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Chapter 1

Introduction

This thesis contains an introductory section and four separate papers. The introductory section
is organized in six chapters. The first one presents the motivations and the aims of the project.
The second chapter gives an overview of the mitral valve anatomy. The third one presents the
mechanical behaviour of the mitral leaflets and the chordae tendinae. In the fourth chapter,
some basic principles of continuum mechanics are presented briefly in order to describe defor-
mation and stress, and establish constitutive material laws in hyperelasticity. In chapter five,
the summaries of the papers are presented. In chapter six, concluding remarks are presented
and topics for further research are discussed.

1.1 Motivations

The Mitral valve is one of the four valves of the heart. Located between the left atrium and
left ventricle the mitral valve prevents the blood from flowing back into the left atrium when
the ventricle contracts (see Figure 1.1). The normal function of the valve depends on the co-
ordinated action of different anatomical parts: the left atrium, the mitral annulus, the mitral
leaflets, the chordae tendinae, the papillary muscles and the left ventricle. The mitral appara-
tus itself consists of two leaflets attached to the annulus,the papillary muscles and the chordae
tendinae attached at one end to the leaflets and at the other end to the papillary muscles. The
chordae and the papillary muscles are also referred as the subvalvular apparatus. Malfunction
or failure of one of these constituents can affect the function of the valve, with further conse-
quence of pathological heart function.
In order to assess pathologies of the mitral valve it is of primary importance to understand

the functional characteristics of its different constituents.
The finite element (FE) method is a powerful technique in order to calculate strain and stress
distributions in complex structures. FE models have been used to analyse mitral valve response
[1], [2], diseases [3] or surgical techniques such as annuloplasty [4] or edge-to-edge repair [5] [6].
Experimental in vitro tests carried out on porcine mitral leaflets [7] showed that both leaflets
exhibit highly nonlinear response and are anisotropic. The investigation lead to the formula-
tion of a transversely isotropic hyperelastic constitutive law for porcine mitral valve leaflets [8].
In FE method, the material behaviour is a crucial point in order to calculate accurately the
response of a structure.
However, in vivo tissue has a different response compared to in vitro tissue. And in vivo stress
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Left atrium

Annulus

Leaftlets

Chordae tendinae

Papillary muscles
Left ventricle

Figure 1.1: Overview of the mitral apparatus.

measurements are not possible. Hence, the validation of the modelling of the mitral apparatus
requires comparison of the computed response from the finite element simulation to in vivo
measurements.
Imaging techniques such as echocardiography are commonly used to diagnose mitral valve dis-
eases in hospitals. Echocardiographic images provide fine details of tissue motion and blood
flow velocities. In addition, information extracted from imaging, such as geometry and mea-
sured global motion of the mitral apparatus, can be incorporated in FE models as boundary
conditions [9].
With appropriate boundary conditions and constitutive material laws, FE models can be valu-
able tools in order to describe both geometrical changes and stress–strain distribution in the
mitral apparatus. As mechanical stress is of primary importance for evolution of the tissue, FE
analysis can be used to estimate stress–strain distributions in the mitral apparatus in order to
assess how a disease affect the tissue and help in making decisions for surgical treatments.

1.2 Aims of the study

The main aim of this thesis work has been to develop three-dimensional finite element models
combining realistic geometry, boundary conditions and material models for the mitral valve.

As material models have an important role in the accuracy of the FE model, they have to be as
close as possible to the reality in order to understand the natural mitral valve function. In [8] the
focus was on in vitro biaxial testing of mitral valve tissue, and on the identification of a strain-
energy function and material parameters, but not on its numerical implementation. Commercial
codes do not contain specialized models for human tissues. These material models for mitral
leaflet tissue and chordae tissue are necessary for finite element modelling of the mitral valve
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apparatus. We thus wanted to implement transversely isotropic hyperelastic material models
in the finite element code ABAQUS for membrane-shell elements as a first approach. With this,
it is possible to account for the anisotropic behaviour of the leaflet in the simulation of mitral
valve in healthy and diseased conditions.

The typical modelling of the annulus is to assume it as flat and rigid whereas we know it has a
saddle shape and is non-rigid. The chordae tendinae form a complex network of fibrous strings
between the leaflets and the papillary muscles preventing mitral valve prolapse into the left
atrium. Hence, we wanted to investigate the influence of the annulus shape variations on the
mitral valve response and to characterize the tensions carried by the different types of chordae.
This gives a tool to understand the role of the annulus deformations and function of the different
chordae tendinae in the response of healthy mitral valve.

The mitral leaflets can be considered as three layered laminated structures: the atrialis on
the atrium side, the ventricularis on the ventricular side and the inner fibrosa layer. These
layers may have different effects on the stress distributions in the leaflet walls. We wanted to
develop a three-dimensional finite element model using continuum elements taking into account
the layered structure of the mitral valve. With this, one has a tool to take into account finer
details such as variation of leaflets material properties through the thickness and to improve
understanding of tissue adaptation.

In vitro mechanical data of porcine mitral tissue are available in the literature. However, human
data are not available yet. Hence, we wanted to perform mechanical tests on human mitral
valve in order to obtain material parameters for leaflets and chordae tendinae from the same
valve. The material parameters would be used in FE models to compare diseased and healthy
valves. This can be used to better understand function and adaptation of diseased valves.





Chapter 2

Anatomy and physiology of the mitral
valve

2.1 Cardiac cycle

The sequence of events that occur in the heart during one heart beat is called the cardiac cycle.
The heart can be seen as a double-acting pump: the left side delivers blood at high pressure into
the systemic circulation, while the right side pumps blood through the lungs, i.e., the pulmonary
circulation. Coming from the venae cavae, venous blood enters the right atrium. From there
it flows into the right ventricle which pumps it into the lungs via the pulmonary arteries. In
the lungs the blood is oxygenated and is returned to the left atrium via the pulmonary veins.
From there it flows into the left ventricle which pumps it into the aorta and on through the
systemic circulation. The blood flow path is controlled by four one-way valves (see Figure 2.1).
The inlet valves of the ventricles are called the AV (atrioventricular) valves. They permit blood
to flow in one direction only, from the atria to the ventricles. The valve located between the
right atrium and the right ventricle is called the tricuspid valve because it has three leaflets,
or cups. The valve located between the left atrium and the left ventricle is called the mitral
valve because it has only two leaflets, which resemble a bishops miter. The outlet valves of the
ventricles are called semilunar valves. They also allow blood to flow in a single direction, from
each ventricle into a large outflow-tract vessel. Both the pulmonary valve, located between the
right ventricle and pulmonary artery, and the aortic valve, located between the left ventricle
and aorta, have three leaflets. The cardiac cycle can be divided into phases, from the point of
view of the ventricles and of the positions of their valves, four distinct phases can be considered:

• Inflow phase (phase 1). Inlet valve is open and the outlet valve is closed.

• Isovolumetric contraction (phase 2). Both valves are closed, with no blood flow.

• Outflow phase (phase 3). The outlet valve is open and the inlet valve is closed.

• Isovolumetric relaxation (phase 4). Both valves are closed with no blood flow.

Commonly, the cardiac cycle can also be divided into two phases, diastole and systole (see
Figure 2.2). The diastole and the systole are synonymous with the relaxation and contraction
of a muscle, respectively. Basically, the ventricles are filled during diastole and the blood is

5
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Aorta

Pulmanary semilunar valve

left pulmonary veins

Mitral valve

left ventricle
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Figure 2.1: Frontal cross section of the heart (the white arrows represent the blood flow path)
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Figure 2.2: Pressures during the cardiac cycle
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ejected during systole.
Diastole begins with a period of isovolumetric relaxation, when ventricular pressure decreases.
During diastole, when the heart is in a relaxed state, the two ventricles are filling with blood
through the wide open tricuspid and mitral valve. Diastole is followed by an energetic contrac-
tion of the muscular walls of the two ventricles, leading to a sudden rise in the blood pressure
within them and the closure of the tricuspid and mitral valves.
At the beginning of ventricular systole, the pressure in the left ventricle increases, closing the
mitral valve. The pressure in the left ventricle continues to rise and when the pressure in the
ventricle is greater than the pressure in the aorta, the aortic valve opens, allowing the rapid
ejection of blood from the ventricle.

2.2 Anatomy

Annulus

Anterior leaflet Posterior leaflet

Left ventricle Papillary muscles

Figure 2.3: Overview of a human mitral apparatus1

1autopsy picture approved by the Ethics Committee of the Medical Faculty Trondheim
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2.2.1 The annulus

The annulus is not a well defined anatomical structure. It can be defined as the line around
which the mitral leaflets rotate during opening and closure of the valve. It defines the transition
between the left atrium endocardium and the valve leaflets (see Figure 2.3).
The mitral annulus shape and its dynamic behaviour during the cardiac cycle have been studied
in animals and humans using different imaging techniques such as two-dimensional and three-
dimensional echocardiography, magnetic resonance. The annulus shape is often described as a
saddle because of its resemblance to a nonplanar ellipse [11], [12]). The annulus saddle height
increases during systole. The annular contraction occurs between end of diastole and beginning
of systole [13].

2.2.2 The leaflets

The mitral leaflets represent an uninterrupted structure divided in an anterior (aortic or septal)
leaflet and a posterior (mural) leaflet. The two leaflets exhibit some anatomical differences (see
Figure 2.3). The anterior leaflet, adjacent to the aortic artery, occupies about one third of
the annulus length and is larger than the posterior leaflet. The anterior leaflet has a rounded
free margin and is characterized on its atrial surface by a rough zone along the free edge [10]
approximatively 1 cm in the middle of the leaflet and narrowing toward the commissural areas.
This region is thicker than the rest of the leaflet due to the abundance of chordal insertions.
During valve closure this zone comes into contact with the posterior leaflet, view from the
atrium the closure line of the valve resembles a smile. The ends of the closure line are referred
to as the commissures, which are about 5 mm long from their free margin to the annulus and
mark the continuity between the two leaflets. The posterior leaflet occupies two thirds of the
annular circumference and is narrower than the anterior leaflet. It is often divided into three
scallops. Raghanathan et al. [10] found that the middle scallop is larger than the two others
located near the commissural areas.
The principal biochemical components of the mitral leaflets are water, collagen, elastin and
glycosaminoglycans [14]. Among these components collagen has the highest stiffness. The
mitral leaflets can be divided into three layers: an atrial/spongiosa layer on the atrium side
composed of loose connective tissue, the ventricularis layer on the ventricular side composed of
elastic fibres and an inner fibrosa layer containing dense collagen. The fibrosa is the thickest
layer while the ventricularis is the thinnest layer. The thicknesses of these layers vary from the
annulus to the free edge of the leaflets [14].

2.2.3 The chordae

The chordae are fibrous strings that represent the connection between the valve leaflets and
the ventricular wall. They originate from the tips of the papillary muscles or directly from the
ventricular wall and insert into the valve leaflets.
The chordae attached to the commissure are named commissural chordae and are inserting into
the free edge of the commissural region.
Two kinds of chordae attached to the anterior leaflet can be distinguished: the primary chordae
or marginal chordae inserted into the free margin and the secondary chordae inserted into the
rough zone of the leaflet (beyond the free edge of the leaflet). Often these chordae split into two
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or three branches after their origin from the papillary muscle. Among the secondary chordae
two are thicker and larger than the other mitral valve chordae and have been observed in 90%
of the human hearts [15]. These two chordae are called strut (see Figure 2.4) and have been
recently of particular interest (see [16], [17], [18], [19], [20]).

The chordae attached to the posterior leaflet can be divided into three groups. As in the

Anterior marginal

chordae
chordae

Posterior marginal

Anterior strut chordae

Figure 2.4: View of the ventricular surface of a human mitral valve

anterior leaflet, the primary chordae are inserted into the free margin and the secondary chordae
into the rough zone, note the posterior does not have any strut chordae. In addition, a third
type of chordae unique to the posterior leaflet can be observed. These chordae insert into the
basal region of the leaflet, i.e. near the annulus, and are named third order chordae or basal
chordae [15].

2.2.4 The papillary muscles

The left ventricle has two papillary muscles, an anterior one and a posterior one, arising at
the junction of the apical and middle thirds of the ventricular free wall (see Figure 2.3). The
anterior papillary muscle originates from the anterior wall of the ventricle at its lateral border,
and the posterior muscle arises from the posterior wall, at its junction with the ventricular
septum. They are usually composed of two or three very closely related structures each com-
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ing in contact during ventricular contraction. The apices of the papillary muscles bifurcate or
trifurcate into smaller terminations from which chordae tendinae originate [21].
Papillary muscles contraction and elongation have a critical role during the closing and opening
phases of the valve leaflets in order to allow coaptation and prevent mitral valve prolapse [21].
Papillary muscles have an essential role in the load bearing of the mitral valve during systole
[22]. In addition, in normal subjects both papillary muscle tip and annulus move apically during
systole and the relative distance between the papillary muscle tip and annulus plane is nearly
constant during systole [23].
At end diastole, the distance from the annulus plane to the papillary muscle tips is approx-
imatively 26 mm and the distance between the two papillary muscles is 22 mm in healthy
individuals [24].



Chapter 3

Mitral leaflets and chordae mechanical
behaviour

3.1 Chordae

Both human and porcine chordae have been studied. The different mechanical behaviours of
both strut and marginal chordae were tested with uniaxial tensile tests [25], [17]. Stress in
the marginal chordae is higher than that on the basal ones at all recorded strains. Moreover,
marginal chordae are less extensible than strut chordae [25], see Figure 3.1. Hence, the me-
chanical properties of the chordae are type dependent.
The mechanical behaviour of the chordae tendinae is also dependent on size. Indeed, smaller
chordae exhibit less extensibility than larger ones [26], [27].
Some differences in the structure of the chordae constituting the mitral valve appear: thinner
chordae are less extensible than thicker chordae and marginal chordae are the thinnest. In
addition, collagen fibril crimp period are smaller in thicker chordae than in the thinner ones.
Moreover, the marginal chordae have smaller collagen fibril diameters and greater average fibril
density than the other types of chordae. However, the area percentages of the chordae occu-
pied by collagen fibrils is nearly constant between all types of chordae. Since thin chordae have
smaller collagen fibril diameter than thick chordae, their greater modulus may be due to the
greater number of interfibrillar linkages [27].
Regarding failure of the mitral valve chordae tendinae, the marginal chordae and posterior
chordae requires less strain and less load to fail than strut chordae and anterior leaflet chordae,
respectively [20].

3.2 Leaflets

May-Newman and Yin [8] formulated a strain energy function describing the large deformations
of the fibrous architecture of the mitral valve tissue. Their biaxial tests on anterior and posterior
porcine mitral leaflets demonstrated that both leaflets exhibited large deformations and behaved
anisotropically, being stiffer along the circumferential direction (concentric to the annulus).
The posterior leaflet is more extensible than the anterior one. Assuming that the loading and
unloading responses could be modeled by the same constitutive law and as the mitral valve

11
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Figure 3.1: Stress/strain behaviour of porcine mitral valve chordae tendinae in uniaxial tension
[25]

tissue is composed of an oriented parallel network of crimped collagen fibrils and as the angle
of these fibrils is relatively uniform through the thickness and in the region used for testing,
they proposed that mitral valve tissue might be modeled as a transversely isotropic material.
The strain energy function proposed has an exponential form analogous to the one proposed
by Fung et al. [28] to describe arterial mechanical properties:

Ψ = c0

(
ec1(I1−3)2+c2(α−1)4 − 1

)
, (3.1)

where c0, c1, c2 are material parameters, I1 = tr(C) and α = NCN, C is the right Cauchy
strain tensor, N is a unit vector defining the preferred fibre direction of the material in the
undeformed configuration, α is the stretch of the fibre.
The stiffness of the mitral leaflets is mainly due to collagen. The mitral valve leaflets con-
tain highly oriented collagen fibres. The collagen fibres in the central part of both leaflets are
oriented parallel to the annulus. In the anterior leaflet, they turn gradually orthogonal to the
annulus and insert in the region next to the fibrous trigones [29]. The collagen fibre architecture
mapping is provided for both leaflets in [29] and [30].
In vitro studies showed that the central portion of the anterior leaflet in pig undergoes anisotropic
strains [31], [32]. The anterior leaflet exhibits a large nonhomogeneous radial stretch and a small
circumferential stretch and the principal stretches were maintained at nearly constant values
during the closed phase of the valve. It is important to note that these simulations are difficult
to validate in vivo with available imaging technologies.
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Figure 3.2: Stress–strain relation for posterior and anterior leaflets of one porcine mitral valve.
Circles, circumferential direction, triangles, radial directions. This figure is taken from May-
Newman and Yin [7].

In addition, the mitral valve leaflets have the ability to withstand loading without time depen-
dent effects [33].





Chapter 4

Introduction to large deformations and
hyperelasticity

In this part, some basic principles of continuum mechanics are recalled in order to describe
deformation and stress. These principles are used in the development of constitutive model of
different constituents of the mitral valve and in the finite element implementation. This chapter
is mainly based on the account provided by Holzapfel [34] and Belytschko et al. [35].

4.1 Deformation and strain measures

Consider Ω and Ω0 as the initial (reference) and deformed (current) configurations, respectively,
and the deformation map χ(X) : Ω0 → R3, which transforms a referential position X ∈ Ω0

of a point P0 into the related current position x = χ(X) ∈ Ω P , see Figure 4.1. Hence, the
deformation gradient F is defined as:

F =
∂χ(X)

∂X
. (4.1)

F takes into account large deformations and rotations that are not considered in linear elasticity
theory. The Jacobian of the transformation J = detF represents the volume dilatation in the
neighbourhood of a point P0 between the instants t and t0. The axiom of non-interpenetrability
gives: J > 0 ∀X and ∀t (note that for an incompressible material J = 1). The right and
left Cauchy green tensors are defined as C = F

T
F and B = FF

T
, respectively. C and B are

symmetric and positive definite tensors and the square root of their principal values are equal
to the principal stretches.
Here, we consider two different strain measures: the Green-Lagrange strain tensor E and the

rate of deformation tensor D. E and D vanish for any rigid body motion.
The Green strain tensor E measures the difference of square length of an infinitesimal segment
in the current configuration dx and the reference configuration dX and is defined as:

dx · dx − dX · dX = 2dX · E · dX. (4.2)

As dx = FdX, it gives:

E =
1

2

(
F

T
F− 1

)
=

1

2
(C− 1) . (4.3)
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Figure 4.1: Transformation from undeformed to deformed configuration.

Compared to the Green strain tensor E the rate of deformation tensor D is a rate measure of
deformation. D is defined as the symmetric part of the velocity gradient L:

D =
1

2

(
L + LT

)
. (4.4)

Note that L = D + W, where W is the skew–symmetric part of L.
The rate of deformation is a measure of the rate change of the square of the length of an
infinitesimal material line segment:

∂

∂t
(dx · dx) = 2dx · D · dx. (4.5)

Note also the relation between the time derivative of the Green strain tensor Ė and the rate of
deformation tensor D:

Ė = FT DF, D = F−T ĖF−1. (4.6)

4.2 Hyperelasticity

Hyperelasticity is a suitable nonlinear constitutive theory in order to describe physical phe-
nomena undergoing finite strains such as extension of ligaments or tendons and blood vessels
subjected to an internal pressure. From a mechanical point of view, a hyperelastic material has
a purely reversible behaviour, i.e. the loading and unloading stress strain curves are identical
and the original shape is recovered upon unloading. In addition, a hyperelastic material is
path–independent, i.e. the stress and the strain energy depend only on the current level of
strain and not on the strain history. Moreover, it has non dissipative behaviour: the energy ex-
pended in deformation is stored in the material and can be recovered upon unloading. Finally,
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it is rate–independent, i.e. the behavior is insensitive to the strain rate.
A hyperelastic material assumes the existence of a free energy function Ψ defined here per unit
reference volume, which is a thermodynamic potential. Only isothermal (constant tempera-
ture) transformations are considered here and the strain energy function Ψ = Ψ(F) is only a
function of F.
Let’s choose the energy conjugate pair of objective tensors P and F, where P is the first Piola–
Kirchhoff stress tensor. The Clausius–Planck inequality becomes an equality for hyperelastic
materials as they have a reversible behaviour from a mechanical point of view:

Dint = P : Ḟ− ∂Ψ

∂F

)
: Ḟ = 0, (4.7)

where Dint is the internal dissipation, P : Ḟ the stress power and
∂Ψ
∂t the rate of internal energy.

As eq.(4.7) must be satisfied for an arbitrary tensor Ḟ, we obtain:

P−
∂Ψ

∂F
= 0, and P =

∂Ψ

∂F
. (4.8)

Hence, a given strain energy function Ψ is sufficient to describe a hyperelastic behaviour. Note
that Ḟ is not an objective tensor. However, as in the constitutive law eq.(4.8) with the pair
(P, F), Ḟ is not involved, it is not necessary to replace it with an objective derivative.
Choosing the pair S and E of objective tensors, where S is the second Piola–Kirchhoff stress
tensor, we would obtain using Clausius–Plank form:

S =
∂Ψ

∂E
, (4.9)

and as C = 2E + 1,

S =
∂Ψ

∂E
= 2

∂Ψ

∂C
, (4.10)

A consequence from the objectivity principle or material frame invariance principle is that the
strain energy function Ψ must be objective, i.e. independent of an observer. Thus, the strain
energy function Ψ = Ψ(F) must obey:

Ψ(QF) = Ψ(F), (4.11)

for all orthogonal tensors Q and for all tensors F with detF > 0, i.e. the strain energy is
unaffected by rigid rotations and translations of the current configuration. Choosing Q = R

T
,

where R is defined by the right polar decomposition of the deformation gradient F, we find
that Ψ(F) = Ψ(R

T
F) = Ψ(R

T
RU) using F = RU and:

Ψ(F) = Ψ(U). (4.12)

Eq.(4.12) shows the strain energy does not depend on the rotation R, but only depends on
the stretch tensor U that characterizes the local stretching at a given material point. In fact,
the value of the strain energy function is independent of deformation tensor chosen in the
description. Indeed, E and C being functions of U, we also have:

Ψ(F) = Ψ(U) = Ψ(C) = Ψ(E). (4.13)
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In addition, the strain energy must be unchanged by rotations and translations of the reference
configuration. In the case of isotropy, we say that a material is isotropic relative to the reference
configuration if for a strain energy function of a form Ψ = Ψ(F):

Ψ(F) = Ψ(FQT ), (4.14)

for all orthogonal tensors Q and for all tensors F with detF > 0, or if the strain energy function
adopts the form Ψ(F) = Ψ(C) (see eq.(4.13)),

Ψ(C) = Ψ(QCQT ), (4.15)

for all orthogonal tensors Q and for all symmetric tensors C.

4.3 Transversely isotropic hyperelasticity

For a material reinforced by only one family of fibres as it can be the case for some biological
tissues composed of a matrix material and reinforced by one collagen fibre family, the stress
response to a given applied load does not only depend on F but also on the fibre direction called
the preferred direction. In the plane perpendicular to the preferred direction, the material
response is isotropic. This kind of material are referred to as transversely isotropic material
with respect to this preferred direction.
One approach in order to derive transversely isotropic hyperelastic constitutive material model
is to introduce a unit vector field a0(X) representing the direction of a fibre at a point X in
the reference configuration Ω0 directly in the strain energy function. Then, the strain energy
function Ψ may be written as a function of the second order tensors C and a0 ⊗ a0:

Ψ = Ψ(C, a0 ⊗ a0). (4.16)

As C and a0⊗a0 are material tensors, they are unaffected by rigid body motions superimposed
to the current configuration. Hence, the principle of material frame invariance is satisfied for
the strain energy function Ψ(C, a0 ⊗ a0).
Moreover, an other requirement for the strain energy Ψ(C, a0 ⊗ a0) is to be unchanged by
rotations in the reference configuration of both the matrix material and the fibres. Hence, Ψ
must obey:

Ψ(C, a0 ⊗ a0) = Ψ(QCQT ,Qa0 ⊗ a0Q
T ), (4.17)

for all orthogonal tensors Q and for all symmetric tensors C. A hyperelastic material is said to
be transversely isotropic with respect to a reference configuration if eq.(4.17) is satisfied.
According to Spencer [36], function (4.16) may be expressed in terms of five invariants. Thus

Ψ̃(C, a0 ⊗ a0) = Ψ∗(I1, . . . , I5), (4.18)

where I1, I2, I3 are the three invariants related to isotropic hyperelasticity, while

I4 = a0 · Ca0, I5 = a0 · C2a0 (4.19)

are two pseudo invariants of C and a0 ⊗a0. Note that I4 in (4.19)1 is the square of the stretch
in the fibre direction.
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4.4 Stress and elasticity tensors

For a hyperelastic material, the second Piola–Kirchhoff stress tensor S is derived from the strain
energy function Ψ (see eq.(4.9) and eq.(4.10)). The Cauchy stress tensor σ is calculated by the
push–forward operation of S into the current configuration:

σ =
1

∂E∂E
= 4

∂
2
Ψ

∂C∂C
. (4.21)

It is a fourth order tensor that gives the following relation between the material time derivatives
of S and E:

Ṡ = C : Ė. (4.22)

Note that for a hyperelastic material C possesses the major and minor symmetries.
The spatial description the elasticity tensor is defined as the push-forward operation of C as:

C = χ∗(C), cijkl =
1

J
FiIFjJFkKFlLCIJKL. (4.23)

C is also referred as the spatial tangent moduli and gives the following relationship,

LVτ = τ̇ − Lτ − τL
T

= JC : D (4.24)

where τ = Jσ is the Kirchhoff stress tensor, L the velocity gradient, D the rate of deformation,
and LVτ the convected rate of the Kirchhoff stress, also called the Lie derivative of the Kirchhoff
stress.
Other objective stress rates that can be used are the Jaumann stress rateτ∇J or the Green-
Naghdi stress rate τ∇G. Then the Jaumann (Kirchhoff) tangent moduli C

τJ and the Green-
Naghdi (Kirchhoff) tangent moduli C

τG give the following relation between τ∇J and D and
τ∇G and D, respectively:

τ∇J = C
τJ : D, τ∇G = C

τG : D. (4.25)

These tangent moduli are useful for the implementation of constitutive material law in a finite
element code. Now we provide explicit expressions and relations between the different tangent
moduli (Jaumann and Green-Naghdi) for incompressible materials. The Jaumann objective
stress rate τ∇J is used in ABAQUS/Standard for continuum elements:

τ∇J = τ̇ − Wτ − τW
T

= C
τJ : D, (4.26)

where C
τJ is the Jaumann (Kirchhoff) tangent moduli. This leads to the following relation

between the spatial second elasticity tensor C defined by eq.(4.23) and the Jaumann (Kirchhoff)
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tangent moduli CτJ ,

LVτ = τ
∇J − (L − W)τ − τ (L− W)T = JC : D

= τ
∇J −Dτ − τD, (4.27)

JC : D = C
τJ : D − JC

′

: D, (4.28)

with C
′

: D = Dσ + σD, (4.29)

and C
′

ijkl =
1

2σ22 +
1
2σ11

1
2σ23

1
2σ13

σ31 0 σ13
1
2σ32

1
2σ33 +

1
2σ11

1
2σ12

0 σ32 σ23
1
2σ31

1
2σ21

1
2σ33 +

1
2σ22










. (4.32)

The relation between the Green-Naghdi rate of Kirchhoff stress τ∇G and the rate of defor-
mation tensor D reads:

τ∇G = τ̇ −Ωτ − τΩ
T

= C
τG : D, (4.33)

where Ω is the angular velocity tensor, Ω is skew-symmetric.

Ω = ṘR
T
, (4.34)

where R is an orthogonal tensor defined such as F = VR, where V is the left stretch tensor.
The relation between the Lie derivative and the Green-Naghdi rate of the Kirchhoff stress

is:

LVτ = τ∇G − Dτ − τD − (W − Ω)τ − τ (W −Ω)
T
, (4.35)

JC : D = C
τG : D − JC

′

: D − JC∗ : D, (4.36)

where, C∗ : D = (W − Ω)σ + σ(W − Ω)
T
, (4.37)

then C
τG = J

(
C + C

′

+ C∗)
. (4.38)

Mehrabadi and Nemat-Nasser [40] showed that the term (W − Ω) can be expressed as:

W − Ω = Λ : D. (4.39)
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Λ is a fourth order tensor defined by:

Λ : D =
1

2
(tr(V)

2
− tr(V

2
)), I3V = det(V). (4.41)

W and Ω are both skew symmetric then W−Ω is also skew-symmetric, this gives the following
expression for C∗:

C∗ : D = (W −Ω)σ − σ(W − Ω)

= (Λ : D)σ − σ(Λ : D), (4.42)

C∗
ijklDkl = ΛimklDklσmj − σimΛmjklDkl, (4.43)

C∗
ijkl = Λimklσmj − σimΛmjkl. (4.44)

In index notation, Λ is expressed as:

Λijkl =
1

I1VI2V − I3V
(I

2
1V

1

2
(δjlVik + δjkVil − (δikVjl + δilVjk))

−I1V
1

2
(δjlBik + δjkBil − (δikBjl + δilBjk))

+
1

2
(BikVlj +BilVkj − (VikBlj + VilBkj))). (4.45)

Note that Λ does not have the major symmetries but possesses minor symmetry and skew
symmetry:

Λijkl 6= Λklij (4.46)

Λijkl = Λijlk = −Λjikl (4.47)

The following terms of Λ are equal to zero:

Λ1111 = Λ1122 = Λ1112 = Λ2211 = Λ2222 = Λ2212 = 0. (4.48)
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Summary of appended papers

Transversely isotropic membrane shells with application to mitral valve mechanics.
Constitutive modeling and finite element implementation
V. Prot, B. Skallerud, G. A. Holzapfel
International Journal for Numerical Methods in Engineering 71(8):987–1008, 2007
Constitutive modelling and implementation of transversely isotropic material models for finite
element analysis of mitral valve are presented for two convex strain energy potential. Imple-
mentation is checked with single element tests and an out–of–plane loading example and initial
simulations of mitral valve leaflets are conducted.

Finite element analysis of the mitral apparatus: annulus shape effect and chordal
force distribution.
V. Prot, R. Haaverstad, B. Skallerud
Biomechanics and Modeling in Mechanobiology. Accepted, 2007.
A porcine mitral apparatus using a hyperelastic transversely isotropic material model for the
leaflets is analysed using a three dimensional finite element model. Annulus deformations ex-
tracted from echocardiographic measurements are used as boundary conditions and chordal
force distribution is described between early and peak systole.

Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet
layers
V. Prot, B. Skallerud
Computational Mechanics. Accepted 2008
An implementation of an incompressible hyperelastic transversely isotropic material for solid
finite element analysis of mitral valve response is presented. The implementation is compared
in an out–of–plane loading example to a membrane implementation. The influence of the colla-
gen structure of the mitral leaflets on mitral valve response is investigated with different layer
arrangements.

Healthy and hypertrophic obstructive cardiomyopathic human mitral valves and
chordae tendinae: mechanical experiments, constitutive modelling, finite element
analyses
V. Prot, B. Skallerud, G. Sommer, G. A. Holzapfel
Submitted, 2008
Uniaxial mechanical tensile tests of a healthy and a diseased (HOCM) human mitral valve are
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presented. These experimental data are used in two finite element case studies to investigate
the effects of the material properties on mitral valve response. The finite element analyses show
that the HOCM human mitral valve undergoes much larger deformations than the healthy hu-
man mitral valve during systole.

Other aspects have been presented:

On numerical modelling and analysis of the human mitral valve
V. Prot, B. Skallerud
17th Nordic Seminar on computational mechanics, Stockholm, 2004.

An improved transversely isotropic hyperelastic material model for simulation of
mitral valve response
V. Prot, B. Skallerud
Journal of Biomechanics, Volume 39, Supplement 1, 2006, Page S618. Presented as a poster
in the 5th World Congress of Biomechanics, Munich, 2006.

Finite element analysis of the influence of the chordae on the mitral valve response
V. Prot, B. Skallerud
19th Nordic Seminar on computational mechanics, Lund, 2006.

Effects of connective tissue pathologies on mitral valve response
V. Prot, B. Skallerud, G. A. Holzapfel
MHM 2007, Modelling of heterogeneous materials with applications in construction and biomed-
ical engineering, Prague, 106-107, 2007.

Solid versus membrane finite elements in analysis of the mitral valve: a case study
V. Prot, B. Skallerud
The 6th International Conferense on Computation of Shell and Spatial Structures, IASS-IACM
2008: “Spanning Nano to Mega”, 28-31 May 2008, Cornell University, Ithaca, NY, USA

Mitral valve finite element analysis using human uniaxial tensile data
V. Prot, B. Skallerud, G. A. Holzapfel
8th. World Congress on Computational Mechanics (WCCM8), 5th European Congress on Com-
putational Methods in Applied Sciences and Engineering (ECCOMAS 2008),
June 30 –July 5, 2008, Venice, Italy



Chapter 6

Conclusions and further work

6.1 Conclusions

In this study two implementations of a transversely isotropic hyperelastic material model are
presented based on invariant formulation for the simulation of mitral valve leaflets.
In the first one for membrane shell elements, incompressibility is explicitly accounted for using
the plane stress condition. In the second one for solid elements, incompressibility was treated
via a penalty method.
A polyconvex strain-energy function similar to the one proposed by Holzapfel et al. [37] for the
simulation of blood vessels is employed in the formulation of the constitutive law and fitted to
mitral valve tissue test results provided by May-Newman and Yin [8]. In addition, the model
used in this study only requires three material parameters.

We used a three dimensional finite element model using membrane elements to study the mi-
tral valve response during systole. This thesis shows the supportive role of strut (secondary)
chordae on the mitral valve systolic function and their importance in order to reduce the apical
motion of the anterior leaflets. In addition, we introduced the annulus flexibility by measuring
the deformations of the annulus from three dimensional echocardiographic recordings. Our
results show that when increasing the annulus saddle height in the physiological regime during
systole the anterior leaflets stresses and the chordal force distribution are not significantly af-
fected. Moreover, we showed that the principal stress are aligned with the fibre direction in the
anterior leaflet. The stresses in the mitral apparatus are sensitive to the thickness employed
and to the pressure level during systole whereas the deformations remain nearly constant after
complete coaptation of the leaflets.

We developed a three dimensional finite element model of the mitral valve using solid elements.
Membrane elements may be sufficient to capture the global response of the mitral valve. How-
ever, in order to assess finer details such as the stress distribution through the thickness of the
leaflets solid finite elements are needed. In addition, we observed using a passive transversely
isotropic hyperelastic material model a too large deflection of the leaflets in the left atrium.
This may be due to the presence of active muscle fibres in the mitral leaflets [38], [13].

25



26 CHAPTER 6. CONCLUSIONS AND FURTHER WORK

6.2 Directions for further work

Since chordae tendinae are tendon-like and collagen fibres are very much aligned, they should
be modeled with transversely isotropic material model.

This research project has used passive mechanical data in order to model mitral leaflets. How-
ever, the muscles fibres seem to be a crucial component in the mitral leaflet response. A future
development of material models should include their contribution to the transversely isotropic
constitutive model implemented in the present work. Hence, anatomical and mechanical data
on the muscle fibres in the mitral leaflets are needed.

According to previous studies [14], [39] the mitral leaflets can be considered as three layered
laminated structures, each layer having different mechanical behaviour. These layer specific
data are currently missing and need further research.

This study has used porcine material data for the modelling of the mitral leaflets and chordae.
This data may correspond well to children. However, the mechanical behaviour for adult hu-
man tissue may be rather different since extensibility of soft tissue decreases with age. Hence,
age specific human material data need further investigations.

Collagen fibre orientation has been reported in pigs mitral valve leaflets [29]. However, little
is know about collagen fibres local density and their distribution through the thickness of the
leaflets. Advanced microscopy may be a valuable tool in order to extract more information on
these fibres.

The hemodynamics in the left ventricle and its interaction with the mitral valve is highly rele-
vant in order to understand the global function of the heart. Two dimensional fluid structure
interaction models have been developed. Now, three dimensional fluid structure interaction
models need to be developed in order to study the interaction between the mitral valve dynam-
ics, the blood flow and the left ventricle.
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ABSTRACT

This study presents a three-dimensional finite element model of the mitral apparatus using a
hyperelastic transversely isotropic material model for the leaflets. The objectives of this study
are to illustrate the effects of the annulus shape on the chordal force distribution and on the
mitral valve response during systole, to investigate the role of the anterior secondary (strut)
chordae and to study the influence of thickness of the leaflets on the leaflets stresses. Hence,
analyses are conducted with a moving and fixed saddle shaped annulus and with and without
anterior secondary chordae. We found that the tension in the secondary chordae represents
31% of the load carried by the papillary muscles. When removing the anterior secondary
chordae, the tension in the primary anterior chordae is almost doubled, the displacement of
the anterior leaflet toward the left atrium is also increased. The moving annulus configuration
with an increasing annulus saddle height does not give significant changes in the chordal force
distribution and in the leaflet stress compared to the fixed annulus. The results also show that
the maximum principle stresses in the anterior leaflet are carried by the collagen fibers. The
stresses calculated in the leaflets are very sensitive to the thickness employed.

keywords: mitral valve, chordal force, annulus shape, leaflet stresses, finite element analysis.

1 Introduction

The mitral valve is one of the four valves of the heart, separating the left atrium and the left
ventricle. The mitral apparatus consists of an atrioventricular ring or annulus, two leaflets
called anterior and posterior, chordae tendinae and two groups of papillary muscles. The
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anterior leaflet is larger than the posterior leaflet. Both are attached to the mitral annulus
and to the chordae tendinae, and the chordae tendinae are attached to the papillary muscles.
These muscles are attached to the left ventricular wall. Located between the left atrium and
the left ventricle, defects in the mitral apparatus have direct influence on the functionality of
the left ventricle, and vice versa. A significant number of people are affected by impairment in
both the mitral apparatus and the left ventricle either separately or combined. There is hence
a need for a better understanding of the mitral apparatus in order to improve the treatment of
mitral valve disease.
During systole the mitral apparatus prevent blood from flowing back into the atrium. Hence,
it is of major importance in order to avoid regurgitation.
In order to assess pathologies, one first needs to understand the healthy heart and its tissues.
Today the diagnostics obtained using ultrasound have matured to a level showing fine details
of tissue motion and blood flow velocities in vivo. It is known that mechanical stress is of
primary importance for change and development of the tissue. However, it is not possible to
perform stress measurements in vivo. Recently, in vitro studies have been carried out on the
mitral apparatus (see Saks et al. [24], Ritchie et al. [23], Limenez et al. [9] and Nielsen et
al. [19]). These in vitro studies are able to predict the stress state of the chordae and the
strain in the leaflets, but not the stress state of the leaflets. With a finite element model it is
possible to estimate the stress state of the mitral apparatus. In case of valvular malfunction,
surgical repair or replacement of some constituents of the mitral apparatus may be needed. A
finite element model can be a tool to study numerically the effects of surgical procedures such
as replacement, transection or transposition of chordae by simulating the anatomical changes
resulting from surgery or ischemic mitral disease. This can potentially help surgeons to choose
the best reconstructive technique. Modelling can also be used to study degenerative diseases
affecting the tissues by modifying the material parameters of different parts of the mitral
apparatus (Prot et al. [20]).
In order to predict the stress–strain behaviour of the mitral apparatus, one needs to establish
proper material models. Previously, numerical simulations of the mitral apparatus have been
conducted (see Kunzelman et al. [12], Votta et al. [30], Einstein et al. [4] and Dal Pan
et al. [3]). In all these finite element studies the annulus was assumed flat and rigid and
most employed simplified material models for chordae and leaflets. During the last decade,
the material properties of the chordae tendinae and the mitral leaflets have been investigated.
Kunzelman et al. [11], Liao et al. [14], and Ritchie et al. [23] have performed mechanical tests
on different kinds of chordae and highlighted differences in the mechanical behaviour depending
on size and type of mitral chordae. May–Newman and Yin [17] conducted biaxial testing for
anterior and posterior porcine mitral leaflets.
The geometry of the valve also plays an important role in order to determine the stress state in
the leaflets. The mitral annulus shape and its dynamic behaviour during the cardiac cycle have
been studied in animals and humans using different imaging techniques such as two-dimensional
and three-dimensional echocardiography, magnetic resonance etc (see, e.g., Salgo et al. [25],
Tibayan et al. [29], Green et al. [6], Flachskampf et al. [5], Kaplan et al.[10]). Currently, the
tendency is to describe the annulus shape as a saddle because of its resemblance to a nonplanar
ellipse.
In the present work, an anisotropic material model is used for the valve leaflets based on the
mechanical tests of porcine leaflets by May–Newman et al.[17]. The material model used for the
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Figure 1: View of the porcine mitral valve (autopsy picture) and geometric modelling of the
chordae and the leaflets

chordae tendinae is based on mechanical tests carried out on porcine chordae by Kunzelman
and Cochran [11]. The analyses are based on a recent implementation of a transversely isotropic
hyperelastic material model, using the user material interface UMAT in ABAQUS (Prot et al. [21]).
Based on ultrasound measurements and autopsy of the mitral valve in a pig, we established
the best possible three dimensional representation of the heart valve geometry for our model.
The validity of the finite element model is checked against ultrasound measurements presented
herein.
The key points of our study are as follow:
1) As the typical modelling of the annulus is to assume it as flat and rigid whereas we know it
has a saddle shape and is non-rigid, the issue of moving or fixed saddle shaped annulus during
systole is addressed.
2) The importance of the secondary (strut) chordae on mitral response is investigated by running
simulations where they are cut.
3) From the autopsy it is observed that the thickness of the leaflets is inhomogeneous. Herein,
we take a very simplistic approach and study the effect on leaflets stress when a homogeneous
thickness of 1mm or 0.5mm is employed.
In all above cases, results concerning leaflet stresses, stretches, and chordae force distribution
are presented.

2 Methods

2.1 Model geometry, boundary conditions and finite element mesh

In this study, the mitral valve geometry is based on three-dimensional echographic measure-
ments carried out on a pig and on anatomical measurements (see Figure 1) carried out on the
same pig post mortem (at St Olav University Hospital, Trondheim, Norway). The pig used for
this study was a Noroc (hybrid of one quarter Duroc, one quarter Yorkshire and one quarter
Norwegian landsvin) of 65 kg.
After the pig had been anaesthetized and intubated, the chest was opened. A 3D GE Vingmed

ultrasound probe was positioned on the apex. A gel pad was positioned between the probe and
the ventricular wall to avoid arrhythmia and improve the resolution of the ultrasound recording.
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Three-dimensional echocardiography was performed from the apex. Compared to transtho-
racic echography this technique avoids perturbations due to bones and fat.

Annular reconstruction

The three-dimensional shape of the annulus was extracted from the ultrasound recordings with
the commercial software Matlab at the beginning of systole and at peak systole. For these
time frames, the annulus points were picked manually from the echocardiographic recording.
These 3D points picked along the annulus were transformed into a Cartesian coordinate system
with the z-axis aligned with depth-axis of the transducer, see Figure 2.
In the present study, the shape of the annulus was idealized as a symmetric non-planar ellipse.
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Figure 2: View of a plane of the 3D ultrasound recording. Anterior (A) and posterior (P)
mitral valve leaflets and Left ventricular outflow tract (LVOT).

The elliptic shape of the annulus was obtained by fitting the ellipse to the x and y coordinates
of the points selected along the annulus curve (see Figure 3). To obtain the non-planar shape a
polynomial fitting (using the Matlab function polyfit) was carried out on the x an z coordinates
of these points (see Figure 4). The annulus shape obtained at peak systole is shown in Figure
5. The dimensions of the idealized annulus are given in Table 1 for beginning and peak systole.
The 3D annular perimeter was defined as the path length of the fitted annular curve. The
interpeak distance was measured from the highest point of the anterior part of the annulus to
the highest point on the opposite side of the annulus, i.e. the posterior part. The posterior
part was almost planar during systole and assumed flat in our model. The saddle height was
measured as the maximum distance between the anterior annulus and the plane defined the
posterior annulus. The intervalley distance was measured between the two lowest points of the
annulus, and these points correspond to the commissural part of the valve.
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Figure 3: Planar elliptic shape at beginning of systole (dashed line) and at peak systole (solid
line), calculated from 3D ultrasound measurements.
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Figure 4: Polynomial fitting of the x and z coordinates for the anterior part of the mitral
annulus at beginning of systole (solid line) and at peak systole (dashed line), calculated from
3D ultrasound measurements.

Table 1: Dimensions of the idealized annulus
Saddle height (mm) intervalley (mm) interpeak (mm) perimeter (mm)

beginning of systole 4.81 34.1 30.9 103.5
peak systole 6.85 35.6 31.4 108.5

Autopsy measurements

During the autopsy of the pig, the maximum distance from the annulus to the free edge of the
anterior and posterior leaflets were measured to be 22 mm and 11 mm respectively, and the
length of the annulus 105 mm. The annulus length value given by the autopsy agrees well with
the one obtained from the 3D reconstruction of the annulus from the echocardiographic data.
The anterior leaflet has a rounded convex free edge and has a larger area than the posterior
leaflet. However, the posterior leaflet is narrow and has a longer attachment to the annulus.
We assumed the posterior leaflet free edge to be divided in three scallops [7], a large middle
one and two smaller ones representing the commissural parts of the valve.
Figure 1 shows that each papillary muscle is divided in several parts attached to each other.
During ventricular contraction, these parts are much closer than shown on the figure (Barlow
[1]). Hence, as a modelling simplification, the chordae attached to each of the papillary muscles
were assumed to arise from the same point. In addition, the multiple insertions of the marginal



68 PAPER II

Figure 5: Three-dimensional shape of the annulus and displacements (arrows) of the anterior
annulus during systole (calculated from 3D ultrasound measurements). Undeformed configu-
ration dashed line (position at beginning of systole). Deformed configuration solid line (peak
systole).

chordae to the free edge of the leaflets were modelled with branches arising from the middle
point of the marginal chordae (Figure 1).
The lengths of the chordae were measured to be between 15 mm and 20 mm. During the autopsy
of the pig two types of chordae were observed, the marginal chordae attached to the free edge of
the leaflets and the secondary chordae attached beyond the free edge. The cross section areas
of these chordae used in our model were based on the average values given by Liao et al. [14]:
0.38 mm2 and 2.05 mm2 for marginal and secondary chordae, respectively. The secondary
chordae considered herein are also called ”strut” chordae by Lam et al. [13] and are observed
in 90% of human hearts and are by far the thickest and the largest chordae of the mitral valve.
The morphology of the porcine mitral apparatus is close to the human mitral apparatus, hence
the presence of these two secondary chordae corresponds to physiological conditions. In total,
eight anterior marginal chordae, six posterior marginal chordae, six commissural chordae and
two anterior secondary (strut) chordae were attached the leaflets.

Boundary conditions and mesh

The papillary muscles were assumed to be fixed. This assumption is quite consistent with
the in vivo finding that the relative distance between the annulus and the papillary muscle
tip is nearly constant during systole in normal subjects (Sanfilippo et al. [26]). The leaflets
were allowed to rotate at the annular attachment. The chordae were attached at one end to
the node representing the papillary muscle and at the other end to a node of the leaflets (a
free edge node for the marginal and commissural chordae and a node beyond the free edge for
the secondary chordae). A hard contact condition was set between the surfaces of the anterior
and posterior leaflets in order to capture coaptation. A finite-sliding and a node to surface
formulations were used for the computation of the quasi-static analyses (see ABAQUS analysis
User’s Manual).
Several analyses were conducted with a fixed annulus having the dimensions determined at the
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beginning of systole and with a moving annulus. In the last case, since the main change in the
annulus shape during systole appears to be the increase of the saddle height for the anterior
annulus, displacement boundary conditions were prescribed to increase gradually the annulus
saddle height from the value determined at the beginning of systole to the one determined at
peak systole, see Table 1 and Figure 5. The ultrasound measurements showed that the posterior
part of the annulus did not vary much in shape during systole. Hence, it was kept fixed.
In addition, for both annulus configurations analyses were run with and without secondary
chordae to study their influence on the mitral valve response and on the chordal force distribu-
tion.
A uniform ventricular pressure was applied on the surface of the leaflets (see Figure 6). The
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Figure 6: Left ventricular pressure applied on the ventricular surface of the leaflets from early
to peak systole. A quasi-static solution was applied over this period.

peak systolic pressure in the left ventricle measured on the anaesthetized pig was 120 mmHg.
Additionaly, the analyses were conducted with a pressure up to 200 mmHg to study the re-
sponse at hypertension.
The valve leaflets were meshed with 1090 three noded membrane elements and the chordae
with 81 truss elements, see Figure 7. Note that the figure corresponds to the initial (reference)
configuration where the ventricular pressure is zero. Quasi–static conditions were employed in
all simulations.

2.2 Material Model

Leaflets

Experimental data provided by May–Newman and Yin [17] show that the mitral leaflets tissue
exhibits highly nonlinear mechanical response and that one approach to derive the material
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Figure 7: Finite element mesh and modelling of the initial configuration of the mitral apparatus.

constitutive model of the leaflets can be based on strain invariants and assumption of material
incompressibility and transverse isotropy. The pseudo elastic response was simplified to be
hyperelastic.
Here, we recall some continuum mechanics definitions used to derive these constitutive material
models.
The deformation gradient is defined as F = ∂x/∂X where X is the position of a point in the
initial (undeformed) configuration related to a point x in the current (deformed) configuration.
The right Cauchy-Green deformation tensor is denoted C = FTF.
The three invariants of C given by I1 = tr C, I2 = 1/2((tr C)2 + tr C2) and I3 = det C are
related to isotropic hyperelasticity.
In order to describe transverse isotropy, the unit vector a0 defining the prefered average collagen
fiber direction of the material is introduced. It is possible to define two pseudo-invariants I4
and I5 of C and ao ⊗ a0 as I4 = a0 · Ca0 and I5 = a0 · C2a0. According to Spencer [28], the
strain energy function of transversely isotropic hyperelasticity can be described by these five
invariants.
The stress tensors are derived from a strain energy function Ψ:

S = 2
∂Ψ

∂C
, σ = J−1FSFT , (1)

where S and σ are the second Piola-Kirchhoff stress tensor and the Cauchy stress tensor,
respectively.
The fourth-order material elasticity tensor is determined from:

C = 4
∂2Ψ

∂C2
. (2)

The strain energy function employed herein to derive the constitutive model is the one proposed
by Holzapfel et al. [8],

Ψ(I1, I4) = c0[expc1(I1−3)2+c2(I4−1)2 − 1] + p(J − 1), (3)

where, ci, i = 0, 1, 2, are material parameters, the scalar p serves as an indeterminate Lagrange
multiplier and J = detF is the Jacobian of the deformation. The material parameters ci,
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i = 0, 1, 2 were fitted to biaxial in vitro tests on porcine mitral valve tissue carried out by May–
Newman and Yin [17], using a nonlinear least square technique. Note that May–Newman and

Yin [17] proposed the following strain energy function, Ψ(I1, I4) = c0[expc1(I1−3)2+c2(
√

c0(kPa) c1 c2
Anterior leaflet 0.0520 4.63 22.6
Posterior leaflet 0.171 5.28 6.46

in the center of the anterior leaflet, with a gradual transition to an orthogonal orientation
(radial direction) at the commissures (Cochran et al. [2]). May–Newman and Yin [16] found
that the posterior leaflet was stiffer in the circumferential direction (parallel to the annulus)
than in the radial direction. As the material model employed herein is based on their study
the collagen fibers were oriented parallel to the annulus in the posterior leaflet. But, as shown
subsequentely, this may not be an optimal collagen orientation. The local collagen direction
is set by the material axes, i.e. the local collagen fiber orientation is aligned with the local
1-direction of the membrane elements, see Figure 6.8(a). The collagen fibers are embedded
in the continuum. Their initial orientations are specified at the start of the analysis and then
rotated according to the deformations of the valve leaflets.

Chordae

The chordae were modeled with an incompressible isotropic hyperelastic material. The nonlin-
ear stress-stretch behaviour was implemented from experimental data published by Kunzelman
and Cochran [11]. The same material model was used for all the chordae derived from the
following strain energy function,

U(I1) = a1(exp
(a2(I1−1))

− 1), (4)

a1 = 0.0565 kPa and a2 = 29.6 for the marginal chordae and a1 = 0.050 kPa and a2 = 35 for
the secondary chordae (strut chordae).

3 Results

Leaflet stresses

The collagen fiber orientation and the maximum principal stress orientation are plotted in
Figure 8 at a systolic pressure of 120mmHg. In the anterior leaflet, the fiber direction and the
maximum principal stress direction are nearly aligned, this is not the case in the posterior
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Figure 8: (a) The collagen fiber orientation plotted at a systolic pressure of 120mmHg, (b) the
maximal principal stress orientation in the leaflets plotted at a systolic pressure of 120mmHg
(FE calculation).

leaflet where the principal stresses are nearly perpendicular the collagen fiber direction. This
non-physiological result is addressed in the Discussion section. The directions of the highest
maximum principal stresses flow from the fibrous trigones to the secondary chordae insertion
zone. The stresses are higher in the anterior leaflet than in the posterior leaflet.
The Von Mises stresses are plotted on the valve leaflets at a systolic pressure of 120 mmHg in
Figure 9 for two different leaflet thicknesses: 0.5 and 1 mm. The maximum Von Mises stresses
were approximatively two times higher with a thickness of 0.5 mm than with a thickness of 1
mm.

Anterior leaflet stretches

In Figure 10 the principal stretches in a central region of interest of the anterior leaflet are
plotted against the ventricular pressure, for different leaflet thicknesses: 0.5 and 1 mm. These
results are compared to the maximum measured stretches from the in vitro study by Sacks et
al. [24].

In this region, the collagen fibers are oriented parallel to the annulus (i.e. parallel to the
circumferential direction), which means that the local 1-direction of the membrane surface is
parallel to the annulus. The minor direction of the principal stretch (λ1) was aligned parallel
to the fibers and the major direction of the principal stretch (λ2) was aligned perpendicularly
to the fibers. As Sacks et al. [24], who measured the surface strains in in vitro tests on porcine
mitral leaflets, we observe a rapid increase in the principal stretches during the closure of the
valve and after the ventricular pressure reaches a value of 40 mmHg the principal stretches
values are nearly constant. λ2 was 1.19 times greater than λ1 at a pressure of 120 mmHg. The
value of λ2 at a systolic pressure of 120 mmHg is very similar to the one obtained by Sacks et
al. [24] but our model gives a somewhat stiffer behaviour along the fibers. The values obtained
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thickness of 1 mm

thickness of 0.5 mm

Figure 9: FE calculation of Von Mises stresses plotted at a systolic pressure of 120mmHg (MPa)
for simulations using 0.5 and 1 mm for the thickness of the leaflets (without strut chordae).

at a pressure of 120 mmHg for the principal stretches using a leaflet thickness of 0.5 mm were
1.03 and 1.01 times greater than with a leaflet thickness of 1 mm in the directions parallel
and perpendicular to the fiber, respectively. In addition, we observe that the coaptation of the
leaflets occurs at 30 mmHg with the simulation using 0.5 mm for the thickness of the leaflet
and at 40 mmHg with a thickness of 1 mm.

Chordae tensions and stretches

Analyses were carried out with a fixed saddle annulus and a moving saddle annulus, respec-
tively. In both cases two analyses were performed, a first one with two secondary chordae
attached on the anterior leaflet (healthy case) and a second one without secondary chordae
(pathological case).
The forces carried by the different chordae at a systolic pressure of 120 mmHg are given in
Table 3 for both annulus models, with and without secondary chordae.
The tensions reported in Table 3 are slightly higher in the anterior marginal chordae for the
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Figure 10: Principal stretches in the central region of the anterior leaflet for two different
thicknesses obtained from FE calculation. The results are compared to the principal stretch
values obtained experimentally by Sacks et al. [24] after the closure of the valve.

Table 3: Summary of chordae tendinae tension at a systolic pressure of 120 mmHg
with secondary chordae no secondary chordae

moving annulus fixed annulus moving annulus fixed annulus

chordae number F (N) SD F (N) SD F (N) SD F (N) SD
anterior marginal 4 0.27 0.13 0.28 0.13 0.46 0.18 0.46 0.19
posterior marginal 3 0.40 0.069 0.40 0.069 0.43 0.084 0.42 0.056
commissural 3 0.19 0.056 0.19 0.056 0.19 0.056 0.19 0.083
anterior secondary chordae 1 1.3 – 1.3 – – – – –

fixed annulus, however the moving annulus and the fixed annulus does not induce any signif-
icant differences in force distribution in the chordae. Table 3 shows that the tension in the
anterior marginal chordae is 1.7 times higher when the secondary chordae are removed. In
addition, the tension in the secondary chordae is at least three times higher than in any other
chordae.
The tensions in the different chordae obtained from the analyses are of the same magnitude as
the ones obtained by Jimenez et al. [9] from experiments carried out in vitro on human mitral
apparatus.
In Figures 11 and 12, the forces carried by the different groups of chordae and the corresponding
papillary muscle are plotted against ventricular pressure for the simulations with and without
secondary chordae, using a moving annulus.

At a systolic pressure of 120 mmHg the forces carried by the posterior marginal, ante-
rior marginal and anterior secondary chordae are almost equal. However, when the anterior
secondary chordae are removed the forces carried by the anterior marginal chordae group is
multiplied by 1.64.
The percentages of the force carried by the different groups of chordae relative to the total pap-
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Figure 11: Forces carried by the different groups of chordae and the papillary muscle to which
they are attached in the simulation using a moving annulus and secondary chordae (FE calcu-
lation)

Table 4: Distribution of the force carried by one papillary muscle among the different groups
of chordae at a systolic pressure of 120 mmHg for the simulation using a flexible annulus, with
and without secondary chordae.

chordae groups with secondary chordae no secondary chordae
anterior marginal 26% 50%
posterior marginal 29% 35%
commissural 14% 15%
anterior secondary chordae 31% –

illary muscle force are given in Table 4. If we call R the force vector carried by the papillary
muscle, R is equal to the sum of the vectors representing the tension in each chordae attached
to this papillary muscle. Hence, if the force carried by one group of chordae is represented by
the vector T the proportion of R carried by this group was calculated as,

||R|| − ||R −T||
||R||

When the secondary chordae are removed the proportion of the load carried by the group
of anterior marginal chordae increases from 29% to 50%. The simulations with the secondary
chordae shows an even distribution of the load between the anterior marginal, posterior marginal
chordae groups and the secondary chordae.
Using the moving or the fixed annulus, the stretches in the chordae remained nearly unchanged
and were equal to 1.05, 1.07, 1.04 and 1.05 at a systolic pressure of 120 mmHg, in the anterior
marginal, posterior marginal, commissural and strut chordae, respectively.
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Figure 12: Forces carried by the different groups of chordae and the papillary muscle to which
they are attached in the simulation using a moving annulus without secondary chordae (FE
calculation)

Ultrasound comparison

In this section, the global finite element model response is compared with two-dimensional
ultrasound measurements carried out on the pig. The relative displacement ∆rel towards the
interpeak line (see Figure 13) of a node located in the middle of the anterior leaflet is compared
with the echographic measurements. The displacement of the node is compared to the 2D
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Figure 13: 2D ultrasound data. The dashed line represents the interpeak line between the two
annulus points. The solid line is the measured relative displacement ∆rel of the anterior mitral
leaflet with respect to the annulus plane.

ultrasound measurements in Figure 14 for different configurations: fixed saddle shaped annu-
lus with secondary chordae and moving saddle shaped annulus with secondary chordae. The
configuration with the moving annulus shows the best agreement with the ultrasound data.
∆rel is given in Table 5 for the different configurations and the 2D ultrasound measurements
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Figure 14: Comparison of the displacement towards the interpeak line of a node located in the
middle of the anterior leaflet

Table 5: Summary of the relative displacement ∆rel towards the interpeak line at a systolic
pressure of 120 mmHg

with secondary chordae no secondary chordae ultrasound

moving annulus fixed annulus moving annulus fixed annulus

∆rel(mm) 6.8 7.7 7.6 8.5 ≈ 6

at a systolic pressure of 120 mmHg. With the moving annulus, ∆rel is 0.8 mm larger when the
secondary chordae are removed.

Hypertension

In this section, the results obtained with a systolic pressure of 200 mmHg are compared to
those obtained at 120 mmHg (i.e. the ventricular pressure measured on the anaesthetizised
pig). The tensions in the different groups of chordae are related in Table 6 for this pressure
level.
The force carried by one papillary muscle at systolic pressure values of 120 mmHg and 200 mmHg
for the flexible annulus configuration (with secondary chordae) was 3.97 N and 6.42 N, respec-

Table 6: Summary of chordae tendinae tension at a systolic pressure of 200 mmHg
with secondary chordae no secondary chordae

moving annulus fixed annulus moving annulus fixed annulus

chordae number F (N) SD F (N) SD F (N) SD F (N) SD
anterior marginal 4 0.44 0.22 0.46 0.23 0.73 0.31 0.75 0.32
posterior marginal 3 0.64 0.11 0.64 0.11 0.69 0.14 0.69 0.14
commissural 3 0.30 0.093 0.30 0.095 0.30 0.094 0.30 0.094
anterior secondary chordae 1 2.0 – 2.0 – – – – –
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tively. The relative displacement towards the interpeak line ∆rel of the same node used in
Figure 14 at systolic pressure values of 120 mmHg and 200 mmHg for the flexible annulus
configuration (with secondary chordae) was 6.8 mm and 7.2 mm, respectively.

4 Discussion

A three–dimensional finite element model has been developed to assess the mitral valve re-
sponse. A hyperelastic transversely isotropic material model was used to account for the dif-
ferent constituents and fiber direction in the mitral valve.
The results obtained for the chordal force distribution from our finite element analysis are in
good agreement with the results of the in vitro study of Jimenez et al. [9]. This indicates
that the branches adopted in the modelling of the chordae tendinae (see Figure 1) is a suitable
choice.
The tension in a single secondary chordae is higher than the load carried by any of the other
groups composed of three or four marginal chordae (see Figure 1) and represents 29% of the
total load carried by the papillary muscle. This shows their importance in the structure of
the mitral apparatus. This result is in agreement with the study conducted by Sedransk et al.
[27] where anterior secondary chordae exhibit much higher failure load than the other types of
chordae and may explain why the secondary chordae are larger than the marginal ones.
In table 4, we observe that when the secondary chordae are present, the load carried by the
marginal anterior and posterior chordae groups are almost equal. The analyses in which an-
terior secondary chordae are removed show a significant increase of the tension in the anterior
marginal chordae (see Table 3). Hence, cut or failure of the secondary chordae may lead to
deterioration or even failure of other chordae remaining due to higher loading.
Contrary to the study conducted by Jimenez et al. [9], the flexible annulus configuration with
an increasing annulus saddle height does not give significant changes in the chordal force dis-
tribution. However, Jimenez et al. [9] compared the results between two rigid annulus shape
configurations having a saddle height difference of 9 mm while in the present work the saddle
height is increased by 2 mm only. Mitral annulus saddle shape varies from species to species,
but the anatomy of the porcine mitral valve is quite close to the human one. Thus the increase
of 2 mm of the saddle height that was prescribed in this study between beginning of systole
and peak systole is in good agreement with the results given by Kaplan et al. [10].
Our simulations show that the anterior secondary chordae reduce the motion of the anterior
leaflet towards the left atrium. However, when they are removed, we find that the marginal
chordae alone are sufficient to insure the proper closure of the valve and prevent mitral valve
prolapse. In mitral valve surgery, the practical importance of this is the employment of multiple
and strong artificial chordae attached to the free edge in treatment of anterior leaflet prolapse.
In Table 7, the Von Mises maximum stresses obtained with the flat and saddle configurations
are compared to those obtained with existing finite element model at a similar pressure level
(120 mmHg) and with similar geometries. The maximum Von Mises stresses obtained with the
fixed saddle shape configurations show a quite good agreement with those obtained by Dal Pan
et al. [3] with a hyperelastic isotropic model. A hyperelastic isotropic material model may be
sufficient to determine the Mises equivalent stress level in the leaflets, but in order to determine
principal stresses, the inclusion of the collagen fibers in the material model is important.
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Table 7: Comparison of maximum Von Mises stress with other existing FEM models

Moving annulus anterior leaflet 0.386 1
posterior leaflet 0.243 1

Fixed annulus anterior leaflet 0.371 1
posterior leaflet 0.243 1

hyperelastic isotropic model results
Dal Pan et al. [3] anterior leaflet 0.330 -

posterior leaflet 0.252 -
linear-elastic model results

Dal Pan et al. [3] anterior leaflet 0.336 -
posterior leaflet 0.225 -

Kunzelman et al.[12] anterior leaflet 0.350 1.31
posterior leaflet 0.200 1.26

Votta et al. [30] anterior leaflet 0.396 0.8
posterior leaflet 0.194 0.8

The stresses in posterior leaflet were found to be lower than in the anterior leaflet (Figure 9),
as the posterior leaflet is smaller and carry less load. In the anterior leaflet, the maximum
stresses were observed close to the fibrous trigones along the annulus. These areas are located
where the annulus has the highest curvature. The study conducted by Salgo et al. [25] using
a linear elastic material model for the leaflets and fixed boundary conditions for the annulus
and the chordae showed that the leaflet stresses were reduced when the saddle height was in-
creased. However, the present work does not give any significant differences in the anterior
leaflet stresses when increasing the annulus saddle height in the physiological regime of the pig
employed herein.
The directions of the maximum principal stresses in the anterior leaflet are nearly aligned with
the collagen fiber orientation. This result shows that the maximum principal stresses are carried
by the collagen fibers in the anterior leaflet. According to the results of May–Newman and
Yin [16], the collagen fibers in the posterior leaflet are oriented parallel to the annulus in our
model. In the posterior leaflet, the calculated maximum principal stress direction were nearly
orthogonal to the collagen fibers. This does not seem physiological and it would be logic that
the fibers will orient according to the maximum principal stress direction. Hence, an analysis
with the collagen fibers orthogonal to the annulus in the posterior leaflet was performed and
gave the same principal stress directions. Note that this latter collagen fiber orientation for
the posterior leaflet did not affect the chordae load distribution. This may indicate that our
collagen fiber orientation in the posterior leaflet shown in Figure 6.8(a), is not correct. This
warrants further study.
The peak pressure in the left ventricle measured on the anaesthetized pig was 120 mmHg. Our
simulations show that the stresses in the mitral apparatus increase significantly if the peak sys-
tolic pressure is increased. On the other hand, the global motions and the strains of the mitral
apparatus are not very sensitive to the pressure level after complete closure of the valve. This is
due to the typical soft tissue stress–strain exponential behavior of the its different constituents.
Before closure the chordae and the leaflets are soft enough to allow proper coaptation of the
mitral valve. After closure, the chordae tendinae and the leaflets become stiffer and prevent
further deformations of the valve.
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The thickness of the leaflets is also an important aspect in the modelling of the mitral appara-
tus. In the rough zone, the anterior leaflet is thicker, the width of this zone is about one third
of the anterior leaflet length. However, the thickness of the leaflet can be much lower in the
area with no chordal attachment. Our simulations show that the closure of the valve and the
stress level in the leaflets strongly depends on thickness: the stresses are much greater and the
closure of the valve happens at a lower pressure value with thinner leaflets. However, coaptation
should occur for even lower pressure value. This deviation may be due to the starting position
of the valve in our simulation. This delay in the closure of the valve was also observed with
the finite element model using shell elements of Lim et al. [15]. In their study, the valve was
still open during IVC (isovolumetric contraction) and achieved complete closure at the end of
IVC, i.e. at approximatively 40 mmHg.
The present work agrees with Sacks et al. [24] in that the leaflets undergo large anisotropic
stretches during closure. Although, the use of an isotropic material model for the leaflet may
give a good prediction of the average stress level in the leaflets, our results shows that it is not
appropriate for a study of principal strains and stresses.

5 Conclusion

The current analyses point out the importance of the anterior secondary chordae on the mitral
systolic function manifested by the chordal force distribution and the apical displacement of
the anterior leaflet.

The annulus flexibility introduced in this study, i.e. increase of the saddle height, does not
seem to modify much the chordal force distribution or the stress distribution of the leaflets.

The stresses in the mitral apparatus appear to be sensitive to the pressure level during the
whole systole whereas the deformations remain nearly constant after complete coaptation of
the leaflets.

The stresses calculated in the leaflets are very sensitive to the thickness employed. This points
out the importance of the evaluation of the thickness for the stress calculation in the leaflets.

6 Limitations

In the present work, the mitral valve was assumed to be symmetric and only the variation of
the saddle height was prescribed as boundary conditions for the flexible annulus. According
to Kaplan et al. [10], the annulus area, the interpeak distance and the intervalley distance de-
crease rapidly between beginning and mid–systole and at the same time the height of the saddle
shape increases. The mitral valve function may depend on all these variations of the annular
shape and area. In future studies, these changes of the annulus will be included as boundary
conditions to get a better understanding of their influence on the mitral valve response and on
the mitral apparatus stresses. Although the displacements of the papillary muscles may have
an important role in the mitral valve dynamics, they were not accounted for in the present
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model due to the difficulty to determine them from the ultrasound measurements.
More data on leaflet thickness and collagen fiber orientation (for the posterior leaflet in partic-
ular) are also needed in order to be more accurate in the modelling of the leaflets.
The material model used for the leaflets is based on mechanical data from the central region of
the anterior and posterior leaflets. As no data currently exists for other regions of the leaflet,
these experimental data were used to model the whole leaflets. This is most likely too simplistic
and motivates for further tests of constitutive behaviour.
As membrane elements are used in this study, the stress distribution in the leaflets must be
considered with care. The regions of high membrane stress are predicted. But, the use of solid
elements to model the valve leaflets is more accurate in order to account for the variation of
stress and deformation through the thickness, see Prot [22].
The present finite element model does not account for the effect of the fluid on the valve.
However, the hemodynamics in the left ventricle and its interaction with the mitral valve is
highly relevant in order to understand the global function of the heart. Hence, a fluid structure
interaction model including the left ventricular wall is necessary to investigate the interaction
between the mitral valve dynamics, the blood flow and the left ventricle.
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ABSTRACT

The present work addresses an incompressible transversely isotropic hyperelastic material used
in three–dimensional solid finite element analysis of a porcine mitral valve to investigate the
influence of its layered structure on stress distributions and global responses. The material
model implementation is described and checked in single element tests and compared with a
membrane implementation in an out–of–plane loading test to study how the layered structures
modify the stress response for a simple geometry. Three different collagen layer arrangements
are used in finite element analysis of the mitral valve. When the leaflets are arranged in two
layers with the collagen on the ventricular side, the stress in the fibre direction through the
thickness in the central part of the anterior leaflet is homogenized and the peak stress is reduced.
A simulation using membrane elements is also carried out for comparison with the solid finite
element results. Compared to echocardiographic measurements, the membrane and solid finite
element models bulge too much in the left atrium. This may be due to evidence of active
muscle fibres in some parts of the anterior leaflet, whereas our constitutive modelling is based
on passive material.

Keywords: mitral valve, solid element, hyperelasticity, transverse isotropy, incompressibility,
collagen fibre arrangement.

1 Introduction

The mitral valve is a thin walled complex connective tissue structure located between the left
atrium and left ventricle of the heart, preventing the blood from flowing back into the atrium
when the ventricle contracts. The mitral apparatus consists of two leaflets (anterior and pos-
terior) attached to the annulus and the chordae tendinae. The chordae are further attached to
the papillary muscles. Hence, the structural system has some resemblance with a parachute.
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Previously, several numerical simulations of the mitral apparatus using membrane shell ele-
ments have been conducted with different types of material models for the leaflets (see, e.g.,
Kunzelman et al. [1], Einstein et al. [2], Votta et al. [3], Dal Pan et al. [4], Lim et al. [5],
Prot et al. [6]). These simulations considered the leaflets to be homogeneous over thickness,
and by definition, the collagen fibres are smeared out over the thickness and accounted for in
an average sense. However, according to previous studies (Kunzelman et al. [7], Grande-Allen
et al. [8], Jensen et al. [9]) the mitral leaflets can be considered as three–layered laminated
structures: the atrialis on the atrium side, the ventricularis on the ventricular side and the
inner fibrosa layer, with each layer having different mechanical properties.
The fibrosa is the thickest layer and composed of dense collagen. The atrialis is composed
of loose connective tissue, the ventricularis is composed mostly of elastin and is the thinnest
layer. The thicknesses of these layers are different for each leaflet and vary from the annulus
attachment to the free edge, [1]. With the membrane approach these finer structural details
are not accounted for.
Kunzelman et al. [1] examined the layer arrangement with a beam in bending with differ-
ent elastic properties for each layer. Their analysis suggests that this layered structure may
decrease the leaflet bending resistance. The present study employs a three dimensional finite
element model of the mitral apparatus in order to take into account different material prop-
erties for each layer, using solid elements. Even though these elements are computationally
more expensive than shell elements, the use of three–dimensional solid elements is probably
the most accurate approach for finite element analysis of the mitral valve. Furthermore, using
several brick elements through the thickness of the leaflets allows the assignment of different
material properties to the different layers. However, this is easy in theory, but very challenging
in practice due to scarce data on the different material properties of each layer. Our work-
ing hypothesis is that the optimal load carrying of the leaflets is mainly achieved by means
of membrane stresses, and that stresses are minimized. This has an analogy in mechanics of
arteries, where Kuhl and Holzapfel [10] have shown that the collagen distributions through
the different layers of the blood vessel arrange themselves such that the stress peaks through
the thickness are reduced. Note that for the aortic valve a bending stiffness is present, since
these leaflets have no chordae that can assist in load carrying of the valve. So a question for
the layered modeling of mitral leaflets is: how should the collagen be distributed through the
layers in order to get an optimal stress state over the thickness? If an answer to this can be
found, one has the possibility to account for detailed stress distribution in the different leaflet
constituents, and use this to get better understanding of how connective tissue diseases evolve
and how the body tries to adjust to this by means of re-modeling and adaptation [11].
May-Newman and Yin [12] described the anisotropic nonlinear mechanical behavior of porcine
mitral leaflets and showed that the constitutive material model can be derived under the as-
sumption of material incompressibility and transverse isotropy using the framework of hy-
perelasticity. Earlier studies have presented general anisotropic hyperelasticity formulations
including incompressibility. Weiss et al. [13] derived the general expressions for analysis of
ligaments and tendons. Rüter and Stein [14] employed their formulation in simulation of fibre
reinforced rubber. Holzapfel et al. [15] employed a model for arteries. Our models and formula-
tions are based on some of the results given in these references. However, in particularization of
the model some differences result. In this work we develop a transversely isotropic hyperelastic
material model for solid elements based on the model described by Prot et al. [16] for the
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mitral leaflets. Note that in [16] membrane elements were employed, and incompressibility was
explicitly accounted for using the plane stress condition as in [17]. Herein, we use an uncoupled
form for the strain energy function. The constitutive equations for isotropic hyperelasticity
from an uncoupled strain energy function were first derived by Simo et al. [18].
The present work is organized as follows. In Section 2 we present the constitutive equations of
a transversely isotropic hyperelastic material model for solid elements using a penalty method
to treat incompressibility. In section 3 single element simulations are presented in order to val-
idate the stress update of the implementation of the material model and a numerical example
is analysed to compare the response obtained with solid elements and membrane-shell elements
(see, e.g., Prot et al [16]). Then, finite element analyses of the mitral valve are conducted in
order to investigate the influence of the collagen structure on the mitral valve response and
particularly on the resistance of leaflets to bending. To the best of our knowledge, nonlinear
analysis of the mitral valve using solid element has not been presented before. The global re-
sponse from simulations is compared to corresponding ultrasound recordings. The comparison
illustrates some shortcomings of the simulations. We conclude the paper with a discussion on
limitations in our modelling and give some crucial points that need further studies.

2 Continuum mechanical framework

In this section we briefly introduce the continuum mechanical framework. The purpose of this
section is to provide the derivation of the stress and the tensors in order to use the transversely
isotropic hyperelastic constitutive model with solid finite elements. Further details can be found
in [19].

2.1 Kinematics

Let Ω0 and Ω be the reference and current configurations, respectively. The deformation map
ϕ(X) : Ω0 → R3 transforms a material point X ∈ Ω0 into the related current position x =
ϕ(X) ∈ Ω. Hence, the deformation gradient F is defined as F = ∂ϕ(X)/∂X = ∂x/∂X, with
the volume ratio J = detF > 0 (J = 1 for an incompressible material).
We consider the multiplicative decomposition of the deformation gradient F, first introduced
by Flory [20]:

F = (J1/31)F̄ (1)

C = (J2/31)C̄ (2)

The terms J1/3 and J2/3 are associated with volume changing deformation. F̄ and C̄ = F̄T F̄,
which are called modified deformation gradient and modified right Cauchy-Green tensor, are
associated with the volume preserving deformations of the material:

det(F̄) = 1 and det(C̄) = det(F̄)2 = 1. (3)

The modified left Cauchy-Green tensor then reads B̄ = F̄F̄T .
We assume that the only anisotropic property arises from a fibre family embedded in the
continuum and that the direction of the fibre at point X in the reference configuration Ω0 is
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defined by a unit vector a0(X). During deformation this fibre moves with the material points
of the continuum body and arrives at the deformed configuration Ω. Hence, the new fibre
direction at the associated point x in Ω is defined by a vector a = Fa0, and the stretch of the
fibre in this direction is |a|. For further use, we define the following vector:

ā = F̄a0, (4)

which corresponds to the push-forward of a0 via the part of the deformation gradient associated
with the volume preserving deformations.

2.2 Strain energy function

In order to describe the anisotropic hyperelastic response of the mitral valve leaflets, we use
the standard strain energy function Ψ for transversely isotropic materials:

Ψ = Ψ(C, a0 ⊗ a0), (5)

and adopt the following decomposition of Ψ into two parts [15],

Ψ(C, a0 ⊗ a0) = U(J) + Ψ̄(C̄, a0 ⊗ a0), (6)

where U and Ψ̄ are the volumetric and isochoric contributions of Ψ, respectively. For the
particular case of mitral valve leaflets, we assume finally that the energy function may be
expressed in terms of three invariants:

Ψ(C, a0 ⊗ a0) = U(J) + Ψ̄(Ī1, Ī4), (7)

where Ī1 = trC̄ = trB̄ and Ī4 = C̄ : a0 ⊗ a0.
Note that:

I1 = J2/3Ī1, I4 = J2/3Ī4, Ī4 = tr(ā⊗ ā). (8)

We employ the following form for the polyconvex [21], [22] strain energy function Ψ, [16], [15]:

Ψ(Ī1, Ī4, J) = c0

(
ec1(Ī1−3)2+c2(Ī4−1)2 − 1

)

︸

︸
Ψ̄(Ī1,Ī4): isochoric part

+
1

2
κ(J − 1)

2

︸ ︷︷ ︸
U (J): volumetric part

, (9)

where c0, c1, c2 are material parameters, κ is a positive penalty parameter and (J−1)
2

is known
as the penalty function. The idea is to approximate the material as slightly compressible by
using a large value of κ.
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2.3 Stress and elasticity tensors

Stress tensors

The second Piola-Kirchhoff stress tensor S is derived from eq.(7):

S = 2
∂Ψ

∂C︸︷︷︸
Svol

+2
∂Ψ̄

∂C︸︷︷︸
Siso

(10)

Svol = κ(J
2
− J)C−1

(11)

Siso = 2
∂C̄

∂C
:
∂Ψ(Ī1, Ī4)

∂C̄
(12)

=
∂C̄

∂C
: (2ψ11 + 2ψ4a0 ⊗ a0) , where ψi =

∂Ψ̄

∂Īi

, i = 1, 4 (13)

= J−2/3
(

I −
1

3
C−1

⊗ C
)

: S̄ with S̄ = 2ψ11 + 2ψ4a0 ⊗ a0 (14)

= J−2/3

(
S−

1

3
(2ψ1I1 + 2ψ4I4)C

−1
)
, with C−1

⊗ C = C̄−1
⊗ C̄. (15)

using the following results,

∂C̄

∂C
= J−2/3(

I −
1

3
C ⊗ C−1)

and
∂J

∂C
=

1

2
JC−1

, (16)

where I denotes the fourth order identity tensor, and reads in index notation:

(I)ijkl =
1

2
(δikδjl + δilδjk) (17)

The Cauchy stress tensor σ is obtained by the push-forward operation of S to the current
configuration, σ =

1
J FSF

T
. Thus,

σ = κ(J − 1)1 +
1

J
devσ̄, σ̄ = 2ψ1B̄ + 2ψ4ā⊗ ā, (18)

dev[·] = (I −
1

3
1 ⊗ 1) : (·).

Elasticity tensors

The material elasticity tensor obtained from eq.(7) reads:

C = 4
∂

2
Ψ

∂C∂C
= 4

∂
2
U

∂C∂C︸ ︷︷ ︸
Cvol

+4
∂

2
Ψ̄

∂C∂C︸ ︷︷ ︸
Ciso

. (19)

We adopt the following notation:

ψij =
∂

2
Ψ

∂Īi∂Īj

, i, j = 1, 4 (20)



94 PAPER III

Hence,

Cvol = 2κ(J2 − J)
∂C−1

2
)C−1

⊗ C−1
, (21)

Ciso = 4ψ11
∂Ī1
∂C ⊗

∂Ī1
∂C

+ 4ψ14

(
∂Ī1
∂C ⊗

∂Ī4
∂C

+
∂Ī4
∂C ⊗

∂Ī1
∂C

)
+ 4ψ44

∂Ī4
∂C ⊗

∂Ī4
∂C

+4ψ1
∂

2
Ī1

∂C∂C
+ 4ψ4

∂
2
Ī4

∂C∂C
, (22)

Ciso = 4ψ11
∂Ī1
∂C ⊗

∂Ī1
∂C

+ 4ψ14

(
∂Ī1
∂C ⊗

∂Ī4
∂C

+
∂Ī4
∂C ⊗

∂Ī1
∂C

)
+ 4ψ44

∂Ī4
∂C ⊗

∂Ī4
∂C

−
2

3
J−2/3 (

C−1
⊗ S̄ + S̄⊗ C−1)

+
2

9
tr(F̄S̄F̄

T
)C−1

⊗ C−1
−

2

3
tr(F̄S̄F̄

T
)
∂C−1

∂C
.(23)

Further details are obtained by introducing:

∂Ī1
∂C

= J−2/3

(
1 −

1

3
Ī1C̄−1

)
, (24)

∂Ī4
∂C

= J−2/3

(
a0 ⊗ a0 −

1

3
Ī4C̄−1

)
, (25)

∂
2
Ī1

∂C∂C
= −

1

3
J−2/3 (

C−1
⊗ 1 + 1 ⊗ C−1)

+
1

9
Ī1C−1

⊗C−1
−

1

3
Ī1
∂C−1

∂C
, (26)

∂
2
Ī4

∂C∂C
= −

1

3
J−2/3 (

C−1
⊗ a0 ⊗ a0 + a0 ⊗ a0 ⊗C−1)

+
1

9
Ī4C−1

⊗ C−1
−

1

3
Ī4
∂C−1

∂C
.(27)

The spatial description the elasticity tensor is defined as the push-forward operation of C as

C = χ∗(C), cijkl =
1

J
FiIFjJFkKFlLCIJKL, (28)

Note that the push-forward operation of the tensor −∂C−1
/∂C is equal to the fourth-order

identity tensor I:

FiIFjJFkKFlL

(
∂C−1

∂C

)

IJKL

= −
1

2
(δikδjl + δilδjk)= − (I)ijkl. (29)

In tensor notation C is expressed as:

C = Cvol + Ciso, (30)

Cvol = −2κ(J − 1)I + 2κ(J −
1

2
)1 ⊗ 1, (31)

JCiso = 4ψ11devB̄⊗ devB̄ + 4ψ14

(
devB̄ ⊗ dev(ā⊗ ā) + dev(ā⊗ ā) ⊗ devB̄

)

+4ψ44dev(ā⊗ ā) ⊗ dev(ā⊗ ā)

−
2

3
(1 ⊗ σ̄ + σ̄ ⊗ 1) +

2

9
(trσ̄)1 ⊗ 1 +

2

3
trσ̄I. (32)

The material model was implemented in the finite element program ABAQUS using the user
subroutine UMAT. The implementation of the six Cauchy stress components and the tangent
stiffness is required. More details on the implementation of the tangent stiffness matrix are
given in Appendix A.
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3 Numerical examples

The strain energy function expressed in eq.(9) is employed here. It is of a form that captures
the hyperelastic behavior of soft biological tissues with one–family of collagen fibres well.
The material parameters c0, c1 and c2 were set equal to: c0 = 0.052 kPa, c1 = 4.63, c2 = 22.6
for all the analyses presented in this Section. Note that these material parameters are those
proposed by Prot et al. [16] for porcine mitral anterior leaflet by fitting those given first by
May-Newman and Yin [12] for an alternative strain energy function.

3.1 Biaxial test simulations

Although it is recommended to use hybrid (mixed) elements for incompressible materials in
ABAQUS, we investigate first how our material model performs with a pure displacement based
finite element. With this, we can determine required magnitudes of κ.
Displacement controlled single element tests were carried out in order to check the proper
implementation of the stress and tangent stiffness updates within ABAQUS of the material model
derived from eq.(9). First, an equibiaxial test was carried out with an eight-noded solid element
(ABAQUS element type C3D8) for different values of κ in order to show the importance of using
a large value to treat the material as incompressible.
In this test, the nodal displacements of the element were imposed as boundary conditions. The
same displacements were imposed in the 1 and 2 directions, the element was left free to deform
in the 3-direction and the fibre direction was aligned with the 1-direction.
The theoretical principal stretches were determined assuming material incompressibility. From
the strain energy function,

W = c0
(
ec1(I1−3)2+c2(I4−1)2 − 1

)
+ p(J − 1), (33)

the theoretical Cauchy stresses were calculated assuming a state of plane stress [16]:

σ = 2W1B + 2W4a⊗ a + p1, a = Fa0, (34)

with W1 =
∂W

∂I4
, (35)

with, p = −2ψ1B33, determined from the plane stress condition, σ33 = 0,

[B] =




B11 B12 0
B12 B22 0
0 0 B33



 , (36)

B33 = (B11B22 − B
2
12)−1

, (detB = 1). (37)

In Figure 1, the theoretical Cauchy stress in the 1-direction is compared with the numerical
stresses obtained from the finite element analyses using κ = 10

3
, 10

4
, 10

5
, and 10

6
. It

appears that the numerical stresses converge toward the theoretical solution when κ is increased.
κ = 10

6
gives an excellent agreement between the analytical and numerical solutions. The

value of J is plotted for different values of κ in Figure 2. In figure 6.3(a) the theoretical Cauchy
stresses in the 1 and 2–directions were then compared with those obtained from the finite
element analysis using κ = 10

6
.
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Figure 1: Cauchy stress-stretch curves for a single element equibiaxial test, the same displace-
ments were imposed in the 1 and 2 directions, the 3-direction was left free to deform and
the fibre direction aligned with the 1-direction. Analytical values of σ11 in the 1-direction are
compared with the numerical values obtained with different values of κ.
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Figure 2: Numerical values of J obtained with different values of κ for a single element equibiax-
ial test in which the same displacements were imposed in the 1 and 2 directions, the 3-direction
was left free to deform and the fibre direction aligned with the 1-direction.

Next, another equibiaxial test was analysed with the fibre direction in the 1-2 plane making
an angle of 30◦ with the 1-direction, i.e. the vector a0, representing the fibre direction in the
reference configuration had the following matrix form in the base (e1, e2, e3),

[a0] =
[

cos(30◦) sin(30◦) 0
]T
. (38)

The same boundary conditions as in the previous test were used. The theoretical Cauchy
stresses in the 1 and 2–directions and the shear stress in the 1–2 plane expressed as,

σ11 = 2W1λ
2
1 + 2W4λ

2
1cos(30

◦)2 − 2W1
1

(λ1λ2)2
, (39)

σ22 = 2W1λ
2
2 + 2W4λ

2
2sin(30◦)2 − 2W1

1

(λ1λ2)2
, (40)

σ12 = 2W4λ1λ2cos(30
◦)sin(30◦), (41)
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where λ1 and λ2 are the stretches in the 1 and 2–directions, respectively, were then compared
with those obtained from the finite element analysis (see Figure 6.3(b)) using κ = 106 kPa. As
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Figure 3: Cauchy stress-stretch curves for a single element equibiaxial test: comparison of
theoretical Cauchy stresses with numerical stresses obtained from the UMAT subroutine. Stress
values σ11 are in the 1-direction, and σ22 in the 2-direction. The same displacements were
imposed in the 1 and 2 directions, the 3-direction was left free to deform.

can be seen from Figure 3, the single element equibiaxial tests illustrate an excellent agreement
between the theoretical and the numerical solutions.

3.2 Comparison between solid and membrane elements

In order to compare the implementation of the material model derived from eq.(9) described in
Section 2 for solid elements with the implementation of the same material model described by
Prot et al. [16] for membrane and shell elements, a part of a sphere (see Figure 4) is subjected
to a uniform pressure. Note that the stresses presented in this section are the result of post–
processed nodal stresses.
The displacements of the circular edge of the geometry were constrained and a uniform pressure
p of 16 kPa was applied on the convex surface. Note that 16 kPa (120 mmHg) corresponds to
a typical peak systolic blood pressure for a healthy person. The fibre direction was arranged in
the circumferential direction as shown in Figure 4. The first material direction was aligned with
the circumferential direction, the second material direction with the meridional direction and
the third material direction was defined to be perpendicular to the other material directions.
The thickness of the model in the reference configuration t0 was uniform and equal to 1 mm.
For the solid element case κ was set equal to 106 kPa. The geometry was meshed with three–
noded membrane elements (ABAQUS type M3D3) and with eight–noded solid hybrid elements
(ABAQUS type C3D8H), respectively. In order to apply the same boundary conditions for all
cases presented in this section, the geometry was meshed with an even number of elements
through the thickness in the solid element cases. After loading, the initial shape, see Figure
6.5(a), took an ogival shape, see Figure 6.5(b). For the solid element case J was equal to 1 up
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Figure 4: Part of a sphere made of a transversely isotropic material.

(a) Reference configuration (b) Deformed configuration

Figure 5: Part of a sphere subjected to a uniform pressure on the interior face (a) Reference
configuration, (b) Deformed configuration.

to five digits.
In the case of soft biological tissue reinforced by one family of collagen fibres like for instance
the mitral leaflets, the material parameter c2 governs the stiffness in the collagen fibre direction.
In order to study the effect of the fibre structure with the model presented in this section two
other analyses using solid elements were conducted on the same model with different layers
through the thickness: one with two layers having a thickness of 0.5 mm and each meshed with
two solid elements, in this case the material parameter c2 was set equal to zero in the layer
adjacent to the concave surface of the geometry and c2 was kept equal to 22.6 in the other layer,
and a second one with three layers having the same thicknesses of 1

3
mm and meshed with two

solid elements for each layer, c2 was set equal to zero in the outer layers and kept equal to 22.6
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in the middle layer.
The displacement of point A in the 1–direction (see Figure 4) is plotted in Figure 6 for all cases.
Figure 6 shows a very good agreement between the simulation using membrane elements and
the one using solid elements with uniform collagen fibre distribution over the thickness.
In order to check the results obtained with the finite element analyses we compared the stresses
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Figure 6: Displacement of the point A in the 1–direction (see Figure 4) versus pressure for the
membrane and solid cases.

calculated along the path AB, see Figure 4, with Laplace’s law:

σ̄1

r1
+
σ̄2

r2
=
p

t
, (42)

where r1 and r2 are the principal radius of curvature of the membrane, σ̄1 and σ̄2 are the
principal membrane stresses, respectively. p is the pressure acting on the membrane and t
is the current thickness of the membrane. Note that Laplace’s law is independent of the
material constitutive model. As the problem is axisymmetric the stresses along the path AB
are representative for the whole model.
For the membrane element case, the stresses obtained from the finite element analysis must
obey Laplace’s law. However, for the solid element analyses this need not be the case. Our
motivation here for comparing the stresses obtained with the solid finite element analyses to
Laplace’s law is to investigate on a simple geometry how the layer arrangements employed
here and in the next Section affect the stress response, and especially how much it deviates
from the membrane behavior. These analyses are carried out as a precursor of the mitral valve
simulations in the next section.
In the problem described in this section, the principal radius of curvature r1 and r2 are normal to
the circumferential and meridional directions, respectively. In order to determine the varying
principal radii of curvature corresponding to the deformed geometry at many steps in the
analysis, the profiles of the deformed configurations were fitted to polynomial functions, for
more details see [23]. σ̄1 and σ̄2 correspond to the membrane stress in the fibre direction and
meridional direction, respectively.
In the case using membrane elements σ̄1 and σ̄2 are straightforward to determine. In the cases
using solid elements the membrane stresses σ̄1 and σ̄2 are calculated by dividing the membrane
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forces in each direction by the current thickness t calculated from the deformed configuration
and using the post–processed nodal stresses. The membrane forces N1 and N2 are derived from:

N1 =

∫

t

σ1(t)dt '
Nel−layer∑

i=1

σ̄i
1∆ti, N2 =

∫

t

σ2(t)dt '
Nel−layer∑

i=1

σ̄i
2∆ti, (43)

where σ̄i is the average stress in the solid element layer i. Then the average membrane stresses
are calculated as,

σ̄FE
1 =

N1

t
. (44)

The sum
σ̄

FE
1

r1
+
σ̄

FE
2

r2
, (45)

where σ̄
FE
1 and σ̄

FE
2 are both calculated from the finite element analysis, is plotted against

p/t in Figures 7(a)-(d) for the membrane element case and the solid element cases using one,
two and three layers, respectively, at three different pressure levels (30 mmHg, 60 mmHg and
120 mmHg) and at several locations along the path AB. Note that the corresponding pressure
dependent r1, r2, t were employed with eq.(42).
As expected, Figure 6.7(a) shows a very good agreement between the finite element results

and Laplace’s law for the case using membrane elements. The deviation observed between the
finite element results and Laplace’s law for the cases using solid elements (see Figures 6.7(b),
6.7(c) and 6.7(d)) may be due bending introduced by using solid elements: this means that the
load is not carried only by the membrane forces but also by bending moments. However, the
three cases using solid elements show a quite good agreement with Laplace’s law.
Figure 8, illustrating the stress distribution through the thickness at points P1 and P2 (see
Figure 4) at 120 mmHg in all the cases presented in this Section, shows that the analysis
using solid elements with one homogeneous material layer yields the most homogeneous stress
distribution through the thickness in both directions. Figure 8 also shows that in this example
the peak stresses in both directions are increased with the cases using two and three material
layers. At a given pressure level (120 mmHg) and at a given location along the path AB, Figure
6.9(a) shows that σ̄

FE
1 has a quite similar value in each case except in the neighbourhood of point

B. However, Figure 8 shows that the stress distribution over the thickness is very different from
one case to an other. In order to investigate how much bending is introduced in the response
of the structure for each case, two ratios R1 and R2 defined as,

R1 =
M1

N1

√r
st
, R2 =

M2

N2

√r
st
, (46)

are plotted along the path AB in Figure 6.9(b), where M1 and M2 are bending moments defined
as,

M1 =

∫

t

σ1(t)tdt, M2 =

∫

t

σ2(t)tdt, (47)

N1 and N2 (eq.(43)) are membrane forces, rs is the radius of the circular edge of the structure
(where the boundary conditions are applied) shown in Figure 4 and t is the current thickness of
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Figure 7: The sum
σ̄FE
1

r1

+
σ̄FE
2

r2

where σ̄FE
1 and σ̄FE

2 are both calculated from the finite element
analyses is plotted against p/t and represented by circles, plusses and triangles at 30 mmHg,
60 mmHg, and 120 mmHg, respectively, for different locations along the path AB (see, Figure
4). t, r1 and r2 are calculated from the deformed configuration of the finite element model.
The solid line shows where the symbols, i.e. ◦, 5 and +, would be located if the finite element
analysis followed exactly Laplace’s law.

the structure along the path AB. As can be seen from Figure 6.9(b), both ratios R1 and R2 are
significantly inferior to unity meaning that in each case the problem is membrane dominated.
However, the case using two layers introduces the most bending in the structure described in
this section.

3.3 Mitral valve simulations

In this section a three dimensional finite element model of a porcine mitral valve is presented.
The closure of the valve between early systole (p = 0) and peak systole (p = 120 mmHg) is
considered. Note that in this section the stresses plotted through the thickness of the leaflets
are post–processed nodal stresses.
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Figure 8: (a) Cauchy stress parallel to the fibres at point P1, (b) Cauchy stress perpendicular
to the fibres at point P1, (c) Cauchy stress parallel to the fibres at point P2, (d) Cauchy stress
perpendicular to the fibres at point P2.

Geometry, material and boundary conditions

The geometry of the model is shown in Figure 10 and the modelling of the chordae tendinae are
described by Prot et al. [6]. The shape of the annulus was measured at early systole from 3D
ultrasound measurements carried out on the heart of the anaesthetized animal. The annulus
was idealized as a nonplanar ellipse. The distance between the highest point of the anterior
annulus to the highest point of the posterior annulus was 30.9 mm. The distance between the
two commissures was 34.1 mm. The saddle height, defined as the distance between the highest
point of the anterior annulus and the plane defined by the posterior annulus, was 4.81 mm. The
maximum distance from the annulus to the free edge of the anterior and posterior leaflets were
measured to be 23 mm and 11 mm, respectively, post mortem. The thickness of the leaflets
was assumed to be constant and equal to 1 mm. The cross section areas of the chordae used
in our model were based on the average values given by Liao and Vesely [24]: 0.38 mm2 and
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Figure 10: Initial geometry of the mitral valve at beginning of systole.

2.05 mm2 for marginal (primary) and strut (secondary) chordae, respectively.
The constitutive model derived from eq.(9) was used for both leaflets using the material pa-
rameters in Table 1.
The chordae were modeled as an incompressible hyperelastic material. The nonlinear stress-

stretch behaviour was implemented from experimental data published in [25]. The same mate-
rial model was used for all the chordae, derived from the following strain energy function,

U(I1) = a1(exp(a2(I1−1)) − 1), (48)
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Table 1: Material parameter values for the strain-energy function (9)

Anterior leaflet 0.0520 4.63 22.6
Posterior leaflet 0.171 5.28 6.46

a1 = 0.0565 kPa and a2 = 29.6 for the marginal (primary) chordae and a1 = 0.050 kPa and
a2 = 35 for the strut (secondary) chordae.
The fibre orientation was set in the leaflets using the ABAQUS user subroutine ORIENT according
to the mean collagen fibre direction map from SALS data shown by Einstein et al. [26].
The leaflets were meshed with eight noded brick hybrid elements (C3D8H ABAQUS type) and
the chordae with truss elements (T3D2 ABAQUS type). The mesh in the initial configuration is
shown in Figure 10.
The displacements of two nodes representing the papillary muscles were constrained. The
annulus was assumed to be fixed, with translations constrained but not the rotations. In order
to capture coaptation (i.e., apposition of the posterior and anterior leaflets) a contact condition
was prescribed on the atrium surface of the leaflets. The blood pressure measured in the left
ventricle of the pig between beginning of systole and the maximum pressure in the ventricle
was applied on the ventricular surface of the leaflets as load history. All simulations were
quasi–static.

Collagen structure

Collagen fibres are a major component of the mitral apparatus and play an important role in
providing mechanical strength to the leaflets. In this section we use a simplistic approach to
study the influence of the position of the collagenous layer. As the material parameter c2 of
the strain energy function (9) governs the stiffness in the fibre direction, we used the values of
c2 related in Table 1 for the collagenous layer and c2 = 0 in the other layers. Note that using
c2 = 0 corresponds to the use of an isotropic hyperelastic material model. Kunzelman et al.
[7] found that the mitral leaflets may be divided into three layers and that the middle layer
(fibrosa) of the leaflet, composed of dense collagen, was the stiffest layer in the mitral leaflets.
However, near the annulus the thickness of the mitral valve leaflet is dominated by the fibrosa
(collagen dominated layer) and the ventricularis is the thinnest of the layers and disappears
toward the free edge. Thus, the layer arrangement of the leaflets may be simplified as one
heavily collagenous layer on the ventricular side (fibrosa) and one loose connective tissue layer
(atrialis/spongiosa) on the atrium side.
Hence, as in Section 3.2, three analyses with different layer arrangements were conducted with
different material properties in the layers.
In case one, the leaflets were modeled with one material layer of 1 mm with two solid elements
through the thickness using the material properties in Table 1 (i.e. collagen uniformly dis-
tributed over thickness). In case two, the leaflets were modeled with two material layers (0.5
mm each) meshed with one solid element for each layer : the material parameter c2 was equal to
zero in the atrium layers of both leaflets and kept equal to 22.6 and 6.46 in the ventricular layers
of the anterior and posterior leaflets, respectively. In case three, the leaflets were modeled with
three material layers (

1
3 mm each) meshed with one solid element for each layer: the material



3. NUMERICAL EXAMPLES 105

parameter c2 was equal to zero in the atrium and ventricular layers of both leaflets and kept
equal to 22.6 and 6.46 in the middle layers of the anterior and posterior leaflets, respectively.
The material layer arrangements of the three cases are illustrated in Figure 11.
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ers)

Atrium

Annulus

Anterior

Posterior

leaflet

leaflet

Ventricle

c2 = 22.6 c2 = 6.46

c2 = 0
c2 = 0

(b) case two (two solid element layers)

Atrium

Annulus

Anterior

Posterior

leaflet

leaflet

Ventricle

c2 = 22.6
c2 = 6.46

c2 = 0 c2 = 0

(c) case three (three solid element layers)

Figure 11: Collagen arrangement in the mitral leaflet for the three cases

Stress distribution through the thickness

In all cases, the mitral valve completed coaptation very early in systole. The deformed shape
of the valve as shown in Figure 12, was very similar in the three cases studied in this section.
However, Figures 13 and 14 illustrate the stress distribution through the thickness of the anterior
leaflet in three regions (see Figure 10). As can be seen the stress distribution through the
thickness of the leaflet is quite different for the three cases. As can be seen in Figure 13,
the stresses in the atrium surface and in the ventricular surface are reduced and increased,
respectively, with the leaflet composed of two different layers compared to the case with constant
material properties through the thickness. Hence, especially in region 1, i.e. in the middle
part of the anterior leaflet at about one third of the distance between the annulus and the
coaptation line, the model using two different layers homogenizes the stress distribution through
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(a) Deformed configuration of
the mitral valve

(b) Deformed configuration of
the mitral valve (cut view)

Figure 12: Deformed configuration of the mitral valve at peak systole

the thickness in the fibre direction (see Figure 6.13(a)). However, this is not the case in the
direction perpendicular to the fibres (see Figure 14). The analyses show that the anterior
leaflet experiences greater stresses on the atrium side compared to a membrane approach, but
no compressive stress on the ventricular side.

Comparison with echocardiographic measurements

In this Section, as the deformed shapes are very similar for the three cases, results using two
layers of solid elements with homogeneous material properties over the leaflet thickness are
presented (Figure 6.11(a)). Among all of the chordae attached to the mitral leaflets two of
them are larger and longer. They are called strut chordae and are attached on the ventricular
surface of the anterior leaflet beyond the free edge. As they carry a large part of the load due to
the blood pressure applied on the valve leaflets during systole these chordae have an important
supportive role in the mitral apparatus [6], [27]. In addition, they are characterized by a large
attachment area to the anterior leaflet ventricular surface.
In the present model the chordae are meshed with truss elements. In order to model the
attachment of the strut chordae to the anterior leaflet, the extremity of the chordae arising
from the leaflet was divided into multiple branches. First these branches were attached at
several points along the circumferential direction, as shown in Figure 6.15(a). Note that this
modelling for the strut chordae was used for the simulations presented in the previous section.
In Figure 16 the solid line representing the deformed shape of the leaflet obtained from the
finite element analysis with this configuration is compared with the ultrasound measurements
carried out on the pig for several pressure levels. As can be seen in Figures 6.16(b) and 6.16(c)
the anterior leaflet bulges too much into the left atrium compared to the echocardiographic
measurement. Hence, in order to reduce the bulging of the anterior leaflet into the left atrium
the modelling of the strut chordae was slightly modified: several branches were added and
attached along the radial direction as shown in Figure 6.15(b). The dashed line in Figures
6.16(b) and 6.16(c) shows that this second configuration for the strut chordae reduces the
bulging of the leaflet somewhat but does not give the flat shape that the anterior leaflet exhibits
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Figure 13: Cauchy stress in the fibre direction through the thickness of the anterior leaflet, in
region 1, region 2 and region 3 (see, Figure 10), for each case shown in Figure 11.

in the echocardiographic images. In Figure 6.16(d) the deformed shape of the leaflets at peak
systole obtained with the simulations using solid elements with the two configurations for the
strut chordae modelling (see Figure 15) and a simulation using membrane elements are plotted
with the deformed profile of the leaflets observed in the ultrasound measurement. As can
be seen, the deformed profiles obtained from the simulations are quite similar. However, the
coaptation area is slightly translated toward the anterior annulus in the case using membrane
elements.

4 Discussion

A constitutive model for an incompressible hyperelastic transversely isotropic material has
been presented for use in solid finite element analysis. Incompressibility was modeled via a
penalty method. With a single element test, we show the required magnitude of the penalty
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Figure 14: Cauchy stress perpendicular to the fibre direction through the thickness of the
anterior leaflet, in region 1, region 2 and region 3 (see, Figure 10), for each case shown in
Figure 11.

parameter κ in order to obtain a good agreement with the analytical solution. The use of
hybrid elements is recommended with the incompressible hyperelastic material model, in this
case ABAQUS recalculates the hydrostatic stress implemented in UMAT and modifies the tangent
stiffness matrix accordingly.
The out of plane loading example performed on a part of a sphere shows that the average
membrane stresses are not much affected by the different layer arrangements used in this study.
However, we found that in this example the case using three different layers with fibres in the
central layer was the closest to the membrane behaviour: it minimizes the bending stress in
this particular structure and the load bearing is mainly by membrane forces.
In order to study the influence of the collagen structure in the mitral valve leaflets, a simplistic
approach has been used. The thicknesses of the different layers of the mitral leaflets are almost
constant in the direction parallel to the annulus but vary from the annulus to the free edge [7].
This was not accounted for in this study. In addition, we do not attempt to give layer specific
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Figure 15: (a) The strut chordae are modeled with branches attached at some points of the
anterior leaflet along the circumferential direction, (b) The strut chordae are modeled with
branches attached at some points of the anterior leaflet along the circumferential direction and
along the radial direction.

material parameters for the different layers of the leaflets.
Our finite element simulations show that in the central part of the anterior leaflet, when the
anterior leaflet is divided in two layers with the collagen layer on the ventricular side, the stresses
in the fibre direction are reduced and the resistance to bending of the leaflets is reduced in that
direction compared to the case with only one uniform layer. In both directions the stresses are
higher on the atrium side than on the ventricular side of the leaflets for all collagen arrangements
used in this study. In addition no compressive stress is observed in the directions parallel and
perpendicular to the fibres.
The stress distributions presented in this work have to be considered with care since our model
exhibits too much bulging. Indeed, comparing the deformed shape obtained from the finite
element analysis to the one observed from the echocardiographic recording, we see that in our
model the anterior leaflet bulges too much into the left atrium whereas the leaflets exhibit a flat
shape in the ultrasound measurement. This may be due to several aspects that are not taken
into account in our model. First, the pressure load applied on the leaflets is uniform which
may not be the case in reality. Also, the thickness of the leaflets is constant in our model but
anatomical measurements show that the leaflets are thicker near the annulus. In addition, the
leaflets are modeled as a passive biological tissue. However, Sonnenblick et al. [28] showed in
dogs that the anterior leaflet contains muscle fibres from atrial origin and that the electrically
stimulated mitral valve actively developed tension and shortened. Moreover, Timek et al. [29]
showed in sheep that these muscles fibres have a direct role in evolution of the leaflet’s shape.
Our results agree with Curtis and Priola [30] who studied the action the muscle fibres present
in the anterior leaflet. They show that when the muscle fibres are active, the mitral valve does
not bulge into the left atrium and that in the case of passified muscle fibres the valve deflection
was significantly increased at any left ventricular pressure value. In [29], it is stated that: “little
is known about the in vivo function of myocardial fibers, which insert into the mitral annulus
and leaflet”. However, shortening of the anterior leaflet due to contraction of its muscle fibres
during systole may reduce its bulging into the left atrium and promote the flat shape of the
leaflets during systole.
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Figure 16: (a) The solid line shows the initial position of the FE model, (b) the solid and
the dashed lines show the deformed shapes obtained with the finite element simulations using
solid elements for the strut chordae configurations 1 and 2 (see Figure 15), respectively, at
80 mmHg,(c) the solid and the dashed lines show the deformed shapes obtained with the
finite element simulations using solid elements for the strut chordae configurations 1 and 2
(see Figure 15), respectively, at 120 mmHg (d) the red line shows the deformed shape of
the leaflets observed from the ultrasound recording, the solid, dashed and dot lines show the
deformed shapes obtained with the finite element simulations using solid elements for the strut
chordae configurations 1 and 2 (see Figure 15) and the simulation using membrane elements,
respectively. (LVOT = Left Ventricular Outflow Tract, LA = left atrium, LV = left ventricle,
A = anterior, P = posterior)

Our simulations show that the use of a transversely isotropic hyperelastic material model for
the mitral leaflet will induce bulging of the valve into the left atrium and even with a larger
attachment zone of the strut chordae to the ventricular surface of the valve this bulging remains.
However, the three dimensional finite element model of the mitral apparatus presented in this
study shows the great mobility of the anterior leaflet coming in apposition with the posterior
leaflet during left ventricular isovolumetric contraction. The two leaflets come into contact



5. CONCLUSION 111

at their respective rough zone giving a large coaptation area. Hence, despite the discrepancy
observed in the deformed shape of the leaflets at peak systole our model simulates a proper
closure of the valve. Furthermore, the simulations indicate that even for a passive (no leaflet
muscle fibre contraction) leaflet, regurgitation does not occur.

5 Conclusion

The present study suggests that the material heterogeneity employed herein does not influence
much the global response of the mitral valve. However, our results show that the stress in the
leaflets are affected by using layers with different material properties. In the central part of the
anterior leaflet, the stresses in the fibre direction and the resistance to bending of the leaflet are
reduced in that area when the leaflets are modeled with two material layers. Furthermore for all
the material layer arrangements used in this study the stresses were higher on the atrium side
than on the ventricular side of the leaflets. We show that using a passive transversely isotropic
hyperelastic material model for the leaflets the valve bulges too much in the left atrium. We
conclude that the flat shape of the leaflets shown by the ultrasound recording may be due to the
presence of active muscle fibres. Hence, for improved material modelling, the account of muscle
fibres need further studies and layer–specific material parameters need also to be established.
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Appendix A

The spatial tangent moduli C defined in eq.(28) gives the following relationship,

LVτ = τ̇ − Lτ − τLT = JC : D, (49)

where τ = Jσ is the Kirchhoff stress tensor, L the velocity gradient, D the rate of deformation,
and LVτ the convected rate of the Kirchhoff stress, also called the Lie derivative of the Kirchhoff
stress. We note also that L = D + W where D is the symmetric part of the velocity gradient.
The Jaumann objective stress rate τ

∇J is used in ABAQUS/Standard for continuum elements,

τ
∇J = τ̇ − Wτ − τWT = CτJ : D, (50)

where CτJ is the Jaumann (Kirchhoff) tangent moduli. This leads to the following relation
between the spatial second elasticity tensor C and the Jaumann (Kirchhoff) tangent moduli
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CτJ [31]:

LVτ = τ
∇J − (L −W)τ − τ (L − W)T = JC : D

= τ
∇J − Dτ − τD, (51)

JC : D = C
τJ : D − JC

′

: D, (52)

C
τJ = J

(
C + C

′

)
, (53)

where C
′

: D = Dσ + σD, (54)

with, C
′

ijkl =
1

J
C

τJ , (56)

or in index notation,

C
ABAQUS

ijkl = Cijkl +
1

2
(δikσjl + δilσjk + δjkσil + δjlσik). (57)

Cijkl is the push-forward of the material elasticity tensor C in the current configuration according
to (28). This term needs to be updated for each material model derived from a specific strain
energy function. The second term C

′

ijkl of the spatial tensor implemented in the user-defined
subroutine UMAT needs to be coded once only.
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