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Abstract

The research presented in this thesis is addressing the Element Free Galerkin method
and the dynamic linear fracture mechanics theory to investigate their capabilities of

solving crack propagation problems.

The element-free Galerkin (EFG) method is a particle method, because it needs only a
set of nodes and a description of a domain boundary to obtain an approximate solution.
Every node in the model has a surrounding domain that describes its connectivity,
called the domain of influence. In the Element Free Galerkin method the displacement
approximation is described by shape functions derived from the Moving Least Square
{MLS} technique, minimizing a weighted quadratic difference between the local
displacement approximations and the nodal parameters. The discrele equations are
established in the same manner as for the finite element method with respect to the
displacement approximations. The special connectivity description of the Element Free
Galerkin method enables rational modeling of for local discontinuities in numerical

simulations.

A prototype code based on the Element Free Galerkin method and dynamic linear
fracture mechanics where developed on a MATLAB platform. The code solves two
dimensional general crack propagation problems. The material must behave linearly
elastic. The code can handle relatively general geometries and it allows two arbitrary
cracks to propagate within a prescribed sub-domain of the numerical model. The
explicit Newmark algorithm is adopted for solving the discrete equations in the time
domain. The developed code was verified by running two examples of general brittle
crack growth: the pendulum experiment by John, R. and S. P. Shah (1990) on concrete
beams and the experiment performed by Kalthoff and Winkler (1987). A comprehensive
parameter study was performed on a modified pendulum experiment. This was done to

understand how the model parameters are influencing the results of brittle crack growth.



it

Experiments in the structural laboratory are performed for validation. Since the EFG
code is restricted to caleulations of two dimenstonal numerical models the experiment
must also have this [imitation. A shear wall structure is thus chosen as model for the
experiments, Crack patterns should arise from stress waves generated from shock wave
loading. The load is applied to one of the shear wall edges as an impact from a
projectile. The applied force is thus in the shear wall plane. The shear wall is supported
at each side of the edge opposite to the loading, The experiments show that the
numerical tools based on linear fracture mechanics and the Element Free Galerkin

method are suited for solving dynamic brittle fracture.

The main conclusions from this thesis is that the numerical tools based on the Element
Free Galerkin method and the dynamie linear fracture mechanics work properly for
predicting general brittle crack propagation. The work presented in the thesis
demonstrates one possible way of predicting the crack initiation and finial crack pattern

for brittle fracture.
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displacement approximation based on the EFG method

displacement approximation based on the FE method

hybrid displacement approximation in the interface domain

nodal parameter associated with node I
velocity function

velocity vector

acceleration function

acceleration vector

crack velocity
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Wy, Wy

anticipated crack velocity
weight function covering the circular domain of inftuence
stress work density

time derivative of the stress work density
diagonal matrix of weight functions evaluated at nodes N

weight function covering the rectangular domain of influence in x- and y-
direction respectively

Greek symbol:

oy, O

Bi
Ba

V2 Vz
the quantities o, = (1-—, and ¢, = [1——
Cd ‘ Cs

general newmark integration variable
general newmark integration variable (=0, explicit type)
Cronecker delta
rate of change in the potential energy, [, with the crack area a (energy
release rate)
- T _
sirain vector ( € = [e“ €, &, :[)
domain of the whole numerical model
EFG sub-domain
FE sub-domain
interface sub-domain
nodes in Q with w(x;-x)>0
points on a straight line between x and x; without any intersection of I
. bl VIS
nodes that satisfy €@, =Q;" Mg,
Poisson's ratio

potential energy
mass density

stress vector ( ¢° =[G“ G, o‘xy]z[oql Gy G,
critical stress for the material

stress component if

circumferential stress

maximum circumferential stress

shear stress

the angle between the x;-axis and the line from the crack tip to the
evaluation point
crack growth direction

crack tip contour
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Operators
d(*)

Subscript:

g e et

(%)

(D)

complete boundary of the total domain, including any interior surfaces
{corresponding to cavities and crack edges in this study)

boundary between interface domain and EFG domain

boundary between interface domain and FE domain
prescribed displacement boundary

prescribed traction boundary

indicate that (=) is a variation

co-ordinate x (i=1) and y (i=2)
node number

co-ordinate x (i=1) and y (i=2)
node number

discrete time instant
derivative with respect to (»)

association to the auxiliary field of mode 1

@) association to the auxiliary field of mode I
e refer to a finite element
h h indicate that (+)" is an approximation of (=)
m number of terms in the functional basis
‘N total number of nodes with influence domain w{(x-x;,£)=0 at the
gvaluation point X
Abbreviations:
cT crack tip
EFG element-free Galerkin
FE finite element
MLS moving least square
SIF stress intensity factor
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Chapter 1 Introduction

1.1 Background for the thesis work

When this thesis work started, a need for assessment of the vulnerability and safety of
underground rock caverns subjected to explosive loading was requested. Some results
from full scale experiments were available. These results would be very useful for the
assessment together with numerical modelling of the behaviour of the rock surrounding
a cavern exposed to explosive loading. Numerical computations are necessary to trace
the shock wave propagation from the location of the explosion through the rock mass
and predict the response of the rock in the vicinity of the cavern.

It is of particular interest to predict the rock response close to the cavern when
the shock waves pass and are reflected. In this area it must be possible to predict
spalling and cracking and also the level and characteristics of vibration on the cavern
surface.

Figure 1.1 illustrates a possible case for which numerical wave propagation and
response analyses should give reliable estimates of the behaviour during an explosive
loading. Three different domains are illustrated in the figure. Different numerical
methods of analysis will be required to efficientty obtain response estimates with
sufficient accuracy in the three domains, The explosion takes place in Domain 1. This
domain is limited by an idealized spherical boundary outside which the rock has not
been disintegrated, but can be modelled as a continuum. Domain 2 is surrounding the
rock cavern. In this domain fracture and spalling may be expected for sufficiently high
explosion load levels.

As Domain 3 is considered to be a continueum it can conveniently be modelled
with the Finite Element method. The material behaviour may be elastic or elasto-plastic,
but without dominant local discontinuities.

Numerical estimation of the response to the loading on the outer boundary of
this domain will not be considered in this study. It must be available from separate

numerical analyses.
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For Domain 2 the rock masses will have local discontinuities with crack growth
and possible spalling at the cavern surface. Available numerical methods to model this
type of behaviour have been reviewed. The Element Free Galerkin (EFG) method
seemed promising for estimation of crack growth in arbitrary directions according to the
state of stress and material properties. Local discontinuities can conveniently be handled
by the EFG method as its connectivity description is only associated with nodes in the
aumerical model, General discontinuities, such as crack faces, can easily be included
without any remeshing during a numerical simulation. This represents a major
distinction in properties between the Element Free Galerkin method and the Finite
Element method.

A description of the EFG method can be found in Belytschko (1994).

N Dumain |
Grourd Jevel Explosion

Dipinyin 3

» Keflected waves

Domain 2

Rock musses

Tunnel

Chack waves from the explosion

Figure I.1:  Tlustration of a rock cavern subjected to explosion from ground level
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1.2 Objectives and scope

The contribution from the present study towards the solution of the rock cavern
problem will be concentrated on possible achievements of the Element Free Galerkin
method. The problem as illustrated in Figure 1.1 will be addressed as a guide to required
capabilities of the numerical method.

No commercial codes with the Element Free Galerkin method included were
available. The performance and limitations of the method could thus only be studied by
developing a prototype code. This code had to be verified and as far as possible
validated through comparisons with experimental results for brittle material failure with
crack propagation.

The rock cavern problem will require the code to handle coupling of the Finite
Element method with the EFG method to be efficient for simulation of elastic wave
propagation between the explosion area and the cavern area. The code has been
developed on the MATLAB platform for solving two-dimensional problems. This will
limit the code development work and still be satisfactory for modelling of the rock
cavern problem when the distance between the explosion area and the cavern allow
approximation of plane stress waves in the cavern area.

Dynamic and linearly elastic fracture mechanics is the tool for describing the
crack propagation. It means that the material behaves linearly efastic up to the initiation
of cracking. The traditional dynamic linear elastic fracture mechanics is well suited
combine with the connectivity description in the Element Free Galerkin method.

Even if this study was initiated in connection with the rock cavern problem,
other dynamic brittle fracture problems that can be modelied in 2D can easily adopted

also for different materials as concrete and metals.
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1.3 Organization of the report

The report is organized in the following chapters:

Chapter 2 describes the basics of the Element Free Galerkin method. The
governing equations for describing linear elasto-dynamic behaviour in two dimensions,
is established both for the Element Free Galerkin method separately and coupled with
the Finite Element method. A simple method for describing discontinuous behavior is
cutlined through the visibility criterion. To improve computations of the crack tip field
variables, the enriched Element Free Galerkin basis is adopted.

In Chapter 3 the basis of the mixed mode dynamic fracture modelling is
outlined. This is the basis for the numerical integration of the J-integral which gives the
value of the stress intensity factors. These factors are the main control parameters for
the crack criterion.

One major part of the work with this theses has been the development of the 2D
prototype code for solving the dynamic linear elastic fracture problems. The basis and
the features of the code are listed in Chapter 4.

Chapter 5 gives some examples for verification of the present code against
results reported in the literature.

In Chapter 6 a setup for experiments is proposed on the basis of pre-calculations

. by the prototype code. The test specimens are concrete slabs mounted as shear walls and
subjected to an impact loading. The impacting projectile causes a pressure pufse to
propagate. This pulse will reflect, and if the reflected tension stress wave is strong
enough, it can cause various crack patterns in the test specimen.

Chapter 7 gives the results from the experiments, and numerical recalculation
with updated model parameters corresponding to the experiments.

Conclusions of the study and suggestions for further work are finally given in

Chapter 8.
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Chapter 2 The Element Free Galerkin method

2.1 Introduction

The element-free Galerkin (EFG) method is a particle method, because it needs only a
set of nodes and a description of a domain boundary to obtain an approximate solution.
Every node in the model has a surrounding domain that describes its connectivity,
called the domain of influence. Inside this domain a function describing the weight of
the influence from the actual node on a material point is defined. This is called the
welght function. In the finite element (FE) method the displacement approximation is
described by shape functions between nodal values. In the EFG method a similar
description with shape functions is adopted. The EFG shape functions are derived from
the Moving Least Square (MLS) technique, minimizing a weighted quadratic difference
between the local displacement approximations and the nodal parameters. The set of
nodal parameters are in general not equal to the nodal displacements. The EFG
displacement approximation is treated in the same manner as the FE displacement
approximation by inserting the displacement approximations into the weak form of the
problem to generate discrete equations that calculate the modet behaviour. To obtain the
discrete equations a numerical integration is performed in the same manner as for the
FE method.

A main advantage with the EFG method is its general capability of describing
moving discontinuities as for instance crack growth. This feature lies in the casiness to
update the domain of influence for the nodes during an analysis. A drawback is an
increased requirement of computer time. Computational efficiency may be improved
through models combining an EFG domain and a FE domain where modeling of
discontinuities are not required.

In Section 2.1 the displacement approximation is established by the moving least
square (MLS) technique, followed by Section 2.2 were the discrete equations for the

computational model are derived. Further, in Section 2.3 coupling between the FE
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method and the EFG method is defined. The discontinuity approximation method, the

visibility criterion, follows in Section 2.4.

2.2 Moving least square approximation

In the EFG method the displacement function u(x,t) is approximated by
u(x,0) = Z! p;(X)a, (x,0) =p" (x)ax, 1), 2.1)

where the superscript h indicates that u"(x,t) is an approximation of u(x,t). m is the
number of terms in the functional basis pT(x) and a(x,t} contains the coefficients which
are functions of the spatial co-ordinates (x=[x y] in 2D) and the time t. Examples of

bases in two dimensions are:

p'=[Lx,y], (m =3, linear), (2.2)

p = [1, X, y,x/;], (m = 4, enriched). 2.3)

Equation (2.2) is a linear basis, while Eq. (2.3) is a radially enriched basis containing a
term with the square root of the distance from the crack tip in addition to the linear
terms (see Flemming, M. A (1997)). This last basis will be advantageous for solving
problems with asymptotic crack tip fields. For multiple cracks, additional terms must be
added for each crack. More details on the radially enriched basis are found in Section
2.7.

The coefficients a(x,t) are obtained at any point x, by using the moving least-
square (MLS) technique (see Lancaster and Salkauskas (1981)). The approximate

displacement function u"(x,t), are called the MLS interpolants. The MLS technique is

minimizing the weighted quadratic difference between the local approximation and the
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nodal parameters for every node with influence domain different from zero at x. The

weighted quadratic form is given by

N - 2
Jsz(x“xi,t){p'(xi)a{x,t)nuI] (2.4)
1=}

where w(x-x,,t) is a weight function covering the domain of influence for node I, see
Section 2.2.1, xj are the coordinates of node . upis a nodal parameter assoctated with
node 1, while N is the total number of nodes with influence domain w(x-x;,£)20 at the

evaluation point x, Flemming, M. (1997),

2.2.1 Weight function descriptions

For EFG the weight function, w(x-x,t), is a monotonically decreasing function as
”x - X ;" increases. The weight function is nonzero over a small domain in the
neighbourhood of node I, called the domain of influence for node I, and zero elsewhere,
see Figure 2.1. The continuity requirements of the MLS interpolants are the same as for

the weight functions. If w(x-x() is C' continuous, then the shape function int the MLS

interpolants will be C* continuous.

Tensor product weight function Contour plot of the weight function
10

Figure 2.1:  Tllustration of the domain of influence for node 1, were the weight
function in the figure shows a tensor product weight with a cubic spline
function. See Eq. {2.5).
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The choice of the shape of the domain of influence may be arbitrary. Rectangular
domains are chosen in the following. The weight function for the rectangular domain at
any given point is called a tensor product weight, Dolbow and Belytschko 1998, and is

given by

w(x—x[,t)=w(r.x,t)-w(r),,t)=wx-wy (2.5),

The weight functions, as cubic splines in the normalized distance » from node I are:

~2--41'2+4r3 forrﬁ—l—,
3 2

w(r,t) = «%—4r+4r2—§r3 for %«:réi, (2.6)
0 forr>1.

For the tensor product weight, r is replaced by 1, and 1, respectively. r, and r, are

defined as:
L, = "X —Xlll and 1.)' — "y_ ylﬂ (27)
mix miy
where
dmlx = dm:lx ' Cxl and dm[y = dmnx 'C)'I (2'8)

dimax 15 @ scaling factor and Cy and Cy; are determined at a particular node by searching
for enough adjacent nodes in x and y directions respectively to satisfy the basis in both
directions. This requirement is necessary to be able to invert the A mairix see eq.(2.18).
1f the nodes are uniformly distributed the values Cyy and Cy are the distances between

the nodes in % and y direction respectively, see Figure 2.2.
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The derivatives of the tensor product weight function are:

where

dw, _ dw EE_
dx dr dx
dw, _dw, dr _
dy dr dy
e —
. »
. n
-Qnr(‘
° »
. ..

® GG node.

Figure 2.2:

_dwx
g0
dw
W, = ] Y. .
Y

(—8r+12r2)sign(x—xl) forrS%
. 1
{(~4+8r—4rt)sign(x —x,) for E<1‘SI
0 forr>1
. I
(=8r+12r*)sign(y —y,) forrsa
. 1
{»~4-§~81‘—4r2)31gn(y—y]) for 5<r51
0 forr>1
........ ® A"‘ﬁ °
S
. -Ié: ® . q .
'Q_E =gt Cxt g
. _ ¢ °
Node 1 :
IC)'E ;
'5 Cxi 3. . ‘; *
», B L} 5 L]
dinx=2.0 Outer Hmit on the domain of influence for node §

(2.9

(2.10)

(2.11)

(2.12).

Definition of the EFG variables related to tensor product weights.
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2.22 Shape functions

The EFG shape functions are derived by the MLS technique. Equation (2.4) is
minimized with respect to a(x,t). The weighted quadratic form of Eq. (2.4) can be
rewritien as:

j=(Pa-uy) W(Pa-u,), (2.13)

where the vector u,, contains the nodal parameters for all the nodes with the evaluation

point x inside their influence domain,
T
u,, x[uj,ul,ug,...,ul\.]. (2.14)

The square matrix P is given by:

pl(xl) pz(xl) pm(xi)
po| PO Pl Pnl¥a) | (2.15)
P.(XN) pz(xN) pm(XN)
W is a diagonal matrix of weight functions
w(x—-x,1) 0 0
0 Xy, ) e 0
w=| O MmO ) 2.16)

4 0 o w(x—%, 1)
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Minimizing the weighted quadratic form, Eq. (2.4), with respect to the funciional basis

coefficient vector, a, requires

dl o T
5;355((““%) W(Pa-u,)}=P"WPa-P"Wu, =0, (2.17)
Now define PTWPzA(x,t) and P'W=C(x,1). Then insert these definitions into Eq.

(2.17), and rewrite as an expression for the coefficients of the functional basis
a(x,1) =A™ (x, CX, Ou, (1), {2.18)

Substituting Eq. (2.18) into Eq. (2.1) gives the MLS approximated displacement

function, uh(x,t), in terms of nodal parameters:
u"(x, 1) =p (x)alx, ) =P (A (x,)C(x, u, (1) (2.19)

In the finite element method the displacement approximation is given in terms of shape
functions interpolating between nodal values. A similar form can be adopted for EFG

by rewriting Eq. (2.19) as:
u"(x,0) =P (x)A™ (%, DC(x, O, (1) = N¥9(x, O, (1) = 5 NF9 (x, by, (1), (2.20)
=1

where N¥(x,t) then can be defined as the shape functions related to node I in the
ML.S approximation. N is the total number of nodes influencing the evaluation point x
({x-x)=0). Note that the domain of influence may vary during an analysis. This will
for example be the case during a dynamic crack growth simulation. Time dependent

shape functions, are thus required (see Section 2,5.1 for further discussions).
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Displacement gradients are then calculated from

! (x, 0 = N{ (%, Dy (1), (2.21)

where

NI =p] A'CH+p™ (A C+AT'C,). (2.22)

The comma notation denotes the spatial derivatives.

It should be noted that the BEFG shape function in general does not satisfy the
Cronecker delta criterion N*“(x,}#8,. This feature makes the imposition of the

essential boundary condition more complicated in the EFG method than in the FE
method. In Section 2.4 a method for coupling the EFG description to the FE description
is introduced. This coupling enables the use of finite elements along the essential
boundaries and takes advantage of imposing the boundary conditions directly as nodal

values at the finite element nodes.
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2.3 Elasto dynamics

I this Section the discrete equations is established based on the governing equations in
elasto dynamics. The work presented in this thesis is based on the assumption of elastic

material behaviour surrounding possible cracks.

2.3.1 Governing equations

The strong form of the momentum equation for elasto dynamics is given by:

Vic+b=pii inQ, (2.23)

where p is the mass density, ¢ is the stress vector, b is the vector of body forces per unit
volume, and € is the domain of the model (see Figure 2.3). The definitions of V, &, b,
and # is listed below together with the stress - strain relationships and the strain -

displacement relationships for the case of small displacement and plane stress as

_ma_ -
ox
v=lo 2 N v o b f dii=| " d | 2.24
= g,a~ g |ZVY, 0= 0|, mfy,anum“y a ,- (2.24)
3 2 *y %o
3 o
v 0 {1-v) v 0
E E
oc=Dg, D= S|y 1 o ———a| ¥ {1-v} 0 (2.25)
[—v { {(L+v)Y(1-2v) |2y
00 — 0 0
2 4 2
Plane stress Planc strin

E is the Young's modulus and v is the Poisson's ratio.
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The boundary- and initial- conditions are given by:

u=i onT,, (2.26)
cn=1 onl,, (2.27)
u(x, M =u,(x) forxeQ, (2.28)
u(x,0) =a,(x) forxe Q. (2:29)

I is the prescribed displacement boundary. I, is the prescribed traction boundary and

u
T are the tractions. The weak form of the momentum equation and the traction

boundary condition is given by:

S{p&lTiiciQ + :{ 3e'odQ = [Sutdl, + [Su’bdQ (2.30)

T, Q

where & indicate that the following variable is 2 variation.

Figure 2.3:  General 2D model.
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2.3.2 Discrete equations

The discrete equations are obtained from the weak form Eg. (2.30) by inserting the

displacement approximation (2.20), and its variation, given by:

u' (x, 1) =¥ N (x, )y, (1) = TN (x,t)[u’d(t)}, forxe Q. (2.31)
1 1 4l
Su® (x,1) = ¥ N (x, )8u, (1) = ¥ N9 (x,1) Ou, () . forxe Q. (2.32)
[ H Suyi(t)

| ONER (%, 1)

At L) 0

ox
EFG
Se=8Vu=| 0 IN XD 50 () (2.33)
dy

N (x,t) AN (x,1)

| oy ax |

For arbitrary displacement variation the weak form gives the equations of motion
Mii+Ku=F (2.34)
The matrix elements are obtained from

My =3 [PNFONSAR, My, =0 @33)
K, = [B,DB,dQ, (2.36)

F, = [N/l + [N[™bdQ, (2.37)
Q

I
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B; in Eq. (2.36) is defined by

N0
B,=| 0 NiTL (2.38)

TFG EFG
N Ly N Lx

In this study the mass matrix in Eq.(2.34) is diagonalized by the row sum technique.
(The modification of the shape functions in dynamic fracture problems are illustrated in
Section 2.5.) Possible modification of the mass matrix for time dependence is neglected

in the present work.

2.3.3 Numerical integration

In the EFG method, numerical integration of the matrices in the equations of motion is
performed by using a background mesh ot cell structure, without correspondence (o
their support boundaries (see Figure 2.4). A source of inaccuracy in the EFG method is
that the background cells do not align with the boundary of influence domain of the
. shape functions or their intersections. This can be remedicd by using the tensor product
weight function with equally spaced nodes or modification of the integration cell
domain with the bonding box technique for rectangular domains (see Dolbow (1998)).
For circular support the construction of integration cells with the above properties is
more difficult. The misalighment between the integration boundaries and the support
boundaries will then affect the accuracy and the rate of convergence of the EFG
method. If regular mesh or integration cell modification is not possible or convenient,
higher order Gauss quadrature may be also combined with refinement of the integration
cells is required to maintain the desired level of accuracy. This leads, however, to a
considerable increase in computation time. Detailed information and examples on this

topic is found in Dolbow (1998).
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Outer limit onthe domain of influence for node I,
with circular weight function.

Background integration cell,
coincident corners with the nodes.

. SRR Y treonggere iz g ° .
E :4__,-—-’Support boundary. ) ) !
. hn R | . . O ®

anverraas

® *
Nodel q
L2re
. » ® ) L] € ®
. U S A S SO .

® EFG node. dma=2.0 Outer limit on the domain of influence for node I,

with tensor product weight function.

Figure 2.4:  Integration cell and support boundaries for tensor product weight
function with equally spaced nodes and radial weight function,

2.4 Time discretisation - explicit integration.

The time discretization is based on the Newmark family algorithm, for the solution of
the equations of meotion. Displacements and velocities at successive discrete times, t,

are found respectively from

2 At2

u,,, =u, +At +é§—(1—52)ﬁn +——2——62ijn+} (2.39)

and

ﬂn+l = l:"n +At(1 —ﬁl)i’in +At61un+l (2'40)

The time step is denoted At, and thus t,=nAt,
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In the following derivation P=0, this is corresponding to the explicit integration since
M is a diagonal matrix. J; is chosen to be 0.99 for all analyses performed in this thesis,
except when the influence on the result of varying the parameter from 0.5
{corresponding to the well known central difference algorithm) to 0.99 is investigated.
0.99 is adopted because it introduces artificial algorithm damping of high frequencies.
The high frequencies are introduced by the discretization process of the semi discrete
structural equations.

The expressions for displacements and velocities, together with the equations of

motion satisfied at the end of time step {,,

Mi,, +Ku,, =F, (2.41)

n+l -+

altows the two unknowns @, and i, to be determined {since by using P,=0, u ,,is

n+ ]

already known). First it is convenient to solve for ii ,, by inserting Equation (2.39) into

n+i

Equation (2.41}, to get

" - . AP
U, =M7F  ~Klu +A0 +~—2~u“ (2.42)

, Further, 1, can be obtained by inserting Equation (2.42} into Equation(2.40), to obtain

n+l

the expression

n+l

2
W, =, + At - B )ii, +AEBEM‘|:FM wK[un + Atd, +~%-ﬁnﬂ (2.43)

The above algorithm is repeated for each time increment of the total time range. To
ensure that this explicit Newmark algorithm does not depart from the true solution, the
stability of the algorithm must be considered. The critical timne increment, At is given
by the Courant condition: At.; =h/c, where h is set to the minimuam distance between
nodes (FE or EFG) and c is the dilatational wave speed in the material. The above
critical time increment is conservative for the EFG method (Belytshko, Organ, and
Krongauz (1995)).
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2.5 Model combining finite elements and element free Galerkin
domains

As mention in the introduction, the EFG method offers considerable advantages over
the FE method for many problems. This is particularly true for problems with moving
discontinuities, such as in the case of crack propagation. On the other hand the EFG
method is today more computer demanding than the FE method when comparing
analysis of the same continues probiems with both methods. It may then be beneficiat to
use the EFG method in subdomains where that method is favorable compared to the FE
method, but use the FE method in the remainder of the domain. By this separation of the
local domain into an "EFG"- and a "FE"- domain, one can efficiently analyze moving
discontinuities that was almost impossible or very difficult by using the finite clement
method. Another advantage of the domain partitioning is that the essential boundary
conditions can be imposed in a FE domain at the boundaries (without any extra effort,

as would be the case with the BFG method).

2.5.1 Shape functions

The coupling methodology between the EFG method and the FE method presented in
this section has been published by Belytshko, Organ, and Krongauz (1995). The thesis
by Organ (1996) also includes a detailed description of the coupling procedure. The
coupling is performed in an interface domain by interface elements (see Figure 2.5). In
these interface elements, a hybrid displacement approximation is defined that satisfies

displacement continuity across the interface boundaries.
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Figure 2.5:  Coupling between EFG-domain and FE-domain by interface elements.

Figure 2.5 illustrates the coupling procedure, with the transition region between the
EFG- and the FE-domain. In the EFG-domain, Q. the displacement at a point is

approximated according to Eq. (2.20)
N .
U (%0 = ;Z N, Ou (L), forxe Qp. (2.44)
=]

In the FE-domain, Qg , the displacement at a point is approximated by the finite

element interpolation

up (X,8) = z NFEE), MO, (1),  for xe Qfp. (2.45)

This equation is employed in each finite element subdomain, Qf;. Nen is the number of

element nodes, and Nfﬁ (E(x),m(x)) is the standard bilinear shape function for a 4-pode

quadrilateral element given by:

NP (0, M(x) :%(H&.&)(Hnm), (2.46)
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where &(x) and 1(x) are the standard mapping function from the physical domain to the

En reference domain. In the interface domain, £, the displacement at a point is

approximated by the hybrid displacement formulation:

(%, 1) = = R(O] u i (%, 1)+ R(X)ug (%, 0), (2.47)

where R(x) is a ramp function. It is defined using the sum of the finite element shape
functions on the EFG boundary. The ramp function varies linearly along the interface

element boundaries, and is given by:

R(x)= 3 Ny(x). (2.48)

%€l g

Note that at the boundarics, I'yy; and [y, the ramp function Eq. (2.48), reduces to |
and O respectively. This ensures that the displacement approximations on these
boundaries reduces to  up,(x,1) and ul(x,t) respectively. Equation (2.47) can be
rewritten with a standard FE notation. The hybrid shape function is multiplied by the

nodal parameters, and the EFG and the FE displacement approximations from Eq.

(2.44) and Eq. (2.45) are substituted into Bq.(2.47} 10 get

(%) ={1-R(x)] TZCT NIF G000, m(x))u, (0 + R(X)gji NI (x0u, (1)

N (2.49)
=3 NI (x)u,(t) forxe Q.
=1
The interface shape functions N|"(x) are given by
N (x) = [1-RE)NFE®), NN+ RENT (x), for xe QF,, (2.50)
‘ R (x)NFC(x) for x¢ °,.

The first expression in Eq. (2.50) gives the interface shape function for the interface

element nodes, and the second expression gives the interface shape function for the
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nodes outside the interface element and inside the EFG domain. Note that the EFG
shape function contribution to the interface shape function expression is not time
dependent. This is because focal discontinuities in the interface domain are not allowed
since the location of the domain is arbitrary. The shape function material derivatives

are given by:

NPy = d RN #[I-RINGT R NI+ RN for xe O, 2.51)
t R NFF¢ + RNUO for x & Qi

where

Ri= 5 N, (2.52)

*€lpg

The derivative of the interface shape function (2.51) is discontinuous across 'y, and
Fre . since R contributes to the derivative of the interface shape function. To satisfy

continuous first order derivatives across Ty, and [, a quadratic ramp function given

by

R 0 (%) =3R%(x) ~ 2R*(x), (2.53)
may be adopted. By inserting Ryaa for R in Eq. (2.50), and with R; replaced by

R s () = (R(X) = R*(X))6R (%), (2.54)

the first order derivative of the hybrid displacement functions across boundaries Iy,
and [ are satisfied. The interface shape functions depend on which nodes are

included for the EFG approximation in Q.
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A compact form of the displacement approximation for the total domain Q, can be
obtained by a combination of Equations (2.44), (2.45) and (2.49). The compact

displacement approximation will then be:
n NN
wx,0=3 Nt (), forxell, (2.55)
1=l

where

NI (x) forxe Q.
N(x,0)={N"(x,t)  forxe Q. (2.56)
N7 (x) forxe Q

The summation limit in Eq. (2.55), s NN =N for the EFG domain, and the interface
domain, O, and NN=N,, for the FE domain. The compact form of the displacement
approximation, Eq. (2.55), inserted in the weighted residual {weak form of the
momenium equation, Eq. (2.30)} results in the set of discrete equations describing the

combined behaviour of the three domains similarly as for Equations (2.31) to (2.38).

2.6 Discontinuous approximation by the visibility criterion

In this Section a method to handle discontinuities such as cracks, cavities and other non-
convex boundaries is treated. The method is based on the visibility criterion, first
introduced by Organ, Flemming, Terry and Belytschko (1996). The visibility criterion is
a simple approach, more sophisticated methods such as the diffraction method and the
transparency method are shown in Organ, Flemming, Terry and Belytschko (1996},

Organ (1996), and Flemming (1997),
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2.6.1 The Visibility Criterion

The visibility criterion is used to define the domain of influence in the vicinity of
cavities, cracks and other non-convex domains. In the visibility criterion approach, the
point x is within the domain of influence of node x if x is within the region where the
weight function w( x-x)>0. The point x is visible to an observer at node 1. These

conditions can be defined as follows:

Q, :{x{xe Q, wix, —x)> 0}, QT'S ={x S

AT, =9}, (2.57)

X%,

where S_, is the set of all points on the straight line from x o X and I’ is the

%
complete boundary of the total domain, including any interior surfaces (corresponding
to cavities and crack edges in this study). The domain of influence Q' is then defined

by the intersection expression
Q=0 NQ, (2.58)

The effect of this definition can be seen in Figure 2.6, For a rectangular cavity, the
" domain of influence is truncated by the ray from the node which just grazes the
rectangular cavity (the corners in this case).

The domain of influence @™ is shown by grey dashed lines. Consequently, the weight
function is discontinuous along the lines AB, AC and CD in Figure 2.6. Similar domatn
visualization is included for a circular cavity. For a crack, the domain of influence Q™
is illustrated by grey dashed lines, and with discontinuities along the lines AB and BC
in Figure 2.6. The discontinuous weight functions for these examples are illustrated in
Figure 2.7, Figure 2.8 and Figure 2.9 respectively. The displacement approximation ¢an
then be found from the same procedure as described in Section 2.1.2, by using the

domain of influence as given by Eq. (2.58}.
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B!:
Rectangular cavity Credlareavity — *,
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Rectangular doroain of
influence for node I, rodified o
with the vishility method Rectangular domainof
near a reclangular cevity. Dy -+-oo+ influence for node I, modified
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Figure 2.6:  Domain of influence near an interior rectangular and circular cavity, and
a crack tip.

¢ o 0 5 10

Figure 2.7:  Illustration of a discontinuous 3D weight function in the case of a
rectangular cavity, and with a contour plot to the right,



26 Chapter 2 The Element Free Gaterkin method

10

Figure 2.8:  Illustration of a discontinuous 3D weight function in the case of a circular
cavity, and with a contour plot to the right.

10

o 5 10

Figure 2.9:  Tlustration of a discontinuous 3D weight function in the vicinity of crack
tip, and with a contour plot to the right.

2.7 Enriched EFG basis for crack tip fields

In fracture mechanics simulations it is necessary with high accuracy in the calculations
of the crack tip fields in order to obtain reliable results in the estimates of the stress
intensity factors, Ky and Ky. For a two dimensional problem intrinsic enrichment is one
approach to obtain this. Enrichment functions are added to the EFG basis in a sub-
domain around the crack tip. The enriched terms in the basis should reflect the
behaviour of the expected crack tip field fully or partly, to capture the main behaviour.
One advantage of the method is that no extra nodes are needed.

The method is presented in Sections 2.7.1 and 2.7.2.
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2.7.1 Intrinsic radial basis enrichment for crack tip fields

in the EFG method the approximation can be improved by expanding the basis with

functions related to the actual field of interest. In fracture mechanics the basis can be

extended with the radial term «/; , which evolves from the asymptotic crack tip field as
shown in Appendix A. Further improvement can be performed by including more terms
in the basis to represent the asymptotic crack tip field fully (see Flemming, Chu, Moran,
and Belytshko (1997)).

In the following the intrinsic radial enrichment of the basis is adopted. The

expression of the basis is then;
p =[1,x,y,\/;], {m =4, enriched) (2.59)

where 1 is the radial distance from the crack tip to the calculating point (x,y), see Figure
2.10. The advantage of the radial enriched basis is that the basis is only extended with
one term in comparison with the fully enriched basis extended with 4 terms, This means
a significant saving of computer time related to the calculation of the inverse of matrix
A(x) of Eq.(2.18).

® (X.y)

crack
—_——ee—ee—

r:«}(xz +y2)

Figure 2.10: Description of crack tip variables.
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2.7.2 Coupling of radially enriched and linear approximations

An enriched basis is not required for the entire domain. The crack tip singularity field is
a small area. It would be favorable to have an enriched approximation in this area and
the linear approximation elsewhere. By a coupling procedure, like the coupling between
FE and EFG in Section 2.5, it is possible to enrich the approximation in the area close to
the crack tip.

The method described in this section couples linearly the enriched
approximation with the linear approximation over a transition area. The displacement

approximation in the transition area is defined as:

u" (%) = Ru™ (x) + (1~ R)u"(x), (2.60)
where u*(x) is the enriched displacement approximation and u™(x) is the linear

displacement approximation. R is a ramp function. Two different ramp functions, a

linear one and a quintic one are defined by

_{ 1-& linear ramp 261)

[—108° +158° —6&°  quintic ramp

Here &=(r-1)/(r, ~1}. R is 1.0 on the enriched boundary (r=r|) and equal to zero on

the linear boundary (r=1,), see Figure 2.11. The coupled displacement approximation in
the transition region, can be defined as a shape function interpolation between nodal

parameters as in the standard FE notation

u'(x) =Y Ny, (2.62)
1=t
where

N, =RN" +(1-R)N}" (2.63)
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N;™ is the shape function based on the enriched basis, Eq. (2.59) and N|" is the shape

function based on the linear basis, Eq. (2.2). This method will sustain compatibility in
displacernents, but only the quintic ramp function ensures compatibility in strains. The
size of the enriched domain (r)) is rather arbitrary. It can actually be zero, but the outer
radius, ra, must be outside the singularity dominated zone around the crack tip
{Flemming (1997}).

A Xy
@ ® ® L L 4 L J ®
______ Linear
e ® e o, ® ® °
N
l" \\\‘
f’f B - Ay
4 "‘ \\\ N
. N
® L H o ] e ‘e . ®
;
Crack ! ! —_/il_,;‘- ) %X
SPTereee — . | »
i '.‘ CT ! !
| \ Enriched ~T

® ®. L@ ¢, i /e ® ®

\ . e b

" S . ;

RN Transition ¢

® ® L ® .- L] ® e

Figure 2.11:  Illustration of the coupling between linear and radial enriched bases.
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Chapter 3 Linear dynamic fracture mechanics

3.1 Introduction

It is well known in the linear elastic fracture mechanics theory (isotropic linear elastic

material behaviour), that the near tip siress fields for in plane loading is dominated by

the term 1/+/r . The field of every fracture mode is known, and it is characterized by its
respective stress intensity factors. The influence on the field from the crack propagating
velocity is established in Freund (1998). Thus, in linear elastic dynamic fracture
problems, the stress fields near the crack tip reduces Lo calculation of the stress intensity
factors, K;, Ky, and Ky in the general 3D domain. In a crack propagating simulation, a
simple crack propagation criterion could be dependent of the stress intensity factors and
the residence of the material only. Then it is important to establish a robust method o
calculate the stress intensity factors, to obtain a reliable solution of the problem.

This chapter deals with how to handle numerical calculation of the fracture
parameters in dynamic crack propagation problems, and how to numerically soive the
cracking process. Oniy 2D problems are studied. The derivation considers only the
opening mode, denoted mode I, and the shearing mode, denoted made IT (see Figure

3.1). The tearing mode, denoted mode I, is naturally of no interest in a 2D problem.

Mode | Mode ||

7N
A\ g

Figure 3.1:  Iliustration of the crack opening mode I, and the shearing mode 1.
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in Sections 3.2 to 3.7 of a procedure for numerical calculation of the stress
intensity factors K; and Ky in an elastic dynamic crack propagation problem is

established. The method is based on the path independent energy release rate G . The

classic contour integral is transformed to a domain integral to simplify the numerical
calculation in the EFG context. Mixed mode stress intensity factors are derived by using
an auxiliary field. With this technique, separate expressions of the stress intensity
factors are obtained.

Section 3.8 discusses how the dynamic fracture is handled numerically in the EFG
method. This includes the procedure to calculate stress intensity factors, the crack
propagation criterion and the implementation of the variable crack propagation velocity.
The asymptotic crack tip field and the auxiliary field terms in the interaction integral are

listed in Appendix A.

3.2 General mechanical energy balance on integral form

The derivation of the general mechanical energy balance in integral form starts with the

equation of motion {neglecting the body forces):

o, =pi, 3.1)

Taking the inner product with the material velocity, (,, gives:

G, U = puy, (3.2)

Rewriting the left hand side of Eq. (3.2) by using (O40;) 5 =0y 0, + 04, ;. gives;

(o,0,); = 0,0, +plig, (3.3)
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The first term on the right hand side is recognized as the time derivative of the stress

work density

o, =W (3.4)

i

as

W= [o,u, dt (3.5)

i

The second term on the right hand side can be identified as the time derivative of the

kinetic energy density
pit, =L (3.6)

where
1 ..
L:Epuiui (3.7

Inserting Eq. (3.6) and Eq. (3.4) into Eq. (3.3) gives:

(6.4), =W=+L (3.8)

ijoil.3
Equation (3.8) states the mechanical energy balance on differential form. The

mechanical energy balance for a general 3D volume can be obtained by integrating Eg.

(3.8) to get

[(o,i) AV = [(W+L)V (3.9)
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Rewriting Eq. (3.9} by applying the divergence theorem to the left hand side and the
Reynoids transport theorem to the right hand side, the integral form of the mechanical

energy balance results as

J oim dA zgu{ {(W+L)V~ [ (W+L)v,mdA (3.10)
v av

av

3.3 Mechanical energy balance of a domain surrounding a crack tip

The general integral form of the mechanical energy balance was established in Section
3.2. In this section the mechanical energy balance for the special case with a crack in
two dimensions is developed. A local coordinate system is defined, where the origin is
located at the crack tip with the local x, axis oriented in the direction of the crack
growth aligned with the crack faces. The local coordinate system is moving with the

crack tip, see Figure 3.2.

Figure 3.2:  Propagating crack tip with the velocity v. The local coordinate system,
the different contours, the domain A, and the normal vectors are
llustrated.
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For this configuration, the integral form of the mechanical energy balance, Eq. (3.10),

becomes
IGS.Gimde=£§(W+L)dA—— [ (W+L)v,mdS 3B.1D
an o de 4 an

where dA=C,uC,uC_uUT'. For simplification of Eq. (3.11), the following

assumptions are made:

¢ Straight crack faces within the integration domain A.

Traction free crack faces = o,m, =0 onC, UC_.
¢ Cpisstationary = v, =0 on C,.

* ' moves with the crack tip = v,=vand v,=0 onT (see 3.2).

With these assumptions the mechanical energy balance, Bq. (3.11), for a 2D domain

surrounding a crack tip can be expressed as

=0 = aym;=0 on C,uC.
e

[o,0mdS+ [camdS+ | o,0,mdS -4 [(W+L)dA
G r ! coc, T dt an

: . (3.12)
=» my=0 (straight crack fages) v, = v=vey onl =0 = v,=0nC,
~ ] (W+L)yv,m,dS~[(W+L)v,mdS— [(W+L)v,mdS
C,uC, r Ca

The mechanical energy balance for the particular problem illustrated in Figure 3.2, is

found by rewriting Eq. (3.12) in th form

ratg of change of tot, mech, energy
rate of Iraction work - N

[ o,0,mdS = 4 [ (W+L)dA
Cy dt aa (313)

enespy flux throuph crack faces energy flax through I

T | (W+L)vim2dS‘w£((W+L)v.‘ml+G.U.ﬁimj)dS

C,uC,
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3.4 Crack tip energy flux

The tast term in Eq. {3.13), is the energy flux through I'. By use of the relation m=-n on

[, the crack tip energy flux integral is:

F() = [((W+L)vd, +0,0,)n,dS (3.14)
r

g

The integral in Eq. (3.14) is not necessarily independent of the integration path I, but in
the limit as I"'— 0 and shrinks towards the crack tip, the flux is independent of the

shape of I'. Then the definition of the crack tip energy flux is

F(D)=lim J((W +L)v8,; + 0,0, )n,dS (3.15)
)

iji

3.5 Energy release rate

Griffith defined G (energy release rate) which is the amount of energy, per unit fength
] along a crack edge, that is supplied by the elastic energy in the body and by the loading
system creating the new fracture surface. Irwin obtained the important relationship
between the energy release rate and the stress intensity factor. The energy release rate is

given by:

drI
G (3.16)

where ¢ is the rate of change in the potential energy, [], with the crack area, a. For the
preceding case the energy release rate can be expressed by the crack propagation, vdt,
during the infinitesimal time dt and the energy flux 7 (in which is the change of

potential energy). This gives the expression of the energy release rate as:
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Fdt F
= e (3.17)
vdt v

By inserting Bq. (3.15) into Eq. (3.17), the general expression for the energy release rate
can be obtained. The displacement rate expressed by the crack velocity, v, follows from

time differentiation of the displacement in the x;-direction

. _du du
= -V

S m—_——y—" 3.18
BT T, C.18)

With steady state conditions, the first term in Eq. (3.18) is zerc. For non steady state
conditions the second term in Eq. (3.18) will still be dominating because of the large
displacement gradients in the crack tip area. Then the material time derivative of the

displacement can be simplified as

Il = -Vt = vy, (3.19)

Equation (3.19) is inserted into Eq. (3.15) to give an expression of the crack tip energy

flux as:

7(I) = lim lj((w+L)v6,j ~o,vu;, )n,dS (3.20)

With Eq. (3.20) inserted into Eg. (3.17) the dynamic energy release rate becomes

G(T)=lim [{(W+L)3,, ~o,u,, )n,dS (3.21)

05
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3.6 Energy release rate domain integral

The following derivation is performed with the aim of establishing an expression for the
energy release rate that is simple to calculate numerically. The derivation starts with the

dynamic energy release rate given by Eq. (3.21), and the definition of a quantity
H,=(W+L)3;—ou, (3.22)

to simplify successive expressions. The dynamic energy release rate can now be

rewritien as:

Gy= lrl-r-f}J llH,jnde (3.23)

Further, an integral of a product of H,n; and a function q is introduced. Integration

over the domain boundary, dA, is related to the domain integration by using the

divergence theorem with the result

A

[ H,qujds = }’(Hle.j + Hlj,jq)dA (3.24
A

Then the contour JA is separated into (see Figure 3.2) dA =C, L C, wC_uT to get:

a;{\H,qude=r[Huqmde+ [ Hqumde+CjH,qude

Tyl

(3.25)
= j(Huqd' +Hlj,jq)dA
A

Next, the relationship m=-n on the contour I is used. The expression (3.25) can now be
rewritten to give the left hand side as the contour integral on I’

[HqndS= | H,qude-%jH,iqmde—— ((H,q,+H,;q)dA (3.26)
A

£ couC. Cy
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For the case g=!I on I, the relationship between Eq. (3.26) and Eq. (3.23) is:

as I"—0 q=lon

EﬂiﬂmﬂéH,ﬂmdS = lriﬂgle;inde = %jfg!Hunde =G (3.27)

where q is defined as follows:

1.0 onl’
q=4<0 onC, (3.28)

arbitrary elsewhere

With this definition of g, the contour integral on Cp in Eq. (3.26) will disappear. The

resulting form of the dynamic energy release rate will then be

ngﬁng j'H,jqnde: | Hiqude—j(H,jq‘jJrHij‘jq)ciA (3.29)
- c,uC, A

where A is the area enclosed by the contour Cy, and I" is shrinked to the crack tip. The

expressions Hjj and H,;;are given by:

H, =(W+L)§,~o,u,, {(3.30)
and

Hj =W, +L,) -0, 1, ~ouu,,

=Gi}5ij‘;"§‘pﬁiﬁi,1“ puu,; - Giiiia =pug, —plu,, (3.31)
[ —— [

Sinee 0, ;=py  Since o=y,

If Eq. {3.30) and Eq. (3.31) are inserted into Eq. (3.29), the dynamic energy release rate

takes the form:

G= | ({(W+L)3, -o,u, )qmde

C,uC.

- (3.32)
— (W +L)8,, ~o,u,, Jo dA - [, ~piiy;, )gdA
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By assuming straight crack faces, the term (W+I.) will vanish since m,=0 on C, uC_,
and it is assumed that the crack faces are traction free such that o, =0 on C, UC_.

Thus the contour integral disappears, and the dynamic energy release rate can finally be

expressed as:

G= ‘*J((W+L)5;3“Gg“i,1 )q,jdA" [Pu,u;, —piiu;, JgdA (3.33)

3.7 Mixed mode stress intensity factors

By inserting the stress component formulas for the asymptotic crack tip field (Appendix
A} into the energy release rate given by Eq. (3.21), the energy release rate is expressed
in terms of the stress intensity factors K; and Ky K is the stress intensity factor related
to the in plane opening mode of the crack, and K is the stress intensity factor related to
the in plane shearing mode of the crack. For the special case of plane stress condition in

a two-dimensional domain, the energy release rate is given by (Freund 1998):
1-v 2 2
g=—é—(A,(v)K[ +A, (MK} ) (3.34)

The quantities Ay and Ay are defined by

Vo, Voo,
A (V)= AL (V) =i — 3.35
(%) (1-v)elD (V) (1-v)e!D -39
where
Ve v?
o, = }]mg, o, = I—E?- (3.36)
and

D(v) =4a,0, ~ 1+ )’ (3.37)
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Expression (3.34) is a generalization of the Irwin relationship, which relates the stress
intensity factors and the energy release rate under equilibrium conditions in an elastic
material.

In some cases it is convenient to have separate expressions for each of the stress
intensity factors K; and K. These relationships are developed by introduction of an

auxiliary stress field with stress intensity factors Ky and K For mode I, the

resulting stress intensity factor is then K, =K +K and for mode 1I

Taux

Ky=K, +K,,, . Inserting into Eq. (3.34) with Kjp,,,=0 gives:

Hawx

I-v
t(all):ll = _E“(Al(Kl +K )2 '*‘A;le{)
v

E

Taax

= (A|K§+AHK3}+A[K’ +2A KK, ) (3.38)

Taux

1-v 1-v l-v
Z?(A|K{2 -+ A!‘K?})'*'?(A[Kz )+_I;—(2AiKiKl:mx)

faux

G Gaun, Gint

The superindex (1)} for the total dynamic energy release rate is associated with the

iy

int

auxiliary field of mode 1. From Eq. (3.38) the relations between K; and can directly

be identified as:
2 o
K, =(~—-E—2J-g-— (3.39)

when K. is chosen equal to 1.0.

The same approach will give the relationship between Ky and G2 by introducing

Krax=0 og Kix=1 into Eq. (3.34) gives:

E g.{zl
K, = i 3.40
. (1—\;2 ] 2A, (3.40)

The superscript {2) is related to the auxiliary field from mode II.
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3.8 Energy release rate expressions for numerical calculations

To be able to calculate the stress intensity factors Eq. (3.39) and Eq. (3.40), exXpressions

D that are convenient for numerical calculations have to be derived. The

int

of g\ and G
derivations follow the same pattern that was described in Section 3.6. The quantities of
the dynamic energy release expression, Eq. (3.21), are inserted with the auxiliary parts.
In the following, the super index notation { )“) indicates that the auxiliary field is
from mode I The derivation starts with the mode I aunxiliary field to obtain the

interaction energy release rate expression. An auxiliary part is added to every term in

Eq. (3.21). The stress work density, W, is inserted as:

w:%cﬁj (341)

in Eq. (3.21). Auxiliary parts are added to the stress and strain fields as:

b
oy =0+ oy (3.42)

e =g, +ey (3.43)

With these expressions inserted into Eq. (3.41) the total stress work density is divided

into W, the interaction part, W™ and the auxiliary part, W*":

1
oml {3} 4}
W _—2—(0ij+0'i3. Hey +ey)
1 i | t
=5 O+ o.£l +0e; +o e (3.44)

i i 1] (1} 1 (N
=-£Gij8i}+—2—(0ij83j +0j eij)+~2—<5i} &
w P i
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The next term of Eq. (3.21) is the kinetic energy density
I ..
LmEpuiu.l (3.45)

Adding an auxiliary part to i, , gives:
0, =1, +u"™ (3.46)

With Eq. (3.406) inserted into Eq. (3.45), the total kinetic energy density is divided into

L, an interaction part , L™, and an auxiliary part L™

L™ =2 pa, + )i, + ")
=%p(aiui+ﬁ§”ai+uia§”+u§”u§”} (3.47)

- (D

T | e b g
=—po.u, +—p(a; 0. + 0.8 ) +—pu'a;
7 PO+ U0, +0,67) - piy Ty

[ — PR ;
L gmi o

Finally, auxiliary fields are added to the last term in Eq. (3.21), to get:

. n )
(Gijui.l )mm, =(0; + 0y M, +uy)

_ i . h (3.48)
= Gyl + 00 +Ga, + G
ordemnary interaction auxilary

The expressions of Eq. (3.44), Eq. (3.47) and Eq. (3.48) are then inserted into
Eq. (3.21).

The interaction part of the dynamic energy release rate integral is then obtained as:

o =lim [((W™ +L")8,, — (o0 +61"u, ) }n dS
r (3.49)

= ﬁ_‘}{}][((cijsfjl) + p&i{li{l))alj - (O'ijug.lz) +G§jnui‘l )) n;ds
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Hered, is the Cronecker delta function. Linear elastic material behaviour has been

assumed in the preceding derivation.

For the mode II auxiliary field the interaction part of the dynamic energy release

rate integral analogously becomes

H {2) 5 o1yt 2
o =lim lj((oijsﬁ +pun?)8, — (o,u? + oy, ) )n dS (3.50)

it 3j

Since the aim of this derivation is to obtain expressions for convenient numerical
calculations Eq. (3.49) and Eq. (3.50) are transformed into sub-domain integrals. The

same procedure as described in Section 3.5 is used for the following derivation, starting

with the expression for G’

int

in Eq. (3.49). For the purpose of clarity define

n [Ny I 1
f,= {G‘;jsi(j + P, ))Slj _(Gijué.l] +Gi{j ]Us.l} (3.51)

Then consider the integration of the product of fj the corresponding component, m;, of
an outward normal vector and an arbitrary function g over the contour dA shown in

" Figure 3.2

afi fqm,ds :!qum dS +C L{c fiqm,ds +C[ f.qm dS

3.52
= J(fa,; +1;,0)dA o
A

The divergence theorem has been used to transform the contour integral into a domain
integral. Then introduce q=0 on Cp, m=-n (Figure 3.2) and g=1 on I'. In the limit as

I' = 0 Eqg. (3.52) can be rewritten as:

Eﬁ[{fjlljds=g-(1} = jC fgm dS— A{ (fq,+f, @dA (3.53)

int
C,ul
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With the expression for f; from Eq. (3.51), f; and {j; are inserted into Eq. (3.53) to

give:

W= | (o] +p0,u") 8, ~ (o], +G, u“’) qm ds

int c i ijil
Eh =0 = my=0 pd &, LC_ =0 notraction on C, UC_
) oo (1) [
- [{(oe +pa i3, ~ (0w, + oyul))a 0A (3.54)

(H 1 (|) [§)]
—j(cuje +0,85 0 +pu, i +pu )8, gdA

1 (6] 1}
+j(ofjju,1+c u,,; 0 U Fogul)gdA

The expression (3.54) is simplified by introducing the momentum equation, the
condition m;=0 on the crack faces, and the assumption of no traction forces on the crack

faces. Accordingly Eq. (3.54) can be rewritten as:

nt ijong

Gl :ﬂj((cijaﬁ']ﬁwpu a8, ~ (o u, +o,ul))q dA

- (o, ,e‘” + GUES: +pi, 08 + o, 0" )gd A (3.55)
A

uj) +6,800)qdA

+ [(piil"u,, +0i’e;, +piiu oy
A

Since linear clastic material properties are assumed, further simplification can be

i )

obtained from the following relationshipso{’e,, = Cygie,, = (Cy8,) 84 = 6, &

The resulting domain integral of the interaction energy release rate, Go. , associated with

int ?

the mode 1 auxiliary field is then

0 = [(~(o,e) +pu,aiMyg, + (0 'y, +o, uihg ) dA

int il

>

(3.56)
I(u u,, +ii, u—qn 0 - (”)pqu

il [N e | xl
A
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(2)

A similar derivation gives the interaction energy release rate, G, , associated with the

mode I{ auxiliary field:

glﬁ) = I(_(Gijegjl) +puiu§2) M, + (GEJ‘Z)UL; +Giju§‘21))q,j)dA
" (3.57)
+ (6, +iu®
A

-, 0 3,8 )pqgdA

Lt

The stress intensity factors K; and Ky, can now readily be calculated from Eq. (3.39)
and {3.40).

3.9 Numerical implementation of the linear elastic dynamic fracture
criterion

3.9.1 The maximum circumferential stress criterion

_ To decide if a crack would propagate, and in what direction, the maximum
circumferential stress criterion is adopted. It states that the growth direction, ©_, from
the crack tip is in the direction of the maximum circumferential stress, Gy . Under

general mixed mode loading, the near-tip circumferential stress and shear stress is given

as

Gp| K, [3cos(8/2)+cos(38/2) N K, [—3sin(8/2)—3sin(38/2)
sin(8/ 2)+sin{36/2) 427 |cos(0/2) +3cos(30/2)

= 3.58
o } 99

Grﬂ

Here r is the radial distance from the crack tip to the evaluation point and 8 is the angle
between the x;-axis and the line from the crack tip to the evaluation point (see Figure
3.3). Krand Ky are the stress intensity factors for crack modes I and II respectively. The

circumferential stress in the direction of the crack propagation is a principal stress,
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As the shear stress is then equal to zero, it follows that the growth direction will be
g = ?.arctan?j:(l(i TK (K, /K, Y +8) (3.59)

When the maximum hoop stress, Gy, nOrmal to the critical growth direction, 6,
exceeds the critical stress for the material, o©_, it is stated that the crack begins to
propagate. The critical stress, G, can be obtained from pure mode I experiments on the

material under considerations, With K=Ky, Ky=0 and 6=0 inserted in Eq. (3.58) the

relationship between material strength and the mode [ stress intensity factor results in

= (3.60)

As stated above the crack starts propagating when:

Gﬂﬁmnx z Gc (36 1 )

Now inserting for O, =0(0,) and o, from Eq. (3.60) into Eq. (3.61) the

propagation condition becomes

K, 3K, .
Copmne = —7==(3c0s(8,/2)+cos(38,_/2))— L (sin(B /2)+sin(30_/2))
o = o S  om .
2 Gc ﬁ
21r

This criterion is independent of the behaviour in the radial direction. The propagation

thus starts when

%(3 cos(8, /2)+cos(36, /2)) ~%"(sm(ec /2)+sin(38, /D) =K, (3.63)
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3.9.2 Numerical integration of the integrals giving the energy release rate

The development of the interaction integrals has assumed straight crack segments inside
the domain of integration. Only one crack segment can thus be inside the integration
domain. It is further supposed that the local x;-coordinate is aligned with the crack faces
(see Figure 3.3), forcing the integration domain to rotate with the crack faces as the
crack advances.

The integration domain is chosen to be rectangular, with the side lengths 2d (see
Figure 3.3). The magnitude of d is prescribed and kept constant during the numerical
simulation of the crack propagation. The crack tip coincides with the center of the

integration domain for crack segmentsa, = d. For crack segments with a, <d the crack

tip is shifted so that 95% of the crack segment is inside the integration domain (see
Figure 3.4}, In order to obtain accurate values for the interaction integrals, the
integration domain should include an area big enough to enclose the near tip dominated
field and the crack tip centered as close to the center of the integration domain as

possible. This gives restrictions on the size of a,. Experience indicates that a,>»d/2

gives reliabie results (see Organ (1996)).
Choice of location for the integration points in the numerical integration
- procedure is important with respect to obtainable accuracy. If the same inlegration
points as used for calculation of the stiffness matrix are applied to perform the
numerical integration of the interaction integrals, the results are reliable and the
integration procedure is robust and gives accurate results when compared to reference or
theoretical solutions. Inaccuracies are likely to occur if the integration peints are chosen
independently in the integration domain. One explanation of this deviation from the
correct sofution can be related to the discussion on the misalignment in the domain of
the numerical integration celis with the domain of influence of the shape functions (see
Section 2.3.3).

Figure 3.5 illustrates an advancing crack. During one time increment At the
crack propagates a line segment Atv. This is repeated until the line segment is larger
than the minimum suggested size d/2 or larger than a prescribed limit. Then the
maximum hoop stress criterion (see Section 3.7.1) is used to control the further

advancement of the propagating crack. A new crack segment starts, and if the maximum
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hoop stress criterion predicts further propagation of the crack, it will move the
incremental distance Atv in the calculated direction and with the crack propagation

speed, v.

(x4, Xq)

2 2
re x4 xd

‘.' \
-
crack Domain where the interaction

Integrals arc evaiuated.

Figure 3.3:  Integration domain for numerical integration of the interaction integrals.

Figure 3.4:  Placement of the crack tip based on the fength of the crack segment with
respect to the domain variable d.
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Figure 3.5:  The crack is modeled as a series of line segments. During each time
increment the crack is moving a distance Atv.

3.9.3 Arbitrary crack propagating velocity

When a variable propagation velocity is used in a numerical simulation, the crack
segments & (see Figure 3.4) could be larger or smaller than for a constant crack
propagation velocity. For the development of the crack the same criterion and rules as
for the constant crack propagation velocity is adopled, except that the requirement
a;>df? is relaxed.

When the crack criterion is satisfied, the crack propagation velocity is calculated by
scaling the Rayleigh surface wave speed, Cgr, by the coefficient of the difference

hetween the maximum hoop stress, Gy, . and the critical stress for the material,
O divided by the critical stress G,

— Geﬁmﬂx Hcc CR (364)
T,

c

v

The Rayleigh surface wave speed is the highest theoretical velocity of a propagating

crack.
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Inserting the hoop stress from Eq. (3.58) and the critical stress from Eq. (3.60) into Eq.

(3.64), gives and expression for the variable crack propagation velocity as

[_I% (3cos(8, / 2)+cos(38, /2)) —%ﬂ_(sin(ec /2)+sin(36, /2))] K,
v=

C 3.65
m R (3.65)

Ic

In the present study K, is supposed to be constant with respect to the crack propagation

velocity.
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Chapter 4 Brief description of the MATLAB code
and its capabilities

41 Introduction

As described in the introduction to this thesis, available codes based on the finite
element method were not suited to solve the general crack propagation simulations.
Neither were codes based on meshless methods available. Consequently one major part
of this thesis work, had to deal with development of a prototype program for dynamic
fracture mechanics analyses. The prototype computer program can simulate 2D general
crack propagation in a linearly elastic material. The code is based on MATLAB. This
choice is made to simplify the coding part, and as computational efficiency is not a
primary goal. The main structure and the main routines can easily be converted to other
languages if that will be of interest in other contexts.

Section 4.2 discusses the main capabilities of the MATLAB program for solving
2D crack propagation problems. Section 4.3 outlines the code structore with references
to Appendix B where the main subroutines are listed in more detail.

Reference is made to Dolbow and Belytshko (1998) who presented a very

simple linearly elastic static 2D calculation precedure by the EFG method.
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4.2 Description of the MATLAB code capabilities

4.2.1 Geometry modeling and mesh specification

The prototype code can handle rectangular two dimensional (2D) models. An expansion
to more general model geometries is simple, but this is not given priority in this thesis
work in order to limit the program development work. The outer boundary on the
numerical model is limited by the height D (y direction), the length Lb (x direction) and
the thickness &, of the plate (see Figure 4.1).

XB -
&ir %5 -
0.08 | xd -
nos| |—C
%2 3
DD“ - + +* - +* * + + + + + * * * L ]
* +* +* * * - * +* * * * + * +
G021 P T R S S Y S T S R S K
ol | FET— * * * * |EFG-domain |* * * * * I~ FE D
H H1 * » + « + * + * + — H
_D 92 L L * + + + +* * * * +* -+ * * +
’ + * * * - * * * * + +* + *
004k LI S I B [ L T I
006 T Interface - domain T
’D.Da B Lh “;‘-
Q1
1 i 1 I 1
c 6.05 G.1 .16 (3.2

Figure 4.1:  Illustration of the model geometry, and the variables related to it. The
black rectangular “boxes” are the FE domain, the red rectangular “boxes”
are the interface domain and the black dots represent the EFG domain.,

The whole model domain can be divided into three subdomains: the FE-domain, where
the material behaviour is described by the Finite Element method; the EFG-domain,

where the material behaviour is described by the Element Free Galerkin method and the
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interface-domain, where the material behaviour is described by a linear combination of
the FE method and the EFG method {see Section 2.5). The different domains are
bounded as illustrated in Figure 4.1. The domain boundaries are identified by the
variables x; to xs. To illustrate the possibilities with this description, some examples are
listed: to describe the whole model by the EFG method, set x3=0 and x4=Lb (Figure 4.2
A); to describe the whole model by the FE method, set x,=Lb (Figure 4.2 B); All
combinations between the two previously described alternatives are possible. Figure 4.2
C shows a model where the left part is described by the FE method and the right part is
described by the EFG method. Similarly Figare 4.2 D shows a model where the FE and
EFG are exchanged compared with Figure 4.2 C.

0.1 A EFG 01 B:FE
D'US I 2 X R RS SRS RS SR XY 23 0-05
PP 4P 3524344550044
L 348480 0000000000 01
Of 3333edddesssassasiye 1]
AR EZ RS R S R X R RS R XX R 23
1245325883 535388 2284 0.05
.05 -1
01} . ) ) . 01t ) ) ) .
0 005 01 0158 0.2 B 005 0t 045 0.2
0.1 C:FE-EFG 0.1 D : EFG-FE
D.E}E 22 LR L L XX ] D'DS tHEE L2
(2348334 L3330 004
(223 EE XX R (A XS ER AR
0 i B $333333de
s 2 Etr e FEP 4020
0.05 i 005 1399289581
01} . . ) ) 01 . ) ) )
g 005 01 015 02 0 008 0t 045 02
Figure 4.2:  Iltustration of four different methods describing the material behaviour of

the same model geometry, A: the whole mode!l described by the EFG
method. B: the whole model described by the FE method. C: the left part
of the model described by the FE method and the right part of the mode]
described by the EFG method. D: the same as C but with a reversed order
of the FE and EFG domains.
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The mesh density is given globally by xdiv and ydiv, which is the number of intervals
between nodes in x- and y- direction respectively. This results in a regular mesh. The
material behaviour is linearly elastic with the material constants: Young’s modules,
Poisson’s ratio and mass density. Plain stress or plain strain can be chosen as the 2D
model simplification. In the EFG domain the size of the domain of influence is given by

dmax (see Section 2.2.1).

4.2.2 Loading and prescribed motion

There are several altermnatives for load application and prescribed motion: distributed
load along a predefined line; this type of load can be inserted into any domain of the
model. Two example cases of uniformly distributed load are shown in Figure 4.4, where
the numerical model consists of a FE mesh and an EFG mesh. The uniformly distributed
load (step traction with intensity 1.0 in Figure 4.3) is inserted on the line between points
(Lb,-D/4) to (Lb,D/4). Figure 4.4 shows the undeformed mesh and the deformed mesh
(scaled deformations) of this numerical model. Concentrated Joads can be applied to any
point in the FE domain. The intensity of the distributed loads and the concentrated loads

' can be modeled as a mathematical function with respect to the variables t {time), x and y
{material coordinates).

Prescribed displacements, velocities and accelerations can be inserted along
predefined lines, or directly on predefined degrees of freedom in the FE domain and on
the interface boundary along the FE domain. An example where a uniform velocity field
(step velocity with intensity 1.0 in Figure 4.5) is inserted on the FE elements along the
Jine with endpoints (I.b/2-Lb/10, D/2) and (Lb/2+Lb/10, D/2) is shown in Figure 4.6.
The undeformed and deformed (scaled deformations) meshes are plotted in the upper
part of the figure, Since in general the EFG method do not satisfy the Dirac delta
criterion (see Section 2.2.2), this type of specified motion is not an option for the EFG
domain or the interface boundary nodes along the EFG domain. Nevertheless, if it is
required to apply this type of specified motion along a row on the EFG domain
boundary, the code can handle this by introducing a row with interface elements on the

actual boundary. The same example as described previously, but with part of the FE
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domain replaced with an EFG domain and the prescribed velocities on a row of
interface elements is also shown in Figure 4.6. The intensity of this type of loading can

be described mathematically as in the case of distributed loads or concentrated loads.

Step traction

1,5 s Traction

0,5

Traction [Pa)

0- 1 oy r v ; :
0 0,2 0,4 0.6 0.8 1 1,2

time [s]

Figure 4.3:  Plot of the step traction applied to the model plotted in Figure 4.4.
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Figure 4.4:  Ilustration of uniformly distributed load on FE boundary and EFG
boundary. The left hand figures show undeformed meshes and the right
hand figures the corresponding deformed meshes.
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o

05

0.5

05
THustration of applied velocities on a FE boundary and EFG (interface)

boundary. The left hand figures show undeformed meshes and the right

hand figures the corresponding deformed meshes.
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Figure 4.6:
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4.2.3 The possibilities to include cavities in the numerical model

Inside the BFG domain of the numerical model, it is possible to insert a rectangular or
circular cavity. The different cavities can be modelled as follows: each cavity domain
can overlap each other or be separate; the basic shapes are limited to rectangular or
circular; it is possible with an EFG boundary through the cavities.

The rectangular cavity is identified by the coordinates at the lower left corner
and the upper right corner. The circular cavity is identified by the coordinates of the
circle center and the radius of the circle. The code also allow crack propagation into the
boundary of the cavities and cracks can start from the cavity boundary.

Figure 4.7 illustrates four different cavities with respective shapes of a rectangle,
a circle, a typical tunnel cross section and symmetric case of a tunnel cross section. The

tunnel cavity form combines the rectangle and the circle.

05 05

Figure 4.7;  Iltustration of four different cavity shapes.
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4.2.4 Time integration of the equations of motion

The integration in time is performed with the explicit algorithm (=0, and diagonal
mass matrix), as a algorithm belonging to the Newmark families formula on

displacements and velocities (see Section 2.4)

2 2
u,, =u, +A, +A7t(1 —B,)ii, +%——ﬁzﬁn+l

and

ﬂu-\-i =ﬁn +At(IMBi)ﬁn +AtBlﬁn+i
The parameters B and B, can in general be defined by the user. The standard explicit
time integration scheme, the central difference method results with $=0. The time
increment At can be specified in the input file as a factor multiplied with the critical

time increment At,,;,, which is given from the Courant condition (see Section 2.4):

At=f, Aty 3.1)

where f,, is given in the input file. In order to obtain convergent solutions the validity

domain is limited tof, € {0,1].

4.2.5 Description of fracture mechanics input parameters, and the cracking
possibilities in the program.

When a numerical simulation of mixed mode fracture is to be performed, a predefined
crack region where the crack can propagate must be defined. The crack can propagate
from both ends of the predefined (piece vise) line. The predefined line (initial crack) can
consist a single line, or multiple lines to define the crack. The crack can develop

arbitrarily inside the predefined region within the EFG domain in the numerical model.
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In a crack propagation simulation it is necessary to calculate the stress intensity factors,
which define the evolution of the crack (see Section 3.9.1). The stress intensity factors
are calculated on the basis of results from the numerical medel in the vicinity of the
crack tip (see Section 3.8). The code includes an enhanced basis in the crack tip area to
improve the accuracy of the calculation of the stress intensity factors.

In the following, all the input parameters that are controlling the crack

propagation in a simulation are listed and explained:

X, X
* xcrack z[ : 2} is defining the model region where the crack can propagate
Yi ¥

arbitrarily. Point 1 is the lower left corner and point 2 is the upper right corner
defining a rectangular subdomain inside the EFG domain in the numerical
model, (see Figure 4.8). The stiffness contribution from this domain is updated
during the analysis. Thus the stiffness modification due to a propagating crack is
taken into account. It should be noticed that the size of this sub-domain is a

considerable source of computer time requirement during a crack propagation

simulation.
o ¥
e Lc:=| ¢ | is a matrix describing the coordinates of the main points in a
XI‘I yi‘s

predefined crack. Straight lines are assumed between successive points. Le must
consist of two or more points (see Figure 4.8).
*» K, _ is obtained from pure mode I experiments on the material under

I
consideration.

e v_ is the assumed crack propagating velocity, which is used for crack

c
propagating simulations with constant crack velocity.

¢ Ln defines the number of time increments between checking of the crack
propagating criterion (the maximum circumferential stress criterion (see Section
3.9.1).

¢ d defines the size of the domain integral in the crack tip area, for calculation of

the stress intensily factors (see Section 3.9.2).
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¢ nc is the number of time increments between updating of the stiffness matrix to
include the effect of the crack growth. nc is normally less than Ln (never larger).
Since checking of the maximum circumferential stress criterion requires
considerable computer time, it is calculated as seldom as possible. If nc is to
large, however, numerical pulses will result when the crack advances too far
during a time step.

s (Cvar(14) defines if an enriched basis (see Section 2.7) should be used in the
vicinity of the crack tip. If so, the domain where the enriched basis is to be used
must be defined. This domain is circular, and it is defined with the radius

(outer radius). The inner radius is by default set to rj=r/2.
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Figure 4.8:  An example of a numerical model with illustration of the xcrack - domain
(defined by the corner points 1 and 2) and the predefined crack path Le.
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4.2.6 Output of computed results

The code includes several possibilities of presenting results from the numerical

calculations. The main output capabilities of the code are listed below as follows:

1. Location for desired time plots of displacement, velocities, accelerations,
reaction forces and stresses are defined by coordinates. The number of points is
arbitrary. The user may also define the total number of time logging points of
the variables described above. By default the logging points are uniformly

distributed over the total analysis time range.

2. Displacements and stresses can be plotted at every point in the numerical model,
for a number of predefined time increments, as a surface above the mesh. The
value of the variable defines the height of the surface above the plane of the

mesh.

3. In crack propagation simulations, the stress intensity factors and the critical
propagation angle can be plotted similarly as for the items above. The total crack

path is plotted on the undeformed mesh.

4. Undeformed and deformed meshes of the numerical model can be plotted. The

number of plots is predefined and at equal time intervals as default.

4.3 Brief description of the structure of the MATIL.AB code

An overview of the structure of the code, and a brief description of some of the main
subroutines are listed in this section. The main subroutines are described in more detail
in Appendix B, The main structure of the code is listed in the same sequence as the

calculations are carried out
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Reading the input file.
Initiating all variables of the actual analysis.
Generating the matrix with coordinates for each node and the matrix with

information of each Gauss integration cell, respectively as:

x‘gl e xga
XI R Xn Ygi e ygn
X= G, = Wyt W,
Y| o yﬂ J e J
gl gA
CI T Cngc

Here n is the number of nodes in the first matrix, and the number of Gauss points
in the second matrix. C; refers to the Gauss cell number i, The weighting of a
Gauss point is denoted w and J is the Jacobean at the same point.

Constructing the load vector, f, in the routine BC.m. If the load is time
dependent, this dependency is ensured in the time integration scheme. The
localization of the nodes on the predefined displacement boundaries is
performed in routines BC.m and Bload.m.

Creating the stiffness matrix, K, on the basis of the Gauss points that contribute
to the part of the model with no crack propagation (outside the xcrack domain,
sec Figure 4.8). If the numerical model includes a xcrack domain, a matrix, Cxg,

with the information of the Gauss points inside the region xcrack is initiated

Xg) X g
Yg_l an . . . N
Cxg = , where 1 is the total number of Gauss points inside the
e W
gl gn
ng o Jgn

xcrack domain. K and Cxg is created in the routine Kmat.m (see Appendix B).
The consistent mass matrix, M, is established in the routine Mmat.m.

If the numerical model consists of one or more cavities, the degree of freedom
inside the cavities (respective roads and columns in matrixes K and M) will be
removed. This operation is done in the routine RemoveDOFs.m.

The time stepping is the main part of the code, it starts at time increment 1 and
steps until the total time is reached. A brief description of the time stepping
process is listed below, (together with the main routines that is called during the

time stepping).
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T(total time
for n =1 to the number of time increments: (—A—_)
t
L= DAL, (the analysis time)
if (crack analysis =oly & (n=1ortc=1)
kEFGe=CGKmat(...), the routine CGKmat relurns the stiffness matrix

related to the xcrack domain. In Appendix B the routine is described in more

detail.
Ktot = K + kEFGc, where Ktot is the total stiffness matrix of the whole

rnumerical model, and K is the precalculated stiffness matrix of the model

except for the xcrack domain.
tc = ~1, tc is a variable that tells (this part} if the crack has advanced, and the
stiffness matrix needs 10 be updated.

end if

F(t) = g(t)f , gt} is the specified time variation of the load {f is predefined in BC.m)

The time stepping equations:

2 2
l"n-{-l xi‘ln +Au.!n +%(IMB2)ﬁn +%”62ﬁn+l

i, =M'(f-K,u,,)

a,,, =0, +A( -, - A,
nc=nec + |

if nc=Ln & (crack analysis = ok)

fLete,...] = CG{....) , CG.m returns results of the crack propagation
criterion. If tc=1, the crack will propagate according to the criterion. Le is
updated with the new crack path. In Appendix B the routine is described in
more detail.
nc=0

end if

Saving the predefined output variables.

end for
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Chapter 5 Verification examples

51 Introduction

This chapter reports results from numerical simulations. The simulations are compared
with results from the literature and results from the FE computations using (ABAQUS
Version 6.5). The examples will constitute a major part of the verification of the
computer code developed during this study.

In Section 5.2 the influence on the results and the use of computer time by
varying different EFG parameters are investigated by numerical calculation of a 3-point
bending of a concrete beam. For simplicity the same concrete beam that is investigated
and reported in Section 5.3 is adopted also for this parametric study. An advantage of
this choice is that a thorough investigation and optimization of the input parameters for
the analyses of the 3-point bending of the concrete beam make the comparison with the
result obtained by Organ (1996) more reliable.

Section 5.3 reports the results from numerical simulations of the pendulum
experiment by John, R. and S. P. Shah (1990} on concrete beams. The numerical
example employs a coupling procedure between the EFG and the FE domains (see
Section 2.3) and the mixed mode fracture mechanics procedures (see Chapter 3). This
makes the example suited as a verification of the main section of the computer code.
The numerical resuits are directly comparable with the numerical results reported by
Organ (1996), who uses the same theory to solve a pendulum experiment.

Section 5.4 covers numerical simulations of the experiment performed by
Kalthoff and Winkler (1987). This experiment consisted of a free plate of high strength
steel, with two initial edge cracks and loading from a projectile that crashes into the

plate.
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52 Optimization of the EFG parameters in analyses of 3-point
bending of a concrete beam

5.2.1 Introduction

In this section the influence on the results and requirement of computer time by varying
different EFG parameters are investigated by numerical calculation of a 3-point bending
of a concrete beam. The concrete beam, material parameters, boundary conditions and
load are equal to what will be studied in Section 5.3, except that unsymmetrical cracks
will then be studied. A numerical model allowing only a centrically propagating crack is
chosen to reduce the analyses computer time compared with the model consisting of a
centric and an excentric crack. The computer time decrease is related to the reduction of
the domain allowing general crack propagation, which in this case is only a narrow
column enveloping the expected centric crack path. This is because the number of
Gauss points for checking if a crack influencing the capability is reduced to a few points
in a smali domain.

The EFG parameters to be varied is the J integral size {d), the size of the time
" increment {At), the influence domain, dma, the extended basis in the vicinity of the
crack tip versus linear basis in the same domain, the number of Gauss integration cells
and linear contra quadratic coupling of the EFG and FE displacements in the transition

(interface)} domain.

5.2.2 Description of the numerical model

In this section the numerical model is described. The geometry of the beam is shown in
Figure 5.1. The length of the beam is 9 inches; the height of the beam is 3 inches and
the thickness is 1 inch. The distance between the vertical supports (y-direction} on each
side of the beam is 8 inches. The motion of the beam is not constrained in the x-

direction.
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Figure 5.1:  Ilustration of the 3-point concrete beam bending beam used for the
numerical investigation.

The material parameters used in the numerical simulations are: density

p=2400kg/m’; Young's Modulus B=3137 GPa; Poisson’s ratio v=0.20; and

dynamic fracture toughness K =0.8 MPavm .

The load in the numerical model is imposed as velocity on the interface elements
{see Section 2.5) at the top of the beam. The load is centered in the longitudinal
direction with a width of 0.0282m. It covers 10 nodes in the numerical model (see

Figure 5.2). The load intensity is given as:

vie/t, foresy
Vo(t)x

Vis for t>t,

where v, =0.06 m/s and t, =196 us.

The model is discretized with 74 nodes in the x-direction and 25 nodes in the y-
direction. Rectangular Gauss cells are defined for the numerical integration, the number
of Gauss cells are varied in subsequent analyses. In the FE domains 1xI Gauss
integration is applied, while the 4x4 rule is applied for the EFG- and interface- domains.
The influence domain, dmay. is varied between 2.5 and 5.5 nodal distances (see Section
2.2).



Verification examples

Chapter 5

70

The numerical model has one pre-crack that is running in y-direction at the

midspan cross section. The pre-crack goes from the bottom of the beam and has a length

of 3/32 inches.

The J-domain is the area where the interaction integral is calculated (see Section

3.6). It is a square domain and its area is varied. The domain is centered around the

crack tip. Before the crack starfed to evolve the J-domain was reduced, since the

predefined crack line is small and therefore limits the J-domain so that the crack tip is

placed in the center of the domain. All the integration points inside the J-domain are

used in the calculation of the stress intensity factors KI and KIL

The numerical model, model I, shown in Figure 5.2 is used for all the analyses,
except those where linear and quadratic coupling between EFG and FE domains and the

extended basis (see Section 2.7) are studied (see Tables 5.6 and 5.7). The latter analyses

are based on the numerical model, model I1, shown in Figure 5.3.
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5.2.3 Specification of the simulation scheme

In this section the simulation scheme is listed. The simulation Sim-A is described by the

following parameters:

Analyse

d

At

dmax

Gauss cell

updating K

Coupling

Sim-A

1.5dx

1730 At

3.5dx

0.5dx

300At

linear

This simulation is used as a reference solution, The variables d, At, dmax, Gauss cell

{length of the quadratic sides), updating K (how often the stiffness matrix is updated for

the ¢rack path information), coupling {(the type of coupling between the EFG domain

and the FE domain in the numerical model), linear versus extended basis and the

Newmark variable B, are varied in different series of analyses. Aty is defined in

Section 2.4 by the Courant condition, Atgg=h/c. The fracture criterion is checked every

I5004At, except for the series where the time increment is varied. For this simulation the

frequency of fracture criterion check is listed in the column with the updating of K. The

simulation scheme of the simulation series is listed in Table 5.1 to Table 5.8.

Table 5.1: Listing of the parameters applied when the size of the J integral domain
is varied.
Analyse At [ - Gauss cell updating K Coupling
Sim-01 1/30 At 3.5dx 1.0dx 300AL linear
Sim-02 1730 At 3.5dx 1.0dx 300At linear
Sim-03 1/30 At 3.5dx 1.0dx 300AL {inear
Table 5.2: Listing of the parameters applied when the size of the time increment At
is varied.
Analyse d Gauss cell updating K Coupling
Sim-04 1.5dx 1.0dx 14dt/140At linear
Sim-05 }.5dx% 1.0dx 604t/600AL linear
Sim-06 F.5dx 1.0dx 1204t/1200At linear
Sim-03 1.5dx 1.0dx 300dt/1500At linear
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Table 5.3 Listing of the parameters applied when the size of the domain of
influence, d,n., is varied.

Analyse d At Gauss cell updating K Coupling
Sim-07 1.5dx 1730 At 1.0dx 300At linear
Sim-03 1.5dx 1730 At 1.0dx 300AtL linear
Sim-08 1.5dx 1/30 At 1.0dx 300A1L lingar
Sim-09 1.5dx H30 Aty 1.0dx 300At linear

Table 5.4: Listing of the parameters applied when the size of the quadratic sides of
the Gauss cell are varied.

Analyse d At dmax updating K Coupling T
Sim-A 1.5dx 1730 At 3.5dx 300AL linear
Sim-03 1.5dx 1/30 At 3.5dx 300AL linear

Table 5.5: Listing the parameters applied when the frequency of updating the
stiffness matrix is varied.

Analyse d At thay Gauss cell Coupling
Sim-10 [.5dx 1730 At 3.5dx 1.0dx tinear
Sim-11 1.5dx 1730 At 3.5dx 1.0dx linear
Sim-03 1.5dx 1730 At 3.5dx 1.0dx linear
Sim-12 [.5dx 1130 At 3.5dx 1.0dx linear
Sim-13 1.5dx 1730 Aty 3.5dx 1.0dx Linear

Table 5.6: Listing of the parameters applied when linear or quadratic coupling

between the EFG domain and the FE domain is applied.

Analyse d At Giax Gauss cell updating K
Sim-14 1.5dx 1/30 At 3.5dx F.0dx 300At
Sim-15 1.5dx 1730 Aty 3.5dx 1.0dx 300AL
Table 5.7: Listing of the parameters applied when linear or extended basis in the
vicinity of the crack tip is applied.
Analyse d At drox | Gauss | updating K Coupling
Sim-14 | 1.5dx | 1/30 At | 3.5dx | 1.0dx 300At linear
Sim-16 1.5dx | 1/30 Aty ¢ 3.5dx 1.5dx 300AL linear
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Table 5.8 Listing of the parameters applied when the Newmark integration
parameter B is varied.

Analyse d At [ . Gauss cell updating K
Sim-17 1.5dx 1730 At 3.5dx 1.0dx 300AL
Sim-18 1.5dx 1730 Atg 3.5dx 1.0dx 300A1

5.2.4 Plot of the mode I stress intensity factors for each analyses

The mode I stress intensity factor (SIF) is plotted for the different analyses given in
Table 5.1 to 5.8 in Figure 5.4 to 5.10. To calculate the stress intensity factor all the basic
routines that is implemented in this work is included in such a simulation, which then
makes the calculation of stress intensity well suited for comparison and validation of
results. The conclusions given below are based on the fact that a set of parameters for
this special case is to be chosen, so that a solution will probably converge with a
minimum use of CPU time and still give a satisfactory level of accuracy.

The influence on the mode I stress intensity factor from the size of the area
where the J-integral is integrated is shown in Figure 5.4. If the variable d (2d is the
length of one side in the quadratic integration domain) is 0.5dx (Sim-01) the result is
diverging from the other two solutions and the stress intensity peaks are under
estimated. Based on these results, d should be greater than or equal to 1.0dx, to get a
converging solution.

The size of the time increments versus the mode I stress intensity factor results
is plotted in Figure 5.5. The shape and peak of the results from the analysis with At
equal to 1/30 Atgy (Sim-03) is similar to the Sim-A analysis, The propagation of the
crack starts later. For a larger time increment the solution is diverging from the two
analyses described above. Based on these results, the time increment should be smaller
or equal to 1/30 Atgn, to get a converging solution.

Variation of dmax, the size of the influence domain, is influencing the results
significantly. Figure 5.6 shows how the mode I stress intensity factor is influenced by
this parameter. A small dnax (2.5dx) and a large dmax (5.5dx} give diverging results.
Based on these results dmgx between 3.5dx and 4.5dx should be adopted to obtain a

converging solution.
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The Gauss cell size is varied in two analyses. One with 0.5dx quadratic sides in
Sim-A and one with 1.0dx in Sim-03. The results are plotted in Figure 5.7, where the
mode I stress intensity factor is shown for both analyses. The shape and peak values for
the mode I stress intensity factor for the Gauss cell refinement solution (Sim-A) show
similar behaviour as for Sim-03, but the crack propagation starts earlier for the refined
analysis. Based on these results the Gauss cell size 1.0dx can be adopted to obtain a
converging solution.

The influence on the mode I stress intensity factor from the frequency of
updating the stiffness matrix with respect to the crack path is shown in Figure 5.8. The
updating frequency has minor influence on the mode I stress intensity factor, but as will
be shown in Section 5.2.5 larger time intervals between updating of the stiffness matrix
will introduce artificial oscillations.

The mode I stress intensity factor shows only small variations from improving
the coupling from linear to quadratic between the EFG domain and the FE domain.
Equal shape but reduced magnitude is observed for the analysis Sim-16. Figure 5.9
shows curves of the mode 1 stress intensity factor for linear and quadratic coupling
together with the analysis Sim-16 which has extended basis in the vicinity of the crack
tip.

The mode I stress intensity factor shows small varation from varying the
Newmark B, variable as can be observed in Figure 5.10.

Figures 5.11 and 5.12 show the final crack paths for analyses Sim-A and Sim-
16. The zigzag pattern is more distinet for the simulation with use of extended basis
versus the analyses with use of linear basis. The mean crack path direction is virtually
the same for both analyses. The local difference resuits from more exact calculations of

the stress intensity factors with the use of extended basis contra Hnear basis.
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Figure 5.4:  Plot of the mode I normalized stress intensity factor for different areas
where the J-integral is calculated,

25

- 3iF I - Sim-04
=== 8iF I - Sim-05
== 8IF | - 8inm-06
&~ SiF |- §im-03
=~ SIF I - §im-A

»

crit}

-
(2]

-

-

-

Normatized SIF [Kifd

05+ . . . . ol I mETTTIRT

o 0.5 1 15
Time [s} xi0?
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Figure 5.6:  Plot of the mode I normalized stress intensity factor for different dmax.
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Figure 5.7:  Plot of the mode I normalized stress intensity factor for different Gauss
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Figure 5.8 Plot of the mode I normalized stress intensity factor for different
updating frequency interval of the stiffness matrix.
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Figure 5.9:  Plot of the mode I normalized stress intensity factor for linear and
guadratic coupling of the EFG domain and the FE domtain of the

numerical model, together with linear and extended basis in the vicinity
of the crack tip
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5.2.5 Artificial nomerically induced oscillations

Artificial numerically induced oscillations in this context are the oscillations caused by
the release of stresses related to the process of adding a new line segment to the existing
crack path. The new line segment is added to the existing crack path at a specific time
increment, where the length is dependent on the crack propagation speed and the
updating frequency of the stiffness matrix. This process releases stresses that act over
the actual line segment. The effect is artificial numerical induced oscillations that can be
observed as stress waves in the numerical model. These oscillations start simultaneously
with the start of the first crack propagation. The frequency and intensity of the
oscillations depend on how often the stiffness matrix is updated for the crack path.

Figure 5.13 shows curves for the total left hand reaction force for Sim-10
{updating K every 50At) and Sim-13 (updating K every 750At). The input parameters
for the analyses are given in Table 5.13, The resuits emphasize that the oscillation
intensity is strongly dependent on the updating frequency of the stiffness matrix. More
infrequent updating of the stiffness matrix induces higher intensity oscillations.

Figure 5.14 to Figure 5.16 show 3D surface plots of the stress in x-direction
(Si1) for Sim-10 (updating K every 50At} and Sim-13 (updating K every 750At).
Figure 5.14 shows the stress S11 at the simulation time 0.0008s, which is shortly befere
the crack propagation starts. At this time the 3D surface plot shows that there are no
artificial oscillations in the model, as should be expected. Figure 5.15 and Figure 5.16
show the stress S1I at the simulation time 0.00105s, which is after the crack
propagation has started. The artificial oscillations are now seen all over the whole
numerical model. The intensities of the S11 oscillations are higher in Figure 5.15 (Sim-
13} than in Figure 5.16 (Sim-10), but the level is still considerably lower than the actual
stress intensities close to the crack tip. In this area the asymptotic stress field is

dominating.
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Figure 5.13:  Plot of the total left hand reaction force for Sim-10 (updating K every
50At) and Sim-13 (updating K every 750At).
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Figure 5.14: 3D surface plot of the stress in x-direction (S11) for Sim-10 {updating K

every 50At) and Sim-13 (updating K every 750At) at the simulation time
0.0008s (the simulations are identical before the crack propagation
starts).
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Figure 5.15: 3D surface plot of the stress in x-direction {(S11) for Sim-13 (updating K
every 750At) at the simulation time 0.001035s.
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Figure 5.16: 3D surface plot of the stress in x-direction (§11) for Sim-10 (updating K
every 50At) at the simulation time 0.00105s.
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52.6 Verification of the J integral computation by FE analysis

The results from the EFG calculation of the stress intensity factor for the 3-point
bending of the concrete beam with a centric crack investigated in this section is
compared with stress intensity factors calculated by the FE code ABAQUS with
implicit time integration (ABAQUS Version 6.5). The numerical FE model uses the
same input data as described in Section 5.2.2. The FE model is discretized by 200
clements in the x-direction and 135 elements in the y-direction. The numerical FE
model is shown in Figure 5.17, where the support, symmetric boundary condition at the
center of the beam and the implied velocities at the top are indicated by orange color.
Figure 5.18 shows the deformed numerical model at the time instant t=0.0015s, with a
magnification factor of 10. ABAQUS offers calculation of stress intensity factors for the
symmetric case, as utilized in this calculation.

ABAQUS can only calculate stress intensity factors at a crack tip point (2D) or
line (3D). No crack propagation can be combined with the calculation of stress intensity
factors. This limitation makes the comparison of the stress intensity factors valid only
up to the point where the crack starts to propagate. Figure 5.19 shows the calculated
mode 1 stress intensity factor for the ABAQUS analysis together with the Sim-A and
Sim-03 analyses. The BFG reference analysis, Sim-A, shows relatively good agreement
with the path evolution and the start of crack propagation point for the ABAQUS

analysis.

Figure 5.17; Ulustration of the symmetric FE-model of the 3 point bending modelled
by the FE-program ABAQUS. Orange color indicates the support,
symmetric boundary conditions at mid cross section of the beam and the
forced velocities at the top.
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Figure 5. 18: Illustration of the deformed symmetric FE-model of the 3 point bending
modelled by the FE-program ABAQUS. The deformed plot is at the time
instant t=0.0015s, with a magnification factor of 10.
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Figure 5.19:  Plot of the mode [ stress intensity factor at the crack tip in the FE-model,
together with corresponding results for the EFG simulations Sim-03 and
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5.2.7 Parameter influence on the required computer time

The coluinn diagram shown in Figure 5.20 compares the consumption of computer time
for all the reported analyses in this section (see Tables 5.1 to 5.8). The computer time is
normalized with respect to the computer time for analysis Sim-03.

The colummns Sim-01 to Sim-03 are approximately identical except for a little
less total computer time for analysis Sim-01. The deviation is related to a diverging
solution (see Figure 5.4), which estimates a lower mode [ stress intensity factor with
less crack propagation and computer time consumption as a consequence. This illustrate
that the size of the [ integral domain is not influencing the total computer time of an
analysis significantly.

For analyses Sim-04 to Sim-06 the time increment is increased compared with
Sim-03. This results in a lower estimate of the mode I stress intensity factor and no (or
little) crack propagation (see Figure 5.5). These are of course a much less time
consuming analyses as can be seen in Figure 5.20.

For columns Sim-07 to 5im-09 in Figure 5.20 the variation of the domain of
influence, dmax. on the consumption of computer time is illustrated. The total computer
time is dramatically increased with increased domain of influence. This is related to the
extra cost of handling a lot more nodes in the MLS approximation,

’ Columns Sim-10 to Sim-13 iilustrate the influence on computer time from how
frequent the stiffness matrix is updated with respect to the crack path. It can be observed
a very large reduction in computer time for an analysis with less frequent updated
stiffness matrix.

Columns Sim-14 to Sim-16 are a little lower than the column for Sim-03. This is
because the initiation of the numerical model is faster since it consists of more finite
elements and a smaller EFG domain (see Figures 5.2 and 5.3). These columns represent
the variation from linear to quadratic coupling in the interface domain and the influence
of extended basis in the vicinity of the crack tip. The variation can be seen in Figure

5.20 to have minor influence on the computer time.
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Normalized total computer-time for each analyses with respect fo
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Figure 5.20: The column diagram shows the consemption of computer time for all the
reported analyses in this section. The computer time is normalized with
respect to the computer time for analysis Sim-03.

5.2.8 Conclusive remarks

The main objective of the analyses performed within this section was to thoroughly
investigate and optimize the input parameters and its influence on the results for the
calcolation of the 3-point bending of a concrete beam. The main goal of the
optimization was to establish a set of input parameters that gives a satisfactory level of
accuracy with a minimum consumption of computer time.

The validation of the level of accuracy of the results from the calculations is
based on comparison with results from a FE calculation with the code ABAQUS
(ABAQUS Version 6.5), and a superficial comparison with results obtained by Organ
{1996). The results obtained by Organ are not directly comparable, since the numerical
model studied in this section has only a centric crack and not a combination of a centric

crack with a non-centric crack as was the case in Organ (1996).
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Reliable results and time effective simulations can be obtained if the parameters
given in Table 5.9 are adopted. The parameter range listed in Table 5.9 for 8im-accu
shows the parameters that should give converged solutions.

As shown in this section the input parameters that have significant influence on
the consumption of computer time is the size of the domain of influence and how
frequent the stiffness matrix is updated with respect to the crack path. The later is
strongly related to the artificial oscillations in the solution, ie. high level of the
oscillations with more seldom updating of the stiffness matrix. The parameters listed for
Sim-effec in Table 5.9 is the parameter combination that is likely to give the most

computational effective simulations for an acceptable level of accuracy.

Based on the calculations in this section the input parameters Sim-effec are
recommended to use in the succeeding computations, where numerical simulations of
the pendulum experiment by John, R. and S. P. Shah (1990} on concrete beams are

performed.

Table 5.9:  Input parameters for analyses Sim-accu and Sim-effec.

Analyses d dt FGausseelll  updating K
Sim-accit 1.5dx 1730 Alcrie ' 300dt<
Sim-effec 1.5dx% 1730 Aty 300dt
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5.3 Mixed-mode dynamic fracture of 3-point bending of concrete
beam

5.3.1 Description of the numerical model

The geometry of the beam is shown in Figure 5.21. The length of the beam is 9 inches,
the height is 3 inches and the thickness is I inch. The distance between the vertical
supports (y-direction) 8 inches. The motion of the beam is not constrained in the x-

direction.

¥
X thickness = 1" ?
| ()
77 Ve
i L=g" I

Figure 5.21: Illustration of the concrete 3-point bending beam used for the numerical
investigation.

The material parameters used in the numerical simulations are: density

p=2400 kg/ma; Young’s Modulus E=31.37 GPa; Poisson’s ratio v=0.20; and

dynamic fracture toughness K, = 0.8 MPavm.
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The load in the numerical model is imposed as velocity on the interface elements
(see Section 2.5) at the top of the beam. The load is centered in the x-direction and with
an extension of 0.0282m. It covers 10 nodes in the numerical model (see Figure 5.22).

The load intensity is given by:

vit/t, fortst,
""(](E)ﬂ

v, for t>1,

where v, =0.06 m/s and t, =196 us.

The model is discretized with 74 nodes in the x-direction and 25 nodes in the y-
direction. The number of nodes in the x-direction is chosen such that the precracks in
the model are located between vertical rows of nodes to avoid unnecessary disturbance
from nearby nodes. The model is divided into three domains, with different types of

discretisation. The finite element domain, covers the areas: xe{0,0.0188],
ye[-D/2,D/2] and xe[0.2098,1b}, ye[-D/2,1D/2]. The element free Galerkin
domain covers the area: xe[0.0251,0.2067], ye[-D/2,D/2] and the interface
domains which couple the EFG and FE domains cover: xe[0.0188,0.0251],
ye [-D/2,D/2] and x<[0.2067,2098], ye [-D/2,D/2]. Rectangular Ganss cells are

defined for the numerical integration, with the nodes limiting the cell areas. In the FE
domains 1x1 Gauss integration is applied, while the 4x4 rule is applied for the EFG-
and interface- domains. The influence domain is limited by dy,,=3.5 (see Section 2.2).
The numerical model has two predefined cracks. One crack is running in the y-
direction at the midspan cross section and from the bottom of the beam with a length of
3/32 inches. This crack is chosen equal to '4 of the maximum aggregate size.
Imperfections of this size are typical in concrete. The midspan crack is in the following
discussion named crack line 1 (CL.1). The location of the second crack is given by the
parameter ¥ which is defined as the distance to the crack from midspan divided by the
distance from the midspan to the center of the support. Also the second crack starts
from the lower side of the beam, normal to the beam axis and with a length of % of an

inch. This crack is in the following named crack line 2 (CL2).
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The J-domain is the area where the interaction integral is calculated, see Section

3.6. This area is square and covers 9 integration cells. The domain is centered around

the crack tip. Before CL1 started to evolve, the J-domain was reduced, since the

predefined CL1 is small and therefore limits the J-domain so that the crack tip is located

at the center of the domain. All the integration points inside the J-domain are used in the

calculation of the stress intensity factors KI and KII
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IHustration of the numerical model used to simulate the 3-point bending

beam experiment.

Figure 5.22:

5.3.2 Specification of the simulation scheme

Since the numerical simulations of the 3-point bending beam are performed in order to

verify the computer code, the different analyses are chosen equal to those reported in

Organ (1996). Table 5.10 gives the different cases: location of crack line 2 defined by

the parameter vy, the crack propagation velocity (constant or variable) and the

identification of the different simulations.
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Table 5.10:  Name, crack location, and variable or constant crack propagation
velocities for the different numerical simulations reported.

Simulation name: Crack location, v: | Propagation velocity:
G0734C 0.734 Constant
GO705C 0.705 Constant
Go672C 0.672 Constant
GO672V 0.672 Variable

5.3.3 Numerical results

Four different simulations are performed as defined in Table 5.10. In Table 5.11 crack
propagation angle information is given for all simulations. This information consists of
initial crack angle, final crack angle and the range of the crack propagation angle during
the crack advancement. The angle is measured from the positive x-direction
counterclockwise. The analyses with constant crack propagation velocity are in
reasonable agreement with Organ (1996) for the initial angle values. The final angle
values and the range during the crack propagation do not show the same conformity.
, The difference in the results is related to the relatively high level of oscillations in the
solution during the crack propagation phase. Before the crack propagation starts there
are no oscillations in the solation and thus the initial crack angles are in good agreement
with the solution given by Organ (1996). The oscillations during the crack propagation
can be reduced by updating the stiffness matrix more frequently with respect to the
crack propagation (see Section 5.2.5) and by replacing the visibility criterion with the

diffraction method (see Organ, Flemming, Terry and Belytschko (1996)).
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Table 5.11:  Crack propagation angles for every simulation; initial, final and range of
crack propagation angle during the simulations.

Analyses name - Crack Initial angle - Final angle | Range of the angles
Goe72C Notch 70 90 55-90
GO705C Notch 58 72 57-72

Midspan 90 96 65-100
G0734C Midspan 90 86 72-112
GO734V Notch 65 40 35-80

The finial crack configurations of the simulations: G0672C, G0705C, G0734C, and
GO734V are shown in Figure 5.23. It can be seen that the crack at the notch have the
same curvature, and the path ends up with less than one node interval deviation. At
midspan the crack for GO734C runs in a zig-zag patiern straight up to the loading
location in the midspan as expected. For simulation G0705C the midspan crack path
deviates somewhat from the center line of the beam. This is also reported by Organ
(1996). Hlustrations of the crack path evolution during the simulations are plotted for
the cases: GO672C, GO705C, GO734C, and GOT734V respectively in Figure 5.28 to 5.31,
It can be shown that the crack path from the notch in simulation G0734V turns towards
the loading point. This is an improvement from the solutions with constant crack
propagation velocity when compared with the experimental results by John (1988).
Similar results are also reported by Organ (1996).

Time history plot of the stress intensity factors for the simulations: G0672C, GO0705C,
G0734C, and GU734V are given in Figures 5.24a, 5.25a, 5.26a, and 5.27a. Comparison
of the stress intensity factors for the simulations with constant crack velocity with the
results given by Organ (1996), indicates a good agreement with the main form of the
time history plot. The results from this study show more oscillations than reported by
Organ. The source of these oscillations could be that the stiffness matrix is updated less
frequently (see Section 5.2.5). This explanation is also supported by the stress plots
refated to simulation GO734V (see Appendix C), where less oscillation after the start of
the crack growth can be seen for the simulations with constant crack velocity. Detailed
information about the analyses performed by Organ is, however, required to conclude

on the differences in results.
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The simulation with variable crack velocity, G0734V, tends to move the
transition region against higher values of y. The transition region represents the value of
v, where on the lower side the crack propagation starts at the notch and at the higher
side the crack propagation starts from the midpoint of the beam. This corresponds to the
results by Organ (1996), and the experiments by John (1988). The time history plot of
the stress intensity factors, are shown in Figure 5.27. One can notice that the mode I
stress intensity factor for the notch oscillates around the fracture toughness of the
material, Klc, rather than continuing to increase as it did for the constant velocity cases.
A time history plot of the crack propagation velocity is given in Figure 5.27b. This
velocity starts at zero, and increases when the crack propagation starts. The average
peak value is close to 570m/s. This is 24% of the Rayleigh velocity. This result is higher
but still in relatively good agreement with the results reported by Organ (1996), who got
a velocity of 19% of the Rayleigh velocity. Again more detailed information of the basis
for the analyses performed by Organ is needed to expiain differences in these results.

Time history plot of the reaction forces for the simulations: G0672C, GO705C,
and GO734C are given in Figures 5.24b, 5.25b, 5.26b. The reaction forces of the
simulations are decreasing when the crack starts to propagate and the peak load is close
to 4000 N which is approximately the same as reported by Organ (1996). The
, oscillations in the time history plot of the reaction forces, come from the same source as
described previously in Section 5.2.5 (artificial oscillations).

In Appendix C several deformation plots of the numerical model are given,
together with plots of the normal stress component o, in the form of a surface level
above the beam model and a contour plot of the stress surface below the beam model.
These types of plots are given for the simulations: G0672C, GO705C, GO734C, and
GO734V.
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(b) Final crack configuration - GO705C
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(d) Final crack configuration - GO734V
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Figure 5.23
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Figure 5.24: Time history plot of the stress intensity factors and the reaction forces for

the simulation G0672C.
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Figure 5.26:  Time history plot of the stress intensity factors and the reaction forces for
the simulation GO734C.
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Figure 5.27: Time history plot of the stress intensity factors and the crack propagation
velocity for the simulation GO734V.
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5.4 Numerical example of crack growth in an edge-cracked plate

5.4.1 Introduction

This example compares the numerical results obtained by the EFG simulations by
Organ (1996) of the experiment performed by Kalthoff and Winkler (1987) with the
numerical results from the EFG analysis performed in this study. The experiment
consisted of a free plate of high strength steel, with to initial edge cracks and loading
from a projectile that hits the plate (see Figure 5.32).

The simulation is performed for the experiment case with small strain rates,
where the crack propagates with a crack angle about 70 degrees with respect on the

initial crack line.

Prejectie

200

.

108

Figure 5.32: [lustration of the experiment performed by Kalthoff and Winkler (1987).
A projectile that crashes into a free plate of steel.
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5.4.2 Description of the numerical model

By using the symmetry in the experiment, only the upper half of the plate is modelled.
The geometry of the numerical model is given by: the length of the plate (x-direction) =
160mm; the height of the plate (y-direction) = 100mm. The origin is placed at the center
of the complete plate (see Figure 5.33). The plate is only supported at x=0 by symmetry
conditions.

The material parameters used in the numerical simulation are: density p = 8000

kg/m’; Young's modulus E = 190 GPa; Poisson’s ratio v = 0.30; and dynamic fracture
toughness K, =68 MPa+m .

The loading of the plate is prescribed velocity on the interface elements (see
Section 2.5), imposed at the edge y = D/2 and in the range of xe [Ax,25mm]. The

L
number of nodes —1

reason that the x-range of the interface elements starts at X = Ax =

is that the present EFG code does not include interface elements at corners. This
introduces a small error since the first node at x = 0 and y = D/2, should also be
subjected to the imposed velocity trough an interface element at the top. In the
following it is supposed that this source of error does not disturb significantly the results
of interests (the error can be ignored as the element size becomes small). The velocity at
the top nodes of the interface elements (FE nodes), is constant during the simulation
with the value of vp = 16.5 m/s

Four EFG simutlations have been performed for this problem. The analyses differ
in the node densities: 31x31 nodes, 76x76 nodes, 101x101 nodes and 151x151 nodes.
Rectangular Gauss cells are used for the numerical integration with the nodes limiting
the cell areas. A 4x4 Gauss rule in the EFG- and intesface- domain is adopted. The
influence domain is limited by d4.,=3.5 (see Section 2.2).

The numerical model has one predefined crack. The crack staris at the top of the
plate at (x, y} = (25, 50) mm, and goes straightly down to {(x, y} = (25, 0) mm. Then it
goes a length of Axin the negative y-direction by an angle of 79 degrees with the y-

axes (see Figure 5.33).
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The J-domain was square and covered an area equal to 4 Gauss integration ceils.
The crack tip is located in the center of the J-domain. All integration points inside the J-

domain are nsed in the calculation of the stress intensity factors KI and KIL

100 o

B

Y

75

100

54 . /
Velogity 16.5m/s I

\\ /T\

LN
o~

]
y S B S S B B B o, e

Figure 5.33: Illustration of the numerical model of the experiment performed by
Kalthoff and Winkler (1987), with the geometry, origin location and
boundary conditions plotted.

5.43 Specification of the simulation scheme

Since the numerical simulations of the plate are performed to verify the present code,
the three analyses with the highest node densities are chosen to have the same node

densities as reported in Organ (1996),

Table 5.12 gives the name of the different simulations and the node densities.
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Table 5.12:  Listing of identification and node densities of the different simulations.

Simulation name: Node density:
M30 31 x 31 nodes
M75 76 x 76 nodes
MI100 101 x 101 nodes
MI130 151 x 151 nodes

5.4.4 Numerical results

The average angel of the crack path is defined as the angel between the predefined crack
line and the line from the start of the crack propagation to the end point of the crack.
Results of average crack path angles from the numerical simulations are given in Table
5.13. The results are in accordance with the results obtained by Organ (1996), which
also tends towards higher angles compared with the expertment performed by Kalthoff
and Winkler (1987) where the observed angle was 70°.

Figure 5.34 shows curves of normalized stress intensity factors for analyses
M30, M75, M100 and M150. The drop of mode 1 stress intensity factor below zero at
the beginning of the analyses is caused by the fact that the crack faces overlap each
other at the beginning of the simulations. The plot of the stress intensity factors, given
in Figure 5.34, converges towards similar curves of stress infensity factors reported in
Organ (1996). Negative stress intensity factors at the beginning of the simulation are
more pronounced in Organ than the simulations performed in this study. This is caused
by the larger J-integral domain and the omitted pre-notch at an angle of 70° in the work
by Organ. With larger J-integral domains and only a straight predefined crack path,
more of the integrated domain contains overlapped crack faces.

In Figure 5.35, plots of the final crack paths for all analyses are shown. It can be

observed that the M30 final crack path diverges slightly from the other solutions, which
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also is emphasized by the deviation of the M30 stress intensity factors from the others

shown in Figure 5.34.

Table 5.14 gives the number of crack segments and the range of the segment angle to
the predefined crack line for all the analyses.

Figure 5.36 illustrates the crack path and the deformed numerical model of the
experiment performed by Kalthoff and Winkler (1987) for analysis M75. The overlap of
crack faces (caused of not having a contact description) is after some time dominating

the numericat model, which then will diverge from the experimental result,

Table 5.13:  Listing of identification and average crack angle for the different

simulations.
Analyses: Average angle:
M30 ' 72.1
M75 75.2
MI100 76.6
MI150 75.4




Chapter 5

Verification examples 167

<
[
¥

R Normalized SiF [KIKI_,]
o

=
in
T

Al

-----

-----

== mode [-M30
wwe miode [-M30
wew mode [-M75
--~ mode II-M75
- mode -M100
e ode 15-M100
mode I-M150
- mode 1-M150

-1.5
¢

Figure 5.34:

Time {s]

Stress intensity factor of mode I and mode II, for the four different
simulations M30, M75, M 100 and M150. The stress intensity factors are
normalized with respect {o the dynamic fracture toughness.
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Plot of the final crack paths for all simulations of the experiment
performed by Kalthoff and Winkler (1987)



weane

rrres
Seleseesver
pees

Chapter 5 Verification examples

..
Tesavsats

.
.

22
42
50
77
is for the verification

Number of crack segments

are the bas

65.4 - 81.3

69.2 - 81.8
63.7

- 36.0

4

59.5-85

rformed in this chapter,

Sabedesre ety
Listbrensitineretinantrdsy
Pt berraset

AN I Y e s

TEreaTet et
ararasesete

dlavaavateniss

PSS BATPTIeSea P ST P LTS B
Tihretetiteveutaritibiatosasnre

AT SV PRSI TS

tarezaereres
E R e e o

ks
s pe

168

REABKERRANTUT EREAUASEREDRNAISNRREUOASSIN RARULSSININLE N UARRAER AN S 2LE]

Itustration of the deformed numerical model, (magnification factor 10),
of the experiment performed by Kalthoff and Winkler (1987) for

Figure 5.36

lation M75.
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Listing of identification, range of crack segment angle and number of

crack segments for the numerical simulations.
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Range of crack segment angle
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5.5 Conclusive remar

The numerical simulation

procedure of the present code
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In Section 5.2 numerical simulations of a modified pendulum experiment by
John, R. and Shah S. P. (1990) for concrete beams where studied. The 3-point bending
of the concrete beam had one pre notch at the bottom of the mid span cross section. This
differs from the experiment which in addition had another pre notch between the mid
span and one of the suppors. The pumerical simulations provides the relationships
between the different input variables of the analyses and the simulated results. In
particular, the parameter that controls the frequency of updating of the stiffness matrix
with respect to the crack path should be mentioned. Less frequent updating of the
stiffness matrix results in an increase in the level of the oscillations in the simulated
results. It should also be mentioned which variables that will considerably increase the
consumption of computer time. The size of the domain of influence, dy.y, and how
frequent the stiffness matrix is updated during the simulation with respect to the
propagating crack are the variables that mostly influence the required computer time. In
addition the size of the predefined area where the ¢crack propagation is allowed, will also
considerably influence computer time. The node densities were fixed during the
parameter study, but if the node densities were increased, the consumed computer time
will of course increase. The parameter study performed in this section is useful to assess
the results from the numerical simulation of the peadulum experiment by John, R. and

Shah 5. P. (1990) (see Section 5.3).

The numerical results of the analyses of the pendulum experiment were
compared with numerical results from Organ (1996). The comparison of results was in
relatively good agreement. It should be mention that the numerical results from this
study showed more oscillations than reported by Organ (1996). The source of increased
oscillations are likely to be the frequency of updating of the stiffness matrix with
respect on the crack propagation (see Section 5.2.3). More detailed information on the

input parameters for the analyses by Organ is needed for definite conclusion on this.

The verification example, reported in Section 5.4, was the numerical simulation
of the experiment performed by Kalthoff and Winkler (1987). The experiment consisted

of a free plate of high strength steel, with two initial edge cracks and loading from a
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projectile that hits the plate. Organ (1996) has also simulated results with the EFG
method for this experiment. The comparison of results showed relatively good
agreement. It should be mentioned that the numerical results from this study showed
slower convergence in the stress intensity factors than reported by Organ. The main
reason is likely to be the use of lower order Gauss integration (4x4 compared with 6x6).
Another possible reason of deviations is the use of more sophisticated representation of
the stresses in the vicinity of the crack tip by Organ. Detailed information about this

waould be needed for a definite conclusion.

Since the comparison gave satisfactory results, it can, be concluded that the
implemented code seems to work as it should, and that the theory implemented in the

code is suited for this type of problems.
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Chapter 6 Simulations prior to experimental study

6.1 Introduction

As discussed m the introduction of this thesis, the main aim of the work is to be able to
simulate crack propagation in brittle materials. The previous chapter has demonstrated
some of the capabilities of the present EFG code in simulation of brittle fracture.

In this chapter initial simulations prior to experiment are performed. The results
of the simulations constitute the basis of the experimental set up. The purpose of the
initial calculations is to define the experiments in the structural laboratory, such that the
tests can produce crack patterns in brittle materials from dynamic load which can be
compared with results from numerical simulations.

Since the EFG code is restricted to calculations of two dimensional numerical
models the experiment must also have this limitation A shear wall structure is thus
chosen as model of investigation for the experiments. The crack pattern should arise
from stress waves with relatively short durations, to be of relevance to cracking of
unreinforced concrete from shock wave loading. The load is applied to one of the shear
wall edges as an impact from a projectile. The applied force is thus in the shear wall

plane. The shear wall is supported at each side of the edge opposite to the loading.

6.2 Experimental set-up

The experiment is performed in the structural laboratory at the Department of Structural
Engineering, NTNU. A compressive pulse is applied to a concrete shear wall in the
plane of the wall to obtain 2D conditions for crack propagation. Depending on the
material, model geometry, pulse shape and magnitudes the compressive pulse can cause
different crack patterns. The shear wall will behave according to plane stress theory.
The experiment set up is itlustrated in Figure 6.1. A compressive pulse is imposed by a

projectie from a gas gun, see Figure 6.1. This will give a normal impact at the top

%
|
|
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surface of the shear wall. The impact velocity range for this setup is 20 — 60 m/s, and
the projectile mass will be in the range 100 ~ 230 grams.

Contact impact analysis has not been implemented in the present EFG code, but
this analysis is done in the ABAQUS computer program. The result from the analysis is
the time history of the contact pressure at the top of the shear wall. This excitation is
then applied to the numerical model in the EFG simulation as a boundary time-force
relationship. The simulations estimate the pulse magnitude that gives the desired crack
pattern. Recalculations with ABAQUS give by tuning the projectile mass and impact

velocity the contact pressure as a force time history to be applied in the EFG simulation.

Nheiz wahi

Bpisrls

i
|
!
of : oo
Bl

Figure 6.1:  Hllustration of the experimental set up.

6.3 Numerical simulation of elastic projectile impact

The intensity and duration of the contact pressure between a steel projectile and the
concrete shear wall is to be calculated. In order to avoid (reduce) crushing of the
concrete where the projectile hits the wall, a steel bar is placed on the top surface of the

shear wall. The diameter of the projectile is fixed at 40mm, since the experiment should
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be 2D the thickness of the shear wall is also chosen to be 40mm. This first pre
calculation is considering shear walls with length 600mm and height 400mm and
250mm. The shear walls are supported at the bottorn over a length of 50mm on both
sides (the length and height of the steel bar at the top of the shear wall is 300mm and
10mm). Figure 6.2 shows the numerical models.

The concrete material parameters are: density p=2400kg/nt; Young’s Modulus
E=30GPa; Poisson’s ratio v=0.2. The steel material parameters are: density
p=7850kg/m’; Young’s Modulus E=210GPa; Poisson’s ratio v=03. The
projectile mass and impact velocity is varied in the different analyses. The parameters
are listed in Table 6.1 for both numerical models (height 400mm and height 250mm).

The peak stress level in an element at the center of the top boundary of the shear
wall (location where projectile is hitting) versus projectile mass for the numerical model
with height 400mm and height 250mm are plotted in Figure 6.3 and Figure 6.4
respectively.

Figure 6.5 and Figure 6.7 show correspondingly the time history plots of the
vertical stress pulse from analyses al to a4 at the same location. The curves represent
variation of the projectile mass with fixed projectile impact velocity of 30m/s. The
maximum stress peaks show minor variation with small variations of projectile mass.
The influence on pulse duration is more significant.

Stresses at the same location as a function of time are plofted by varying the
projectile impact velocity for fixed mass of 0.175 kg in Figure 6.6 and Figure 6.8,
respectively for the numerical models with height 400mm and 250mm. The maximum
stress peaks are considerably influenced by the velocities due to the energy increase.

Figure 6.9 and Figure 6.10 show contact pressure in the plate middle plane at the
top surface. The pressure is plotied along a horizontal straight 50mm long path (from
the mid plan} for analysis al0 and for the plates with height 400mm and 250mm
respectively. The contact pressures are plotted for the time instants t=[12, 15, 18, 21, 24,
27, 30]10°% for both analyses.

Contour plots of the stress in vertical direction at the time instant £57-10 are
correspondingly plotted for analyses al0 in Figure 6.11 and Figure 6.12. The
assumption of 2D behaviour seems acceptable based on the constant stresses through

the thickness of the shear wall as can be seen in Figure 6.11 and Figure 6.12,
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The numerical model in ABAQUS consists of 30880 (height 400mm) and 28000
(height 250mm) elements of type C3D8R. This is an &node linear brick solid element

with reduced integration. The total number of nodes in the models are 35971 (height
400) and 32812 (height 250), with 107913 and 98436 variables for the respective FE

models. The dynamic analyses are performed with the explicit solver,

Table 6.1: Description of the different FE analyses performed with ABAQUS, The
described analysis scheme is performed for both numerical models.
Mp=0.175kg | Mp=0.200kg | Mp=0.225kg | Mp=0.250kg
Impact velocity=30 m/s al a2 a3 ad
Impact velocity=40 m/s as ab a’l a8
Impact velocity=50 m/s ad all all aiz
Impact velocity=60 m/s al3 al4 al3 al6
Impact velocity=70 m/s al7 al8 al9 a20

A)

Figure 6.2:

B)

600x400 shear wall and B) is the 600x250 shear wall.

[Nustration of the numerical model used in the pre-calculations. A) is the
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Figure 6.3:  Plot of the peak stress in an element at the center of the top boundary of
the shear wall versus projectile mass for the numerical model with height
400mm.
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Figure 6.4:  Plot of the peak stress in an element at the center of the top boundary of

the shear wall versus projectile mass for the numerical mode] with height

250mm.
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Figure 6.5:  The curves show the vertical stress pulse for analyses al to a4 of the
numerical model with height 400mm. The stresses are plotted for an
element at the center of the upper boundary of the shear wall.

time {s]
1,50E-05 2,50E-05 3,50E-05 4,50E-05 5,50E-05
0,0E-H}O T ¥ T T T T t T T T T =
-1,0E+08
o
=)
% -2,0E+08 ‘
5 -
= * 5 o .g-0-"
8 -
F.: -3,0E+08 < W
> X .
x. K
X X
2 g ox ¥ X
4 EH08 N Syy-al s--4--- Syy-ad
\,-r"kj e Syy-29 ---®--- Syy-aid
-5,0E+08 ——Syy-al7

Figure 6.6:  The curves show the vertical stress pulse for analyses al, a5, a9, al3 and
al7 of the numerical model with height 400mm. The stresses are plotted
for an element at the center of the upper boundary of the shear wall.
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Figure 6.8: The curves show the vertical stress pulse for analyses al, a5, a9, al3 and

217 of the numerical model with height 250mm. The stresses are plotted
for an element at the center of the upper boundary of the shear wall.



118

Chapter 6 Simulations prior to experimental study

Numerical model ¢height 400mm)

40B:+08 t=12¢-6  —-——t=15¢-6
3SEH08 ey T t=18e-6  —---- t=21e-6
—w—t=24e-6  ---e- t=27e-6
T M — =~ t=30¢-6
‘o 2,58+08
@ 3
B 2,0E+08
8
EO15E+08
5
1,0E+08
508+07 -
0,0E+00 et i e
0 0,01 0,02 0,04 0,08
time [s]
Figure 6.9 Plot of contact pressure in the plate middle plane at the top surface in
horizontal direction for analysis al0 of the numerical model with height
400mm. The contact pressures are plotted for the time instants t=[12, 15,
18,21, 24, 27, 30]10°s.
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Figure 6.10: Plot of contact pressure in the plate middle plane at the top surface

in horizontal direction for analysis al0 of the numerical model with
height 250mm. The contact pressures are plotted for the time instants
t=[12, 15, 18, 21, 24, 27, 30]10°%.
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Figure 6.11:  Contour plot of stress in veriical direction for Analysis al0 at the time
instant t=57-10'65, for the numerical model with height 4060mm.

Figure 6.12: Contour plot of stress in vertical direction for Analysis al0 at the time
instant t=57- 10'65, for the numerical model with height 250mm.
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6.4 Crack Propagation simulation with the EFG method ang mixed
mode fracture criterion

6.4.1 Numerical modei characteristics

The concrete materig] parameters are the same ag described in the previous section, In
addition the dynamic fracture toughness wil] have the value K, =0.8MPa+/m » and the

simulations will adopt a constant crack Propagation velocity of 50 percent of the shear

Propagation velocity in the concrete. The constant fracture toughness is assumed based
on the estimates given in Xu, 8. and Reinbardt, HW (1998).
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simplification of the results from the FE analysis shown in Figure 6.9 and Figure 6.10.
It is assumed to represent a close approximation. The assumption is based on the fact
that the stress waves are circular and smooth when it reaches the crack propagation area,
and since the energy is the important factor, the local intensity variatiors do not

influence this picture significantly. The load intensity is given by:

© o (T, —-t)/T, fort<T,
o= G, =0, fort> T,

where ¢, =—250MPa and T, =1.0ms for the numerical model with height 400mm and

o, ==300MPa and T, =1.0ms for the model with height 250mm. The puise shape is
assumed to have a triangular form, with the peak at t=0.0ms. The reason why T, is
increased from the linear elastic impact simulated by ABAQUS, is the fact that the
projectile will induce some ductile behavior at the top of the shear wall caused by the
high peak stresses. The ductile behaviour and also other damping effects will tend to
increase the pulse duration for a test in the laboratory. Time history plots of strain from

the experiment will give the actnal pulse shape and duration.

Table 6.2:  Specifications of different EFG numerical models for the crack
propagation analyses of the model with height 400mm.

Analysis name: | Length: | Height: | Node density: Initial crack y-coordinate
A-~600-400-al 600mm | 400mm | 62 times 42 nodes | Omm from bottom
A-600-400-a2 | 600mm | 400mm | 62 times 42 nodes | 50mm from bottom
A-600-400-a3 | 600mm | 400mm | 62 times 42 nodes | 100mm from bottom
A-600-400-a4 | 600mm | 400mm | 62 times 42 nodes | 150mm from bottom
A-600-400-a5 600mm | 400mm | 62 times 42 nodes | 200mm from botfom
A-600-400-a6 | 600mm | 400mm | 62 times 42 nodes | 250mm from bottom
A-600-400-a7 600mm | 400mm | 62 times 42 nodes | 300mm from bottom
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Specifications of different EFG numerical models for the crack
propagation analyses of the model with height 250mm.

Table 6.3:

Initial crack y-coordinate

{mm from bottom

{5mm from bottom

25mm from bottom

35mm from bottom

45mm from bottom

55mm from bottom

65mm from bottom

75mm from bottom

85mm from bottom

120mm from bottom
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Plot of the numerical model for the analyses with height 400mm.

Figure 6.13:

Figure 6.14: Plot of the numerical model for the analyses with height 250mm.



Chapter 6  Simulations prior to experimental study 123

6.4.2 Results from EFG crack propagation simulation of the numerical model
with height 400mm

The normalized mode I stress intensity factor for all the analyses with load intensity
-2506MPa and load duration 0.12ms of the numerical model with height 400mm are
plotted in Figure 6.16. In Figure 6.17 are plotted normalized mode I stress intensity
factors for the analyses with load intensity -250MPa with load duration 0.1 ms.

The mode | stress intensity factor is calculated from the 10mm horizontal
predefined crack at the mid section, i.e. no crack propagation. The purpose of these
calculations is to identify the most likely location of the crack from which propagation
will start in a numerical analysis. The crack starts to propagate at the location where the
mode T stress intensity factor is larger than the material fracture toughness, K. The
material fracture toughness has some dependence on the magnitude of the strain rates.
In this study the material fracture toughness, Kje, is kept constant during the analyses,

As can be seen from Figure 6.16 (for the analyses with load intensity -250MPa
and load duration 0.12ms) the location of the first crack to start propagation is at the
bottom surface at the mid plan (SIF I-0cm, the solid line), where the normalized mode 1
stress intensity factor is greater than 1.0 for the first time at the time instant =0.125ms.
The normalized stress intensity factor is also grater than 1.0 at the fime instant t=0.13ms
for the predefined crack located at 205mm above the bottom surface (SIF [-20.5cm).
For the case with load intensity -250MPa and load duration 0.lms, the crack
propagation starts at the horizontal crack 255mm above the bottom surface (SIF F
25.5cm) since the mode I stress intensity factor reaches the fracture toughness for the
first time at this location. The crack starts to propagate at the time instant t=0.12ms. The
vertical crack (SIF I-Gem, the solid line) is the second crack that starts to propagate, and
the crack initiation is at the time instant t=0.125ms. The tendency for this load intensity
is that for the shortest load duration the horizontal crack will start higher above the
bottom surface than for the longer load duration. However, it can be expected that both
the vertical and the horizontal crack will start almost at the same time instant after the
projectile impact, and that the horizontal crack starts to propagate 200mm to 250mm

above the bottom surface at the mid plane



124 Chapter 6  Simulations prior to experimental study

The analysis where the crack propagation is allowed is performed with
predefined cracks at the bottom surface and 205mm above the bottom surface at the mid
cross section. The predefined cracks will have the possibility to propagate during the
analysis. The applied load intensity is -250MPa. The finial crack pattern for this
analysis is plotted in Figure 6.15 with red lines. Deformation plots of the model at
different time instants are presented for analysis A-600-400-a5 in Appendix . Contour
plot of the normal stresses in ydirection (Sz2) at corresponding time instants are also
presented in Appendix D.

Tt can be observed that the final crack paths are not exactly symmetric about the
mid cross section of the shear wall. The reason for this is shown in Figure 6.18 by the
difference in the stress intensity factor curves for the left end (end 1) and the right end
(end 2) points of the crack path, The mode I stress intersity factor should be the same
for both end points, but the mode T stress intensity factor will have opposite signs for a
idealized symmetric case. Since the vertical crack follows a zig zag path it would induce
some non-symmetric stress waves which can cause the non-symmetric horizontal crack
pattern. The solution is also sensitive to the artificial oscillations in the model after the
first crack propagation starts. This is indicated also by the curves in Figure 6.18, which
are almost identical before the crack starts to propagate (intersection with the red dotted
line at 1.0) followed by deviations between the curves. Refinement of the nodes and
especially shortening of the time intervals between updating of the stiffness matrix
during crack growth will decrease the artificial oscillations (see section 5.2.5).

Figure 6.15 shows the final crack path for the analysis A-600-400-a5
with load magnitude -250MPa.
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Plot of the final crack path for the analysis A-600-400-a5 with load

intensity -250MPa and load duration 0.12ms.

Figure 6.15:
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Figure 6.16:

numerical model with height 400mm and time history stress peak of

250MPa with load duration 0.12ms.
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for analysis A-600-400-a5 with load magnitude -300MPa at both ends of
crack line 2 (200mm above bottom surface).



Chapter 6  Simulations prior to experimental study 127

6 T ¥ 3
%
gu
X,
m
W)
-
@
H
g Y\ i :
£ 3 ST e }I ........ CSIFLCrack line 2 -end 2 |7 .
= Vo ~— STF I-Crack line 1
7 SO L T F I ~—~—38IF I-Crack line 2 ~end 2 |5 ... B
A —— SIF TI-Crack line 1
LW : :
-6 i i ]
0 1 2 3

Time [s] %107
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for analysis A-600-400-a5 with load magnitude -300MPa for crack line 2
(200mm above bottom surface) at end 2 and crack line 1 (vertical crack
from bottom surface at mid cross section},

6.4.3 Results from EFG crack propagation simulation for the model with height
250mm

The normalized mode 1 stress intensity factor for all the analyses of the numerical modetl
with height 250mm are plotted in Figure 6.20. In Figure 621 and Figure 6.22
corresponding curves are plotted except for the crack at the bottom surface SIF I-0cm.
The mode 1 stress intensity factors are calculated fom a 10mm horizontal predefined
crack at the mid section, i.e. no crack propagation. The same arguments as for the
simulation with shear wall height 400mm are valid for this simulation. The crack starts
to propagate at the location where the mode I siress intensity factor is greater than the
material fracture toughness, K. As can be seen in Figure 6.20 the location of the first
crack propagation is at the bottom surface at the mid plan (SIF Flcm, the solid line),
where the normalized mode I stress intensity factor is greater than 1.0 for the first time
at the time instant t=0.08ms. The normalized mode I stress intensity factor for the

predefined crack 55mm above the bottom surface at the mid plane (SIF I-5.5¢cm) is the
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second curve that intersects the red dotted line (at 1.0) at the time instant t=0.1035ms,
see Figure 6.21 and Figure 6.22. It should be mention that the crack initiation can also
start from a crack in the range from 45mm to 85mm measured from the bottom surface.
This is because the mode T stress intensity factors in this range intersect the fracture
toughness line at almost the same time instant (see Figure 6.22). Small disturbances of
the loading or variations in material properties in an experiment may be enough to move
the crack initiation from the 55mm location.

The aim of this experiment is to be able to predict a case with spalling from the
bottom side of the shear wall, i.e. no vertical crack along the mid cross section.
Reinforcement close to the bottom surface of the shear wall can hopefully avoid the
vertical crack to dominate the crack pattern.

A simplified crack propagation simulation for the reinforcement case is
performed with a predefined crack 55mm @ove the bottom surface at the mid cross
section, and without any crack from the bottom surface. This is based on the assumption
that the reinforcement prevents the vertical crack to evolve and that the reinforcement
bars do not considerably disturb the stress waves propagation in the shear wall. The
applied load magnitude is 300MPa. The finial crack pattern for this analysis is plotted in

Figure 6.24 with red lines. Deformation plots of the model at different time instants are
’ plotted for Analysis A-600-250-a6 in Appendix D. Contour plots of the normal stresses
in y-direction (S;2) are plotted correspondingly in Appendix D.

It can also be observed that the final crack pattern is almost exactly symmetric
about the mid section of the shear wall (see Figure 6.24). In more detail this is
supported by the curves of the stress intensity factors in Figure 6.23. It is seen that the
mode I stress intensity factor is almost equal for both endpoints of the crack path and
that the mode II stress intensity factor has the same magnitude but with opposite sign.
This is correct for the symmetric case, The small deviations in stress intensity factors

for both end points may result from artificial oscillations.
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Figure 6.20: The curves show normalized mode I SIF for all the analyses of the
numerical model with height 250mm, and the time history stress peak of
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Figure 6.24: Plot of the final crack path for the A-600-250-a6 analysis.

6.5 Description of the experimental set-up

The experiments are based on the nwmerical simulations reported in the previous
sections. Two series of experiments are conducted for shear wall heights 400mm
{Experiment 1) and 250mm (Experiment 2) respectively.

The numerical simulations do not take info account any possible increase in the
fracture toughness due to high strain rates. This could be a source of error and will be
discussed in the next chapter. The effect of possible increase in the pulse duration due to
yielding of the material or other damping effects is approximately accounted for by a
duration increase of 0.5ms. The actual pulse duration will be measured in the
experiment by strain gages.

Results from the experiments should verify the numerical simulations within the

range of uncertainties comprised in the numerical modeling and the experiments
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6.5.1 Experiment series 1

From the results obtained with ABAQUS (see Section 6.3) it is possible fo estimate the
impact velocity and projectile mass for the experiment, Figure 6.3 shows this
relationship. An impact velocity of 35-45m/s for a mass of 0.2 kg corresponds to a load
peak of -250MPa. It is expected that the horizontal crack starts to propagate
approximately 200mm to 250mm above the bottom surface at the mid plane.

Based on the previous calculations the proposal for the experimental model is:

L ]

shear wall length 600mm, height 400mm and thickness 40mm

the impact velocity 35-45m/s and projectile mass approximately 0.2kg

circular projectile impact area with diameter 40mm

* support extension S0mm at each side of the shear wall

6.5.2 Experiment series 2

For the crack pattern from the numerical simulation (see Section 6.4.3), a ridge shaped
cohcrete part may loosen from bottom of the shear wall. The time history load peak was
-300MPa. In this case the expected impact velocity and mass for the experiment is
found in Figure 6.4. The curves give an impact velocity of 40-50m/s for a mass of 0.2
kg. For that impact velocity it is expected that the horizontal crack starts to propagate
approximately 55mm above the bottom surface (or in the range between 45mm and
85mm, as discussed In Section 6.4.3),

Based on the previous calculations the proposal for the experiment set-up is:

e shear wall length 600mm, height 250mm and thickness 40mm
e impact velocity 40-50m/s, and projectile mass approximately 0.2kg
o circular projectile impact area with diameter 40mm

e support extension 50mm at each side of the shear wall
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Chapter 7 Shear wall experiment

7.1 Introduction

This chapter discusses the shear wall experiments. The parameters for each fest set-up
are specified, and the comresponding results are reported. The experiments are also
simulated with the EFG code based on the actual input parameters from the experiment.

The execution of the experiments is not a part of this study. They have been

handled by the structural laboratory at NTNU.

7.2 Experiment 1

The experiment is described in the next section, followed by listing of results in Section

7.2.2 and numerical results from the EFG code in Section 7.2.3.

7.2.1 Description of Experiment I

The experiment set-up is sketched in Figure 7.1. A digital picture from the structural
laboratory of the shear wall test specimen, strain gages and the gas gun barrel opening is
shown in Figure 7.2. A picture of the velocity measuring equipment (red lights) is
shown in Figure 7.3.

The shear wall length is 600mm, the height is 400mm and the thickness is 40mm
for the three test specimens of Experiment 1. Material tests to determine the concrete
material parameters were performed on the same day as the shear wall experiments for
the actual test specimen. The Young’s modulus and the Poisson’s ratio are listed in
Table 7.1. Tests of the fracture toughness and the crack propagation velocity were not

performed.
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The shear wall is supported at both ends over a length of 50mm, see Figure 7.1.
On the shear wall side where the impact will take place, a 300mm long, 40mem wide and
F0mm thick steel bar is embedded in the concrete. This steel bar is reducing crushing at
the concrete surface when the steel projectile is impacting by distributing the contact
pressure against the concrete. The projectile is cylindrical with a diameter of 40mm. It is
made of steel and its weight is listed in Table 7.1.

Strain gauges are located on the shear wall surface at the points Py and P;. Both
points has a radial distance of 150mm from the center of the steel bar top surface (see

Figure 7.1).

Shear wali

50 |Supparts

Projectile [ ““1"}
£ S | R

500
600

Stearing_pipe .

400

Figure 7.1:  Sketch of the shear wall experiment set-up.
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Figure 7.2;  Picture from the testing chamber of the gas gun equipment with the shear
wall, strain gages and the gas gun barrel opening.

Figure 7.3:  Picture of the gas gun barrel connection to the test chamber and the
velocity measure equipment (red lights). Mounting of the test specimens
to the right.
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Table 7.1:  Listing of parameters for each shear wall test case, for Experiment 1.
Test Mass Velocity | E-modulus | p v
projectile | projectile | shear wall shear wall | shear wall
ke m/s GPa kg/m’
1 0.2102 40 314 2400 0.2
2 0.2225 51.4 314 2400 0.2
3 0.2193 47.2/39.8 31.4 2400 0.2

7.2.2 Results of Experiment I

The results of each test case of the shear wall Experiment I are presented as plots of the
final crack patterns and time history curves of the vertical strain at Py. Table 7.2 lists
references to figures with results for each test case.

The vertical strain at P; has peaks from 0.5-107 to 0.8-10°, and pulse durations
from 0.08ms to 0.12ms for all tests. Figure 7.7 shows curves of the vertical strain time
histories for Tests 1, 2 and 3 at point P;. The most reliable result is from Test 1, because
the resuits are from one single shot that resulted in the crack pattern shown in Figure
7 4. For Test 2 the plotted crack pattern given in Figure 7.5 is a result of 4 consecutive
impacts. No cracking was seen from the first three impacts, but internal cracks have
. most likely occurred. The finial crack pattern for this test is different from Test 1. The
projectile mass and velocity is higher for the last impact, which also can be a source of
the difference in results between the two tests. From the digital picture of the test
specimen, Figure 7.5, a larger area with plastic deformations in the vicinity of the
impact together with higher level of plastification of the embedded steel bar at the top
surface of the shear wall is observed. This is a result of significantly larger impact
energy in Test 2 than for Test 1. The last test, Test 3, got a vertical crack at the first
shot and a horizontal crack in the second shoot. This is also a different behaviour
compared with what was observed in Test 1. A consequence of these results is that Test
i gave the most reliable result, and will be the best test to compare with a numerical
solution. It should, however be noticed that the crack patterns of the three tests are

similar, see Figure 7.4, Figure 7.5 and Figure 7.6
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The pictures of the crack pattern are taken when all the cracks have stopped propagating

after the impact, and give no information of the crack path sequence. A short description

of the three different cracking procedures is listed below:

Test 1: the vertical crack length is approximately 150mm and the curved
horizontal (horizontal at initiation) crack length is approximately 400mm
and it intersects the mid plane approximately 200mm above the bottom
surface. Both crack paths evolved simultanecusly from one projectile
impact. The crack pattern is almost symmetrical about the mid plane.
Test 2: the vertical crack length is approximately 225mm and the
inclined horizontal (horizontal initially) crack length is approximately
385mm, The horizontal crack intersects the mid plane approximately
223mm above the bottom surface. Both crack paths developed
simultaneously at the second projectile impact.

Test 3: the vertical crack length is approximately [16mm and the
horizontal (at initiation) crack length is approximately 360mm. The
horizontal crack intersects the mid plane approximately 165mm above
the bottom surface. For the projectile impact velocity of 47.2m/s, the
vertical cracks started to propagate. The horizontal cracking occurs for

the next shot with projectile impact velocity of 39.8m/s.

Table 7.2: Reference to result plot for each test case.
Test: Crack pattern: Time history:
1 Figure 7.4 Figure 7.7
2 Figure 7.5 Figare 7.7
3 Figure 7.6 Figure 7.7
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g e

Figure 7.5:  Digital picture of the final crack pattern for Test 2.
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Figure 7.6:  Digital picture of the final crack pattern for Test 3.

7.2.3 Numerical simulation of Experiment I with the EFG code

Based on the resulis from the shear wall Experiment I, only a few parameters are
modified from the initial simulation. Table 7.3 lists the parameters that are changed in
the numerical re-simulation of the shear wall. The time history parameters of the load

intensity for the re-calculation are:

W o (1,-6)/T, fortsT
[o1 =
G, =0, fort>T,

where ¢1=-250(-350)MPa and T|=0,12(0.10)ms. The load function parameters for the
re-calculations are listed in Table 7.4. The correctness of this load can be valued by
studying the vertical strain time history curves from the experiment plotied together
with the corresponding strain curves from the initial numerical simulations, see Figure

7.7. This comparison shows that the elastic impact (F250-T12-ABAQUS) gives higher
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strain magnitude and shorter pulse duration than measured for the experiments. This
may be a result of the plastic impact, which is related to plastification of the steel plate
and projectile together with the crushing of the concrete. The strain time history for the
EFG simulation, F250-T12-EFG, has also too high strain magnitudes but the pulse
duration is more like the measured pulse duration. If the measured values are correct the
comparisons can indicate that the fracture toughness utilized in the numerical
simulations is somewhat high, since the crack pattern is similar with too high strain
magnitudes. It should be noticed that the raise-time of the strain time history for the
EFG simulation is too long compared with the applied time history load, which
indicates that the distance between nodes and the time increments could be reduced to
obtain more accurate solutions. This has, however, not been done because of the
uncertainties in the test parameters and the considerably increase of computer time for
such simulations,

The crack pattern from the re-calculations with the above modified parameters is
plotted in Figures 7.8 and 7.9. The crack patterns in the numerical simulations are
similar to the crack pattern from the tests performed in the laboratory. The horizontal
crack paths from the test cases curve slightly upwards, which differ from the numerical
simulations where it curves downwards or is almost horizontal. For the simulations
 F250-T10-Vc035, F250-T10-Vc05 and F250-T10-Vc05 the downward curving is
smaller. This indicates that shorter pulse duration and relatively high crack propagation
speed bring the numerical results closer to the results from the laboratory tests. It should
be emphasized that this is only an indication, and with the limited basis from the

laboratory results and the performed numerical simulations there are still uncertainties.

Table 7.3:  Experiment specification for both initial- and re-simulations.
Parameter: Initial simulation: Re-simulations:
Shear wall length 600mm 600mm
Shear wall height 400mm 400mm
Shear wall thickness 40mm 40mm
Shear wall support length 50mm S0mm
Shear wall E-module 30.0GPa 31.4GPa
Shear wall density, p 2400 kg/m’ 2400 kg/m’
Shear wall v 0.2 0.2
Steel bar E-module 2100 Pa 210GPa
Steel bar density, p 7850 kg/m’ 7850 kg/m’
Steel barv 0.3 0.3
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Figure 7.7:  The curves show the time history of the vertical strain from the strain
gages located at Py in the surface of the shear wall, and the vertical strain
in Py from EFG and FE analysis with peak magnitude -250MPa
respectively curves F250-T12-EFG and F250-T12-ABAQUS.

Table 7.4: Listing of the analysis name, load function parameters and crack speed
utilized in the re-calculations.
Analysis name Magnitude on the | Duration time of | Crack speed
surface load the surface load | [fraction of shear
[MiPa] [e-5s] ‘| wave speed]
F250-T10-Vc05 -250 10 0.5
F250-T12-Vc03 -250 12 0.3
F250-T12-Vc05 -250 12 0.5
F250-T12-Vc07 -250 12 0.7
F250-T12-Vc05 -350 12 0.5
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7.3 Experiment II

The principal experiment set-up is the same as for Experiment 1, but the test specimen
dimensions are different: length 400mm, height 250mm and thickness 40mm. The
experiment characteristics are given in Section 7.3.1, followed by listing of results in

Section 7.3.2 and numerical calculations with the EFG code in Section 7.3.3.

7.3.1 Description of Experiment II

The set-up for Experiment I is the same as for Experiment I, which was sketched in
Figure 7.1. Digital pictures from the structural laboratory of the shear wall, strain gages
and the gas gun barrel opening are also given in the previous section in Figure 7.2, and a
picture of the velocity measure equipment {red lights) is shown in Figure 7.3. These are
taken with a test specimen from Experiment II.

The experiment deviates from Experiment [ in test specimen dimensions. The
main purpose of this second experiment is to obtain a different crack pattern (ridge-like
spalling). In order to avoid the vertical crack at the mid plane, reinforcement is
embedded horizontally near the bottom surface at a 100mm long region at the centerline
of the shear wall. The reinforcement consists of 2 bars with diameter 8mm, The
Young’s modulus, Poisson’s ratio, density of the shear wall and the projectile mass 1s
listed i Table 7.5. Oualy one test is performed.

Strain gages are located on the shear wall surface at the points Py and P2. Both
points has a radial distance of 120mm from the center of the steel bar top surface (see
Figure 7.1).

Table 7.5: Listing of parameters for the shear wall Test 1.

Test | Mass Velocity | E module v
projectile | projectile | shear wall | shear wall | shear wall
kg m/s GPa kg/m’

1 0.210 39.9 31.4 2400 0.2
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7.3.2 Results of Experiment [I

The results of Test [ of the shear wall Experiment II are presented as plot of the final
crack pattern shown in Figure 7.10. The vertical strain peak value at P1 is 1.1:107, and
the pulse duration is 0.1ms for Test 1. The strain time history curve has similar shape as
the curves shown in Figure 7.7. The maximum magnitude measured is more like the
EFG results for this experiment than was the case for Experiment L. This may indicate
somle uncertainties in the measurements.

The crack pattern did not give the expected ridge-shaped spalling. It scems that
the reinforcement spreading was to short, with the result of initiation of a vertical crack
at the right hand end of the reinforcement at the bottom surface. In addition a horizontal
crack at the mid plane, approximately 60mm above the bottom surface was initiated.
This is the crack that was expected to propagate down wards to the botiom surface to
form a ridge-shaped spalling. Further discussion of the evolution of this crack pattern is
given in the next section also based on additional numerical calculations. A brief listing

of the measurements of the crack pattern is given below:

e Test 1: A horizontal crack 60mm above the bottom surface at the mid
part of the shear wall is observed. At the right end of the horizontal crack
a vertical crack goes straightly downwards to the bottom surface. From
the left hand side of the horizontal crack a vertical crack goes up to the

steel bar at the top surface.
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Figure 7.10: Digital picture of the final crack pattern for Test 1.

7.3.3 Numerical simulation related to Experiment II with the EFG code

Based on the results from the shear wall Experiment 1L, it is necessary to modify some
of the parameters used in the initial simulation. Table 7.3 lsts the parameters that are
changed in the numerical simulations of the shear wall. The time history parameters of

the load intensity for the re-calculation are:

o (T,-t)/T,, fort<T
G, =0, fort>T,

o{t) =
where 6,=-250MPa and T\=0.12ms. The correctness of this load is verified by studying
the results from the strain gages. By recalling the results from Experiment I, see Figure
7.7, and the vertical strain peak value and the pulse duration from Experiment I
(vertical strain peak value at P1 is 1.1-107 and the pulse duration is €.]ms) the chosen

time history load is better correlated with the measured data than for Experiment 1.
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Since the shear wall dimensions differ between the model used in the initial
calculations, an updated numerical model is established. The mode 1 stress intensity
factors at different heights above the bottom surface at the mid plane for 10mm
horizontal pre-cracks are calculated. This is done to predict where the horizontal crack
is expected to initiate.

Figure 7.11 shows the mode 1 stress intensity factors, where it can be seen that
the pre-crack located 55mm (SIF I - 5.5cm) above the bottom surface intersects the
fracture toughness (red doted line) first, This indicates where the horizontal crack will
be initiated. This is also in agreement with the horizontal crack from the laboratory test,
which was located 60mm above the bottom surface.

If vertical crack initiation from the bottom surface should be avoided the
reinforcement must be extended. This is avoided if the mode I stress intensity factor for
the vertical pre-crack intersects the fracture toughness line at a delayed time at least
equal to the time for the horizontal crack to propagate from the pre-crack to establish
the complete spalling pattern. Le. the time from the horizontal crack intersects the
fracture toughness line until the ridge-shaped spalling is established. The time delay for
the 10cm offset crack (SIF I - 8cm offset), see Figure 7.12, is 0.01ms. Within this time
interval the horizontal crack will only advance 1-2cm which may result in initiation of

the vertical crack. This is an approximate consideration since when the horizontal
| cracking is started it will disturb the mode I stress intensity factor at the bottom surface.
Prior to possible further experimental verifications, numerical simulations must be run
with one 10mm horizontal crack 55mm above the bottom surface at the mid plane,
together with short vertical cracks with different offset distances from the mid plane.
Then the necessary reinforcement extension can be decided.

Figure 7.13 shows the crack pattern from a simulation with only one
10mm long horizontal pre-crack 55mm above the bottom surface at the mid plane, this
simulation gives the ridge-shaped spalling, Figure 7.14 shows the crack pattern from a
numerical simulation of the experiment with the updated parameters listed in Table 7.6.
A 10mm long horizontal pre-crack is located 55mm above the bottom surface at the mid
plane of the shear wall and a 25mm long vertical pre-crack at the bottom surface is
located with 50mm offset from the mid plane. This numerical sirnulation demonstrates

some of the behaviour observed in the laboratory (see previous section).
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Table 7.6: Experiment specification for initial- and re-simulations.
Parameter: Initial simulation: Re-simulations:
Shear wall length 600mm 400mm
Shear wall height 400mm 250mm
Shear wall thickness 40mm 40mm
Shear wall support length S50mm 50mm
Shear wall E-module 30.0GPa 31.4GPa
Shear wall density, p 2400 kg/m’ 2400 kg/m’
Shear wall v 0.2 0.2
Steel bar E-module 210GPa 210GPa
Steel bar density, p 7850 kg/m® 7850 kg/m’
Steel bar v 0.3 0.3
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Figure 7.11: Mode 1 stress intensity factors at horizontal pre cracks at different
heights above the bottom surface at the mid plane of the shear wall.



Shear wall experiment

Chapter 7

x10°

PR
e
e e
v e e
e e
P
Y I

. e e

Time [s}]

2RI
(R

L A I R I I

" e e

Py
~,

P
et e
P
P
e e
e e

LI Y

R o I N R

EIE R

4

EEERE )

SIF 1 - 10cm offset
v SIFI-12cmoffset |

==- SIFI-1.5em
» BIFI-3.5cm

/ooooo

oxe SIET-8.5cm
-0 . 71~ 12cm

—— SIF I - 8cm offset

<O SIFI-7.5cm

- SIFI-55cm
| =&~ SIF]-6.5cm

148

== SIFI-25m
A -9~ SIFI-4.5cm

e
N v e
P
PR,

‘e e

heights above the bottom surface at the mid plane, and 25mm long
vertical pre-cracks at the bottom surface with different offsets

from the mid plane.

+a e

R

P S SO TR | A TR R |
® W o+ M N e O v o o

M bl d1s peziewion

‘e

P I I R
P T
I I I I R R R S
P I I T T T T
P I R R R R
P R R A U I IR I B BN S Y
P R R R T
P I T T T T T S
P I I I S R R
P I I T R S
P I R N
P R A T T S A Y
P R R S O T S T S S R R Y
P R T TR I T S S P
P R T A T R R Y
P I I R R
D A I T R O I I N IR S P AP
D R I I I N A Y
P I N A e R R

DR s L

D A Y]

e ey

Figare 7.12: Mode 1 stress intensity factors at horizontal pre cracks at different

crack located 55mm above the bottom surface at the

Plot of the final crack pattern for the numerical re-simulation with only

one horizontal pre-

mid plane.

Figure 7.13:



Chapter 7 Shear wall experiment 149

D A I I I I IS Y

R

R R R T

P
D I A O A N I N Y
D I I T I I I
I S R R R R

vé
v
f

P I

et

B A R O N A I I A A A
A I e e L S I A A}
P I I I I I R O R )

L I T T R
I I I R RS
D I I I O T T R S S A
D I L I L I N S S S P A SN A ]
D L I R R e R E R R
R T TR R]
A Y
I I I I R e R R

L R I T I N I I I I
B I I I O O I SR TR SRR P Y

.
.
.
.
+
+
.
+
+
+
+
+
.
+
.
+
+
-
+
.
.
+
.
.
.
.

"""}"'""""""""'

T
R R o O O
R R R e O
R Ny
L Y

PRI
e
s e
RS
LIRS

LEE Y
LSRN

Figure 7.14:  Plot of the final crack pattern for the numerical re-simulation with
one horizontal pre crack located 55mm above the bottom surface at the
mid plane, and a vertical 25mm long vertical pre crack located at the
bottom surface at 50mm offset from the mid plane.

7.4 Conclusive remarks

In this section discussions of the laboratory experiments and the numerical initial- and
re-calculations are listed.

For Experirnent 1, the shear wall with 600mm length and 400mm height, there is
a good agreement between the results from the numerical simulations and the results
from the laboratory tests. Classification of the agreement as good is of course
considering the level of uncertainties in the parameters used for the numerical
simulations, and the relatively coarse density of nodes and integration points in the
numerical model. The most uncertain parameters are the shape and magnitude of the
time history load function, fracture toughness of the concrete and the crack propagation
velocity. Measurements with higher level of accuracy of the strain in the test specimens
could reduce some of the uncertainties in the load function parameters. The fracture
toughness could be found in standardized tests, and the crack velocity could be decided
by special cameras. Unfortunately, this was not an option when the experiments were

performed.
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For Experiment TI, the shear wall with 400mm length and 250mm height, onky
one test case is performed. The expected crack pattern was not completely obtained.
The purpose of this test case was to obtain a ridge-shaped spalling, where vertical
cracking from the bottom surface of the shear wall should be avoided by use of
reinforcement. The reinforcement was located close to the bottom surface with
endpoints approximately S0mm from the mid plane. This resulted in initiation of the
vertical crack at the ends of the reinforcement, and thus changed the expected crack
pattern.

The experiments were included to show that the numerical tools based on linear
fracture mechanics and the Element Free Galerkin method, are suited for solving
dynamic brittle fracture. It will be possible to tune the numerical solutions to obtain
best-fit pre-simulations of the experiment and of course the confidence level of the
experimental work. The main conclusions from this exercise is, however, that the
numerical tools work properly for this type of problems, and that the work in this thesis
show one possible way of predicting the crack initiation and its finial crack pattern for
brittle fracture.

The numerica! simulations also show that the values of the estimated fracture
toughness and crack propagation speed have been reasonable, based on a simplified

. compsrison of results between the numerical simulations and the laboratory tests.
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Chapter 8 Conclusions and suggestions for further
work

In this chapter the main conclusions of the thesis work are given in Section 8.1,

followed in Section 8.2 by some suggestions for further work within associated areas.

8.1 Summary and conclusions

The EFG method is suited to solve problems with local discontinuous behaviour such as
general crack growth. The applicability to this type of problems is rational as the
connectivity between nodes in the numerical model is such that it can be updated during
time stepping analyses. The displacement approximation that allow for updating the
node connectivity during numerical simulations is based on minimizing the weighted
quadratic difference between the local approximation and the nodal parameters for
every node with non-zero influence domain. This method is called the moving least
square method (MLS). Establishing the discrete equations based on the EFG
displacement approximation is performed in a stmilar manner as for the finite element
method, i.e. inserting the displacement approximation into the weak formulation of the
problem. A disadvantage of the EFG formulation is that it is more computer time
demanding than the finite element method for solving problems without local
discontinuities, To utilize the advantages of each method they are coupled through
interface elements. Fhe coupling makes it possible to limit the domain where the EFG
method is used to calculate the local discontinuities while the finite element method is
exploited in the remaining domain of the numerical model. This results in cost effective

calculations with respect to computer time.

To decide if a crack will initiate propagation, be arrested, will propagate further and in
what direction, the linear elastic dynamic fracture mechanics theory is utilized. The
energy release rate domain integral is performed for an area that contains the crack tip

for calculation of the stress intensity factors. These are then compared to the fracture
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criterion. In this work the maximum circumferential stress criterion is used as the
fracture criterion for the actual material of the numerical model. If a crack initiates
propagation or continue propagation, the crack path is updated stepwise during the
simulation. This will release the connectivities between the nodes that the crack
separates. Updating of the stiffness matrix is necessary. This is a process that is
generally handled within a predefined domain (i.e. the EFG domain). The analyses that
are performed show that the linear elastic dynamic fracture mechanics gives stable
results also without very high node densities. Even relatively low node densities predict
satisfactory estimates of the crack pattern and failure mode with robust algorithmic

performance.

Part of the research within computational mechanics at the Department of structural
engineering NTNU, has been directed towards nonlinear dynamic problems with
application to protective structures, This identified a need for the ability to simulate
problems where the material may fail in brittle fracture. This is often the case for
concrete and rock. The combination of elastoplastic material behaviour and brittle
fracture is also an important issue for welded metallic structures. Dynamic response of
offshore pipelines is thus another field of application for numerical codes that can
* estimate brittle fracture and in combination with elastoplastic material behaviour. For
research applications there was a need to obtain comprehensive knowledge of crack
growth in britle materials. In particular there was a requirement to know about
accuracy, computational efficiency and not least robustness in obtaining reliable results.
Among actual methods for crack growth estimation the EFG method was found to be
promising for the purposes. Because commercial codes were not available the need to
study the method comprehensively led to the decision of developing a prototype

computer code on a MATLAB platform.

The code is limited to two-dimensional linear elastic dynamic fracture simulations,
where explicit solution of the discrete equations in the time domain is applied. The
development has emphasized handling of the coupling between the finite element
description and the EFG description, and that general crack propagation of two

independent cracks should be possible. For the purpose of analyzing protective
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structures in rock, the possibility of including cavities with general shape has been
implemented in the code. Optimizing the code with respect to computer time cost
efficiency has not been emphasized. Several analyses of different reference problems
have been run in order to verify and validate the code. The comparisons show a
satisfactory level of accuracy and robustness in the solution for simuiation of general

crack growth for two-dimensional problems.

Sensitivity in estimated results and impact on computational efficiency from various
EFG modeling parameters for linear elastic dynamic crack propagation problems were
studied for 3-point bending of a concrete beam. Crack growth in the mid plane was
studied. The parameter variations include variation of d (side length in a square defining
the J-integral domain) , At (time increment), dw.x (defining the size of the domain of
influence), the number of Gauss cells, the frequency of updating the stiffness matrix,
linear and quadratic coupling in the interface domain, explicit integration parameter B
and linear or extended basis. A set of parameters was adopted for further simulations
based on the parameter study described above. The criterion for selection of parameters
was that the results from the simulations should show satisfactory convergence with
minimum use of computer time. The size of the EFG domain where crack growth is
allowed, dp, and the frequency of updating of the stiffness matrix to trace the crack
growth are the most significant parameters that influence the total use of computer time.
Oscillations induced from infrequent updating the stiffness matrix to trace the crack
advancement, named artificial oscillations, were observed. More frequent updating

gives lower oscillation amplitudes.

The simulations of two well-defined examples, the pendulum experiment by John R.
and S.P. Shah (1990) and the cracking of a free plate of high strength steel by Kalthoff
and Winkler (1987) were selected for verification of the present code. The results from
these numerical simulations with the EFG method and use of linear elastic dynamic
fracture mechanics as crack propagation criterion are also used by Organ (1996). This
makes comparison of results easy. The comparison between the results obtained by
Organ (1996) and results from the analyses with the present code showed good

correlation between the simulations. This is a valuable indication and confirmation of
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the accuracy obtainable with the present code. Some minor differences in the compared
results are observed, but the overall estimated behaviour of the numerical models is in
good agreement, Detailed information of the simulations by Organ is needed to
conclude further on the differences. For the main purpose of studying the capabilities
and robustness of the EFG method as implemented in the present code, the comparison

with Organ is fully satisfactory.

Laboratory experiments and numerical initial- and re-calculations were also performed
for validation of the EFG results. A concrete shear wall was impacted at the mid plane
of the longest side by a steel projectile. The shear wall was supporied at both ends
opposite to the edge where the projectile hit. The results from Experiment I, a shear wall
with 600mm length and 400mm height, is classified as good correspondence between
the results from the numerical simulations and the results from the laboratory tests. It is,
however, realized that each parameter entering the comparison may have significant
uncertainties. For Experiment 11, the shear wall with 400 mm length and 250mm height,
there is only performed one test case. It did not completely obtain the expected crack
pattern. The aim of this test case was to get a ridge shaped spalling, where vertical
cracking from the bottom surface of the shear wall should be avoided by use of
reinforcement. The reinforcement was located close to the bottown surface with
endpoints approximately at 50mm offset from the mid plane. This resulted in initiation
of a vertical crack at the endpoint of the reinforcement. This influenced the crack

pattern.

The main conclusion of the present study is that the EFG method together with linear
elastic dynamic fracture mechanics is well suited for simulation of general crack
propagation in brittle materials. Since the EFG method is more computer time
consuming than the finite element method it will be efficient to limit the EFG domain
and base the rest of the numerical model on finite elements. Additional advantage is that
all the well-documented possibilities of the finite element method are available in the
numerical model outside the EFG domain. For this type of simulations to predict
reliable results one should choose parameters carefully and with knowledge from this

type of calculations. Combination of EFG and FEM modeling will also enable reliable
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estimates of the performance of protective structures exposed to external explosive

loading in the vicinity of the structure or inside the structure. One particular problem

that can be solved is then the estimation of whether spalling will occur at rock cavem

surfaces.

8.2 Suggestions for further work

Suggestion for further work is listed as:

The EFG code is suited for parameter studies of incoming shock waves to rock
tunnels and caverns and similar protective structures. It is possible to make
calibration with results from full-scale tests. After calibration and with
satisfactory results obtained, the EFG code can be used for design of tunnels and
rock caverns. This direction of the research points to practical benefit and

applications.

An cxpansion of the EFG code to three-dimensional space is an obvious choice,
since shock waves and the resulted crack pattern in rock tunnels and caverns is
typical three-dimensional. This will also enable applications to combined

fracture development and elastoplastic behaviour for offshore pipelines.

If commercial codes that offer this type of calculations will be available in the
future, this work can be a basis and useful reference for calibration. Since
today's commercial codes offer coupling to computational fluid dynamics codes,
calculations of the explosion phase and its resulting shock waves would directly
be integrated with the numerical model of the structure. This could be the

solution to the complete problem sketched in the introduction,
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Appendix A

The first term in the asymptotic solution for stresses, displacements and velocities for
mode I and mode II loading, are described with the formulas (A.1) to (A.18) (see
Freund (1998)). The x and y variable in the ficld equations, are defined relative to the
crack tip coordinate system as shown in Figure A.l. The function q and its material
derivative are plotted in Figure A.2 - Figure A.1, it’s plotted on the integration domain
A, see Figure A.l. Figure A.5 to Figure A.14 illustrate the actual variable as a 3D

surface plot above the integration domain A.

ASYMPTOTIC CRACK TIP FIELDS:

In Section 3.5 the definitions below where done:

2 2
0 = }1—"—2, o, = [1-— (A1)
Cd C.\'

D(v) =400, ~(1+0) (A2

To simplify the formulas in this Appendix, the following definitions are done:

L e
,=x +0dy?, o= xP +aly’, 6, =tan '—)‘:—y, 0, = tan” 2J (A.3)

X
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MODE I STRESS:
G, = Djlz_ﬁ {(0&3 +1)(2al —ol + 1)—\?1?(:03%“ 4o o ﬁcos %} (A4)
Oy = D?z}{ {—(o&f +1y —\/%coswez—d+ 4o ot —\/l]_:cos %} (A.5)
0’,2z;)%;{mcd(a:+1)w\7£;:sine—2‘*—2ad(af+1)71rjsin%‘| (A.6)
MODE H STRESS:

K, 2 s .8 ) 1 .6
o, = 2o {0 — 200 — D —m=sin—& + 200 (0 4+ D) —=sin — A7
' D\/Er{ (0 2% )\/? 5 Ao )\/{’ 2} (A7)

&

K, 2 1 .8 S
Cp = 20, (0] +1)—=sin—*+ 20, (0 +1)——=sin— (A.8)
K, | I8, ., .1 8
Oy = | 400,00 —= COS—2 — (01, +1)" —==COS 5 (A9
12 D fzn ] d s (['d 2 s frg 2
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MODE I DISPLACEMENT:
U, zflg—%[(a:+I)\/—r:cos%"——20tsocd\/gcos%} (A1)
u, = f[')‘\% {—(x(, (o2 +1)/x, sin %—'+ 20,1, sin %} (A.11)
MODE II DISPLACEMENT:
u, :%—%:QGS\ESNG—;-—GS(QE+1)J€Sin%{| {A12)
u, :%:/[——%:QQsa(,\/gcos%——(af+1)\[r:cos%i} (A13)
MODE I VELOCITY:
a, zﬁ{m@ +1)—\/1Tcose—2“w20ts(xdw\?%cos%: (A.14)
1, ="—K‘{—a (a§+1)Lsin9—d+2a ——1——sin—su (A.I5)
wpVar| Juoo2 T 2]
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MODE H VELOCITY:

i =R 20 —I—msing‘*——a ((x2+1)w1-~sin9f~
| ].,LD'\/ET—C_ SJ{Z 2 H s J;; 2

(A.16)
. vK, I o 2 ! 0
u, = =200 0, —=C08—2+ (O, +1}—=cos—= (A.17)
' upyan { v ‘/;; 2 ' J{ 2 }
ACCELERATION:

The acceleration can be derived by applying the local steady state condition twice. Then

the expression for the acceleration can be written as:

= (A.18)

The first term in Eq. (A.18) is zero when constant crack growth is applied.
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crack Domain A, where the interaction

integrals arc evaluated,

Figure A.1:  Relations between the local coordinates x and y and the crack tip.
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Figure A.2:  The function q plotted over the integration domain A, axes and crack
position as in the illustration in Figure A.L
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Figure A.3:  The function q; plotted over the integration domain A, axes and crack

position as in the illustration in Figare A.1.

Figure A4:  The function q; plotted over the integration domain A, axes and crack
position as in the llustration in Figure A.1.
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Figure A.5:  The circumferential stress G](ll) from mode I loading, is plotted aver the

integration domain A, axes and crack position as in the illustration in
Figure A.1.

Figure A.6:  The radial stress o) from mode I loading, is plotted over the integration

domain A, axes and crack position as in the illustration in Figure A.l.
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Figure A.7:  The shear stress o'y from mode I loading, is plotted over the integration
domain A, axes and crack position as in the illustration in Figure A.1.

CRBACI,
N PE e
TR

Figure A.8: ﬁf” from mode I foading is plotted over the integration domain A, axes
and crack position as in the illustration in Figure A.1.
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w10

Figure A.9: 1}(2” from mode 1 loading is plotted over the integration domain A, axes
and crack position as in the illustration in Figure A.1.

Figure A.10: The circumferential stress o, from mode II loading, is plotted over the

integration domain A, axes and crack position as in the illustration in
Figure A.1.
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Figure A.11: The radial stress 63, from mode Il loading, is plotted over the

integration domain A, axes and crack position as in the illustration in
Figure A.1.

Figure A.12: The shear stress o’ from mode Il loading, is plotted over the integration
domain A, axes and crack position as in the illustration in Figure A.1.
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Figure A.13: uﬁ” from mode II loading is plotted over the integration domain A, axes
and crack position as in the illustration in Figure A1,

%10

Figure A.14: 0 from mode II loading is plotted over the integration domain A, axes
and crack position as in the illustration in Figure A1
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Appendix B

in Section 4.2 the program structure was briefly described, with references to this
appendix for more detailed descriptions of the main routines Kmat.m, CGKmat.m, and

CG.m. In the following each routine structure is listed:
Kmat.m: establish the global stiffness matrix, unless for the xcrack region,

[K,Cxg] = Kmati........ )
Definition of variables for use in this routine.
for gc = 1 {0 (rotal number of Gauss points)
if (the Gauss point is inside the Finite Element domain)
K = KFEMY{....), inserts the stiffness contribution from the Finite Element domain
into the global stiffness matrix.
end if
if (the Gauss point is inside the EFG domain, byt outside xcrack domain)
K = KEFG(....}, inserts the stiffness contribution from the Element Free Galerkin
domain into the global stiffness matrix.
end if
if (the Gauss point is inside the interface domain)
K = Kinterface(....), inserrs the stiffness contribution from the interface domain into
the global stiffness matrix.
end if
if (the Gawss point is inside xcrack domain)
Cxg = (saving information of the Gauss points inside the xcrack domain)
end if
end for

end Kmat.m
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CG.m: calculate the stress infensity factors, and checking the crack propagation
criterion.
[Le,te, ... ] =CG(........ )
Definition of variables for use in this routine.
XC = is the crack tip coordinates, where the crack propagation criterion is to be checked.
XA = define the corners in the domain integration range, where the stress intensity factors is 10 be
caleulated. See Section 3.9.2.
for i =1 to (rotal number of points in Cxg)
if (the Gauss point is mside the domain defined by the corners in xa)
St = the siresses ar the Gauss point. The stresses take into account, cracks by the
visibility criterion (see 2.0.1}, and the enriched basis (see Section 2.7),
Ut = the displacement, velocity, and the acceleration similarly as for the stresses.
Cg = the variables in the awxiliary field 10 be used in the domain integration (see
Section 3.8).
Gintl = building up the interaction dynamic energy release rate integral, mode I (see
Section 3.8).
Gintll = building up the interaction dynamic energy release rate integral, mode Il (see
Section 3.8).
end if

" end for

Caleulating the stress intensity factors with the Equations 3.39 and 3.40:

E _(ll)
PO LT
i-v* J24,

E )l
K= z) G
1-v* J2A,

Checking the crack propagating criterion:

if {crack propagate = ok)
Y.c = adding the new crack segment to the previous crack path.
tc = I (tells other routines that the crack has advanced)

else
tCc=-7

end if

end CG.m
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CGKmat.m: establish the stiffness matrix for the xcrack region.

KEFGc = CGKmat(........ )
Definition of variables for use in this routine,
for i = | to (total number of points in Cxg)
if (the Gauss point is inside the enriched/coupled domain (if enrichment of the basis is to be
used, see Section 2.7) in the vicinity of the crack tip.
Se = shape(....), return the shape functions for the enriched/coupled domain,
end if
if (the Gauss point is ourside the enriched domain)
S1 = shape(....), return the shape functions for the linear basis domain.
end if

KEFGc = building up the stiffness matrix KEFGe, on the basis of the shape functions, Gauss
point information, and the material behaviour.
end for

end CGKmat.m
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Appendix C

ted,
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In this Appendix C deformation plot for all the numerical simulat

together with plots of the normal stress component in the x-direction, oxx, for some of

the analyses. The stress plots are presented as a surface above the beam model] and a

contour plot of the stress surface below the beam model. These forms of plots are given

GO705C and GO734V.

for the simulations
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(a) Deformed numerical model from analysis GO705C (magnification factor 100).
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tant as in (a).
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(a) Deformed numerical model from analysis GO705C (magnification factor 100)
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y-direction {rm)
(b) 3D and contour stress plot of oxy, for the simulation GO705C,

(a) Plot of the deformed numerical model for simalation GG705C at time

Figure C3

0.96 ms. (b) 3D and stress contour plot of oy, for the same simulation and

time instant as in (a).
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(a) Deformed numerical model from analysis GO705C (magnification factor 100).
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{b) 3D and contour stress plot of 6,4, for the simulation GO705C.

(2) Plot of the deformed numerical model for simulation GO705C at time

gure C4:

i

1.02 ms. (b) 3D and stress contour plot of 6y for the same simulation and

time instant as in (a).
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{a) Deformed numerical mode! from analysis GO705C (magnification factor 100).
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{b) 3D and contour stress plot of oy, for the simulation GO705C.

GO705C at time
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1.08 ms. (b) 3D and stress contour plot of oy, for the same simulation and

time instant as in (a).
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(a) Deformed numerical model from analysis GO705C (magnification factor 100).
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(a) Plot of the deformed numerical model for s
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(a) Deformed numerical model from analysis GO705C (magnification factor 100).
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(b) 3D and contour stress plot of 6y, for the simulation GO705C.

(a) Plot of the deformed numerical model for simulation GO705C at time

Figure C7

same simulation and

1.2 ms. (b) 3D and stress contour plot of 6y for the

time instant as in (a).



183

Appendix C

it

b P ld
et et Rt ARl e tee by
Feptate ettt ne s

e ald
P el 00400.M000 ry
Sttt irband
P et toet e LTI Y VI
SEAHELEL 4L 400 240 S o bbb tb e
P S e et ittit ittt ity e
I Sttt st tosttstticaisled
R O et et rottitestlones
PEEEIRICEEERLE PSR EE S04y
a0ttt et et
L i s ibtbtdtsnssndts T 2L TTE Y
s a s 0ttttttotttot I
et e Bttt ettt toa2T222904
L3 ittt ibiddtencs st T LY
ettt ottoest Ll lrnpases
FEE PR 4440480404000 0004
AP 4RI 4444444444040 040
0ot ottt ctiotitostsed
IS0 000000ttt otated
PO todbedettot dat oo
TR Ab gy Sttt et b e ens
Nﬂtooooooooboooooo.ooo.;o
MG0be s ig T L e Bt eot
000”0‘0000 4544480004
T4 bebeterse
40444

(a) Deformed numerical model from analysis GO705C (magnification factor 100).
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Figure C8;
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time instant as in (a).
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(a) Deformed numerical model from analysis G0734C (magnification factor 100) at the

time instant (.5 ms.
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{b) Deformed numerical model from analysis G0734C (magnification factor 100) at the

time instant 1.0 ms.
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(c) Deformed numerical model from analysis G0734C (magnification factor 100) at the

time instant 1.1 ms.
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(d) Deformed numerical model from analysis G0734C (magnification factor 100) at the

time instant .4 ms.

Plot of the deformed numerical models for simulation G0734C at time

Figure C10
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(a) Deformed numerical model from analysis GO734V (magnification factor 100}.
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(b) 3D and contour stress plot of G, for the simulation GO734V.

(a) Plot of the deformed numerical model for simulation GO734V at time

Figure C11
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0.3 ms. (b) 3D and stress contour plot of oy, for the

time instant as in {(a).
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(b} 3D and contour stress plot of oy, for the simulation GO734V.

{a) Plot of the deformed numerical model for simulation GO734V attime
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1.08 ms. (b) 3D and stress contour plot of o, for the same simulation and

time instant as in (a).
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Appendix D

In this Appendix the crack path evolution (deformed numerical model} during the

numerical simulation and contour plots of stress in y-direction are plotted for analyses
A-600-400-a5 and A-600-250-a6.
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Figure D.1:  Deformation plots at different time instants for analysis A-600-400-a5.
The displacement magnification factor is 50.
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