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Abstract

This doctoral thesis is submitted to the Norwegian University of Science and Technology.
The main objective of this thesis is to develop an efficient simulation technique to estimate

the failure probability of time-dependent systems, whose state is expressed as a solution of
Itô stochastic differential equations.

The work is divided in two topics due to requirements of the scholarship.
The first part addresses to the problem of assessing the reliability of dynamic systems,

where the first-passage probability is chosen as a performance measure of structures subjected
to the irregular, stochastic environmental loads. This problem has received considerable
attention recently but it still remains a challenge for a wide class of systems.

The improved importance sampling method is developed which allows the solution of
the first-passage problem and its applicability for single degree of freedom linear and non-
linear systems. Firstly, it is efficient for assessing small probabilities and it increases the
convergence rate compared with the crude Monte Carlo method. Secondly, the procedure
uses as much known analytical information about systems as possible.

The second part of the thesis features the probabilistic analysis of the ice loads on the
Norströmsgrund lighthouse situated in the Baltic Sea. The objective is to verify the spatial
correlation model of the ice forces on the structure and estimate the design values from the
appropriately chosen extreme value distribution.
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Chapter 1

Introduction

The thesis consists of two separate parts. The first and the main body of the work
is devoted to the improvement of Monte Carlo techniques to solve problems posed in the
framework of time-dependent structural reliability. The second part describes the analysis of
ice load measurements which were obtained during the LOLEIF and STRICE projects under
the supervision of Professor Sveinung Løset from the Department of Civil and Transport En-
gineering, Marine Civil Engineering group, Norwegian University of Science and Technology
(NTNU).

1.1 Background and motivation

The prediction of design parameters is an important issue in reliability assessment. Tradi-
tionally, structural design relies on deterministic analysis though the uncertainties in loads
and material properties are not completely neglected. Safety factors may be introduced to
separate strength and load variables (Melchers, 1999). However, due to the fast development
of high technology, the increasing cost of equipment, the increasing threat to the environment
and people’s lives the probabilistic concept has become more and more in demand. Recent
results show that it is not enough just to assume suitable dimensions, material properties
and loads, it is crucial to take into account the fluctuations of the loads, the variability of the
material properties and the uncertainties regarding analytical models. A comprehensive his-
torical survey of structural reliability is given by Madsen et al. (1986) and Melchers (1999).
Until now the theory has evolved from the safety factors concept through the probabilistic
representation of models, loads, consequences as well as risk analysis.

In random vibration studies an important reliability measure is the first-passage prob-
ability density p(T ) which determines the probability p(T )dT that the value of a random
process surpasses a threshold for the first time during the interval from T to T + dT . For
mechanical and structural engineer, a first-passage problem of considerable interest is that
of the response of an oscillator subjected to random excitation. Moreover, the first-passage
probability is closely related to the failure probability which is of main interest in this project.
The exact solution of this problem has not been found even in the case of a stationary linear
oscillator excited by white noise. The most widely spread asymptotic solution is based on
the outcrossing approach (Rackwitz, 2001). In many applications the Poisson assumption
for the outcrossings from the safe domain and the Rice formula for the upcrossing rate of
the response can be used (Soong and Grigoriu, 1997). The determination of the outcrossing
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Chapter 1 Introduction

rate is a computationally challenging problem, especially for non-stationary cases (Naess,
1990). Some examples exhibiting first-passage failure problems mentioned in Noori et al.
(1995) are a breakdown of the resonant response to periodic excitation of limited power,
a breakdown of the synchronous rotation of two unbalanced rotors with a common mov-
able support, transitions between impact and non-impact motions of a vibroimpact system,
and structural damage due to inelastic excursions during an earthquake. Generally, a highly
seismic environment is an area where specific techniques are required to estimate the reliabil-
ity (Bergman and Spencer Jr., 1985). An application of compliant offshore structures such
as the dynamic response of tension leg platforms (TLP) is reviewed in Han and Benaroya
(2002). Research on the reliability analysis of non-linear problems with implications for aero-
dynamic forces and other forces like ground motion is presented by Hampl (1985) in order to
calculate the response of the structures when collapse limit states are of interest. Khan et al.
(2003) estimated the failure probability of a cable stayed bridge under seismic excitation.
Their parametric analyses were performed for important parameters such as critical toler-
ance level and soil condition. The conditional probability of failure was obtained using the
moments of the spectral density from the frequency domain spectral analysis performed.

1.2 Survey of previous work

The methods of dynamic analysis of deterministic and stochastic models have evolved
rapidly over the past century. Many well-written and comprehensive books on deterministic
structural dynamics are available, e.g., Paz (1980), Bolotin et al. (1999). As an introduction
to stochastic framework, the dynamical analysis of simple non-parametrical systems and non-
linear structures under non-parametric excitations are reviewed by Lin et al. (1986). The
authors have contributed a lot to the field of probabilistic structural dynamics (Lin, 1967;
Lin and Cai, 1995). The stochastic structural dynamics is covered well in Lutes and Sarkani
(1997) and Soong and Grigoriu (1997). More advanced mathematical formulations can be
found in Adomian (1983).

The first-excursion probability is one of the important characteristics of the system ex-
cited by the random force. As it is mentioned before, no analytical solution exists and
no general numerical procedure is available for this quantity. The only universal method
is the Monte Carlo method. The disadvantages of this method are slow convergence and
enormous computational expenses especially for small probability problems. In structural
reliability, importance sampling is widely used to improve the efficiency of the crude Monte
Carlo simulation method.

The Monte Carlo method was introduced by two scientists from Los Alamos Metropolis
and Ulam (Metropolis and Ulam, 1949) shortly after the Second World War. However,
similar experiments were also used to estimate the value of the constant π by George Buffon
in the 18th century. The history and various applications are given, for instance, in Bauer
(1958) and Sobol’ (1973). A general framework for using Monte Carlo methods in dynamical
systems is given by Liu and Chen (1998).

For time-invariant problems a lot of research has been done and the simulation meth-
ods are proved to have many advantages compared with other approximated techniques
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1.2 Survey of previous work

such as first-order reliability method (FORM) and second-order reliability method (SORM)
(Madsen et al., 1986) and its extensions. Even if the direct or crude Monte Carlo method
(Section 3.2.2) is shown to be ineffective for the evaluation of failure probability. Then it is
possible to achieve a reduction in the variance and increase the rate of convergence of the
failure probability estimate, using the variance reduction techniques and a combination of
several techniques (Ayyub and Haldar, 1985; Grey and Melchers, 2003) as the conditional
expectation, antithetic variates (Appendix B) together with ordinary importance sampling.
Moreover, it was argued that the Monte Carlo method is inefficient for the sensitivity analy-
sis. In this case Melchers and Ahammed (2002) showed the possibility to run the sensitivity
analysis in the framework of the Monte Carlo method without extra simulations being re-
quired, even though there are a few restrictions on the form of the performance function.

If the reliability problem is referred to as time-variant, then two kinds of time dependency
may be distinguished such as decaying material properties and stochastic dynamic loading.
In this project, the systems under randomly varying loading are of interest, though the
strength deterioration may be included as well.

Approximate analytical results on the first-passage problem can be obtained using the Rice
formula for the upcrossing rate (Rackwitz, 2001), though the predictions based on these re-
sults are in general conservative or even wrong due to the restriction of independence of the
outcrossings. The variety of the numerical approximation of the first-passage probability
of the linear oscillator is given in Crandall (1970). These methods were based on the as-
sumptions of the peak and envelope crossing independency, considering a two-state Markov
process for the consequent outcrossings of the following thresholds. Roberts (1976) studied
the envelope outcrossing problems using also the Markov character of the response of a linear
oscillator. The discrete and continuous envelope cases were considered. The accuracy of the
continuous approximation was poor whereas the discrete envelope method gave satisfactory
results. Several applications where the analytical approximation of the outcrossing rates
were used are reviewed.

In Aoki and Suzuki (1985), the performance of a mechanical appendage system under
non-stationary earthquake excitation was evaluated. The theoretical method was used im-
plying that the upcrossing rate is calculated from the assumption of normality of the system
response. Results showed conservatism compared with the simulation results. Although
the studies revealed that the failure probability of the appendage system with the perfectly
elastic-plastic restoring force-deformation relation can be reduced by the energy absorbing
effect. The application in aerospace framework is presented by Shiao (1991). Two methods
are developed. The first one is based on the crossing rate and implemented for the systems
with non-smooth random excitations with small uncertainties in the barrier. The second
method is based on introducing the equivalent system, which is able to treat the large varia-
tions in the barrier and its large degradation. The use of the outcrossing rates and piecewise
constant model of the resistance process is used in Gao et al. (2005) in the application of
the estimation of the reliability of mooring lines taking into account the corrosion of the
material.

Recently, more and more authors turn to the simulation methods as the most efficient
and versatile (Naess, 1999). Dey and Mahadevan (1998) proposed an efficient method for
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Chapter 1 Introduction

estimating time-variant failure probability of a redundant structural system, including the
resistance degradation and information on periodic repairs. They incorporated the concepts
of adaptive and conditional importance sampling, proposed by Karamchandani and Cornell
(1991).

Several authors proposed to reduce the time-variant problem to a fixed time concept. For
instance, Pradlwater and Schuëller (2004) introduced the idea of ”averaged” excursion prob-
ability, which means taking into account the interaction between excursions at different time
instances and define a static reliability problem. The random excitations are approximated
by the Karhunen-Loeve expansion although their method is dependent on the successful
choice of all important directions of the simulation corresponding to the boundary.

Tanaka (1997) proposed an importance sampling simulation scheme for estimating the
reliability of a system, that can be described by a system of Itô type stochastic differential
equations. This scheme uses the optimal measures based on the concept of design point in
the first order second moment approach. A similar method is proposed in Takada (1998).
The extension on non-Gaussian processes is proposed using the Karhunen-Loeve expansion
and mapping between Gaussian and non-Gaussian random variables.

The possibility to perform effective simulations has been extensively studied.
Bayer and Bucher (1998) considered the spectral representation of random processes which
allows the implementation of the importance sampling on the random selection of the am-
plitudes of the response. The method was tested on the several non-linear systems using
special computer software.

Bucher (2002) used the term ”design point oscillations” for the oscillations which were
defined by the FORM procedure and which led to the failure at a corresponding time in-
stant. Furthermore, he suggested a multimodal importance sampling density which takes
into account the interaction between the design points. The development of this method
and implementation on non-linear problems is given in Macke and Bucher (2003).

Au and Beck (2001) proposed an importance sampling procedure for the evaluation of
the first-passage probability of a multidimensional system subjected to a Gaussian excita-
tion. They transformed the first-passage problem into a series-system reliability problem by
discretizing the time interval in n even steps. Then the authors approximated the failure
probability as the probability of the union of the failure events in all time-point compo-
nents. They used a sampling density composed of a standard normal probability density
function conditioned on the failure event in each time step. Koo and Der Kiureghian (2003)
continued and extended this work for the non-linear systems. They compared their method
with conventional importance sampling method with sampling density centred around design
points, and the crude Monte Carlo and showed that the present method is more efficient in
the sense of the reduced number of simulation samples. Vijalapura et al. (2000) considered
a procedure for estimating the reliability of hysteretic systems using a similar method based
on the FORM concept.

Moreover the attempt to extend this method efficiently to high-dimensional reliability
problems with a large number of uncertain parameters is made by Au and Beck (2003). Re-
marks on the handling of the large number of random variables are offered by Schuëller et al.
(2004). Besides, the thesis of Au (2001) gives very rigorous proofs here and continues this
research topic. His results are used by Koutsourelakis et al. (2004) for a comparison study.
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1.3 Objectives and scope

Koutsourelakis proposed a stepwise procedure which makes use of Markov chains.

The present procedure is based on the Girsanov transformation (Girsanov, 1960) of the
Wiener process, which allows the definition of the control function added to the continuous
Markov process in order to reduce the variance of the stochastic estimator (Newton, 1994).
This optimization problem is a problem in stochastic optimal control. The optimal control
function exists such as the variance diminishes to zero and the estimator becomes a deter-
ministic quantity (Newton, 1994; Milstein, 1995). However this function is not achievable
because the optimal control depends on this unknown estimator itself. Although if some
approximation of the failure probability is obtainable then the suboptimal control function
exists which will lead to variance reduction. Macke (2000) showed how the suboptimal
control function can be designed using the approximated analytical solutions for a desired
estimator. The number of samples was reduced, though the numerical effort to compute the
control function was substantial. Macke (2000) pointed out that the correction term for the
importance sampling procedure starts to deviate a lot for the levels where the behaviour
of the original system differs substantially from the Gaussian assumption. In addition, the
efficiency in variance reduction, i.e. the statistical error, is depending on the accuracy of
the approximation. However, other approximations may be obtained using, for instance, the
analytical expression for the control function obtained by Næss and Skaug (2000).

To conclude, many versatile and robust methods have been proposed and successfully used
though many challenges for the first-passage problem are still open to be explored.

1.3 Objectives and scope

The objectives of the thesis are to improve the importance sampling procedure for the
assessment of failure probability. A two-step procedure is proposed based on a design point
oscillation concept, using a suboptimal Markov control function. The emphasis is on the pos-
sibility of using analytical expressions for all operations. The considered dynamical systems
work in transition zone, i.e., they possess non-stationary properties.

The scope of this thesis is restricted to systems in which there are no parametric, or mul-
tiplicative, excitations present. This means that global or catastrophic failure is considered
throughout present calculations. This is unlike systems with parametric excitation, where
stochastic stability or bifurcation is often of principal concern. Moreover, in the present
work the possibility of linearization of a system is assumed to be valid which is accepted to
be unsuitable for studying the parametrical dynamic response (Roberts and Spanos, 1990).

Within the adopted methodology, the oscillatory systems with one degree of freedom are
studied. The input excitations are white and non-white. The failure is considered in terms
of a first passage of the considered limit state. The non-stationary processes, or processes of
short duration, are of interest in this project. From all different variance reduction methods
(cf. Appendix B), importance sampling in the framework of stochastic control theory is
chosen as the most efficient.
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Chapter 1 Introduction

1.4 Outline of the thesis

The major part of the thesis, i.e. Chapters 2 to 6 addresses the study of the reliability of
dynamical systems by different Monte Carlo simulation methods.

This chapter gives the brief introduction, historical survey and state-of-art on the subject
of dynamical structural analysis, reliability and Monte Carlo methodology.

A review of probability theory, the main aspects of stochastic processes and the stochastic
differential equation framework are provided in Chapter 2.

Chapter 3 contains a thorough exposition of the various methods in reliability theory.
The advantages and disadvantages of involving the randomness in the models and loads are
discussed.

In Chapter 4, the concept of stochastic control is presented. The Hamilton-Jacobi-Bellman
theorem is given. This is the main tool.

Chapter 5 contains the framework for the studied iterative importance sampling method.
As the first example the motion of a linear oscillator is examined. Then the methodology is
extended to non-linear systems such as the Duffing oscillator, oscillator with separable non-
linear stiffness and damping and hysteretic oscillator. The oscillators excited by non-white
external force are presented as well.

Finally, Chapter 6 concludes part one. Appendices A and B are intended to give a brief
introduction in the basics of random number generation and various variance reduction
methods.

The second part of the manuscript, Chapter 7 presents statistical and probabilistic analyses
of ice load data carried out during my participation in the LOLEIF and STRICE projects.
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Chapter 2

Stochastic process theory

2.1 Discussion about probability theory

The mathematical quantities and methodology used to describe a stochastic dynamics
phenomenon are based on probability theory and stochastic process theory. These and
related topics will be discussed in this chapter.

2.1.1 Random variables

The theory of probability in terms of how a random phenomenon can be described is not
concerned with a physical nature and operational details of this phenomenon. Rather, it
is only concerned with describing the statistical regularity pattern exhibited by the phe-
nomenon. Probability theory therefore abstracts the random phenomenon by dealing only
with that aspect which is common to all ”random” phenomena, namely, the existence of
a stable frequency pattern. Accordingly, the uncertain outcome of the observation of a
random phenomenon is simply called a ”random event”, whatever the actual nature of the
phenomenon may be (Bury, 1975).

This random event is an outcome, denoted ω, of some random experiment. The family
of all possible distinct outcomes associated with the particular phenomenon is called the
sample space Ω = {ω}. To achieve a useful characterization of the outcomes of the random
experiment, one commonly introduces a family of subsets of the sample space Ω, namely a
σ-algebra F of subsets with the following properties (Øksendal, 1998):

1. ∅ ∈ F ;

2. F ∈ F ⇒ FC ∈ F , where FC = Ω r F is the complement of F in Ω;

3. A1, A2, . . . ∈ F ⇒ A =
∞⋃
i=1

Ai ∈ F .

The pair (Ω,F) is called a measurable space. The theory of sets with its basic con-
cepts and algebraic operations may be implemented in the space (Ω,F) and its members
(Soong and Grigoriu, 1997). The probability measure assigned to the measurable space is a
function P : F → [0, 1] such that

1. P (∅) = 0, P (Ω) = 1;

7



Chapter 2 Stochastic processes

2. 0 ≤ P (A) ≤ 1, P (AC) = 1 − P (A), where AC is the complement;

3. if {Ai} are mutually exclusive (i.e. Ai ∩ Aj = ∅ if i 6= j) then

P

(
∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai); (2.1.1)

4. P (A1 ∪ A2) = P (A1) + P (A2) − P (A1)P (A2) and which may be reduced to

P (A ∪ B) = P (A) + P (B) if A ∩ B = ∅. (2.1.2)

Then the triplet (Ω,F , P ) is called a probability space. It should be mentioned that if F
is a σ-algebra in F , then F is a F -measurable set. Thus the introduced measure may be
interpreted as ”the probability that the event F occurs”. Besides, the conditional probability
P (A1|A2) of an event A1 given that an event A2 has occurred may be defined as

P (A1|A2) =
P (A1 ∩ A2)

P (A2)
, (2.1.3)

where P (A2) > 0.
It is possible that the occurrence or non-occurrence of A1 is not affected by whether or

not another event A2 has occurred. Then its conditional probability P (A1|A2) should be the
same as P (A1), which implies that

P (A1 ∩ A2) = P (A1)P (A2). (2.1.4)

Then it may be said that events A and B are independent. This property can be generalized
in the case of n events A1, A2, . . . , An. If

P (Ai1 ∩ Ai2 ∩ . . . ∩ Aik) = P (Ai1)P (Ai2) · · ·P (Aik) (2.1.5)

for all non-empty sets {i1, i2, . . . , ik} of the sets of indices {1, 2, . . . , n}, then A1, A2, . . . , An

are independent.
It should be mentioned, that if Ω is a topological space (Rudin, 1987) (e.g. Ω = R

n) and B
is the smallest σ-algebra containing the open sets of Ω, then B is called the Borel σ-algebra
and the elements B ∈ B are called Borel sets.

To go further, a random variable for a probability space (Ω,F , P ) may be defined as a
function if it transfers the sample space into ”the real world”, i.e X : Ω → R

n and if the
following statement holds

{ω ∈ Ω : X(ω) ≤ a} ∈ F for each a ∈ R
n (2.1.6)

where {ω ∈ Ω : X(ω) ≤ a} is an event for each a ∈ R
n, where {X(ω) ≤ a} is interpreted as

componentwise inequalities. This implies that {ω ∈ Ω : X(ω) ∈ B} is an event for any Borel
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2.1 Discussion about probability theory

subset B of R
n. Moreover, every random variable induces a probability measure PX(B) on

R
n, defined by:

PX(B) = P (X−1(B)) = P ({ω ∈ Ω : X(ω) ∈ B}) (2.1.7)

for all B ∈ B.
This measure is called the distribution of the random variable X and its probability space

(R,B, PX) contains all of the essential information associated with it. Though inside this
space the probability measure may be transformed in a certain way (Rudin, 1987).

A measure Q is said to be absolutely continuous with respect to another measure P , both
being measures on (Ω,F), if Q(A) = 0 whenever P (A) = 0.

Theorem 1 (The Theorem of Radon-Nikodym). Let P be a positive σ-finite measure

on a σ-algebra F in a set Ω, and let P̃ be another finite measure on F such as P̃ � P .
There is a unique h ∈ L1(P ) such that

P̃ (E) =

∫

E

hdP (2.1.8)

for every set E ∈ F .

The function h which occurs in (2.1.8) is called the Radon-Nikodym derivative of P̃ with
respect to P . Also, if h is a member of L1(P ), the integral in (2.1.8) defines a measure on
F which is absolutely continuous with respect to P , see e.g. Rudin (1987). Equation (2.1.8)

may be expressed in the form dP̃ = hdP or h = dP̃ /dP . In following chapters this theorem
will be of utmost importance because it allows us to define a transformation of probability
measures in order to perform importance sampling procedure.

Returning to the distributions and using the terms of point functions in one dimension,
the probability measure (2.1.7) may be rewritten as FX : R → R

FX(x) = PX((−∞, x)) = P ({ω ∈ Ω : X(ω) ≤ x}). (2.1.9)

what is called the cumulative distribution function of X. The distribution function FX(x)
has the following properties:

1. lim
x→−∞

FX(x) = 0

2. lim
x→+∞

FX(x) = 1

3. FX(x) is nondecreasing function in x

The random variables may be discrete, continuous or combined (Kloeden and Platen,
1999). The main concern in this thesis is continuous variables. The continuous random
variable is the variable which may take all possible values in R into account and satisfy
the condition P ({ω ∈ Ω} : X(ω) = x) = 0 for all x ∈ R. Specifically, it is assumed that
the associated distribution function FX(x) is absolutely continuous, which implies that it is
differentiable almost everywhere with respect to Lebesgue measure. This means that there

9



Chapter 2 Stochastic processes

exists a non-negative function fX(x), called the probability density function. The following
relation is then true

FX(x) =

x∫

−∞

fX(ξ)dξ (2.1.10)

for all x ∈ R.
Let X : Ω → R be a random vector variable. If

∫
Ω

|X(ω)|dP (ω) < ∞ then the number

∫

Ω

X(ω)dP (ω) =

∫

Rn

xdFX(x) (2.1.11)

is called the expectation of X with respect to P . Note that componentwise interpretation
again applies.

More generally, if g : R
n → R is Borel measurable and

∫
Ω

|g(X(ω))|dP (ω) < ∞

∫

Ω

g(X(ω))dP (ω) =

∫

Rn

g(x)dFX(x). (2.1.12)

Again in the terms of one dimension and point function, the mathematical expectation of
a random variable X is (Lutes and Sarkani, 1997)

E[X] = µ =

∞∫

−∞

xdFX(x) =

∞∫

−∞

xfX(x)dx. (2.1.13)

If a function g(X) = Xn then Equation (2.1.12) becomes

E[Xn] = αn =

∞∫

−∞

xndFX(x) =

∞∫

−∞

xnfX(x)dx. (2.1.14)

Especially often the moments from second to fourth order are of interest.
The central moments are

E[(X − µ)n] = µn =

∞∫

−∞

(x − µ)ndFX(x) =

∞∫

−∞

(x − µ)nfX(x)dx. (2.1.15)

The second-order moment is of particular interest which is called the variance of the variable
X. It defines spread of the variable from its expectation.

V ar(X) = µ2 = E[(X − µ)2] =

∞∫

−∞

(x − µ)2dFX(x) =

∞∫

−∞

(x − µ)2fX(x)dx. (2.1.16)
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2.1 Discussion about probability theory

The above-mentioned notations and definitions are represented from a pure mathematical
point of view. As for numerical estimations and statistical analysis, it may be deduced that
the estimate of the probability of occurrence of an event A is (Wadsworth, 1997)

P̂ (N) =
NA

N
(2.1.17)

where NA is the number of experiments with outcome when the event A has occurred and
N is the number of all experiments.

An estimate of the mathematical expectation (2.1.11) is

µ̂ =
1

N

N∑

i=1

xi (2.1.18)

where xi is the values of a random continuous variable X taken in each of experiments
i = 1, . . . , N . µ̂ is called an average or a sample mean of the variable X.

An estimate of the second moment E(X2) commonly called the mean squared value of the
random variable X, is given as

α̂2 =
1

N − 1

N∑

i=1

x2
i (2.1.19)

E(X2)1/2 is called the root-mean-square value or rms of the variable X. Further, the estimate
of the variance (2.1.16) is

σ̂2 = µ̂2 =
1

N − 1

(
N∑

i=1

x2
i − N · µ̂2

)
. (2.1.20)

The standard deviation is defined as σ = (E[(X − µ)2])1/2. Sometimes as a measure of the
relative discrepancy in the data the coefficient of variation is used

c.o.v. =
σ

µ
(2.1.21)

or standard error
SE =

σ√
Nµ

. (2.1.22)

To conclude this section, the most common and much used example of a random variable
is a Gaussian random variable X. Its probability density function, fX , is given as

fX(x) =
1√
2πσ

exp

(
−(x − µ)2

2σ2

)
(2.1.23)

and the probability distribution function denoted as FX

FX(x) =

∫ x

−∞

fX(u)du =

∫ x

−∞

1√
2πσ

exp

(
−(u − µ)2

2σ2

)
du (2.1.24)

11



Chapter 2 Stochastic processes

where µ is the mean value, σ is the standard deviation. Thus the Gaussian random variable
is completely defined by its mean and standard deviation.

When µ = 0 and σ = 1, then X is referred to as a standardized normal variable, and very
often its probability density function is denoted by φ, while the corresponding distribution
function is denoted by Φ.

The graph of φ(x) has the well-known bell-shaped curve, see Figure 2.1.
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Figure 2.1: Probability density function φ(x) (a) and cumulative probability distribution
function Φ(x) (b) of standard Gaussian random variable with mean zero and
variance one.

2.2 Definition and major properties of the stochastic

process

To continue the subject of the probability theory it is natural to define a stochastic process.
There are several definitions of this concept. The one which is adapted here is from Øksendal
(1998).

Definition 1. A stochastic process is a parameterized collection of random variables

{Xt}t∈T (2.2.1)

where T denotes a specified set of indices, defined on the probability space (Ω,F , P ) and
assuming values in R

n.

Another definition of a stochastic process, or a random process, is that it is a mathematical
model of a dynamic process whose dependence on a parameter, t, is governed by probabilistic
laws (Soong and Grigoriu, 1997). As it is defined there are many phenomena which may be
described as a stochastic process, many environmental processes such as wind loads, ice loads.
The latter will be attempted to be described in a probabilistic sense in the last chapter of
this thesis.
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2.2 Definition and major properties of the stochastic process

As mentioned above, for each fixed t ∈ T , Xt(·) : Ω → R
n is a random variable. On the

other hand, for a fixed ω ∈ Ω the function t → Xt(ω) is a path or realization of Xt. Thus
the process may be regarded as a function of two variables (t, ω) → X(t, ω) : T × Ω → R

n.
It is worth mentioning that it is often necessary to require that X(t, ω) is jointly measurable
in (t, ω) (Øksendal, 1998).

Since X(t) can be interpreted as a family of random variables indexed by t, it is obvious
that the stochastic process is completely defined if the joint probability distribution functions
are specified for whole family of random variables X(t1), X(t2), . . . for all finite sets {ti} ∈ T
for discrete time case. This set of distributions constitutes the probability law of X(t),
t ∈ T . This can be also implemented for the continuous-parameter process if its samples are
determined in some sense, with probability one, by their values at a countable set of points.

Fn(x1, . . . , xn; t1, . . . , tn) = P{X1 ≤ x1 ∩ . . . ∩ Xn ≤ xn} (2.2.2)

is called the nth distribution function of X(t). This family of joint distribution functions
satisfies the two Kolmogorov conditions:

1. The condition of consistency:

Fm(x1, . . . , xn, +∞, . . . , +∞; t1, . . . , tn, . . . , tm) = Fn(x1, . . . , xn; t1, . . . , tn) (2.2.3)

for all m > n, which indicates that marginal distributions can be consistently generated
from higher dimensional distributions.

2. The symmetry condition:

Fn(x1, . . . , xn; t1, . . . , tn) = Fn(xi1 , . . . , xin ; ti1 , . . . , tin), (2.2.4)

where Fn is invariant under an arbitrary permutation i1, i2, . . . , in of indices {1, 2, . . .}.

Correspondingly the nth density function of X(t), when it exists, is defined as

fn(x1, . . . , xn; t1, . . . , tn) =
∂nFn(x1, . . . , xn; t1, . . . , tn)

∂x1 . . . ∂xn

. (2.2.5)

The second important issue about the stochastic process is moments. Those of a great
importance are of the first and second order. The moments at a given t ∈ T are defined as for
a random variable (Eqs. 2.1.11, 2.1.12, 2.1.16, 2.1.15). The nmth joint moment, αnm(t1, t2)
of X(t) at t1 and t2 is defined by

αnm(t1, t2) = E[Xn(t1)X
m(t2)] =

∞∫

−∞

∞∫

−∞

xn
1x

m
2 f2(x1, x2; t1, t2)dx1dx2. (2.2.6)

Specifically the moment α11(t1, t2), called the auto-correlation function and denoted
RXX(t1, t2), plays an important role as a measure of linear interdependence between X(t1)
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and X(t2). A similar interdependence measure can be defined for two different stochastic
processes

RXY (t1, t2) = E[X(t1), Y (t2)], (2.2.7)

which is called the cross-correlation function. Similarly, the auto-covariance function of X(t)
is given by

ΓXX(t1, t2) = E[(X(t1) − µ(t1))(X(t2) − µ(t2))] (2.2.8)

=

∞∫

−∞

∞∫

−∞

(x1 − µ(t1))(x2 − µ(t2))f2(x1, x2; t1, t2)dx1dx2.

The next issue is based upon regularity. The stochastic processes can be divided in two
classes: non-stationary and stationary. The probability distributions of non-stationary pro-
cesses depend explicitly on time parameters. Most of real stochastic processes are obviously
non-stationary (Soong and Grigoriu, 1997). But many of these processes can be modelled,
approximated or they converge to the stationary processes. So the class of the stationary
processes is very important since they represent a form of probabilistic equilibrium in the
sense that the time instants at which they are examined are not important. It is said that
the stochastic process X(t) is strictly stationary if its probability distributions are invariant
under an arbitrary translation of the time parameter, i.e.

Fn(x1, . . . , xn; t1, . . . , tn) = Fn(x1, . . . , xn; t1 + τ, . . . , tn + τ), (2.2.9)

tj ∈ T and (tj + τ) ∈ T, j = 1, 2, . . . , n.

This implies the following important properties for moments of the stationary process:

• E[Xk(t)] = const for any k = 1, 2, . . ..

• The correlation function depends only upon the difference of the time instance for
X(t1) and X(t2), where t1 = t and t2 = t − τ and since

F2(x1, x2; t1, t2) = F2(x1, x2; t2 − t1) (2.2.10)

then

E[X(t)X(t + τ)] = R(t + τ − t) = R(τ) (2.2.11)

where the correlation function R(τ) is symmetrical.

But usually it is rather difficult to detect the pure stationarity since property (2.2.9) must
hold for all n. Hence a weakly stationary process can be defined as a wide-sense stationary
process.
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Definition 2. A stochastic process X(t) is weakly stationary if E[X2(t)] < ∞ for every t,
and

|E[X(t)]| = const (2.2.12)

and

E[X(t1)X(t2)] = R(t2 − t1). (2.2.13)

For experimental time series the issue of ergodicity is important. This property shows the
possibility of a long, single observation to represent certain statistical averages of the whole
stochastic process. The time averaging of a given function g(x(t)), where x(t) is a realization
of a stochastic process X(t), is defined by

g(x(t)) = lim
T→∞

1

2T

T∫

−T

g(x(t))dt (2.2.14)

if the limit exists. Then the following definition of ergodicity may be given
(Soong and Grigoriu, 1997):

Definition 3. A stationary process X(t), t ∈ T , is said to be ergodic relative to G if, for
every g(·) ∈ G, G being the appropriate domain of functions,

g(X(t)) = E[g(X(t))] (2.2.15)

with probability one, that is, with a possible exception of a subset of sample functions
g(X(t)) with zero probability of occurrence.

Moreover a power spectral density function S(ω) can be defined for the weakly stationary
process X(t). This quantity and the correlation function (2.2.11) form a Fourier transform
pair and defined by the Wiener-Khintchine formulas

S(ω) =
1

2π

∞∫

−∞

e−iωτR(τ)dτ, (2.2.16)

R(τ) =

∞∫

−∞

eiωτS(ω)dω (2.2.17)

Since S(−ω) = S(ω), and negative values of ω lack physical content, it is customary in
the applications to use the one-sided power spectral density function given by

G(ω) = 2S(ω), ω > 0

= 0, otherwise
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Also when τ = 0, Eq. (2.2.17) becomes

R(0) = E[X2(t)] = 2

∞∫

0

S(ω)dω =

∞∫

0

G(ω)dω. (2.2.18)

Returning to the subject of continuous valued and continuous parametered stochastic
process X(t) with given autocorrelation function

RXX(t1, t2) = E[X(t1)X(t2)] (2.2.19)

the following properties can be defined (Lin and Cai, 1995):

• Continuity: X(t) is continuous at t in the L2 sense, that is lim
h→0

E[|X(t+h)−X(t)|2] = 0,

which is denoted by
l.i.m.
h→0

X(t + h) = X(t), (2.2.20)

if and only if RXX(t1, t2) is continuous along the diagonal t1 = t2 = t.

• Differentiability: X(t) is differentiable in the L2 sense; that is,

Ẋ(t) =
d

dt
X(t) = l.i.m.

h→0

X(t + h) − X(t)

h
(2.2.21)

exists, if and only if ∂2

∂t1∂t2
RXX(t1, t2) exists along diagonal t1 = t2 = t.

• Integrability: X(t) is Reimann-integrable in the L2 sense; that is

Y (t) =

∫ b

a

h(t, τ)X(τ)dτ = l.i.m.
h→0

∆n→0

n∑

j=1

h(t, τ ′
j)X(τ ′

j)(τj+1 − τj) (2.2.22)

exists, where h(t, τ) is a deterministic weighting function, a = τ0 < τ1 < . . . < τn+1 = b,
τj ≤ τ ′

j ≤ τj+1, and ∆n = max
0≤j≤n

(τj+1 − τj), if and only if

J(t) =

∫ b

a

∫ b

a

h(t, τ)h(t, u)R(τ, u)dτdu < ∞ (2.2.23)

The next sections present some examples of stochastic processes which will be extensively
used throughout the thesis.

2.2.1 The Gaussian process

As a first example a Gaussian process can be defined.

Definition 4. The stochastic process X(t) is called Gaussian if all its nth probability dis-
tributions are jointly Gaussian for all n.

The standard Gaussian process has the mean value zero and the variance of one, it is
also called sometimes the normal process, denoted N(0, 1). Based upon the Central Limit
Theorem (Soong and Grigoriu, 1997), a Gaussian stochastic process can be expected to
occur whenever it represents the sum of a very large number of independent random effects
of similar order of magnitude at each time instant.
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2.2.2 The Markov process

For most stochastic dynamics applications, a Markov process X(t) is usually used. The
process we are concerned with is assumed to be continuously valued, and its time parameter
t is defined in a continuous space (Karlin and Taylor, 1975). Roughly speaking, a Markov
process is a process with the property that, given the value of Xt, the value of Xs, s > t,
do not depend on the values of Xu, u < t; that is the probability of any particular future
behaviour of the process, when its present state is known exactly, is not altered by additional
knowledge concerning its past behavior. Though a continuously valued and continuously
parametered Markov process is a mathematical idealization, it can also serve as a good
approximation for the real physical processes. The definition of a Markov process is given
(Lin and Cai, 1995):

Definition 5. A stochastic process X(t) is said to be a scalar Markov process if it has the
property

P [X(tn) ≤ xn|X(tn−1) = xn−1, . . . , X(t1) = x1] (2.2.24)

= P [X(tn) ≤ xn|X(tn−1) = xn−1] tn > tn−1 > · · · > t1,

where P [·] denotes the probability of an event, and where the statement following a vertical
bar specifies certain conditions under which such a probability is defined. In the present
case, the conditions are known values of X(t) at earlier time instants t1, . . . , tn−1. A sufficient
condition for X(t) to be a Markov process is that its increments in any two non-overlapping
intervals are independent; that is, X(t2)−X(t1) and X(t4)−X(t3) are independent as long
as t1 < t2 ≤ t3 < t4. Thus, such a Markov process is a process with independent increments.

A Markov process is defined completely by the transitional probability function given by

F (s, x; t, B) = P (X(t) ∈ B|X(s) = x) (2.2.25)

for all Borel subsets B of R, and an initial condition.
A rich and useful class of such Markov processes are diffusion processes. The definition of

a diffusion process is given (Karlin and Taylor, 1981):

Definition 6. A continuous time parameter stochastic process which possesses the (strong)
Markov property and for which the sample paths X(t) are (almost always) continuous func-
tions of t is called a diffusion process.

2.2.3 The Wiener process

The simplest example of a Markov process is perhaps the Wiener process, also known
as the Brownian motion, process, denoted by W (t) or B(t) (Soong and Grigoriu, 1997;
Karlin and Taylor, 1975). Here the notation W (t) is used to distinguish between the math-
ematical and physical processes.

Definition 7. The Wiener process is a stochastic process {W (t); t ≥ 0} with the following
properties:
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• For every pair of disjoint time intervals [t1, t2] and [t3, t4], t1 < t2 ≤ t3 < t4, the incre-
ments W (t4) − W (t3) and W (t2) − W (t1) are independent random variables normally
distributed with mean 0 and variance σ2(t2 − t1), 0 ≤ t1 < t2, and σ is a positive
constant.

• W (0) = 0, E[W (t)] = 0 and W (t) is continuous at time t = 0.

• Correlation function E[W (t1),W (t2)] = σ2 min{t1, t2}; namely,

E[W (t1),W (t2)] =

{
σ2t1, t1 < t2
σ2t2, t1 > t2

(2.2.26)

The probability law governing the transition is stationary in time and therefore the tran-
sition probability density of W (t) does not depend on initial time, namely

p(t, x) =
1√

2πtσ
exp

(
− x2

2tσ2

)
. (2.2.27)

The Wiener process having a unit variance parameter σ is called the standard Wiener
process. A realization of a standard Wiener process is shown in Fig. (2.2).
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Figure 2.2: The standard Wiener process.

Also it can be shown that the Wiener process has continuous sample path with probability
one since, for any ε > 0

P [|W (t + h) − W (t)| < ε] = 1 − 2Φ

(
− ε

σ
√

h

)
→ 1 (2.2.28)
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as h → 0. On the other hand, since

P

[∣∣∣∣
W (t + h) − W (t)

h

∣∣∣∣ > ε

]
= 2Φ

(
− εh

σ
√

h

)
→ 1 (2.2.29)

as h → 0, the Wiener process has non-differentiable samples with probability one. Nonethe-
less, the Wiener process has a formal derivative. This will be performed below.

2.2.4 The white noise process

The white noise process, denoted N(t), is widely used in applications. The process is called
”white” due to the ”white light” which has the property that its power spectral density is
flat over the visible portion of electromagnetic spectrum. Hence the definition of this random
process is following:

Definition 8. The stochastic process {N(t); 0 ≤ t} is a white noise if it has the following
properties:

• N(t) is a stationary Gaussian process with mean value E[N(t)] = 0.

• One-sided spectral density G(ω) = G0.

• Autocorrelation function

E[N(t1), N(t2)] = πG0δ(t1 − t2) (2.2.30)

The process N(t) itself can never be realized, only a discretized approximation can be
sampled. A realization of a discretized white noise process is shown in Fig. (2.3).
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Figure 2.3: The discretized white noise realization with mean zero and variance one.
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Chapter 2 Stochastic processes

To show that the white noise can be a formal derivative of a Wiener process, let W (t) be
a standard Wiener process. For fixed h > 0 define a new process Xh by

Xh(t) =
W (t + h) − W (t)

h
(2.2.31)

for all t ≥ 0. This is a weakly stationary Gaussian process with zero mean values and
covariances

ΓXhXh(τ) =
1

h
max

{
0, 1 − |τ |

h

}
(2.2.32)

and it thus has spectral density

Sh(ω) =
1

πh

∫ h

0

(
1 − |s|

h

)
cos(ωs)ds =

1

π

1 − cos(ωh)

(ωh)2.
(2.2.33)

This density is very broad for small h and indeed, converges to 1/π for all ω 6= 0 as h → 0,
which suggests that the process Xh converges in some sense to a Gaussian white noise process
N(t) as h converges to 0 and hence a Gaussian white noise process is a derivative of a Wiener
process.

Thus in a usual sense, the white noise cannot be a physical process, but its physical
realization can be approximated to any desired degree of accuracy by some conventional
stochastic process with broad banded spectra, such as Eq. (2.2.31).

2.3 Itô stochastic differential equations

The structural dynamics problems can be usually defined by a certain differential equa-
tion or by a system of several differential equations. The inclusion of random effects in
these differential equations leads to two distinct classes of equations, for which the solution
processes have differentiable and non-differentiable sample paths, respectively. They require
fundamentally different methods of analysis. The first class of equations is when an ordinary
differential equation is excited by a fairly regular stochastic process or it has random coeffi-
cients, or a random initial value, or combination of these. The equation is called a random
differential equation and can be solved as ordinary differential equations. Sample paths are
at least differentiable functions.

The second class occurs when the forcing is an irregular stochastic process such as Gaussian
white noise. Then the integration must be done in the Itô or Stratonovich sense. They are
called stochastic differential equations or SDEs, and in general their solutions inherit the
non-differentiability of sample paths from the Wiener process. Further on, the Itô SDE will
be used. The existence and uniqueness theorems for SDE are given in the books on the
subject Øksendal (1998), Kloeden and Platen (1999), Lin and Cai (1995).

As it was mentioned above, Markov, Wiener and white noise processes are hardly phys-
ical and represent idealized models, but, on the other hand, they possess very convenient
properties. The replacement of the real broad-banded process is fair enough unless it is in-
put for the differential operator, which is known to be an operator with a finite bandwidth.
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2.3 Itô stochastic differential equations

Even if the input happens to be also a narrow-band process, it is possible in many cases
to approximate it by the filtered white noise, where the filter is usually also of differential
type. Furthermore, the measurements of the real processes are done with some time gaps
and not continuously. Thus, the time interval between the consecutive observations can be
chosen so that the load values at these points would be uncorrelated. Obviously this specific
time interval should be less than so-called relaxation time which defines the memory of the
process (Lin and Cai, 1995).

The Wiener process can thus be used as a building block to construct other processes
generated as a solution of corresponding SDE

dX(t) = m(X, t)dt + σ(X, t)dW (t), (2.3.1)

where m(X, t) and σ(X, t) are called the drift and diffusion coefficients, respectively, and
where W (t) is a standard Wiener process, see properties (Def. 7). The drift function states
that the large changes in the value of X(t) are unlikely because P [|X(t)−X(s)| > ε |X(s) =
x] is of order o(t − s), s < t, and the process has the continuous samples with probability
one.

E[X(t) − X(s) |X(s) = x] = m(x, s)(t − s) + o(t − s). (2.3.2)

The diffusion function defines the second-order characteristics or the variance of the cor-
responding diffusion process

E[(X(t) − X(s))2 |X(s) = x] = σ2(x, s)(t − s) + o(t − s). (2.3.3)

The interpretation of these functions is given in Soong and Grigoriu (1997). Now, Eq. (2.3.1)
is equivalent to

X(t) = X(0) +

∫ t

0

m(X(u), u)du +

∫ t

0

σ(X(u), u)dW (u). (2.3.4)

The first integral is the ordinary Riemann-Stieltjes integral. This is unlike the second inte-
gral, which cannot be defined in an ordinary sense because of unbounded variation of the
Wiener process samples. Though Itô proposed that it can be interpreted as a forward L2

integral, it can be calculated as an Itô integral.

∫ t

0

σ(X(u), u)dW (u) = l.i.m.
n→∞

max4u→0

n∑

j=1

σ(X(uj), uj)(W (uj+1) − W (uj)). (2.3.5)

If the second integral in Eq. (2.3.4) is interpreted in the Itô sense then it can be shown
that if a constant k exists and the Lipschitz’s condition

|m(x, τ) − m(y, τ)| + |σ(x, τ) − σ(y, τ)| ≤ k|x − y| (2.3.6)

for any x, y, s ≤ τ ≤ t and the growth condition

|m(x, τ)|2 + |σ(x, τ)|2 ≤ k2|1 + |x|2|, ∀x, (2.3.7)
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Chapter 2 Stochastic processes

are satisfied then the solution X(t) of the Itô equation (Eq. 2.3.1) is a unique non-anticipating
process in [s, t] and it is a Markov process.

It is also worth mentioning that the usual chain rule of differentiation is not applicable
for the Itô stochastic differential equation because the drift and diffusion parts of the right-
hand side are not of the same order of magnitude. The Itô’s special differential rule for an
arbitrary scalar function g(X, t) for a Markov process X(t) is developed as following

dg =

(
∂g

∂t
+ LXg

)
dt + σ(X, t)

∂g

∂X
dW (t), (2.3.8)

where g = g(X(t), t), LX is known as the generating differential operator of the Markov
process X(t), given by

LX = m(X, t)
∂

∂X
+

1

2
σ2(X, t)

∂2

∂X2
. (2.3.9)

The next important result for SDEs is the the Fokker-Plank equation given by

∂f

∂t
= − ∂

∂x
[m(x, t)f ] +

1

2

∂2

∂x2
[σ2(x, t)f ], (2.3.10)

where f(x, t|x0, t0) denotes the conditional probability density of X(t) given that X(t0) = x0.
Thus the initial condition for the partial differential equation (2.3.10) is f(x, t0|x0, t0) =
δ(x − x0).

For the vector diffusion process X(t) = (X1(t), . . . , Xn(t))T (T denotes transposition) and
m-dimensional W (t) = (W1(t), . . . ,Wm(t))T , the equations (2.3.8-2.3.10) take the form

dg =

(
∂g

∂t
+

n∑

i=1

mi
∂g

∂xi

+
1

2

n∑

i=1

m∑

j=1

bij
∂2g

∂xi∂xj

)
dt +

n∑

i=1

m∑

j=1

bij
∂g

∂xi

dW (t) (2.3.11)

where bij = [σ(X, t)σ(X, t)T ]ij, now m(X, t) = (m1, . . . ,mn)T and σ(X, t) = {σij}, i =
1, . . . , n, j = 1, . . . ,m. So then the Fokker-Plank equation takes the form

∂f

∂t
= −

n∑

i=1

∂

∂xi

(mif) +
1

2

n∑

i=1

m∑

j=1

∂2

∂xi∂xj

(bijf). (2.3.12)

2.4 Numerical integration of SDE

As for deterministic differential equations, there is a class of SDEs for which the solution
is known analytically. For the one-dimensional case the solutions of explicitly solvable SDEs
are given, for instance, in Kloeden and Platen (1999). The general solution and its prop-
erties of random vibration problems for linear and some non-linear systems are presented
in Soong and Grigoriu (1997). Though certainly the numerical implementation of these as-
sumes the use of approximation methods. The general Euler and Runge-Kutta schemes are
presented in this section and the particular expressions and further explanations will be
given in Chapter 5.
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2.4 Numerical integration of SDE

2.4.1 The Euler approximation

One of the simplest time discrete approximations of an Itô process is the Euler approx-
imation, or the Euler-Maruyama approximation. It represents the simplest strong Taylor
approximation (Kloeden and Platen, 1999). Let X(t), t0 ≤ t ≤ T , be a solution of an SDE
given by (2.3.1) with initial value X(t0) = x0, in general X is a vector process. For a given
discretization t0 < t1 < · · · < ti < · · · < tM = T of the time interval [t0, T ], an Euler
approximation is a continuous time stochastic process Y = {Y (t), t0 ≤ t ≤ T} satisfying the
iterative scheme

Yi+1 = Yi + m(Yi, ti)∆ti + σ(Yi, ti)∆Wi (2.4.1)

for i = 0, 1, 2, . . . ,M −1 where Yi = Y (ti), ∆ti = ti+1− ti, ∆Wi = Wi+1−Wi and with initial
value Y0 = x0. In order to simulate the increments of the Wiener process the independent
Gaussian random numbers are used. In the numerical experiments the random number
generator for normal distribution from the standard NAGC library (http://www.nag.co.uk/)
is used. The algorithms and ideas about random number generators are given in Appendix A.
The same procedure is available for higher dimension systems.

The absolute error average E[|X(T )−Y δ(T )|] between the approximation and Itô process
at the time T defines the order of strong convergency if there is constant C > 0, which does
not depend on δ, and a δ0 > 0 such that

E[|X(T ) − Y δ(T )|] ≤ Cδγ (2.4.2)

for each δ ∈ (0, δ0), where δ is a maximum step size of discrete scheme. Thus the Euler
scheme attains the strong order of convergency γ = 0.5 (Kloeden and Platen, 1999). For the
case when σ(X, t) does not depend on X, the Euler scheme has the order of convergence,
also called the mean-square order of accuracy, γ = 1. Nevertheless the Euler scheme is
not a robust tool in the case of the non-linear drift and diffusion coefficients. Other more
sophisticated and robust schemes are considered in Milstein (1995), Kloeden and Platen
(1999).

2.4.2 The Runge-Kutta approximation

The classical 4th order Runge-Kutta (RK) method is concerned with the numerical solu-
tion of the deterministic initial value problem given

Ẏ = f(t, Y (t)), Y (t0) = Y0. (2.4.3)

Assume that the discrete approximation is made with an M -stage explicit RK scheme
(Carpenter and Kennedy, 1994). The implementation over a time step ∆t is accomplished
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by

k1 = f(t0, Y0), (2.4.4)

ki = f

(
t0 + ci∆t, Y0 + ∆t

i−1∑

j=1

ai,jkj

)
i = 2, . . . ,M (2.4.5)

Y1 = Y0 + ∆t
M∑

j=1

bjkj, (2.4.6)

where Y1 = Y (t0 + ∆t) and fixed scalars ai,j, bj, ci are the coefficients of the RK formula.
Consequently, Kloeden and Platen (1999) and Skaug (2000) refer to the standard 4-stage

RK procedure, where

c2 = c3 =
1

2
, c4 = 0,

a2,1 = a3,2 =
1

2
, a4,3 = 1,

b1 = b4 =
1

6
, b2 = b3 =

1

3
.

(2.4.7)

For the numerical integration of the stochastic differential equation

dX(t) = m(X, t)dt + σ(X, t)dW (t), (2.4.8)

for cases where σ(X(t), t) = σ(t), that is, σ does not depend on X, it is assumed appropriate
to use the RK approximation for the drift part and keep the Euler approximation for the
diffusion part. Then the so-called Runge-Kutta-Maruyama method is given

Xi+1 = Xi + ∆t
M∑

j=1

bjkj + σ(Xi, ti)∆Wi (2.4.9)

where bj, kj are the coefficients (Eqs. 2.4.4-2.4.6), ∆Wi = Wi+1 − Wi are the increments of
the Wiener process, which are independent Gaussian variables with expectation zero and
variance ∆t. Hereafter, the diffusion function is assumed independent of the state space
variable X though the general notations are preserved.

For the purposes of this thesis, the accuracy of the above-mentioned scheme is fair enough,
though the more complicated and accurate procedures are available if needed (Milstein, 1995;
Kloeden and Platen, 1999). The 5-stage RK method of Carpenter and Kennedy (1994) is
used for the numerical simulations due to the lower storage requirements compared with the
standard 4-stage method.
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Chapter 3

Reliability

3.1 Introduction

Traditionally, structural design has relied on deterministic analyses. Nevertheless the
uncertainties in loads and material properties were not completely neglected. The safety
factors were introduced to separate strengths and loads. The subject of structural reliability
started to evolve from the beginning of the 1920s. The detailed history of the subject is
given, for instance, in Madsen et al. (1986).

The study of structural reliability is concerned with the calculation and prediction of the
probability of limit state violation for engineered structures at any stage during their life.
Here it is implied that the limit state is the requirements of the safety of the structure against
collapse, limitations for damage or deflections etc. The probability of the occurrence of an
event such as limit state violation is a numerical measure of the chance of its occurrence.
This measure may either be obtained from the experimental measurements of the long-term
frequency of the occurrence of the event for a similar structure, which is rarely available for
a sufficient long period, or by subjective estimation of the numerical value. Usually both
methodologies are used to get an estimate. Thus the efficiency of a reliability method depends
on how much information about a given problem has been utilized; additional information
can often be exploited to accelerate the convergence of the failure probability estimate. In
essence, the efficiency of a reliability method is often gained at the expense of generality
(Au and Beck, 2001).

In probabilistic assessments any uncertainty about a variable given in terms of a probability
density function, is explicitly taken into account, unlike the deterministic way of measuring
safety by factor of safety, or load factor. The factor of safety defines a gap between the
applied stress, moment or displacement and the corresponding capacity to resist these load
effects. The alternative and useful measure of safety is the safety margin, which in its
simplest form can be expressed as

M = R − S, (3.1.1)

where R is the resistance and S is the resultant load effect. By this formulation, M = 0 is
the limit state. This measure is extensively used in the probabilistic analysis as well. As one
might see, this formulation is much alike the cost-benefit principle.

Further in the probabilistic analysis it is possible to classify the reliability methods by
their order of uncertainty
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Chapter 3 Reliability

• First level: deterministic - like methods that employ only one characteristic value of
each uncertain parameter;

• Second level: the methods that employ two values of each uncertain parameter (com-
monly mean and variance) and measure of correlation between the parameters, for
instance, reliability index methods, which will be described later;

• Third level: methods that require a knowledge of joint distribution of all uncertain
parameters

• Fourth level: methods that combine the structural analysis and economical aspects of
structural design.

The reliability assessment is not a rule for the structural safety but it is the recommenda-
tion and is in addition to the existing methods. The calibration methods exist to supply the
different estimations from the techniques of the different levels. It allows taking into account
parameters and factors such as structure reliability itself and the cost of the construction as
well as the comfort exploitation.

3.2 Time-invariant case

In structural reliability the basic variables are assumed to be uncertain and can be repre-
sented by their density functions. Load, resistance, geometry or workmanship can be defined
as these basic variables and described in probabilistic terms. The basic random variables
are collected in the a random vector Z = (Z1, Z2, . . . , Zn) which has the joint probability
density function fZ(z). Assume Z, that is a random point in n-dimensional vector space,
to be time independent. Then different failure modes can be defined in a failure function
or limit state function g(Z). The boundary between the safe states and the failed states in
Z-space is the set of limit states which corresponds to g(Z) = 0 (Fig. 3.1).

The reliability of the systems is defined as a probability that the vector Z lays inside a
safe domain

pS = P{g(Z) > 0} =

∫

DS

fZ(z)dz. (3.2.1)

It follows that the failure probability is defined as the complement to the reliability

pf = 1 − pS = P{g(Z) ≤ 0} =

∫

Df

fZ(z)dz. (3.2.2)

For instance, if a system can be described by two basic variables such as the stress S and
resistance R with joint density function fRS(r, s) and marginal density functions fS(s) and
fR(r) and by the safety margin M = g(Z) = R − S,

pf = P{R − S ≤ 0} =

∫ ∫

DF

fRS(r, s)drds. (3.2.3)
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Failure

Limit surface

Ds

Df

Non-failure

Figure 3.1: Limiting surface in the state space.

Assume that R and S are independent, then

pf = P{R − S ≤ 0} =

∞∫

−∞

s≥r∫

−∞

fR(r)fS(s)drds (3.2.4)

which is reduced to a convolution integral. Moreover if R and S are normally distributed,
then the probability of failure

pf = P{R − S ≤ 0} = P{M ≤ 0} = Φ

(
0 − µM

σM

)
= Φ(−β), (3.2.5)

where Φ(·) is the standard Gaussian distribution (Eq. 2.1.24), µM = µR − µS and σ2
M =

σ2
R + σ2

S are the mean value and the variance of a random variable, M = g(Z) = R − S,
given by well-known rules for addition (subtraction) of normal random variables. β is called
the safety index or reliability index which is extensively used in reliability theory (Fig. 3.2).

In general, the integration of Eq. (3.2.2) cannot be performed analytically. There are
basically two methods to deal with this integral:

• multidimensional integration of the original program using numerical approximation
such as simulation and by

• transforming the basic variables of the original problem into the space of independent
standard Gaussian variables and perform the integration of the standard Gaussian
distributions.

To conclude, it is worth mentioning that for convenience the indicator function may be
introduced, defined by

I(x) =

{
0 if x > 0

1 if x ≤ 0
(3.2.6)
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0

fZ(z)

βσM
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Failure Safety

σMσM

pf

µM
z

Figure 3.2: Distribution of safety margin.

There are some other types of indicator function but they are of no interest in this thesis.
Thus the failure probability becomes:

pf = E{I[g(Z)]} =

∫
· · ·
∫

z

I[g(z)]fZ(z)dz. (3.2.7)

3.2.1 FORM

To continue on the subject of reliability, the methodology developed throughout the thesis
is based on using the first-order reliability method FORM. This technique can be imple-
mented for the second and third level reliability methods after the classification given in
the introduction, depending on the distributions of the basic variables. For implementation
of FORM the number of the basic variables must be finite. Indeed if FORM is the tech-
nique for second and third level methods then all basic variables are given by the mean and
covariances, and by their joint density function correspondingly.

The FORM method is based on the idea of a reliability index (or safety index ) β. Assume
a safety margin is defined as above, i.e. M = g(Z), then Cornell (1969) defined reliability
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index as

βC =
µM

σM

. (3.2.8)

An illustration of this is given in Fig. (3.2).
For a general non-linear failure function, linearization of the safety margin around the

point z gives a linear safety margin

M = g(z) +
n∑

i=1

∂g

∂zi

(z)(Zi − zi) (3.2.9)

with the corresponding reliability index β:

β =

g(z) +
n∑

i=1

∂g

∂zi

(z)(E[Zi] − zi)

(
n∑

i=1

n∑
j=1

∂g

∂zi

∂g

∂zj

Cov(Zi, Zj)

)1/2
(3.2.10)

where Cov(Zi, Zj) = E[(Zi − E[Zi])(Zj − E[Zj])].
This reliability index is called a first-order second-moment reliability index. However,

the so-called invariance problem arises because it can be shown that the failure function
can be written in many different but equivalent ways, for instance, for the stress-resistance
formulation here: g(Z) = R − S or g(Z) = R/S − 1.

To avoid this problem, a third interpretation of the reliability index was given by
Hasofer and Lind (1974) which is invariant with respect to the mathematical formulation
of the safety margin. It is proposed that there is a mapping of the set of basic variables into
a set of normalized and uncorrelated Gaussian variables {Ui}, i = 1, . . . , n with expected
value zero and unit standard deviation. By this transformation the failure surface in the
new U space is given as

g(z) = gu(u) = 0. (3.2.11)

The point closest to the origin is called the β-point or the design point. Thus the Hasofer
and Lind reliability index defined in the U -space is invariant to different equivalent formu-
lations of the failure function because it is related directly to the failure surface and not
directly to the failure function. First of all, it is important to find the design point in this
space. The design point u∗ is the solution for the constrained optimization problem

min
gu(u)=0

√√√√
n∑

i=1

u2
i . (3.2.12)

Then the unit normal vector ~α to the failure surface at the design point directed toward the
failure set is constructed (see Fig. 3.3)

~α = − ∇g(u∗)

|∇g(u∗)| . (3.2.13)
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At last, the reliability index is given as

β = ~α · u∗. (3.2.14)

β

α

u1

u2

u∗

Approximate tangent
hyperplane β − αT u = 0

Figure 3.3: Design point on the failure surface.

Thus the calculation of the reliability index has become an optimization problem.
Consequently problems arise about whether the failure surface has several local min-
ima and how to combine the reliability indices of several members of the structure
(der Kiureghian and Dakessian, 1998). Moreover, the concept reliability index can be gener-
alized further, but only the Hasofer and Lind definition is used throughout the thesis because
it best serves our purposes.

3.2.2 Simulation techniques and Monte Carlo method

The concept of the simulation methods is to generate the realizations of the basic variables,
to find in which domain, safe or failure, these realizations are situated and estimate their
contributions to reliability or failure probability depending on their position. The universal
and simplest method is a direct or crude Monte Carlo method. Besides, other methods
such as importance sampling, adaptive sampling, directional simulation (Rubenstein, 1981;
Ditlevsen and Madsen, 2003) that have been developed in recent years. In this thesis, the
focus is on the importance sampling techniques, used for improving of the Monte Carlo
method results.
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The underlying idea of the Monte Carlo method is to compose a stochastic process which
produces a random variable whose expected value is the solution to a certain problem. The
general implementation and applications are described in detail by Bauer (1958). Let us
assume that the basic variables Z can be mapped by some regular transformation to the
normalized U -space of Gaussian variables. Thus, the failure surface g(Z) = 0 transforms
correspondingly (Eq. 3.2.11). Further, the u-subscript will be omitted for convenience. Thus
the estimate of the mean value in the game of chances for Eq. (3.2.7) in the normalized
U -space is given as

p̂f =
1

N

N∑

j=1

I[g(uj)], (3.2.15)

where N is the number of stochastic experiments and uj is a vector of the jth realization of
the standard Gaussian vector U . The standard deviation of p̂f is estimated as

σ =

√
p̂f (1 − p̂f )

N
. (3.2.16)

It is obvious that the error and convergence rate is proportional to 1/
√

Np̂f .

For the direct Monte Carlo method, the realizations of the normal vector U will be dis-
tributed mostly around the origin. This is unlike the importance sampling techniques, where
the samples are concentrated in the domain which gives the largest contribution to the failure
probability.

pf =

∫
· · ·
∫

I[g(u)]fU(u)du =

∫
· · ·
∫

I[g(y)]
fU(y)

fS(y)
fS(y)dy (3.2.17)

where the importance sampling density fS(y) has been suitably chosen. The estimate of
failure probability by importance sampling is defined by

p̂f =
1

N

N∑

j=1

I[g(yj)]
fU(yj)

fS(yj)
(3.2.18)

and the standard deviation in this case is

σ =

√√√√√ 1

N(N − 1)





N∑

j=1

(
I[g(yj)]

fU(yj)

fS(yj)

)2

− 1

N

(
N∑

j=1

I[g(yj)]
fU(yj)

fS(yj)

)2


. (3.2.19)

This methodology is also called variance reduction. The aim of these techniques is to
reduce the error of the estimators and to increase the rate of convergency. The other variance
reduction techniques are briefly discussed in Appendix B.
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3.3 Time-variant case

The actions on the structure, as well as material properties and exploitation conditions
very often explicitly depend on time. Thus in general, the basic variables change in time. In
this thesis dynamical loads are assumed. The response of the structure X(t) is governed by
the SDE (2.3.1). Then the failure probability (Eq. 3.2.2) is defined in the probability space
(Ω,F ,Fτ , P ), where Fτ , t0 ≤ τ ≤ T is a non-decreasing family of σ-sub-algebras,

pf (T ; t0) = 1 −
∫

ES

dP (ω) =

∫

Ω

I[g(X(·, ω))] dP (ω) = E(I[g(X)]), (3.3.1)

where Es = {ω : X(t, ω) ∈ Ds,∀ t : t0 ≤ t ≤ T} is the safe subspace, I[g(X)] is an indicator
function defined as follows: I[g(X)] = 0 for ω ∈ ES, I[g(X)] = 1 otherwise, see (Eq. 3.2.6).

The exact value of this integral is difficult to obtain. No analytical solution is known
today. It can be estimated by simulation techniques or by suitable approximations.

One such approximation is obtained by assuming that the excursion events outside of
the safe domain constitutes a Poisson process NDs

(t), where NDs
(t) denotes the number of

excursions during the time interval (t0, T ). The reliability coincides with the probability
that the initial response X(t0) belongs to the safe domain and the response does not leave
the safe domain during (t0, T ], which is given as (Soong and Grigoriu, 1997)

ps(T ; t0) = P{(X(t0) ∈ Ds) ∩ (NDs
(τ) = 0)}, (3.3.2)

where τ = T − t0. It can be approximated by

ps(T ; t0) ≈ P{X(t0) ∈ Ds}P{NDs
(τ) = 0} (3.3.3)

under the assumption that the events {X(t0) ∈ Ds} and {NDS
(τ) = 0} are independent.

Another simplification is that the Ds-outcrossings of X(t) follow an inhomogeneous Poisson
process of intensity νDs

(t) at time t. Moreover also if P{X(t0) ∈ Ds} = 1 then the result is
obtained as

ps(T ; t0) ' exp

(
−
∫ T

t0

νDS
(s)ds

)
(3.3.4)

or if X(t) is a stationary process in addition, then

ps(T ; t0) ' exp (−νDs
(T − t0)) (3.3.5)

and the approximation of the failure probability is given

pf (T ; t0) = 1 − ps(T ; t0) ≈ 1 − exp

(
−
∫ T

t0

νDs
(s)ds

)
. (3.3.6)

The mean rate of Ds-outcrossings is given

νDs
(t) =

d

dt
E[NDs

(t)] (3.3.7)
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3.3 Time-variant case

where E[NDs
(t)] is a mean number of excursions of X(τ) outside Ds during (0, t). Moreover

the definition of the outcrossing rate requires that the process is regular, that is to say the
probability of having more than one crossing in small interval of time must be negligible.

The mean crossing rate of a univariate stochastic process X(t) from a safe domain Ds =
(−∞, x) can be defined from the famous Rice formula (Rice, 1954; Soong and Grigoriu, 1997)

ν+
x (t) =

∞∫

0

ζf(x, ζ; t)dζ, (3.3.8)

where f(x, ẋ; t) denotes the joint probability density function of {X(t), Ẋ(t)}.
The crossing rate of the stationary Gaussian process X(t) (Def. 4, Chapter 2) with mean

value µ and variance σ2 is given

ν+
x (t) = ν+

x =
σ̇√
2π

φ

(
x − µ

σ

)
(3.3.9)

where σ̇ is the standard deviation of Ẋ(t) = dX(t)/dt and φ(·) is the Gaussian density
function (Eq. 2.1.23).

Nevertheless, the Poisson approximation assumes a lot of restrictions which rarely hold
for the wide class of real processes (Soong and Grigoriu, 1997). Despite all advantages of
this method, the Monte Carlo simulation techniques are still the best in the competition.
The only drawback of the crude or direct method is the slow convergence (Section 3.2.2).
However as it will be shown in Chapter 5, the variance reduction methods such as importance
sampling are applicable for improving the Monte Carlo procedure based on the measure
transformation method proposed by Girsanov (1960).

3.3.1 Simulation technique and Monte Carlo method

Let f(X(t0 +T )) be a function or a functional of the stochastic vector process X(t) which
is a solution of a certain SDE (2.3.1). Then two errors arise during the computation of
E[f(X(t0 + T ))] by the direct Monte Carlo method. First of all, there is a corresponding
numerical error during the discrete integration of the SDE. Let X̂(t0 + T ) denote an ap-
proximate solution of this equation. Secondly, there is an error in the Monte Carlo method.
Since V ar(f(X̂(t0 + T ))) is close to V ar(f(X(t0 + T ))), we may assume that the error in
the Monte Carlo method can be bounded by (V ar(f(X(t0 + T )))/N)1/2 (Milstein, 1995).
If V ar(f(X(t0 + T ))) is large, then, in order to achieve satisfactory precision, we have to
take into account a very large number of trajectories. The improvement may be achieved
by implementing the variance reduction methods such as for instance by the importance
sampling technique.

To define a measure analogous to the sampling density in Section 3.2.2 it is necessary to
define a certain transformation. Moreover the stochastic processes must be consistent with
their probability measures. Define the Wiener process W (t) with respect to measure P on σ-
algebras Fs, Fs ⊂ Ft, t > s then the Girsanov transformation of measure (Girsanov, 1960)
can be applied. This changing of measures is absolute continuous (Chung and Williams,
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1990) because samples of the Wiener process are absolutely continuous as it was discussed
in Section 2.2.3.

Let X(t) be a solution of

dX(t) = m(X, t)dt + σ(X, t)dW (t). (3.3.10)

Let v(t, ω) = (v1, . . . , vn) be a non-anticipative bounded process such as it depends only on
the behaviour of a system before time t; and define a diffusion

dρt
s(v) = −1

2
v(t, ω)2dt + v(t, ω)dW (t). (3.3.11)

Then the following theorem can be stated (Øksendal, 1998; Fleming and Rishel, 1975).

Theorem 2 (The Girsanov theorem). Let W (t) = {w(t, ω), P,Ft} be a Wiener process in

Rn. Define an Itô process W̃ (t) of the form

dW̃ (t) = −v(t, ω)dt + dW (t), t ≤ T < ∞, W̃ (0) = 0. (3.3.12)

Assume that v(t, ω) satisfies Novikov’s condition

E


exp


1

2

T∫

0

v2(s, ω)ds




 < ∞. (3.3.13)

Introduce the new measure P̃ as

dP̃ (ω) = exp ρT
s (v)dP (ω), (3.3.14)

where ρT
s (v) is the solution of (3.3.11). P̃ will be absolutely continuous with respect to P .

Moreover assume that P̃ (Ω) = 1.
Then

dX̃(t) = m(X̃, t)dt + σ(X̃, t)v(t, ω)dt + σ(X̃, t)dW̃ (t)), (3.3.15)

where W̃ (t) = {w̃(t, ω), P̃ ,Ft} is a Wiener process with respect to a probability measure

P̃ (ω).

The rigorous proof is given in Girsanov (1960). Other variations of this theorem and
applications are considered in Øksendal (1998), Fleming and Rishel (1975). The exp ρT

s (v)
is called the Radon-Nikodym derivative (Rudin, 1987).

Thus the transformation of measures gives the desired importance sampling measure. In
particular when v(t, ω) = v(t,X), the new SDE with changed Wiener process is given

dX̃(t) = m(t, X̃)dt + σ(t, X̃)v(t, X̃)dt + σ(t, X̃)dW̃ (t),

X̃(s) = x,
(3.3.16)
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3.3 Time-variant case

where X̃(t) is a new improved response considered on the time interval (s, T ] with given
initial condition. The associated failure probability integral now takes the form

pf (T ; s, x) =

∫

Ω

I[g(X̃)]

(
dP

dP̃

)
dP̃ , (3.3.17)

where the Random-Nikodym derivative under the transformed Wiener process W̃ (t) is given
by Naess (1999)

(
dP

dP̃

)
= exp


−

T∫

s

v(τ, X̃(τ))dW̃ (τ) − 1

2

T∫

s

v2(τ, X̃(τ))dτ


 . (3.3.18)

The problem of how to choose the function v(t, ω) will be discussed in the next chapter.
Further, this function is called a control function because it allows us to control the dynam-
ics of the system in a desirable way. However, choosing an arbitrary change of probability
measure aiming at the more frequent excursion from the safe domain may lead to the es-
timate with greater or even infinite variance. To avoid this, the control is obtained by the
requirement of minimum variance of the failure probability estimate (Section 4.3).

3.3.2 FORM and design point excitations

In the proposed method of improving the convergence rate and reducing the systematic
error, which will be given further in Chapter 5, the so-called design point excitation method
is utilized. First this technique was considered in Li and Der Kiureghian (1995), then con-
tinued and expanded in Tanaka (1997), Macke (1999) and Næss and Skaug (2000). Thus
the introduction and basic notation will given here, though the examples will be presented
in Chapter 5.

The design point excitation procedure is based on FORM interpretation of the reliability
problem. As was mentioned in the Section 3.2.1 in order to implement FORM the number
of the basic variables must be finite. In the time dependent case, this condition is violated
when the stochastic process has a continuous time parameter. However, due to numerical
integration, time discretization allows us to reduce the quantity of basic variables to a finite
number. In Chapter 5, this concept will be used to create the first approximation of the
failure probability on the sets of the initial values in the state space and initial times.

Assume that X(t) = {X1(t), . . . , Xn(t)} is a solution of SDE (2.3.1) on the interval (s, T ].
To find the path of this solution the equidistant time discretization is used with step size
∆t = (T − s)/M

s = t0 ≤ t1 ≤ . . . ≤ ti ≤ . . . ≤ tM = T ti = s + i∆t (3.3.19)

Using the Euler approximation (Section 2.4.1) the SDE (2.3.1) can be approximated by
the difference scheme

Xk(ti+1) = Xk(ti) + mk(ti, X)∆t +

q∑

j=1

σkj(ti, X)∆Wj(ti)

Xk(s) = xk,

(3.3.20)
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with W (t) = (W1(t), . . . ,Wq(t)) is a q-dimensional unit Wiener process. The dimensions of
the state space and the Wiener process are determined by the dynamics of the system in
general formulation. The increments of this vector process can be written as

∆Wj(ti) = Uji

√
∆t (j = 1, . . . , q; i = 0, . . . ,M − 1) (3.3.21)

with Uji being mutually independent normal variables.
Failure is now approximated by checking the discretized process X(ti), for i = 0, . . . ,M ,

that is, Es ≈ {g(X(ti)) > 0 : i = 0, . . . ,M}. Thus the failure surface may be expressed
relative to the normalized variables Uji, i = 0, . . . ,M − 1 and j = 1, . . . , q by introducing a
suitable failure function gU :

gU(u10, . . . , uq(M−1)) = 0. (3.3.22)

In this formulation it is clear that Es ≈
⋂M−1

i=0 Ei, where Ei = {g(X(ti) > 0}. That is, a series
system approximation has been adopted. The reliability of a series system can be simply
approximated by the reliability of the subsystem with the lowest reliability considering failure
functions gUi, Ei = {gUi(U10, . . . , Uq(i−1)) > 0}. The reliability index β(ti) of each subsystem
is obtained by finding the coordinates of the point on the failure surface gUi(u10, . . . , uq(i−1)) =
0 that minimize the distance to the origin. The simple series system reliability estimate is
then given by

β∗(t∗) = min
s≤ti≤T

β(ti) (3.3.23)

with corresponding most likely excitations leading to an out-crossing of this boundary at the
exit time t∗ ∈ (s, T ] defined as u∗ = (u∗

10, . . . , u
∗
q(M−1)).

This kind of approximation fits systems which are dominated by a single passage time,
as for instance, crack growth problems (Tanaka, 2000). In the case of oscillatory systems
when excursions from the safe domain show some periodicity, the contribution to the failure
probability is made by several time points. Not taking this into account will follow to the
essential underestimation (Næss and Skaug, 2000).

If we consider the controlled system (Eq. 3.3.16) on (s, T ) in the discrete form

X̃k(ti+1) = X̃k(ti) + mk(ti, X̃)∆t +

q∑

j=1

σkj(ti, X̃)v∗
j (ti)∆t (3.3.24)

+

q∑

j=1

σkj(ti, X̃)∆Wj(ti),

with given above most likely excitations u∗. Then the controls v∗
j (ti, X̃) are given as

v∗
j (ti, X̃) = v∗

j (ti) =
1√
∆t

u∗
ji, (0 ≤ i ≤ M − 1, j = 1, . . . , q). (3.3.25)
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3.3 Time-variant case

Macke and Bucher (2003) showed that the action of the controls corresponded to the other
exit times, not only for the time t∗, can be equally important for the resultant failure prob-
ability. Then they proposed a weighting procedure based on a probability density function
of the exit times. The importance sampling probability at each time point is proportional
to the importance factor

Φ(−β(ti))
M∑

j=1

Φ(−β(tj))

, (3.3.26)

which takes the interaction between controls explicitly into account. We shall return to this
question in Chapter 5.
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Chapter 4

Stochastic control theory

In order to reduce the variance of the estimate for the failure probability functional
(Eq. 3.3.1), it would be desirable to speed up the first-passage event, i.e. to control the
stochastic process in such way that failure would occur almost surely during the considered
time interval. Definitely, the changing of a sample path will affect the probability measure
of the response process. However, the Girsanov transformation (Theorem 2) takes this ef-
fect into account. Thus the objective of this chapter is to present a special optimal control
function which minimizes the estimating error of the failure probability and which satisfies
the conditions of the measure transformation.

4.1 Preliminaries about stochastic control

The general stochastic control theory assumes that the state of a system a time t can be
described by an Ito process Xt given by an SDE of the form

dXt = dXv
t = m(t,Xt, vt)dt + σ(t,Xt, vt)dWt , s ≤ t ≤ T

Xs = x,
(4.1.1)

where x = (x1, . . . , xn) are deterministic initial conditions, Xt ∈ R
n, Wt is a q-dimensional

Wiener process. Here vt ∈ V ⊂ R
k is a parameter whose value we can choose in the given

Borel set V at any instant t in order to control the process Xt (Øksendal, 1998). Thus
vt = v(t, ω) is a stochastic process. Here it is essential that the function ω → v(t, ω) is Ft-

measurable, or at least F (q)
t -measurable, where F (q)

t denotes the σ-algebra generated by Wr

for r ≤ t. Assume given two continuous functions, the utility rate function F : R×R
n×V →

R and the bequest function function K : R×R
n → R, let G = (0, T )×Ds, and let T̂ = T̂ s,x

be the first exit time after s from G for the process (r,Xr), that is,

T̂ = T̂ s,x(ω) = inf{r > s; (r,Xr) /∈ G} ≤ T, (4.1.2)

These functions define the performance function

Jv(s, x) = E

[∫ T̂

s

F (t,Xt, vt)dt + K(T̂ , XT̂ )

]
. (4.1.3)
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Chapter 4 Stochastic control theory

This defines a challenging optimization problem: To find for each x ∈ Ds the number
Φ(s, x) and a control v∗ = v∗(t, ω) such that

Φ(s, x) = sup
v(t,ω)

Jv(s, x) = Jv∗

(s, x), (4.1.4)

where the supremum is taken over all F (q)
t -adapted processes {vt} with values in V . If such

control v∗ exists then it is called an optimal control and Φ is called the optimal performance.
The control can be classified by the type of function set V which allows us to choose

numerical methods properly. First of all, the function v(t, ω) = v(t) may be deterministic,
independent of the state of the system. Such control is called an open loop control. The
example is the ”design point” excitation shown in Section 3.3.2. Then processes {v(t)} may
be adaptive with regard to σ-algebra Mt generated by the {Xv

s ; s ≤ t}. These controls are
called closed loop or feedback controls. The third type of controllers is then the controller has
just partial knowledge about the state of a system through some adjacent noise process R(t).
Hence the control {v(t)} must be adapted w.r.t. σ-algebra Nt generated by {Rs; s ≤ t}. The
special feature of this type is that it splits into the linear filtering problem and corresponding
deterministic control problem (Øksendal, 1998) (Separation Principle). The fourth and the
last type is Markov controllers v(T, ω) = v(t,Xt(ω)). Thus the value v at a time instant t
depends only on the state (x, t) assuming that process v does not depend on initial conditions.
Therefore, by choosing these controls v, the output Xt becomes an Itô diffusion, in particular
a Markov process.

Consider first the Markov control v(t, ω) = v(t,Xt(ω)). Let us define the following operator
for v ∈ V and f ∈ C2

0(R × R
n) is defined

(Lvf)(s, x) =
∂f(s, x)

∂s
+

n∑

i=1

mi(s, x, v)
∂f(s, x)

∂xi

+
1

2

n∑

i,j=1

aij(s, x, v)
∂2f(s, x)

∂xi∂xj

, (4.1.5)

where aij = 1
2
(σσT )ij and x = (x1, . . . , xn). Therefore the first fundamental result on

stochastic control theory is the following (adapted from Øksendal (1998)):

Theorem 3 (The Hamilton-Jacobi-Bellman (HJB) equation). Define

Φ(s, x) = sup{Jv(s, x); v = v(s,Xs)Markov control}. (4.1.6)

Suppose that Φ ∈ C2(G) ∩ C(G) is bounded. The probability law of Xt, s ≤ t ≤ T , with
X(s) = x ∈ Ds is denoted by Qs,x. Suppose that an optimal Markov control v∗ exists, and
that ∂G is regular for t,Xt(v

∗) (regularity means that Q(s,x)(T̂ = 0) = 1 for all (s, x) ∈ ∂G,
or x ∈ ∂Ds). Then

sup
v∈V

{F (s, x, v) + (LvΦ)(s, x)} = 0 for all (s, x) ∈ G (4.1.7)

and

Φ(s, x) = K(s, x) for all (s, x) ∈ ∂G. (4.1.8)

The supremum in (4.1.7) is obtained if v = v∗(s, x) where v∗(s, x) is optimal, i.e.

F (s, x, v∗(s, x)) + (Lv∗

(s, x)Φ)(s, x) = 0 for all (s, x) ∈ G. (4.1.9)
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A rigorous proof of this theorem is given in Øksendal (1998), as well as a converse theorem

and an application to an arbitrary F (q)
t -adapted control. Eq. (4.1.9) is also called equation of

Dynamic Programming method introduced by Bellman (1957), Bellman and Dreyfus (1962).

The HJB theorem can also be applied for the corresponding minimization problem

Ψ(s, x) = inf
v∈V

Jv(s, x) = Jv∗

(s, x). (4.1.10)

Correspondingly, the performance function becomes

Ψ(s, x) = − sup
v
{−Jv(s, x)} = − sup

v



Es,x


−

T∫

s

F v(τ,Xτ )dτ − K(T,XT )





 (4.1.11)

so −Ψ coincides with the solution Φ of the problem (4.1.4), but with F replaced by −F and
K replaced by −K. Following these changes the HJB equation is applicable to Ψ, but with
reverse signs.

4.2 Optimal control

To reduce the computational error after implementation of the Monte Carlo method
(3.3.1), as it was mentioned above, the Girsanov transformation allows us to improve our
original equation (Eq. 2.3.1)

dX = m(t,X)dt + σ(t,X)dW (t) (4.2.1)

by the external drift function v(t,X) from Theorem (2)

dX̃ = m(t, X̃)dt + σ(t, X̃)v(t, X̃)dt + σ(t, X̃)dW̃ (t). (4.2.2)

Let the Radon-Nikodym derivative (Eq. 3.3.18) denote dP/dP̃ = ζT
s , where ζt

s is a scalar
Markov process

dζt
s = −ζt

sv(t, X̃t)dW̃ (t), (4.2.3)

ζT
T = 1. (4.2.4)

Note that both processes are given with respect to the importance sampling measure P̃ . The
extended system considered now is a set of Eqs. (4.2.2) and (4.2.3). By the Theorem 2 for
any v:

E[f(Xs,x(T ))]|4.2.1 = E
[
f(X̃s,x(T ))ζT

s

]
|4.2.2. (4.2.5)

Denote Z = f(X̃T
s,x)ζ

T
s , it is clear that E[Z] does not depend on the choice of the control

v, while its variance V ar(Z) = E[Z2] − (E[Z])2 does depend on v.
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Let Ψ = E[f(XT
s,x)], where XT

s,x is a solution of the original equation (Eq. 4.2.1). Then by
Theorem 6.1 (p.129) in Fleming and Rishel (1975) the following boundary problem is true

(L0Ψ)(s, x) =
∂Ψ

∂s
+

n∑

i=1

mi
∂Ψ

∂xi

+
1

2

n∑

i=1

n∑

j,k=1

σijσik
∂2Ψ

∂xj∂xk

= 0, (4.2.6)

Ψ(T, x) = f(x). (4.2.7)

Therefore, the natural condition for choosing control v is the minimization of the quantity
V ar(Z). Besides, since E[Z] is independent on v, the performance function (Eq. 4.1.3) takes
the form

Jv(s, x) = E[(f(X̃T
s,x)ζ

T
s )2], (4.2.8)

where the utility rate function F v(t, X̃(t)) = 0 and the bequest function K(T, X̃T )) =

(f(X̃T
s,x)ζ

T
s )2 in terms of stochastic control theory. The optimal performance is defined

Φ(s, x) = inf
v∈V

Jv(s, x) = Jv∗

(s, x). (4.2.9)

Applying Theorem 3, assume that v∗ is the optimal control then Equation (4.1.9) takes
the form

(Lv∗

Φ)(s, x) = 0 (4.2.10)

with the boundary condition (Eq. 4.1.8)

Φ(T, x) = (f(XT
T,x)ζ

T
T )2 = f 2(x), (4.2.11)

where Lv∗

(s, x) is an operator given by (Eq. 4.1.5)

(Lv∗

Φ)(s, x) =
∂Φ

∂s
+

n∑

i=1

mi
∂Φ

∂xi

+

q∑

i=1

vi

(
σi,

∂Φ

∂x

)
+ (4.2.12)

1

2

q∑

i=1

n∑

j,k=1

σijσik
∂2Φ

∂xj∂xk

− 2

q∑

i=1

vi

(
σi,

∂Φ

∂x

)
+ Φ

q∑

i=1

v2
i .

Here and further, the notation
(
σi,

∂Φ
∂x

)
means a scalar product of these two vectors σi =

(σi1, σi2 . . . , σin) and ∂Φ
∂x

.
After minimization (v 6= 0) the control function equals

vi =
1

2Φ

(
σi,

∂Φ

∂x

)
. (4.2.13)

Therefore, the performance function Φ(s, t) satisfies the following boundary problem (using
the theorem from Fleming and Rishel (1975))

(L0Φ)(s, x) − 1

4Φ(s, x)

q∑

i=1

(
σi,

∂Φ

∂x

)2

= 0 (4.2.14)

Φ(T, x) = f(x)2, (4.2.15)
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4.3 Suboptimal control

taking into account that ζT
T = 1.

The goal now is to link this representation of the optimal control function to the original
failure probability. Let Φ = (Ψ)2, indeed Φ ≥ 0. Then Ψ(s, x) is also the solution to
Eq. (4.2.14)

2Ψ

(
∂Ψ

∂s
+

n∑

i=1

mi
∂Ψ

∂xi

+
1

2

q∑

i=1

n∑

j,k=1

σijσik
∂2Ψ

∂xj∂xk

)
+ (4.2.16)

q∑

i=1

n∑

j,k=1

σijσik
∂Ψ

∂xj

∂Ψ

∂xk

− 1

4Ψ2
· 4Ψ2

q∑

i=1

(
σi,

∂Ψ

∂x

)2

= 0 (4.2.17)

Ψ(T, x) = f(x). (4.2.18)

Moreover, the optimal control will take the form

vi =
1

Ψ

(
σi,

∂Ψ

∂x

)
. (4.2.19)

In Milstein (1995) it is proved that if v = v∗ is the optimal control, then f(X) becomes a
deterministic quantity.

There are some requirements about the function f(x) but they can easily be overcome as
it is shown in Milstein (1995), Macke (1999), Macke and Bucher (2003). In the case, when
f(x) = I[x] is the indicator function, and the aim is to assess the failure probability when
those requirements are fulfilled.

4.3 Suboptimal control

The expression for the optimal control v(x, s) (Eq. 4.2.19) includes the value of the failure
probability pf (T ; x, s) which has to be known in advance and in addition as a function in
state space and time. Nevertheless, the form of this solution for the problem can be exploited
whether the approximation for pf (T ; x, s) is available. Then the suboptimal control v̂(x, s)
can be constructed and it will still lead to substantial variance reduction.

Let v̂(s, x) be a suboptimal control. Again the quantity E[f(XT
s,x)] = E[f v(X̃T

s,x)ζ
T
s (v̂)],

where X̃T
s,x is solution of Eq. (4.2.2), will be unaffected by the choice of control function. On

the contrary, the variance of this estimate depends on the choice of control. It was proved
above in the case of the optimal control that the variance of the estimate equals zero. In the
case of suboptimal control, the variance is non-zero although it will still remain small.

The reliability problem is now considered in the time interval (s, T ] with deterministic
initial condition X(s) = x, and pf (T ; s, x) denotes the associated failure probability. The

Monte Carlo estimate of the failure probability based on measure P̃ is given in Naess (1999)

p̂f (T ; s, x) =
1

N

N∑

i=1

I[g(x̃i)]

(
dP

dP̃

)i

. (4.3.1)
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Analysing Eqs. (3.3.1) and (3.3.17), it is obvious that the failure probability is independent
of the choice of controller, whereas the variance does depend on v. Invoking the theory of
stochastic control again it can be shown that there is an optimal control function (Milstein,
1995) for minimizing the functional

J = Ẽ

[
I2[g(X̃)]

(
dP

dP̃

)2
]
→ min, (4.3.2)

viz.,

v∗(s, x) =
1

pf (T ; s, x)

(
σ(s, x) · ∂pf (T ; s, x)

∂x

)
. (4.3.3)

It can be proved (Milstein, 1995) that if v∗(s, x) is the optimal control function, then the
variance of the failure probability estimator is zero, thus the estimator is a deterministic
quantity. However, from (4.3.3) it follows that the optimal control function depends on
the failure probability pf (T ; s, x), which has to be known for all values of the arguments
(s, x) ∈ (0, T ] × R

n. But, of course, if the answer is known there is no need to control the
system. On the other hand, if the failure probability can be calculated approximately on a
suitable finite grid in (0, T ]×R

n, i.e. p̂f (T ; s, x), then it is possible to construct a suboptimal
control function v(s, x) such as:

v(s, x) =
1

p̂f (T ; s, x)

(
σ(s, x) · ∂p̂f (T ; s, x)

∂x

)
(4.3.4)

which obviously gives non-zero variance of the estimator, but still it reduces it substantially
while p̂f (T ; s, x) ≈ pf (T ; s, x). Thus, the goal is to provide such approximation.
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Importance sampling

In this chapter the proposed two-step importance sampling procedure for time-variant
reliability problem is presented.

5.1 Methodology

Although the optimal control as shown in Milstein (1995) is not achievable, different types
of a suboptimal control have been developed (Au and Beck, 2001; Macke and Bucher, 2003).
The deterministic control based on the design point oscillations was mainly used. The aim
of this chapter is to illustrate that both types of control functions (open loop control and
Markov control) can be used together in an iterative procedure to obtain an accurate failure
probability estimate. As was mentioned in the introduction, the scope of the project is single
degree of freedom oscillators given as

Ẍ + f(Ẋ,X) = F (t), (5.1.1)

where the external excitation F (t) is white or coloured noise. Let Y1(t) = X(t) and Y2(t) =
Ẋ(t) then Eq. (5.1.1) may be expressed in the state space form

Ẏ (t) = A(Y (t), t) + gF (t) (5.1.2)

where

Y (t) =

[
Y1(t)
Y2(t)

]
, g =

[
0
1

]
. (5.1.3)

The variance reduction procedure consists of two iterations. First, a rough estimate of
the failure probability as a function of the state space and time variables, p̂f (T ; y1, y2, t), is
obtained by using the design point oscillations for an auxiliary linear system.

Secondly, using the analytical expression for the optimal control function (Eq. 4.2.19) the
suboptimal controller is obtained

v(x, ẋ, s) =
σ

p̂f (T ; x, ẋ, t)

∂p̂f (T ; x, ẋ, t)

∂ẋ
(5.1.4)

where σ is the intensity parameter of an equivalent white noise

F (t) ≈ σN(t), (5.1.5)
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where process N(t) is white noise (Section 2.2.4).
Thus, using the importance sampling procedure once more, the reliability of the dynamic

system, or its complement, the failure probability, is calculated.
As was mentioned, the auxiliary linear equation is used for the evaluation of the failure

probability approximation in the non-linear case for the first iteration. The reason is that
the analytic expression for the design point oscillations is available in this case. However, the
linearization should be handled with care because the mean square stochastic linearization
can give the wrong results for the first-passage probabilities for a quite large class of non-
linear problems (Naess, 1995). The concept of linearization which will suit the estimation
of the failure probability is thought to be the equivalence of the mean upcrossing rates of
non-linear oscillator and its linearized version. Furthermore, other heuristic approaches are
proposed for the construction of the appropriate auxiliary linear single degree of freedom
system.

5.2 Linear oscillator

A wide class of engineering systems can be modelled, to a first approximation, in terms of
linear differential equations of motion, if the amplitude of motion is relatively small. Thus,
the first considered numerical example is linear oscillations of a light damped spring-mass
model. Motion of the linear oscillator (Fig. 5.1) excited by the external force F (t) follows
the second-order differential equation:

Ẍ + 2ξω0Ẋ + ω2
0X = F (t),

X(s) = x, Ẋ(s) = ẋ,
(5.2.1)

where ξ is the viscous damping ratio and ω0 is the system natural frequency.

ω2
0

2ξω0

m = 1

X(t)

F (t)

Figure 5.1: Model of a damped linear oscillator.

Equation (5.2.1) can be written in a standard form, i.e., as a system of first-order differ-
ential equations. Let Y1(t) = X(t) and Y2(t) = Ẋ(t) then

Ẏ (t) = A · Y (t) + gF (t) (5.2.2)
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5.2 Linear oscillator

where

Y (t) =

[
Y1(t)
Y2(t)

]
, A =

[
0 1

−ω2
0 −2ξω0

]
, g =

[
0
1

]
. (5.2.3)

Equation (5.2.2) has a general explicit analytical solution known from the deterministic
dynamic analysis (Soong and Grigoriu, 1997)

Y (t) = Φ(t − s)y +

t∫

s

Φ(t − τ)gF (τ)dτ, (5.2.4)

where the fundamental matrix is given as

Φ(τ) = exp−ξω0τ

[
cos ωdτ + ξω0

ωd
sin ωdτ

ω0

ωd
sin ωdτ

−ω0

ωd
sin ωdτ cos ωdτ − ξω0

ωd
sin ωdτ

]
(5.2.5)

where ωd = ω0

√
1 − ξ2.

Homogenous solutions for displacement X(t) and velocity Ẋ(t) are given correspondingly

Xh(t) =
e−ξω0t

ωd

((ξω0x + ẋ) sin ωdt + ωdx cos ωdt), (5.2.6)

Ẋh(t) =
e−ξω0t

ωd

(−(ω2
0x + ξω0ẋ) sin ωdt + ωdẋ cos ωdt). (5.2.7)

Thus, the general solution for the displacement X(t) is

X(t) = Xh(t − s) +

∫ t

s

h(t − τ)F (τ)dτ, (5.2.8)

where h(t) is impulse response function given

h(t) =
e−ξω0t

ωd

sin ωdt. (5.2.9)

Assume that external excitations may be represented as a standard Gaussian white noise
N(t) with zero mean and unit standard deviation multiplied by a suitable constant. Then

Ẍ + 2ξω0Ẋ + ω2
0X =

√
γN(t). (5.2.10)

The following probabilistic properties of a linear oscillator can be obtained (Crandall,
1970):

• Mean value for steady state E[X(t)] = 0, E[Ẋ(t)] = 0.
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• The approximate transition variance of the response X(t)

σ2
X(t) ∼= πG0

4ξω3
0

(
1 − 1

ω2
d

e−2ξω0t(ω2
d + 2ξ2ω2

0 sin2 ωdt + ξω0ωd sin 2ωdt)

)
. (5.2.11)

• Standard deviations for the stationary solution, when t → ∞, for X(t) and Ẋ(t) is
correspondingly

σ2
0 =

πG0

4ξω3
0

, σ̇2
0 =

πG0

4ξω0

, (5.2.12)

where G0 is one-sided spectral density, πG0 = γ is the intensity of the external force.

• The autocorrelation function of the response X(t) (Naess, 1990) is given as

RX(τ) = σ2
0e

−ξω0|τ |

(
cos ωdτ +

ξω0

ωd

sin ωd|τ |
)

. (5.2.13)

• The power spectral density (Eq. 2.2.16) is defined (Lutes and Sarkani, 1997)

SX(ω) =
G0/2

(ω2
0 − ω2)2 + (2ξω0ω)2

. (5.2.14)

Actually the linear oscillator can be seen as a filter. Depending on the value of damping
ratio ξ, it can be a narrow-banded or broad-banded filter. Examples are illustrated in
Fig. (5.2).
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Figure 5.2: a) Power spectral density and b) variance of the displacement X(t) for different
values of damping ratio ξ.

Equation (5.2.10) can be written as an Itô SDE:

dY1(t) = Y2(t)dt

dY2(t) = −2ξω0Y2(t)dt − ω2
0Y1(t)dt +

√
γdW (t)

(5.2.15)
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5.2 Linear oscillator

where, as previously, Y1(t) = X(t) and Y2(t) = Ẋ(t), W (t) is a standard scalar Wiener
process (Section 2.2.3). Since the analytical solution is known

X(t) = Xh(t − s) + γ

∫ t

s

h(t − τ)dW (τ) , s ≤ t ≤ T, (5.2.16)

where the second term on the rhs is a stochastic integral (Kloeden and Platen, 1999).
As it was discussed earlier in Chapter 3, one of the important reliability problems is the

first-passage time. Thus assume that the considered safe domain is given by

DS = {(x, ẋ) : x < xc, ẋ ∈ R}, (5.2.17)

where xc is a prescribed critical threshold for any 0 ≤ s ≤ t ≤ T . Hence the limit state
function is linear and can be written as follows

g(Y ) = xc − X(t). (5.2.18)

Integrating numerically Eq. (5.2.16) by using the Euler scheme (Eq. 3.3.20), assuming an
equidistant time step ∆t = (T − s)/m, it is obtained that

X(tj) = Xh(tj − s) +
√

γ

j∑

i=1

hjiUi

√
∆t, (5.2.19)

where Xh(t) is the homogeneous solution given (5.2.8), s < tj ≤ T , tj = s + j · 4t, hji =
h((j−i)·∆t), Ui

√
∆t = W (i·∆t)−W ((i−1)·∆t) is the increments of the Wiener process. Ui

are the independent standard Gaussian variables with zero mean and unit standard deviation.
Then the limit state function (Eq. 5.2.18) takes the form

g(Y (tj)) = xc − X(tj) = xc − Xh(tj − s) −√
γ

j∑

i=1

hjiUi

√
∆t = gj(U1, . . . , Uj). (5.2.20)

The limit state surface gj(u1, . . . , uj) = 0, gives the expression for the design point index
(Eq. 3.2.12) at a time point tj

β(tj) =

√√√√
j∑

i=1

u2
i , (5.2.21)

where

ui =
xc − Xh(tj − s)

√
γ

j∑
i=1

h2
ji

√
∆t

· hji. (5.2.22)
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In order to achieve the variance reduction the Girsanov transformation (Theorem 2) is
used. Thus, Equation (5.2.15) takes the form

dỸ1(t) = Ỹ2(t)dt

dỸ2(t) = −2ξω0Ỹ2(t)dt − ω2
0Ỹ1(t)dt +

√
γv(t, Ỹ )dt +

√
γdW̃ (t)

(5.2.23)

where W̃ (t) is a new Wiener process generated with respect to an importance sampling

measure P̃ .
The control function is assumed to be deterministic, i.e. v(t, Ỹ ) = v(t) is an open-loop

control in order to obtain a first approximation of the failure probability functional. Then
the following control function (Eq. 3.3.25) is used

vi =
xc − Xh(tj − s)

√
γ

j∑
i=1

h2
ji∆t

· hji, (5.2.24)

where if ∆t → 0 then Eq. (5.2.24) can be written in the integral form (Skaug, 2000)

v(t) =
xc − Xh(tj − s)

√
γ

tj∫
s

h2(tj − τ)dτ

· h(tj − t) , s ≤ t ≤ tj. (5.2.25)

Using this control function (Eq. 5.2.25), the failure is assumed to happen at a single
time point tj. It was mentioned in Section 3.3.2 that this is not suited to the oscillatory
systems, but the simplicity of this expression and the possibility to define the control function
analytically makes it tempting to use it.

It is proposed to apply design point oscillations which cause failure at the end of the
considered time interval T in order to obtain the first approximation of the failure probability.
That is natural because most of the samples will approach the critical threshold at the end
of response duration, especially samples started at zero initial conditions. The design point
index in this case has a minimum at the end point T , that is

β∗ = β(T ) = min
s≤t≤T

β(t). (5.2.26)

However, considering non-zero initial conditions the system may obviously tend to fail at
the beginning of the time interval because of the system’s initial energy. To compensate for
this effect it was proposed to use design point oscillations which lead to a failure event at
the time of the first maximum of the homogeneous solution Xh(t − s). In Fig. (5.3), the
design point index is illustrated for the system with zero and non-zero initial values. The
curve corresponding to the non-zero initial values and marked with asterisks (∗) also has the
global minimum at the end point T . Nevertheless, the first local minimum near the origin
has a magnitude comparable with the global minimum value. Hence, the failure near this
point will give a significant contribution to the failure probability. Taking into account these
features two design times t(1) = T and t(2) = tmax are used and weighted according to their
importance (Eq. 3.3.26).

In the following two sections the proposed procedure, results and discussion are presented.

50



5.2 Linear oscillator

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

50

t/Tn

β
(t

)

Figure 5.3: The design point index vs time; (�) - zero initial values, (∗) - non-zero initial
values.

Procedure

On the first iteration the simulations using the open loop control (Eq. 5.2.25) are performed
on a grid of initial values (x, ẋ) and for different values of a starting time point s. The number
of samples used in the first iteration is nx × nẋ × nt × N1, where nx, nẋ are number of grid
points in the state-space, nt is number of the starting points, N1 is number of samples for
each fixed (x, ẋ, s).

The low accuracy in the approximate calculation of the failure probability allows us to
use a crude grid in the physical space and time. The smoothing of the failure probability
data are required afterwards in order to obtain values for the second iteration. The data are
represented as a family of 2D surfaces in R

2 = [X × Ẋ]. In Fig. (5.4) one of these surfaces
is plotted corresponded to a starting time s = 0. The consequent surfaces are deeper at the
origin and shallow at the borders.

A control which leads to a failure at the end of the observation time t(1) = T = 10·Tn, where
Tn = 2π [sec], was investigated by Næss and Skaug (2000) and results showed substantial
underestimation compared with the direct Monte Carlo method (Fig. 5.5). Moreover, for
particular values of the initial values (x, ẋ) the oscillator fails almost surely at the beginning
of the time interval due to the large amount of initial energy in the system. Therefore,
forcing the system to leave the safe domain at the end gives unrealistically low values of
the Radon-Nikodym derivative (Eq. 3.3.18). To recap, such estimates show the degree of

51



Chapter 5 Importance sampling
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Figure 5.4: Results of the first iteration - approximated failure probability in R
2 = [X × Ẋ]

smoothed by B-spline.

impossibility of the changes that the control is required to make. Illustrations of samples of
the uncontrolled process and the controlled process with zero and nonzero initial values are
shown in Fig. (5.6). The design point oscillations at the second time point are initiated to
compensate for these low values. Namely, at the point of the maximum of the homogeneous
solution Xh(t) which can be obtained analytically. Both contributions are weighted by their
importance factors (Eq. 3.3.26).

On the second iteration the obtained data are numerically differentiated in the Ẋ-direction.
Then on the second iteration the importance sampling procedure is implemented using the
Markov control v(t,X(t), Ẋ(t)).

Discussion and results

The following cases were considered during the study of the method: case 1 is a narrow-
band oscillatory system, where the damping ratio is ξ = 0.05, and case 2 is a broad-band
one with ξ = 0.2 (Olsen and Naess, 2005b, 2006). The first model might correspond to the
oscillations of an aircraft structure and the second one might represent the vibration of some
rubber elements in a machine. For both cases the free oscillation frequency ω0 = 1 [1/sec]
and the intensity of external excitations γ = 0.3 are the same.

For the narrow-band case the transient period is about 8 · Tn, whereas for the broad-band
case the transient period is about 1.5 · Tn, where Tn = 2π [sec]. The sample paths for both
cases are shown in Figs. (5.7-5.8) correspondingly. The ordinate on all figures is normalized
by σ0 (Eq. 5.2.12). The a)-plots on both figures present the samples of the displacement X(t)
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Figure 5.5: Failure probability for different threshold levels by crude Monte Carlo (number
of samples, N , depends on standard error (Eq. 2.1.22) which is set to 0.05, except
high thresholds (xc > 4 ·σ0) where N = 106) and importance sampling procedure
using the open loop control (Eq. 5.2.24).

and the velocity Ẋ(t) of the original system (Eq. 5.2.10). Due to the choice of parameter
ω0 = 1 [1/sec] the displacement and velocity have the same order of magnitude. These
processes oscillate most likely inside the stripe [−2σ0, 2σ0].

The b)-plots show the paths of the system (Eq. 5.2.23) controlled by the open-loop control
v(t) (Eq. 5.2.25). Here the design time was chosen t(1) = T . Thus the design point oscillations
force the failure event near the end of the considered time interval. The control is unaware
of the system state and follows the only condition that X(T ) ≥ xc.

The samples of the linear system controlled by the Markov control v(X, Ẋ, t) (Eq. 4.3.4)
are in the c)-plots. In this case the controller is following the sample path pursuing the aim
that X(t) ≥ xc for t ∈ (0, T ]. Thus the first passage is likely to occur anywhere on this
interval. The smoothness of v(X, Ẋ, t) is a matter of accuracy of the first approximation.

In Figs. (5.9-5.10) the results of numerical experiments vs critical threshold are shown for
both cases correspondingly. The critical threshold is also normalized by σ0 (Eq. 5.2.12).

The test results were compared with estimates calculated by the crude Monte Carlo
method. These are obtained with different number of samples (> 103) by the convergence
criterion that the standard error SE (Eq. 2.1.22) equals 0.05, otherwise, if SE has not con-
verged to 0.05, the number of samples is N = 106. Whereas N used by the importance
sampling procedure in the two steps is nx×nẋ×nt×n1 +n2, where nx is the number of grid
points in x-direction, nẋ is in ẋ-direction, nt is in time, n1 is number of samples simulated
with the set of initial values (x, ẋ, s) and n2 is number of samples on the second iteration.
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Figure 5.6: a) Displacement, (�) x(t)/σ0, and velocity, (◦) ẋ(t)/σ̇0, of the original equation
of motion,
b) displacement, (�) x(t)/σ0, velocity, (◦) ẋ(t)/σ̇0 and deterministic control func-
tion, (∗) v(t)/σ0 (zero initial conditions, xc/σ0 = 4.1),
c) displacement, (�) x(t)/σ0, velocity, (◦) ẋ(t)/σ̇0 and deterministic control func-
tion, (∗) v(t)/σ0 (nonzero initial conditions, xc/σ0 = 4.1).

The results from the first iteration are obtained with n1 = 100 and two open-loop controls
aimed at the failure events at t(1) = T and t(2) = T/2. Due to the low number of samples
the first approximation values have standard error of order 0.1 − 0.8.

The standard error of the importance sampling estimates for whole procedure has con-
verged to 0.05 with the number of samples used on the second iteration between n2 =
50 . . . 2 · 103. This will not affect the total calculation time very much, because most of the
computational burden is associated with the first step. For instance, for the value of the
failure probability pf = 7.7 · 10−3 estimated with the standard error SE = 0.05 the crude
Monte Carlo method used N = 51497 samples and 31 sec calculation time, whereas the it-
erative importance sampling achieved this value with N = 4531 (n1 = 10) on both iteration
and 3 sec CPU time with the same confidence.
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Figure 5.7: Case 1: a) (◦) x1(t) and (∗) x2(t) for the original equation (5.2.10), b) (◦) x1(t)
and (∗) x2(t) for the controlled equation (5.2.23) with deterministic control (�)
v(t) and c) with Markov control (�) v(t, x1, x2); critical threshold xc/σ0 = 5.3.

In Fig. (5.11), the failure probability vs damping ratio ξ is presented. The considered time
interval is T = 1.5·Tn which is less than the transition zone of the system with the parameter
ξ = 0.2. This experiment shows that the procedure is applicable to the wide range of system
parameters resulting from narrow-band to wide-band processes.

Figure (5.12) presents the results of the failure probability versus time. As in the previous
figures, for the time T > 0.5 ·Tn the iterative importance sampling has a better convergence
to Monte Carlo results than importance sampling with the design point oscillations. Whereas
for the short time intervals T ≤ 0.5·Tn both methods require approximately the same number
of samples to achieve the chosen standard error value. This explains that for the time period
of less than half a period, the system behaves as non-oscillatory and the principle of the one
dominant failure point is valid.
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Figure 5.8: Case 2: a) (◦) x1(t) and (∗) x2(t) for the original equation (5.2.10), b) (◦) x1(t)
and (∗) x2(t) for the controlled equation (5.2.23) with deterministic control (�)
v(t) and c) with Markov control (�) v(t, x1, x2); critical threshold xc/σ0 = 3.
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Figure 5.9: Case 1: failure probability vs critical threshold.
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Figure 5.10: Case 2: failure probability vs critical threshold.
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Figure 5.11: Failure probability vs damping ratio.
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5.3 Duffing oscillator excited by white noise

This section is devoted to a non-linear Duffing oscillator excited by white noise
(Ivanova and Naess, 2004). Consider the Duffing oscillator investigated previously by
Crandall (1980):

Ẍ(t) + 2ξω0Ẋ(t) + ω2
0(X(t) + εX3(t)) =

√
γN(t), (5.3.1)

where ξ is the damping ratio as in the case of linear oscillator, ω0 is the frequency of free
oscillations, ε is a parameter representing the degree of non-linearity and N(t) is a Gaussian
white noise with zero mean value and unit standard deviation. The same safe domain is
considered as in Section 5.2, namely

DS = {(x, ẋ) : x < xc, ẋ ∈ R}, (5.3.2)

where xc is a prescribed critical threshold for any 0 ≤ s ≤ t ≤ T .

For the further consideration the stationary joint probability density of the displacement
X(t) and velocity Ẋ(t) should be mentioned (Soong and Grigoriu, 1997; Lin and Cai, 1995)

f(x, ẋ) =

{√
2πσ̇0q exp

[
− 1

2σ2
0

(
x2 +

ε

2
x4
)]}{ 1√

2πσ̇0

exp

(
− ẋ2

2σ̇0
2

)}
, (5.3.3)

where

σ2
0 =

γ

4ξω3
0

, σ̇2
0 =

γ

4ξω0

(5.3.4)

represent stationary variances of X(t) and Ẋ(t) for the linear oscillator (ε = 0). q is the
normalization constant given by

q−1 =

√
πσ̇2

0

ε

[
exp

(
1

8εσ2
0

)
K1/4

(
1

8εσ2
0

)]
, (5.3.5)

where K1/4 is a modified Bessel function (Lin and Cai, 1995). It is obvious that X(t) and

Ẋ(t) are independent with zero mean values.

The main idea is to estimate the failure probability functional (Eq. 3.3.17) on the first
iteration using the simple control function (Eq. 3.3.25) for a linearized version of the non-
linear Duffing oscillator (Eq. 5.3.1). Further, the different methods of linearization are
compared to find the easiest and most efficient way. The objective of this exercise is to
prove the efficiency of implementing a linear optimal control function to calculate the failure
probability for a non-linear stochastic system.

Recently, Koo et al. (2005) showed that it is possible to obtain the design point excitation
for this oscillator by one free-vibration analysis. Fortunately, this can simplify the importance
sampling procedure even more.
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Mean square stochastic linearization

The most widely used method of linearization which will be first considered here is the
mean square stochastic linearization (MSL)(Hampl, 1985; Soong and Grigoriu, 1997). The
basic idea is to minimize the difference between the mean square response characteristics of
non-linear and linear oscillators. Let us consider a general non-linear dynamic system

g(Ẍ(t), Ẋ(t), X(t)) = F (t). (5.3.6)

Thus the equivalent linear system can be written as

mZ̈(t) + cŻ(t) + kZ(t) = F (t), (5.3.7)

where the optimal values for m, c and k can be obtained by minimizing the mean square
error e given

e = E[ε2], (5.3.8)

where

ε = g(Ẍ(t), Ẋ(t), X(t)) − [mZ̈(t) + cŻ(t) + kZ(t)]. (5.3.9)

So the equivalent linear oscillator which corresponds to the given Duffing oscillator is the
following

Z̈(t) + 2ξω0Ż(t) + ω2
eZ(t) =

√
γN(t), (5.3.10)

where (Soong and Grigoriu, 1997)

ω2
e =

1

2
ω2

0

(
1 +

√
1 +

3πεG0

ξω2
0

)
, (5.3.11)

where G0 = γ/π is one-sided spectral density of input excitations.

For the calculation the following parameters were used, ω0 = 1.0 1/sec, ξ = 0.05, γ = 0.3.
Considering different values for ε, the equivalent stiffness parameter values are given in
Table 5.1.

Table 5.1: Parameters for the equivalent linear oscillator by MSL method.
ε 0.05 0.1 0.5 1
ωe 1.091 1.156 1.443 1.637
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Mean upcrossing rate linearization

The second linearization principle is proposed here because for estimating the failure
probability the mean upcrossing characteristics are more crucial than the characteristics of
the mean square response. It is logical to assume that if both the Duffing oscillator and
equivalent linear system have the equal number of outcrossings in the same time interval
then the estimate for the failure probability will be more accurate.

Incorporating the joint probability density function (Eq. 5.3.3) into the expression (3.3.8),
the mean stationary upcrossing rate for the Duffing equation is given

ν+
XD(ζ) =

σ̇2
0

q
exp

(
− 1

2σ2
0

(
ζ2 +

ε

2
ζ4
))

, (5.3.12)

where the stationary variances σ0, σ̇0 and the normalizing coefficient q are given by
Eqs. (5.3.4-5.3.5) correspondingly.

Let

Z̈(t) + 2ξω0Z(t) + ω2
eZ(t) =

√
γN(t) (5.3.13)

be an associated equivalent linear system.
The mean stationary upcrossing rate for the linear equation is given (Eq. 3.3.9)

ν+
ZL(ζ) =

σ̇Z

2πσZ

exp

(
− ζ2

2σ2
Z

)
, (5.3.14)

where

σ2
Z =

γ

4ξω0ω2
e

, σ̇2
Z =

γ

4ξω0

(5.3.15)

are standard deviations of Z(t) and Ż(t) respectively.
The frequency ωe of the linearized oscillator can be found from the condition that the mean

upcrossing rate ν+
XD of the Duffing oscillator at steady state equals the mean upcrossing rate

ν+
ZL of the equivalent linear oscillator

ν+
ZL(ζ) − ν+

XD(ζ) = 0. (5.3.16)

In the case when the mean upcrossing rate cannot be evaluated analytically, it is shown
that numerical extrapolation can be implemented to assess the mean upcrossing rate for the
high threshold levels. The Monte Carlo method is used for the estimation of upcrossing
rates. In the case of a stationary solution, the upcrossing rate is defined

ν̂+
XD(ζ) =

µN(T )

T
, (5.3.17)

where µN(T ) is the mean value of the number of outcrossings of the process from the safe
domain. Further, the estimated values are approximated by the least squares method with
a quadratic function and extrapolated to the desirable level taking into consideration the
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Figure 5.13: The upcrossing rate ν+
XD(ζ) vs critical threshold depending on different values

of the non-linearity parameter ε is calculated in 3 different ways:
method 1 (analytical) (-), method 2 (MCS) (�,◦,∗), method 3 (approx.) (- -).

dynamic behaviour of the system. Therefore, the comparison between the analytical and
numerical estimation of the mean upcrossing rate for the Duffing oscillator is given in
Fig. (5.13). Method 1 (solid lines) corresponds to the calculation of the upcrossing rates
by Eq. (5.3.12), method 2 (markers) is the Monte Carlo simulations (MCS), and method 3
(dashed lines) is the quadratic approximation and extrapolation.

In Fig. (5.14), the values of equivalent stiffness parameter ωe are plotted vs the normalized
values of the critical threshold. The black markers show the equivalent frequency values esti-
mated by MSL, whereas the solid and the dashed lines with transparent markers correspond
to the stiffness parameter calculated from Eq. (5.3.16) with analytically and numerically
obtained Duffing oscillator upcrossing rates, respectively. The same type of markers cor-
responds to the same order of non-linearity. As it can be seen from Fig. 5.14 the MSL
estimates give lower stiffness on the high thresholds. As a consequence the corresponding
linear control function brings an insufficient contribution to the non-linear oscillatory system.
Thus the failure event in this case remains something rare. The numerical estimation of the
upcrossing rates gives a greater stiffness than that predicted by the analytical calculation.
Moreover, features of the quadratic approximation give a curvature at the low critical levels.
Though it does not very much affect the estimation of the failure probability due to the
system characteristics.
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Figure 5.14: The frequency ωe vs threshold depending on different values of the non-linearity
parameter ε. Black markers (�,•,H) correspond to the MSL estimates. White
markers (�,◦,5) on the solid and dashed lines correspond to the analytical and
numerical upcrossing rate linearization, respectively.

Procedure

The procedure for the importance sampling method is the same as for the linear oscillator
in Section 5.2. On the first iteration, the failure probability functional p̂f (T ; z, ż, t) is calcu-
lated for the equivalent linear equation (Eq. 5.3.13) with stiffness parameter ωe. The simple
open-loop control function is given as

vZ(t) =
xc − Zh(tj − s)

√
γ

tj∫
s

h2(tj − τ)dτ

· h(tj − t), (5.3.18)

where Zh(tj − s) is a homogeneous solution of Eq. (5.3.13). The impulse response function
has the form

h(t) =
e−ξω0t

ωd

sin ωdt, (5.3.19)

where ωd =
√

ω2
e − (ξω0)2.

Further, on the second iteration the Duffing oscillator (Eq. 5.3.1) is integrated on the
corresponding time interval T . It is assumed that p̂f (T ; x, ẋ, t) ≈ p̂f (T ; z, ż, t). Thus, the
importance sampling procedure is applied using the Markov control function

v(t, x, ẋ) =

√
γ

p̂f (T ; x, ẋ, t)

dp̂f (T ; x, ẋ, t)

dẋ
(5.3.20)
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obtained from the previous iteration.
The simulation results are compared for the three types of estimation of the stiffness

parameter ωe, i.e., by MSL method (Eq. 5.3.11) using the analytical and numerical upcrossing
rate calculation (Eq. 5.3.16).

Discussion and results

The results of the importance sampling procedure are compared with the crude Monte
Carlo (MCS) in Figs. (5.15-5.16). The following parameters of the Duffing oscillator were
chosen: ξ = 0.05, ω0 = 1 [1/sec], γ = 0.3, the considered time interval T = 8 · Tn as in case
1 in the previous section. Similarly MCS results were obtained with a different number of
samples N when SE converges to 5%, if not, then N = 106.

Implementation of the MSL method to evaluate the equivalent stiffness parameter ωe

gives a good approximation for the failure probability for the small values of the non-linearity
parameter ε, and low prescribed levels xc. For the higher thresholds, this type of linearization
provides a poor approximation for the control function, as was explained in the beginning
of this section. Thus, during the experiments for the high thresholds, the excursions of the
samples from the safe domain were still rare events as in the crude Monte Carlo method,
and the importance sampling procedure fails to estimate the failure probability accurately.
The results were obtained with up to N = 50000 with SE varying between 0.05 on low levels
and up to 0.7-0.9 for tail probabilities (Fig. 5.15).
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Figure 5.15: Failure probability for different threshold levels and values of non-linearity pa-
rameter ε by crude Monte Carlo and importance sampling procedure with MSL.

The failure probability values estimated by implementing mean upcrossing linearization
are shown in Fig. (5.16). The results are calculated for two cases. First, the analytical
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5.3 Duffing oscillator excited by white noise

upcrossing rate linearization (AURL) was used. Second, the Monte Carlo simulations are
used to estimate the upcrossing rate (NURL). The AURL estimates of the failure probability
converged to the standard error SE = 5%. For instance, for ε = 2, xc/σ0 = 2, the number of
samples needed to estimate pf = 1.23 · 10−6 is ca 1 · 104 on both iterations. The simulations
run by using NURL required more samples (about 5 · 104) in order to achieve the same
accuracy.
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Figure 5.16: Failure probability for different threshold levels and values of non-linearity
parameter ε by crude Monte Carlo and importance sampling procedure with
AURL (white markerss) and NURL (ε = 0.1 (×), ε = 1 (∗), ε = 2 (+)).

The example of the realizations of the Duffing oscillator displacement X(t) both with and
without the control function is shown in Fig. (5.17a,b) marked with (�). The corresponding
equivalent linear system displacement Z(t) is shown in Fig. (5.17a) and the corresponding
control function v(t, x, ẋ) is plotted in Fig. (5.17b), both marked with (∗).

To conclude this section it is recommended to use the equivalent linear equation and its
control function on the first iteration for the non-linear problem to compose the optimal
control for the second iteration. The results showed that the linearization based on the
mean upcrossing rate is preferable to the traditional mean squares response linearization.
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Figure 5.17: The realizations (ε = 1, xc/σ0 = 2.04): a) displacements X(t) (�) of uncon-
trolled Duffing oscillator and Z(t) (∗) of equivalent linear oscillator; b) dis-
placement X(t) (�) of controlled Duffing oscillator and control v(t, x, ẋ) (∗).
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5.4 Duffing oscillator excited by coloured noise

The scope of this section is to calculate the failure probability of a Duffing oscillator excited
by a filtered white noise (Olsen and Naess, 2005a). The filter is assumed to be linear, broad-
banded, i.e. ξz = 0.5, whereas the system response is assumed to be a narrow-banded process
in the sense of small damping, specifically ξ = 0.02.

Ẍ(t) + 2ξω0Ẋ(t) + ω2
0X(t)(1 + εX2(t)) = Z(t) (5.4.1)

Z̈(t) + 2ξzωzŻ(t) + ω2
zZ(t) =

√
γN(t), (5.4.2)

where X(s) = x, Ẋ(s) = ẋ, Z(s) = z, Ż(s) = ż. The safe domain to be considered in this
section is as follows

DS = {(x, ẋ, z, ż)T : x < xc, (ẋ, z, ż) ∈ R3}. (5.4.3)

The auxiliary Duffing oscillator driven by the white noise is chosen as

¨̂
X(t) + 2ξω0

˙̂
X(t) + ω2

0X̂(t)(1 + εX̂2(t)) =
√

γeN(t). (5.4.4)

The parameter γe is engaged to compensate for the effect of the filter. It is defined by the
energy which will be added to the system by the filtered noise:

γe

2π
= SZ(ω0) =

S0

(ω2
z − ω2

0)
2 + (2ξzωzω0)2

, (5.4.5)

where S0 is the spectral density of the external excitations
√

γN(t), i.e., S0 = γ/2π.
Furthermore, this Duffing oscillator (Eq. 5.4.4) is linearized such as

Ÿ (t) + 2ξωeẎ (t) + ω2
eY (t) =

√
γeN(t). (5.4.6)

The stiffness parameter ωe is calculated from the equality of the upcrossing rate principle
used in Section 5.3

ν+

X̂
(xc) = ν+

Y (xc), (5.4.7)

where corresponding upcrossing rates are given by Eqs. (5.3.12,5.3.14). The corresponding
expressions for the stationary variances (Eqs. 5.3.4 and 5.2.12) of the auxiliary Duffing and
linear oscillators are given as

σ2
X̂0

=
γe

4ξω3
0

, σ2
Y =

γe

4ξω3
e

. (5.4.8)

The value of the parameter ωe is plotted vs the critical threshold in Fig. (5.18) for different
values of the non-linearity parameter ε. As it can be seen from the figure, the higher order
of non-linearity requires a stiffer linear system.
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Figure 5.18: Parameter of an equivalent linear system ωe vs critical threshold
(ε = 0.1 (�), ε = 1 (◦), ε = 2 (∗)).

Procedure

On the first iteration the same procedure as for the linear single degree of freedom oscil-
lator is implemented as described in Section 5.2 for the auxiliary system (Eq. 5.4.6). The
simulations using the open loop control (Eq. 5.2.25) are performed on a grid of initial values
(x, ẋ) and for different values of a starting time point s.

On the second iteration according to the Girsanov transformation, the Markov control for
the original system should be added as a drift to the white noise N(t)

¨̃
X(t) + 2ξω0

˙̃
X(t) + ω2

0X̃(t)(1 + εX̃2(t)) = Z̃(t)

¨̃
Z(t) + 2ξzωz

˙̃
Z(t) + ω2

z Z̃(t) =
√

γ(vZ(t, Ỹ ) + N(t)),
(5.4.9)

where Ỹ = (X̃,
˙̃
X, Z̃,

˙̃
Z)T is the state space.

However, from the previous step the approximation of the failure probability functional

is obtained only as a function of two state space variables, X̃(t) and
˙̃
X(t), and time, i.e.

v(t, X̃,
˙̃
X).

It is important to recognize that the Markov control needed to calculate the Radon-

Nikodym derivative, i.e. vZ(t, Ỹ ), is not the same as the process v(t, X̃,
˙̃
X), which was derived

from the white noise driven auxiliary linear system. The latter, denoted by vX(t, X̃,
˙̃
X),

appears on the righthand side of the Duffing oscillator equation. Thus the following equations
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are obtained

¨̃
X(t) + 2ξω0

˙̃
X(t) + ω2

0X̃(t)(1 + εX̃2(t)) = Z(t) +
√

γevX(t, X̃,
˙̃
X) (5.4.10)

Z̈(t) + 2ξzωzŻ(t) + ω2
zZ(t) =

√
γN(t), (5.4.11)

where, basically, due to the linearity of the filter equation

Z̃(t) = Z(t) +
√

γevX(t, X̃,
˙̃
X). (5.4.12)

Hence the original control vZ needed for the evaluation of the Radon-Nikodym derivative
(3.3.18) can be found as a result of the direct differentiation

v̈X + 2ξzωzv̇X + ω2
zvX =

√
γ

γe

vZ . (5.4.13)

Thus, at the second step of the procedure, for each time step during the integration of
the controlled system (Eq. 5.4.10), a corresponding value of the control process is chosen
depending on the state space variables at this time, i.e. vX(ti, x̃(ti), ˙̃x(ti)). To recover the
control vZ , the differentiation required by Eq. (5.4.13) is performed numerically.

Discussion and results

The various stiffness parameters of the filter (Eq. 5.4.2) are considered to verify the robust-
ness of the proposed procedure. Three following cases were studied: 1) ω0 = ωz = 1 [1/sec],
2) ω0 = 1 [1/sec] and ωz = 0.5 [1/sec], 3) ω0 = 1 [1/sec] and ωz = 1.5 [1/sec]. In Fig. (5.19)
the one-sided power spectral density (psd) functions of the auxiliary linear system (Eq. 5.4.6)
and the original Duffing oscillator (Eq. 5.4.1) (ε = 0), GY (ω) and GX(ω) respectively, are
compared. The white approximation of the filtered noise is worse for ωz < ω0 (Fig. 5.19b),
whereas for the case ωz ≥ ω0 the spectra are almost identical.

The realizations of the controlled process X(t) and the coloured noise Z(t) for three study
cases are shown in Figs. (5.20-5.22). The ordinate is normalized by corresponding values of
standard deviation σX̂0 (Eq. 5.4.8). As it is shown in Fig. (5.20a) the filtered process Z(t)
(solid line marked with asterisks) with stiffness parameter ωz = 0.5 [1/sec] < ω0 has less
variation and amplitude comparable with the output process X(t), whereas filter process
with ωz = 1.5 [1/sec] > ω0 (Fig. 5.22a) is more stiff with lower amplitude and the same
frequency as the main equation.

In Figs. (5.23-5.25), the failure probability versus critical threshold is plotted for different
values of non-linearity parameter ε and three different filter stiffness parameters. The results
from the crude Monte Carlo method (a solid line) are obtained with the standard error
SE = 0.05 or with number of samples N = 106 if SE has not converged to 0.05. The total
number of samples used in the two steps of the proposed procedure is maximum NIS = 4·104.
All the simulation runs converged to the standard error 0.05. The calculation time gained
compared with the crude simulation method is proportional to NIS/N . The results coincide
very well even in the case when the filter stiffness parameter is ωz = 0.5 [1/sec] (Fig. 5.24) and
the proposed importance sampling procedure allows the calculation of very low probability
values even when the crude method breaks up.
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Figure 5.23: Failure probability for different values of non-linearity parameter ε (solid line -
Monte Carlo method, diverse markers - present method), ωz = 1 [1/sec].
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Figure 5.24: Failure probability for different values of non-linearity parameter ε (solid line -
Monte Carlo method, diverse markers - present method), ωz = 0.5 [1/sec].
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Figure 5.25: Failure probability for different values of non-linearity parameter ε (solid line -
Monte Carlo method, diverse markers - present method), ωz = 1.5 [1/sec].
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Chapter 5 Importance sampling

5.5 Oscillator with non-linear damping and stiffness under

additive noise

The procedure described in Section 5.3 which uses the upcrossing rate as a criterion to
define an auxiliary linear system is applicable to the wide class of non-linear systems given
by

Ẍ(t) + g(H)Ẋ(t) + k[X(t)] =
√

γN(t), (5.5.1)

where H(X, Ẋ) = ẋ2/2+K(x) is the system total energy with the potential energy, K(x) =∫ x

0
k(v)dv.
For these systems an exact solution of Fokker-Planck equation is obtainable

(Soong and Grigoriu, 1997)

f(x, ẋ) = q exp


− 2

πG0

H∫

0

g(v)dv


 (5.5.2)

in which q is a normalization constant.
As an example an oscillator of Caughey type is considered (Naess and Johnsen, 1993)

Ẍ(t) + 2ξ

(
1 + λ

√
H(X, Ẋ

)
Ẋ(t) + X(t) + εX3(t) = 2

√
ξN(t) (5.5.3)

with parameters ξ, λ and ε. The time parameter is non-dimensional in this formulation.
In this case, the total energy is given by the relation

H(x, ẋ) = ẋ2/2 + x2/2 + εx4/4. (5.5.4)

Thus the joint probability function is

f(x, ẋ) = q exp

[
− 4ξ

πG0

(
ẋ2

2
+

x2

2
+ ε

x4

4
+

2

3
λ

(
ẋ2

2
+

x2

2
+ ε

x4

4

)3/2
)]

, (5.5.5)

where G0 = 4ξ/π is the one-sided spectral density of the white noise N(t) and the integration
constant q can be found numerically for the corresponding values of parameters ε and λ.

The same safe domain is considered as in Section 5.2

DS = {(x, ẋ) : x < xc, ẋ ∈ R}, (5.5.6)

where xc is a prescribed critical threshold for any 0 ≤ s ≤ t ≤ T .
Let

Z̈(t) + 2ξωeŻ(t) + ω2
eZ(t) = 2

√
ξN(t) (5.5.7)
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5.5 Oscillator with non-linear damping and stiffness under additive noise

be an auxiliary linear system. The equivalent linear stiffness is obtained from the equality
of the upcrossing rates (Eq. 5.3.16)

ν+
Z (u) − ν+

X(u) = 0. (5.5.8)

The upcrossing rate of the Caughey oscillator is obtained by Rice formula (Eq. 3.3.8)

ν+
X(u) =

∞∫

0

yf(u, y; t)dy (5.5.9)

and the mean upcrossing rate for the linear system is given by Eq. (5.3.14)

ν+
Z (u) =

ωe

2π
exp

(
−1

2
ω3

e · u2

)
. (5.5.10)

Procedure

The procedure for the importance sampling method is the same as for the linear oscillator
in Section 5.2. On the first iteration, the failure probability functional p̂f (T ; z, ż, t) is calcu-
lated for the equivalent linear equation (Eq. 5.5.7) with stiffness parameter ωe. The simple
open-loop control function is given as

vZ(t) =
xc − Zh(tj − s)

2
√

ξ
tj∫
s

h2(tj − τ)dτ

· h(tj − t), (5.5.11)

where Zh(tj − s) is an homogeneous solution of Eq. (5.5.7). The impulse response function
has the form

h(t) =
e−ξωet

ωd

sin ωdt, (5.5.12)

where ωd = ω2
e

√
1 − ξ2.

Further, on the second iteration the non-linear oscillator (Eq. 5.5.3) is integrated on the
corresponding time interval T . It is assumed that p̂f (T ; x, ẋ, t) ≈ p̂f (T ; z, ż, t). Thus, the
importance sampling procedure is applied using the Markov control function

v(t, x, ẋ) =
2
√

ξ

p̂f (T ; x, ẋ, t)

dp̂f (T ; x, ẋ, t)

dẋ
(5.5.13)

obtained from the previous iteration.

Discussion and results

The following set of parameter values for the Caughey oscillator has been chosen (λ, ε) =
(0.5, 0.1) and ξ = 0.5. The corresponding stiffness parameter of an equivalent linear oscillator
is plotted vs critical threshold xc in Fig. (5.26).
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Figure 5.26: Equivalent stiffness ωe vs critical threshold.

The realizations of the Caughey oscillator displacement X(t) both with and without the
control function, and the equivalent linear oscillations are shown in Fig. (5.27).

The results of the importance sampling procedure are compared with the crude Monte
Carlo in Fig. (5.28). MCS results were obtained with a different number of samples N when
SE converges to 5%, if not, then N = 106. The importance sampling results are calculated
with different number of samples until SE = 5%. The maximum number of time series on
both iterations reached NIS ≈ 5 · 104 for the lowest estimated probability.

The procedure has shown robustness and fast convergence for the first-passage probability
for the Caughey oscillator.
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Figure 5.27: The realizations (xc = 7): a) displacements Z(t) (�) and velocity Ż(t) (◦) of
equivalent linear oscillator and its control vZ(t) (∗); b) displacement X(t) (�)
and velocity Ẋ(t) (◦) of uncontrolled Caughey oscillator; c) displacement X̃(t)

(�) and velocity
˙̃
X(t) (◦) of Caughey oscillator subjected to control function

v(t, x, ẋ) (∗).
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Figure 5.28: Failure probability for different threshold levels by crude Monte Carlo and im-
portance sampling procedure.
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5.6 Hysteretic systems under random excitations

Another challenging non-linear problem which is studied in this thesis is a hysteretic
system. The rigorous analysis and modelling of hysteretic systems under random vibrations
are presented by Wen (1980), Wen (1985). In the case of severe loads the inelastic response
should be taken into consideration. The inelastic behaviour of the response has non-linear
properties, which are assumed to be represented by a hysteresis of the restoring force. For
the proper safety and reliability estimation these characteristics of the system have to be
taken into account. The single degree of freedom hysteretic system considered here is given
by

Ẍ + 2ξω0Ẋ + αω2
0X + (1 − α)ω2

0Z = σN(t), (5.6.1)

Ż = −γ|Ẋ|Z |Z|n−1 − βẊ |Z|n + AẊ, (5.6.2)

where ω0 is a pre-yielding natural frequency, α is a ratio of post-yielding stiffness to pre-
yielding stiffness, (1− α)ω2

0Z is a hysteretic part, A governs the amplitude, γ, β control the
shape of the hysteretic loop and n the smoothness of the transition from elastic to inelastic
range. The external force is the Gaussian white noise with zero mean and standard deviation√

σ. Varying the coefficients of the hysteretic member one can construct different types of
restoring forces, such as hardening, narrow-band or wide-band systems.

Further on, it is assumed that there is a nearly elastic-plastic system, i.e. A = 1.0,
γ = β = 0.5, α = 1/21 and n = 1, where the standard deviation of the external excitations
σ = 0.3 as in previous examples. The example of the sample path is shown in Fig. (5.29),
together with the plot of hysteretic force (Fig. 5.30).
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Figure 5.29: The sample path of uncontrolled hysteretic oscillator.

The safe domain is to be considered as follows

DS = {(x, ẋ, z)T : x < xc, (ẋ, z) ∈ R2}, (5.6.3)

where xc is a critical threshold.
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Figure 5.30: The uncontrolled hysteretic loop.

The auxiliary linear equation is given by

¨̂
X(t) + 2ξω0

˙̂
X(t) + ω2

eX̂(t) =
√

σN(t), (5.6.4)

where an equivalent stiffness parameter ωe is found from the assumption that the upcrossing
rate ν+

X(xc) of the hysteretic system with zero initial conditions is the same as the upcrossing
rate ν+

X̂
(xc) of the linear oscillator, as in Section 5.3. The upcrossing rate ν+

X(xc) is estimated
by Monte Carlo simulations and then extrapolated to the desired level (Fig. 5.31). The
estimated stiffness parameter ωe versus critical threshold is shown in Fig. (5.32).

The controlled hysteretic system is obtained by standard Girsanov transformation

¨̃X + 2ξω0
˙̃X + αω2

0X̃ + (1 − α)ω2
0Z̃ =

√
σv(t, X̃, ˙̃X) +

√
σN(t), (5.6.5)

˙̃Z = −γ| ˙̃X| Z̃ |Z̃|n−1 − β ˙̃X |Z̃|n + A ˙̃X. (5.6.6)

Procedure

On the first iteration, due to the substantial difference in behaviour between linear and
hysteretic systems started at non-zero initial values (Fig. 5.33) the mixed process is used

XI(t) = X̂(t) + Xh(t), (5.6.7)

where X̂(t) is a solution of the linear equation (5.6.4) with zero initial conditions and Xh(t)
is a homogeneous solution of the hysteretic equation (5.6.1).
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Figure 5.31: Estimated (�) and approximated (−−) upcrossing rate ν+
X(xc) for hysteretic

oscillator X(t) with zero initial values.
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Figure 5.32: Stiffness parameter ωe(xc) for auxiliary linear system.
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Figure 5.33: Homogeneous solutions for hysteretic system X(t) and linear system X̂(t).

Then the simple control function on the first iteration is given by Eq. (5.2.25)

vI(t) =
xc − Xh(tj − s)

√
σ

tj∫
s

h2(tj − τ)dτ

· h(tj − t) (5.6.8)

where h(·) is the impulse response function of the linear oscillator (Eq. 5.6.4).
The failure probability functional in 2D looks completely different for the hysteretic system

than for the linear oscillator due to plasticity of the response. The simulated and smoothed
by B-spline 2D surface of the failure functional is shown in Fig. (5.34). The time horizon
is T . Unlike the value set obtained for the linear oscillator (Fig. 5.4), the form of the
failure probability functional for the hysteretic oscillator is unsymmetrical and monotonically
increases up to the critical level in the x-direction and in the positive direction of the ẋ-axis.

On the second iteration the standard importance sampling procedure is applied with a
Markov control function v(t, x, ẋ) given by

v(t, x, ẋ) =

√
σ

p̂f (T ; x, ẋ, t)

dp̂f (T ; x, ẋ, t)

dẋ
(5.6.9)

obtained from the previous iteration.

Discussion and results

The results of the two step iterative procedure coincide very well with the crude Monte
Carlo estimates until this method breaks down. As in the previous examples, the Monte
Carlo estimates are found with SE = 5% or with number of samples N = 106 when SE
does not converge to 5%, whereas all the importance sampling estimates are obtained with
SE = 5% and number of samples on the both iterations varying from NIS = 1000 up to
NIS = 5 · 104 for the probabilities of order 10−9.

The samples of the controlled hysteretic system and corresponding Markov control function
v(t, x, ẋ) are presented in Fig. (5.35). The restoring force is plotted versus displacement X(t)
in Fig. (5.36).

82



5.6 Hysteretic systems under random excitations

−5

0

5

−10

−5

0

5

10
−6

−5

−4

−3

−2

−1

0

1

xẋ
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smoothed by B-spline.

In Fig. (5.37) the resulting failure probability estimate pf is shown versus critical threshold
xc.
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Figure 5.35: Samples of controlled hysteretic oscillator and Markov control, xc = 5.
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Figure 5.36: Restoring force with control.
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Figure 5.37: Failure probability of hysteretic system.
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Chapter 6

Summary and conclusions

6.1 Results

The emphasis in the first part of this thesis is on an efficient importance sampling technique
for estimating dynamic system reliability. This procedure has been proposed for solving the
first excursion problem for linear and non-linear oscillatory systems excited by white and
coloured noise.

The application of the importance sampling procedure was used in the framework of
stochastic control theory. The considered systems were assumed to be modelled as a set of
Itô stochastic differential equations where the response is a Markov process. The proposed
method is a combination of known techniques such as design point oscillations and Girsanov
transformation. The simulations used two types of control functions, namely the simple
open-loop control and the Markov control.

The algorithm consists of two steps. On the first iteration, an auxiliary linear system with
a close failure rate was used to obtain the approximation of the failure probability functional.
Then the expression for the optimal control function was employed to construct the Markov
control which depends on the state of the considered system. Integrating the system with
this additional function allowed the calculation of the failure probability up to 10−10 with
standard error SE = 5 − 10%. The convergence rate is several orders of magnitude faster
than the crude Monte Carlo simulation.

The advantage of the proposed procedure is that its implementation requires only the
expression of the design point oscillations of a linear dynamic system excited by the Gaussian
white noise which is obtainable in analytical form. No special algorithms for evaluation of the
design point oscillations for non-linear systems are needed. Hence only minor computational
time was used on the intermediate smoothing operations. As a result, the simulation time
was reduced by almost the same order as a number of samples compared to the crude Monte
Carlo.

The linearized system can be easily obtained for the most non-linear cases. When the
linearization is not a straightforward procedure, the heuristic assumptions have to be made
based on the knowledge of behaviour of the given non-linear system. The main aspect about
making the correct choice for this equivalent system is to consider its upcrossing rate as a
crucial characteristic of a first-passage event.

The other advantage of the iterative procedure is that designed Markov controls depends
explicitly on the system state space. Thus simulated samples give unbiased estimates of the
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failure probability. For example, in the case of Duffing oscillator, the right order of failure
probability was achieved already with a few sample in failure domain even when mean square
linearization was used. The trustworthiness of this estimate was, of course, compromised by
large statistical error because outcrossings from safe domain happened so rarely.

The second part of this thesis is a probability analysis of ice loads (see Chapter 7)

6.2 New challenges

An obvious future research topic would be the investigation of the present procedure for
multidegree of freedom problems and self-excited (parametric) systems. The procedure’s
dependance on a number of state space variables makes it unsuitable for finite element
method. On the other side, different techniques to reduce the dimensionality of the system
might be incorporated to obtain the approximate failure probability functional for the design
of the Markov controls.
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Chapter 7

Probabilistic analysis of ice loads

7.1 Introduction

This chapter describes the results of my work for two international European projects
LOLEIF (Validation on Low Level Ice Forces on Coastal Structures) and its successor
STRICE (Measurements on Structures in Ice). During the project the full-scale measure-
ments were conducted at the Norströmsgrund lighthouse in the northern part of the Baltic
Sea.

The problem of ice load definition has recently become very relevant due to the latest
exploration and development of hydrocarbon production in the Arctic region. Experience
showed that conventional jacket platforms are not at all the optimal solution for ice-infected
regions, neither are the big artificial islands which were used in Canadian Arctic (Sanderson,
1988). The latter were found to be very labour-intensive and economically unprofitable.
Thus, new technology is desired with a strong regard to the harsh environmental conditions.

Concerning the reliability and design of coastal and offshore structures in northern Europe,
Arctic regions and other areas of interest the ice loads scenarios are dominating. The largest
ice loads are caused by pressure ridges, level ice and rafted ice on vertical structures. Several
full scale measurements have shown that the magnitudes of these forces are lower than what
is recommended by several common ice codes (e.g., API, 1995).

Due to the great complexity of a probabilistic description of forces induced by ice and
discrete data measurements of concomitant parameters such as ice thickness, ice strength
and temperature, it is very difficult to determine the general parent probability distribution
for this kind of environmental load. Nevertheless, when one comes to design standards on
structures and vessels in ice-infested regions then at least estimation of the maximum load
is of great interest. In the project, several probability distributions are fitted to the extreme
values of local (panel) loads and the evaluated global load picked up from each day of
measurements during the measuring campaign in the winter 2002. The Gumbel distribution
is assumed to be the best fit in this case. The design values for 1, 5, 10, 25 year return
periods are calculated and compared with the similar research found in the recent literature.
From the estimated parameters, it can be concluded that the scale factor for the forces is
the same as the scale of the structures. Though further research is needed to support this
hypothesis.

Another objective of the project is to validate the relationship between the ice drift speed
and the ice load on the structures. Sodhi et al. (1998) have shown that the ice loads increase
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for decreasing indentation speed for medium and small-scale tests. However, these results
have to be proven for full-scale experiments.

7.1.1 Ice-structure interaction

The nature and magnitude of the the ice load is governed by many factors, some of
which relate to ice and some to structure. The load is governed either by the deformation,
failure, and clearing ice in front of the structure, or by the environmental driving forces on
the ice (Løset et al., 1998). Of course in both situations, the magnitude of the ice load is
not constant with time. It is obvious that ice load is stochastic and only the probabilistic
methodology might give reliable results.

The most important factors that govern the ice load are:

• Ice features such as level ice, rafted ice, ridges and rubbles;

• Ice properties such as crystallography, temperature, salinity, porosity, surface tension;

• Design philosophy such as limit stress, limit momentum, limit force;

• Interaction geometry such as single interaction, interaction on waterline shape, in-
teraction with multi legged structure, on water depth and dependence on structure
size;

• Failure modes such as creep, crushing, bending, buckling, splitting, shearing.

Ice appears to be an extraordinary material changing its characteristics under loading.
This leads to difficulties while predicting the maximum forces induced by ice on a structure.
It is a creepy ductile material at low stresses, yet an extremely brittle material at high
stresses, and its behaviour is dependent on the rate of deformation and deformation history
(Sanderson, 1988). Moreover, the strength of ice is scale-dependent and this makes the
extrapolations and many assumptions unreliable.

To analyse the full-scale measurements properly one has to consider different ice features
and their action on the structure. These issues are now briefly reviewed concerning the
particular conditions in the Baltic region. There are no icebergs or multi-year ice in the Gulf
of Bothnia, so these features will not be considered here.

The Norströmsgrund lighthouse is situated in the transition zone between the land-fast ice
and the high dynamic drift ice of northern Bottonviken. The land-fast ice is characterized
by very slow drift motion and can be considered as a static feature. Loading from the static
forces are of low order and generally negligible compared with other types of ice features.

The main features of the ice cover at the lighthouse region are level ice, rafted ice and
ridges. The level ice is formed by uniform freezing of the upper layer of the sea water. Hence
this feature is characterized by small variation in the ice thickness. In the region where the
lighthouse is situated, the typical level ice is 0.4 − 0.6 m thickness.

Due to flaws in the ice sheet and thickness differences in adjacent ice floes, the rafted ice
might achieve 1 m thickness and more. When the rafting process is occurring, there is great
compression within the ice sheet. Moreover, due to the highly dynamic situation, hummock
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ice fields and pressure ridges are frequently present. In addition to the natural ridges, the
artificial ice formations are common. They are usually created by leads from lighthouses,
ships and icebreakers which were closed due to the wind stress.

It appears that the common failure scenarios at the site are crushing, bending and splitting.
The observations showed that the prevailing mode is crushing. The similar phenomenon is
also noted in Johnston et al. (1998). The cases analysed in this project were chosen by this
criterion.

7.2 Instrumental site and measurements

7.2.1 Norströmsgrund lighthouse

The main ice force measurements were conducted at the Norströmsgrund lighthouse
(Fig. 7.1) in the northern part of the Baltic Sea. It is located at position 65◦6.6′ N
and 22◦19.3′ E about 35 km in an subarctic region southeast of Lule̊a at the edge of the
land-fast ice of the Swedish coast and the drifting ice in the northern part of Bottenviken
(Jochmann and Schwartz, 2000). Fig. (7.2) shows the location of the lighthouse. The water
depth at the location is about 13 m depending on season. The lighthouse has an overall
height of 42.3 m, 9 levels and a helicopter platform on top (during wintertime the lighthouse
can be reached only by helicopter). The data collection equipment is installed on level 7.
Level 8 is used as a storage place, while on level 9 living quarters were built. Entering of
the lighthouse is possible at level 4 and level 9. At the waterline the lighthouse is equipped
with a polygon steel shield of 20 segments. The diameter at the waterline, including the
load measuring panels, is 7.52 m.

7.2.2 Climate conditions in the Baltic Sea area

As usual, offshore installations at sea have to sustain severe environmental loading. All
equipment must be corrosion resistant to withstand the impact of salty seawater and spray.
Waves hitting offshore structures (Fig. 7.3) can create very high instantaneous forces. Tem-
perature differences between summer and winter in the northern Baltic Sea can reach 70◦C
and more, and pose additional stress on materials.

As it was mentioned above during normal winters, the Norströmsgrund lighthouse is lo-
cated in the transition zone of land-fast ice and the high dynamic drift ice. The keel depth
of the ridges in the area often exceeds 6 m. This depth causes grounding of the ridges on the
caisson of the lighthouse.

Following warming in the late winter and spring season the ice breaks up and is transported
by currents and wind throughout the area. At this time one can frequently encounter ice
free periods, shortly afterwards strong ice drift and once again low drift and even no ice
drift. This is the most interesting period for the measurements as then the most variable
forces are found under different ice conditions and thus interesting scenarios occur when ice
hits the lighthouse.
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Figure 7.1: Norströmsgrund lighthouse (Photo: Lule̊a University of Technology).

Figure 7.2: Map of a location of the lighthouse Norströmsgrund.

Ice conditions in natural waters are very variable. Fig. (7.4) gives a brief presentation of
this.
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Figure 7.3: Panels in waves (Photo: Lule̊a University of Technology).

The above-mentioned forces and actions cause very variable ice conditions and formations
with corresponding heterogeneous mechanical and physical properties. The upper left photo
in Fig. (7.4) shows a piece of packed ice with rubble in the front and relatively thin areas
of recently frozen open water. The upper right photo displays the track of an icebreaker
that visited the lighthouse. The channel is filled with broken ice (rubble) which is already
freezing together again. The lower left photo shows some cracks in a piece of ice which hit
the lighthouse before the ice came to rest - also note the formation of very thin plain ice at
the sheet edge formed due to freezing of open water. Cracks typically form before the ice
fails and breaks when hitting a structure, but also when ice sheets collide or when a ship
moves through ice. The lower right photo shows the formation of ridges and plates which
were frozen together again and thus form closed ice cover.

7.2.3 Instrumentation

The lighthouse is equipped with different types of sensors and a video observation system
to determine the ice forces acting on the structure, document the force parameters and
describe the ice structure interaction process.
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Figure 7.4: Ice formation (Photo: Lule̊a University of Technology).

Ice force measuring system

Fifteen rigid ice force sensing panels were installed at the lighthouse. They were mounted
on the polygon steel shield using special designed and manufactured clamping pieces at the
waterline of the structure. The panels were designed to measure ice loads with maximum
estimated pressure of up to 3 MPa. Each panel accommodates sensors (load cells) which
measure the ice pressure. The sensors were individually adjusted and calibrated and mounted
in a watertight steel case. Each panel has a size of approximately 1.2 m by 1.6 m and a weight
of about 3.5 tonnes.

Two different kinds of panels were used, both are completely watertight. Eight large
panels, each equipped with 4 load cells, were installed around the basement of the lighthouse
”looking” in the direction from which the most probable ice drift can be expected. The
linearity error of the load cells is smaller than 0.1% within the measurement range. The
linearity error of the total panels was found to be better than 2%. The eight smaller panels
are assembled in one segmented panel of almost the same size as the other panels. This
arrangement covers an area of 162 degrees, the direction of ice-attack from North to South-
South-East (Figs. 7.5-7.6).

Measuring of ice forces on the panels installed at the lighthouse (Fig. 7.7) was one of the
key field activities in the LOLEIF and STRICE projects. Very large amounts of data were
registered by the panels equipped with a total of 32 load cells. The evaluation of gigabytes
of registered data to seek and identify interesting and relevant events comprised extensive
work.
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Figure 7.6: Panel arrangement (front).

The loads cells are connected via a cable connection box placed at the first level of the
lighthouse with the front end measuring system Spider 8 consisting of carrier amplifiers,
filters and ADCs. Eight units can be a cascade leading to a total amount of 64 channels
- the channels are scanned by the 16 bit ADC simultaneously with a maximum frequency
of 9600 Hz. During the measurement at the lighthouse the scanning frequency was set to
1200 Hz. The cut off frequency of the low pass filter, Bessel characteristic, was 150 Hz.

Video observation

Two video cameras placed in heated weather housing were mounted to the reeling of the
north and south balcony (Fig. 7.8). Cameras were mounted to observe the ice features and
calibrated to measure the ice velocity.
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Figure 7.7: Panels installed at the lighthouse (Photo: Lule̊a University of Technology).

A third camera placed at the highest balcony, mounted to a pen and tilt head and equipped
with an electronic lens picked up the overall ice situation and could be focused on special ice
features or ice structure interaction events. All video signals were distributed to a multiplex
unit, recorded in time lapse mode on a long time video recorder and monitored on a TV-
screen. Existing lights were rearranged and new lights installed to make video observation
possible during night time.

Ice thickness measurements

Two different methods were applied to determine the thickness of the ice interacting with
the lighthouse. Method 1 uses a low range upward looking echo sounder, type Mesotech MS
808A, mounted underwater by a driver team in north-east direction about 5 m away from
the panels on the concrete caisson in about 6 − 7 m water depth. This transducer profiles
the subsurface of the ice cover while the ice sheet is passing. The main technical information
is listed below (Jochmann and Schwartz, 2000):

• Frequency 200 kHz

• Transducer Beam 10◦ Cone

• Max. Range 30 m

• Resolution 8.4 mm
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Figure 7.8: Camera mounted on reeling (Photo: Lule̊a University of Technology).

The surface of ice cover is profiled by a laser scanner system, type Sick LMS 210, mounted
at the upper balcony of the lighthouse using aluminium pipes. The beam of this laser is
focusing on the same point as the echo sounder. The maximum range of this device is 50 m
while the resolution is better than 50 mm. Method 2 uses the electromagnetic induction
principle. The method as well as the installation and calibration procedure is reported in
LOLEIF report No.9 (Jochmann and Schwartz, 2000).

The further evaluation, analysis and adequacy of ice thickness data is reported in
Haas and Jochmann (2003).

7.2.4 Meteorological data measurements

Meteorological conditions in the Gulf of Bothnia were recorded at the pilot-station at
Marjaniemi. This area has practically neither tide nor currents. Only in storm surge the
water level can rise. The maximum at Marjaluoto has been 1.8 m in the summer and 1.2 m
during the winter, while most of the sea is covered. Ice movements are caused by winds.
During the wintertime, winds over 30 m/s are extremely rare. Temperatures during the
winter can drop well below 30◦C, normally a few weeks with temperatures around −25◦C
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Table 7.1: Statistical properties of air temperature and pressure during the measuring cam-
paigns 2001-2002.

Period 26 Feb - 10 Apr 2001 19 Feb - 11 Apr 2002
Mean Tair,

◦C -5.7 -2.3
Std Tair,

◦C 5.7 4.5
Max Tair,

◦C 0.6 8.5
Min Tair,

◦C -18.6 -13.9
Mean Pair, hPa 1005.3 1004
Std Pair, hPA 7.7 19.1
Max Pair, hPa 1020 1038
Min Pair, hPA 987 962

are common. The water salinity is low, from 0 to 6 ppt. There are several rivers discharging
to Gulf of Bothnia. They bring cold fresh water that is stratifying under the ice cover and
can build strong ice with zero salinity at the bottom of the level ice. The software packages
Diadem and MATLAB were used for data collection, analysis and presentation. The single
loads of each load cell, four for one panel, were collected and stored together with the time
channel as raw data in binary format on the hard disk of the data collection computer.

Air temperature and pressure

The sensor of a digital thermometer was installed at the outside North wall of the level at
height about 20 m above sea level. The display of this sensor was located in the measuring
room of the lighthouse. The main characteristics of temperature and air pressure during
two measuring campaigns in the period February to April are showed in Table 7.1. 4-hour
measurements (solid line) and daily mean (dashed lines with markers) of air temperature
and pressure are plotted in Figs. (7.9-7.10). As it is seen from the table and figures the mean
winter February-April Temperature is increasing.

Wind speed and direction

A wind speed and direction indicator was installed on the helicopter deck of the lighthouse
about 28 m above sea level. The display of this sensor was located in the measuring room of
the lighthouse. Figs. (7.11-7.14) represent the plots of wind speed and direction accordingly
versus date. In the rose diagrams 0◦ corresponds to the North and 90◦ is to the East. The
wind pictures for the winters 2001-2002 are similar with the most frequent winds from the
North, East and South-West and speed of less than 10 m/s.

Ice drift velocity

The ice drift speed and direction was determined by manual image analysis by the video
pictures. A 10×10 m2 grid was marked on the ice, recorded and painted on the video screen.
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Figure 7.9: Air temperature and pressure, 2001.
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Figure 7.10: Air temperature and pressure, 2002.
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Figure 7.11: Wind speed, 2001.
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Figure 7.12: Wind speed, 2002.
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Figure 7.13: Wind direction data and rose diagram, 2001.

Mar Apr

50

100

150

200

250

300

350

Date

W
in

d
d
ir

ec
ti

on

  10   20

30

210

60

240

90270

120

300

150

330

180

0

Figure 7.14: Wind direction data and rose diagram, 2002.
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Ice drift speed and direction were determined by following single significant ice features
passing the grid lines. A mean speed value was calculated from the observed distance and
measured time. The results are documented in the logbook. Figs. (7.15-7.18) represent the
plots of ice drift speed and ice drift direction accordingly versus date. The measured ice
drift velocity is in the range 0− 0.6 m/s. For winter 2002 the prevailing ice drift direction is
South-West, which unfortunately produced a small amount of data because the measuring
panels are facing North to South-East.
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Figure 7.15: Ice drift velocity, 2001.
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Figure 7.16: Ice drift velocity, 2002.
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Figure 7.17: Ice drift direction data and rose diagram, 2001.

Mar Apr
0

50

100

150

200

250

300

350

Date

Ic
e

d
ri

ft
d
ir

ec
ti

on

  20   40

30

210

60

240

90270

120

300

150

330

180

0

Figure 7.18: Ice drift direction data and rose diagram, 2002.

7.2.5 Calculation of global loads

This section is from Bjerk̊as et al. (2003). The authors suggested the following method-
ology to assess the global loads on the structure. Since the load measuring panels cover a
cylindrical pile only partly, then some assumptions have to be made in order to estimate
those loads. Firstly, the observed ice drift direction θobs is correct and unchanged during the
event of interest. Secondly, the ice cover acts on exactly the half cross-section perimeter of
the cylindrical structure. Thirdly, only normal forces are taken into account, the shear stress
between ice sheet and structure are neglected.

The ice drift direction angle θ is calculated from the North where the x axis points. Thus
North-West direction defines (x, y)-coordinates. The new ξ − η coordinates change with the
ice drift direction, where axis ξ points towards the direction θ. Each panel covers α◦ (18◦)
of the perimeter. It is assumed that the drift direction is the multiple of α and it crosses in
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the middle of the panel. Hence the drift direction is given by

θ = α · n, n ≈ θobs

α
. (7.2.1)

For convenience, the numeration of the panels in the new coordinates is altered so that
panel 1 faces in the ξ direction. On its left there are even-numbered panels and on its
right odd-numbered ones, looking from above. There are 9 panels all together. In the new
numeration the normal and shear components of the force is given by

Fξ =
5∑

i=2

cos((i − 1)α)(F2i−1 + F2i−2) + F1 [α = 18◦] (7.2.2)

Fη =
5∑

i=2

cos((i − 1)α)(F2i−1 − F2i−2) = 0 [α = 18◦]. (7.2.3)

Although the shear force Fη as it was mentioned above cancels out due to symmetry.
Thus, the global force Fg is given by

Fg = Fξ. (7.2.4)

To estimate the zones where the force measurements are not available due to the existing
panel installation the mirroring technique and interpolation/extrapolation along the cosine
distribution curve is used (Bjerk̊as et al., 2003).

Further calculations of the global load are made according to this scheme.

7.3 Correlation

In the literature on ice crushing, effective pressure is defined as the total interaction force
divided by the contact area, which is usually taken to be the product of structure width and
ice thickness. Sanderson (1988) attributed the trend of decreasing effective pressure with
increasing contact area to non-simultaneous failure of ice. Sodhi (1998) in his work referred
the decreasing of the effective pressure to the dependence on the ductile and brittle modes
of failure which are affected by the indentation speed. One of the main goals of this section
is to verify these results on data obtained from the Norströmsgrund lighthouse. The other
objective is to estimate the correlation effects on local force during the indention process of
ice loading.

Furthermore, Sodhi (1998) proposes a correlation model for the indentation process. He
saw a definite effect of indentation velocity on the mode of deformation or failure that takes
place within the ice sheet. Let a random function f(x, t) be a local force per unit width of
the structure at a point x at a time instant t. Then the global force on the structure is given
by

g(t) =

∫

W

f(x, t)dx. (7.3.1)
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In the Sodhi’s experiments the indentor was flat. In the case of other surface types the
projected coordinate along surface should be used.

Non-simultaneous failure will cause force variation not only with respect to time at a point,
but also across the structure at any instant. The size of contact areas, or crushing zones,
results in spatial correlation of local forces in the neighbourhood of a point on the structure.
Assuming the failure process is the same across the width of the structure, we see that the
expected (or average) local force per unit width is independent of the location of a point on
the structure, implying

E[g(t)] = WE[f(x, t)]. (7.3.2)

We can express the second moment in terms of the integral of the local force (Sodhi, 1998):

E[g2(t)] =

∫∫

W

E[f(x1, t)f(x2, t)]dx1dx2 =

∫∫

W

Rf(x,t)(x2 − x1)dx1dx2, (7.3.3)

where Rf(x,t)(x2 − x1) is the auto-covariance function of the local force f(x, t) caused by the
random crushing process. Based on Dunwoody (1991), Sodhi proposes a spatial correlation
function in terms of a negative exponential function:

Rf(x,t)(x2 − x1) − (E[f(t)])2 = σ2
f(t) exp(−|x|/L), (7.3.4)

where x is the distance between points x1 and x2 on the structure, σf(t) is the standard
deviation of the local force per unit width and L is a correlation length, which has relationship
to the size and the number of contact areas, or the crushing zones.

7.3.1 Results

From all available time series the crushing events were chosen (Table 7.7). The total re-
sultant forces are calculated as summarized effect of all panel normal forces. The projections
on x-axis (positive in East direction) and y-axis (positive in North direction) are obtained

Fx =
9∑

i=1

Fxi, Fy =
9∑

i=1

Fyi. (7.3.5)

Thus the total force is given as

Ftot =
√

F 2
x + F 2

y . (7.3.6)

The global forces Fg are calculated by mirroring technique according to Bjerk̊as et al. (2003)
described in Section 7.2.5.

The effective pressure was calculated by dividing the total resultant force Ftot by the
contact area as follows

peff = Ftot/A. (7.3.7)
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For the whole structure the contact area A is calculated multiplying the projection of the
circular shape of the lighthouse, being equipped with panels and contacted by ice, by the ice
thickness as follows

A = Deff · hI . (7.3.8)

If the ice thickness exceeded the height of the panel, the water level was taken into account.
Further the mean value µp with twice standard deviation σp of effective pressure peff will be
used for comparison of different events.

The panel, total and estimated global forces from event 0203-091 are shown in Fig. (7.19).
Frequency plots and empirical cumulative distribution functions (CFDs) are calculated for
these forces (Figs. 7.20-7.23). The average values with corresponding standard deviations
are plotted in Fig. (7.24). The ice drift direction is approximately 40◦, corresponding to the
direction which panel 5 is facing.
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Table 7.2: Crushing events, 2001.

Ice Ice Ice Air Aspect Mean Max
Event Thick. Forma- Speed Temp. Deff A Ratio peff peff

hI [m] tion [m/s] [◦C] [m] [ m2] Deff/hI MPa MPa
0103-002 0.85 hummock 0.07 -16.2 7.20 6.12 8.47 0.059 0.265
0103-003 0.46 level ice 0.05 -16.0 7.48 3.44 16.26 0.207 0.493
0103-004 0.48 level ice 0.05 -15.8 7.48 3.56 15.70 0.255 0.476
0103-006 0.45 level ice 0.08 -16.0 7.48 3.37 16.62 0.258 0.441
0203-030 0.37 level ice 0.13 -17.2 7.48 2.79 20.08 0.345 0.683
0203-040 0.34 level ice 0.18 -16.8 7.48 2.58 21.71 0.330 0.543
0203-051 0.31 level ice 0.20 -16.4 7.48 2.30 24.35 0.366 0.519
0203-052 0.22 level ice 0.20 -16.4 7.48 1.61 34.68 0.523 0.740
0203-060 0.30 level ice 0.25 -15.8 7.48 2.22 25.23 0.365 0.801
0203-070 0.30 level ice 0.25 -14.4 7.48 2.24 24.99 0.305 0.681
0203-080 0.65 hummock 0.25 -13.8 7.48 4.86 11.51 0.266 0.593
0203-091 0.40 level ice 0.25 -13.0 7.48 2.96 18.89 0.314 0.520
0203-092 0.65 hummock 0.25 -13.0 7.48 4.86 11.51 0.177 0.529
0203-100 0.48 hummock 0.33 -12.6 6.13 2.95 12.73 0.122 0.579
0203-110 0.48 hummock 0.23 -11.8 7.20 3.44 15.07 0.247 0.734
0303-020 0.30 level ice 0.12 -15.2 6.13 1.83 20.49 0.382 0.752
0303-031 0.29 level ice 0.17 -11.0 6.13 1.76 21.39 0.385 0.852
0303-032 0.29 level ice 0.17 -11.0 5.36 1.54 18.71 0.437 0.971
0303-040 0.29 level ice 0.16 -14.0 5.36 1.58 18.21 0.319 0.792
0603-060 0.22 level ice 0.15 -7.0 6.13 1.35 27.92 0.936 1.638
0603-070 0.30 level ice 0.15 -7.0 6.75 2.03 22.50 0.674 1.165
0603-081 0.17 level ice 0.15 -7.3 6.13 1.03 36.41 0.193 0.883
0603-082 0.28 level ice 0.15 -7.3 6.13 1.72 21.89 0.857 1.544
0703-011 0.28 level ice 0.17 -8.2 5.36 1.50 19.14 0.608 1.221
0703-012 0.32 level ice 0.17 -8.2 5.36 1.72 16.75 0.502 1.044
0703-013 0.28 level ice 0.17 -8.2 5.36 1.50 19.14 0.479 1.224
1303-031 0.46 level ice 0.08 -3.9 7.48 3.48 16.10 0.056 0.289
1303-032 0.40 level ice 0.08 -3.9 7.48 2.97 18.87 0.034 0.279
1303-041 0.36 level ice 0.20 -2.2 7.48 2.68 20.87 0.028 0.396
1303-042 0.51 level ice 0.10 -2.8 7.48 3.82 14.66 0.027 0.182
1303-050 0.46 level ice 0.08 -2.9 7.48 3.42 16.37 0.030 0.265
1303-060 0.48 level ice 0.12 -2.7 7.48 3.59 15.58 0.205 0.819
1303-070 0.69 level ice 0.10 -3.2 7.48 5.17 10.82 0.052 0.319
1303-080 0.97 hummock 0.20 -3.1 7.48 7.26 7.71 0.079 0.229

Analysing the effective pressure versus the aspect ratio (Fig. 7.25), the obtained picture
showed more scatter than the results obtained by Sodhi (1998). The data was divided in two
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Figure 7.19: Local, total and global forces on the lighthouse, event 0203-091.

groups. The first group included the effective pressure values for the ice drift velocities VI less
than 0.1 m/s and the second group is for the values with ice drift velocities VI greater than
0.1 m/s. Unlike Sodhi (1998), it was found that the lower ice drift velocity VI produced lower
pressure on the structure than the events with estimated ice drift velocity VI greater than
0.1 m/s. Due to the large scatter it is difficult to establish the character of this relationship.
The effective pressure (µp+2σp) is shown versus the contact area in Fig. (7.26). A decreasing
behaviour of indentation pressure with increase in the contact area is present. The effect of
ice drift velocity is similar as for effective pressure relationship on aspect ratio. The events
with low drift velocity are characterized by lower pressure than events with a higher drift
velocity.
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Figure 7.20: Histograms and empirical CFDs for panels 6,5,3, event 0203-091.

0 100 200 300 400
0

50

100
Panel 4

Force F, [kN]

F
re

qu
en

cy
, [

1/
kN

]

0 100 200 300 400
0

0.5

1

Force F, [kN]

C
D

F
, [

−
]

Empirical CDF

0 100 200 300 400
0

50

100
Panel 1

Force F, [kN]

F
re

qu
en

cy
, [

1/
kN

]

0 100 200 300 400
0

0.5

1

Force F, [kN]

C
D

F
, [

−
]

Empirical CDF

0 100 200 300 400
0

50

100
Panel 9

Force F, [kN]

F
re

qu
en

cy
, [

1/
kN

]

0 100 200 300 400
0

0.5

1

Force F, [kN]

C
D

F
, [

−
]

Empirical CDF

Figure 7.21: Histograms and empirical CFDs for panels 4,1,9, event 0203-091.
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Figure 7.22: Histograms and empirical CFDs for panels 8,2,7, event 0203-091.
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Figure 7.23: Histograms and empirical CFDs for total and estimated global forces, event
0203-091.

Considering the relationship of the effective pressure on the meteorological conditions, the
dependencies on air temperature and wind speed are shown in Figs. (7.27-7.28). A high wind
speed corresponded to the low effective pressure values, and again the events with lower ice
drift velocity are characterized by the lower estimated pressure on the structure. In addition,
a high air temperature caused a decrease in the effective pressure. Higher pressures were
estimated for the events with the ice drift speed VI > 0.1 m/s than the events with velocities
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Figure 7.24: Mean values of panel forces with standard deviation, event 0203-091. Panel nu-
meration is in natural order from North to South East clockwise, see Fig. (7.5).
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Figure 7.25: Effective pressure (µp + 2σp) vs aspect ratio.

VI ≤ 0.1 m/s at low temperature less than −10◦ C. The same relationship applies also for
temperatures above −10◦ C.

Fig. 7.29 shows effective pressure dependency on ice drift velocity. This relationship cor-
responds well with results presented by Sodhi (2001). The decreasing behaviour of effective
pressure versus ice thickness is shown in Fig. 7.30.
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Figure 7.26: Effective pressure (µp + 2σp) vs contact area.
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Figure 7.27: Effective pressure (µp + 2σp) vs wind speed.
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Figure 7.28: Effective pressure (µp + 2σp) vs air temperature.
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Figure 7.29: Effective pressure (µp + 2σp) vs ice drift velocity.
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Figure 7.30: Effective pressure (µp + 2σp) vs ice thickness.

Further the correlation of the local forces on the structure along the contact area is con-
sidered. The correlation coefficients are given by

ρi,j =
Cov(pi, pj)

σpi
σpj

(7.3.9)

where pi is an effective pressure for the ith panel and σpi
is a standard deviation of pi.

Cov(pi, pj) is a cross-covariance of the effective pressures on the ith and jth panels. Stronger
correlation between the panel forces corresponds to higher ice drift velocities (Sodhi, 1998).
Fig. (7.31) shows correlation coefficients calculated for two events characterised by ice drift
velocities VI = 0.05 m/s (�) and VI = 0.16 m/s (•) which correspond to minimum and
maximum values of parameter L (Eq. 7.3.4).

Data for the characteristic length parameter versus velocity and air temperature are pre-
sented in Fig. (7.32) and Fig. (7.33), respectively. A least squares fit is shown as solid lines
on both figures and given as

L(VI) = 1.46VI + 1.52, L(Ta) = 0.03Ta + 2.11.

In spite of highly scattered data, both fitted lines indicate that the characteristic length
parameter shows a tendency for increase with increasing values of the drift velocity and
temperature, although the increase with temperature is rather weak, which is caused by the
two very large values at −14◦C. Sodhi (2001) explains this increase by different fracture
modes, changing from brittle crushing at low values of L to ductile crushing at large values
of L.
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Figure 7.31: Correlation coefficients between local forces from the events, during which the
estimated ice-drift velocity was 0.05 m/s and 0.16 m/s. Solid lines are the cor-
responding functions exp(−x/Li) fitted to these coefficients.
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Figure 7.32: Correlation parameter L vs the ice-drift speed. The solid line is linear least
squares fit to these data.
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Figure 7.33: Correlation parameter L vs air temperature. The solid line is linear least squares
fit to these data.

7.4 Extreme value distribution

The extreme probability distribution is one of the most important aspects of stochastic
analysis in many engineering problems. Knowledge of this distribution for the appropriate
process allows the analyst to calculate the probability that in this particular case, the ice
force on a structure has exceeded some critical level during the time interval of interest.

Usually, as in wave and wind statistics, the annual extremes are used in order to estimate
the design value. Unfortunately, in our case only five years of measurements are available,
which is not enough to provide annual extremes. Thus it is assumed that the daily maxi-
mum ice load has an extreme value distribution which can be used afterwards to calculate
the design value. Hence the events happened in two consecutive days are supposed to be
independent. This is possible because of highly dynamic ice drift situation near the light-
house. The new ice fields are entering the area at least once a day. This assumption was
checked with the time series and logbooks of direct observations.

A simple way to formulate the extreme value problem is to define a new stochastic process
Y (t) which is the extreme value of X(t), the original time series, during some specified period
of time of length t. Specifically, we let

Y (t) = max
0≤s≤t

X(s). (7.4.1)

The extreme value distribution for X(t) is then simply the distribution of the Y (t) random
variable. Letting FY (t)(u) denote the cumulative distribution function of Y(t) gives

FY (t)(u) = P [Y (t) ≤ u] = P [X(s) ≤ u : 0 ≤ s ≤ t]. (7.4.2)
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The extreme distribution related to the original distribution of X(t) is

FY (t)(x) = [FX(x)]n (7.4.3)

where n is the number of data in the Y (t) series, in our case n is the number of days. There-
fore the different kinds of asymptotical extreme value distributions are developed over the
years (generalized extreme value distribution GEV, Gumbel, Weibull and Pareto distribu-
tions, cf. Appendix C).

7.4.1 Return period and design value

The general procedure of statistical extrapolation on the basis of the limited set of extreme
value data is to plot data on the probability paper corresponding to the considered distri-
bution under the assumption that the experimental extreme value distribution converges to
some known (for example, Gumbel, Weibull etc.) extreme value distribution. Then some
sort of linear regression can be carried out in order to fit the data to the analytical expression.
Within this approximation, an extrapolation may be needed in order to reach a desirable
design value.

The extreme value distribution is intimately related to the mean upcrossing rate ν+
x (t)

of the original process X(t) (Lutes and Sarkani, 1997). Moreover, if it is assumed that up-
crossings of high levels for the original process are independent events (Poisson assumption,
cf. Section 3.3), the extreme value distribution is given as

FY (T )(ζ) = P [Y (T ) ≤ ζ] = exp


−

T∫

0

ν+
x (t, ζ)dt


 (7.4.4)

where the upcrossing rate ν+
x (t, ζ) can be evaluated in the general case by the Rice formula

(Eq. 3.3.8).
Further, it is assumed that the mean upcrossing rate does not depend explicitly on time

ν+
x (t, ζ) = νx(ζ), i.e. the underlying distribution is stationary (Mathiesen, 1991). Then the

probability distribution is expressed as

FY (t)(ζ) = exp (−νx(ζ)t) . (7.4.5)

Since generally the distribution FY (t)(ζ) is unknown for any time period t, the extrapolation
can be applied from the available short-term distribution. Let the chosen average duration
τ = τ(ζ) between exceedings of the threshold level ζ and corresponding distribution FY (τ)(ζ)
be known then the average upcrossing rate νx(ζ) is following

νx(ζ) =
− ln(FY (τ)(ζ))

τ
. (7.4.6)

Finally, the return period R of interest, the time interval for the threshold level ζ to be
exceeded on an average once, is now given as

R(ζ) =
1

νx(ζ)
= − τ

ln(FY (τ)(ζ))
. (7.4.7)
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Then the design threshold corresponding to the given return period R(ζ) is obtained as

ζ(R) = F−1
Y (τ)

[
exp

(
− τ

R

)]
. (7.4.8)

For example, if the extreme value distribution is chosen to be the Gumbel distribution, then
the design value will be given by the Eq. (C.3.3) with parameters correspondingly estimated
from the experimental data. For long return periods R ≥ 1 year the common procedure has
been to set the exceeding duration τ at a constant value typical for given area (about 20-24
hours). In our case τ is chosen to be τ = 1 (day) thus the return period R is in days as well.

7.4.2 Results and discussion

In this section the various extreme value distributions are fitted to the daily maximum ice
loads in order to estimate the design values by extrapolation. Extreme values for forces on
panels and estimated global load are extracted from data files for each day of measurements
in year 2002. As it was discussed in Section 7.2.5, the global load was estimated by mirroring
techniques described in Bjerk̊as et al. (2003). The data were chosen so that the time between
the two adjacent values is more than 12 hours (half of one day period) otherwise it was
manually checked by the time series and logbooks that these extremes belong to the different
events. In addition to prove the independence of the extreme values, the scatter plots for the
global force with lags 1, 2, 3 and 4 days were plotted (Fig. 7.34). The values are normalized
by the maximum load for the whole of 2002. Fig. (7.34) indicates that there is no obvious
tendency in the scatter. Additionally the autocorrelation function (ACF) for global force
was calculated (Fig. 7.35). All values lay inside the interval ±uα/2/

√
n, where uα/2 denotes

the value of the standard normal variable u with P (|u| > uα/2) = α, α = 0.05 is chosen in
our case (Shumway and Stoffer, 2000). This proves also that the available daily maximum
ice loads can be considered as independent.

Four discussed types of distributions are fitted to the data. The estimates for parameters of
the Gumbel distribution for extremes of the extrapolated global load are given in Table 7.3
and the plot on the Gumbel paper is shown in Fig. (7.36). The goodness-of-fit test gave
acceptance of initial hypothesis about Gumbel distribution at 99% significance level. The
same methodology was implemented for estimating parameters for Weibull, GEV and GPD
distributions (Tables 7.4, 7.5, 7.6 and Figs. 7.36, 7.37, 7.38). In order to estimate parameters
for GEV distribution, two methods were used, namely, the method of maximum likelihood
”ML” and the method of probability weighted moments ”PWM”. The ML method gives
usually lower covariance in estimates, but it seems that the fitting curve for PWM method
is closer to experimental data. For parameter estimation for the GPD, also two methods
were used: the method of moments ”mom” and the maximum likelihood method ”ML”.
A description of the different statistical methods used, such as ML and PWM, will not be
given here. All the calculations were performed in the Matlab program in toolbox WAFO
http://www.maths.lth.se/matstat/wafo/.

Goodness-of-fit tests for all panels (1 to 9) had confirmed the hypotheses about the Gum-
bel distribution with probability of 99%. Results are given in Table 7.3 and distributions
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Figure 7.34: Scatter plots for global force with lag 1, 2, 3 and 4 days (data from 2002).
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Figure 7.35: Autocorrelation function for global force (data from 2002).
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plotted in Fig. (7.39). Parameters for the Weibull, GEV and GPD distributions were esti-
mated (Tables 7.4, 7.5, 7.6 and Figs. 7.40, 7.41, 7.42, respectively). The PWM method was
used for estimatition of the GEV parameters, and the Pickands’ method was used for GPD
parameters. It is remarkable that for the first panel the shape parameter k almost equals zero
which confirms the hypothesis about the Gumbel distribution. Other parameters, location c
and scale λ, have relative differences 6% and 2% correspondingly. It can be noticed that for
other panels the shape parameter k differs from zero and has different signs even though the
Gumbel test gave the positive results on acceptance of the null-hypothesis. Thus the shape
of the probability distribution curve is changing, although the difference is not substantial.
More data is needed in order to make a best choice between those two distributions.

Table 7.3: Estimated parameters for Gumbel distribution for global loads and panel loads.

1/α, kN b, kN αglobal/αpanel bglobal/bpanel

Panel 1 240.15 213.97 0.25 0.17
Panel 2 236.45 171.68 0.25 0.13
Panel 3 253.83 198.8 0.27 0.16
Panel 4 263.01 252.8 0.28 0.20
Panel 5 281.53 288.23 0.30 0.22
Panel 6 228.81 235.89 0.24 0.18
Panel 7 189.23 129.4 0.20 0.10
Panel 8 154.77 108.52 0.17 0.08
Panel 9 207.97 139.64 0.22 0.11
Average 228.4167 193.2144 0.24 0.15
Global load 946.21 1280.1 - -

Table 7.4: Estimated parameters for Weibull distribution for global and panel loads.

u, MN k, − upanel/uglobal

Panel 1 0.278 1.033 0.14
Panel 2 0.169 1.22 0.09
Panel 3 0.192 1.97 0.10
Panel 4 0.323 1.19 0.16
Panel 5 0.383 1.24 0.19
Panel 6 0.348 1.02 0.18
Panel 7 0.250 0.89 0.13
Panel 8 0.261 0.92 0.13
Panel 9 0.422 1.20 0.21
Average 0.292 1.19 0.15
Global load 2.0797 1.3652 -
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Table 7.5: Estimated parameters for GEV distribution for global and panel loads.

k, − λ, kN c, kN
Panel 1 0.0060464 256.36 210.18
Panel 2 -0.16571 223.45 148.25
Panel 3 0.026921 269.04 201.28
Panel 4 0.18184 294.74 276.8
Panel 5 0.32253 323.65 335.94
Panel 6 0.23425 265.67 262.11
Panel 7 -0.13605 183.4 113.84
Panel 8 -0.15094 148.7 94.273
Panel 9 -0.21617 188.25 113.96
Average 0.011413 239.25 195.18
Global load (PWM) -0.26887 807.89 1139.5
Global load (ML) -0.23104 841.91 1170.4

Table 7.6: Estimated parameters for GPD distribution for global and panel loads.

k, − λ, kN
Panel 1 0.16243 414.56
Panel 2 -0.04866 305.01
Panel 3 0.086524 379.83
Panel 4 0.34061 537.98
Panel 5 0.49898 662.53
Panel 6 0.44703 527.33
Panel 7 -0.056631 233.94
Panel 8 -0.052634 195.13
Panel 9 -0.10962 243.29
Average 0.140892 388.8444
Global load (mom) 0.29173 2447.5
Global load (ML) 0.28905 2449.3

It is of interest to notice that scale factors between the distribution parameters estimated
for load on panels and for global load are between [0.1, 0.3] (Table 7.3). Meanwhile, the
scale factor for panel width wp = 1.2 m to diameter of structure D = 7.52 m is 0.16. The
average scale factor for the location parameter b in the Gumbel distribution equals 0.15. For
other distributions, the scale factor for panel loads and global loads is also comparable with
this value. Unfortunately, the shape factor for the GEV and GPD showed large discrepancy
between the individual parameters, and is thus questionable to compare.

For calculation of design values and comparison with other sources, the Gumbel distri-
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Figure 7.36: The global load data (year 2002) on Gumbel and Weibull paper.
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Figure 7.37: The estimated GEV distribution (−−) and empirical distribution on the global
load data (year 2002).
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Figure 7.38: The estimated GPD (-) and empirical distribution on the global load data (year
2002).
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Figure 7.39: The panel load data (year 2002) on Gumbel paper.
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Figure 7.40: The panel load data (year 2002) on Weibull paper.

0 500 1000
0

0.5

1

F
(x

)

GEV for 2002 for Panel 1

x
0 200 400 600

0

0.5

1

F
(x

)

GEV for 2002 for Panel 2

x
0 200 400 600

0

0.5

1
F

(x
)

GEV for 2002 for Panel 3

x

0 500 1000
0

0.5

1

F
(x

)

GEV for 2002 for Panel 4

x
0 500 1000

0

0.5

1

F
(x

)

GEV for 2002 for Panel 5

x
0 500 1000

0

0.5

1

F
(x

)

GEV for 2002 for Panel 6

x

0 500 1000
0

0.5

1

F
(x

)

GEV for 2002 for Panel 7

x
0 500 1000

0

0.5

1

F
(x

)

GEV for 2002 for Panel 8

x
0 500 1000

0

0.5

1

F
(x

)

GEV for 2002 for Panel 9

x

Figure 7.41: The estimated GEV distribution (−−) and empirical distribution on panel load
data (year 2002).
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Figure 7.42: The estimated GPD (–) and empirical distribution on panel load data (year
2002).

bution was chosen. The design values were calculated by Eq. (C.3.3), where the exceeding
duration τ = 1 day and the return period R = 1, 5, 10, 25 years in days (the number of years
multiplied by 365 days) was used. It corresponds to probability of exceedance Pe that is
given in Table 7.7 together with estimated forces (the design value for panels calculated on
the average parameters for all panels).

Table 7.7: Design values derived from the Gumbel distribution.

Panel load, MN Global load, MN Probability Pe

ζ(1 year) 1.54 6.86 2.74E-03
ζ(5 year) 1.91 8.39 5.48E-04
ζ(10 year) 2.07 9.04 2.74E-04
ζ(25 year) 2.28 9.91 1.10E-04
Maximum (2002) 1.42 5.84 -

To conclude this section, it can be mentioned that the data can be transformed in order
to fit some of proposed distributions as it was done in Naess (1998). For instance, it may
be the effective pressure. Unfortunately, the ice thickness data is unreliable for this period
making the method presentation impossible.

It should be noted that in spite of disregarding the ice interaction scenarios, the method
is reliable because the Baltic Sea area is not experiencing the most extreme ice loads. The
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7.5 Summary and conclusions

ice conditions in the area adjacent to the Norströmsgrund lighthouse are primarily first
year level and rafted ice, and first year ridges. Moreover, the ice cover is often disturbed
artificially by icebreakers and the structure itself is affecting the ice strength. As mentioned
in Simiu and Hackert (1996), the extreme value distribution is described with reference only
to ordinary winds and storms, not including the extreme wind events like hurricanes.

The Gumbel distribution gave the best fit and clear dependencies for the data among other
distributions. Though it would be unwise to reject some of them. For example, probably the
GEV (Generalized Extreme Value) distribution may give more general statistical estimate
for ice forces under further consideration because it possesses more universal structure. This
kind of distribution was regarded in Morse (2000) as well. In this source (Morse, 2000), an
analogous study is performed concerning the ice booms on the St. Lawrence River in Canada.
Several different distributions were used. However, no particular preference was made except
the Normal distribution, which was rejected in the hypothesis. It is mentioned in Section 7.1
that the maximum recorded loads follow the Gumbel distribution well. Nevertheless, the
Gumbel distribution may overestimate loads on the structure as it is shown in Table 7.7 the
yearly maximum values for panel load and global load are less than predicted by the Gumbel
distribution (7% and 15% correspondingly).

Further, the analysis results of similar structures are reviewed. The conical formation on
the piles of the Confederation Bridge was investigated in Brown et al. (2001). The ice loads
are determined from the computer simulations based on the parameters given statistically
by their specific distributions. The exceedance probability is plotted for two different cone
materials. For Pe = 10−4, the design value for the concrete cone is about 11.5 MN, for the
steel cone approximately 9 MN. The difference in the numbers is due to different coefficients
of friction on the cone surface. In Table 7.7 the value for the Norströmsgrund lighthouse
estimated in this report for the same probability is given as 9.91 MN. Consider that the
diameter of the pile with cone structure on it at the waterline is approximately 12.48 m. Thus
the scale factor between the Norströmsgrund and the Confederation Bridge is 7.52/12.48 =
0.6. Thus if the force on the concrete cone is taken as reference value, then the estimated
force for the structure with diameter 7.52 m would be 6.9 MN. These values lie in the same
range, and the relative difference is about 30%. However, it should be taken into account
that generally forces on a conical structure are less than on cylindrical structures due to
different ice failure scenarios. On a cone the prevailing failure mode is bending, on cylindrical
structures it is crushing as it was shown in Schwarz (2001) and Schwarz and Jochmann
(2001).

7.5 Summary and conclusions

Ice force measurements and determination of parameters affecting the ice force were carried
out at the Norströmsgrund lighthouse in winters 2001-2002. The lighthouse is located in a
subarctic region in the Baltic Sea. For the force determination the structure was equipped
at the water line with eight rigid ice force sensing panels of size 1.21 × 1.60 m and a load
capacity of 3 MN including an overload range of 50% and with segmented panel assembled
from 8 small panels with a load area 0.50 × 0.37 m and a normal load capacity of 1 MN. To
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Chapter 7 Probabilistic analysis of ice loads

determine the ice force parameters, an echo sounder, em device, laser distance sensors and
video cameras were installed.

The data from the 2001 campaign was chosen for verification of the assumption that the
effective pressure depends on the indentation velocity proposed by Sodhi (1998). 34 events,
which were characterized as crushing, were extracted. During these incidents the estimated
ice drift velocity varied from 0.05 m/s up to 0.33 m/s. The measuring period of campaign
started on 25 February 2001. The logbooks were used to document visual observation results
as well as meteorological data together with information on date and time. The greatest ice
loads were documented during the crushing events.

Analysis of the data showed that the highest effective pressure was caused by the ridges.
Unlike the medium-scale experiments conducted by Sodhi (1998), the ice with low drift speed
produced low interaction pressure on the structure.

The spatial stationarity of the crushing process and a negative exponential function for
correlation function was assumed in terms of the mean and the standard deviation of the
local force and a correlation length parameter. Analysis of measured data showed that these
parameters depend on ice drift speed, air temperature and ice features.

The extreme value analysis of the data from the 2002 measurement campaign revealed
that the daily maximum forces were best fitted to the Gumbel distribution. In addition, it
was shown that the forces on the panel and estimated global force had a scale factor that
was comparable with the scale factor of the structure and panel geometry. Comparison with
relevant literature was conducted and good agreement was found with the present study.
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Appendix A

Random number generators

The basis for the Monte Carlo method is the statistical experiment done on the variety of
the independent uniform random outcomes. Initially, manual methods were used to produce
these, including such techniques as coin flipping, dice rolling, card shuffling, and roulette
wheels. Certainly these methods are too slow for modern use, and, moreover, they possess
another disadvantage. Namely, sequences generated by manual means are not reproducible.
With the raise of digital computers other methods came to the stage, for instance, famous
tables produced by the RAND Corporation in 1955. Hence, the random numbers became
reproducible but still rather slow to process. There also existed the risk of exhausting the
table. Electrical devices were also used such as noise diodes, Geiger counters to produce the
”truly” random sequences. Nevertheless it was found that these generated numbers exhibit
both bias and dependence. Considering these difficulties the arithmetic operations on the
computers were suggested to be used for these purposes. John von Neumann was probably
first with his mid-square method. The idea is the following: take the square of the preceding
n-digit number and extract the n-middle digits. Hence these numbers actually are not
random but just look like they are random. Though they possess all statistical properties of
random numbers and in addition they are reproducible. These numbers are strictly referred
as pseudorandom or quasirandom though it is conventional still to call them random. The
methods which produce the random numbers are called random number generators or RNG.
The RNG is considered as a high-quality generator if it is fast, takes minimum memory
capacity, generated numbers are uniformly distributed, statistically independent, and have
a long interval of aperiodicity. The method of Neumann does not have all these qualities
and thus it is a rather poor generator. The most popular RNGs now are the congruential
generators, introduced by Lehmer in 1951.

Congruential methods are based on a fundamental congruence relationship, which may be
expressed as

Xi+1 = (aXi + c) (mod m), (A.0.1)

where the initial value, X0, is called seed, the multiplier a and the divisor m are positive
integers, the increment c is a nonnegative integer. The modulo operation means the remain-
der of the division of the integer numbers. In particular, if c = 0 the generator is called a
multiplicative congruential generator (Rubenstein, 1981; Rubenstein and Melamed, 1998).
Dividing by m gives the series of uniformly distributed numbers in the interval (0, 1). Many
diverse algorithms and variations of the congruential methods have been developed over the
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years (Knuth, 1981; Maclaren, 1989). In this thesis the programming language C was used to
program the algorithms. RNG from NAGC library was preferred to the standard RNG built
in C language because of its quality. Though there is the manifold of different algorithms in
the standard computer libraries as well as on the Internet.

Moreover, random numbers from other distributions may be obtained from the uniform
random numbers by the use of transformations and rejection techniques, and for discrete dis-
tributions, by table based methods. For a continuous random variable X with a cumulative
distribution function (cdf) F (x) the inverse transformation is

x = F−1(u), (A.0.2)

where u is a uniform random number in the interval (0, 1). This method is called the inverse-
transform method. Illustration is given in Figure A.1. Though this method is only efficient
when cdf is invertible.

F (x)

1

0

u

xx = F−1(u)

Figure A.1: The inverse-transform method.

The very popular algorithm for producing the random numbers from the normal Gaussian
distribution is based on the polar representation of the 2D Euclidian space.

The other main class of transformation methods is called acceptance-rejection algorithms.
The simplest method for generating numbers satisfying a non-uniform, arbitrary probability
distribution f(x)dx on (0,1) is proposed by von Neumann (Bauer, 1958). Choose an a which
normalizes f(x) such that maxx∈(0,1)[af(x)] = 1. Numbers xi and yi are generated from
a uniform distribution on (0,1) and xi is accepted or rejected as a deviate depending on
whether yi ≤ af(xi) or yi < af(xi). The accepted xi’s have the required distribution.

Many other alternative procedures exist for generating pseudorandom numbers. They
include shift register generators, generalized feedback shift register generators, and non-
linear generators besides that mentioned above (Fishman, 1996).
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Variance reduction techniques

The Monte Carlo simulation method is a robust and versatile tool for reliability estimation
and probabilistic study of any general static and dynamic systems with arbitrary number
degrees of freedom (Rubenstein, 1981; Ayyub and Haldar, 1985). However, this methodology
is demanded as a last resort due to the slow convergency to the true solution. Although there
exists diverse variance reduction procedures which allow to achieve a prescribed error bound
with a smaller sample size. Those efficiency-improving methods usually take one of two forms
(Fishman, 1996). The first alters the sample generating procedure and adjusts the parameter
estimator of interest in a way that leads to smaller variance per observation. Importance
sampling, stratified sampling and correlated sampling are examples of this approach. The
second leaves the sample generating mechanism intact, but collects ancillary data that can
be used to estimate already known parameters. By incorporating these additional data into
the estimator of the unknown parameter of interest, one can reduce the variance for a given
sample size. The control variate method is an example.

The importance sampling approach is of the main concern in this thesis, because it can
lead to dramatic variance reduction, while all other procedures reduce the variance only by
a constant factor.

B.1 Directional simulation

In directional simulation the reliability problem is reformulated in polar coordinates when
it is possible and convenient. Thus the n-dimensional standardized normal vector U is
written

U = RA (B.1.1)

where the radial distance R > 0 is a stochastic variable such that R2 is chi-square distributed
with n degrees of freedom, and A is a unit vector of independent stochastic variables, indi-
cating the direction in the u-space.

If R is independent on A then the probability of failure can be written as:

pf = P (g(U) ≤ 0) =

∫

unit sphere

P (g(RA) ≤ 0|A = a)fA(a)da (B.1.2)

where fA(a) is the constant density of A on the unit sphere.
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The following assumption are made: the origin u = 0 is in the safe area, i.e. g(0) > 0,
and every half-line starting from u = 0 only crosses the failure surface once.

The probability P (g(RA) ≤ 0|A = a) in Eq. (B.1.2) can be calculated by

P (g(RA) ≤ 0|A = a) =

∞∫

r(a)

fR(s|A = a)ds = 1 − χ2
n

(
r(a)2

)
(B.1.3)

where χ2
n() is the χ2

n distribution with n degrees of freedom. r(a) is the distance from the
origin u = 0 to the failure surface, i.e. g(r(a)a) = 0.

An unbiased estimator of pf is

p̂f ≈ E[p̂f ] =
1

N

N∑

j=1

p̂j =
1

N

N∑

j=1

(
1 − χ2

n

(
r(âj)

2
))

(B.1.4)

where N is the number of simulations and âj is a simulated sample of A. Further evolution
and generalization are possible, see Melchers (1999) and Ditlevsen and Madsen (2003).

B.2 Adaptive sampling

In adaptive sampling in order to develop the efficient importance sampling density and
explore the failure domains the generated samples are chosen such that the regions, they
belong to, have higher probability densities (Karamchandani and Cornell, 1991). Then the
sampling density can be modified to generate sample points in these regions. The simplest
approach is to locate the expected value point at the point in the region with the largest
probability density function.

Another approach is to use a so-called multimodal sampling density which generates sam-
ples around a number of points in the failure domain, but emphasizes the region around a
point in proportion to the probability density at the point.

Let û(i) (i = 1, . . . , k) be the set of the points in the failure region which are used to
construct the multimodal sampling density, which is given

hk
U(u) =

k∑

j=1

wjf
(j)
U (u) (B.2.1)

where f
(j)
U (u) is the density function of a normally distributed stochastic vector with uncor-

related variables, standard deviations 1 and expected value point equal to û(j). The weights
are determined by

wj =
fU(û(j))

k∑
i=1

fU(û(i))

. (B.2.2)
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B.3 Conditional Monte Carlo simulation

An estimate of the probability of failure can now be obtained on the basis of N simulations
where the importance sampling technique is used:

p̂f =
1

N

N∑

j=1

fU(û(j))

hj
U(û(j))

I[g(û(j))]. (B.2.3)

B.3 Conditional Monte Carlo simulation

Let

E[f(X)] =

∫
f(x)dP (x) (B.3.1)

be some expected performance measure. Suppose there exists a random variable, X, such
that the conditional expectation E[f(x)|X = x] can be analytically computed. Since

E[E[f(x)|X]] = E[f(X)] (B.3.2)

it follows that E[f(x)|X] is an unbiased estimator of E[f(X)]. Furthermore, it can be shown
(Rubenstein and Melamed, 1998) that

V ar[E[f(x)|X]] ≤ V ar[f(X)]. (B.3.3)

B.4 Latin hypercube simulation

The basic Latin hypercube simulation method is based on the idea that the entire range
of each variable is sampled (McKay et al., 1979). Thus, the range of each variable is divided
into m intervals. In each interval the probability of an outcome should be equal.

For each variable, one point is generated from its marginal distribution for each of the
intervals, i.e. ûij, j = 1, . . . ,m represents the m points for variable i.

The first sample point ûk
1 (k is the run number) in this bulk is generated by random

combination of each of realizations ûij. Correspondingly the following m−1 samples contain
the combinations of the remaining unused values. The probability of failure for this sample
is estimated from

p̂k
f =

1

m

m∑

j=1

I[g(ûk
j )]. (B.4.1)

This procedure is repeated N times and the final estimate of pf is

p̂f =
1

Nm

N∑

k=1

m∑

j=1

I[g(ûk
j )]. (B.4.2)

where ûk
j is realization number j in the kth Latin hypercube sample.

The standard error is of magnitude 1/(Nm) times the standard error of the crude Monte
Carlo simulation, though it can not be expressed in a simple way. The extensions and
development of this method can be found in Olsson et al. (2003).
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B.5 Stratified sampling

Stratified sampling is a commonly used technique in population survey. Mathematically,
it can be viewed as a special importance sampling method with its trial density constructed
as a piecewise constant function. In stratified sampling, the domain of integration D of an
expectation

E[f(X)] =

∫

D

f(x)dP (x) (B.5.1)

is partitioned into m > 1 disjoint subsets Di, so that within each subregion, the function
f(x) is relatively ”homogeneous” (e.g., close to being constant). Then, a fixed number of
samples X(i,1), . . . , X(i,ni) is generated from each Di, where Di is referred as stratum i.

If we estimate the conditional expectation

E[f(X)|X ∈ Di] ≈
1

ni

ni∑

j=1

f(X(i,j)), (B.5.2)

then the weighted estimator

m∑

i=1

P (Di)
1

ni

ni∑

j=1

f(X(i,j)) (B.5.3)

is unbiased for E[f(X)].
If the ni are chosen carefully, then the variance

V ar =
m∑

i=1

σ2
i p

2
i /ni, (B.5.4)

where σ2
i =

1

pi

∫

Di

[f(x) − E[f(X)|X ∈ Di]]
2dP (x), (B.5.5)

pi = P (Di) =

∫

Di

dP (x), (B.5.6)

p1 + . . . + pm = 1, (B.5.7)

of this estimator will be smaller than the variance V ar[f(X)]/n of the crude Monte Carlo

estimator with the same number of samples n =
m∑

i=1

ni drawn randomly from D.

Although the exact values of the conditional variances σ2
i = V ar[f(X)|X ∈ Di] are

inaccessible in practice, one can estimate them using a small pilot sample of points from
each Di. Once this is done, one can collect a more intelligent, final stratified sample that
puts the most points where f(x) shows the most variation. Obviously, it is harder to give
general advice about how to choose the strata Di and compute their probabilities P (Di) in
the first place (Lange, 1999).
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B.6 Antithetic variates

B.6 Antithetic variates

In the method of antithetic variates, suppose U is the random number used in the pro-
duction of a sample X that follows a distribution with cdf F , i.e. X = F−1(U). Then,
X ′ = F−1(1−U) also follows distribution F . One look for unbiased estimators X and X ′ of
an integral that are negatively correlated rather than independent. The average (X +X ′)/2
is also unbiased, and its variance

V ar

(
X + X ′

2

)
=

1

4
V ar(X) +

1

4
V ar(X ′) +

1

2
Cov(X,X ′) (B.6.1)

is reduced compared to what it would be if X and X ′ were independent (Liu, 2001).

B.7 Control variates

In computing E[f(X)], suppose that one can calculate exactly the expectation E[g(X)]
for a function g(x) close to f(x). Then it makes sense to write

Eα[f(X)] = E[f(X) − αg(X)] + αE[g(X)] (B.7.1)

and approximate E[f(X) − αg(X)] by a Monte Carlo estimate rather than E[f(X)]. This
estimator has a variance

V arα[f(X)] = V ar[f(X)] + α2V ar[g(X)] − 2αCov[f(X)g(X)]. (B.7.2)

If the computation of Cov[f(X)g(X)] and V ar[g(X)] is easy, then let

α = Cov[f(X)g(X)]/V ar[g(X)], (B.7.3)

in which case

V arα[f(X)] = (1 − ρ2(f(X), g(X)))V ar[f(X)] < V ar[f(X)]. (B.7.4)

Extensions to more than one control variate are also useful in Monte Carlo computations
(Rubenstein and Melamed, 1998).
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Appendix C

Extreme value distributions

C.1 Generalized Extreme Value distribution (GEV)

The Generalized Extreme Value distribution (GEV) has the distribution function

F (y; k, c, λ) =





exp

[
−
(

1 − k
y − c

λ

)1/k
]

, if k 6= 0,

exp

[
− exp

(
−y − c

λ

)]
, if k = 0,

(C.1.1)

for k(y−c) < λ, λ > 0, where k, c are arbitrary. Note: the Gumbel and Weibull distributions
are the particular cases of GEV distribution for and k = 0 and k < 0, respectively. It can
be shown that for a particular random process, the parameters in the GEV distribution and
the parameters the corresponding Generalized Pareto Distribution (GPD, see below) have
the following relation

kGEV = kGPD

λGEV = λGPDk̄kGPD

cGEV = u + (k̄kGPD − 1)
λGPD

kGPD

k̄ = E[n|X > u, T ],

(C.1.2)

where k̄ is the mean number of peaks over threshold u during the time period T .

C.2 Generalized Pareto distribution (GPD)

The Generalized Pareto Distribution (GPD) has the distribution function

F (y; k, λ) =

{
1 − (1 − ky/λ)1/k , if k 6= 0,
1 − exp (−y/λ) , if k = 0,

(C.2.1)

for 0 < y < ∞ if k ≤ 0 and for 0 < y < λ/k if k > 0. λ is a scale parameter and k
is a shape parameter, or a tail index. In order to estimate parameters of GPD the Peaks
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Over Threshold method (POT) (Naess, 1998; Wang and Moan, 2003) is frequently used.
Otherwise the method of moments is most conventional

k̂ =
1

2

(
1 − µ2

σ2

)
, (C.2.2)

λ̂ =
1

2
µ

(
1 +

µ2

σ2

)
, (C.2.3)

where µ and σ2 are, respectively, the sample mean and the variance.

C.3 Gumbel distribution

Gumbel distribution is the limiting, asymptotic distribution of the largest of n random
variables Xi as n → ∞ (also has a name ”double exponential”). In practice, the Xi of
the underlying population need not to be completely independent nor completely identical.
Also it may be difficult to determine the appropriate underlying distribution of the Xi, and
convergence to the asymptotic distribution may be slow. Nevertheless extreme value distri-
butions are useful for fitting to experimental data even where the underlying mechanisms
are not fully understood. The cumulative distribution and probability density functions are
given correspondingly

FG(y; α, b) = exp [− exp(−α(y − b))] , −∞ < y < ∞, (C.3.1)

fG(y; α, b) = α exp [−α(y − b) − exp(−α(y − b))] . (C.3.2)

The parameters are the mode b of the distribution (the location parameter) and α which
is a measure of the dispersion of the distribution. α−1 is sometimes referred as the ”slope”
of the distribution (obtained when plotting the distribution on ”Gumbel” paper). Both b
and α may be obtained, via the moments, from curve fitting to observed data. The inverse
of the Gumbel distribution is

y = b +
1

α
[− ln(− ln(F ))]. (C.3.3)

The mean µ, the variance σ2 and the skewness γ1 of the Gumbel distribution are µ =
b + γ/α, σ2 = π2(1/α)2/6 and γ1 = 1.13955, where γ = 0.57722 is Euler’s constant.

C.4 Three parameter Weibull distribution

Three parameter Weibull distribution is also the limiting, asymptotic distribution of the
largest of n random variables Xi as n → ∞, with limited in the tail of interest to some
maximum (or minimum) value ε. The extreme values Yj have cumulative distribution and
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probability density

FW (y; ε, u, k) = 1 − exp

(
−
[
y − ε

u − ε

]k
)

, (C.4.1)

fW (y; ε, u, k) =
k(y − ε)k−1

(u − ε)k
exp

(
−
[
y − ε

u − ε

]k
)

. (C.4.2)

The parameters are the scale parameter u > 0 and the shape parameter k > 0. Estimation
of all required parameters is not generally straightforward. If ε = 0 and k = 2 the distribution
is also known as the Rayleigh distribution.

The inverse of three parameter Weibull distribution function is

y = ε + (u − ε)[− ln(1 − F )]1/k. (C.4.3)
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