = 1
! r = DBLE(i-1)*dr
! SR1_ij = (V(i+1,j) - V(i+1,j))/(2.0D0*dr) - V(i,j)/r ! due to symmetry
! SR2_ij = ( 4.0D0*V(i,j+1) - V(i,j+2) - 3.0D0*V(i,j))/(2.0D0*dz)
! SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)
! ------------
! Rather enforcing a zero rate of shear at the center line:
SR(1,1:NY2) = 0.0D0
! --------------------------------------------------------------------------------- !
! CALCULATING THE SHEAR RATE ON THE LOWER RIGHT CORNER (r=R_o,z=0):
i = NX2
j = 1
r = DBLE(i-1)*dr
SR1_ij = (-4.0D0*V(i-1,j) + V(i-2,j) + 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = ( 4.0D0*V(i,j+1) - V(i,j+2) - 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE ON THE TOP RIGHT CORNER (r=R_o,z=H):
i = NX2
j = NY2
r = DBLE(i-1)*dr
SR1_ij = (-4.0D0*V(i-1,j) + V(i-2,j) + 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (-4.0D0*V(i,j-1) + V(i,j-2) + 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE ON THE TOP LEFT CORNER (r=R_i,z=H):
i = NX1_corner
j = NY2
r = DBLE(i-1)*dr
SR1_ij = ( 4.0D0*V(i+1,j) - V(i+2,j) - 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (-4.0D0*V(i,j-1) + V(i,j-2) + 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)
! ---------------------------------------------------------
! CALCULATING THE SHEAR RATE AT SMOOTH CORNER (r=[NX1,NX1_corner];
! and z=[NY1_corner,NY1]):
DO k = 1,NY1-NY1_corner+1 ! k=1,11
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i = NX1 + (k-1)
j = NY1_corner + (k-1)
r = DBLE(i-1)*dr
SR1_ij = ( 4.0D0*V(i+1,j) - V(i+2,j) - 3.0D0*V(i,j))/(2.0D0*dr) - V(i,j)/r
SR2_ij = (-4.0D0*V(i,j-1) + V(i,j-2) + 3.0D0*V(i,j))/(2.0D0*dz)
SR(i,j) = DSQRT(SR1_ij**2.0D0 + SR2_ij**2.0D0)

END DO
! --------------------------------------------------------------------------------- !
RETURN
END SUBROUTINE SR_PROFILE
! ================================================================================= !
END MODULE WRITE_INFORMATION
! --------------------------------------------------------------------------------- !

A.4 GNU GENERAL PUBLIC LICENSE

GNU GENERAL PUBLIC LICENSE Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA

02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By

contrast, the GNU General Public License is intended to guarantee your freedom to share and change free
software–to make sure the software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Program” means either the Program or
any derivative work under copyright law: that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another language. (Hereinafter, translation
is included without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:
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a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announce-
ment including an appropriate copyright notice and a notice that there is no warranty (or else,
saying that you provide a warranty) and that users may redistribute the program under these con-
ditions, and telling the user how to view a copy of this License. (Exception: if the Program itself
is interactive but does not normally print such an announcement, your work based on the Program
is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with
a work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be dis-
tributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient auto-
matically receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Program at all.
For example, if a patent license would not permit royalty-free redistribution of the Program by all those
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who receive copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or
by copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution condi-
tions are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-
VIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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Appendix B

Miscellaneous Theories

B.1 Introduction

In this appendix, some theories are presented that can be related to the issue of
Chapter 2. Some of these theories are rather hard to explain and although some
significant amount of time and effort has been used in writing the correct idea, the
success is only such that the resulting text would simply get in the way of the main
objectives of Chapter 2. Also, some of the theories presented here are too “classical”
to be presented in the chapter and too important to be left out altogether.

B.2 The Solid- and Continuum Particle

B.2.1 The Solid Particle

When dealing with the motion of a (enormously) large collection of solid particles,
the concept of a particle must be redefined. The reason is that it is rather difficult, if
not impossible, to gain a solution for multi particle system by looking at every single
solid particle1 as the working particle of the system. That is, by using2 Newton’s
2nd law dpI/dt = FI +mI g on every such particle, the following problems arise:

1.A Overpopulation of the solid particles: The number of solid particles,
composing the flowing continuum is extremely large and hence the number of
governing equations (one equation for each and every solid particle), which need
to be solved simultaneously, becomes too large for a computer to handle. They
need to be solved simultaneously because the velocity vI of one solid particle
enters as a variable in the function of external surface forces FI+1 for the neigh-
boring solid particle and visa versa FI+1 = FI+1(vI, . . . ) ∧ FI = FI(vI+1, . . . ).

1.B Whereabouts of the solid particles: For a complex suspension like of
concrete, mortar or cement paste, the exact material distribution inside it is
not known at the beginning of calculation t = 0. In other words, it is not known
if there is an aggregate, cement grain or water molecule (and so forth) that is
occupying the specific coordinates x at t = 0. Since the initial coordinates of

1For example, looking at every single aggregate, cement grain, water molecule and so forth.
2See below Equation 2.2 (Page 13) for descriptions of variables.

377
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the individual solid particles are not known, it becomes impossible to calculate
their coordinates at later times t > 0 inside the suspension.

1.C Discontinuity in the velocity function: The individual solid particle will
generally travel in a discontinuous path3 due to the collision forces imposed
by its neighboring solid particles. This will result in that the velocity vI will
only be partially smooth. This lack of smoothness will increase the complexities
of the mathematical solution algorithm to be used.

1.D Complexities of the external surface forces: A large problem lies in
finding and using the correct function, describing the sum of external surface
forces FI = FI(vI+1, . . . ) applied to a specific solid particle, from its surrounding
solid particles. For example, when calculating the velocity vI of a solid particle
inside a fresh concrete, the information about the exact mass, shape, surface
texture, orientation and so forth, must be known4 for this solid particle and
its surrounding solid particles at the moment of impact. Creating a function of
external surface forces FI that uses the above information in a correct manner is
difficult enough, but then using it increases the complexities and non-linearity
of the governing equation.

B.2.2 The Continuum Particle (CP)

As described in Section 2.2, the continuum particle (CP) consists of large collection
of solid particles. An oversimplified illustration of a CP is shown in Figure B.1. This
CP is composed of only three solid particles, numbered with the Roman numbers I,
II and III. Of course, the CP must consist of a larger number of solid particles, for
example to have a smooth velocity, defined by Equation 2.6 (Page 13).

Figure B.1: An oversimplified illustration of a CP. This CP is composed of only three solid
particles, numbered with the Roman numbers I, II and III. Each of them comply to Newton’s 2nd

law: mI (dvI/dt) = FI+mI g = F2−F1+mI g; mII (dvII/dt) = FII+mII g = F3−F2+mII g
and mIII (dvIII/dt) = FIII +mIII g = F4 − F3 +mIII g. The summation of these equations,
produces the equation of motion for this CP: d(mI vI +mII vII + mIII vIII)/dt = FI + FII +
FIII + (mI +mII +mIII)g = F4 − F1 + δm g. Only the surface force terms which are applied
to the CP from its surroundings, namely F4 and −F1, are remaining after this step. The black
solid line confining these particles defines the boundary of this CP.

In a complex particle suspension, where the suspended solid particles consist of
a broad range in mass, dimension, shape and surface texture, the CP must be large
enough to obtain a material and geometric homogeneity. For the case of concrete,

3This motion consist of two velocity components ⇒ vI = v+[vI−v]. The first one v contributes
to the overall smooth motion of the particle suspension (see Equation 2.6, Page 13), while the latter
[vI − v] does not so and is of a random nature.

4These parameters have effect on the magnitude and direction of external surface forces involved.

URN:NBN:no-3374



B.3. CALCULATING EXTERNAL FORCES APPLIED TO THE CP 379

mortar or cement paste, then with material homogeneity it is meant that the
relative material composition inside any CP should be the same as for the suspension
as a whole. With geometric homogeneity it is meant that the grading5 inside any
CP should be the same as for the overall suspension. With those two homogeneity
conditions fulfilled one has ensured identical physical characteristics for all the CPs
inside the continuum. With this criteria fulfilled, the dimension of the CP could
be considered as 2Dmax, where Dmax represents the dimension of the largest solid
particle. Now, with the CP-approach, as described with Equation 2.16 (Page 15), the
following is gained:

2.A Overpopulation is no longer an issue: When considering the number of
equations needed to be solved simultaneously, then contrary to the solid particle-
approach, only one equation is necessary in order to gain solution for all the
CPs inside the continuum. This is apparent from Equation 2.11 (Page 14).

2.B The issue of the whereabouts is solved: For homogeneous concrete,
mortar or cement paste, it is now known what kind of particle is occupying
the coordinates x at the initial time t = 0. This is so because every working
particle (that is, every CP) inside the continuum is now physically identical (at
least when the pre-mentioned material and geometric homogeneity conditions
are fulfilled). In other words, at t = 0, one can randomly pick a spatial point in
the continuum and define it as the initial center of mass (CM) coordinates X of
a CP as shown with Equations 2.8 and 2.9 (Page 14).

2.C Smoothness in the velocity function: The individual CP will generally
not travel in a discontinuous path, as is the case for the solid particle. As is
shown with Equation 2.6 (Page 13), the velocity of the CP is the mass averaged
velocity of the entire set of solid particles composing this CP. With this equation,
any random and spontaneous contributions from individual solid particles are
summarized out in the averaging. Therefore, only the relevant smooth motion
of the continuum will remain in the velocity function v of the CP.

2.D Simplicity of the external surface forces: Since always the same types
of solid particles are involved inside and surrounding each CP, the same type
of function F = F(. . . ) can be used on each and every CP. Therefore, only
one equation has to be constructed that describes the sum of external surface
forces f = F/δV applied to the CP from its surroundings. The application
of f to the CP, results in a stress state σ develops inside the CP. As such, it
is possible to relate mathematically f and σ, namely with f(x, t) = ∇·σ(x, t).
This mathematical relationship is the subject of Appendix B.3.

B.3 Calculating External Forces Applied to the CP

In Section 2.2, the equation of motion for the CP was derived. After several steps,
the birth of Equation 2.16 (Page 15) was a reality. However, the delivery was not
complete since the function f was not determined. As stated previously, this variable
describes the sum of external surface forces applied to the CP from its surroundings. If
the terms Feast, Fwest, Ftop, Fbottom, Fnorth and Fsouth designate the external surface
forces applied to the CP from the corresponding directions, as shown with Figure B.2,

5Grading ⇒ Cumulative solid particle size distribution (see Figure 4.4, Page 76).
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then f = (Feast + Fwest + Ftop + Fbottom + Fnorth + Fsouth)/δV . When the CP is
subjected to a rate of deformation ε̇ because of the external surface forces, applied
to it from its surroundings f , the CP will resist such deformation. This resistance
is directly related to a second order tensor equation σ = σ(ε̇, . . . ) known as the
constitutive equation. For many fluids, this equation is represented as σ = −p I+T
[9], where the term p is pressure, I the unit dyadic and T the extra stress tensor.

To calculate the force Feast that is applied to the east wall of the CP, then accord-
ing to the Cauchy’s stress principle [72], one has to operate the unit normal vector of
this wall, n = i1 on the stress state which applies there: σ|x1+δx1/2 as is shown with
Equation B.1 (see the left illustration of Figure B.2).

Feast
δx2δx3

= i1 · σ|
x1+

δx1
2

(B.1)

Similar to what applies for Equation B.1, to calculate the external surface force Fwest
that is applied to the west wall of the CP, one has to operate the unit normal vector
of this wall, −i1 on the stress state which applies there: σ|x1−δx1/2. Summarizing
that result with Equation B.1 produces the following:

Fwest + Feast =
[
−i1 · σ|

x1− δx1
2
+ i1 · σ|

x1+
δx1
2

]
δx2δx3 (B.2)

Figure B.2: Forces applied to the CP from its surroundings. The forces applied from the north
and south wall are not shown. Comparing the CP in this figure with the oversimplified CP in
Figure B.1, then Fwest corresponds to F4 and Feast to −F1.

The stress state of the west and east walls can be calculated (or estimated) with
the help of 1st degree Taylor polynomial (see Equation 7.9, Page 157):

σ|
x1− δx1

2
= σ|x1

+
∂σ

∂x1

∣∣∣∣
x1

(
−δx1

2

)
(B.3)

σ|
x1+

δx1
2
= σ|x1

+
∂σ

∂x1

∣∣∣∣
x1

(
δx1
2

)
(B.4)

The partial derivative in the above two equations can be looked at as a comparison
of stress states between two CPs, placed on either side of the CP in question. They
are separated by the distance 2δx1, relative to their CM:

∂σ

∂x1

∣∣∣∣
x1

= lim
∆x1→δx1

σ(x1 +∆x1, x2, x3, t)− σ(x1 −∆x1, x2, x3, t)
2∆x1

(B.5)

Now, putting the two above Taylor approximations (i.e. Equations B.3 and B.4) in
Equation B.2, gives the following result:

Fwest + Feast = i1 · ∂σ

∂x1

∣∣∣∣
x1

δV =
(
i1

∂

∂x1
· σ
)
δV (B.6)
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where the value δx1δx2δx3 is approximately equal to the volume of the CP, namely
equal to δV (see Figure B.2). The forces applied to the south-north wall and to
the bottom-top wall of the CP are calculated in the same way as was done for the
west-east wall:

Fsouth + Fnorth =
[
−i2 · σ|

x2− δx2
2
+ i2 · σ|

x2+
δx2
2

]
δx1δx3 (B.7)

Fbottom + Ftop =
[
−i3 · σ|

x3− δx3
2
+ i3 · σ|

x3+
δx3
2

]
δx1δx2 (B.8)

Using the Taylor approximation similar to Equations B.3 and B.4 in the above, pro-
duces the following results:

Fsouth + Fnorth
δV

=
(
i2

∂

∂x2
· σ
)

∧ Fbottom + Ftop
δV

=
(
i3

∂

∂x3
· σ
)

(B.9)

Combining Equations B.6 and B.9 gives the sum of external surface forces applied to
the CP from its surroundings:

f =
F
δV

=
(
i1

∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3

)
· σ = ∇ · σ (B.10)

B.4 Resolution of the Material Space

Often, the diameter Dmax of the largest aggregates used in the concrete mix, is around
16mm and it can even be as large as 32mm or higher. In order to secure that all
the CPs of the fresh concrete have the same material and geometric homogeneity,
as discussed on Page 379, their dimensions can easily be several to tens of centime-
ters. This situation is considerably different from what, for example applies for water
continuum where the size of a CP can be regarded as infinitely small6, or equally as
a point item. Because of this fundamental difference, the discussion in the present
section is most necessary.

To avoid confusion, it is important to note that everywhere else in this thesis,
except for here (i.e. Appendix B.4), there is no difference between x and rCM ≡
x(X, t), i.e. both of them represents the CM coordinates of a CP. In mathematical
terms, this means x ≡ rCM ≡ x(X, t) ∀ t. In the present appendix, x might or might
not be equal to x(X, t) ≡ rCM.

B.4.1 The CM-Position rCM ≡ x(X, t) and the Coordinates x

At the first consideration, the price tag of the CP-approach is that the resolution (or
sharpness) of the material space has been sacrificed [139]. This is so because with
the location rCM ≡ x(X, t), it is referred to the CM-position of a CP, consisting of
the finite sized volume (δV ≈ δx1 δx2 δx3) as shown with Figure 2.2 (Page 12), and
not of some point item at the same location. The dimensions δx1, δx2 and δx3 of
the CP, represent therefore the highest resolution one can squeeze out of the physical
continuum. Hence the term ∆x3 in Equation 2.21 (Page 17) and ∆x1 in Equation B.5

6With infinitely small it is meant that the diameter Dmax of the largest solid particle that is
suspended in the continuum, divided with the characteristic thickness of the flow Dflow, is approx-
imately zero: Dmax/Dflow → 0. In this perspective, the term small is also dependent on how large
the flowing system is. For example, our Galaxy can be regarded as infinitely small when modeling
the whole Universe as a self gravitating fluid (see for example textbook by Battaner [11]).
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did not approach zero but rather approached the smallest dimension available to the
continuum, namly δx1 and δx3.

When one is referring to some coordinates in relation to rheology, for example when
utilizing Equation 2.17 (Page 16), it is explicitly meant the CM-position x(X, t) of a
CP, which consist of a finite sized volume δV . When talking separately about some
coordinates x of the coordinate axes, without giving it a correlation to any governing
equation of continuum mechanics, their values can be whatever one chooses it to be.
It has no physical restrictions and is in that sense a completely independent variable.
When solving Equation 2.17, one is forced to treat the dependent variable x(X, t) as
an independent one, namely as x. In other words, it must be assumed that at every
given moment of time t, the specific coordinates x = (x1, x2, x3) always represents a
CM-position of a CP. As shown in the left illustration of Figure B.3, this is not so.
Because of the finite sized volume δV , only a few locations x actually represents a
CM-position of a CP, designated with xI, xII and xIII.

Figure B.3: The arrows represents the direction of flow. To the left: Visual demonstration
of the characteristic difference between x = (x1, x2, x3) and x(X, t) ∈ [xI,xII,xIII]. The latter
coordinates always represent the CM coordinates of a CP, whereas the former only do so occa-
sionally. To the right: By utilization of the MSP it becomes more likely that the arbitrary point
x represents a CM coordinates x(X, t) of a CP.

In the cases when the coordinates x in Equation 2.17 do not represent the CM-
position x(X, t) of a CP, this equation represents no longer the Newton’s 2nd law
at that same location, as outlined with the CP-approach in Section 2.2. In fluid
mechanics of water, this type of considerations is redundant since the size of the CP
is, from practical point of view, infinitely small and therefore can be regarded as a
point item. Therefore, in that case the arbitrary coordinates x will (more or less)
always represent a CM-position x(X, t) of a CP. When this latter condition applies,
the governing Equation 2.17 can be related to the coordinates x, rather than to a
physical entity like of the CP.

B.4.2 Material Superposition Principle (MSP)

When considering Equations 2.11 and 2.12, the first impression is that the CPs arrange
themselves in an orderly fashion as shown with the left illustration of Figure B.3. This
was assumed when estimating the derivatives in Equations 2.21 and B.5. However,
there are no restrictions by introducing additional CPs into the continuum as shown
with the right illustration of Figure B.3. Because the mass of the continuum may
not increase in the process, the original CPs must share their material with the
new additional CPs. In other words, every CP inside the continuum must share its
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material with its neighboring CPs. From a mathematical point of view, nothing has
changed in the process. When defining a CP by the summation shown in Equation 2.3
(Page 13), it consists of the same number N of solid particles. However, some of these
solid particles will also be used when defining its neighboring CP. This setup will be
known here as the Material Superposition Principle (MSP). The benefits of
this principle is that one can increase the resolution of the material space. That is,
increase the possibility that, at any given moment of time, the arbitrary coordinates
x actually represents the CM-position of a CP, namely rCM ≡ x(X, t). Applying the
MSP to Equation 2.21, results in that ∆x3 does not have to approach δx3, but can
rather start to approach zero: ∆x3 → 0. This is demonstrated with Figure B.4.

Figure B.4: Graphical presentation of the circumstances for Equation 2.21 (Page 17). To the
left: Without the MSP, then ∆x3 → δx3. In the middle and to the right: By utilization of the
MSP, then ∆x3 → 0. Similar considerations can be made, in relation to Equation B.5.

The purpose of the CP is to provide a smooth velocity v, calculated with Equa-
tion 2.18 and defined by Equation 2.6. However, the purpose of the MSP is to provide
smooth velocity v at all spatial points x in the continuum Ω.

B.5 Rings of Saturn as Fluid

Utilization of Equation 2.17 on the rings of Saturn (Figure B.5) will now commence.
The rings are mostly made of ice fragments
(solid particles), ranging from few centime-
ters to few meters across, but there are also
some traces of silicate and carbon miner-
als, indicating that rock fragments are also
present [3]. Using Equation 2.17 on these
set of solid particles, is done to stress out
that the fluid approach is in essence the the-
ory about the collective motion of a very
large number of solid particles (see figure to
the right7), without going into the detailed
motion of every single one of them. The
largest solid particles are treated in the ex-
actly the same manner as the smallest ones.

As the rings are only around Saturn’s equator, the cylindrical coordinate system
will be used. The z-direction (or equally, the x3-direction) will be pointing in the
axis of symmetry as shown in Figure B.5 to the right. Starting with the most general

7An artist rendition of the rings at close range [54].
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velocity field v = vr(r, θ, z, t) ir+vθ(r, θ, z, t) iθ+vz(r, θ, z, t) iz, one can at once discard
any z-dependencies since the fluid flow is only around the equator. Also, since all the
CPs are flowing in a circular orbit, it is possible to drop out the vr-function. After
these steps, the general velocity field has reduced to v = vθ(r, θ, t) iθ. Furthermore,
since the individual CP (or equally, the individual rock/ice fragments composing the
CP) is neither accelerating nor de-accelerating in the θ-direction, a θ-independence
can be assumed. In accordance with the above text, the velocity profile of the rings
will be given by Equation B.11.

v = vθ(r, t) iθ (B.11)

Figure B.5: It is assumed that the velocity profile of the rings of Saturn is v = vθ(r, t) iθ.
To the left: An artist rendition of the Cassini spacecraft over the rings [60]. To the right: A
schematic top view of the rings and the planet.

Since the individual rock/ice fragments are generally not colliding with each other,
the CPs are neither interacting with each other8 (meaning f = ∇·σ = 0) and hence the
term ∇·σ+ ρg will consists solely of the gravitational force ρg = −ĜMρ/r2 ir. The
terms Ĝ and M are the gravitational constant and the mass of Saturn, respectively.
Using ∇ · σ + ρg = −ĜMρ/r2 ir and the above velocity profile v = vθ(r, t) iθ in
Equation 2.17 gives, after some derivations, Equations B.12 and B.13.

ρ
∂vθ(r, t)

∂t
= 0 ⇒ v = vθ(r) iθ (B.12)

ρ
v2θ(r)
r

=
ĜMρ

r2
⇒ vθ(r) =

√
ĜM

r
(B.13)

From Equation B.12 the velocity gradient tensor∇v can be calculated, which through
Equation 2.20 (Page 17), gives the strain rate tensor which applies in the rings:

ε̇ =
1
2

(
dvθ(r)
dr

− vθ(r)
r

)
(iriθ + iθir) (B.14)

Using the above result in Equation 2.24 (Page 18) with the concomitant use of Equa-
tion B.13, gives the shear rate which applies inside the rings, shown with Equa-
tion B.15. By using values from a textbook by Arny [3], the mass of Saturn and its

8From Equation 2.25 (Page 26) when no collisions are occuring between the soldi particles (Ñdc =
Ñic = 0), the shear viscosity becomes zero (η = 0). Fluids with zero viscosity are termed as
superfluid [108], and their main characteristics is that they flow continuously without stopping
by their own friction (because there are none). A known superfluid, besides the rings of Saturn, is
Helium in liquid state cooled below 2.17K at atmospheric pressure [108].
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radius is given by M = 5.69 1026kg and r = 60268 km respectively. By using the pho-
tograph in Figure B.6 [60], the visual part of the rings start roughly at Ri = 76400 km
from the center of Saturn, and ends approximately at Ro = 146000 km. The gravita-
tional constant is Ĝ = 6.6726 · 10−11Nm2/kg2. Using these values in Equations B.13
and B.15 produces the velocity profile v = vθ(r) iθ and the shear rate profile γ̇ = γ̇(r)
shown in Figure B.6. The velocity values shown in the figure, is in accordance with
Doppler-shift data [153].

γ̇ =
∣∣∣∣dvθ(r)

dr
− vθ(r)

r

∣∣∣∣ = 3
2

√
ĜM

r3/2
(B.15)
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Figure B.6: To the left: Partial top view of Saturn and its rings [60]. Center: The velocity
profile v = vθ(r) iθ of the rings. To the right: The shear rate profile γ̇ = γ̇(r) of the rings.

B.6 Navier-Stokes Equation

Assuming a constant9 shear viscosity η = µ in an incompressible fluid (dρ/dt =
−ρ tr(ε̇) = 0), then from Equations 2.20 and 2.23 (Page 17), the divergence of the
extra stress tensor becomes:

∇ ·T = ∇ · (2µ ε̇(x, t)) = µ
[∇ · ∇v +∇ · (∇v)T

]
=

= µ

[
iq

∂

∂xq
· ∂vp
∂xk

ipik + iq
∂

∂xq
· ∂vk
∂xp

ipik

]
= (B.16)

= µ

[
∂

∂xp

∂vp
∂xk

ik +
∂

∂xp

∂vk
∂xp

ik

]
= µ

[
∂

∂xk

∂vp
∂xp

ik +
∂2vk

∂xp ∂xp
ik

]

In the above, the indicial notation [74, 72] in Cartesian coordinate system, is used.
Going back to vector notation, the above can be rewritten as:

∇ ·T = µ [∇(∇ · v) +∇ · ∇v] = µ∇2v (B.17)

From the above result, the divergence of the stress tensor ∇ · σ = ∇ · (−p I + T)
will be equal to −∇p + µ∇2v. Putting this result in Equation 2.17 produces the

9For a given temperature and pressure, a fluid with constant shear viscosity η is designated as a
Newtonian fluid.
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Navier-Stokes equation for incompressible fluid, shown with Equation B.18. The
viscosity term ν = µ/ρ is known as the kinematic viscosity [72].

∂v
∂t

+ v · ∇v = −1
ρ
∇p+ ν∇2v + g (B.18)

B.7 Energy and Work

The main objectives of this appendix is to generate the energy equation for the CP.
In doing so the material volume V (t) [43] is used as a starting point, rather than the
CP. To begin with, a description of the material volume is made with the concomitant
re-derivation of Equation 2.17 to demonstrate the validity of this approach. As will
be shortly apparent, the material volume approach is much simpler than what applied
previously with the direct CP-approach. However, the first mentioned approach is
more descriptive of what fluid actually consist of.

B.7.1 Material Volume

Consider a large collection of CPs enclosed in a deformable volume. During calculation
time, this volume always consist of the same CPs, and hence has always the same
amount of mass m =

∑
δm = constant, c.f. Equation 2.1 (Page 12). This volume is

usually designated as the material volume [43].

Conservation of Mass

The mass of the material volume can be gained by integrating the density ρ (of a CP)
(see Equation 2.14, Page 15) over its volume V (t) as shown with Equation B.19.

m =
∫∫∫
V (t)

ρ dV (B.19)

The term dV represents the resolution of the material space and with the MSP, this
resolution is much larger than presented with the volume δV of the CP; i.e. the
number of non-overlapping CPs inside the material volume V (t) is nCP = V (t)/δV
(see the left illustration of Figure B.3), while the total number of CPs inside it is
nMSPCP = V (t)/dV (see the right illustration of Figure B.3). As such, the summation
in Equation B.19 is from 1 to nMSPCP .

Taking the time derivative10 of Equation B.19, with the m = constant condition
in mind, gives the following:

dm

dt
=

d

dt

∫∫∫
V (t)

ρ dV =
∫∫∫
V (t)

∂ρ

∂t
dV +

∫∫
∂V (t)

ρv · n dS

=
∫∫∫
V (t)

(
∂ρ

∂t
+∇ · (ρv)

)
dV = 0 (B.20)

In the above equation, the Leibnitz theorem [20, 93] was first applied and then
the integral theory of Gauss [20, 93]. Note that the velocity term v that appears
after applying the theorem of Leibnitz, is the velocity of the boundary of the material

10See Footnote 10 (Page 15) about the time derivative d/dt.
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volume ∂V (t), and therefore is in this case the velocity of the CPs located there.
Finally, since the domain of integration V (t) is not fixed, duBois-Reymonds lemma
can be applied to conclude that the integrand in the above equation must vanish [71].
After this step, the well-known equation of continuity is produced:

dρ

dt
+ ρ tr (ε̇) = 0 or equally

dρ

dt
+ ρ∇ · v = 0 since tr (ε̇) ≡ ∇ · v (B.21)

The name continuity equation for the above, is given because this equation assumes
that the velocity and density are defined in every point in space [93]. This assumption
is in most cases valid for a coarse particle suspension, like the fresh concrete, and then
through the MSP (see the last paragraph in Appendix B.4.2).

Conservation of Momentum

Newton’s 2nd law can be applied to the material volume V (t) as shown with Equa-
tion B.22. The term pV (t) is the momentum of the material volume and FV (t) is
the sum of external surface forces applied on it from its surroundings as shown with
Equation B.23.

dpV (t)

dt
= FV (t) (B.22)

pV (t) =
∫∫∫
V (t)

ρv dV ∧ FV (t) =
∫∫

∂V (t)

t dS +
∫∫∫
V (t)

ρg dV (B.23)

The term t = n · σ in the above, is sometimes named traction [72] and describes
the force per unit area ([N/m2]) applied at the boundary ∂V (t), from the outer
surroundings of the material volume. The unit normal vector n is located at the
boundary ∂V (t) and points out away from the material volume, c.f. the Cauchy’s
stress principle [72]. Combining Equations B.22 and B.23 and then using the Leibnitz
theorem, produces Equation B.24.∫∫∫

V (t)

∂(ρv)
∂t

dV +
∫∫

∂V (t)

(ρv)v · n dS =
∫∫

∂V (t)

n · σ dS +
∫∫∫
V (t)

ρg dV (B.24)

Using the integral theory of Gauss, lemma of duBois-Reymonds and the result from
Equation B.21 in the above, gives after some rearrangement11 the following:

ρ
dv
dt

= ∇ · σ + ρ g (B.25)

The above equation is identical to Equation 2.17 (Page 16).

B.7.2 Conservation of Energy

Mechanical Energy Equation

Gravity g [m/s2] can be represented in terms of the gradient of a potential function
Φ [m2/s2], called the geopotential, as shown with the equation below [48].

g = −g iz = −∇Φ (B.26)

11 ∂(ρv)
∂t

+∇·(ρv v) =
∂(ρv)

∂t
+v v·∇ρ+ρv·∇v+ρv∇·v = ρ(∂v

∂t
+v·∇v)+v(∂ρ

∂t
+v·∇ρ)+v ρ∇·v =

ρ(∂v
∂t

+ v · ∇v) + v dρ
dt

+ v ρ∇ · v = ρ(∂v
∂t

+ v · ∇v) + v (dρ
dt

+ ρ∇ · v) = ρ dv
dt
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Since the geopotential Φ is only dependent12 on elevation z, i.e. Φ = −ĜMz−1, the
following maneuver can be concluded: v ·∇Φ = ∂Φ/∂t+v ·∇Φ = dΦ/dt. Multiplying
Equation B.25 with the velocity v and then using the above maneuver, followed by
some other mathematical steps13, the mechanical energy14 equation [20] is produced:

ρ
d

dt

(v · v
2

+ Φ
)
= (∇ · σ) · v (B.27)

Kinetic and Internal Energy

The sum of the kinetic K [J] and internal U [J] energy of the material volume V (t),
is given by the following:

K + U =
1
2

∫∫∫
V (t)

ρv · v dV +
∫∫∫
V (t)

ρ u dV (B.28)

where u = u(x, t) [J/kg] is the internal energy (per unit mass) of a CP (labeled with
X) that is passing through the position x = x(X, t) at the time t. Of course, x must
be located somewhere inside the material volume V (t). Taking the time derivative of
the above, Equation B.29 is produced after some mathematical steps.

d(K + U)
dt

=
1
2

∫∫∫
V (t)

[
ρ
d[v·v2 + u]

dt
+
[v · v
2

+ u
](dρ

dt
+ ρ∇ · v

)]
dV (B.29)

The last term in the above integrand must vanish in accordance with Equation B.21.

Rate of Heat Supply

The rate of heat supply Q̇ [J/s], to the material inside the material volume V (t), is
due to two factors. First, it is the rate of heat ḣ = ḣ(x, t) [J/(kg · s)] generated or lost
per unit mass inside the material volume. For example, heat is constantly generated
inside the cement based material ḣ > 0 due to the hydration of the cement clinker as
shown with the right illustration of Figure 2.15 (Page 35).

The second factor is due to heat flux (or heat conduction [20]) q [J/(m2 · s)]
through the boundary of the material volume ∂V (t). This vector points in the direc-
tion15 of heat flow. Expressing the above text in terms of mathematics, Equation B.30
is generated.

Q̇ ≡ −dQ
dt

=
∫∫∫
V (t)

ρ ḣ dV −
∫∫

∂V (t)

q · n dS =
∫∫∫
V (t)

(
ρ ḣ−∇ · q

)
dV (B.30)

12Ĝ and M are the gravitational constant and the mass of Earth, respectively.
13I)

d(v·v)
dt

= dv
dt

· v + v · dv
dt

= 2v · dv
dt

⇒ v · dv
dt

= d
dt

v·v
2

. II) v · (∇ · σ) = (∇ · σ) · v.
14With sufficiently small ∇ · ε̇, the term (∇ · T) · v becomes much smaller than other relevant

terms in Equation B.27. Also assuming a steady state fluid flow (∂p/∂t = 0), the following applies:
(∇ · σ) · v ≈ −v · ∇p = dp/dt. With g = constant near the Earth surface when integrating
Equation B.26, one have Φ = Φo + g(z − zo), where Φo and zo are the geopotential and elevation
at some reference point. Putting all these results in Equation B.27 and assuming incompressibility,
produces d

dt
(v · v/2 + z g + p/ρ) = 0. This equation is known as the Bernoulli equation [72, 106]

and states that the quantity v ·v/2+z g+p/ρ does not change following a CP, or v ·v/2+z g+p/ρ =
constant. This constant is generally different for one CP to the next. If the same constant is to
apply for the whole continuum, the flow has to be also irrotational: ∇× v = 0 [72].

15At hot summer day, the surroundings will supply heat to the concrete mix and hence q · n < 0,
while at cold winter day, the surroundings will extract heat from it: q · n > 0. As stated previously,
the unit normal vector n is located at the boundary ∂V (t) and points out from the material volume.
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In the above equation, the integral theory of Gauss [20, 93] was applied. The heat
flux q is given by the Fourier law: q = −k · ∇T = −k∇T , where k is the tensor of
thermal conductivity, equal to k = k I for isotropic material [43]. The variable T is
the temperature.

The Newton’s law of heat convection qN = ĥ(T − To)n [47] is often combined
with the Fourier’s law of heat conduction, to provide the Robin boundary condition:
q · n = qN · n ⇒ ∂T/∂n ≡ ∇T · n = ĥ (To − T )/k. The terms ĥ and To are the
convection heat transfer coefficient per unit area and the temperature just outside
the boundary ∂V (t), respectively. Here, the variable T is the temperature at the
boundary of the material volume ∂V (t).

Rate of Work (Power of the Forces f and ρg)

The rate in mechanical effort (or rate of work) conducted on the material volume V (t),
from its surroundings, is designated with Ẇ [J/s] and is given by Equation B.31. The
term g · v expresses the rate of gravitational work done on the CP. The term16 t · v
represents the (viscous) rate of work applied on the CP, from its surroundings.

Ẇ ≡ −dW
dt

=
∫∫∫
V (t)

ρg · v dV +
∫∫

∂V (t)

t · v dS (B.31)

It is usually the rate of gravitational work
∫∫∫

ρg · v dV ≥ 0 that will make the
concrete flow inside the mold or formwork, while it is the rate of viscous work∫∫

t · v dS ≤ 0 that will slow down this process. Now, applying the integral the-
ory of Gauss [20, 93] on Equation B.31, gives the equation shown just below. In this
process, the term t ·v is transformed to ∇·(σ ·v) and is equal17 to (∇·σ) ·v+σ : ∇v.

Ẇ =
∫∫∫
V (t)

(−ρv · ∇Φ+∇ · (σ · v)) dV (B.32)

The integrand in the above equation, is equal to [−ρ dΦ/dt+(∇·σ) ·v]+σ : ∇v. It is
apparent from Equation B.27, that the first part of this result, is equal to d(v·v/2)/dt.
As such, that relationship describes the rate of work, given by the surroundings and
used in supplying or extracting kinetic energy to or from the CP. In other words,
the velocity v of the CP, increases and decreases due three factors: I) Due to the
surrounding viscous shearing (∇ · T) · v. II) Due to the difference in surrounding
pressure (−∇p) · v and III) Due to its change in elevation dΦ/dt. As shown with
Equation B.39 shortly, the second part of the above result, σ : ∇v, is equal to η γ̇2,
and therefore it can be regarded as the rate of work, used by the surroundings, in
continuously deforming the CP. From the above, Equation B.31 can be rewritten to:

Ẇ =
∫∫∫
V (t)

ρ
d

dt

(v · v
2

)
dV +

∫∫∫
V (t)

η γ̇2 dV (B.33)

16t · v = (n · σ) · v = (σ · v) · n.
17∇·(σ·v) = ip

∂
∂xp

· σijiiij · vkik = ip
∂

∂xp
· σijvjii = ip· ∂σij

∂xp
vjii+ip·σij

∂vj
∂xp

ii =
∂σij
∂xi

vj+σij
∂vj
∂xi

=

(∇ · σ) · v + σ : ∇v. This is so since ∇ · σ = ir(∂/∂xr) · σijiiij = (∂σij/∂xi) ij. The operator : is
called double dot [74]. The general formula is AijBij = A : B and the outcome of this product is a
scalar, just as the outcome between two vectors operated with the single dot operator, is a scalar.
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Defining ẇ [J/(kg · s)] as the rate of work applied on a CP from its surroundings
and then by summation of all these work components with an integration, gives
Ẇ =

∫∫∫
ρ ẇ dV . Using this concept in the above equation, with the concomitant use

of lemma duBois-Reymonds [71], gives the following equation:

ẇ =
d

dt

(v · v
2

)
+
η γ̇2

ρ
(B.34)

First Law of Thermodynamics

The first law of thermodynamics states that in a system of constant mass, then energy
cannot be created or destroyed [20, 49, 108]. This philosophy can be stated with the
following time rated equation:

d(U +K)
dt

=
−dQ
dt

+
−dW
dt

(B.35)

The sign convention in the above, is such that energy, heat and work which is transfer
into the material volume V (t) is positive: d(U +K) > 0, −dQ > 0 and −dW > 0. By
writing −dQ or −dW instead of dQ or dW is done do emphases that those variables are
not a perfect differentials [49, 72]. Generalizing from many experimental observations,
it is shown that when a system is carried through a cycle and returned to its initial
state, then

∮ −dQ �= 0 and
∮ −dW �= 0 [72]. In other words, it is not possible to speak

of the work content or the heat content of the system at any one particular time.
Work and heat are not state function or system properties. They exist only in the
form of energy being transferred and have no individual identities in the system [72].
However, experience shows that

∮ −dQ+
∮ −dW = 0 [72].

Now, Combining Equations B.29, B.30, B.31 and B.35 and then applying lemma
of duBois-Reymonds [71], the total energy equation for the CP is produced:

ρ
d

dt

(v · v
2

+ Φ + u
)
= ρ ḣ−∇ · q + (∇ · σ) · v + σ : ∇v (B.36)

This is the total energy equation for a CP (labeled with X) that is passing through
the position x = x(X, t) at the time t.

Internal Energy

By subtracting Equation B.27 from Equation B.36, the equation for internal energy
of the CP is produced, shown below.

ρ
du

dt
= ρ ḣ−∇ · q + σ:∇v (B.37)

The last term in the above can be calculated further:

σ:∇v = σpk
∂vp
∂xk

=
1
2
σpk

∂vp
∂xk

+
1
2
σkp

∂vk
∂xp

= σpk
1
2

(
∂vp
∂xk

+
∂vk
∂xp

)
= σ :

(∇v + (∇v)T
)
/2 = σ : ε̇ (B.38)

The above manuver was possible since σ = σT as mentiond in Section 2.3, and hence
σpkipik = σkpipik or σpk = σkp. Now, using Equations 2.23 and 2.24, the above
expression can be transformed to the following:

σ : ε̇ = (−p I+ 2 η ε̇) : ε̇ = η (2 ε̇ : ε̇) = η γ̇2 (B.39)
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where −p I : ε̇ = −p δijε̇ij = −p tr(ε̇) = 0, in accordance with Equation B.21. Using
the above equation, Equation B.37 can be rewritten as shown below.

ρ
du

dt
= ρ ḣ−∇ · q + η γ̇2 (B.40)

For incompressible liquids and solids, the change in internal energy is given by du =
c dT [49]. The term c [J/(kg ·K)] is the specific heat, or heat capacity per unit mass.
As such, the above equation can be presented as shown with Equation B.41.

ρ c
dT

dt
= ρ ḣ+∇ · (k∇T ) + η γ̇2 (B.41)

The temperature T is a macroscopic perception of random translational-, rotational-
and vibrational motion for the smallest solid particles [12, 93]. The part of tem-
perature only consisting of random translational motion, is the same motion as the
random and the spontaneous part of the velocity vI (see Equation 2.2, Page 13),
namely [vI−v] for the same particles (see also Footnote 3, Page 378 and Footnote 6,
Page 13). The addition in temperature dT/dt, to the already existing (room) tem-
perature T , is due to the increase in random translational motion of the smallest18

solid particles, when the CP is being deformed (ε̇ �= 0) by its surrounding force f.
This is described with the relationship between dT/dt and η γ̇2 = η (2 ε̇ : ε̇) in Equa-
tion B.41. Of course, the increase in translational random motion will be, in part,
converted to rotational- and vibrational motion, through collisions (and visa versa).
With the above in mind, the energy Equation B.41 could be called the equation of dis-
continuous random motion for the solid particles. Quite the opposite, Equation B.25
represents the velocity part of vI, which contributes to the overall smooth motion of
the CP (see Equation 2.6, Page 13) and as such this equation could be called the
equation of smooth translational motion of the CP.

B.8 Parallel Plate Viscometer

Because of convenience, the cylindrical coordinates will be used here. By using the
general velocity field v = vr(r, θ, z, t) ir+vθ(r, θ, z, t) iθ+vz(r, θ, z, t) iz it is impossible
to gain an analytical solution. But fortunately some reasonable assumptions about
the flow can be made, which makes it easier to obtain such a solution:

1. With low Reynolds number (i.e. with low speed and high shear viscosity η) the
flow is stable19 and it is possible to assume a flow symmetry around the z-axis:
v = vr(r, θ, z, t) ir + vθ(r, θ, z, t) iθ.

2. Due to the circular geometry of the parallel plates and of the cylinder geometries
that are involved (see for example Figure 10.23, Page 257), it is reasonable to

18The random motion of the larger solid particles cannot be understood as temperature. However,
their random motion is always depleted by collisions of the surrounding smaller solid particles, which
increases the random motion of the latter (the random motion of the former is maintained with the
force f). Now, the random motion of the smaller solid particles are again depleted by collisions of
still smaller surrounding solid particles, and so forth. In this way, the random motion of the larger
solid particles will eventually always contribute to the random (thermal) motion of the smallest
solid particles and hence contributing to an increase in the CP temperature T . The increase in
temperature is a reality first for the system of smallest solid particles. But this temperature (or
heat) is also concomitantly conducted into the larger solid particles.

19See Footnote 8 on Page 56.
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assume pure circular flow with θ-independence:

v = vθ(r, z, t) iθ (B.42)

With the velocity field described with Equation B.42, then all the results of Chap-
ter 7 are valid for the BTRHEOM as well for the ConTec viscometers.

The only possibility to make an analytical analysis of the BTRHEOM viscometer
is to assume full slippage (i.e. a no adhesion case) at the outer and inner cylinder
r = Ro and r = Ri. Assuming this, then according to the Cauchy’s stress principle,
the mathematical condition which must apply there, consist of n ·T = 0, where n is
the unit normal vector of the corresponding wall boundary (see the right illustration
of Figure 10.22, Page 256), pointing into the bulk of test material. Using Equation 7.4
(Page 156) when using this condition at r = Ro and r = Ri produces the following:

−ir · T|Ro
= − η(γ̇, t)

[
∂vθ(r, z, t)

∂r
− vθ(r, z, t)

r

]∣∣∣∣
Ro

iθ = 0 (B.43)

ir ·T|Ri
= η(γ̇, t)

[
∂vθ(r, z, t)

∂r
− vθ(r, z, t)

r

]∣∣∣∣
Ri

iθ = 0 (B.44)

The above tells that the condition ∂vθ(r, z, t)/∂r − vθ(r, z, t)/r = 0 applies at the
outer and inner cylinder. Also, with vθ = r ωt at the top plate and vθ = 0 at the
bottom plate, this same condition is also valid there. With this condition valid at
all the wall boundaries, it is presumable to assume that this condition applies also
everywhere else inside the test sample:

∂vθ(r, z, t)
∂r

− vθ(r, z, t)
r

= 0 ∀ (r, z) ∈ Ω ∪ ∂Ω (B.45)

In other words, the condition ∂vθ(r, z, t)/∂r − vθ(r, z, t)/r = 0 applies everywhere,
whenever full slippage applies at the outer and inner cylinder. With this result, the
shear rate, as described with Equation 7.3 (Page 156) is now given by Equation B.46.

γ̇ =
∣∣∣∣∂vθ(r, z, t)

∂z

∣∣∣∣ = ∂vθ(r, z, t)
∂z

≥ 0 (B.46)

According to Equation 7.7, the statement from Equation B.45 is equivalent to the
condition Trθ = 0 ∀ (r, z) ∈ Ω ∪ ∂Ω. From Equation B.46 and with Trθ = 0 and also
assuming time independence for each discrete torque measurement, then Equation 7.6
is transformed to Equation B.47.

0 =
∂Tzθ(r, z)

∂z
=

∂

∂z

(
η(γ̇)

∂vθ(r, z)
∂z

)
=

∂

∂z

(
µ
∂vθ(r, z)

∂z
+ τo

)
(B.47)

In the above equation, the Bingham model is applied by using η = µ+τo/γ̇. With the
boundary condition vθ(r, 0) = 0 and vθ(r, h) = rωt, the solution20 of Equation B.47
is as follows:

vθ(r, z) =
r ωt
h

z (B.48)

20µ∂vθ/∂z + τo = A(r) ⇒ ∂vθ/∂z = (A(r)− τo)/µ⇒ vθ = (A(r)− τo)z/µ+B(r); vθ(r, 0) = 0 ∧
vθ(r, h) = rωt ⇒ B(r) = 0 ∧ (A(r)− τo)/µ = r ωt/h.
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Combining Equations B.46 and B.48, gives the shear rate profile which applies for the
full-slippage-case:

γ̇ =
r ωt
h

(B.49)

The shear stress applied on the top plate from the test material (c.f. Cauchy’s stress
principle) is −iz ·T. From Equations 7.4, B.45, B.46 and B.48, this term is equal to:

−iz ·T = −η ∂vθ(r, z)
∂z

iθ = −
(
µ
r ωt
h

+ τo

)
iθ (B.50)

The negative sign is because the concrete sample is always trying to slow down the
rotating top plate. Now, the torque applied from the test material on the top plate
is:

T̂ = −T̂ iz =
∫ Ro

Ri

∫ 2 π

0

r ir × (−iz ·T r dθ dr) =

= −
[
π µ (R4o −R4i )

2 h
ωt +

2 π τo (R3o −R3i )
3

]
iz = −(H ωt +G) iz (B.51)

By plotting the measured torque T̂ as a function of the angular velocities ωt, one can
connect these measured values with a straight line: T̂ = H ωt +G. From its slope H
and its point of intersection with the ordinate G, one can calculate the plastic viscosity
µ and the yield value τo of the cement based material according to Equation B.52.

µ =
2 hH

π (R4o − R4i )
∧ τo =

3G
2 π (R3o −R3i )

(B.52)

The above result is extracted directly from Equation B.51.
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Appendix C

Additional Measurements

C.1 Compressive Strength of Concrete

Usually, for each concrete batch (see mix design of concrete in Table 4.3, Page 78),
a number of 9 cubes (100 × 100 × 100mm) are casted and tested for compressive
strength in accordance with Norwegian standards. The cubes are de-moulded at 24
hours, and three (of total of nine) cubes are tested at once, while the remaining six are
stored in a curing tank at 20◦C until testing at 7 and 28 days (in general). A single
compressive strength value shown in Figures C.1 and C.2 is obtained as an average
of three tested cubes. The cube strength is measured with the Galdabini apparatus
shown in the right illustration of Figure C.1. The left illustration of Figure C.1
demonstrates the measured compressive strength of concrete at w/c = 0.4. The left
and right illustration of Figure C.2 shows the compressive strength at w/c = 0.5 and
w/c = 0.6, respectively.
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Figure C.1: To the left: Measured compressive strength of concrete at w/c = 0.4, using the
different types of polymers. To the right: The measuring apparatus is the Galdabini device.

C.2 First Setting Time of Mortar

The heat of hydration of mortar (see mix design of mortars in Tables 4.4 and 4.6,
Page 78) is determined here by a semi-adiabatic calorimetry [116]. The semi-adiabatic

395
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Figure C.2: Measured compressive strength of concrete at w/c = 0.5 (to the left) and at
w/c = 0.6 (to the right), using the different types of polymers.

calorimeter is a small and closed insulated container made from 15mm expanded
polystyrene. Four liters of the mortar are placed inside this container. The ambi-
ent temperature To and the mortar temperature T are simultaneously recorded as a
function of time t, by the use of thermocouples and a data logger. The heat convec-
tion from the container to the surroundings is low, but not negligible. Consequently
the resulting measured temperature rise in the mortar sample do not correspond to
pure adiabatic conditions. Error generated due to this is corrected with the help of
Newton’s law of heat convection qN = ĥ(T − To)n (see Page 389 about this law).
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Figure C.3: The first setting time of mortars (OPC), using the different types of polymers. The
only concrete batch that is mixed and measured, contains the HMW Na polymer.

The rate of increase in heat is calculated as q̇ = ρ ḣ = ρ c dT/dt, where the
terms c and ρ are the specific heat [J/(kg · K)] and density [kg/m3] of the mortar
sample (−dQ/dt = ∫∫∫

q̇ dV , c.f. Equation B.30, Page 388). The accumulated heat
development as a function of real time t is calculated with the following:

qacc(t) =
∫ t

0

q̇(t′) dt′ ≈ qacc(j∆t) =
j∑
i=1

ρ c∆Ti (C.1)

The term ∆Ti is the change in temperature of the mortar (or concrete) during the time
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interval ∆t, at the real time t = i∆t. Plotting qacc(t) against maturity time M(t)
using the modified Arrhenius equation, results in a curve denoted as “isothermal
heat development”. Commonly used in Norway, the first setting time of mortar
and concrete is determined with this type of curve: A 12.5 kJ/kgcement heat increase
compared to the underlying trend line during the period of setting, determines the
first setting time in terms of maturity M (this is the so-called modified 12.5 kJ/kg-
criteria [44]). This maturity time M(t) can be calculated back to real time t. This is
done in Figures C.3 and C.4. More precisely, these figures shows the first setting time
(in real time t) of both OPC-mortars and FAC-mortars, with the different polymer
types.

To indicate the relevance of the mortar results, one concrete batch is mixed and
tested for comparison. This specific concrete batch contains the HMW Na polymer.
The result of this is shown in the left illustration of Figure C.3. There it is shown
a complete match between the mortar case and the concrete case. [As discussed in
Section 4.3.2, the mix design of the OPC-mortar is calculated from the mix design of
the concrete].
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Figure C.4: The first setting time of mortars (FAC), using the different types of polymers.
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