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SUMMARY 

In the present thesis, the influence of grading on the reliability of timber structures is 
analyzed. The thesis develops necessary expressions and explains methods for performing this 
type of analysis, and presents an analysis of a set of given data. 

The analysis of the given data shows that changing grading machine settings can reduce the 
probability of failure of a structure in where the graded timber is to be used by up to 
approximately 25 % at lower grades, and up to approximately 15 % at higher grades. In 
addition, it shows that the influence of the accuracy of the grading machine has a significantly 
larger impact than that of the machine settings. Comparing a grading machine with a 
relatively high degree of accuracy to a machine with a relatively low degree of accuracy 
shows that the use of the grading machine with the lower accuracy gives a probability of 
failure that is up to 750 % higher than that of the more accurate one. 
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SAMMENDRAG 

I denne masteroppgaven analyseres det hvordan gradering av tømmer påvirker sikkerheten og 
påliteligheten av konstruksjoner hvor det graderte tømmeret vil bli brukt. Oppgaven utleder 
nødvendige uttrykk og forklarer metoder for å gjennomføre en slik analyse, og presenterer en 
analyse av et gitt sett med data. 

Analysen av det gitte datasettet viser at endringer av innstillingene for en graderingsmaskin 
kan redusere sannsynligheten for svikt i en konstruksjon hvor det graderte tømmeret er brukt 
med opptil cirka 25 % for lavere tømmerklasser, og opptil cirka 15 % for høyere klasser. I 
tillegg vises det at påvirkningen av en maskins nøyaktighet er vesentlig høyere enn effekten 
fra maskininnstillingene. Ved å sammenligne en graderingsmaskin med en relativt høy 
nøyaktighet med en maskin med relativt lav nøyaktighet, vises det at bruk av maskinen med 
den lavere nøyaktigheten gir en sannsynlighet for svikt som er opp til 750 % høyere enn for 
den mer nøyaktige maskinen. 
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1 INTRODUCTION 

The topic of this thesis is as follows: 

 

Unlike structural materials like concrete or steel, timber is not produced from a "recipe" –
timber specimens are gathered from nature, and these have grown under certain conditions 
(quality of the soil, amount of sunlight, density of trees, etc.), which influence the properties 
of the timber as a structural material. Because of this, the material properties, like strength, 
elasticity and density, cannot easily be determined without a relatively large uncertainty. For 
structural materials that are produced by man, the combination of ingredients and the process 
that makes the material is directly influencing the material properties. This causes the 
distribution of material properties to have a relatively low variation, since many of the factors 
that influence this variation is controlled by the producer of the material. For timber, this 
variation is very large, in comparison, since we do not produce the material in this manner. 

In order to be able to determine the material properties with a higher degree of certainty, 
timber is divided into grades. Timber assigned to one of these grades have a smaller variation 
of the material properties than ungraded timber. There are different kinds of wood species that 
are used for structural timber, and a number of geographical areas in where these species are 
grown. It is therefore possible to divide the population of all timber into smaller populations, 
based on e.g. geographical area and species. This already gives a smaller variation of the 
material properties, but still the variation within each subpopulation is relatively large, and 
therefore the timber is subdivided further, into the aforementioned timber grades. Since each 
of these grades have a lower variation of the material properties than their parent population, a 
more optimal use of the timber can be achieved. 

There are different ways of grading timber: visual grading, in where a qualified person 
inspects the timber specimen visually and based on this assigns a grade, or machine grading, 
where the timber specimens are run through a machine that assigns grades to the different 
specimens. Visual grading is based on a subjective, visual evaluation of things like knots and 
fissures in the wood, and it is very dependent on the person performing the grading – two 
different people could assign different grades to the same sample of timber specimens. 
Machine grading is based on nondestructive tests performed by a machine on the timber 
specimens. Based on these tests, indicating properties corresponding to the material properties 
(strength, elasticity, and density) are given. Based on these indicating properties, the timber 
specimens are assigned to a given grade (or they are rejected or accepted to a given grade). 

For a given structural material, the uncertainty of the material properties influence the 
reliability of the structure in which the material is to be used. The reliability of a structure can 
be expressed in terms of the probability of failure. A higher degree of uncertainty of the 
material properties would give a different probability of failure than a lower degree of 
uncertainty. 

In the present Master Project existing control schemes for timber grading machines are 
analyzed and assessed in regard to their ability to reduce the variability of timber material 
properties. A benchmark study is performed on how different quality control schemes 
influence the reliability of timber structures. 
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1.1 SCOPE OF WORK 
In this thesis, the grading process will be looked at, and we will consider how different ways 
of grading timber influences the reliability of structures in which the graded timber is to be 
used. Visual grading will not be looked at, only machine grading of timber will be analyzed. 
The different aspects of the grading process that will be looked at are the use of different 
grading machines, of varying degree of accuracy, and different settings of the individual 
machines. In the grading process, material properties which influence both the ultimate limit 
state (failure of structure) and the serviceability limit state (deflection, durability, vibration) 
are taken into account. In this thesis, only the ultimate limit state will be considered, and 
grading based on the strength of the timber only, since this is what influences the reliability, 
the probability of failure, of the structure. Serviceability failures will not be discussed. 

In order to consider the influence of the grading process on the reliability of structures, a set 
of steps will be performed. Firstly, a regression analysis of the relation between the indicating 
property from the grading machine and the material property of the timber will be performed. 
This will tell something about the accuracy of the grading machines, relative to each other. In 
addition, it will show the result we are mostly interested in, how the probability distribution of 
the material property is, for a given value of the indicating property. 

Once the regression has been performed, we will consider how different settings for a given 
grading machine can give the same timber grade, and how the different settings change the 
distribution of the material property within the same grade. The use of different grading 
machines also affects the distribution of the material property, and this effect will also be 
analyzed. 

Lastly we will look at how the different probability distributions of the material property 
(material resistance – tensile strength) for a given grade influences the reliability of a general 
structure with a general load. In this way, we can see how the grading process (the use of 
different grading machines and different settings for the different machines) influences the 
reliability of the structure. 

In chapters 3 and 4, we will present the formulas necessary to perform our analysis, and in 
chapter 5, we will present numbers and figures from a given dataset. The figures and numbers 
presented will have been calculated and created in MATLAB. The scripts and functions that 
created these figures and numbers will not be presented in the text itself, but can be found 
written in Appendix B. The raw data that has been used can be found in Appendix C. 
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2 NOTATION 

Throughout this thesis, there will be presented a large number of formulas and symbols, and 
therefore we give an overview of these symbols here. The notation mainly follows that as 
used in (Gelman, et al., 2014) and (Schneider, 1997), with some additional symbols for our 
specific cases. We also choose to express vectors and matrices using bold characters; this 
differs from the notation used in (Gelman, et al., 2014). 

2.1 SYMBOLS 
Below is presented a table with an overview of symbols that will be used when working with 
probability distributions, regression and reliability calculations. A general description of the 
symbols is presented along with a specific description of the use of the figure in the context of 
timber grading and reliability calculations. 

Symbol General Timber grading/Reliability 

1

2

n

y

y

y

 
 
 
 
 
 

y


 A column vector of n  
outcome variables. 

iy  are the natural logarithm 

of measurements of the 
material property of interest. 

1

2

n

x

x

x

 
 
 
 
 
 

x


 A column vector of n  
explanatory variables 

ix  are the natural logarithm 

of registered indicating 
properties, corresponding to 
the logarithm of the material 
properties, iy . 

 
11 12 1

21 22 2

1 2

k

k

n n nk

x x x

x x x

x x x



 
 
 
 
 
 

1 2 kX x x x

X






   


 

An n k  matrix of 
predictors. There are n  
observations (corresponding 
to the n  outcome variables in 
y ) and k  explanatory 
variables per observation. 

An 2n  matrix where 1 1ix   

and 2ix  are natural logarithms 

of measurements of the 
indicating property of 
interest. 

1

2

k






 
 
 
 
 
 

β


 A column vector of k  
regression parameters. 

A column vector of 2  
regression parameters. 

 2 var , ,iy  β X  The population variance of 
the outcome variables. 

 

1

2

n






 
 
 
 
 
 

ε


 
A column vector of n  
realizations of the error of the 
regression model. 

 

2s  An estimate of 2   
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y  
Future values of the outcome 
variable, y   

X  
Future values of the 
predictors, X  

 

IP   
Indicating property from 
grading machine 

MP   
Material property of the 
timber 

  Mean value  
x  Sample mean  

fP   Probability of failure 

 p   Probability density function  

 Rf    
Probability density function 
of the material resistance 

 Sf    
Probability density function 
of the applied stress 

 RF    
Cumulative distribution of the 
material resistance 

 SF    
Cumulative distribution of the 
applied stress 

z   
Structural factor, taking into 
account geometry, 
dimensions, etc. 

R   
Stochastic variable of the 
material resistance 

S   
Stochastic variable of the 
applied stress 

kr   
Characteristic value of the 
material resistance 

ks   
Characteristic value of the 
applied stress 

R   
Safety factor for the material 
resistance 

S   
Safety factor for the applied 
stress 

Table 2.1: Symbols 
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2.2 PROBABILITY DISTRIBUTIONS 
We will use some common probability distributions when performing our data analysis, and 
we will use the following notation: If we, for example, have a normally distributed variable, 

x , with mean   and variance 2 , we will write it as follows: 

  2N ,x   . 

We will use a similar notation when referring to other common distributions. To see the 
specific parameters used in the different distributions, see Appendix A. 

2.3 MATLAB SPECIFIC CALCULATIONS 
Throughout this paper, alternative formulations of expressions will sometimes be shown. 
These are specific to when calculating in MATLAB. These additional calculations and 
formulations have been presented in grey boxes to separate them from the main text, like the 
following: 

 

 

This is a MATLAB specific section. 

It explains how we can reformulate something in order to calculate it using MATLAB. 
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3 GRADING OF TIMBER 

In this chapter, how the different ways of grading timber influence the probability distribution 
of the material property will be analyzed. As mentioned earlier, only machine grading will be 
considered, where the grading machines gives indicating properties for the corresponding 
material properties (strength, elasticity, density). In the context of reliability of structures, the 
strength of the material is of interest, and thus we choose to look at this material property 
only, combined with the corresponding indicating property from the grading machines. 
However, the formulas presented in this chapter can also be applied to other material 
properties and corresponding indicating properties. 

The timber grades are given as the characteristic value of the strength. The characteristic 
value of the strength is defined as the 5 % fractile of the distribution of the strength. This 
means that a random specimen from timber grade C30 has a 5 % chance to have a tensile 
strength that is less than 30 MPa, and similarly for other grades. The timber grade says 
nothing of how the material property is distributed outside of this one value. To illustrate this, 
we present in Figure 3.1 a set of probability densities of the strength, and in Figure 3.2 a 
corresponding set of cumulative distributions, all with a 5 % fractile of 24 MPa, but with 
different distributions for the material property. From the figures, it can be seen that timber 
with a relatively high degree of uncertainty regarding the material property and timber with a 
relatively low degree of uncertainty can both belong to the same timber grade. 

 
Figure 3.1: Probability densities – C24 
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Figure 3.2: Cumulative distributions – C24 

In light of this, we are interested in looking at how two different factors affect the distribution 
of the material property for a given timber grade: 

 The effect of different settings for a given grading machine 
 The effect of using different grading machines, with different levels of accuracy 

The settings for a grading machine is understood as the range of indicating properties that 
accepts a timber specimen into the given grade. For example, say that the acceptance criteria 
for grade C40 for a given grading machine is indicating property between 473 and 831 (this is 
not numbers from a specific machine, just a random example). In this case, all timber 
specimens with an indicating property within this range will be accepted to the given grade, 
while all specimens with indicating property outside this range will be rejected. As mentioned 
above, there are normally more than one indicating property, and each of the indicating 
properties has to lie within the corresponding range for the given grade in order for the 
specimen to be accepted, but we will only consider one indicating property in this paper: the 
strength. 

In the coming sections, in order to find the distribution of the material property, we will first 
have a look at the relation between the indicating property and the material property, and from 
that, we will make an expression for the distribution, given the machine setting. 

3.1 LINEAR REGRESSION 
We wish to analyze the relation between the indicating properties of the grading machine and 
the physical properties of the test specimens. We choose to perform a linear regression, using 
a Bayesian approach, as new knowledge, which may be obtained during the grading process, 
can be integrated into the model. See chapter 2 for an explanation of the notation used. 

  



Grading of Timber 
 

9 

3.1.1 Transformation of data 

A lognormal distribution is assumed (if  ln x  is normal distributed, then x  is lognormal 

distributed), for both the explanatory variable (indicating property, IP ), and the outcome 
variable (material property, MP ). Therefore, before the regression is performed, the 
indicating properties and material properties are transformed as follows: 

  lnx IP  (3.1) 

  lny MP  (3.2) 

As the regression and further calculations are performed, these transformed values, x  and y , 

will be used. The values will only be transformed back when presenting final values and when 
generating figures. 

3.1.2 Basic Bayesian model with non-informative prior 
The regression will be performed with a non-informative prior distribution. Prior data may be 
incorporated into the regression model, but this is not something that will be discussed in this 
thesis. For more information on Bayesian data analysis, (Gelman, et al., 2014) discusses this 
topic in detail. The expressions given in these sections are general for any linear regression 
using a Bayesian approach. The expressions and formulas are presented without formal proof, 
and an in-depth explanation of Bayesian data analysis is not given, but the expressions are 
presented to give a basic understanding of where the result we get comes from. A more in-
depth discussion can be found in (Gelman, et al., 2014). 

For our given observations of y  and X  we have the following: 

  y Xβ ε  

In words: the outcome variable is given as the explanatory variables multiplied by the 
regression parameters in β , plus an error. The realizations of the error, given in ε , tells us 

how far from the linear regression line the observed value lies. 

The elements of ε , i , are assumed to be normal distributed with a mean equal to 0  and a 

population variance equal to 2 : 

  2N ,ε 0 I  

where 0  is a column vector of n  zeros, and I  is an n n  identity matrix. 

We can write this (ordinary linear regression) as follows: 

  2, , N , y β X Xβ I  (3.3) 

where I  is an n n  identity matrix. This states that, given the parameters β  and 2  and 

predictors X , y  is normal distributed with mean Xβ  and variance 2 . 
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3.1.3 The posterior distribution 

The regression parameters, β , given the variance, 2 , is multivariate normal distributed: 

  2ˆ, N , ββ y β V  (3.4) 

The mean and variance is calculated as follows: 

     1ˆE ,


  T Tβ y β X X X y  (3.5) 

     12 2var ,  


  T
ββ y V X X  (3.6) 

 

An estimate of the variance, 2 , can be found like this: 

    2 1 ˆ ˆT

s
n k

  


y Xβ y Xβ  (3.7) 

The distribution of the variance, 2 , has a scaled inverse chi-square form: 

  2 2 2Inv- χ ,n k s y   (3.8) 

To perform a simulation draw from the scaled inverse chi-square distribution, we can first 
draw a value, w , from the chi-square distribution with n k  degrees of freedom and then let 

 2 2n k s w   . 

The classical, non-Bayesian, standard error estimate for β  is obtained by setting s   in 

(3.4). 

When working with numerical computations, we want to avoid using inverse matrices. In 
MATLAB, one should use the built-in matrix division operator, as it is better, in terms of 
both execution time and numerical accuracy, than calculating the inverse matrix. We 

therefore (using the MATLAB matrix division operator, \ ) reformulate the equation for β̂ : 

 

 

   

1ˆ

ˆ

ˆ \








T T

T T

T T

β X X X y

X Xβ X y

β X X X y

 

Similarly we can express the variance of β  like this: 

 

   
 

     

12 2

2

2

var ,

var | ,

var , \

  

 

 


 





T
β

T

T

β y V X X

X X β y I

β y X X I

 

where I  is a k k  identity matrix. 
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3.1.4 Posterior predictive distribution, given a new set of observations 
We are interested in finding the probability distribution of the material property for future 
specimens, given the indicating property from a grading machine. The posterior predictive 
distribution therefore has to be found. 

For a new set of observations, X , from which the outcomes, y , should be predicted, it can be 

expressed in the following way: 

  2N ,y Xβ I   (3.9) 

This, however, requires that both β  and   are known exactly. Our knowledge of these 

parameters are summarized by our posterior distribution, described above. Using simulation 
we can therefore first draw   and β  from (3.8) and (3.4), and then draw y  from (3.9). 

In the case of a normal linear model, we can also determine the posterior predictive 
distribution analytically. Given  , we have the following: 

   2ˆ, N ,  T
βy y Xβ I XV X     (3.10) 

 

Since   is not known exactly, it must be averaged over the marginal posterior distribution of 
2  given in (3.8), which gives a posterior predictive distribution of y , given y , which is 

multivariate t with location ˆXβ , squared scale matrix   2s T
βI XV X  , and n k    degrees 

of freedom: 

   2ˆ, t ,n k s   T
βy y Xβ I XV X     (3.11) 

Again, when working in MATLAB, we want to avoid inverse matrices (instead using 
MATLAB's matrix division operator). Therefore, we choose to do the following with the 
variance of the posterior predictive distribution: 

 

   

 

 
  

     

2

1

2

var ,

\

\

var , \

 

 



 



 







 

T
β

T
β

T T T
β

T T

T T

T T T
β

T T

y y I XV X

XV X XW

W V X X X X

X XW X

W X X X

XV X X X X X

y y I X X X X

 

  

 





   

 

 

Where, if X  is an m k  matrix ( m  observations with k  explanatory variables per 
observation), W  would be a k m  matrix and I  an m m  identity matrix (the variance-
covariance matrix would also, naturally, be an m m  matrix). 
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3.2 TIMBER GRADING 
The expression in (3.11) can be used to express the distribution of the material property, given 
a single value of the indicating property. We are, however, interested in finding the 
distribution of the material property, given a timber grade. The result in (3.11) is therefore in 
itself not something we can apply directly to our data, but we will use it to find the 
distribution we are interested in: given that the indicating property of interest fulfills the 
acceptance criteria of the given grade, how will the corresponding material property be 
distributed? 

We define our acceptance criteria for the indicating property as follows: L HIP IP IP  . In 

words, the indicating property must lie between a lower and an upper limit. 

3.2.1 Distribution of indicating property 
The distribution of the material property depends on the distribution of the indicating 
property. Within the range of the indicating property for a given timber grade, not all values 
of IP  have the same probability of occurrence. Because of this, the distribution of the 
material property will be skewed, compared to the expression we found in (3.11). 

The distributions looks different for different grades, as the distribution of the indicating 
property will be different within the limits for the different grades. That is, if we are working 
on low grades, the values of indicating property we are looking at are on the left side of the 
distribution of IP , while if we are working with high grades, the IP  stays on the right side. 
This means that our weighting function will have a different shape. We can see this by the 
illustration below: 

 
Figure 3.3: Example of distribution of IP 

In the figure, the vertical lines indicate areas where the indicating property might lie for 
different grades, and we can observe that the weighting of the distribution of the material 
property, as a result, is quite different for the different grades (the vertical lines here are just 
illustrative examples, and do not represent settings for actual grades). 

Because of this, before we can continue with finding the distribution of the material property, 
we need to find the distribution of the indicating property. We continue with the assumption 
of a lognormal distribution, as described in chapter 3.1.1: 

    2ln N ,x xIP x     (3.12) 
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We choose to use subscript x  when working with the distribution of the indicating property, 
in order to distinguish it from the distribution we used in our linear regression above (which 
expressed the distribution of the material property and the distributions of parameters 
connected to that distribution). 

If we do not know the parameters (population mean and variance) exact, we can use a sample 
from our population to find an estimate of the distribution of the parameters. In the example 
in chapter 5, the same sample is used for calculating the distribution of the indicating property 
as to perform the regression. This is not necessary, and the use of subscript x , as mentioned 
above, will help show this in the expressions below. 

3.2.1.1 Normal data with a non-informative prior distribution 
Given a sample of xn  observations from the population, we have the following distribution of 

the mean, given the population variance: 

  2 2, N ,x x x xx n  x   (3.13) 

Estimates for the mean and variance can be calculated as follows: 

 

 

1

1

22 1
1

1

x

x

x

x

n

in
i

n

x in
i

x x

s x x








 




 

The population variance has a scaled inverse chi-square distribution: 

  2 2 2Inv- χ 1,x x xn s x   (3.14) 

We can draw x  from (3.14) and then x  from (3.13), or we can use the following: 

  2
n -1t ,

xx x xx s n x   

Or, in words, the population mean is t distributed with location x , scale x xs n  and 1xn   

degrees of freedom. Using the t distribution with center 0 , we can formulate it like this: 

 1x

x
n

x x

x
t

s n





x   

3.2.1.2 Posterior predictive distribution 
Again, the distribution of future observations of IP  is of interest, and we need to use the 
posterior predictive distribution in order to find this. The posterior predictive distribution for a 

future observation, x  will be given as a t distribution with location x , scale 11
x xn s  and 

1xn   degrees of freedom: 

   21
n -1t , 1

x x xnx x sx   (3.15) 
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3.2.2 Distribution of material property 
Now that both our regression and distribution of the indicating property has been found, we 
can start to look at the distribution of the material property, given the indicating property lies 
within the range specified by a given timber grade. 

For a single value of the indicating property, *IP , we have the following: 

 
 

 
* *

*

ln

1

IP x

x



*X


 

 

From the linear regression, we have the posterior predictive distribution given in (3.9). Using 
this, for the given indicating property we have: 

    2 2
* 1 2 *N , N ,y x x    *X β    

If the parameters β  are not known, we can also use (3.10). 

We wish to find the distribution of the material property, given indicating properties fulfill an 
acceptance criterion: 

 L Hy x x x    

where  lnL Lx IP  and  lnH Hx IP . 

The easiest way to find this is by simulation, as described in the following section. It is also 
possible to formulate an expression for the distribution, which can be solved numerically. We 
come back to this in chapter 3.2.2.2. 

3.2.2.1 Simulation 
We can easily simulate the distribution of the material property, given a range of the 
indicating property, in the following way: 

1. We draw 2
x  from (3.14) (or we use a known value) 

2. We draw x  from (3.13) (or we use a known value) 

3. We draw x  from (3.12) and discard any values outside the range of our acceptance 
criteria 

4. We draw 2  from (3.8) (or we use a known value) 
5. We draw β  from (3.4) (or we use known values) 

6. We draw y  from (3.9) 
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3.2.2.2 Integration 
We will now formulate an expression that can be used to give the distribution of the material 
property. For now, let us assume that the parameters β ,  , x  and x  are all known. We 

then have normal distributions, and if we write the expressions for the distributions, we get 
the following probability densities: 

 

    

   

2

* 1 2 *2

2

2

1 1
exp

22

1 1
exp

22
x

xx

p y x y x

p x x

 





     
 

 
   

 

   

 
 

As mentioned before, we wish to find the distribution of the material property, given a range 
of indicating properties. We therefore want to integrate the density of the material property 
over the range of indicating properties. However, since the indicating properties are not 
uniformly distributed, we want to weight the expression with the distribution of the indicating 
property. 

Going forward, in order to simplify the expressions, we omit the use of ~ above our x  and y . 

It is understood that we are expressing the distributions of future observations, not the data 
used in our regression. 

The unnormalized distribution of the material property, given range of indicating property, 
can be expressed as the distribution of MP , given a single value of IP , weighted by the 
distribution of IP , and integrated over the range of IP : 

 

     

      
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y x x dx

y x x dx

y x x dx

  

  

 

  

  

  

  

     

     

     









 

In order to find the probability density, we need to normalize the expression. We do this by 
adding a normalizing constant: 

        2 2

2 21 1
1 22 2

exp
H

x

L

x

L H x

x

p y x x x C y x x dx
 

           

In order to find the value of C , we integrate the expression over all possible values of y  and 

set this equal to 1 (we know that a probability distribution should always equal to 1 when 
integrated over all possible values).: 
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     

     
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C y x x dxdy
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  









     

     

 

 
 

We can see that, naturally, the normalizing constant also depends on the chosen range of IP . 

Putting the expression for the unnormalized probability density and the normalizing constant 
together, we get the distribution of y , given range of x : 

  
     
     
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 
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  




    

  

    



 
 (3.16) 

This expression for the probability density of the natural logarithm of the material property, 
given the indicating property lies within our limits, assumes that all population parameters are 
known. In our case, they are not, and therefore we need to use t-distributions instead of the 
normal distributions (as expressed in (3.11) and (3.15)). Besides this difference, the way of 
thinking is the same. 

The distribution of the indicating property would be t with location x , scale 11
x xn s  and 

1xn   degrees of freedom. The distribution of the material property would be t with center 

1 2x 
 

, scale    1 1 1
T

x x s βV  and 2n   degrees of freedom: 
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Using this we put it in the same expression as before (removing any constants not dependent 
on x  or y ): 
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where n  is the sample size for our regression and xn  is the sample size for calculating the 

distribution of the indicating property. Normalizing the expression, we get: 
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In order to make the expression more readable, we do the following: 
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Where we have the scale sx  for the distribution of the indicating property, and the scale, s  

and location, s  from the regression: 

 11
xsx xn s    (3.18) 

    1 1 1
T

s x x s   βV  (3.19) 

 1 2s x   
 

 (3.20) 

Be aware that (3.19) and (3.20) are both functions of x , and as such must be included in the 
integration in (3.17). 

This expression for the distribution of the natural logarithm of the material property, given a 
range of indicating property, is not solvable in closed form, but we will use this expression for 
numerical integrations going forward. 

 

  

When performing numerical integration in MATLAB (using the built-in functions), we 
cannot use matrix operations, only scalar ones, and as such we need to reformulate the 
scale as follows (using Gauss-Jordan elimination): 
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We can find the cumulative distribution by integrating from   to y : 
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 (3.21) 

In the case where we would know the population parameters of the distribution of the 
indicating property, but not the parameters β  and  , we could create a similar expression, 

using a combination of a t-distribution and a normal distribution. We will not use such an 
expression in this thesis, but it should be straightforward to make, using the same way of 
thinking as when we made (3.16) and (3.17). 

3.3 INFLUENCE OF GRADING ON DISTRIBUTION OF MATERIAL PROPERTY 
Given the expression in (3.17), we will now describe how we can find the influence of the 
grading on the distribution of the material property. In chapter 5, we will show examples from 
the sample data given in Appendix C. 

As mentioned earlier, we are interested in two effects, different settings of a given grading 
machine, and use of different grading machines. 

3.3.1 The influence of grading machine settings 
We are interested in seeing how different ranges of indicating property affects the distribution 
of the material property. This can be found by looking at (3.17). For a given grade, 
considering the strength, the value of y  when the cumulative distribution is 0.05 (the 5 % 

fractile) is known. Using this fact, the upper limit of the range of the indicating property for a 
given lower limit can be found, or vice versa. As an example, for grade C40, it can be done in 
the following way: 

1. We set  ln 40y   (we are still working with the natural logarithms) 

2. We set Hx    

3. The cumulative distribution is calculated from (3.21) for a random value of Lx  

4. We change the value of Lx  until the cumulative distribution equals to 0.05 

5. We now know the range of x :  L Hx x  

Other ranges of x  can be found similarly. The lowest possible value for Lx  would be found 

when Hx   , and the highest possible value would be found when L Hx x . This last case 

is not a practical situation, as it is no range, just a single value, but it is the extreme case, and 
can be interesting to observe in order to see the possible ranges. When L Hx x , we would not 

use (3.17), but the expression found from the regression, (3.11), and the single value of x  
would be found similarly as described above. 

Using these different grading machine settings (different ranges of x ), the different 
distributions of y  can be found, by putting the values of Lx  and Hx  back in to (3.17) (or, in 
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the case of a single value of x , (3.11)). Plotting these distributions in the same figure would 
let us be able to observe the influence of the machine settings on the distribution, for a given 
grade. 

3.3.1.1 Simulation 
It is also possible to do this using simulation. A similar method as described in 3.2.2.1 would 
then be used. In order to find the range of IP , the following procedure can be followed: 

1. We draw 2
x  from (3.14) (or we use a known value) 

2. We draw x  from (3.13) (or we use a known value) 

3. We choose a value for either Lx  or Hx  

4. We set a random value of the other limit, not chosen in step 3 
5. We draw x  from (3.12) and discard any values outside the range of our acceptance 

criteria 
6. We draw 2  from (3.8) (or we use a known value) 
7. We draw β  from (3.4) (or we use known values) 

8. We draw y  from (3.9) 

9. The draws of y  are sorted and we see what value is the one 5 % from the bottom. If 

this value is close enough to the grade we seek, we have a valid range of x . If it is not 
close enough, we go back to step 4 and choose a new value of the limit. Rinse and 
repeat until a valid range is found 

This method can be quite time consuming, as it requires a lot of iteration to find the limits. 
Once the limits have been found, the cumulative distribution can be plotted, using the method 
described in 3.2.2.1. 

3.3.2 The influence of different grading machines 
In order to find the effect of using different grading machines, we have to perform the 
regression for the different machines, yielding different values of β  and  . In addition, the 

distribution of the indicating property would also be different, yielding different values of x  
and x . 

The different grading machines would give different values for IP , from the method 
described above. This because of different regression parameters, but also because the 
different grading machines might use a different scale for their IP . Because of this, in order 
to compare different grading machines, it is necessary to choose machine settings that are 
relatively the same. The two extremes (when Hx    and L Hx x ) can be considered the 

end points for all the different machines, and then, for example, the values for Lx  can be 

distributed similarly between the two extremes for the different machines. As an example, let 
us say that we want to use three different ranges of IP for the different machines. We then 
choose the two extremes, and then the last value of Lx  could be set as the middle value 

between the lowest possible Lx  and the highest possible Lx . 

Once the appropriate ranges of IP  has been set for the different machines, we can choose the 
corresponding ranges for the different machines, and plot the distributions calculated from 
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(3.17) (or (3.11)). Given these plots, we can observe how the distribution varies between the 
machines. For example, we choose Hx    for all machines. 

To sum up, when comparing machine settings, we keep grading machine and timber grade 
constant, while varying the machine setting, and when comparing machines, we keep 
(relative) machine setting and timber grade constant. 
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4 RELIABILITY OF STRUCTURES 

Once the distribution of the material property has been found, and it has been observed how 
this distribution varies for different machine settings and different grading machines, this can 
be used to look at the effect on the reliability of structures. The material property of interest is 
the material resistance (strength), and this will be used going forward. An in-depth 
explanation of reliability of structures in general will not be given, but a brief explanation will 
be presented. The notation used in this chapter follows mainly that given in (Schneider, 
1997). 

The reliability of a structure can be expressed in terms of the probability of failure. Failure 
means that the stress induced by the load on the structure exceeds the resistance of the 
material. This can be expressed in the form of the limit state function, G , which is defined as 
the material resistance (strength), R , minus the stress from the load, S : 

 G R S   (4.1) 

The probability of failure, fP , is given as the probability that the limit state function is non-

positive: 

    Pr 0 PrfP G R S     

Both the material resistance and the stress are expressed by probability distributions. Using 
these distributions, the probability of failure can be calculated in the following way: 

    f R SP F y f y dy




   (4.2) 

Or, equivalently: 

    1f S RP F y f y dy




    (4.3) 

Where Sf  and SF  are the probability density and cumulative distribution of the stress, and Rf  

and RF  the density and cumulative distribution of the material resistance. 

The distribution of the material resistance can be found in chapter 3, with Rf  given in (3.17) 

and RF  expressed in (3.21). In order to find the probability of failure we also need to have a 

probability distribution of the load. 
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4.1 LOAD ON STRUCTURE 
For the distribution of the load on the structure, we choose to use an extreme value (Gumbel 
Max) distribution with mean, 1   and standard deviation, 0.2  . The Gumbel Max 

distribution has the following probability density function (using s  as the stress): 

        exp expSf s s u s u         (4.4) 

The cumulative distribution function is given as follows: 

      exp expSF s s u     (4.5) 

To determine the values for  , and u , we look at the expressions for the mean and standard 
deviation, which are: 

 
0.577216

u u

 

     (4.6) 

 
6




  (4.7) 

where   is the Euler–Mascheroni constant. Rearranging the expressions, we get: 

 
6




  (4.8) 

 
6

u
  
 

     (4.9) 

4.1.1 Relation between load and resistance 
In order to find an appropriate relation between the distribution of the load and the 
distribution of the strength of our material, we look to our structural codes. In the structural 
codes, characteristic values for the load and resistance are used with safety factors and an 
ultimate limit is found by setting these equal, like this: 

 k
k S

R

rz s      (4.10) 

where ks  is the characteristic value of the load, S  is the safety factor for the load, kr  is the 

characteristic value of the resistance, R  is the safety factor for the material resistance, and z  

is a constant that depends on the structure. 

To illustrate how one can find the value of z , we use a simple example of a beam with a point 
load in the middle of the span: 

 S      
 ↓    

2

6

bh
W      

↑ l  ↑   
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Using the bending moment as the measure we have the following for the load: 

 
4S

Sl
M   

Similarly, we have the following expression for the moment resistance: 

 RM Wr  

Setting the two moments equal to each other and using characteristic values and safety factors 
give us the following: 

 
4

k S k

R

S l Wr


  

Gathering all the factors that depend on the structure (geometry, dimensions) on one side, we 
get the following: 

 
4

k
k S

R

rl
S

W



  

Which is the same expression as stated in (4.10), with 4z l W . 

We want to find a value for z  that, for our distributions of the load and resistance, satisfies 
equation (4.10): 

 k

k S R

r
z

s  
  (4.11) 

The characteristic value of the resistance of the material is given as the 5 % fractile of the 
distribution, and we get this directly from our timber grade. The characteristic value of the 
load is given as the 98 % fractile of the distribution, and we can calculate it by setting the 
cumulative distribution equal to 0.98. We start by inversing the expression for the cumulative 
distribution: 

 

     
    

    

    

exp exp

exp ln

ln ln

ln ln

S

S

S

S
S

F s s u

s u F

s u F

F
s F u









   

   

   


 

 

Incorporating (4.8) and (4.9), we get: 

     6 ln ln6 S
S

F
s F


 


    

      6
ln lnS Ss F F

 


     (4.12) 
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Setting 0.98sF   and  0.98 ks s , we get the expression for our characteristic value: 

    6
ln ln 0.98ks

 


     

For our chosen distribution with mean 1   and standard deviation 0.2   we then get the 

following characteristic value of the load: 

    0.2 6
1 ln ln 0.98

1.518455

k

k

s

s




   


  

We now have the characteristic values, and we use the following safety factors: 

 
1.5

1.3
S

R







 

For different timber grades, we can then calculate our z , using (4.11): 

C24: 
24

8.105404
1.518455 1.5 1.3

z  
 

 

C30: 
30

10.131755
1.518455 1.5 1.3

z  
 

 

C40: 
40

13.509006
1.518455 1.5 1.3

z  
 

 

Now the distribution of the load is determined for three different grades (other values of z can 
be found similarly), and the limit state function can be written as: 

 G R zS   (4.13) 

The distribution of zS  also is a Gumbel Max, but with mean equal to z . The coefficient of 

variation is as before, and the standard deviation will then, as a result, be z  (since z  is 
always a positive number). We can see that this is correct by looking at (4.12): 

 

   

     

     

6
ln ln

6
ln ln

z S S

z S s

z S s

s F z s F

s F z F

z
s F z F

 


 


 

 
     

 

   

 

We see that zS  follows a Gumbel distribution with mean z  and standard deviation z , as 

stated above. 
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4.2 LIMIT STATE 
Using the values of z  calculated above, we can now find the distributions of zS  for the 
different grades, and we can use the limit state function given in (4.13): 

 G R zS   

If we look at the expressions for the probability of failure, given in (4.2) and (4.3), we can see 
that it makes sense to use the last version, (4.3), since the distribution of the resistance is more 
easily expressed as the probability density (3.17), and the expression for the distribution of the 
load is simpler as the cumulative distribution, (4.5). We therefore choose to do this, and use 
the cumulative distribution of the load. The distribution of the load is the distribution of zS , 
as described above, with mean z  and standard deviation z . 

The distribution of the resistance and the distribution of the load must be expressed using the 
same unit of measure. Our distribution of the resistance is expressed as the natural logarithm 
of the strength, and so we also need to transform the distribution of the load using the natural 

logarithm. Using the transformation  lny s , we get: 

 
       
      *

exp exp exp ln

exp exp exp

S

S

F s s u

F y y u





   

   
 

We can see that the cumulative distribution function is normalized correctly by checking the 
following: 

1. When y   ,  exp y  , and    exp y u     

2. This means that      exp exp exp 0y u      

3. We then have    *lim exp 0 1Sy
F y


   

4. Similarly we can show that    *lim exp 0Sy
F y


    

Which means that the cumulative distribution goes from zero to one, as it should. The 
cumulative distribution of the load, zS , which we will use going forward, can then be written 
as follows: 

     6
exp exp exp

6
S

z
F y y z

z

  


   
             

 (4.14) 

We choose to use subscript S  in order to be consistent with (4.3), but be aware that we use 
the distribution of zS . 

Where we have 1   and 0.2  , and z  given for the grade we want to consider. 

We have previously expressed the probability density of the resistance in (3.17): 
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    
 

 
 

 2 1 22 2

1
2 2

1 1
1 2

x
H

L

n n
x

s
R s

x sx sx

x x y
f y C dx

n n




 

  


    

     
       

  

Where C  is the normalizing constant. 

In order to simplify the expressions, we choose to call the inner function of the integral

 ,h x y . We can then have the following expression for the distribution: 

    ,
H

L

x

R

x

f y C h x y dx   

Using this we get the probability of failure expressed as follows: 

 

   

   

1

1 ,
H

L

f S R

x

S

x

P F y f y dy

F y C h x y dx dy









 

 
    

 



 
 

Since  SF y  does not depend on x , we can do the following: 

    1 ,
H

L

x

f S

x

P C h x y F y dxdy




     (4.15) 

Where    
 

 
 

 2 1 22 2

1
2 2

, 1 1
1 2

xn n

s
s

x sx s

x x y
h x y

n n




 

  


    

     
       

 and  SF y  is given in (4.14). 

We now have all we need to calculate the probability of failure of our general structure. 
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4.3 INFLUENCE OF GRADING ON RELIABILITY OF STRUCTURES 
Ultimately, what we are interested in finding is how the grading of timber influences the 
reliability of the structure in where the timber is to be used. We now have all the tools we 
need to find and analyze this. 

In order to find the probability of failure for the different grading machines and machine 
settings, we do the following: 

1. We choose a timber grade we want to look at 
2. Given the chosen timber grade, we can calculate the distribution of the load on the 

structure from (4.14) 
3. We look at the different grading machines and settings as discussed in chapter 3.3, but 

instead of finding the distribution of the material resistance directly, we put the same 
parameters into (4.15) to calculate the probability of failure for the different 
combinations of grading machine and machine settings 

In general, the probability of failure will be a discrete value for the given range of IP  and 
grading machine, but if we want we can make a continuous graph for a given grading 
machine with the indicating property presented as the abscissa. To do this, it makes sense to 
make the lower limit of the range of the indicating property as the value along the horizontal 
axis (since it has a much smaller range than the upper limit, which can go to infinity). This 
can be done by expressing (4.15) as a function of Lx  (  ln y  will be determined by the chosen 

timber grade and Hx  is a function of Lx ). An example of how to do this is presented in 

chapter 5.3.2 

4.3.1 Simulation 
The probability of failure can also be found by simulation. It can be performed in the 
following way: 

1. Draw a value of the material resistance as expressed in chapter 3.2.2.1 
2. Draw a value of the stress, using the distribution given in (4.14) 
3. Calculate G R S   using the values drawn in steps 1 and 2 
4. From all the draws, count how many of the G  values that are negative and find the 

percentage of all the draws which resulted in a negative limit state function 

This way of calculating the probability of failure can be quite time consuming, as it requires a 
lot of simulations for it to be accurate (since the probability of failure is very small). In 
addition, if the range of indicating properties is very small, there will be many draws of x  that 
will be discarded, which again results in a longer time to compute. It is, however, a method 
which is very easy to understand, compared to the, perhaps a bit complicated, expression 
presented in (4.15). 
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5 EXAMPLE FROM DATA 

Using the tools created in chapters 3 and 4, we will, in this chapter, present calculations and 
figures made from a data sample that contains material properties for a set of timber 
specimens, as well as corresponding indicating properties from a range of different grading 
machines. The data used can be found in Appendix C. All calculations and creation of figures 
were performed using MATLAB. The scripts and functions used can be found in Appendix B. 

The effects of interest are, as mentioned in previous chapters, the use of different grading 
machines, and the use of different grading machine settings. The data consists of 
measurements of timber specimens from two different regions, and indicating properties from 
five different grading machines. The differences between regions are not of interest in this 
context, and as such only data from one region will be used. In terms of different grading 
machines, only the relative difference between grading machines, in terms of accuracy, is of 
interest. Therefore, three grading machines are chosen – Machine #1, the most accurate, 
Machine #3, the least accurate, and Machine #2, which is the grading machine with accuracy 
closest to the middle between the two other machines. The choice of grading machines was 
made after the regression, based on the estimate of the variance of the error, as expressed in 
(3.7) (low variance means high accuracy, and vice versa), but although the regression was 
performed for all five grading machines, only the regression calculations for the three chosen 
machines are presented below. 

Calculations in MATLAB were performed using the transformation explained in chapter 
3.1.1, but the figures presented below are of the data transformed back: 

 
 
 

exp

exp

IP x

MP y




 

In our context, the material property is always the strength of the material, as mentioned 
earlier. 

5.1 LINEAR REGRESSION 
For each grading machine, the individual data points,  ,IP MP , for the timber specimens are 

plotted in the same figure as the line of the estimate of the mean, ˆXβ . This line is not 

completely straight in the figures presented, as the linear regression was performed on the 
transformed variables, x  and y , while the figures are presented with regards to IP  and MP . 

In addition, the cumulative distribution of both indicating property and material property is 
presented together with a plot of the lognormal distribution (this to see whether a lognormal 
distribution seems accurate). Naturally, the distribution of the material property is the same 
for all grading machines, as it is the same sample of timber specimens used. 
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Figure 5.1: Cumulative distribution of the material property, strength 

We observe from Figure 5.1 that the assumption of a lognormal distribution of the material 
property does not seem incorrect. 

5.1.1 Grading machine #1 

 
Figure 5.2: Cumulative distribution of the indicating property from Machine #1 

Again, for the indicating property this time, it can be observed from Figure 5.2 that the 
assumption of a lognormal distribution does not seem to be incorrect. 

 
Figure 5.3: Data from Machine #1 

We can see from Figure 5.3 that the values registered of the indicating property is relatively 
well concentrated around the estimated mean – the accuracy is relatively good. 
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5.1.2 Grading machine #2 

 
Figure 5.4: Cumulative distribution of the indicating property from Machine #2 

A lognormal distribution, also in this case, appears to be a decent assumption. 

 
Figure 5.5: Data from Machine #2 

By comparing Figure 5.5 to Figure 5.3, it can be observed that the errors are larger for 
Machine #2 than for Machine #1. The registered values of the indicating property is spread 
further away from the estimated mean. 

5.1.3 Grading machine #3 

 
Figure 5.6: Cumulative distribution of the indicating property from Machine #3 
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As expected, the registered values of the indicating property from Machine #3 also follows a 
distribution that resembles a lognormal one. 

 
Figure 5.7: Data from Machine #3 

Lastly, the data from Machine #3 can be seen to have an even larger spread than that of the 
two other grading machines. In other words, this grading machine is less accurate than 
Machine #1 and Machine #2. This is, naturally, as expected, since the machines were chosen 
this way, from most to least accurate: Machine #1, Machine #2 and Machine #3. 

5.1.4 Comparison between machines 
In Table 5.1 below, we show how the estimate of the variance of the errors, as calculated in 
(3.7), varies between the three different grading machines. 

 Machine #1 Machine #2 Machine #3 
2s  0.0248 0.0415 0.0576 

s  0.1574 0.2038 0.2400 
Table 5.1: Estimates of the variance and standard deviation of the errors of our regression model 

These variances may seem low, but they are calculated using the natural logarithm of our 
indicating and material property, therefore they are of the order of magnitude as they are. It is 
possible to transform the standard deviation back to the same unit of measure as the material 
property, but what is more useful is to observe the relative difference between them: we can 
see that Machine #1 is easily the most accurate and Machine #3 is the least accurate. This is 
the same conclusion as we made from observing the plots above. 
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5.2 TIMBER GRADING 
From the data in Appendix C we want to look at how different ranges of indicating property 
affect the distribution of the material property for a given grade. We chose to look at four 
different ranges of indicating properties. 

5.2.1 Ranges of IP 
Before the distributions of the material property can be found, the settings for the different 
machines must be chosen. This means that different ranges of the indicating property must be 
defined. Our first range of indicating property is given by setting the upper limit to  . Our 
last "range" of indicating property is given by setting L Hx x . This is not really a range, but 

just a single value of x , and is not something that is useful in actual grading, but we choose to 
include these two extreme ranges in order to show the limits in either direction: the largest 
range possible and the smallest "range" possible. In this last case we will not use (3.17), but 
(3.11) to calculate the distribution of the material property. Our second and third range of the 
indicating property are defined in the following way: 

From our first range of indicating property (the largest range possible) we have: 

 1L Lx x  

From our last "range" of indicating property (just a single value), we have: 

 4L Lx x  

We name our lower limits for our remaining two ranges similarly, 2Lx  and 3Lx . 

We choose to set the distance between the lower limits like this: 

 2 1L Lx x a   

 3 2 2L Lx x a   

 4 3 3L Lx x a   

We can see that we have three equations and three unknowns, and this can easily be solved: 

 4 1
2

5

6
L L

L

x x
x


  

 4 1
2 2

L L
L

x x
x


  

The reason we choose to distribute the lower limits in this manner, and not just distribute 
them evenly, is that the upper limit changes more for a given change of the lower limit, when 
the range is large, compared to when the range is smaller. Exactly how the ranges are defined 
is not important in itself; it is just presented here to show how they are distributed in the 
coming figures, and for reproducibility, should someone want to validate the figures and 
calculations. 
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5.2.1.1 Grade C24 
We will now present some figures, showing the distribution of the material property for 
different ranges of the indicating property, using the most accurate grading machine from our 
data (we will show the effect of different grading machines later). 

 
Figure 5.8: Distribution of the material property for different ranges of IP for grade C24 

 
Figure 5.9: Cumulative distribution of the material property for different ranges of IP for grade C24 

It can be observed that the right-hand tails of the different distributions vary quite 
significantly, but the left-hand tails have a relatively small variation. In Figure 5.9, it can be 
seen a zoomed-in view of the area around the 5 % fractile, and although the distributions 
follow a slightly different curve, they are still quite close to each other. 
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5.2.1.2 Grade C30 
We now look at how the distributions are for timber grade C30: 

 
Figure 5.10: Distribution of MP for different ranges of IP for grade C30 

 
Figure 5.11: Cumulative distribution of MP for different ranges of IP for grade C30 

We see that we have a similar situation for C30 as we do for C24. 

5.2.1.3 Grade C40 
Lastly, we also present the same figures for grade C40. 

 
Figure 5.12: Distribution of MP for different ranges of IP for grade C40 
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Figure 5.13: Cumulative distribution of MP for different ranges of IP for grade C40 

Again, we observe that we have a similar situation, but the difference in the distribution of 
MP  for the different ranges of IP is less than for the lower grades. This makes sense; if we 
look at Figure 3.3, we can see that as we are using values of IP on the far right side of the 
distribution, the weighting has a smaller impact – the curve is closer to horizontal, and as such 
the distribution of MP  is closer to the t-distribution we found from our regression, in (3.11). 
Moving the upper limit towards infinity still results a relatively horizontal weighting. 
Changing this upper limit has a greater impact on the shape of the weighting function for the 
lower grades. 

5.2.2 Different grading machines 
In addition to the effect of the choice of range for the indicating property, we also want to 
look at the effect of the quality of the grading machine. We have three different grading 
machines, ranging from the most accurate, Machine #1, to the least accurate, Machine #3. 

5.2.2.1 Grade C24 
We choose to plot two different cases for the range of the indicating property: when the upper 
limit goes to infinity, and when we have a single value of IP, this way we can see the two 
extremes. 

 
Figure 5.14: Distribution of MP for different grading machines for grade C24. 

HIP    
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Figure 5.15: Cumulative distribution of MP for different grading machines for grade C24. 

HIP    

We observe that the left-hand tail of the distributions have a larger difference than when 
comparing different settings for a single grading machine. This observation is of interest when 
considering the reliability, which we will come back to later. 

 
Figure 5.16: Distribution of MP for different grading machines for grade C24. 

L HIP IP  

 
Figure 5.17: Cumulative distribution of MP for different grading machines for grade C24. 

L HIP IP  

Also when looking at the other extreme case, where the distribution follows a t-distribution, it 
can be observed that the left-hand tail has a larger variation than when comparing machine 
settings. 
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5.2.2.2 Grade C30 
We perform the same calculations while considering timber grade C30. 

 
Figure 5.18: Distribution of MP for different grading machines for grade C30. 

HIP    

 
Figure 5.19: Cumulative distribution of MP for different grading machines for grade C30. 

HIP    

The variation of the left-hand tail seems even larger for this grade, compared to C24. 

 
Figure 5.20: Distribution of MP for different grading machines for grade C30. 

L HIP IP  
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Figure 5.21: Cumulative distribution of MP for different grading machines for grade C30. 

L HIP IP  

Again, the left-hand tail has a similar situation for the extreme case with a single value of IP. 
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5.2.2.3 Grade C40 
Lastly, we have a look at grade C40. 

 
Figure 5.22: Distribution of MP for different grading machines for grade C40. 

HIP    

 
Figure 5.23: Cumulative distribution of MP for different grading machines for grade C40. 

HIP    

The tendency we saw when comparing C24 and C30 seems to be confirmed here. It can be 
observed that the variation of the left-hand tail appears to be larger for higher grades. 

 
Figure 5.24: Distribution of MP for different grading machines for grade C40. 

L HIP IP  
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Figure 5.25: Cumulative distribution of MP for different grading machines for grade C40. 

L HIP IP  

As expected, the situation is the same, also for the other extreme machine setting. 

5.3 RELIABILITY 
We have now come to the main topic of interest, the reliability of structures, and more 
specifically, the influence of the grading on this reliability. 

5.3.1 Probability of failure for given machine settings 
Firstly, we will present calculated values of the probability of failure, using (4.15), for the 
four different machine settings, as described in chapter 5.2.1. We will present the probabilities 
of failure for all three grading machines, and for three timber grades, C24, C30 and C40. In 
the next chapter, we will look at the probability of failure for any machine setting. 

5.3.1.1 Grade C24 
We start by looking at timber grade C24. The following table presents the calculated 
probabilities of failure, and in addition a relative comparison between the most and least 
accurate grading machine, as well as the two extreme cases of machine settings (upper limit to 
infinity (Setting #1), and upper limit equal lower limit (Setting#4)). 

 Machine #1 Machine #2 Machine #3 #3/#1 
Setting #1 50.1869 10  50.5294 10  51.1900 10  6.37 
Setting #2 50.1691 10  50.4846 10  51.1102 10  6.57 
Setting #3 50.1445 10  50.4244 10  51.0068 10  6.97 
Setting #4 50.1331 10  50.3976 10  50.9618 10  7.23 

#4/#1 0.712 0.751 0.808  
Table 5.2: Probability of failure, grade C24 

  



The Influence of Grading on the Reliability of Timber Structures 
 

44 

From the data in Table 5.2, it can be observed that for timber grade C24, the least accurate 
grading machine, Machine #3, has a probability of failure that is around seven times the 
probability of failure for the most accurate machine, Machine #1 (between 6.37 times and 
7.23 times). In other words, the probability of failure is around 600 % higher for Machine #3, 
than for Machine #1. It can also be observed that the probability of failure for the theoretical 
smallest range of indicating property (where the upper limit equals the lower limit) is around 
75 % of the probability of failure with the largest range of IP (when the upper limit goes to 
infinity). In other words, the probability of failure can be reduced by up to approximately 
25 %, by decreasing the range of IP (but a too small range of IP is not practical, and Setting 
#4 is never possible). 

5.3.1.2 Grade C30 
We look at a similar same table, but this time for timber grade C30. 

 Machine #1 Machine #2 Machine #3 #3/#1 
Setting #1 50.1805 10  50.5370 10  51.2704 10  7.04 
Setting #2 50.1669 10  50.5022 10  51.2079 10  7.14 
Setting #3 50.1483 10  50.4567 10  51.1300 10  7.62 
Setting #4 50.1400 10  50.4370 10  51.0973 10  7.84 

#4/#1 0.776 0.814 0.864  
Table 5.3: Probability of failure, grade C30 

The data in Table 5.3 shows a similar tendency for timber grade C30, compared to the data 
for grade C24, as presented in Table 5.2. It can be seen, however, that the influence of the 
quality of the grading machine is larger – an increase in the probability of failure of around 
650 % between the best and worst machine. At the same time, the influence of the machine 
settings is smaller – approximately, up to a 20 % reduction can theoretically be achieved by 
reducing the range of IP. 

5.3.1.3 Grade C40 
Lastly, we look at grade C40. 

 Machine #1 Machine #2 Machine #3 #3/#1 
Setting #1 50.1880 10  50.6061 10  51.5377 10  8.18 
Setting #2 50.1769 10  50.5767 10  51.4845 10  8.39 
Setting #3 50.1620 10  50.5398 10  51.4213 10  8.77 
Setting #4 50.1555 10  50.5244 10  51.3956 10  8.97 

#4/#1 0.827 0.865 0.908  
Table 5.4: Probability of failure, grade C40 

The data for timber grade C40, presented in Table 5.4, shows again the same tendency – an 
increase in the influence of the accuracy of the grading machine, this time around a 750 % 
increase in the probability of failure when going from Machine #1 to Machine #3. The 
influence of the machine settings is even lower – a theoretical reduction of approximately 
15 % by reducing the range of the indicating property. 
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5.3.2 Probability of failure for any machine setting 
In order to have a graphical representation of the probability of failure, the following figures 
show the probability of failure as a function of the machine settings, for each of the three 
grading machines. In order to have the same scale for the machine setting for the different 
grading machines, the lower limit of the range of indicating properties was used. The 
minimum value of the lower limit is the value given when the upper limit goes to infinity, this 
referred to as "Max Range of IP" in the figures. The maximum value of the lower limit is the 
value when the upper limit equals the lower limit, in the figures this is referred to as "Single 
Value of IP". In addition to this, because the different grading machines have indicating 
properties of varying scale, the values were normalized to go from zero to one in the 
following way: 

 min

max min

L L

L L

IP IP

IP IP


 




 

It can easily be seen that when minL LIP IP , the expression equals zero, and when 

maxL LIP IP  , the expression is one. 

 
Figure 5.26: Probability of failure, C24 

The graphs in the figure shows the same extreme values (for machine setting #1 and #4) as 
the ones given in Table 5.2, as expected. It is also easy to see that the accuracy of the grading 
machine has a much larger impact than that of the machine settings. 
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Figure 5.27: Probability of failure, C30 

For timber grade C30, the figure shows the same as the values in the tables; the influence 
from the machine settings are somewhat smaller (curves are a bit "flatter", but also be aware 
that the vertical scale is slightly different), and the gap between the different machines is 
larger. 

 
Figure 5.28: Probability of failure, C40 

The last figure, for grade C40, again shows the same thing, a larger gap between the most and 
least accurate machine, and less influence from the machine settings. 
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6 CONCLUSIONS 

From the calculations and figures presented in chapter 5, it can be seen that a change of 
machine settings, for any of the machines considered, can result in a decrease of the 
probability of failure of a structure by up to around 25 %. This result is based on the timber 
data given, and a different distribution of the indicating property might give a different result. 
In addition, for lower grades than C24 it is possible that the machine settings have a larger 
impact. Still, the result does indicate the order of magnitude that the grading machine settings 
have on the reliability of a structure where the graded timber is to be used. 

In addition, the data presented in chapter 5 shows that the accuracy of the grading machine 
could have a significant impact on the reliability of a structure. It also shows that for higher 
grades, this impact seems to be even larger. Up to more than a 750 % increase in the 
probability of failure was observed from the analysis of the given data. The data given 
consists of five different grading machines (although we only looked at three of them, 
including the most and least accurate), and there might exist other machines with different 
accuracies, which could give, potentially, even larger differences (the range of grading 
machines available and/or in use is not a topic considered in this thesis). 

To sum up, the most significant factor, of the factors considered, with regards to the influence 
of the grading on the reliability of a timber structure, appears, quite strongly, to be the 
accuracy of the grading machine used. The machine settings, in comparison, seem to have a 
relatively low influence on a structure's probability of failure, but it does still have some 
influence. 

The methods and expressions presented in chapters 3 and 4 can be used to perform a similar 
analysis on other sets of data. This can be useful, for example, for analyzing samples from 
other wood species or if one has more accurate knowledge of the distribution of the indicating 
property for a given grading machine. 
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Appendix A COMMON PROBABILITY DISTRIBUTIONS 

In this section, we present common probability distributions used in this thesis. The notation 
is similar to that used in (Gelman, et al., 2014). In general,   represents the variable that 
follows the given distribution. 

A.1 UNIVARIATE NORMAL 

A.1.1 Notation 

 2N ,    

Location:   

Scale: 0   

A.1.2 Density function 

   2

2

1 1
exp

22
p   


    
 

 

A.2 MULTIVARIATE NORMAL 

A.2.1 Notation 

 N ,θ μ Σ  

Location:  1, , d μ   

Symmetric, positive definite, d d  variance matrix: Σ  

A.2.2 Density function 

       
1 122

1
2 exp

2

d T
p 

        
 

θ Σ θ μ Σ θ μ  

A.3 SCALED INVERSE-CHI-SQUARE 

A.3.1 Notation 

 2 2Inv- χ , s   

Degrees of freedom: 0   
Scale: 0s   

A.3.2 Density function 

 
 
 

  2
2

12 22

2

s
p s e



  


 


 



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A.4 UNIVARIATE T 

A.4.1 Notation 

 2t ,    

Degrees of freedom: 0   
Location:   

Scale: 0   

A.4.2 Density function 

    
 

 1 221 2 1
1

2

p
v


  

 

 
           

 

A.5 MULTIVARIATE T 

A.5.1 Notation 

 t ,θ μ Σ  

Degrees of freedom: 0   

Location:  1, , d μ   

Symmetric, positive definite, d d  scale matrix: Σ  

A.5.2 Density function 

    
  

   
  2

1 12

2

2 1
1

2

d
T

d

d
p

v




 
         

 
θ Σ θ μ Σ θ μ  

A.6 GUMBEL MAX 

A.6.1 Notation 

 2Gumbel ,    

Mean:   

Standard deviation: 0   

A.6.2 Density function 

  6 6
exp exp

6 6
p

        
  

        
                               

 

Where  is the Euler–Mascheroni constant. 
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Appendix B MATLAB SCRIPTS AND FUNCTIONS 

In this section, we present the MATLAB scripts and functions used to perform calculations 
and create figures presented in this thesis. These scripts and functions are not meant to show 
how to perform numerical calculations optimally. There are probably much more optimal 
ways of doing it. They are merely presented here for reproducibility, and they could perhaps 
help illustrate a possible approach to how to solve the expressions presented in this paper. The 
version of MATLAB used is R2015a (8.5.0.197613). 

B.1 SCRIPTS 

B.1.1 data.m 
The data.m script only imports the data from the Excel file in where the original data was 
stored, and saves this data to *.mat files: 

%% Import Data 
% 
% This script imports the material and indicating properties from our 
% Excel-file and saves this data to MAT-files. 
%% 
% We clear the workspace and import the data from the Excel file: 
  
clear 
rawdata = xlsread('data.xlsx','AL2:AW71'); 
  
%% Region 1 - Västergötland 
% 
% In this region there is one line that is excluded (due to "rupture in 
% jaws"), and we need to remove this row when putting the data into our 
% variables (because some cells are empty on this row - row 25) 
  
str = [rawdata(1:24,1);rawdata(26:35,1)]; 
MOE = [rawdata(1:24,2);rawdata(26:35,2)]; 
dens = [rawdata(1:24,3);rawdata(26:35,3)]; 
IP_MOR_GE706 = [rawdata(1:24,4);rawdata(26:35,4)]; 
IP_MOE_GE706 = [rawdata(1:24,5);rawdata(26:35,5)]; 
IP_dens_GE706 = [rawdata(1:24,6);rawdata(26:35,6)]; 
IP_MOR_combiscan = [rawdata(1:24,7);rawdata(26:35,7)]; 
IP_MOR_escan = [rawdata(1:24,8);rawdata(26:35,8)]; 
IP_dens_escan = [rawdata(1:24,9);rawdata(26:35,9)]; 
IP_MOR_triomatic = [rawdata(1:24,10);rawdata(26:35,10)]; 
IP_dens_triomatic = [rawdata(1:24,11);rawdata(26:35,11)]; 
IP_Rosegrade = [rawdata(1:24,12);rawdata(26:35,12)]; 
  
% We save all the variables except rawdata to a file and then clear them 
save data_1.mat str MOE dens IP_MOR_GE706 IP_MOE_GE706 IP_dens_GE706 ... 
    IP_MOR_combiscan IP_MOR_escan IP_dens_escan IP_MOR_triomatic ... 
    IP_dens_triomatic IP_Rosegrade 
clearvars -except rawdata 
  
%% Region 2 - Lappland 
% 
% From this region we import all rows, as there are no exclusions 
  
str = rawdata(36:70,1); 
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MOE = rawdata(36:70,2); 
dens = rawdata(36:70,3); 
IP_MOR_GE706 = rawdata(36:70,4); 
IP_MOE_GE706 = rawdata(36:70,5); 
IP_dens_GE706 = rawdata(36:70,6); 
IP_MOR_combiscan = rawdata(36:70,7); 
IP_MOR_escan = rawdata(36:70,8); 
IP_dens_escan = rawdata(36:70,9); 
IP_MOR_triomatic = rawdata(36:70,10); 
IP_dens_triomatic = rawdata(36:70,11); 
IP_Rosegrade = rawdata(36:70,12); 
  
% We save all the variables except rawdata to a file and then clear all 
save data_2.mat str MOE dens IP_MOR_GE706 IP_MOE_GE706 IP_dens_GE706 ... 
    IP_MOR_combiscan IP_MOR_escan IP_dens_escan IP_MOR_triomatic ... 
    IP_dens_triomatic IP_Rosegrade 
clear 
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B.1.2 regression.m 
The regression.m script runs the regression on the imported data, and creates figures of the 
data and regression. 

%% Linear Regression - Strength 
% 
% We look at the sample data given from a specific region and analyze the 
% strength properties from this sample. 
  
%% Importing data 
% 
% We start by importing the data which we will analyze by running a script 
% which will import data from Excel to MAT-files (first checking if the 
% MAT-files have already been created) 
  
if exist('data1.mat','file') && exist('data2.mat','file') 
    vars1 = whos('-file','data1.mat'); 
    vars2 = whos('-file','data2.mat'); 
    if all(ismember({'str' 'MOE' 'dens' 'IP_MOR_GE706' 'IP_MOE_GE706' ... 
            'IP_dens_GE706' 'IP_MOR_combiscan' 'IP_MOR_escan' ... 
            'IP_dens_escan' 'IP_MOR_triomatic' 'IP_dens_triomatic' ... 
            'IP_Rosegrade'}, {vars1.name})) && ... 
            all(ismember({'str' 'MOE' 'dens' 'IP_MOR_GE706' ... 
            'IP_MOE_GE706' 'IP_dens_GE706' 'IP_MOR_combiscan' ... 
            'IP_MOR_escan' 'IP_dens_escan' 'IP_MOR_triomatic' ... 
            'IP_dens_triomatic' 'IP_Rosegrade'}, {vars2.name})) 
    else 
        data 
    end 
else 
    data 
end 
  
clear 
  
% We load the specific data we want below (in each loop) 
  
%% Loops 
% 
% We will run the regression for our 2 different regions, and our 5 
% different grading methods, and create the following for-loops: 
  
% First for each of the two regions: 
% 1 = Västergötland 
% 2 = Lappland 
for Region = 1:2 
     
    % And next for each of the 5 grading machines: 
    % 1 = GoldenEye 706 machine 
    % 2 = Combiscan machine 
    % 3 = E-scan machine 
    % 4 = Triomatic machine 
    % 5 = Rosegrade 
    for Machine = 1:5 
         
        %% Loading data 
        % 
        % We load the data we want to use: 
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        datafile = ['data_' num2str(Region) '.mat']; 
        indicators = {'MOR_GE706','MOR_combiscan','MOR_escan', ... 
            'MOR_triomatic','Rosegrade'}; 
        indicator = indicators{Machine}; 
        IPname = ['IP_' indicator]; 
         
        load(datafile,'str',IPname) 
         
        % Now that we have our data, we put the data for the material 
        % property into the variable MP, and the data for the indicating 
        % property into IP: 
         
        MP = str; 
        IP = eval(IPname); 
        clear('str',IPname,'datafile','indicators','indicator','IPname') 
         
        n = size(MP,1); % Number of observations 
         
        %% Plot Data 
        % 
        % We plot the data in order to see the relation between the 
        % indicating property and the strength, and we also plot the 
        % cumulative sample distribution of IP: 
         
        % We define names of the figures: 
        machines = {'GoldenEye 706','Combiscan','E-scan', ... 
            'Triomatic','Rosegrade'}; 
        name1 = ['IP-Strength [Region ' num2str(Region) ' - ' ... 
            machines{Machine} ']']; 
        name2 = ['Cumulative Sample Distribution - IP [Region ' ... 
            num2str(Region) ' - ' machines{Machine} ']']; 
        name3 = ['Cumulative Sample Distribution - MP [Region ' ... 
            num2str(Region) ']']; 
         
        % First we define our figures: 
        scrsz = get(groot,'ScreenSize'); 
        fig(1) = figure(1); 
        fig(2) = figure(2); 
        fig(3) = figure(3); 
        set(fig(:),'Position',[(3*scrsz(3)-2*scrsz(4))/6 scrsz(4)/4 ... 
            2*scrsz(4)/3 scrsz(4)/2],'Name',name1) 
        set(fig(2),'Name',name2) 
        set(fig(3),'Name',name3) 
         
        clear machines name1 name2 scrsz 
         
        % Next we define our plots: 
        figure(1) % Make active figure 
         
        scatter(IP,MP) 
        xlabel IP 
        ylabel Strength 
         
        figure(2) % Make active figure 
         
        scatter(sort(IP),1/n:1/n:1) 
        xlabel IP 
        ylabel('Cumulative Sample Distribution') 
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        figure(3) % Make active figure 
         
        scatter(sort(MP),1/n:1/n:1) 
        xlabel Strength 
        ylabel('Cumulative Sample Distribution') 
         
        %% Distribution of observations 
        % 
        % We wish to look at how the observations of indicating properties 
        % and material properties are distributed - We assume a lognormal 
        % distribution, and transform our data before performing our 
        % regression 
         
        x = log(IP); 
        y = log(MP); 
         
        E_IP = mean(IP); % Sample mean of indicating property 
        E_x = mean(x); 
        var_IP = var(IP); % Sample variance of indicating property 
        var_x = var(x); 
        std_IP = std(IP); % Sample std deviation of indicating property 
        std_x = std(x); 
         
        E_MP = mean(MP); % Sample mean of material property 
        E_y = mean(y); 
        var_MP = var(MP); % Sample variance of material property 
        var_y = var(y); 
        std_MP = std(MP); % Sample std deviation of material property 
        std_y = std(y); 
         
        % Assuming a lognormal distribution of each population of the 
        % different properties, we choose to draw graphs using the 
        % estimates for mean and variance (to see if a lognormal 
        % distribution seems accurate) 
         
        min_IP = floor(min(IP)/10)*10; % Round lower limit down 
        max_IP = ceil(max(IP)/10)*10; % Round upper limit up 
         
        figure(2) % Make active figure 
         
        hold on 
        fplot(@(IP)normcdf(log(IP),E_x,std_x),[min_IP max_IP]) 
        hold off 
        xlim([min_IP max_IP]) 
         
        min_MP = floor(min(MP)/10)*10; % Round lower limit down 
        max_MP = ceil(max(MP)/10)*10; % Round upper limit up 
         
        figure(3) % Make active figure 
         
        hold on 
        fplot(@(MP)normcdf(log(MP),E_y,std_y),[min_MP max_MP]) 
        hold off 
        xlim([min_MP max_MP]) 
         
        clear min_MP max_MP % These values are no longer of interest 
         
        %% Finding the regression parameters 
        % 
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        % Next we calculate our regression parameters: 
         
        % First we create our X-matrix: 
        X = [ones(n,1) x]; 
         
        % Although, in our calculations, k is always equal to 2, we choose 
        % to define it as follows: 
        k = size(X,2); 
         
        % We choose to define the transpose of X multiplied by X as a 
        % separate variable: 
        XTX = X.'*X; 
         
        % We can now find an estimate for beta as follows: 
        b = XTX\(X.'*y); 
         
        % If we do not know the population variance, sigma, we can find an 
        % estimate from the sample data: 
        s2 = ((y-X*b).'*(y-X*b))/(n-k); 
         
        %% Plot regression line 
        % 
        % We can now choose to plot our regression line into our figure: 
         
        figure(1) % Make active figure 
         
        % Since the regression line is linear before transforming back, we 
        % choose to define the function after transforming back (to get a 
        % smooth curve): 
        PlotMP = @(IP)exp([1 log(IP)]*b); 
        hold on 
        fplot(PlotMP,[min_IP max_IP]); 
        hold off 
        xlim([min_IP max_IP]) 
         
        clear min_IP max_IP PlotMP 
         
        % Lastly we save the figures and variables of intereset and clear 
        % the others from the workspace 
        figname = ['regression_region' num2str(Region) '_machine' ... 
            num2str(Machine) '.fig']; 
        varsname = ['regression_region' num2str(Region) '_machine' ... 
            num2str(Machine) '.mat']; 
        savefig(fig,figname) 
        save(varsname,'b','E_IP','E_MP','E_x','E_y','IP','k','MP','n', ... 
            's2','std_IP','std_MP','std_x','std_y','var_IP','var_MP', ... 
            'var_x','var_y','x','X','XTX','y') 
        clear figname varsname 
    end 
end 
clear Region Machine fig 
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B.1.3 grading.m 
The grading.m script is very slow to run, as it performs many numerical integrations. This 
script calculates ranges of the indicating property for the different machines, and creates plots 
for the distribution of the material property for the different machine settings, grading 
machines and timber grades. 

%% Grading 
% 
% Given a linear regression of a set of indicating properties and 
% corresponding material properties, we look at the effect of different 
% ranges of indicating property and use of different grading machines on 
% the distribution of the material property for different timber grades. 
% We will use numerical integration to find our values (as opposed to 
% simulation). 
% 
% THIS SCRIPT IS VERY SLOW - MAY TAKE OVER AN HOUR, DEPENDING ON THE 
% TOLERANCE OF THE PLOTS!!! 
  
%% Importing data 
% 
% We start by checking if the regression script has been run, and if not, 
% run it. 
  
if exist('regression_region1_machine1.mat','file') && ... 
        exist('regression_region1_machine2.mat','file') && ... 
        exist('regression_region1_machine3.mat','file') && ... 
        exist('regression_region1_machine4.mat','file') && ... 
        exist('regression_region2_machine1.mat','file') && ... 
        exist('regression_region2_machine2.mat','file') && ... 
        exist('regression_region2_machine3.mat','file') && ... 
        exist('regression_region2_machine4.mat','file') 
    vars1 = whos('-file','regression_region1_machine1.mat'); 
    vars2 = whos('-file','regression_region1_machine2.mat'); 
    vars3 = whos('-file','regression_region1_machine3.mat'); 
    vars4 = whos('-file','regression_region1_machine4.mat'); 
    vars5 = whos('-file','regression_region2_machine1.mat'); 
    vars6 = whos('-file','regression_region2_machine2.mat'); 
    vars7 = whos('-file','regression_region2_machine3.mat'); 
    vars8 = whos('-file','regression_region2_machine4.mat'); 
    if all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars1.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars2.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars3.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars4.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars5.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars6.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars7.name})) && ... 
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            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars8.name})) 
    else 
        regression 
    end 
else 
    regression 
end 
  
clear 
  
%% Choice of data 
% 
% We are interested in seeing the effect of different grading machines and 
% the effect of different ranges of indicating property, we therefore 
% choose to run this script for one region (differences between regions are 
% not of interest here), and we choose to look at 3 different machines: 
% from the regression we choose the one with the smallest variance, the one 
% with the largest variance and one in the middle. We are only interested 
% in the relative difference between good and bad grading machines, so we 
% will exclude the names of the machines here, and just call them, from 
% best to worst: "Machine #1", "Machine #2" and Machine #3". 
  
% We first choose one of our two regions: 
% 1 = Västergötland 
% 2 = Lappland 
Region = 1; 
  
% Next we choose which grading machines to look at: 
variance = zeros(5,1); 
for Machine = 1:5 
    regfile = ['regression_region' num2str(Region) '_machine' ... 
        num2str(Machine) '.mat']; 
    load(regfile,'s2') 
    variance(Machine) = s2; 
end 
clear Machine regfile s2 
  
machine = zeros(3,1); 
  
% We find which machine has the lowest variance: 
[~,machine(1)] = min(variance); 
  
% Next we find the machine with the highest variance: 
[~,machine(3)] = max(variance); 
  
% And lastly we find the machine with the value closest to the mean of the 
% highest and lowest: 
mid = (variance(machine(1))+variance(machine(3)))./2; 
temp = abs(variance - mid); 
[~,machine(2)] = min(temp); 
clear mid temp variance 
  
% We want to run the script for each of three grades: 
% 1 = C24 
% 2 = C30 
% 3 = C40 
% The values of the fractiles we are interested in for the different 
% grades: 



Appendix B: MATLAB Scripts and Functions 
 

61 

grades = {24 30 40}; % The 5 % fractiles 
  
%% Input parameters 
% 
% We choose some input parameters, the percent fractile we are interested 
% in (this is normally 5 % for strength), the number of different ranges of 
% indicating property we want to look at, and the accuracy of the graphs we 
% will make: 
  
fract = 0.05; % The fractile we are interested in 
numRange = 4; % Number of different ranges of IP for each grade 
if numRange < 2 
    error('numRange must be an integer of value 2 or greater') 
end 
  
% Since the function for our distribution is very slow to compute, we 
% choose to set a custom tolerance for the plots (we can set this lower to 
% get more precise plots - default value 2e-3): 
tol = 2e-3; 
  
%% Finding limits of indicating property 
% 
% Given the calculations from the regression we want to find our limits for 
% the indicating property. We use our custom functions 'find_xL', 'find_xH' 
% and 'find_x'. 
  
limits = zeros(numRange,2,3,3); % Preallocation 
  
for Machine = 1:3 
    % We load the data we want to use: 
    regfile = ['regression_region' num2str(Region) '_machine' ... 
        num2str(machine(Machine)) '.mat']; 
     
    load(regfile) 
     
    clear regfile 
     
    for Grade = 1:3 
        grade = grades{Grade}; 
         
        % We start by finding the mimimum lower limit possible (when upper 
        % limit goes to infinity): 
        % Upper limit: 
        limits(1,2,Grade,Machine) = Inf; 
        % Lower limit: 
        limits(1,1,Grade,Machine) = find_xL(b,s2,n,XTX,E_x,var_x,n, ... 
            limits(1,2,Grade,Machine),fract,grade); 
         
        % Next we find the theoretically maximum lower limit (when upper 
        % limit equals lower limit). This is not a valid range of IP (as 
        % xL=xH), but we calculate it to show the extremes in either 
        % direction: 
        % Upper limit = lower limit: 
        limits(numRange,:,Grade,Machine) = find_x(b,s2,n,XTX,fract,grade); 
         
        % Next we define our remaining lower limits (xL), and calculate the 
        % corresponding upper limits (xH): 
        if numRange > 2 
            a = (limits(numRange,1,Grade,Machine)- ... 
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                limits(1,1,Grade,Machine))./sum(1:(numRange-1)); 
            for t = 2:(numRange-1) 
                % Lower limit: 
                limits(t,1,Grade,Machine) = ... 
                    limits((t-1),1,Grade,Machine)+(t-1).*a; 
                % Upper limit: 
                limits(t,2,Grade,Machine) = find_xH(b,s2,n,XTX,E_x, ... 
                    var_x,n,limits(t,1,Grade,Machine),fract,grade); 
            end 
            clear a 
        end 
    end 
end 
  
clear Machine Grade grade t 
  
%% Range of plots 
% 
% We need to set the limits for our plots, and we will set one range when 
% plotting the distributions of ln(MP), and one range when plotting the 
% distributions of MP (MP = Material Property, in our case strength). We 
% will make different ranges for the different grades. The widest spread is 
% from IP-range with upper limit to infinity and from machine 3 (the least 
% accurate). 
  
% We need to load the data we will use: 
regfile = ['regression_region' num2str(Region) '_machine' ... 
    num2str(machine(3)) '.mat']; 
  
load(regfile) 
  
clear regfile 
  
% Preallocation of array with ranges for  MP (for use in figures): 
plotRange = zeros(3,2); 
deltaL = 1e-4; % How far from 0 we want our lower value to be 
deltaU = 5e-3; % How far from 1 we want our upper value to be 
for Grade = 1:3 
    plotRange(Grade,:) = plot_range(b,s2,n,XTX,E_x,var_x,n, ... 
        limits(1,1,Grade,3),limits(1,2,Grade,3), ... 
        deltaL,deltaU); 
end 
clear deltaL deltaU Grade 
  
%% Plots 
% 
% Now that we have our limits, we can plot our distributions, using our 
% custom function, 'distr'. We start by saving the different plots' 
% abscissas and ordinates, and then we will combine the different plots 
% into comparative figures. 
  
plots = cell(2,2,numRange,3,3); % Preallocation 
  
for Machine = 1:3 
    % We load the data we want to use: 
    regfile = ['regression_region' num2str(Region) '_machine' ... 
        num2str(machine(Machine)) '.mat']; 
     
    load(regfile) 
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    clear regfile 
     
    for Grade = 1:3 
        grade = grades{Grade}; 
         
         
        %% Range of IP 
        % 
        % Now we make plots for the different ranges of indicating property 
        for t = 1:(numRange) 
            % First we define our function handles for the probability 
            % density and the cumulative distribution. These are different 
            % when we have a single value of x (xL=xH). 
            if t < numRange 
                [PDF,CDF] = distr(b,s2,n,XTX,E_x,var_x,n, ... 
                    limits(t,1,Grade,Machine),limits(t,2,Grade,Machine)); 
            else 
                % For a single value of x, we have a t distribution as 
                % follows: 
                 
                % We calculate the mean of y: 
                mean_y = b(1)+b(2).*limits(numRange,1,Grade,Machine); 
                 
                % And we calculate the scale of the distribution: 
                scale_y = sqrt(s2*(1+ ... 
                    [1 limits(numRange,1,Grade,Machine)]* ... 
                    (XTX\[1;limits(numRange,1,Grade,Machine)]))); 
                PDF = @(y)pdf('tLocationScale',y,mean_y,scale_y,n-2); 
                CDF = @(y)cdf('tLocationScale',y,mean_y,scale_y,n-2); 
                clear mean_y scale_y 
            end 
             
            % Name of plot: 
            plotname = ['plot_region' num2str(Region) '_machine' ... 
                num2str(Machine) '_C' num2str(grade) '_IPrange' ... 
                num2str(t)]; 
             
            % Plot of the cumulative distribution of MP: 
            [Xplot,Yplot] = fplot(CDF,log(plotRange(Grade,:)),tol); 
            plots{1,1,t,Grade,Machine} = exp(Xplot); 
            plots{1,2,t,Grade,Machine} = Yplot; 
             
            % Plot of the probability density of MP: 
            [Xplot,Yplot] = fplot(PDF,log(plotRange(Grade,:)),tol); 
            plots{2,1,t,Grade,Machine} = exp(Xplot); 
            plots{2,2,t,Grade,Machine} = Yplot; 
             
            clear Xplot Yplot 
             
        end 
        clear PDF CDF t 
    end 
    clear Grade grade 
end 
clear Machine machine 
  
%% Save 
% 
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% We choose to save the plotdata and limits of indicating property: 
save grading.mat limits plots 
  
%% Figures 
% 
% Now that we have the plot data for each combination of range of IP, grade 
% and machine, we make our figures of interest. 
  
% We want to have 2 figures for each combination, and define the size of 
% these first: 
scrsz = get(groot,'ScreenSize'); 
  
fig(1) = figure(1); 
set(fig(1),'Position',[(3*scrsz(3)-4*scrsz(4))/6 scrsz(4)/4 ... 
            4*scrsz(4)/3 scrsz(4)/2]) 
  
fig(2) = figure(2); 
set(fig(2),'Position',[(3*scrsz(3)-2*scrsz(4))/6 scrsz(4)/4 ... 
            2*scrsz(4)/3 scrsz(4)/2]) 
  
clear scrsz 
  
%% 1. Range of IP 
% 
% For a given machine and grade, we look at how the different range of IP 
% effects the distribution of MP: 
  
for Machine = 1:3 
    for Grade = 1:3 
        grade = grades{Grade}; 
         
        % We define the names on our legends. 
        plotNames = cell(numRange,1); 
        for t = 1:numRange 
            if exp(limits(t,1,Grade,Machine)) >= 1000 
                limL = sprintf('%.0f',exp(limits(t,1,Grade,Machine))); 
            else 
                limL = sprintf('%.2f',exp(limits(t,1,Grade,Machine))); 
            end 
            if limits(t,2,Grade,Machine) == Inf 
                limU = '\infty'; 
            elseif exp(limits(t,2,Grade,Machine)) >= 1000 
                limU = sprintf('%.0f',exp(limits(t,2,Grade,Machine))); 
            else 
                limU = sprintf('%.2f',exp(limits(t,2,Grade,Machine))); 
            end 
            if t < numRange 
                plotNames(t) = cellstr(['IP: ',limL,' - ',limU]); 
            else 
                plotNames(t) = cellstr(['IP: ',limL]); 
            end 
        end 
        clear limL limU t 
         
         
        % We define names of the figures: 
        name1 = ['Cumulative Distribution - C' num2str(grade) ... 
            ' [Machine #' num2str(Machine) ']']; 
        name2 = ['Probability Density - C' num2str(grade) ' [Machine #' ... 
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            num2str(Machine) ']']; 
         
        % And now we can make our plots: 
         
        % The first figure shows the cumulative distribution of MP: 
        fig(1) = figure(1); 
        clf 
        set(fig(1),'Name',name1) 
         
        subplot(1,2,1) 
        hold on 
        for t=1:numRange 
            plot(plots{1,1,t,Grade,Machine},plots{1,2,t,Grade,Machine}) 
        end 
        hold off 
        legend(plotNames,'Location','southeast') 
        xlim(plotRange(Grade,:)) 
        ylim([0 1]) 
        xlabel('Strength') 
        ylabel('Cummulative Distribution') 
         
        % This subplot is a zoomed in view of the plot above: 
        subplot(1,2,2) 
        hold on 
        for t=1:numRange 
            plot(plots{1,1,t,Grade,Machine},plots{1,2,t,Grade,Machine}) 
        end 
        % We also want to plot and indicator of where the wanted fractile 
        % for the grade is: 
        plot([grade-10 grade grade],[fract fract 0],':k') 
        hold off 
        legend([plotNames;'5 % Fractile'],'Location','northwest') 
        axis([grade-10 grade+4 0 0.07]) 
        xlabel('Strength') 
        ylabel('Cummulative Distribution') 
         
        % The second figure shows the probability density of MP: 
        fig(2) = figure(2); 
        clf 
        set(fig(2),'Name',name2) 
        hold on 
        for t=1:numRange 
            plot(plots{2,1,t,Grade,Machine},plots{2,2,t,Grade,Machine}) 
        end 
        hold off 
        set(gca,'YTickLabel',[]) 
        legend(plotNames,'Location','northeast') 
        xlim(plotRange(Grade,:)) 
        xlabel('Strength') 
        ylabel('Probability Density') 
         
        clear name1 name2 plotNames 
         
        %% Save 
        % 
        % Lastly we save the figures: 
        figname = ['grading_machine' num2str(Machine) '_C' ... 
            num2str(grade) '.fig']; 
        savefig(fig,figname) 
        clear figname 
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    end 
end 
clear Machine Grade grade t 
  
%% 2. Different grading machines 
% 
% For a given grade and distribution of indicating property, we look at how 
% different grading machines effect the distribution of the material 
% property. The indicating properties are, naturally, different from 
% machine to machine, but we use, relatively, a similar distribution 
% between the two extreme cases (upper limit to infinity and upper limit 
% equal to lower limit). 
  
for Grade = 1:3 
    grade = grades{Grade}; 
    for t = 1:numRange 
         
        % We define the names on our legends. 
        plotNames = cell(3,1); 
        for Machine = 1:3 
            plotNames(Machine) = cellstr(['Machine #' ... 
                num2str(Machine)]); 
        end 
        clear Machine 
         
        % We define names of the figures: 
        name1 = ['Cumulative Distribution - C' num2str(grade) ... 
            ' [IP range #' num2str(t) ']']; 
        name2 = ['Probability Density - C' num2str(grade) ... 
            ' [IP range #' num2str(t) ']']; 
         
        % And now we can make our plots: 
         
        % The first figure shows the cumulative distribution of MP: 
        fig(1) = figure(1); 
        clf 
        set(fig(1),'Name',name1) 
         
        subplot(1,2,1) 
        hold on 
        for Machine=1:3 
            plot(plots{1,1,t,Grade,Machine},plots{1,2,t,Grade,Machine}) 
        end 
        hold off 
        legend(plotNames,'Location','southeast') 
        xlim(plotRange(Grade,:)) 
        ylim([0 1]) 
        xlabel('Strength') 
        ylabel('Cummulative Distribution') 
         
        % This subplot is a zoomed in view of the plot above: 
        subplot(1,2,2) 
        hold on 
        for Machine=1:3 
            plot(plots{1,1,t,Grade,Machine},plots{1,2,t,Grade,Machine}) 
        end 
        % We also want to plot and indicator of where the wanted fractile 
        % for the grade is: 
        plot([grade-10 grade grade],[fract fract 0],':k') 
        hold off 
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        legend([plotNames;'5 % Fractile'],'Location','northwest') 
        axis([grade-10 grade+4 0 0.07]) 
        xlabel('Strength') 
        ylabel('Cummulative Distribution') 
         
        % The second figure shows the probability density of MP: 
        fig(2) = figure(2); 
        clf 
        set(fig(2),'Name',name2) 
        hold on 
        for Machine=1:3 
            plot(plots{2,1,t,Grade,Machine},plots{2,2,t,Grade,Machine}) 
        end 
        hold off 
        set(gca,'YTickLabel',[]) 
        legend(plotNames,'Location','northeast') 
        xlim(plotRange(Grade,:)) 
        xlabel('Strength') 
        ylabel('Probability Density') 
         
        clear name1 name2 plotNames 
         
        %% Save 
        % 
        % Lastly we save the figures: 
        figname = ['grading_IPrange' num2str(t) '_C' num2str(grade) ... 
            '.fig']; 
        savefig(fig,figname) 
        clear figname 
         
    end 
end 
clearvars -except limits plots 
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B.1.4 reliability.m 
The reliability.m script calculates the probability of failure for a set of machine settings, but 
also creates graphs showing how the probability of failure varies for the different machine 
settings. The script is quite slow to run, but by commenting out the graph-part of the code, it 
runs a lot faster. 

%% Structural Reliability 
% 
% We will, given our distribution of the material resistance, and a 
% distribution of the load (stress), evaluate the reliability of the 
% structure. We will do this by calculating the probability of failure. 
% 
% THIS SCRIPT IS VERY SLOW - MAY TAKE CLOSE TO AN HOUR, DEPENDING ON THE 
% ACCURACY OF THE PLOTS!!! 
  
%% Importing data 
% 
% We start by checking if the regression script has been run, and if not, 
% run it. 
  
if exist('regression_region1_machine1.mat','file') && ... 
        exist('regression_region1_machine2.mat','file') && ... 
        exist('regression_region1_machine3.mat','file') && ... 
        exist('regression_region1_machine4.mat','file') && ... 
        exist('regression_region2_machine1.mat','file') && ... 
        exist('regression_region2_machine2.mat','file') && ... 
        exist('regression_region2_machine3.mat','file') && ... 
        exist('regression_region2_machine4.mat','file') 
    vars1 = whos('-file','regression_region1_machine1.mat'); 
    vars2 = whos('-file','regression_region1_machine2.mat'); 
    vars3 = whos('-file','regression_region1_machine3.mat'); 
    vars4 = whos('-file','regression_region1_machine4.mat'); 
    vars5 = whos('-file','regression_region2_machine1.mat'); 
    vars6 = whos('-file','regression_region2_machine2.mat'); 
    vars7 = whos('-file','regression_region2_machine3.mat'); 
    vars8 = whos('-file','regression_region2_machine4.mat'); 
    if all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars1.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars2.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars3.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars4.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars5.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars6.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars7.name})) && ... 
            all(ismember({'MP','IP','n','x','y','E_IP','E_x','var_IP', ... 
            'var_x','std_IP','std_x','E_MP','E_y','var_MP','var_y', ... 
            'std_MP','std_y','X','k','XTX','b','s2'}, {vars8.name})) 
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    else 
        regression 
    end 
else 
    regression 
end 
  
clear 
  
%% Choice of data 
% 
% We are interested in seeing the effect of different grading machines and 
% the effect of different ranges of indicating property, we therefore 
% choose to run this script for one region (differences between regions are 
% not of interest here), and we choose to look at 3 different machines: 
% from the regression we choose the one with the smallest variance, the one 
% with the largest variance and one in the middle. We are only interested 
% in the relative difference between good and bad grading machines, so we 
% will exclude the names of the machines here, and just call them, from 
% best to worst: "Machine #1", "Machine #2" and Machine #3". 
  
% We first choose one of our two regions: 
% 1 = Västergötland 
% 2 = Lappland 
Region = 1; 
  
% Next we choose which grading machines to look at: 
variance = zeros(5,1); 
for Machine = 1:5 
    regfile = ['regression_region' num2str(Region) '_machine' ... 
        num2str(Machine) '.mat']; 
    load(regfile,'s2') 
    variance(Machine) = s2; 
end 
clear Machine regfile s2 
  
machine = zeros(3,1); 
  
% We find which machine has the lowest variance: 
[~,machine(1)] = min(variance); 
  
% Next we find the machine with the highest variance: 
[~,machine(3)] = max(variance); 
  
% And lastly we find the machine with the value closest to the mean of the 
% highest and lowest: 
mid = (variance(machine(1))+variance(machine(3)))./2; 
temp = abs(variance - mid); 
[~,machine(2)] = min(temp); 
clear mid temp variance 
  
% We want to run the script for each of three grades: 
% 1 = C24 
% 2 = C30 
% 3 = C40 
% The values of the fractiles we are interested in for the different 
% grades: 
grades = {24 30 40}; % The 5 % fractiles 
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%% Input parameters 
% 
% We choose some input parameters, the percent fractile we are interested 
% in (this is normally 5 % for strength), the number of different ranges of 
% indicating property we want to look at, and the accuracy of the graphs we 
% will make: 
  
fract = 0.05; % The fractile we are interested in 
numRange = 4; % Number of different ranges of IP for each grade 
if numRange < 2 
    error('numRange must be an integer of value 2 or greater') 
end 
  
% When creating the continous graph of probability of failure for a given 
% machines, we choose how many points on the plot we want to calculate. 
% Setting this value to 100 made this script run for approx 45 minutes. 
% Since the line of the plot is fairly straight, it is not recommended to 
% use any higher value than this (can reduce this and still get usable 
% graphs). 
plotPoints = 100; 
  
%% Finding limits of indicating property 
% 
% Given the calculations from the regression we want to find our limits for 
% the indicating property. We use our custom functions 'find_xL', 'find_xH' 
% and 'find_x'. 
  
% We first check if the grading script has already been run, if so, we just 
% import the limits already calculated there: 
if exist('grading.mat','file') 
    vars = whos('-file','grading.mat'); 
    if all(ismember({'limits','plots'}, {vars.name})) 
        load('grading.mat','limits') 
    end 
    clear vars 
end 
  
if exist('limits','var') 
else 
    limits = zeros(numRange,2,3,3); % Preallocation 
     
    for Machine = 1:3 
        % We load the data we want to use: 
        regfile = ['regression_region' num2str(Region) '_machine' ... 
            num2str(machine(Machine)) '.mat']; 
         
        load(regfile) 
         
        clear regfile 
         
        for Grade = 1:3 
            grade = grades{Grade}; 
             
            % We start by finding the mimimum lower limit possible (when 
            % upper limit goes to infinity): 
            % Upper limit: 
            limits(1,2,Grade,Machine) = Inf; 
            % Lower limit: 
            limits(1,1,Grade,Machine) = find_xL(b,s2,n,XTX,E_x,var_x,n, ... 
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                limits(1,2,Grade,Machine),fract,grade); 
             
            % Next we find the theoretically maximum lower limit (when 
            % upper limit equals lower limit). This is not a valid range of 
            % IP (as xL=xH), but we calculate it to show the extremes in 
            % either direction: 
            % Upper limit = lower limit: 
            limits(numRange,:,Grade,Machine) = find_x(b,s2,n,XTX,fract, ... 
                grade); 
             
            % Next we define our remaining lower limits (xL), and calculate 
            % the corresponding upper limits (xH): 
            if numRange > 2 
                a = (limits(numRange,1,Grade,Machine)- ... 
                    limits(1,1,Grade,Machine))./sum(1:(numRange-1)); 
                for t = 2:(numRange-1) 
                    % Lower limit: 
                    limits(t,1,Grade,Machine) = ... 
                        limits((t-1),1,Grade,Machine)+(t-1).*a; 
                    % Upper limit: 
                    limits(t,2,Grade,Machine) = find_xH(b,s2,n,XTX,E_x, ... 
                        var_x,n,limits(t,1,Grade,Machine),fract,grade); 
                end 
                clear a 
            end 
        end 
    end 
end 
  
clear Machine Grade grade t 
  
%% Distribution of load 
% 
% We have defined the distribution of our material resistance already (from 
% our custom function 'distr.m'). We will now also define the distribution 
% of the load. 
  
% We choose to use an extreme value distribution for our load (Gumbel Max). 
% We have the following parameters for the distribution: 
  
% Mean value 
E_S0 = 1; 
  
% Coefficient of variation 
cov_S = 0.2; 
  
% Standard deviation 
std_S0 = E_S0.*cov_S; 
  
% The Gumbel Max distribution, expressed with regards to the mean and 
% standard deviation, and with ln(strength) as the input variable, can be 
% expressed with the following parameters: 
  
a = pi()./(std_S0.*sqrt(6)); 
u = E_S0-double(eulergamma)./a; 
  
%% Relation between distributions 
% 
% We want the distribution of the material resistance and the distribution 
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% of the stress (load) to follow a relation as indicated by the structural 
% codes (the ultimate limit), and we do this by calculating the structural 
% factor, z, for the different grades: 
  
% Safety factors: 
gamma_R = 1.3; 
gamma_S = 1.5; 
  
% Characteristic load: 
s_k = u - log(-log(0.98))./a; 
  
z = zeros(3,1); 
for Grade = 1:3 
    grade = grades{Grade}; 
    z(Grade) = grade./(s_k.*gamma_S.*gamma_R); 
end 
clear Grade grade gamma_R gamma_S s_k 
  
%% Distribution of z*S 
% 
% We want to use the distribution of z*S when calculating the probability 
% of failure, and this distribution is also a Gumbel distribution, but with 
% an adjusted value for the mean and standard deviation: 
  
% We express the distribution for the different grades: 
  
F_S = cell(3,1); 
for Grade = 1:3 
    E_S = E_S0.*z(Grade); % New mean 
    std_S = E_S.*cov_S; % New standard deviation 
    a = pi()./(std_S.*sqrt(6)); 
    u = E_S-double(eulergamma)./a; 
    F_S{Grade} = @(y)exp(-exp(-a.*(exp(y)-u))); 
end 
  
clear Grade E_S0 cov_S std_S0 E_S std_S a u 
  
%% Probability of failure 
% 
% We can now calculate the probability of failure, using our custom 
% function, 'failure': 
  
Pf = zeros(numRange,1,3,3); 
plots = cell(1,2,3,3); 
  
for Machine = 1:3 
    % We load the data we want to use: 
    regfile = ['regression_region' num2str(Region) '_machine' ... 
        num2str(machine(Machine)) '.mat']; 
     
    load(regfile) 
     
    clear regfile 
     
    for Grade = 1:3 
        for t = 1:numRange 
            if t<numRange 
                % The probability of failure is: 
                Pf(t,1,Grade,Machine) = failure(b,s2,n,XTX,E_x,var_x,n, ... 
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                    limits(t,1,Grade,Machine), ... 
                    limits(t,2,Grade,Machine), F_S{Grade}); 
            else 
                % For a single value of x, we have a t distribution as 
                % follows: 
                 
                % We calculate the mean of y: 
                mean_y = b(1)+b(2).*limits(numRange,1,Grade,Machine); 
                 
                % And we calculate the scale of the distribution: 
                scale_y = sqrt(s2*(1+ ... 
                    [1 limits(numRange,1,Grade,Machine)]* ... 
                    (XTX\[1;limits(numRange,1,Grade,Machine)]))); 
                f_R = @(y)pdf('tLocationScale',y,mean_y,scale_y,n-2); 
                g = @(y)f_R(y).*F_S{Grade}(y); 
                Pf(t,1,Grade,Machine) = 1-integral(g,-Inf,Inf); 
                clear mean_y scale_y f_R g 
            end 
        end 
         
        % In addition to calculating the probability of failure for given 
        % values of xL and xH, we can make plots showing how the structural 
        % reliability varies with the indicating property for the different 
        % machines. 
         
        % We can get a graph by choosing descrete points of xL, calculate 
        % corresponding values for xH, and use this to make the plot. 
         
        grade = grades{Grade}; 
        xL_min = limits(1,1,Grade,Machine); 
        xL_max = limits(numRange,1,Grade,Machine); 
        xL = (xL_min:((xL_max-xL_min)/(plotPoints-1)):xL_max).'; 
        xH = zeros(size(xL)); 
        Pf_plot = xH; 
         
        for x_L = 1:plotPoints 
            xH(x_L) = find_xH(b,s2,n,XTX,E_x,var_x,n,xL(x_L),fract,grade); 
            Pf_plot(x_L) = failure(b,s2,n,XTX,E_x,var_x,n,xL(x_L), ... 
                xH(x_L),F_S{Grade}); 
        end 
        plots{1,1,Grade,Machine} = (exp(xL)-exp(xL_min))./(exp(xL_max)- ... 
            exp(xL_min)); 
        plots{1,2,Grade,Machine} = Pf_plot; 
        clear PlotPoints grade xL_min xL_max xL xH Pf_plot 
    end 
end 
  
%% Plots 
% 
% We choose to plot the distribution of the probability of failure as a 
% function of the lower limit of IP, comparing grading machines in the same 
% figure. We create a separate figure for each grade. 
  
% We define the names on our legends. 
plotNames = cell(3,1); 
for Machine = 1:3 
    plotNames(Machine) = cellstr(['Machine #' num2str(Machine)]); 
end 
clear Machine 
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% We define our figure 
scrsz = get(groot,'ScreenSize'); 
fig(1) = figure(1); 
set(fig(1),'Position',[(3*scrsz(3)-2*scrsz(4))/6 scrsz(4)/4 ... 
    2*scrsz(4)/3 scrsz(4)/2]) 
  
for Grade = 1:3 
    grade = grades{Grade}; 
    % We name our figure: 
    name = ['Probability of failure - C' num2str(grade)]; 
    fig(1) = figure(1); 
    clf 
    set(fig(1),'Name',name) 
     
    % And we create our plots: 
    hold on 
    for Machine = 1:3 
        plot(plots{1,1,Grade,Machine},plots{1,2,Grade,Machine}) 
    end 
    legend(plotNames,'Location','southeast') 
    xlabel('Machine Settings') 
    ylabel('Probability of Failure') 
    xlim([0 1]) 
    set(gca,'XTick',[0 1],'XTickLabel',{'Max Range of IP', ... 
        'Single Value of IP'}) 
     
    %% Save 
    % 
    % Lastly we save the figures: 
    figname = ['reliability_C' num2str(grade) '.fig']; 
    savefig(fig,figname) 
    clear figname 
end 
  
%% Save 
% 
% We save the data we have found and remove the other variables 
  
clearvars -except F_S Pf plots 
save reliability.mat 
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B.2 FUNCTIONS 

B.2.1 find_x.m 

The find_x.m function calculates the value of x when L Hx x x  . 

function x = find_x(E_beta,s2,n,XTX,fr,grade) 
% The function returns the value of x (xL=xH) 
  
% First we read each element of the XTX matrix in order to avoid matrix 
% operations in the integration below 
a = XTX(1,1); 
b = XTX(1,2); 
c = XTX(2,1); 
d = XTX(2,2); 
  
% We define our degrees of freedom (from the regression) 
nu = n-2; 
  
% Next we define the cumulative distribution of y as a function of x, and 
% subtract the fractile we are interested in (If we want to find a 5 % 
% fractile, we subtract 0.05), so that the function equals 0 at this point. 
    function t = f(x) 
        % We calculate the mean of y (logarithm of material property) 
        E_y = E_beta(1)+E_beta(2).*x; 
        % Next we calculate the scale of the distribution: 
        scale_y = sqrt(s2.*(1+1./a+(x-b/a).*(a.*x-c)./(a.*d-b.*c))); 
        % Now we can find the cumulative distribution of y, and subtract 
        % the fractile: 
        t = cdf('tLocationScale',log(grade),E_y,scale_y,nu)-fr; 
    end 
  
% Given the distribution, we can find the value of x which makes the 
% function zero: 
x = fzero(@f,(log(grade)-E_beta(1))./E_beta(2)); 
end 
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B.2.2 find_xH.m 

The find_xH function calculates the value of Hx , given a value of Lx  

function xH = find_xH(E_beta,s2,n,XTX,E_x,s2x,nx,xL,fr,grade) 
% The function returns the upper limit, given the lower 
  
% First we read each element of the XTX matrix in order to avoid matrix 
% operations in the integration below 
a = XTX(1,1); 
b = XTX(1,2); 
c = XTX(2,1); 
d = XTX(2,2); 
  
% We defines our degrees of freedom, from the regression, and for the 
% distribution of the indicating property: 
nuy = n-2; % Regression 
nux = nx-1; % IP 
  
% We calculate the square of the scale of the distribution of x: 
sscale_x = (1+1./nx).*s2x; 
  
% Now we define the inner function which we will integrate in order to find 
% our cumulative distribution: 
    function u = f(x,y) 
        % We calculate the mean of y: 
        E_y = E_beta(1)+E_beta(2).*x; 
        % Next we calculate the square of the scale of the distribution: 
        sscale_y = s2.*(1+1./a+(x-b/a).*(a.*x-c)./(a.*d-b.*c)); 
        % And finally we define our inner function: 
        u = (1+(x-E_x).^2./(nux.*sscale_x)).^(-(nux+1)./2).*sscale_y.^ ... 
            (-1/2).*(1+(y-E_y).^2./(nuy.*sscale_y)).^(-(nuy+1)./2); 
    end 
  
% Next we calculate the cumulative distribution of y as a function of xH, 
% and subtract the fractile we are interested in (If we want to find a 5 % 
% fractile, we subtract 0.05), so that the function equals 0 at this point. 
    function t = g(xH) 
        % We first need to find the reciprocal of the normalizing constant: 
        function w = C 
            w = integral2(@f,xL,xH,-Inf,Inf); 
        end 
        % Then we can calculate the distribution and subtract the fractile: 
        t = integral2(@f,xL,xH,-Inf,log(grade))./C-fr; 
    end 
  
% Given the distribution, we can find the value of xH which makes the 
% function zero: 
xH = fzero(@g,(log(grade)-E_beta(1))./E_beta(2)); 
end 
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B.2.3 find_xL.m 

The find_xL function calculates the value of Lx , given a value of Hx  

function xL = find_xL(E_beta,s2,n,XTX,E_x,s2x,nx,xH,fr,grade) 
% The function returns the upper limit, given the lower 
  
% First we read each element of the XTX matrix in order to avoid matrix 
% operations in the integration below 
a = XTX(1,1); 
b = XTX(1,2); 
c = XTX(2,1); 
d = XTX(2,2); 
  
% We defines our degrees of freedom, from the regression, and for the 
% distribution of the indicating property: 
nuy = n-2; % Regression 
nux = nx-1; % IP 
  
% We calculate the square of the scale of the distribution of x: 
sscale_x = (1+1./nx).*s2x; 
  
% Now we define the inner function which we will integrate in order to find 
% our cumulative distribution: 
    function u = f(x,y) 
        % We calculate the mean of y: 
        E_y = E_beta(1)+E_beta(2).*x; 
        % Next we calculate the square of the scale of the distribution: 
        sscale_y = s2.*(1+1./a+(x-b/a).*(a.*x-c)./(a.*d-b.*c)); 
        % And finally we define our inner function: 
        u = (1+(x-E_x).^2./(nux.*sscale_x)).^(-(nux+1)./2).*sscale_y.^ ... 
            (-1/2).*(1+(y-E_y).^2./(nuy.*sscale_y)).^(-(nuy+1)./2); 
    end 
  
% Next we calculate the cumulative distribution of y as a function of xL, 
% and subtract the fractile we are interested in (If we want to find a 5 % 
% fractile, we subtract 0.05), so that the function equals 0 at this point. 
    function t = g(xL) 
        % We first need to find the reciprocal of the normalizing constant: 
        function w = C 
            w = integral2(@f,xL,xH,-Inf,Inf); 
        end 
        % Then we can calculate the distribution and subtract the fractile: 
        t = integral2(@f,xL,xH,-Inf,log(grade))./C-fr; 
    end 
  
% Given the distribution, we can find the value of xL which makes the 
% function zero: 
xL = fzero(@g,(log(grade)-E_beta(1))./E_beta(2)); 
end 
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B.2.4 distr.m 
The distr.m function returns the probability density function and the cumulative distribution 
function for the material property, given range of indicating property. 

function [PDF,CDF] = distr(E_beta,s2,n,XTX,E_x,s2x,nx,xL,xH) 
% This function returns the probability density function and the cumulative 
% distribution function of the material property, given a range of the 
% indicating property 
  
PDF = @dens; % Function handle for the probability density 
CDF = @cumul; % Function handle for the cumulative distribution 
  
% We read each element of the XTX matrix in order to avoid matrix 
% operations in the integration below 
a = XTX(1,1); 
b = XTX(1,2); 
c = XTX(2,1); 
d = XTX(2,2); 
  
% We defines our degrees of freedom, from the regression, and for the 
% distribution of the indicating property: 
nuy = n-2; % Regression 
nux = nx-1; % IP 
  
% We calculate the square of the scale of the distribution of x: 
sscale_x = (1+1./nx).*s2x; 
  
% Now we define the inner function which we will integrate in order to find 
% our distributions: 
    function u = f(x,y) 
        % We calculate the mean of y: 
        E_y = E_beta(1)+E_beta(2).*x; 
        % Next we calculate the square of the scale of the distribution: 
        sscale_y = s2.*(1+1./a+(x-b/a).*(a.*x-c)./(a.*d-b.*c)); 
        % And finally we define our inner function: 
        u = (1+(x-E_x).^2./(nux.*sscale_x)).^(-(nux+1)./2).*sscale_y.^ ... 
            (-1/2).*(1+(y-E_y).^2./(nuy.*sscale_y)).^(-(nuy+1)./2); 
    end 
  
% Next we find the reciprocal of the normalizing constant: 
    function w = C 
        w = integral2(@f,xL,xH,-Inf,Inf); 
    end 
  
% And now we can integrate to find our density function: 
    function v = dens(y) 
        v = integral(@(x)f(x,y),xL,xH)./C; 
    end 
  
% and our cumulative distribution function: 
    function t = cumul(y) 
        t = integral2(@f,xL,xH,-Inf,y)./C; 
    end 
end 
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B.2.5 plot_range.m 
The plot_range.m function calculates a range of material property to be calculated when 
making the plots. 

function range_MP = plot_range(E_beta,s2,n,XTX,E_x,s2x,nx, ... 
    xL,xH,deltaL,deltaU) 
% This function returns a suitable range to plot our distribution, given a 
% range of indicating property, and a delta value we want our cumulative 
% function to be away from 0 and 1 
  
% We read each element of the XTX matrix in order to avoid matrix 
% operations in the integration below 
a = XTX(1,1); 
b = XTX(1,2); 
c = XTX(2,1); 
d = XTX(2,2); 
  
% We defines our degrees of freedom, from the regression, and for the 
% distribution of the indicating property: 
nuy = n-2; % Regression 
nux = nx-1; % IP 
  
% We calculate the square of the scale of the distribution of x: 
sscale_x = (1+1./nx).*s2x; 
  
% Now we define the inner function which we will integrate in order to find 
% our distributions: 
    function u = f(x,y) 
        % We calculate the mean of y: 
        E_y = E_beta(1)+E_beta(2).*x; 
        % Next we calculate the square of the scale of the distribution: 
        sscale_y = s2.*(1+1./a+(x-b/a).*(a.*x-c)./(a.*d-b.*c)); 
        % And finally we define our inner function: 
        u = (1+(x-E_x).^2./(nux.*sscale_x)).^(-(nux+1)./2).*sscale_y.^ ... 
            (-1/2).*(1+(y-E_y).^2./(nuy.*sscale_y)).^(-(nuy+1)./2); 
    end 
  
% Next we find the reciprocal of the normalizing constant: 
    function w = C 
        w = integral2(@f,xL,xH,-Inf,Inf); 
    end 
  
% And we find our cumulative distribution function: 
    function t = cumul(y) 
        t = integral2(@f,xL,xH,-Inf,y)./C; 
    end 
  
% We now define two functions we use to find our limits (by setting them 
% equal to zero): 
    function v = lower(y) 
        v = cumul(y)-deltaL; 
    end 
    function s = upper(y) 
        s = cumul(y)-1+deltaU; 
    end 
range_MP = [floor(exp(fzero(@lower,0))./5).*5 ... 
    ceil(exp(fzero(@upper,0))./5).*5]; 
end 
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B.2.6 failure.m 
The failure.m function calculates the probability of failure. 

function Pf = failure(E_beta,s2,n,XTX,E_x,s2x,nx,xL,xH,F_S) 
% The function returns the probability of failure for a given range of x. 
  
% First we read each element of the XTX matrix in order to avoid matrix 
% operations in the integration below 
a = XTX(1,1); 
b = XTX(1,2); 
c = XTX(2,1); 
d = XTX(2,2); 
  
% We defines our degrees of freedom, from the regression, and for the 
% distribution of the indicating property: 
nuy = n-2; % Regression 
nux = nx-1; % IP 
  
% We calculate the square of the scale of the distribution of x: 
sscale_x = (1+1./nx).*s2x; 
  
% Next we define the function from our distribution of the material 
% property: 
    function u = f(x,y) 
        % We calculate the mean of y: 
        E_y = E_beta(1)+E_beta(2).*x; 
        % Next we calculate the square of the scale of the distribution: 
        sscale_y = s2.*(1+1./a+(x-b/a).*(a.*x-c)./(a.*d-b.*c)); 
        % And finally we define our inner function: 
        u = (1+(x-E_x).^2./(nux.*sscale_x)).^(-(nux+1)./2).*sscale_y.^ ... 
            (-1/2).*(1+(y-E_y).^2./(nuy.*sscale_y)).^(-(nuy+1)./2); 
    end 
  
% Next we find the reciprocal of the normalizing constant: 
    function w = C 
        w = integral2(@f,xL,xH,-Inf,Inf); 
    end 
  
% And lastly we calculate the reliability of the structure: 
g = @(x,y)f(x,y).*F_S(y); 
Pf = 1-integral2(g,xL,xH,-Inf,Inf)./C; 
  
end 
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Appendix C TIMBER DATA 

Here is presented the data used to perform our calculations. 
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216012 1 32.4 41.3 44.96683 42.93395 33.23348 7515840 
216022 1 15.3 20.3 19.22404 19.3161 19.32841 6061567 
216032 1 35.2 29.8 28.30006 26.27875 26.09348 6658325 
216042 1 14.9 18.8 18.91271 14.65797 20.64039 6033634 
216052 1 36.7 37.5 38.77105 36.19663 37.74203 8108252 
216062 1 32.4 27.4 32.13787 28.93766 26.81351 7119214 
216072 1 36.3 36.5 32.18785 31.70203 32.09888 7514819 
216082 1 18.2 21.2 24.83597 26.13464 25.57706 6116840 
216092 1 9.5 7.4 18.9101 13.97692 15.13009 5157186 
216102 1 13.1 12.8 15.0881 16.66344 19.35136 5399252 
216112 1 20.6 20.7 23.69823 22.20456 23.15007 6074059 
216122 1 31.3 34.5 34.57905 33.78345 31.82603 7318400 
216132 1 32.2 37.7 38.21084 36.5918 35.5279 7640377 
216142 1 20.1 17.7 14.41349 15.19802 14.39964 5587993 
216152 1 17.1 20.8 23.89394 23.06185 21.25357 5965571 
216162 1 34.8 36.1 34.23926 34.32256 32.60841 7110718 
216172 1 10.7 12.5 18.7365 12.47804 10.02928 4965357 
216182 1 16.3 14.4 16.87079 13.09132 14.31505 5428229 
216192 1 28.6 24.8 24.58251 24.0155 23.33336 6083686 
216202 1 38.7 35.2 34.95924 35.45846 27.87585 7048585 
216212 1 48.4 39.3 38.63916 37.06143 33.67408 7603326 
216222 1 27.1 33.4 34.23937 33.75271 31.27417 7239466 
216232 1 34.1 35.1 33.35844 32.19756 26.15563 6931609 
216242 1 46.5 42.2 38.91471 36.06747 34.79463 8085256 
216252 1 63.1 56.9 0 0 0 8940206 
216262 1 14.6 13.5 15.05283 17.82512 14.32083 5434962 
216272 1 12.6 16.3 21.29529 20.03409 19.43982 6288547 
216282 1 36.8 35.1 37.59998 34.54115 33.28976 7823130 
216292 1 14.9 14.1 14.36022 14.15219 11.94311 5430426 
216302 1 9.7 9.8 13.7086 13.1065 12.94269 5072543 
216312 1 24.8 35.2 35.0884 32.32302 29.71914 6917525 
216322 1 23.3 21.5 26.62173 25.24488 19.78185 5752303 
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216332 1 18 16 20.49448 20.02645 15.9021 5706330 
216342 1 30.7 28.1 30.17156 29.47452 26.14707 6846815 
216352 1 25.8 28.2 23.89373 24.3172 27.7508 6770029 
236012 2 20 15.5 14.95411 14.88039 11.38026 5113960 
236022 2 14.9 10.1 14.79756 12.88746 12.93334 5064822 
236032 2 29.6 27.4 30.59555 28.14708 28.09586 6679736 
236042 2 24.5 27.3 24.78304 23.7453 22.97905 6579369 
236052 2 21.4 15.7 17.24516 16.89156 15.0909 5365446 
236062 2 25.5 25.5 25.76189 25.10198 22.51982 6361141 
236072 2 34 27.8 28.39728 26.72549 24.99204 6496451 
236082 2 29.8 26.8 22.42339 20.43882 23.71549 6322586 
236092 2 16.2 16.7 17.57889 16.88639 19.87068 5715173 
236102 2 33.9 25.2 25.72888 23.31152 24.39151 6428894 
236112 2 27.8 21.1 23.79241 24.12462 19.14602 5488903 
236122 2 26.1 24.9 23.0624 21.76518 23.94433 6361695 
236132 2 34.3 32.2 34.79597 33.56081 29.38482 6850809 
236142 2 23 24.2 22.81199 22.89673 21.15955 6066535 
236152 2 26.1 17 17.52785 16.26016 15.58028 5489559 
236162 2 24.9 24.3 23.25767 22.01458 21.85464 6161090 
236172 2 19.7 20.9 24.37488 23.62634 16.27758 5730788 
236182 2 8.8 4.6 7.198068 9.636651 6.648175 4223695 
236192 2 15.5 18.1 19.57034 19.16547 19.97472 5659331 
236202 2 25.3 23.7 22.92892 21.8336 15.81038 5567927 
236212 2 13.7 14.2 14.00611 16.24645 11.39773 5046933 
236222 2 26 24.3 22.06277 24.23895 22.98352 6228351 
236232 2 24.2 22.9 22.0551 21.95341 23.48632 6368513 
236242 2 27.3 21.4 20.26524 20.7869 24.39044 5864650 
236252 2 22.1 14.5 17.49765 17.76282 20.80408 5485339 
236262 2 24.1 18.2 18.0689 19.21476 18.45943 5485012 
236272 2 16.4 12.4 18.34561 16.25041 13.32506 4980223 
236282 2 34.8 26 27.06642 23.98848 23.09317 6165563 
236292 2 31.3 22.2 16.88378 14.97225 20.93051 5810707 
236302 2 26.9 23.8 18.5548 16.65842 18.26769 5788756 
236312 2 33.5 28.2 27.03188 26.24042 26.55259 7001845 
236322 2 36.2 27.3 28.57585 26.11068 15.92328 6373615 
236332 2 25.8 20.2 21.10342 20.12929 16.36258 5878216 
236342 2 19.5 26.6 19.80983 16.93289 22.2821 6396184 
236352 2 27.6 26.7 25.91987 24.84277 23.59462 6563201 

 


