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Problem Description

Room Geometries with non-classical Reverberation Times

Classical diffuse field theory is a simplified theory in room acoustics, which
leads to Sabine’s and Eyring’s predictions of reverberation time. For
a room with highly scattering surfaces, Sabine’s and Eyring’s estimates
of reverberation time will be closely related to the real conditions. In
rooms with a low degree of scattering and an uneven distribution of
absorption, however, Sabine’s and Eyring’s formulae often underestimates
the reverberation time. In this case, an increase of the scattering will
always lead to a shorter reverberation time,

In this project, there will be examined which type of rooms that can give a
shorter reverberation time than Sabine’s and Eyring’s predictions. Types
of rooms suggested by Stephenson, and rooms with the tendency of a
focus effect, can be studied. Computer simulations based on geometrical
acoustics can be used, together with other existing reverberation time
formulae than the classical formulae by Sabine and Eyring.

Romgeometrier med ikke-klassiske etterklangstider

Klassisk diffusfeltsteori er en forenklet teori innen romakustikk som leder
til Sabines og Eyrings prediksjoner av etterklangstid. Hvis et rom har
høy grad av spredning vil Sabines og Eyrings etterklangsestimat meget
ofte være nært de virkelige forholdene. I rom med lav grad av spredning
og ujevn fordeling av absorpsjon er det derimot ofte slik at Sabines og
Eyrings likninger underestimerer etterklangstiden. I slike fall vil en økning
av spredningen i rommet alltid lede til kortere etterklangstid.

I dette prosjektet skal det undersøkes hvilke typer rom som kan gi kortere
etterklangstid enn Sabines og Eyrings prediksjoner. Typer av rom som
er foreslått av Stephenson, og rom med tendenser til fokuseffekter, kan
studeres. Datasimuleringer basert på geometrisk akustikk kan brukes,
sammen med andre eksisterende etterklangsformler enn de klassiske av
Sabine og Eyring.
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Abstract

In this Master’s thesis, it has been examined whether it is possible to find
rooms of such a geometry that the reverberation time becomes shorter than
the predicted value of Sabine and Eyring. This was investigated using
the computer program CATT-Acoustic, which is based on geometrical
acoustics. The geometries of the rooms were polyhedral approximations of
a dome; respectively a decahedron, a nonahedron and a hexahedron, the
latter of which also representing a ”shoe-box shaped” room with inclined
walls.

The results of the simulations show a clear tendency of a lowered
reverberation time compared to the two classical formulae. For a large
floor absorber and a scattering coefficient of s > 10 − 20%, the three
polyhedral approximations all give a ratio of T30

TEyring
< 1. However, it is

not possible to conclude that a focusing effect, like what one can find in a
dome, is the reason for this ratio. The lack of support for such a focusing
effect follows follows from the dependency on the number of surfaces in the
polyhedral approximation. The decahedron is a closer approximation to a
dome than the hexahedron, but the three polyhedra give approximately the
same ratio of simulated and predicted reverberation times. The simulated
values were also compared to what can be found using Millington-Sette’s
reverberation formula and Kuttruff’s formula for the absorption coefficient.
These formulae both gave significantly lower values of the reverberation
time than the simulations. Therefore, the alternative formulae do not seem
to be any better alternatives than the classical Eyring’s formula. Detailed
calculation using ray tracing should anyway be used for cases like those
tested here, with uneven distributions of absorption.
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Sammendrag

Det har i denne masteroppgaven blitt undersøkt om det finnes rom
av en slik geometri at etterklangstiden blir kortere enn de beregnede
verdiene fra Sabines og Eyrings likninger. Dette ble undersøkt ved å
gjennomføre simuleringer i CATT-Acoustic, som er en programvare basert
på geometrisk akustikk. Geometriene implemetert i CATT-Acoustic var
polyhedratilnærminger av et kuppelrom; henholdsvis et dekahedron, et
nonahedron og et hexahedron. Sistnevnte representerer et ”skoeskerom”
med tiltede vegger.

Resultatene fra simuleringene viser en tendens til en redusert etterklangstid
sammenliknet med de to klassiske formlene. For en stor gulvabsorbent og
en spredningskoeffisient på s > 10−20% gir de tre polyhedratilnærmingene
en ratio på T30

TEyring
< 1. Det er imidlertid ikke mulig å konkludere med at en

fokuseffekt, som den man finner i en kuppel, er grunnen til dette forholdet.
Årsaken til at man ikke kan påstå at en fokuseffekt er forklaringen
følger av sammenhengen med antall flater i polyhedratilnærmingen. Et
dekahedron er en bedre tilnærming til en kuppel enn et heksahedron, men
de tre polyhedraene gir likevel tilnærmet likt forhold mellom simulert og
beregnet etterklangstid. De simulerte verdiene ble også sammenlignet med
etterklangstidene man får ved å bruke Millington-Settes etterklangsformel
og Kuttruffs formel for absorpsjonskoeffisienten. Disse formlene ga begge
betraktelig lavere verdier for etterklangstiden enn simuleringene gjorde. De
alternative formlene for etterklangstid ser derfor ikke ut til å være bedre
alternativer enn den klassiske Eyrings formel. Detaljerte beregninger med
bruk av ray tracing må uansett benyttes for tilfeller som de som er studert
i denne masteroppgaven, der absorpsjonen er ujevnt fordelt.
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CHAPTER 1. INTRODUCTION

1 Introduction

1.1 Motivation

In the work of an acoustic consultant, it passes up to several years from
the planning of a new project till it is finished and verifying measurements
can be performed. Basing following projects on the same idea may
therefore have unsure outcomes. Consequently, it is of vital interest for
the consultant sector to get more control on the prediction phase of a
project to prevent surprises on the finish line.

One solution to this problem is to perform scale model measurements
before starting the construction of a full scale room or building. However,
this is often an expensive solution. In addition, there are limitations in the
usage of scale model measurements as well, both in the choice of materials
that correspond to the full scale materials and in the treatment of air
absorption. There exist several acoustic simulation programs based on
geometrical acoustic methods like ray tracing (RT) and the image source
method (ISM), that can predict the outcome of a new idea. The use of such
programs is less expensive and more time efficient alternatives compared
to scale model measurements. Examples of acoustic simulation programs
are programs are ODEON and CATT-Acoustic, and CATT-Acoustic is the
software that will be used in this Master’s thesis.

As will be presented in section 1.2, the author has earlier investigated
the effect of a new type of ceiling diffusers first used by Arau Acoustica
[1], using a scale model. The measurements of Arau Acoustica showed a
prolonged reverberation time with the ceiling diffuser present compared
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CHAPTER 1. INTRODUCTION

to initial measurements, which is a surprising result considering existing
reverberation formulae which only give a relationship between the
reverberation time, the room volume and the average absorption in the
room.

The following situation may be regarded as the opposite of what was done
in the Theatre of Liceu:

An existing room has a ceiling diffuser, and the interest of the acoustician
is to increase the volume of the room, assuming a prolonged reverberation
time based on Sabine’s and Eyring’s equations. Therefore, the diffuser is
removed, and one expects to get a longer value for the reverberation time.
However, in the case of the rehearsal room in Liceu, the reverberation time
without the diffuser is shorter, even if the room volume is larger without
the diffuser.

The result of a shortened reverberation time with a larger room volume is
surprising compared to the classical predictions. This is the motivation to
study the problem further, and to try to find other room geometries that
give shorter values than Sabine’s and Eyring’s formulae predict. It is also
interesting to investigate whether there exist other reverberation formulae
that give better values for such room geometries than the classical formulae
of Sabine and Eyring.

A focusing room shape, like a dome with a reflecting ceiling and an
absorbing ground flate, could make a floor absorber more effective, and
thus lead to a shorter reverberation time than TSabine [2]. An opposite
of this situation is the so-called Hard Case [3], [4]. The Hard Case is
a cuboid room represented by hard walls and a hard floor, with a ceiling
absorber as the only absorbing element. In this case, the reverberation
time becomes longer than Sabine’s and Eyring’s predictions. In addition,
due to an almost two-dimentional sound field at high frequecies, flutter
echo may occur.

2
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1.2 Previous work

In the specialization project carried out by the same author the autumn
semester 2014, the findings of Arau-Puchade’s work in the Rehearsal
Room of the Great Theatre of Liceu [1] were examined in a scale model
with a scale factor of 1 : 8. Arau-Puchades installed a ceiling diffuser
in this rehersal room, consisting of a regular metal grid with vertical
polycarbonate plates forming a labyrinth structure. The scale model
diffuser is shown in Figure 1.1 Arau-Puchades’ acoustic measurements
before and after the diffuser was installed show a significantly shortening
reverberation time, considering both the T30 and the EDT .

Figure 1.1: The scale model diffuser used in the specialization project
autumn 2014.

The reverberation time measurements in the scale model did not follow
the same pattern as the full scale measurements of Arau, but studies of
the curvature C showed that the ceiling diffuser made a significant impact
on the diffusivity of the room. The results of this specialization project
lead to further questions about the validity of the classical reverberation
time formulae and the treatment of non-diffuse sound fields.

3
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1.3 Report structure

A theoretical background for the simulations is first presented in chapter
2, together with a study of the classical diffuse field theory. In chapter
3, the experiments in CATT-Acoustic are explained. The result of these
simulations is presented in chapter 4 and further discussed in chapter 5.
The concluding remarks follow in chapter 6.

There are three appendices to this report. Appendix A contains two tables;
a table of the corners in the hexahedron approximation given different
inclination angles and a table for the absorption coefficient given different
materials. The mean values of the simulations are plotted in appendix B.
Finally, the Matlab code used to find the corners of a polygon follows in
appendix C together with the Matlab code generated to read the TUCT-
text files from CATT-Acoustic.

4



CHAPTER 2. THEORY

2 Theory

This chapter will introduce some of the parameters that will be analyzed
in this thesis, primarily concerning reverberation time and characteristics
of a diffuse sound field. There are different approaches to a theoretical
value of the reverberation time, which will be presented together with
their historical background. The importance of a diffuse sound field for
these formulae to be valid is also introduced. Geometrical variations in
room design and their influence of the reverberation time will then be
presented, and thereafter the theory underlying the simulation software
CATT-Acoustic and other room acoustic computer models.

2.1 Reverberation time

When it comes to room acoustics the reverberation time is usually judged
to be the most important parameter. The reverberation time is often
represented by T30 and can be measured in a room using the impulse
response, it can be predicted by reverberation formulae or it can be
predicted using geometrical acoustic methods. The reverberation time is
a global parameter, which means that the measure is independent of the
positions in a room [5]. By contrast, acoustical parameters such as sound
strength (G), early decay time (EDT ), clarity (C80), lateral energy fraction
(LEF ) and the late sound level (Glate) are local acoustical parameters and
dependent on the location of the listener.

ISO 3382-2 defines the reverberation time as the duration required for the
space-averaged sound energy density in an enclosure to decrease by 60 dB
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CHAPTER 2. THEORY

after the source emission has stopped [6]. In this definition, the sound decay
is regarded as a stepwise decrease, which means that the sound persists
and does not disappear immediately after the sound source is cut off.

Representing the reverberation time by the measure of T30 implies that the
first 30 dB decrease, from -5 dB to -35 dB, is used for a linear regression
of the total 60 dB decrease. The same concept applies for the T20, which
concerns the decrease from -5 dB to -25 dB as a base for the regression. The
reason for the use of T20 and T30, instead of using the full 60 dB decrease,
is that the difference between the background noise and the sound signal
is usually smaller than 60 dB. The early part of the sound decay is also
usually the most interesting part [7]. Figure 2.1 represents the Schroeder
curve for the simulations of the decahedron room in CATT-Acoustic, and
gives the sound decay in dB as a function of the elapsed time. A Schroeder
curve shows the backwards integration of the squared impulse response [8].

Figure 2.1: The Schroeder curve, obtained in CATT-Acoustic for one of
the rooms studied in this thesis.

The optimal reverberation time of a room is dependent on both the
application for the room, the volume of the room and on the frequency
spectrum. A longer reverberation time is recommended at low frequencies,
while mid-frequencies can have a longer reverberation time [9, p. 86].
To obtain a room with good articulation for speech, for instance, a
short reverberation time is necessary, while acoustic music requires a
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longer reverberation time. Church music is an extreme and requires a
reverberation time of several seconds. To obtain the optimal reverberation
time, it is also necessary to consider the size of the room. For a larger
room volume longer reverberation time would be preferable.

The optimal reverberation times for different sound sources are presented
in Table 2.1 [10, p. 504], [11, p. 313]. Beranek’s value for symphony
orchestras is based on best ratings of 40 concert halls presented in Concert
halls and opera houses and is valid for mid-frequencies. The lowest rated
halls in Beranek’s study had in comparison a reverberation time in the
range of T = 1.5− 1.8 s.

Table 2.1: Optimal reverberation times for different sound sources.

Sound source Optimal reverberation time [s]
Symphonical music (Beranek) 1.8 - 2.0
Symphony orchestra (Gade) 2.0 - 2.4

Chamber music (Gade) 1.5
Opera (Gade) 1.4 - 1.8

Rythmic music (Gade) 0.8 - 1.5

2.1.1 The absorption coefficient

An important parameter that influences the reverberation time in a room
is the absorption coefficient and the average absorption. For a room with
total surface area S and segmental absorption areas Si with corresponding
absorption coefficients αi, the average absorption is given by

ᾱ = 1
S

∑
i

(Siαi) (2.1)

This equation does not tell how the absorption is distributed in a room.
The effect of uneven distribution of absorption will be introduced in section
2.1.2 and discussed further in section 5.7.
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2.1.2 Diffuse sound fields

The length of a sound decay is dependent on the structure of the sound
field in a room. The classical formulae, like the formulae of Sabine and
Eyring, assumes a diffuse sound field. In a diffuse sound field, all directions
of sound propagation are equally likely, and the sound pressure level is
independent of the location [12]. The measured reverberation time will
therefore be constant for all positions of the sound source and the receivers
in a room. In real life, however, one will never achieve a perfect diffuse
sound field.

For a diffuse sound field, theory predicts a pure exponential sound decay
[11, p. 307-308]. For such a decay the dB-curve is linear. In this situation,
the reverberation time T is independent of the evaluated decay range,
giving T30 = T20 = T60. The intensity of a sound field is given by I(φ, ν)
where φ and ν give the directions of the distribution. The energy density
is then given by dw = I(φ,ν)

c
dΩ [13, p. 129], where c is the speed of sound

and dΩ represents a very small solid angle in a collection of nearly parallell
sound rays. For a 3-dimentional diffuse sound field, this intensity is
constant, which gives total sound energy density in all directions w = 4πI

c
.

To obtain a diffuse sound field, it is claimed that absorption is evenly
distributed over all surfaces of the room and that one has scattering
surfaces. The amount of diffusivity in a room will also influence the
effectiveness of the absorption [14]. The assumption of a diffuse field is
valid for frequencies above the Schroeder frequency, fs [12]. The Schroeder
frequency is given by

fs = 2000
√
T

V
, (2.2)

where T represents the reverberation time and V is the volume of the
room. For frequencies beneath the fs, the sound field cannot be considered
to be diffuse. This limit claims that the volume of a room has to be large
compared to the acoustic wavelengths [15]. To obtain a lower Schroeder
frequency one must either decrease the reverberation time, for instance by
increasing the absorption coefficient, or increase the room volume.
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Examples of rooms that cannot be classified as diffuse are rooms with a
majority of the absorption concentrated on one side, for instance the so-
called Hard Case, and coupled rooms. An example of the absorbing surface
is acoustic ceiling tiles, or it can be the audience giving an absorbing floor.
Odd-shaped rooms, for instance a long corridor measuring A · B · C with
C � A and C � B, will also be classified as non-diffuse.

For a unit area of 1 m2 and a unit time of 1 s, the acoustic intensity in the
diffuse sound field with energy density dw is given by [9, p. 66]:

I = c

4E. (2.3)

This can be compared to the acoustic intensity of a plane wave at normal
incidence of the wall, I = cE, being four times the acoustic intensity in a
diffuse sound field.

2.1.3 The mean free path

The mean free path (mfp), lm, is the mean distance between two sound
reflections. The mfp represents the average distance travelled by the sound
waves of sound speed c after a time t from the first wave progagation,

lmn = ct, (2.4)

where n is the number of reflections [9, 68].

For a 3-dimentional room of volume V with a diffuse sound field and surface
area S, the mean free path is given by [15]

lm = 4V
S
. (2.5)

Equation 2.5 for the mean free path is only valid for strongly diffuse sound
fields. Such fields are an assumption for Sabine’s and Eyring’s formulae.
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2.1.4 Sabine’s formula

The first scientist to introduce the reverberation time T [s] as a measure of
the reverberation in a room was W. C. Sabine. In The American Arcitect
[16, p. ix], 1900, Sabine presented a relationship between the room volume
V , the equivalent absorption area A and the reverberation time T as

T ∝ V

A
. (2.6)

In other words, he found the reverberation time to be proportional to
the volume of the room and inverse proportional to the absorption, by a
proportionality factor K.

Sabine’s formula is based on experimental work, but it can also be deduced
theoretically. From measurements in the lobby of the Fogg museum and the
Jefferson physical laboratory, he found an average proportionality factor
of 0.164 [16, p. 50], using SI-units. This value is later found to be 0.161
for sound speed c = 343 m/s, giving Sabine’s formula

T = 0.161V
A

, (2.7)

where A gives the equivalent absorption area A = Sᾱ = ∑
i Siαi for i

surfaces. A is given in metric sabin. This formula is neglecting the influence
of air absorption. The air absorption is represented by a term presented
in section 2.1.7

Sabine’s formula follows from the relationship of the total energy in a room
with surface area S and energy density E [9, p. 66],

V
dE

dt
= W − cESᾱ

4 . (2.8)

Substituting S · ᾱ = A, and name the initial values E = 0 and t = 0, gives

E = 4W
cA

[1− e−(cA/4V )/t]. (2.9)
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When time passes, t→∞, the energy will approach the steady-state value
E0 = 4W

cA
. This leads to the total energy reduction in the room,

E = E0e
−(cA/4V )/t, (2.10)

which gives the decay rate D = 10log(ecA/4V ) with a unit dB per second.

The definition of the reverberation time was presented in section 2.1, and
the reverberation time T can be expressed mathematically as

T = 60
D

= 60
10 · log(ecA/4V ) = 6 · 4V

cA · log(e) = const · V
A
. (2.11)

The constant in equation 2.11 is given by

K = 24
c · log(e) ≈ 55.3 · 1

c
. (2.12)

For room temperature, T = 20 o, the speed of sound equals c = 343 m/s,
and the constant, using SI-units, approximates K = 0.161. This gives
Sabine’s formula as presented in equation 2.7.

2.1.5 Eyring’s formula

The experimental rooms in which Sabine used to find the reverberation
formula all had a reverberation time T ε [1.5 − 4] s [17]. Such rooms
can be classified as "live" rooms. For "dead" rooms, when the average
absorption approaches T = 1, a weakness of the Sabine’s formula appears.
For ᾱ→ 1, A = Sᾱ ≈ S and the reverberation time TSabine ≈ 0.161V

S
. This

is the opposite of what one would assume for a highly absorbent room
where the sound is rapidly damped. This was the motivation of C. F.
Eyring, who in 1929 released his alternative to a reverberation formula.

Eyring’s formula is based on the assumption that a sound field is composed
of plane sound waves. Such waves will lose energy each time they hit an
absorbing surface. The fraction of energy lost due to absorption is equal
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to (1− ᾱ) where ᾱ is the absorption coefficient of the surface. For a given
number n of surface reflections, the energy loss is then given by [9, p. 68]

E = E0 · (1− ᾱ)n = E0 · en·ln(1−ᾱ), (2.13)

With the mean free path expressed as in section 2.1.2, the sound waves will
travel an average distance of lmn = ct where t is the time after the first
wave propagation. Substituting n = ct/lm in equation 2.13, the energy
density yields

E = E0 · e
c

lm
·ln(1−ᾱ)t (2.14)

after a time t.

A 60 dB decrease in sound level means that the energy has dropped to
E = 10−6 · E0, giving

e
c

lm
·ln(1−ᾱ)T = 10−6, (2.15)

or

c

lm
· ln(1− ᾱ)T = −6 · ln(10). (2.16)

The formula of Eyring then follows from the mean free path in a diffuse
sound field, given in equation 2.5, and the sound speed for a temperature
of 20o C, c = 343 m/s. The reverberation formula is presented as

T = 6ln(10) · 4V
−cSln(1− ᾱ) = 0.161V

−Sln(1− ᾱ) . (2.17)

For rooms with a high average absorption, Eyring’s theory gives a better
value for the reverberation time than the theory of Sabine. With ᾱ → 1,
which is the situation of the anechoic room, Sabine’s formula will give
a value of T → 0.161V

S
, while Eyring’s formula, as expected for this room,

gives T → 0. For a low average absorption, ᾱ < 0.3 [2], however, the energy
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density as viewed from a surface element can be considered continous since
a majority of the incoming energy is reflected. As a result, −1

ln(1−ᾱ) ≈
1
ᾱ
and

TEyring ≈ TSabine.

2.1.6 Millington-Sette’s formula

Millington (1932) [18] and Sette (1933) [19] investigated an alternative
to Eyring’s reverberation formula. The average absorption coefficient
introduced in section 2.1.1 and used in the formulae of Sabine and Eyring
regards the number N of collisions by a sound particle as a statistical value,
with expectation value Ni = NSi/S [13, p. 141].

By use of the exact value of N rather than the statistical value, the energy
distribution will still follow the exponential equation given in 2.10, but
with an average absorption given by

ᾱ′ = − 1
S

∑
i

Siln(1− αi). (2.18)

With this absorption coefficient, Millington and Sette predict a shorter
reverberation time than Eyring’s formula. This reverberation time is given
by

TMillington−Sette = 0.161 V

Sᾱ′
. (2.19)

The difference between the formula of Millington-Sette and the formulae
of Sabine and Eyring lies in the treatment of the absorption coefficient. In
equation 2.18, one considers the average of the terms −Siln(1 − αi) and
sums over these values rather than taking the logarithm of the average
absorption as Eyring did.

Millington-Sette’s formula is not meant as a general formula for the
reverberation time, but as a supplement to Eyring’s formula for the special
cases of which Eyring’s prediction is not valid [19]. While Eyring’s formula
gives the expected value of T → 0 for an average absorption of ᾱ = 1,
the Millington-Sette’s absorption coefficient will develop as ᾱ′ → ∞ for
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αi = 1, independent of the size of the corresponding Si. The resulting
reverberation time will then be zero, which is a counterintuitive result.

2.1.7 The influence of air absorption

The three equations 2.7, 2.17 and 2.19, are all presented on the easiest
form, neglecting the air absorption. This assumption is only valid for low
frequencies. If one includes the air absorbtion, another absorption term
A = 4mV is included in the reverberation formula. Here, m is a frequency
dependent absorption coefficient for the air absorption [20, p. 338],

m = 5.5 · 10−4
(50
h

)(
f

1000

)1.7

, (2.20)

giving

Aair = 4 · 0.275f 1.7

h
V. (2.21)

In this equation, h is the percentage of humidity in the room and f is the
frequency.

Including the air absorption, Sabine’s, Eyring’s and Millington-Sette’s
equations are modified and given in equations 2.22, 2.23 and 2.24:

T60,Sabine = 0.161 · V
A+ 4mV , (2.22)

T60,Eyring = 0.161 · V
−Sln(1− ᾱ) + 4mV , (2.23)

T60,Millington−Sette = 0.161 · V
Sᾱ′ + 4mV . (2.24)

By concidering the air absorption term in the equations above, it is clear
that the air absorption will mostly influence the reverberation in rooms of
a large volume and for high frequencies. In scale model measurements, the
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frequency f , the volume V and scale factor σ are related by fscale = freal ·σ
and Vscale = Vreal · σ3. The treatment of the air absorption is therefore an
important issue in scale model measurements.

2.1.8 Fitzroy’s formula

In the study of rooms with uneven absorption distribution, Fitzroy
[21] found that Sabine’s and Eyring’s predictions are too low in many
cases. Therefore, he came up with a different approach to a theoretical
reverberation formula, valid for shoe-box shaped rooms with hard walls
and floor and a highly absorbing ceiling. Fitzroy’s formula follows from
equation 2.25.

Ttot =
(
x

S

) [ 0.161V
−Slog(1− αx)

]
+
(
y

S

) [ 0.161V
−Slog(1− αy)

]
+
(
z

S

) [ 0.161V
−Slog(1− αz)

]
.

(2.25)

In this formula, x represents the total area of the side walls, y is the total
area of the ceiling and floor and z is the total area of the end wall. For
the surfaces i = x, y, z, αi is the average absorption of the respective area.
S is the total surface area and V is the volume of the room.

2.1.9 Kuttruff’s absorption formula

In the fourth edition of Room Acoustics [22, p. 141], H. Kuttruff introduces
an alternative formula for the absorption distribution in a room, which can
be used together with Eyring’s equation to get a more accurate prediction
of the reverberation time for rooms in which the sound field is not diffuse.
Kuttruff claims that each boundary gives diffuse reflections, and takes the
average number of reflections by a sound particle into account.

Using this absorption formula, one expects a more correct value of
absorption for cases where the effective absorption is greater than the
absorption coefficient predicted in Eyring’s formula. These are cases where
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the real reverberation time will be shorter than the one predicted by
Eyring.

Kuttruff’s absorption formula assume the irradiation strength [22, p. 139]
to be constant, and yields

a∗ ≈ aEyring +
∑
ρn(ρn − ρ̄)S2

n

(ρ̄S)2 . (2.26)

In this formula, ρ is the average reflection, ρ = 1− α. A totally absorbing
surface is then characterized by ρ = 0. Kuttruff claims that this correction
applies well for situations where only one surface has absorption in which
differs from the n − 1 remaining surfaces, for instance the case of a room
with hard walls and a floor occupied by an (absorbing) audience [15].

2.1.10 Early decay time

The early decay time, EDT , is another measure of the reverberation time
in a room. Unlike T20 and T30 this quantity focuses on the early part of the
impulse response, and uses the first 10 dB decrease of the sound pressure
level, from 0 dB to -10 dB. When this value is multiplied by 6, the total 60
dB decrease is obtained. The reverberation time will often decrease more
rapidly in this time window compared to the full impulse response, and
this is the reason why the EDT is usually shorter than T30 and T20.

The EDT is more important for subjective impressions and it is related to
the perceived reverberation [13, p. 237], while T30 is more related to the
physical reverberation [23]. The early decay time is more dependent on
the early reflections in the room, and will thus be more dependent on the
room geometry.
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2.2 Geometrical variations

The reflected sound rays are important in concert halls and other rooms
where there is a considerable distance from the sound source to the listener.
The listener will receive reflections from the surfaces of the room, primarily
the walls, the ceiling and a non-absorbing floor in addition to the direct
sound. An uneven distribution of sound reflections will contribute to a
room where acoustic quality differs between the listener positions.

Geometrical variations between rooms will influence on the distribution
of sound reflections. The geometrical variations viewed in this thesis are
based on polyhedral approximations of a dome with respectively six, nine
and ten surfaces.

2.2.1 Wall inclination

In a trapezoid room, a case of the hexahedron shape, the reverberation
time will be affected by the inclination angle θ of the walls. This effect
is more significant for reflecting ceiling and walls. According to Norges
byggforskningsinstitutt [12], the reverberation time can be doubled in the
most extreme cases, and one will get maximal change in reverberation
time when the walls are tilted approximately 5 o compared to the cuboid
room. An angle θ > 90o represents an outwards tilt, prolonging the
reverberation time. If the walls are tilted inwards, θ < 90o, a shortening
of the reverberation time can be expected.

The reason for the prolonged reverberation time with inclination angle
θ > 90o can be explained by following the ray paths. In this case, the rays
will be reflected towards the reflecting ceiling to a higher degree, prolonging
the reverberation time. When the walls are tilted inwards, a larger part of
the sound will be reflected towards the floor which is the absorbing surface
in the room for the situation of an absorbing audience. The reverberation
time will then be shortened compared to the reverberation time of a shoe-
box shaped room, and it may also be shorter than the predicted values by
Sabine and Eyring.
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2.2.2 Ceiling profile

U. Stephenson has been studying rooms of odd geometrical shape and
the influence of the shape on the reverberation time. He states that the
reverberation time is highly dependent on the room shape, especially in
rooms where the absorption is unevenly distributed [24]. In the case of a
concert hall, for instance, the total absorption is dependent on the size of
the audience and will thus vary with the number of visitors.

In a paper from 2007 [25], Stephenson studied the dependency on the
reverberation time by the longitudinal section of an auditorium and
investigated whether it is possible to obtain reverberation times shorter
than Sabine’s prediction for certain ceiling profiles. It is known that the
early decay time (EDT ), together with the Deutlichkeit (D50) and the
decay of the sound pressure level are parameters that are dependent on
the longitudinal section in general, and the ceiling profile in particular.
Examples of concert halls with a ’tent shaped’ ceiling profile are the
Philharmonie in Berlin and the Elbphilharmonie in Hamburg. The latter
is still in the state of construction.

The optimal volume per seat of a room is given by V/N = 3 − 4 m3 for
speech, V/N = 6− 12 m3 for music and V/N = 5− 8 m3 in mulitipurpose
halls [12]. Beranek [10, p. 541] operates with an optimalization of
V/N = 9 m3 based on a selection concert halls, and a given reverberation
time of T = 2.0 s.

The Elbphilharmonie is drafted for a number of 2150 in the audience, with
a floor area of A = 40 · 60 m2 and a maxiumum height of h = 30 m.
This height is the height in the middle of the room and the ceiling will
have a tent shape, like a traditional circus. This makes the total volume
V > 30000 m3 giving an estimate of the volume per seat of V/N ≈ 15
m3 [25], which is above the recommended value of Beranek. Beranek’s
recommendation is, however, obtained in for instance the Philharmonie in
Berlin.

In his examination of tent shaped halls, Stephenson found that the
reverberation time decreased with the room angle. With specularly
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reflecting walls, the reverberation time decreased by a factor of 1.5. For a
higher diffusivity degree, the same effect could not be discovered.

2.2.3 Focusing effects

The shape of the ceiling surface is another factor that influences the sound
distribution in a room, and consequently affects the reverberation time.
Concave surfaces may have a focusing effect on the sound. For a curvature
radius equal to the room height or twice the room height, these effects are
most severe [12]. While a plane surface reflects specularly, a convex surface
will disperse the sound and a concave surface, like a dome, will assemble
the sound rays [26, p. 22]. If the concave surface has a focal point at the
sound source or the sound receiver, the reflection may be heard as an echo.

By placing an acoustic absorber in the focal point of a concave surface,
one may obtain a high efficiency of the absorber, making the effective
absorption larger than the absorption coefficient given for the absorption
material.

2.3 Predictions of the reverberation time

In acoustic computer models, geometrical acoustics is a common base for
the simulations. Examples of geometrical acoustics are the two methods
image source method (ISM) and ray tracing (RT). There are benefits and
disadvantages with both methods, and they are preferred for different
applications. The two methods have in common that wavelength, or
equivalent the frequency, is not a built-in characteristic [9, p. 235].
Therefore, the ISM and the RT often create higher order of reflections
that one would obtain with wave theoretical acoustics.

A frequency dependent scattering coefficient of the surface is one way to
implement the wave nature of the sound in geometrical acoustics. The
implementation of the scattering coefficient in the simulations will be
further described in section 3.2.2. The scattering coefficient will influence
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the diffusivity of the sound field. A scattering coefficient of zero means
that there are only specular reflections.

2.3.1 The Image Source Method

The image source method (ISM) is based on the boundary condition for a
hard wall, where the particle velocity is zero, which makes it possible to
replace the wall by a mirror source. A mirror source is an identical sound
source as the main source, mirrored about the wall. The direct sound from
the mirror source to the receiver will then be the exact specular reflection
from the wall. [13, p. 102-109] For this to be valid, the reflections have
to be purely specular, and it is not possible to implement a scattering
coefficient in this method.

Figure 2.2: The image source method, illustrating the image sources (the
blue and green dots) and the specular echogram.
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The paragraph above explains how one concerns one specular reflection.
To obtain a higher order of reflections, each mirror source is used as a
new sound source and mirrored about the wall planes to obtain the total
impulse response. This impulse response is then used to obtain parameters
like the reverberation time. Figure 2.2 shows the implementation of the
image source method, with the respective image sources, for 2nd order of
reflections.

For a large number of reflections, use of the ISM is complicated and a
prediction can take long time. The number of potential image sources
grows exponentially with the number of reflections, but only a few are
actually valid image sources. The ISM is therefore a good and accurate
choice for simple, rectangular rooms where a low reflection order is
sufficient. It is not preferred for complicated rooms where a high number
of sound reflections is necessary to obtain a reliable result.

2.3.2 Ray Tracing and Cone Tracing

The 3-dimentional ray tracing method was first introduced at NTNU,
Trondheim. Asbjørn Krokstad, Svein Strøm and Svein Sørsdal presented
this method in 1968 [27]. The ray tracing method is still in use, based on
the same principle as published in 1968.

In a ray tracing prediction one follows a large number of rays sent out from
the sound source. Each time a ray hits a wall, it will be reflected either
specularly, after Snell’s law, nisin(θi) = nrsin(θr), or diffusely. A diffuse
reflection will follow Lambert’s law [28].

Whether the reflection is specular or diffuse is determined by the scattering
coefficient s of the wall. The scattering coefficient is defined as the
amount of energy which is not reflected specularly and has a value between
0 and 1. s = 0 means a pure specular reflection, while s = 1 gives a pure
diffuse reflection. For a scattering coefficient between the two integers, the
coefficient gives the probability of a diffuse reflection. Moreover, it follows
that ray tracing is a stochastic method.

In a ray tracing the rays are followed for each reflection until they hit the
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receiver. Then the impulse response is generated based on the total path
length of each ray and the amount of absorbed sound. The cone tracing
method is another version of ray tracing, where each ray is considered as
a circular area, growing with time, substituting the rays with cones.

2.4 CATT-Acoustic

The prediction methods described in section 2.3 are examples of
geometrical acoustics, and form a foundation for acoustical computer
simulations. There exist different computer models, and the CATT-
Acoustic calculation program is one of the computer models used in
acoustics. CATT is an abbreviation for Computer Aided Theatre
Technique. The newest version is CATT-Acoustic v9, which was released
in 2011 [29].

Figure 2.3: The CATT-Acoustic interface.

The CATT-Acoustic program contains two tools used to predict room
acoustucal parameters: the Interactive RT Estimate and TUCT - The
Universal Cone Tracer. Of these, TUCT is the main prediction and
auralization program [30], and the interface of a TUCT prediction is
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showed in Figure 2.3. The benefit of the Interactive RT-Estimate is that it
indicates in which octave bands the assumptions of geometrical acoustics
can be supposed to hold. This is also a prediction method that takes
shorter time than the TUCT, so that one can use it to investigate the
effect of diffuse reflections before performing a full TUCT.

2.4.1 The Universal Cone Tracer (TUCT)

TUCT modeling, which is a more detailed analysis than the Interactive RT
Estimate, includes three different algorithms for cone tracing. These are
based on the geometry of the room and the placing of sources and receivers.
TUCT gives an opportunity for auralization, audience area mapping and
estimation of room acoustical parameters. In this thesis only the estimated
reverberation time from the echogram together with the formulae of Sabine
and Eyring are investigated.

The TUCT is based on three algorithms of different complexity for a
sound-receiver echogram or impulse response prediction and auralization.
Algorithm 1 is only used for short calculations while algorithm 2 and 3
are used for the final calculations. All algorithms concern the frequency
dependency of diffusivity and absorption. They use a combination of the
image source method and ray tracing. In the case of the ISM, maximum
third order reflections are concerned.

The first algorithm is a shorter calculation that uses a randomized diffuse
reflection. This algorithm can handle the case of scattering s = 0.
The second and third algorithms are longer calculations, and the second
algorithm will be used in this thesis. Catt defines this algorithm as a More
advanced prediction based on actual diffuse ray split up suitable for more
difficult cases, uneven absorption, open or very dry rooms. Also gives a
low random run to run variation at the expense of a longer calculation
time [31].
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3 Method

Before the simulations of the polyhedral rooms in CATT-Acoustic were
performed, the dependency on the number of cones in the TUCT prediction
was investigated. This performance is explained in section 3.1. The
experimental work then follows in section 3.2 where the settings in the
prediction mode of CATT-Acoustic are explained. This chapter also
describes the statistical analysis of the results.

3.1 Investigation of the TUCT mode

To investigate the dependency of the number of cones in the TUCT
simulations, there were performed simulations for the same room with four
different combinations of floor absorption and scattering, with a range of
cones from N = 1000 to N = 50000. In the four simulations, the walls and
ceiling were hard surfaces with an absorption coefficient αwall = 2%, and
an absorbing floor with αabsorber = 90% for all octave bands. Figure 3.1
shows the room with the small floor absorber present. The room is shoe-
box shaped and has a volume V = 13.9024 · 13.9024 · 6.9512 m3 ≈ 1344
m3.

The four configurations are combinations of two different sizes of the floor
absorber and two different scattering coefficients. The small absorber has
a surface area of Sabs,1 = 4 · 4 m2 while the bigger absorber measures
Sabs,2 = 12 · 12 m2. For these absorber configurations, simulations were
performed for scattering coefficients sA = 10% and sB = 50%.

The results from these measurements will give an indication on the
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importance of the number of cones necessary for a truth worthy result
with the TUCT estimation tool and whether a systematic variation within
the same geometry was present.

Figure 3.1: The room used to investigate the TUCT, here represented by
the large absorber.

3.2 Simulations

3.2.1 Room geometries

In the search for rooms which give a shorter reverberation time than
Sabine’s and Eyring’s formulae, polyhedral approximations of a dome were
tested. To find the coordinates for the corners, the Matlab script added
in appendix C.1 was run. This script gives, in cartesian coordinates, an
output for the corners in a polygon approximation of a full circle, and by
symmetry considerations the corner coordinates for the rooms implemented
in CATT-Acoustic were found. The polygons correspond to a circle of
radius 5 m with respectively 6, 8 and 10 corners; a hexagon, an octagon
and a decagon, and the polyhedra were therefore approximations of a
dome with this radius. To calculate the volumes and surface areas of the
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polyhedra, the rooms were decomposed into simpler geometries and the
formulae found in the Mathematical formulae-handbook [32, p. 32-37].
The corner coordinates can be found in Table 3.1.

Table 3.1: Corners of the polyhedra

Polyhedron A (X, Y) B (X, Y) C (X, Y) D (Z) E (Z)
Hexahedron 5.4982 2.7491 4.7616
Nonahedron 5.2695 3.7621 0 3.7621 5.2695
Decahedron 5.1695 4.1822 1.5975 3.0386 4.9165

The X, Y, Z-coordinates are presented in Figure 3.2. The X- and Y -
coordinates are equal due to symmetry. Figures 3.3, 3.4 and 3.5 shows
the CATT files for these three geometries.

Figure 3.2: Coordinates of the three polyhedra.

Figure 3.3: The hexahedron approach of a dome.
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Figure 3.4: The nonahedron approach of a dome.

Figure 3.5: The decahedron approach of a dome.

For the hexahedron approach, there were also performed simulations for
different wall inclination angles. The angles were varied for a room
with constant volume and room height, given by the perfect dome
approximation of inclination angle θ = 60o. With a constant room height,
the surface area and average absorption did not vary significantly.
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3.2.2 Settings in the prediction mode

In the prediction settings, air absorbtion was neglected, and the same
accounts for the theoretical values where the air absorbtion term was not
included. The influence of the air absorption is presented in section 2.1.7,
and a consequence of neglecting the air absorption is that the simulated and
predicted reverberation time will be higher than what one would measure
in a real room.

Neglecting the air absorption, together with a choice of equal absorption-
and scattering coefficients for all octave bands, give a selection of
eight values corresponding to the octave bands from f = 125 Hz to
f = 16 kHz. The values were used as a base for the statistical analysis,
since the reverberation time is supposed to be independent of the frequency
with the settings listed above.

The walls were chosen as hard walls, similar to those that were used in the
scale model measurements carried out fall 2014. The absorption coefficient
was therefore chosen as αhardwall = 0.02. The floor absorber was given an
absorption coefficient of αabsorber = 0.90. These values can be compared
to linoleum floor on concrete, that varies from α = 0.02 to α = 0.04 for
the different octave bands, and perforated panel over isolation blanket, 10
% open area, that varies from α = 0.85 to α = 0.90 for the octave bands
in the range [250 Hz - 4 kHz]. A table of the absorbtion coefficient for the
two materials can be found in appendix A.1 [20, p 341]. The size of this
absorber varied between S1 = 4 · 4 m2, S2 = 6 · 6 m2 and S3 = 8 · 8 m2.

In the CATT setup, there were used one omnidirectional sound source and
one receiver. The source was placed in the center of the room, with a
height of hsource = 0.3 m. The receiver was placed in (X, Y ) = (A2 ,

A
2 ) with

a height of hreceiver = 1.0 m.
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3.2.3 Settings in the TUCT mode

Based on the investigation explained in section 3.1, a number of n = 25000
cones were chosen. The length of the impulse response was set to auto.
CATT-Acoustic will then base the length of the impulse response on the
Eyring value for the reverberation time. It is important to have a satisfying
length of the impulse response to avoid a truncation effect where the
resulting reverberation time becomes shorter than the true value.

The TUCT reverberation time estimations were done for scattering
coefficients between s = 1% and s = 90% for the three polyhedra. The
simulations then give a base for investigations of the relation between
the size of the absorber, the number of surfaces, the scattering coefficient
and the inclination angles of the hexahedron room. The relation will be
presented in chapter 4.

3.3 Statistical approach

With settings kept independent of the frequency, the measured reverber-
ation time will give a foundation of eight values for calculating the mean
value and a 95%-confidence interval using the student-t-distribution [33,
p. 261].
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4 Simulation results

This chapter contains the results of the simulations performed in CATT-
Acoustics. The figures are plotted as reverberation time (T30, TSabine
and TEyring) in seconds, as a function of the scattering coefficient. The
simulated values from TUCT are represented by a 95%-confidence interval.
The mean values can be found in appendix B. When the dependency on
the size of the floor absorber, the inclination angle θ in the hexahedron
approximation and the geometry are examined, the figures are plotted as
r = T30,T UCT

TEyring
. A ratio r < 1 implies that the simulated result is shorter than

Eyring’s prediction of the reverberation time. For the dependency of the
absorber, the ratio T20

T30
is also investigated for each polyhedron. The results

of the investigation of the TUCT-mode in CATT-Acoustic are presented
first, and the last section in this chapter contains a plot of the theoretical
values for reverberation time.

4.1 Investigation of the TUCT mode

Figures 4.2, 4.3, 4.4 and 4.5 show the reverberation time T30 estimated
with the CATT-Acoustic’s TUCT-tool in a shoe-box shaped room shown
in Figure 4.1, as a function of the number of rays used in the simulation.

The error bars in the figures indicate that the results of the simulations with
the large absorber have a larger confidence interval than the simulations
with the small floor absorber. Both the size of the confidence interval and
the values of T30 appear to be independent of the number of rays. The
TUCT estimate does vary within the same room, but this variation does
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not follow the value of N . The random variation indicates an uncertainty
of the simulations.

A low scattering coefficient, as shown in Figure 4.2 and 4.3, seems to
give a greater variation of the T30. The size of the absorber gives an
indication of the relationship between the values of Sabine and Eyring
and the estimated reverberation time, which follows the classical theory
where one would assume the measured reverberation time to be longer
than Sabine’s and Eyring’s formulae for an uneven absorption distribution
and a low scattering, like the cases illustrated in Figure 4.2 and 4.3. For
the scattering s = 50%, the simulated and predicted reverberation times
are almost identical.

Figure 4.1: The room used for the simulations on the TUCT mode.
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Figure 4.2: TUCT simulation in a shoe-box shaped room with 10%
scattering and a small absorber.
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Figure 4.3: TUCT simulation in a shoe-box shaped room with 10%
scattering and a large absorber.
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Figure 4.4: TUCT simulation in a shoe-box shaped room with 50%
scattering and a small absorber.
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Figure 4.5: TUCT simulation in a shoe-box shaped room with 50%
scattering and a large absorber.
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4.2 Simulations in the hexahedron room

This section presents the results of the simulations of the hexahedron ap-
proximation to a sphere, the room showed in Figure 4.6. First, the vari-
ation in reverberation time as a function of the scattering coefficient is
presented for a selection of inclination angles and the large floor absorber
in the room. To show the dependency of the size of the absorber, a figure
for the inclination angle θ = 60o and scattering coefficients of s = 10%,
s = 50% and s = 90% with respect to the floor is shown in section 4.2.2.
The dependency on the inclination angle then follows for the same scat-
tering coefficients and absorber size.

Figure 4.6: The room used for the simulations in the hexahedron
approximation.
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4.2.1 Influence of the scattering coefficient

The relation between the simulated reverberation time TUCT T30 and the
estimations of Sabine and Eyring as a function of the scattering coefficient
is plotted for seven inclination angles θ. There are some differences between
these results which can be pointed out. For an angle θ = 60o, the simulated
reverberation time is independent of the scattering coefficient. θ = 90o,
the case of a cuboid room, gives a room with a pronounced dependency on
the scattrering coefficient. Figure 4.8 shows a notable high value for the
simulated reverberation time for s = 1%.

Scattering coefficient [%]
1 10 20 30 40 50 60 70 80 90

R
e
v
e
rb

e
ra

ti
o
n
 t
im

e
 T

3
0
  
 [
s
]

0.5

1

1.5

2

2.5 Sabine
Eyring
TUCT T

30
,

CI

Figure 4.7: Reverberation time as a function of the scattering coefficient,
hexahedron approximation and large absorber, angle θ = 35o.
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Figure 4.8: Reverberation time as a function of the scattering coefficient,
hexahedron approximation and large absorber, angle θ = 45o.
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Figure 4.9: Reverberation time as a function of the scattering coefficient,
hexahedron approximation and large absorber, angle θ = 60o.
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Figure 4.10: Reverberation time as a function of the scattering coefficient,
hexahedron approximation and large absorber, angle θ = 75o.
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Figure 4.11: Reverberation time as a function of the scattering coefficient,
hexahedron approximation and large absorber, angle θ = 82.5o.
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Figure 4.12: Reverberation time as a function of the scattering coefficient,
hexahedron approximation and large absorber, angle θ = 87.5o.
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Figure 4.13: Reverberation time as a function of the scattering coefficient,
hexahedron approximation and large absorber, angle θ = 90o.
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4.2.2 Influence of the size of the absorber

Figure 4.14 gives the relation between the size of the absorber and the
reverberation time r = T30

TEyring
. A ratio r < 1 indicates that the mean

value from TUCT is lower than the estimated value using Eyring’s formula.
Since Sabine’s value is higher than Eyring’s value for all situations, a ratio
r < 1 implies that also the ratio r = T30

TSabine
< 1. Using the large absorber

gives the lowest ratio.

Size [m
2
]

4*4 6*6 8*8

T
3

0
/T

E
y
ri

n
g

0.75

1

1.25

10 % scattering
50 % scattering
90 % scattering

Figure 4.14: Reverberation as a function of the size of the absorber,
hexahedron approximation and θ = 60o.
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4.2.3 Influence of the inclination angle

The dependency on the inclination angle can be seen in Figure 4.15. In
this figure, the room with the large absorber is considered. From this
figure, one can see that the result of the shoe-box case (θ = 90o) is highly
dependent on the scattering coefficient. For a higher scattering coefficient,
it is not possible to discover the same extreme in the relationship of T30

TEyring

and the geometry of the room.
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Figure 4.15: Reverberation as a function of the wall inclination angle θ,
hexahedron approximation and large absorber.
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4.3 Simulations in the nonahedron room

For the nonahedron approximation, illustrated in Figure 4.16, the wall in-
clination angle and the roof angle were kept constant. There were therefore
two variables examined for this room; the scattering coefficient and the size
of the absorber.

Figure 4.16: The room used for the simulations in the nonahedron
approximation.
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4.3.1 Influence of the scattering coefficient

From Figure 4.17 one can see that the scattering dependency on the
reverberation time is most dominate for a low scattering coefficient. When
the scattering increases (s > 20%), the relationship between Sabine’s and
Eyring’s values and the simulated reverberation time is nearly constant,
with T30 < TEyring < TSabine.
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Figure 4.17: Reverberation time as a function of the scattering coefficient,
nonahedron approximation and large absorber.
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4.3.2 Influence of the size of the absorber

Figure 4.18 shows the same tendency as Figure 4.14, where a large
absorber, or high scattering coefficient, is necessary to get a lower
reverberation time than predicted by Eyring. For the absorber of size
8 · 8 m2, the simulations for s = 50% and s = 90% are almost overlapping.
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Figure 4.18: Reverberation time as a function of the size of the absorber,
nonahedron approximation.
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4.4 Simulations in the decahedron room

As for the nonahedron approximation, the inclination angles were kept
constant for the decahedron room. This room is illustrated in Figure 4.19.
The dependency on the scattering coefficient and the size of the absorber
follows in section 4.4.1 and 4.4.2. As for the hexahedron and the nona-
hedron, the plot of the reverberation time as a function of the size of the
absorber is given by r = T30

TEyring
.

Figure 4.19: The room used for the simulations in the decahedron
approximation.
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4.4.1 Influence of the scattering coefficient

In Figure 4.20, the large floor absorber was used and the dependency
on the scattering coefficent on the reverberation time is plotted. For a
low scattering coefficient, s < 20%, the simulated value overlaps with the
estimation of Eyring. For a higher scattering coefficient, however, there
is a significant decrease of the simulated reverberation time, compared to
Sabine’s and Eyring’s values.
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Figure 4.20: Reverberation time as a function of the scattering coefficient,
decahedron approximation and large absorber.
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4.4.2 Influence of the size of the absorber

As one can see in Figure 4.21, a large absorber and a sufficient
scattering coefficient is needed to generate a situation where the simulated
reverberation time is shorter than Eyring’s prediction. For s = 10%, r > 1
for the small and medium absorber, and it is only slightly lower than one
for the large absorber.
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Figure 4.21: Reverberation time as a function of the size of the absorber,
decahedron approximation.
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4.5 Influence of the room geometry

To investigate the dependency on the number of surfaces in the polyhedra,
Figure 4.22 illustrates the reverberation times in the three rooms for
scattering coefficients of respectively s = 10%, s = 50% and s = 90 %.
The results follow from the simulations with the large absorber of S = 8 ·8
m. From the figure, one can see that the relationship is nearly independent
of the number of surfaces for a high scattering coefficient. The variation
with geometry is more dominant for a low scattering coefficient.
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Figure 4.22: Reverberation time for the three polyhedral approximations,
large absorber.
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4.6 Alternative reverberation time
formulae

In chapter 2, four different approaches to a theoretical value of the
reverberation time were presented; Millington-Sette and Kuttruff in
addition to Sabine’s and Eyring’s reverberation formulae. Reverberation
times according to these formulae are presented in Figure 4.23, for the same
room volumes and surface areas as the polyhedra which were simulated in
CATT. The formula of Fitzroy, given in equation 2.25, is not included
in this figure because it assumes a shoe-box shaped room, which is not
the case in the rooms explored in this thesis. The theoretical values are
presented together with the simulated values for a large absorber and
respectively 10%, 50% and 90% scattering.

Polyhedron
hexahedron nonahedron decahedron

R
e
v
e
rb

e
ra

ti
o
n
 t
im

e
 T

3
0
  
 [
s
]

0.25

0.5

0.75

1

Sabine
Eyring
Millington-Sette
Kuttruff
CATT 10 % scattering
CATT 90 % scattering
CATT 90 % scattering

Figure 4.23: Reverberation according to reverberation formulae, for
different polyhedra, together with the simulated values from CATT.
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4.7 Signs of a non-exponential decay

The relationship between the reverberation time based on respectively the
first 20 dB decrease and the first 30 dB decrease indicates the linearity
of the sound decay and thus the diffusivity of the sound field. This
relationship r = T20

T30
was investigated for the three polyhedra, as a function

of the size of the floor absorber, and is presented in Figures 4.24, 4.25 and
4.26.

In the hexahedron, the ratio r ≈ 1, and the relationship appears to be
linear for all sizes of the floor absorber and independent of the scattering
coefficient. The results are more dependent on the scattering coefficient
for the nonahedron and the decahedron, where the large absorber points
out with the lowest ratio.

Size [m
2
]

4*4 6*6 8*8

T
2

0
/T

3
0

0.8

0.9

1

1.1

1.2

10 % scattering
50 % scattering
90 % scattering

Figure 4.24: T20/T30 for hexahedron, angle θ = 60o, as a function of the
size of absorber.
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Figure 4.25: T20/T30 for nonahedron as a function of the size of absorber.
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Figure 4.26: T20/T30 for decahedron as a function of the size of absorber.

51





CHAPTER 5. DISCUSSION

5 Discussion

Chapter 4 presented the results of the simulations in CATT-Acoustic,
investigating the concequences of adjusting different parameters in the
rooms. These results were also compared to theoretical values for the
reverberation time. This chapter will discuss the results further. A
discussion of the validity of the results will then follow, before a suggestion
for further work is presented.

5.1 Investigation of the TUCT mode

The simulations in a shoe-box shaped room in TUCT described in section
3.1 were performed to investigate the importance of the number of cones
necessary in a TUCT-estimate for different combinations of scattering and
absorption. The two combinations with a high scattering coefficient gave
rooms where the resulting reverberation time is known by Sabine’s and
Eyring’s formulae.

The examination does not show a clear connection between the number of
rays (N) in a simulation and the resulting reverberation time (T30). The
TUCT estimate does vary, but it is not a clear correlation to the number
of cones. Figures 4.2 and 4.3 give an indication that a low scattering
coefficient (s = 10%) gives a higher variation between the simulations and
thus a higher systematic error, while Figure 4.4 and 4.5 give more stable
values of the T30.
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The combinations of scattering and absorption in the investigation of the
TUCT mode also follow the theory regarding an increase in the scattering
for a room with non-uniform absorption distribution and the measured
reverberation time. While Sabine’s and Eyring’s values, based on the
mean free path, show a little variation for one size of the floor absorber,
the simulated values are highly dependent on the scattering coefficient.

5.2 Simulations in the hexahedron room

The scattering coefficient, the absorber size and the inclination angle were
the three factors adjusted to investigate the resulting reverberation time in
the hexahedron approximation. The correlation between these factors and
the simulated reverberation time compared to the estimations of Sabine
and Eyring will be discussed in this section. In the cases where the
scattering coefficient and the inclination angle were adjusted, the large
absorber was used. When the floor absorber and the inclination angle
were varied, the chosen scattering coefficients were s = 10%, s = 50% and
s = 90%.

5.2.1 Influence of the scattering coefficient

Figures 4.7, 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13 in section 4.2.1 show
the dependency on the scattering coefficient for inclination angles of
respectively θ1 = 35o, θe = 45o, θ3 = 60o, θ4 = 75o, θ5 = 82.5o, θ6 = 87.5o

and θ7 = 90o. The result for θ4 = 60o shows an independency of the
scattering coefficient that cannot be found from the other wall inclination
angles. A possible explanation for this independency can be that the floor
absorber has a higher efficiency when the angles of the polyhedron give a
perfect approximation of a dome. This follows from the theory presented
in section 2.2.3. However, as will be discussed in section 5.4, the number
of surfaces in a polyhedra does not indicate that a focus effect can be the
explanation.
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For the smallest inclination angles. θ1 = 35o and θ2 = 45o, a low scattering
coeffient gives a significant longer reverberation time than predicted by
Sabine and Eyring. This is a reasonable result, and one can see the
same tendency also for larger inclination angles and scattering coefficient
s = 1%.

For an increasing scattering coefficient, the reverberation time appears to
be less dependent on the inclination angle and the geometry. For θ1 and
θ2, the simulated reverberation time approximates Eyring’s and Sabine’s
values also for a high scattering coefficient. In the other simulations,
however, the simulated reverberation time appears to be lower than the
estimated values, as stated in the problem description.

5.2.2 Influence of the size of the absorber

The figure presented in section 4.2.2 shows an interrelationship between
the size of the absorber and the ratio r = T30

TEyring
, which becomes lower

relative to the size of the absorber. For the small absorber of Sabs = 4 · 4
m2, the estimated and simulated reverberation times are almost identical,
giving a ratio r ≈ 1 independent of the scattering. The same result applies
for a low scattering coefficient and the medium-sized floor absorber. To
lower the ratio of T30

TEyring
, one can see that it is necessary to apply a high

scattering coefficient to the room with the medium absorber or to use the
large floor absorber. A larger absorber, covering most of the floor, gives a
result that is almost independent of the scattering coefficient.

In the latter case, a majority of the rays will hit the absorber, and thus
shorten the sound decay in the room to a greater extent than the formulae
of Sabine and Eyring predict. The opposite happens for the small absorber,
especially for smaller angles θ resulting in a large floor area compared to
the ceiling area, where a majority of the rays hit the floor outside of the
absorber. A consequence is that a larger part of the rays is reflected, either
specularly or diffusely, which prolongs the sound decay.
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5.2.3 Influence of the inclination angle

From Figure 4.15, one can see that the angle between floor and walls in
the hexagon approximation has an influence on the reverberation time.
The reverberation time following the formulae of Sabine and Eyring, as
given in equations 2.7 and 2.17, does not vary significantly. The reason
for this is that the volume is kept constant for all angles, and that the
total absorption area only has a minor deviation. However, one can see
some variations in the theoretical values as well. The reason for these
variations is that CATT-Acoustic calculates the volume of a room based
on the resulting mean free path from a simulation, which may vary, as will
be discussed in section 5.6.3. Smaller angles give simulated values closer
to the reverberation times predicted by Sabine and Eyring, with a ratio
r ≈ 1.

An interesting result is found for θ7 = 90o, the cuboid room, and s = 10%,
where the simulated value exceeds the estimated value giving a ratio of
T30

TEyring
� 1. This is the same result as can be found in in the TUCT-

investigation, illustrated in section 4.1. For higher scattering coefficients,
the simulated value lies cloes to Eyring’s prediction.

Figure 4.15 also supports what was stated in section 5.2.1, that the
reverberation time is more dependent on the geometry for a low scattering
coefficient. One can find a significant peak for θ2 = 45o and θ7 = 90o

(the shoe-box shape), where the results for the shoe-box identify as highly
dependent on the scattering coefficient.

An inclination angle α3 = 60o gives the perfect approximation of a dome.
From the results in section 4.2.3, one can see that the results also for this
geometry are less dependent on the scattering coefficient and the size of
the a bsorber, and give a ratio of r = T30

TEyring
≈ 1. The connection between

this geometry and the other polyhedra will be discussed further in section
5.4.
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5.3 Simulations in the nonahedron and the
decahedron rooms

The simulations in the nonahedron and the decahedron room were done
for a varying scattering coefficient and three different floor absorbers, with
a scattering coefficient of the surfaces varying from s = 1.0% to s = 90%.
The discussion for the two rooms is presented together in this section
because the results show the same tendency for both polyhedra and the
same parameters were adjusted in the two rooms.

5.3.1 Influence of the scattering coefficient

With the exception of a scattering coefficient of s = 1%, the simulations
from the nonahedron room with an absorber of 8 · 8 m2 follows the same
pattern as the hexahedron approximation with angle θ = 60o, which is as
expected for the dome approximation.

For a low scattering coefficient, the resulting reverberation time is higher
than what the formulae predict, due to a lower diffusivity in the room. In
this case, the cone tracing will give a higher amount of specular reflections,
and a smaller potential area of where a reflected cone may hit the next
surface.

The simulations in the decahedron room do not show the same extreme
as the nonahedron for a scattering of 1%, where the result gives
a reverberation time of approximately the same value as Eyring’s
reverberation formula. For higher scattering coefficients, the simulations
in the nonahedron and the decahedron rooms are almost identical.

5.3.2 Influence of the size of the absorber

A certain size of the floor absorber is necessary to finding the relationship in
which the simulated reverberation time is shorter than Eyring’s estimate.
For the small absorber, S = 4 · 4 m2, the results give T30

TEyring
> 1, which
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implies a prolonged reverberation time, which is what have been stated
for rooms of other geometries (for instance a shoe-box shape with uneven
absorption distribution) earlier. One can see that a higher value of the
scattering coefficient leads to a reverberation time that is less dependent
on the size on the absorber. This follows from both Figure 4.18 and 4.21.

5.4 Influence of the room geometry

With a high scattering coefficient, the resulting ratio T30
TEyring

is independent
of the room geometry, and identical for the three polyhedra. With
a scattering of 10%, the hexahedron stands out with a ratio r < 1
independent of the size of the floor absorber. Figures 4.14, 4.18 and
4.21 shows the same tendency for the effect of the floor absorber, where
this effect is largest for a high scattering coefficient. The results of the
hexahedron simulations, which has the same ratio of r ≈ 0.88 with the
large absorber for all scattering coefficients, differs from the nonahedron
and the decahedron.

A decahedron is the polyhedral approximation which is closest to the
dome shaped room. One could therefore assume a possible focus effect
to be stronger in this room. However, this is not the case, and the three
polyhedra gives approximately the same ratio when the scattering is high.
This is why a focus effect due to a dome shaped ceiling cannot be claimed
to be the reason of why Sabine’s and Eyring’s formulae predicts a longer
reverberation time than the simulations.

5.5 Alternative reverberation time
formulae

From Figure 4.23, one can see that the simulated results lie closer the
the Eyring value than the estimations of Millington-Sette and Kuttruff.
Sabine’s and Eyring’s values are based on an assumption of a diffuse sound
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field, which is not the case for the polyhedral rooms with uneven absorption
investigated in chapter 4.

The Millington-Sette’s formula was introduced with the purpose to be
valid for rooms of uneven absorption distribution. One would therefore
assume this formula to give a better estimate for the rooms examined
in this thesis. However, as the figure shows, Millington-Sette predicts a
lower value than the simulations in CATT-Acoustic. Using the absorption
consideration of Kuttruff, the estimate is closer to the one found using
TUCT, but also this value has a significant deviation from the simulations
in CATT-Acoustic. One would assume Kuttruff’s value lie closer to the
simulated values since the situations all have T30 < TEyring, which is the
range for the reverberation time in which Kuttruff’s absorption formula is
stated to be valid.

The fact that both Millington-Sette and Kuttruff predict a reverberation
time shorter than Eyring and Sabine is an indication that the room
geometries that have been investigated have provoked the difference
between the reverberation formulae.

By investigating the deviation in the relations between respectively Eyring,
Kuttruff and Millington-Sette and the simulated T30 for different scatter-
ing coefficients, the validity of the different formulae can be stated. This
deviation is presented in Table 5.1. From these numbers, one can read that
Eyring’s formula stands out as the best approach to the result from the
simulations in CATT-Acoustic. The formula of Kuttruff and Millington-
Sette both give larger deviations from the true value. They correct, as
is the intention of the formulae, for the fact that the absorbtion is un-
evenly distributed and the reverberation time therefore has to be lower
than Eyring’s prediction. However, both formulae can be told to overcom-
pensate for this effect.
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Table 5.1: The deviation between simulated reverberation time and
theoretical formulae T30/TFormula.

Polyhedron Sabine Eyring Millington-Sette Kuttruff
Scattering s = 10%

Hexahedron 0.7930 0.8863 1.9329 1.5596
Nonahedron 0.7988 0.8927 1.9470 1.5710
Decahedron 0.8016 0.8958 1.9538 1.5765

Scattering s = 50%
Hexahedron 0.8870 1.0072 2.1777 1.7585
Nonahedron 0.8176 0.9284 2.0074 1.6209
Decahedron 0.8019 0.9107 1.9690 1.5899

Scattering s = 90%
Hexahedron 0.8658 0.9811 2.1239 1.7148
Nonahedron 0.7924 0.8979 1.9438 1.5694
Decahedron 0.7939 0.8996 1.9475 1.5724

From this table, one can see that there is a large positive deviation for
Millington-Sette’s formula and also a noticeable deviation in Kuttruff’s
formulae. This indicates that the simulated reverberation time is in some
cases more than double the theoretical estimate.

These values could be compared to values presented by Neubauer and
Kang [34] for their cases of a shoe-box shaped room with an absorbing
ceiling (α = 0.8) and reflecting walls and floor (α = 0.05). Neubauer and
Kang use an average over the frequency bands of f = 500 Hz and f = 1
kHz, and compare values by the formulae of Sabine, Eyring, Millington-
Sette, and also Fitzroy, Arau and Fitzroy-Kuttruff, to simulations with
CATT-Acoustic and the radiosity model. In their predictions, two sound
sources and one receiver are used and the rooms have a constant diffusion
of 10%. In both rooms, the simulated reverberation time is higher than
Sabine’s and Eyring’s predictions, which is the classical example stated in
the problem description.

The interesting element is their study of theoretical reverberation. In the
first room, measuring 10 · 10 · 8 m3, the ratio of rEyring = TEyring

TMillington−Sette

equals r = 1.14
0.69 = 1.65. The ratio of rSabine = TSabine

TMillington−Sette
in this room

has a value of rSabine = 1.27
0.69 = 1.84. For the room measuring 10 · 10 · 3

m3, the ratios equals rEyring = 0.45
0.28 = 1.61 and rSabine = 0.53

0.28 = 1.89.
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Even if these ratios are not as extreme as what one can find in Table
5.1, they give the same tendency of TMillington−Sette � TEyring when only
one surface is absorbing. The value of Fitzroy-Kuttruff, using Kuttruff’s
absorbtion approach as presented in section 2.1.9 in combination with
Fitzroy’s reverberation formula, lies between Millington-Sette and Eyring,
which is the same relation as Kuttruff’s aborption values in combination
with Eyring’s formula in the study of this thesis.

5.6 Uncertainty and statistics

A source of error that have already been introduced is the length of the
impulse response in the TUCT-prediction. If the IR is too short, there is
a risk of a truncation error [29, p. 110], which will lead to a simulated
reverberation time that is shorter than the true value. To avoid such
a situation, the length was set to auto. The length is then based on
Eyring’s value for the reverberation time. In this study, this length should
be acceptable since the rooms studied have the relationship T30 < TEyring.

Other sources of error to be discussed are the locations of the source and
the receiver, the degree of an exponential decay and the computation of
the volume, which is based on the mean free path.

5.6.1 Placing of the source and receiver

In scale model measurements or full scale measurements of the reverbera-
tion time in a room, the measurement setup of sound sources and receivers
would follow the ISO standard for measurements of reverberation time
in ordinary rooms [6] and include multiple locations and heights of the
source and the receiver. In this project, however, only one position for the
sound source and one position for the receiver were chosen. The reason for
this choice is that the reverberation time is considered a global parameter,
and therefore independent of the location. This has been confirmed in a
separate study in CATT-Acoustic which will not be presented in this the-
sis. The mean values and the statistical considerations were based on the
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values for the respective frequency bands, which are independent of the
frequency as a consequence of the settings presented in section 3.2.

5.6.2 Signs of a non-exponential decay

In the characteristics of a global paramenter, it follows that the sound
decay is a pure expontential decay, meaning that the reverberation curve,
given in dB, follows a linear curve. This is valid in most rooms, but
exceptions follow for instance in coupled rooms.

By studies of the relation between T20 and T30, as presented in Figures
4.24, 4.25 and 4.26, it is claimed that the two values will be identical if
one has a pure exponential sound decay. T30 is based on the decay from -5
dB to -35 dB, while T20 is based on the decay from -5 B to -25 dB. The
reason for excluding the first 5 dB decay is that the first part of the sound
decay is strongly related to the direct sound in a room rather than the
reverberation.

From the figures in section 4.7, one can see that the ratio T20/T30 ≈ 1 in
all polyhedra for the small and medium floor absorber. In the hexahedron,
this relationship also applies for the large absorber, and indicates a pure
exponential sound decay. The other polyhedra, and in particular the
nonahedron, seems to have a weakness for the large absorber, giving a
ratio og T20/T30 < 1, which means that the sound decay is not perfectly
linear.

5.6.3 The mean free path and volume considerations
in CATT-Acoustic

In the calculations of the total volume in CATT-Acoustic, the mean free
path is used as a foundation, following from equation 2.5. The mfp is re-
lated to the average number of reflections in a ray tracing procedure, which
is not a constant value. The reason that the Sabine and Eyring values have
a variation within the same room is that these values are dependent on the
volume V, which is supposed to be constant. A study of the difference in
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volume calculated in CATT-Acoustic, compared to the values calculated in
Matlab, should therefore indicate the uncertainty of the Sabine and Eyring
values.

Table 5.2: Room volumes and mean free path calculated in CATT-
Acoustics and in Matlab

Polyhedron VMatlab VCATT,mean VCATT,CI
Hexahedron 335.8697 339.1010 (337.3592, 340.8428)
Nonahedron 338.1679 339.4230 (338.2173, 340.6287)
Decahedron 333.6389 333.9550 (332.7722, 335.1378)
Polyhedron MFPMatlab MFPCATT,mean MFPCATT,CI
Hexahedron 4.3587 4.0800 (4.0579, 4.1021)
Nonahedron 5.0160 4.2640 (4.2488, 4.2792)
Decahedron 4.8674 4.3020 (4.2870, 4.3170)

Table 5.2 gives the values of the volume for each polyhedron approxima-
tion calculated in Matlab, together with the mean value from the TUCT-
simulations and the 95% confidence interval for these values. The mean
values and confidence intervals are based on the ten simulations for scat-
tering s ε [1, 90]%.

In Figure 4.23, the values of Sabine and Eyring are calculated in
Matlab using the correct volume and surface area. These values do not
vary significantly from the values for Sabine and Eyring in the TUCT-
predictions, and the statistical error due to the uncertainty in the mean
free path can be stated to be small.

5.7 General comments

As can be deduced from the results and the previous discussion, the
reverberation time following from geometrical acoustics and theoretical
values is dependent on factors like the room shape, the distribution of the
absorption and the scattering coefficient. The results indicates that there
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is a limit for the scattering coefficient around slimit = 20%, where s < slimit

gives simulated reverberation times which are not significantly shorter than
TEyring, and in some cases higher than Eyring’s prediction. The case of
s > slimit does, however, give a ratio of T30

TEyring
< 1. The hexahedron with

nclination angle θ = 60o is an exception, and shows an independency of
the scattering coefficient. As stated earlier, the assumption is that a low
scattering coefficient gives a higher dependency on the room geometry, but
this does not seem to be the case for this study. A low scattering coefficient
results in most cases in a higher reverberation time, but the value for a
low scattering coefficient does not seem to be dependent on the polyhedral
approximations.

The formulae of Sabine and Eyring both assume a diffuse sound field,
and give the same value for a room of constant volume and average
absorption, while simulations based on the image source method and ray
tracing give a variation with the respective factors. The study shows
that neither Sabine, Eyring, Millington-Sette or Kuttruff can predict the
same value for reverberation time as the TUCT-simulations in CATT-
Acoustic. While Sabine and Eyring predict a value of the reverberation
time higher than what was obtained in the simulations performed with
CATT-Acoustic, Millington-Sette and Kuttruff give lower values than the
simulated. The study shows that the value of Eyring lies closest to the
simulated reverberation time.

The findings of Millington-Sette and Kuttruff both predicting reverbera-
tion times shorter than the values found by the TUCT-predictions indicates
that the polyhedral room geometries in this study have resulted in the sit-
uations where the difference between the classical formulae by Sabine and
Eyring and the correcting formulae by Millington-Sette’ and Kuttruff’s
absorption formulae arises. The reason for these differences lies in the
approach to the absorption coefficient and the absorption distribution.
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5.8 Further work

As a consequence of what have been obtained in this thesis, there
are several topics suggested for further work. It could be interesting
to implement as scale model rooms, the rooms on which has been
investigated in CATT-Acoustic, to see if the same tendency with a
measured reverberation time lower than what Sabine and Eyring predicts
can be found by performing measurements in a scale model. A correction
for air absorption must then be included.

From the simulations in CATT-Acoustic, one could also study other room
acoustical parameters than the reverberation time and their behavior in
a polyhedron room. When studying the local parameters, one has to use
several positions for the source and receiver, because one cannot assume
these parameters to be the same in all positions.

Only a couple of theoretical approaches to a reverberation time have been
investigated in this study, and there exist other alternatives as well. An
example of a formula to investigate is Arau’s reverberation formula [35].
Stephenson and Drechsler also suggest an Anisotropic Reverberation Model
(ARM) [2], [36] assuming an anisotropic sound field, which can be
investigated for the polyhedral rooms. Finally, the approach of Tohyama
[37], based on an almost 2-dimentional diffuse field theory, could as well
be tested on the polyhedra.

65





CHAPTER 6. CONCLUSION

6 Conclusion

In this Master’s thesis, the relationship between estimated reverberation
times using classical equations and simulated reverberation times using
the computational program CATT-Acoustic has been studied. These
simulations are based on a combination of the image source method and a
cone tracing-procedure.

The rooms that have been investigated are polyhedral approximations of
a dome. As suggested by Stephenson, a tendency of a focus effect could be
the case for such rooms. This effect could not be found in this study. The
rooms implemented in CATT-Acoustic all had hard surfaces of αwall = 2%
and a floor absorber on parts of the floor of αfloor = 90%. The parameters
varied for each polyhedron were the size of the floor absorber and the
scattering coefficient s. In the hexahedron approximation, also the wall
inclination angle was adjusted, from θ = 35o to θ = 90o. For these
combinations, studies of the reverberation time were performed.

The simulations gave reverberation times shorter than Sabine’s and
Eyring’s predictions for the polyhedra. It is, however, not possible to come
to a conclusion that the polyhedral dome-approximations give a focusing
effect; by increasing the number of surfaces in the polyhedron, the ratio of
T30

TEyring
did not vary significantly.

A reason for the difference between T30 and TEyring can be a higher
effectiveness of the floor absorber when the side walls are tilted and the
room has a saddle roof. The sound rays in the polyhedral approximations
of a dome will then to a greater extent be reflected towards the absorbing
floor, compared to a shoe-box shaped room or a trapezoid room with an
inclination angle θ > 90o.
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CATT-Acoustic has two approaches to finding the reverberation time.
There is one simpler ray tracing tool, the interactive RT estimate and
one more advanced, The Universal Cone Tracer. The latter one was used
in the work of this thesis. The investigations of the TUCT-mode show a
tendency to a variation in the simulated reverberation time for a varying
number of cones. These variations do not follow an increasing number of
cones, but seems to be a random variation.

For the polyhedral rooms, the ratio of T20
T30

was calculated to investigating
the degree of an exponential sound decay. If this ratio r ≈ 1, the
reverberation time is independent of the dynamic range of the impulse
response. r ≈ 1 in the hexahedron, for all three sizes of the floor absorber
and for scattering coefficients of respectively s = 10%, s = 50% and
s = 90%. In the study of the nonahedron and the decahedron, the
ratio r < 1 for the large floor absorber and a low scattering coefficient of
s = 10%, and indicates a tendency of a non-exponential decay. However,
the ratio becomes r ≈ 1 for a higher scattering coefficient and by using the
small and medium floor absorber.

The predicted values of Sabine’s and Eyring’s equations are based on the
volume which is related to the mean free path. This value varies within the
same room for consecutive simulations, and is a source of error. The exact
volume of the hexahedron and the nonahedron calculated with Matlab does
not overlap with the 95%-confidence interval for the simulations in CATT-
Acoustics. The confidence interval for the volume of the decahedron does,
however, contain the exact value. For all three polyhedra, the mean free
path-calculations from Matlab give a higher value than the simulations.
However, the formula implemented in Matlab assumes a diffuse sound
field which cannot be claimed for the polyhedral rooms with an uneven
distribution of absorption.

Sabine’s reverberation formula takes into account the room volume and
the average absorption, in addition to a constant which is dependent on
sound speed and thus temperature. The distribution of absorption is
ignored in this equation. As a consequence, Sabine’s formula predicts
a reverberation time T → 0.161V

S
for an absorption coefficient ᾱ = 1,

which is counterintuitive. Eyring wanted to correct for this weakness in the
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formula of Sabine, and the formula of Eyring is based on an logarithmic
consideration of the absorption coefficient, which gives the expected value
of T → 0 for ᾱ = 1. These two formulae give approximately the same
values for a low average absorption.

Due to weaknesses also in Eyring’s formula, other approaches of a
reverberation time formula have been suggested. Two examples are
Millington-Sette’s formula and Kuttruff’s formula, which have both been
applied on the polyhedral rooms in this study. Millington-Sette and
Kuttruff predict a reverberation time significantly shorter than the
simulations in CATT-Acoustic. The relation of TSabine > TEyring >

T30,TUCT > TKuttruff > TMillington−Sette, indicates that the geometry of the
rooms considered in this Master’s thesis provoke the difference between
how the formulae treat the absorption distribution in a room.

The reverberation times predicted by Millington-Sette and Kuttruff
are both significantly shorter than the classical Sabine’s and Eyring’s
values. Moreover, the computer simulations in CATT-Acoustic leads to
a reverberation time which is closer to Eyring’s prediction than to the
alternative formulae. This implies that Millington-Sette and Kuttruff do
not seem to give a better alternative for the reverberation time in this
study. For cases like the polyhedral rooms with an uneven distribution of
absorption, a prediction for the reverberation time should be based on a
detailed ray tracing-procedure, like what have been performed in CATT-
Acoustic.
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A Tables

A.1 Coordinates for the hexahedron

Table A.1 gives the coordinates for the hexahedron room given different
inclination angles, for a constant volume and room height.

Table A.1: Corners of the polyhedra, given different inclination angles.

Angle Θ A B C
35 o 7.1121 0.3124 4.7616
45 o 6.3487 1.5871 4.7616
60 o 5.4982 2.7491 4.7616
75 o 4.8210 3.5452 4.7616
82.5 o 4.5058 3.8819 4.7616
87.5 o 4.3028 4.0949 4.7616
90 o 4.1993 4.1993 4.7616
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A.2 Absorption coefficients

Table A.2 [20, p. 341] gives the absorption coefficients for two materials,
corresponding to the absorption coefficients used in the simulations in
CATT-Acoustic.

Table A.2: Absorption coefficients.

Material 125 Hz 250 Hz 500 Hz 1 KHz 2 KHz 4 KHz
Linoleum floor on concrete 0.02 0.03 0.03 0.03 0.03 0.02

Perforated panel over isolation

blanket, 10 % open area 0.20 0.90 0.90 0.90 0.85 0.85
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B Mean values

Scattering coefficient [%]
1 10 20 30 40 50 60 70 80 90

R
e
v
e
rb

e
ra

ti
o
n
 t
im

e
 T

3
0
  
 [
s
]

0.5

1

1.5

2

2.5

3 Hexahedron 35
o

Hexahedron 45
o

Hexahedron 60
o

Hexahedron 75
o

Hexahedron 82.5
o

Hexahedron 87.5
o

Hexahedron 90
o

Nonahedron
Decahedron

Figure B.1: The mean values for the simulations of polyhedra with large
floor absorber.
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APPENDIX C. MATLAB CODE

C Matlab code

C.1 Corners of a polygon

This scripts takes in the radius of a circle and the number of corners in the
polygon approximation. By spherical symmetry, the coordinates are also
valid for a polyhedron approximation of a sphere.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%

2 %% corners in a polygon %%

3 %%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 % radius for the equivalent circle

6 r_c = 5;

7 % number of corners in the polygon approximation

8 numberofcorners = 6; % hexahedron

9

10 % radius of the polygon approximation

11 r_p = r_c*sqrt(2*pi/numberofcorners/sin(2*pi/numberofcorners));

12

13 % corners will contain the x- and y-coordinates of the polygon

14 corners = zeros(numberofcorners,2);

15 fivec = [0:numberofcorners-1].'*2*pi/numberofcorners;

16 % x-coordinates

17 corners(1:numberofcorners,1) = r_p*cos(fivec);

18 % y-coordinates

19 corners(1:numberofcorners,2) = r_p*sin(fivec);
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C.2 Read out from .txt-file

In this script, a .txt-file from a TUCT-predition is read to find the
reverberation times TSabine, TEyring, T30, T20 and T15.

1 %%%%%%%%%%%%%%%%%%%%

2 %% read TUCT-file %%

3 %%%%%%%%%%%%%%%%%%%%

4

5 inputfile = 'TUCT_C3_3_10.txt'; % name of TUCT-file

6

7 % open TUCT-file

8 fid = fopen(inputfile,'r');

9 if fid == 0

10 error(['ERROR: The file ',inputfile,' could not be opened.'])

11 end

12 B = fread(fid,inf,'char').';

13 fclose(fid);

14

15 % replace , by .

16 iv = find(B ==',');

17 B(iv) = '.';

18

19 stringtofind = '"s"';

20 iv_spaces = regexp(setstr(B),stringtofind);

21

22 stringtofind = '"RT''"';

23 iv_start = regexp(setstr(B),stringtofind);

24

25 % trim text from file

26 B = B(iv_start:iv_spaces(end));

27

28 % find lines that start with "(E)" and "s" in trimmed text file

29 stringtofind = '\(E\)';

30 iv_Epos = regexp(setstr(B),stringtofind);

31

32 stringtofind = '"s"';

33 iv_spos = regexp(setstr(B),stringtofind);

34

35 % find values for $T_{30}$, $T_{20}$ and $T_{15}$
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36 T15string = setstr(B(iv_Epos(3)+4:iv_spos(8)));

37 T20string = setstr(B(iv_Epos(4)+4:iv_spos(11)));

38 T30string = setstr(B(iv_Epos(5)+4:iv_spos(14)));

39

40 % one vector contains values for all eight octave bands.

41 iv_15 = find(T15string =='.');

42 T15values = zeros(1,8);

43 for ii = 1:8

44 T15values(ii) = str2num(T15string(iv_15(ii)-2:iv_15(ii)+2));

45 end

46

47 % one vector contains values for all eight octave bands.

48 iv_20 = find(T20string =='.');

49 T20values = zeros(1,8);

50 for ii = 1:8

51 T20values(ii) = str2num(T20string(iv_20(ii)-2:iv_20(ii)+2));

52 end

53

54 % one vector contains values for all eight octave bands.

55 iv_30 = find(T30string =='.');

56 T30values = zeros(1,8);

57 for ii = 1:8

58 T30values(ii) = str2num(T30string(iv_30(ii)-2:iv_30(ii)+2));

59 end

60

61 % Find values for Eyring and Sabine

62 stringtofind = 'Sabine';

63 iv_Sabine = regexp(setstr(B),stringtofind);

64 TSabinestring = setstr(B_A_1(iv_Sabine+7:iv_spos(16)));

65

66 stringtofind = 'Eyring';

67 iv_Eyring = regexp(setstr(B),stringtofind);

68 TEyringstring = setstr(B(iv_Eyring+7:iv_spos(17)));

69

70 % one vector contains values for all eight octave bands.

71 iv_Sabine = find(TSabinestring_A_1=='.');

72 Sabinevalues = zeros(1,8);

73 for ii = 1:length(iv)

74 Sabinevalues(ii) = str2num(TSabinestring(iv(ii)-2:iv(ii)+2));

75 end

76

77 % one vector contains values for all eight octave bands.
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78 iv_Eyring = find(TEyringstring =='.');

79 Eyringvalues = zeros(1,8);

80 for ii = 1:length(iv)

81 Eyringvalues(ii) = str2num(TEyringstring(iv(ii)-2:iv(ii)+2));

82 end
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