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Abstract

Investigations of the effect of salt diffusion as ground improvement of quick clay is important

to provide a clear understanding of the method, to be able validate the potential of commercial

use. Previous extensive investigations by laboratory work has been carried out. Laboratory in-

vestigations of salt migration lead to extended storage time for the clay samples, as diffusion in

clays is considered a slow process.

The objective of the work is to analyze the effect of KCl diffusion in relation to potential weather-

ing and storage effects. The effect is analyzed in the laboratory with regards to both geotchnical

properties, variations in pH and salinity. A literature study of previous findings related to salt

migration and storage effects on both geotechnical properties and geochemistry, is also consid-

ered.

A series of mini block samples are submerged in cells containing deaired, ionized water and

deaired, KCl solution. The samples are stored in the cell in a time period from 42 to 102 days.

The samples are investigated in the laboratory to provide results relating to undisturbed and

remoulded strength parameters, compressibility and general geotechnical properties. pH and

salinity is also recorded. The findings are compared to a detailed depth profile of reference

parameters, from a previous investigation done on mini block samples from the same bore hole.

Tests are also carried out in sections throughout the water and salt treated clays, to map changes

with regard to the time dependent diffusion and weathering.

The results indicated a general increase in peak undrained shear strength for the samples stored

in KCl solution, approximately 50% of the observed general increase is also observed in the clay

stored in water. A minor increase of plasticity limit is seen in both the water and salt treated

samples. The comparison between sections for each sample show no clear deviations between

the sections. Further, results from the salt migrated samples confirm the findings from previous

investigations.

The samples are to some extent effected by weathering, in particular the peak undrained shear

strength resulting from triaxial tests. However, the geotechnical properties observed after salt

migration are changed to such an extent that the clay show a completely different behavior. The

same distinct change is not observed in the clays only exposed to potential weathering.

The comparability between the samples are however, considered to be relatively low due to in-

homogeneity in the soil profile and varying storage time prior to testing and cell installation.

Loss of samples during sampling also lead to occasional large distance in depth, between the

compared results.
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Sammendrag

Undersøkelser av effekten av saltdiffusjon som grunnforsterkning i kvikkleire er viktig for å gi en

klar forståelse av metoden og for å validere potensialet i kommersiell bruk. Grundig forskning

ved laboratoriearbeid er tidligere blitt utført. Ved laboratorieundersøkelser av saltmigrering må

leireprøver lagres over lang tid, ettersom diffusjon i leire er ansett som en langsom prosess.

Formålet med arbeidet er å analysere effekten av KCl diffusjon i forhold til potensiell forvit-

ring og lagringseffekt. Effekten blir analysert i laboratoriet med hensyn til både geotekniske

egenskaper, variasjoner i pH og saltinnhold. Litteraturstudie av tidligere funn knyttet til saltmi-

grering og lagringseffekter av både geotekniske egenskaper og geokjemi er også vurdert.

En serie miniblokkprøver er innstallert i henholdsvis avluftet, ionisert vann og avluftet KCl-

løsning, i spesiallagde lagringsceller. Prøvene blir lagret i cellene i et tidsrom på 42 til 102 dager.

Prøvene er undersøkt i laboratoriet for resultater knyttet til uforstyrret og omrørt styrke, kom-

pressibilitet og generelle geotekniske egenskaper. Resultatene blir sammenlignet med en detal-

jert dybdeprofil av referanseparametre, fra en tidligere undersøkelse utført på mini blokkprøver

fra samme borehull. Forsøk er også utført i seksjoner gjennom den vann- og saltbehandlede

leiren for å kartlegge endringer med hensyn til den tidsavhengige diffusjon og forvitringen.

Resultatene indikerte en generell økning i maksimal udrenert skjærstyrke for prøvene lagret i

KCl-løsning, omtrent 50 % av den observerte generelle økningen ble også observert i leire lagret

i vann. En liten økning av plastisitetsgrensen er sett i både vann- og saltbehandlede prøver. Sam-

menligningen mellom seksjoner for hver prøve viser ingen markante avvik mellom seksjonene.

Videre bekrefter resultatene av de saltmigrerte prøvene liknede funn observert i tidligere under-

søkelser.

Prøvene blir til en viss grad påvirket av forvitring, særlig maksimal udrenert skjærstyrke fra tri-

aksial test. Imidlertid er de geotekniske egenskapene, observert etter saltmigrering, forandret i

en slik grad at leiren viser en helt annen oppførsel. De samme endringene er ikke observert i

leire kun utsatt for potensiell forvitring.

Sammenlignbarheten mellom prøvene er imidlertid ansett for å være relativt lav på grunn av

inhomogenitet i jordprofilet og varierende lagringstid før testing og celleinstallasjon. Tap av

prøver under prøvetaking førte også til varierende avstand i dybden mellom de sammenlignede

resultatene.
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Chapter 1

Introduction

The research program «Naturfare – infrastruktur, flom og skred (NIFS)» is a collaboration be-

tween the Norwegian Public Roads Administration, the Norwegian government’s agency for rail-

way services and the Norwegian Water Resources and Energy Directorate. The research program

consist of seven projects. This master thesis is part of the quick clay project, related to stabilizing

of quick clay.

Stabilization methods of slopes in quick clay areas can be challenging. Based on investigations

carried out in the 60- and 70-ties, quick clay can be stabilized by the addition of salt. Various

types of salt and the related effect on the mechanical behavior of the clays were tested. Potas-

sium chloride was concluded to be the most effective in relation to stability and diffusion time.

Significant increase of both the undisturbed and the remoulded shear strength were evident, as

well as an considerable increase of the liquid limit. Despite promising results, the method was

considered expensive and time consuming. Thus, salt migration as ground improvement is not

used today. New installation methods are considered to be more efficient and less expensive.

Hence, further study of the effect of salt diffusion is needed.

A recent laboratory study at NTNU, carried out in 2012, confirms the results obtained in the

previous studies. However, the studies only consider the impact from the changes in the geo-

chemical environment. Storage and weathering effects on the mechanical properties, related to

laboratory investigations on salt migration are not considered.

Laboratory investigation of quick clay from Dragvoll, an quick clay area known by the local

geotechnical community, were carried out as part of a study of the initial geotechnical and

chemical conditions in the depth profile. The study was performed as part of a project assign-

ment, carried out by the author. The laboratory tests was carried out on undisturbed samples

extracted using the NTNU developed mini block sampler. Several of the extracted mini block

samples were used in this master thesis. The area is also related to research of salt migration by

salt well installation, a research carried out by Ph.D. candidate Tonje Eide Helle.
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CHAPTER 1. INTRODUCTION

In this thesis a review of previous findings and the theory behind salt migration as ground im-

provement, including influence of mineralogy and geochemistry on geotechnical properties, is

carried out. Where the effect of storage time and weathering in relation to both geochemistry

and geotechincal properties are considered.

An overview of the geological conditions in the area as well as a rough description of sampling

method is described. Including descriptions of preparations and analysis methods.

Laboratory investigations including index testing, triaxial compression test and CRS oedometer

tests. And also measurements of pH and pore water salinity are carried out on samples stored

in fully saturated potassium chloride solution and samples stored in distilled water, both in a

close to anaerobic environment. Analysis of bulk and clay mineralogy are also included. The

results are compared to reference samples, tested as part of the project assignment carried out

by the author, and presented and discussed. Conclusions and proposed further investigations

are included.
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Chapter 2

Theory and literature study

2.1 Quick clay

Clay consist of particles with grain size less than 0.002 mm and is, by NS3007 [40] defined as

soil consisting of more than 15% clay fraction. Clay originate from mineral grains in bedrock,

degraded by natural processes of mechanical erosion and weathering.

During the last ice age, vast quantities of soil was degraded, transported and deposited in the

seawater by glaciers. When clay is deposited in salt water the particles flocculates and create

an open grain structure with salty pore water. Ions in the salty pore water cause strong elec-

trochemical attraction forces between the particles [52]. Isostatic uplift caused elevation of the

marine clay above the littoral zone, exposing the marine clay to fresh water infiltration in the

form of precipitation and ground water flow. Thus, causing leaching of the salty pore water [16].

Leaching of the ion rich pore water in marine clay is a slow process due to the low hydraulic

conductivity of the sediment. Acceleration of ion leaching is to be expected in clay containing

thin layers of slit or sand due to the higher hydraulic conductivity in the respective layers. Clays

around Trondheim, Norway are usually silty clays with silty layers, consisting of 20-50 % clay

[52].

Quick clay is defined as a clay with remoulded shear strength (sr ) below 0,5 kPa [34].

Natural seawater normally has a salt content of about 35 g/l. The pore water salinity of which a

clay can be defined as quick has been discussed. However, Torrance [56] concludes that below

a limit of 2-5 g/l the attractive forces between the clay particles is sufficiently weakened for the

clay to be defined as quick.
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2.2. MINERALOGY CHAPTER 2. THEORY

According to Torrance [56], there are several aspects influencing the development of quick clay

in addition to reduction of pore water salt content. These include:

• Low activity minerals must dominate minerals in the sediment. For clay minerals, this

include illite and chlorite.

• A high natural water content is required, consolidation after sedimentation of the clay

must therefore be low or non-existing.

• Ion composition in the pore water is of great importance in the formation of quick clay.

2.2 Mineralogy

The clay minerals are structured as plane sheets and belong to the mineral family phyllosili-

cates. These minerals are assembled by arrays of tetrahedral- or octahedral sheets. The tetrahe-

dral sheet consist of stacked silicone-oxygen tetrahedral, assembled as illustrated in Figure 2.1.

While, the octahedral sheets are assembled by magnesium or aluminium oxygen octahedral Fig-

ure 2.2. The tetrahedral- and octahedral- arrays or sheets are assembled by shearing of oxygen

atoms or hydroxyls, respectively. The assembly of sheets, stacked parallel to each other, resulting

in plate like clay minerals are displayed in Figure 2.3. Characterized by the assembly of arrays

and how the clay mineral structure is held together defines the various clay minerals [30].

Isomorph substitution, replacement of the silicon in the tetrahedral layer or aluminium in the

octahedral layer with small atoms, usually of lower valence, within the mineral arrays changes

the property of the minerals. Replacement of atoms of high valence to lower valence causes a

net negative charge in the mineral layers in turn creating negatively charged clay particles [59].

To compensate for this negative charge, layers of water molecules and/or compensating cations

or positively charged sheets are formed between the mineral layers [30].

Figure 2.1: Silicone-oxygen tetrahedral sheet [30]
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Figure 2.2: Magnesium or aluminium oxygen octahedral [30]

Figure 2.3: Assembly of sheets and unit layers of phyllosilicates [30]

Investigations by Berry and Jørgensen [3] and Emdal et al. [12], documented the normal mineral

content in most sensitive Norwegian clays, including quick clays. The clays are usually domi-

nated by chlorite, illite, muscovite, feltspar, and quarts. Where, chlorite and illite are clay miner-

als. Illite is essentially mechanically disintegrated muscovite i.e. smaller particles of muscovite,

and may therefor be difficult to distinguish.
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2.3. INFLUENCE OF PORE WATER CHEMISTRY ON CLAY PARTICLES CHAPTER 2. THEORY

2.3 Influence of pore water chemistry on clay particles

The environment of deposition is of significant importance for sediment properties and pore

water ion composition within the sediment. The minerals within the sediment will remain sta-

ble in the depositional environment. Leaching changes in the pore water environment, induc-

ing reactions within the system to regain equilibrium.

2.3.1 Electric double layer

Surface forces influence soil behavior when particle sizes is below 2 µm, i.e. clay particles. The

unbalanced electrical surface forces and small particle size of clay induce repulsive and attrac-

tive forces between particles. These forces are hugely dependent on pore water composition

[30]. The clay minerals are, as explained by Mitchell and Soga [30] and van Olphen [59], usu-

ally thin, plate shaped and negatively charged particles. In completely saturated soil, the nega-

tively charged particles will attract counter-ions, oppositely charged ions, which forms a sphere

around the particle. This “surface charge and compensating counter-ion charge, accumulating

in the liquid in the neighborhood of the surface particles” is defined as the electric double layer.

The counter ion sphere within the electric double layer is referred to as the diffuse layer [59].

Simultaneously as the cations are attracted to the negatively charged clay particle, anions are

repelled. The electric double layer is displayed in Figure 2.4. As illustrated, a higher density of

ions is expected close to the surface of the clay particle.

Figure 2.4: Illustration of the diffuse electric double layer [59]
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CHAPTER 2. THEORY 2.3. INFLUENCE OF PORE WATER CHEMISTRY ON CLAY PARTICLES

The concentration of cations and anions, within the diffuse layer, decrease and increase respec-

tively with distance from the particle. The ion concentration, with respect to distance from

the particle is displayed in Figure 2.5. The thickness of the diffuse double layer decreases and

increases with ionic strength of the cations and anions within the pore water, respectively. In-

crease in ion concentration within the water phase decrease the thickness of the double layer

due to reduced surface potential. Higher ion concentration in the pore water causes, as seen

in Figure 2.5, a much higher cation concentration close to the particle surface but also a rapid

decent in the concentration with distance. [30] [59]

Figure 2.5: Illustration of the effect of pore water ion concentration on the diffuse double layer
[46]

Two clay particles of close proximity will induce alterations within the diffuse layers and change

the ion distribution within the layers, instigating repulsive energy between the particles. Thus,

particles with compressed diffuse layers will have a shorter ranged repulsive energy between

them. As displayed in Figure 2.6, the repulsive energy decreases as particle separation increases.

Quick clay, which has a low salt concentration, will have a denser structure after remoulding

as the low attractive forces reduces the flocculating ability. The attraction energy of the clay

particles, which is generated by the van der Waals forces, does not depend on ion concentration

in pore water, as displayed in Figure 2.6. [59] [30] [1]
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2.3. INFLUENCE OF PORE WATER CHEMISTRY ON CLAY PARTICLES CHAPTER 2. THEORY

Figure 2.6: The effect of ion concentration on inter particle repulsion [59]

2.3.2 Cation exchange capacity

In most clay minerals, compensating cations can be exchanged by other cations available in the

pore water. These cations are referred to as exchangeable cations [59]. A change of ion composi-

tion in the pore water may therefor encourage an exchange of cations. Cation exchange capacity

(CEC) is the analytically determined amount of exchangeable cations in milliequivalents per 100

g of dry clay [59]. Even under saturated conditions, water cannot penetrate between the min-

eral layers of illite and chlorite, only the surface ions are available for exchange. Thus, illite and

chlorite has low CEC [59]. Table 2.1 displays CEC of common clay minerals, CEC is also directly

linked to specific surface area.
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Table 2.1: Cation exchange capacity of common clay minerals. Modified [15] based on [30]

Clay mineral Specific surface area [m2/g ] CEC [meq/100g ]

Kaolinite 10-20 3-15

Montmorillonite 50-120 (primary) 80-150

700-840 (secondary)

Illites 65-100 10-40

Vermiculite 40-80 (primary) 100-150

870 (secondary)

Chlorite 10-40

2.3.3 Preliminary study of salt treatment in quick clay

As set forth in the previous sections, the cations are of severe importance to the characteristics

of a clay and therefor also to the geotechnical properties [30] [56]. The pore water of marine

clays contain abundant amounts of sodium (Na+) and is the dominant adsorbed cation. Lower

amounts of magnesium (Mg2+), calcium (Ca2+) and potassium (K+) with only small traces of iron

(Fe2+) and aluminum (Al3+) are generally represented in the pore water of marine clays. Talme

[53] and Soderblom [50] concluded that formation of quick clay not only depend on reduction

of pore water salinity. Also, the composition of ions in the pore water is essential to the forma-

tion of quick clay. Investigations presented by Talme et al. [54] displayed low concentrations

of Mg2+ and Ca2+ in quick clays, compared to non quick clay. Moum et al. [31] concluded that

the sum of K+, Mg2+ and Ca2+ in the pore water effects the sensitivity. The Gouy theory predicts

that the ions of higher valence is accumulated near the particle, therefor a higher concentra-

tion of cations of higher valence is found in the diffuse layer as opposed to the bulk pore water

[59]. Which, support the order of replacing power of cations as proposed by Mitchell and Soga

[30]: N a+ < Li+ < K + < Rb+ < C s+ < M g 2+ < C a2+ < B a2+ < Cu2+ < Al 3+ < Fe3+ < T h4+.

Further, the increase of shear strength observed by adsorption of cations is presented in the

following order N a+ < Fe2+ ≤ M g 2+ ≤ C a2+ < Fe3+ < K + < Al 3+ [27]. The relation between

different ione concentration and remoulded shear strenght, is displayed in Figure 2.7. The

liquid and plastic limits are also hugely effected by cations in the pore water. The order of

which different cations increase the Atterberg limits of clay is presented in the following order:

N a+ < Fe(OH)3 = Fe2+ = M g 2+ =C a2+ < Fe3+ < Al 3+ = K + < Al (OH)3 [28].
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Studies preformed by Bjerrum and Rosenqvist [7], provide conformation of the leaching hy-

pothesis. Leaching tests were preformed on artificially sedimented clays, the results displayed

a change in sensitivity from 5, increasing to 110 after leaching. A sample sedimented in fresh-

water retained a sensitivity of 5 to 6. Changes in strength and sensitivity of a normally consol-

idated marine clay, subjected to leaching, were studied by Bjerrum [4]. The results showed an

increase of sensitivity with decreasing pore water salt content. Both liquid limit, undisturbed-

and remoulded shear strength displayed a decreasing trend with decrease in pore water salin-

ity, as presented in Figure 2.8. However, no significant changes in geotechnical properties were

observed until a salt content of approximately 15g /l was reached. The survey displayed no

changes in plastic limit, nor water content.

Figure 2.7: Effects of different salts at varying concentrations on remolded shear strength in
illite- and chlorite dominated clays [33]

A post-depositional decrease of liquid limit, during which the water content remains constant

is therefor a requirement for quick clay development. Leaching of the salty pore water cause, as

previously described, a reduction in liquid limit. The natural water content is therefor situated

above the plastic range, i.e. the area between the plastic and liquid limit, after the reduction of

pore water salinity, as illustrated in Figure 2.9. Thus, the clay behaves as a liquid if remolded

[57].
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Figure 2.8: Recorded influence of salt concentration on sensitivity, remoulded and undrained
shear strength, water content and liquid and plastic limit [4]

Figure 2.9: Reduction of liquid limit by leaching of salty pore water. The circle represents the
natural water constant of the clays. a) Clay prior to leaching, b) clay after leaching

Several investigations of chemical remediation has been carried out using different salts and

concentrations. According to the results presented in Figure 2.7, AlC l3 has the greatest in-

crease of remoulded shear strength[31]. However, AlC l3 is only partially dissolved in the natural

ground water in Norwegian quick clay due to the relatively high pH of approximately 8, normally

seen in these clays. Potassium chloride is easily dissolved in the natural conditions of the water

phase and show, as previously presented, a considerable effect on the remoulded shear strength.

According to Moum et al. [33] the effect of KCl on remoulded shear strength is doubled relative

to what is acquired from NaCl. The clay in which NaCl is used as chemical remediation would

also eventually return to quick clay, with Na-dominated pore water of low salinity. By using KCl,

the potassium salt will also eventually leach out but will leave behind a K-dominated clay with

a sufficiently high liquid limit. Thus, quick clay is not likely to reoccur. Further, KCl will diffuse

more rapidly in the sediment [31] and has the longest reach of diffusion into the clay, according

to laboratory investigations [17].
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Supply of K+, causing an increased K +/N a+ ration, induce a collection of K+ ions the clay sur-

face, as K+ has a higher replacing power, compared to Na+. The increase of K +/N a+ ration will

lead to an alteration of geotechnical properties of the clay. [5] [11]

Figure 2.10: Recorded changes in a depth profile after installation of salt wells at a quick clay
location [11]
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Eggestad and Sem [11] installed salt wells, for KCl diffusion, for large-scale ground reinforce-

ment of very sensitive, soft marine clay. 21 months after installation the shear strength had in-

creased with a factor of approximately 2.3, 15 cm from the salt well. While, 80 cm from the well

an increase of approximately 1.4 was observed. Figure 2.10 displays the resultant geotechnical

index tests on undisturbed samples from the reinforced area, 22 months after salt well instal-

lation, compared to the initial condition. A clear alteration of the geothecnical properties was

observed. The liquid limit was increased to above the natural water content. The natural water

content decreased to some extent and the plastic limit slightly increased for most of the depth

profile, resulting in increased plasticity. The remoulded shear strength increased with a factor

of up to 4. After 3 years it was concluded that the average shear strength of the reinforced clay

increased with 200% [11].

Experiments have shown that the preconsolidation pressure,pc , of a clay can change by alter-

ations in pore water chemistry. Replacing Na by K can increase pc and the resistance to consol-

idation of the soil [23]. Investigations carried out by Bjerrum [5], proposed that the increase of

plasticity and shear strength developed an increase of resistance against deformations. Undis-

turbed clay samples were permeated with K+ rich water, and oedometer tests run on the sam-

ples displayed an increase in pc from 360 to 560 kPa. In addition, the compressibility of the clay,

exceeding the increased pc , was reduced. Which, was related to the increased plasticity of the

clay. As presented in Figure 2.11 a, the increased preconsolidation pressure highly relates to the

increased undrained shear strength observed at increased K +/N a+ ration. The results of the

oedimeter tests are presented in Figure 2.11 [5] . Torrance [55] also concluded that introduc-

tion of potassium and magnesium salts increased the consolidation resistance of the soil. The

pc can also be reduced during leaching. However, it may presumably be partially regained by

secondary consolidation [55].

Observations state that pore water of high pH tend to disperse clay systems [29]. Increase of

pH dissociate H+ ions, and leads to enlarged negative charge of clay particles and thus increase

inter particle repulsion. Positive charge will dominate the edges of clay particles for low pH,

inducing enhanced flocculation. Acid attacks less stable minerals in the post-glacial marine

clay, chlorite and carbonates, and release ions into the pore water. Thus, reduce inter particle

repulsion and encourage flocculation of clay particles [58]. Chemical stabilization of quick clay

by salt diffusion may decrease the pH of the material. Hence, the effect of pH on clays of varying

pore water salinity was studied by Torrance and Pirnat [58]. Derived results are displayed in

Figure 2.12. The results display, as expected, a reduction of yield stress with increasing pH for

both concentrations of NaCl.
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(a) Weathered (b) Salt treated

Figure 2.11: Increase in preconsolidation pressure by weathering and salt migration,
respectively [5]

(a) 2 g/l salinity (b) 10 g/l salinity

Figure 2.12: Relationship between yield stress and pH at constant water content of clay at
different concentrations of NaCl (salinity) [58]
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2.3.4 Effect of weathering in quick clay

As percolating rain water cause leaching of Na+, the rain water also contains dissolved O2 and

CO2. Where the supply of oxygen cause oxidation, forming acid and together with the carbon-

dioxide, lowers the pH. At suficcantly low pH, disintegration of felspar, mica and chlorite com-

mences, releasing cations of higher replacing order, which is adsorbed on the clay surface. The

effect cause similar changes of geotechnical parameters as described by salt migration, such as

increased preconsolidation pressure, as seen in Figure 2.11. Influence on index parameters are

displayed in Figure 2.13. As the change is related to percolating water, the effect is reduced with

depth [5]. The effect is explained further in section 2.4.4, as the in situ weathering is related to

storage effects in quick clay.

Figure 2.13: Recorded influence of dry crust and weathering zone at a quick clay location [5],
based on [32]

2.4 Storage effects in clay

Several factors are related to post sampling disturbance and alterations of soil samples. Related

to storage time, moisture loss and chemical alterations are the dominant mechanisms of soil

sample disturbance [10].
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2.4.1 Effect of aging on geotechnical index properties of clay

Migration of water and moisture loss will affect stored clay samples over time, the effect was

first documented by Hvorslev [20]. Further studies based on storage effects of London clay with

several approaches of sealing techniques were studied by Heymann [19] and displayed in Fig-

ure 2.14. Loss of moisture during storage, cause pore fluid suction. Which, may lead to an

increase of the mean effective stress experienced by the samples during laboratory tests.

Figure 2.14: Moisture loss of London clay during storage, using different sealing methods [10]

Extensive study carried out by the Swedish Geotechnical Institute (SGI) documents the storage

effect of Swedish clay. Tests were performed on portions of the recovered samples immediately

after sampling, while the remaining samples were retained and stored for up to 750 days. The

result show no decrease of water content in the clay samples. The survey indicated an increase

of liquid limit, which by definition, results in a reduction of liquidity index. In addition, a gen-

eral decrease in sensitivity was detected [18]. Previous investigations, performed by Leroueil

et al. [24], show a relation between liquid limit and remoulded shear strength as expressed by

equation 2.1, indicating that a decrease in liquid limit leads to an increase in remoulded shear

strength (Sr ), in kPa. Which is consistent with the results obtained in the SGI survey. The lab-

oratory investigation of index parameters therefor indicated a reduction of both clay sensitivity

and plasticity as a result of sample storage.

Sr = 1

(IL −0.21)2
(2.1)
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An intensive survey by Lessard and Mitchell [26] was carried out to determine the effect of stor-

age time on quick clay. Regardless of the storage procedure, an increase in remoulded shear

strength and liquid limit, and a decrease in sensitivity and liquidity index was observed. Water

content, plastic limit and undrained shear strength from falling cone test displayed no consis-

tent deviations with storage time.

Studies carried out by Lessard [25], where quick clay was stored for up to 1 year, clearly display

the same trend. Continually testing resulted in geotechnical properties as seen in Figure 2.15.

The results stated that aging cause loss of quick clay characteristics [25] [26].

Figure 2.15: Influence of storage time on geotechnical index tests [25]
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2.4.2 Effect of aging on undrained shear strenght

Bjerrum [6] and NGI [35] preformed Anisotropically Consolidated Undrained (CAU) triaxial tests

on quick clay, immediately after sampling and after 2-3 days storage time. All samples were con-

solidated to the in situ stress condition. The tests, displayed in Figure 2.16, indicate a 13.5% re-

duction of the peak undrained shear strength (su) of the stored samples, relative to the samples

tested immediately after sampling. The deviation was explained by increase of internal swelling

with time [6].

Figure 2.16: Loss of peak undrained shear strength in triaxial test results by internal swelling
[37] (data from Bjerrum [6] NGI [35])
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CAUc triaxial tests were preformed by NGI on clay samples from various depths in Onsøy, Nor-

way. The results were normalized with respect to in situ consolidation by NGI [37] and plotted

with respect to storage time as seen in Figure 2.17. The block samples and 72 mm samples dis-

played a decrease in su of up to 5% and 10%, respectively. Results from 54 mm samples were

considered unrealistic due to initial sample disturbance. Laboratory tests by Rochelle et al. [47]

in block samples stored in a humid environment for several years, also displayed a decrease in

su after storage time.

Figure 2.17: Effect of storage time on normalized su on samples obtained using different
sampling methods [37]
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2.4.3 Effect of aging on consolidation

Bozozuk [8] analyzed consolidation results preformed on a block sample of over consolidated,

sensitive marine clay. The tests displayed a decrease in preconsolidation pressure (p ′
c ) of 4.8% in

samples stored between 2 and 17 months. Laboratory investigations by Rømoen [48] also show

a decrease in p ′
c after 2-3 weeks storage time. The tests also displayed a decrease of modulus

number (m), as illustrated in Figure 2.18.

Figure 2.18: Influence of storage time on preconsolidation pressure and modulus number [48]

During the study preformed by SGI, presented above in section 2.4.1, several Constant Rate of

Strain (CRS) oedometer tests were preformed immediately after sampling and after 18 months

of storage time. The results were presented by the percent change in effective preconsolidation

stress as displayed in Figure 2.19, and indicated a tendency of decrease in p ′
c with time. How-

ever, several studies of the effect of storage time on the compressibility of clays, preformed by

Rochelle et al. [47] and NGI [36] indicated no clear deviation of p ′
c of the stored samples, relative

to specimen tested immediately after sampling.
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Figure 2.19: Recorded changes in preconsolidation after 511-542 days, relative to fresh samples
[37] (data from [18])

A comprehensive study by Arman and McManis [2] resulted in distinct correlations between

degradation of su and p ′
c with specimen storage time and initial sample quality. The correlation

is clearly illustrated in the results from the laboratory investigations, displayed in Figure 2.20 a

and b. The block samples do not deteriorate with an increasing rate after 10 days, as observed

in the 71 mm and 127 mm chore samples.
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(a) (b)

Figure 2.20: Effect of storage time in days on undrained sthrenth from triaxial tests and
preconsolidation pressure, respectively, on different sample quality. Modified [2]

2.4.4 Impact of aging on pore water chemistry

Changes of geotechnical properties in clay during aging must be seen in relation to changes

in the chemistry. The study performed on LaBaie quick clay, by Lessard and Mitchell [26], pre-

sented in section 2.4.1, displayed results of geochemical changes in relation to aging. The results

of geothecnical parameters and pore water chemistry are displayed in Figure 2.21. The investi-

gation revealed an increase of pore water salinity and concentrations of divalent cations in the

pore water and a decrease in pH with sample storage time. These changes reduces the extent of

the electrical double layer and thus the particle repulsion in the clay. Hence, the geochemical

changes are responsible for the increase of remoulded shear strength and decrease of IL . As seen

in Figure 2.22, the remolded shear strength correlates with both the concentrations of divalent

cations and total cations. The increase of Atterberg limits on stored clay sample in a study by

Bjerrum and Rosenqvist [7], was related to an observed increase in potassium ions in the pore

water.

The method of storage does not effect the correlations between remoulded shear strength and

catione concentrations. However, it effects the required time for the chemical changes to occur

[30].
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Figure 2.21: Storage effects, in months, on remoulded strength, liquidity index and pH, relative
to pore water ion concentration [26]
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Figure 2.22: Direct relation between cation concentration and remoulded shear strength [26]

The observed chemical changes of quick clay are related to “the change from anaerobic to aer-

obic state and the accompanying changes in the microbial activity” as described by Söderblom

[51]. Oxygen causes organic matter to oxidize to form carbonic acid, and oxidation of pyrite to

form sulphuric acid and ferric hydroxide. A slow transformation of Fe(OH)3 to FeO −OH may

cause brownish discoloration of the clay. Thus, oxidation cause the decrease in pH, seen in Fig-

ure 2.21. Sulphuric acid cause chemical weathering of calcite, releasing M g 2+ and C a2+ in the

pore water, which cause an exchange of absorbed cations on the clay particles. Thus, N a+ and

K + ions are released in the pore water, inducing an increase of pore water salinity [30].
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Chapter 3

Dragvoll research site

Located east of central Trondheim, Norway, the Dragvoll area is displayed by the map in Fig-

ure 3.1. The salt diffusion research area by Ph.D. candidate Tonje Eide Helle is located within

the marked area. Sampling for this thesis is done from 2 different bore holes within the indi-

cated location, approximately 5 m apart. Sampling is carried out using the NTNU mini block

sampler.

Figure 3.1: Test location and salt diffusion research area at Dragvoll [9]
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3.1 Background geology

When inspecting the Dragvoll campus area today a series of low hills, covered with thin moraine

layers and marine shore deposits, are surrounding the lower laying, flat area consisting of thick

marine deposits and peat. A sediment map of the area is displayed in Figure 3.2. In the northern

region the terrain falls and slopes toward the fjord, but as seen in Figure 3.2, a ridge of marine

shore deposits act as a dam and provides a basin shaped area [14]. As seen from the map, the

area is located close to the marine limit. The surrounding bedrock in the area consists mostly of

greenstone and green schist [38].

Figure 3.2: Sedimentary map of the Dragvoll area. Modified [39]
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Figure 3.3: Stages of sedimentation environment in the Dragvoll area depending on sea level, a)
water level at its highest, b) brackish water stadium, c) fresh water lake stadium, d) swamp and

peat stadium. [9] (based on [13])
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Carbone 14 dating is done to map the last deglaciation process in the Trondheim fjord area. It

is estimated that the Dragvoll-Stokkan area was ice-free approximately 11 500 years ago. Due

to a climatic setback the ice returned but only reached the edge of the Dragvoll area in the pe-

riod 11 000-10 500 years before present (BP). Over time, the heavy overburden of the ice sheet

had pressed down the land providing an elevated sea level and a marine limit as high as 178 m

above the current sea level as displayed in Figure 3.3, a [13]. During the deglaciation extensive

amounts of silt and clay sediments, nearly 50m deep, were deposited within the basin as ma-

rine sediments, recognised as glacial marine clay with shell bearing top layers [14]. As the ice

retrieved, an elevation of land caused a gradually drop in the littoral zone. Approximately 10 000

years BP the sea level reached a point where the area is only in contact with the fjord during high

tide, resulting in a saline lake covering the area as displayed in Figure 3.3, b. A rapid melt down

of the residual ice caused a prompt isostatic uplift resulting in a rapid drop of sea level over the

next 1 000 years, separating the area from the fjord and turning the saltine lake into a freshwater

lake (Figure 3.3, c). Resulting in limnic sediment deposited over the marine clay. Erosion of the

marine shore sediment section in the north, drained the lake and turned the area into a swamp

as seen in Figure 3.3, d (9 000-8 500 years BP), creating peat layer on top of the stratigraphy [13].

Figure 3.4 displays a Vest- East going cross section of the central Dragvoll area displaying the

rough stratigraphy of the area with approximately 6m of peat and limnic sediments covering

the 50m of marine clay with high silt content [14]. The properties of the marine clay in the area

has been altered with time and is today considered a quick clay [12].

Figure 3.4: Cross section of the central Dragvoll area [14]
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Sampling

Soil sampling for geological and geotechnical investigations were performed in the area indi-

cated in Figure 3.1, chapter 3.

4.1 Mini block sampler

The newly developed Mini Block sampler, created by the Geotechnical Division of the Norwe-

gian University of Science and Technology, NTNU, is used for the extraction of undisturbed

samples for geotechnical laboratory tests. The design is similar to the Sherbrook Block sam-

pler, described in detail by Karlsrud et al. [22]. The main differences between Sherbrook and the

Mini Block sampler includes:

• The Mini Block sampler carves cylinder shaped blocks with a sample diameter of 160mm

and height of 250mm. The smaller size enables the sampler to fit between the front forks

of the bore rig.

• The rotation direction is changed to match the rotation of traditional bore rigs.

• The release mechanism for the knives are changed and is easily triggered before the sam-

ple is extracted.

The sampling process for the mini block sampler starts with augering down to the desired depth,

after which a cylinder is inserted to prevent sidewall material from entering the borehole. The

mini block sampler is inserted and pressurized water is used to cut the soil as the sampler rotates

and slowly moves downward. When the desired level is reached, the bore rig is stopped and the

water supply is cut off. A weight is dropped on the release mechanism to activate the knives,

as indicated in Figure 4.1. Thereafter the sampler is rotated to ensure detachment between the

sample and underlying soil before it is carefully extracted.
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Figure 4.1: The different elements indicated on the mini block sampler [9]

(a) Sample (b) Sealing method

Figure 4.2: Handling of the extracted sample (Photo: Rikke N. Bryntesen)

The sample is cleaned for excess, disturbed soil with flowing water and the knives are bent back

in position while the sample is positioned with care on a prepared pedestal, as seen in Figure 4.2.

The sample is extensively wrapped in plastic foil and placed in a specially designed casing. After

extraction, the mini block samples are stored in a cool environment, preferably of high humidity

to reduce evaporation from the sample.
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Preparations and previous investigation

5.1 Previous investigation

Laboratory investigations on mini block samples of Dragvoll clay were carried out by Bryntesen

[9]. An overview of the mini block samples with storage time is presented in Table 5.1. The

samples were sealed with plastic foil, covered with a plastic bag with a damped cloth inside, and

stored at approximately 7oC.

Table 5.1: Outline of tests and storage time

Bore Block Sampling Opening Days note
hole sample date date stored

1 3.0-3.25 m 25.9.13 3.10.13 8 Stored in 20oC
2 3.0-3.25 m 4.10.13 16.10.13 12
2 3.25-3.5 m 4.10.13 14.10.13 10
1 3.75-4.0 m 25.9.13 13.10.13 18 Stored in 20oC
2 4.0-4.25 m 4.10.13 18.11.13 45
2 4.5-4.75 m 4.10.13 25.11.13 52
1 5.0-5.25 m 27.9.13 1.10.13 4
1 6.0-6.25 m 30.9.13 11.10.13 11
2 7.7-7.95 m 30.10.13 27.11.13 28
2 8.45-8.7 m 5.11.13 8.11.13 3
2 8.7-9.0 m 8.11.13 12.11.13 4
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5.2 Preparations

Investigations of salt migration trough quick clay is prepared for eight mini block samples. Four

of the samples are to be subjected to diffusion of salt, while the remaining four is used as refer-

ence with regard to storage effect and weathering.

Top seal

Cell

Mini block sample

Pedestal

Bottom seal

Figure 5.1: Illustration of cell assembly and installation of mini blick samples
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The mini block samples are placed in custom made diffusion cells, as seen in Figure 5.1. First,

the pedestals holding the mini block samples are fitted with a bottom seal. Four of the samples

are prepared for salt migration by removing the plastic foil covering the sample. Plastic foil is

kept on the remaining samples to limit the extent of potential mechanical weathering. The cell

is carefully directed over the block sample and fixed to the bottom seal. Large quantities of water

is deaired by pressure boiling and saturated with N2 gas before the water is transferred into the

cell, using utter care not to disturb the sample or mix air into the liquid. Thereafter, Potassium

chloride (KC l ) is added to the four cells prepared for salt migration. Enough KC l salt is used

to ensure saturated conditions for each cell at room temperature, i.e. > 344g /L solid KC l . The

cells must contain enough deaired, N2 saturated KC l solution or water to cover the mini block

sample. Cling wrap is placed over the water KC l solution, removing all trapped air, before the

top seal is positioned on top of the plastic foil. Both the top and bottom seals are made air-

and watertight using artificial grease. The cells, containing the samples, are stored in a cold

environment of approximately 7oC.

Table 5.2 displays an overview of diffusion and storage time with information of approximate

in situ depth of the samples. Pictures of the samples pre- and post cell storage are displayed in

appendix B.

Table 5.2: Outline of tests, storage time and diffusion time

Salt / Block Sampling Date installed Opening Days stored Days stored
Water sample date in cell date regular in cell

Salt 3.5-3.75 m 4.10.13 4.12.13 15.1.14 61 42
Water 3.75-4.0 m 4.10.13 4.12.13 20.1.14 61 47

Salt 4.25-4.5 m 4.10.13 4.12.13 4.2.14 61 62
Water 4.75-5.0 m 24.10.13 4.12.13 10.2.14 41 68

Salt 5.05-5.3 m 24.10.13 4.12.13 18.2.14 41 76
Water 5.55-5.8 m 24.10.13 4.12.13 24.2.14 41 82

Salt 7.45-7.7 m 30.10.13 4.12.13 10.3.14 35 96
Water 8.2-8.45 m 30.10.13 4.12.13 16.3.14 35 102

Opening of the mini block samples, from the storage cells, is done by separating the cell from

the bottom seal, draining the water or KC l solution. For salt migrated samples potential precip-

itated salt with a few mm soil is carefully removed using a spatula.
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Chapter 6

Laboratory methods

6.1 Block sample sectioning

Block samples are prepared for laboratory tests by carefully dividing the block sample using

string wire and a custom-made station, seen in Figure 6.1, to slice the mini block with utter

precision.

Figure 6.1: Cutting station for mini block samples (Photo: Rikke N. Byrntesen)
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After opening, the mini block samples are divided as illustrated by Figure 6.2. Which, also dis-

play dimensions of an ideally sized mini block sample. The sectioning is carried out quickly after

opening. All sections that cannot be tested immediately is wrapped in plastic foil and wet towels

and stored in approximately 7oC to prevent loss of water content and delay oxidation of the clay

sample. Table 6.1 describes and illustrates the procedure of sample sectioning of each layer in

the block sample. The samples are to be tested as described in the table. However, execution

may be limited due to variations in block sample size and quality.

Figure 6.2: Sectioning of an ideal mini block sample
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Table 6.1: Descriptions and location of tests for each mini block sample

Layer Tests Illustration

Top

In case of material shortage
in geochemistry layer, the
top layer may replace sec-
tion 3 bellow:

• Falling cone test
• Water content
• Atterberg limits

Triaxilal and
oedometer

• 3 CRS oedometer tests
• 2 triaxial tests
• Water content and

unit weight for each
oedometer and triaxial
sample

Geochemistry

For each section:
• Falling cone test
• Water content
• Atterberg limits
• Catione exchange ca-

pacity
• Pore-water chemistry
• Temperature and pH

as indicated

Bottom
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6.2 Methodology

6.2.1 X-ray diffraction analysis (XRD)

Material for X-ray diffraction analysis (XRD) was set aside and stored during the project assign-

ment, fall 2013 [9]. The XRD analysis is conducted on dried oedometer material throughout the

depth profile. The bulk mineralogy is analysed using the following procedure. Dried samples

are first coarsely grinded, thereafter the clay goes through the secondary grinder, a Sibteknik

laboratory disc mill, obtaining grain size of the material below 6 µm. Between each sample

preparation, the instruments are systematically cleaned with ethanol. After the required grain

size is obtained, the material from each sample is carefully evened out on a dish and marked.

The clay sized fraction is analyzed by mixing ungrinded clay sample with distilled water and

adding the mixture to a cylinder. Sedimentation is allowed for 15 hours and 52 min, after which

the upper 20 cm of the water and clay mixture is collected and the water is filtered out. A thin

film of the sample is transfered to a glass plate, ready for analysis.

(a) (b) (c)

Figure 6.3: X-ray diffractometer used in the XRD analysis in a) and b). HCL testing of the clay in
c) (Photo: Rikke N Bryntesen)
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XRD analysis on both the clay fraction and the bulk samples is conducted using Bruker D8 Ad-

vance, seen in Figure 6.3 a and b. The analysis for each sample is logging for approximately 1

hour and 20 minutes. The output of the recording is illustrated by the blue “graph” displayed in

Figure 6.4. After recording is complete, the result of each sample is analysed using the mineral

detection computer programme Difrac.eva. Each mineral is interpreted by specific combina-

tions of peaks in the obtained graph. Thereafter the content of each mineral is calculated using

the computer program Topas, creating an interpretation as seen in Figure 6.4. In tests where

calcite is detected a portion of the material is tested with 1 mole HCl to verify the presence of

calcite, illustrated in Figure 6.3 c. The samples of the clay sized fraction are glycol treated to

corroborate the absence or presence of swelling clay minerals such as smectite.

Figure 6.4: Example result of interpreted output of the X-ray diffractometer

6.2.2 Geochemistry

An overview of the tests done on the geochemistry layer is provided above. After opening the

sample in the laboratory, sections within the geochemistry layer are marked with dimensions as

seen in Figure 6.5.
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Figure 6.5: Dimensions of sections in the geochemistry layer

Temperature and pH measurements are recorded as illustrated in Table 6.1 section 6.1, record-

ing the temperature using a thermometer, penetrated 1-2 cm into the clay from the top of the

sample. The temperature is then entered into the pH-meter computer and the electrode of the

pH meter is inspected to ensure it is clean and saturated with 3 mol KCl solution. Thereafter the

electrode is penetrated into the clay in the same manner as the thermometer. After the mea-

surement is complete, the electrode is thoroughly rinsed with distilled water. The sequence is

repeated for each section in the geochemistry layer.

For each section within the geochemistry layer, four 15 ml containers are filled with clay. Care is

taken not to remould the clay when inserting it into the containers as separation of pore water

is problematic on remolded clay samples. The samples are centrifuged for 20-45 minutes with

4000 rpm. After centrifugation is complete, the separated pore water is extracted and filtered

through a 0.45 µm syringe filter. The pore water is thereafter tested for salinity, determined by

measuring electric conductivity in of the pore water. Conductivity meter CDM 2d is used. The

remaining pore water is stored in a freezer until further testing can take place.

Material with mass > 150 g, from each of the sections is stored in a freezer for CEC analysis.
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6.2.3 Geotechnical index tests

Density

Determination of natural density, wet density, of the clay is done with a small cylinder of known

volume, according to manual 14.425 [60]. Equation 6.1 and 6.2 are used to determine density

and unit weight respectively. In this thesis, the density was determined using the odometer steel

ring of known volume, due to clay shortage.

ρ = ms +mw

V
= m

V
(6.1)

γ= (ms +mw )g

V
= mg

V
(6.2)

ms = Mass of solid particles [g ]

mw = Mass of water [g ]

m = Total mass of sample [g ]

V = Total volume of sample [m3]

g = Gravity (9.81m/s2)

Water content and Atterberg limits

The natural water content of the specimen is to be tested as quickly as possible, after the mini

block sample is opened in the laboratory. The procedure is performed in accordance with

NS8013 [43], and calculated using equation 6.3.

w = mw

ms
= m −ms

ms
100% (6.3)

The liquid limit can be determined by using the falling cone method or the Casagrande method,

described in NS8002 [42] and NS8001 [41], respectively. In this thesis, the test is conducted using

the falling cone method [42].
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Liquid limit determined by falling cone test is done with the falling cone apparatus on a re-

moulded sample. The liquid limit is defined, in the test, as the water content of the sample at

which a 60 g cone with an angle of 60o penetrates the clay by 10 mm. For further explanation

of the method and corrections for deviations of cone penetration, reference is made to NS8002

[42].

Determination of plastic limit is done by taking 10-20 g of material and rolling it using a flat

hand against a glass surface. When the clay crumbles at a diameter of 3-4 mm, the plastic limit

is reached, and the sample is collected. The water content at this stage corresponds to the plastic

limit of the material.

The plasticity index Ip , calculated using equation equation 6.4 is defined as the range of which

the natural water content can lie for a clay to show plastic behaviour. Liquidity index IL de-

scribe the relation between the natural water content and the plastic range and is defined by

equation 6.5.

Ip = wl −wp (6.4)

IL = w −wp

wl −wp
(6.5)

wl = Liquid limit [%]

wp = Plastic limit [%]
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Falling cone

The falling cone apparatus is used on a specimen to evaluate the undrained shear strength by

analysing the depth of cone penetration through an undisturbed sample by gravitational force

alone. Remoulded shear strength is determined by falling cone penetration trough a remoulded

sample. Based on results of the described methods, the sensitivity of the soil is determined by

equation 6.6.

St = Su

Sr
(6.6)

Su = Shear strength [kPa]

Sr = Shear strength [kPa]

St = Sensitivity [-]

For correlation between cone penetration and shear strength, along with extensive description

of the procedure, reference is made to NS8015 [44].

Salinity

Pore water salinity is determined by measuring electric conductivity of pore water expelled by

centrifugation of a sample, as described above. Conductivity meter type CDM 2d measuring the

conductance. The calibration chart, displayed in appendix A, is used to convert conductance to

total salt content in g/l. The calibration is valid up to 55 g/l with a solution temperature of 25oC.
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6.2.4 Oedometer

The oedometer test is used for deriving the load history of the soil. The test simulates a one-

dimensional deformation, which is a simplified simulation of in situ deformation of soil.

The oedometer tests are prepared and run as set forth in NS8018 [45]. Equipment used is also as

presented in the standard. A steel ring of known volume and weight is used to cut the sample, by

weighing the sample within the ring, the density can be calculated as described above, in equa-

tion 6.1 and 6.2. Thereafter the ring, containing the clay sample, is mounted in the oedometer.

One-way drainage is applied with pore pressure measurements at the base of the sample. For

accurate pore pressure measurements, it is essential to use de-aired water only as air-bubbles

will act as springs while pressure is applied. Thus, also the filters must be saturated in deaired

water.

Constant Rate of Strain (CRS), a Continuous Loading (CL) test procedure is used, where a top cap

is forced down with a constant displacement rate of 5 µm/min. It is assumed a parabolic pore

pressure distribution over the sample height. Hence, the average effective stress is calculated

using equation 6.7. The deformation modulus, a measure of a soils resistance to deformation,

is calculated using the basic definition as seen in equation 6.8. Coefficient of consolidation, a

measure of the time rate of consolidation, is estimated using equation 6.9.

σ′ =σ− 2

3
ub (6.7)

M = dσ′

dε
(6.8)

cv = dσ′

d t

[H0(1−ε)]2

2ub
(6.9)

ub = Recorded pore pressure at the base of the sample [kPa]

σ = Pressure applied by cap [kPa]

H0 = Initial hight of sample (20mm)

ε = Strain [-]

The preconsolidation pressure, the maximum pressure a soil sample has previously experi-

enced, is inspected visually by the Janbu [21] method.
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6.2.5 Triaxial test

Shear strength of a soil can be estimated using the triaxial test. The test is performed in accor-

dance with Vegvesen [60], with a triaxial cell and equipment as displayed in Figure 6.6.

Figure 6.6: Illutration of triaxial equipment [9]

In this thesis an active Anisotropic Consolidation, Undrained test (CAUa) is performed on all

the triaxial tests. The consolidation phase is carried out using stepwise consolidation with four

steps as illustrated in Figure 6.7. For each step the consolidation remains constant for 1 hour, the

sample is then consolidated for 12 hours after reaching the final step. The stepwise procedure

is to prevent the soft, sensitive clay from collapsing under consolidation. The share phase is

conducted using a strain rate of 1.5 %/hour. The consolidation phase of the triaxial test is based

on the theory of simulating the in situ stress conditions in ground and thereafter evaluating the

resistance against additional applied axial load. First, the in situ stress conditions are calculated

based on equation 6.10 and 6.11. For this thesis a conservative earth pressure coefficient of

0.7 is used along with the assumption of ground water in terrain. For each mini block sample,

where possible, triaxial tests are to be preformed with a consolidation phase according to p ′
0−

and 1.1p ′
0− consolidation, in the respective order of priority.
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p ′
0 =σ′

v0 = γd −γw hw (6.10)

σ′
h = K ′

0σ
′
v0 (6.11)

d = Depth of sample, ground surface and down to the middle of the sample [m]

hw = Height of water column above sample [m]

K ′
0 = Earth pressure coefficient [-]

Figure 6.7: Illustration of the stepwise consolidation phase in triaxial tests

As the test preformed on mini block samples must be hand carved, to obtain the cylinder shape

appropriate in triaxial tests with a diameter of approximately 54 mm. The appropriate length of

100 mm is cut by using a standard cradle at NTNU. The cradle and tools for triaxial specimen

preparation are displayed in Figure 6.8.
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Figure 6.8: Equipment for triaxial specimen preparation. (Photo: Rikke N. Bryntesen)

Mounting of the sample preformed as illustrated in Figure 6.6. The sample is placed on the

pedestal with de-aired filters on top and bottom. A saturated filter paper is attached to the cylin-

der surface, acting as drainage paths. A rubber membrane is carefully fitted around the sample

and sealed on the top cap and the bottom pedestal using rubber rings and grease. As equipment

leakage has been a problem in several of the triaxial tests, the mounting of the sample evolved to

the use of three rubber rings on both top and bottom along with an extra, shorter, rubber mem-

brane over the pedestal and bottom part of the sample. Together with the use of vast amounts

of grease. Further, using the drainage pipes in the apertures, de-aired water is injected inside

the rubber membrane, filling it with water and to ensure removal of all air bubbles. The load cell

and the cell chamber is mounted and tightened, and the chamber is filled with water applying

an isotropic cell pressure of 10 kPa on the sample. The filters are flushed with water to remove

air. The sample is elevated until contact between load cell and top cap is reached. To remove the

excess water in the rubber membrane, due to the previous saturation within the rubber mem-

brane, the valves are opened and the consolidation phase is started with a confining pressure of

10 kPa for 10 minutes without logging. Thereafter the consolidation is started by increasing the

cell pressure and axial pressure in 4 equal steps, as described above. When the desired consoli-

dation stress condition is reached, it is kept constant for 12 hours. During which the confining

pressure squeeze water out of the sample. The expelled pore water is recorded on a scale.

After 12 hours of consolidation the share phase can be started, after flushing the filters to remove

residual air in the system. In the share phase for undrained conditions, the drainage valves are

closed and the pore pressure within the sample is recorded along with deformation, applied cell

pressure and vertical force. Calculations using the recorded data is carried out using the below

equations.
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Aa = A0

1−∆V
V0

1−∆V
3V0

(6.12)

σ1 −σ3 = P
1−ε

Aa
(6.13)

ε= δ

h0
(6.14)

εv = ∆V

V0
(6.15)

τ= σ1 −σ3

2
(6.16)

σ′ =σ−u (6.17)

∆u =∆σm −D∆σd (6.18)

σm = p ′ = 1

3
(σ′

1 +2σ′
3) (6.19)

σd = q =σ′
1 −σ′

3 (6.20)

∆V = Volume of expelled pore water

V0 = Initial volume of specimen (232 cm3)

h0 = Initial height of specimen

u = Pore pressure [kPa]

σ1 and σ3 = Vertical and horizontal applied pressure [kPa]

D = Dilatancy parameter [-]

εv = volumetric strain
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Chapter 7

Results

7.1 Observations

During laboratory investigation of the quick clay samples observations were made with regard

to visual changes in clay, layering and presence of shells and drop stones. Figure 7.1 displays

drop stones and shells found inside the salt migrated mini block sample D4.25-4.5m.

Figure 7.1: Shells and stones found in the mini block samples (Photo: Rikke N Bryntesen)

Figure 7.2 displays a freshly cut mini block sample, clearly showing color change ranging ap-

proximately 1 cm from the outer edge of the sample, towards the center. A clear distinguish be-

tween the original color and the color change is displayed in the figure. The sample was stored

for 45 days in approximately 7oC, covered with plastic foil, after sampling.
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Figure 7.2: Discoloration in the mini block sample periphery (Photo: Rikke N Bryntesen)

(a) Stored in air, sealed with plastic foil (b) Stored in KCl solution

Figure 7.3: Discoloration and water migration in silt layers (Photo: Rikke N Bryntesen)

A silt layer, indicated with an arrow, is displayed in the clay specimen in Figure 7.3 a. The color

change at the outer parts of the sample is represented in the silt layer, throughout the sample,

and affecting the clay surrounding the layer. The sample was stored in 7oC for 52 days after

sampling, covered in plastic foil. Figure 7.3 b display a sample with a silt layer indicated by the

arrow. The sample was stored in 7oC, wrapped in plastic foil for 35 days, after which the sample

was stored in deaired KCl solution for 96 days. No distinct area of discoloration was evident in

the sample.
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7.2 Grain size distribution

The hydrometer analysis results from the reference samples, and the resultant clay content is

plotted with depth, as displayed in Figure 7.4. The hydrometer analysis is done as part of the

project assignment [9]. The figure show a clay content of 24-28% in the upper part of the profile,

increasing to approximately 38% in the deeper parts.

Figure 7.4: Results form hydrometer test on grain size distribution in the depth profile and
resultant clay content with depth [9]
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7.3 XRD

Bulk mineral content of the quick clay, analyzed using XRD, is presented in Table 7.1 throughout

the investigated depth profile.

The results show no distinct variations between bore hole 1 and 2. A general decrease of quarts

content with depth and lower calcite content at the upper part of the profile is observed from

the resultant bulk mineralogy.

Table 7.1: Bulk mineralogy in the depth profile

Bore hole 1 Bore hole 2
Depth [m] 5.15 6.1 3.13 3.34 4.16 4.67 7.88 8.55 8.91

Quartz [%] 27 26 28 31 31 28 24 24 26
Albite [%] 22 21 22 23 21 21 21 21 22

Muscovite [%] 16 17 16 16 16 16 17 17 15
Chlorite [%] 13 12 13 13 13 13 13 13 13

Hornblende [%] 9 10 8 9 7 9 10 10 10
Microcline [%] 5 5 5 3 6 6 7 6 6

Epidote [%] 2 2 2 2 2 2 2 2 2
Calcite [%] 2 3 1 <1 <1 2 3 3 3

Spessartine [%] <1 <1 <1 <1 <1 <1 <1 <1 <1

Detailed mineralogy for the clay sized fraction of the quick clay is presented in Table 7.2.

Table 7.2: Mineralogy of the clay fraction

Depth [m] 3.34 7.88 8.91

Muscovite [%] 30 34 34
Biotite [%] 13
Albite [%] 16 14 13
Quartz [%] 13 11 15

Chlorite [%] 10 16 14
Hornblende [%] 4 10 10
Microcline [%] 11 9 7

Calcite [%] 4 4
Illite [%] 2 1 <1

Output results for bulk and clay XRD analysis are displayed in Appendix C.
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7.4 pH and pore water salt content

The results of the recorded pH, pore water conductivity and total pore water salt content are

presented for each section at all recorded depths, and given in context with storage time. The

center section is defined by section 1, middle by section 2 and the edge section by section 3, as

illustrated in Table 6.1, section 6.1.

Result of pH measurements of the reference samples are displayed in Table 7.3. Conductivity

measurements of expelled pore water, converted to salinity is also included in the table.

Table 7.3: Results from pH conductivity analysis in reference samples

Mini block Depth Section pH T Conduc- Salt Storage time
sample tivety content regular

[m] [-] [-] [0C ] [mmho] [g /l ] [d ay s]

3.25-3.5m 3.39 3 8.09 9 0.76 0.76 12
3.25-3.5m 3.39 2 8.19 8 0.75 0.75 12
3.25-3.5m 3.39 1 8.23 7 0.75 0.75 12
4.0-4.25m 4.12 3 8.4 9 0.85 0.85 45
4.0-4.25m 4.12 2 8.48 7 0.78 0.78 45
4.0-4.25m 4.12 1 8.58 7 0.74 0.74 45
4.5-4.75m 4.63 3 8.77 9 0.8 0.8 52
4.5-4.75m 4.63 2 8.74 9 0.74 0.74 52
4.5-4.75m 4.63 1 8.66 8 0.71 0.71 52
7.5-7.75m 7.83 3 9.11 10 0.73 0.73 28
7.5-7.75m 7.83 2 9.04 9 0.73 0.73 28
7.5-7.75m 7.83 1 9.06 9 0.73 0.73 28
8.7-9.0m 8.87 1 9 6 0.56 0.56 4

Table 7.4 displays results of the recorded pH and pore water conductivity for both samples

stored in KCl solution and in water. The salinity of salt migrated samples are not presented.

As the recorded conductivity of the salt treated samples exceeds the reach of the conductivity to

salinity conversion chart.
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Table 7.4: Results from pH conductivity analysis in samples stored in water and KCl solution

Salt/ Mini block Depth Section pH T Conduc- Salt Storage time Storage time
Water sample tivety content regular cell

[m] [-] [-] [0C ] [mmho] [g /l ] [d ay s] [d ay s]

Salt 3.5-3.75m 3.62 3 7.05 9 165 61 42
Salt 3.5-3.75m 3.62 2 6.94 9 161 61 42
Salt 3.5-3.75m 3.62 1 6.92 9 161 61 42

Water 3.75-4.0m 3.88 3 8.05 8 0.74 0.74 61 47
Water 3.75-4.0m 3.88 2 8.27 8 0.72 0.72 61 47
Water 3.75-4.0m 3.88 1 8.23 8 0.72 0.72 61 47

Salt 4.25-4.5m 4.39 3 7.33 9 112.5 61 62
Salt 4.25-4.5m 4.39 2 7.4 8 107.5 61 62
Salt 4.25-4.5m 4.39 1 7.35 8 100 61 62

Water 4.75-5.0m 4.85 3 8.30 8 0.8 0.8 41 68
Water 4.75-5.0m 4.85 2 8.65 7 0.75 0.75 41 68
Water 4.75-5.0m 4.85 1 8.68 7 0.75 0.75 41 68

Salt 5.05-5.3m 5.19 3 7.45 10 142.5 41 76
Salt 5.05-5.3m 5.19 2 7.4 9 141 41 76
Salt 5.05-5.3m 5.19 1 7.41 9 139 41 76

Water 5.55-5.8m 5.68 3 8.65 14 0.67 0.67 41 82
Water 5.55-5.8m 5.68 2 8.85 9 0.7 0.7 41 82
Water 5.55-5.8m 5.68 1 8.87 9 0.7 0.7 41 82

Salt 7.45-7.7m 7.58 3 7.8 10 150 35 96
Salt 7.45-7.7m 7.58 2 7.72 9 150 35 96
Salt 7.45-7.7m 7.58 1 7.65 9 150 35 96

Water 8.2-8.45m 8.32 3 8.98 4 0.77 0.77 35 102
Water 8.2-8.45m 8.32 2 9.08 4 0.75 0.75 35 102
Water 8.2-8.45m 8.32 1 9.09 4 0.7 0.7 35 102

56



CHAPTER 7. RESULTS 7.4. PH AND PORE WATER SALT CONTENT

The variation of pH over the different sections, and comparison between different treatment

methods are illustrated in Figure 7.5. Results of the samples stored in KCl solution displays an

average decrease in pH of 1.2, relative to the reference samples and the water treated samples.

The result show a fairly consistent pH over the sections for the reference samples. However,

samples stored in water display a distinct reduction in pH for the edge section of the sample

(section 3). Salt migrated samples show indications of increased pH for the edge section. Results

fro the reference samples indicate a consistent increase in pH with depth. The numbers located

on the left side of the figures indicates the storage time in storage cells and in regular conditions,

with brackets around the regular storage time. The reference samples only display the regular

storage time.

Figure 7.5: Change in pH in section 1, 2 and 3, for reference samples and samples stored in
water and KCl solution
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7.5 Geotechnical index results

Index results of reference samples, carried out as part of the project assignment by Bryntesen [9],

are displayed in Figure 7.6. Thus, the figure describes the in situ conditions and initial condition,

related to the water and salt treated samples.

Figure 7.6: Index tests from reference samples, describing the depth profile [9]
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7.5.1 Unit weight

Correlations between clay storage method and unit weight is presented in Figure 7.7. An average

increase of approximately 0.7 kN /m3 is observed for the samples exposed to salt migration,

relative to the samples stored in water and reference samples.

Figure 7.7: Assembly of recorded unit weight, presented with depth

7.5.2 Water content and Atterberg limits

Resultant water content and Atterberg limits of the samples stored in deaired water and KCl so-

lution are displayed in Figure 7.8 and 7.9, respectively. The diagrams display deviations between

the sections in each mini block sample.
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Figure 7.8: Variations in water content and Atterberg limits, between the sections, of water
treated samples

As displayed in Figure 7.8, the results of water content and Atterberg limits are generally consis-

tent for all sections. However, some larger deviations are presented. Results of the liquid limit

display a trend of higher values recorded in the edge section.

Figure 7.9: Variations in water content and Atterberg limits, between the sections, of salt
treated samples
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The results, seen in Figure 7.9, display only minor deviations throughout each KCl treated mini

block sample. Water content of the center section display a water content a fraction higher,

compared to the surrounding sections.

Figure 7.10: Assembly of all results of water content and Atterberg limits, presented for each
section

Results of the different sections are displayed in Figure 7.10, assembled with results from the

reference samples. The results display few variations through the sections.

As no significant correlations are detected, the sum of the results for each section are presented

in Figure 7.11. Results of samples exposed to salt migration display a general reduction in water

content, relative to samples stored in water and reference samples. The figure indicate signifi-

cantly increased liquid limits for the salt treated clay samples. A general increase in plastic limit

for samples stored in both water and KCl solution, relative to the reference samples, is also evi-

dent in the results. The changes induce changes in both liquidity- and plasticity index, as seen

in Figure 7.12. Salt diffusion increase the plasticity index from what is defined as low plastic-

ity, in the water and reference samples, to medium plasticity. The liquidity index also display a

distinct decrease, relative to the water and reference samples.
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Figure 7.11: Summation of results of water content and Atterberg limits in each sample,
presented with depth
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Figure 7.12: Sum of resultant liquidity and plasticity index for each sample

7.5.3 Falling cone

Figure 7.13 display results of falling cone tests on the samples stored in water cells. Results of

the falling cone test on KCl treated clay samples are illustrated in Figure 7.14. The edge section

display a general lower undrained shear strength compared to the middle and center sections,

for the samples exposed to salt migration. No other distinct trends are recognized.

Figure 7.15 display the resultant undrained and remoulded shear strength for each section, as-

sembled with results from the reference samples. Some results from the center and middle sec-

tions are not included due to limited material to conduct the tests in these sections. Further, no

distinct deviations are observed across the sections.

Due to limited variation across the sample sections, the sum of the results form each mini block

sample is presented in Figure 7.16. The presented results display a distinct increase of approxi-

mately 10 kPa for undrained and 4 kPa for remolded shear strength, for the KCl treated clay. No

distinct variation is observed between the water treated and reference samples. The increase in

remoulded strength lead to reduced sensitivity for the salt migrated clay, as seen in the results.

KCl diffused samples display a low sensitivity, relative to the water and reference samples, which

are classified as very sensitive, based on the results and Sandven et al. [49].
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Figure 7.13: Variations in undrained and remoulded shear strength and sensitivity, between the
sections, of water treated samples

Figure 7.14: Variations in undrained and remoulded shear strength and sensitivity, between the
sections, of salt treated samples
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Figure 7.15: Variations in undrained and remoulded shear strength for each section within the
samples

Figure 7.16: Sum of results over each sample, of undrained and remoulded shear strength and
sensitivity presented with depth
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7.6 Oedometer results

Oedometer results are interpreted as illustrated in Figure 7.17, 7.18 and 7.19.

Figure 7.17: Illustraiton of interpretation method for precconsolidation pressure

Figure 7.18: Illustration of modulus number in the NC range and OC deformation modulus

Figure 7.19: Illustration of consolidation coefficient, a value is chosen at a desired stress level.
In this thesis at the in situ vertical stress
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Results of the CRS oedometer tests are displayed in the following. Detailed results of each salt

and water treated samples are included in Appendix E. For further details of results on untreated

clay, reference is made to Bryntesen [9] and Appendix D. The results for all CRS tests preformed

on untreated clay is displayed in Figure 7.20, indicating a preconsolidation pressure between 70

and 75 kPa for most parts of the depth profile. Storage time, in days, prior to testing is indicated

in the legend with the exact depth of each specimen.

Figure 7.20: Assembly of stress strain results from the reference samples (data from [9])

Figure 7.21 and 7.22 displays effective vertical stress vs strain curves for water and salt treated

samples respectively. Storage time, in days, in the cell and prior to cell installation is indicated

in both plots. The results indicate a preconsolidation pressure of approximately 70-80 kPa for

the water treated clay. Whereas the salt treated clay show a preconsolidation pressure of 80-120

kPa.

Some results are excluded from the plots due to problems with the apparatus during testing.

Faulty results are included in Appendix E. The result at depth 5.705 m in Figure 7.21 was stopped

by a power breakage, however the result show indications of a preconsolidation pressure, be-

fore the test was stopped, and is therefor included in the results. By comparing the untreated

samples with the water and salt treated samples, the indication of preconsolidation pressure is

generally less visible for the salt and water treated samples.
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Figure 7.21: Assembly of stress strain results from samples stored in water

Figure 7.22: Assembly of stress strain results from samples stored in KCl solution
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Figure 7.23 displays correlations of preconsolidation pressure between the salt migrated sample,

the sample stored in water and the reference sample. The arrows indicate the preconsolidation

pressures for each treatment method. The observed results display no deviation between the

salt treated sample and the reference sample. However, an increase of approximately 40 kPa is

observed for the salt migrated sample. Further comparison between the sample treatment from

the oedometer tests results are displayed in Appendix H.

Figure 7.23: Comparison of the stress strain results from reference samples and samples stored
in water and KCl solution

The same trend is displayed for all the samples, as seen in Figure 7.24. Deviations of OCR for all

the differently treated samples are also presented in the figure.

Figure 7.25 display modulus number, m and consolidation coefficient, cv , with depth. The figure

displays a trend of decrease of the modulus number for the salt migrated sample, relative to the

water treated and reference samples. A gentle decrease can also be observed in the water treated

samples. The consolidation coefficient display generally consistent results in relation to storage

method, however a large increase is observed in two of the salt treated samples.
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Figure 7.24: Preconsolidation pressure and OCR results from each storage method, presented
with depth

Figure 7.25: Modulus number in the NC range and OC deformation modulus results from each
storage method, presented with depth
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7.7 Triaxial test results

Interpretation of the triaxial results are illustrated in one of the refrence samples, seen in Fig-

ure 7.26.

Figure 7.26: Interpretation of triaxial tests

Triaxial tests carried out on samples of several depths from the Dragvoll area as part of the

project assignment [9], are used as reference results of the untreated clay. The results of the

triaxial tests are displayed in Figure 7.27, 7.28 and 7.29 , as q-p plot, NTNU plot and stress strain

plots respectively. The storage time is indicated for each test in the figures. Some results were

considered to be flawed due to disturbance and operator error during testing and are therefore

not included in this thesis. Detailed plots are presented in Appendix F. For further detail and

discussion of the results, reference is made to Bryntesen [9].
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Figure 7.27: Q-p plot of the reference samples (data from [9])

The results displayed in Figure 7.27 and 7.28 indicates friction angles from 35o and down to 230

and an attraction of approximately 7.5 kPa, for the upper part of the profile. Friction angles of

roughly 31o and attraction of 11kPa is registered in the deeper part of the profile.

The stress strain plot, Figure 7.29, displays peak and residual undrained shear strength. The

residual undrained shear strength is estimated at the point of 20% strain. Results of peak and

residual undrained shear strength for all samples are presented in Table 7.5, bellow.

72



CHAPTER 7. RESULTS 7.7. TRIAXIAL TEST RESULTS

Figure 7.28: NTNU plot of the reference samples (data from [9])

Figure 7.29: Stress strain plot of the reference samples (data from [9])

73



7.7. TRIAXIAL TEST RESULTS CHAPTER 7. RESULTS

All triaxial tests performed on KCl and water stored samples are presented individually in Ap-

pendix G. Q-p plots of triaxial tests carried out on mini block samples stored in water and KCl so-

lution are plotted in Figure 7.30 a and b, respectively. After the laboratory work was conducted,

abnormalities for several of the triaxial results were observed between the tests conducted on

the two different triaxial cells. Further investigation proved that the tests carried out on triax-

ial cell number two, provided a cell pressure half of what was displayed in the equipment. The

vertically applied force displayed the correct value. Thus, the tests were consolidated using a

too low vertical stress unrealistically low vertical to horizontal stress ratio, K ′
0. The results of the

tests are displayed in Figure 7.30 a and b, were the results of the tests consolidated to the wrong

level is indicated. As seen, the results indicated a generally lower attraction and peak undrained

shear stress for the wrongly consolidated specimen relative to the tests considered to be correct.

The tests that were run with a deviation in consolidation are therefore excluded in the following.

(a) (b)

Figure 7.30: Triaxial tests with calibration error
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Results from triaxial tests, consolidated to the correct level and performed on block samples

stored in water are displayed in the q-p plot, NTNU plot and stress strain plot in Figure 7.31,

7.32 and 7.33 respectively.

Figure 7.31: Q-p plot of samples stored in water

The results presented in Figure 7.31 and 7.32 indicate friction angles of approximately 31o and

attraction of approximately 10 kPa for the deeper parts of the profile, with an attraction and

friction angle of 15 kPa and 28o respectively, for the deeper part of the profile.

Stress strain plot displayed in Figure 7.33, indicates the residual and peak strength of specimen

stored in water. The triaxial test for the specimen at depth 5.73m was interrupted by a power

breakage.
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Figure 7.32: NTNU plot of samples stored in water

Figure 7.33: Stress strain plot of samples stored in water
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Results from triaxial tests, consolidated to the correct level and performed on block samples

stored in KCl solution are displayed in the q-p plot, NTNU plot and stress strain plot in Fig-

ure 7.34, 7.35 and 7.36 respectively.

Figure 7.34: Q-p plot of samples stored in KCl solution

Figure 7.34 and 7.35 show friction angels and attraction for the upper part of the profile of 30-32o

and 12.5 kPa, and 27o and 18 kPa in the lower part of the profile.

Stress strain plot displayed in Figure 7.36, indicates residual and peak strength of specimen

stored in KCl solution.
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Figure 7.35: NTNU plot of samples stored in KCl solution

Figure 7.36: Stress strain plot of samples stored in KCl solution
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Figure 7.37 to 7.40 display assembled triaxial test results for the different sample treatments. The

displayed results are of close proximity in depth and only the results considered to be reliable are

included in the assembly. The storage time for each sample is included in the legend. Due to the

limited number of reliable triaxial results for some of the storage methods, some are presented

in different assemblies.

Figure 7.37: Assembly of triaxial results for each sample treatment, at depths between 3 and 5 m

Figure 7.37 displays the correlation between the storage methods of the top of the investigated

profile. An increase in undrained shear strength with increased strain is evident for the salt

migrated sample, thus the sample dilates. Both the sample stored in water and the reference

sample show strain softening, where the clay is weakened with increased strain.

Figure 7.38: Assembly of triaxial results for each sample treatment, at depths between 4 and 5 m
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Samples acquired from lower parts of the profile only indicate some tendency of dilatancy at

failure, however the results show strain softening with increased strain, as seen in Figure 7.38

and 7.39.

Figure 7.39: Assembly of triaxial results for each sample treatment, at depths between 5 and 6 m

Figure 7.40 display the correlations between the storage methods at the deepest part of investi-

gated profile. Neither of the samples show tendencies of dialtency at the point of failure. How-

ever, the KCl treated sample partially dilates with increased strain, after the point of failure.

Figure 7.40: Assembly of triaxial results for each sample treatment, at depths between 7 and 9 m

The tests generally show less strain softening for the salt treated samples, compared to the water

treated and untreated samples. Further, all tests show an increase in undrained shear strength

for the samples exposed to salt migration. A general increase of undrained shear strength is also

evident for the samples stored in water.
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Table 7.5: Assembly of peak and residual undrained shear strength the the percent reduction
from peak, for each treatment method.

Treatment Consolidation Depth Peak Residual Su Reduction Storage Storage
level Su Su from peak time time, cell
[p ′

0] [m] [kPa] [kPa] [%] [d ay s] [d ay s]

Refrence 1 3.17 25.9 14.8 43.0 12
Refrence 1 3.17 22.2 - - 12
Refrence 1 3.38 21.0 10.6 49.5 10

Salt 1 3.69 21.6 24.2 -12.0 61 42
Salt 1.1 3.69 21.8 22.6 -3.8 61 42

Refrence 1 4.17 19.9 9.7 51.1 45
Salt 1 4.35 25.5 18.5 27.4 61 62

Refrence 1 4.66 17.4 7.2 58.9 52
Refrence 1 4.66 18.5 7.2 61.0 52

Water 1 4.89 22.3 7.2 67.7 41 68
Refrence 1 5.07 16.0 7.4 53.7 4

Salt 1 5.245 31.9 18.9 40.6 41 76
Water 1 5.73 25.3 - - 41 82

Salt 1 7.615 28.8 23.6 18.1 35 96
Water 1 8.39 25.8 15.3 40.7 35 102

Refrence 0.5 8.47 19.8 12.2 38.4 3
Refrence 1 8.83 21.5 8.3 61.2 4
Refrence 1.1 8.83 24.1 13.3 44.8 4

Table 7.5 displays the peak undrained shear strength and residual undrained shear strength,

at 20% strain, acquired from the triaxial tests. Also the percent reduction of undrained shear

strength from peak to residual strength is included in the table. The salt treated samples show

relatively little change between the peak and residual strength, relative to the salt and water

treated samples. As seen in the above figures, peak and residual strength is increased for the salt

treated samples and water treated samples, where the salt treated samples display the largest

increase of strength. The trend is clearly presented in Figure 7.41, illustrating the resultant depth

profile of peak and residual undrained shear strength.
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Figure 7.41: Peak and residual undrained shear strength from triaxial tests, presented by depth
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7.8 Summary of results

Summary of the results of index, pH and pore water conductivity, oedometer and triaxial tests

are displayed in Table 7.6, 7.8 and 7.8, respectively.
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Chapter 8

Discussion

Properties of in situ depth profile

Based on visual observations, hydrometer analysis and NS3007 [40], the clay is defined as silty

clay in the upper part to clay in the deeper parts of the profile. Horizontal silt layers, occasional

drop stones, shells and shell fragments were also observed. The observations, supported by

laboratory investigation, indicate a general inhomogeneity though the depth profile. Results of

the reference samples from the oedometer test displayed high OCR values at around 3 m depth.

Thus, the dry crust is assumed to reach down to approximately 3 m. Bellow what is considered

the dry crust, the OCR is decreased to a level of approximately 1.3 at the dept of about 8 m.

Hence, below 8 m the clay is considered normally consolidated. The over-consolidation of the

samples in the upper part of the profile induce an undrained strength above the failure line and

a tendency to dilate at the point of failure. Thus, creating the characteristic loops. The described

effects may be related to a weathering zone. No triaxial or oedometer tests were carried out on

untreated clay samples between 5 and 8 m in bore hole 2, due to high sample loss during sam-

pling, in the respective area. The influence depth of the presumed weathered zone is therefore

unknown. Reduction in recorded pH with depth and relatively higher remoulded shear strength

in the upper part of the profile amplifies the the theory of influence of weathering in the respec-

tive area. As described from previous investigations and theory, the influence of weathering is

assumed to decrease with depth. Due to potential large local variations, only results form bore

hole 2 is considered. Results of ion concentrations in the sampled pore water is expected to

provide information related to the weathering zone.
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Limitations

General limitations in the study of the effect of KCl migration, storage- and weathering effects

are related to the high level of inhomogeneity, associated to both the weathering zone and lay-

ering, observed in the analyzed soil profile. The large deviations in storage time and the general

inhomogeneity of the soil reduce the level of comparison between the clay samples. Thus, only

consistent variations observed for the different treatments of the clay can be seen as conclusive.

As the mini block samples were installed in the storage cells, large amounts of KCl salt was added

to ensure saturated solution. When the salt migrated samples were extracted from the cells,

precipitated salt was observed, covering large portions of the mini block sample. The cell con-

taining mini block sample D 7.45-7.7m displayed signs of leakage and was therefore placed in a

water tank to slow down the leakage. When the cell was opened approximately one third of the

water had drained out. Thus, the mini block sample was partially stored in KCl slurry.

For mini block samples stored in the deaired, distilled water, the surrounding plastic foil was

not removed prior to cell installation. Thus, air trapped within the plastic foil is a possible error

for all the samples. Due to potential increase in oxygen supply.

Observations

Observed color change on the mini block periphery is recognized as slow oxidation of Fe(OH)3

to FeO −OH , described by Mitchell and Soga [30]. The reach of the discoloration seem to in-

crease with storage time. The outer part of the samples are exposed to oxygen and is therefore

easily affected by the oxidation. An observed silt layer indicated color change throughout the

sample within the layer and some millimeters into the surrounding clay. Which, is probably

due to the higher permeability of silt, relative to clay. Thus, the silt layer is more easily affected

by migration of water and moisture loss and intrusion of air, i.e. oxygen. Causing accelerated

oxidation in the respective area of the sample. The discoloration is slowed down after cell instal-

lation, due to the relatively anaerobic environment in the cell.

Mineralogy

The decrease of quartz with depth may be seen in relation with the increased clay content with

depth, recorded by hydrometer analysis. The recorded calcite minerals are assumed to originate

from shell fragments observed in the clay. Thus, the lower calcite content recorded in the upper

layers may indicate absence or reduction of shell fragments.
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CHAPTER 8. DISCUSSION

The analysis of the bulk quick clay indicated low contents of clay minerals. In addition, re-

sults from the clay fraction displayed low contents of clay minerals. Which, can possibly be

explained by the fact that the clay mineral illite is mechanically degraded muscovite. A distinc-

tion between muscovite and illite can therefor be problematic. Another explanation could be

that the clay sized fraction contain relatively low contents of clay minerals and larger quantities

of rock minerals, mechanically degraded to < 2 µm. The clay minerals detected in the minerals

is of known low cation exchange capacity. Thus, a low cation exchange capacity is expected for

the clay. Results from analysis of cation exchange capacity are therefore desired to confirm the

assumption.

Muscovite and biotite are both minerals within the mica group, which can cause difficulty in

distinguishing between the two minerals. Thus, the exact content of the different mica minerals

are difficult to analyze.

The detected minerals are consistent with the minerals which are generally present in quick clay,

based on previous investigations.

pH and pore water chemistry

The observed consistent increase in pH with depth can possibly be explained by decreasing in-

fluence from the surface, where the clay is affected by weathering, from water and oxygen. Thus,

pH is decreased by increased acid in the pore water, formed by oxidation. Due to the described

oxidation process a reduction in pH was expected in the edge section of the samples, relative

to the center section. However, no distinct reduction in pH was observed for the outer parts of

the section. Which is probably due to poorly calibrated pH-meter or by human error. Another

explanation is that the samples must be stored over a longer period to induce observable pH

changes. However, the visual, slow oxidation of Fe(OH)3 to FeO −OH , reached as far as 1 cm

into the clay in the sampled stored in air for 45 days. The samples stored in deaired, distilled

water show a consistent reduction in pH for the outer layer, indicating oxidation during water

storage, thus oxygen has entered the cells. However, the result can also be explained by influ-

ence of the surrounding water, with an initial pH of 7 and possible leaching of iones from the

clay pore water onto the surrounding distilled water. A generally consistent increase in pH, with

average of 1.2 is indicated after salt diffusion. Based on previous investigations a decrease in pH

in salt migrated samples was expected.
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CHAPTER 8. DISCUSSION

Results from the conductivity measurement indicate a pore water salt content below 1 g/l in

the water treated and reference samples. Thus, the salinity is bellow the level which encourage

quick clay development. As expected, a general increase of pore water conductivity is registered

with increasing KCl diffusion time. However, the conductivity-meter is considered unreliable

for analysis of highly conducting liquid, based on previous experience in the laboratory by Tonje

Eide Helle.

Pore water chemistry analysis of the major ions, i.e. N a+, K +, C a2+, M g 2+, C l−, SO2−
4 , NO−

3 and

HCO−
3 , of the sampled pore water should be carried out to analyze the effect of storage time in

air, water and KCl solution. And in turn, compare the chemical results to the geotechnical prop-

erties and variations observed from pH measurements. The concentration of K + is considered

extra important as it can be used to analyze the diffusion process. And in addition relate the ion

concentration to the change in geotechnical parameters.

Index tests

Laboratory investigations of index parameters displayed a general consistency in the results

throughout the sections in the clay samples, which correlates with the pH recordings. Minor

changes and trends are overruled by the general variability in the results. The general horizontal

homogeneity within each sample is probably due to the extensive storage time. Minor devia-

tions are related to operator error. Previous investigations state an evident increase of liquid

limit with salt content, the the results obtained in this thesis display the same trend, relative to

both the reference samples and the samples stored in water. No significant increase in the liquid

limit was observed in the water treated samples, relative to the reference samples. The clear re-

duction of water content observed in the salt migrated samples is linked to the precipitated KCl

surrounding the samples. Thus, inducing osmosis, extracting water from the sample. The mi-

nor increase of plastic limit, observed in the salt migrated samples are consistent with previous

investigations. However, the same increase is evident in the water treated sample. Indicating

that the increase is presumably caused by weathering alone. The results are however not con-

clusive due to inhomogeneity observed in the profile. Further investigations are recommended.

The large increase of liquid limit induce and increase of plasticity index, which classify the water

treated and refrence values as low plasticity clay. The salt migration alters the clay properties to

what is defined as medium plasticity clay. A decrease in liquidity index is also evident in the KCl

migrated clay. However, the liquidity index is also related to water content, thus the presumed

osmosis also affect the decrease of liquidity index.

92



CHAPTER 8. DISCUSSION

The falling cone test display a general increase in undrained shear strength, of approximately 10

kPa, implying an approximate increase of 100%, observed after salt migration. The increase is

related to the increased inter-particle strength of the clay, caused by the escalated ion concen-

tration. The remoulded shear strength of the salt migrated sample indicated an average value

approximately 40 times the remoulded strength obtained from the reference and water treated

samples. The undrained and remoulded strength obtained from the falling cone test is how-

ever largely dependent on water content. Thus, the observed reduction in water content, in the

salt migrated samples, also increase undrained, and especially the remoulded shear strength.

The level of influence is indecisive, however the resultant strength increase is partially due to

the reduced water content and should therefor be considered. The large increase of remoulded

strength cause, by definition, a decrease in sensitivity. Thus, the salt migration alters the clay

properties form a very sensitive clay in the lower region of the profile, resulting in a clay of low

sensitivity. Previous investigations displayed an increase in remoulded shear strength and thus,

a decrease in sensitivity due to aging. No increase in remoulded strength is evident in the water

treated samples. Which, is probably related to storage time and good quality samples.
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Oedometer

Oedometer results displayed a distinct, general increase of quasi-preconsolidation pressure of

the salt migrated samples, relative to the water treated and reference samples. A distinct, general

reduction of compressibility was also observed from the oedometer tests. The described trends

are also concluded in previous investigations [5] [23] [55]. The increased preconsolidation pres-

sure is related to the increased shear strength of the material. Whereas the increased modulus

number of the normally consolidated area, i.e. the general compressibility at high stresses, is

related to the increased plasticity, as set forth in by Bjerrum [5]. The increased preconsolidation

pressure obtained in the KCl migrated samples, resultant from this thesis might relate to the in-

creased unit weight of salt migrated samples. Where, results of density tests indicates a general

increase in density, or unit weight, for the KCl treated sample. The observed increase may be

related to the increased salt content in the pore water alone, as the added ions cause additional

weight. In addition, a post sampling consolidation, due to osmosis during salt migration, caus-

ing compression of the clay, may also be a plausible explanation. The effect would also lead to

increased preconsolidarion pressure, compared to reference and untreated clay. However, re-

duced water content for salt treated clay was not reported in the previous investigations. Thus,

the main effect causing the increased preconsoilfation is related to increased shear strength.

However, no conclusion can be drawn based on the results of this thesis, due to the unexpected

reduction of water content in the respective samples. Theory predicts an increase in preconsoil-

dation pressure caused by weathering. The results from water treated samples however, display

no clear increase in preconsolidation pressure. Thus, for the cell storage time is not sustained

for the required amount of time, based on the close to deaired environment in the cell, for the

preconsolidation to be affected. Which, is confirmed by the pH results. No distinct decrease in

compressibility was observed for the samples stored in water, relative to the reference results,

which correlates with the low plasticity. The coefficient of consolidation is generally unaffected

by the storage method. Two of the salt migrated samples do however display a considerable

increase in the coefficient of consolidation, potentially caused by silt layers and increased silt

content.
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Triaxial test

Diffusion of dissolved KCl resulted in a general increase in su , is consistent with the previous

investigations. The increase is related to the increased inter-particle bonding of the clay after

infiltration of K + ions. The results indicated large variations in the undrained shear strength of

KCl migrated samples, relative to the reference samples. The large variations are linked to the

inhomogeneity of the soil profile in relation to layering, the deep influence of the in situ quick

clay weathering and to KCl diffusion time. A general increase of undrained shear strength of

the samples stored in water, relative to the reference samples, is also evident from the results.

Based on theory, the increased undrained shear strength is most likely caused by weathering

of the clay samples during cell storage. Approximately 50% of the increase of undrained shear

strength observed in the KCl migrated samples, is also evident in the samples stored in water.

Due to the high level of inhomogeneity. The exact ratio between increase in su for salt migrated

samples and samples stored in water should be further investigated. A general increase of resid-

ual undrained shear strength is observed from the triaxial test results. The increase is related to

the increase of remoulded shear strength observed in the clay and the decreased inter-particle

repulsion of the clay. Reduction from peak undrained shear strength to the residual strength

of the KCl migrated samples, is generally decreased relative to the water treated and reference

samples. The water treated samples show no consistent increase in residual strength. The resid-

ual strength is related to the remoulded shear strength. Despite the increased residual strength

and the plastically properties observed in the KCl migrated samples, some decrease from the

peak to residual strength is present. Which, can be explained by high quality samples obtained

using the mini block sample.
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Chapter 9

Conclusion

Most of the obtained results, with regard to alterations related to salt migration, is equivalent

to findings from previous investigations. Deviations in some of the results, obtained from the

samples stored in water, related to storage time and weathering are evident. Thus, parts of the

improvement of geotechnical properties, observed in the laboratory, is not related to salt diffu-

sion alone. Weathering and aging may represent parts of the soil strengthening observed in the

laboratory tests. The effects must be considered when considering the outcome of installation

of the in situ ground improvement.

Relative to the reference samples, a significant decrease in pH is evident in the samples exposed

to salt migration. No considerable change is recorded in the samples stored in water, however a

minor but consistent decrease is observed in the periphery of the mini block samples.

A large increase is recorded in the liquid limit after salt migration. However, no significant in-

crease is evident in the samples stored in water.

Minor increase in plastic limit is recorded for samples stored in both water and salt solution,

relative to the reference samples. Thus, the alteration is potentially influenced by weathering

alone. The recorded increase is however small, considering the general variability and inhomo-

geneity in the profile.

The significant increase of the liquid limit, combined with only minor increase in plastic limit,

cause alteration in the clay property after salt migration. And thus alters the material properties

of the clay, from low plasticity to medium plasticity clay. As no increase of liquid limit is evident

for the sample stored in water, no alteration of the plasticity is obtained.

Results obtained from the falling cone test show increased undrained shear strength and sig-

nificantly increased remoulded shear strength, in the salt migrated samples. Thus, the clay is

altered from very sensitive clay to clay of low sensitivity. No such alteration is observed in the

samples stored in water.
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CHAPTER 9. CONCLUSION

Oedometer test results display an increase in preconsolidation pressure in the salt migrated

samples, relative to reference samples. No clear increase is evident in the samples stored in

the water cell. However, the preconsolidation pressure is difficult to interpret in most of the

results from samples stored in water cells, and partially in KCl solution cells. A decrease of com-

pressibility, i.e. modulus number, is also evident in the salt migrated samples. No clear trend of

decrease in compressibility is evident in the samples stored in water.

A distinct trend of increase of undrained shear strength, resultant from triaxial undrained com-

pression tests, is evident in both salt migrated samples and samples stored in water. Due to

inhomogeneity in the soil profile, a percent increase cannot be concluded. However, the gen-

eral trend display that the samples stored in water display an increase of approximately half the

increase resulting from the salt migrated samples, relative to the reference results.

A general increase in residual undrained shear strength, resultant from triaxial tests, is observed

in the salt migrated samples. No deviations are evident in the residual strength between the

water and reference samples.

Although some changes are seen in in the water treated samples. The complete alteration of

clay property, as seen in salt migrated clay, is not evident in the weathered clay.

Analysis of cation exchange capacity in sampled clay and concentration of the major ions in the

sampled pore water are recommended to correlate changes in the geotechnical parameters to

the general geochemistry and especially potential variations of the pore water ion concentra-

tion.

Due to the varying storage time and considerable inhomogeneity observed in the profile, based

on observations and initial tests, the tested samples are considered to have a low degree of com-

parability. Thus, only large variations are considered conclusive. The loss of water content in

the samples exposed to salt migration, related to osmosis, alters the properties of the clay. And,

is a considerable source of error. Further investigation to support or discard the conclusions

made in this thesis is recommended.
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Chapter 10

Further investigation

Potential further work include, perform analysis of major ions, i.e. N a+, K +, C a2+, M g 2+, C l−,

SO2−
4 , NO−

3 and HCO−
3 , on the sampled pore water and analyze cation exchange capacity of

the prepared, sampled clay. Diffusion time can be analyzed by back calculation of the recorded

consecrations.

To further investigate the effect of weathering during storage time, the method described in this

thesis should be repeated with the following changes:

• A location of known homogeneity should be chosen as a research area. The samples

should be collected from depths bellow a potential weathered zone. In the Dragvoll area

it is recommended to extract the samples from bellow the minimum depth of 7 m.

• The samples should be tested and stored in the cell in a consistent order.

• The samples should be tested and installed in the allocated storage cells as soon as pos-

sible, preferably within 3-4 days after sampling. Which, will remove the extra variable of

sample storage.

• The KCL solution should be pre-mixed with the desired KCL concentration, to remove the

presumed osmosis effect observed from the clay slurry.

• Prior to cell installation the water content, Atterberg limits and falling cone tests should

be preformed on the samples allocated to salt migration or storage in water. The testing

can be conducted on the top layer of each of these mini block samples.

• When the samples are extracted from the cell, each sample should be inspected with re-

gard to potential layering and visible storage effects.

• For better comparison of undrained shear strength, the triaxial test results should be nor-

malized.
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CHAPTER 10. FURTHER INVESTIGATION

Based on the above changes, the effect of ion concentration on the geotechnical properties can

be analyzed in further detail.

As the clay minerals only represented minor portions of the clay fraction, an XRD analysis on

the clay fraction can be repeated to conform the findings.
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Appendix A

Salt content conversion chart
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APPENDIX A. SALT CONTENT CONVERSION CHART

Figure A.1
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Appendix B

Samples

Table B.1: Mini block samples before and after cell storage (photo: Rikke Nornes Bryntesen and
Tonje Eide Helle)

Stored in
Mini block

sample
Prior to cell installation Extracted from cell

Salt 3.5-3.75 m

Water 3.75-4.0 m

Continued on next page
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APPENDIX B. SAMPLES

Table B.1 – Continued from previous page

Stored in
Mini block

sample
Prior to cell installation Extracted from cell

Salt 4.25-4.5 m

Water 4.75-5.0 m

Salt 5.05-5.3 m

Continued on next page
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APPENDIX B. SAMPLES

Table B.1 – Continued from previous page

Stored in
Mini block

sample
Prior to cell installation Extracted from cell

Water 5.55-5.8 m

Salt 7.45-7.7 m

Water 8.2-8.45 m
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Appendix C

XRD Results
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Appendix D

Oedometer tests on reference samples

All plots taken from Bryntesen [9].

127



Dragvoll CRS
Mini block sample H2 D 3.0−3.25 m
Depth: 

Sampling date: 

Installed in storage cell: 

Opening of the block sample: 

Testing date: 

Strain rate: 

3.13 m 

04.10.13 

4.12.13 

16.10.13 

16.10.13 

1.5%/hr 

σ‘
vo

w 

γ 

OCR 

 

 

= 13.91 kPa 

= 38.70  %
= 18.33 kN/m3

= 9.35  

 

 

σ‘
c

M
oc

m 

σ‘
ref

c
v

 

= 130.00 kPa
= 5.98 MPa 

= 22.05  

= 74.52 kPa 

= 40.00 m2/year
 

0

5

10

15

ε 
[%

]

0

2

4

6

8

10

u b [k
P

a]

0

2

4

6

8

M
 [M

P
a]

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

σ ‘
m

 [kPa]

c v [m
2 /y

ea
r]



Dragvoll CRS
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Dragvoll CRS
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Dragvoll CRS
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Dragvoll CRS
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Dragvoll CRS
Mini block sample H2 D 4.5−4.75 m
Depth: 
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Dragvoll CRS
Mini block sample H1 D 5.0−5.25 m
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Dragvoll CRS
Mini block sample H1 D 5.0−5.25 m
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Dragvoll CRS
Mini block sample H1 D 5.0−5.25 m
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Dragvoll CRS
Mini block sample H1 D 6.0−6.25 m
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Dragvoll CRS
Mini block sample H1 D 6.0−6.25 m
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Dragvoll CRS
Mini block sample H1 D 6.0−6.25 m
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Dragvoll CRS
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Dragvoll CRS
Mini block sample H2 D 8.45−8.70 m
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Dragvoll CRS
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APPENDIX D. OEDOMETER TESTS ON REFERENCE SAMPLES
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Appendix E

Oedometer tests on samples stored in water

and KCl solution
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Dragvoll CRS
Mini block sample H2 D3,5−3,75m Potassium chloride
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Dragvoll CRS
Mini block sample H2 D3,75−4,0m Water
Depth: 
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Dragvoll CRS
Mini block sample H2 D3,75−4,0m Water
Depth: 

Sampling date: 

Installed in storage cell: 

Opening of the block sample: 

Testing date: 

Strain rate: 

3.955 m 

4.10.13 

4.12.13 

20.1.14 

20.1.14 

1.5%/hr 

σ‘
vo

w 

γ 

OCR 

 

 

= 27.67 kPa 

= 40.75  %
= 18.12 kN/m3

= −
 

 

σ‘
c

M
oc

m 

σ‘
ref

c
v

 

= −
= 1.56 MPa 

= 26.36  

= 50.01 kPa 

= 15.15 m2/year
 

0

5

10

15

ε 
[%

]

0

2

4

6

8

10

u b [k
P

a]

0

2

4

6

8

10

M
 [M

P
a]

0 50 100 150 200 250 300 350 400
0

5

10

15

σ ‘
m

 [kPa]

c v [m
2 /y

ea
r]



Dragvoll CRS
Mini block sample H2 D4,25−4,5m Potassium chloride
Depth: 

Sampling date: 
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4.2.14 

6.2.14 
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σ‘
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OCR 

 

 

= 30.20 kPa 

= 37.80  %
= 18.67 kN/m3

= 3.81  
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M
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c
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= 115.00 kPa
= 4.08 MPa 

= 21.07  

= 74.24 kPa 

= 19.21 m2/year
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Dragvoll CRS
Mini block sample H2 D4,25−4,5m Potassium chloride
Depth: 

Sampling date: 

Installed in storage cell: 

Opening of the block sample: 

Testing date: 

Strain rate: 

4.355 m 

4.10.13 

4.12.13 

4.2.14 

6.2.14 

1.5%/hr 

σ‘
vo

w 

γ 

OCR 

 

 

= 30.49 kPa 

= 40.78  %
= 18.67 kN/m3

= 3.94  

 

 

σ‘
c

M
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σ‘
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c
v

 

= 120.00 kPa
= 5.49 MPa 

= 21.69  

= 75.38 kPa 

= 11.41 m2/year
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Dragvoll CRS
Mini block sample H2 D4,75−4,0m Water
Depth: 

Sampling date: 

Installed in storage cell: 

Opening of the block sample: 

Testing date: 

Strain rate: 

4.95 m 

24.10.13 

4.12.13 

10.2.14 

12.2.14 

1.5%/hr 

σ‘
vo
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OCR 

 

 

= 32.65 kPa 

= 41.42  %
= 18.00 kN/m3

= 2.45  
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c
v

 

= 80.00 kPa
= 24.40 MPa 

=   

= 1204.08 kPa 

= 7.09 m2/year
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Dragvoll CRS
Mini block sample H2 D5,05−5,3m Potassium chloride
Depth: 

Sampling date: 

Installed in storage cell: 

Opening of the block sample: 

Testing date: 

Strain rate: 

5.19 m 

24.10.13 

4.12.13 

18.2.14 

20.2.14 

1.5%/hr 
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vo
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= 36.33 kPa 

= 38.04  %
= 18.97 kN/m3

= 2.20  
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M
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c
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= 80.00 kPa
= 2.53 MPa 

= 19.93  

= 49.81 kPa 

= 10.64 m2/year
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Dragvoll CRS
Mini block sample H2 D5,05−5,3m Potassium chloride
Depth: 

Sampling date: 

Installed in storage cell: 

Opening of the block sample: 

Testing date: 

Strain rate: 

5.27 m 

24.10.13 

4.12.13 

18.2.14 

24.2.14 

1.5%/hr 

σ‘
vo
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OCR 

 

 

= 36.89 kPa 

= 38.55  %
= 18.94 kN/m3

= 2.71  
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M
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= 100.00 kPa
= 2.93 MPa 

= 18.97  

= 81.41 kPa 

= 12.44 m2/year
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Dragvoll CRS
Mini block sample H2 D5,55−5,8m Water
Depth: 

Sampling date: 

Installed in storage cell: 

Opening of the block sample: 

Testing date: 

Strain rate: 

5.705 m 

24.10.13 

4.12.13 

25.2.14 

28.2.14 

1.5%/hr 

σ‘
vo
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OCR 

 

 

= 39.94 kPa 

= 0.00  %
= 18.47 kN/m3

= 1.88  
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= 75.00 kPa
= 3.30 MPa 

= 0.00  

=  kPa 

= 0.00 m2/year
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Dragvoll CRS
Mini block sample H2 D5,55−5,8m Water
Depth: 

Sampling date: 

Installed in storage cell: 

Opening of the block sample: 

Testing date: 

Strain rate: 

5.735 m 

24.10.13 

4.12.13 

25.2.14 

28.2.14 
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= 40.15 kPa 

= 0.00  %
= 18.34 kN/m3

= 1.87  
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= 75.00 kPa
= 3.50 MPa 
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= 0.00 m2/year
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Dragvoll CRS
Mini block sample H2 D7,45−7,7m Potassium chloride
Depth: 

Sampling date: 

Installed in storage cell: 

Opening of the block sample: 

Testing date: 

Strain rate: 

7.575 m 

30.10.13 

4.12.13 

10.3.14 
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= 53.02 kPa 
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= 19.57 kN/m3

= 2.17  
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= 115.00 kPa
= 3.27 MPa 

= 21.06  

= 75.21 kPa 

= 23.89 m2/year
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Dragvoll CRS
Mini block sample H2 D8,2−8,45m Water
Depth: 

Sampling date: 

Installed in storage cell: 

Opening of the block sample: 

Testing date: 

Strain rate: 

8.355 m 

30.10.13 

4.12.13 

16.3.14 

16.3.14 

1.5%/hr 
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w 

γ 

OCR 

 

 

= 58.49 kPa 

= 34.13  %
= 19.33 kN/m3

= 1.20  
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= 70.00 kPa
= 2.33 MPa 

= 24.40  

= 40.01 kPa 

= 6.69 m2/year
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Dragvoll CRS
Mini block sample H2 D8,2−8,45m Water
Depth: 

Sampling date: 

Installed in storage cell: 

Opening of the block sample: 

Testing date: 

Strain rate: 

8.385 m 

30.10.13 

4.12.13 

16.3.14 

16.3.14 

1.5%/hr 
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= 58.69 kPa 

= 35.18  %
= 18.57 kN/m3

= 1.36  
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c
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= 80.00 kPa
= 3.90 MPa 

= 296.86  

= 51.07 kPa 

= 7.07 m2/year
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Appendix F

Triaxial test on reference samples

All plots taken from Bryntesen [9].
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Dragvoll Bore Hole 1

Mini Block specimen D 5,0-5,25m

Triax depth: 5,07 m

p’0- Consolidated
Test date: 1.10.2013
σ’vo= 35 kPa
w   = 41,0%
ϒ    = 18,85 kN/m2

ΔV = 3,97 cm2

εf = 0,7 %
Su   = 15,9 kPa
Tan ϕ = 0,62
a   = 3,64 kPa
D= +0,27



Dragvoll Bore Hole 2

Mini Block specimen D 3,0-3,25m

Triax depth: 3,17 m

P1
p’0- Consolidated
Test date: 16.10.2013
σ’vo= 22,5 kPa
w   =45,6 %
ϒ    = 17,45 kN/m2

ΔV = 0,59 cm3

εf = 0,67 %
Su   = 28,19 kPa
ϕ = --
a   = --
D  = +0,03

P2
p’0- Consolidated
Test date: 16.10.2013
σ’vo= 22,5 kPa
w   = --
ϒ    = 17,24 kN/m2

ΔV = 0,52 cm3

εf = 0,7 %
Su   = 21,6 kPa
Tan ϕ = 0,73
a   = 5,8 kPa
D  = +0,04



Dragvoll Bore Hole 2

Mini Block specimen D 3,25-3,50m

Triax depth: 3,378 m

p’0- Consolidated
Test date: 14.11.2013
σ’vo= 23,6 kPa
w   = --
ϒ    = --
ΔV = 0,80 cm3

εf = 0,66 %
Su   = 21,88 kPa
Tan ϕ = 0,58
a   = 2,8 kPa
D = +0,09



Dragvoll Bore Hole 2

Mini Block specimen D 4,0-4,25m

Triax depth: 4,172 m

p’0- Consolidated
Test date: 18.11.2013
σ’vo= 29,19 kPa
w   = 38,4 %
ϒ    = 17,2 kN/m2

ΔV = 1,03 cm3

εf = 0,46 %
Su   = 19,81 kPa
Tan ϕ = 0,61
a   = 7,2 kPa
D  = +0,18



Dragvoll Bore Hole 2

Mini Block specimen D 4,50-4,75m

Triax depth: 4,663 m

P1
p’0- Consolidated
Test date: 25.11.2013
σ’vo= 32,6 kPa
w   = 41,8 %
ϒ    = 18,66 kN/m2

ΔV = 1,14 cm3

εf = 1,27 %
Su   = --
Tan ϕ = --
a    = --

P2
p’0- Consolidated
Test date: 29.11.2013
σ’vo= 32,6 kPa
w   = 41,1 %
ϒ    = 17,48 kN/m2

ΔV = 1,91 cm3

εf = 0,38 %
Su   = 19,09 kPa
Tan ϕ = 0,47
a    = 6,4 kPa

P3
p’0- Consolidated
Test date: 1.12.2013
σ’vo= 32,6 kPa
w   = 41,4 %
ϒ    = 18,68 kN/m2

ΔV = 1,48 cm3

εf = 0,37 %
Su   = 17,00 kPa
Tan ϕ = 0,47
a   = 8,2
D =+0,01

P1 P2

P3



Dragvoll Bore Hole 2

Mini Block specimen D 8,45-8,70m

Triax depth: 8,468 m

P1
p’0- Consolidated
Test date: 8.11.2013
σ’vo= 59,3 kPa
w   = 35,2 %
ϒ    = 19,37 kN/m2

ΔV = 11,6 cm3

εf = 0,21 %
Su   = 26,2 kPa
ϕ = --
a    = --
D = +0,22

P2
0,5 p’0- Consolidated
Test date: 8.11.2013
σ’vo= 59,3 kPa
w   = 35,3 %
ϒ    = 19,66 kN/m2

ΔV = 30,3 cm3

εf = 0,77 %
Su   = 21,0 kPa
Tan ϕ = 0,43
a    = 11,2 kPa
D = +0,32

P1 P2



Dragvoll Bore Hole 2

Mini Block specimen D 8,70-9,00m

Triax depth: 8,828 m

P1
1,1 p’0- Consolidated
Test date: 25.11.2013
σ’vo= 61,8 kPa
w   = 33,1 %
ϒ    = 19,5 kN/m2

ΔV = 5,0 cm3

εf = 0,44 %
Su   = 29,3
ϕ = --
a    = --
D = + 0,26

P2
p’0- Consolidated
Test date: 12.11.2013
σ’vo= 61,8 kPa
w   = 37,5 %
ϒ    = 19,6 kN/m2

ΔV = 4,0 cm3

εf = 0,44 %
Su   = 24,2 kPa
Tan ϕ = 0,43
a    = 9,8 kPa
D = +0,23

P3
p’0- Consolidated
Test date: 7.12.2013
σ’vo= 61,8 kPa
w   = 38,1%
ϒ    = 19,46 kN/m2

ΔV = 5,25 cm3

εf = 0,4 %
Su   = 21,5 kPa
Tan ϕ = 0,43
a    = 9,8 kPa
D = +0,23

P1 P2

P3



Appendix G

Triaxial test on samples stored in water and

KCl soultion
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Treaxial test, Dragvoll bore hole 2. Stored in saturated potassium chloride solution
Mini Block sample D 3,5-3,75m

Depth: 3,690m
Sampling date: 4.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 15.1.14
Test date: 15.1.14
strain rate: 1,5 %/hour
p`

0
-consolidation

`
vo
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 

 
V


v
S

u
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f

= 25.83 kPa
= 34.26 %

= 19.08 kN/m3

 

= 1.18 cm3

= 0.51 %
= 24.22 kPa
 
= 2.50 %
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c

OCR
D
 
 
 
 
 
 

= 90 kPa
= 3.72 
= -0.08 
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Treaxial test, Dragvoll bore hole 2. Stored in saturated potassium chloride solution
Mini Block sample D 3,5-3,75m

Depth: 3,690m
Sampling date: 4.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 15.1.14
Test date: 19.1.14
strain rate: 1,5 %/hour
1,1p`

0
-consolidation

`
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V


v
S
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f

= 25.83 kPa
= 33.48 %

= 19.31 kN/m3

 

= 1.55 cm3

= 0.67 %
= 22.81 kPa
 
= 2.50 %
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Treaxial test, Dragvoll bore hole 2. Stored in oxygen free destilled water
Mini Block sample D 3,75-4,0m

Depth: 3,922m
Extraction date of specimen: ?
Installed in water cell: 4.12.13
Opening date of block sample: 20.1.14
Test date: 20.1.14
strain rate: 1,5 %/hour
p`

0
-consolidation

`
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0

= 83.00 kPa
= 35.20 %

= 19.37 kN/m3

 

= 1.33 cm3

= 0.57 %
= 13.71 kPa
 
= 1.05 %
= 28.92 MPa
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= 0.69 
= 0.97 
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Treaxial test, Dragvoll bore hole 2. Stored in oxygen-free, destilled water
Mini Block sample D 3,75-4,0m
Depth: 3,922m
Sampling date: 4.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 20.1.14
Test date: 20.1.14
strain rate: 1,5 %/hour
p`

0
-consolidation

Note: Equipment error.
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Treaxial test, Dragvoll bore hole 2. Stored in saturated potassium chloride solution
Mini Block sample D 4,25-4,5m

Depth: 4,35m
Sampling date: 4.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 4.2.14
Test date: 6.2.14
strain rate: 1,5 %/hour
1,1p`
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-consolidation
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Treaxial test, Dragvoll bore hole 2. Stored in saturated potassium chloride solution
Mini Block sample D 4,25-4,5m

Depth: 4,35m
Sampling date: 4.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 4.2.14
Test date: 6.2.14
strain rate: 1,5 %/hour
p`
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Treaxial test, Dragvoll bore hole 2. Stored in saturated potassium chloride solution
Mini Block sample D 4,25-4,5m
Depth: 4,35m
Sampling date: 4.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 4.2.14
Test date: 6.2.14
strain rate: 1,5 %/hour
1,1p`

0
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Note: Equipment error.
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Treaxial test, Dragvoll bore hole 2. Stored in oxygen-free, destilled water
Mini Block sample D 4,75-5,0m

Depth: 4,895m
Sampling date: 24.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 10.2.14
Test date: 12.2.14
strain rate: 1,5 %/hour
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Treaxial test, Dragvoll bore hole 2. Stored in oxygen free destilled water
Mini Block sample D 4,75-5,0m

Depth: 4,895m
Extraction date of specimen: 24.10.13
Installed in water cell: 4.12.13
Opening date of block sample: 10.2.14
Test date: 12.2.14
strain rate: 1,5 %/hour
1,1p`
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Treaxial test, Dragvoll bore hole 2. Stored in oxygen-free, destilled water
Mini Block sample D 4,75-5,0m
Depth: 4,895m
Sampling date: 24.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 10.3.14
Test date: 12.3.14
strain rate: 1,5 %/hour
1,1p`
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Note: Equipment error.
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Treaxial test, Dragvoll bore hole 2. Stored in oxygen-free, destilled water
Mini Block sample D 5,55-5,8m
Depth: 5,73m
Sampling date: 24.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 24.2.14
Test date: 24.2.14
strain rate: 1,5 %/hour
p`
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-consolidation

Note: Power brakeage during shear phase.
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Treaxial test, Dragvoll bore hole 2. Stored in oxygen-free, destilled water
Mini Block sample D 5,55-5,8m

Depth: 5,73m
Sampling date: 24.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 24.2.14
Test date: 24.2.14
strain rate: 1,5 %/hour
1,1p`
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Treaxial test, Dragvoll bore hole 2. Stored in oxygen-free, destilled water
Mini Block sample D 5,55-5,8m
Depth: 5,73m
Sampling date: 24.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 24.2.14
Test date: 24.2.14
strain rate: 1,5 %/hour
1,1p`
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Note: Equipment error.
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Treaxial test, Dragvoll bore hole 2. Stored in saturated potassium chloride solution
Mini Block sample D 5,05-5,3m

Depth: 5,245m
Sampling date: 24.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 18.2.14
Test date: 19.2.14
strain rate: 1,5 %/hour
p`

0
-consolidation

`
vo

w 

 

 
V


v
S

u

 


f

= 36.72 kPa
= 34.26 %

= 19.52 kN/m3

 

= 2.42 cm3

= 1.04 %
= 31.87 kPa
 
= 1.42 %

`
c

OCR
D
 
 
 
 
 
 

= 100 kPa
= 2.71 
= -0.29 
 
 
 
 
 
 



0 5 10 15 20
0

5

10

 [%]

u
 [

kP
a

]

20 25 30 35 40 45 50

15

20

25

30

35

40

45

50

p` [kPa]

q
 [

kP
a

]

10 15 20 25 30

0

5

10

15

20

25

30

 `
3
 [kPa]

0
.5

(
` 1

-
` 3

) 
[k

P
a

]

0 50 100 150
0

0.5

1

p
t [

p
s]

d
V

 [
cm

3
]

0 5 10 15 20
0

10

20

30

40

50

 [%]

q
 [

kP
a

]

Treaxial test, Dragvoll bore hole 2. Stored in saturated potassium chloride solution
Mini Block sample D 5,05-5,3m

Depth: 5,245m
Sampling date: 24.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 18.2.14
Test date: 19.2.14
strain rate: 1,5 %/hour
p`
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Treaxial test, Dragvoll bore hole 2. Stored in saturated potassium chloride solution
Mini Block sample D 5,05-5,3m
Depth: 5,245m
Sampling date: 24.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 18.2.14
Test date: 19.2.14
strain rate: 1,5 %/hour
p`

0
-consolidation

Note: Equipment error.
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Treaxial test, Dragvoll bore hole 2. Stored in saturated potassium chloride solution
Mini Block sample D 7,45-7,7m
Depth: 7,615m
Sampling date: 30.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 10.3.14
Test date: 11.3.14
strain rate: 1,5 %/hour
p`

0
-consolidation

Note: Power brakeage during shear phase.
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Treaxial test, Dragvoll bore hole 2. Stored in saturated potassium chloride solution
Mini Block sample D 7,45-7,7m
Depth: 7,615m
Sampling date: 30.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 10.3.14
Test date: 11.3.14
strain rate: 1,5 %/hour
p`

0
-consolidation test 2

Note: Equipment error.
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Treaxial test, Dragvoll bore hole 2. Stored in oxygen-free, destilled water
Mini Block sample D 8,2-8,45m
Depth: 8,39m
Sampling date: 30.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 16.3.14
Test date: 16.3.14
strain rate: 1,5 %/hour
p`

0
-consolidation test 2

Note: Equipment error.

`
vo

w 

 

 
V


v
S

u

 


f

= 58.73 kPa
= 32.07 %

= 19.61 kN/m3

 

= 5.56 cm3

= 2.40 %
= 20.02 kPa
 
= 1.21 %

`
c

OCR
D
 
 
 
 
 
 

= 70 kPa
= 1.20 
= -0.06 
 
 
 
 
 
 



0 5 10 15 20
0

10

20

30

40

 [%]

u
 [

kP
a

]

15 20 25 30 35 40 45
15

20

25

30

35

40

45

50

55

p` [kPa]

q
 [

kP
a

]

5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

 `
3
 [kPa]

0
.5

(
` 1

-
` 3

) 
[k

P
a

]

0 20 40 60 80
0

2

4

6

p
t [

p
s]

d
V

 [
cm

3
]

0 5 10 15 20
0

10

20

30

40

50

 [%]

q
 [

kP
a

]

Treaxial test, Dragvoll bore hole 2. Stored in oxygen-free, destilled water
Mini Block sample D 8,2-8,45m
Depth: 8,39m
Sampling date: 30.10.13
Installed in storage cell: 4.12.13
Opening date of block sample: 16.3.14
Test date: 16.3.14
strain rate: 1,5 %/hour
p`
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APPENDIX G. TRIAXIAL TEST ON SAMPLES STORED IN WATER AND KCL SOULTION
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Appendix H

Oedometer comparison
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