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"In science there is only physics, all the rest is just stamp collecting." — 
Lord Kelvin (1824-1907). 
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ABSTRACT

 

Osteoarthritis (OA) is a highly prevalent, disabling, complex joint disorder, and a leading 

cause of individual and socioeconomic burden. The tissue that contributes the most 

extraordinary functional capacities and forms the bearing surface of all synovial (e.g., knee) 

joints, is articular cartilage. Degeneration of the articular cartilage is directly associated with 

the progression of OA. Due to the lack of resolution and sensitivity, currently used clinical 

imaging modalities (e.g., X-ray, MRI, and ultrasound) are not efficient in the assessment of 

early cartilage disorders. Nonlinear optical imaging and Raman spectroscopy are evolving, 

advanced microscopy and bio-analytical technique, respectively, which may be used for 

biomedical applications. Using such techniques in the analysis of different grades of 

osteoarthritic cartilage in humans rather than an animal model is more relevant to 

demonstrate the clinical potential.  

The goal of this thesis is to demonstrate the capability of nonlinear optical microscopy 

(NLOM) and Raman spectroscopy for morphological and biochemical characterization of 

human articular cartilage obtained from the femoral condyle of the knee. Novel 

morphological features (like microsplits and wrinkles) in early stage of osteoarthritic 

cartilage were observed by second harmonic generation (SHG) microscopy; structures that 

would otherwise not be visible in existing clinical imaging modalities. Within the group of 

ICRS Grade-I cartilage, possibly distinct phases of OA were observed. In order to perform 

polarization-SHG (p-SHG) microscopy, a portable polarization optical module was developed 

and integrated in a commercial microscope. The presence of fibrocartilage in early stage 

(ICRS Grade-I) of OA was observed by p-SHG microscopy. Furthermore, it was 

demonstrated that alteration of the collagen molecule’s pitch angle can be quantified by p-

SHG microscopy. By using Raman spectroscopy, a relative assessment of proteoglycan and 

amide (ordered vs. disordered protein coil) content, in different grades of osteoarthritic 

cartilage (ICRS Grade-I, II, III), was performed and their respective indication was 

discussed. A correlation between two different clinical grading systems (ICRS Vs. OARSI) of 

OA was evaluated. Additionally, a label free analysis of chondrocytes isolated from 

osteoarthritic cartilage was performed, which demonstrated that Raman micro-spectroscopy 

may reveal changes in biochemical compositions at the cellular level. The bio-mechanical 

characterizations of osteoarthritic articular cartilage are in progress. As a future plan, the 

correlations between novel morphological, bio-chemical and biomechanical features will be 
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investigated. Such correlations may enhance our understanding about the progression of 

OA.  

NLOM and Raman spectroscopy are minimally invasive and label free techniques. By the 

use of a miniaturized fiber based probe head, these techniques can be integrated with 

modern clinical arthroscopes and thus potentially be used for in vivo analysis. Our proof-of-

concept study encourages further investigation for the development of NLOM and Raman 

arthroscope as a potential diagnostic tool for the use in Orthopaedics.  

Keywords: Optics and Photonics for biomedical applications, Raman spectroscopy, 

Nonlinear optical imaging, (Polarization-) Second Harmonic Generation Microscopy, Two-

Photon Excited Fluorescence Microscopy, Articular cartilage, Collagen, Chondrocyte, 

Osteoarthritis.  
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INTRODUCTION AND BACKGROUND 

(a) Osteoarthritis 

Osteoarthritis (OA) is a complex musculoskeletal disorder whose origin is not exactly clear. 

The views about OA are continuously evolving. It is believed that the disease primarily 

affects the quality of articular cartilage, both collagen and other extra-cellular matrix (ECM) 

components, as well as the underlying bone. It is a leading cause of disability among older 

adults. In Europe, a total joint replacement surgery is being done due to OA every 1.5 

minutes. In the United States, situation is even worse, where a total of 500,000 

replacement are performed every year1-3. It is a major public health issue of increasing 

individual and socioeconomic burden.  It was Recently found that it is the fastest increasing 

major health condition in terms of global ‘years lived with disability (YLD)’ ranking4. It 

results in extensive use of medical, physical and surgical therapy and therefore has major 

socioeconomic implications.  

Although the gross morphological changes in arthritis are known, relatively little is known 

about the underlying mechanism associated with the progression of OA. The inherent 

heterogeneity and slow evolution of the joint disorder, amplified by a lack of accurate 

characterization methods, complicate early diagnosis. In fact, there is no “gold standard” 

available which can provide a clear dichotomy between those with and without the disorder. 

However, varieties of diagnostic criteria are under development. Currently a combination of 

clinical symptoms and test are being used to diagnose OA. 

 

(b) Clinical features of Osteoarthritis 

Pain in the joints, stiffening of the joints after inactivity or during wakeup time in morning, 

restricted movement of the joint, bony swelling, crepitus and deformities of the joints are 

known clinical features associated with OA. However, some of these depend on the general 

health of the patient and lack reproducibility, which creates difficulty in defining OA 

clinically. Moreover, several features are also present in other form of arthritis. Blood tests 

e.g., erythrocyte sedimentation rate and/or urine test helps in distinguishing OA from other 

inflammatory forms of joint disorder.  After the identification of clinical symptoms, in order 

to verify OA, the clinician can choose other diagnostic criteria based on radiographic or 

other sophisticated imaging modalities changes. 
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(C) An overview of clinical imaging modalities in the context of OA 

 Radiography 

The general pathologic definition of OA emphasizes the progressive thinning of articular 

cartilage and bone remodeling. Conventional radiography is a straightforward and least 

expensive way for imaging the joint. Although, cartilage cannot be visualized directly in 

radiography, the technique provides an indirect way to determine the thickness of cartilage, 

marginal osteophytes and meniscal integrity. This method of OA assessment relies mainly 

on lesions associated with subchondral bone and narrowing of joint space. A continuous 

increase in joint space narrowing indicates progression of OA. Depending on the joint space 

narrowing, a score called Kellgren-Lawrence (K/L) score is assigned5. K/L score is a widely 

accepted method for the evaluation of the severity of OA. Figure 1 shows the X-ray data 

from patients with OA (grades 1 - 4) and acute inflammatory conditions of the knee joints6.  

 

Figure 1: X-ray image of patients with osteoarthritis6 (reproduced with kind permission). 

Classification of grade is based on K/L score. 

 

Assessment of OA by radiography has a few issues. First, it lacks sensitivity. Second, it 

emphasizes only bone changes and bone abnormalities. Due to these reasons joint damage 

appears on plain radiograph only at advanced stage of OA. Moreover, K/L score is very 

subjective and has poor reproducibility7. The correlation between radiological diagnosis and 

visual gross assessment (depth and size of cartilage lesion) of OA severities is not very 

encouraging8. Therefore, the prediction of cartilage condition by radiographic assessment of 

joint space is considered to be inaccurate8,9. Several investigators have worked to reduce 

the inter- and intra-reader variability and tried to enhance the reliability10,11. Protocols for 

standardization of radiographic assessments are in progress7,12. However recently the 
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Osteoarthritis Research Society International (OARSI) working group still recommended the 

option of  radiographic joint space width for clinical trials of structure modification13 

provided radiographic image were obtained with the knee in a standardized flexed 

position14. It is worth to note that the measurement of joint space width by radiology is  

actually associated with several pathologies involved in OA including damage of articular 

cartilage. Therefore, in order to directly image and asses the morphology of cartilage -MRI, 

is becoming increasingly important15. 

 

 Magnetic Resonance Imaging (MRI) 

MRI is not often used in routine clinical assessment or diagnosis of OA. In comparison with 

radiography, it is more suitable for the study of cartilage disease progression and treatment 

response in OA. It offers multiplanar cross sections and better image resolution than 

radiography, without ionizing radiation. It is capable of imaging all soft tissue components of 

a joint simultaneously and is therefore an important imaging modality in the context of 

whole organ imaging (e.g., full knee joint). By utilizing this modality, in a knee joint it is 

possible to obtain information about articular cartilage16,17, ligaments18, tendons18, and bone 

lesions19,20. Morphological assessment provides information about the structural integrity, 

thickness and loss of cartilage. Currently for the morphological imaging of cartilage three-

dimensional spoiled gradient recalled echo imaging with fat suppression (3D-SPGR) 

technique is in use21,22. This sequence creates contrast in the image by acquisition of high 

signal from cartilage and low signal from adjacent joint fluid.  

Besides morphological assessment, recently, MRI is also evolving to provide physiological 

content of cartilage including information about the status of glycosaminoglycan (GAG) and 

collagen matrices. T1rho imaging is a promising method which may be sensitive to early 

proteoglycan depletion23 and hence may be effective in visualizing early stage OA24,25. 

During progression of OA the physiochemical interactions in the macro-molecular 

environment are disrupted due to proteoglycan depletion and therefore T1rho can be used 

to measure the interaction between ECM environment and motion-restricted water 

molecules26. 

Atoms having odd number of proton/neutrons possess net nuclear spin and therefore exhibit 

the phenomena magnetic resonance.  The nuclei of Sodium-23(Na23) in addition to 

hydrogen (1H) are useful for cartilage imaging. MRI imaging technique indirectly utilizes the 

negative fixed charge density in ECM of cartilage. This negative charge arises due to 

presence of GAG chains and carboxylate groups in the cartilage matrix. Due to damage in 
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cartilage, proteoglycan depletion (i.e., change in concentration of negatively charge ions) 

occurs and therefore Na23 signals decline27,28. This technique has shown promising results 

and may be useful in depicting the proteoglycan depletion region29 in articular cartilage. 

However, this technique needs special coils (transmit and receive) and more imaging 

acquisition time to achieve good contrast (high signal to noise ratio). 

To improve visibility, Gadolinium based contrast agents are commonly used in MRI. It works 

similarly to Na23 imaging and accumulation depends on the distribution of negative charge 

density in the cartilage matrix. After the injection it penetrates the cartilage and relatively 

accumulates more where the GAG content is less. Subsequent T1 imaging or imaging with 

3D-Spoiled Gradient Recalled (SPGR) pulse sequences provides an image with a depiction of 

relative GAG distribution. In general this method is referred to as Delayed Gadolinium-

Enhanced MRI of Cartilage (dGEMRIC), where the term delay corresponds to the time 

required for the Gadolinium ion to penetrate the cartilage30,31. However this technique is 

also time consuming and is difficult to perform on a routine basis. 

 

 Ultrasound 

Cartilage can be identified by ultrasound and is sensitive to its physical properties32. 

However, in clinical practice visualization of cartilage in vivo in the central load bearing 

areas of a joint is difficult, and therefore the clinical relevance to articular cartilage is 

questionable. The interface between soft tissue and bony cortex is highly reflective and 

therefore prevents the sound wave to penetrate the cortex. Hence it prevents the 

visualization of pathological changes inside the bone. Therefore, in contrast to MRI, 

subchondral bone changes (e.g., bone marrow lesions) are not readily apparent in 

ultrasound imaging. The main advantage of ultrasound over radiography is the detection of 

synovial pathologies including hypertrophy, vascularity, and presence of synovial fluid33,34. 

These conditions are more relevant to rheumatoid arthritis. It is proposed that besides 

rheumatoid arthritis it may also be applied to OA because the difference in synovial 

inflammation between the two diseases is quantitative34,35. The application and utilization of 

ultrasound for OA, the large scale investigation is on the way36. The operator dependency 

and lack of resolution are major limitations associated with ultrasound imaging.  
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Table-I: A comparison of different imaging modalities 

Imaging modality Imaging depth Resolution 

Confocal microscopy ~ 0.2 mm ~ 1 m 

Two photon  microscopy ~ 0.5 mm ~ 1 m 

Optical coherence tomography ~ 1-2 mm ~ 10 m 

Ultrasound ~ 60 mm ~ 150 m 

High resolution CT Whole joint ~ 300 m 

MRI Whole joint ~ 1 mm 

 

 Histopathology 

As mentioned, OA is a complex disorder which primarily affects the quality of articular 

cartilage and underlying bone.  Hyaline cartilage is mostly found in diarthroidal joints. It 

covers the head section of the joint bone, typically called articular cartilage. Cells found in 

the articular cartilage are called chondrocytes. They are distributed in a circumscribed space 

called the lacunae. These cells form 1-5% of the tissue volume. The main function of the 

chondrocyte is to produce large amounts of ECM which mainly comprise collagen (60% of 

dry weight), proteoglycans (25–35% of dry weight), and non-collagenous proteins (15–20% 

of dry weight)40.  Water forms the 65-80% of the cartilage and plays an important role in 

nutrient transfer and load distribution. In hyaline cartilage collagen molecules are mainly 

type II with smaller amounts of type IX and XI collagens. Collagen molecules provide tensile 

strength while proteoglycan molecules provide compressive resistance to the articular 

cartilage. 
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Figure 3: A schematic diagram that represents different zones of articular 

cartilage41(reproduced with kind permission). 

 

Articular cartilage is mainly composed of three zones (superficial, middle and deep). A 

schematic diagram that represents different zones of articular cartilage is shown in figure 3. 

The transition among these zones is somewhat continuous but the calcified cartilage is 

separated by a distinct mark of mineralization called the tidemark. In the superficial zone 

chondrocytes and collagen fibers at the surface of the cartilage are mostly aligned parallel 

to the surface and contribute to resisting shear stress. In the middle zone, the chondrocytes 

and collagen fibers are more randomly aligned to distribute the load throughout the tissue 

and, in the deep zone aligned perpendicular to the surface and thus plays an important role 

in securing the cartilage to the bone by anchoring the collagen fibrils to the subchondral 

bone41,42.   

 

Figure 4: Histological evaluation (Otte’s Method43) of cartilage degradation in 

OA44(reproduced with kind permission).   
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Cartilage histopathologic features provide characteristics associated with biological activities 

and progression of OA. Histological grading and staging of OA in a standardized format play 

an important role for the international community in order to compare different studies. 

Several grading system have been adopted for characterization of cartilage. Currently, 

histopathological assessment of cartilage are mainly based on Collins scale45,46, Otte’s 

method43, Mankin score47 and OARSI grade48. Osteoarthritic grade is defined by depth 

progression into cartilage and serves like an index for severity of the disease. A schematic 

diagram (figure 4) shows the typical morphology of articular cartilage and respective 

assignment of osteoarthritic grade during the progression of OA43. The prominent 

histological changes associated with cartilage in OA are erosion, fibrillation, clefts, 

chondromalacia, loss of metachromasia, duplication of tidemark and cloning of 

chondrocytes49-51. Typically hematoxylin and eosin (H & E) histology is sufficient to interpret 

the pathology of cartilage. However, some special histochemical stains like alcian blues and 

safranin-O (cationic dyes) may be used to assess the presence of proteoglycan in cartilage. 

Based on the mentioned structural/morphological features and stains, the grade of OA is 

defined in histological sections which are generally assessed at low power magnification.  

However, in histological grading system the interrelation between the assessment variables 

is not linear and wide interobserver variations were found for mild or earlier phases of the 

disease in many OA model systems48. The reproducibility and the validity of the grading 

system for osteoarthritic cartilage has been questioned formally52,53. 

 

(d) Role of nonlinear optical microscopy in the investigation of OA 

Degradation of articular cartilage is directly associated with progression of OA. Radiographic 

imaging cannot provide direct information of degradation and morphology of cartilage. 

Morphological changes in cartilage at the micron level and structural change associated with 

collagen fibers are difficult to investigate with MRI and ultrasound due to lack of resolution. 

Although OCT provides reasonably good resolution (~ 10 m), it lacks the specificity to 

distinguish the biological constituents. Arthroscopy remains a useful minimally invasive 

technique but it also lacks high resolution and specificity. Nonlinear optical microscopy 

(NLOM) is a useful technique to provide high resolution (~ 1 m) images of intact tissue 

(table-I) without any need of sectioning and staining of cartilage. It utilizes endogenous 

optical signals from the ECM and chondrocytes which allow an improved way of investigation 

for chondrocytes and matrix physiology with minimal artifacts. It provides better cell 
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Inherent 3-D optical sectioning capability of NLOM enables the technique to provide depth-

dependent changes in tissue morphology and composition. Using backscattered 

experimental geometry, NLOM technique is not limited by sample thickness. This 

demonstrates that the technique is compatible with in vivo investigation by the use of an 

endoscopic probe, which necessarily uses the backscattered signal. Miniaturized multiphoton 

probes for endoscopic applications have been demonstrated by several groups61,62. 

Structural and morphological characterization of the cartilage matrix at micron level 

resolution with high specificity and sensitivity potentially in vivo is not possible by other 

clinical imaging modalities. Therefore, investigation of osteoarthritic cartilage by NLOM may 

reveal hidden features of OA. It can help in understanding the mechanism of disease and 

ultimately may provide a biomarker for early diagnosis of OA.  

 

(e) Role of Raman spectroscopy in the investigation of OA 

While the “wear and tear” model of OA is becoming old fashion, the molecular /enzymatic 

role in progression of OA is becoming more relevant in modern investigations. 

Characterization of molecular and biochemical changes that differentiate advanced diseased 

early stages or normal tissue is a major area of current research in OA. Currently used 

clinical imaging modalities (e.g. CT, MRI) provide unique and often complementary 

information to the rheumatologist but they fail to provide crucial information about the 

biochemical composition of the components of ECM at the molecular level. Changes at 

molecular level occur before macroscopic changes63,64. This information can help in 

understanding the underlying pathogenic mechanism associated with progression of OA. 

Moreover, a technique which can detect changes at the molecular level in early stage of the 

disease may play a crucial role in early stage diagnosis of a joint disorder.  

The Light based vibrational spectroscopic technique-Raman spectroscopy can be used to 

obtain information about the composition and the chemical environment of the constituents 

of a tissue. It provides information at the molecular level potentially in-vivo (by the use of a 

miniaturized probe), without any external labelling and preparation of tissue samples65. 

Moreover, Raman microspectroscopy can provide information at a submicron spatial 

resolution66.  

 

 

 



18 
 

Investigation of osteoarthritic cartilage 

During the last decade, Raman spectroscopy has been employed for studying ECM of 

musculoskeletal tissues.  However, most of the investigations of musculoskeletal tissues are 

focused on the analysis of bone tissue64,67-72. Because the underlying bone is exposed only 

during the most advanced stage of osteoarthritis (i.e., ICRS Grade IV), to detect early-stage 

osteoarthritis in vivo, it is necessary to perform Raman analysis on the articular cartilage 

rather than on the bone. 

Over the past few years, several groups have used Raman spectroscopy to analyze the 

properties of cartilage. However, most studies have focused on the assignment and the 

structure of Raman bands 64,73 rather than investigation of the disease. Although a few 

reports are available on induced OA74 and detection of proteoglycan75 in animal model, 

investigation of human rather than animal cartilage is potentially more relevant to clinical 

application.  

 

Investigation of osteoarthritic chondrocytes 

The balance between anabolic and catabolic processes (homeostasis) determines the 

integrity of articular joint tissue. The structural breakdown of collagen and proteoglycans in 

the ECM of cartilage during progression of OA is believed due to an imbalance in 

homeostasis because of increased catabolic activity by chondrocytes76. Several studies also 

show that progression of OA is associated with increased chondrocyte cell death.49 

Investigations at the cellular level are, therefore, important in understanding the 

progression of OA as well as other musculoskeletal disorders.     

Raman micro-spectroscopy has numerous times successfully demonstrated early detection 

of neoplasia77, differentiation of tumors grades78, and been useful in providing sub-cellular 

information from living cells79,80.  Therefore, label free investigation of chondrocytes isolated 

from different grade of osteoarthritic cartilage by Raman microspectroscopy may explore 

molecular features associated with progression of disease at the cellular level.  
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independent -tensor elements are left83. By performing excitation polarization 

measurements, these independent -tensor components can be used for pathological 

characterization of connective tissues including articular cartilage59,60,84. The value of tensor 
(n) decreases rapidly with increment in ‘n’, which indicates that higher order nonlinear 

process are very weak responses to the driving optical wave. The prediction of SHG can be 

performed by calculation of wave propagation. The equation of propagating wave can be 

written as follows: 

 

Where n, c, and 0 denotes the refractive index of the material, the speed of light, and 

the nonlinear contribution to the polarization and magnetic permeability of free space, 

respectively. Considering incident fundamental and emitted SHG wave to be plane waves of 

the form: 

 

Where j=1,2 and 1= and 2 = 2 . Ej (z) is the spatial field amplitude of the field j and cc is 

the complex conjugate. The nonlinear component of the polarization can be written as 

 

Where the complex amplitude of nonlinear polarization can be written as P2 = 0 (2) . 

Now, the equation of propagating wave can be re-written as follows 

 

By applying slowly varying amplitude approximation the above equation can be simplified. 

Therefore, the first term can be neglected as it is very small with respect to second term. 

Remaining third and fourth term is cancelled out and simplified form of the equation can be 

written as follows 

 

Now the simplest solution of this equation can be obtained under the low depletion 

approximation i.e. conversion of second harmonic is so small that the fundamental field (E1) 

remains essentially almost constant. Considering E1 as constant and solving the equation by 

direct integration for a propagation distance L, the amplitude of SHG field (E2) can be 

written as 
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Where k = 2k1-k2. As we know that the relation between intensity and field strength is 

. Therefore, the intensity of SHG radiation (I2) can be written as 

 

The equation represents that when phase matching condition is satisfied (i.e. k=0), the 

last term becomes unity and therefore the SHG intensity (I2) increases as the square of the 

interaction length (L) as well as incident excitation intensity (I1)85,86 However, for the case 

of biological tissues, perfect phase matching is never achieved. Moreover, the molecules 

(e.g., collagen) are not perfectly aligned in a tissue. Thus, a strict phase matching 

requirement in tissue is relaxed and nonzero  is allowed, in such a way that the SHG 

signal vary in a sinusoidal way with coherence length (L). A general model for phase 

matching condition was developed which show that smaller and larger value of  are 

associated with primarily forward and backward SHG, respectively87.  

 

 Two-Photon Excitation Fluorescence (TPEF) microscopy 

The theory of Two-photon excitation was first predicted by Maria Goeppert-Mayer in 193188 

and first experimentally was observed by Wolfgang Kaiser in 196189. The concept of two-

photon excitation is based on the idea that two photons of comparably lower energy than 

needed for one photon excitation can also excite a fluorophore in one quantum event. Each 

photon carries approximately half the energy necessary to excite the fluorophore and 

arrives within a time window of an attosecond (10-18 s) and combined together to excite the 

molecule as a single quantum event (figure 7a). However, in principle, any combination of 

photons of different energies that sum up to provide an equivalent energy difference is 

possible. 



 

Figure 7
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Where  is average laser intensity,   is fluorophore’s two photon absorption at wavelength 

 ,  is the pulse duration,  is pulse repetition rate,  is Planck’s constant, c is speed of 

light and NA is numerical aperture of microscope objective. This equation shows that if we 

keep the average power and repetition frequency of the laser constant, the probability of 

excitation can be increased by decreasing the pulse width (e.g., from pico-second to femto-

second pulse) of the laser and increasing the NA of focusing objective. Increasing the NA 

represents confinement of the excitation laser power to a smaller focal volume, and thus, 

enhancing the probability of two photon quantum mechanical event. 

In TPEF microscopy, most commonly, a femto-second laser is used. However, as shown in 

above equation, pico-second laser can also be used but with less efficiency. Continuous 

wave laser excitation source was also demonstrated for TPEF microscopy93. The main 

motivation to use CW laser over femto/pico second laser is to show the reduction in system 

cost. However, a CW light source (ArKr laser) requires a ~200 fold increase of average 

power to achieve the same excitation rate as obtained with a femto-second laser.

 Raman spectroscopy 

The phenomena of light scattering had long been studied by Rayleigh (1871), Einstein 

(1910) and others, but no change of wavelength was observed. Scattering in the X-ray 

region by Compton (1923) showed the idea of inelastic scattering. Then, a new kind of 

secondary radiation (induced radiation from atoms and molecules) was reported from 

Kolkata (India) by Raman and Krishnan (1928), later termed as the ‘Raman effect’. 

In Raman spectroscopy, the sample is irradiated by an intense laser beam ( ) and the 

scattered light is detected on charge coupled device (CCD) array. The scatterd light are of 

two types. First, Rayleigh scattering ( ) which is strong sccatering and of the same frequecy 

as the excitation laser ( ). Second, Raman scattering which is a very weak scattering (10-7 

of incident photons) and has frequency  - f (Stoke’s Raman) and  + f (Anti-Stoke’s 

Raman), where  f is the vibrational shift (figure 8). Therefore, in Raman spectroscopy we 

measure the vibrational frequencies of the molecule as a shift from incident frequency in the 

form of a spectrum. In contrast to Infra red (IR) spectra where absorption of IR light by the 

sample as a function of frequency is measured, Raman spectra are measured in UV-Visible 

region as well. Moreover, Raman spectroscopy requires minimal sample processing with 

respect to IR spectroscopy and can be performed in physiological environment and is 

therefore highly suitable for biomedical applications.   
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First term repersents the light of frequencey , which repersents the Rayleigh scttering, 

while second term repersents Raman scattering of the frequency  (anti-Stoke’s) and 

 (Stoke’s). This equation also illustrates that if the rate of change of the polarizability 

is zero i.e., , the molecule is not Raman active. 

 

 

DISCUSSION

 Summary of the papers

Paper-1: Polarization second harmonic generation microscopy provides 

quantitative enhanced molecular specificity for tissue diagnostics.

The susceptibility ( ) tensor element ratio can be used to quantitatively identify the different 

types of SHG scatterers. The available optical elements inside the commercial microscope 

are, in general, not designed for polarization sensitive measurements. Therefore, during the 

propagation of the excitation light, an ellipticity is introduced and thus, the light arriving at 

the sample plane is no longer a linearly polarized light. For p-SHG microscopy, excitation of 

tissue by linearly polarized light is an essential requirement. In this report, we described the 

development of a portable optical module that can be incorporated in the excitation path of 

existing commercial microscope to perform excitation polarization measurements. We also 

described the potential issues responsible for imaging artifacts in p-SHG analysis and 

provided the relevant solutions in terms of calibrations.  Finally, as a proof of concept, for 

the measurement of -parameters, an investigation of heart muscle, ovary tissue and 

osteoarthritic cartilage was performed.  
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Paper-2: Analysis of human knee osteoarthritic cartilage using polarization 

sensitive second harmonic generation microscopy.

During the progression of osteoarthritis replacement of extracellular matrix of cartilage 

takes place. It is reported that the type of cartilage in repaired tissue is not generally 

hyaline (collagen II) but fibrocartilage (collagen I)94,95. Fibrocartilage is not as good as 

hyaline cartilage in terms of adaptation to mechanical forces. Hence, it is important to 

differentiate the type of cartilage, a parameter which could be used in assessment of 

cartilage and may serve as an intrinsic biomarker for the diagnosis of osteoarthritis. In this 

report, by applying p-SHG imaging technique, we found the presence of fibrocartilage even 

in early stage (ICRS Grade I) of osteoarthritis that would otherwise only be visible by 

histology in advanced stage of osteoarthritis. Moreover, we were also able to quantify the 

alteration in the collagen molecules in terms of the pitch angle of the peptide backbone and 

of the methylene side chain; features which are well beyond the level of optical resolution. 

 

Paper-3: Nonlinear optical microscopy of early stage (ICRS Grade-I) osteoarthritic 

human cartilage.  

In comparison to current clinical imaging modalities (e.g., CT, MRI, Ultrasound), nonlinear 

optical microscopy (NLOM) may provide improved characterization of articular cartilage that 

can be used to evaluate cartilage disorders and understand the mechanism behind 

progression of osteoarthritis. Although, using NLOM a few studies of degenerative cartilage 

were performed, the investigation of human tissue rather than animal model, especially with 

early stage of osteoarthritic cartilage, is essential and potentially more relevant to the 

clinical application.  In this investigation, by using nonlinear optical microscopy (NLOM), we 

have investigated early stage (ICRS Grade-I) osteoarthritic cartilage obtained from the 

human knee. In this investigation, we observed that within ICRS Grade-I, distinct 

morphological features were present that may represent different phase of cartilage 

degradation during progression of OA. SHG microscopy shows microsplits even in early 

stage of osteoarthritis that would otherwise not be visible in other clinical imaging 

modalities. Moreover, ripple/wrinkle like feature was also observed in the specimen 

collected from non-load bearing areas of the knee. Visibility of such novel morphological and 

structural features in early stage osteoarthritis demonstrate that SHG microscopy may be a 

promising potential tool that can be used for in vivo diagnosis of osteoarthritis.    
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Paper-4: Optical investigation of osteoarthritic human cartilage (ICRS Grade) by 

confocal Raman spectroscopy: A pilot study.   

Currently used clinical imaging modalities (e.g., CT, MRI) provide unique and often 

complementary information to the rheumatologist. However, these modalities fail to provide 

crucial information about the biochemical composition of the ECM at the molecular level. 

Biomolecular changes in the cartilage matrix during the early stage of osteoarthritis may be 

detected by Raman spectroscopy. Most Raman spectroscopic investigations of osteoarthritis 

are focused on the analysis of bone. Because the underlying bone is exposed only during 

the advanced stage of osteoarthritis (i.e., ICRS Grade IV), to detect early-stage 

osteoarthritis in vivo, it is necessary to perform Raman analysis on the articular cartilage 

rather than on the bone. In this investigation, we have demonstrated the feasibility of 

Raman spectroscopy for biochemical analysis in different stages of human osteoarthritic 

cartilage. Relative assessment of proteoglycan and amide content was performed and their 

respective indication was discussed. We also found that there is high positive correlation 

between two different clinical grading systems (ICRS Vs. OARSI)48,96 of osteoarthritis.  Our 

proof of concept investigation encourages the development of a Raman arthroscope for in

vivo biochemical assessment of cartilage disorder. 

 

Paper-5: Label free optical detection of ICRS grade in osteoarthritic chondrocytes 

by Raman microspectroscopy.   

As chondrocytes is the only formative cell type available in hyaline cartilage, the 

degeneration in articular cartilage and thus, progression of osteoarthritis process can be 

characterized by changes in these cells97-99 . Several studies show that OA disease 

advancement is associated with increased chondrocyte cell death49. Investigations at the 

cellular level are, therefore, important in understanding the progression of musculoskeletal 

disorders. To our knowledge, we have performed the first Raman analysis of osteoarthritic 

chondrocytes. In this study, chondrocytes were isolated from osteoarthritic cartilage of ICRS 

Grade-I, II and III. Grade-IV is not included in the study because it represents exposed 

bone and almost no cartilage. Our investigation clearly indicates changes in protein 

vibrations. The magnitude of the area represented by amide-I peak is decreasing 

consistently with increase in the grade of OA. A similar trend was observed with the peak of 

amide III and phenylalanine. Another spectral feature associated with cell death (1304 cm-1) 

was observed to be increasing with progression of OA, which is in agreement with previous 

studies. Additionally, the principal component analysis indicated that chondrocytes 
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associated with ICRS grade II and III are more heterogeneous (i.e., cells are in different 

stages) than ICRS grade-I.  

 Conclusion and future perspective  
OA is the leading cause of permanent work incapacitation and one of the most common 

reasons for visiting primary care physicians97. It is one of the fastest increasing 

socioeconomic burdens100. The understanding of OA at both the basic as well as the clinical 

level has increased over the past few decades but it seems like a paradox that probably 

more questions have been raised than answered! In many studies of articular cartilages in 

OA, wide variations in degenerative changes are observed possibly due to overlapping of 

multiple disorders which is, in fact, an inherent feature of OA.  

Current clinical modalities provide unique and complementary informations relevant for the 

diagnosis and progression of OA. However, they currently fail to provide the information at 

high resolution or with chemical specificity. NLOM and Raman spectroscopy are emerging as 

important techniques with ever increasing numbers of important application in the field of 

biology, medicine, chemistry and physics. The progression of osteoarthritis (OA) is directly 

associated with degeneration of the articular cartilage.  SHG microscopy is highly specific to 

collagen fibers which is one of the major constituents of articular cartilage and can provide 

high resolution images. Therefore, it can perform better structural characterization of 

articular cartilage compared to other existing clinical modalities, and thus, may provide 

hidden features that can help in the exploration of underlying mechanism of OA. 

Additionally, TPEF microscopy can complement SHG microscopy by proving other relevant 

informations associated with ECM and cells as well.  

Our investigation with SHG microscopy has shown several novel features. First, different 

phases of osteoarthritis were observed within ICRS Grade-I specimens. In initial stage of 

OA, superficial layer of cartilage was present while during progression of OA, it was eroded 

or worn out and therefore, only the middle to deep layer of cartilage was visible. In samples 

with eroded superficial layer, as second feature, microsplits were observed that might 

appear because of imbalance of shear stresses in knee joint due to the absence of a 

superficial layer in cartilage structure. Third, wrinkle/ripple like structures were also 

observed in early stage (ICRS Grade-I) osteoarthritic cartilages which are supposed to a 

characteristic feature of OA101-103. By using p-SHG microscopy, and thus, obtaining  value 

parameter, we observed that fibrocartilage (collagen-I) can be differentiated from hyaline 

cartilage and is observed even in early stage of OA. Fibrocartilage is typically only visible in 
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While NLOM can provide highly resolved structural and morphological features, it lacks in 

providing information about changes in biochemical compositions in articular cartilage. 

Biochemical changes occur before they appear as a morphological or structural features63. 

Raman spectroscopy can provide such information in intact cartilage without adding any 

external labels or dyes and any restriction on sample environment.  

Previous studies on OA by Raman spectroscopy have primarily focused on bone. The 

underlying bone is exposed only during the advanced stage of osteoarthritis (i.e., ICRS 

Grade IV). Our pilot investigation demonstrates that Raman spectroscopy may be used to 

characterize the human articular cartilage based on biochemical compositions. The optics 

involved in Raman spectroscopy are compatible with modern clinical arthroscopes. Hence, 

with the advancement of technology, a miniaturize Raman probe can be integrated with a 

clinical arthroscope and thus, potentially may lead to in vivo Raman arthroscopy that can 

serve as a tool for early diagnosis. Another direction could be finding other biochemical 

features which may enhance the proposed method’s ability to discern degraded cartilage 

even at early stage of manifestation.  It is proposed that the progression of OA is associated 

with early loss of bone owing to increased bone remodeling which finally leads to the loss of 

cartilage105. It has been suggested that the remodeling of subchondral bone plays a role in 

the progression of OA106. However, it remains unclear whether bone or cartilage changes 

occur earlier?107-109. The answer remains unclear but may play an important role in 

understanding the progression of the disease. As a future work, we will attempt to 

determine whether biochemical Raman analysis of cartilage and associated underlying 

subchondral bone can answer this question or not. Relevant spectroscopic data have been 

collected and further investigation is yet to be done.  

Raman microspectroscopy provides a noninvasive and nondestructive analytical capability at 

the scale of single cells in the absence of fluorescent stains. Our study encourages further 

Raman investigation of chondrocytes. It may provide more information about 

proliferation/cell death (apoptosis), degradation and phenotypic alteration of the articular 

chondrocytes. More biochemical informations at the cellular level may clarify osteoarthritic 

features in a better way110. Moreover, live cell analysis may help further in understanding 

the behavior of osteoarthritic chondrocytes. Such manifold analytical possibilities are simply 

not found in any other microscopic technique111. However, despite a number of publications 

and a few clinical trials for various biomedical applications112 (e.g., diagnosis of skin disease, 

diagnosis of cancer, identification of pathogenic micro-organism etc.), Raman spectroscopy 
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In conclusion, a multimodal minimal invasive, high resolution and label free approach i.e., 

combined assessment of NLOM microscopy, Raman spectroscopy and mechanical 

indentation together with clinical imaging and symptoms may provide the most 

comprehensive assessment of the cartilage disorder, which may eventually lead to the early 

diagnosis of OA.  

There are no pain receptors found in cartilage. Therefore, it is difficult to say that any 

correlation between pain and morphological/biochemical/biomechanical feature can be 

found. Nevertheless, detailed knowledge and enhanced understanding will help in early 

diagnosis that will lead towards right treatment. By the development of new techniques and 

tools more accurate and objective informations will be valuable academically. However, the 

clinical value of new tools will be known only after many years of clinical trials. 
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