Marie Austdal

Biomarkers for prediction and
characterization of preeclampsia
using magnetic resonance
metabolomics

Thesis for the degree of Philosophiae Doctor

Trondheim, August 2015

Norwegian University of Science and Technology
Faculty of Medicine
Department of Circulation and Medical Imaging

@NTNU

Norwegian University of
Science and Technology



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor
Faculty of Medicine

Department of Circulation and Medical Imaging

© Marie Austdal

ISBN 978-82-326-1117-1 (print)
ISBN 978-82-326-1116-4 (digital)
ISSN 1503-8181

Doctoral theses at NTNU, 2015:230

Printed by NTNU Grafisk senter



Biomarkgrer for prediksjon og karakterisering av
svangerskapsforgiftning ved bruk av

MR metabolomics

Hypertensive svangerskapskomplikasjoner er en ledende arsak til maternell syke-
lighet og dgd. Svangerskapsforgiftning, eller preeklampsi, oppstar i omtrent 3% av
svangerskap i Norge og kan medfglge for tidlig fgdsel, lav fgdselsvekt, alvorlige kom-
plikasjoner hos mor, og hgyere risiko for hjerte- og karsykdom senere i livet for bade
mor og barn. Svangerskapsforgiftning kjennetegnes av nyoppstatt heyt blodtrykk

og protein i urinen etter 20. svangerskapsuke.

Til tross for intensiv forskning er arsakssammenhengene for utviklingen av svanger-
skapsforgiftning ikke fullt ut forstatt. En mangelfull utvikling av blodarene som forer
til morkaken (placenta) spiller en vesentlig rolle i mange, men ikke alle tilfeller. Nar
fosteret vokser til utover i svangerskapet, blir tilforselen av blod og naeringsstoffer
til morkaken etter hvert utilstrekkelig. Den stressede morkaken sender ut faktorer
til kvinnens blodsirkulasjon, og en inflammasjonsreaksjon oppstar som forarsaker

de kliniske symptomer pa svangerskapsforgiftning.

Arbeidet i denne avhandlingen omhandler bruken av magnetisk resonans (MR)-
spektroskopi og fagfeltet metabolomics for a undersgke den metabolske profilen
under utviklingen av svangerskapsforgiftning, bade tidlig og sent i svangerskapet,
for og etter de kliniske tegnene pa sykdom har oppstatt. Metabolomics er en sys-
tematisk analyse av metabolitter, sma molekylaere forbindelser som er bestanddeler
eller produkter av metabolismen. Sammensetningen av metabolitter forteller om de
biologiske prosessene som foregar i kroppsvaesker eller vev. T denne avhandlingen
ble blodprgver, urin og morkakebiopsier fra kvinner med svangerskapsforgiftning
sammenlignet med friske kvinner, for & undersgke hvilke endringer i metabolismen

som finner sted ved sykdom.

Resultatene fra disse analysene viste at metabolittsammensetningen er vesentlig
endret i serum og urin fra kvinner med aktiv svangerskapsforgiftning sammenlignet
med kvinner med normale svangerskap, og flere av de samme metabolittene var en-
dret ogsa tidlig i svangerskapet hos kvinner som senere utviklet svangerskapsforgift-
ning. Blant endringene var lavere glysin og p-cresol sulfat, og hippurat i urinen
hos kvinner med svangerskapsforgiftning, samt en sammensetning av lipoproteiner i

blodet som ogsa ses hos kvinner med hjerte-karsykdom: hgyere nivaer av “very-low



density lipoprotein” (VLDL) og lavere nivaer av “high-density lipoprotein” (HDL),
ogsa kalt en aterogen lipidprofil (artikkel 1). Nér urin og blod fra kvinner i forste
trimester av svangerskapet ble analysert, viste det seg at kvinner som senere utviklet
svangerskapsforgiftning hadde den samme lipidprofilen tidlig i svangerskapet. T til-
legg hadde kvinnene lavere utskillelse av hippurat i urinen og hgyere utskillelse
av kreatinin. Denne sammensetningen kunne brukes til & predikere svangerskaps-
forgiftning i disse damene like godt som en ultralydmaling av blodstrgmningen til
morkaken, nar malingene ble kombinert med kvinnens kroppsmasseindeks og alder
(artikkel 2). Morkakebiopsier analysert med MR-metabolomics viste tegn til endring
i flere metabolske funksjoner som tidligere er vist a kunne veere affisert i svanger-
skapsforgiftning, blant annet i metabolismen av taurin, glutamin og fosfolipider
(artikkel 3). I tillegg ble morkakeforandringene relatert til endringer i triglyserid,
urat og sykdomsmarkeren sFlt-1 malt i blodet til de samme kvinnene. Denne maten
a analysere vevbiopsier er ny i forskning pa morkaken i svangerskapsforgiftning, og
kan bidra til & finne nye subgrupperinger av morkakesykdom i fremtiden.

Samlet sett har arbeidet i denne avhandlingen bidratt til a kartlegge de metabolske
endringene som skjer under utviklingen av svangerskapsforgiftning, og som kan vaere
med pa a forutsi hvilke damer som senere i svangerskapet utvikler sykdommen. 1T
tillegg danner avhandlingen et solid grunnlag for videre studier pa metabolske foran-

dringer i svangerskapsforgiftning.

iii



Kandidat: Marie Austdal

Institutt: Institutt for sirkulasjon og bildediagnostikk

Veiledere: Professor Tone F. Bathen, Fgrsteamanuensis Ann-Charlotte Iversen og
Professor Rigmor Austgulen

Finansieringskilde: Samarbeidsorganet mellom Helse Midt-Norge RHF og

Norges Teknisk-Naturvitenskapelige Universitet

Ovennevnte avhandling er funnet verdig til d forsvares offentlig for graden
Philosophiae Doctor i molekyler medisin.
Disputas finner sted i Auditoriet, Medisinsk-Teknisk Forskningssenter, mandag 21.
september 2015 kl. 12:15.

v



A



Acknowledgement

This thesis is based on work carried out at the MR Cancer group at the Depart-
ment of Circulation and Medical Imaging, the Norwegian University of Science and
Technology (NTNU), and the Research Group on Inflammation and Genetics in
Pregnancy, Department of Cancer Research and Molecular Medicine, NTNU, in
the period 2011-2015. Financial support was provided by the Liaison Committee
between the Central Norway Regional Health Authority and NTNU.

I would like to express my sincerest gratitude to all the people who have made
it possible for me to undertake this thesis. I would like to thank my supervisors
Professor Tone F. Bathen, Associate Professor Ann-Charlotte Iversen and Professor
Rigmor Austgulen for providing me this opportunity. It has been the greatest
privilige to learn from you. Tone, thank you for your encouragement, support and
guidance throughout my years at the MR Centre and for always taking the time for
valuable scientific discussions. Ann-Charlotte, thank you for sharing your extensive
knowledge and enthusiasm for the research we do. Rigmor, you are an inspiration to
me in many ways and I thank you for always having the big picture in mind during

our discussions. I also thank all my coauthors for discussions and contributions.

I am so grateful to be part of two friendly and welcoming research groups. To
my colleagues at the MR Centre and the Pregnancy group, thank you for providing
such a positive and resourceful environment both during and after work hours. I
would also like to thank the research group of Daniel Monléon in Valencia, Spain

for warmly welcoming me into the group during my stay.

It has been a pleasure to work with so many talented people. I want to espe-
cially thank Ragnhild and Liv Cecilie for many valuable discussions from a clinical
perspective and Guro, Leslie, Trygve and Qystein for expert advice in multivariate
analyses and NMR troubleshooting. Tonje, Ailin, Leslie, Saurabh, and Elise for
being excellent office mates for both serious and non-serious discussions, Debbie,
thanks for all the pep talks, Morteza, Maria, Riyas, loanna, Hanna Maja, Hes-
ter, Tina, Kirsten, Siver, May, Torill, Jana, Eugene, Gabriel, Jose, Mattijs, Lobke,
Line, Guro, Gabriela, and Bente, thank you all for providing such a great working
environment.

I would like to thank my family and friends for always supporting me and en-
couraging me: My mother Leslie, my father Svein, my sisters Elizabeth and Kjersti,

and my extended family of inspirational women and men (wotastta!). Finally, T

vi



want to thank my dear Knut with all my heart for being my rock during these

years. Thank you for being so patient and supportive.

Marie Austdal
Trondheim, May 2015

vii



Summary

Hypertensive diseases of pregnancy are major contributors to maternal and fetal
morbidity worldwide. Preeclampsia, characterized by gestational hypertension and
proteinuria occurring after mid gestation, occurs in approximately 3% of pregnancies
and may lead to preterm birth, low birth weight, severe maternal organ involvement,

and increased risk of cardiovascular diseases in later life for both mother and child.

Despite a wealth of research and investigations, the causative agents for the
development of preeclampsia are as yet unknown. A staged model is proposed,
wherein the placenta is insufficiently developed at the start of pregnancy. Later in
pregnancy the stressed placenta releases soluble factors into the maternal circula-
tion, eventually causing the clinical symptoms of the disease. Preeclampsia varies
in severity, time of onset, and degree of placental and fetal involvement. There is no
current treatment or prevention, and no sensitive way of predicting the disease. In
addition, todays diagnostic criteria are based on blood pressure and proteinuria cut-
offs, which poorly reflect the root causes of the disease nor correlate with maternal

and fetal outcomes.

Nuclear magnetic resonance (NMR) metabolomics analyses assess the down-
stream products of gene and protein expressions, called metabolites, and have been
shown to provide predictive and prognostic information for several types of dis-
ease. Proton high resolution magnetic resonance spectroscopy is a nondestructive
and high throughput technique for analyzing biofluids and tissues. In this thesis,
multivariate data analyses and metaholite quantification of 'H NMR spectra were
performed to investigate the potential of metabolomics in prediction and character-

ization of preeclampsia.

In the first paper, the urine and serum metabolic profiles of women with active
preeclampsia were compared to those of normotensive pregnant women and non-
pregnant women. The differences in urine excretion showed an alteration in glycine
flux for women with preeclampsia, attributed to increased oxidative stress or dis-
turbance in the methionine-homocysteine metabolism. There was also retention of
uremic solutes with possible toxic effects. Serum measurements showed a signifi-
cant increase in lipid levels for women with preeclampsia, and a shift towards an
atherogenic lipid profile with increased triglyceride-containing VLDL and decreased

HDL.
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In the second paper, urine and serum metabolic profiles of women at the end
of the first trimester (gestational weeks 11-13) were analyzed for potential discrim-
inative and predictive metabolites for preeclampsia and gestational hypertension.
A metabolite profile including urinary hippurate, proline betaine, creatinine, 4-
deoxythreonic acid and dimethylamine was found predictive of preeclampsia. When
combined with maternal clinical characteristics, the urinary hippurate/creatinine
ratio was found to improve prediction sensitivity compared to using the uterine
artery pulsatility index. Serum metabolites were not found to be sensitive in pre-
diction of preeclampsia, but revealed a significantly different serum lipid profile in
women who later developed preeclampsia.

In the third paper, the placental metabolic profile was evaluated using high
resolution magic angle spinning spectroscopy, a nondestructive method of analyzing
intact tissue biopsies which is novel in placenta research. Several metabolic pathways
were found to be affected in the placenta of preeclamptic pregnancies compared to
normotensive pregnancies. These were related to taurine metabolism, glutamate and
glutamine metabolism, phospholipid metabolism and the homocysteine-methionine
metabolism. Metabolite profiles in placenta correlated to maternal serum lipids and
markers of disease severity.

Collectively this thesis presents a thorough investigation into the metabolic state
of women with active or developing preeclampsia. The results highlight the meta-
bolic alterations that appear before and during the clinical symptom stages of pre-
eclampsia, and the differences and similarities of gestational hypertension and pre-
eclampsia. Both the placental and maternal component of the disease were examined
and found significantly affected. New biomarkers of the disease were discovered, and
suggestions for future research are posited. This thesis serves as a contribution to

understanding the maternal and placental components of preeclampsia.
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1 INTRODUCTION

1 Introduction

Preeclampsia is a syndrome of pregnancy which affects families across the world.
Without proper care, the syndrome can be deadly for both mother and baby. The
origin of the syndrome has long been a mystery and the knowledge about its devel-
opment limited. This knowledge has rapidly increased in recent years, but there is
still much left to learn. Modern analysis of gene, protein and metabolite expression
produce increasing amounts of data, which enable holistic profiling of complex dis-
eases. This leaves large amounts of information to be processed and analyzed into
biologically meaningful results. The ‘Omics’ branches of research - genomics, pro-
teomics, metabolomics - are often termed ‘Hypothesis generating’, where differences
in expression can form the basis of new hypotheses. Preeclampsia was recognized
as early as the time of Hippocrates, as an unfavorable state of headache and con-
vulsions during pregnancy.! Even today the root causes of preeclampsia remain
unclear and the syndrome can neither be predicted or prevented effectively, nor
cured except by terminating the pregnancy. This thesis serves to look further into
the development and pathogenesis of preeclampsia using state of the art analytical

methods and pattern recognition models.

1.1 Preeclampsia
1.1.1 Epidemiology and risk factors

Primary indicators of preeclampsia are newly onset high blood pressure (hyperten-
sion), and an excess of proteins in the urine (proteinuria) occurring in the second
half of pregnancy.? Preeclampsia affects about 2-7% of women worldwide, in Nor-
way 3.0%.>* Hypertensive diseases of pregnancy cause 16.1% of maternal deaths in
the developed world, and are a major contributor to maternal deaths in Norway.>"
Currently, preeclampsia can not effectively be prevented or predicted, and the only
effective cure is delivery of the baby with the placenta.” Preeclampsia is the main
cause of preterm birth in the developed world.? Several risk factors mediate the in-
cidence of preeclampsia (See Table 1.1). Left untreated, preeclampsia can progress
to eclampsia, characterized by seizures, or lethal complications such as cerebrovas-
cular events, liver rupture, or acute renal failure.”® For the fetus, complications
associated with preeclampsia include fetal growth restriction (FGR) and premature

delivery.?
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Table 1.1: Risk factors for preeclampsia® 4:8:10

Nulliparity

Multifetal gestation

Obesity

Family history of preeclampsia (mother or sister)
Preeclampsia in a previous pregnancy

Abnormal uterine Doppler studies at 18 and 24 weeks gestation
Pregestational diabetes mellitus

Presence of thrombophilias

Chronic hypertension or renal disease
Hyperglycemia

Nonsmoking

Extreme maternal age (< 20 or > 35 years)

‘Dangerous father’ or limited sperm exposure

The syndrome recurs in families, suggesting genetic components present in ma-
ternal and/or fetal (maternal or paternal) genes.!!1? Familial preeclampsia is often
more severe.'® Preeclampsia shares many risk factors with cardiovascular disease,
and indeed has been described as a ‘stress test’ for the cardiovascular system.'* It
is still debated whether preeclampsia causes irreversible changes to the maternal
metabolic and vascular system, or if both syndromes are an expression of the same
metabolic abnormalities or risk factors.'®!'> Women with a history of preeclampsia
have a two- to eightfold increased risk for cardiovascular diseases later in life.!4:6 18
Additionally, FGR is a major risk factor for cardiovascular disease (CVD).? FGR is
the failure of a fetus to grow to its genetically determined potential.'?

20,21

Increasing evidence shows that preeclampsia is not a single disease. Sev-

eral subdivisions have been suggested. One of them is the designation of early and

late onset preeclampsia, with a gestational age cutoff at 34 weeks.?!

Early onset
preeclampsia is associated with worse maternal and fetal outcomes such as FGR,
maternal hepatic, renal, and pulmonary injury, and increased risk of maternal and
fetal death.? 72122 Preeclampsia occurring closer to term is more often associated
with excessive fetal demands, such as in multiple gestation and fetal macrosomia. It
often has a milder presentation and is the most common variant of the syndrome.??

Preeclampsia can also be classified by severity, where any of several features in-
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cluding severe hypertension or proteinuria, evidence of renal, hepatic or pulmonary
involvement, visual disturbances or epigastric pain will classify the disease as se-
vere.? In addition, presence or absence of fetal involvement evident by FGR is a
possible disease subgrouping.?? Subphenotypes of preeclampsia are thus based on
end stage maternal and fetal symptoms.

Hypertensive diseases of pregnancy include preeclampsia, gestational hyperten-
sion, chronic hypertension in pregnancy, and preeclampsia superimposed on chronic
hypertension. These are a major cause of maternal and fetal morbidity and mortal-
ity, sharing risk factors with cardiovascular disease, a global major cause of death.
Preeclampsia varies in maternal and fetal outcome, time of onset, and probably
by yet undefined underlying causes, making the syndrome a challenging subject of

study.

1.1.2 Pregnancy and the placenta

The placenta is essential to pregnancy. It is the interface between mother and fetus
and represents an immunological barrier as well as the site of life sustaining activities
for the fetus.?>?® The placenta develops in part from the fertilized egg and consists
of the fetal component (chorion) and the maternal component (decidua basalis),

the thickened inner lining of the uterus which is discarded during delivery.?5:26

The development of the human placenta is a delicate and tightly regulated pro-
cess involving an extensive remodeling of the spiral arteries in the uterine wall in
order to supply the developing placenta with sufficient maternal blood.?*2® The
main cell type of the placenta is the fetal trophoblast, an embryonic stem cell
which forms the outer layer of the blastocyst (fertilized ovum) and develops into a
large part of the placenta including the chorionic villi. Villi are tree-like structures
through which metabolic exchange occurs between maternal and fetal blood (Figure
1.1).%

Trophoblasts enter two main differentiation pathways. The villous pathway in-
volves fusion into the multinucleate syncytiotrophoblast which covers the villi and
comes into direct contact with the maternal blood, and anchor into maternal de-
cidua.?® The extravillous trophoblast pathway develops an invasive cell type which
burrows into the maternal decidual tissue and uterine wall, and replaces maternal
endothelial cells in the narrow spiral arteries.?>?® Endovascular trophoblasts then

replace the maternal endothelium and alter the vessel characteristics. The artery
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Figure 1.1: The human placenta. The placenta is composed of fetal tissue (chorion) and
maternal tissue (decidua basalis). Fetal trophoblasts develop into the chorionic plate and
villi. The villi (tree-like structures) are composed of fetal venules and arterioles, and are
perfused with maternal blood in the intervillous space. Maternal blood is supplied from
maternal arterioles (spiral arteries), exchanges nutrients and waste with the fetal circula-
tion through the villi, and exits through maternal venules. Reproduced with permission

from McGraw-Hill. 27

becomes wider and less resistant, enabling increased blood flow to the intervillous
space and ensuring that the fetus is well supplied (Figure 1.2).%

From the time of implantation, the embryo is supplied with nutrients from en-
dometrial glands in a low oxygen environment.?:32 At approximately week 10-14
of gestation, blood flow into the placenta starts.?5:33 The placental trophoblast re-
sponds to the increased oxygen tension with reduced proliferation and differentiation
to an invasive phenotype.®3

Decidual tissue contains about 40% maternal immune cells including uterine nat-
ural killer (NK) cells, T cells, macrophages and dendritic cells.?? Fetal trophoblasts

are foreign to the maternal immune system and come into direct contact with ma-

4
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Non-pregnant H Pre-eclampsia/lUGR : Normal pregnancy

Nature Reviews | Immunology

Figure 1.2: Uterine spiral artery remodeling is incomplete in placentas of FGR and
preeclampsia, causing intermittent hypoxia. Reprinted by permission from Macmillan
Publishers Ltd: @ A. Moffet-King. Nat. Rev. Immunol. 2, p 656-663, 2002.3

ternal blood and decidual tissue. Syncytiotrophoblast on the villous surface are in
contact with maternal blood. These do not express the classical human leukocyte
antigen (HLA) I and IT molecules, and are protected against maternal immune re-
sponse.?? Endovascular trophoblasts lining the spiral arteries express no HLA 11
and an unusual array of HLA-I: HLA-C, -G and -E which protect against lysis by
maternal immune cells in the decidua.??>3? In addition, trophoblast cell surface sig-
naling also stimulates maternal immune cells to produce cytokines, chemokines and
angiogenic factors, which facilitates trophoblast invasion.®2* This interplay hetween
maternal cells and fetal trophoblasts creates an immune tolerance between the two
individuals involving a certain level of local inflammation in the decidua important

for normal placentation.?

1.1.3 The staged model of preeclampsia

Human pregnancy is a challenge to the maternal immune and cardiovascular system.
Normal pregnancy is characterized by a mild systemic inflammation which devel-

ops as the pregnancy progresses. In preeclampsia, an exaggerated inflammatory
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Figure 1.3: The stepwise model of preeclampsia as proposed by Redman.”37 Due to
immune or angiogenic imbalance, hypoxia, or undetermined causes, the development of
the placenta is abnormal at the start of pregnancy. This leads to a poorly vascular-
ized placenta which exhibits signs of oxidative, endoplasmic reticulum and inflammatory
stress, and sends stress signals to the maternal circulation. Together with maternal con-
stitutional factors (genetic, environmental, metabolic) this leads to the overt condition of

preeclampsia.

response occurs with resulting endothelial dysfunction causing the clinical symp-
toms.835:36

The origins of preeclampsia start in the early stages of pregnancy with the de-
velopment of the placenta.?243% A staged model has been proposed to explain the
disease development (as summarized in Figure 1.3). In the first stage, there is insuf-
ficient trophoblast invasion, and the maternal spiral arteries fail to remodel properly
during the development of the placenta, leading to reduced placental perfusion and
placental hypoxia (Figure 1.2).37 Later in pregnancy, the stressed placenta releases
signals into the maternal circulation, causing a widespread inflammatory response
with endothelial dysfunction.?*3® The clinical manifestation of preeclampsia is not
evident until this later stage in pregnancy, when fetal demands begin to exceed the
compromised placental supply.??38
It is thought that defective invasion of fetal trophoblasts into the maternal spiral

arteries is the main defect in preeclampsia.?® The cause of the defective placentation

may result from an inflammatory imbalance locally in the placenta,??* from reduced
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Figure 1.4: The increasing inflammatory response in pregnancy and preeclampsia. Nor-
mal pregnancy is associated with an increase in systemic inflammation, which is further
increased in preeclamptic pregnancies with a stressed placenta. In a woman with chronic
increase in systemic inflammation, even a normal placenta might stimulate a sufficient sys-
temic response to cause preeclampsia. Both maternal constitution and placental ischemia
may contribute.3? Preeclampsia is not intrinsically different from normal pregnancy, but
an extreme end of a continuous spectrum of responses common to pregnancy3® Figure

adapted from Borzychowski et al, Semin Fetal Neonatal Med, 2006.34

differentiation to invasive trophoblastic phenotype due to hypoxia,®4° or from an ill-
conditioned uterus.*! Defective placental invasion can also cause other complications
such as FGR, recurring miscarriage and preterm labor.?*4%43 As a result, the spiral
arteries are narrower and more elastic, and remain responsive to hormones and blood
pressure signaling. This situation causes intermittent ischemia and reperfusion of
the placenta, with oxidative stress caused by higher flow velocity of blood into the

placenta'®33:38

An inadequately developed placenta is not enough to cause preeclampsia on its
own, nor is it required for the syndrome to develop.? In addition, maternal fac-
tors such as underlying inflammation status, diseases such as clotting disorders, is-
chaemic heart disease, hypertension and renal disease predispose to preeclampsia.*
These diseases may provide a higher baseline inflammatory state, and the mild in-
crease of inflammation in a normal pregnancy may then be enough to cause the
systemic response of preeclampsia. The increase in systemic inflammation during
pregnancy and preeclampsia is illustrated in Figure 1.4. There are likely several
routes linking the first stage (insufficient placentation) with the second stage (ma-

ternal systemic response).®
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The compromised placenta sends signals into the maternal circulation, which
the maternal immune system reacts to in preeclampsia. The signals are though to
be either cellular signals like growth factors and cytokines, or products of placental
oxidative stress, like placental debris from apoptotic cells, or anti-angiogenic factors.
The soluble receptor for Vascular Endothelial Growth Factor (VEGF), also called
soluble FMS-like tyrosine kinase receptor 1 (sFlt-1), is a candidate anti-angiogenic
factor, as it is increased early in preeclamptic pregnancies with concomitant de-
crease in pro-angiogenic factors VEGF and Placental Growth factor (PIGF) in
maternal serum.’®4%45 Increased placental stress and apoptosis causes increased
release of vesicular particles containing fetal DNA to the maternal circulation.*6-48
The released microparticles may be recognized as foreign by the maternal immune
system, causing a systemic inflammatory response. Alternatively, the trophoblasts
in preeclamptic pregnancies may themselves release danger signals such as pro-
inflammatory cytokines in excess.?3*

Regardless of the pathway to preeclampsia, the clinical symptoms are similar.
A systemic increase in inflammation causes widespread endothelial dysfunction and
hypertension with renal injury leading to proteinuria. Preeclampsia can be seen as
a spectrum of disorders ranging from a more maternal disease to a more placental
disease. “Maternal preeclampsia” constitutes a normal placenta in a women who
is predisposed in some way, and in “placental” preeclampsia there is an abnormal

placenta in a normal woman. Most women will exist between these two extremes.?!

1.1.4 Altered metabolism in the preeclamptic placenta

Several pathophysiological changes occur in the placenta during its development pre-
ceding the clinical symptoms of preeclampsia.?* Intermittent ischemia-reperfusion
causes oxidative and endoplasmic reticulum (ER) stress.®* Oxidative stress is an
imbalance between systematic generation of reactive oxygen species by immune or
other cells, and the capability of antioxidant defenses to prevent oxidative dam-
age.?»%0 Reactive oxygen species cause genomic damage, create inflammatory oxi-
dized lipid species, and denature enzymes.?*5° Oxidative stress is also a necessary
component of normal placental development.®® ER stress is caused by a demand for
ER function that exceeds its capacity, leading to a backlog of unfolded or misfolded
proteins.”’ ER and oxidative stress may cause apoptosis or necrosis in the placenta,
or cause a chronic state of stress tolerance.’* Oxidative stress in placenta induces re-

lease of proinflammatory cytokines, chemokines, and cellular debris.® Preeclampsia
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is associated with reduced antioxidant capacity in the placenta.® Oxidative and ER
stress are powerfully inflammatory, and the interaction between the two stresses and

the inflammatory response in the placenta drive the development of preeclampsia.?”

1.1.5 Altered maternal metabolism in preeclampsia

The widespread endothelial dysfunction and inflammatory response in preeclampsia
induces changes in the maternal metabolism. Acute phase response, oxidative stress,
hyperlipidaemia, and insulin resistance are all exaggerated in preeclampsia, though
these also happen to some degree in normal pregnancy due to the mild inflammatory
state.* The metabolic changes of preeclampsia are similar to those seen in patients
with metabolic syndrome, obesity, diabetes, and chronic hypertension. Systemic
inflammation is common to all these diseases.?*%2

Normal pregnancy induces a marked increase in circulating triglycerides and
lipoprotein cholesterol.?®3* In the second half of pregnancy, there is a shift towards
using lipids as a maternal energy source, preserving glucose and amino acids for

5,55 The use of lipids for energy production produces ketone bodies

fetal nutrition.
which can also be taken up by the fetus and used in energy production or lipid
construction.’® In preeclampsia there are proatherogenic changes in the serum lipid
profile, including increased triglycerides and very low density lipoprotein (VLDL)
levels, and decreased high density lipoprotein (HDL) cholesterol compared to normal
pregnancies.”®®” The increased lifetime risk of CVD in women who experienced a
hypertensive disorder in pregnancy is related to the common CVD risk factors in
the diseases.*?

Systemic inflammatory responses cause increased insulin resistance and hyper-
lipidaemia.*® Inflammatory cytokines released from immune cells induce insulin
resistance and lipolysis, and inhibit lipogenesis, causing an increase in circulat-
ing free fatty acids.? Systemic inflammation is also associated with increases in
triglyceride-rich lipoproteins, decreases in HDL and impaired cholesterol transport.
These metabolic changes promote atherosclerosis, and may provide a link between
inflammation and the development of CVD.!8:34.58

Another link between preeclampsia and cardiovascular disease is elevated homo-
cystein levels, which is found in women with preeclampsia and is a risk factor for
CVD. Homocysteine levels can accumulate through deficiency of B vitamins and

59

folate.”” Women with a history of hypertensive disorders have elevated homocys-

teine compared to women with a history of uncomplicated pregnancies.®
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In normal pregnancy, glomerular filtration rate (GFR) increases by 40-60% dur-
ing the first trimester.®! In preeclamptic pregnancies, both GFR and renal plasma
flow decrease by 30-40% compared to normal pregnancies; though the common

serum markers of renal function may remain in the normal range.5!

1.1.6 The disease of theories

The causes of the disease continuum of preeclampsia have been widely discussed and
researched in the last decades, and the description as a disease of theories is still
apt.%? In summary, preeclampsia is an extreme end of an inflammatory continuum
common to all pregnancies. The underlying reasons for developing preeclampsia
are still largely unknown, but thought to be a staged process in which a placental
insufficiency develops early in pregnancy. Later in the pregnancy the compromised
placenta releases signals to which the maternal system reacts. Both the first and
second stage may be mediated by genetic and environmental factors. Preeclampsia
can be seen as a stress test which may reveal propensity to develop cardiovascular
disease later in life, due to similarities in risk factors and symptoms. The diagnosis
and the most common subdivisions of the disease reflect the maternal end-stage
disease phenotype, and poorly reflect the root cause of the disease. More specific
disease phenotyping and diagnostic criteria are necessary for the future of research
in preeclampsia. The multifactorial causes and subdivisions of preeclampsia are
part of the reason that effective prediction, prevention and cure of the syndrome

has not yet been reached.
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Figure 1.5: The ‘Omics’ cascade. All biological processes affect each other. Small changes
in gene or protein expression may induce large fold changes in metabolite expression.

Metabolites may also have regulatory effects in the genome and proteome.

1.2 Metabolomics

Hypothesis-generating approaches such as genomics, proteomics and metabolomics
identify common patterns of disease in large data compilations.®® Systematic changes
in gene, protein or metabolite expression may predict or explain disease. Metabol-
omics is defined as “the quantitative measurement of the multiparametric metabolic
response to pathophysiological stimuli or genetic modification”.%* Commonly used
analytical methods in metabolomics are mass spectrometry (MS) and nuclear mag-

netic resonance (NMR).

Metabolites are intermediates and end products of the metabolism, chemical
reactions that are necessary for life. The metabolism provides energy, structural
building blocks, signaling molecules, and detoxification of exogenous and endoge-
nous molecules. Metabolites are typically small molecular weight (<1500KDa) com-
pounds, and are connected through metabolic pathways such as the citric acid cy-
cle, glycolysis and gluconeogenesis, protein and amino acid synthesis, and lipid
metabolism. The metabolome is generally referred to as the complete set of meta-

bolites found in a cell, organ, tissue, biofluid or organism.%

11
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Metabolites are the downstream products of gene and protein processes, and in
essence are a closer measure of the phenotype of an organism.®® Small changes in
genes or protein activity can have large consequences in metabolite concentrations.®>
At the same time, metabolites may have regulatory effects on gene or protein expres-
sion. An illustration of the “Omics” cascade is shown in Figure 1.5. The total count
of human metabolites is unknown, but the most comprehensive databases currently
contain 20-40 000 annotated metabolites of endogenous or microbial origin, toxins

or pollutants, food or drug derived, or a combination.%" 58

There is a constant flux of metabolites in and out of cells and tissues. Con-
sequently, disturbed processes due to genetic abnormalities, exogenous chemicals,
errors in protein translation or function, or inflammation will be reflected in the

metabolite composition of biofluids and tissues.%*

Due to the limited sensitivity range of analytical instruments and the multi-
ple fold range of metabolite concentrations, no single analytical method can detect
and quantify all metabolites. Comprehensive profiling thus requires multiple plat-
forms.5¢  Metabolic profiling research is limited to the metabolites that may be

detected on the instrument in use.

1.2.1 The human metabolome

Human metabolism is influenced by diet, stress, disease, gender, age, body mass in-

69 71

dex (BMI), and many other processes. Metabolomic studies of human subjects

have investigated biofluids and tissues such as urine, blood serum or plasma, cancer

tissue, ocular tissue, and even hair.6%72 ™

Metabolomics has been employed to as-
sess risk, diagnosis and subgrouping of CVD, diabetes and cancer, amongst others.”™
This thesis concerns the analysis of urine, serum and placental tissue samples.
Urine is a result of soluble waste products and water from the bloodstream
being filtered through the kidneys. The main components of urine are urea from
amino acid metabolism, inorganic salts, creatinine, ammonia, organic acids, and a
variety of breakdown products from endogenous and exogenous metabolism.5¢ The
urine metabolome is the end product of human systemic and cellular metabolism,
gut microbial metabolism, kidney function, exogenous compounds from diet and
medication, and hydration status. Metabolic alterations in urine have been studied
for many conditions, including blood pressure and cardiovascular risk, cancer, and

pregnancy disorders.”™76:77

12
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Blood is a favored subject of study because of its relatively noninvasive sampling
and proximity to many potential biological sites of disease. Serum is the liquid re-
maining when a whole blood sample is allowed to clot, and subsequently centrifuged
to remove red and white blood cells, platelets, and clotting proteins. Serum con-
tains nutrients, electrolytes, lipids and lipoproteins, amino acids, and a variety of
small organic compounds. The role of blood is to transport signaling compounds
and waste products to various organs, defend against pathogens and blood loss,
and regulate body temperature.%™ Serum is a common subject of metabolomics
studies, spanning almost any human disease subject.”

The placenta plays a crucial role in pregnancy and preeclampsia, and also itself
has metabolic activity. Published analyses of the placental metabolome are lim-
ited.80% Placental extracts, cellular explants, or live imaging of placenta have been
used to understand the metabolic changes occurring in the placenta in response to
hypoxia, FGR, and preeclampsia.?%88% However, specific changes in placental and
fetal metabolism in response to preeclampsia and FGR is a wide area of research,
as is genomic and proteomic analyses of placental tissue.?*4%:9 Metabolic research
in placental tissue and explants is expected to provide a deeper understanding of

the placental dysfunction in preeclampsia.®°

1.2.2 Experimental design of metabolomics experiments

Metabolomics experiments are hypothesis-generating: they do not require a spe-
cific research question, but rather measure a complement of compounds to identify
possible biomarkers. The results of the experiment then create hypotheses which
may be tested in further studies. Experimental design is an important facet of
metabolomics studies, as these are very prone to bias and confounding.

Subtle differences in sample collection, analyses or storage of the case and control
samples may influence the analysis results in a manner that is impossible to differ-
entiate from real disease differences. Typical experimental design of metabolomics
studies have several stages, as summarized in Figure 1.6. These are 1) Generation
of a biological question and study design, 2) Sample acquisition and analysis, 3)
Data preprocessing, 4) Statistical analysis and metabolite identification, 5) Bio-
logical interpretation and hypothesis generation.’’ Each step is vital for the final
results.

During the study design phase the number of samples required must be deter-

mined. Sample size estimation in metabolomic analysis is not as simple as a power

13
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Figure 1.6: Work flow of a typical metabolomics study.

analysis for univariate studies. The collinearity of the measured variables compli-
cates this analysis.”! Sample acquisition, analysis, preprocessing and identification
will be described in detail in the following chapters. Final biological interpreta-
tion depends on online databases of molecular pathways and interactions, previous

research, and intimate knowledge of the system and disease under study.
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1.3 Magnetic resonance spectroscopy

Nuclear magnetic resonance (NMR) signals were first observed in 1946, and have
developed into a valuable tool for chemists, biochemists, physicists and later medical
scientists as a method of structural analysis of molecules, quantitative analysis of
complex mixtures, and imaging of live organisms.”?

Atomic nuclei with non-zero spin number (I # 0) precess about their axis with an
intrinsic and quantized angular momentum P, which is associated with a magnetic
moment g as follows: p = «P.°2 The proportionality constant « is called the
magnetogyric ratio, and is constant for each element and isotope. The nuclides 'H,
130, 19F, and *'P are sensitive to NMR spectroscopy because of their spin numbers
of %, with 'H being the most commonly used in metabolomic studies as it has
the highest natural abundance. However, the nuclides 90 and '2C, which are most
common in organic molecules, are invisible to NMR spectroscopy. The sensitivity of
nuclei in NMR spectroscopy is determined by a combination of natural abundance,

the size of 7, and the magnetic field strength.

1.3.1 Nuclear magnetic resonance

When placed in an external magnetic field By, individual nuclei with spin number %
will orient with spin axes parallel (« state) or anti-parallel (3 state) to the field, as
illustrated in Figure 1.7. The momentum with which the nuclei spins is proportional
to the strength of By, and is called the Larmour frequency v;. The « state is slightly
more energetically favorable. Therefore the population of nuclei in the « state (N,)

will be slightly higher.

.

-
s

Figure 1.7: Atomic nuclei spin about their axis. When placed within an external mag-

netic field Bg, atomic nuclei with spin number % will orient with axes parallel or antiparallel
to the field. The antiparallel direction has a higher energy state. The difference in energy
AE between the parallel and antiparallel spin states increases with the strength of the

external magnetic field.??
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The energy difference between two adjacent energy levels is AE = yhB,,* and
thus increases with magnetic field strength. The distribution between the higher
and lower energy states is provided by the Boltzmann Equation (Equation 1). For
protons the energy difference AE is very small compared to the average energy KgT
of thermal motion, and consequently Ng/N,, is typically in the region of parts per

million (ppm).

N, kgT ~ ~ kgT M)
In Equation 1, N, /Ny is the ratio of nuclei in spin states o and [ respectively,
kg is the Boltzmann constant (—1.3805 x 1072* J K!), and T is the absolute
temperature in K. The combined vector of the magnetized nuclei in « and [ states
result in a macroscopic magnetization M, of the sample along the field direction.
In NMR experiments, transitions between energy states are induced by irradi-
ating the nuclei with a radiofrequency pulse which matches the Larmour frequency
of the nuclei. As a result, My is tipped away from the direction of B, at an angle
determined by the duration and amplitude of the pulse. A 90° pulse will flip M,
with an angle of 90° from By. M returns to the equilibrium state through longi-
tudinal (T;) and transverse (Ty) relaxation (Figure 1.8). Longitudinal relaxation
(T,), also called spin-lattice relaxation, transfers energy to the environment through

molecular movement to regain alignment to By.

a My=M, b Mo=M,, C d
M,

y y y
———> Time(®
z z —h'

<——Frequency (Hz)

Figure 1.8: The macroscopic magnetization (IMg) of the sample is tilted 90° by a radio-
frequency pulse of appropriate power and length (panels a and b). Equilibrium is regained
through longitudinal (Ty) and transverse (T5) relaxation (panel ¢). The signal recorded in
the y’ direction is the free induction decay (FID), which when Fourier transformed gives

an NMR spectrum (panel d).?2

After a 90° pulse is applied, a fraction of the nuclear spins are bunched to-

gether in phases as they precess around the 7 axis. Transverse relaxation (T,),

*h is % where h is the Planck’s constant = 6.6256 x 10734 J g
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also called spin-spin relaxation, is caused by the dephasing of the individual mag-
netic moments of the nuclei, losing the x’y’ component of the net magnetization.
Short Ty-relaxation times give broad NMR signals, which increase with viscosity
and decreasing temperature, presence of paramagnetic impurities, and magnetic
field inhomogeneities. The real transverse relaxation time Ty* is shorter than T,
due to inhomogeneities in the magnetic field. The decay of the transverse magne-
tization as detected in the receiver is called the free induction decay (FID). The
transverse magnetization is recorded as the raw NMR signal. The FID is Fourier
transformed from time domain (s) to frequency domain (Hz) for interpretation as
an NMR spectrum.

The resonance frequencies of nuclei are influenced by their environments. Be-
cause of shielding from surrounding electrons, each nucleus experiences a slightly
different, effective magnetic field. Nuclei in different chemical arrangements thus
have different resonance frequencies v. This difference compared to a standard ref-

erence frequency is expressed as the chemical shift and given in parts per million

(ppm).

Vsignal — Vreference |HZ]

= e M) )

The chemical shift is independent of the field strength By. The resonance sig-
nal is also affected by neighboring nuclei which results in a splitting of a peak into
multiplets, through spin-spin coupling. The interaction stems from the two possi-
ble states of the nucleus under observation; a or 3. The distance between peaks
in a multiplet is called the coupling constant and denoted J (Hz). The shielding
and splitting is characteristic to the position and bonding of the nucleus, and so
the coupling pattern and chemical shift of a resonance signal give structural infor-
mation about the molecule to which it belongs. The area under the signal curve is
proportional to the number of nuclei producing the signal, which makes quantitative

analysis possible.

1.3.2 NMR spectroscopy of biofluids and tissues

High resolution NMR spectroscopy can be applied to biofluids such as urine and

64,93 and with some modifications to semisolid tissue biopsies such as from

serum,
breast, brain, prostate, etc.” NMR spectroscopy requires little pretreatment and

is capable of detecting a range of biochemical components simultaneously in an
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unbiased manner. The analysis is quantitative or semi-quantitative depending on
the acquisition parameters. The metabolic profile represented in a spectrum can be
optimized by choice of acquisition parameters and pulse sequences, to suppress or

enhance specific molecular subtypes.

Standard 1D spectra are acquired using the Nuclear Overhauser Effect Spec-
troscopy (NOESY) pulse sequence (D1-90°-t;-90°-t,,-90°-AQ) with presaturation
of the water frequency. NOESY spectra of urine samples produce high resolution
spectra with narrow linewidths.

Macromolecules such as proteins, lipids and lipoproteins have less freedom of
rotation and give broad signals in the NOESY spectrum because of their short Ts.
It is possible to filter out signals from these molecules by spin-echo or Ty-editing
the acquisition parameters, leaving spectra consisting of only signals from small

metabolites.?

A useful pulse sequence for lipid suppression in spectra of blood
serum and tissues is the Carr-Purcell-Meiboom-Gill (CPMG) sequence in which a
series of 180° pulses follow a 90° pulse after a delay 7 (illustrated in Figure 1.9).%5
The 180° pulses refocus the signals which are dephased by Ty*, giving an echo of
the 90° signal. Molecules with long Ty have better preserved signals, and signals

from molecules with short Ty are reduced.

B P, (90°) P,{(180°) echo

L JTR

Figure 1.9: The Carr-Purcell-Meiboom-Gill pulse sequence. After a presaturation of the
water resonance frequency for a time D1, a 90° pulse is followed by n repeated 180° pulses
spaced by a time 7, giving a total echo time of TE=n(27+P3)+27. The 180° pulses refocus

the spins, and an echo is observed for a time AQ. TR is the total repetition time.

A spectrum focusing on the macromolecules can be made with a diffusion-edited
pulse sequence (RD-90°-G1-180°-G1-90°-Go-T-90°-G1-180°-G1-90°Go-7-90°-AQ). G4
and G, are gradients that allow diffusion editing.”® Signals from small and rapidly
moving molecules are reduced, and a spectrum of only slower diffusing molecules is

acquired.
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J-resolved experiments (JRES) generate a simpler NMR spectrum. The pulse
sequence is in the form (RD-90°-t1-180°-t;-AQ) where t; is an incremented time pe-
riod. The spin-spin coupled multiplets are spread out over a second dimension, and
the skyline projection gives a singlet for every multiplet in the recorded spectrum.®

Most biological samples contain large quantities of water, which may obscure
the smaller metabolite signals. The water signal may be suppressed by irradiat-
ing the resonance frequency of water with a weak radiofrequency pulse, equalizing
the population of the energy levels so that the water signal is almost completely
attenuated before a spectrum is acquired.

In analyzing semisolid tissue samples, a method called high resolution magic
angle spinning, or HR-MAS is used. Normal spectroscopy methods will result in
very broad peaks due to anisotropic interactions of the less mobile molecules. These
interactions are usually averaged in liquid state NMR by rapid molecular motion.
The averaging in solution is mimicked by rapidly spinning the sample (4-6kHz) at
the magic angle,  — 54.74° relative to By, which produces high resolution spectra
approaching the liquid state spectra in linewidth.?%°7% Additionally, the tissue
samples remain intact after the spectral acquisition and can be further analyzed by
histopathology, proteomics or gene expression.””

Commonly, a standard water-presaturated NOESY experiment, a To-weighted
CPMG experiment, J-resolved and sometimes diffusion edited sequences (DIFF) are
used in metabolomics experiments.?1% Representative spectra of urine, serum and
placental tissue are shown in Figure 1.10.

Two-dimensional (2D) spectroscopy such as heteronuclear single quantum co-
herence (HSQC), where proton NMR resonances are correlated to 3C resonances,
are useful for unambiguous metabolite identification, and can even be used directly

101,102 13CLIH spectroscopy approaches can identify more

in multivariate analysis.
metabolites than one-dimensional 'H spectroscopy alone, but the spectra take longer
time to acquire because of the low natural abundance of NMR-visible 13C nuclei (1%)
and because of spectrum acquisition in two dimensions.

In HSQC, a polarization of 'H (Mp) is transferred to the much less NMR-
sensitive 3C nuclei, allowed to develop for a time ¢y, then the 3C polarization
(M¢) is transferred back to the protons, and the 'H spectrum is recorded. A
FID is recorded for each incremental ¢. In this way, information about the carbon

attached to each recorded proton is revealed. A 2D spectrum is obtained with the

directly observed 'H spectrum along the top edge, and the indirectly observed 3C
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spectrum, along the left edge. An example HSQC spectrum of human urine is shown

in Figure 1.11

Urine

Crn Citrate

/

Glucose PtdCho \

Placenta

4.5 4 3 3 25 2 15 1

Figure 1.10: NMR spectra of urine, serum and placental tissue showing some of the
metabolites that are detectable in NMR.

Abbreviations: 4DTA, 4-deoxythreonic acid; Ace, acetate; Ala, alanine; Asp, aspartate;
Cho, choline; Cre, creatine, Crn, creatinine; EtAm, ethanolamine; Gln, glutamine; Glt,
glutamate; Gly, glycine; GPC, glycerophosphocholine; Hipp, hippurate; Lac, lactate; Lys,
lysine; N-Ac, N-acetylated carbohydrate side chains of glycoproteins; NMR, nuclear mag-
netic resonance; p-Cr, p-cresol sulfate; PCho, phosphocholine; ppm, parts per million;
ProlB, proline betaine; Py, pyruvate, Tau, taurine; TMAO, trimethylamine-N-Oxide; Val,

valine
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Figure 1.11: Heteronuclear Single Quantum Coherence spectroscopy of a urine sample

showing the proton-carbon bonds. Signals from the same molecules are colored for illus-

tration purposes.

Abbreviations: Ala, alanine; Crn, creatinine; Gly, glycine; Hipp, hippurate; Hist, histidine;

TMAO, trimethylamine-N-oxide; PAG, phenylacetylglutamine; ppm, parts per million.
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1.4 Multivariate analysis

Multivariate analyses is a set of methods for analyzing multiple, covarying measure-
ments. Common goals of multivariate analysis are data description, discrimination
and classification, and regression and prediction. Data description methods in-
cluding principal component analysis (PCA) are unsupervised methods in that no
a priori class information is input to the models. These methods are used for visu-
alizing and exploring data sets. Discrimination and classification methods includ-
ing partial least squares discriminant analysis (PLS-DA) are supervised methods,
where the goal is to find differences between groups or classes that allow objects
of unknown class to be assigned based on a set of measurements. Regression and
prediction models such as partial least squares (PLS) regression aim to relate two
sets of continuous variables to each other, e.g. to predict a property from a set of
measurements.'%

NMR spectra contain thousands of data points, many of them describing ap-
proximately the same information. The variation of metabolites in a biofluid or
tissue may also be highly correlated due to their connection in metabolic pathways.
In metabolomic experiments the number of variables measured commonly exceed
the number of samples analyzed. All these considerations together mean that con-
ventional statistics are not ideal to analyze metabolomic data sets. Dimension-
reducing multivariate analysis applied to NMR spectra of biofluids may produce

reliable metabolic profiles of physiological states.

1.4.1 Principal component analysis

A typical NMR spectrum of a biofluid or tissue consists of over 25 000 variables, with
information about typically 20-50 compounds. The essential information within the
spectra often lies in how the metabolites vary with respect to each other. This infor-
mation must be separated from noise (e.g., regions of the spectra without signals)
and redundancy (e.g., several signals from the same metabolite).

A typical method for visualizing highly multivariate data is PCA, which finds
combinations of variables that describe major trends in the data. The multidi-
mensional data is projected onto a lower dimensional space, typically two or three
dimensions, for visual inspection. To do this, a new set of variables called latent
variables (LVs) are created which are linear combinations of the original variables. In

PCA LVs are called principal components (PCs). The PCs are mutually orthogonal,
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that is, they describe independent variation, and they are ordered by the amount of

variance captured. By selecting the first two or three principal components, most

of the data variation can be plotted for visual inspection.!%

PC2
°
@ 090 ©°
L ° o9 PC1
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Figure 1.12: Principal Component Analysis for variable reduction, illustrated for three
original variables transformed to two latent variables or principal components (PCs). The

original data is projected into a lower dimensional space.

PCA gives the new coordinate system with a set of scores and loadings. The
scores give the position of an object in the new coordinate system, and describes
how the samples relate to each other. Scores can be useful to detect groupings,
trends and outliers in the samples. Loadings define how the variables contribute to
each principal component. The loadings also describe how the variables are related
to each other and can be used to interpret the biological meaning of the explained
variance.

Scores and loadings are related to the original data matrix as shown in Equa-
tion 3. The data matrix with samples in rows and variables in columns is called X.
T is the scores matrix giving the coordinates of the samples in the new coordinate
system, P is the loadings matrix giving the contribution of each variable, and E is

the residual matrix of unexplained variation.!**

X =TP" +E (3)

A metabolomic dataset can usually be described adequately by far fewer PCs
than the number of original variables. The combinations of variables found by
PCA can be useful descriptors or even predictors of underlying phenomena such as
physiological changes in the metabolome.

Figure 1.12 shows the PCA graphically. In this example, three variables are

measured for each sample. When these are plotted in three dimensional space, a
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pattern emerges that can be adequately described in two dimensions, where one
axis describes most of the variation (PC1). In this case, the first PC also happens

to describe a difference between two classes.

1.4.2 Partial Least Squares

Regular linear regression involves predicting a response variable y from one or more
independent measurements xi, Xa, (...), X,. When a large number of variables are
measured such methods are no longer valid. In addition, the variables measured by
NMR are noisy and highly collinear. In this case, the partial least squares (PLS)
regression method - also called projection to latent structures - is useful.!%

In PLS, LVs are estimated so that they give directions of highest variance in a
data set X with regards to a response vector or matrix Y. The LVs are directly
relevant for prediction of the response variables and are, like PCs, orthogonal. The
X scores, denoted T, are predictors of Y and are linear combinations of the original

variables X with coefficient weights W (Equation 4).

T =XW (4)
X =TP" +E (5)
Y = TC'+F (6)

The X scores, T, are good summaries of the X matrix when multiplied with
the loadings, P (Equation 5), and good predictors of Y, when multiplied with the
transpose of C, the weights on Y (Equation 6). The residual matrices of unexplained
variance, E and F, are minimized. Equations 5 and 6 can be rewritten to give a

multiple regression model (Equation 7) where B is a matrix of regression coefficients.

Y=XB + F
where (7)
B =WwcC”

The PLS parameters can be estimated using non-linear iterative partial least
squares (NTPALS) or the faster SIMPLS algorithm.!%%:1%  An assumption of the
PLS model is that the modeled process is influenced by only a few underlying LVs,

the number of which is unknown and can be estimated by PLS.!%
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Figure 1.13: A constructed PLS-DA example with a scores plot (left) and a loading plot
(right) showing a difference between group A and group B on LV1. From the plot of LV1
it is seen that group B has increased excretion of glycine (Gly), citrate (Cit) and hippurate

(Hipp), and decreased excretion of creatine (Cre) and trimethylamine-N-Oxide (TMAO).

If the response variable is categorical, PLS can be used to find a threshold
value of scores which discriminates between classes. In this case the analysis is
PLS discriminant analysis, PLS-DA. A constructed example of a PLS-DA model

discriminating between urine samples from group A and B is shown in Figure 1.13

1.4.3 Preprocessing

Before data is analyzed with multivariate analysis, it must be preprocessed to focus
on the biologically relevant information content. Typical preprocessing of NMR
spectra involves excluding uninformative regions, peak alignment, normalization,
scaling and mean centering. Variable selection may also be applied.

Baseline correction. Distortions of the baseline may occur due to broad macro-
molecule signals, alterations in the FID, or instrument instability.'” This might in-
troduce systematic differences which are detected by multivariate methods. Several
baseline correction algorithms exist, involving fitting a polynomial to the nonsignal
region of the baseline or correcting in the time domain. Baseline offset corrections
may be done by shifting the minimum intensity of the spectrum to zero.

Peak alignment. The position of a metabolite peak in the NMR spectrum may
be shifted slightly due to variations in pH, temperature, ion concentrations and
protein interaction. Multivariate methods require that corresponding data points

in every spectra contain information from the same compound. This is seldom

26



1 INTRODUCTION 1.4 Multivariate analysis

the case in raw data, so the spectra must be aligned. In biofluids or tissue where
concentrations and pH does not vary much, aligning the entire spectra by a single
peak may be sufficient. For urine, where there is higher variability in the sample
composition and pH, a more complex algorithm is required. The icoshift method
independently aligns user defined segments of the spectrum by optimizing within-

segment correlation.!08109

Normalization. Normalization multiplies each sample by a factor to account for
dilution or sample weight differences. Dividing by total spectral area approximates
the relative metabolite content of the sample.!'® There are several ways to account
for dilution factors in urine samples. Creatinine normalization is common in clinical
chemistry, and assumes a constant creatinine clearance rate.!'%!''  Probabilistic
Quotient Normalization (PQN) estimates a probable dilution factor by finding the

median difference from a reference spectrum.'!'?

Mean centering. Centering is a procedure typically carried out prior to scaling
in which the mean intensity of each variable or column is subtracted from each
individual intensity value. This centers the variation around zero, adjusting for
differences between high and low abundance.

Scaling. Scaling methods divide each variable by a unique factor to account for
fold differences between metabolites. Autoscaling uses the standard deviation as
the scaling factor, so that all variables have equal variances and thus contribute

104 This will result in inflation of small, noisy values like the

equally to the model.
non-signal regions of NMR spectra.!® 3 Pareto scaling uses the square root of
the standard deviation, so that large fold changes are reduced more than small fold

changes.!1?

1.4.4 Variable selection

Several thousand variables are recorded for each sample in metabolomics. Given
the redundancy and the required computational power, often a subset of the best
variables for prediction can be selected. Variables with little biological meaning
(such as the no signal regions of NMR spectra) can lead to worse predictions as they
may cancel important information.''* Several methods exist for variable selection.

Variable Importance in Projection (VIP). VIP variable selection uses a measure
of variable importance to the prediction as a selection criteria.!*>'6 The VIP

score of a variable j is found by summing its influence in every latent variable
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k (Equation 8). The average of the squared VIP scores is 1, and variables with

VIP>1 can be assumed to be important in the model.

h
P kZ_:l bitgtkﬁ
g = (5)
> bitity
k=1
IVVZI\C? is the weight of variable j in latent variable k, b, is the

regression coefficient of £, and ty is the scores vector for k. The number of variables

is p.

In Equation 8,

Competitive Adaptive Reweighted Sampling (CARS) CARS variable selection
selects the variables with largest absolute coefficients in a multivariate regression
model. In each run, a subset of samples are selected to create a calibration model.
Next, important variables are selected by applying an exponentially decreasing func-
tion (EDF) and adaptive reweighting sampling of regions.''” Four successive steps

which are repeated several times comprise the CARS variable selection algorithm:

1. A PLS model is built on a subset of samples

2. Variables are selected by weights using EDF. The PLS variables with lowest
regression weights are removed in every repeat. A higher ratio of variables are

removed in the first repeats, according to the EDF.

3. After reducing the number of variables, adaptive reweighted sampling is used
to further filter out variables selected in the previous step in a competitive
way. The variables with the strongest weights are selected as most fit for

prediction.

4. Finally, the remaining variables are evaluated using cross validation (Section
1.4.5). After all repetitions have been performed, the variable set with the

lowest cross validation error is selected.

1.4.5 Assessment and validation of multivariate models

Multivariate prediction models are prone to overfitting data. An overfitted model is
one that has modeled so much variation that it no longer applies to samples that were

not used to build the model. In data sets with thousands of variables, it is nearly

28



1 INTRODUCTION 1.4 Multivariate analysis

guaranteed that some variables will be statistically different at the 95% confidence
limit, creating a discriminative model. To evaluate whether a real predictive model
can be made, proper validation should be performed. Typical approaches include
cross validation and permutation testing.

Cross walidation. Ideally a subset of samples is set aside completely as the
model is developed, then used to validate the prediction accuracy of the final model.
However, lack of sufficient numbers of samples is usually a problem. Cross validation
is used to validate classification models when fewer samples are available. The
model is built using a subset of samples, known as the training set, and tested on
the remaining samples, comprising the test set. The procedure is repeated until all
the samples have been included in the test set. The number of misclassified samples
and other model diagnostics can then be found based on the test samples.'*®

In datasets with sparse numbers of cases, leave-one-out or leave-n%-out valida-
tion can be used. One or several samples are left out of the model building. Then
the classes are predicted on the left out samples, and the process is repeated. The
number of PLS LVs are selected as the number giving the lowest cross validated er-
ror of classification. This method tends to overestimate prediction accuracy as the
test set is not completely independent; it has been used to estimate the parameters

for the model.''®

(
Optimization (16 %)
Training set (80%)
Tralnlng set (64 %)
All data(100 %) >

Ny

N Validation set(20 %)

o A

2

Figure 1.14: Double cross validation as detailed by Westerhuis ef al.''® A test set is set
aside, and the remaining data is divided into an optimization and training set. In this way,
the model parameters are optimized without information from the test set. The inner (n;)
and outer (ny) loops are repeated several times. A typical single cross validation procedure

only contains the outer loop nz)

If number of samples permits, a double cross validation procedure can be im-
plemented. The procedure is illustrated in Figure 1.14. A subset of samples is set

aside as a validation set, and the remaining samples are divided into a training and
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optimization set. Model parameters such as the number of LVs are found in the
inner optimization set, while the final model is used to predict the test set. Now the
model is tested on completely independent samples and the correct prediction er-
rors are found.!'*® Assessing the predictive or discriminative ability of a PLS model
should be done on cross validated parameters.

Permutation testing. A permutation test evaluates whether a given regression or
discrimination model is significantly better than models built on permuted classes;
where the y vector is shuffled and a new model built on this random data. By build-
ing many permuted models, an Hy distribution of classification or regression results
of random models is found. The classification results from the real model should
then be outside the 95% confidence limit of the Hg distribution to be considered
valid. '8

When using variable selection there is an additional challenge in validating mod-
els with permutation testing and cross validation. An information leakage about
class will happen when class information is used to select variable subsets for pre-
diction. One way to alleviate this is to allow the permutation analysis to also select
subsets of variables the same way after the classes have been shuffled. This extra
step ensures that a true relationship has been found between class-selected variables
and cross-validated response.

Sensitivity, specificity and classification accuracy. The sensitivity of a prediction
model is the percentage of true positive classifications (TP) out of the sum of true

positives and false negative (FN) classifications.

TP
—_— 9
TP+ FN )
The specificity is the percentage of true negative (TN) classifications. Often in

Sensitivity =

prediction research the false positive rate is used, which is 1-specificity.

TN
TN+ FP

Classification error is the total number of incorrectly classified objects, while

Speci ficity = (10)

model accuracy is 1-error, the number of correctly classified samples.

FP + FN
Error — 11
"= TPYTN ¥ FP+ FN (11)

The receiver-operating characteristic curve (ROC) is a plot of l-specificity vs.

sensitivity, and can be used to find the best cutoff for a prediction or to calibrate
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a predictive test to a given specificity e.g. 90%. An often used measure is the area
under the curve (AUROC), ranging from 0.5 to 1, as an evaluation of a predictive

test.
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2  Aims

2.1 Overall objective

The aim of the thesis work was to find new metabolic biomarkers for development of
preeclampsia that may predict and characterize the disease, aid in risk stratification,

and assess metabolic differences in its early and late stages.

2.2 Specific objectives

e To determine the metabolic profiles in urine and serum of women diagnosed
with preeclampsia in comparison to normotensive pregnant and nonpregnant

women, for possible clues to the etiology and pathogenesis of the disease.

e To identify predictive biomarkers for preeclampsia and gestational hyperten-
sion in urine and serum in early pregnancy, and assess the metabolic changes

related to the diseases.

e To characterize the placental metabolic profile in preeclampsia in comparison
to normotensive pregnancies, and assess metabolic differences according to

established subgroups of preeclampsia.
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3 Materials and Methods

3.1 Patients and Data Sets

The papers included in this thesis are based on data from three different sources.
Paper I uses data from the Pilot Study for Identification of Biomarkers in Pre-
eclampsia (The Pilot Study), paper II uses data from the ScreenTox study, and
paper IIT uses data from the Preeclampsia Biobank). These data sources are briefly

summarized below.

3.1.1 Pilot Study for Identification of Biomarkers of Preeclampsia

The Pilot Study was a small study conducted at the Medical Faculty, NTNU.
Women with diagnosed preeclampsia (n=10), women with healthy pregnancies (n=10),
and nonpregnant women (n=10) were recruited from the local environment of St.
Olavs Hospital, Trondheim University Hospital, Norway and at Rgros Medical Cen-
ter, Roros, Norway. Patients admitted with suspected preeclampsia to the Mater-
nity Ward at St. Olavs Hospital were asked to contribute blood and urine samples
at the time of or soon after their diagnosis was set. Normotensive pregnant controls
were matched by maternal age and gestational age to the preeclamptic women, and
maternal blood and urine samples were collected. The nonpregnant women were
matched by age and blood and urine samples were collected. All the women were
of Scandinavian ethnicity. Women were included in the study between September
1st 2011 and December 15th 2012. Previous and current hypertensive diagnoses,
medication and time of last meal were recorded at the time of sample donation. Ges-
tational diagnoses, highest blood pressure, degree of proteinuria, and length, weight
and gestational age at birth of the baby were obtained from hospital records. All
women gave written informed consent and the study was approved by the Regional
Committee for Medical and Health Research Ethics (REC), Central Norway, refer-
ence number REK 2011/761.

3.1.2 The ScreenTox Study

The ScreenTox Study was a prospective screening study conducted at the National
Center for Fetal Medicine, St. Olavs Hospital in Trondheim, Norway. The cohort
has been described in detail in previous publications.'!%120 Women who were nul-

liparous or had previously had preeclampsia or gestational hypertension, and who
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were referred to routine ultrasound at 18 weeks of gestation, were sent a letter with
information about the study, and the study was advertized on the Internet at the
hospital web page and via Google AdWords. Women were included in the study
between September 1st 2010 and March 31st 2012. During the study inclusion pe-
riod, 5769 women attended a second trimester routine ultrasound at the National
Center for Fetal Medicine and 2602 (45%) of these women were nulliparous. All
study participants were scheduled for a visit between gestational week 11+0 and
1346 based on previous ultrasound scans or the last menstrual period.'?! Women
who were para < 1 without previous preeclampsia or gestational hypertension, or

were using aspirin or low molecular heparin were not eligible for inclusion.

At the time of inclusion between gestational week 1140 and 13+6, women
were interviewed about chronic diseases, medication, ethnic origin, smoking sta-
tus, method of conception, previous or familial history of preeclampsia, and height.
All women had their weight and blood pressure measured. Information about preg-
nancy outcomes was obtained from hospital records. Estimated date of delivery
and gestational age at delivery was based on a second trimester routine ultrasound
examination.'?! If spontaneous abortion or termination of pregnancy occurred after
the study visit and before the second trimester routine ultrasound, gestational age
was based on crown-rump length measurements. For estimation of weight deviation
at birth, the normal growth curves from Margal et al. were applied.!?? The defi-
nition of small for gestational age (SGA) was birth weight with a mean less than
-22%. Stillbirth was defined as a dead child born with a birth weight >500 g or, if
information about birth weight was unavailable, a gestational age >22 weeks.'?3 If
birth weight was <500g, the birth was classified as a spontaneous abortion. Blood
pressure was measured with a CAS 740 MAX NIBP automated device (CAS Med-
ical systems Inc, CT, USA).'*" Mean arterial pressure (MAP) was calculated as
MAP = %SP + %DP where DP is diastolic blood pressure and SP is systolic blood
pressure. MAP from the arm with the highest MAP was used. BMI was calculated
in kg/m? from maternal weight in the first trimester. Participants in study were
examined with transabdominal ultrasound with a Siemens ACUSON Antares™
machine (Siemens Medical Solutions Tnc, CA, USA).'? The UtAPI was measured
three times on each side, and the average of three measurements on each side was
used. The average of the two sides was used in calculations. All scans were car-
ried out by specialized trained midwifes who were certified by the Fetal Medicine

Foundation (http://www.fetalmedicine.com).
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At the end of the study inclusion period, 640 women had attended a study
visit of which 585 were nullipara. Of these, 38 were excluded for reasons appear-
ing at or after the study visit: missed abortion, multiple pregnancies and severe
congenital anomalies. Eight serum samples and 12 urine samples were excluded
due to missing samples or due to failed NMR acquisitions. A flow chart of study
participants is shown in Figure 3.1. Of the remaining cohort, 26 (4.5%) women
developed preeclampsia (25 late onset preeclampsia), and 21 (3.6%) developed ges-
tational hypertension. Ninety-eight percent were of European, Middle Eastern or
North African ethnic origin. All women gave written informed consent at study
entry. The study was approved by the REC, reference numbers REK 2010,/102 and
2013/386

Attended the 11+0-13+6 study visit:
- 640 pregnancies

38 were excluded due to conditions apparent
at the first study visit:

- 5 were pregnant with twins

- 6 had a missed abortion

-7 had CRL > 84 mm

- 5 cases of suspected abnormal fetal anatomy
- 10 had used ASA or low-molecular heparin
during pregnancy

- 5 were para > 0, no previous PE orGH

Y

A\

Included in the study:
- 602 pregnancies

13 were excluded from the analysis due to
conditions appearing after the study visit:
_ | - 2 cases of termination of pregnancy

" | - 1 case of spontaneous abortion

- 4 cases could not bevenipunctured

- 6 cases missing urine samples

7 were excluded for technical reasons
- 6 failed urine spectrumacquisitions
- 4 failed serum spectrum acquisitions

\J

L 4
Included in the prediction analysis:
- 587 urine samples

- 591 serum samples

Figure 3.1: Flowchart of study participants in paper II.
Abbreviations: ASA, acetylsalicylic acid (aspirin); CRL, crown rump length; GH, gesta-

tional hypertension; PE, preeclampsia.
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3.1.3 The Preeclampsia Biobank

The Preeclampsia Biobank consists of biological materials and health information
collected from pregnant women at St. Olavs Hospital, Trondheim, Norway, and
Haukeland University Hospital, Bergen, Norway. This NTNU project has collected
pregnancy related material in three phases named Trondheim 1 (2002-2006), Bergen
1 (2003-2006), and Bergen 2 (2010-2012). Placental tissue and serum samples from
Bergen 2 were used in Paper III.

Women with preeclampsia (n=19) and normotensive controls with otherwise
healthy pregnancies (n—15) were included. Women with preeclampsia were in-
cluded in the study if they were undergoing caesarian section (CS) for complications
of preeclampsia. Normotensive women were included if they were undergoing CS
for reasons considered not relevant for the study: maternal request, fetal breech
position, or previous CS. Only singleton pregnancies without labor activity were
included. All women were of Scandinavian ethnicity. Pregnancies with chromoso-
mal alterations, fetal and placental structural abnormalities or perinatal infections
were excluded. Information about the current and previous pregnancies, diagnoses,
height and weight, blood pressure and proteinuria were recorded by interview and
by reviewing medical journals. Maternal venous blood was collected prior to CS,
and placental tissue samples were collected after delivery.

Fetal growth restriction (FGR) in the PE biobank was diagnosed when serial
ultrasound measurements showed reduced intrauterine growth. In absence of serial
ultrasound measurements, neonates were defined with FGR if their birth weights
were <5th percentile for gestational age according to Norwegian fetal weight refer-
ence curves.'?® Large for gestational age (LGA) was defined as birth weight >95th
percentiles. The study was approved by REC (REK 2012/1040) and informed,

written consent was obtained from all participants.

3.2 Clinical Diagnostics

The Norwegian Association for Obstetrics and Gynecologists’ definition of pre-
eclampsia and severe preeclampsia from 2008, a slightly modified version of the

127 was

2002 guidelines of the American College of Obstetricians and Gynecologists,
used in the Pilot study and ScreenTox biobanks.!?® In the “PE biobank”, the 2014
Norwegian guidelines were used.!?® However, the diagnostic criteria were equal in

the Norwegian guidelines.
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For all the biobanks used in the scope of this thesis, preeclampsia was de-
fined as persistent systolic/diastolic blood pressure >140/90mmHg and protein-
uria >0.3g/24h occurring after gestational week 20. Gestational hypertension was
defined as persistent systolic/diastolic blood pressure >140/90mmHg without pro-
teinuria, occurring after gestational week 20.'2" Superimposed preeclampsia was
defined as hypertension pre-existing the pregnancy plus proteinuria developing af-
ter 20 weeks of gestation.'?? Severe preeclampsia was defined as preeclampsia with
presence of one or more severe clinical signs or symptoms: epigastric pain, se-
vere headache and/or other cerebral symptoms (visual disturbances, hyperreflexia,
edema, pulmonary edema (dyspnea, cyanosis), eclampsia, persistent blood pressure
>160/110mmHg, proteinuria >3g per 24h, oliguria <500mL/24h, thrombocytope-
nia, microangiopathic hemolytic anemia, or elevated liver enzymes.? FGR was not
a criteria for severe preeclampsia. Early onset preeclampsia was defined as pre-

eclampsia diagnosed before 34 weecks gestational age.?

3.3 Sample Handling
3.3.1 Sample collection and storage

Urine and serum samples in the Pilot Study and ScreenTox biobank (papers I and
I1): peripheral venous blood (5mL) and spot urine samples (20mL) were collected
from nonfasting women at their study visit. Venous blood was drawn into a non-
heparinized tube, and blood samples were left to clot for <30 minutes and cen-
trifuged at 1800G for 10 minutes. Aliquots (1.8mL urine and 1/0.5 mL serum (pa-
pers I/II) were stored at -80°C until analysis. The serum for paper II was thawed

once for further splitting into aliquots for metabolomic analyses.

Placenta and serum samples from the PE biobank (paper TTT): a tangential sec-
tion (100mg) from the maternal central side of the placenta was taken as soon as
possible after CS (mean £ SD, 101 + 49 minutes). The biopsies were placed di-
rectly in cryotubes and snap frozen either in liquid nitrogen or directly at -80°C
until analysis. Maternal venous blood was collected prior to CS, left to clot for <30
minutes, centrifuged at 1800G for 10 minutes, and serum aliquots (1mL) stored at

-80° until analyses.
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3.3.2 Clinical chemistry serum analyses

Serum samples from the PE biobank (paper III) were analyzed for common clini-
cal chemistry measurements to complement the HR-MAS placental analysis. Serum
sF1t-1 was measured in duplicate using a quantitative sandwich ELISA according to
the manufacturer’s instructions (#DVR100B, R&D Systems, Abingdon, UK). High
sensitivity C-reactive protein (hsCRP) (turbidimetric assay, Modular P analyzer,
Roche, Burgess Hill, UK), total cholesterol, HDL, triglyceride and creatinine (enzy-
matic colorimetric assays, Modular P analyzer) were measured at the Department

of Clinical Chemistry, St. Olavs Hospital, Trondheim, Norway.

3.3.3 Sample preparation for NMR analysis

Urine samples were thawed at room temperature (paper I) or over ice (paper II) and
centrifuged at 6000RPM. The supernatant(540uL) was mixed with a bacteriostatic
buffer containing Trimethylsilylpropionic acid (TSP) as a reference (6mM TSP, 1.5M
KH,POy, 2mM NaNj, pH 7.4 in D,0), transferred to a 5Smm NMR tube, and kept
at 5°C until analysis.

Serum samples were thawed at room temperature (paper I) or over ice (paper
IT). A bacteriostatic buffer containing TSP as a reference (4.6mM TSP, 0.075M
Na,HPO, @ THy0, 6.2mM NaNj, pH 7.4, in 20% D20 /H,0) was mixed with serum
(90uL), transferred to a 3mm NMR tube, and kept at 5°C until analysis.

Placental biopsy samples were prepared on a metal plate bathed in liquid nitro-
gen within a short time period in order to minimize the effect of tissue degradation
on the metabolic profiles. Biopsies (mean + SD, 7.5 + 1.4mg) were cut while still
frozen to fit 30ul. disposable inserts (Bruker Biospin Corp, USA), and filled with
3uL cold DyO containing 25mM formate for shimming. The inserts were placed in

4mm zirconium MAS rotors and transferred immediately to the magnet.

3.4 NMR Analysis
3.4.1 Optimization of NMR parameters

Analytical reproducibility. Reproducibility was tested throughout the acquisition pe-
riod of spectra in papers I and II. Five to eight samples were independently prepared
and analyzed. A PCA score plot of the samples (Figure 3.2) show the interindivid-

ual variation to be much larger than the analytical and sample handling differences,
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which consist mainly of small peak position shifts due to minute inconsistencies in
pH after buffer addition.
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Figure 3.2: Reproducibility of NMR measurements. Left: Urine samples from three
individuals prepared in 6-8 replicates and analyzed separately by NMR, then compared
in a PCA. Right: a PCA of serum from participants in paper I with samples from one
individual prepared in 5 replicates (in red triangles). Sample handling and analytical

variation produced smaller differences than individual variation.

Temperature calibration. Sample temperature was calibrated for every new ex-
periment setup. A 99.8% deuterated methanol sample equilibrated in the sample
probe for 5 minutes before spectrum acquisition. The exact temperature was calcu-
lated by measuring the distance A between the two peaks, and applying Equation 12.

The temperature in the probe was then adjusted to correct for the offset.

T(K) = —23.832A% — 29.46A + 403 (12)

Shimming and water suppression. For biofluid spectroscopy, a thorough opti-
mization of the automated shimming and water suppression was performed on a
standard 2mM sucrose in DO solution. Ideal parameters produces a linewidth
<1Hz and irradiation of the center of the water peak, suppressing the water signal
in a urine sample to below the CH3 peak of creatinine. A perfectly shimmed, water
suppressed and pulse calibrated urine sample is shown in Figure 3.3

Tuning, matching, pulse and magic angle calibration. Automatic tuning and
matching of the 'H resonance frequency as well as calibration of the 90° pulse were
used for biofluid spectroscopy. For the HR-MAS analysis, tuning, matching, shim-
ming and pulse calibration were manually adjusted while in gs mode (continuous

acquisition). Linewidth of the formate peak close to 1Hz were typically obtained
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Figure 3.3: A perfectly shimmed, baseline corrected and water suppressed urine spectrum
obtained by automated procedures. The linewidth is <1Hz, the baseline is flat and the

residual HoO peak is smaller than the highest metabolite peak in the spectrum.

on placental samples (mean + SD, 1.29 + 0.36Hz). For HR-MAS, additional ad-
justment of the magic angle was necessary to obtain maximum spectral resolution.
This was done by continuously observing the ™Br frequency of a KBr sample spun
at bKHz, while adjusting the angle under the magnet. At the magic angle, the

spinning sidebands of the ™Br signal are maximized at 10-12% of the main signal.

3.4.2 NMR equipment and settings

The NMR spectroscopy parameters for the analysis protocols are described in Ta-
ble 3.1. Urine and serum samples were analyzed on a Bruker Avance III Ultra-
shielded Plus 600MHz spectrometer (Bruker Biospin GmbH, Rheinstetten, Ger-
many) equipped with 5mm QCT Cryoprobe with integrated, cooled preamplifiers for
'H, ?H and '*C. Experiments were fully automated using the SampleJet™ sample
changer in combination with Icon-NMR on TopSpin 3.1 software (Bruker Biospin).

Urine samples were analyzed at 300K with NOESY (noesygpprld; Bruker) and
JRES (jresgppraf; Bruker) pulse programs, with total experiment time of 15 minutes
including sample transfer and temperature equilibration time. Serum samples were
analyzed at 310K to decrease viscosity, with NOESY, CPMG (cpmgprld; Bruker)
and JRES pulse programs. For paper [ a DIFF spectrum (ledbpgppr2sld; Bruker)
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Table 3.1: NMR spectroscopy parameters used in this thesis.

Analyte Spectrum NS TD (Hz) AQ (s) D1 (s) TE (ms)

Urine NOESY 32 65k 2.65 4
JRES 2 8kx40 0.41x0.26 2

Serum NOESY 32 98k 2.74 4
CPMG 64 65k 2.73 4 78
JRES 1 8kx40 0.41x0.26 2
DIFF 64 65k 1.83 4

Placenta NOESY 128 98k 2.74 4
CPMG 256 73k 3.07 4 78
JRES 1 8kx40 0.41x0.26 2

Abbreviations: AQ); acquisition time; cPMG, Carr-Purcell-Meiboom-Gill pulse
sequence; D1, relaxation delay with water suppression; DIFF; diffusion-edited
spectroscopy; JRES, J-resolved spectroscopy; NOESY, nuclear Overhauser effect
spectroscopy; NS, number of scans; SW, sweep width; TE, total echo time;

TD, spectrum width in the time domain

was also acquired. Total experiment time for serum samples was 23 minutes (31

with DIFF) including sample transfer and heating time for the samples.

Placental biopsies were analyzed by HR MAS NMR on a Bruker Avance DRX600
spectrometer (Bruker Biospin) equipped with a 'H/3C MAS probe with gradient
using 5KHz spin rate. Samples were analyzed at 5°C to minimize tissue degradation.
NOESY, CPMG and JRES spectra were acquired. Total experiment time was 43
minutes, with an additional 15-20 minutes for sample preparation and optimization

of NMR acquisition parameters.

Additional 2D spectra were obtained for selected urine and placental samples for
aid in metabolite identification: Urine was analyzed with HSQC (hsqcedetgpisp.2;
Bruker), COSY (cosygpprgf; Bruker), HSQC-TOCSY (hsqcdietgpisp.2; Bruker) and
HMBC (hmbecetgpl3ndpr; Bruker). Placenta was analyzed with HSQC and HMBC.
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3.5 Data analysis
3.5.1 Multivariate analyses

Following spectral acquisition, the spectra were automatically phased and baseline
corrected, and a 0.3Hz line broadening was applied in TopSpin 3.1 (Bruker Biospin).
Spectra were imported to Matlab R2010 / R2013b (The Mathworks Inc., Natick,
USA) using a script provided by Bruker. Regions containing water signal residuals
and nonsignal regions at the edges of the spectra were removed.

Spectral preprocessing and validation methods used in the thesis are summarized
in Table 3.2. Urine spectra were aligned using the iCoshift algorithm'%® and nor-

malized to unit area in paper I and with PQN normalization!!?

in paper II. Serum
NOESY spectra were aligned by TSP (paper I) or by alanine (paper IT) and nor-
malized to unit area (paper II). In paper I the diffusion-edited serum spectra were
limited to the lipid regions and normalized to unit area. Placental spectra were
aligned by iCoshift and normalized to unit area. Mean centering was performed by
subtracting the sample mean from every variable. VIP and CARS variable selec-
tion was performed prior to PLS-DA in paper II. VIP selection was performed by
creating a five-fold cross validated model, then selecting variables with VIP>1 to

use in a further model. CARS variable selection was performed with five fold cross
validation and 50 Monte Carlo samplings.

PCA, PLS and PLS-DA were performed in Matlab using PLS Toolbox v7.1.1
(Eigenvector Research, Wenatchee, USA). PLS and PLS-DA were performed using
the SIMPLS algorithm. In paper I, full cross validation (leave one out) was per-
formed on the PLS-DA models due to the low number of samples. In paper II, a
double cross validation procedure was performed. A set of samples (20%) was set
aside for independent validation (outer loop). The remaining samples were then
split into an inner calibration (80%) and test (20%) set for determining the opti-
mal number of LVs (inner loop). The inner and outer loops were both repeated 20
times, and the model diagnostics (classification error, sensitivity, specificity) calcu-
lated from the validation results. In paper III, a single loop cross validation was
performed. One fifth (20%) of the samples were set aside and used for validation
until all of the samples had been in the test set once, and the procedure was repeated
20 times. The number of LVs giving the lowest cross validated error of prediction
was used. Permutation testing was performed by randomly shuffling class or contin-

uous variable assignments, and building a model using the same parameters as for
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the true class labels. Where variable selection was performed, a variable selection
step was included in the permutation test. The permuted results were compared to

the true results, and where p<0.05, the models were considered valid.

Table 3.2: Preprocessing of NMR spectra before multivariate analyses

Paper I Paper 11 Paper III

Urine Serum  Urine Serum Placenta
Spectrum NOESY CPMG NOESY CPMG CPMG
Preprocessing
Normalization Area - PQN Area Area
Scaling Pareto - Pareto - Autoscaling
Alignment [coshift TSP Tcoshift Alanine Tcoshift
Mean centering yes yes yes yes yes
Variable selection - - VIP, CARS VIP, CARS -
Validation
Cross validation ~ LOO LOO 2Cve 2Cve 1CVve
Permutations 1000 1000 100 100 1000

Abbreviations: CARS, competitive adaptive reweighted sampling; CPMG, Carr-Purcell-
Meiboom-Gill pulse sequence; LOO, leave-one-out; NOESY, nuclear Overhauser effect
spectroscopy; PQN, probabilistic quotient normalization; TSP, trimethyl-silyl propionic
acid; VIP, variable importance in projection.

“ Double loop cross validation

’ Single loop cross validation (leave 20% out)

3.5.2 Metabolite identification and quantification

Metabolite peaks in the NMR spectra were compared to online databases of 'H
and '3C metabolite resonances: the Human Metabolome Database (HMDB)%7, the
Madison-Qingdao Metabolomics Consortium Database®® and software databases
of reference spectra AMIX v2.5 (Analysis of MIXtures software, Bruker Biospin
GmbH) and Chenomx v.7.11 (Chenomx Inc., Alberta, Canada). Further confirma-
tion of metabolite identities were made using Statistical Total Correlation Spec-
troscopy (STOCSY) to obtain statistically correlated peaks in NOESY, CPMG and

HSQC spectra resembling pure metabolite spectra.
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In paper I, metabolites were quantified using Chenomx based on the visible
TSP concentration. TSP was quantified in Topspin using a synthetic signal based
on a reference creatine (14.43mM) spectrum recorded at equal NMR acquisition

130 Serum metabolites were quantified from CPMG spectra. Urine

parameters.
metabolites were quantified from NOESY spectra and normalized to creatinine.
In paper II, regions of metabolites found important to prediction (hippurate, 4-
deoxythreonic acid, lactate, dimethylamine, creatinine) were integrated from urine
spectra and normalized to the creatinine value.

Lipoproteins and lipids were not quantified directly from NMR in this thesis, but
the contributions of signals arising from the lipid moieties within the lipoproteins
were considered in the multivariate models in papers I and TT. Water-insoluble lipids
in blood are transported by lipoproteins in the form of triglycerides and esterified

cholesterol.'3!

The position of the signals from the lipids depends on the size of the
lipoprotein carrying it; smaller, denser lipoproteins like HDL have lower ppm values
while larger LDL and VLDL lipoproteins, containing triglycerides and cholesterol,
have higher ppm values.'! The methyl (~ 60.9ppm) and methylene (=~ §1.3ppm)
regions of serum NMR spectra contain overlapping resonances from VLDL and
HDL, as well as contributions from low- and intermediate density lipoprotein. The
VLDL/triglyceride and HDL regions of paper I were identified by comparison to re-
ports based on purified lipoprotein subfractions.'®? In paper II the VLDL and HDL
regions were additionally identified by PLS regression of the spectra to lipoprotein
concentrations obtained by methods described in Section 3.3.2, and by STOCSY,
showing separate contributions to the broad lipid resonances from the left (VLDL)
and right (HDL) side of the peak (Figure 3.4).

In paper III, relative metabolite intensities were calculated in by integrating the
area under the metabolite signal in the normalized spectra after removal of the
residual water signal. The metabolite regions with the least signal overlap were

chosen for quantification.

3.5.3 Univariate data analysis

Univariate tests, logistic regression and linear regression models were performed in
SPSS Statistics 20.0.0 (IBM Corp, NY, USA). The Kolmogorov-Smirnov test was
used to evaluate normality of the data. Nonparametric metabolite data was com-

pared between groups using the Mann-Whitney U test for two groups or Kruskal-
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Figure 3.4: Lipoprotein contributions to serum NMR spectra. Statistical total correla-
tion spectroscopy (STOCSY) of CPMG 'H spectra of serum from pregnant women. The
height expresses the variable covariation to the driver peak, and the color scale represents
the Pearson correlation to the driver peak. Due to particle-size dependent differences in
susceptibility, NMR signals from VLDL triglycerides appear at higher ppm values than
HDL cholesterol.'?!

Abbreviations: CPMG, Carr-Purcell-Meiboom-Gill pulse sequence; HDL, high density
lipoprotein; NMR, nuclear magnetic resonance; STOCSY, statistical total correlation spec-

troscopy; VLDL, very low density lipoprotein.

Wallis test for three groups. T-tests were used to compare normally distributed

groups.

In paper II, metabolite to creatinine ratios were combined with clinical param-
eters MAP, UtAPI and a dummy variable signifying maternal age (> 34 or < 20)
in logistic regression models to predict development of preeclampsia.'® ROC curve

analysis was performed to find prediction sensitivity at 90% specificity.

In paper III, linear regression models with log transformed metabolites as de-
pendent variable and preeclampsia and gestational age as independent variables
were generated. The interaction term between preeclampsia and gestational age
was not included in the models as it was not significant (p>0.05) for any metabolite

x gestational age interactions.
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For all analyses, p values < 0.05 were considered significant. Adjustment for
multiple testing was performed with the Benjamini-Hochberg false discovery rate

correction, 3

3.5.4 Metabolite set enrichment analyses

Metabolite levels from the placenta HR-MAS spectra were analyzed with Metabo-
Analyst online (www.metaboanalyst.ca)'®® by metabolite set enrichment analy-
sis (MSEA) for inferring the main metabolic pathways associated with disease.!3
Quantitative enrichment analysis of metabolites based on metabolic pathway asso-
ciated metabolite sets was performed. In quantitative enrichment analysis, a gener-
alized linear model is used to create a Q statistic for each metabolite set, describing
correlation between a metabolite and the clinical outcomes. The Q statistics are
then compared to expected QQ values for the metabolite sets. The metabolite sets
are curated from the Small Molecular Pathway Database (SMPDB).'37:138
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3.6 Ethical considerations

Prediction of gestational disease carries special ethical issues. Stratifying women
who are of higher risk for disease in the current pregnancy, after pregnancy and
for subsequent pregnancies, may cause more stress and anxiety than is offset by
improved outcomes. As of today there are few or no successful ways of preventing
the disease of preeclampsia of occurring. However, in order to find a useful prophy-
laxis, a reasonable selection of high risk women must be found which may benefit
from treatment. Meta-analyses suggest that starting treatment of high-risk women
with aspirin before 16 weeks of gestation has preventive effect against preterm or

139 141 Tn order to

severe preeclampsia, but not term and moderate preeclampsia.
find successful methods of preventing preeclampsia, research in early pregnancy is
necessary.

FEarly fetal diagnostics are a controversial topic in Norway. An important con-
sideration was whether any information could be found about the health of the baby
before it was born. For this reason, no analyses were started before all babies in the
project had been born. The studies were approved considering that the research
focused on preeclampsia as a maternal and fetal disease, not as fetal diagnostics.
However, during data collection in paper II it was impossible to measure the uterine
artery pulsatility index (UtAPI) without also observing the baby. The women were
advised of this before they consented to take part in the study.

Placental tissue is comprised of fetal cells, but in Norway the placenta is not
defined as part of the fetus. Biobanking of placental tissue is therefore not considered
a controversial ethical issue, as for example cord blood biobanking, though both
procedures involve using cells without consent from their owner. The placental
samples are taken at birth with no additional inconvenience to the mother.

All papers in this thesis use and generate much information about relatively
few people. An important ethical consideration was to not disseminate enough
information that the participants in any way become identifiable. Additionally,
study results are published at group level and never returned individually to study
participants. All studies in this thesis were approved by the regional ethic committee

(REC) and signed consent was obtained for all participants.
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4 Summary of papers

4.1 Paperl

Metabolomic Biomarkers in Serum and Urine in Women
with Preeclampsia

The aim of paper I was to determine the metabolic profiles in urine and serum
of women diagnosed with preeclampsia in comparison to normotensive pregnant
and nonpregnant women, for possible clues to the etiology and pathogenesis of the
disease.

Serum and urine from women with preeclampsia, healthy pregnant controls and
healthy nonpregnant controls were analyzed by NMR metabolomics. Metabolomic
analysis showed a significant difference between women with preeclampsia, women
with healthy pregnancies, and nonpregnant women in both urine and serum sam-
ples. PLS-DA analyses of the healthy and preeclamptic pregnant groups revealed
that several metabolites differed in both biofluids. In urine samples, women with
preeclampsia had increased levels of choline and dimethylamine, and decreased lev-
els of glycine, p-cresol sulphate, and hippurate. In serum, the levels of histidine
were higher in women with preeclampsia, and the loading plots of the PLS-DA
analysis showed an increase of total lipids and the VLDL region of the methyl re-
gion in particular. The lower levels of urinary glycine were attributed to a possible
increased demand for glutathione in antioxidant processes, as glycine is a precur-
sor in the glutathione pathway. Glycine has also been shown to be decreased in
mothers with small for gestational age babies. The decreased excretion of the ure-
mic toxin p-cresol sulfate was considered an effect of the renal injury, and retention
may contribute to endothelial dysfunction. The loading plot for the urine spectra
revealed a grouping of the early onset preeclampsia cases, suggesting a possible sub-
grouping of the disease in metabolomic analyses. The serum PLS-DA plots of the
diffusion-edited spectra showed a lipoprotein signal pattern of increased VLDL and
decreased HDL, a proatherogenic pattern which has been related to cardiovascular

disease, suggesting a connection in the metabolic profiles of the two diseases.
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Figure 4.1: Paper I: Two PLS-DA models discriminating urine (left) and serum (right)

samples from women with preeclampsia (PE) or healthy pregnancies (PC) from the Pi-

lot Study.

variable importance in projection score.

The 2D loading plots are superimposed on the score plots, and colored by
Abbreviations: CL, confidence limit; TMAO,

trimethylamine-N-oxide; VLDL, very low density lipoprotein.
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4.2 Paper II

First Trimester Urine and Serum Metabolomics for Prediction of
Preeclampsia and Gestational Hypertension: A Prospective

Screening Study

The aim of this study was to evaluate the potential of metabolomics to predict
preeclampsia and gestational hypertension from urine and serum samples in early
pregnancy, and to elucidate the metabolic changes related to the diseases. Cur-
rent risk stratification methods for preeclampsia and gestational hypertension in
first trimester pregnancy have low sensitivity, and new predictive biomarkers are
warranted. Conventional “prior risk” methods using maternal characteristics can

predict 30-40% of preeclampsia cases at a 10% false positive rate (FPR).

Nuclear magnetic resonance spectra (Standard 'H NOESY (urine) and CPMG
(serum)) were acquired on samples from 599 women at medium to high risk of pre-
eclampsia. The data were explored using PCA, and a predictive model created using
PLS-DA with variable selection. The models were optimized and evaluated with a
double cross validation procedure. Areas of the spectra that were important for
discrimination were identified using HSQC, HMBC and TOCSY spectra of selected

samples.

A total of 599 women with 587 urine samples and 591 serum samples were
included in the analysis. Twenty six women (4.3%) developed preeclampsia, and 21

women (3.5%) developed gestational hypertension.

Urinary metabolic profiles predicted preeclampsia and gestational hypertension
at 51% and 40% sensitivity respectively, at 10% FPR. Metabolite differences in-
cluded higher urinary creatinine and 3-hydroxyisobutyrate, and lower urinary hip-
purate, and proline betaine in women who later developed preeclampsia. Serum
metabolic profiles predicted preeclampsia at 15% sensitivity and gestational hy-
pertension at 33% sensitivity at 90% specificity with increased lipid levels and an
atherogenic lipid profile as most important. Serum spectra from the preeclampsia
group contained higher levels of triglycerides and VLDL, and lower levels of phos-
phatidylcholine and HDL.

Early urine changes may result from metabolic disturbances from hypertension,
diet and low level renal involvement in the first trimester of pregnancies which

later develop preeclampsia. The lipid profile preceding the clinical onset of disease
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may contribute to the pathogenesis or be reflective of a cardiovascular risk profile
contributing to hypertensive diseases of pregnancy.

Combining MAP, maternal age and UtAPI gave an area under the ROC curve
(AUROC) of 0.42 (95% CT 0.64-0.84) for prediction of preeclampsia in a logostic
regression model. Combining maternal characteristics (MAP and age) with the uri-
nary hippurate to creatinine level gave an AUROC of 0.78 (95% CI 0.70 - 0.86).
Combining the hippurate/creatinine ratio with MAP, age and UtAPI gave an AU-
ROC of 0.81 (95% CI 0.72-0.89).

These results show a potential clinical importance for metabolomic analysis of
urine samples to predict preeclampsia. Preeclampsia could be predicted from both

urine and serum spectra, but with higher sensitivity from the urine spectra.
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Figure 4.2: Paper II: Results from principal component analyses of NMR spectra of urine
(top) and serum (bottom) from first trimester pregnant women in the ScreenTox Study.
The first two principal components (PCs) are plotted. Samples from women with pre-
eclampsia (PE, pink diamonds) and gestational hypertension (GH, green triangles) cluster
together in the urine analysis, but not in the serum analyses. Samples from normotensive

pregnancies are shown in blue circles.
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4.3 Paper III

Metabolic profiles of placenta in preeclampsia by HR-MAS MRS meta-

bolomics

Our aim in this paper was to phenotype the preeclamptic placenta using High-
resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy (HR-
MAS MRS). Preeclampsia is a heterogeneous gestational disease initiated by in-
sufficient placental development, but studies characterizing the placental metabolic

disease components are lacking.

Placental samples were collected after delivery by CS from women with pre-
eclampsia (n=19) and normotensive controls (n=15). The samples were analyzed
for metabolic biomarkers including amino acids, osmolytes, components of energy
and phospholipid metabolism. The metabolic biomarkers were correlated to clinical
characteristics and maternal serum inflammatory biomarkers. Principal compo-
nent analysis showed an inherent difference in placental metabolic profile between
preeclamptic and normotensive pregnancies. There was an overlap in placental
metabolic expression between established subtypes of preeclampsia, such as disease
severity and presence of FGR. Using PLS-DA, significant differences in metabolic
profiles were found between normotensive and preeclamptic placentas, and between
placentas from severe and non-severe preeclampsia. Several metabolic pathways
were found to be involved using metabolite set enrichment analysis: taurine, gluta-
mate and phospholipid biosynthesis in particular. Placental metabolites, especially
the cell membrane breakdown product glycerophosphocholine, correlated with the
placental stress marker sFlt-1 in serum. A different metabolic profile correlated with
maternal serum triglycerides, suggesting a variation in placental stress signaling in

different placental phenotypes.

Gestational age differences between preeclamptic and normal placentas may be
considered part of the disease, as preeclampsia necessitates early delivery. However,
differences in metabolites which also vary due to gestational age variation might
confound the results. Variation due to gestational age was adjusted for using a linear
regression model, and metabolites related to taurine and glutamate metabolism

remained significant after this correction.

HR-MAS MRS is in this study shown to be a sensitive method for defining the
placental disease component of preeclampsia, identifying several altered metabolic

pathways. Placental HR-MAS MRS analysis may provide improved insights into
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which processes are disturbed in placental subtypes of preeclampsia, and introduce

a new long-required tool for more detailed and sensitive placental phenotyping of

this heterogeneous disease.
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Figure 4.3: Paper III: Principal component analysis of the HR-MAS MRS spectra from

paper III. a) Placentas from all preeclamptic pregnancies (PE total, green) and from

normotensive pregnancies (Normotensive, red) have clearly different metabolic profiles.

b) Placentas from severe preeclampsia (PE Sev, blue) have a closer phenotype to the

normotensive group than the non-severe preeclampsia group (PE non-severe, green). c)
Placenta with PE and FGR (PE+FGR, blue) and PE without FGR (PE w/o FGR, green)

have more overlapping phenotypes. ¢) The loading plot shows the metabolite contributions

to the sample variation.
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5 Discussion

The main aim of this thesis was to identify new metabolic biomarkers of pre-
eclampsia, in order to characterize the disease and predict its manifestation. The
subjects in the thesis ranged from nonpregnant controls, to pregnant women with or
without preeclampsia in early and late stages of pregnancy, and at time of delivery.

In paper I and II, maternal biofluids were analyzed with high throughput, au-
tomated metabolic profiling methods. Paper I analyzed urine and serum from
women with manifest disease compared to normotensive women, and proved a clear
preeclampsia-related disturbance in the metabolic profiles. Comparison between
healthy pregnancy and nonpregnant women reflected a normal systemic pregnancy
related metabolic response. Paper II continued the use of these methods in a larger
cohort, aiming to identify metabolic predictors of preeclampsia and gestational hy-
pertension in first trimester pregnancy. The urinary metabolic profile was found to
be significantly altered at this early stage of disease, with predictive value for pre-
eclampsia. The serum metabolic profiles had less predictive sensitivity, but showed
an early pregnancy evidence of an atherogenic lipid profile in preeclampsia. Pa-
per TIT assessed the metabolic profile of intact placental tissue from women with
preeclamptic and with normotensive pregnancies. Several metabolic pathways were
altered in the preeclamptic placenta, highlighting the importance of dysfunctional
metabolism in disease related processes, and revealing novel biomarkers of the pla-

cental disease.

5.1 Metabolic profiles of preeclampsia

New metabolic biomarkers of disease were found in all three papers presented in the
thesis. The results are shortly summarized in Table 5.1, and set in context of the

stepwise model for the development of preeclampsia in Figure 5.1.

5.1.1 Redefining biomarkers of preeclampsia

The multimodal nature of preeclampsia is not fully described by its diagnostic hall-
marks; hypertension and proteinuria. Therefore sets of biomarkers which would aid
in the correct diagnosis or prediction of preeclampsia were sought in this thesis.
The multivariate methods applied make use of the entire metabolic profile, which

means that metabolites that are not significantly different alone can be included
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Table 5.1: Summary of the biomarkers of disease identified in this thesis

Case group Paper

Sample type

Metabolites 1

Metabolites |

Active PE I Urine Isobutyrate, Gly, p-CS,
DMA hippurate,
histidine
I Serum Histidine, TG /
VLDL
111 Placenta GPC, aspartate Taurine, Glt, Gln,
ethanolamine, Gly,
lysine
Risk of PE T Urine Creatinine, Hippurate, lactate
4-DTA, Gly, proline betaine
DMA
II Serum 3-HB, TG Pyruvate, PtdCho,
lactate
Risk of GH II Urine Creatinine, Hippurate, lactate,
a-HIB, DMA proline betaine
II Serum TG PtdCho, HDL,

lactate, N-Ac

Symbols and Abbreviations: 1, increased expression in preeclampsia; |, decreased
expression in preeclampsia; a-HIB, a-hydroxyisobutyrate; 3-HB, 3-hydroxybutyrate;
4-DTA, 4-deoxythreonic acid; DMA, Dimethylamine GH, gestational hypertension;
Gln, glutamine; Glt, glutamate; GPC; glycerophosphocholine; Gly, glycine; HDL,
high-density lipoprotein; N-Ac, N-acetylated residues of glycoproteins; p-CS, p-cresol
sulfate; PE. preeclampsia; PtdCho, phosphatidylcholines; TG, triglyceride; VLDL,

very low density lipoprotein
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Figure 5.1: Results from the thesis in the context of the staged model of preeclampsia
as detailed previously (Figure 1.3, page 6). Early metabolic alterations in maternal bioflu-
ids predate preeclampsia and gestational hypertension (paper II) and are highly appar-
ent in active preeclampsia (paper I). Metabolic pathways of phospholipid biosynthesis,
taurine metabolism and protein biosynthesis are altered in placentas from women with

preeclampsia (Paper III).
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in discriminative models. In order to move predictive metabolic biomarkers to a
clinical setting it may be necessary to move towards panels of metabolites, mea-
surable with simpler tests.” However, the first steps are identifying the possible
biomarkers and inferring their role in disease development or pathophysiology. In
this thesis, metabolic profiles of active disease were found both in urine and serum,
and in placental tissue corresponding to serum markers. Predictive biofluid profiles

for preeclampsia were also established.

5.1.2 Maternal metabolism in early and late pregnancy

Maternal urine and serum were profoundly changed in preeclampsia compared to
healthy pregnancy (paper I). Some metabolites in active preeclampsia were also
reflected in early pregnancy for women later developing the disease (paper II). These
were the atherogenic lipid profile in serum and metabolites associated with high
blood pressure in urine. In paper III, serum markers of renal function and placental
stress were significantly altered for women with preeclampsia, and the serum lipid
levels measured by clinical chemistry methods shared the same trend.

Women with active preeclampsia had significantly lower urinary excretion of
glycine, p-cresol sulfate and hippurate (paper I). Glycine excretion increased al-
most fourfold from nonpregnant to the third trimester normal pregnant state, but
was reduced to half in preeclamptic pregnancies. Increased glycine excretion in nor-
mal pregnancy has been previously described,'*? as well as a relative decrease in
preeclamptic pregnancies, FGR and preterm birth.”” 437145 Glycine as a precursor
in glutathione synthesis may be depleted due to maternal oxidative stress.'46:147
Glycine is also involved in the one-carbon metabolism involving tetrahydrofolate,
methionine and homocysteine (Figure 5.2)."" Methionine is required for many
biosynthetic reactions, particularly in pregnancy.'*® Dysregulation of key enzymes
in the pathway has been suggested in preeclampsia, with increased homocysteine
and decreased methionine linked to low birth weight and future CVD.!8 150 De-
creased glycine excretion could be due to reduced methylation of homocysteine,
also explaining the increased choline excretion. Decreased glycine and increased
glycerophosphocholine was also evident in placental biopsies from women with pre-
eclampsia compared to normotensive (paper I1T), giving additional evidence that the
folate-related metabolism may be a pathogenic factor in preeclampsia.'® Urinary

glycine was not amongst the most predictive metabolites for preeclampsia (paper

IT) and was in fact slightly increased in women who later developed the disease, in-

60



5 DISCUSSION 5.1 Metabolic profiles of preeclampsia

Cell proliferation
Protein synthesis
RNA synthesis

transamination ./Iml\
Methionine

‘I Choline
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Homocysteine ' Serine

Figure 5.2: Folate-methionine metabolism. Methionine is generated by transfer of a

methyl group from tetrahydrofolate (THF) via the enzyme methionine synthase (MS) and
the cofactor vitamin Bjs. The primary source for one-carbon units for THF is the conver-
sion of serine to glycine via serine hydroxymethyltransferase (SHT). An alternative source
of methyl is from choline via betaine, producing dimethylglycine (DMG) and glycine.'46: 153
Red arrows, findings in paper I and III; Blue arrows, findings in previous research;48-150
BHMT, betaine homocysteine methyltransferase; MTHFR: methylene tetrahydrofolate re-

ductase

dicating this metabolite as an effect of disease rather than connected to risk profile.
Indeed, plasma homocysteine is not elevated before clinical signs of preeclampsia,
but increases once the signs develop.'??

Similarly, the decrease in urinary p-cresol sulfate for women with preeclampsia
(paper 1) was not reflected in early pregnancy (paper II). This metabolite is a
gut microbial byproduct,’®* and a uremic retention solute which has shown proin-
flammatory effects on endothelium and kidney cells, and may induce shedding of

5 There is a link between p-cresol sulfate retention

endothelial microparticles.!
in patients with chronic kidney disease and later CVD'"* 1% suggesting a possible
mechanism for CVD risk for women who have been diagnosed with preeclampsia.
However, p-cresol sulfate was not identified in the serum spectra of the preeclamptic
women (paper I), probably due to low concentrations, and thus any concomitant
increase in serum concentration could not be established.

Fewer specific metabolite differences were observed in serum metabolic profiles
than urine in active preeclampsia (paper I). However, the lipid profile difference

between the normotensive and preeclamptic group in paper I was highly significant

and alone discriminated between cases and controls. This lipid profile was also found
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in first trimester in women developing preeclampsia (paper II), suggesting that the
atherogenic lipid profile may be part of the pathogenesis of preeclampsia. Increase

in triglyceride-rich VLDL and decrease in HDL have been associated with increased

156 157

risk of cardiovascular events”® and preeclampsia. HDL levels remain low in

the years after pregnancy for mild and moderate preeclampsia, but not severe,
suggesting that the pro-atherogenic lipid profile persists even after preeclampsia. In
paper III, serum levels of lipids in women with preeclampsia measured by clinical
chemistry methods showed a trend to decreased HDL levels and increased total
cholesterol and triglyceride levels. However, the differences were not significant. A
reason for this could be the earlier and more severe phenotype of the women with
preeclampsia in paper III, which may be associated more with inflammatory and
angiogenic imbalances in the placenta than with maternal constitutional factors,

thus, representing the more “placental” side of the disease continuum.'®

5.1.3 Placental metabolism in active preeclampsia

The placenta is in most cases the causative organ in preeclampsia. Close to term,
it is affected by the inadequate placentation originating at its development and by
adaptations to continuous stressors. In turn it releases stress signals and causes
endothelial dysfunction in the maternal circulation. Metabolic changes are thus ex-
pected to be evident of oxidative, ER and inflammatory stress, and to be associated
with the maternal disease.

Paper III explored the metabolic effects of preeclampsia in the placenta. The
placental metabolic profile in preeclampsia showed a highly significant altered meta-
bolic state. The metabolites were connected to taurine metabolism, glutamate and
glutamine metabolism, phospholipid metabolism, and methionine-folate metabolism.

Taurine depletion in preeclamptic placenta and cord blood is a known event in
preeclampsia and was confirmed in paper I11.15° Likewise, the decreases of glycine,
glutamate and ascorbate may be connected to the state of increased oxidative stress
in the placenta of preeclamptic women; glycine and glutamate as precursors to
glutathione, and ascorbate (Vitamin C) as an antioxidant.

Metabolites involved in phospholipid metabolism appeared highly disturbed in
preeclampsia. Glycerophosphocholine is a cell membrane breakdown product which
was posited to be decreased in preeclamptic placenta due to either increased apopto-
sis or necrosis, or to increased cell membrane catabolism for replenishing the cellular

choline pool, or a combination of the two effects (paper III). The latter cause of the
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decrease is interesting because it is associated with the methionine-folate cycle,
where choline may be used as a methyl donor (Figure 5.2).10 Folate is a vitamin
that is essential for reproductive health, and a well known prenatal supplement.'??
Choline levels were equal in placenta from preeclamptic and normotensive preg-
nancies (paper III), suggesting a compensatory effect on placental choline levels
by increasing cell membrane catabolism. Comparing severe with non-severe pre-
eclampsia, an additional increase in choline was found in tissue from the severe

group (paper III). Accumulation of cellular choline in severe PE may be caused by

reduced remethylation of homocysteine to methionine as illustrated in Figure 5.2.

The possible involvement of the enzyme phospholipase Ay has also called to at-
tention in preeclampsia.!51%2 This enzyme releases glycerophosphocholine from cell
membrane phosphatidylcholines with production of arachidonic acid,'®® a contribu-
tor to immune reactions.'® Increased activity of PLA, might contribute to increased
glycerophospholipids in placental tissue, and to increased inflammatory stress as
registered by increased serum sFlt-1 (paper III). Non-steroidal anti-inflammatory
agents such as aspirin inhibit conversion of arachidonic acid to prostaglandins and
thromboxanes which may contribute to inflammation, vasoconstriction and platelet
aggregation.™® This is thought to be the mechanism for low-dose aspirin treatment

in prevention of preeclampsia in a subset of cases.'"!

Of special interest was the correlation of placental metabolite profiles and ma-
ternal serum markers of preeclampsia. Glycerophosphocholine in particular corre-
lated to increasing maternal serum sFIt-1 levels, which established a link between
maternal and placental disease (paper III). If such a link from preeclampsia-specific
phenotypes could be established earlier in pregnancy, a more targeted treatment and
expectant management could be developed. There was also a significant correlation
between maternal serum triglyceride levels and placental metabolites (paper III): in-
creased placental choline, glutamine and glycine and decreased 3-hydroxybutyrate.
This is a different placental profile compared to that associated with placental stress
(sFlIt-1) and of preeclampsia in general. The findings might suggest a separate
placental disease in those women who have high triglycerides, associated with an
atherogenic lipid profile - such as the women in paper II. In preeclamptic decidua
from the Bergen 1 and Trondheim 1 collections, a downregulated gene, ACOX1,
has been shown inversely correlated with triglyceride levels in a separate cohort,
suggesting a shared genetic risk factor between preeclampsia and cardiovascular

disease.'®* These findings are definitely worth exploring further.
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No difference was found in NMR-visible metabolites between placentas from
preeclamptic pregnancies with or without FGR. Both isolated FGR and preeclampsia
are independently associated with placentation disorder, but only in preeclampsia is
there a maternal pathophysiological syndrome.?® There are few studies on the differ-
ences between preeclampsia with and without FGR, and further research is required
for elucidation of the mechanisms behind fetal growth involvement in preeclampsia.

Paper III highlights the importance of the placenta in the disease, illustrating
a wide range of placental metabolic changes. There are no previous publications
detailing HR-MAS MRS analyses of placental tissue, although the method has many
advantages in sample preparation and the range of metabolites measured. Paper I11
represents a new method for characterizing the placental component of preeclampsia
compared to placentas from healthy pregnancies and in stratifying maternal and
fetal outcomes. Different placental phenotypes have been hypothesized to give rise
to the same diffuse end stage maternal presentation, hypertension and proteinuria.®!

Only the end stage of the disease is examined in placental analysis, and causative
factors may have been masked by the overreaching consequences of placental hy-

165 It might be possible to obtain samples of chorionic

poxia and inflammation.
villi as is used in detection of aneuploidy at the end of the first trimester.'® This
method would allow research into causative factors. However it suffers from the
same problem as other first trimester research; the incidence rate of the disease de-
mands a very large biobank which would also contain a large degree of chromosomal

disorders due to the indications for chorionic villi sampling.®3

5.1.4 Metabolic profiles of preeclampsia and gestational hypertension

in early pregnancy

Investigation of the first trimester metabolic profile of women developing preeclampsia
marks a change in focus from effects to causes or risk factors for the disease. Sig-
nificant differences were found preceding preeclampsia and gestational hypertension
in urine and serum, and urine samples clearly proved most sensitive (paper IT). The
altered metabolite profiles found at the end of the first trimester were not directly
associated with placental disease, but were more evident of a differing maternal con-
stitution early in pregnancy. Of the 47 women who developed hypertensive diseases
of pregnancy, three delivered before term (<37 weeks gestation) focusing paper 11

primarily on late onset disease.
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A similar metabolic profile in urine and serum preceded both preeclampsia and
gestational hypertension (paper II). The findings indicate that a similar risk pro-
file visible to NMR precedes the two hypertensive diseases. The late onset version

of preeclampsia is largely associated with maternal factors (metabolic syndrome,

8,167) 3

hypertension, diabetes , and with a less affected placenta.®® The vascular
and inflammatory early placental stress are observed less often in late onset dis-
ease.'%® A subset of late onset preeclampsia may be difficult to predict because
the pathogenic changes in the placenta have not yet happened at the study visit in
the first trimester, rather occurring closer to term with crowding of placental villi
causing reduced perfusion.®® A bimodal skewing of birth weights towards increased
SGA and LGA, suggests a dual etiology of late onset preeclampsia, one closer to
early onset with signs of underperfusion, and one associated with maternal inability
to meet placental demand, causing hypoxia.'®® Of preeclampsia births in paper II,
four births (15%) were >90th percentile of weight, and three (12%) were <10th
percentile of weight, suggesting that this may also be the case in the ScreenTox
cohort, though the numbers are too small for definite conclusions. Contrarily, in
paper I the uterine artery flow resistance measured by UtAPI was significantly
higher at the 11-13 week study visit for those later developing preeclampsia, but
not gestational hypertension (paper IT), proving placental involvement in the first
trimester for this group. A comparison between metabolic profiles from the pre-
eclampsia and gestational hypertension groups found no significant difference. A
conclusion that may be drawn from this is that differences in placental perfusion
could not be estimated from early maternal biofluid profiles with NMR, although
the maternal constitutional factors increasing the risk of hypertensive diseases could
be detected. A cytokine profiling of the ScreenTox cohort demonstrated that the
women who later developed gestational hypertension had increased levels of cy-
tokines (interleukin (IL) 15, IL-5, IL-7, IL-8, IL-13, basic fibroblast growth factor
and VEGF) compared to the women who later developed preeclampsia, pointing to
early systemic inflammation and stress, accompanied by compensatory mechanisms
(Tangeras et al., submitted). NMR-visible metabolites are at higher abundance than
cytokines in serum, and it may be that differences between the two hypertensive
diseases are seen primarily in low-abundance components of the immune system at

this early stage.

The decrease of urinary hippurate in women who later developed preeclampsia

71

was attributed to increased MAP in early pregnancy.” However, because the dif-
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ference remained significant after correction for MAP in a linear regression model,
blood pressure alone can not be the cause. Hippurate and proline betaine have

170,171 and the decrease of these metabolites in

been associated with fruit intake,
urine of women who went on to develop preeclampsia might suggest a healthier
diet and lifestyle within the normotensive control group. High fruit intake was
included in prediction models for preeclampsia in the Screening for pegnancy end-
points (SCOPE) study, indicating an association with either diet or general lifestyle

172,173 and adherence to the “New Nordic diet” of Nordic fruits,

and preeclampsia,
root vegetables, cabbage etc. was found to be associated with reduced risk of pre-
eclampsia in the Norwegian mother-child (MoBa) study.'™ Together this suggests
that healthy diet and disturbed placentation are inversely correlated, but the de-
tails of this interaction are unknown. Without detailed information about the diet
of the study participants, no further associations can be made in our cohort. The
interplay between urinary metabolites, blood pressure, diet and gut microbial ac-
tivity is a complex network, which seems to be affected in pregnant women who go
on to develop preeclampsia. Hippurate decrease was also observed in active pre-
eclampsia (paper T). Tt would be interesting to examine the predictive sensitivity of
the hippurate/creatinine ratio in mid-gestation or closer to term. Metabolic profil-
ing in mid-gestation, before disease onset, would also enable comparisons to first-
and third trimester samples, for inferring which changes precede and follow onset

of preeclampsia.

Changes in creatinine excretion in first trimester urine suggest an early, sub-
tle renal involvement, before any serum markers of renal involvement can be ob-
served.'™ 177 Both preeclampsia and gestational hypertension had early increases
in creatinine excretion (paper IT). However only in the preeclampsia group did the
renal involvement progress to proteinuria. Increased levels of sFlt-1 appear close
to the onset of preeclampsia!™ but not gestational hypertension.'™ This must be
consolidated with the increased UtAPI seen in the preeclampsia group and not
the gestational hypertension group (paper II). To speculate, both groups have in-
creased renal filtration in early pregnancy due to constitutional factors, but only in
preeclampsia is the placenta also compromised, later in pregnancy releasing antian-

giogenic factors affecting the susceptible glomerulis.

The serum analyses identified metabolic alterations that were only slightly pre-
dictive of preeclampsia, but that reflect an altered lipid composition which may

contribute to the exaggerated inflammatory state of the women developing pre-
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eclampsia (paper IT). We did not adjust for confounding factors; for example, BMI
and maternal obesity might influence the lipid levels. However the preeclampsia
group was not significantly heavier than the normotensive group. The results re-
flect previous studies of lipoprotein, cholesterol and triglyceride at early gestation.®
A result of elevated lipids and VLDL lipoproteins is oxidative stress and endothe-
lial dysfunction, which may increase the risk of preeclampsia.'®: 82 Dyslipidemia
may be a subpart of a more general metabolic syndrome, including insulin resistance,
obesity, hypertension and hyperglycemia, which together predispose to preeclampsia
and gestational hypertension. Dyslipidemia precedes pregnancies with preeclampsia
or gestational diabetes,'®? indicating that dyslipidemia may contribute to develop-
ment of preeclampsia - possibly by altering functional characteristics of endothelial
cells.'®  However, NMR has limited ability to differentiate lipid and fatty acid
species. An interesting approach would be to use lipidomic MS-methods to further
assess the variation in lipid components in this cohort.'8*

The connection between preeclampsia and CVD is reflected in all studies in this
thesis. Serum profiles reflect an atherogenic lipid profile in both early and late
pregnancies where preeclampsia develops (papers I and II). Urine profiles reflect
both a maternal metabolic risk profile (paper II) and potential pathogenic processes
increasing the risk of later CVD (paper I). In placenta, metabolic profiles reflect both
the association to maternal triglycerides and local inflammation, and methionine-
folate metabolism; all of which are indicated in metabolic processes leading to CVD.
The question of whether preeclampsia is a risk factor or a stress test for future
CVD remains unanswered, but it is clear that hypertensive diseases of pregnancy
are closely related to cardiovascular diseases. This association also requires further

research.

5.1.5 Predicting preeclampsia using metabolic biomarkers

Current Norwegian recommendations for hypertensive disease of pregnancy include
advising women at high risk for developing preeclampsia to start a low dose aspirin
treatment from 12 weeks gestation.'?® High risk is defined as previous preeclampsia
at <34-36 weeks gestation. However, primiparas have a fourfold risk of preeclampsia
compared to multipara.® Thus there is a need for better risk markers for prediction
of preeclampsia in nulliparous as well as parous populations.

It has become clear that the early onset preeclampsia has better prediction

rates, and benefits more from prophylactic treatment with aspirin.'?% 140168 \a_
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ternal risk factor profiles differ between early onset preeclampsia and late onset
preeclampsia,'® and commonly cited factors (maternal MAP, UtAPI, PIGF and
pregnancy associated plasma protein A (PAPP-A)) better predict the early on-
set disease.'®® Late onset preeclampsia is often referred to as the milder disease,
but is in fact responsible for the majority of preeclampsia-related maternal deaths
worldwide.'6® Severe gestational hypertension has higher rates of adverse perinatal
outcomes than moderate preeclampsia.!®® Although much research has focused on
prediction of early onset preeclampsia, there is also a critical need for prediction of

late onset disease and gestational hypertension.

In the ScreenTox cohort, the best combination of maternal markers were found
to be MAP, UtAPI and maternal age, which predicted 39% of preeclampsia cases at
10% FPR.'?° Gestational hypertension was best predicted by MAP alone, giving a
sensitivity of 43%.'2° The metabolomics analyses in urine provided a better predic-
tion rate for preeclampsia at 51% sensitivity (paper IT). When metabolite regions
were quantified and used in logistic regression models, some of the multivariate
power of prediction was lost, including contributions from regions of unresolved
metabolite signals, and metabolite covariance. Using only the hippurate decrease
relative to creatinine a better prediction of preeclampsia was found compared to
using the UtAPI (both in combination with MAP and maternal age). The results
suggest that for this cohort, maternal factors measured in urine by NMR were more

associated with preeclampsia than reduced placental flow measured by UtAPI.

Preeclampsia is a heterogeneous and multifactorial syndrome, and different risk

profiles may necessitate different prevention or treatment approaches.'8

Aspirin
treatment targets a prothrombotic risk profile associated with early onset pre-
eclampsia.'® Women with metabolic or cardiovascular risk profiles might benefit
from statin treatment or antihypertensive treatment, options which are currently
under investigation in clinical trials.'® 8" These preventive treatments also require

that appropriate risk populations are selected.

Placental metabolite profiles may also enable identification of differing metabolic
profiles or subtypes of placental preeclampsia (paper ITT). For example, identification
of a placental subtype in which the methionine-folate metabolism is affected, could
enable targeted treatment with high-dose folate supplementation.!8¢18 Especially
if the metabolic subtype could be associated with maternal serum markers. This is

a focus of our continued work in placental metabolism.
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1.,119:120 and from paper II in this the-

Based on the results from Skrastad et a
sis, first trimester screening for hypertensive diseases of pregnancy were not sen-
sitive enough for introduction into routine prenatal care. However, compared to
the current strategy of risk assessment, these results represent an improvement in
identifying women who are at high risk for developing preeclampsia or gestational
hypertension. Additionally, the results demonstrate an early change in metabolites
in both urine and serum from women who later develop preeclampsia, which may
guide future research. Importantly, if a set of biomarkers measurable by simpler
methods in urine could effectively predict preeclampsia, the time consuming and
certification-requiring UtAPI measurement could be avoided, which would be very

helpful in low resource areas.
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5.2 Methodological considerations

The validity of research findings are dependent on rigid methodology and well de-
fined sample collection and analytical methods. The aim of this section is to discuss
the methodological strengths and limitations of the studies included in this thesis,

and how they may have influenced the results.

5.2.1 Hypothesis-generating research

NMR based metabolomics is generally thought to be an untargeted approach wherein
all NMR-visible metabolites are measured and included in pattern recognition mod-
els. In this way, novel candidate biomarkers and pathways for disease can be iden-
tified. Untargeted studies can identify expression patterns which can be targeted in
later approaches; generating further studies into a disease phenotype. Metabolites
that are found to be differentially expressed between cases and controls are matched
to knowledge databases, and in this way generate hypotheses about their function
or causative effect.

A limitation to hypothesis generating research is the generation of false positive
results. As the number of measurements increase, so does the chance of finding
spurious correlations. Univariate comparisons in this thesis were corrected using the
Benjamini-Hochberg False discovery rate. Metabolites may interact in combinations
and networks that are significantly associated with a disease, even when individual
metabolites are not significantly different. In this thesis, this interaction was dealt
with by using pattern recognition models PCA, PLS-DA, and MSEA. All these
methods include variables that may not be individually different between classes,

but together represent a significant pattern.

5.2.2 Diagnostic criteria and phenotypes

Preeclampsia is a syndrome varying in degree of fetal and maternal outcome, for
which the diagnostic criteria have been set by consensus, not by an understand-
ing of the underlying pathogenesis. The strict diagnostic limits of blood pressure

89 and

and proteinuria are not sensitive or specific for maternal or fetal outcomes!
may mask the phenotypic diversity of the disease in research settings. There is a
current, debate on whether the inclusion of proteinuria should be a requirement for

diagnosing preeclampsia when evidence of systemic involvement is present.® Nev-
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ertheless, specific description of diagnostic guidelines are essential for comparing

research results.

The criteria for diagnosis were equal in all studies in this thesis, though they are
sourced from the Norwegian Association for Obstetrics and Gynecologists’ guide-
lines from 2008 and 2014 for papers I/1T and paper 1T respectively. All case women
included in paper III delivered by CS due to complications of preeclampsia, indi-
cating a more severe version of the disease. Therefore the results from this study

might not generalize well to milder and later onset forms of preeclampsia.

In all papers, the obstetrician responsible for the patient made the diagnosis
at the time the woman was admitted at the hospital. The diagnoses were later
reviewed and confirmed from hospital records to be in adherence to the current
diagnostic criteria, including multiple measures of blood pressure and proteinuria,
fetal birth weight estimations, and prenatal ultrasound measurements. Sufficient
information was recorded from the medical history so that if the diagnostic criteria
change, it would be possible to reevaluate the diagnoses made in the studies. This
was done for paper 111, where all diagnoses were reviewed to be in accordance with
the 2014 guidelines.

In paper IIT a stringent SGA definition (<5th weight percentile) was used as
a proxy for FGR in one pregnancy where serial ultrasound measurements were
missing. The estimated fetal weights were based on Norwegian population curves
and considered gestational age and fetal sex.'?® SGA was therefore considered a

good approximation of FGR in this study.

In the studies included in this thesis, the preeclampsia and gestational hyper-
tension cases were compared to controls without signs of preeclampsia, termed
“pregnant controls” in paper I, and “normotensive controls” in paper IT and III.
In case-control studies such as papers I and TI1, it is important that members of the
control or “healthy” group have no related diseases; specifically for preeclampsia,
no cardiovascular disease, renal or hypertensive diseases, or inflammatory diseases.
For paper I, pregnant controls were specified to have “normal pregnancies”, while
in paper III, the controls were specified to be “exclusively healthy women with no
prior FGR or preeclampsia”. The inclusion criteria were more stringent for paper 111
than for paper I, which may affect the results. For example, two of the nonpregnant
control women in paper I had gestational hypertension in a previous pregnancy,

which might give a persistant risk profile reflected in metabolic profile. However,
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none of the pregnant controls in paper I or paper III had previous preeclampsia or
fetal growth retardation.

In paper IT a cohort of women were followed from the first trimester of pregnancy
until birth. In this paper the aim was to identify biomarkers which may identify
women at risk of preeclampsia from information available in the first trimester,
thus, the “normotensive controls” in each prediction model include all women who
did not develop the diagnosis in question. In studies of predictors, comparing women
with preeclampsia with completely healthy women is not appropriate, as this will

189 A predictive test must separate women

falsely enhance the predictive power.
with preeclampsia from all other outcomes. Inclusion criteria for the cohort were
for women with medium to high risk of preeclampsia, which included both nulli-
parous women and those with a history of preeclampsia or gestational hypertension.
The combination of risk groups may have complicated the biomarker search. Re-
current preeclampsia may have different mechanisms than preeclampsia occurring
in primiparas, and gestational hypertension also has different mechanisms than pre-
eclampsia. Due to the low numbers of cases, subdivision of the case groups (e.g into
nulliparous only, or severe preeclampsia only) was not explored. The strength of this
study was the complete follow up and the prospective design allowing evaluation of

prediction in a cohort resembling the general pregnant population.

5.2.3 Confounding

A confounder in statistics is a variable or factor which correlates with the variables
in the study. Confounders may create false positive relationships between the de-
pendent and the independent variable in the study, or obscure a real relationship, if
they are not accounted for. Confounders can be dealt with by adequate matching
of cases and controls in a study, or by taking into account known confounders and
including them as covariates in a statistical model. Explorative research is espe-
cially sensitive to confounders because unknown factors may be different between
cases and controls, possibly skewing the analysis results.

Some known or possible confounders in preeclampsia research are obesity, blood
pressure, smoking status, sex of the fetus, and ethnicity.'®% % In metabolomics, ad-
ditional confounders may be sample storage and handling, medication, and dietary
differences. In tissue samples specifically, difference in time passed before quenching

of metabolic activity, or total time thawed before analysis may introduce bias. 87100
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Incidence of preeclampsia increases with BMI and the increased incidence of
preeclampsia in recent years may be partly due to increase in obesity rates.'”' In
paper I, no pre-pregnancy weight information was recorded for the women with
preeclampsia. In paper II, participants were weighed at the study visit and in paper
ITI, maternal weight at the first pregnancy visit, before week 12, was recorded
from hospital journals. BMI was not higher in the preeclamptic women in the first
trimester in papers II or III, but the women with gestational hypertension in paper I1
had higher BMI than the normotensive and preeclamptic groups, possibly affecting
their metabolic profiles.'? Smoking status was recorded only in paper II. There were
no differences between hypertensive and normotensive groups. However, smoking
status in papers I and III could potentially confound the results as this information
was not available. Sex of the fetus was recorded for all pregnancies. Fetal sex is
suggested to have an impact on placental inflammation, apoptosis and mitochondrial

193 No differences due to fetal sex were observed in any of

function in preeclampsia.
the studies in cursory discriminative models.

Gestational age differences could impact both maternal and placental metabolic
profiles. In paper I, pregnancies were matched by gestational age in order to mit-
igate gestational age bias between cases and controls. In the cohort of paper II,
gestational age at sampling was not different between the groups. In paper III, a
lower gestational age was found in the preeclamptic group (average 31 weeks, range
25-39 weeks) than the normotensive group (average 39 weeks, range 38-40 weeks).
This is expected due to the need for early delivery in patients with severe and early
onset preeclampsia. Metabolite expression in the placenta may be influenced by ges-
tational age, but there are no published reports on this within the third trimester.
Difference in gestational age was investigated in paper IIT by applying a linear re-
gression model. After adjustment for gestational age differences, differences in levels
remained significant for half of the metabolites indicating that at least within the

third trimester, disease induced differences dominate the placental metabolic profile.

5.2.4 Confounding in metabolomics studies

The hypothesis free nature of metabolomics is ideal to analyze biofluids and tissues
for both subtle and widespread metabolic alterations in disease. However, several
factors must be taken into account which may specifically bias metabolomic studies.

Metabolic profiles of body fluids vary by diet, stress, drug use, physical activity,

5

and many other variables.” Recommended sample collection routines for serum
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194 However, dietary

and urine include collecting samples from fasted participants.
restrictions can not be applied to pregnancy study participants. Stability of blood
lipid analysis and CVD risk to fasting status has been investigated, finding that
also postprandial triglyceride levels correspond to risk of CVD.!% In papers I and
I1, participants were asked to fast for one hour before their study visit. Nonfasting
conditions (>2h) do not have strong effects on the overall characteristics of study
groups in NMR of plasma!® but the time passed since the last meal, and its contents,

could still have an effect on the results.
Metabolites are stable at -80°C,'"" and prepared biofluid samples were stored
at 5°C for no longer than 12 hours before NMR analysis, a time period for which

8 Based on cited

metabolic profiles of urine and serum are shown to be stable.!?
studies and our own unpublished results, the differences in storage times within
studies should have negligible impact on the results. The total time from the start of
tissue preparation for HR MAS to spectral acquisition was recorded, and a cursory
PLS model found no significant correlation in metabolite spectra to these times.
The continuous cold environment during preparation of tissue samples is probably
an important factor for this stability.

Preparation of samples was done strictly adhering to procedures provided by
Bruker. However, human error is always possible by minute differences in sam-
ple handling, buffer addition, or even sample mixups. Reproducibility testing for
biofluid analyses showed that differences in sample preparation and instrument sta-
bility were smaller than individual differences. However, it is possible that auto-
mated preparation would reduce technical variation.

Collection of placental tissue for the PE Biobank was not done with metabolomic
profiling in mind, and due to limitations in tissue availability, only one sample per
placenta was analyzed. In retrospect, a more systematic analysis of tissue from
several sites in the placenta would be preferred, to infer the amount of individual
variation between regions of placental tissue. Since all samples were obtained from
pregnancies without signs of labor, any effect of labor could not bias the results.!%

The placental samples were snap frozen as soon as possible after delivery by CS.
Time between sample biopsy and freezing of tissue samples is an important con-
sideration in metabolomic studies. Samples should ideally have been snap frozen
immediately after delivery to quench any metabolic activity. However, due to pa-
tient priority in a CS situation, often at least one hour passed before biopsies were

frozen. Delay of sample quenching may cause changes in the metabolic profile,®”
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but there was no difference in collection times between placentas collected from nor-
motensive or preeclamptic pregnancies. Detailed recommendations for collection of
placental samples for research were recently published.'”® Adherence to these rec-
ommendations, particularly to sample collection times, are vital to high impact

placental research in the future.

5.2.5 Choice of analytical method

Both MS and NMR are common analytical choices in metabolomics studies. Al-
though MS has higher analytical sensitivity both in lower concentration ranges and
number of visible metabolites, the analysis is destructive to the sample, and requires
pretreatment and separation steps, and is more expensive.” In contrast, NMR re-
quires only addition of buffer to the sample before analysis. NMR is unbiased, has
fast acquisition times, is quantitative and highly reproducible across equipment,
and allows safe identification of unknown substances. In addition, NMR has the
advantage of nondestructive sampling even of whole tissue samples, and has the
possibility of translational value to in-vivo spectroscopy.!?®2% A key advantage is
high throughput and reproducible analysis. However, the low sensitivity means that

low abundance markers of oxidative and inflammatory stress may go unnoticed.®¢

5.2.6 Metabolite quantification

Metabolites were quantified in different ways throughout this work. In paper I
a software package (Chenomx) was employed which matches a database of line
shapes to the spectra. This method gives accurate quantification in NOESY spectra,
avoiding signal overlap and taking into account proton multiplicities. Chenomx
quantification was also applied to CPMG spectra in paper I, which is less accurate
due to the Ty filtering of metabolic signals, causing signals from macromolecules
and metabolites bound to them to be filtered out. However, as the same spectral
acquisition parameters were applied to all spectra, the metabolite concentrations
were still comparable. Chenomx quantification has advantages, but it is manually
adjusted and thus time consuming and possibly prone to human bias, and finally
does not work optimally with baseline distortions by residual macromolecule signals.

In paper II, quantification by integration of metabolite peaks was done only
for metabolites important to prediction. Integration of area under signal curve is

accurate if there is low signal overlap. The metabolites were normalized to creatinine
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in order to correct for dilution effects, and in order to conform to clinical practice
and ease comparison to other studies.

In paper IIT integrated metabolite regions of the area normalized spectra were
used as approximations of concentration. Absolute quantification in tissue samples
is possible by integration of regions or line fitting metabolite signals, with appro-
priate normalization for number of protons contributing to the signal, and sample
weight. However, for exploratory analysis, area normalized metabolite ratios were

considered sufficient.

5.2.7 Multivariate analyses

Multivariate analysis methods are commonly applied metabolomics measurements,
to compress the multivariate data into meaningful and useful profiles of diseases
or states. Single biomarkers may have limited sensitivity, and combining sets or
patterns of biomarkers may increase predictive ability. The advantage of multivari-
ate analysis is the ability to simultaneously model many biomarkers. Multivariate
analysis can be applied to concentration data from metabolomic experiments, or
to whole spectra without the need for prior quantification. When applied to whole
spectra, multivariate analyses may point to important regions of the spectra for
which unknown metabolites may be identified post hoc. Proper validation is essen-

tial to avoid false positive results.

Sample size. Sample size is important for assessing the power of metabolomic
studies, but is not straightforward as the expected differences between classes are
difficult to predict a priori. At least 600 samples has been suggested as necessary for
serum metabolomics studies.’? The studies in this thesis are much smaller than this,
representing 10, 26 and 24 preeclampsia cases in papers I, IT and III respectively.
Small sample sizes increase the chance of overfitting data. In paper I, even with
the small sample size, reproducible results could be found compared to similar

77,142,201 T paper 11, although there were relatively few hypertensive cases,

studies.
the large number of normotensive pregnancies established a robust baseline to which
the hypertensive groups could be compared. Sample collection is labor intensive
and it is difficult to obtain sufficient samples for high powered metabolomic studies.
Collecting samples over too long time periods may introduce temporal shifts in the
data. In the future tightly controlled multicenter studies as well as an increased

culture of data sharing could improve the power of metabolomics studies.
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Preprocessing. Preprocessing of spectra before multivariate analysis must be
critically considered, as every method has potential drawbacks as well as advantages.

Spectral alignment is necessary for urine spectra, but the peak shifts themselves
may contain information if there is a systematic difference in pH or ion chelation
between the considered classes. This is true for tumor samples expressing a pro-
nounced Warburg effect, and may be true for placental samples enduring hypoxia.®?
This information may be lost due to spectral alignment.

Normalization and scaling procedures have different effects on the information
content. Normalization is a row- or sample wise procedure affecting all variables in
a sample equally, while scaling is a column- or variable wise procedure employed to
enhance or reduce contributions from different types of variables.

Normalization procedures have large effects on the results. Area under curve
normalization is a fair approximation of sample size or dilution effects in many
cases; 19292 however if disease or medication causes a large signal in the NMR
spectra, the total spectral area will be increased and the remaining metabolites
levels decreased correspondingly. Area normalization was used on urine spectra in
paper I, and on serum and placental samples in papers I, I, and III. In paper II
we used a median dilution factor (PQN) on urine spectra, which is more robust to
individual metabolite fluctuations. Creatinine normalization in urine is common in
clinical chemistry, but is not ideal because metabolic processes and individual factors
may alter creatinine excretion.!'%1'1:203 In paper I, creatinine normalization was
used in the quantified urinary metabolite levels, and was not significantly different
between preeclamptic and normal pregnant women. In paper I1, creatinine excretion
was found to be increased in preeclampsia, and although it was not significant
alone (p=0.09), it contributed to the multivariate prediction model and also to the
significance of the hippurate / creatinine marker.

Pareto scaling of urine spectra in paper T and IT gave the best multivariate
models, suppressing nonsignal regions of the spectra and causing the multivariate
models to make use of metabolite signals rather than noise regions. There was still
a tendency for high concentration metabolites to dominate the model; e.g., crea-
tinine, hippurate and glycine. Other scaling procedures (variable stability scaling,

range scaling)'!3:204

were explored on the data and though they might increase the
participation from lower abundance metabolites, the classification was less effective.
In paper IIT integrated metabolite areas were used directly in multivariate models.

Autoscaling could then be used since there were nonsignal variables to suppress.
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This method gave equally good discrimination models to using the entire spectra
(data not shown), but had the advantage of easier interpretation and the ability to
assess each metabolite contribution alone to the model.

Model optimization and validation The optimal number of LVs adequately cap-
tures the variation without overfitting the data. Due to low numbers of samples, the
number of LVs in papers I and III were found by leave-one-out and leave-20%-out
cross validation. Although usually quite robust, this method may overfit the data
because it uses the same samples to optimize the model and then “predict” samples
based on that same model. In paper II, a double cross validation procedure was
used which enables optimization of model parameters on a subset of data, before the
final model is tested on a held out validation set. In this way, model accuracy and
sensitivity is found on a completely independent set. Permutation testing performs
an additional validation to the cross validation and was performed for all models.

Variable Selection. In paper I, variable selection was applied to find subsets of
metabolites predicting preeclampsia, and to reduce contribution from noise regions.
Both VIP and CARS variable selection found reliable subsets of metabolites which
increased the prediction sensitivity of the PLS-DA models. However, both were
applied on the full datasets. VIP and CARS employ cross validation within their
variable selection algorithms, however there is a danger of information leakage when
the chosen subsets are employed for prediction on the same dataset. For this reason,
variable selection introduces an optimistic bias. In retrospect, the variable selection
could have been implemented in the double cross validation procedure to ameliorate
these problems. However, with a limited amount of case samples available, cross-
validation optimized variable selection would utilize few initial samples for variable
selection. The risk of overfitting was deemed acceptable in this explorative study.

The bias in variable selection was partly corrected for by incorporating a variable
selection step into the final permutation testing of the models. This ensures the
validity of the models even with variable selection, though the specificity, sensitivity

and error rate may still be overstated.
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6 Concluding remarks and future perspectives

In this thesis, MR metabolic profiling of biofluids and tissues from preeclamptic
pregnancies were used to assess the metabolic profile of maternal and placental
disease, and to predict the onset of preeclampsia and gestational hypertension.

Specific metabolic markers of preeclampsia were found in urine of women with
active preeclampsia, suggesting both depletions of required nutrients and retention
of toxic uremic solutes, which may contribute to the inflammatory state. Lipid
levels were significantly higher in the preeclamptic group, and a proatherogenic
shift towards higher VLDL levels and lower HDL levels was observed.

Metabolite profiles consisting of urinary markers of renal function, blood pres-
sure, gut microbiota and diet were found predictive of preeclampsia in early preg-
nancy. Serum metabolic profiles were also significantly altered in early pregnancy,
showing evidence of atherogenic lipid changes. The metabolites are associated with
maternal risk factors and metabolic state at the start of pregnancy, leading to higher

risk of developing the disease.

The placental component of preeclampsia was examined by metabolic profil-
ing using a novel method in placental research. The findings indicated that several
metabolic pathways are altered in the preeclamptic placenta, and that specific mark-
ers of cell membrane catabolism correlated to a maternal serum marker of placental
stress. Some evidence of involvement of the methionine-homocysteine pathways was
also found in the preeclamptic placentas. An interesting direction of future research
could be the clustering of preeclamptic placental metabolite profiles into groups
of differentially expressed phenotypes, for elucidation of placental subtypes of pre-
eclampsia. A larger study where metabolic clustering is the main aim is currently
in the planning stages.

Together, the results highlight the metabolic alterations that appear before and
during the clinical symptom stages of preeclampsia, and the differences and similar-
ities of gestational hypertension and preeclampsia. Both the placental and maternal
component of the disease were examined and found significantly affected. The cur-
rent diagnosis of preeclampsia relies on criteria set without full understanding of
the disease. The results in this thesis may aid in better stratification of women with
preeclampsia based on biomarkers reflecting the metabolic state, a closer measure of
the phenotype. Connecting maternal serum markers to placental metabolic profiles

may aid in the search for treatment targets and in differential management of women
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with preeclampsia. A combination of metabolic biomarkers and maternal clinical
characteristics provided a prediction higher sensitivity for prediction than uterine
artery flow resistance measurement, a result which holds promise for prediction of
preeclampsia in low resource areas.

The work presented in this thesis provides a foundation for continued studies
on the metabolic alterations in preeclampsia. The predictive biomarkers need vali-
dation in separate cohorts, and should also be further explored in second trimester
urine samples to see which metabolic features are common to active disease or to
earlier pregnancy timepoints. The metabolic profiling of placenta opens a possibil-
ity for subgrouping the placental component of preeclampsia based on metabolic
subgroups, a subphenotyping which would closer represent the cause of the disease
rather than its effect. Phenotypic subgroups could be found which may require
different treatment options or correspond to separate maternal and fetal outcome
groups. Combining NMR with MS-based metabolomics could improve identifica-
tion of lipid classes, which could be useful to identify possibly inflammatory lipid
subclasses.

Applications of systems biology methods have begun to unravel the complex
pathways resulting in preeclampsia. Still a great deal of work remains before the full
picture is revealed. Genetic variation, gene transcription, proteomic function, and
metabolic interactions contribute in complex pathways resulting in preeclampsia.
Combinations of the ‘Omics’ platforms in systems biology may provide a more
complete understanding of the disease. MR metabolomics can assist in identification
of biomarkers of preeclamptic disease: maternal active and predictive biomarkers,
and phenotyping of the preeclamptic placenta. This thesis has presented novel
investigations that have significantly contributed to the current body of knowledge

regarding preeclampsia, and outlined potential directions for future research.
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Abstract

Objective: To explore the potential of magnetic resonance (MR) metabolomics for study of preeclampsia, for improved
phenotyping and elucidating potential clues to etiology and pathogenesis.

Methods: Urine and serum samples from pregnant women with preeclampsia (n=10), normal pregnancies (n=10) and
non-pregnant women (n=10) matched by age and gestational age were analyzed with MR spectroscopy and subjected to
multivariate analysis. Metabolites were then quantified and compared between groups.

Results: Urine and serum samples revealed clear differences between women with preeclampsia and both control groups
(normal pregnant and non-pregnant women). Nine urine metabolites were significantly different between preeclampsia and
the normal pregnant group. Urine samples from women with early onset preeclampsia clustered together in the
multivariate analysis. The preeclampsia serum spectra showed higher levels of low and very-low density lipoproteins and
lower levels of high-density lipoproteins when compared to both non-pregnant and normal pregnant women.

Conclusion: The MR determined metabolic profiles in urine and serum from women with preeclampsia are clearly different
from normal pregnant women. The observed differences represent a potential to examine mechanisms underlying different
preeclampsia phenotypes in urine and serum samples in larger studies. In addition, similarities between preeclampsia and
cardiovascular disease in metabolomics are demonstrated.
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inflammation in PE shows a strong similarity to the development
of cardiovascular diseases (CVD) [4], and it has been reported that
women with preeclamptic pregnancies have an up to eight-fold

Introduction

Preeclampsia (PE) is a complex syndrome affecting about 3% of

pregnancies [1]. It presents serious risk of both maternal and fetal
morbidity and mortality [2]. PE is characterized by high blood
pressure and proteinuria in the second half of pregnancy [3]. No
tests accurately predict the onset of PE, and implementation of
fetal delivery is the only definitive treatment for threatening
manifestations of symptoms [1].

The pathogenesis of PE is still undefined. However, it is
generally assumed that it starts in early pregnancy with poorly
developed placental vascularization, giving rise to placental
oxidative stress and imbalanced interaction between maternal
and fetal cells. Later, inappropriate and exaggerated maternal
responses to the placental stress are established, involving
endothelial activation and systemic inflammation [4]. The
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increased risk of later cardiovascular events [5]. The shared
underlying mechanisms include endothelial dysfunction, metabolic
abnormalities and increased oxidative stress [6].

Metabolites are constituents of the metabolism, chemical
interactions in the body necessary for life [7]. Metabolomics is
the systematic study of metabolites in tissues and biofluids [8]. The
concentrations of metabolites and their combinations can be used
as predictive models for disease classification and progression [8].
Robust statistical methods are applied to handle the massive data
outputs.

Metabolomics analysis holds potential for detailed phenotyping
of the PE syndrome, but few metabolomics studies of women with
active disease have so far been undertaken. Studies by Turner ef al.
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[9,10], using MR metabolomics on serum from women diagnosed
with PE reported metabolic patterns attributed to oxidative stress
including decreased lipid and ketone body content, and the
findings indicated that this method could be useful for PE
phenotyping. Schott ¢t al. [11] used both proton and phosphorous
MR spectroscopy to analyze plasma from women with PE. They
found a decrease in HDL and a trend towards higher levels of
VLDL2 and LDL2 in this group compared to healthy pregnancies.
However, no metabolomics studies have analyzed both urine and
serum from the same group of women, which represents a more
comprehensive view of the metabolome. Detailed analysis of body
fluids from women with preeclampsia could improve diagnostic
accuracy and possibly predict perinatal outcomes and future risk
for the mother.

Further research is needed to establish the role of metabolomics
and the robustness of the method in preeclampsia. Furthermore, a
discussion of the discriminatory metabolites in a more biological
context relevant to PE is generally lacking. To this end, the aim of
the present study was to establish the metabolic profiles of body
fluids (urine and serum) from women with PE, normal pregnancies
and from non-pregnant women by MR metabolomics. Detailed
phenotyping of the PE syndrome and potential clues to etiology
and pathogenesis were explored.

Materials and Methods

Ethics Statement

All participating women signed informed consents and the study
was approved by the Regional Committee for Medical and Health
Research Ethics (REC), Central Norway, reference number 2011/
761.

Study Population

Women admitted with PE at the maternity ward at St. Olavs
Hospital, Trondheim University Hospital, Norway gave samples
to the study. The PE diagnosis was based on the diagnostic criteria
of the Norwegian Medical Association (blood pressure = 140/90,
proteinuria =+1, measured at least twice four to six hours apart
after gestational week 20) [12]. Pregnant and non-pregnant
control women were recruited by appeals to environments of St.
Olavs Hospital and Reros Medical Center, Roros, Norway.
Control women with previous PE pregnancies were not included.
Gestational age for both cases and controls were based on routine
ultrasound examination between gestational week 17 and 20.
Information about health status and pregnancy was collected from
interviews and medical journals. All included women were of
Scandinavian ethnicity.

Sample Handling and Spectroscopy

Peripheral venous blood (5 mL) and spot urine samples (20 mL)
were collected from nonfasting women with PE at time of
diagnosis, from healthy pregnant women matched by age and
gestational age to the PE group, and from non-pregnant women
matched by age to the PE group. Aliquots (1.8 mL) were stored at
—80°C prior to analysis.

Samples were thawed at 20°C, mixed with bacteriostatic buffer
and stored at 5°C untl analysis (=15 hours). Urine was
centrifuged at 6000 RPM (Sorvall RMC 14; DuPont) for five
minutes. The supernatant (540 pL) was mixed with buffer (60 pL)
(pH 7.4 1.5 mM KH,PO, in D;O, 0.1% Trimethyl-Silyl Propi-
onate (TSP), 2 mM NaNjs) and analyzed in 5 mm NMR tubes
(Norell Inc., NJ, USA). Serum (100 pl) was mixed with buffer
(100 pL) (pH 7.4 0.075 mM Na,HPO,, 5 pM NaNj3, 5 uM TSP)
and analyzed in 3 mm NMR tubes. MR analysis was performed at
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the MR Core Facility at NTNU, Trondheim, Norway using a
Bruker Avance III Ultrashielded Plus 600 MHz spectrometer
(Bruker Biospin GmbH, Germany) equipped with 5 mm QCI
Cryoprobe with integrated, cooled preamplifiers for 'H, ?H and
e, Experiments were fully automated using the Sample]: et™ in
combination with Icon-NMR on TopSpin 3.1 software (Bruker
Biospin). Proton spectra were acquired using 1D NOESY with
presaturation and spoil gradients on urine samples and a 1D lipid
and water suppressing Carr-Purcell-Meiboom-Gill = sequence
(CPMG) on serum samples. Diffusion edited serum spectra
(LEDBPG) for suppression of small molecular weight metabolite
signals were also acquired. Additional 2D spectra of urine samples
were acquired for metabolite identification: J-resolved spectrosco-
py JRES), Heteronuclear Multiple Bond Correlation Spectrosco-
py (HMBC), Heteronuclear Single Quantum Coherence Spec-
troscopy (HSQC) and Total Correlation Spectroscopy (TOCSY).
Additional NMR parameters are given in Tab 3. Spectra were
Fourier transformed to 128 K after 0.3 Hz exponential line
broadening. Chemical shifts were referenced to TSP (30 ppm).

Multivariate analysis

In MR Metabolomics, common statistical methods are Principal
Component Analysis (PCA) and Partial Least Squares Discrimi-
nant Analysis (PLS-DA) [13]. PCA is a powerful method of data
extraction, which finds combinations of variables that describe
trends in large data, called principal components (PCs), visualized
in scores and loading plots. The score plots show each spectrum as
an object in the principal component space, and are useful for
identifying clusters and outliers in the dataset. The loading plots
show the contributing variables to each PC. PLS-DA models the
relationship between the spectra and class information using
multivariate regression methods. The metabolites responsible for
the separation between classes are shown in loading variables
(LVs), and may be colored by variable importance in projection
(VIP) [13]. Multivariate analysis was performed using PLS_
Toolbox 6.7.1 (Eigenvector Research, USA).

Spectra were imported to Matlab r2012a (The Mathworks, Inc.,
MA, USA). Residual water signals were removed. The urine
NOESY spectra were normalized to equal area below the curve,
cut to region of interest (ROI) (881 ppm) and peak aligned using
icoshift [14]. The serum CPMG spectra were cut to ROT (84.5—
0.5 ppm) and aligned by referencing the left alanine peak at
81.50 ppm. The serum LEDBPG spectrum were cut to ROI
(61.45-0.77 ppm) containing signals from methyl and methylene
groups from lipoproteins, and normalized to equal area for
additional analysis of the lipid profile.

Spectra sets were mean centered and explored by PCA with
random subset cross validation for initial visualization of the data
and detection of inherent trends and outliers. Using PLS-DA, a
classification model was created on samples from the women with
preeclampsia and healthy pregnant groups using the number of
LVs giving the smallest classification error, and cross validated by
“leave one out” which creates the model on all but one sample,
testing it on the remaining sample. Permutation testing with 1000
repeats (random reshuffling of classes, then creating a new
predictive model) was done to measure the significance of the
predictive model at 95% compared to a classification in arbitrary
groups.

Identification and quantification of metabolites
Metabolites were assigned using Bruker AMIX software v.2.5
(Analysis of MIXtures software, Bruker Biospin) and Chenomx
v.7.11 (Chenomx Inc., Alberta, Canada), matching spectra to
reference databases of metabolites. 2D NMR' spectra (JRES,
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Table 1. Characteristics of study participants.

Data PE PC NP p-value
n (samples) 10 10 10 -

Age (years) 29.5 (22-39) 32.6 (28-39) 30.7 (24-39) >0.05
GA at sampling 35.9 (21.7-37.9) 35.2 (18.6-37.4) N/A >0.05
(week)

GA at onset (week) 33.2 (21.4-36.9) N/A N/A -

BP sys. (mmHg) 163 (143-174)  120(100-191) N/A 0.000
BP dia. (mmHg) 104 (96-111) 78 (60-96) N/A 0.000
Proteinuria® 3 (1-4) 0.1 (0-1) N/A 0.000

Values are given as median (min-max). PE: Women with preeclampsia. PC:
Pregnant controls. NP: Non-pregnant controls. GA: Gestational age. BP: Blood
pressure. Dia: Diastolic. Sys: Systolic. N/A: Not applicable. Statistical p-values
computed by Kruskal-Wallis independent samples test.

“Proteinuria measured with dipstick.

doi:10.1371/journal.pone.0091923.t001
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COSY, HSQC, and HMBC) were reviewed to confirm assign-
ments. Additional assignments were done with help from literature
[7,15]. All identified metabolites were quantified in Chenomx,
based on the visible TSP concentration. TSP was quantified in
Topspin using the PULCON [16] principle based on a creatine
(14.43 mM) spectrum recorded at equal parameters. Serum
metabolites were quantified from CPMG spectra, and urine
metabolites from NOESY spectra. Concentrations were imported
to SPSS v. 20.0.0 IBM Corp, NY, USA) and subjected to
Kruskal-Wallis test of three independent samples. Urine metab-
olite concentrations were analyzed as [metabolite/ creatinine| ratio
to correct for dilution. The significance cutoff was set to p<<0.05
after Benjamini-Hochberg correction [17] of p-value for multiple
parallel tests.

Results

Details of the study groups are given in Table 1. Ten women
with PE, ten healthy pregnant women and ten non-pregnant
women were included. Age and gestational age were matched, and
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Figure 1. Results from urine analysis. Results from Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA)
of urine samples from women with preeclampsia (PE, pregnant controls (PC) and non-pregnant controls (NP). A) Typical high resolution NMR
spectrum of urine from a PE subject, most abundant metabolites annotated. B) PCA score plot separating all three groups in two dimensions. C)
Loading Variables (LV) 1 and 2 of the PLS-DA used to create a model discriminating between PE and PC groups. Arrow direction indicates increased
metabolite level. D) Scores on LV1 and LV2 showing a clustering of early onset PE samples (marked by arrows). TMAO: Trimethylamine-N-Oxide.

doi:10.1371/journal.pone.0091923.g001
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Table 2. Urine metabolite concentrations.

Metabolite (1M/mM

creatinine) PE PC NP p-value
Glycine*" 260+150 498+219 138%79 0.000
p-Cresol Sulfate* 6.2+4,3 39+13 30+10 0.000
Alanine® 67+57 86+51 IS 0.000
Threonine® 84+102 94+48 20+5 0.000
Choline” 41%50 10=4 58=27 0.004
Hippurate* 88+61 265+144  280+188  0.004
Histidine*" 153=129 266=100 79+42 0.004
Asparagine* 31+42 47+24 13x7 0.004
Isobutyrate** 21+8 13=:7, 6+7 0.004
Lactate” 36+27 73+137 9.6+4.4 0.004
Citrate 203+107 473%£136 371217 0.004
Leucine® 94+48 8.0*1.6 50*13 0.010

6613 M7 40+18 0.015
29+22 0.015

13£10 0.016

Dimethylamine*

Trigonelline* 6.3+4.9 16+15

2-Oxoglutarate 3623 40+9

Ethanolamine’ 75+24 66+19 44+12 0.018
Isoleucine’ 6.3+3.8 S22E12 BTN 0.018
cis-Aconitate” 37%15 39%12 25%5 0.018
Creatine 131118 76*+138 23+25 0.041
Glutamine® 11488 121x37 70+20 0.041
Glucose*" 38+71 75+44 35+ 15 0.049
Valine® 7.6+6.7 6.1+2.0 38*14 >0.05
Tyrosine 28+19 23*12 146 >0.05
N-N-Dimethylglycine 6.04.0 53%3.0 33x17 >0.05
Malonate 58+49 156187  72*+105 >0.05
Uracil 8.0+3.8 10.2+28 7.1%+3.2 >0.05
N-Phenylacetylglycine® 41+29 71%35 57+24 >0.05
Betaine 12+8 15+13 8.0+5.2 >0.05
2-Methylglutarate 1M£7 16+9 6.9+3.2 >0.05
Guanidoacetate 70+77 7741 63+39 >0.05
Formate PREE(2 35+18 28=a15) >0.05
3-Hydroxybutyrate 93+79 16%15 16%25 >0.05
Acetate 85+58 11£5 12+9 >0.05
Urea 2957+1211 2251+1077 2795+1845 >0.05
2-Hydroxybutyrate 8.0£3.5 74x1.2 59*1.3 >0.05
Pyruvate 7849 15+15 6.3x2.1 >0.05
TMAO 67+58 54+54 6678 >0.05
Creatinine® 30 +38 21+13 26+14 >0.05
o-Acetylcholine 2.1%3.1 1.7x21 1.4*038 >0.05
n-Methylhistidine 46+55 48+67 50+56 >0.05
Phenylalanine 17+13 15+8 14+£5 >0.05

Values given as mean [metabolite/creatinine]+sample standard deviation. PE:
Women with preeclampsia. PC: Pregnant controls. NP: Non-pregnant controls.
TMAO: Trimethylamine-N-Oxide.

?As suggested by Chenomx, may instead be phenylacetylglutamine.
Absolute creatinine concentration — not corrected for dilution.

*Significantly different metabolite concentration between PE and PC with a
cutoff value at p=0.05 after Benjamini-Hochberg correction using the Kruskal-
Wallis test for nonparametric distributions of concentrations for three
independent groups.

TSignificantly different metabolite concentration between PC and NP.
doi:10.1371/journal.pone.0091923.t002
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in accordance with the PE diagnosis, proteinuria and blood
pressure were significantly different between the two pregnant
groups (not measured in the nonpregnant group).

Results from the urine analyses are shown in Figure 1 and
Table 2, with a typical urine spectrum shown in Figure 1A. The
urine PCA (Figure 1B) score plot shows clustering of the three
groups. PC1 separated samples from both the PE and healthy
pregnant groups from the non-pregnant group based on a
combination of higher creatinine and trimethylamine-N-oxide
(TMAO) levels, and lower glycine levels for the non-pregnant
group. PC3 separated preeclamptic women from healthy pregnant
women similarly to the subsequent PLS-DA analysis. Creatinine
levels were similar between preeclamptic and healthy pregnant
women. The PLS-DA model classified urine spectra from
preeclamptic and healthy pregnant groups with 95% accuracy
(sensitivity = 0.9 and specificity = 1.0) using two LVs (Figure 1C
and 1D) and was significant at p< 0.001. The model separated the
groups based on a combination of higher choline and creatine
levels, and lower glycine levels for preeclamptic women compared
to healthy pregnant women. Urine samples from women with
carly onset PE (<34 wecks) had lower scores on LV2 than the late
onset women. (Fig 1D, starred). These had higher TMAO and
creatinine, and lower choline and creatine compared to the late
onset PE group. The urinary metabolite concentrations are shown
in Table 2. The variation in concentrations was similar to the
results from the multivariate analyses. Twenty-one metabolites
were significantly different between all three groups at p<<0.05,
with nine metabolite concentrations significantly different between
women with PE and healthy pregnant women, and 15 between
healthy pregnant women and non-pregnant women. In summary,
urine sample spectra from the PE group were clearly different
from those of healthy pregnant women based on metabolite
content, and a difference in metabolic profile between women with
carly and late onset PE may exist. Healthy pregnant women also
showed a different urinary metabolic profile than non-pregnant
women, with higher excretion of amino acids.

Results from the serum analyses are shown in Figure 2 and
Table 3, with a typical serum spectrum in Figure 2A. The CPMG
and LEDBPG spectra of all serum samples were explored using
PCA. A trend of metabolite profiles showing a continuous change
from non-pregnant women through healthy pregnant women to
women with PE was found, mainly based on increasing total serum
lipid content (Figure 2B). All pregnant women had higher serum
lipid content than the non-pregnant women, and women with PE
had even higher serum lipid content. The distribution of
lipoproteins was also different between groups, with the PE group
expressing higher signals originating from VLDL and LDL and
lower signals from HDL. The signals from the lipoproteins in the
NMR spectra consist of several highly overlapping peaks, arising
from the lipid moieties within the various lipoproteins. The
chemical shifts differ slightly between the particles due to the
density differences of the lipoproteins, with lower densities at
higher chemical shifts (Figure 2D) [18]. PLS-DA classified serum
CPMG spectra from women with PE and healthy pregnant
women with 90% accuracy (sensitivity = 0.8 and specificity = 1.0)
using four LVs, with heavy reliance on lipid levels for separation
between PE and PC (Figure 2C). The lipoprotein distribution was
explored further in a PLS-DA on the LEDBPG spectra, as shown
in Figure 2D. PE cases were discriminated from healthy pregnant
controls by the lipoprotein profile alone, with increased signal in
the LDL-VLDL region (the leftmost part of the lipid signal) and
decreased signal in the HDL region of the serum spectra. Visible
serum metabolites concentrations are shown in Table 3. Serum
from women with PE had significantly lower concentrations of

March 2014 | Volume 9 | Issue 3 | 91923



Metabolomic Biomarkers in Preeclampsia

x10
T T T T T 0.12 T T T T T T T
A B
3 g
01 4
25t 1 2
ipid —CH2— 0.08 [ 2 q
Lipid —-CH2— —— . 5
Lipid —CH3 ~
2r Lactate 2 1 _ 1%
g 006 ¢ 1
= o
o 4
151 Phosphatidylcholine 1 o s
o o004r @
4
1 Glucose 2
0.02 Scoreson PC1(93.19%) | 107 i
05
0 L
0
. . . . . . . 002 L— L L L L . L
4 35 3 25 2 15 1 4 35 3 25 2 15 1
Variable
R0
0.02 9 !
) D T
i 4 ! i
012 | ¢ 5 s I N
0 | ’ & | X
. VLDL/LDL @ ’ - %
AN 4 = ]
Region S b la_ ¥
-0.02 1 2 A 1
. 008 f e, 5 |\ vy Yy g
/ ] 1 7
4 | % -5 i R P
g 004t g, v . 1 g W8T ¢ S I
1<) * \ | . I -
& S 2f Iy Ll -
8 g | k x < 004 :
o1 ) E A X . - = -0.015-001-0005 0 0005 001 0015
g -006F 3 [ Vv v ; E = Scores on LV 1(74.13%)
= S-2f \ gy " 4002
g \ ¥ /
S — v
08l &7 O NY P l 0
-6 s T R
4 2 o 3 4 gl HDL
<o Scores on LV 1(90.80%) si0” il LY g
v Region
—012 L— i i i i ' i * . . . . . y .
4 35 3 25 2 15 1 ] 14 13 12 1.1 1 09 08
PR — — — 95% Confidence Level ppm

Figure 2. Results from serum analysis. Results from Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA)
on the spectra of serum samples from women with preeclampsia (PE), pregnant controls (PC) and non-pregnant controls (NP). ppm: parts per million,
resonance frequency of metabolite. A) Typical highly resolved serum CPMG (lipids suppressed) and LEDBPG (small metabolites suppressed) spectra
from a woman with PE with some annotated metabolites. B) Scores plot and loading profile of the PCA separating CPMG spectra of the three groups.
C) Scores plot and Loading Variable (LV) 1 from the PLS-DA of CPMG spectra showing class discrimination based on lipid level, where women with PE
clearly have higher levels of total lipids in the serum compared to pregnant controls D) Score plot and LV1 of the LEDBPG showing distinction
between PE and PC groups based on lipoprotein distribution. LV1 shows higher levels of VLDL-LDL and lower levels of HDL. VLDL: very low density

lipoproteins. LDL: low density lipoproteins. HDL: high density lipoproteins.

doi:10.1371/journal.pone.0091923.9002

histidine than the healthy pregnant women, and non-significant
lower levels of formate and higher levels of glycerol. Healthy
pregnant women had higher alanine and lactate than the non-
pregnant women.

Discussion

The present study clearly demonstrates the metabolic differ-
ences between the women with PE and those with healthy
pregnancies, in both urine and in serum. The metabolomics
method additionally reveals a possible way to subgroup the disease
based on metabolic profiles. The metabolic profiles gave new
information about possible pregnancy- and disease-induced
changes.

The strength of multivariate metabolomic analysis is that the
entire visible metabolome is taken into account; and metabolites
with small and large variation contribute to the end result. As a

PLOS ONE | www.plosone.org

result there are limitations towards finding definite mechanisms
correlating to alterations in isolated metabolites. Many small
metabolites visible to MR metabolomics are involved in several
pathways, and may not be comparable between the urine and
serum metabolome.

Differences associated with normal pregnancy compared to
non-pregnant women included increased amino acids, choline,
and lactate in urine, and higher alanine and lactate in serum. A
similar pattern was found in a study by Diaz et al [19] following
healthy pregnancies with MR metabolomics on urine. The
increased excretion of amino acids is suggested to be caused by
impaired renal filtration in healthy pregnancies [19]. The choline
increase appears as a trend increasing from non-pregnant to
healthy pregnant to preeclamptic women. Although choline
metabolism appears important to fetal development [20], it is
difficult to pinpoint the exact cause of the increase. The increase of
lactate in both urine and serum from pregnant women confirms
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Table 3. Serum metabolite concentrations.

Metabolite (uM) PE PC NP p-value
Histidine* 90+26 7221 57+12 0.036
Formate 19+4 25+4 22+2 0.059
Glycerol 146+37 10534 92+29 0.059
Alanine’ 251+39 303+82 223+31 0.059
Lactate’ 907+306 1094252  774*179 0.094
Creatine 42+14 30%7 35%7 >0.05
Glucose 2455+623  3005+656  2922+466  >0.05
Glycine 135+31 142+20 176+52 >0.05
Valine 132+26 155+31 16126 >0.05
Acetate 22+4 26+9 32*16 >0.05
Citrate 8118 70+19 63+13 >0.05
Phenylalanine 38x7 3710 34*4 >0.05
Glutamine 366+95 375+81 41060 >0.05
3-Hydroxybutyrate 80%58 47+13 51+34 >0.05
Tyrosine 34+8 39x8 3910 >0.05
Glutamate 94+28 106*35 95+37 >0.05
Creatinine 54+6 50+7 53+7 >0.05
Leucine 116+18 11428 109*25 >0.05
2-Methylglutarate 11£3 12%2 11+4 >0.05

Values given as mean=SD. PE: Women with preeclampsia. PC: Pregnant
controls. NP: Non-pregnant controls.

*Significantly different metabolite concentration between PE and PC with a
cutoff value at p=0.05 after Benjamini-Hochberg correction using the Kruskal-
Wallis test for nonparametric distributions of concentrations for three
independent groups.

TSignificantly different metabolite concentration between PC and NP.
doi:10.1371/journal.pone.0091923.t003

the findings by other studies [19,21], and follows an increase in
prolactin linked to lactation [21].

Women with PE showed increased choline and decreased
glycine, p-cresol sulfate and hippurate in urine, which may be
related to increased oxidative stress and kidney dysfunction.
Choline and glycine are connected through the metabolic pathway
of homocysteine [22]. A previous study found elevated choline in
serum of women with preeclampsia, and connected the findings to
this pathway [20]. Reduced glycine has also been seen with
preterm birth [20]. Urinary choline increase has been associated
with fetal stress in the second trimester [23]. Glycine is a precursor
to glutathione, a tripeptide important for protection against
oxidative stress [20]. The decrease in glycine excretion in women
with PE could be a result of increased demand for glutathione in
response to oxidative stress. p-Cresol sulfate is retained in patients
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with kidney damage [24], and is accordingly reduced in the PE
group which suffers from kidney dysfunction. p-Cresol sulfate is
known to increase oxidative stress in human kidney epithelial cells
[24]. Possible consequences of retained p-cresol sulfate could be
further increased kidney damage and systemic inflammation in
women with PE, thus contributing to the severity of the disease.
Hippurate is a metabolic conjugate of glycine, and may be reduced
as a consequence of reduced glycine in PE. A relation between
hippurate excretion and PE has not been reported previously. The
multivariate analysis grouped the urine samples from women with
carly onset PE together, indicating a similarity in their metabolic
profile compared with women with late onset PE, and a difference
in phenotype between the two. Such a division was previously
found in serum samples from women in early pregnancy [25,26].
However, as there were only four women in this group the results
should be interpreted with caution and be followed up in a larger
study.

Metabolic profiles in maternal serum revealed significant
differences with regards to PE. The major difference detected
was the higher total serum lipid content and an increase of
VLDL/LDL signals for the PE group. Women with PE also had
higher histidine and glycerol levels than women with normal
pregnancies. Increased histidine levels were in accordance with the
study by Bahado-Singh e a/ which looked at first-trimester serum
[26]. Bolin et al [27] found disturbance in histidine metabolism,
with contrarily decreased histidine-rich glycoprotein in serum
throughout pregnancies which later develop PE. Although the
histidine contained in glycoproteins is different from the free
histidine seen in MR spectra, their metabolism may be related.
Histidine-rich glycoproteins interact with the coagulation system
and angiogenic pathway, and a decrease was found to predict PE
in Bolins study [27]. Increased glycerol was detected in the women
with PE, similar to the Bahado-Singh study [26], where it was
attributed to abnormal lipid metabolism as it forms the backbone
of triglycerides. The lipoprotein profiles here shown related to PE
are similar to those found for people at risk of CVD [28], with
increased low density lipoprotein levels. Lipid dysfunction starts
early in pregnancies destined for PE development [28], suggesting
that metabolomics may be used to predict the onset of PE. An
increase in low- and very-low density lipoprotein has been
recorded in patients with CVD and PE previously [28],
underscoring the similarities between the two diseases.

The quantification of serum metabolites was done on T2-edited
CPMG spectra, where lipid signals are attenuated. Therefore the
concentrations of metabolites in serum are not absolute, but
comparable between spectra. The multivariate analysis performed
on the LEDBPG spectra, where small molecular weight metabolite
signals are filtered out, showed that the lipid profile itself was
sufficient to distinguish between the two groups.

The study contains relatively few samples, limiting a complete
validation procedure. However, a rigorous cross validation was

Table 4. PLS-DA Classification of samples as healthy pregnant or from women with preeclampsia.

Input LVs Classification accuracy Sensitivity Specificity AUC p

Urine spectra 2 95% 0.9 1 0.90 0.001
Serum CPMG spectra 4 90% 0.8 1 0.86 0.002
Serum LEDBPG spectra 4 90% 1 0.8 0.70 0.001

doi:10.1371/journal.pone.0091923.t004

PLOS ONE | www.plosone.org

The sensitivity is for detecting a preeclampsia sample using Partial Least Squares Discriminant Analysis. Classification accuracy, sensitivity and specificity are from the
leave-one-out cross validation. The p-value is from permutation testing the model with 1000 repeats. LVs: number of loading variables in model. AUC: Area under the
Receiver Operator Characteristic curve. CPMG: Lipid-suppressed. LEDBPG: Low molecular weight metabolite suppressed.
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performed to ensure that the model was valid also for samples not
included in the building of the model. As this is an exploratory
study highlighting main differences between groups, cross valida-
tion in combination with permutation testing is sufficient to
conclude whether there is a difference between groups. Analysis of
spectra using PLS-DA is prone to overfitting. However, permu-
tation testing of the urine and serum PLS-DA models (Table 4)
revealed them to be significantly different (p<<0.05) from models
made on random classifications. This indicates that the spectra
contained sufficient information to distinguish between samples
from women with PE and healthy pregnant women.

The metabolic changes found in cases compared to controls
reflect the disease state of the individual. However, it is possible
that some of the changes may be evident in the metabolome before
the onset of the disease. This possibility must be evaluated in
longitudinal studies following women earlier in their pregnancies.

Urine and serum from women with PE, normal pregnancies
and non-pregnant women were effectively discriminated by MR

References

1. Bergsjo P, Evensen SR, Steinsholt IM (2001) Preeklampsi og cklampsi. Norsk
Elektronisk Legehandbok.

2. Sibai B, Dekker G, Kupfermine M (2005) Pre-eclampsia. Lancet 365: 785-799.

. Uzan J, Carbonnel M, Piconne O, Asmar R, Ayoubi J-M (2011) Pre-eclampsia:
pathophysiology, diagnosis, and management. Vasc Health Risk Manag 7: 467
474.

4. Borzychowski AM, Sargent IL, Redman CWG (2006) Inflammation and pre-

eclampsia. Semin Fetal Neonat M 11: 309-316.

5. Redman CWG, Sacks GP, Sargent IL (1999) Preeclampsia: An excessive
maternal inflammatory response to pregnancy. Am J Obstet Gynecol 180: 499
506.

. Craici I, Wagner S, Garovic VD (2008) Preeclampsia and future cardiovascular
risk: formal risk factor or failed stress test? Ther Adv Cardiovasc Dis 4: 249-259.

7. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, et al. (2011) The human

serum metabolome. PloS one 6: ¢16957.

8. Lindon JC, Nicholson JK, Holmes E, Everett JR (2000) Metabonomics:
Metabolic processes studied by NMR  spectroscopy of biofluids. Concept
Magnetic Res 12: 289-320.

. Turner E, Brewster JA, Simpson NAB, Walker [], Fisher J (2007) Plasma from
women with preeclampsia has a low lipid and ketone body content - A nuclear
magnetic resonance study. Hypertens Pregnancy 26: 329-342.

10. Turner E, Brewster JA, Simpson NAB, Walker JJ, Fisher J (2008) Aromatic
amino acid biomarkers of preeclampsia - a nuclear magnetic resonance
investigation. Hypertens Pregnancy 27: 225-235.

11. Schott S, Hahn J, Kurbacher C, Moka D (2012) 31P and 1H Nuclear Magnetic
Resonance Spectroscopy of Blood Plasma in Female Patients with Preeclampsia.
International Journal of Biomedical Science 8: 258.

12. Lorentzen B, Qian P, Staff A, Mortensen JHS (2008) Hypertensive
svangerskapskomplikasjoner. Veileder i fodselshjelp 2008: Norsk Gynekologisk
forening.

13. Wold S, Sjostrém M, Eriksson L (2001) PLS-regression: a basic tool of
chemometrics. Chemometrics and Intelligent Laboratory Systems 58: 109-130.

14. Savorani F, Tomasi G, Engelsen S (2010) icoshift: a versatile tool for the rapid
alignment of 1D NMR spectra. ] Magn Res 443: 190-202.

15. Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC (1995) 750 MHz
IH and 1H-13C NMR spectroscopy of human blood plasma. Analytical
chemistry 67: 793-811.

PLOS ONE | www.plosone.org

Metabolomic Biomarkers in Preeclampsia

metabolomics. Differences were observed related to disease
processes and phenotypes. Samples from healthy pregnancies
were clearly different from samples collected from non-pregnant
women. The observed data suggest that an enlarged study is
recommended to find predictive biomarkers earlier in pregnancy
or to sub-phenotype the disease, and to investigate the association
to later cardiovascular symptoms.
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ABSTRACT

Hypertensive disorders of pregnancy including preeclampsia are major contributors to
maternal morbidity. Current prediction methods in first trimester pregnancy have low
sensitivity and new predictive biomarkers are warranted. The goal of this study was to
evaluate the potential of metabolomics to predict preeclampsia and gestational hypertension
from urine and serum samples in early pregnancy, and to elucidate the metabolic changes
related to the diseases. Nuclear magnetic resonance spectra were acquired on samples from
599 women at medium to high risk of preeclampsia, and principal component analysis, partial
least squares discriminant analysis and variable selection were applied to obtain metabolic
profiles of the diseases. Urinary metabolomic profiles predicted preeclampsia and gestational
hypertension at 51.3% and 40% sensitivity respectively, at 90% specificity, with hippurate
being the most important metabolite. Serum metabolomic profiles predicted preeclampsia at
15% sensitivity and gestational hypertension at 33% sensitivity at 90% specificity with
increased lipid levels and an atherogenic lipid profile as most important. Combining maternal
characteristics with the urinary hippurate/creatinine level improved the prediction rates of
preeclampsia in a logistic regression model. These results show a potential clinical importance

for metabolomic analysis of urine samples to predict preeclampsia.

Introduction
Hypertensive disorders of pregnancy including preeclampsia and gestational hypertension

are major causes of maternal morbidity and mortality, and affect up to 10% of pregnant
women.'” Early identification of women at high risk of preeclampsia might enable potential
prophylactic treatment to reduce or avoid the onset of symptoms.* > Late onset preeclampsia
(occurring after 34 weeks of pregnancy) is more common, and has lower detection rate.

Predictive models for late onset preeclampsia have employed a combination of maternal



characteristics, biochemical and biophysical markers at 11+0-13+6 weeks of gestation, to
predict the syndrome at 30-60% sensitivity.s'8 New and improved predictive biomarkers are
warranted. Gestational hypertension is often included in the disorder spectrum of
preeclampsia, particularly if other symptoms are present. Clinical findings in gestational
hypertension are often intermediate between normal pregnancy and preeclampsia.' In general,
placental, renal or hepatic involvement are not present in gestational hypertension, and
outcomes are better for mother and baby.'

Metabolomics represents a “top-down” view of the metabolism, which more closely
characterises the phenotype of the organism than genomic and proteomic applications.
Metabolomics is the detection and semi-quantitation of low molecular weight metabolites
present in cells, tissues or body fluids, using high throughput analysis platforms such as
Nuclear Magnetic Resonance (NMR) spectroscopy or Mass Spectrometry (MS).” '° Recent
interest has mounted in the metabolomics approach to predict and characterise preeclampsia.
Early and late preeclampsia has been predicted using serum from weeks 11+0-13+6 of

11,12 .
**“and markers of preeclampsia have been

pregnancy in combination with maternal markers,
found in urine and serum in the second trimester using metabolomics."*'> A phase Ila trial for
MS based metabolomics prediction of preeclampsia has been launched.'® To date, no studies
have attempted to predict hypertensive disorders in pregnancy by NMR analysis of urine and
serum from early pregnancy in a complete cohort of women.

The aim of this study was to evaluate whether metabolic profiles of urine and serum
collected from women at gestational week 11+0-13+6 could predict preeclampsia and/or

gestational hypertension. Secondly, we aimed to elucidate the metabolic changes that may

accompany the early stages of these hypertensive disorders of pregnancy.



Materials and methods

Study population
The study population has been described in detail previously.'” ' Briefly, pregnant women

who were nulliparous or had preeclampsia or gestational hypertension in a previous
pregnancy were invited to attend an examination at 11+0-13+6 weeks of gestation (crown-
rump length 45-84mm). At the study visit participants were interviewed about their health and
pregnancy. All participants were weighed, and body mass index (BMI) was calculated in
kg/m”. The women were asked to fast for one hour before their visit. Venous blood was drawn
into non-heparinised tubes and centrifuged at 1800G for 10 minutes. A serum sample (0.8mL)
was separated and stored at -80°C, thawed once and an aliquot of 120pL was stored at -80°C.
Spot urine samples were collected at the study visit and aliquots (1.8mL) were stored at -
80°C. Blood pressure was measured with a CAS 740 MAX NIBP automated device (CAS
Medical systems Inc, CT, USA).19 The mean arterial pressure (MAP) from the arm with the
highest MAP was used. Participants were examined with transabdominal ultrasound with a
Siemens ACUSON Antares™ machine (Siemens Medical Solutions Inc, CA, USA), and the
uterine artery pulsatility index (UtAPI) was measured.”’ The UtAPI was measured three times
on each side, and the average of three measurements on each side was used. The average of
the two sides was used in calculations. All scans were carried out by specialized trained
midwifes who were certified by  the Fetal Medicine Foundation
(http://www.fetalmedicine.com). Data on pregnancy outcomes were collected from hospital
records. Preeclampsia was defined as systolic blood pressure > 140 mmHg and/or diastolic
blood pressure > 90 mmHg in combination with proteinuria > 0.3g per 24 hours measured
twice within 4-6 hours, occurring after gestational week 20.>' Gestational hypertension was
defined as for preeclampsia, but occurring without proteinuria. All women gave written
informed consent at study entry. The study was approved by the Regional Committee for

Medical Research Ethics in mid-Norway, entries REK 2010/102 and 2013/386.



NMR metabolic analyses
Laboratory analyses were performed blinded to pregnancy outcome after all women had

delivered their babies. Urine samples were thawed on ice and centrifuged at 6000RPM
(Sorvall RMC 14; DuPont) for five minutes. The supernatant (540uL) was mixed with a
bacteriostatic buffer (60uL) (pH 7.4, 1.5mM KH,PO4 in DO, 0.1% Trimethyl-Silyl
Propionate (TSP), 2mM NaN3) (Receipt from Bruker Biospin AG, Reinstetten, Germany) and
transferred to Smm NMR tubes (Bruker Biospin). Serum samples were thawed on ice. Serum
(100uL) was mixed with a bacteriostatic buffer (100 uL) (pH 7.4 0.075mM Na,HPO,, SuM
NaN3, 5uM TSP) (Bruker Biospin) and transferred to 3mm NMR tubes.

NMR analysis was performed at the MR Core Facility at the Norwegian University of
Science and Technology (NTNU), Trondheim, Norway using a Bruker Avance III
Ultrashielded Plus 600MHz spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany)
equipped with a 5Smm QCI Cryoprobe with integrated, cooled preamplifiers for 'H, ?H and
5C. Experiments were fully automated using the SampleJet™ in combination with Icon-
NMR on TopSpin 3.1 software (Bruker Biospin). The NMR analyses were performed blinded
to pregnancy outcomes. NMR spectroscopy acquisition parameters are described in
Supplementary Table S1. One-dimensional Standard Nuclear Overhauser Effect spectroscopy
(NOESY) (noesygpprld; Bruker) spectra were acquired on the urine samples for quantitative
detection of small molecular weight metabolites. On the serum samples, Carr-Purcell-
Meiboom-Gill (CPMG) (cpmgprld; Bruker) spectra were acquired. In CPMG spectra, signals
from macromolecules were filtered out for better detection of small molecular weight
metabolites. For additional aid in metabolite identification, two-dimensional spectra were

acquired (Supplementary Table S1).



Spectra were automatically Fourier transformed, phased and baseline corrected in TopSpin
with a line broadening of 0.3Hz. Spectra were imported to Matlab 12013b (The Mathworks
Inc, MA, USA). Urine spectral regions containing metabolites of interest (50.5 to 9.0ppm)
were extracted and the residual H,O and urea signals removed. Peaks in the urine spectra

were aligned by the iCoshift algorithm®

with 245 manually chosen intervals, using the
spectrum with the highest correlation as the reference.”” The spectra were normalised using
Probabilistic Quotient Normalization to account for dilution.** Finally the data was pareto
scaled and mean centered.” Serum spectral regions containing metabolites of interest (5 0.1 to

4.2ppm) were extracted and aligned by the left Alanine doublet peak at 1.48ppm. The spectra

were normalised to equal area and mean centred.

Statistical analyses
Statistical analyses were done in Matlab and in Statistical Package for the Social Sciences

(SPSS) (version 20.0; SPSS Inc, IL, USA). Baseline characteristics of the study population
were tested for normality using the Kolmogorov-Smirnov test.”* Non-normal data was
reported as median (25"-75" percentile), normal data as mean (standard deviation), and
categorical data as number (percentage) using either the Kruskal-Wallis test, analysis of
variance (ANOVA), or Fishers exact test. The metabolic data was explored for clusters and
outliers using PCA as described below. The predictive potential of the metabolic profiles for
preeclampsia, gestational hypertension, and both combined was evaluated using PLS-DA. The
predictive values of urine and serum NMR spectra were evaluated by sensitivity at 10% false
positive rate and at the best cut-off on the Receiver Operator Characteristic (ROC) curve.
PCA is a powerful method of data extraction that finds combinations of variables, called
principal components (PCs), describing the main variation in large data. These are visualised
in scores and loading plots, making it possible to visualise high dimensional data using only a

few dimensions. PLS-DA models the relationship between the spectra and class information



using multivariate regression methods, and is used to establish prediction models. The
metabolites responsible for separation between classes are given by the latent variables
(LVs).?” Similar to PCA, the resulting model can be visualised in scores and loading plots.
Variable Importance in Projection (VIP) is a method of assessing which variables are most
important to the prediction. Variables with VIP scores < | can be considered irrelevant to the
prediction and excluded.”® Competitive Adaptive Reweighted Sampling (CARS) is a variable
selection method which iteratively selects variable subsets which perform best in cross
validated classification.”’

Multivariate models were constructed using PLS Toolbox 7.3.1 (Eigenvector Research,
WA, USA). Preeclampsia, gestational hypertension and both combined were predicted within
the entire cohort; e.g., for prediction of preeclampsia the gestational hypertension remained in
the control group. The input to the classification models was either full, preprocessed spectra,
or sets of variables selected by different variable selection algorithms (VIP or CARS). The
classification models were evaluated using a double cross validation procedure.*’ A set of
samples (20%) was set aside for independent validation of the model (the outer loop). The
remaining samples were split into an inner calibration and test set used for determining the
optimal number of PLS components. The inner and outer loops were both repeated 20 times.
The data was split so that the ratio of case to control samples was the same in validation,
calibration and test sets. Mean sensitivity, specificity and classification accuracy were
calculated from the validation set. The PLS-DA classification results were validated using
permutation testing, with p-values <0.05 considered significant.”® One hundred permutations
were built for each predictive model.

Urine metabolite ratios found to be important to the multivariate predictions based on high
VIP scores and/or CARS selection (hippurate, lactate, dimethylamine, and 4-deoxythreonic

acid to creatinine ratios) were used as input to logistic regression models in combination with



maternal characteristics. The maternal variables found to give the best prediction of
preeclampsia in the same cohort by Skrastad et al'’ were combined with selected metabolite
ratios, in order to improve the prediction rates for preeclampsia in the cohort. Preeclampsia
was predicted using MAP and age as variables in combination with metabolite ratios. Women
with maternal age more than 35 or less than 20 were categorised as high risk.*' The results
were compared to prediction rates obtained using UtAPI, MAP and age. Logistic regression

analyses were done in SPSS.

Results
A total of 640 women (585 nulliparous and 55 parous women) attended the study visit

between 11+0 and 13+6 weeks gestation. A flow chart describing the women included in the
analysis is shown in Supplementary figure S1. After exclusions for conditions appearing at or
after the study visit as described in'’, and technical reasons (failed acquisitions or missing
samples), 599 women remained in total with 587 urine samples and 591 serum samples. One
excluded urine sample was from a woman who later developed gestational hypertension.

Characteristics of the study participants for each outcome group are shown in Table 1.
Twenty-six women (4.3%) developed preeclampsia and 21 women (3.5%) developed
gestational hypertension. One woman had early onset preeclampsia (delivered < 34 weeks
gestation). BMI was higher for women with gestational hypertension, and gestational age at
birth and birth weights were lower in preeclampsia. MAP measured at 11+0 and 13+6 weeks
gestation was higher in women who later developed preeclampsia or gestational hypertension,
but below the definition of chronic hypertension.

Identification of 54 wurine metabolites and 30 serum metabolites was achieved
(Supplementary tables S2 and S3). The exploratory PCA (Figure 1) of the urine and serum
NMR spectra showed a characteristic clustering of urine samples from women who later

developed preeclampsia or gestational hypertension, indicating a difference in urinary



metabolic profiles between healthy and later hypertensive pregnancies. No apparent clustering

was seen in serum samples.
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Figure 1. Score plots from PCA of urine and serum spectra from women who later developed
preeclampsia or gestational hypertension. PCA score plots of the first and second principal
components (PCs) with the explained variance (%), performed on urine samples (top) and
serum samples (bottom) taken at 11+0 and 13+6 weeks gestation. Urine samples gave a
clustering of women later developing preeclampsia (PE) (red diamonds) or gestational

hypertension (GH) (green triangles), while serum samples gave no apparent clustering.

Metabolomic biomarkers in urine
Urine metabolic profiles at 11+0 and 13+6 weeks gestation predicted preeclampsia,

gestational hypertension and both combined (Table 2, Supplementary Table S4). At 10% false
positive rates using metabolomics analyses, preeclampsia could be predicted at 51%
sensitivity from first trimester urine samples, gestational hypertension with 40% sensitivity,
and both combined at 37% sensitivity. The loading plots from PLS-DA pinpoint the

metabolites that are different between the modelled groups (Figure 2, Table 2). Women that



later developed preeclampsia had increased urinary levels of creatinine, glycine, 4-
deoxythreonic acid, o-hydroxyisobutyrate, histidine and dimethylamine and decreased
hippurate, lactate and proline betaine. In the first trimester of women developing gestational

hypertension there was also a decrease of citrate, but overall a similar profile to preeclampsia.

Hypertensive Disorders of Pregnancy

D_ [ T T T T T T T i

% 30 }6 - Lo

= 20 i

£ / \’ ¢ 10

o 10F | ' | 1 /6 \ | g

= 0 - y A ]_ . I L L _ l ot Llliad iy Ml ‘\ i) = I | HI -
8 7 6 5 4 3 2 1 0

Preeclampsia

- 30 [ T T T T T T LO ]

5 200 °

2 ol LT \ T 1\2 s ,

> \|l|// Ly Lol

0 et hahd = Mt sh iy Al == E|
8 7 6 5 4 3 2 1 0
Gestational Hypertension

'_ 30 B T T T 10_I-_ T T T LO i

= LY 13

5 208 1\5 \ /8 0

o 10} . L J 59

> ok i I 1‘ X 5 g N A‘L sndol ol ,J‘ HA il \| L ; Hi .
8 7 6 5 4 3 2 1 0

Figure 2. Urine NMR variables involved in predicting preeclampsia (PE) and gestational
hypertension (GH) using PLS-DA. The variable importance in projection (VIP) scores for
each variable (part per million, ppm) are shown on the vertical axis, with higher VIP scores
meaning increasing importance in the predictive model. The variables are coloured by the
loadings from the corresponding PLSDA model. Red means increasing levels of metabolite in
the indicated condition and blue means decreasing levels. Metabolites by number: 1, 4-
Deoxyerythronic acid; 2, 4-Deoxythreonic acid; 3, Lactate and Threonine; 4, o-

Hydroxyisobutyrate; 5, Alanine; 6, Acetate and Lysine; 7, Glutamine; 8, Citrate 9,
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Dimethylamine; 10, Creatinine; 11, Proline Betaine; 12, Carnitine (tentative); 13, Betaine; 14,

Glycine 15, Ascorbic acid; 16, Hippurate; 17, Phenylacetylglutamine; 18, Histidine.

Metabolomic biomarkers in serum
Serum metabolic profiles in first trimester predicted preeclampsia, gestational hypertension

and both combined (Table 3, Supplementary Table S5). At 10% false positive rates, 15%,
33% and 30% of preeclampsia, gestational hypertension and both combined could be
predicted. The loading plots from PLS-DA pinpoint the metabolites that are different between
the modelled groups (Figure 3, Table 3). Mainly, increased lipid levels were evident in both
hypertensive groups, and the increased signals originated primarily from triglycerides.
Decreased levels of phosphatidylcholines, with signals originating from lipids in HDL,
glucose, lactate and alanine were also found important for first trimester prediction of the

hypertensive pregnancy disorders.
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Figure 3. Serum variables involved in first trimester prediction of preeclampsia, gestational
hypertension, and both. The variable importance in projection (VIP) scores for each variable
are shown in the vertical axis. The variables are coloured by the loadings as described in
Figure 3. Abbreviations: HDL, High density lipoprotein; Leu, Leucine; N-Ac, N-acetylated
carbohydrate side chains of glycoproteins; PtdCho, Phosphatidylcholine; Py, Pyruvate; Val,
Valine.
Prediction of preeclampsia based on a combination of metabolomic and
clinical biomarkers

The best logistic regression models for prediction of preeclampsia are shown in Table 4.
Urinary hippurate:creatinine combined with MAP and maternal age gave better prediction
rates (AUC 0.778) than UtAPI combined with MAP and maternal age (AUC 0.738) (Figure

4).
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Figure 4. ROC comparison of logistic regression analyses. Prediction of preeclampsia using
logistic regression, with risk of preeclampsia as dependent variable and maternal age and
MAP in combination with urinary metabolites (Hippurate and Creatinine) or UtAPI as
independent variables. Abbreviations: MAP: Mean Arterial Pressure. UtAPI: Uterine Artery

pulsatility index.
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Discussion

Main findings
Metabolic profiles in urine and serum samples from pregnant women at 11-13 weeks

gestation identified a significant difference between women who developed preeclampsia or
gestational hypertension, and women with normotensive pregnancies. Both urine and serum
metabolic profiles could predict preeclampsia and gestational hypertension, with urine
profiles giving the best prediction. Increased urinary creatinine, decreased urinary hippurate,
and increased levels of serum lipids were the most important differences between women who

developed preeclampsia or gestational hypertension, and normotensive women.

Strengths and limitations
The major strength of our study was the prospective design with complete follow-up of

almost 600 women with medium to high risk of preeclampsia. The multivariate statistical
analyses were performed up to standards of the field, with rigid cross validation.”
Weaknesses of our study include the limited numbers of cases, which is difficult to overcome
given the low incidence of the disorders. An advantage with multivariate analyses as used in
metabolomics approaches is that the covariance between metabolites is taken into account in
the modelling. However, in order to more conveniently translate metabolic findings to the
clinic, a selection of metabolites could be made which convey most of the information
contained in the source. Combining sets of metabolites with maternal characteristics may
improve the prediction rates. Previous publications within the metabolomics field have used
case-control studies, or samples obtained at a later gestational age, to demonstrate a change in
metabolic profile before onset of preeclampsia.'" '* !> 3> ** This study aimed to predict two
hypertensive disorders of pregnancy in a cohort of women and this reflects the predictive
power of the metabolomics approach more accurately than in a case-control design. This
difference in design may also explain why our results have lower prediction rates than

previous metabolic studies.'
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Interpretation
This is the first metabolomics study on first trimester urine samples for prediction of

preeclampsia and gestational hypertension. Preeclampsia has been successfully predicted with
second trimester urine in a case-control study,"” and their results partially align with ours for
instance by increased 4-deoxythreonic acid, possibly related to ketone body production.'
Non-metabolomics methods have been used to predict preeclampsia from urine samples, with
focus on urinary albumin to creatinine ratios as a measure of kidney function,” and on
creatinine levels in urine.’® Increased urinary creatinine was found to be predictive of
preeclampsia in a study as early as 8-10 weeks gestation.® Our corresponding findings of
increased creatinine in maternal urine may be an effect of the increased BMI and MAP of the
women who developed preeclampsia and gestational hypertension,’® or possibly a marker of
early renal involvement. Studies have reported increased glomerular filtration rates in pre-
hypertensive subjects.”’ Changes in hippurate excretion preceding preeclampsia are novel to
this study. Decreased urinary hippurate has been shown to correlate with increased blood
pressure,”® and may be related to diet or to blood pressure related changes in the gut
microflora, where this metabolite is produced.*® *° The predictive metabolic profile for
preeclampsia also included increased glycine and 4-deoxythreonic acid, as well as decreased
lactate and creatine. 4-Deoxythreonic acid is a degradation product of 3-hydroxybutyrate,*
which is increased in maternal serum in our study. Both preeclampsia and gestational
hypertension was associated with an increase in urinary dimethylamine at 11-13 weeks
getation. This metabolite may have dietary origins,”' but is also derived from asymmetric
dimethylarginine, a biomarker of increased cardiovascular risk.*'**.

The prediction of preeclampsia and gestational hypertension using metabolic profiling of
urine performed with similar sensitivity as previous approaches using maternal biophysical

17,18

and biochemical markers on the same cohort , and in other studies.” ® The serum metabolic

profiling did however not predict the syndromes equally well. This may reflect the lower
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sensitivity of NMR spectroscopy to detect small molecular weight metabolites in serum, due
to viscosity, lipid signal overlap and lower concentrations of NMR-visible metabolites.
Combining urinary hippurate:creatinine ratios with maternal MAP and age increased the
prediction rates of preeclampsia compared to using the uterine artery Doppler measurement
with MAP and age. Replacing the UtAPI measurement, which requires skilled ultrasound
technicians and time, with an easily accessible urinary marker, would be an advantage
especially in low resource areas. However, clinical application of the metabolic profiling
prediction method will require confirmation in cohorts from other populations, where the
metabolites identified in this study form the basis of prediction. Currently, early identification
of women at risk for developing hypertensive disorders of pregnancy would enable closer

follow-up of these women.*

Extensive research is examining potential prophylactic
treatment, especially for preterm or severe preeclampsia.” *** In order for these treatments to
work, it is important to identify the women at risk for developing disease at an early
timepoint. This research shows that there is potentially predictive information contained in a
simple urine sample.

First-trimester plasma or serum for prediction of preeclampsia by metabolomics methods
have been reported previously.'" ' '>** A model with maternal characteristics combined with
four serum metabolites predicted late onset PE.'"' These results pointed to disturbed lipid
metabolism. MS-based metabolomics studies have found increased serum levels of
metabolites in carnitine, fatty acid and lipid classes reliably predicting preeclampsia.'> *
However, no previous studies have used metabolomics to predict gestational hypertension in
early pregnancy. Changes in lipid metabolism evident early in pregnancies of women who
develop hypertensive disorders of pregnancy are known.**** Abnormal lipid metabolism may

play a role in the aetiology of the disease.*® Elevated lipid and low-density lipoprotein levels

in maternal serum may induce endothelial dysfunction secondary to oxidative stress.*® The
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decrease in phosphatidylcholine levels related to both later gestational hypertension and
preeclampsia may indicate altered choline metabolism.* Choline is an essential nutrient
which functions in phospholipid metabolism, and choline levels may influence inflammation
and angiogenesis.*’”' Decrease in phosphatidylcholine serum levels have also been found in
individuals with increased cardiovascular risk factors.’” The decrease in maternal serum
pyruvate concurrent with the increase in 3-hydroxybutyrate in women who later developed
preeclampsia may indicate an early shift in metabolism from glycolysis to ketosis for energy

production,> and this was reflected also in the urine metabolic profiles.

Conclusions
Metabolic profiling of urine and serum in early pregnancy revealed specific, significant

changes in the metabolism of women who later developed preeclampsia or gestational
hypertension. Preeclampsia and gestational hypertension could be successfully predicted in
early pregnancy using urine and serum metabolic profiles. The consistent changes in the
urinary metabolome represent an attractive avenue for clinical prediction, since spot urine is
easily accessible. Combining a panel of urine metabolites with maternal characteristics may

improve the accuracy of prediction of late onset preeclampsia.
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TABLES

Table 1. Characteristics of the Study Participants

Characteristic

Preeclampsia

Number of women included

Age in years, median (IQR)

BMI in kg/mz , median (IQR)
Smoking, n (%)

MAP at enrolment, median (IQR)

UtAPI at enrolment, median

(IQR)

GA at enrolment, days, median

(IQR)

GA at delivery, days, median
(IQR)

Birth weight, g, median (IQR)

26
26 (7)
24.8 (5.6)
4(15.3)
87.0 (11.1)
1.75 (0.70)

92 (4)

266 (22)

3243 (705)

Abbreviations: BMI, Body Mass Index; GA, Gestational age; IQR, Interquartile range;
MAP, Mean arterial pressure;
“ P-values calculated by nonparametric Kruskal-Wallis test for continuous variables or Fishers

exact test for categorical variables.

UtAPI,

Normotensive
pregnancies

Gestational
Hypertension

3460 (1096)

Uterine



Table 2. Urine Metabolite Multivariate Models Predicting Preeclampsia, Gestational

Hypertension, or Either.”

Hypertensive group | Accuracy | Specific | Sensit | Sensitivity P-value’ | Indicated

(%) ity ivity |at  10% metabolites®
FPR (%)
(%) (%)

Preeclampsia

(n=26)

Full urine spectra 61.4 653 57.5 11.3 <0.01 1Crn, Gly, a-HIB,
Hist, DMA | Hipp,
Lac/Thr, ProlB

VIP > 1 variables 68.2 60.1 76.3 238 <0.01 1Cm, Gly, a-HIB,
Hist, DMA | Hipp,
Lac/Thr

CARS variables 70.8 74.2 67.5 51.3 <0.01 1 Gly, 4-DEA,
DMA 1 Hipp, Lac,
Cre, ProlB

Gestational

hypertension (n=20)

Full urine spectra 59.1 68.2 50.0 11.7 <0.01 1 Cm, o-HIB,
DMA | Hipp,
Lac/Thr, ProlB,
Citrate

VIP > 1 variables 63.7 65.7 61.7 16.7 0.01 1 Crn, o-HIB,
DMA | Hipp,
Lac/Thr, ProlB,
Citrate

CARS variables 63.8 89.3 383 40.0 0.04 1 DMA | PAG,
Ala

Preeclampsia or

gestational

hypertension (n=46)

Full urine spectra 61.5 56.1 66.8 14.4 <0.0l 7 Crn, o-HIB
DMA, | Hipp,

VIP > 1 variables 64.0 56.2 71.9 20.0 <0.01 [ a¢/Thr. ProlB
t  Crn, o-HIB,
DMA | Hipp,

Lac/Thr, ProlB
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CARS variables 66.4 759 56.9 36.9 <0.01 1 o-HIB, DMA |
Hipp, PAG, Lys,
Ala, noise
variables

Abbreviations: 4-DEA, 4-Deoxythreonic acid; a-HIB, a-Hydroxyisobutyrate; Ala, Alanine;
Cre, Creatine; Crn, Creatinine; CARS, Competitive Adapted Reweighted Sampling; DMA,
Dimethylamine; Gly, Glycine; Hipp, Hippurate; Hist, Histidine; Lac, Lactate; Leu, Leucine;
PAG, Phenylacetylglutamine; ProlB, Proline Betaine; Thr, Threonine; VIP, Variable
Importance in Projection.

“ VIP or CARS variable selection was performed, and results were evaluated using
accuracy, specificity and sensitivity from double cross validation.

” Model validity was estimated by 100 permutation tests.

“ The metabolites are listed as increased (1) or decreased () in the hypertensive disease
group compared to the normotensive pregnancy group.
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Table 3. Serum Metabolite Multivariate Models Predicting Preeclampsia, Gestational

Hypertension, or Either®.

Hypertensive | Accura | Specific | Sensitivi | Sensitivity | P- Indicated metabolites®
group cy (%) | ity (%) |ty (%) at 10% | value®
FPR (%)
Preeclampsia
(n=26)
Full serum 59.4 73.8 45.0 20.0  >0.05 NS
spectra
viP = 1 58.3 70.3 46.3 26.3 >0.05 NS
variables
CARS 64.6 65.4 63.8 15.0 0.05 17 Signals from
variables triglycerides, 3-HB
| Pyruvate, PtdCho, Lac
Gestational
Hypertension
(n=21)
Full  serum 59.1 74.8 433 250  >0.05 NS
spectra
virp, = 1 58.1 75.0 413 22.5 >0.05 NS
variables
CARS 66.1 55.0 76.9 333 0.02 1 Signals from
variables triglycerides, | Variables
corresponding to HDL,
Lac, N-Ac, PtdCho, Glc
Preeclampsia
or gestational
hypertension
(n=47)
Full  serum 62.6 70.8 54.4 24.4 0.01 1 Lipid signals, signals
spectra from triglycerides
| Signals from HDL,
Glc, Val, Leu, Lac, Ala,
PtdCho
virp > 1 63.0 70.4 55.6 27.5 <0.00 1 Lipid signals, signals
variables from triglycerides

| Signals from HDL,
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Glc, Leu, Val, Ala, Lac,

PtdCho
CARS 64.5 69.1 60.0 30.0 0.02 1 Variables
variables corresponding to
triglycerides

| Lac, PtdCho

Abbreviations: 3-HB, 3-Hydroxybutyrate; Ala, Alanine; CARS, Competitive adaptive
reweighted sampling; FPR, False positive rate; GH, Gestational hypertension; Glc, Glucose;
HDL, high density lipoprotein; Lac, Lactate; Leu, Leucine; N-Ac, N-acetyl Glycoproteins;NS,
Not significant PE, Preeclampsia; PtdCho, Phosphatidylcholine; Thr, Threonine; Val, Valine;
VIP, Variable importance in projection.

“ VIP or CARS variable selection was performed, and results were evaluated using accuracy,
specificity and sensitivity from double cross validation.

’ Model validity was estimated by 100 permutation tests.

¢ The metabolites are listed as increased (1) or decreased (]) in the hypertensive group
compared to the normotensive group.

26




Table 4. Prediction of Preeclampsia Based on Urinary Metabolites and Maternal

Characteristics in Logistic Regression

Variable AUC (95% CI) Sensitivity (%)* | PPV NPV | P-value’
Urine Metabolites® | 0.694 (0.595-0.793) 0.192 | 0.082| 0.960 0.004
only

MAP, age’, UtAPI 0.738 (0.637.0.839) 0.346 | 0.138 | 0.967 | <0.001
Metabolites, MAP, | 0.778 (0.695-0.862) 0.423 | 0.164| 0971 | <0.001
age’

Metabolites, MAP, | 0.807 (0.721-0.893) 0.538 | 0.200 | 0.977 | <0.001
aged, UtAPI

Abbreviations: AUC, area under the receiver operator characteristic curve; CI, confidence
interval; MAP, mean arteral Pressure; NPV, negative predictive value; PPV, positive
predictive value; UtAPI; uterine artery pulsatility index.

“ Sensitivity is given at 10% false discovery rate.

” Omnibus chi-square significance level of the model.

© Metabolites were chosen based on highest VIP scores. The final metabolites were
hippurate/creatinine ratio in urine.

¢ Women with maternal age <20 or >35 were categorised as high risk.
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640 pregnancies

Attended the 1140 — 13+6 study visit:

38 were excluded due to conditions apparent at
the first study visit (twins, missed abortions,
CRL > 84 mm, used ASA or low-molecular
weight heparin, para > 0 with no previous PE
or GH)

Y

Included in the study:
602 pregnancies

13 were excluded from the analysis due to
conditions appearing after the study visit:
- 2 cases of termination of pregnancy
-1 case of spontaneous abortion

- 4 cases could not be venipunctured

- 6 cases missing urine samples

7 were excluded for technical reasons
- 6 failed urine spectrum acquisitions
- 4 failed serum spectrum acquisitions

v

- 587 urine samples

Included in the prediction analysis:

- 591 serum samples

Figure S.1 Flow chart describing participants included in the study.
Abbreviations: ASA, Acetyl Salisylicacid; CRL, Crown rump length; GH, gestational hypertension; PE,

preeclampsia.

Table S.1 NMR spectroscopy parameters

Biofluid Spectrum Pulsesequence  Temp FID size Scans Spectral width
shorthand (K) (ppm)
NOESY noesygpprild 300 65536 32 20,5682
JRES jresgpprgf 300 | 8192x40 2 16.6602x0.1302
g HSQC hsqcedetgpsisp.2 300 | 2048x256 32 16.0194x165.6500
'5 COosy cosygpprgf 300 | 4096x512 8 16.0194x16.0194
HSQC-TOCSY hsqgcdietgpsisp.2 300 | 2048x256 32 12.0146x165.6580
HMBC hmbcetgpl3ndpr 300 | 4096x256 128 16.0194x209.9990
c NOESY noesygpprild 310 98304 32 29.8927
3 CPMG cpmgprild 310 65536 64 20.0243
3 JRES jresgpprgf 310 | 8192x40 1 16.6602x0.1302

Abbreviations: COSY, Correlated spectroscopy; CPMG, Carr-Purcell-Meiboom-Gill pulse sequence;
HMBC, Heteronuclear multiple bond correlation spectroscopy; HSQC, Heteronuclear single quantum
coherence spectroscopy; JRES, J-resolved spectroscopy; NOESY, Nuclear overhauser effect

spectroscopy; TOCSY, Total correlation spectroscopy.




Table S.2 Metabolites Identified in Urine NMRspectra

Metabolite

'H NMR shift, multiplicity?, (**Cshift)®

1-Methylhistidine

3.140m (30.9), 3.730m (36.5), 3.930s (56.0), 7.210t(122.0),
8.220s(140.0), (130)

1-Methylnicotinamide

4.469s(51.4) 8.886d(146.4) 8.957d(150.0)

3-Aminoisobutyrate

1.200t(17.8) 2.037m(46.1)

3-Hydroxyisobutyrate

1.075d(16.5), 2.490m(47.6), 67.6m, (186.9)

3-Hydroxyisovalerate

1.274s(31.0), 2.370s(52.3), (72.5)

3-Methylhistidine

3.270m(27.6), 3.320m(27.6), 3.770m(35.0)

4-Deoxyerythronicacid

1.11d(18.26), 4.08d(78.67), 4.1m(71.54)

4-Deoxythreonicacid

1.236d(21.2), 3.85m(79.1), 4.06m(71.7), (176.8)

4-Hydroxyphenylacetate

3.450s(46.8), 6.850d(118.2), 7.16d(133.0)

Acetate 1.93s(26.1)

Acetoacetate 2.287(32.7), 3.343s(55.5)

Alanine 1.489d(19.1), 3.809q(53.3)

Allantoin 5.390m(65.9)

Ascorbicacid 3.770s(65.3), 4.520d(81.1), (178)

Betaine 3.270 (55.5), 3.890 (69.0)

Carnitine 2.450(45.7), 3.202(56.4), 3.430(73.0)

Choline 3.230(57.1), 3.520(70.1)

Cis-aconitate 3.130(46.2), 5.74(127)

Citrate 2.550d(47.7), 2.700d(47.7)

Creatine 3.040s(39.6), 3.940(56.4)

Creatinine 3.052s(32.7), 4.070s(59.0), (172) (191)
Dimethylamine 2.730s(37.3)

Dimethylglycine 2.933s(46.4)

Formate 8.500s(168.0)

Fumarate 6.528s

Glucose 5.210(94.7)

Glucuronicacid 3.520(74.5), 3.520(78.4), 5.250d(94.7), 3.560(74.0)
Glycine 3.580s(44.2)

Guanidoacetate 3.806(47.9)

Hippurate 3.970d(46.6), 7.550t(131.0), 7.640t(134.0), 7.830t(129.0)
Histidine 3.220(30.1), 3.282(30.1), 4.016(57.0), 7.167s(120.2), 8.060s(138.0)

(133)

Hypoxanthine

8.177s(144.0), 8.200s(148.0)

Lactate 1.337d(22.4), 4.127q(71.5), (185)

Lysine 1.449(24.1), 1.524(24.1), 1.740(29.5), 1.910(33.0), 3.030(42.3),
3.790(57.0)

Methylamine 2.617s(27.8)

Methylmalonate 3.158(44.3)

Myo-inositol 3.250(77.1), 3.300(76.9)

p-Cresol sulfate

2.3465(23.1), (133.0), (139.0)

Phenylacetylglutamine

2.27m (34.0) 3.676(45.5), 4.010 (57.3), 7.352t(131.7), 7.362t(130.0),
7.428t(131.6)

Proline betaine

3.110s(48.6), 3.310s(54.8), 2.29m(69),2.17m (79), 2.51m(28.1)

Propylene Glycol

1.150d(20.4), 3.470d(69.1), 3.550d, 3.900m(70.6)

Pyruvate

2.3825(29.3)

Scyllo-inositol

3.3665(76.6)




Succinate 2.363s(36.8)

Tartaric acid 4.3505(76.7)

Taurine 3.280(50.3), 3.440(38.4)

Threonine 1.337d(22.4), 4.273q(68.8), (182.4)

Trigonelline 8.835t(148.0), 9.121s(148.4)
Trimethylamine-N-Oxide 3.280(62.5)

Tyrosine 6.900(118.0), 7.190(133.7)

Valericacid 0.880m(15.9), 0.930m(15.9), 1.560(28.0), 2.200(40.0)
Valine 0.995d(19.5), 1.050d(20.9), 2.276(34.4), (63.3)

a-Hydroxyisobutyricacid

1.365s5(29.5), (76.5), (187.1)

a-Ketoglutarate

3.01(57.3)

® Multiplicities annotated asss, singlet; d, doublet; t, triplet; q; quartet; m, multiplet

b 13

C chemical shifts directly coupled to the *H in Heteronuclear Single Quantum Coherence spectra.

Table S.3 Metabolites Identified in Serum NMR Spectra

Metabolite 'H shifts® and multiplicities
3-Hydroxybutyrate 1.219d

Acetate 1.935s

Acetoacetate 2.300s

Acetone 2.248s

Alanine 1.499d

Asparagine 2.871d, 2.951d

Citrate 2.554d, 2.701d
Creatine 3.059s, 3.948s
Creatinine 3.062s, 4.072s
Formate 8.478s

Glucose 3.269t, 3.403-3.576m, 3.716-3.939m
Glutamine 2.152m, 2.475m, 3.772m
Glycerol 3.677m

Glycine 3.58s

Histidine 7.808s, 7.081s, 3.14m
Isoleucine 1.028d

Lactate 1.347d, 4.131q

Leucine 0.983d, 0.963d, 1.734m
Lysine 1.916m

Methanol 3.38s

Methionine 2.662t

N-Acetylated groups 2.059s

Phenylalanine 7.449t, 7.393t, 7.352d
Proline 2.37m, 3.354m
Propylene Glycol 1.139d

PtdCho 3.238b

Pyruvate 2.39s

Threonine 3.593d, 1.347d, 4.271q
Tyrosine 7.217d, 6.920d

Valine 1.06d, 1.009d, 3.63d

® Multiplicities annotated as s, singlet; d, doublet; t, triplet; q; quartet; m, multiplet; b, broad signal




Table S.4 Additional prediction model parameters for urine spectra

Patients Variable selection method No. variables No. latent variables in p
prediction model
s None 27084 1 <0.01
wo VIP 21 3747 1 <0.01
= CARS 54 1 <0.01
S None 27084 1 <0.01
5 f VIP>1 4653 1 0.01
- CARS 8 1 0.04
- None 27084 1 <0.01
o % VIP>1 3789 1 <0.01
g c CARS 45 4 <0.01

Abbreviations: CARS, Competitive adaptive reweighted sampling; GH, Gestational Hypertension; PE,
preeclampsia; VIP, Variable importance in projection.

Table S.5 Additional prediction model parameters for serum spectra

Patients Variable selection No. No. latent variables in prediction p
method variables model
G None 13420 4 >0.05
wo VIP>1 1081 7 >0.05
< CARS 105 3 0.05
S None 13420 1 >0.05
5 N VIP>1 1259 7 >0.05
< CARS 87 4 0.02
s None 13420 4 0.01
L_'? Tf VIP>1 1328 4 <0.00
a £ CARS 51 6 0.02

Abbreviations: CARS, Competitive adaptive reweighted sampling; GH, Gestational Hypertension; PE,

preeclampsia; VIP, Variable importance in projection.
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Abstract

Introduction: Preeclampsia is a heterogeneous gestational disease characterized by maternal
hypertension and proteinuria, affecting 2-7% of pregnancies. The disorder is initiated by
insufficient placental development, but studies characterizing the placental disease
components are lacking. Methods: Our aim was to phenotype the preeclamptic placenta using
High-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS
MRS). Placental samples collected after delivery from women with preeclampsia (n=19) and
normotensive controls (n=15) were analyzed for metabolic biomarkers including amino acids,
osmolytes, and components of energy and phospholipid metabolism. The metabolic
biomarkers were correlated to clinical characteristics and maternal serum inflammatory
biomarkers. Results: Principal component analysis showed inherent differences in placental
metabolic profiles between preeclamptic and normotensive pregnancies. Significant
differences in metabolic profiles were found between placentas from severe and non-severe
preeclampsia, but not between pregnancies with and without fetal growth restriction. The
placental metabolites correlated with the placental stress marker sFlt-1, suggesting a variation
in placental stress signaling between different placental phenotypes. Discussion: HR-MAS
MRS is a sensitive method for defining the placental disease component of preeclampsia,
identifying several altered metabolic pathways. Placental HR-MAS MRS analysis may
provide improved insights into which processes are disturbed in placental subtypes of
preeclampsia, and introduce a new long-required tool for more detailed and sensitive placental
phenotyping of this heterogeneous disease.

Keywords: metabolism; metabolomics; NMR; preeclampsia; placenta; profiling.

Abbreviations: BMI, body mass index; CS, cesarean section; FGR, fetal growth restriction;
GA, gestational age; GLM, general linear model; HDL, high-density lipoprotein, HR-MAS
MRS; high-resolution magic angle spinning magnetic resonance spectroscopy; hs-CRP, high
sensitivity C-reactive protein; MSEA; metabolite set enrichment analysis; PCA, principal
component analysis; PE; preeclampsia; PLS-DA, partial least squares discriminant analysis;
sFlt-1, soluble fms-like tyrosine kinase receptor 1

Highlights:

e The largest metabolic profiling of placentas to date reveals differentially expressed
metabolic pathways in preeclamptic and normotensive placenta

e The preeclampsia specific metabolite changes include taurine and nutrient depletion,
and enrichment of cell membrane breakdown products.

e HR-MAS MRS is a novel sensitive method for placental tissue profiling with limited
need for sample preparation

Word count: 2999 (excl footnotes)
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Introduction

Preeclampsia is a gestational disease that originates in the placenta and affects 2-7% of
pregnancies [1]. Preeclampsia may be an excessive maternal inflammatory response to
insufficient placentation or to pregnancy itself [2, 3]. The current hypothesis in regard to its
development states that the uterine spiral arteries develop insufficiently during placentation,
causing placental ischaemia and abnormal inflammation as the pregnancy develops [1, 4]. The
oxidatively stressed placenta releases increasing amounts of inflammatory and angiogenic
factors to the maternal circulation, eventually causing the clinical manifestations of
preeclampsia; endothelial dysfunction, intravascular inflammation and activation of the
hemostatic system evidenced by proteinuria and hypertension [1, 4].

Preeclampsia is a heterogeneous disease, but clinical markers in the placenta identifying
disease subgroups are scarce [5]. Common subtypes of preeclampsia are today defined by
severity of maternal features, time of diagnosis, and presence of fetal growth restriction
(FGR) [6, 7]. These subgroups are based on end stage maternal or fetal factors and placental
histology findings, and maternal serum markers overlap between groups [2]. Similar end stage
presentations of preeclampsia may stem from different pathologic placental processes [8].
Studying the altered metabolism in the preeclamptic placenta and how it is affected with
disease severity and when combined with FGR may give insight into which processes are
shared and specific for these disorders. Placental phenotyping by metabolic expression may
provide better insights into the initial cause of the disease and which processes are disturbed
during and after its development, and help identify potential targets for treatment in the future.

Metabolite expression is the final level of regulation over gene and protein expression, and
can be measured directly in tissue samples using high resolution magic angle spinning
magnetic resonance spectroscopy (HR-MAS MRS) [9]. HR-MAS MRS has been used
successfully in investigating molecular subtypes of breast cancer for improved treatment and
outcome stratification [10]. To our knowledge, HR-MAS MRS of intact placental tissue has
not previously been performed on normal or preeclamptic pregnancies. Additionally,
correlating known placental stress and inflammatory markers in maternal serum with the
placental phenotype may improve understanding of the “missing link” between the placental
and maternal manifestations of preeclampsia.

We hypothesize that placental metabolic profiling provides a sensitive method for detailed
identification of the placental component of preeclampsia. This may provide information
about underlying pathogenic processes reflecting the initial stages of the syndrome. We
further aim to investigate whether the placental metabolites correlate to maternal serum
measurements of placental stress and inflammatory markers.
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Materials & Methods

Study participants, serum samples and placental tissue biopsies

The study was approved by the Norwegian Regional Committee for Medical and Health
Research Ethics (REC 2012/1040) and informed consent was obtained from all participants.
Complete clinical characteristics of the pregnancies and placentas studied are available in the
Supplementary information, Tables S.1 and S.2 [11]. Women with singleton pregnancies
delivering by cesarean section (CS) were recruited at Haukeland University Hospital (Bergen,
Norway) from 2009 to 2013. Preeclampsia was defined as persistent hypertension
(systolic/diastolic blood pressure 140/90 mmHg) plus proteinuria (>0.3g/24h or >1+ by
dipstick developing after 20 weeks gestation [6]. Superimposed preeclampsia was defined as
pre-existing hypertension plus proteinuria developing after 20 weeks of gestation [6] and was
included in the preeclampsia group. Preeclampsia was subclassified as severe if diagnosed
with one or more of the severe features (Supplementary Table S.3), or else designated as non-
severe [7]. FGR was diagnosed by serial ultrasound measurements showing reduced
intrauterine growth. In absence of serial ultrasound measurements, neonates were defined
with FGR if their birth weights were <5t percentile for gestational age (GA) according to
Norwegian fetal weight reference curves [12].

Women with pregnancies complicated by preeclampsia were included as cases. Healthy
pregnant women with no previous history of pregnancies with preeclampsia or FGR were
included as normotensive controls. Women with gestational hypertension, HELLP syndrome,
or pregnancies with fetal chromosomal or congenital abnormalities were not included in the
study. The preeclamptic women underwent CS due to the main disease, while normotensive
women underwent CS for unrelated reasons (i.e. breech position, previous CS or maternal
request). Only pregnancies without labor activity were included. Information about the
pregnancy and a familial history of preeclampsia were collected from medical journals and
interviews.

Maternal venous blood was collected prior to CS, left to clot for <30 minutes, centrifuged at
1800G for 10 minutes, and serum aliquots (1mL) stored at -80°C until analysis. A tangential
section (100mg) from the maternal central side of the placenta was collected after delivery,
placed in a cryotube and frozen either in liquid nitrogen or directly at -80°C within 101 + 49
minutes (mean + SD) after delivery by CS.

Maternal serum analyses

Soluble fms-like tyrosine kinase receptor 1 (sFlt-1) was measured in duplicate using a
quantitative sandwich ELISA according to the manufacturer’s instructions (¥DVR100B, R&D
Systems, Abingdon, UK). High sensitivity C-reactive protein (hsCRP) (turbidimetric assay,
Modular P analyzer, Roche, Burgess Hill, UK), total cholesterol, high-density lipoprotein
(HDL), triglyceride and creatinine (enzymatic colorimetric assays, Modular P analyzer) were
measured by accredited methods at the Department of Clinical Chemistry, St. Olavs Hospital,
Trondheim, Norway.

HR-MAS MRS placental analyses

The placental biopsies were analyzed in random order, blinded to pregnancy outcome.
Samples were prepared on a metal plate bathed in liquid nitrogen in order to minimize the
effect of tissue degradation. Biopsies (7.5 = 1.4 mg) were cut to fit 30uL disposable inserts
(Bruker Biospin Corp, USA) filled with 3uL D,O containing 25mM formate for shimming.
Spin-echo spectra were acquired on a Bruker Avance DRX600 spectrometer with a 'H/"°C

4
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MAS probe with gradient (Bruker Biospin GmbH, Germany) using the following parameters:
5KHz spin rate, 5°C probe temperature, cpmgprld pulse sequence (Bruker Biospin) with
78ms total echo time, spectral width of 20 ppm and 256 scans. Two samples were additionally
analyzed by *C-"H spectroscopy (HSQC, HMBC) for aid in metabolite identification.

Data analysis

Spectra were Fourier transformed into 65.5k points following 0.3 Hz line broadening, and
automatically phased and baseline corrected. The left alanine peak was set to 1.478ppm
(Topspin 3.1, Bruker Biospin). The spectra were peak aligned using iCoshift [13], and
normalized to unit area to account for sample size differences. Metabolites were identified by
comparing chemical shift values to spectral databases [14] and correlation of metabolite peaks
using Statistical Total Correlation Spectroscopy [15]. Semi-quantitative metabolite levels
were measured by integrating the spectral regions of identified metabolites (Matlab r2013b,
The Mathworks Inc., Natick, MA, USA).

Multivariate analysis was performed in PLS Toolbox v. 7.3.1 (Eigenvector Research Inc.,
WA, USA), and with MetaboAnalyst [16]. Quantified metabolite levels were autoscaled
before multivariate modeling. The metabolic profiles were evaluated by principal component
analysis (PCA) for initial data exploration [17]. Partial least squares discriminant analysis
(PLS-DA) was used to discriminate metabolic features between subgroups of preeclampsia
(presence of severe maternal features or FGR), and between normotensive and preeclamptic
placentas. Results were evaluated by five-fold cross-validation which was repeated twenty
times. Classification accuracy, sensitivity, specificity and number of latent variables were
reported for cross-validated results. To evaluate the validity of the regression and
classification results, 1000 permutation tests were performed with models considered valid at
p<0.05 [18].

Univariate statistical analyses were performed in SPSS v. 20 (SPSS, Chicago, IL). Clinical
characteristics were compared between disease subgroups using the one-way ANOVA with
Tukey post-hoc test for groupwise normally distributed data (GA, birth weight) or the Kruskal
Wallis test with post-hoc pairwise Mann-Whitney U tests for nonparametric data (maternal
age, blood pressure, body mass index (BMI), placental weight, parity, metabolite levels,
serum measurements), or Fishers exact test for categorical variables. Metabolite levels were
compared using the Mann-Whitney U test. False discovery rate correction for multiple testing
(Benjamini-Hochberg) was applied [19]. To adjust for confounding effects of GA, linear
regression models with log-transformed metabolites as dependent variable and preeclampsia
and GA as independent variables were generated. Interaction terms between preeclampsia and
covariates were included in the models if significant, otherwise excluded. Standardized
residuals were assessed with the Kolmogorov Smirnov test. Quantitative metabolite set
enrichment analysis (MSEA) was performed for inferring the metabolic pathways associated
with disease [20].
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Results

Clinical characteristics

The clinical characteristics of the study participants are described in Table 1. A total of 34
pregnant women were included in the study (preeclampsia; n=19 and normotensive; n=15).
Birth weight and GA were lower in women with preeclampsia than normotensive
pregnancies, and preeclamptic women were more likely to be primiparous. Maternal serum
levels of creatinine, uric acid and sFIt-1 were significantly higher before CS in women with
preeclampsia compared to normotensive (Table 2).

HR-MAS analyses

In total 25 metabolites were identified in the HR-MAS NMR analysis of placental biopsies
(Table 2, Supplementary Table S.4). Median spectra from the normotensive and preeclamptic
placental biopsies are shown in Figure 1. The area under the metabolite peak corresponds to
the concentration in the tissue. Sample processing times were not significantly different
between the preeclamptic and normotensive groups.

Placental metabolic profiles in preeclampsia

PCA was performed for an overview of the metabolic profiles (Fig. 2). The score plots show
the between-samples variation and are colored by ellipses of 95% confidence intervals for
preeclampsia subgroups defined by presence or absence of preeclampsia (Fig. 2A), severe or
non-severe preeclampsia (Fig. 2B) or preeclampsia with or without FGR (Fig. 2C).
Subdivision by early- and late onset disease was not explored because only two of the
preeclampsia cases presented after 34 of weeks gestation. The women with superimposed
preeclampsia appeared in the overlapping region of the score plot between preeclampsia and
normal pregnancy (Fig. 2A). Following initial PCA, one sample (severe preeclampsia with
FGR) was excluded from further analysis due to high levels of lipids, which obscured the
baseline and interfered with the quantification of metabolites. One sample (non-severe
preeclampsia) was removed because it contained very low levels of all metabolites.

Normotensive pregnancies were clearly separated from preeclamptic pregnancies based on the
placental metabolic expression. The preeclamptic pregnancies showed a more heterogeneous
metabolic expression than the more unified group of normotensive pregnancies (Figure 2A).

The preeclampsia subgroups defined by severe preeclampsia or FGR largely overlapped in
metabolic expression (Fig. 2B and C). The severe preeclampsia placental profiles clustered
closer to the normotensive profiles than preeclampsia without severe features (Fig. 2B). In
contrast, placental metabolic profiles of preeclampsia with presence of FGR appeared more
separated from normotensive profiles than for preeclampsia without FGR (Fig. 2C), although
both had wide distributions. The loading plot (Fig. 2D) shows the metabolites contributing to
the sample distributions; increasing aspartate, phosphocholine and glycerophosphocholine and
decreasing glutamate, taurine, ascorbate and glutamine corresponded to a preeclamptic
phenotype.

PLS-DA defined metabolic profiles for preeclampsia and its subgroups (Table 3). A
significant difference in metabolic profile was found between preeclamptic and normotensive
placenta, and for subgroups between placenta from severe and non-severe preeclampsia.
There was no significant difference in the metabolic profile between preeclampsia with or
without FGR. PLS regression revealed correlations between the placental metabolic profiles
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and maternal serum markers of disease; triglycerides, sFlt-1, uric acid, and creatinine (Table
4). Serum sFlt-1 showed the highest correlation to placental metabolites (R*=0.49, p<0.001).
Of special interest, maternal serum sFIt-1 was clearly correlated with increased placental
glycerophosphocholine levels.

Placentas from preeclamptic pregnancies showed enrichment of phospholipid biosynthesis
and depletions in bile acid biosynthesis, taurine metabolism, ammonia and urea cycles and
protein biosynthesis, compared to placentas from normotensive pregnancies (Supplementary
Table S.5).

Metabolites were evaluated by univariate analysis to confirm the multivariate analyses (Table
2). Twelve out of 25 metabolites were significantly different between the placentas from
preeclamptic and normotensive pregnancies after correction for multiple testing. Placental
levels of choline and lysine were increased in severe preeclampsia (Supplementary Table
S.6).

Assessment of gestational age

Following linear regression modeling of the metabolites differing between preeclamptic and
normotensive placentas, GA was found to significantly affect only the levels of ethanolamine
and glycine (increasing with GA). Glutamine, glutamate, taurine, valine, 3-hydroxybutyrate
and ascorbate remained significantly different between preeclamptic and normotensive groups
after correction for GA (Supplementary information, Table S.7).
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Discussion

We have analyzed the metabolic profile of placental tissue from preeclamptic and
normotensive pregnancies using HR-MAS MRS. The placentas showed a highly significant
altered metabolic state in preeclampsia. Preeclampsia is a heterogeneous disease, clearly
reflected by the scattering of the metabolic profiles compared to normotensive pregnancies
(Figure 2). Our study demonstrated metabolic differences between severe and non-severe
preeclampsia, and showed that the presence of FGR was not reflected in the placental
metabolites. The metabolic placenta profile also correlated with maternal serum markers for
angiogenic imbalance, kidney function and lipid levels. Finally, we have analyzed the effect
of GA, a common confounder in placental studies comparing preeclamptic and normotensive
pregnancies. This is the largest metabolic profiling of placental tissue from preeclamptic
pregnancies published to date, and the first using HR-MAS MRS technology, with a potential
to reveal the placental component of preeclampsia.

Our study confirms and expands upon previous iz vitro studies on placental explants and cell
culture [21-23]. Metabolic profiling of whole placental tissue by HR-MAS MRS is a
nondestructive analysis of the placental component of preeclampsia, which allows further
proteomic or genomic analysis of the same sample. Studies in cancer have found metabolic
profiles to correlate to prognostic factors and survival [24]. We have shown placental
metabolites correlating with the disease severity and with maternal serum factors reflecting
the placental disease. The heterogeneous nature of the metabolic distribution in preeclamptic
pregnancies indicates that this holistic approach may provide a sensitive phenotyping of the
placental component of preeclampsia. This provides a novel tool for understanding the
underlying mechanisms, and thereby subgrouping the disease based on placental involvement,
not only end stage maternal and fetal features. The findings warrant further investigation in a
larger cohort.

Knowledge of the metabolic pathways affected in the placenta may give clues to molecular
targets for screening and treatment and have implications towards future management of
preeclampsia. Placental sampling must be done after delivery, but importantly, increased
understanding of underlying placental disease components will enable a more targeted search
for disease markers that more accurately reflect the diversity of the placental disease.
Identification of a placental phenotype correlating to maternal serum markers as shown here is
an important step in this direction, as a direct serum marker of specific placental metabolic
alterations may enable tailored treatment of the particular preeclampsia phenotypes.

Several metabolic pathways were shown affected in preeclampsia; most notably the taurine,
glutamate and phospholipid metabolism. Taurine is an essential nutrient in fetal metabolism,
as the fetus and placenta lack the enzyme for taurine synthesis [25]. Reduced activity of a
placental taurine transporter has been found in preeclampsia and FGR [26, 27]. Reduced
taurine in the placenta may impair syncytiotrophoblast cell renewal, reducing cell turnover,
and further lead to decreased nutrient transfer to the fetus and increased release of necrotic
material to the maternal circulation [27]. In our study, taurine levels were similar in placentas
from preeclampsia with or without FGR, suggesting that taurine depletion is not specific for
FGR and remains important also for preeclampsia without fetal growth impairment.

Glutamine and glutamate are crucial to the fetal carbon and nitrogen metabolism as precursors
to protein, purine and pyrimidine synthesis [28]. Glutamate is also a precursor to glutathione,
an important antioxidant, and has been shown to be lower in medium of placental explants
from hypoxic normal tissue and preeclamptic tissue [21]. Consistent with this finding,
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placental ascorbate was found to be significantly lower in placentas from preeclamptic
women. Intracellular ascorbate protects endothelial cells from hypoxia-reoxygenation induced
apoptosis [29].

Choline, phosphocholine, glycerophosphocholine and ethanolamine play important roles in
the phospholipid biosynthesis pathway. Two possible reasons for increased
glycerophosphocholine in preeclampsia are suggested. First, the increase may be due to
excessive cell death in preeclamptic placentas [30, 31]. Placental lipid signaling may be
disrupted by antiphospholipid antibodies in preeclampsia, causing aberrant cell death in the
syncytiotrophoblast and release of necrotic debris [32]. This conforms to our findings of
increased glycerophosphocholine especially in those pregnancies with increased maternal
serum sFlt-1. Phosphatidylcholine catabolism releases glycerophosphocholine and
arachidonic acid by the phospholipase PLA,, possibly playing a role in increased
inflammation, a central process in the preeclamptic placenta. PLA, activity is increased in
preeclamptic placental tissue [33]. Second, the increase may stem from placental cell
membrane catabolism for regeneration of choline methyl groups due to folate deficiency [34].
Choline levels were here similar in preeclamptic and normotensive placentas, indicating a
compensatory mechanism. Another component of phospholipid biosynthesis, ethanolamine,
was decreased in the preeclamptic placenta. Choline and ethanolamine are competitively
transferred into the placenta by a common transporter [35]. Increased maternal serum choline
levels might inhibit placental uptake of ethanolamine [35, 36]. Ethanolamine kinase deficient
mice have low birth weight offspring and increased placental thrombosis and apoptosis,
indicating an important role of ethanolamine in placental and fetal development [37].

Limitations of our study include the variation in GA between preeclamptic and normotensive
pregnancies. Differences were accounted for using linear regression, but variation due to GA
cannot easily be overcome in placenta research due to the nature of the preeclampsia
diagnosis. Additionally, only one sample per placenta was analyzed, thus, intra-individual
variability was not assessed. Strengths of our study are the whole tissue profiling without need
for extraction and derivatization, and the sensitivity as reflected by metabolite correlation to
the placental derived stress factor sFlt-1 in maternal serum. All deliveries were by CS
precluding any labor-induced variation. Sensitive placental profiling as shown here is missing
from preeclampsia research.

Metabolomics represents the closest measure to the phenotype, which is reflected in the
highly significant results. Differences in GA have been assessed and appear secondary to
disease-induced metabolic changes. In this study we investigated aberrant pathways affected
by preeclampsia, and connected the changes to maternal disease severity and serum markers.
An interesting direction of further research will be to metabolically classify the placental
component of preeclampsia in larger cohorts, and identify unique factors that may benefit
from separate treatment options. We present the HR-MAS MRS method as an excellent tool
for placental and pregnancy research possibly leading to future improved screening,
prediction and follow-up of pregnant women at risk for preeclampsia.
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Tables

Table 1

Clinical maternal, fetal and pregnancy characteristics of the study participants (n=34).

Variable Total PE PE+FGR PE severe Normotensive
(n=19) (n=11) (n=14) (n=15)

Maternal age in years, md 28 (9) 25 (6)%* F** 28 (10) 34 (5)

(IQR)

Gravidity, md (IQR) 1(2) 1(2) 1(2) 2(1)

Primipara, n (%) 9 (47.4)* 6 (54.5)* 7 (50.0) 2(13.3)

Systolic BP in mmHg, md 160 (29)** 160 (30)** 170 (20) 124 (20)

(IQR)*

Diastolic BP in mmHg, 100 (15)** 104 (11)** 105 (36)** 75 (11)

md (IQR)*

BMI in kg/m*, md (IQR)” 24.2 (13.0) 242 (13.4) 23.8 (11.1) 23.6 (4.5)

CVD diagnosis®, n (%) 3(15.8) 1(9.1) 3(21.4) 0(0)

GA at delivery in weeks,  31.8 (3.5)** 30.8 (2.26)** 31.7 (3.4)** 39.2 (0.41)

mn (SD)

Birth weight in g, mn 1707 (1074)** 1212 (342)** 1621 (785)** 3501 (309)

(SD)

Placental weight in g, md 300 (290)** 275 (125)** 295 (277)** 620 (150)

(IQR)

FGR, n (%)° 11 (57.9)** 11 (100) 8(57.1) 0(0)

Severe PE, n (%) 14 (73.7) 8 (72.7) 14 (100) 0(0)

Superimposed PE, n (%) 2 (10.5) 1(9.1) 2 (14.3) 0

Early onset PE (<34 17 (89.5%) 11 (100) 13 (92.9) 0 (0%)

weeks) n (%)

Gestational diabetes, n 2 (10.5) 0(0) 2(14.2) 0(0)

(%)

P values are from a one-way ANOVA with Tukey post-hoc test or the Kruskal Wallis test
with post-hoc pairwise Mann-Whitney U tests. Categorical values were compared using
Fishers exact test.

*Blood pressure measured at the last regular prenatal visit, 0-2 weeks before cesarean section.
® Maternal weight for BMI calculation was measured at the first prenatal care visit, before
week 12 of pregnancy. Weight information was missing for one woman with severe PE and
FGR, and one normotensive woman.

¢ Pregestational CVD diagnoses included: pregestational hypertension, cardiomyopathies,
congenital cardiac defects.

4 Birth weight <5t percentile according to fetal weight reference curves [12] was used as a
proxy for one of the FGR diagnoses.

* p<0.05 compared to normotensive.

** p<0.001 compared to normotensive.

*** p<0.05 compared to preeclampsia.

Abbreviations: BMI; body mass index; BP; blood pressure; CVD, cardiovascular disease;
GA,; gestational age; FGR, fetal growth restriction; IQR; interquartile range; NA, not
applicable; md; median; mn, mean; n, number; PE, preeclampsia; SD, standard deviation
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464  Table 2

465  Metabolite levels in placentas from preeclamptic and normotensive pregnancies, and maternal
466  serum measurements.

Metabolite, median (IQR) PE (n=19) Normotensive P-value P (adj)’
(n=15)
Phospholipid biosynthesis
Ethanolamine 6.6 (1.3) 9.80(3.1) <0.001 0.005*
Choline 75.5(11.1) 74.7 (20.3) 0.864 0.891
Glycerophosphocholine 22.5(12.1) 13.2 (14.8) 0.007 0.018*
Phosphocholine 11.3(5.6) 9.0 (4.5) 0.056 0.097
Dihydroxyacetone 1.04 (1.25) 2.3(1.9) 0.003  0.010*
Glycerol 25.9 (9.7) 25.9 (4.0) 0.945 0.945
Myoinositol 16.8 (3.8) 16.5 (3.6) 0.811 0.863
Ammonia recycling, Urea cycle, Bile acid biosynthesis
Glutamine 5.4(2.3) 7.6 (2.4) 0.004 0.013%*
Aspartate 8.3(4.4) 6.1(2.4) 0.047 0.097
Glutamate 16.4 (4.0) 21.7(1.3 <0.001  0.005%*
Acetate 2.8(1.1) 3.0 (0.8) 0.372 0.512
Glycine 8.5(2.5) 11.1 (2.0) 0.001  0.005*
Alanine 9.1 (3.4) 9.4 (3.0) 0.179 0.281
Taurine 20.9 (7.5) 29.5(4.6) <0.001  0.005*
Protein biosynthesis
Leucine 11.23 (3.65) 11.77 (1.9) 0.286 0.410
Isoleucine 1.8 (0.4) 2.0 (0.3) 0.056 0.097
Valine 3.2(0.8) 3.6(0.9) 0.006 0.017*
Threonine 3.6 (1.1) 4.3 (0.7) 0.021  0.046*
Lysine 8.3 (3.5 10.0 (0.9) 0.006  0.017*
Glycolysis, ketone body metabolism
Lactate 42.2 (10.7) 41.9(7.2) 0.391 0.515
Glucose 2.5(2.0) 33@3.1) 0.111 0.183
Succinate 3.0(1.3) 3.7(1.3) 0.056 0.097
3-Hydroxybutyrate 2.7(0.9) 4.4 (3.0 0.019  0.045*
Catecholamine biosynthesis
Ascorbate 2.2 (0.6) 2.9(0.4) 0.001  0.005*
Glycine and serine metabolism
Creatine 5519 6.0 (1.9) 0.256 0.384
Serum markers, median (IQR)"
Cholesterol [mM] 6.8 (1.9) 6.1 (2.2) 0.580 0.660
Creatinine [uM] 66.0 (20.0) 58.0(9.0) 0.001  0.005*
Uric acid [uM] 399 (157) 279 (105) 0.002  0.008*
HDL [mM] 1.6 (0.4) 1.7 (0.5) 0.656 0.722
Triglycerides [mM] 3.7(24) 2.7 (1.1) 0.421 0.515
Calcium [mM] 2.3(0.3) 2.4(0.2) 0.421 0.515
hsCRP [pug mL™] 4.8 (15.6) 3.3(5.4) 0.486 0.573
sFlt-1 [ng mL™] 960 (1350) 239 (162) <0.001  0.005*

467  Metabolite levels are in arbitrary units relative to total spectral intensity. Metabolites and
468  serum values were compared between preeclamptic and normotensive groups using the Mann-

14



469
470
471
472
473
474
475

476
477

478
479

480
481
482
483
484
485
486

487
488

489
490

Whitney U test. Metabolites grouped by metabolic pathways described in the small molecule
pathway database [38]. The metabolites may be involved in several pathways. Abbreviations:
HDL, high density lipoprotein; hsCRP, high sensitivity C-reactive protein; IQR, interquartile
range; sFIt-1, soluble Fms-like tyrosine kinase receptor 1; PE, preeclampsia.
* Corrected for multiple comparisons using the Benjamini-Hochberg false discovery rate.

One placenta-serum pair was excluded due to missing blood sample.
*Significantly different between preeclamptic and normotensive pregnancies.

Table 3

Results from partial least squares discriminant analysis. Placental metabolic profiles were
compared between groups and the discriminatory ability assessed with 5-fold cross validation

PLS-DA Model LVs Sens. Spec. Accuracy P-value® Metabolites

(Rel to 1*" mentioned)
Total PE (n=19) 1 0.870 0.987 0.928 <0.001 Increase: GPC, PCho, Asp
VS. normotensive Decrease: EtAm, Tau, Glu,
(n=15) Asc, Gly
Severe PE (n=14) 1 0.780 0.893 0.837 0.003 Increase: Cho, Lys, Ala,
vs. non-severe PE Glucose, Myo, Tau, Asp, Gln
(n=5) Decrease: 3-HB
PE (n=8) vs. 1 0.619 0.736 0.678 0.163 Not significant

PE+FGR (n=11)

“p value from 1000 permutation tests.

Abbreviations: 3-HB, 3-hydroxybutyrate; Ala, alanine; Asc, ascorbate; Asp, aspartate; Cho,
choline; EtAm, ethanolamine; FGR, fetal growth restriction; Gln, glutamine; Glu, glutamate;
GPC, glycerophosphocholine; Gly, glycine; Lys, lysine; LVs, latent variables; Myo, myo-
inositol; Tau, taurine; PCho, phosphocholine; PE, preeclampsia; PLS-DA, partial least
squares discriminant analysis; rel, relative; sens, sensitivity; sFlt-1, soluble fis-like tyrosine
kinase receptor 1; spec, specificity; Suc, succinate; Val, valine.

Table 4

Results from partial least squares regression for correlation between metabolic placenta
profiles and maternal serum measurements.

PLS regression LVs R*? Y P-value® Metabolites

Metabolites vs Y * explained

Serum sFlt-1 1 0.490 0.614 <0.001 Increase: GPC
Decrease: Glu, Tau, Gln, Val,
EtAm, Suc

Serum creatinine 1 0.069 0.343 0.032 Increase: GPC, Asp, PCho, Cre
Decrease: Gly, EtAm

Serum uric acid 1 0.122 0.348 0.009 Increase: Asp, GPC
Decrease: Glu, Tau, Gln, Val,
EtAm, Suc

Serum 2 0174 0.166 <0.001 Increase: Cho, Gln, Gly
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triglycerides Decrease: 3-HB, Cre

491  The maternal serum values are for 33 placenta/serum pairs (34 placentas - 1 excluded from
492  serum measurements due to missing blood sample).

493 Y denotes the dependent variable, e.g, the serum measurement

494 "R?values give the correlation of the cross-validated predicted Y values to the real Y values.
495  °p value from 1000 permutation tests.

496  Abbreviations: 3-HB, 3-hydroxybutyrate; Asp, aspartate; Cho, choline; Cre, creatine EtAm
497  ethanolamine; Gln, glutamine; Glu, glutamate; GPC, glycerophosphocholine; Gly, glycine;
498  LVs, latent variables; Tau, taurine; PCho, phosphocholine; PLS; partial least squares

499  regression; sFlt-1, soluble Fms-like tyrosine kinase receptor 1; Suc, succinate; Val, valine.

]

500

501  Figures
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504 Fig. 1. High resolution magic angle spinning magnetic resonance spectroscopy of placental biopsies from normotensive
505 pregnancies (n=15, green) and preeclampsia (n=19, blue). Median spectra from the two groups are shown. Twenty-five
506 metabolites were identified in the spectrum. Metabolites by number: 1, valine; 2, 3-hydroxybutyric acid; 3, lactate; 4, alanine;
507 5, lysine; 6, acetate; 7, glutamate; 8, succinate; 9, glutamine; 10, aspartate; 11, creatine; 12, ethanolamine; 13, choline; 14,
508 glycerophosphocholine; 15, phosphocholine; 16, taurine; 17, glycine; 18, glycerol; 19, dihydroxyacetone; 20, ascorbate; 21,
509 glucose.
510
511
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Fig. 2. Results from the unsupervised Principal Component Analysis of 34 placental metabolic profiles. Score plots show a
map of samples in the principal component space; similar samples appear close together. Loading plots show the metabolite
contribution to the variation in the score plots; e.g. samples with high score values for PC1 (to the right in the score plots)
have increased levels of metabolites to the right in the loading plot. (A) Score plot of placental samples colored by disease
group, preeclampsia or normotensive. (B) Score plot of placental samples colored by subgrouping preeclampsia by severity.
(C) Score plot of placental samples colored by subgrouping preeclampsia by the presence or absence of fetal growth
restriction. (D) Loading plot of metabolite contributions in the principal component analysis. Increasing aspartate,
phosphocholine and glycerophosphocholine and decreasing glutamate, taurine, ascorbate and glutamine correspond to the
preeclamptic phenotypes.

Abbreviations: FGR, fetal growth restriction; PC, principal component; PE, preeclampsia; Sev, severe.w/o, without
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Table S.1

1
Parameter Clinical Characteristics of Pregnancies for Placentas Studied
(Normotensive)
Gravidity Median =2 25-75% =1 Range=3
Parity Median =1 25-75% =1 Range =3
Gestational age Average = 39.2 SD=0.4
(weeks)
Maternal age Average = 33.1 SD=3.5 Range =12
(years)
Race Black =0 White = 15 Other=0 Unknown =0
Ethnicity Scandinavian: 15
Prenatal Iron Other (list): None Unknown, n =15
medications
Drugs Cigarettes Alcohol Other (list): Unknown, n =15
Previous prenatal Yes No Diagnoses Unknown, n =15
admission(s)
Blood pressures Yes, n =15 No,n=0 Unknown
<140/90 mm Hg
Screened for Yes,n=0 No,n=0 Unknown
diabetes n=15
Antibiotics in labor None, n =15 Penicillin,n=0 Other: (list)yn=0 Unknown,n=0
Beta strep status Positive Negative Unknown n =15
Antenatal steroids: Yes,n =0 No, n =15 If yes, week GA Unknown, n=0
Magnesium sulfate Yes,n=0 No,n=15 Unknown, n=0
Anesthesia Epidural = 15 Narcotics General Unknown, n=0
Cervical ripening prostaglandin E; prostaglandin E, Mechanical No,n=15
agent
Labor No, n =15 If yes, hours:
Delivery mode C-section, C-section, C-section, C-section,
(N= # patients) Repeat, Repeat, primary, primary,
no labor: n = with labor: n= no labor: n=2 with labor: n =

(Unknown, no

labor: n=13)*
Maternal Oxygen Yes,n=0 No, n=15 Unknown =0
given at delivery?
Birth weight Average = 3501 SD =309
(grams)
Placental weight Average = 665 SD =98 Unknown =0
(grams)
Baby’s sex Female =8 Male =7 Unknown =0
Delivery to Average =93 SD =56 Unknown =2

processing (mins)

* 13 individuals had given birth previously, unspecified if vaginally or by C-section. In this
study they had a C-section without labor



Table S.2

1
Parameter Clinical Characteristics of Pregnancies for Placentas Studied
(Preeclamptic)
Gravidity Median =1 25-75% =2 Range =4
Parity Median =1 25-75% =1 Range =2
Gestational age Average = 31.8 SD=3.5
(weeks)
Maternal age Average = 29.8 SD=6.3 Range =24
(years)
Race Black =0 White = 19 Other=0
Ethnicity Scandinavian, n =19
Prenatal Iron Other (list): None Unknown, n =19
medications
Drugs Cigarettesn = Alcohol n = Other (list): n= Unknown, n=19
Previous prenatal Yes, No, Diagnoses if yes:  Unknown,
admission(s) n = n= n=19
Blood pressures Yes, No, Unknown
<140/90 mm Hg n=0 n=19
Screened for Yes, n=2 No Unknown, n =
diabetes 17
Antibiotics in labor Nonen =19 Penicillin, n = Other: (list) n = Unknown, n=0
Beta strep status Positive Negative Unknown =19
Antenatal steroids: Yes,n=0 No, n=19 If yes, week GA Unknown,n=0
Magnesium sulfate Yes,n=0 No,n=19 Unknown, n=0
Anesthesia Epidural Narcotics General Other/none
Cervical ripening prostaglandin E; prostaglandin E, Mechanical No,n=19
agent
Labor No,n=19 If yes, hours:
Delivery mode C-section, C-section, C-section, C-section, primary,
(N= # patients) Repeat, Repeat, primary, with labor: n =0
no labor: n= with labor: n=0 no labor:n=9

(Unknown, no

labor n = 10)*
Maternal Oxygen Yes,n=0 No, n=19 Unknown,n=0
given at delivery?
Birth weight Average = 1707 SD =1074
(grams)
Placental weight Average = 365 SD =209 Unknown
(grams)
Baby’s sex Female = 10 Male =9 Unknown
Delivery to Average = 106 SD=43 Unknown =1

processing (mins)

*10 individuals had given birth previously, unspecified if vaginally or by C-section. In this
study they had a C-section without labor



Supplementary information

(See Supplementary tables 1 and 2 in separate documents).

Table S.3

Criteria for diagnosis of severe preeclampsia as detailed in Sibai et al [1]; one or more of the

following severe maternal features of preeclampsia.

Symptom

Details

Persistent severe hypertension
Severe proteinuria

Pulmonary symptoms
Seizures/eclampsia

Oliguria

Thrombocytopenia

Abnormal liver enzymes

Hemolysis

Microangiopathic hemolytic anemia
Epigastric or right upper quadrant pain
Central nervous system symptoms

HELLP syndrome

>160/110 mmHg
>3g protein excretion into urine/day
Pulmonary edema, dyspnea, cyanosis

<500mL urine/day

Platelet count <100 000 per uL

Increased serum aspartate aminotransferase, alanine
aminotransferase, lactate dehydrogenase

Low serum haptoglobin (<0.2g/L)

Altered mental status, headaches, blurred vision,
blindness
Hemolysis, elevated liver enzymes, low platelets




Table S.4

Identified metabolites in 'H and 'H-">C nuclear magnetic resonance (NMR) spectra of placental
biopsies (n=34).

Metabolite name NMR shifts, 'H (13C)

3-Hydroxybutyrate 1.197d

Acetate 1.927s (26.9)

Alanine 1.478d (19.0), 3.779q (53.4)

Ascorbic acid 4.515s

Aspartic acid 2.818dd (39.5)

Choline 3.207s (56.7), 3.527t (70.4), 4.051b (58.5)

Creatine 3.029s (41.8), 3.937s

Dihydroxyacetone 4.417s

Ethanolamine 3.135t/dd(44.3), 3.82d (61.1)

Glucose 3.269t (77.14), 3.394m (72.4), 3.468m (78.8), 3.521m (74.3),
3.898m (63.5), 4.652d (97.8)

Glutamic acid 2.055m (27.4), 2.338m (36.4), 3.759t (57.0)

Glutamine 2.138m (27.4), 2.444m (35.9)

Glycerol 3.650dd (65.4), 3.780m (74.9)

Glycerophosphocholine 3.234s (56.7), 4.33m (62.0)

Glycine 3.650s (53.6)

Isoleucine 0.955t, 1.003d

Lactic acid 1.318d (23.0), 4.123q (71.3)

Leucine 0.967d

Lysine 1.718quin 1.902m, 3.021t (42.2)

Myoinositol 3.27t(77.1), 3.556dd (74.2), 3.620t (75.1)

Phosphocholine 3.2225 (56.7)

Succinic acid 2.410s (36.8)

Taurine 3.263t(50.9), 3.423t (38.2)

Threonine 1.318d (23.0), 3.586d (65), 4.255m (69.4)

Valine 0.988d, 1.042d (20.42)

Multiplicity of peaks are given as follows: s, singlet; d, doublet; t, triplet; q, quartet, quin,
quintet; dd, doublet of doublet; m, multiplet.



Table S.5

Metabolite Set Enrichment Analysis of quantitative metabolite data from placenta from women
with preeclampsia (n=19) and normotensive pregnancies (n=15).

Total Hits® Q Statistic® Expected Q° Raw p° FDR'

Pathway a
Cmpd

Bile acid biosynthesis 49 39.30 3.03  1.90x 107 6.07E-06
Taurine and hypotaurine 7 51.60 3.03 1.72x10° 2.76x10°
metabolism
Phospholipid 19 2 29.17 3.03 6.07x10° 6.47x10°
biosynthesis
Ammonia recycling 18 3 21.32 3.03 2.82x10° 2.25x10°
Protein biosynthesies 19 6 15.75 3.03 1.44x10* 9.24x10*
Urea cycle 20 2 18.48 3.03 9.32x10" 0.005
Glutathione metabolism 10 1 26.99 3.03 0.002 0.007
Porphyrin metabolism 22 1 26.99 3.03 0.002 0.007
Pyrimidine metabolism 36 1 25.47 3.03 0.002 0.007
Purine metabolism 45 1 25.471 3.03 0.002 0.007
Glycine, serine and 26 3 13.69 3.03 0.003 0.007
threonine metabolism
Propanoate metabolism 18 1 24.97 3.03 0.003 0.007
Glutamate metabolism 18 2 17.69 3.03 0.009 0.022
Methionine metabolism 24 2 13.50 3.03 0.010 0.024
Valine, leucine and 36 2 14.90 3.03 0.016 0.033
isoleucine degradation
Lysine degradation 13 1 13.93 3.03 0.030 0.056
Biotin metabolism 4 1 13.93 3.03 0.030 0.056
Beta-alanine metabolism 13 1 11.49 3.03 0.050 0.080
Aspartate metabolism 12 1 11.49 3.03 0.050 0.080
Malate-aspartate shuttle 8 1 11.49 3.03 0.050 0.080
Citric acid cycle 23 1 9.90 3.03 0.070 0.102
Mitochondrial electron 15 1 9.90 3.03 0.070 0.102

transport chain

Metabolite set enrichment analysis results (Performed on Metaboanalyst online,

www.metaboanalyst.ca [2]).

* Total number of compounds (metabolites) in the pathway
® Number of measured metabolites found in pathway
¢ Q-statistic describing the correlation between compound concentration profiles and phenotype

labels

¢ Expected Q statistic given no correlation between compounds and phenotype labels
¢ P value for the probability of obtaining the Q statistic
TP values corrected for multiple correction using false discovery rates



Table S.6

Placental metabolite levels in severe vs non-severe preeclampsia.

Metabolite, median Non-severe Severe PE  P-value P
(IQR) PE (n=5) (n=14) (FDR)"
Phospholipid biosynthesis

Ethanolamine 6.6 (3.8) 6.7(1.2) 0.964 1.000
Choline 67.7 (18.2) 78.1(7.4) 0.003 0.038*
Glycerophosphocholine 21.3(20.8)  23.1(16.02) 1.000 1.000
Phosphocholine 8.0 (8.3) 11.4 (4.2) 0.931 1.000
Dihydroxyacetone 1.0 (0.7) 1.1(1.4) 0.559 0.736
Glycerol 20.9 (16.9) 25.9 (7.1) 0.500 0.694
Myoinositol 13.3 (6.4) 17.0 (2.0) 0.107 0.243
Ammonia recycling, urea cycle, bile acid biosynthesis

Glutamine 4.8 (2.0) 5.6 (2.5) 0.070 0.242
Aspartate 6.8 (12.7) 8.3 (4.6) 0.687 0.818
Glutamate 13.8 (4.3) 17.0 (3.4) 0.044 0.242
Acetate 2.6 (1.7) 2.8(1.0) 0.444 0.653
Glycine 7.3 (2.5) 8.8(2.1) 0.219 0.391
Alanine 6.3(3.4) 9.7 (2.0) 0.056 0.242
Taurine 18.0 (7.3) 21.9(6.1) 0.130 0.271
Protein biosynthesis

Leucine 9.0 (2.5) 11.6 (3.1) 0.087 0.242
Isoleucine 1.6 (0.4) 1.8 (0.5) 0.257 0.402
Valine 3.0(0.3) 3.5(0.7) 0.107 0.243
Threonine 2.9(1.0) 3.8(0.7) 0.070 0.242
Lysine 5.9(1.5) 9.1(3.8) 0.003 0.038*
Glycolysis, ketone body metabolism

Succinate 2.7(1.9) 3.1(1.2) 0.257 0.402
Lactate 42.2(7.7) 41.3(11.1) 0.823 0.935
Glucose 1.6 (1.0) 2.8(1.6) 0.034 0.242
3-Hydroxybutyrate 3.2(2.0) 2.7(0.8) 0.186 0.358
Catecholamine biosynthesis

Ascorbate 1.9 (0.9) 2.3(0.6) 0.087 0.242
Glycine and serine metabolism

Creatine 5.7(5.1) 53(2.2) 0.687 0.818

Metabolites were compared between groups using the Mann-Whitney U test. Metabolites
grouped by metabolic pathways described in the small molecule pathway database [3]. The
metabolites may be involved in several pathways. Metabolite levels are in arbitrary units relative
to total spectral intensity.

Abbreviations: FDR, false discovery rate; IQR, interquartile range; PE, preeclampsia.

* Corrected for multiple comparisons using the Benjamini-Hochberg false discovery rate.

* Significantly different between severe and non-severe preeclampsia after correction for
multiple testing.



Table S.7

Comparison between metabolite levels in placentas from women with preeclamptic and
normotensive pregnancies, with adjustments for gestational age.

Metabolite P P

(PE vs Normotensive) (adjusted for GA)
Ethanolamine 0.005%* 0.075
Glycerophosphocholine 0.018* 0.344
Dihydroxyacetone 0.011%* 0.142
Glutamine 0.013* 0.029*
Glutamate 0.005* <0.001*
Glycine 0.005* 0.070
Taurine 0.005%* 0.031*
Valine 0.017* 0.019*
Lysine 0.017* 0.398
Threonine 0.046%* 0.054
3-HB 0.045% 0.023*
Ascorbate 0.005* 0.045*

For preeclamptic vs normotensive groups, the Mann-Whitney U test (adjusted for multiple
comparisons) is given. For the gestational age adjusted p values, linear regression models were
made with log transformed metabolite levels as dependent variable and gestational age as
independent variable. The metabolite is then evaluated at the average values GA=245 days.
Abbreviations: 3HB, three-hydroxybutyrate; GA, gestational age; PE, preeclampsia.

* Significantly different between normotensive and preeclamptic placentas after correction for
difference in gestational age.
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