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Introduction

1.1 Background for offshore wind
The energy market is changing. With an increased focus on generating electricity
from renewable sources, together with serious nuclear power incidents and stag-
nation in oil and gas, wind power has been identified as a power source that can
be utilized in most parts of the world. However, onshore based wind farms have
traditionally been controversial due to noise and visual impact issues. In order to
overcome such show-stoppers offshore wind has emerged as an attractive alternat-
ive. Offshore wind conditions are often better and more stable than onshore, and
transportation and access for maintenance can be handled by sea eliminating the
need for road transport. Also, offshore wind turbines can be much larger than their
onshore counterparts.

Many countries have in recent years increased their wind production, often as a
consequence of ambitious goals for investments and development of offshore wind
power. By the end of 2013 there were 117.3 GW of installed wind power in the
European Union (EU) [50], of which 110.7 GW were onshore and 6.6 GW were
offshore. Of the total offshore capacity 1.6 GW were installed during 2013 with
similar prospects for the following years. During the first half of 2014 781 MW of
increased capacity have been installed for a total of 224 wind turbines [49]. This
increases the total number of installed offshore wind turbines in the EU to around
2300. The average size of the wind turbines are now 4 MW [48]. Such a turbine
typically has a rotor diameter of around 130 m.

In the US there were, by the end of 2013, around 61.1 GW of total installed wind
power, of which almost nothing was installed offshore [67]. China had a total in-
stalled capacity of around 91.4 GW. The capacity of Chinese offshore wind power
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2 Introduction

amounts to 428.6 MW. China in particular has huge plans to increase the installed
capacity.

Bigger wind turbines exist and are under testing. These include the SeaTitan
10 MW wind turbine with a rotor diameter of 190 m [4], the Areva 8 MW wind
turbine with a rotor diameter of 180 m [7] and the MHI Vestas 8 MW wind turbine
with a rotor diameter of 164 m [110].

1.2 Current wind turbine analysis techniques
Onshore wind is becoming a mature industry with well-established calculation and
analysis techniques [103]. These techniques are not necessarily directly transfer-
able to analyses of offshore wind turbines. In particular there is a greater need for
dynamic analyses of offshore wind turbines as the structures are much larger.

The significant increase in wind turbine sizes has required a more sophisticated
toolbox of simulation techniques [69]. The wind turbines of the early 1980s had
rotor diameters of 10 − 15 m, while new offshore wind turbines today can have
rotor diameters of around 130 m. From simple design rules of thumb, via static
finite element analysis, to fully dynamic finite element analysis, the larger wind
turbine sizes have increased the demand for more involving and accurate analysis
methods [70]. Prediction of wind turbine blade aerodynamic loads requires de-
termination of the wind loads on the structure and calculation of the structural
response. This can be done through an aeroelastic model or, as we will focus on
here, fluid-structure interaction (FSI).

There are four main methods of predicting the aerodynamic loads on a wind tur-
bine [70]. Firstly, we have the blade element momentum (BEM) method, as in-
troduced in [62]. This method is quite fast and therefore well-suited in an engin-
eering design phase. However, the method is dependent on detailed airfoil data in
terms of lift and drag curves as functions of the angle of attack α and the Reyn-
olds number, Re. The method assumes that all sections along the blade can be
treated independently. Secondly, there are the 3D inviscid aerodynamic models.
These include the lifting line, panel and vortex models and allow a more detailed
description of the 3D flow around a wind turbine. The methods, however, neg-
lect viscous effects. Thirdly, we have the generalized actuator disc models that
are well-suited for analyzing rotor performance. They can be combined with blade
element theory or Navier-Stokes simulations. Popular aeroelastic codes simulating
the response of wind turbines include FAST [114], HAWC2 [47] and Ashes [127].
Lastly, Navier-Stokes simulations of wind turbines can include more physics and
provide more insight than the other methods at a significantly higher cost. Such
computational fluid dynamics (CFD) simulations have gained much popularity in
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the recent decade, both due to increased computational power and improved com-
putational methods. However, simulations in 3D can be very challenging [70].
Still, CFD is the method of choice in this thesis, as it can provide valuable in-
sight in itself as well as produce valuable input for other methods. For instance,
CFD simulations can provide spanwise distributions of force coefficients and sec-
tional pressure distributions along the blade span. Aspects of turbulence will be
discussed later.

In order to do full elastic computations of wind turbine rotors the codes for pre-
dicting aerodynamic loads should be coupled to a structural code. When it comes
to structural modeling of wind turbines there are two main approaches [70]. The
first is to use the method of virtual work applied on modal shape functions. This
reduces the total number of degrees-of-freedom in the system and thus reduces
the computational cost. The second is to use the finite element method applying
non-linear beam theory [124]. This is the most commonly used approach today.

1.3 Isogeometric analysis
When doing advanced numerical simulations it is important not only to focus on
the computational costs. The overall simulation efficiency must also be kept in
mind. This includes the time consumption related to modeling, analysis and in-
terpretation of results. Investigations have shown that the lack of interoperability
between using modern computer aided design (CAD) systems and classical finite
element analysis is a major bottleneck [40]. In fact, it is estimated that 80% of
the overall analysis time is used to prepare geometries, meshes and input for finite
element analysis.

In order to address the major bottleneck isogeometric analysis (IGA) was intro-
duced in 2005 [86]. This concept is characterized by using splines, i.e. B-splines or
non-rational uniform B-splines (NURBS), as basis functions in the finite element
analysis as well as in the CAD system. In turn, this opens up for exact geometric
modeling, which can be of utmost importance when it comes to modeling aerody-
namically shaped objects like airfoils. Traditional finite element meshes are only
approximations of the real geometries, e.g. consider the number of element ne-
cessary to mesh a cylinder surface accurately. Furthermore, isogeometric analysis
gives better accuracy per degree-of-freedom than more traditional methods.

1.4 Computational fluid dynamics (CFD)

1.4.1 General CFD

There are several technologies available for simulating fluid flow, and a compre-
hensive overview of many different methods can be found in [97]. Among others
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we have finite elements [29], finite volumes [13], finite differences [8] and spec-
tral elements [33]. Popular finite element codes include the commercial COMSOL
Multiphysics [39] and the freely available FEniCS [102] and deal.II [12]. When
it comes to finite volume codes the commercial codes ANSYS CFX [5], ANSYS
Fluent [6] and StarCCM+ [36] are widely used. Also the freely available finite
volume code OpenFoam [115] is in active use by many applied research groups.

This thesis is focused on a new development in finite element methods, the isogeo-
metric finite element method as introduced in [86], and explained in the previous
section.

Our main equations of interest will be the incompressible Navier-Stokes equations,
which are a mathematical description of subsonic, viscous flow. They can be writ-
ten as

ρ
∂u

∂t
+ ρ (u · ∇)u−∇ · σ (u, p) = ρf in Ω

∇ · u = 0 in Ω.
(1.1)

We require Ω ∈ Rd, d = 2, 3 to a suitable, sufficiently regular and open domain.
Furthermore, we define ρ to be the constant fluid density, p to be the pressure, u
to be the fluid velocity vector and f to be a volumetric body force. The Cauchy
stress tensor can be written as

σ(u, p) = −pI + 2µε(u),

where I is the identity tensor, µ the dynamic viscosity and the strain rate ε is
defined as

ε(u) =
1

2

(
∇u+ (∇u)T

)
.

When solving the Navier-Stokes equations one can either choose to solve for both
the velocity and pressure unknowns simultaneously. This gives a so-called coupled
approach. Another approach is employed in splitting or projection methods. Here,
the velocity and pressure are decoupled. This thesis is mainly concerned with
projection methods, but a coupled solver is used for comparison purposes in Paper
II.

As projection methods involve solution of several decoupled systems of parabolic
or elliptic equations at each time step, they can be more efficient that fully coupled
formulations. The decoupled systems can be solved by standard Krylov subspace
methods like the conjugate gradient method [76, 119] or GMRES [120] with ef-
ficient preconditioners like multigrid [75] or domain decomposition [128]. Some
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results for iterative solvers applied to isogeometric finite elements can be found in
[38]. However, projection methods are plagued by the fact that high-order methods
are hard to design and analyze due to the additional unphysical boundary condi-
tions introduced.

There are several projection methods available and a recent review is given in [65].
Initial developments were done by Chorin [37] and Temam [141]. These meth-
ods or schemes are commonly divided into two main groups: pressure-correction
schemes and velocity-correction schemes. In pressure-correction schemes the pres-
sure is either ignored or treated explicitly in a separate step before it is corrected by
projection of a temporary velocity found in the separate step. Velocity-correction
schemes on the other hand switch the roles of velocity and pressure. Other splitting
schemes also exist, and the reader is referred to [65].

It is well-known that equal order approximations can suffer from spurious pres-
sure oscillations as they do not satisfy the Ladyzhenskaya-Brezzi-Babuska (LBB)
condition [30]. In order to avoid this one has to choose velocity and pressure ap-
proximations of inequal order or introduce some kind of stabilization. The most
common form of remedy is to use different discretizations for the velocity and
pressure spaces in order to make the approximation LBB stable.

A general reference to the performance of the methods is [64]. Investigations
in [147] indicate that the Chorin-based incremental pressure correction technique
is among the most efficient and accurate methods. In this work we employ the
incremental pressure correction scheme in both standard and rotational forms as
described in [65]. As only equal order approximations are used we will for some
problems employ Minev stabilization as described in [112] in order to avoid spuri-
ous node-to-node pressure oscillations.

Flows at high Reynolds numbers around objects like airfoils and cylinders are
mostly turbulent. Due to the high computational cost of explicit resolution of all
scales using Direct Numerical Simulation (DNS), turbulence modeling is required.
There are two main approaches when it comes to modeling turbulence, Reynolds-
Averaged Navier-Stokes (RANS) or Large Eddy Simulation (LES) models. In
models employing RANS all scales are modeled. In LES on the other hand only,
the small isotropic scales are modeled while the larger energy-containing scales
are resolved.

RANS models are very popular due to their speed, particularly in applied com-
munities, and as such there many models available. For the last 20 years many
people have expected LES to replace RANS modelling, but due to the compu-
tational expenses involved this has not happened [132]. Common to all RANS
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models is the time-averaging that introduces new unknowns through the Reyn-
olds stress tensor. These new unknowns require additional equations to be solved,
and this is remedied through the various turbulence models. All these turbulence
models rely on the Boussinesq assumption that turbulent eddies can be modeled
through an eddy viscosity [125].

RANS models are commonly divided into three classes; algebraic or zero-equation
models, one-equation models and two-equation models. Algebraic models do not
solve any additional transport equation, but calculates the eddy viscosity νt dir-
ectly. The most popular of these is the Baldwin-Lomax model [10]. The one-
equation models on the other hand solve one transport equation in order to de-
termine the turbulent viscosity. One of the most popular one-equation models is
the Spalart-Allmaras turbulence model presented in [133] with some updates and
modifications in [3]. It is specifically tuned for aerodynamically shaped objects,
and is considered to be both robust and stable. Another popular one-equation
model is the Baldwin-Barth model [11]. Many of the commercial CFD codes offer
some of the two-equation RANS models, which solve two equations for computing
the turbulent quantities. Important and popular methods include the k − ε model
[89, 99, 100], the k−ω model [155, 154] and the k−ω SST model [108]. In these
models k is the turbulent kinetic energy, ε is the turbulent dissipation and ω is the
specific dissipation. For further details the reader is referred to the references.

LES models use an eddy viscosity to model the interaction between the small un-
resolved scales with the larger scales [121, 14]. Variational multi-scale modelling
(VMS) is a certain subclass of LES. The variational multi-scale model was intro-
duced by Hughes [85] and further developed in [32, 16]. In this model the use
of eddy viscosities is abandoned and subgrid velocity and pressure are modelled.
Instead of eddy viscosities this model derives the modeling terms from a weak
formulation of the incompressible Navier-Stokes equations [14].

Combinations of RANS and LES models are denoted detached eddy simulation
(DES) models [134, 137, 131]. These models can be easier than LES to apply,
particularly in the boundary layer, as a RANS model is applied there. There are
also other alternatives to computing turbulence, e.g through the General Galer-
kin (G2) framework, see [77, 78, 79]. These models circumvent introduction and
modeling of the Reynolds stresses in the averaged Navier-Stokes equations and are
known as adaptive DES/LES models.

Isogeometry has been applied for pure CFD simulations for many years now. It
started in [26] with turbulence modeling. Particular good results for isogeometry
were achieved in [2], where the increased continuity of basis functions gave im-
proved results. Notable results for isogeometric VMS can be found in [19] and for
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isogeometric LES in [14].

1.4.2 CFD and wind turbines

The general CFD codes mentioned in the previous subsection are also commonly
used for wind turbine analyses. Also, there are some known in-house CFD codes
like Ellipsys2D/3D [46].

The first major use of CFD for wind turbines was in the prediction of 2D airfoil
characteristics for wind turbine blade design [138]. Such simulations can be com-
pared with the many wind tunnel experiments of airfoils available in the literature
[55]. During code development these results can be applied in the code verifica-
tion process. For NACA airfoils [1] is a very good reference. Comparisons with
experiments have been done in this thesis, and the reader is referred to Paper I
and Paper II. CFD simulations have some benefits compared to wind tunnel ex-
periments [55]. Firsty, CFD is for instance infinitely scalable and provides field,
not point, data [138]. Secondly, CFD simulations can be very useful in a planning
phase and offer better interpretation of the actual physics [70].

Simulations in 2D have a number of drawbacks. Modelling of the transition to tur-
bulence in the boundary layer is one of them. Stall operation can thus be difficult to
simulate. However, several methods are available to predict the onset of transition.
The currently most used one is the γ −Reθ,t model, originally published in [109]
and with further developments in [98]. This model has also has been adapted for
use with the Spalart-Allmaras turbulence model in [105]. Transition modelling is
not used in the simulations presented in this thesis.

To overcome some of the difficulties with two-dimensional simulations, simula-
tions in three spatial dimensions are a natural extension. However, the computa-
tional expense is increased significantly [138]. Additionally, one must consider
whether the increased complexity of 3D simulations gives added value compared
to much cheaper 2D simulations [129].

1.5 Fluid-structure interaction (FSI)

1.5.1 General FSI

For many practical applications pure computational fluid dynamics is not adequate.
Structural aspects need to be considered and often together with mutual interaction
of the fluid. Such problems are denoted fluid-structure interaction (FSI) problems.
These problems can often be computationally demanding due to complex geomet-
ries and complicated interaction effects [28].

There are two main groups of methods for fluid-structure interaction [9]. These are
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coupled or monolithic methods [63, 150, 84, 87] and partitioned or staggered meth-
ods [56, 57, 117, 54], which are most commonly used. Partitioned methods can
be further divided into loosely and strongly coupled methods. In loosely-coupled
approaches the fluid and structure equations are integrated once and independently
at each time step. Often a so-called Dirichlet-Neumann coupling is employed [9].
This involves Dirichlet conditions at the interface for the fluid problem, corres-
ponding to continuity of the velocities, and Neumann conditions at the interface for
the structural problem, corresponding to continuity of the stresses. Initial applic-
ations for fluid-structure interactions were in aeroelastics where the fluid density,
ρf , was significantly less than the structural density ρs, i.e. ρs >> ρf [51, 116].
For each time step only one or a couple of iterations are necessary for convergence.
When the fluid density is increased, tighter coupling is required which results in
more subiterations for each time step. This is evidence of the added mass effect
[148, 113]. The method now becomes a strongly-coupled partitioned method as the
computations for the fluid and structure are repeated at each time step until a given
convergence criterion is reached. The computational cost is thus higher, but the
approach is required for achieving energy conservation at the fluid-structure inter-
face [51, 146]. In cases where the fluid density and the structural density are of the
same order convergence is much slower and can even fail [101]. Strongly-coupled
approaches are also called implicitly partitioned approaches [123, 136, 153].

However, partitioned methods can suffer from instability and inaccuracy issues
[152]. In order to overcome convergence issues for partitioned methods relaxation
can be introduced. This has a stabilizing effect with the drawback that conver-
gence can be very slow [35]. Measures such as dynamic relaxation exist [94] that
to some extent speed up the convergence. Robust Krylov methods, as presented
in [111, 60], or interface Newton-Raphson methods, as in [42], are other alternat-
ives. Overviews are given in [59, 149]. These approaches can be more robust and
computationally cheaper than employing subiterations.

Coupled methods on the other hand involve development of a solver that solves
the fluid and structural equations simultaneously [23]. This involves more coding
as the complete non-linear system of fluid and structural equations are discretized
identically in space and time and solved simultaneously [68]. Coupled methods
are often considered to be more robust [71].

Benefits of partitioned methods include that existing fluid and structure solvers
can be used, i.e. software modularity is maintained. Often these solvers have
reached a high level of maturity and can as such be well suited for the application in
question. Different discretizations can be used for each subproblem. For instance a
finite volume discretization can be employed for the fluid flow problem and a finite
element discretization for the structural problem [92]. One great advantage of
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partitioned approaches is that the coupling is limited to the fluid-structure interface
only. Aspects of efficient implementation can be found in [106, 93]. Even though
there are huge benefits of combining solvers within the same framework [63], there
also exist several frameworks available that can be used to couple existing codes.
These include preCICE [31] and MpCCI [90].

An important aspect of fluid-structure interaction is how deformation of the com-
putational meshes shall be handled. One common approach is to use the arbitrary
Lagrangian-Eulerian framework [44, 58, 61, 45, 130]. For fluid one typically uses
an Eulerian formulation, while a Lagrangian formulation is commonly used for
the structure [151, 104]. Mesh movement algorithms thus also becomes an issue
[96, 135].

For some cases where the deformations are small compared to the displacements
and rotation of the centre of gravity the structure can be considered a rigid body
[122, 107]. Such cases are denoted fluid-rigid body interaction and are a special
subclass of fluid-structure interaction problems. This approach is commonly em-
ployed to simulate vortex-induced vibrations [139, 140].

When it comes to benchmark cases for FSI flow past a fixed cylinder with flexible
bar attached by Turek and Hron [142, 144, 143] has become an industry standard
for low Reynolds numbers. This case is a purely numerical test case, and is invest-
igated in Paper III. For turbulent flows a similar case with both experimental and
numerical data for comparison has been published recently [41].

Isogeometric fluid-structure interaction has been an active research area ever since
isogeometry was introduced to the research community in 2005. Notable results
include [26, 15, 17].

1.5.2 FSI and wind turbines

Fluid-structure interaction is one of the most challenging problems in computa-
tional mechanics these days. Although it has attracted interest from many theoret-
ical researchers, it is applied daily in as vastly different fields as submarine risers
[73], biomechanics [15, 18], bridge engineering [88, 95] and not to say the least,
airfoils and wind turbines.

The first relevant results for wind turbine application were presented for aerol-
astics [117, 52, 53, 91]. Along with the political momentum renewable energy and
wind turbines have gained in recent, applied research for these applications are
increasingly more commonly seen.

Some of the first results for airfoil and wind turbines had simplified structural
models as in [66, 43]. Such models are still relevant, and recently there has been
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investigation of airfoils with self-adaptive camber [145], which are relevant for the
active research area involving so-called smart wind turbine blades.

In recent years there has been much progress in simulating complete wind turbines
[20, 21, 81, 22, 80, 82, 24, 25]. Of particular interest is that these full machine
simulations are done using isogeometric methods. Very recent results also include
validation against full-scale experiments [83]. Another example of wind turbine
FSI is [34], where a beam model is used for the blade. Also, there are results
available for multiscale simulations of wind turbines [118].

1.6 Summary
Based on the discussion above the main goal of this thesis is to apply isogeometric
analysis for developing effective methods for doing computations relevant for off-
shore wind applications. CFD analyses of wind turbine blade sections at realistic
flow conditions and high Reynolds numbers will thus be carried out and analysed.
In order to keep the computational cost as low as possible we will focus on de-
velopment of a CFD solver based on a Chorin splitting technique [37, 65, 112]
with application of the Spalart-Allmaras RANS turbulence model [133]. How-
ever, comparisons based on solution quality and computational cost will be done
with a VMS solver based on [16]. Two-dimensional CFD analyses allow us to
determine lift, drag and pressure coefficients of airfoil sections. These can be used
as input for other methods for full wind turbine analysis, or in a process of airfoil
shape optimization.

Secondly, this thesis makes some investigations for low Reynolds number fluid-
structure interaction simulations. This is done in order to determine whether the
coupling of isogeometric fluid and structural solvers can give any advantages. This
is done for a 2D benchmark case [142, 143] which can be interpreted as an approx-
imation of a flexible turbine blade. The Chorin-based fluid solver is used for these
simulations as well.

Reliable results from two-dimensional CFD analyses open up new possibilities
for wind turbine blade analysis. Previously, the so-called strip-theory approach
has been applied for studying vortex-induced vibrations of subsea risers [72, 73,
74, 126, 27]. By coupling several such two-dimensional sections through a beam
element, it will be possible to carry out analyses of wind turbine blades. Thus both
the CFD and FSI results in this thesis can be used as pillars for developing such a
strip-theory or semi-3D approach for wind turbine blade application.
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1.7 Summary of papers
The thesis consists of an introduction to the field of wind turbines, computational
fluid dynamics, fluid-structure interaction and isogeometry along with three papers
that are either published, conditionally accepted or submitted to international peer-
reviewed journals.

1.7.1 Paper I: Simulation of airflow past a 2D NACA0015 airfoil using an
isogeometric incompressible Navier-Stokes solver with the Spalart-
Allmaras turbulence model

The first paper presents our incompressible Navier-Stokes solver and results from
simulations of air flow past a fixed 2D NACA0015 airfoil at high Reynolds number
(Re = 2.5 × 106) using an isogeometric finite element methodology with linear,
quadratic and cubic spline elements. The fluid solver is based on a Chorin pro-
jection method and employs the Spalart-Allmaras turbulence model, the first de-
velopment of its kind in an isogeometric finite element framework. The obtained
results from the simulations are compared with two sets of experimental results
available in the literature, with emphasis on determining the effect of using higher
order spline elements in the analysis. Our results indicate that there is little to be
gained for using quadratic and cubic spline elements for this type of simulations.

1.7.2 Paper II: Implementation and comparison of three isogeometric Navier-
Stokes solvers applied to simulation of flow past a fixed 2D NACA0012
airfoil at high Reynolds number

The second paper presents the implementation of three different Navier-Stokes
solvers in an isogeometric finite element framework. The first two solvers are
the Chorin projection method and a coupled formulation, both with the Spalart–
Allmaras turbulence model, and the third solver is the Variational Multiscale (VMS)
method. All solvers are applied to simulate flow past a two-dimensional NACA0012
airfoil at a high Reynolds number (Re = 3 × 106) for four different angles of at-
tack. The predicted flow characteristics are compared and the effects of increasing
the order of the spline elements on the accuracy of prediction and computational
efficiency is evaluated. Up to an angle of attack of 16◦, where flow separation
takes place, all three solvers predict similar results in good agreement with each
other and with available experimental results. However, a big spread in lift and
drag coefficients is observed in the stall regime. The paper also shows that for
linear spline elements all three solvers are computationally similar. For quadratic
spline elements the Chorin solver compares favorably to the other two.
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1.7.3 Paper III: Numerical benchmarking of fluid-structure interaction: An
isogeometric finite element approach

In the third paper a Chorin-based Navier-Stokes solver is applied to a well-known
benchmark problem for fluid-structure interaction at Re = 100 for flow past a
circular cylinder with an attached flexible bar. Several aspects are investigated.
Firstly, the impact of linear, quadratic and cubic spline elements are evaluated.
Secondly, the impact of the mesh stiffness on the results are investigated along
with four metrics of mesh quality and variation in total computational time. All
results for lift, drag and displacements are compared with published benchmark
results. Our simulations indicate that quadratic and cubic spline elements give
better estimation of lift, drag and displacements than linear spline elements.
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Abstract

The work presented in this paper concerns the efforts of conducting a computa-
tional fluid dynamics (CFD) simulation of air flow past a fixed 2D NACA0015
airfoil at high Reynolds number (Re = 2.5×106) using an isogeometric finite el-
ement methodology with linear, quadratic and cubic spline elements. Flow sim-
ulations at such high Reynolds numbers require turbulence models or very high
resolution. The present work employs the Spalart-Allmaras turbulence model
combined with a Navier-Stokes solver based on a Chorin projection method, the
first development of its kind in an isogeometric finite element framework. The
obtained results from the simulations are compared with two sets of experimen-
tal results available in the literature.

Keywords: Isogeometric analysis, NACA0015 airfoil, Chorin projection
method, Spalart-Allmaras

1. Introduction

Wind power has gained political momentum in recent years owing to its
relatively lesser environmental conflicts, greater efficiency and favorable wind
conditions. The European Union (EU), for example, has a slogan 20− 20− 20,
which implies that by 2020 20 % of the EU’s energy should come from renewable
sources, greenhouse gas emissions should decrease by 20 % and energy efficiency
should increase by 20 %. By that time it is expected that 40 GW of the offshore
wind power capacity would have already been installed [1]. In 2013 alone,
around 11100 MW of wind power infrastructures, both onshore and offshore,
were installed in the EU [2]. Meanwhile, an increasing number of wind turbines
have been and will be installed in both the United States (US) and China.

∗Corresponding author
Email addresses: knut.nordanger@math.ntnu.no (Knut Nordanger),

runar.holdahl@sintef.no (Runar Holdahl), trond.kvamsdal@math.ntnu.no (Trond
Kvamsdal), arne.morten.kvarving@sintef.no (Arne Morten Kvarving),
adil.rasheed@sintef.no (Adil Rasheed)

Preprint submitted to Computer Methods in Applied Mechanics and EngineeringJanuary 1, 2015



Offshore wind energy compared to its onshore counterpart appears more
attractive due to its lesser visual impact and lesser issues related to land ac-
quisition. Relatively more convenient accessibility to open sea allows for the
installation of larger and larger turbines capable of producing much more power
resulting in far lesser number of turbines per wind farm to produce the same
amount of power. However, the large size of the turbines and the harsh meteo-
rological conditions offshore come with new design challenges, not appropriately
addressed by the traditional engineering methods/tools [3]. One such problem
is related to the dynamic loading and unloading of turbine blades and struc-
tures. Fluid-structure interaction (FSI) simulation tools are being developed
to address the issue and have already become a reality for wind turbines ([4]
and [5]) and bridges [6, 7, 8, 9]. However, such detailed 3D simulations are still
computationally demanding and not suitable for performing sensitivity analysis
for optimum blade design.

To strike a balance between accuracy and computational efficiency, inspi-
ration can be taken from a strip theory approach which was used to simulate
vortex-induced vibration of offshore risers and submerged pipelines in [8], [10]
and [11]. In the approach, a series of 2D computational fluid dynamics (CFD)
simulations were conducted to predict the flow characteristics around the riser
and then the forces were transferred to the structure solver for finite element
analysis using non-linear beam elements. The reliability of this method depends
on the accuracy of the 2D simulations and hence as a starting point we inves-
tigate an approach based on isogeometric analysis which emerged in 2005 [12],
and offers integration of analysis and CAD geometry [13] through the use of the
same basis functions. This results in advantages such as better accuracy per
degree-of-freedom and exact geometric representation.

Wind turbines have for many years been an active research field, and in
recent years isogeometric wind turbine simulation results have been published
by Bazilevs and others [14, 15, 4]. However, little has been published, barring
some work like [16] and recently [17], on flow past a fixed airfoil. Moreover, most
of the simulations in a wind engineering context using isogeometric analysis have
been limited to Variational Multiscale (VMS) approach for modeling turbulence.
Although the approach has a more sound basis for simulating turbulent flows,
their applicability is somewhat constrained by their computationally expensive
nature, i.e. need for doing 3D flow simulations.

A remedy in order to enable the use of 2D flow simulations is to use Reynolds-
Averaged Navier-Stokes (RANS) equations with one-equation Spalart-Allmaras
(SA) turbulence closure which has been specially developed and optimized for
simulating 2D flow around airfoils [18]. Furthermore, based on a study by Valen-
Sendstad et al. ([19]), that investigated the performance of six different solvers
for incompressible flow, we have chosen to use a Chorin projection method
(incremental pressure correction) as this was found to be the most efficient
and accurate. This is further enhanced by applying Minev stabilization for
equal order elements [20]. We believe that the first step towards the use of strip
theory is to develop and demonstrate a CFD solver based on splines (to improve
geometric representation), with Chorin projection method (for efficiency) and
Spalart Allmaras turbulence model (optimized for 2D flow around airfoils). The
main contribution of this work is to demonstrate the seamless integration of
geometry modeling, meshing and analysis tools using linear, quadratic and cubic
spline elements and the achievable accuracy to simulate flow around a two-
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dimensional NACA0015 airfoil.

2. Theory

A code intended for a task like sensitivity analysis / shape optimization
requires it to be convenient to use and easy to make several runs by changing the
input parameters. This requires a seamless integration of the geometry modeler,
mesh generator and CFD solver. In this section we present a description of
the NACA airfoils, governing equations of flow and turbulence modeling, their
discretization, implementation of boundary conditions as well as equations used
to compute the aerodynamic coefficients presented in the result section.

2.1. Introduction to 4-digit NACA airfoil
The family of symmetric NACA airfoils is denoted by NACA00XX where

the last two digits give the ratio between the maximum thickness of the airfoil
t and the chord length c. The shape of all NACA00XX airfoils is given by the
analytical formula [21]

yt = 5tc

[
0.2969

√
x

c
− 0.1260

(x
c

)
− 0.3516

(x
c

)2

+ 0.2843
(x
c

)3

− 0.1015
(x
c

)4
]

(1)

where yt is the distance from the centerline, t the maximum thickness from
the centerline, c the chord length and x the position along the chord from 0
to c. In order to have a closed curve and thickness yt = 0 at x = c one of
the coefficients has to be modified as they do not sum to zero. We choose
to modify the last coefficient (i.e. the coefficient in front of the highest order
term) to −0.1036 as this gives the smallest perturbation of the surface curve.
Sometimes the blade profile is given in the form of coordinate data at discrete
points along the surface. No matter how the data is obtained it is used to get
a spline representation following the approach described in Section 2.5.3.

2.2. Fluid solver
This section describes the fluid solver through the governing equations, the

isogeometric finite element approximation, the projection method employed and
the boundary conditions.

2.2.1. Governing equations
Viscous airflow at low Mach numbers is mathematically described by the

incompressible Navier-Stokes equations. These equations can be written as

∂u

∂t
+ ρ (u · ∇)u−∇ · σ (u, p) = ρf in Ω

∇ · u = 0 in Ω.

Here, Ω ∈ Rd, d = 2, 3, is a suitable, sufficiently regular and open domain, ρ
is the constant fluid density, p is the pressure, u is the fluid velocity vector and
f is a volumetric body force. The Cauchy stress tensor can be written as

σ(u, p) = −pI + 2µε(u),
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where I is the identity tensor and µ is the dynamic viscosity and the strain rate
ε is defined as

ε(u) =
1

2

(
∇u+ (∇u)T

)
.

Furthermore, we define ∂Ω = Γ = ΓD ∪ ΓN ∪ ΓM where ΓD are the boundaries
with Dirichlet conditions, ΓN the boundaries with Neumann conditions ΓM
the boundaries with mixed conditions. Mixed boundary conditions are used
in situations where the normal velocity components are given, usually zero,
together with the tangential stresses can model symmetry planes and slip or
friction conditions.

The variational formulation is expressed as: Find (u, p) ∈ U ×Q such that
(
ρ
∂u

∂t
,v

)
+ c(u;u,v) + b(p,v) + a(u,u) + b(q,u) = f(v) (v, q) ∈ V ×Q.

(2)

Here, we have defined the spaces

U = H1
ΓD,Γ⊥

M
(Ω) =

{
v ∈H1(Ω) | v = uD on ΓD and v · n = u⊥ on ΓM

}

V = H1
ΓD,Γ⊥

M ;0(Ω) =
{
v ∈H1(Ω) | v = 0 on ΓD and v · n = 0 on ΓM

}

Q = L2(Ω),

where uD and u⊥ both are given functions and n is the unit outer normal on
Γ, and the forms

a(u,v) = 2

∫

Ω

µε(u) : ε(v) dx

b(q,v) = −
∫

Ω

(∇ · v)q dx

c(w;u,v) =

∫

Ω

ρ(w · ∇)u · v dx

f(v) =

∫

Ω

ρf · v dx +

∫

ΓN

t · v ds ,

where t = σ ·n is the traction vector on Γ. Here U and V are the velocity trial
and test function spaces, respectively, whereas Q is the corresponding function
spaces for the trial and test pressure variables. The velocity trial function space
H1

ΓD,Γ⊥
M

(Ω) has the same regularity as the classical Hilbert space H1(Ω) inside
the domain Ω, but restricted to fulfill the imposed Dirichlet conditions along ΓD
as well as mixed boundary conditions, see Section 2.2.4 along Γ⊥M . The velocity
test function space H1

ΓD,Γ⊥
M ;0

(Ω) is similar to the velocity trial space, but have
homogeneous Dirichlet conditions along ΓD and Γ⊥M .

2.2.2. Isogeometric finite element approximation
The isogeometric finite element method approximates the solution by using

a spline basis of polynomial order p and regularity Cp−1, whereas C0 Lagrange
polynomials of low order (typical p = 1 or p = 2) are used in traditional finite
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element formulations. Our approach is based on a conforming finite element
approximation, i.e.

Uh ⊂ U , Vh ⊂ V , Qh ⊂ Q.

The discrete approximation spacesUh, Vh, Qh are chosen as the isogeometric
finite element spaces. This gives the semi-discrete formulation of the variational
problem stated in Eq. (2): Find (uh, ph) ∈ Uh ×Qh such that

(
ρ
∂uh
∂t

,vh

)
+ c(uh;uh,vh) + a(uh,uh) + b(p,vh) + b(q,uh) = f(vh)

for all (vh, qh) ∈ Vh ×Qh.
Herein, we have developed a block-structured B-spline isogeometric finite

element approximation of the Navier-Stokes equations described above. To con-
struct a B-spline basis for a domain Ω which is subdivided into a number of
patches (a patch is equivalent to a block) Ωe such that Ω = ∪Ne=1Ωe we asso-
ciate for each patch a knot-vector in each coordinate direction

Ξek =
{
ξe1,k, ξ

e
2,k, . . . , ξ

e
ne
k+pek+1

}

for k = 1, . . . , d. The B-spline basis for patch Ωe on the parametric domain
Ω̂ = (0, 1)d is written as Ŝp

e

αe where the multi-indices αe = (αe1, . . . , α
e
d) and

pe = (pe1, . . . , p
e
d) denote the regularity and order for the basis in each coordinate

direction, respectively. The corresponding basis for the physical domain Ωe can
be expressed using the coordinate mapping φe : Ω̂→ Ωe as

Spe

αe =
{
vh | vh ◦ φe ∈ Ŝp

e

αe

}
.

If the variational formulation allows a discontinuous approximation the spline
finite element basis for the domain Ω can be defined as

Sh =
{
vh | vh|Ωe

∈ Spe

αe

}
.

If we assume that the knot-vectors and geometrical mapping φe for all the
patches are consistent on common edges and faces we can define a continuous
basis

Sh =
{
vh ∈ C(Ω) | vh|Ωe

∈ Spe

αe

}
.

2.2.3. Projection method
In order to solve the mixed variational problem given above the following

inf-sup condition

inf
qh∈Qh,qh 6=0

sup
vh∈Vh,vh 6=0

b(qh,vh)

‖qh‖L2(Ω)‖vh‖H1(Ω)
≥ C > 0.

needs to be satisfied in order to avoid spurious pressure modes [22]. This imposes
restrictions on the choices of Vh and Qh.

Traditionally a mixed finite element method with different approximation
spaces for pressure and velocity is required. In this work we use a pressure
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correction projection scheme which allows for equal order approximation of the
velocity and pressure. This is based on the work pioneered by Chorin [23] and
Temam [24] in the late 1960s. However, the present implementation is inspired
by the review article [25] which also accommodates significant progress regarding
theoretical and implementational issues for projection schemes in recent years,
and the work on pressure stabilization by Minev as presented in [20].

For the chosen projection method one only needs to solve decoupled prob-
lems of elliptic equations at each time step instead of the full coupling of the
velocity and pressure [25]. Thus standard Krylov subspace methods like the
conjugate gradient (CG) method and Generalized Minimal RESidual method
(GMRES) can be used to solve the linear systems. For these methods we also
can employ efficient preconditioners. Drawbacks of the projection methods in-
clude a inherited splitting error and extra numerical boundary conditions for the
pressure. This reduces the convergence order of the numerical approximation.

In order to avoid the inconsistent pressure boundary condition present in
many splitting schemes one may choose a rotational formulation for the incre-
mental pressure correction scheme as proposed in [26]. The resulting splitting
error is now only due to an inaccurate slip condition imposed on the velocity.
The rotational form of the Chorin splitting scheme is of order 2 for the velocity
and order 3/2 for the pressure, both in the L2-norm, [27]. However, in some of
our numerical tests we observed pressure oscillations when we used equal order
approximation. Thus, in order to get a stable solution with our equal order
approximation we herein chose to employ Minev stabilization as given in [20] to
avoid node-to-node pressure oscillations.

The standard incremental pressure correction scheme is given by

1. Velocity prediction step
ρ

2∆t

(
3ũn+1 − 4un + un−1

)
+ ρ

(
2un − un−1

)
· ∇ũn+1

−∇ · σ
(
ũn+1, pn

)
= ρfn+1,

ũn+1 = 0 on Γ.

2. Pressure correction step
ρ

2∆t

(
3un+1 − 3ũn+1

)
+∇

(
pn+1 − pn

)
= 0,

∇ · un+1 = 0,

un+1 · n = 0 on Γ.

However, to get a stable solution without pressure oscillations for an equal order
approximation Minev [20] modified the pressure correction step and solved it in
two successive steps

2.a Stabilized pressure correction (Galerkin formulation)
(
∇
[
(1 + ˆ̂σ)pn+1 − pn

]
,∇q

)
= −3

2

(
∇ · ũn+1, q

)

+ ˆ̂σ

(
∇ · (−2un +

1

2
un−1), q

)

−
ˆ̂σ

2

∫

∂Ω

(
3ũn+1 − 4ũn + un−1

)
· nq ds q ∈ Qh.
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Here, ˆ̂σ is the stabilization parameter which is set equal to the time step
in all simulations.

2.b Velocity correction

3

2

(
un+1 + ũn+1

)
+∇

(
pn+1 − pn

)
= 0

with boundary conditions as given in the problem formulation.

To summarize: Our algorithm implemented in IFEM is as follows:

1. Velocity prediction step
Find ũn+1 using the velocities un and un−1 and the pressure pn computed
at earlier time steps.

2.a Stabilized pressure correction (Galerkin formulation)
Find pn+1 using the predicted velocity ũn+1 and the velocities un, un−1

and the pressure pn computed at earlier time steps.
2.b Velocity correction

Find un+1 using the predicted velocity ũn+1, the updated pressure pn+1

and the pressure pn computed at the previous time step.

The standard incremental pressure correction scheme is of order 2 for the
velocity and order 1 for the pressure, both in the L2-norm, [25]. As stated
in [20], this is not changed when employing Minev stabilization.

Remark
The Pressure Poisson Equation (PPE) in Step 2.a implies that the proper dis-
crete space Qh for the pressure trial and test functions has to fulfill Qh ⊂
L2(Ω)∩H1(Ω). Furthermore, in PPE we employ a homogeneous Dirichlet con-
dition for the pressure at the outflow boundary and homogeneous Neumann
conditions, i.e. ∇pn+1 · n along the other boundaries.

2.2.4. Boundary conditions
Several boundary conditions can be applied for the Navier-Stokes equations.

We assume that Γ ⊂ ∂Ω is a subset of the boundary of the domain. The
Dirichlet and Neumann conditions can be written as

u = g on Γ (Dirichlet conditions)
σ · n = h on Γ (Neumann conditions),

where g = g(x, t) and h = h(x, t) are given functions and n denotes the unit
outer normal vector on ∂Ω. Since only the gradient of the pressure is present
in the Navier-Stokes equations and the Dirichlet condition does not involve any
pressure information, the pressure can only be determined up to a constant
if a Neumann condition is prescribed everywhere on the boundary. To fix the
pressure level and have a well-defined problem a homogeneous pressure condition
can be imposed on the outflow boundary. Furthermore, from the continuity
condition we derive the following compatibility condition

∫

Ω

∇ · udx =

∫

∂Ω

u · nds =

∫

∂Ω

g · nds = 0,
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i.e. the boundary condition must impose a zero mean flux on the boundary to
satisfy mass conservation.

We now assume that the boundary Γ can be decomposed into three disjoint
segments ∂Ω = ∂Ωin ∪ ∂Ωout ∪ ∂Ωc with

∂Ωin = {x ∈ Γ | u · n < 0} , (inflow boundary)
∂Ωout = {x ∈ Γ | u · n > 0} , (outflow boundary)
∂Ωc = {x ∈ Γ | u · n = 0} , (characteristic boundary)

On the inflow part of the boundary, i.e. on ∂Ωin, it is most natural to impose a
Dirichlet condition. On outlet boundaries, i.e. on ∂Ωout, the Neumann condition
is the preferred choice.

Mixed boundary conditions are also possible for the Navier-Stokes equations.
A slip boundary condition can be written as

u · n = 0 on Γ,

n · σ · (I − n⊗ n) = h on Γ,

where I − n ⊗ n span the tangent plane to the boundary ∂Ω in Rd. This
corresponds to a Dirichlet condition for the normal direction and a Neumann
condition in the tangential plane.

2.3. Turbulence modeling
High Reynolds number flows are dominated by turbulence which can be fully

resolved using Direct Numerical Simulation (DNS) or partially resolved using
Large Eddy Simulation (LES). In LES the larger scales in the flow are resolved
while the smaller scales are assumed to be isotropic and modeled using different
kinds of subgrid scale parametrization. However, the computationally expensive
nature of DNS and LES prohibits their usage as a design tool. It is one of the
reason that RANS models are still widely used. In the RANS model turbulence
is not resolved but modeled. The mesh resolution and quality requirements for
this class of models are also less stringent than the ones required in DNS or
LES. In this work we employ the Spalart-Allmaras turbulence model [18] which
has been optimized to simulate 2D flow around aerodynamically shaped bodies
like an airfoil.

2.3.1. The Spalart–Allmaras turbulence model
The Spalart-Allmaras turbulence model is a one-equation model for a mod-

ified turbulent kinematic viscosity ν̃ [18]. We employ the standard model pre-
sented in [18] along with the negative Spalart-Allmaras model presented in [28].
The formulation of the model is the transport equation

Dν̃

Dt
= P −D +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)

2
]
,

where ν = µ/ρ is the laminar kinematic viscosity, u is the fluid velocity and d
is the distance from a given point to the closest solid wall. Furthermore, the
production and wall destruction terms read

P = cb1(1− ft2)S̃ν̃, D =
(
cw1fw −

cb1
κ2
ft2

)[ ν̃
d

]2

.

8



The laminar suppression term ft2 is defined as

ft2 = ct3 exp
(
−ct4χ2

)
,

with ct3 = 1.2 and ct4 = 0.5. From the modified viscosity ν̃ the eddy viscosity
can be computed as

νt = ν̃fv1, fv1 =
χ3

χ3 + c3v1

, χ ≡ ν̃

ν
.

Modifications of the original model for the modified vorticity were published in
[28]. The modified vorticity S̃ is now given by

S =
ν̃

κ2 · d2
fv2, fv2 = 1− χ

1 + χfv1
,

where S represents the magnitude of the vorticity and d the distance to the
closest wall, and

S̃ =




S + S : S ≥ −cv2S

S +
S(c2v2S+cv3S)
(cv3−2cv2)S−S : S < −cv2S

with cv2 = 0.7 and cv3 = 0.9. The new modified vorticity S̃ does not have the
possibility of becoming negative and thus avoids a possible problem of disrupting
other Spalart-Allmaras functions. Furthermore we have for the destruction term

fw = g

[
1 + c6w3

g6 + c3w3

]1/6

g = r + cw2(r6 − r)

r =
ν̃

S̃κ2d2
.

In the original work [18] the following values are given for the other constants
appearing in the model

cb1 = 0.1355, cb2 = 0.622, cw2
= 0.3, cw3

= 2,

σν̃ = 2/3, cṽ1 = 7.1, k = 0.41.

However, in cases with under-resolved grids and for some transient states, the
produced ν̃ solution is negative. A typical choice is then to clip the negative ν̃
value, but we employ the negative Spalart-Allmaras model, presented in [28],
which reads

Dν̃

Dt
= Pn −Dn +

1

σ
∇ · [(ν + ν̃fn)∇ν̃] +

cb2
σ

(∇ν̃)
2
,

where Pn is the production, Dn is the wall destruction and fn(χ) is diffusion
coefficient modification. The diffusion coefficient modification is given as

fn =
cn1 + χ3

cn1 − χ3
,

where cn1 = 16. Furthermore we have

Pn = cb1(1− ct3)Sν̃, Dn = −cw1

[ν
d

]2
,

where S is the vorticity. The negative model always produces zero eddy viscosity,
νt.
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2.3.2. Numerical discretization of the Spalart–Allmaras turbulence model
The Spalart–Allmaras turbulence model is also discretized using spline finite

elements. If we let ν̃h denote numerical approximation of the modified viscosity
and define a suitable test function φh ∈ Vh, the method is given as

BG(ν̃h, φh) = 0, φh ∈ V0
h,

where

BG(ν̃h, φh) =

(
∂ν̃h
∂t

, φh

)
+ c(uh; ν̃h, φh) + a(ν̃h, φh)

− s1(ν̃h, φh)− s2(ν̃h; ν̃h, φh) + s3(ν̃h; ν̃h, φh),

and with
(ν̃, φ) =

∫

Ω

ν̃φ dx,

c(u; ν̃, φ) = (u · ∇ν̃, φ),

a(ν̃, φ) =

(
(ν + ν̃)

σ
∇ν̃ · ∇φ

)

s1(ν̃, φ) = (cb1(1− ft2)S̃ν̃, φ),

s2(ν̃, φ) =
(cb2
σ
|∇ν̃|2, φ

)
,

s3(ν̃, φ) =

((
cw1fw −

cb1
κ
ft2

)[ ν̃
d

]2

, φ

)
.

The negative Spalart-Allmaras model is discretized similarly.
For the temporal discretization we have used a semi-implicit Euler scheme,

where the value of ν̃ is evaluated at the previous time step n, i.e. ν̃n is used,
in some of the terms to get a linear problem for the new solution ν̃n+1. More
precisely, if ∆t is the time step, then the time integration scheme reads
(
ν̃n+1 − ν̃n

∆t
, φ

)
+ c(u; ν̃n+1, φ) + a(ν̃n; ν̃n+1, φ) =s1(ν̃n+1, φ)

+ s2(ν̃n+1, φ)− s3(ν̃n+1, φ).

Here the convective term, the diffusion term and all three source terms are
treated semi-implicitly. All the coefficients depending on ν̃ are evaluated at
time level n.

2.3.3. Boundary conditions for the Spalart-Allmaras Model
The Spalart-Allmaras model assumes that the mesh is sufficiently refined

close to the wall surfaces with the non-dimensional wall distance y+ ∼ 1. The
non-dimensional wall distance y+ is defined in terms of the friction velocity u∗
as

y+ =
u∗
ν

with u∗ =

√
τw
ρ

where the wall shear stress τw is given by

τw = µ

[
∂u

∂n

]

y=0

= µ [∇u · n]y=0 .
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Close to the wall the flow is laminar so ν̃ is set to zero. On the inflow boundaries
ν̃in = 5ν is used, whilst a homogeneous Neumann boundary condition is applied
on the outflow boundaries and symmetry planes.

∂ν̃

∂n
= ∇ν̃ · n = 0.

2.4. Aerodynamic coefficients
The quantities of interest in numerical simulations of flow past an airfoil are

the aerodynamic coefficients for a given angle of attack α and a given Reynolds
number Re. The Reynolds number is defined as

Re =
u∞c
ν

,

where u∞ is the the constant inflow velocity, c is the chord length and ν = µ/ρ
is the kinematic viscosity. The three coefficients are the drag coefficient CD, the
lift coefficient CL and the pressure coefficient CP defined as

CD =
Fx

1
2ρu

2∞cl
, CL =

Fy
1
2ρu

2∞cl
, CP =

p− p∞
1
2ρu

2∞
.

The quantities Fx and Fy are the horizontal and vertical force components
acting on the airfoil respectively, ρ is the density of the fluid, l is the length in
the spanwise direction and p∞ is the ambient pressure. The force components
are computed as

F = [Fx, Fy]T =

∫

Γw

σ · n ds,

where Γw is the airfoil surface.

2.5. Mesh generation
Generation of a high quality block-structured mesh can often be a challenge

with respect to partitioning the computational domain into 2D quadrilaterals
which are not too skewed or distorted. Several other aspects are also relevant.
First of all one would like to avoid distorted elements and abrupt change in the
element size. Such cases can lead to unwanted grid effects. Secondly, we would
like to have smaller elements at parts of the boundary with high curvature and
close to solid walls in order to capture boundary layers.

2.5.1. Block-structured mesh generation
A bottom-up approach is often preferred for constructing a block-structured

mesh. For two-dimensional problems the procedure can be described as
1. Define the corner nodes for the blocks.
2. Connect the corners to form the edges.
3. Refine the edges with a suitable grading.
4. Connect the edges to form surfaces.

To define the grading of the mesh a geometrical factor r can be defined as the
ratio of the element size of two consecutive elements, i.e. if {xi}mi=1 are the
points on the edge or curve and ∆si = ‖xi − xi−1‖2 defines the cell size, then

r = ∆si/∆si−1,

for i = 2, . . . ,m. To impose a smooth change in element size, we typically have
that 0.8 < r < 1.2, and for sharp boundary layers we may even use 0.9 < r < 1.1
to capture the rapid change in the solution.
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2.5.2. Spline curves
In this section we define spline curves, which form the foundation of the

mesh generation, as in [13]. Assume that we have a knot-vector

Ξ = {0 = ξ1, ξ2, . . . , ξn+p+1 = 1} .

and a set of control points C = {c1, . . . , cn} which defines the spline curve

c(ξ) =
n∑

i=1

ciBi,p(ξ),

where {Bi}ni=1 are the basis functions. The parameter p is the polynomial order
of the spline curve, and each knot ξi may be repeated several times, but the
knot-span should be non-decreasing

ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1.

For p = 0 the basis functions are piecewise constants

Bi,0(ξ) =

{
1, ξi ≤ ξ < ξi+1,

0 otherwise.

The higher order B-spline basis functions are defined as a linear combination of
splines of lower order using the Cox-de Boor recursion formula

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ). (3)

We restrict our attention to open knot-vectors, i.e. splines that are interpo-
latory at the end points, and then the first and last knots are repeated p + 1
times. Furthermore, if the spline is Cp−1 continuous then all the internal knots
have multiplicity one and the knot-vector can be written as

Ξ = {ξ1, . . . , ξ1︸ ︷︷ ︸
p+1

, ξ2, . . . , ξm−1, ξm, . . . ξm︸ ︷︷ ︸
p+1

},

where the number of unique knots is given by q = n− p+ 1. The corresponding
knot-vector without repeated knots is

Ξ̄ = {ξ̄1, ξ̄2, . . . , ξ̄q}.

2.5.3. Cubic spline interpolation
The mesh generation process is dependent on standard cubic spline inter-

polation [29]. The starting point is a set of m points {xi}mi=1 that we want to
approximate by a cubic spline curve c(ξ) such that

• c(ξ̃i) = xi for ξ̃i ∈ [0, 1].

• c(ξ) ∈ C2([0, 1]).
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The points {ξ̃i}qi=1 where the spline curve interpolates the data are called the
Greville points. Two extra conditions are needed to uniquely define the inter-
polation. We use either Hermitian (c′(0) = t0, c

′(1) = t1) or natural boundary
conditions (c′′(0) = c′′(1) = 0), where t0 and t1 are the tangent vectors of
the spline curve at the endpoints. This leads to an n × n linear system with
n = m + 2, which can be solved for the unknown control points {ci}ni=1. The
interpolation is not uniquely defined since the parametrization can be different.

Cubic spline interpolation is used for the airfoil as given in Equation (1).
The entire mesh is made for polynomial order p = 3, and only lowered to orders
p = 1 and p = 2 once all patches and refinements have been completed.

2.5.4. Surface generation
For surface generation we employ the concept of Coons patches [30]. Given

four boundary curves u0(ξ), u1(ξ), w0(η), w1(η) as given in Figure 1. These

u0(ξ)

u1(ξ)

w0(ξ) w1(ξ)

Figure 1: Boundary curves for Coons surface patch.

curves have normalized knot vectors and are connected such that u0(ξ1) =
w0(0), u0(1) = w1(0), u1(1) = w1(1), u1(0) = w0(1), thus forming a closed
loop. By defining the surfaces

S1(ξ, η) = (1− η)u0(ξ) + ηu1(ξ)

S2(ξ, η) = (1− η)w0(η) + ξw1(η)

S3(ξ, η) = (1− ξ)(1− η)u0(0) + ξ(1− η)u0(1) + η(1− ξ)u1(0) + ξηu1(1)

the Coons surface paths is given by

Sc(ξ, η) = S1(ξ, η) + S2(ξ, η)− S3(ξ, η).

The Coons surface patch approach is a quick and easy way of building the
surfaces. Being able to define the geometry through the boundary curves of
each surface or patch is a great advantage.

3. Simulations Setup

A high quality mesh is a prerequisite for a reliable simulation of flow around
an aerodynamically shaped body like an airfoil. Here we describe the meshes
used for our 2D simulations and the basis for the choice of domain size and time
step. Other test cases are also defined.
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3.1. Mesh description
The meshes are denoted by B followed by an identifying number indicating

the level of refinement, i.e. B0 is the coarsest mesh and B2 the finest mesh
in our simulations. The meshes are constructed with polynomials of orders 1,
2 and 3, and are intended for use with the Spalart-Allmaras model without
any law-of-the-wall parametrization. Each mesh consists of 128 patches, which
gives huge flexibility in the number of processors the simulations can be run
on. The simulations in this paper are run on 12, 16, 24, 32 or 64 cores. IFEM
is parallelized through a domain decomposition approach [31] where each sub-
domain consist of one or more patches. The code uses the PETSc [32] for the
parallel matrix classes and for the solution of the resulting linear system. The
use of PETSc also gives access to iterative (Krylov-type) solution methods and
state-of-the-art advanced preconditioners such as algebraic multigrid [33] and
additive Schwarz [34]. When it comes to refinement, a basic template given in
Figure 2 is used as a starting point. The figure also shows four refinement edges
(marked by bold lines) which are used in the mesh generation.

H = 15c

L = 20c

0.1c
e1

e2

e3
e4

α

Figure 2: NACA0015: Basic block structure and definition of refinement edges for fixed
NACA0015 airfoil with angle of attack α.

Important refinement parameters for the meshes are presented in Table 1,
whilst the grading factors for the different meshes are illustrated in Figure 3.
The resulting number of element and degrees-of-freedom are listed in Table 2.
Figure 4 shows the B0 mesh for α = 6◦ and p = 2.

In order to evaluate the quality of the meshes we use in our simulations
we apply some well-known mesh metrics. The scaled Jacobian mesh metric,
described in [35], is shown in Figure 5 for the coarsest grid B0. As can be seen
in the figure the scaled Jacobian is positive for all elements, meaning that there
should be no unphysical results due to intersecting grid lines. The stretch mesh
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Table 1: NACA0015: Detailed refinement information about simulation meshes B0, B1 and
B2. Edge grading factor is given by r, and npts is the number of points along the airfoil
surface whilst n is the number of inserted knots along the given edge.

Mesh B0 B1 B2

Airfoil npts 103 127 173
r 0.96 0.96 0.97

e1
r 0.81 0.89 0.92
n 36 60 80

e2
r 0.88 0.92 0.94
n 35 55 75

e3
r 0.9 0.91 0.93
n 12 18 24

e4
r 0.89 0.92 0.94
n 35 50 65

B0 B1 B2
Grid

0.000

0.005

0.010

0.015

0.020

D
is

ta
nc

e
fr

om
ai

rf
oi

l

Figure 3: NACA0015: Grading factor illustration (zoomed) of the innermost patches close to
the airfoil for the different meshes.

metric is shown in Figure 6. The IFEM solver is able to handle large element
aspect ratios.
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Table 2: NACA0015: Number of elements and degrees-of-freedom for simulation meshes B0,
B1 and B2 and polynomial orders p = 1, 2, 3.

Mesh p nel ndof

B0
1 22046 67116
2 22046 78222
3 22046 90096

B1
1 45864 138909
2 45864 155319
3 45864 172497

B2
1 82582 249522
2 82582 271380
3 82582 294006

(a) NACA0015: Mesh B0, p = 2.

(b) NACA0015: Closeup view of mesh B0,
p = 2.

Figure 4: NACA0015: Grid B0 for α = 6◦. Patch boundaries in black.

3.2. Physical parameters and boundary conditions
All simulations are based on a fluid density of ρ = 1.205 kg/m3, dynamic

viscosity µ = 1.8208 × 10−5 kg/(m s) and inflow velocity u∞ = 37.775 m/s
giving a Reynolds number of Re = 2.5 × 106. An inlet boundary condition
is imposed on the curved surface, a wall boundary condition is imposed on
the airfoil surface, a slip condition is applied on the lateral boundaries while a
homogeneous Neumann condition is used for the outflow.

3.3. Determination of the domain size
In the simulation of the kind presented in the paper one expects the aerody-

namic coefficients of the airfoil to be independent of the location of the bound-
aries. Sensitivity studies were conducted to identify the domain extent. Basi-
cally the dimensions L and H (Figure 2) were varied and simulations for five
different domain extents (B1, K0, K1, K2, K3) were conducted to compute the
drag and lift coefficients. The specifications of the domain set-ups are given in
Table 3. In all the five setups the airfoil is discretized using n = 127 points along
the surface with a grading factor of r = 0.96 towards both the trailing and the
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Figure 5: NACA0015: Scaled Jacobian mesh metric for grid B0 at 12◦ angle of attack.

Figure 6: NACA0015: Stretch mesh metric for grid B0 at 12◦ angle of attack.

leading edges. All the simulations were conducted for an angle of attack α = 6o,
order p = 1 and until a non-dimensional time t = 50. The results for drag and
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lift coefficients are shown in Table 4. The sixth and the seventh column in the
table shows the percentage error in CL and CD associated with the changes in
the domain size with respect to B1. The percentage change in any case is less
than 2.5% which should be acceptable for all practical purposes. We thus fix
the B1 domain configuration for subsequent analysis. The chosen domain setup
is shown in Figure 7.

u∞

uy = 0

uy = 0

p = 0

c = 1

H = 15c
L = 20c

Figure 7: NACA0015: Computational domain for fixed NACA0015 airfoil.

Table 3: NACA0015: Details of mesh and domain size. Edge grading factor is given by r,
whilst n is the number of inserted knots.

Grid B1 K0 K1 K2 K3

H 15c 15c 15c 10c 20c
L 20c 15c 30c 20c 20c
nel 45864 44694 47736 43120 47824
ndof 138909 135384 144549 130656 144804

e1
r 0.89 0.89 0.89 0.89 0.89
n 60 60 60 60 60

e2
r 0.92 0.92 0.92 0.92 0.92
n 55 55 55 48 60

e3
r 0.91 0.91 0.91 0.91 0.91
n 18 18 18 18 18

e4
r 0.92 0.92 0.925 0.92 0.92
n 50 45 58 50 50

Based on the small variations in the lift and drag coefficient a problem area
size of H = 15c and L = 20c is chosen.
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Table 4: NACA0015: Results for flow past a NACA0015 airfoil at α = 12◦ with p = 1.

α = 12◦ |CL−CL,B1|
CL,B1

[%] |CD−CD,B1|
CD,B1

[%]Grid p ∆t CL CD

B1 1 0.0005 1.21490 0.02352 - -
K0 1 0.0005 1.20620 0.02407 0.72 2.31
K1 1 0.0005 1.21041 0.02317 0.37 1.49
K2 1 0.0005 1.21011 0.02387 0.39 1.46
K3 1 0.0005 1.20820 0.02355 0.55 0.10

3.4. Time step determination
In order to determine a sufficiently small time step several simulations were

run on the finest grid, B2, with a sufficiently small time step ∆t = 0.0005 or
∆t = 0.00035 and spline elements of order p = 1, p = 2 and p = 3 for three
angles of attack. All simulations were run to non-dimensional time t = 75,
equaling 150000 or approximately 214000 time steps. The results are shown
in Table 5. As all simulations converge it can be safely concluded that the
Courant-Friedrichs-Lewy (CFL) condition, which is necessary for stability, is
satisfied. All subsequent simulations were therefore conducted with time step
given in Table 5.

Table 5: NACA0015: Results for grid B2 in determination of the time step ∆t.

Grid p α [◦] ∆t CL CD

IFEM (SA) B2 1 0 0.0005 −0.00016 0.01041
IFEM (SA) B2 1 6 0.0005 0.64573 0.01299
IFEM (SA) B2 1 12 0.0005 1.21902 0.02286
IFEM (SA) B2 2 0 0.0005 0.00001 0.01046
IFEM (SA) B2 2 6 0.0005 0.63758 0.01298
IFEM (SA) B2 2 12 0.0005 1.20819 0.02276
IFEM (SA) B2 3 0 0.0005 −0.00003 0.01047
IFEM (SA) B2 3 6 0.0005 0.63409 0.01301
IFEM (SA) B2 3 12 0.00035 1.20745 0.02187

3.5. Simulation length
In order to determine the lift and drag parameters it is crucial that the

simulations are run until a quasi steady-state situation is achieved. This is
monitored through the cumulative lift and drag coefficients. A time history
plot of the cumulative mean of the lift and drag coefficients for grid B0, p = 2,
α = 12◦ and ∆t = 0.0005 is shown in Figure 8.

Based on these results, the calculations of the lift and drag coefficients are
based on the time interval between 70 and 75 (≈ 10000 time steps).

3.6. Definition of test cases
Once the domain size, time steps and simulation length are established fur-

ther simulations were conducted for three mesh setups B0, B1, B2 with linear,
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Figure 8: NACA0015: Cumulative mean of CL and CD at α = 12◦ for grid B0, p = 2,
∆t = 0.0005.

quadratic and cubic spline elements with a time step as given in Table 5. All
inputs, including boundary conditions, are identical for all the cases with an
angle of attack α = 0◦, 6◦, 12◦. Thus a total of 27 cases are investigated.

4. Results and discussion

Results from the 27 different cases discussed in the previous section are now
compared against two sets of experimental ([36],[37]) results. While the results
in [37] come from the experiments conducted at the same Reynolds number as
in this paper, the results in [36] were obtained from wind tunnel experiments
conducted at lower Reynolds numbers and then extended to higher ones. In
the following subsections we present and discuss our 2D simulation results for
different angles of attack α.

4.1. Results for α = 0◦

An angle of attack of α = 0◦ corresponds to a situation where the flow
is expected to be statistically symmetric and absence of any flow separation.
Experimental values of nearly zero lift therefore does not come as a surprise.
The pressure field in Figure 21a computed by numerical simulation is symmetric
about the chord line which implies that the pressure integrated over the top
surface and bottom surface will be equal in magnitude and opposite in direction
resulting in a net zero lift. Also the flow impinges on the leading edge resulting
in a relatively high pressure zone on this side of the flow and hence a positive
drag coefficient.
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4.1.1. Lift and drag coefficients for α = 0◦

Lift and drag coefficients for α = 0◦ are shown in Table 6 along with ex-
perimental results available in the literature. The results are also presented in
Figure 9. Lift coefficients are predicted very well in our simulations and compare
well to the two sets of experimental results. Drag coefficients on the other hand
are overpredicted. This is as expected due to the use of the Spalart-Allmaras
turbulence model which assumes fully turbulent flow. However, drag coefficients
seem to be better approximated for p = 1 than for p = 2 and p = 3, whilst lift
coefficients seem to be better approximated with increasing spline element order
p.

4.1.2. Surface pressure plots for α = 0◦

The surface pressure coefficients for mesh B2 and p = 1, 2, 3 computed using
IFEM are compared against experimental results from [37] in Figure 10. Figures
11 and 12 give a zoomed-in view of the Cp plot towards the leading and trailing
edges respectively. The comparisons for p = 1, p = 2 and p = 3 are in good
agreement.

4.2. Results for α = 6◦

As the angle of attack increases to α = 6◦ the flow becomes asymmetric. Fig-
ure 21b shows that a relatively large surface area now tries to obstruct the flow
resulting in the development of high pressure zone on the bottom-leading side
of the airfoil. The asymmetric distribution of the pressure on the airfoil results
not only in a net upward lift but also a positive drag force. The experiments
confirm the results.

4.2.1. Lift and drag coefficients for α = 6◦

For α = 6◦, lift and drag coefficients are shown in Table 7 along with ex-
perimental results available in the literature. The results are also presented
in Figure 13. The drag coefficients seem to be somewhat higher than the ex-
perimental results. This overprediction is again due to the Spalart-Allmaras
turbulence model assuming fully turbulent flow. Again, drag coefficients for

Table 6: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 0◦ and Re = 2.5 × 106.

Grid p ∆t CL CD

IFEM (SA) B0 1 0.0005 −0.00009 0.01031
IFEM (SA) B0 2 0.0005 0.00001 0.01047
IFEM (SA) B0 3 0.0005 −0.00005 0.01054
IFEM (SA) B1 1 0.0005 0.00007 0.01040
IFEM (SA) B1 2 0.0005 0.00020 0.01045
IFEM (SA) B1 3 0.0005 0.00000 0.01049
IFEM (SA) B2 1 0.0005 −0.00016 0.01041
IFEM (SA) B2 2 0.0005 0.00001 0.01046
IFEM (SA) B2 3 0.0005 −0.00003 0.01047
Exp: McAlister et al. [37] -0.01 - 0.00 0.00
Exp: Sheldal et al. [36] 0.000 0.0070
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Figure 9: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 0◦ and Re = 2.5 × 106.

p = 2 and p = 3 are higher than for p = 1. The lift coefficients obtained for all
three grids are closer to the experiments in [36] than in [37]. Lift coefficients
obtained with p = 1 are lower than for p = 2 and p = 3.

4.2.2. Surface pressure plots for α = 6◦

Surface pressure coefficient plots for IFEM runs with the Spalart-Allmaras
turbulence model are presented in Figure 14 for grid B2, alongside comparisons
with surface pressure distributions from experiments in [37]. Figure 15 and 16
once again gives a zoomed in view of the Cp plot towards the leading and trailing
edges respectively. In this case, even for sufficiently fine mesh the coefficients
are not accurately predicted towards both the edges. There are only minor
differences in the Cp-curves for different polynomial orders.
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Figure 10: NACA0015: Surface pressure plot for α = 0◦. Simulation run for grid B2 with
p = 1, p = 2 and p = 3, ∆t = 0.0005.
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Figure 11: NACA0015: Surface pressure plot of leading edge for α = 0◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005.
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Figure 12: NACA0015: Surface pressure plot of trailing edge for α = 0◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005.

Table 7: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 6◦ and Re = 2.5 × 106.

Grid p ∆t CL CD

IFEM (SA) B0 1 0.0005 0.66101 0.01315
IFEM (SA) B0 2 0.0005 0.64599 0.01323
IFEM (SA) B0 3 0.0005 0.64000 0.01330
IFEM (SA) B1 1 0.0005 0.64732 0.01306
IFEM (SA) B1 2 0.0005 0.63829 0.01310
IFEM (SA) B1 3 0.0005 0.63419 0.01311
IFEM (SA) B2 1 0.0005 0.64573 0.01299
IFEM (SA) B2 2 0.0005 0.63758 0.01298
IFEM (SA) B2 3 0.0005 0.63409 0.01301
Exp: McAlister et al. [37] 0.69 - 0.71 0.01
Exp: Sheldal et al. [36] 0.660 0.0089

4.3. Results for α = 12◦

As the angle of attack is further increased to α = 12◦ more of the bottom
surface of the airfoil is exposed to the incident flow and hence higher pressure.
Contrary to that, the top surface is shielded from the incident flow and hence
relatively much lower pressure is experienced. As in the previous case it results
in positive lift and drag forces albeit much bigger in magnitude. Once again the
prediction is confirmed by experimental observations.
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(a) Lift coefficients (α = 6◦).
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(b) Drag coefficients (α = 6◦).

Figure 13: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 6◦ and Re = 2.5 × 106.

4.3.1. Lift and drag coefficients for α = 12◦

Lift and drag coefficients for α = 12◦ are shown in Table 8 along with
experimental results available in the literature. The results are also presented
in Figure 17. The drag coefficients are once again overpredicted compared to
the experimental results. For the lift coefficients the differences between p = 1
on the one hand and p = 2 and p = 3 on the other are more pronounced than for
lower angles of attack. Lift coefficients are in between the experimental results
in [36] and [37] and thus show reasonable agreement.

4.3.2. Surface pressure plots for α = 12◦

Surface pressure coefficient plots for IFEM run with the Spalart-Allmaras
turbulence model are presented in Figure 18, alongside comparisons with surface
pressure distributions from experiments in [37].
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As for the two lower angles of attack, there are only minor differences in
the prediction of pressure coefficients along the whole airfoil when using spline
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Figure 14: NACA0015: Surface pressure plot for α = 6◦. Simulation run for grid B2 with
p = 1, p = 2 and p = 3, ∆t = 0.0005.
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Figure 15: NACA0015: Surface pressure plot of leading edge for α = 6◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005.
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Figure 16: NACA0015: Surface pressure plot of trailing edge for α = 6◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005.

Table 8: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 12◦ and Re = 2.5 × 106.

Grid p ∆t CL CD

IFEM (SA) B0 1 0.0005 1.22001 0.02446
IFEM (SA) B0 2 0.0005 1.20042 0.02443
IFEM (SA) B0 3 0.0005 1.19376 0.02451
IFEM (SA) B1 1 0.0005 1.21490 0.02352
IFEM (SA) B1 2 0.0005 1.20243 0.02344
IFEM (SA) B1 3 0.0005 1.19667 0.02343
IFEM (SA) B2 1 0.0005 1.21902 0.02286
IFEM (SA) B2 2 0.0005 1.20819 0.02276
IFEM (SA) B2 3 0.00035 1.20745 0.02187
Exp: McAlister et al. [37] 1.24 - 1.39 0.03 - 0.06
Exp: Sheldal et al. [36] 1.177 0.0157

elements of order polynomial order p = 1, 2, 3.

4.4. Low Re investigations
As all results presented so far have shown only little or no improvement for

the surface pressure distributions with increasing spline element order, we make
some additional investigations at a low Reynolds number, Re = 250. This is
done for two grids. The first is B0 as presented earlier, with a distance to the first
knotline designed for y+ = 1 at Re = 2.5 × 106 The other is B3, much coarser
than grids B0-B2 and designed for Re = 250, with 10890 elements. Distance
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(a) Lift coefficients (α = 12◦).
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Figure 17: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 12◦ and Re = 2.5 × 106.

to the first knotline for B3 is 0.2/
√

(Re), and all investigations are carried out
at an angle of attack α = 12◦. The resulting surface pressure distributions
are shown in Figure 22. From the figure is it clear that polynomial order has
an impact only for grid B3, not for grid B0 which is designed to resolve the
boundary layer for Re = 2.5× 106. The significant difference is between linear
elements on the one side and quadratic and cubic elements on the other.

5. Conclusions

The major contribution of this work has been the demonstration of the usage
of a Navier-Stokes solver based on an isogeometric finite element method using a
Chorin projection method and Spalart-Allmaras turbulence model to simulate
high Reynolds number flow (Re = 2.5 × 106) around the NACA0015 airfoil
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for three different angles of attack. Also, another original contribution is the
design of meshes for isogeometric computation of airfoil flows. Most significant
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Figure 18: NACA0015: Surface pressure plot for α = 12◦. Simulation run for grid B2 with
p = 1, p = 2 and p = 3, ∆t = 0.0005 for p = 1, 2, ∆t = 0.00035 for p = 3.
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Figure 19: NACA0015: Surface pressure plot of trailing edge for α = 12◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005 for p = 1, 2, ∆t = 0.00035 for p = 3.
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Figure 20: NACA0015: Surface pressure plot of leading edge for α = 12◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005 for p = 1, 2, ∆t = 0.00035 for p = 3.

concluding remarks are enumerated as follows:

• The solver presented computes lift, drag and pressure coefficients which are
in reasonable agreement with the experimental observations. The pressure
coefficients were underpredicted for all the angles of attack.

• The work also investigates in detail and comes up with a choice of do-
main size, mesh resolution, time step and simulation length for the flow
investigated.

• It gets increasingly more difficult numerically to predict drag, lift and
pressure coefficients with increasing angle of attack.

• There is very little benefit evident from the usage of higher order splines,
particularly for prediction of Cp.

• It appears that the gain in numerical accuracy is more than offset by
the modeling error associated with RANS-based turbulence modeling ap-
proach. This is perhaps the reason no improvement in accuracy was ob-
served when the simulations were conducted with high Reynolds number
and Spalart-Allmaras turbulence model. On the contrary, at low Reynolds
number when no turbulence model was activated, the added value due to
higher order splines was observed for the coarse mesh. This explanation
can be taken to argue in favor of a turbulence resolving approach in com-
parison to a turbulence modeling approach.

• The numerical results have been compared to experimental observations
which can itself have errors associated with them which have not been
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(a) α = 0◦

(b) α = 6◦

(c) α = 12◦

(d) Common legend

Figure 21: NACA0015: Pressure contours with streamlines around the airfoil for different
angles of attack.

taken into account while a comparison is being made. There is definitely
a need for more accurate experiments with quantified uncertainties and
errors.

• In spite of some shortfalls the results from our study give a promising
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Figure 22: NACA0015: Surface pressure distributions for Re = 250.

outlook for further work towards fluid-structure interaction simulations
of wind turbine blades using the developed isogeometric finite element
Navier-Stokes solver IFEM. The possibility to use RANS-based turbulence
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model in addition to VMS and LES can make the methodology attractive
to a wider community, many of whom will be interested in quick results.
In particular, 2D airfoil sections as studied here can be coupled through
a beam element in a strip theory approach as in [10] and [8].

However, flow around an airfoil, particularly at higher angles of attack, is
characterized by three-dimensional flow phenomena like vorticity fluctuation
and vortex stretching. A combination of a RANS approach and two-dimensional
simulations suppresses all the three-dimensional flow phenomena. Even in three-
dimensional flow simulations, owing to the diffusive nature of any RANS model,
these phenomena will remain unresolved. An LES or VMS approach will be more
suited to accurately model such flow. Weak enforcement of boundary conditions,
such as in [38], appears a promising proposition as it is computationally less
demanding and stable compared to the more conventional approach.
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1. Introduction

Renewable energy is a growing sector with promising prospects of generating energy from wind as an important
driving force. Therefore, being able to simulate flow around wind turbines is becoming increasingly important as the
demand for larger and larger offshore wind turbines is growing. Larger turbines present many new challenges which
cannot easily be addressed by traditional engineering methods.

Many methods exist for computing flow around wind turbines. Today an increased focus is put on the overall
simulation efficiency, i.e. the time consumption related to modeling, analysis and interpretation of results. In particular,
the lack of interoperability between modeling using modern Computer Aided Design (CAD) systems and classical
finite element analysis programs is a bottleneck. To address this bottleneck the concept of isogeometric analysis was
introduced by Thomas J.R. Hughes and co-workers [1,2]. This concept is characterized by using splines, i.e. B-splines
or non-rational uniform B-splines (NURBS), as basis functions in the finite element analysis as well as in the CAD
system. In turn, this opens up for exact geometric modeling, which can be of utmost importance when it comes to
modeling aerodynamically shaped objects like airfoils. Furthermore, isogeometric analysis gives better accuracy per
degree-of-freedom than more traditional methods.

The computational efficiency of isogeometric analysis methods for solving the incompressible Navier–Stokes
equations is a current research topic. Aiming at attaining a solution as quickly as possible within a desired, acceptable
accuracy is an obvious goal in all design situations. The pioneers in isogeometric analysis, such as Yuri Bazilevs
among others, have developed coupled formulations based on variational multiscale stabilization (VMS) [3] and VMS
turbulence models based on the work by Victor Calo [4]. These models have been further developed in [5].

Designing efficient linear solvers for fully coupled formulations of the incompressible Navier–Stokes flows as men-
tioned above is very challenging because of the coupling of the velocity and pressure unknowns through the incom-
pressibility constraint. Projection methods can be a more efficient alternative for time-dependent problems since one
only needs to solve several decoupled systems of parabolic or elliptic equations at each timestep. Standard Krylov sub-
space methods like the conjugate gradient method or GMRES with efficient preconditioners like multigrid or domain
decomposition can then be used to solve the linear systems. The main drawback of projection methods is that high-
order methods are hard to design and analyze due to the introduction of additional unphysical boundary conditions.

Valen-Sendstad et al. [6] studied the performance of six different solvers for incompressible flow and among them
a Chorin projection method (incremental pressure correction) and a least-squares stabilized Galerkin scheme. From
their study they conclude that the incremental pressure scheme was the most efficient and accurate method. However,
this depends of course on the problem at hand. They looked at low Reynolds number cases, whereas our interest lies
in high Reynolds flow.

In this paper we intend to highlight some aspects related to the quality of computed solutions and computational
efficiency of three isogeometric incompressible Navier–Stokes solvers applied to a two-dimensional problem. The
first solver is based on a Chorin projection method (incremental pressure correction) along with the Spalart–Allmaras
turbulence model [7], the second is based on a coupled formulation of the Navier–Stokes equations combined with the
Spalart–Allmaras turbulence model and the third is a variational multiscale approach [3]. Common to all methods is
that the equations are discretized using linear and quadratic spline elements. As a test case we have chosen flow past
a fixed two-dimensional NACA0012 airfoil, which is considered to be a relevant airfoil for wind turbine application.

The paper is organized as follows: Section 2 starts with a brief description of the family of NACA airfoils followed
by the relevant governing flow equations. Then we describe the two different types of turbulence modeling approaches
that we have used as well as the implementation of the Chorin and coupled Navier–Stokes solvers. Our quantities
of interest are lift, drag and pressure coefficients, so their expressions are also presented. Section 3 describes the
simulation setup and other simulation parameters used in the study. Finally, in Section 4 the results from the three
different solvers for linear and quadratic spline elements are compared and their computational efficiencies are
evaluated. The paper ends with the main conclusion of the study in Section 5.

2. Theory

2.1. Symmetric 4-digit NACA airfoils

The 4-digit NACA airfoils denote a series of airfoil shapes developed by the National Advisory Committee for
Aeronautics (NACA). All NACA airfoils are identified by four digits and are usually written in the form NACA
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Fig. 1. Design parameters for NACA XXXX airfoil.

Fig. 2. Symmetric NACA 00XX airfoil.

XXXX where the first digit is the maximum camber as a percentage of the chord, the second digit is the distance of
maximum camber from the leading edge in percent of the chord and the last two digits are the maximal thickness as a
percentage of the chord. See Fig. 1 for a description of the different design parameters of the NACA airfoil. Symmetric
NACA airfoils have no camber and are only characterized by the two last digits, i.e. the ratio between the maximal
thickness t and the chord length c, see Fig. 2. The shapes of these airfoils (NACA 00XX) are given by the analytical
formula

yt = 5tc


0.2969


x
c

− 0.1260
 x

c


− 0.3516

 x
c

2
+ 0.2843

 x
c

3
− 0.1015

 x
c

4


, (1)

where yt is the distance from the centerline, t is the maximal thickness from centerline, c is the chord length and x is
the position along the chord from 0 to c. Eq. (1) does not give a closed curve for the wing profile since y is not exactly
0 for x = c. To get a closed curve the last coefficient is modified to get

yt = 5tc


0.2969


x
c

− 0.1260
 x

c


− 0.3516

 x
c

2
+ 0.2843

 x
c

3
− 0.1036

 x
c

4


. (2)

This formula has been used to approximate the NACA0012 wing profile in the numerical investigation presented in
this paper.

2.2. Governing equations

Subsonic, viscous flows is mathematically described by the incompressible Navier–Stokes equations given by

ρ
∂u
∂t

+ ρ (u · ∇) u − ∇ · σ (u, p) = ρf in Ω

∇ · u = 0 in Ω .

(3)

Here, Ω ∈ Rd , d = 2, 3, is a suitable, sufficiently regular and open domain, ρ is the constant fluid density, p is the
pressure, u is the fluid velocity vector and f is a volumetric body force. The Cauchy stress tensor can be written as

σ (u, p) = −pI + 2µϵ(u),
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where I is the identity tensor, µ the dynamic viscosity and the strain rate ϵ is defined as

ϵ(u) =
1
2


∇u + (∇u)T


.

We also define ∂Ω = Γ = ΓD ∪ ΓN ∪ ΓM where ΓD are the boundaries with Dirichlet conditions, ΓN are the
boundaries with Neumann conditions and ΓM are the boundaries with mixed conditions. Mixed boundary conditions
are used in situations where the normal velocity component is given, usually zero, together with the tangential stresses,
and can model symmetry planes and slip or friction conditions.

The variational formulation is expressed as: Find (u, p) ∈ U × Q such that
ρ

∂u
∂t

, v


+ c(u; u, v) + b(p, v) + a(u, u) + b(q, u) = f (v) (v, q) ∈ V × Q, (4)

where we have defined the spaces

U = HΓD,Γ⊥
M
(Ω) =


v ∈ H1(Ω) | v = uD on ΓD and v · n = u⊥ on ΓM


V = HΓD,Γ⊥

M ;0(Ω) =


v ∈ H1(Ω) | v = 0 on ΓD and v · n = 0 on ΓM


Q = L2(Ω),

where uD and u⊥ both are given functions and n is the unit outer normal on Γ , and the forms

a(u, v) = 2

Ω

µϵ(u) : ϵ(v) dx

b(q, v) = −


Ω

(∇ · v)q dx

c(w; u, v) =


Ω

ρ(w · ∇)u · v dx

f (v) =


Ω

ρf · v dx +


ΓN

t · v ds ,

where t = σ · n is the traction vector on Γ .

2.2.1. Isogeometric finite element approximation
The isogeometric finite element method approximates the solution by using a spline basis of polynomial order p

and regularity C p−1, whereas C0 Lagrange polynomials of low order (typically p = 1 or p = 2) are used in traditional
finite element formulations. Our approach is based on a conforming finite element approximation, i.e.

Uh ⊂ U, Vh ⊂ V, Qh ⊂ Q.

The discrete approximation spaces Uh, Vh, Qh are chosen as the isogeometric finite element spaces. This gives the
semi-discrete formulation of the variational problem stated in Eq. (4): Find (uh, ph) ∈ Uh × Qh such that

ρ
∂uh

∂t
, vh


+ c(uh; uh, vh) + a(uh, uh) + b(p, vh) + b(q, uh) = f (vh)

for all (vh, qh) ∈ Vh × Qh .
Herein, we have developed a block-structured B-spline isogeometric finite element approximation of the Navier–

Stokes equations described above. To construct a B-spline basis for a domain Ω which is subdivided into a number of
patches (a patch is equivalent to a block) Ωe such that Ω = ∪

N
e=1 Ωe we associate for each patch a knot-vector in each

coordinate direction

Ξ e
k =


ξ e

1,k, ξ
e
2,k, . . . , ξ

e
ne

k+pe
k+1


for k = 1, . . . , d. The B-spline basis for patch Ωe on the parametric domain Ω̂ = (0, 1)d is written as Ŝpe

αe where
the multi-indices αe

=

αe

1, . . . , α
e
d


and pe
=


pe

1, . . . , pe
d


denote the regularity and order for the basis in each
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coordinate directions, respectively. The corresponding basis for the physical domain Ωe can be expressed using the
coordinate mapping φe : Ω̂ → Ωe as

Spe

αe =


vh | vh ◦ φe ∈ Ŝpe

αe


.

If the variational formulation allows a discontinuous approximation the spline finite element basis for the domain Ω
can be defined as

Sh =


vh | vh |Ωe ∈ Spe

αe


.

If we assume that the knot-vectors and geometrical mapping φe for all the patches are consistent on common edges
and faces we can define a continuous basis

Sh =


vh ∈ C(Ω) | vh |Ωe ∈ Spe

αe


.

We use the same basis for the geometry as for the discretization of the velocity and the pressure.

2.3. Turbulence modeling

High Reynolds number flows involving reasonably complex geometries like airfoils are mostly turbulent and
require turbulence modeling since their explicit resolution using Direct Numerical Simulation (DNS) is still
computationally intractable. Thus one is left with either of the two choices Reynolds Averaged Navier–Stokes (RANS)
or Large Eddy Simulation (LES) based models. In the former all the scales are modeled while in the latter only the
small isotropic scales are modeled while the larger energy-containing scales are resolved. In the present study we use
the Spalart–Allmaras model and variational multiscale model which can be seen to lie in the category of RANS and
LES classes. A brief discussion of the models is presented in the following subsections.

2.3.1. Spalart–Allmaras model
In RANS models the flow is divided into a time-averaged and fluctuating part known as Reynolds decomposition

u = ū + u′,

p = p̄ + p′,

where ū, p̄ are the time-averaged components while the u′, p′ are the fluctuations in time. The Navier–Stokes
equations are then time-averaged to give an equation for the time-averaged quantities. Assuming that the time average
of the fluctuation part is zero, the Reynolds averaged Navier–Stokes equations can be written as

ρ


∂ū
∂t

+ (ū · ∇)ū


− ∇ ·

σ (ū, p̄) + ρ⟨u′

⊗ u′
⟩


= ρ f̄ ,

∇ · ū = 0,

where ⟨·⟩ is the averaging operator and (⟨u′
⊗ u′

⟩)i j = ⟨u′

i u
′

j ⟩. The equations have a form similar to the original
Navier–Stokes equations except for the last term on the left hand side of the momentum equation which results from
the time averaging and acts similar to the viscous stress term and is therefore called the Reynolds stress term. The
Reynolds stress tensor is symmetric and introduces new unknowns, 6 in 3D and 3 in 2D, and therefore additional
equations are required to close the system. In the present study we employ the Spalart–Allmaras model [7]. This
model solves a scalar transport equation for the modified kinematic viscosity parameter ν̃. The formulation of the
model is the transport equation

∂ν̃

∂t
+ u · ∇ν̃ = cb1 S̃ν̃ +

1
σ


∇ · (ν + ν̃)∇ν̃ + cb2|∇ν̃|

2


− cw1 fw


ν̃

d

2

.

Here ν = µ/ρ denotes the laminar kinematic viscosity, u the fluid velocity and d the distance from a given point to
the closest solid wall. From the modified viscosity the eddy viscosity can be computed as

νt = ν̃ fv1, fv1 =
ν̃3

ν̃3 + ν3c3
v1

.
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Modifications of the original model for the modified vorticity were published in [8]. The modified vorticity S̃ is now
given by

S =
ν̃

κ2 · d2 fv2, fv2 = 1 −
ν̃

ν + ν̃ fv1

where S represents the magnitude of the vorticity and d the distance to the closest wall, and

S̃ =


S + S : S ≥ −cv2S

S +
S


c2
v2S + cv3S


(cv3 − 2cv2)S − S

: S < −cv2S

with cv2 = 0.7 and cv3 = 0.9. The new modified vorticity S̃ does not have the possibility of becoming negative and
thus avoids a possible problem of disrupting other Spalart–Allmaras functions. Furthermore we have for the destruc-
tion term

fw = g


1 + c6

w3

g6 + c3
w3

1/6

g = r + cw2(r6
− r)

r =
ν̃

S̃κ2d2
.

In the original work [7] the following values were given for the constants appearing in the model

cb1 = 0.1355, cb2 = 0.622, cw2 = 0.3, cw3 = 2,

σ = 2/3, cv1 = 7.1, κ = 0.41.

To relax the need for high resolution in the mesh close to the wall the law-of-the-wall parametrization given in [8]
is introduced. Here the turbulent viscosity close to the wall is approximated by an analytical expression derived for
idealized flow conditions. The use of the law-of-the-wall parametrization allows for a much coarser resolution close
to the wall, typically a wall distance y+

∼ 10–30. Here, y+ is the non-dimensional wall distance defined in terms of
the friction or shear stress velocity uτ as

y+
=

u∗

ν
with u∗ =


τw

ρ

where the wall shear stress τw is given by

τw = µ


∂u
∂n


y=0

= µ [∇u · n]y=0 .

The starting point for the derivation is the following simple solution of the SA model

ν̃ = κuτ y, S̃ =
uτ

κy
, (5)

where y is the distance from the wall. The shear stress velocity can be written as uτ = utan/u+, where utan is the
tangential velocity and u+ the dimensionless velocity. By using the common assumptions for the derivation of wall
laws, i.e. incompressible flow, zero pressure gradient, constant velocity in the outer region, negligible advection in the
boundary layer, the following simplified expression for the wall law is derived

u+(y+) = B̄ + c1 log

(y+

+ a1)
2
+ b2

1


− c2 log


(y+

+ a2)
2
+ b2

2


− c3 atan2[y+

+ a1, b1] − c4 atan2[y+
+ a2, b2]. (6)
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The atan2 function can be defined from the standard arctan function as

atan2(y, x) =



arctan
 y

x


, x > 0,

arctan
 y

x


, y ≥ 0, x < 0,

arctan
 y

x


, y < 0, x < 0,

π

2
, y > 0, x = 0,

−
π

2
, y < 0, x = 0,

undefined, y = 0, x = 0.

Since the mean velocity u+ is a function of the normalized wall normal distance y+ the wall law can be explicitly
evaluated and there is no need for non-linear Newton iterations. The value of the constants in Eq. (6) are given by
B̄ = 5.0333908790505579 and

a1 = 8.148221580024245, b1 = 7.4600876082527945,

a2 = −6.9287093849022945, b2 = 7.468145790401841,

c1 = 2.5496773539754747, c2 = 1.3301651588535228,

c3 = 3.599459109332379, c4 = 3.6397531868684494.

When using the wall law a no-slip condition is used for the fluid velocity and the modified vorticity is set to zero on
the walls. A Dirichlet condition based on the wall law is imposed on the near-wall nodes. On the inflow boundaries
ν̃in = 5ν is used, whilst a homogeneous Neumann boundary condition is applied on the outflow boundaries and
symmetry planes,

∂ν̃

∂n
= ∇ν̃ · n = 0.

The turbulent viscosity field computed is then used to model the Reynolds stresses [7] through the constitutive relation

−⟨u′

i u
′

j ⟩ = 2νtϵi j

and thus to close the problem.

2.3.2. Variational multiscale
The variational multiscale formulation is similar to a LES model for fluid flow but without the concept of an

eddy viscosity. The starting point for the derivation of the variational multiscale formulation of the incompressible
Navier–Stokes equations is the variational formulation, Eq. (4). To simplify the notation we follow [3] and write
U = (u, p) and V = (v, q) for the solutions and test functions, respectively. The corresponding functional spaces are
given by

U = U × Q,

V = V × Q.

The variational formulation of the incompressible Navier–Stokes problem, Eq. (3), can now be written as

B(U, V) = BL(U, V) + BN L(U; U, V) = F(V), (7)

where the operator B is split into a linear and a non-linear part as

BL(U, V) =


ρ

∂u
∂t

, v


+ b(p, v) + a(u, v) − b(q, u),

BN L(W; U, V) = c(w; u, v),
(8)

and the linear functional is given as

F(V) = f (v).
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Then a decomposition of the solution space U into a “coarse scale” Ū and “fine scale” U ′ is defined as

U = Ū ⊕ U ′. (9)

It is assumed that Ū is a finite dimensional space which in practical applications will be a numerical approximation
space, for instance a finite element space. A unique decomposition (9) is defined by a projection operator P : U → Ū
such that

Ū = PU,

U′
= U − Ū = (I − P)U,

where I is the identity operator. The projection operator P can for example be the L2- or H1-projection onto the coarse
space Ū . A similar decomposition is also introduced for the space of test functions V as

V̄ = PV,

V′
= (I − P)V.

Writing the solution and test functions as Ū + U′ and V̄ + V′, respectively, the variational problems (7) reads

B(Ū + U′, V̄ + V′) = F(V̄ + V′).

If both V̄ and V′ are valid test functions for the original variational formulation (7), i.e. if V̄ ⊂ V and V ′
⊂ V , then

one can first choose V′
= 0 and then V̄ = 0 to get the coarse and fine scale equations

B(Ū + U′, V̄) = F(V̄),

B(Ū + U′, V′) = F(V′).

The fine scale equation can be rephrased in the form

DBŪ (U′, V′) + BN L(U′
; U′, V′) = ⟨R(Ū), V′

⟩V ′∗,V ′

where DBŪ is the linearization of B about Ū in the direction of U′

DBŪ (U′, V′) =
d
dϵ

B(Ū + ϵU′, V′)


ϵ=0

= BL(U′, V′) + BN L(Ū; U′, V′) + BN L(U′
; Ū, V′)

and R(Ū) is the coarse scale residual lifted to the fine scale by the duality pairing

⟨R(Ū), V′
⟩V ′∗,V ′ = F(V′) − BL(Ū, V′) − BN L(Ū; Ū, V′).

The fine scale solution can formally be written as a functional of the form

U′
= F′(Ū, R(Ū)),

and then the equation for the finite dimensional coarse scale solution Ū can be written as

B(Ū + F′(Ū, R(Ū)), V̄) = L(V̄).

So far no approximations have been introduced, and thus the exact solution of the Navier–Stokes problem, Eq. (7),
is given by U = Ū + U′. However, in practice we are not able to obtain an analytical expression for the fine scale
solution and some kind of approximation must be introduced.

The turbulence modeling concept introduced in [3] is based on approximating the functional F′ and thus find an
approximate fine scale solution U′. The fine scale solution is then substituted into the coarse scale equation which
then can be solved for Ū. Hence the variational multiscale approach to turbulence modeling can be written as

Ũ′
= F̃′( ˜̄U, R( ˜̄U)),

B( ˜̄U + F̃′( ˜̄U, R( ˜̄U), V̄)) = L(V̄),
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where F̃′ is an approximation to F′, and ˜̄U and Ũ′ are approximations to Ū and U′, respectively. In the turbulence
model introduced in [3] the approximation of the fine scale Ũ′ is based on

1. The expression of the fine scale solution U′ as a perturbation series of the form

U′
= ϵU′

1 + ϵ2U′

2 + · · · =

∞
k=1

ϵkU′

k

with ϵ = ∥R(Ū)∥V ′∗ .
2. Truncation of the perturbation series after the first term

U′
≈ ϵU′

1.

3. An approximation of the fine scale Green’s operator for the linearized Navier–Stokes equations is defined as
G̃′

Ū ≈ G′

Ū, and it is used to find an approximate solution for U1.
4. Traditional SUPG and residual based stabilization methods have been shown to represent local approximations of

the fine scale Green’s operator, see [9–12]. Hence, a simple approximation of the fine scale field can be written as

Ũ′
≈ −τR( ˜̄U), (10)

where the matrix τ ∈ R4×4 can be computed element-wise as the mean value of the fine scale Green’s operator
over the element. Usually τ is taken to be a diagonal matrix on the form

τ =


τM I3×3 0

0 τC


.

For more details on the derivation of the variational multiscale formulation of turbulent incompressible flow presented
above we refer to Bazilevs et al. [3]. For a detailed study of the fine scale Green’s operator for the linear, steady
advection–diffusion equation, see Hughes and Sangalli [12].

Substituting the fine scale approximation given by Eq. (10) into the variational formulation given by Eq. (7) gives
the following final formulation: Find Uh ∈ Uh such that

Bms
h (Uh, Vh) = L(Vh) (11)

where

Bms
h (Uh, Vh) = B(Uh, Vh) + B ′

h(Uh, Vh) (12)

and the additional terms are given by

B ′

h(Uh, Vh) =


uh · ∇vh +

∇qh

ρ
, τM rM (uh, ph)


+ (ρ∇ · vh, τCrc(uh))

+


uh · (∇vh)T , τM rM (uh, ph)


−


∇vh

ρ
, τM rM (uh, ph) ⊗ τM rM (uh, ph)


. (13)

Here rM and rC denote the residual of the momentum and continuity equation, that is

rM (uh, ph) = ρ
∂uh

∂t
+ ρuh · ∇uh + ∇ ph − µ1uh − ρf ,

rC (uh) = ∇ · uh .

The non-conservative formulation is used for the definition of the momentum residual in the terms corresponding to
the VMS stabilization terms. It is reported in [3] that this has a favorable effect on the stability of the formulation
compared with the conservative formulation. We note that the first two terms on the right-hand side of Eq. (13)
represent the standard SUPG, pressure and continuity stabilization terms, while the last two terms are unique for the
variational multiscale formulation. The variational multiscale turbulence model defined by Eqs. (11)–(13) has been
applied to forced homogeneous isotropic turbulence and turbulent channel flows with very good results in [3].
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2.4. Coupled Navier–Stokes RANS

In this work using a coupled Navier–Stokes solver in a RANS setting is considered. Here one solves the variational
problem: Find Uh ∈ Uh such that

Bh(Uh, Vh) = L(Vh) (14)

where

Bh(Uh, Vh) = B(Uh, Vh) + B ′

h(Uh, Vh) (15)

and the additional terms are given by

B ′

h(Uh, Vh) =


uh · ∇vh +

∇qh

ρ
, τM rM (uh, ph)


+ (ρ∇ · vh, τCrc(uh)) . (16)

This is Eq. (13) without the extra multiscale terms, i.e., the Reynolds-averaged Navier–Stokes equations with SUPG,
continuity and pressure stabilization terms, where the Spalart–Allmaras model is used for the Reynolds stress terms.

2.5. The Chorin scheme

The projection methods were introduced in the late 1960s by Chorin [13] and Temam [14]. Here one only needs
to solve decoupled problems of elliptic equations at each timestep instead of the full coupling of the velocity and
pressure [15]. Thus standard Krylov subspace methods like the Conjugate Gradient (CG) method and Generalized
Minimal RESidual method (GMRES) can be used to solve the linear systems, and one can readily construct efficient
preconditioners. Drawbacks of the projection methods include an inherent splitting error and erroneous numerical
boundary conditions for the pressure, causing a reduced convergence order for the pressure and erroneous boundary
layers in the velocity.

In order to avoid the inconsistent pressure boundary condition present in many splitting schemes we choose a
rotational formulation for the incremental pressure correction scheme as proposed in [16]. This gives us the following
formulation

1. Velocity prediction step
ρ

21t


3ūn+1

− 4un
+ un−1


+ ρ


2un

− un−1


· ∇ūn+1
− ∇ · σ


ūn+1, pn


= ρf n+1

ūn+1
= 0 on Γ .

2. Pressure correction step
ρ

21t


3un+1

− ūn+1


+ ∇φn+1
= 0

∇ · un+1
= 0

un+1
· n = 0 on Γ ,

with

φn+1
= pn+1

− pn
− µ


∇ · ūn+1


.

The term “rotational” comes from the fact that if we add the two substeps together and use the vector identity

−1u + ∇ (∇ · u) = ∇ × ∇ × u

we get
ρ

31t


3un+1

− 4un
+ un−1


+ ρ


2un

− un−1


· ∇ūn+1
+ ∇ pn+1

+ µ∇ × ∇ × ūn+1
= ρf n+1,

∇ · un+1
= 0,

un+1
· n = 0 on Γ .
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Furthermore, from the pressure correction step we see that

∇ × ∇ × ūn+1
= ∇ × ∇un+1,

and ūn+1 can also be replaced by un+1 without affecting the accuracy of the scheme. We can also deduce the following
Neumann condition for the pressure

∂p
∂n

=


ρf n+1

− ρ


2un
− un−1


· ∇un+1

+ µ∇ × ∇ × un+1


· n on Γ ,

which is a consistent boundary condition. The resulting splitting error is only due to the slip condition imposed on
the velocity. In this work this is combined with the Spalart–Allmaras turbulence model in order to perform RANS
simulations.

2.6. Aerodynamic coefficients

The quantities of interest in numerical simulations of flow past an airfoil are the aerodynamic coefficients for a
given angle of attack α and a given Reynolds number Re. The Reynolds number is defined as

Re =
u∞c
ν

,

where u∞ is the constant inflow velocity, c is the chord length and ν = µ/ρ is the kinematic viscosity. The three
coefficients of interest are the drag coefficient CD , the lift coefficient CL and the pressure coefficient CP defined as

CD =
Fx

1
2ρu2

∞cl
, CL =

Fy
1
2ρu2

∞cl
, CP =

p − p∞

1
2ρu2

∞

.

The quantities Fx and Fy are the horizontal and vertical force components acting on the airfoil respectively, ρ is the
density of the fluid, l is the length in the spanwise direction and p∞ is the ambient pressure. The force components
are computed as

F = [Fx , Fy]
T

=


Γw

σ · n ds,

where Γw is the airfoil surface.

3. Simulation setup

Reliable results from the simulations of flow past an airfoil at high Reynolds number require a high quality
mesh, properly chosen initial and boundary condition, time step for the simulation as well as the duration for which
the simulations have to be run to achieve statistical convergence. Since one of the objectives of this study is the
inter-comparison of the computational efficiencies of different methods, these parameters have been so chosen that
they are valid and identical across all simulations. This simply means that we might be using smaller time steps or
higher resolution or longer integration time than required in some cases. Optimization of these parameters for each
solver is not considered here. However, important differences between the solvers will be pointed out.

3.1. Domain size and mesh resolution

The mesh is denoted S1 and has two variants: the first one based on linear spline elements and the other on
quadratic spline elements. In all other aspects the meshes are similar. The meshes used throughout all the simulations
have the same number of elements in order to better compare how each solver fares for the same number of degrees-
of-freedom. Along the airfoil surface the meshes have 127 points with a grading factor of 0.96 towards each end. The
mesh is designed iteratively for an average y+

= 30 for all Spalart–Allmaras runs with wall function. This ensures
that the first node close to the wall is well outside the viscous as well as the buffer layer but within the log layer.
For the VMS simulations the same mesh was slightly refined so that after the simulation an average y+

= 10 was
obtained. Details about the mesh can be found in Table 1. The mesh is shown in Fig. 3 for α = 8◦ and p = 2. Each
mesh consists of 128 patches, of which the layout is shown in Fig. 4.
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Table 1
NACA0012: Detailed information about simulation mesh S1.

Mesh S1 S1

p 1 2
nel 34 104 34 104
ndof 103 539 117 069

(a) NACA0012: Mesh S1. (b) NACA0012: Closeup view of mesh S1.

Fig. 3. NACA0012: Mesh S1 for α = 8◦ and p = 2.

Fig. 4. NACA0012: Patch layout for all meshes, here shown for α = 8◦.

3.2. Initial and boundary conditions

For all simulations a fluid density of ρ = 1.205 kg/m3 and a dynamic viscosity µ = 1.8208 × 10−5 kg/(m s) are
used. The inflow velocity is ramped up to a value of u∞ = 45.331 m/s. The ramping function is given by:

u∞(t) =

u∞

1 − cos (π t)
2

t < 1.0

u∞ otherwise.

All the simulations involving the Chorin and coupled solver with the Spalart–Allmaras turbulence model make use of
a no-slip condition on the airfoil surface. For simulations with the VMS solver a weak Dirichlet condition is applied on
this boundary. A slip boundary condition is imposed on the top and bottom boundaries. At the outflow a homogeneous
Neumann condition for velocity is imposed. The computational domain is shown in Fig. 5.
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Fig. 5. NACA0012: Computational domain for fixed NACA0012 airfoil.

3.3. Time step determination

Determining a sufficiently small time step is crucial for the convergence of the simulations. In order to determine
such a time step, simulations with all three solvers for angles of attack α = 16◦, 20◦ until a non-dimensional time
t = 150 were conducted. These two angles of attack are considered to be the most challenging of our chosen angles
of attack because stall is expected at or around these cases. It was found that the biggest time step was 1t = 0.00025
that could be used with all three solvers without any issue with convergence. We can therefore conclude that the
Courant–Friedrichs–Lewy (CFL) condition, which is necessary for stability, is satisfied for all the simulations. It was
evident that the time step restriction is stricter for the VMS simulations than for those based on the RANS model.
However, for comparison reasons, all the simulations are run with the same time step.

3.4. Simulation length

The values of drag and lift coefficients change with time and at some point attain a somewhat constant value. We
treat this as a warm-up period and do not use the period in computing the time-averaged quantities. For the VMS
simulations the warm-up period is significantly larger than the RANS simulations. In a RANS approach (in this case
Spalart–Allmaras) the equations are time-averaged and then solved, while in LES (VMS in this case) the equations are
solved and then the desired quantities are time-averaged. The time-averaging requires that most of the flow realizations
have been taken into account in the averaging procedure. It is because of this reason that one needs to use much larger
time interval over which averaging is conducted. In order to get some idea about the total simulation length a case
with an angle of attack of α = 16◦ was run and evolution of drag and lift coefficients was monitored. These quantities
are plotted in Fig. 6. It is clear from the figure that the SA results have already converged for t < 60 s. However,
for the VMS simulations the averaging procedure can start only after t > 100 s. To be consistent all the simulations
have been run till t = 150 s, i.e. 600 000 timesteps, and the reported quantities are based on the averaging between
t = 125–150 s.

3.5. Definition of test cases

Four angles of attack (α = 0◦, 8◦, 16◦, 20◦) have been chosen for the investigation. Six simulations have been
conducted using VMS, Chorin with Spalart–Allmaras and coupled solver with Spalart–Allmaras for linear and
quadratic spline elements. All inputs, including domain size, mesh resolution, boundary conditions, initial condition
and simulation time step are identical for all the simulations as explained above. This amounts to a total of 24
simulations under investigation. In addition, similar simulations are conducted with all three solvers for linear and
quadratic spline elements for angles of attack of α = 4◦, 10◦, 12◦, 14◦, 18◦. These 30 cases are only used for lift and
drag analysis and to populate Fig. 7.
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Fig. 6. NACA0012: Cumulative mean of CD and CL calculated from t = 50 s for grid S1, p = 2, α = 16◦, 1t = 0.00025 using all three solvers.

(a) CL . (b) CD .

Fig. 7. NACA0012: Lift and drag coefficients for different combinations of solvers and turbulence models and for different angles of attack.

4. Results and discussion

In this section we present a comparison of the results produced by different methods and turbulence models. We
have also taken some data from the simulations conducted by Eleni, see [17]. Those simulations were conducted using
the commercial finite volume code FLUENT using k − ω and Spalart–Allmaras turbulence models. The experimental
results used for validation purpose are due to Abbott, see [18]. We also compare our simulation results to Xfoil runs.
Xfoil is a freely distributed software package which can be used for estimating lift, drag and pressure distributions
based on 2D airfoil profiles [19]. The results presented here are based on Xfoil runs in viscous mode at the correct
Reynolds number with free transition. For the sake of convenience, in the rest of the paper, we use VMSp1, VMSp2,
ChorinSAp1, ChorinSAp2, CoupledSAp1 and CoupledSAp2 to address different simulations. The convention is
self-explanatory.
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Table 2
NACA0012: Lift and drag coefficients for flow past a fixed NACA0012 airfoil at α = 0◦ and Re = 3 × 106.

Grid p 1t CL CD

IFEM (ChorinSAp1) S1 1 0.00025 −0.0006 0.0082
IFEM (ChorinSAp2) S1 2 0.00025 0.0004 0.0119
IFEM (CoupledSAp1) S1 1 0.00025 0.0000 0.0079
IFEM (CoupledSAp2) S1 2 0.00025 0.0000 0.0112
IFEM (VMSp1) S1 1 0.00025 0.0006 0.0029
IFEM (VMSp2) S1 2 0.00025 −0.0005 −0.0188
Xfoil 0.0000 0.0051
ANSYS Fluent (SA) [17] 0.0070 0.0090
ANSYS Fluent (k − ω SST) [17] 0.0070 0.0090
Exp: Abbott et al. [18] 0.0040 0.0000

4.1. Lift, drag and pressure coefficients

For flow around a NACA0012 airfoil it has been observed that the lift increases linearly with the angle of attack up
to an angle of approximately 17◦ after which there is a sudden drop in the lift coefficient and a corresponding increase
in the drag coefficient. This condition is referred to as stall. A plot of experimental values of CD and CL along with
the numerically computed values are presented in Fig. 7. It is clear from the figure that it is relatively easier to predict
these quantities up to an angle of 15◦ before which the flow is attached to the airfoil surface. Different simulations
produce almost identical results. However, beyond this angle of attack stall is experienced, characterized by flow
separation and different methods/models behave differently resulting in a wide spread of lift and drag coefficients. In
the following subsections we explain the flow characteristics for the four different angles of attack investigated in this
work in more detail.

4.1.1. Results for α = 0◦

For α = 0◦ lift and drag coefficients computed by different simulations are presented in a tabular format in Table 2.
As is evident from the table, all the simulations give a value of CL and CD close to the observation. This is quite
expected. The aerodynamic design of the airfoil ensures that the body experiences very small drag force while the
perfect symmetry along the centerline ensures that the flow characteristics on the top and bottom surface of the airfoil
are exactly the same. The computed pressure contours presented in Figs. 9 and 10 do show a symmetric pressure
distribution about the centerline. The vertical component of the pressure forces integrated over the top surface is
balanced by those integrated over the bottom surface resulting in zero lift. Also, as can be seen in Figs. 11 and 12 the
flow field is perfectly symmetric as expected. The streamlines show that the flow is strongly attached to the airfoil.
The vertical component of the resultant of shear forces integrated over the top and bottom surfaces will therefore
cancel each other. It should be mentioned that in reality owing to inherent unsteadiness in the flow the drag and lift
coefficients can show some variations over time however, in experimental results only the time-averaged quantities
are reported. Such variations were also present in the numerical simulations so the reported results were averaged over
time as described earlier. The pressure coefficient curves computed by different methods are nearly the same and are
presented in Fig. 8(a).

4.1.2. Results for α = 8◦

For α = 8◦ nothing special is observed except an increase in the lift coefficient. The exact values are shown
in Table 3. Once again all the methods produce similar results. The VMS simulations using linear and quadratic
spline elements compute values of lift coefficients which are closest to the experimental values. The slight tilt of the
airfoil with respect to the incoming flow breaks the symmetry of the flow resulting in a relatively higher pressure
caused by a sudden stagnation of the flow on the lower part of the airfoil close to the leading edge (see Figs. 9 and
10). For α = 0◦ the stagnation zone was just in front of the leading edge and was symmetric with respect to the
centerline. The net imbalance in the vertical component of the pressure forces results in a lift force that is represented
by the lift coefficient. The drag coefficient also shows a corresponding increase. The increase can be attributed to the
larger obstruction offered at this angle of attack. The streamlines in Figs. 11 and 12 confirm that although the flow is
unsymmetric it is still attached to the airfoil surface. The pressure coefficient curves computed in different simulations
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(a) α = 0◦. (b) α = 8◦.

(c) α = 16◦. (d) α = 20◦.

Fig. 8. NACA0012: Surface pressure distributions.

even for this angle of attack are still exactly the same except close to the trailing edge where slight differences are
observed, see Fig. 8(b).

4.1.3. Results for α = 16◦

In the experimental results presented, the lift coefficient increases almost linearly up to an angle of attack α = 18◦

after which there is a sharp fall in the lift coefficient and a corresponding increase in the drag coefficient characteristic
of the stalled condition. It is worth noting here that different methodologies (including those of others, i.e. Fluent)
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Table 3
NACA0012: Lift and drag coefficients for flow past a fixed NACA0012 airfoil at α = 8◦ and Re = 3 × 106.

Grid p 1t CL CD

IFEM (ChorinSAp1) S1 1 0.00025 0.841 0.0143
IFEM (ChorinSAp2) S1 2 0.00025 0.874 0.0149
IFEM (CoupledSAp1) S1 1 0.00025 0.830 0.0141
IFEM (CoupledSAp2) S1 2 0.00025 0.862 0.0144
IFEM (VMSp1) S1 1 0.00025 0.871 0.0077
IFEM (VMSp2) S1 2 0.00025 0.888 0.0124
Xfoil 0.897 0.0093
ANSYS Fluent (SA) [17] 0.812 0.0130
ANSYS Fluent (k − ω SST) [17] 0.791 0.0120
Exp: Abbott et al. [18] 0.887 0.0010

Table 4
NACA0012: Lift and drag coefficients for flow past a fixed NACA0012 airfoil at α = 16◦ and Re = 3 × 106.

Grid p 1t CL CD

IFEM (ChorinSAp1) S1 1 0.00025 1.008 0.1203
IFEM (ChorinSAp2) S1 2 0.00025 1.462 0.0416
IFEM (CoupledSAp1) S1 1 0.00025 1.010 0.1207
IFEM (CoupledSAp2) S1 2 0.00025 1.461 0.0405
IFEM (VMSp1) S1 1 0.00025 1.487 0.0663
IFEM (VMSp2) S1 2 0.00025 1.546 0.0678
Xfoil 1.603 0.0220
ANSYS Fluent (SA) [17] 1.316 0.0320
ANSYS Fluent (k − ω SST) [17] 1.295 0.0280
Exp: Abbott et al. [18] 1.523 N/A

produce similar results up to an angle of attack of α = 15◦. However, at around an angle of attack of α = 16◦, the
flow on the upper surface of the airfoil begins to separate and a condition known as stall begins to develop. At this
point there are big variations in the prediction of lift coefficients by different simulations. The best predictions are
by the VMS simulations. However, Table 4 reveals that almost all the simulations conducted with quadratic spline
elements irrespective of the turbulence model do well to predict the lift coefficient accurately. In the current situation
the effect of changing the order has little effect on the VMS simulations compared to that involving Spalart–Allmaras
model. A closer inspection of Figs. 11 and 12 reveals interesting facts regarding the flow behavior on the top surface.
ChorinSAp1 predicts flow separation very close to the leading edge while in the CoupledSAp1 this is observed further
downward. The VMSp1 predicts this separation further towards the trailing edge. An increase in the order of the
elements suppresses the flow separation and makes it happen close to the trailing edge. The results predicted by
ChorinSAp2, CoupledSAp2, VMSp1 and VMSp2 also compare well with the experiment. The fact that stall is not
observed at α = 16◦ in the experiment also attests the fact that an increase in the order helps in predicting reality
much better and hence their use is highly recommended.

4.1.4. Results for α = 20◦

An angle of attack α = 20◦ corresponds to a situation which is marked by flow separation predicted by all
simulations. The difference is only in the location of the separation point. For the Spalart–Allmaras models this is
closer to the leading edge compared to the VMS simulations. Table 5 shows that the Spalart–Allmaras models make a
better estimate of the lift coefficients with the best predictions by the one using quadratic elements. VMS simulations
according to the Figs. 9–12 are characterized by vortex shedding.

In general the flow behavior, pressure distribution, streamlines on the bottom side of the airfoil are very similar
for all the methods adopted for a particular angle of attack. The profile of CP , see Fig. 8(d), stresses that point as the
parts of all the profiles corresponding to the bottom surface nearly collapse into a single curve. However, on the part
corresponding to the upper surface significant variations are observed especially for α = 16◦, 20◦.
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Fig. 9. Pressure field computed by Chorin-SA, Coupled-SA,VMS for angles of attack of 0◦ (a–c), 8◦ (d–f), 16◦ (g–i) and 20◦ (j–l) with linear
spline elements.

4.2. Comparison of the computational efficiency of different methods

Determination and comparison of the computational efficiency of the different methods is one of the main
objectives of this work. All the simulations were conducted using our in-house CFD code IFEM. The linear solvers



682 K. Nordanger et al. / Comput. Methods Appl. Mech. Engrg. 284 (2015) 664–688

Fig. 10. Pressure field computed by Chorin-SA, Coupled-SA, VMS for angles of attack of 0◦ (a–c), 8◦ (d–f), 16◦ (g–i) and 20◦ (j–l) with quadratic
spline elements.

are based on the PETSc package [20] version 3.4.2 and are compiled with the Intel C++ compiler version 13.0.1,
using the SGI MPT MPI implementation, all running on SUSE Linux Enterprise Server 11. The simulations were
run on the “Vilje” supercomputer at the Norwegian University of Science and Technology which is currently ranked
as number 99 on the top 500 list (June 2014). This is an SGI Altix system with Intel Xeon E5-2670 (Sandy Bridge)
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Fig. 11. Velocity magnitude computed by Chorin-SA, Coupled-SA, VMS for angles of attack of 0◦ (a–c), 8◦ (d–f), 16◦ (g–i) and 20◦ (j–l) with
linear spline elements.

processors. The 1404 computational nodes in the system consist of 2 octa-core processors in SMP, with 20 MB L3
cache per processor. The nodes are connected using a high-speed infiniband network.

To understand the computational behavior of the three methods evaluated in this work it is important to have a
deeper understanding of how the solvers work. In a VMS-based solver, a single non-linear saddle-point system has to
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Fig. 12. Velocity magnitude computed by Chorin-SA, Coupled-SA, VMS for angles of attack of 0◦ (a–c), 8◦ (d–f), 16◦ (g–i) and 20◦ (j–l) with
quadratic spline elements.

be solved at each time level without any additional equations. On the other hand, in a coupled Navier–Stokes solver in
a RANS setting, an additional elliptic equation for eddy viscosity has to be solved along with the non-linear saddle-
point system. The Chorin-based solver avoids the need to solve a non-linear saddle-point system at each time level,
and rather updates the velocity and pressure through a series of elliptic solves. This is based on a hope that solving
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Fig. 13. NACA0012: Total CPU time for the simulations using all three solvers.

Table 5
NACA0012: Lift and drag coefficients for flow past a fixed NACA0012 airfoil at α = 20◦ and Re = 3 × 106.

Grid p 1t CL CD

IFEM (ChorinSAp1) S1 1 0.00025 0.723 0.2779
IFEM (ChorinSAp2) S1 2 0.00025 0.849 0.2267
IFEM (CoupledSAp1) S1 1 0.00025 0.726 0.2805
IFEM (CoupledSAp2) S1 2 0.00025 0.845 0.2246
IFEM (VMSp1) S1 1 0.00025 1.412 0.5060
IFEM (VMSp2) S1 2 0.00025 1.345 0.2662
Xfoil 1.597 0.0658
ANSYS Fluent (SA) [17] 0.837 N/A
ANSYS Fluent (k − ω SST) [17] 1.125 N/A
Exp: Abbott et al. [18] 0.870 N/A

the elliptic equations will have a lower cost than solving a single saddle-point system. If used in a RANS setting, an
additional equation is required to solve for the eddy viscosity, giving a grand total of four elliptic solves per time step.
It might now appear like the coupled solver in RANS setting will always be outperformed by the VMS-based solver,
however this is not the case. The reason for this is the additional terms in Eq. (13). These include the Hessian of the
basis functions, which is expensive to evaluate (except for linears where it is zero by definition). Thus, for higher order
elements the assembly time for the VMS approach will increase significantly. They also typically make the system
matrix more ill-conditioned, resulting in a double penalty, as linear solves will increase in cost.

Furthermore, the use of isogeometric elements influences the results. The extra smoothness of the basis implies that
there are basis functions with support across two elements, and which are smooth across the element boundaries. Since
Gaussian quadrature is still used, and this can only be used with success if the integrand is smooth, more integration
points are required per basis function. In particular, for quadratics one has to use two Gauss points per knot-span,
where one classical element corresponds to two knot-spans (the support of a basis function). This results in more time
being spent on assembly compared to traditional finite elements.

The total simulation time, calculated as an average of all 64 processors, is given in Fig. 13. As expected, the
difference in the total CPU time is more pronounced for simulations with p = 2 than for simulations with p = 1. For
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Fig. 14. NACA0012: Ratio of CPU time spent on element assembly and equation solving.

p = 1 the total CPU time is similar for all the three solvers. However, the VMS solver has a slight advantage, which
is not a big surprise keeping in mind the discussion in the previous paragraph. The cost of solving and assembling
extra systems is higher than the extra cost of assembling the VMS terms, since the Hessian can be skipped. For p = 2,
however, the balance tips. Now the Chorin solver is significantly faster than the others, with the VMS solver as the
slowest. This is the accumulated effect of the extra terms to be assembled, and the extra assembly caused by the
isogeometric approach rearing its head. Additionally, the coupled approaches both are penalized at higher angles of
attack. For the Chorin solver this does not seem to influence the simulation time to any significant degree.

In Fig. 14 the ratio of CPU time spent on assembly compared to equation solving is given. We clearly see that this
ratio drops for the coupled solvers for higher angles of attack, indicating that more time is spent on solving equations.
Most likely, this is the effect of larger element aspect ratios in the boundary layer making the preconditioner less
efficient. While this effect is also present for the Chorin solver, it is much less pronounced. This can be attributed
to the SIMPLE approach used in the Schur-decomposition-based preconditioner for the saddle-point system. The
multigrid sweep is a worse approximation of the Helmholtz operator, and thus the pressure preconditioner block
suffers. These results indicate that a RANS approach can be of great benefit for simulations with p = 2 or higher, in
particular if a Chorin solver is employed. The figure shows clearly that the ratio is much higher for the VMS solver
than the other solvers. For the high angles of attack the ratio is reduced both for the VMS and the coupled solver,
which means that the solvers spend more time on equation solving.

The assembly process can be further analyzed. For the coupled and VMS solvers we normalize the CPU time by
the average number of nonlinear iterations used in each time step. The result is shown in Fig. 15. The huge difference
between p = 1 and p = 2 is evident. For p = 1 the VMS solver spends the least time of the three solvers on element
assembly, but spends the longest time for p = 2.

5. Conclusions

In this work we have contributed a comparison of three isogeometric incompressible Navier–Stokes solvers. These
three solvers are a Chorin solver with the Spalart–Allmaras turbulence model, a coupled Navier–Stokes solver with the
Spalart–Allmaras turbulence model and a variational multiscale solver. All solvers have been used for investigating
flows past a fixed NACA0012 airfoil at a Reynolds number 3 × 106 at four different angles of attack. The most
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Fig. 15. NACA0012: CPU time spent on element assembly (normalized by number of nonlinear iterations).

significant findings are:
• computation of lift and drag coefficient in accordance with other references, both experimental and numerical. It

seems to be relatively easy to predict lift and drag up to an angle of attack of 15◦ before which the flow is attached
to the airfoil surface. Beyond an angle of attack of 15◦ we notice a large spread in lift and drag coefficients, meaning
that it is more difficult to predict lift and drag when the flow enters the stall regime.

• increasing element order from 1 to 2 generally gives better approximation of lift, drag and pressure coefficients.
However, the effect of increasing the element order from 1 to 2 is more pronounced for the Spalart–Allmaras
models.

• there is not much difference between the total computational time for the three solvers with p = 1. With p = 2
the Chorin solver is significantly faster than the two others. The Chorin solver is not penalized at higher angles of
attack in the same way as the other two solvers.

• a general recommendation for the kind of simulations presented in this paper, i.e. 2D simulation of high Reynolds
number flow past an airfoil, is to use a RANS approach, preferably with a Chorin solver, with p = 2. The
VMS solver would probably prove more useful if the goal is to investigate vortex shedding and wake effects.
Furthermore, the conclusions presented herein apply to 2D simulations, separate investigations should be done for
3D simulations.

However, we want to underline that the VMS turbulence model is (theoretically only) applicable for three-dimensional
flows. In this study we have suppressed the three-dimensionality of the flow thereby eliminating the physical processes
like three-dimensional vorticity fluctuations and the associated vortex-stretching from happening. Thus, the simulation
by VMS was reduced to a mere numerical exercise, and therefore not much should be read into their ability to
model the physical processes. For this, separate three-dimensional studies should be undertaken. Having said that,
the discussion regarding the computational efficiency still holds. One more point worth mentioning here is that for a
RANS model like the Spalart–Allmaras model there is no need to run the simulations for so long because convergence
is reached within approximately 1/4th of the total time of simulation we used. However, VMS owing to inherent
unsteadiness had to be run for a much longer time to ensure statistical convergence. Thus the RANS simulations in
this study are much faster than they appear in the paper.
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Abstract

In this paper we describe and evaluate an isogeometric finite element program,
IFEM-FSI, for doing coupled fluid-structure interaction simulations. We in-
vestigate the role played by employing higher polynomial orders and higher
regularity for solving a well known benchmark problem for flow past a circular
cylinder with an attached flexible bar at Reynolds number Re = 100. Further-
more, we investigate the sensitivity to resolution in the fluid mesh as well as
stiffness distribution in the mesh movement algorithm. Mesh quality is also as-
sessed. Our simulations indicate that quadratic and cubic spline elements give
better estimation of lift, drag and displacements than linear spline elements.

Keywords: Isogeometric analysis, Fluid-structure interaction

1. Introduction

Coupled fluid-structure interaction (FSI) simulations of full-scale wind tur-
bine rotors under realistic operational conditions have been conducted recently
[1, 2, 3]. Such simulations open new possibilities of detailed studies of nonlinear
effects, which are important for the design and performance of wind turbines
[4]. These effects include high frequency structural vibrations and aerodynami-
cal instabilities like buckling and fluttering. Buckling and fluttering can lead to
fatigue or structural failure of the turbine, as well as the initialization, transport
and decay of wake vortices. This is a major concern for the power production
in wind parks. However, coupled FSI simulations of transitional and turbulent
flows remain computationally very expensive, and more effort has to be put into
research on numerical methods and software development.

The development of numerical tools for FSI simulations of wind turbines
require accurate, robust and computationally efficient numerical solvers for the
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air flow and structural dynamics of the rotor. Isogeometric analysis (IGA),
introduced in [5], has demonstrated that much can be gained in this respect
by replacing traditional low-order finite elements (FE) by volumetric NURBS
(Non-Uniform Rational B-Splines). Spline approximations have some desirable
properties both with respect to geometrical representation and analysis, since
both the order and the smoothness of the basis functions are easily changed.
In particular, numerical results indicate that increased continuity of the finite
element basis improve the approximation of both material stresses in structural
analysis and sharp boundary layers in CFD analysis [6].

Fluid-structure interaction problems usually lead to an unsteady moving do-
main for the fluid part. Traditional computational fluid dynamic codes solve
the fluid equations on a fixed (Eulerian) grid. A classical approach to overcome
this difficulty is to consider the so-called Arbitrary Lagrangian-Eulerian (ALE)
method where the grid is moved arbitrary inside the fluid domain, following
the movement of the boundary [7, 8]. Furthermore, a fluid-structure interaction
problem is not only a two-field (fluid and solid) but a three-field coupling prob-
lem (fluid, solid and mesh). We also have to add that the global solution must
not depend on the mesh motion, and this is naturally verified when the quality
of the mesh is preserved. In this paper we apply our isogeometric finite element
solver IFEM to the well known FSI benchmark problem presented in [9, 10].

2. Theory

Here we present the theory behind our fluid and structural solvers, along
with details of how they are coupled and how the mesh movement is done. Mesh
generation is also explained. The fluid domain, consisting of an incompressible
Newtonian fluid, is denoted Ωf , while the structural domain, consisting of an
elastic solid, is denoted Ωs.

2.1. Fluid solver
The flow is mathematically described by the incompressible Navier-Stokes

equations which read

ρ
∂uf

∂t
+ ρ

(
uf · ∇

)
uf −∇ · σ

(
uf , p

)
= ρf in Ωf

∇ · uf = 0 in Ωf .

(1)

In this setting Ω ∈ Rd, d = 2, 3, is a suitable, sufficiently regular and open
domain, ρ is the constant fluid density, p is the pressure, uf is the fluid velocity
vector and f a volumetric body force. The Cauchy stress tensor can be written
as

σ(uf , p) = −pI + 2µε(uf ),

where I is the identity tensor, µ the dynamic viscosity and the strain rate ε is
defined as

ε(uf ) = 1
2
(
∇uf + (∇uf )T

)
.

Furthermore we define the boundary to be ∂Ωf = Γf = Γf
D∪Γf

N∪Γf
M in order to

handle boundaries with Dirichlet, Neumann or mixed boundary conditions. We
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denote Γf
D the boundaries with Dirichlet conditions, Γf

N the boundaries with
Neumann conditions and Γf

M the boundaries with mixed conditions. Mixed
boundary conditions are used in situations where the normal velocity component
is given, usually zero, together with the tangential stresses, and can model
symmetry planes and slip or friction conditions.

The variational formulation can now be expressed as: Find (uf , p) ∈ U ×Q
such that

(
ρ
∂uf

∂t
,v

)
+ c(uf ;uf ,v) + b(p,v) + a(uf ,uf ) + b(q,uf ) = f(v) (2)

for (v, q) ∈ V ×Q. We have defined the spaces

U = HΓD,Γ⊥
M

(Ω) =
{
v ∈H1(Ω) | v = uf

D on ΓD and v · n = uf
⊥ on ΓM

}

V = HΓD,Γ⊥
M

;0(Ω) =
{
v ∈H1(Ω) | v = 0 on ΓD and v · n = 0 on ΓM

}

Q = L2(Ω),

where uf
D and uf

⊥ both are given functions and n is the unit outer normal on
Γ. We have also defined the forms

a(uf ,v) = 2
∫

Ω
µε(uf ) : ε(v) dx

b(q,v) = −
∫

Ω
(∇ · v)q dx

c(w;uf ,v) =
∫

Ω
ρ(w · ∇)uf · v dx

f(v) =
∫

Ω
ρf · v dx +

∫

ΓN
t · v ds ,

where t = σ · n is the traction vector on Γ.

2.1.1. Isogeometric finite element approximation
In this work we employ an isogeometric finite element method similar to

what was introduced in [5] and presented in [11]. The isogeometric finite element
method approximates the solution by using a spline basis of polynomial order
p and regularity Cp−1. In traditional finite element formulations C0 Lagrange
polynomials of low order (typically p = 1 or p = 2) are used. Our approach is
based on a conforming finite element approximation, i.e.

Uh ⊂ U , Vh ⊂ V , Qh ⊂ Q.

The discrete approximation spaces Uh, Vh, Qh are chosen as the isogeometric
finite element spaces. This gives the semi-discrete formulation of the variational
problem stated in Eq. (2): Find (uf

h, ph) ∈ Uh ×Qh such that
(
ρ
∂uf

h

∂t
,vh

)
+ c(uf

h;uf
h,vh) + a(uf

h,u
f
h) + b(p,vh) + b(q,uf

h) = f(vh) (3)

for all (vh, qh) ∈ Vh ×Qh.
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As described in [12] we have developed a block-structured B-spline isogeo-
metric finite element approximation of the Navier-Stokes equations described
above. A domain Ω can be subdivided into a number of patches Ωe such that
Ω = ∪N

e=1Ωe, where what we call a patch is equivalent to a block. To construct a
B-spline basis for Ω we associate for each patch a knot-vector in each coordinate
direction

Ξe
k =

{
ξe
1,k, ξ

e
2,k, . . . , ξ

e
ne
k
+pe

k
+1

}

for k = 1, . . . , d. The B-spline basis for patch Ωe on the parametric domain
Ω̂ = (0, 1)d is written as Ŝp

e

αe where the multi-indices αe = (αe
1, . . . , α

e
d) and

pe = (pe
1, . . . , p

e
d) denote the regularity and order for the basis in each coordinate

direction, respectively. The corresponding basis for the physical domain Ωe can
be expressed using the coordinate mapping φe : Ω̂→ Ωe as

Speαe =
{
vh | vh ◦ φe ∈ Ŝp

e

αe

}
.

If the variational formulation allows a discontinuous approximation the spline
finite element basis for the domain Ω can be defined as

Sh =
{
vh | vh|Ωe ∈ Speαe

}
.

If we assume that the knot-vectors and geometrical mapping φe for all the
patches are consistent on common edges and faces we can define a continuous
basis

Sh =
{
vh ∈ C(Ω) | vh|Ωe ∈ Speαe

}
.

We use the same basis for the geometry as for the discretization of the velocity
and the pressure.

2.1.2. Projection method
In order to solve the mixed variational problem given in Eq. (3) the following

inf-sup condition

inf
qh∈Qh,qh 6=0

sup
vh∈Vh,vh 6=0

b(qh,vh)
‖qh‖L2(Ω)‖vh‖H1(Ω)

≥ C > 0.

needs to be satisfied in order to avoid spurious pressure modes [13]. This imposes
restrictions on the choices of Vh and Qh.

Traditionally a mixed finite element method with different approximation
spaces for pressure and velocity is required. In this work we use a pressure
correction projection scheme which allows for equal-order approximation of the
velocity and pressure. This is based on the work pioneered by Chorin [14] and
Temam [15] in the late 1960s. In order to stabilize the equal-order approximation
we employ Minev stabilization as described in [16]. A backward differentiation
formula of order 2 (BDF2 scheme) is used for the time integration.
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2.2. Structural solver
In a Lagrangian description, the balance equation (conservation of linear

momentum) of the structure can be written as

ρs ∂
2us

∂t2
= ∇ ·

(
JF−1 · σ(us)

)
+ ρsg in Ωs, (4)

where us denotes the displacement of the structure, ρs is the mass density, and
g is the gravitation vector. The deformation gradient tensor, F , is given by

F = I + ∂us

∂X
= I +∇us,

and J = detF .
We use a Total Lagrangian formulation for the structural solver, in which

the second Piola-Kirchhoff stress tensor (S) is a more convenient stress measure
in the constitutive relation. It is related to the Cauchy stress tensor (σ) through

σ = 1
J
F · S · F T .

Assuming isotropic linear-elastic material, the constitutive relation for the struc-
ture can be written

S = λs(TrE)I + 2µsE,

where E denotes the Green-Lagrange strain tensor

E(us) = 1
2(F TF − I).

Furthermore, λs and µs are the Lamé coefficients defined by

λs = νsE

(1 + νs)(1− 2νs) , µs = E

2(1 + νs) , (5)

where E and νs are the Young’s modulus the Poisson’s ratio, respectively.
The weak form of Equation (4) is obtained by taking the product with a test

function vs, and integrating over the undeformed reference configuration, Ωs
0.

This results in
∫

Ωs0
ρs ∂

2us

∂t2
· vsdX +

∫

Ωs0
S(us) : E(vs)dX

=
∫

Ωs0
ρsg · vsdX +

∫

Γs0
t̄ · vsdX , (6)

where t̄ is the prescribed traction vector on the Neumann boundary Γs.
The structural problem is solved by integrating in time the linearized version

of Equation (6), using a BDF2 scheme. Alternatively, the Hilber–Hughes–Taylor
method [17] may be employed, but has not been used in the current study. As of
the fluid solver, an isogeometric FE discretization based on spline basis functions
is used in the numerical implementation.
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2.3. Solver coupling
We couple the fluid and the structural solver at the interface using a Dirichlet-

Neumann coupling as presented in [18]. The coupling conditions are

vf
Γ = duΓ

dt
σf

Γ · n = σs
Γ · n,

where n is the unit normal vector to the interface Γ.
For the benchmark case we investigate we have ρf = 0.1ρs, i.e. the fluid

density is relatively large compared to the structural density. This known to
give added mass effects [19, 20], and such cases can have slow convergence
[21]. To stabilize the partitioned approach we use relaxation [22] and define a
convergence criteria for the subiterations as

c
(
dn+1

Γ,i ,d
n+1
Γ,i+1

)
=

maxj

(∣∣∣dn+1
Γ,i+1 − dn+1

Γ,i

∣∣∣
)

j

maxj

(∣∣∣dn+1
Γ,i+1

∣∣∣
)

j

< εsubit,

where we use a convergence criteria of εsubit = 10−6 for all the simulations in
this paper.

Next the partitioned algorithm for solving the FSI problem is presented.
Equal time step size ∆t is applied for both the fluid and structural fields. Fur-
thermore, we define nmax as the maximum number of subiterations. For every
time step we use the algorithm
1: while c

(
dn+1

Γ,i ,d
n+1
Γ,i+1

)
> εsubit and n+ 1 <= nmax do

2: Solve fluid problem and determine fluid forces on the interface f̃n+1
Γ,i+1

(
dn+1

Γ,i

)
.

3: Transfer relaxed fluid forces to the structural solver

fn+1
Γ,i+1 = ωif̃

n+1
Γ,i+1 + (1− ωi)fn+1

Γ,i

4: Solve structural problem for structural displacements d̃n+1
i+1

5: Check convergence
6: Solve grid problem for the new positions
7: Compute the new grid velocity
8: Derive new fluid velocity along surface to be used as Dirichlet boundary

condition
9: end while

For all subiterations the relaxation parameter ω is kept constant.

2.4. Arbitrary Lagrangian-Eulerian description and mesh movement
We employ the Arbitrary Lagrangian-Eulerian (ALE) concept, as first pre-

sented in [7], to handle the movement of the structure within the fluid mesh.
Our implementation of the ALE concept herein are based on the work done
earlier by our group, see [23], [24] and [25]. For more information about the
ALE concept we refer to [26], [8], [27] and [28]. The ALE description uses a
reference domain which we denote Ω̂d. Coordinates in the reference domain are
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written x̂. Following the notation used in [28] the fluid spatial domain Ωf
t is

given by

Ωf
t =

{
x | x = φ(x̂, t) ∀x̂ ∈ Ω̂, t ∈ (0, T )

}
,

and the mapping used is given by
φ(x̂, t) = x̂+ ŷ(x̂, t).

Here, ŷ is the time-dependent displacement of the reference fluid domain. The
fluid domain velocity is thus given by

ûf = ∂ŷ

∂t

∣∣∣∣
x̂

,

and is taken while x̂ is being held fixed. The ALE description of the incom-
pressible Navier-Stokes equations can now be written as

ρ
∂uf

∂t

∣∣∣∣
x̂

+ ρ
((
uf − ûf

)
· ∇
)
uf −∇ · σ

(
uf , p

)
= ρf in Ωf

∇ · uf = 0 in Ωf .

(7)

However, for successful application of the ALE description a mesh movement
algorithm is needed. Herein, we solve a linear elasticity problem at each time
step. Our implementation is based on the developments made by our group first
presented in [25] and later extended to handle two moving structures in [29].
A similar approach is used in [30]. Regarding the stability of the chosen mesh
movement approach we refer to [26]. The linear elasticity equations can be
written as

∇ · σs + f = 0 on Ω,
where σ is the Cauchy stress tensor and f is the external force. The Cauchy
stress tensor for an isotropic material and for linear elasticity reads

σs = 2µsε(u) + λs Tr(ε)I,
where λs and µs are the Lamé constants, u the displacement, I the identity
tensor and ε(u) the strain tensor. The strain tensor is given by

ε(u)1
2

(
∇u+ ((∇u)T

)
,

and the Lamé coefficients are defined in Eq. (5) Here, νs is the Poisson ratio
and E the Young modulus. We will specify our mesh problem through these
two parameters. Notice, that we might alternatively use a non-linear elasticity
solver, similar to the one used to solve the structural displacements above, in
the mesh movement algorithm. However, in our numerical tests the linear solver
turned out to be more robust.

2.5. Mesh generation
Generation of a high quality block-structured mesh can often be challenging.

The computational domain shall be decomposed into 2D quadrilaterals which
are not too skewed or distorted. Furthermore, distorted elements and abrupt
changes in the element size should be avoided. Such cases can lead to unwanted
grid effects. Also, we would like to have smaller elements at parts of the bound-
ary with high curvature and close to solid walls in order to capture boundary
layers.
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2.5.1. Block-structured mesh generation
A bottom-up approach is often preferred for constructing a block-structured

mesh. For two-dimensional problems the procedure can be described as
1. Define the corner nodes for the blocks.
2. Connect the corners to form the edges.
3. Refine the edges with a suitable grading.
4. Connect the edges to form surfaces.

To define the grading of the mesh a geometrical factor r can be defined as the
ratio of the element size of two consecutive elements, i.e. if {xi}m

i=1 are the
points on the edge or curve and ∆si = ‖xi − xi−1‖2 defines the cell size, then

r = ∆si/∆si−1,

for i = 2, . . . ,m. To impose a smooth change in element size, we typically have
that 0.8 < r < 1.2, and for sharp boundary layers we may even use 0.9 < r < 1.1
to capture the rapid change in the solution.

2.5.2. Spline curves
In this section we define spline curves, which form the foundation of the

mesh generation, as in [11]. Assume that we have a knot-vector
Ξ = {0 = ξ1, ξ2, . . . , ξn+p+1 = 1} .

and a set of control points C = {c1, . . . , cn} which defines the spline curve

c(ξ) =
n∑

i=1
ciBi,p(ξ),

where {Bi}n
i=1 are the basis functions. The parameter p is the polynomial order

of the spline curve, and each knot ξi may be repeated several times, but the
knot-span should be non-decreasing

ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1.

For p = 0 the basis functions are piecewise constants

Bi,0(ξ) =
{

1, ξi ≤ ξ < ξi+1,

0 otherwise.

The higher order B-spline basis functions are defined as a linear combination of
splines of lower order using the Cox-de Boor recursion formula

Bi,p(ξ) = ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ). (8)

We restrict our attention to open knot-vectors, i.e. splines that are interpolatory
at the end points, and then the first and last knots are repeated p + 1 times.
Furthermore, if the spline is Cp−1 continuous then all the internal knots have
multiplicity one and the knot-vector can be written as

Ξ = {ξ1, . . . , ξ1︸ ︷︷ ︸
p+1

, ξ2, . . . , ξm−1, ξm, . . . ξm︸ ︷︷ ︸
p+1

},

where the number of unique knots is given by q = n− p+ 1. The corresponding
knot-vector without repeated knots is

Ξ̄ = {ξ̄1, ξ̄2, . . . , ξ̄q}.
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2.5.3. Cubic spline interpolation
The mesh generation process is dependent on standard cubic spline inter-

polation [31]. The starting point is a set of m points {xi}m
i=1 that we want to

approximate by a cubic spline curve c(ξ) such that

• c(ξ̃i) = xi for ξ̃i ∈ [0, 1].

• c(ξ) ∈ C2([0, 1]).

The points {ξ̃i}q
i=1 where the spline curve interpolates the data are called the

Greville points. Two extra conditions are needed to uniquely define the inter-
polation. We use either Hermitian (c′(0) = t0, c

′(1) = t1) or natural boundary
conditions (c′′(0) = c′′(1) = 0), where t0 and t1 are the tangent vectors of
the spline curve at the endpoints. This leads to an n × n linear system with
n = m + 2, which can be solved for the unknown control points {ci}n

i=1. The
interpolation is not uniquely defined since the parametrization can be different.

The entire meshes presented in this paper are made for polynomial order
p = 3, and only lowered to orders p = 1 and p = 2 once all patches and
refinements have been completed.

2.5.4. Surface generation
For surface generation we employ the concept of Coons patches [32]. Given

four boundary curves u0(ξ), u1(ξ), w0(η), w1(η) as given in Figure 1. These

u0(ξ)

u1(ξ)

w0(ξ) w1(ξ)

Figure 1: Boundary curves for Coons surface patch.

curves have normalized knot vectors and are connected such that u0(ξ1) =
w0(0), u0(1) = w1(0), u1(1) = w1(1), u1(0) = w0(1), thus forming a closed
loop. By defining the surfaces

S1(ξ, η) = (1− η)u0(ξ) + ηu1(ξ)
S2(ξ, η) = (1− η)w0(η) + ξw1(η)
S3(ξ, η) = (1− ξ)(1− η)u0(0) + ξ(1− η)u0(1) + η(1− ξ)u1(0) + ξηu1(1)

the Coons surface paths is given by

Sc(ξ, η) = S1(ξ, η) + S2(ξ, η)− S3(ξ, η).

The Coons surface patch approach is a quick and easy way of building the
surfaces. Being able to define the geometry through the boundary curves of
each surface or patch is a great advantage.

9



2.6. Calculation of time-dependent quantities
We calculate mean value and amplitude of the time-dependent quantities

as in [9]. The mean value of quantity x is denoted x̄ and calculated from last
period of oscillations as

x̄ = 1
2(xmax + xmin).

Similarly, the amplitude of quantity x is denoted xamp and calculated as

xamp = 1
2(xmax − xmin).

Frequencies are calculated by the Lomb-Scargle algorithm [33, 34].

3. Simulation setup

3.1. Problem description
In this paper we aim to simulate the FSI2 benchmark case defined in [9], with

updated results given in [10], with our isogeometric code IFEM. The benchmark
case is defined for flow past a fixed circular cylinder with a flexible bar attached,
see Figure 2. The computational domain is identical to the domain in [9], except

(−0.2,−0.2)

H

L

h

l

(0, 0)

r

Figure 2: Cyl2DBar: Computational domain. The dimensions are H = 0.41, L = 2.5,
r = 0.05, h = 0.02 and l = 0.35.

that the origin is shifted from the lower left corner to the centre of the cylinder.
Inflow is from the left only and we prescribe a parabolic velocity profile

vin
x (0, y) = 1.5Ū (y + 0.2)(H − (y + 0.2))

(
H
2
)2

= 1.5Ū 4.0
0.1681(y + 0.2) (0.41− (y + 0.2)) , (9)

where Ū is the mean inflow velocity. The top and bottom wall, circle and fluid-
structure interface Γ0

t is prescribed the no-slip condition. At the outflow, i.e.
the right boundary, the pressure is prescribed to be 0.

The inflow velocity is ramped up through as smooth increase of the velocity
profile as suggested in [9] through

vin
x (t, 0, y) =

{
vin

x (0, y) 1−cos(π2 t)
2 if t < 5.0

vin
x (0, y) otherwise.
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Our main quantities of interest are the vertical position, y(t), of the end of
the flexible bar, identified by the letter A in Figure 3, and the lift, FL, and drag
forces, FD, on the cylinder and flexible bar considered as one single object. The
coordinates of the reference point A at time t = 0 is (0.4, 0). The drag and

h

l

r

A

Figure 3: Cyl2DBar: Structural part of the domain

lift forces, FD and FL are the horizontal and vertical force components acting
on the cylinder and flexible bar respectively, ρ is the density of the fluid, l is
the length in the spanwise direction and p∞ is the ambient pressure. The force
components are computed as

F = [FD, FL]T =
∫

Γ
σ · n ds,

where Γ is the surface of the cylinder and the flexible bar.
The flow and material properties given in Table 1 are used throughout the

simulations. As can be incurred from the table, the Reynolds number for all

Table 1: Cyl2DBar: Flow and material properties.

Parameter Quantity Unit
ρs 10000 kg/m3

νs 0.4 -
Es 1.4 · 106 Pa
ρf 1000 kg/m3

νf 0.001 m2/s
Ū 1.0 m/s

simulations is 100.

3.2. Mesh description
The patch structure along with the refinement edges e1 − e8 are shown in

Figure 4. Detailed refinement information can be found in Table 2.
The resulting number of elements and degrees-of-freedom for the different

meshes and polynomial orders are shown in Table 3. The meshes are designed
such that the number of fluid and structural elements double for each refinement
level.

The mesh for the coarsest grid, G1, for p = 2 along with a zoomed view of
the mesh close to the cylinder and the flexible are shown in Figure 5. In both
figures the fluid domain is light blue, whilst the structural domain is light red.
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e1
e2e3e3

e3

e3
e3 e3

e4e5e6e7

e8

Figure 4: Cyl2DBar: Refinement edges.

Table 2: Cyl2DBar: Detailed refinement information for the simulations meshes. Edge grading
factor is given by r and n is the number of inserted knots along the given edge.

Edge / Mesh G1 G2 G3 G4 G5

e1
r 0.61 0.74 0.82 0.909 0.9605
n 5 7 9 13 18

e2
r 1.0 1.0 0.97 0.97 0.97
n 5 7 8 13 20

e3
r 1.0 1.0 1.0 1.0 1.0
n 2 4 7 10 15

e4
r 0.94 0.97 0.99 0.985 0.99
n 25 40 80 98 133

e5
r 1.0 1.0 1.0 1.0 1.0
n 2 3 5 7 9

e6
r 0.95 0.96 0.97 0.96 0.96
n 4 6 8 15 20

e7
r 1.0 1.0 1.0 1.0 1.0
n 4 6 8 12 18

e8
r 1.0 1.0 1.0 1.0 1.0
n 3 5 7 10 15

3.3. Time step determination
All simulations use a non-dimensional time step of ∆t = 0.025 and a fixed

relaxation parameter ω = 0.1.

3.4. Simulation length
We run all simulations up till non-dimensional time 200, i.e. 8000 time steps.

A plot of the cumulative standard deviation is shown in Figure 6 for grid G1.
This indicates that the simulations are run long enough.
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Table 3: Cyl2DBar: Number of elements and degrees-of-freedom for simulation meshes G1-G5
and polynomial orders p = 1, 2, 3.

Structure Fluid
Mesh p nel ndof nel ndof

G1 1 52 140 1936 3144
G2 1 108 266 4012 6381
G3 1 192 450 8020 12612
G4 1 407 912 15870 24597
G5 1 800 1734 31832 48849
G1 2 52 204 1936 4281
G2 2 108 352 4012 7959
G3 2 192 560 8020 14862
G4 2 407 1066 15870 27657
G5 2 800 1944 31832 53079
G1 3 52 280 1936 5586
G2 3 108 450 4012 9705
G3 3 192 682 8020 17280
G4 3 407 1232 15870 30885
G5 3 800 2166 31832 57477

(a) Cyl2DBar: Mesh G1, p = 2.

(b) Cyl2DBar: Zoomed view of mesh G1 close to the cylinder and the
flexible bar, p = 2.

Figure 5: Cyl2DBar: Grid G1. The fluid domain is light blue and the structural domain is
light. Patch boundaries are drawn with thick black lines.

3.5. Mesh stiffness
Ensuring mesh quality consistent with the model in use is the key to getting

accurate results. In the case we are interested in the geometry is expected to
undergo deformations and hence the mesh elements can change in shape and
size. Fortunately, the quality of the mesh can still be controlled by cleverly
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Figure 6: Cyl2DBar: Cumulative standard deviation for grid G1 calculated from t = 120.

choosing the distribution of mesh stiffness throughout the mesh domain. When
a constant value of mesh stiffness is applied, specified displacements are homo-
geneously diffused throughout the mesh. On the other hand when the mesh
stiffness is specified as varying throughout the domain, nodes in regions of high
stiffness move together, i.e. there is little relative motion. Variable mesh stiff-
ness is particularly useful to preserve the mesh distribution (and quality) near
fine geometrical features, such as sharp corners, or in boundary layers. In prin-
ciple, the computed spatio-temporal deflections, drag and lift force should be
independent of the choice of mesh stiffness distribution. However, it has been
observed that some mesh distributions, like constant mesh stiffness everywhere,
resulted in divergence in solution. In this work seven different stiffness distribu-
tions were tried. In all the cases the mesh stiffness distribution was maximum
close to the wall so that the initial mesh quality in the vicinity is preserved over
the full course of simulation and then it decreased as a function of the distance
from the wall r to zero. A plot of the r value for grid G1 is shown in Figure 7.
Expressions given below give a mathematical description of the mesh stiffness
as a function of r.

1. Base case: Ebc = 1 + 200e−100r

2. E1 = 1 + 200e−50r

3. E2 = 1 + 1000e−100r

4. E3 =
{

201 if r < 0.025
1 + 200e−100(r−0.025) otherwise

5. E4 =
{

201 if r < 0.015
1 + 200e−100(r−0.015) otherwise
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Figure 7: Cyl2DBar: Calculated wall distance for grid G1.

6. E5 =
{

201 if r < 0.035
1 + 200e−100(r−0.035) otherwise

7. E6 =
{

1001 if r < 0.035
1 + 1000e−100(r−0.035) otherwise

Stiffness contours are presented in Figure 8 and a more quantitative profile of
the stiffness as a function of the distance r is given by the Figure 9 for grid G3
for easier comparison. Ebc is the least stiff mesh while E6 is the stiffest mesh
of all the cases simulated here. The basecase mesh stiffness has been used for
all other simulations in this paper, and it was chosen based on experience of
stability and required solution time.

3.6. Definition of test cases
Effects of changing the order of the elements (linear, quadratic and cubic)

was investigated for five different mesh resolutions resulting in a total of fifteen
simulations. Six additional simulations were conducted to understand the effect
of changing the mesh stiffness.

4. Results and discussion

A comparison of lift, drag and displacements with respect to grid resolution
and element order is presented here. Although the computational efficiency
was not the focus of attention in this work we include this information for one
particular grid. Finally, a subsection demonstrates the effect of changing the
mesh stiffness.

4.1. Mesh stiffness and quality
The accuracy of simulation involving stationary bodies depend on the quality

of the rigid mesh. However, for an FSI simulation involving deformations of solid
bodies it is necessary to ensure that all the intermediate mesh configurations
resulting during such movements are of high quality. To this effect, during the
mesh generation step we applied four different criteria to obtain high quality
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(a) Ebc

(b) E1 (c) E2

(d) E3 (e) E4

(f) E5 (g) E6

Figure 8: Cyl2DBar: Mesh stiffness distributions for grid G3.
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Figure 9: Cyl2DBar: Different mesh stiffnesses investigated.

meshes. It is worth mentioning that we have used only quadrilateral elements in
all the simulations. Therefore, all subsequently mentioned mesh quality metrics
are for quadrilaterals. In this paper we use four different mesh metrics for
assessing the quality of the finite element meshes. Firstly, the scaled Jacobian
can vary from −1 to 1 [35]. A positive value is necessary for the mesh to have
the minimum quality. Typically, the acceptable range is [0.3, 1] [36]. A negative
value signals an invalid element. Secondly, the shape quality metric is defined
in [37]. This metric attains the value 1 if the quadrilateral is a square and 0 if
it is degenerate. Thirdly, the skew quality metric is also defined in [37]. This
metric aims to detect element distortions arising from large or small angles. It
attains the value 1 if the quadrilateral is a rectangle and 0 if it is degenerate.
Lastly, the stretch quality metric is a measure of the aspect ratio. This also
attains values between 0 and 1.

Seven different mesh stiffness distribution were investigated and ensured
that the mesh quality is maintained throughout the whole cycle considered.
Although such investigations were conducted for all the grids and orders, in
Figure 10 we just present the case for G3 grid and quadratic elements. The
scaled Jacobian mesh metric for grid G3 is shown for the minimum quality
element in Figure 10a. It is clear from the figure that the scaled Jacobian is
always positive and therefore there are no intersecting grid lines which could
result in unphysical results. The shape mesh metric for grid G3 is shown for
the minimum quality element in Figure 10b. Since the boundary layer close
to the solid structure was to be resolved, very fine resolution in the direction
normal to the wall was required. It is therefore natural to expect that some
cells close to the junction between cylinder and bar will have some degree of
degeneracy. Similarly, the skew mesh metric for the worst quality element is
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for grid G3 as a function of time
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for grid G3 as a function of time.

Figure 10: Cyl2DBar: Mesh quality

shown in Figure 10c. It is clear that even for the worst element the skewness
value never gets below 0.7 throughout the cycle. Finally the stretch mesh metric
for the worst quality element is shown in the Figure 10d. It is worth mentioning
that the aspect ratio can easily be in of the order of 105 and the solvers used
in this work can easily handle such aspect ratios, see [12]. In light of that the
stretch mesh metric is highly adorable. Satisfied with the quality of intermediate
mesh configurations, seven different simulations were conducted to quantify the
effects of different mesh stiffness distributions (Ebc,E1,E2,E3,E4,E5,E6). The
results are presented in the Table 4. As expected all the different mesh stiffness
distributions predicted the drag, lift and deformations characteristics within
acceptable limits when compared to the reference data. We also investigate
the differences in the total CPU time used by the simulations. The results are
shown in Figure 11.

Also we investigate how the number of subiterations required at each time
step is impacted by the mesh stiffness. A comparison plot is shown in Figure
12.

The qualitative differences between spline elements of order p = 1, p = 2
and p = 3 is shown in Figure 13 for grid G1 in a deformed state. It is clear
from the figures that the use of higher order spline elements (p = 2, 3) gives an
exact representation of the interface between the fluid and structure leading to
smaller error when the forces are transferred at the interface.
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Table 4: Cyl2DBar: Results for mesh stiffness investigations

FD FD,amp FL FL,amp ux ux,amp uy uy,amp

Ebc 214.94 78.97 1.20 230.5 −0.01486 0.0128 0.0013 0.0813
E1 214.60 78.69 1.09 229.6 −0.01476 0.0128 0.0013 0.0811
E2 214.80 79.03 1.21 230.6 −0.01485 0.0128 0.0013 0.0813
E3 214.60 78.73 1.24 229.2 −0.01475 0.0128 0.0013 0.0810
E4 214.79 78.89 1.23 229.9 −0.01481 0.0128 0.0013 0.0812
E5 213.98 77.96 1.69 232.1 −0.01444 0.0124 0.0013 0.0803
E6 214.49 78.67 1.19 229.7 −0.01475 0.0128 0.0013 0.0811
Ref. 215.06 77.65 0.61 237.8 −0.01485 0.0127 0.0013 0.0817
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Figure 11: Cyl2DBar: Total CPU time for simulations with different mesh stiffness.

4.2. Velocity and pressure contours
Figures 14 and 15 give the velocity and pressure distribution, respectively, in

the domain for a complete oscillation period T . One can notice the existence of a
consistently high pressure on the leading side of the cylinder. The high pressure
zone is created due to the impingement of flow on the surface of the cylinder.
After the impingement the flow bifurcates and flows around the cylinder. In the
absence of the bar on the trailing side, the flow would have reached a statistically
steady state characterized by a repeating pattern of swirling vortices caused by
the unsteady flow separation. The vortices shed on the upper side of the cylinder
interact with those shed on the lower side giving rise to a von Karman vortex
street. When the bar is attached to the cylinder such an interaction between
the vortices is delayed. However, because of the elastic nature of the material
and inherent instability in the flow the equilibrium of the bar is disturbed and
it starts oscillating in an up-and-down motion. In Figure 15, one can see that
for t = 0T when the bar is in the uppermost extremity, the bar begins to
obstruct the flow resulting in a retardation of flow and the development of a
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Figure 12: Cyl2DBar: Number of subiterations per time step for simulations with different
mesh stiffness.

high pressure zone. A corresponding low pressure zone exists on the bottom side
of the bar. The imbalance in the pressure on the two sides of the bar pushes
the bar downward resulting in the neutralization of the pressure. However, as
the bar starts approaching the horizontal position it, owing to inertia, continues
to move downward. This results in the development of a high pressure zone on
the lower side of the bar and the downward motion is stopped once the pressure
value increases to a level where it can prevent further downward motion. At
this point the motion once again sees a complete reversal in direction. In Figure
14 one can notice that the flow accelerates in the region close to the lateral
surface of the bar when it attains a convex shape while the flow accelerates in
the region close to the tip in the concave side. The flow on the either side of
the bar thus accelerates on either side of the bar in a periodic fashion and have
no interactions till they have passed a distance close the length of the bar.

4.3. Drag
Figure 16 gives a detailed comparison of the drag force for different grids

and order of elements. Figure 16a shows the drag forces averaged over the
last two cycles along with the variations over the cycles. It is clear that for
quadratic and cubic elements (p = 2, 3) the predicted average drag forces are in
excellent agreement with the reference data. For linear elements (p = 1), the
grid resolution has a relatively bigger impact on the predicted drag. It is not
entirely clear if grid independence was in fact realized or not. However, even
with the coarsest grids, a switch to quadratic elements improves the prediction
remarkably. It can also be inferred from the figure that quadratic elements are
sufficient for producing the results in good agreement with the reference data.
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(a) p = 1 (b) p = 2

(c) p = 3

Figure 13: Cyl2DBar: Deformed G1 grid for spline element order p = 1, p = 2, p = 3.

Figure 16b, 16c and 16d give a better insight into the evolution of the drag
forces over time. It appears that for linear elements different grids predict
very different evolutions of the drag force. However, a promotion to quadratic
elements diminishes the differences. Except for the coarsest grid G1, all the
grids predict similar evolution. Further promotion to cubic elements results in
the collapsing of all the evolution profiles of the drag force to a single curve.
However, for both linear and quadratic elements a lag is noticed with respect to
the reference profile. When one looks at Table 5, where all the frequency results
are gathered, one finds that the predictions of drag frequency for quadratic and
cubic elements are within 5% while the error goes up to 15% if linear elements
are used with coarsest grid G1.

4.4. Lift
A detailed comparison of the lift forces for different grids and orders of

elements with the reference data is presented in Figure 17. Figure 17a shows
the lift forces averaged over the last two cycles along with the variations over
the cycles. Because of the statistical symmetry in the case under symmetry
the profile of lift over the upstroke should be exactly the same but opposite in
direction during the downstroke. Therefore the lift force averaged over a full
cycle will get cancelled resulting in zero net lift force. This can be seen in Figure
17a. Although the simulations conducted with linear elements did not result
an exact cancellation of lift forces over a full cycle it is still very small. To get
better insight into the evolution of lift forces as a function of time, the temporal
profiles of lift, for different grids, for linear, quadratic and cubic elements are
presented in Figures 17b, 17c and 17d respectively. It can be seen that for linear
elements, grids G1, G2 and G3 show oscillations which vanish when the grid
resolution is increased (G4 and G5). In fact the profiles of lift force for G4 and
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Figure 14: Cyl2DBar: x-component, ux of velocity for twelve timeshots in an oscillation cycle.
The oscillation period is denoted T .
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Figure 15: Cyl2DBar: Pressure for twelve timeshots in an oscillation cycle. The oscillation
period is denoted T .
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Figure 16: Cyl2DBar: Drag force FD over the last two cycles for p = 1, 2, 3 compared against
reference results from [38].

G5 are very close to the reference profile. A promotion from linear to quadratic
and then subsequently to cubic elements improves the predication remarkably
and the effect is more pronounced for the coarser grids G1 and G2. For the
cubic elements, once again, like the drag force, the lift force profiles for different
grids collapse on each other. However, again, a lag was observed with respect to
the reference profile. When one looks at Table 5 one finds that the predictions
of lift frequency for quadratic and cubic elements are within 3% while the error
goes up to 11% if linear elements are used with coarsest grid G1.

4.5. Lateral and transverse displacements
Figures 18 and 19 present the comparison of lateral and transverse displace-

ments of the center of the tip against the reference values. Once again the
comparison is first made of the displacements averaged over a full cycle and
then for their evolution as a function of time. A similar trend as above is ob-
served where the linear elements fail to give precise estimates even with very
high resolution while the higher order elements give excellent estimates even
with the coarsest grid. Frequency results for the displacements are also listed
in Table 5.

4.6. Computational cost for linear, quadratic and cubic elements
All the simulations were conducted using our in-house CFD code IFEM.

The linear solvers are based on the PETSc package [39] version 3.4.2 and are
compiled with the Intel C++ compiler version 13.0.1, using the SGI MPT MPI
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Figure 17: Cyl2DBar: Lift force FL over the last two cycles for p = 1, 2, 3 compared with
reference results from [38].

Table 5: Cyl2DBar: Frequency results

p fFD fFL fux fuy

G1
1 4.52 2.24 4.50 2.24
2 3.92 1.94 3.87 1.94
3 3.90 1.94 3.88 1.94

G2
1 4.23 2.11 4.22 2.11
2 3.86 1.95 3.92 1.95
3 3.88 1.94 3.89 1.94

G3
1 4.09 2.06 4.11 2.06
2 3.87 1.94 3.89 1.94
3 3.90 1.94 3.87 1.94

G4
1 3.95 2.01 3.99 2.00
2 3.87 1.94 3.89 1.94
3 3.90 1.94 3.87 1.94

G5
1 3.91 1.98 3.99 1.98
2 3.88 1.94 3.89 1.94
3 3.91 1.94 3.87 1.94

Ref. 3.8 2.0 3.8 2.0
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Figure 18: Cyl2DBar: x-displacement ux over the last two cycles for p = 1, 2, 3 compared
with reference results from [38].
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Figure 19: Cyl2DBar: Last two cycles for p = 2 compared with reference results from [38].
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implementation, all running on SUSE Linux Enterprise Server 11. The simu-
lations were run on the “Vilje” supercomputer at the Norwegian University of
Science and Technology which is currently ranked as number 99 on the top 500
list (June 2014). This is an SGI Altix system with Intel Xeon E5-2670 (Sandy
Bridge) processors. The 1404 computational nodes in the system consists of 2
octa-core processors in SMP, with 20MB L3 cache per processor. The nodes are
connected using a high-speed infiniband network. A plot of the total CPU time
required for running the simulations for all grids is shown in Figure 20.
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Figure 20: Cyl2DBar: Total CPU time for grids G1-G5 and polynomial orders p = 1, 2, 3.

5. Conclusions

In this work we have presented a validation of our isogeometric finite element
based FSI code against the benchmark FSI case proposed by Turek in [9] and
[10]. Effects of different mesh resolutions, stiffness distributions and orders of
elements on the estimation of drag, lift and displacements were investigated.
Furthermore, four different criteria for mesh generation were imposed resulting
in the simulations providing good agreement with the reference data. Most
important conclusions from the work can be enumerated as follows:

1. Different mesh stiffness distributions were tested out of which seven were
presented in this paper. It turned out that if for a particular mesh stiff-
ness distribution value, the solution converged then they gave the same
estimate of quantities of interest, i.e. drag, lift and displacements in the
current case. Furthermore, the different mesh stiffness distribution re-
sulted in similar computational cost associated with them.

2. Linear elements are not good even with reasonably fine grid. This can be
attributed to the errors associated with interpolation of forces when trans-
ferred from fluid to solid domain because of the fact that the geometry
can not be represented in an exact form using linear elements. Switching
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to quadratic or cubic elements led to an exact representation of the geom-
etry in combination with better numerical accuracy resulting in a better
estimation of drag, lift and displacements.

3. A switch to quadratic from linear elements resulted in a three-fold increase
in the computational time and a seven-fold in the case of cubics. However,
from the results it is apparent that the associated accuracy with quadratics
was sufficient and gave estimates of the relevant quantities within 5%
accuracy.

However, we want to underline the fact that the cases investigated herein were
for low Reynolds number (Re = 100). Since the ultimate goal of this devel-
opment work is to understand the fluid-structure interaction of a full rotating
turbine under operational meteorological conditions, one will always encounter
a very high Reynolds number flow which can be characterized by turbulence.
Luckily, work is underway to address this issue and some preliminary study
has already been published in the paper [12] for flow simulations around a
NACA0012 airfoil for a high Reynolds number, Re = 3 × 106. The next step
should therefore be to conduct similar fluid-structure simulation for highly tur-
bulent flow using Spalart-Allmaras and variational multiscale approach.
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