
Numerical Methods and Brute Force
Optimisation for a General Formulation of
the Mean Field Game Equations

Snorre Alexander
Berthelsen Husby

Master of Science in Physics and Mathematics

Supervisor: Espen Robstad Jakobsen, MATH

Department of Mathematical Sciences

Submission date: July 2015

Norwegian University of Science and Technology

NumericalMethods and Brute Force
Optimisation for a General Formulation of

theMean Field Game Equations
Author:
Snorre Alexander
Berthelsen Husby

Supervisor:
Espen Robstad

Jakobsen

NTNU
Department

ofMathematical Sciences

Summary
This thesis considers the numerical solution of a general formulation of the
mean field game (MFG) equations. MFG are a relatively new field with few
general results but with many modelling applications. The MFG equations
consist of a Hamilton-Jacobi-Bellman equation (HJB) and a Fokker-Planck
equation (FP) which are coupled by an optimal control.

In established theory and existing numerical methods for MFG, this
optimal control is assumed known as a function of the Hamiltonian in the
HJB equation. This reduces the generality of the methods. In this thesis,
we instead consider the general formulation for which the optimal control is
unknown. We develop brute force optimisation methods to directly compute
this based on the discretised Hamiltonian. We also develop robust numerical
schemes for the HJB and FP equations that, together with the brute force
methods, allow the computation of the solutions of the general formulation
of the MFG equations. Of particular note here are methods to evaluate a
diffusion tensor in the FP equation.

Due to the coupled nature of the MFG equations, the numerical computa-
tion of their solutions require a solution procedure. In this procedure the HJB
and optimal control are solved at the same time, before the solution of these
are used to compute the solution of the FP equation. This solution is again
used to solve for the HJB equation and optimal control. It is expected that
computing several iterations of this solution procedure is necessary. However,
we encountered several cases in which this procedure failed to converge. It is
important to remark that this is not a phenomenon unique to our thesis, but
is reported for other numerical methods for less general forms of the MFG
equations by other authors.

After a wide range of numerical tests, we develop an intuition for the
causes of this lack of convergence. In addition, we introduce alternative
solution procedures with slightly better convergence properties. We are also
able to produce solutions that converge with a refined mesh for some cases of
the MFG equations for which there to our knowledge does not exist existence
theorems for. These results remain speculative.

Based on our experiences, we propose topics of future work to deal with
the numerical solution of the MFG equations. We also present some ideas
for improvements to our solution methods.

Sammendrag
I denne masteroppgaven tar vi for oss numeriske løsninger av en generell
formulering av ”mean field game”-likningene (MFG). MFG er et relativt
nytt felt med f̊a generelle resultater, men med åpenbar bruk for matematisk
modellering. MFG-likningene best̊ar av en Hamilton-Jacobi-Bellman likning
(HJB) og en Fokker-Planck likning (FP) som er koblet via en optimal kontroll.

I etablert teori og eksisterende numeriske metoder for MFG, er denne opti-
male kontrollen antatt kjent som en funksjon av den hamiltonske funksjonen
i HJB-likningen. I denne masteroppgaven ser vi p̊a en generell formulering
av MFG der den optimale kontrollen er ukjent. Vi utvikler ”brute force”
optimeringsmetoder for å beregne den optimale kontrollen direkte basert p̊a
den diskretiserte hamiltonske funksjonen. We utvikler ogs̊a robuste numeriske
skjemaer for HJB- og FP-likningene som, sammen med optimeringsmeto-
dene, tillater beregningen av løsninger for den generelle formuleringen av
MFG-likningene. Verdt å merke her er ulike metoder for å h̊andtere en
diffusjonstensor som opptrer i FP-likningen.

P̊a grunn av den koblede naturen av MFG-likningene, vil numeriske bereg-
ninger av løsningene deres trenge en løsningsprosedyre. I denne prosedyren
er HJB-likningen og den optimale kontrollen løst for samtidig, før løsningen
av disse blir brukt til å beregne løsningen av FP-likningen. Løsningen av
FP-likningen blir s̊a brukt for å løse HJB-likningen og den optimale kon-
trollen. Det bør derfor forventes at det trengs flere iterasjoner av denne
løsningsprosedyren for at en skal oppn̊a konvergens. Derimot oppdaget vi
flere tilfeller der denne prosedyren ikke konvergerte. Det er viktig å p̊apeke
at dette ikke er et unikt fenomen for denne masteroppgaven, men ogs̊a
er beskrevet for andre numeriske metoder for mindre generelle former av
MFG-likningene av andre forfattere.

Etter et spenn av numeriske tester utvikler vi en intuisjon for årsakene
bak mangel p̊a konvergens for løsningsprosedyren. I tillegg introduserer vi
alternative løsningsprosedyrer som har litt bedre konvergensegenskaper. Vi
er ogs̊a istand til å produsere konvergente numeriske løsninger for enkelte
tilfeller som ikke dekkes av publiserte resultater, s̊avidt vi er kjent. Disse
resultatene forblir spekulative.

Basert p̊a v̊are erfaringer foresl̊ar vi emner for fremtidig arbeid p̊a numerisk
beregning av MFG-likningene. We foresl̊ar ogs̊a noen ideer for utbedringer
av v̊are egne metoder.

Preface
This thesis concludes my Master of Science education in Industrial Mathe-
matics at The Norwegian University of Science and Technology (NTNU) in
Trondheim. The thesis was produced throughout my 10th semester in the
spring of 2015, at the Department of Mathematical Sciences (IME). During
my years at NTNU, I have matured and developed my intellect to its peak;
thus far. It is not a journey I have walked alone.

First of all, I would like to thank my supervisor, professor Espen Robstad
Jacobsen, for all his time, comments, remarks and feedback throughout the
work on this thesis and its preparatory project. Our weekly meetings were
events where mathematical illusions were broken and laughter was shared.
Without his casual remark about ”mean field games” one day in September
2014, I would never have written this particular thesis.

I will forever be grateful for all instructors I have had the last five years.
Without their influences, passions, styles of teaching and humour, I might
have ended up an engineer instead. I will single out a special thanks to
professor Elena Celledoni at NTNU for the writing recommendation letters
that got me accepted for my exchange year at UC Berkeley in California.

I would never have been where I am now without my parents. I would
like to thank my mother for asking me if I really were satisfied with a grade
4 out of 6 on my first test in junior high school. Without this remark, the
standards to which I hold myself would be considerably lower. I would also
like to thank my father for the time he encouraged me to quit the Army
and get a degree while I was still young... and to go back into the Army
afterwards if I still wanted to drive a tank.

All classmates, past and present, have provided me with friends and
company for all my years at university. I would in particular like to thank
my regular lunch buddies: Geir Amund Svan Hasle, Trygve Bærland and
Audun Reigstad. Without them I would surely have spent less time drinking
coffee. Furthermore, I would like to thank Trygve Reinertsen Sørg̊ard and
Liv Monica Trondrud for their proofreading efforts.

Lastly, I would like to thank all those who have ever doubted in my
capabilities. May I never stop proving them wrong.

Nomenclature
Abbreviations
MFG Mean Field Game

HJB Hamilton-Jacobi-Bellman

FP Fokker-Planck

ND N-dimensional or N dimensions

FMM Fast-Marching Method

Notation
a+ = max(a, 0) for any number a.
a− = min(a, 0) for any number a.

Symbols
α Strategy or control

u Cost or potential

m Distribution (of agents)

f (Agent) velocity

D Diffusion tensor

σ Diffusion (function)

L Running cost or cost function

Contents
1 Introduction 1

1.1 The mean field game equations 1
1.2 An overview of the thesis . 2

2 Theoretical background and objectives 5
2.1 Existence and uniqueness of solutions 5
2.2 Previous work on numerical methods for canonical MFG . . . 8
2.3 Objectives of our discretisations 10

3 Discretisation of the Hamilton-Jacobi-Bellman equation 11
3.1 Finite differences in one dimension 11
3.2 Finite differences in two dimensions 13

4 Discretisation of the Fokker-Planck equation 17
4.1 Discretisations of the Fokker-Planck equation in one dimension 17
4.2 Finite volume discretisation of the Fokker-Planck equation in 2D 25

5 Computing the optimal control 37
5.1 Discretisations . 37
5.2 Brute force scatter search method 39
5.3 Hybrid method . 40
5.4 Error propagation from computed control 41
5.5 Vectorised versions . 42
5.6 A note on brute force computations for the 2D problem . . . 42

6 Numerical tests 45
6.1 Verification tests . 45
6.2 Optimisation method performance tests 53
6.3 On solution procedures on MFG 57
6.4 Application: Economic modelling 58
6.5 Application: Evacuation . 65
6.6 Application: Pursuit of moving object 68

7 Discussion of findings 79
7.1 Discretisations and optimisation 79
7.2 Convergence of the solution procedure 81
7.3 Modelling with the MFG equations 84

Contents

8 Conclusion 87
8.1 Future work . 87

A Heuristic derivation of the MFG equations 89
A.1 Derivation of HJB equation 89
A.2 Derivation of the Fokker-Planck equation 91
A.3 A closing word on the derivations 92

B M-matrices 93

C Ornstein-Uhlenbeck process solution 95

D Fast marching methods for obstacle handling 97

E Implementation details and lessons learned 99
E.1 Handling N-dimensional arrays for optimisation methods . . . 99
E.2 Lessons learned on updating the search space 100
E.3 Quick matrix generation . 101

Bibliography 105

Chapter 1

Introduction
In this chapter we introduce the mean field game equations in the general
form that will be dealt with. We describe how the quantities in the equations
are to be interpreted. The chapter concludes with an overview of the thesis,
and allude to our primary findings.

1.1 Themean field game equations
The mean field game (MFG) equations describe the movement of a future-
anticipating, rational continuum of agents. MFG is a new, relatively un-
explored problem with many real-world applications. The MFG equations
take the form of two partial differential equations, one Hamilton-Jacobi-
Bellman (HJB) equation with a terminal condition and one Fokker-Planck
(FP) equation with an initial condition.

ut + inf
α∈A

L+

N∑
i=1

∂u

∂xi
fi +

1

2

N∑
i=1

N∑
j=1

Dij
∂2u

∂xixj

 = 0, (1.1a)

mt +

N∑
i=1

∂

∂xi
(fim) =

1

2

N∑
i=1

N∑
j=1

∂2

∂xi∂xj
(Dijm) , (1.1b)

u(T, x) = uT (x),

m(0, x) = m0(x).
(1.1c)

The quantities m,u denote respectively the distribution of agents and the
potential under which they move. The infimum-term in (1.1a) is referred to
as the Hamiltonian. From the Hamiltonian, the agents’ optimal control
or strategy α may be obtained. The other functions and expressions are

2 Chapter 1 . Introduction

formally defined as follows,

Dij = (σσT)ij ,

f = f(t, x, α) : [0, T]× RN ×A 7→ RN ,
L = L(t, x, α,m) : [0, T]× RN ×A× P 7→ R,
σ = σ(t, x, α) : [0, T]× RN ×A 7→ RM ,
A ⊂ RN .

(1.2)

The interpretation of these functions in the context of MFG will become
more obvious over the next chapters. We will refer to L as the running
cost, f as the velocity and D as the diffusion tensor. Note especially the
terminal-initial conditions (1.1c); this implies that (1.1a) goes backwards
in time and that (1.1b) goes forwards in time. This backwards-forwards
structure introduces difficulties when solving (1.1a)(1.1b) numerically. We
will return to this later.

Forms of the MFG equations can heuristically be derived from (at least):
game theory (see [7]), optimal control theory (see appendix A) and statistical
physics (as argued in [13]). In regards to game theory, for example, MFG
consider Nash-equilibriaa in N -player games as N → ∞, where individual
players become indistinguishable. Players thus form their strategies based on
their own state and the statistics of the overall community of other players,
as well as their anticipation of the future.

1.2 An overview of the thesis
The author does not know of any published work that prove the existence
of solutions for the general forms (1.1a)(1.1b), which makes the numerical
computation of these both speculative and interesting. The existing material
on the MFG equations apply for variations of (1.1). We present the main
results in for these variations in chapter 2 and speculate on how these results
may be interpreted in the context of (1.1). We also describe existing numerical
methods for these variations of MFG.

We present monotone discretisations of the HJB equation (1.1a) in one
and two dimensions in chapter 3. In chapter 4 we discretise the one- and
two-dimensional FP equations. We present several discretisations for FP in
1D, and present several ways to discretise with the potentially problematic

aA group of players are in a Nash equilibrium if each one is making the best decision
possible, taking into account the decisions of all others in the game as long the others’
decisions remains unchanged.

1.2. An overview of the thesis 3

diffusion tensor D. Brute force, generic optimisation methods for computing
the optimal control α are developed in chapter 5.

All threads converge to the numerical tests in chapter 6. Here, the
discretisations from chapters 3 to 4 are tested individually in verification
tests. We also apply the MFG equations (1.1) to several interesting modelling
scenarios in one and two dimensions, and present numerical solutions of these.
We evaluate the convergence of the schemes as the mesh is refined. Several
interesting results surface here, which shed light on some intriguing difficulties
that apply for the numerical solution of the MFG equations.

We summarise and discuss our findings from the numerical tests in chapter
7. Chapter 8 concludes the thesis. Auxiliary results and implementation
details are located in the appendices.

Chapter 2

Theoretical background and
objectives
Before we proceed towards the core of this thesis, we present an overview of
the most important results for MFG within the context of this thesis. This
includes known conditions for the existence and uniqueness of solutions, as
well as an overview of previous work on numerical methods for MFG. This is
useful for gauging the state of the field, and we will echo back to this chapter
when evaluating our numerical results. In light of this previous work, we also
present the objectives of our own discretisations.

2.1 Existence and uniqueness of solutions
Mean field games were introduced in lectures[19] and papers[17][18] by Pierre-
Louis Lions in 2006, and has been developed further by the likes of Pierre
Cardaliaguet. As such, the analytic theory of MFG is in its relative infancy.
The main results may be found in [15][7][10].

We present theorems on the existence and uniqueness of solutions for
three forms of the MFG equations. In common for all these forms is that the
optimal control α is assumed known as a function of the Hamiltonian.

2.1.1 MFGwith known control and convex Hamiltonian
We start by presenting the first known non-stationary formulation of the
MFG equations from [18]. Relative to (1.1), the agent velocity is set as
f(α) = α and the diffusion is constant D = σ2I. The Hamiltonian is then
split into two terms, a reduced form H(x, p) and a generic cost term F (x,m).
with the optimal control assumed known as α = −∂H∂p . This gives the simpler
form,

ut −H(x,Du) +
σ2

2

N∑
i=1

∂2u

∂x2
i

= −F (x,m), (2.1a)

6 Chapter 2 . Theoretical background and objectives

mt −
N∑
i=1

∂

∂xi

(
∂H

∂p
m

)
=
σ2

2

N∑
i=1

∂2m

∂x2
i

, (2.1b)

u(T, x) = G(x,m(T)),

m(0, x) = m0(x).

To the author’s knowledge, no derivation of this form exists in published
papers. We assume that the functions F,G are local and present the following
theorem from [17][18] without proofa:

Theorem 1. Assume that the following conditions hold:

• The Hamiltonian H(x, p) in (2.1a) is strictly convex and C1 with respect
to p.

• The Hamiltonian H(x, p) in (2.1a) is Lipschitz continuous with respect
to x, uniformly from bounded p.

• The functions F,G satisfy suitable growth conditionsb.

Then the coupled problem (2.1a)(2.1b) has at least one solution on Ω = [0, 1]d

with periodic boundary conditionsc.

Let P1 be the set of first order Borel probability measures. If in addition
F,G are monotone over m in the following sense,∫

Rd
(F (x,m1)− F (x,m2)) d(m1 −m2)(x)dx > 0,∫

Rd
(G(x,m1)−G(x,m2)) d(m1 −m2)(x)dx ≥ 0,

∀m1,m2 ∈P1,m1 6= m2

(2.2)

where d(·) is the Wasserstein metric, then the coupled problem (2.1a)(2.1b)
has a unique solution.

aThe theorem is essentially presented without proof in [17][18]. It is possible that the
proof appears in the original series of lectures, see [19].

bThe theorem does not specify which growth conditions.
cIn [17] is is reported that the proof will hold for other choices of domains, such as Rd,

as long as the growth conditions are suitably modified.

2.1. Existence and uniqueness of solutions 7

2.1.2 MFGwith known control and quadratic Hamiltonian
This is a special case we will refer to as the canonical MFG equations. The
equations (1.1a)(1.1b) are modified by setting:

L(t, x, α,m) =
1

2
|α|2 + F (t, x,m),

f(t, x, α) = α,

D = σ2I.

(2.3)

In this case, the Hamiltonian in (1.1a) is analytically resolvable and one finds
that αi = −uxi . The canonical MFG equations become

ut −
1

2

N∑
i=1

(
∂u

∂xi

)2

+
σ2

2

N∑
i=1

∂2u

∂x2
i

= −F (t, x,m), (2.4a)

mt −
N∑
i=1

∂

∂xi

(
∂u

∂xi
m

)
=
σ2

2

N∑
i=1

∂2m

∂x2
i

. (2.4b)

This theorem from [7] applies for the canonical MFG equations (2.4):

Theorem 2. Assume the following conditions hold:

• The functions F,G are uniformly bounded.

• The functions F,G are Lipschitz continuous over x and m.

• The probability measure m0 is absolutely continuous with respect to the
Lebesgue measure and has a Hölder continuous density m∗0 that satisfies∫
Rd |x|

2m∗0(x)dx <∞. Then there exist at least one solution to (2.4).

If in addition (2.2) holds, the solution is unique.

There is also an important subcase of the canonical equations where σ = 0.
We refer to this case as the deterministic-canonical MFG equations:

ut −
1

2

N∑
i=1

(
∂u

∂xi

)2

= −F (t, x,m), (2.5a)

mt −
N∑
i=1

∂

∂xi

(
∂u

∂xi
m

)
= 0. (2.5b)

We present this theorem from [7] without proof:

8 Chapter 2 . Theoretical background and objectives

Theorem 3. Assume that m0(x) is absolutely continuous, bounded and has
compact support. Assume also that F,G are continuous over x,m and that
F,G are bounded in the C2-norm;

‖f(x)‖C2 = sup
x∈Rd

(|f(x)|+ |Dxf(x)|+ |Dxxf(x)|) . (2.6)

Then (2.5) has at least one solution. If in addition (2.2) holds, the solution
is unique.

2.1.3 Relationship to the form (1.1)

As pointed out earlier, the forms (2.1)(2.4)(2.5) have all eliminated any
dependence on the control α by assuming it known as a function of other
functions. As such, the equations for u,m are directly coupled. In our case,
they are only implicitly coupled through the optimal control α.

The MFG equations (1.1) we negotiate in this thesis are in general not
of the exact forms the theorems are made. As such, it must be mentioned
that this makes some of our numerical results speculative. We will attempt
to interpret how the conditions of theorems 1-3 relate to our form (1.1).

First we must give an interpretation of the variable p in H(x, p). In the
canonical MFGs (2.4)(2.5) we have that p = −Du = α, hence p is simply the
optimal control. In the form (2.1), we see that p = Du. We also have the
fact that α = −∂H∂p in (2.1b). This implies that p in this context is at least
proportional to the optimal control α.

In theorem 1, H(x, p) and F (x,m) are effectively the terms that make
up our Hamiltonian in (1.1a). The conditions on the cost F (x,m) vary from
the obscure requirement of ”suitable growth conditions”, to boundedness,
continuity and monotonicity over m (2.2). We interpret this as such that any
terms of the running cost L(t, x, α,m) involving m must satisfy analogues of
these conditions. In addition, the conditions on H(x, p) imply (at least) that
L should be strictly convex and C1 over α.

We will echo the speculation in this section later when we interpret the
numerical results of chapter 6 in chapter 7.

2.2 Previous work on numerical methods for canonical MFG
Let us first explain the procedure for numerically solving the easier forms of
the MFG equations presented in this chapter. Assume that we have some
initial guess on the entire solution of the distribution m(t, x). Then the
following procedure is used, for iteration k:

1. Solve for uk using mk−1.

2.2. Previous work on numerical methods for canonical MFG 9

2. Solve for mk using uk−1.

3. Stop if ‖mk −mk−1‖ < ε for some tolerance ε.

We will in this section refer to procedure as the solution procedure. We will
later in the text refer to two different forms of convergence: the convergence
of this solution procedure, and convergence of the solutions of (u, α,m) as
the mesh is refined.

The work surveyed show that the existing work is concerned with finite
difference methods primarily, with some work on semi-Lagrangian methods.
The most interesting work on finite difference methods is presented by Achdou
et al in [3]. Here, a fully implicit scheme is proposed for solving (2.1a)(2.1b).
The coupled form of these equations allow for the interpretation of their
discretisation as a nonlinear system of equations. A Newton method is used
to solve this system for all times t ∈ [0, T] simultaneously. It is reported
in [3] that the choice of initial guess of m(t, x) influences the convergence
properties of . We will return to this observation later.

Some novel reformulations of the canonical MFG equations (2.4) are
presented in [11][12] by Guéant, using a change of variables with exponential
functions. These give either two coupled heat equations or two coupled
convection-diffusion equations. In earlier work by the author of this thesis, an
explicit finite difference scheme suggested in [12] for one of these reformulations
was implemented. While well-behaved in terms of convergence of the solution
procedure when σ > 0.1, the scheme was neither monotone or conservative. In
addition, the change of variable could potentially lead to numerical overflow
when translating the solution back to (u,m), particularly for choices of
σ < 0.1.

Lastly, semi-Lagrangian schemes are formulated in [6][9][8] by Carlini et
al for the canonical and the deterministic-canonical MFG. The schemes are
relatively straight-forward to implement, and conservative. However, the
schemes involve an intermediary step that requires the computation of an
optimal control problem. Recall that in the canonical MFG equations, the
control is known. In light of this, the need to compute an optimal control
problem regardless is daunting. In earlier work by the author of this thesis,
the schemes were implemented and experimented with. We experienced that
the schemes struggle or even fail to converge to solutions when the coupling
between the MFG equations is strong; specifically when the cost function F
in (2.4a) depends upon m in a non-negligible way. We will see later that this
is not necessarily a fault of these schemes themselves.

See also [20] for a method that, instead of solving the both MFG equations,
only seeks to solve the a variant of the Fokker-Planck equation (1.1b), with

10 Chapter 2 . Theoretical background and objectives

f(α) = α and D = σ2I. This is achieved by iteratively approximating and
refining the optimal control α with tricks derived from algebraic manipulation.

2.3 Objectives of our discretisations
The goals of our discretisation is to find stable, robust methods for (1.1).
These discretisations should be suitable for, in principle, any choice of func-
tions (1.2). To find the agents’ strategies α via the Hamiltonian in (1.1a), we
will use computational optimisation methods to find the numerical values. In
this way, we will avoid potentially ill-behaved nonlinear terms at the expense
of time-consuming computations. Positivity-preserving or monotone methods
will be prioritised. This will preserve the physicality of the distribution m,
and will prevent oscillations. For m in particular we will look for discreti-
sations that are also conservative (mass-preservative). The latter point is
especially important in order for any cost terms that depend upon m to
influence the solution correctly.

Chapter 3

Discretisation of the
Hamilton-Jacobi-Bellman
equation
We will use computational optimisation to find the optimal control α, and
so assume it known for the purpose of this discretisation. This resolves the
Hamiltonian in (1.1a), and so we will discretise:

ut + L+

N∑
i=1

∂u

∂xi
fi +

1

2

N∑
i=1

N∑
j=1

Dij
∂2u

∂xixj
= 0. (3.1)

3.1 Finite differences in one dimension
In one dimension, (3.1) is simplified as

ut + L+ fux +
σ2

2
uxx = 0.

We place N + 1 equidistant nodes on the domain Ω = [a, b] such that
x0 = a, xN = b and ∆x = (b− a)/N .

3.1.1 Explicit scheme
We use upwind for fux ≈ 1

∆x

(
f+
i (ui+1 − ui) + f−i (ui − ui−1)

)
and central

differences for the diffusion term uxx = 1
(∆x)2 (ui+1 + ui−1 − 2ui). This yields

12 Chapter 3 . Discretisation of the Hamilton-Jacobi-Bellman equation

un−1
i = uni

(
1− ∆t

∆x

(
(σni)2

∆x
+ |fni |

))
+ uni+1

∆t

∆x

(
(σni)2

2∆x
+ (fni)+

)
+ uni−1

∆t

∆x

(
(σni)2

2∆x
− (fni)−

)
+ ∆tL(tn, xi, α

n
i ,m

n
i)

. (3.2)

Theorem 4. Assume that σ, f, L are bounded functions and that the inequal-
ity

∆t <
(∆x)2

‖σ‖2∞ + ∆x‖f‖∞

holds. Then (3.2) is a positive, stable and consistent scheme of order O(∆t+
∆x).

Proof. Positivity of the scheme is ensured if the coefficients for un+1
i , un+1

i+1 , u
n+1
i−1

are positive. These are always positive save for the diagonal terms, which is
positive if

∆t <
(∆x)2

σ2
i + ∆x|fi|

, (3.3)

which trivially gives the inequality above.
Consistency is a straight-forward computation which shows that the

scheme has a local truncation error of

τni =
∆x

2
|fni |uxx +

(∆x)
2

6
fni uxxx. (3.4)

Stability follows from positivity and the convenient fact that the coeffi-
cients in (3.2) sum to 1. In the following, let ai, ai±1 ≥ 0 be the coefficients
for ui, ui±1:

‖un‖∞ ≤ (ai + ai+1 + ai−1) ‖un+1‖∞ + ∆t‖L‖∞ = ‖un+1‖∞ + ∆t‖L‖∞.

We can generalise this over the entire spacetime grid,

‖u0‖∞ ≤ ‖uT ‖∞ + T‖L‖∞,

where uT is the terminal condition and u0 is the approximation of u(·, x).

3.2. Finite differences in two dimensions 13

3.1.2 Semi-implicit scheme
We will use a semi-implicit formulation for this scheme, in which the diffusion
terms are treated implicitly. This will give a nicer condition on ∆t, of form
∆t = O(∆x). This semi-implicit formulation can be written as the linear
system

Aun = Bun+1 (3.5)

for a diffusion matrix A and a convection matrix B. By (3.2) we see that
elements (A)i,j of the matrix A will be of the form

(A)i,i = 1 +
∆t

(∆x)2
σ2
i ∀i,

(A)i,i±1 = − ∆t

2(∆x)2
σ2
i ∀i.

As A is diagonally dominant, with a positive diagonal and negative off-
diagonals, A is an M-matrixa and thus A−1 will be nonnegative. If the
conditions of theorem 4 hold (with the condition of form ∆t = O(∆x)
instead), B is a also nonnegative matrix. This ensures that the solution un

of (3.5) will be nonnegative, assuming un+1 ≥ 0.

3.2 Finite differences in two dimensions
Let us first set

D =

[
D11 D12

D12 D22

]
.

Then we may state (3.1) in two dimensions as

ut + L+ f1ux + f2uy +
1

2
D11uxx +

1

2
D22uyy +D12uxy = 0. (3.6)

We choose the following discretisations;

f1ux ≈
1

∆x

(
(fi,j)

+
1 (ui+1,j − ui,j) + (fi,j)

−
1 (ui,j − ui−1,j)

)
f2uy ≈

1

∆y

(
(fi,j)

+
2 (ui,j+1 − ui,j) + (fi,j)

−
2 (ui,j − ui,j−1)

)
uxx ≈

1

(∆x)2
(ui+1,j + ui−1,j − 2ui,j)

uyy ≈
1

(∆y)2
(ui,j+1 + ui,j−1 − 2ui,j)

aWe present the relevant theory on M-matrices in appendix B

14 Chapter 3 . Discretisation of the Hamilton-Jacobi-Bellman equation

D12uxy ≈
D+

12

2∆x∆y

(
ui+1,j + ui−1,j + ui,j+1 + ui,j−1

− 2ui,j − ui+1,j−1 − ui−1,j+1

)
+

D−12

2∆x∆y

(
2ui,j + ui+1,j+1 + ui−1,j−1

− ui+1,j − ui−1,j − ui,j+1 − ui,j−1

)
,

where the discretisation of the ”cross-diffusion” is due to Kushner (see for
instance [4]).

For a Cartesian grid we have the fully explicit scheme:

uni,j =un+1
i,j

(
1− ∆t

∆x
|(fni,j)1| −

∆t

∆y
|(fni,j)2|+

∆t

∆x∆y
|(D12)i,j |

)
+un+1

i,j

(
− ∆t

(∆x)2
(D11)i,j −

∆t

(∆y)2
(D22)i,j

)
+un+1

i+1,j

∆t

2(∆x)2

(
2∆x(fni,j)

+
1 + (D11)i,j −

∆x

∆y
|(D12)i,j |

)
+un+1

i−1,j

∆t

2(∆x)2

(
−2∆x(fni,j)

−
1 + (D11)i,j −

∆x

∆y
|(D12)i,j |

)
+un+1

i,j+1

∆t

2(∆y)2

(
2∆y(fni,j)

+
2 + (D22)i,j −

∆y

∆x
|(D12)i,j |

)
+un+1

i,j−1

∆t

2(∆y)2

(
−2∆y(fni,j)

−
2 + (D22)i,j −

∆y

∆x
|(D12)i,j |

)
+un+1

i+1,j+1

∆t(D12)+
i,j

2∆x∆y
+ un+1

i−1,j−1

∆t(D12)+
i,j

2∆x∆y

+un+1
i+1,j−1

−∆t(D12)−i,j
2∆x∆y

+ un+1
i−1,j+1

−∆t(D12)−i,j
2∆x∆y

+ ∆tLni,j .

(3.7)

This is equivalent to a matrix-vector formulation,

ūn = A∗ūn+1

for a banded and nonnegative matrix A∗.

Theorem 5. Assume that ∆x = ∆y, D ≥ 0, D is diagonally dominant and
that the inequality

∆t ≤ (∆x)2

2 (‖D‖∞ + ‖f‖∞)
(3.8)

holds. Then (3.7) is a positive, stable and consistent scheme of order O(∆t+h),
where h = max(∆x,∆y).

3.2. Finite differences in two dimensions 15

Proof. Consistency follows from standard Taylor expansions and gives a
truncation error of

τni,j ≤
∆t

2
utt +

h

2

(
|(fni,j)1|uxx + |(fni,j)2|uyy

)
+
h2

3

(
D12uxyyy + uxxxy +

(fni,j)1

2
uxxx

+
(fni,j)2

2
uyyy +

D11
i,j

8
uxxxx +

D22
i,j

8
uyyyy

)
.

(3.9)

Positivity is immediate for all coefficients except the one of un+1
i,j . Observe

that

D11 +D22 − |D12| ≤ 2 max
(
D11, D12

)
≤ 2‖D‖∞,

|f1|+ |f2| ≤ 2 max (|f1|, |f2|) ≤ 2‖f̂‖∞.

Applying these inequalities to the coefficient for un+1
i,j , we simply rearrange

the terms to yield inequality (3.8).
Stability in the infinity-norm is a consequence of positivity, and the fact

that the coefficients sum to 1. Let the coefficients in the scheme be given by
ai+j ≥ 0, j ∈ Z, and write

‖un‖∞ ≤
∑
j

ai+j‖un+1‖∞ + ∆t‖L‖∞ = ‖un+1‖∞ + ∆t‖L‖∞.

Once more we may generalise over the spacetime grid and write

‖u0‖∞ ≤ ‖uT ‖∞ + T‖L‖∞,

where uT is the terminal condition and u0 is the approximation of u(0, x, y).

3.2.1 Semi-implicit formulation
As in section 3.1.2, we choose to treat the diffusion terms implicitly to yield
a system

Aun = Bun+1.

Again, if the conditions of theorem 5 hold (with the nicer ∆t = O(∆x)), B is
a nonnegative matrix, A is an M -matrix, and un ≥ 0 if un+1 ≥ 0.

Chapter 4

Discretisation of the
Fokker-Planck equation
4.1 Discretisations of the Fokker-Planck equation in one

dimension
In one dimension, (1.1b) takes the simpler form

mt + (fm)x =
1

2
(σ2m)xx. (4.1)

In this section we consider a few different discretisations of the Fokker-
Planck equation in one dimension. Due to the nature of m as representing
a distribution (

∫
mdx = 1), we shall be keen on schemes that maintain

positivity and that preserve mass.

4.1.1 Finite differences
4.1.1.1 Naive approach
We use centred differences directly upon each spatial derivative in (4.1),

(fm)x =
1

2∆x
(fi+1mi+1 − fi−1mi−1)(

σ2m
)
xx

=
1

(∆x)2

(
σ2
i+1mi+1 + σ2

i−1mi−1 − 2σ2
imi

)
This gives the explicit scheme

mn+1
i = mn

i

(
1−∆t

(
σni
∆x

)2
)

+mn
i+1

∆t

2∆x

(
(σni+1)2

∆x
− fni+1

)
+mn

i−1

∆t

2∆x

(
(σni−1)2

∆x
+ fni−1

)
.

(4.2)

18 Chapter 4 . Discretisation of the Fokker-Planck equation

While simply formulated and of second order, (4.2) is not monotone without
a condition on ∆x if σ > 0, and not at all if σ = 0.

Theorem 6. Assume that σ > 0 and that the inequalities

∆t <

(
∆x

‖σ‖∞

)2

,

∆x <
inf σ2

‖f‖∞
,

(4.3)

hold. Then (4.2) is a (conditionally) monotone, consistent scheme of order
O(∆t+ (∆x)2). It is also conservative.

Proof. Consistency is shown by a straight-forward, tedious computation. The
local truncation error becomes (with ∆x = h)

τni =h2mn
i

(
fxxx

3
+
σ2
xx

4
+
σxσxxx

3

)
+ h2mx

(
fxx
2

+
σσxxx

2
+ σxσxx

)
+ h2mxx

(
fx
2

+
σσxx

2
+
σ2
x

2

)
+ h2mxxx

(
fni
6

+ 2σσx

)
+ O(h3).

(4.4)

Monotonicity : We check that coefficients are positive as we did for the HJB
equation. The coefficient for mn

i gives the first condition upon the timestep,

∆t <

(
∆x

supσ

)2

. (4.5)

The following inequalities upon ∆x follow from the other two coefficients,

∆x <
σ2

f
,

∆x < −σ
2

f
,

which comes out as

∆x <
inf σ2

‖f‖∞
. (4.6)

Conservativeness is seen from∑
i

mn+1
i =

∑
i

∑
j

ai,jm
n
j =

∑
i

1∑
j=−1

ai,jm
n
j =

∑
i

(ai−1,i + ai,i + ai+1,i)m
n
i

=
∑
i

mn
i = 1,

4.1. Discretisations of the Fokker-Planck equation in one dimension 19

where we’ve used that

ai−1,i + ai,i + ai+1,i = 1− k

h2
σ2
i +

k

2h2
σ2
i − fi +

k

2h2
σ2
i + fi = 1.

Note that this scheme is only conditionally monotone. We will see later
that this scheme is not preferable despite being of second order.

4.1.1.2 Amonotone scheme
This time we split the convection term in two:

(fm)x = fxm+ fmx ≈
fi+1 − fi−1

2∆x
mi +

f+
i

∆x
(mi−mi−1) +

f−i
∆x

(mi+1−mi).

Note that we upwind differently than we did for the HJB equationa. This
gives the scheme

mn+1
i = mn

i

(
1−∆t

(
σni
∆x

)2

− ∆t

2∆x
(fi+1 − fi−1 + 2|fi|)

)

+mn
i+1

∆t

2(∆x)2

(
(σni+1)2 − 2∆xf−i

)
+mn

i−1

∆t

2(∆x)2

(
(σni−1)2 + 2∆xf+

i

)
.

(4.7)

Theorem 7. The scheme (4.7) is monotone and consistent of order O(∆t+
∆x), assuming

∆t <
(∆x)2

‖σ‖2 + ∆x‖f‖+ (∆x)2‖fx‖
(4.8)

holds.

Proof. Monotonicity : We check the coefficients as before. The coefficients
for mn

i±1 are unconditionally positive. The coefficient for mn
i follows by

reasserting that fx ≈ 1
2∆x (fi+1 − fi−1), and taking the suprema of all the

functions therein.

aBoth approaches are consistent with a different first order local truncation error.

20 Chapter 4 . Discretisation of the Fokker-Planck equation

Consistency is trivial and becomes (with h = ∆x)

τni =− h|fni |mxx + h2mn
i

(
fxxx

6
+
σ2
xx

4
+
σxσxxx

3

)
+ h2mx

(σσxxx
2

+ σxσxx

)
+ h2mxx

(
σσxx

2
+
σ2
x

2

)
+ h2mxxx

(
−|f

n
i |
6

+ 2σσx

)
+ O(h3).

(4.9)

We no longer have an extra condition on ∆x for this monotone scheme.
However, we may expect the condition upon ∆t to be stricter than for the
previous scheme. Note also that this scheme is not conservative.

4.1.2 Finite volumes
Alternatively, we can use a finite volume method. As we will eventually
pursue a finite volume method for the 2D Fokker-Planck, we will proceed
more carefully. Let us begin by rewriting (4.1) into divergence form:

mt + (fm)x =
1

2

(
σ2m

)
xx

= (σσxm)x +
1

2

(
σ2mx

)
x

mt + ((f − σσx)m)x =
1

2

(
σ2mx

)
x
.

4.1.2.1 Definitions and discretisation
The idea of finite volume schemes is to compute the average value of a solution
over each control volume:

Definition 1. Control volume (1D): Assume that we solve the problem
on the domain Ω = [a, b]. We place N + 1 equidistant nodes in Ω such
that ∆x = (b − a)/N , x0 = a and xN = b. Associate a subdomain with
each node such that Ωi = [xi −∆x/2, xi + ∆x/2], Ω0 = [x0, x0 + ∆x/2] and
ΩN = [xN −∆x/2, xN]. These subdomains are referred to as control volumes
or cells.

Note that indices of the form i ± 1
2 will refer to the cell faces between

cells. This will be used to handle the fluxes between the control volumes.
Fluxes are associated with cell faces, and express the quantity that leaves or
enters the cells by the cell face. An important attribute when defining fluxes
is flux consistency :

4.1. Discretisations of the Fokker-Planck equation in one dimension 21

Definition 2. Flux consistency: Consider two neighbouring cells, Ωk and
Ωk+1, and let φk

k+ 1
2

, φk+1
k+ 1

2

be the fluxes associated with the cells over their

common cell face. Flux consistency is the requirement that

φkk+ 1
2

= −φk+1
k+ 1

2

, (4.10)

which simply means that the flux must be locally conservative and no new
energy is created in the cell face.

In this section from here on, we set

mn
i =

1

|Ωi|

∫
Ωi

m(tn, x)dx. (4.11)

We set F = f − σσx and proceed to compute the cell averages of a given
control volume. We use the divergence theorem on the second and third
integrals:

1

|Ωi|

∫
Ωi

mt(t
n, s)dx+

1

|Ωi|

∫
Ωi

(Fm)x (tn, s)dx =
1

2|Ωi|

∫
Ωi

(σ2mx)x(tn, s)dx,

∂

∂t
mn
i +

(Fm)
n
i+ 1

2
− (Fm)

n
i− 1

2

∆x
=

(
σ2mx

)n
i+ 1

2

−
(
σ2mx

)n
i− 1

2

2∆x
.

We need to determine two fluxes, the convective and the diffusive. We will
show how to attain monotone approximations to these in the next sections.

4.1.2.2 Convection flux
In the associated literature, there are numerous ways to define this flux (see
for instance [16]). Common for many of them is that the convective function
F is assumed to be known over the entire domain. In our case, we only have
the values of Fi at the nodes xi, so that we will have to interpolate in order
to get the value at the interface. We will avoid this by using a different flux
suggested in [16].

(Fm)i+ 1
2

= F+
i mi + F−i+1mi+1. (4.12)

This flux is monotone, consistent of first order, and flux-consistent.

4.1.2.3 Diffusion flux
The terms

DE
i = (σ2mx)i+ 1

2
,

DW
i = (σ2mx)i− 1

2
,

22 Chapter 4 . Discretisation of the Fokker-Planck equation

require more attention. There are a few ways to approach these terms. First
we could simply use centered differences on the interface gradient and get,

DE
i = σ2

i+ 1
2
(mi+1 −mi),

DW
i = σ2

i− 1
2
(mi −mi−1).

We will in general not know the value of σ at the interface, however, if σ is
a function of the control α. We could solve this by simply averaging as we
did for the convective flux. However, it is remarked in [25]b that this may
be unfavourable in the case where σ is discontinuous. As such, we proceed
differently and introduce the reader to ghost nodes for the first time below.

We now introduce the unknown ghost node mi+ 1
2
, which we will use to

approximate the derivative in DE
i . We will in turn remove it by enforcing

flux consistency at the interface at x = xi+ 1
2
. We start by approximating the

gradient by backwards/forward differences, and get

DE
i = (σ2mx)i+ 1

2
= 2σ2

i (mi+ 1
2
−mi)/∆x,

−DW
i+1 = (σ2mx)i+ 1

2
= −2σ2

i+1(mi+ 1
2
−mi+1)/∆x.

To get rid of it mi+ 1
2
, we enforce flux consistency (4.10) such that DE

i =

−DW
i+1. Solving for mi+ 1

2
, we get

mi+ 1
2

=
σ2
imi + σ2

i+1mi+1

σ2
i + σ2

i+1

.

Substituting this back into DE
i yields:

DE
i =

2σ2
i σ

2
i+1

∆x
(
σ2
i + σ2

i+1

) (mi+1 −mi).

We proceed similarly to find DW
i to get

DE
i −DW

i =
2σ2

i σ
2
i+1

∆x
(
σ2
i + σ2

i+1

) (mi+1 −mi)−
2σ2

i σ
2
i−1

∆x
(
σ2
i + σ2

i−1

) (mi −mi−1)

=
1

∆x

(
ΣEi (mi+1 −mi)− ΣWi (mi −mi−1)

)
(4.13)

bSpecifically, in section 2.3.1.

4.1. Discretisations of the Fokker-Planck equation in one dimension 23

where we’ve set

ΣEi =
2σ2

i σ
2
i+1

σ2
i + σ2

i+1

,

ΣWi =
2σ2

i σ
2
i−1

σ2
i + σ2

i−1

.

These terms of the form 2ab
a+b are called harmonic means of the numbers a, b.

4.1.2.4 Explicit scheme
The fully explicit scheme is

mn+1
i = mn

i

(
1− ∆t

2(∆x)2

(
ΣEi + ΣWi + 2∆x|Fi|

))
+mn

i+1

∆t

2(∆x)2

(
ΣEi − 2∆xF−i+1

)
+mn

i−1

∆t

2(∆x)2

(
ΣWi + 2∆xF+

i−1

)
.

(4.14)

Theorem 8. Assume that

∆t <
(∆x)2

‖σ‖+ ∆x‖F‖
(4.15)

holds. Then the scheme (4.14) is monotone, consistent of order O(∆t+ ∆h)
and stable in the 1-norm. It is also conservative.

Proof. Consistency is straight-forward for the convective terms, which give
the first order truncation error (with h = ∆x)

τni = −h
(
Fxx
2
m+ |Fx|mx

)
+
h2

2

(
1

3
Fxxm+ Fxxmx + Fxmxx

)
. (4.16)

The diffusion flux terms are also of first order, see [25]c.
Positivity is immediate as long as the coefficient for mn

i is also positive.
Note that ΣE + ΣW ≤ σ2

i . Then we have the condition (for F = f − σσx)

∆t <
(∆x)2

‖σ‖+ ∆x‖F‖
.

cSpecifically, theorem 2.3.

24 Chapter 4 . Discretisation of the Fokker-Planck equation

Stability is a consequence of positivity and the fact that the coefficients in
(4.14) sum to 1:

‖mn+1‖1 ≤ ∆x|
∑
i

1∑
j=−1

ai,jm
n
i+j |

≤
∑
i

∑
j

|ai,j |

 |mn
i | =

∑
i

|mn
i | = ‖mn‖1.

Conservativeness is seen from

∑
i

mn+1
i =

∑
i

∑
j

ai,jm
n
j =

∑
i

1∑
j=−1

ai,jm
n
j =

∑
i

(ai−1,i + ai,i + ai+1,i)m
n
i

=
∑
i

mn
i = 1,

where we’ve used that (recall flux consistency)

ai−1,i + ai,i + ai+1,i

= 1− k

h2

(
ΣiE + ΣiW

)
− k

h
|Fi|+

k

h

(
F+
i − F

−
i

)
+

k

h2

(
Σi+1
W + Σi−1

E

)
= 1.

4.1.2.5 Semi-implicit scheme
We use a semi-implicit formulation as we did for the HJB equation; see
sections 3.1.2 and 3.2.1. We apply similar arguments as in these sections to
argue that the diffusion matrix A in

Amn+1 = Bmn

is an M-matrix when the conditions of theorem 8 hold. In this case B is also
a nonnegative matrix, and the solution mn+1 will be nonnegative assuming
mn ≥ 0.

4.2. Finite volume discretisation of the Fokker-Planck equation in 2D 25

4.2 Finite volume discretisation of the Fokker-Planck
equation in 2D

Once more we rewrite the model equation

mt + (f1m)x + (f2m)y =
1

2
(D11m)xx +

1

2
(D22m)yy + (D12m)xy (4.17)

to divergence form. We can rearrange the terms into the following, where

∇ =
(
∂
∂x ,

∂
∂y

)T
:

mt +
1

2
∇ ·
((

2f −∇TD
)
m
)

=
1

2
∇ · (D∇m). (4.18)

The form of (4.18) is well-suited for a finite volume discretisation. Recall
the definitions in section 4.1.2.1; we only alter the definition of the control
volumes.

Definition 3. Control volume in 2D: Assume that we solve (4.18) on
the domain Ω = [a, b] × [c, d]. We place (N + 1)2 equidistant nodes in
Ω such that ∆x = (b − a)/N , x0 = a, xN = b and ∆y = (d − c)/N ,
y0 = a, yN = b. We associate a subdomain with each node such that
Ωi,j = [xi −∆x/2, xi + ∆x/2]× [yj −∆y/2, yj + ∆y/2]. Since Ωi,j ⊂ Ω, no
such subdomains go outside Ω; the subdomains along the boundary are hence
smaller. These subdomains are referred to as control volumes or cells.

Definition 4. Neighbourhood and cell interfaces: For each cell Ωi, we
associate the set of nodes that Ωi shares interfaces with as the neighbourhood
Ni of Ωi. In addition, for each j ∈ Ni (where we use j as short-hand for Ωj ,
we will use σij to refer to the interface between cells Ωi and Ωj ∈ Ni. The
vector n̄i,j is the normal vector out of the cell of Ωi on the interface σij.

Note that the points xi, yj must be the same nodes on which we compute
the optimal control (see section 5). By calculating the mean values of the
cells Ωi,j and applying the divergence theorem, we get for a single cell

∂

∂t
mi,j+

1

2m(Ωi,j)

∫
∂Ωi,j

((
2f −∇TD

)
m
)
· n̄dS(x)

=
1

2m(Ωi,j)

∫
∂Ωi,j

(D∇m) · n̄dS(x),

(4.19)

where m(Ωi,j) is the area of the cell. The first term is a regular convection
term, while the second is a diffusion term. We shall address these similarly
as for the 1D case.

26 Chapter 4 . Discretisation of the Fokker-Planck equation

4.2.1 Convection flux
Since we are on a rectangular, cell-centered grid we can rewrite the convection
term of (4.19) into integration over strictly x or y. Let

F = f − 1

2
∇TD.

Then we get that,∫
∂Ωi,j

((F)m) · n̄dS(x)

=

∫ x
i+1

2

x
i− 1

2

F (x, yj+ 1
2
)m(x, yj+ 1

2
)dx+

∫ y
j+1

2

y
j− 1

2

F (xi+ 1
2
, y)m(xi+ 1

2
, y)dy

−
∫ x

i+1
2

x
i− 1

2

F (x, yj− 1
2
)m(x, yj− 1

2
)dx−

∫ y
j+1

2

y
j− 1

2

F (xi− 1
2
, y)m(xi− 1

2
, y)dy

≈ ∆x
(
(F+

2)i,jmi,j + (F−2)i,j+1mi,j+1

)
+ ∆y

(
(F+

1)i,jmi,j + (F−1)i+ 1, jmi+1,j

)
−∆x

(
(F−2)i,jmi,j + (F+

2)i,j−1mi,j−1

)
−∆y

(
(F−1)i,jmi,j + (F+

2)i− 1, jmi−1,j

)
.

Here we have used the midpoint ruled to approximate the integrals. We have
then used upwinding in the same manner as we did for the one-dimensional
case in section 4.1.2.2, which means this flux approximation is only of first or-
der. Using a semi-implicit formulation for this method will give the coefficient
for mn

i,j in the explicit convective scheme:

mn
i,j

(
1− ∆t

∆x
|(F1)i,j | −

∆t

∆y
|(F2)i,j |

)
,

which immediately gives us the condition on ∆t,

∆ ≤ ∆x∆y

∆x‖F1‖∞ + ∆y‖F2‖∞

≤ h

2‖F‖∞
when ∆x = ∆y

(4.20)

This flux is conservative by construction, and monotone.

dWe use the midpoint rule with one subinterval so that
∫ x+∆x/2
x−∆x/2

f(x)dx ≈ ∆xf(x) +

O((∆x)3).

4.2. Finite volume discretisation of the Fokker-Planck equation in 2D 27

4.2.2 Diffusion fluxes for the diffusion tensorD
We restate the diffusion flux,∫

∂Ωi,j

(D∇m) · n̄dS(x). (4.21)

The term (4.21) is generally nontrivial to discretise due to the fact that D
is a tensor. While we have found no ”canonically correct” method to do
this, we will examine three methods. They are a naive method, the so-called
O-method and a nonlinear method.

4.2.2.1 The naivemethod
This method is derived by simply evaluating (4.21) directly on our Cartesian
grid:∫

∂Ωi,j

(D∇m) · n̄dS(x)

=

∫ y
j+1

2

y
j− 1

2

(
D11(xi+ 1

2
, y)mx(xi+ 1

2
, y) +D12(xi+ 1

2
, y)my(xi+ 1

2
, y)
)
dy

+

∫ x
i+1

2

x
i− 1

2

(
D12(x, yj+ 1

2
)mx(x, yj+ 1

2
) +D22(x, yj+ 1

2
)my(x, yj+ 1

2
)
)
dx

−
∫ y

j+1
2

y
j− 1

2

(
D11(xi− 1

2
, y)mx(xi− 1

2
, y) +D12(xi− 1

2
, y)my(xi− 1

2
, y)
)
dy

−
∫ x

i+1
2

x
i− 1

2

(
D12(x, yj− 1

2
)mx(x, yj− 1

2
) +D22(x, yj− 1

2
)my(x, yj− 1

2
)
)
dx

We apply the midpoint rule to resolve the integrals. The flux-terms involving
D11 and D22 all work through their respective cell interfaces. We approach
this the same way we did as for the 1D-case in section 4.1.2.3, which gives us
harmonic means of the form

D11
i+ 1

2 ,j
=

2D11
i,jD

11
i+1,j

D11
i,j +D11

i+1,j

.

The cross-terms involving D12 require some special attention, as they are all
gradients that go along the cell interfaces. To resolve these integrals, we set
them as the average of the two gradients that go through the two cells that
share this interface. This is more easily explained visually in figure 4.1. This

28 Chapter 4 . Discretisation of the Fokker-Planck equation

Figure 4.1: Gradient approximation for the naive diffusion flux method. The black
square shows the current node in the current cell center. The red arrow indicates
the gradient to be evaluated, while the blue arrows indicate the two gradients we
approximate this by, using the nodal values of the grey squares the arrows begin
and end in.

give us terms of the form:

∫ y
j+1

2

y
j− 1

2

(D12my)i+ 1
2
dx

≈
D12
i,j

4
(mi,j+1 −mi,j−1) +

D12
i+1,j

4
(mi+1,j+1 −mi+1,j−1)

That is, each interface gives a sum of two expressions, where one term D12
i,j is

for the current cell and the other term D12
k,l is for the cell on the other side of

the interface. By summing across the four interfaces, all the D12-terms for
the current cell cancel each other out. All in all, we are left with the naive
discretisation of (4.21) as:

∫
∂Ωi,j

(D∇m) · n̄dS(x)

≈ D11
i+ 1

2 ,j
(mi+1,j −mi,j) +D22

i,j+ 1
2

(mi,j+1 −mi,j)

+D11
i− 1

2 ,j
(mi−1,j −mi,j) +D22

i,j− 1
2

(mi,j−1 −mi,j)

+
1

4
mi+1,j+1

(
D12
i+1,j +D12

i,j+1

)
+

1

4
mi−1,j−1

(
D12
i,j−1 +D12

i−1,j

)
− 1

4
mi+1,j−1

(
D12
i+1,j +D12

i,j−1

)
− 1

4
mi−1,j+1

(
D12
i,j+1 +D12

i−1,j

)
.

4.2. Finite volume discretisation of the Fokker-Planck equation in 2D 29

It is straight-forward to show that this is flux-consistent, and thus also
conservative. This scheme is also straight-forward to implemente. However,
we can immediately see that this scheme is not monotone when D12 6= 0. As
such, we risk that this method will not preserve positivity of the solution of
the distribution m. This is what motivates the investigation into the other
methods.

4.2.2.2 TheO-method
The O-method is a conditionally monotone nine-point flux approximation
scheme introduced by Aavatsmark (see for instance [2]) for use in tensor
diffusion problems in oil reservoir computations. The O-method is used on
quadrilateral grids, which our Cartesian grid is. The idea of the O-method
is to set up an interaction volume between each set of nodes that share cell
corners; see figure 4.2. All diffusive fluxes are resolved within each interaction
volume in the grid. We see in figure 4.2 that each cell interface is effectively
split in two parts that operate on different interaction volumes. We will refer
to these halves as half-edges. As with the 1D diffusion flux (section 4.1.2.3),

Figure 4.2: Visual representation of the O-method. The interaction volume is
coloured grey, and covers one quadrant of each of the cell volumes that share corners.
The dashed lines separate the other interaction volumes each cell is involved in. The
blue squares indicate the placement of the ghost nodes, with the Roman numerals
showing their numbering. The red arrows show the direction of the half-edge fluxes.

we use intermediary/ghost nodes on the interfaces between cells. When

eDo not forget to this expression by 1
2m(∆i,j

if implementing this method.

30 Chapter 4 . Discretisation of the Fokker-Planck equation

enforcing flux consistency, expressions for the values at these ghost nodes
appear and allow us to eliminate them from the flux expressions. By varying
the placement of the ghost nodes on the half-edges, a family of methods can
be explored (see [2][1]). For the O-method, the ghost nodes are placed exactly
between the cell volume nodes, as in figure 4.2.

In the following derivation, we set m̂ = (mi,mii,miii,miv) to be the half-
edge ghost node values, and set m̄ = (m1,m2,m3,m4) to be the cell-center

nodal values. We also set f
(n)
k to be the half-edge flux of half-edge k from

cell n.
We approximate the half-edge fluxes by using a two-point flux approxi-

mation. These take the form

(f
(1)
i , f

(1)
iii)T = G(1)(mi −m1,miii −m1)T ,

(f
(4)
ii , f

(4)
iv)T = G(4)(m4 −mii,m4 −miv)

T ,
(4.22)

where G(k) is the local average of the diffusion tensor for node k,

G(k) =
1

m(Ωk)
Dk.

To eliminate the ghost node value of mi in (4.22), we first set up the two-point
flux approximation of the same half-edge flux from the opposite side, from
node 2:

(f
(2)
i , f

(2)
iv)T = G(2)(m2 −mi,miv −m2)T .

Then we simply set these expressions equal to one another, f
(1)
i = −f (2)

i , and
solve for mi. Instead of doing this individually, we set up a linear system for
all half-edges in the interaction volume,

Am̂ = Bm̄. (4.23)

Observe now that we may set up a linear system equivalent to (4.22) as well,

f̄ = Cm̂+ Fm̄. (4.24)

Note that A,B,C, F are all four-by-four matrices that depend on the values
of G(k) for the four nodes that make up the vertices of the interaction volume.
There are several ways in which to define these matrices, but all ways lead to
the same solution.

We solve (4.23) for m̂ to get m̂ = A−1Bm̄. We insert this into (4.24) to
yield

f̄ = Tm̄ =
(
CA−1B + F

)
m̄, (4.25)

4.2. Finite volume discretisation of the Fokker-Planck equation in 2D 31

where T is referred to in [2] as the transmissibility matrix. To find the total
influence on one node, one thus has to compute f̄ for all four interaction
volumes that has the node as one of its vertices, as proposed in [2]. Thusly,
four interaction volumes will be treated to get the full information on all
fluxes in and out of a single cell. We have used a slightly different approach.

Recall that for finite element methods, each element contributes a local
stiffness matrix to the global stiffness matrix. We can uncover such a local
matrix for any given interaction volume. Let F1, F2, F3, F4 denote the fluxes
going out of each of the cells in the interaction volume. In figure 4.2 we see
that

F1 = f1 + f3,

F2 = f4 − f1,

F3 = f2 − f3,

F4 = −f2 − f4.

We can represent in matrix form for interaction volume i as

F̄i = Rf̄ = RTim̄i, (4.26)

where

R =

1 0 1 0
−1 0 0 1
0 1 −1 0
0 −1 0 −1

 ,
and m̄i refer to the nodal values influenced by the interaction volume. By
considering each interaction volume i in turn, we may use an assembly process
to insert the local diffusion fluxes F̄i into a global diffusion matrix.

One disadvantage of the O-method is that it is not possible in general to
derive a nice expression for A−1, meaning that the transmissibility matrix
T has to be computed for every interaction volume in the mesh. This is
no longer the case if D is diagonal (D12 = 0). In this case, the O-method
becomes equivalent to the naive method.

A rigorous investigation into the monotonicity properties of the O-method
is difficult for the reasons noted above. Conditions for monotonicity are
reported[2][1] only for the case of a constant D. These take the form of the
inequalities

|D12|
(

2− (D12)2

D11D22

)
<

2D11D22

D11 +D22
,

2D11D22

(
1− 1

2|D12|
2D11D22

D11 +D22

)
<

(D12)2

D11D22
<

2D11D22

D11 +D22
min

(
D11, D22

)
.

32 Chapter 4 . Discretisation of the Fokker-Planck equation

It is reported in [1] that all linear nine-point methods like the O-method are
at best only conditionally monotone. The monotonicity regions of several
such methods are compared in [1], and the O-method strikes a happy balance
between ease of implementation and its monotonicity conditions. However, in
order to have unconditional monotonicity we have to leave linearity behind.

4.2.2.3 Amonotone, nonlinear diffusion flux
An unconditionally monotone, but nonlinear diffusion flux of up to second
order accuracy is introduced in [24]f. We will present a concise derivation
of the scheme here, and direct the interested reader to the full derivation in
[24]. We must also point out that this scheme behaves slightly different if
the off-diagonal terms in D are greater than the diagonal terms. We present
the scheme assuming that D12 ≤ min(D11, D22) such that positivity for the
2D HJB scheme (3.7) is satisfied. The method as presented will thus apply
for all interfaces.

The derivation starts by rewriting (4.21) slightly:∫
σ

(D∇m) · n̄dS(x) = FK,σ =

∫
σ

∇m · (DT n̄K,σ)dS(x). (4.27)

Here the notation FK,σ, n̄K,σ refers to the flux going out of cell K through
the interface σ, and the respective normal vector. Now consider figure 4.3,
in particular the lines KP1,KP2

g. We split the last term of (4.27) into two
vectors, t̄KP1

, t̄KP2
, that correspond to the lines KP1,KP2. Then we identify

the elementary relation

DT n̄K,σ
|DT n̄K,σ|

=
sin θK2

sin θK
t̄KP1 +

sin θK1

sin θK
t̄KP2 . (4.28)

By combining (4.27) and (4.28) we get that

FK,σ =

∫
σ

(D∇m) · n̄dS(x)

=

∫
σ

|DT n̄K,σ|
(

sin θK2

sin θK
(∇m)t̄KP1

+
sin θK1

sin θK
(∇m)t̄KP2

)
dS(x)

≈ |DT n̄K,σ||σ|
(

sin θK2

sin θK

mP1
−mK

|KP1|
+

sin θK1

sin θK

mP2
−mK

|KP2|

)
.

(4.29)

fSee the sequel [23] for the same ideas applied to slightly more general grids. This is
not necessary for the scope of this thesis.

gThe points P1, P2 are determined by which interface the vector D ¯nK,σ intersects.
Since we assume a diagonally dominant D, the vector will always have a larger component
in the x-direction for east-/west-facing interfaces, and a larger component in the y-direction
for north-/south-facing interfaces.

4.2. Finite volume discretisation of the Fokker-Planck equation in 2D 33

Figure 4.3: Illustration of the idea behind the nonlinear diffusion flux in section
4.2.2.3. The red arrows indicate the vectors D ¯nK,σ,D ¯nL,σ. The points P1, P2

indicate the vertices of the interfaces intersected by D ¯nK,σ,D ¯nL,σ.

In the last equality, we’ve used the first order gradient and integral approxi-
mations.

In order to proceed with the derivation, a similar expression is derived
for FL,σ in the same manner. Next, flux consistency is enforced by setting
FK,σ = −FL,σ. The resulting calculations are long-winded and technical, and
fully detailed in [24]. We summarise the prevailing expression for FK,σ in
(4.30):

FK,σ = AK,σmK −AL,σmL,

AK,σ = µ1
|σ||DTK n̄K,σ|
|KOK |

,

AL,σ = µ2
|σ||DTLn̄L,σ|
|LOL|

,

(µ1, µ2) =

{(
1
2 ,

1
2

)
if a1 + a2 = 0(

a2
a1+a2

, a1
a1+a2

)
otherwise

,

a1 =
|σ||DTK n̄K,σ|

sin θK

(
sin θK2

|KP1|
mP1 +

sin θK1

|KP2|
mP2

)
,

a2 =
|σ||DTLn̄L,σ|

sin θL

(
sin θL2

|LP4|
mP3

+
sin θL1

|LP3|
mP4

)
,

(4.30)

where |σ| is the length of the interface, mPi are node values at the interface
vertices, and θK1

+ θK2
= θK are the angles between KOK and P1, P2. The

use of the values mPi makes the scheme nonlinear. With our Cartesian grid

34 Chapter 4 . Discretisation of the Fokker-Planck equation

with ∆x = ∆y = h, we simply use the average of the four closest nodes
to interpolate these valuesh. Let us note that all quantities in (4.30) are
nonnegative, assuming m ≥ 0.

The expressions for a1, a2 in (4.30) are simplified for the Cartesian grid
we employ:

a1 =
|DTK n̄K,σ|
|KOK |

(|OKP2|mP1 + |OKP1|mP2) ,

a2 =
|DTLn̄L,σ|
|LOL|

(|OLP2|mP1
+ |OLP1|mP2

) .

(4.31)

Here, the lengths of the lines in (4.31) are for the case in figure 4.3 may be
found as (for ∆x = ∆y = h):

|KOK | =
h

2

√
1 +

(
D12
K

D11
K

)
,

|LOL| =
h

2

√
1 +

(
D12
L

D11
L

)2

,

|OKP1| =
h

2
|1 +

D12
K

D11
K

|,

|OKP2| =
h

2
|1− D12

K

D11
K

|,

|OLP1| =
h

2
|1− D12

L

D11
L

|,

|OLP2| =
h

2
|1 +

D12
L

D11
L

|.

(4.32)

In general, an assembly process is necessary to generate a global diffusion
matrix for this method, by iterating over each interface once. Again, the
Cartesian grid simplifies this significantly. In particular, this is done by making
one-dimensional arrays out of all the auxiliary quantities in (4.31)(4.32), where
each element is associated with a node. This, combined with the techniques
in section E.3, allows a quick generation of the matrix.

Assuming we evaluate the tensor diffusion implicitly, we are left with a
nonlinear system of the form

A(mn+1)mn+1 = Bmn. (4.33)

hIt is reported in [24] that the choice of interpolant for these vertex unknowns is critical
for general grids. However, for our grid our choice is as good as any.

4.2. Finite volume discretisation of the Fokker-Planck equation in 2D 35

The matrix A is an M-matrix[24], and will preserve the positivity of m. We
solve (4.33) using Picard iterations, but a Newton method is also an option.

4.2.3 Summary of the 2D finite volume scheme
We have presented a monotone convection flux, and three different ways
to discretise the diffusion flux. Each of the diffusion fluxes are suitable
depending on the properties of the diffusion tensor D. If D is diagonal, the
naive method and the O-method are equivalent and well suitable. In the case
of a non-diagonal but diagonally dominant D, the O-method may be suitable
depending on the magnitude of the off-diagonal terms. The nonlinear method
should be suitable for all choices of D, but comes at the cost of having to
solve the nonlinear system (4.33) for each time step.

We close this section by noting that any of the diffusion flux methods
may be used for the semi-implicit formulation,

Amn+1 = Bmn.

The conditions for the diffusion matrix A to be an M-matrix are the same as
for the diffusion flux to be monotone.

Chapter 5

Computing the optimal
control
In this section we will describe how we have chosen to discretise the Hamilto-
nian, and present a selection of strategies in computing the optimal control
based upon this discretisation. Unless the input functions f, L, σ/D are cho-
sen so that the optimal control α can be found analytically, a necessary step
to solving the MFG equations is to numerically compute the control for each
node for each time in the grid. This is time-consuming, and it is essential
to find fast ways to do this. While there are numerous built-in libraries in
Matlab and Python to handle optimisation problems like this one directly,
the methods presented here have all been found to be faster.

We will assume that the existence of a unique optimal control is a con-
sequence of the functions f, L and D or σ; in a sense that the model is
well-posed, or at least that the admissible set A is bounded.

All methods presented have been implemented (see notes in section E)
and tested (see section 6.2).

5.1 Discretisations
The problem is special in the sense that the objective is to optimise a function
that in itself is an approximation of another function. Our discretisations of
the Hamiltonian echo those in section 3.

5.1.0.1 In one dimension
In one dimension, the Hamiltonian is formally stated as

argminα∈A

(
f(t, x, α)ux + L(t, x, α,m) +

1

2
σ(t, x, α)2uxx

)
. (5.1)

38 Chapter 5 . Computing the optimal control

We use the following notation for this section:

a+ + a− = max(a, 0) + min(a, 0) = a,

D+u = ui+1 − ui,
D−u = ui − ui−1,

gni (α) = g(tn, xi, α) for any function.

The discrete one-dimensional Hamiltonian becomes:

Jni (α) =

(
fni (α)

∆x

)+

D−u+

(
fni (α)

∆x

)−
D+u

+
1

2

(
σni (α)

∆x

)2 (
D+u−D−u

)
= D+u

(
1

2

(
σni (α)

∆x

)2

+

(
fni
∆x

)−)

+D−u

(
−1

2

(
σni (α)

∆x

)2

+

(
fni
∆x

)+
)
.

(5.2)

And thus

αni = argminα∈AJ
n
i (α)

5.1.1 In two dimensions
We set

a+ + a− = max(a, 0) + min(a, 0) = a,

D+
x u = ui+1,j − ui,j ,

D−x u = ui,j − ui−1,j ,

D+
y u = ui,j+1 − ui,j ,

D−x u = ui,j − ui,j−1,

g(α) = g(tn, xi, yj , α) for any function .

5.2. Brute force scatter searchmethod 39

Similarly, the two-dimensional Hamiltonian becomes

Jni,j(α) = D+
x u

(
D11(α)

2(∆x)2
+

(
f1(α)

∆x

)−)
+D−x u

(
−D11(α)

2(∆x)2
+

(
f1(α)

∆x

)+
)

+D+
y u

(
D22(α)

2(∆y)2
+

(
f2(α)

∆y

)−)
+D−y u

(
−D22(α)

2(∆y)2
+

(
f2(α)

∆y

)+
)

+
D+

12(α)

2∆x∆y

(
ui+1,j + ui−1,j + ui,j+1 + ui,j−1

− 2ui,j − ui+1,j−1 − ui−1,j+1

)
+

D−12(α)

2∆x∆y

(
2ui,j + ui+1,j+1 + ui−1,j−1

− ui+1,j − ui−1,j − ui,j+1 − ui,j−1

)
+ L(α).

(5.3)

5.2 Brute force scatter searchmethod
This is a brute force method that only assumes that the admissible set A

is bounded, and relies upon the use vectorised function calls (see appendix
E). We present the method in its 1D formulation, but the algorithm is easily
extended to two dimensions.

Let

α ∈ A = {x|x ∈ [xmin,xmax]} ⊂ R (5.4)

and

R = |xmax − xmin|. (5.5)

1. Find an initial guess.

• Evaluate J(α) at N equidistant sample points αj in A. Note that
the distance between the points in αj is ∆α0 = R

N .

• Set α0 = α∗ = argminjJ(αj).

2. Until ∆αk ≤ ε, do:

• Set ∆αk = 2∆αk−1

n .

• Sample J(α) in N sample points in [αk −∆αk, αk + ∆αk].

• Set αk+1 = α∗ = argminjJ(αj).

40 Chapter 5 . Computing the optimal control

Assuming that N is chosen high enough to saturate A sufficiently, this method
will find the minimiser. This method can be interpreted as a generalisation
of the bisection method; an N -section method.

5.2.1 Error tolerance and number of iterations
It is possible to precompute the number of iterations required to attain the
desired accuracy ε by starting with the definition ∆αk ≤ ε and realising that

∆αk = 2∆αk−1/N → ∆αk = 2k
Ri

Nk+1

such that one can see that

k ≥
log
(
R
εN

)
log
(
N
2

) (5.6)

This value should be precomputed. The total number of evaluations of
(5.2)(5.3) will be

kNNtΠ
N
i=1Nxi (5.7)

where Nxi refer to the number of gridpoints in the xi-direction.
As an example to how costly this is, consider Ω ∈ [0, 1]2 with ∆x = ∆y =

0.1 and ∆t = 0.1∆x. Assume that A = [−1, 1]2 and that we set N = 40
with tolerance ε = 10−6. This yields that k = 4, for a grand total of 1.6 · 105

evaluations. This motivates a search for better methods.

5.3 Hybrid method
We wish to improve the scatter search method, particularly by limiting its
memory usage and how many sample points it evaluates. We begin by taking
cues from point-wise line search methods, in particular the idea of search
directions. Recall that line search methods typically resemble

αn+1 = αn + γnpn,

for step size γn and search direction pn. After a sufficiently dense initial
scatter, we have an initial guess of the minimiser α0, and we know that the
minimiser α∗ is in the domain K = (α0 −∆α, α0 + ∆α). If we assume that
we can compute the gradient of J(α0) and that J is sufficiently smooth in K,
we know which half of the domain K to find x∗. This gives us the method
below.

• Find a good initial guess α0 such that α∗ ∈ (α0 −∆α0, α0 + ∆α0).

5.4. Error propagation from computed control 41

• For k = 0, 1, 2...:

– Compute J ′(αk):

∗ If J ′(αk) < 0, set αjk ∈ [αk, αk + ∆αk] with N
2 equidistant

points.

∗ If J ′(αk) > 0, set αjk ∈ [αk − ∆αk, αk] with N
2 equidistant

points.

∗ If J ′(αk) = 0, set αjk ∈ [αk − ∆αk/2, αk + ∆αk/2] with N
2

equidistant points.

– Set αk+1 = α∗ = argminjJ(αj) and ∆αk+1 = ∆αk/N .

– If |αk+1 − αk| < ε for some tolerance ε, return αk+1. Otherwise,
repeat.

The same idea is trivially extended to 2D. The gradient of J(α) may be
computed, or it may be implemented and called directly. We test both
approaches in section 6.2.

5.3.1 Error tolerance and number of iterations
Let us assume the search domain is divided into N0 points, and each sub-
sequent subdomain is divided into n points. Let I be the size of the initial
search domain. Bearing in mind that each subdomain is simply half (in 1D)
or a quarter (in 2D) the size of the scatter search domain, we have

∆xk =

{
I

nkN0
(in 1D)

I
(2n)kN0

(in 2D)

This gives us to the number of iterations to satisfy an error tolerance of ε as

k ≥

log

(
I
εN0

)
log(n) (in 1D)

log
(

I
εN0

)
log(2n) (in 2D)

(5.8)

5.4 Error propagation from computed control
In this section we investigate the effect of computing the optimal control to
within a tolerance εα such that, in effect, we solve the MFG equations with
α = α∗+ εα. By using Taylor expansion on the Hamiltonian in (1.1a), we get

ut +H(α∗ + εα) = ut +H(α∗) + εαH
′(α∗) + O(ε2α) = 0.

42 Chapter 5 . Computing the optimal control

If we assume that α∗ /∈ ∂A, viz the optimal control is contained within
A, then we expect that H ′(α∗) = O(∆x) (from our discretisation of the
Hamiltonian). As such, the error from computing the control will be of
second order as long as εα ≤ ∆x.

The Fokker-Planck equation yields a comparatively similar result,

mt +

N∑
i=1

(fi(α
∗)m)xi −

N∑
i=1

N∑
j=1

(Dij(α∗)m)xixj

= εα

 N∑
i=1

N∑
j=1

(
D′ij(α∗)m

)
xixj
−

N∑
i=1

(f ′i(α
∗)m)xi

+ O(ε2α),

but the error will be of first order in εα regardless. As such we expect that the
error will be slightly worse for the FP equation. However, the error from the
computed control will be no better than the order of the discretisation, in our
case if εα ≤ ∆x. To avoid significant influence on the error, a precision should
simply be chosen such that εα is sufficiently smaller than the discretisation
error, without leading to too many evaluations in the optimisation methods.

5.5 Vectorised versions
There are two different ways of implementing the schemes that we have
considered; sequentially, or vectorised. Recall that we have a problem that
cannot be done for all times, but may in principle be done for all spatial
points at the same time. In the 1D-case, the sequential approach solves the
optimisation problem for a single spatial node completely before proceeding
to the next. This is done in our methods by making a one-dimensional array
of sample values αj for each spatial node.

The vectorised approach for this is to create a two-dimensional array of
sample values for all spatial nodes over the xα-plane. This means that each
row/column of this array contains the sample values for one spatial point.
This will occupy more computer memory, but may be faster. We will see
the quantified differences between sequential and vectorised scatter search in
section 6.2.

5.6 A note on brute force computations for the 2D problem
We have a few options in the control problem for MFG in 2D. The sequential
option in terms of implementation is to freeze x, y and thus simply use
scatter search to find the optimal controls for each grid point in turn. It

5.6. A note on brute force computations for the 2D problem 43

is however fully possible to vectorise this as well, as we described above.
The optimisation problem then becomes a four-dimensional problem over
the xyα1α2-space. This approach may not be favourable due to the sheer
memory demand.

An alternative is to use a fixed-point approach by freezing one of the
controls (say α2) at some initial guess and consider the three-dimensional
space over the other control (say xyα1). This will have to be repeated for the
opposite control, and so on, until a fixed point (α∗1, α

∗
2) is reached. As such

this procedure will likely use several iterations to converge. However, the
memory usage will not be as staggering as solving the full four-dimensional
problem.

Thus we may implement the 2D problem as a sequential manner, a
4D manner or a 3D manner. We compare the running times of the three
approaches in section 6.2.2. Some related implementation details and learned
lessons are covered in section E in the appendix.

Chapter 6

Numerical tests
In this section we present a range of numerical tests, from verification methods
of the individual schemes to speculative mean field games applied to modelling
scenarios.

6.1 Verification tests
In this section we present results that verify that our discretisations are sound.
We cover the one-dimensional (1D) and two-dimensional (2D) problems.

6.1.1 Verification test for the HJB-equation (1D)
For this verification test we wished to verify our discretisation of the HJB
equation (1.1a). We chose the functions in (1.1a) to resemble the canonical
variant (2.4a):

f(t, x, α) = α,

L(t, x, α) =
1

2
α2 + F (t, x),

σ(t, x, α) = σ(t, x).

We then chose the solution as u(t, x) = e−t sinx, and sought to resolve the
equation and balance equality by selecting F (t, x) appropriately. For this
choice of functions, the Hamiltonian is resolved to yield the optimal control
α = −ux. For the numerical computation itself, we used our optimisation
methods to compute α. However, for the sake of selecting an appropriate F ,
we resolved the Hamiltonian as if it was indeed α = −ux:

ut −
1

2
u2
x +

σ(t, x)2

2
uxx = −F (t, x, y)

We insert this into our solution of u, to yield F as:

F (t, x) =

(
τ +

ω2

2
σ(t, x)2

)
e−τt sin (ωx) +

ω2

2
e−2τt cos2 (ωx) . (6.1)

46 Chapter 6 . Numerical tests

For the test we chose ∆x = 0.1∆t and T = 1, and computed the solution
for progressively finer grids. To keep from solving on the entire real line,
we chose boundaries that matched reflective Neumann boundary conditions.
The scheme performed as expected with a first order convergence in all the
norms; see figure 6.1.

Figure 6.1: Convergence rate of the one-dimensional finite difference scheme for
the HJB-equation. The scheme performed as expected with a first order convergence
rate.

6.1.2 Verification test for the HJB-equation (2D)
For this test we proceeded in a similar way as in the previous section. We
chose the functions in (1.1a) as

f(t, x, α) = (α1, α2)T ,

L(t, x, α) =
1

2

(
α2

1 + α2
2

)
+ F (t, x),

u(t, x, y) = e−t cosx cos y.

We find from the Hamiltonian that this gives the optimal control

(α1, α2) = (−ux,−uy) . (6.2)

6.1. Verification tests 47

Figure 6.2: Convergence rate of the finite difference scheme for the two-dimensional
HJB-equation. The scheme performs as expected with first order convergence.

By rewriting (1.1a) and inserting the above functions, we get that the source
term F is:

F (t, x) =

(
1 +

D11

2
+
D22

2

)
e−t cosx cos y

+
e−2t

2

(
sin2 x cos2 y + cos2 x sin2 y

)
−D12e−t sinx sin y.

We ran the test using ∆x = 0.1∆t and T = 1, for progressively finer
resolutions. The scheme performed as expected with first order convergence;
see figure 6.2.

6.1.3 Verification tests for the FP-equation (1D)
We demonstrate our schemes for the one-dimensional Fokker-Planck equation
on cases for which exact solutions exist.

6.1.3.1 Constant coefficients
For this case we chooe a scalar the Fokker-Planck equation that is simply a
scalar convection-diffusion equation

mt + amx = Dmxx, (6.3)

48 Chapter 6 . Numerical tests

for coefficients a,D. The exact solution is

m(x, t) = hF (x−at, t)∗m0(x) =
1√

4πDt

∫ ∞
−∞

exp

(
− (y − at)2

4Dt

)
m0(x−y)dy

(6.4)
where hF is the fundamental solution of the heat equation. For a = D = 0.5
we got the results in figure 6.3. The naive scheme (4.2) outperformed the

Figure 6.3: Convergence rate in the L1-norm of the Fokker-Planck equation with
constant coefficients. The rates were computed without the first data point. The
rate for the monotone finite difference scheme (4.7) and the finite volume scheme
(4.14) were identical because the schemes became equivalent for this particular case.

other schemes with a second order convergence, but all other schemes were
still first-order convergent.

6.1.3.2 Variable velocity
Consider now the variant

mt − γ(xm)x = Dmxx, (6.5)

for γ ∈ R, D > 0. This is the Fokker-Planck equation for the Ornstein-
Uhlenbeck process. The fundamental solution to this is (see appendix C for
details),

mF (x, t) =

√
γ

2πD (1− e−2γt)
exp

(
− γx2

2D(1− e−2γt)

)
, (6.6)

so that the solution is

m(x, t) = mF (x, t) ∗m0(x). (6.7)

6.1. Verification tests 49

The test was run with v = −10D = −1 on x ∈ [0, 10]. The large grid and the
strict condition on ∆t (4.3) for the naive scheme forced us to use ∆t

∆x = 0.05.
Convergence results in the infinity-norm can be seen in figure 6.4. The naive
finite difference scheme was only of first order for this case, contrary to its
second order behaviour in the constant coefficient case. This is likely due
to the non-constant velocity, f(x) = −γx. The other schemes achieved first
order convergence. The finite volume scheme (4.14) had similar performance
as the other schemes, and has the lowest condition on the time step ∆t.
Hence we prefer this scheme over the others.

Figure 6.4: Convergence rate in the infinity-norm of the Fokker-Planck equation
with variable velocity. The convergence rate deteriorated for the finest resolutions
due to boundary condition treatment near x = 0.

6.1.4 Verification tests for the FP-equation (2D)
In this test we were mainly interested in how the diffusion flux methods in
section 4.2.2 behaved for different choices of diffusion tensor D, specifically
in regards to preserving positivity in the solution. We used Ω = [0, 1]× [0, 1]
throughout this test, with the initial distribution

m0(x, y) =

{
C if (x, y) ∈ [0.1, 0.3]× [0.1, 0.3]

0 otherwise
,

50 Chapter 6 . Numerical tests

where C is such that
∫

Ω
m0dx = 1. We also used the diagonal diffusion and

velocity as given below:

f(x, y) =
1

2

[
x, y

]T
D11(x) =

{
0.005 if x ≤ 1

2

0.01 if x > 1
2

,

D22(y) =

{
0.005 if y ≤ 1

2

0.01 if y > 1
2

.

For the first test we simply set D12 = 0. Note that for this test, the naive
and O-method become identical. We found that both the linear methods and
the nonlinear method had the same first order rate of convergence for this
case, and preserved positivity in the solution; see figure 6.5. Now, let

D12(x, y) = 0.00125(2 + x+ y). (6.8)

Recalling the discussion of the naive method, we expected that that it would
not conserve positivity. However, the naive method and the O-method
perform similarly in this case as well. In addition, all methods have about
the same first order convergence rate; see figure 6.6. This behaviour by the
naive method is likely the rare exception rather than the rule. Wepresent our
findings for the last case, in which

D12 =

{
.005 if x, y ≤ 1

2

0.01 if x, y > 1
2

. (6.9)

In this case, both the linear methods introduced oscillations that grew rapidly
worse as the mesh was refined, and only the nonlinear scheme converged as
expected while maintaining the positivity of the solution; compare the naive
and nonlinear schemes in figure 6.7.

We should also point out that the nonlinear scheme required more and
more Picard iterations to resolve the nonlinear system (4.33) as D grew less
diagonally dominant, from 2 in the diagonal case, to 6 in case (6.8) and up
to 9 for case (6.9).

6.1.5 No-game error propagation test
In this test we wished to inspect any differences in convergence rate or error
depending on what precision we chose for computing the optimal control.

6.1. Verification tests 51

Figure 6.5: Convergence rates (top row) and solutions (bottom row) of the 2D
Fokker-Planck equation for D12 = 0. The naive method was used on the left, the
nonlinear diffusion scheme on the right. Both methods produced similar solutions
and have the same convergence rates.

Consider the following set of input functions;

f(α) = α

L(x, α) =
1

2
α2 + F (x)m0(x) = C

(
exp

(
− (x− 0.3)2

0.01

)
+ exp

(
− (x− 0.6)2

0.01

))
,

uT (x) = 0,

F (x) = (x− 0.5)2,

σ = 0,

x ∈ [0, 1] t ∈ [0, 1].

Despite setting σ = 0, we will have no issues with convergence in this case
since F does not depend upon m. As such, the solution procedure converged

52 Chapter 6 . Numerical tests

Figure 6.6: Convergence rates (first column) and solutions (second column) of
the 2D Fokker-Planck equation, with (6.8). From top to bottom: naive method,
O-method and the nonlinear method. All methods produced similar solutions and
had the same convergence rates.

6.2. Optimisationmethod performance tests 53

Figure 6.7: Solutions of the 2D Fokker-Planck for a case when the diffusion tensor
D is not diagonally dominant; the naive method on the left, and the nonlinear
method on the right. Note that oscillations have introduced negativity into the
solution for the naive method.

after a single iteration. We chose two different precisions,

ε1α = ∆x

ε2α = 10−6(∆x)3

When running the tests, the difference in convergence rates and in the errors
match our expectations from section 5.4; negligible difference for the HJB
equation, and observable for the FP equation. See figures 6.8 and 6.9 for a
summary of this test. Note that the convergence rates for m are lower than
expected, while the ones for u are as expected. This turned out to be due to
the choice of σ = 0; when the same test was run for σ = 0.1, the convergence
rates were all 1 for ε2α and about 0.9 for ε1α. Also in figure 6.8 is a compilation
of all the solutions (with increasing precision) plotted in the same figure.
Spikes and rapid changes in the graph like this are quite common for MFG
with σ = 0, and may have contributed lower convergence rate of m. Since
more diffusion seemed to weigh up for the worse precision, it may be that
more diffusion may in some way decrease the importance of exact α.

6.2 Optimisationmethod performance tests
In this section we present test results for the optimisation methods in section
5 on test cases in 1D and 2D. We measure their performance as the relative
running times in order to draw conclusions about how the methods scale
with the problem size, both in terms of grid size and the size of A. All the

54 Chapter 6 . Numerical tests

Figure 6.8: Results for the error propagation test. On the top are the convergence
rates for m. On the lower row are the solutions of m(T, ·) (for ε1α on the left, and
ε2α on the right) as the grid is refined.

methods in section 5 iteratively refine their search space a predetermined
number of times. In all these tests, all methods used four refinements.

All tests in this section were run on a 64-bit computer with an Intel
Core i7-4500U 1.8-3.0GHz processor with 4MB of cache, and 12GB of RAM
memory.

6.2.1 Running times for optimisation in 1D
We present test results for the 1D versions of the optimisation routines in
tables 6.1 and 6.2. We used the spatial domain Ω = [0, 1], using equidistant
nodes; the number of nodes is shown in the leftmost columns of the tables.
For the search space A we used the same grid resolution, ∆x = 1

N+1 = ∆α.
As noted in the captions, the difference between the two tables is the size of

6.2. Optimisationmethod performance tests 55

Figure 6.9: Convergence rates for u for the error propagation test. Note that
there is only negligible difference between the rates and errors.

the control domain A, which has a significant impact on the results.

Table 6.1: Average running times (in seconds) for the 1D optimisation routines
for increasing grid resolutions. (S) indicates sequential, non-vectorised code, and
(V) indicates vectorised versions. For the hybrid method, (C) indicates a computed
gradient. This is for A = [−3, 3].

Nodes (S) SciPy (S) Scatter (V) Scatter (V) Hybrid(C) (V) Hybrid
10 0.014505 0.005033 0.001895 0.002038 0.001699
20 0.079262 0.012139 0.005351 0.004648 0.004200
40 0.186722 0.029055 0.016912 0.013010 0.011752
80 0.425403 0.084447 0.079713 0.051565 0.045810

160 0.926268 0.264815 0.313623 0.226958 0.196543

Across the board, we see that the built-in optimisation of SciPya was
consistently slower and scales unfavourably compared to even the sequential
version of scatter search method. By comparing the sequential and vectorised
versions of scatter search method, we see a speedup that declined as the grid
is refined (faster so for the larger A). The (vectorised) hybrid method in

aWe have found no obvious way to vectorise SciPy’s optimisation library. As we see
from tables 6.1 and 6.2, there is also no obvious reason to do so.

56 Chapter 6 . Numerical tests

Table 6.2: The same details apply for this table as for table 6.1. This is for
A = [−1, 1].

Nodes (S) SciPy (S) Scatter (V) Scatter (V) Hybrid(C) (V) Hybrid
10 0.014187 0.004365 0.001186 0.001454 0.001257
20 0.028983 0.009251 0.002500 0.002579 0.002343
40 0.122514 0.020000 0.006721 0.005915 0.005322
80 0.478464 0.047714 0.022791 0.017839 0.016335

160 0.983324 0.131891 0.106902 0.069402 0.062312

both its forms performed both slower and faster than scatter search method,
being slower for coarse grids and faster for finer grids. Note that the hybrid
method that does not compute its gradient was consistently faster than its
computed variant. In addition, it had a bigger relative speedup when A is
bigger.

More or less all of this is explained by memory usage and cache misses. A
cache miss is a failed attempt to read or write a piece in the cache memory,
meaning that the data must be loaded from a deeper, slower layer of memory.
The scatter search uses twice as much memory than the hybrid method for its
search space, but the hybrid methods also use slightly more evaluations. At
the finest resolution in table 6.1, we see that the sequential scatter search was
faster than the vectorised one. This likely represents the break-even point
between the gain in evaluating the entire grid and the increased memory
usage of doing so. This is supported by the fact that the vectorised version
was faster for the finest resolution in table 6.2, for a smaller A.

All in all the hybrid methods had the best running times for all but the
coarsest grid resolutions. The fact that there is a break-even point for the
vectorised versus sequential scatter search implies that the same applies for
the hybrid methods. As such, for resolutions finer than those used here, it
may be ideal to use a sequential version of the hybrid methods.

6.2.2 Running times for 2D optimisation
We present test results for 2D versions of the optimisation routines in tables 6.3
and 6.4. On the basis of the lackluster performance of the pointwise/sequential
scatter search below, we chose to only test vectorised versions of the methods.
All tests were run on the domain Ω = [0, 1]× [0, 1], using equidistant nodes.
The same number of nodes were used in each dimension, and so the total
number of spatial nodes used is shown in the leftmost columns of the tables.
For the search space A we used the same grid resolution, ∆x = ∆y = 1

N+1 =
∆α. The first thing to note is that the full 4D-search was very slow when

6.3. On solution procedures onMFG 57

Table 6.3: Average running times (in seconds) for the 2D optimisation routines
for increasing grid resolutions. These are the results for A = [−3, 3]× [−3, 3].

Nodes Pointwise 4D 3D 3D Hybrid (C) 3D Hybrid
102 0.720513 0.606407 0.050000 0.042128 0.039748
202 4.709110 7.798255 0.210484 0.164122 0.153054
402 38.791792 Failed 2.152870 1.537187 1.429983

Table 6.4: Average running times for the 2D optimisation routines for increasing
grid resolutions. These are the results for A = [−1, 1]× [−1, 1].

Nodes Pointwise 4D 3D 3D Hybrid (C) 3D Hybrid
102 0.438032 0.076285 0.025698 0.025872 0.024610
202 2.472344 0.987909 0.100107 0.090193 0.086085
402 11.879513 Failed 0.763849 0.606633 0.576157

compared to the 3D fixed point methods, and even failed for a fine grid
resolution due to running out of memory. For the 3D methods we see that
the hybrid methods were generally faster than the scatter method, with a
speedup that became more substantial the larger A was. This is explained
in the same way as the results for the 1D case. While we for the 1D case
argued that sequential search methods may be beneficial as the grid becomes
extremely fine, there is no indication from the results in the 2D case that
this may also apply here. It may also be that we simply have not tested the
methods on a fine enough grid.

Some lessons learned when implementing the optimisation methods in
NumPy are covered in section E in the appendix.

6.3 On solution procedures onMFG
In order to solve the MFG equations (1.1), we used a two-step iteration
procedure:

1. Compute αk, uk using mk−1.

2. Compute mk using αk.

This procedure was repeated until ‖mk −mk−1‖ < ε for some tolerance value
εb.

bWe chose the solution of m as a measure of convergence, as this is typically the
quantity one will be the most interested in.

58 Chapter 6 . Numerical tests

While doing preliminary experiments on some MFG scenarios, we ran
into cases in which this procedure simply failed to converge. One of two
conditions typically applied to such cases; the first of which was that the
diffusion was set too low, the second that m-dependent cost terms in L were
too dominating. We give some speculation on this later, but refer to similar
experiences reported in [3]. We must also point out that this applied even
for our tests on canonical MFG.

To cope with this difficulty, we conceived two supplements to the iteration
procedure: viscosity and damping sequences. The former applies artificial
diffusion to (1.1a)(1.1b), while the latter dampens m-dependent cost terms.
Both methods were able to produce convergent solutions to (1.1a)(1.1b) in
cases where the regular procedure failed.

A viscosity sequence is a decreasing sequence (δvn)→ 0. Starting with
some δ0, the MFG equations are solved with this extra diffusion. Once a
convergent solution is attained, this solution is used as the initial guess of
m(t, x) for the next number in the sequence. A damping sequence is an
increasing sequence 0 ≤ (δdn)→ 1, and is applied in the way demonstrated
below:

L(x, α,m) = α2 +
x

1 +m
⇒ Lδdn(x, α,m) = α2 +

x

1 + δdnm
.

Note that both variations and combinations of both viscosity and damping
sequences is possible. One such we have employed is to let the coefficients be
functions of time, for example δk(t) = δ∗k(1− t).

Due to some rather challenging cases, we implemented a program that
stored the last convergent intermediate solution of m. In this way, we could
attempt to load the solution after one failed sequence and try to continue
the computation for another sequence.

6.4 Application: Economicmodelling
For this set of cases in one dimension, we took inspiration from the economic
modelling scenario described in [14]. In this model, the state x ∈ [0, 1] refers
to the level of isolation in the agents’ home, and the aim is for the agents
to minimise their heating cost over the winter t ∈ [0, T], with T = 1. The
magnitude of the control α thus represents the amount of funds each agent
spends; a negative control means they spend funds to decrease their isolation,
and vice versa. We introduced a cost term

F (t, x,m) = 2p(t)(1− βx) +
0.4x

(1 +m(t, x))
, (6.10)

6.4. Application: Economicmodelling 59

where p(t) is the cost of electricity, and β = 0.95 is a discount associated with
having more isolation. The second term reflects maintenance costs associated
with more isolation, which becomes discounted the more agents have the
same isolation level. We set the cost of electricity as

p(t) = sin(πt)

and let the initial distribution be Pareto-like,

m0(x) =
32

5 (1 + 3x)
3 .

Over the next subsections we will look at this case in different ways, to yield
different results. We continued with the solution iteration procedure until
‖mk(T, ·)−mk−1(T, ·)‖1 < 10−4. We used reflective boundary conditions for
u and natural boundary conditions for m.

6.4.1 Canonical MFG, with diffusion
For this case we set the terminal cost as uT = 0.4x2(1.5 − x), to emulate
some ”isolation tax” at the end of winter. In this case we also used a bit of
diffusion. The functions used in this case are summarised as

f(α) = α,

L(t, x, α,m) =
1

2
α2 + F (t, x,m),

σ = 0.1,

(6.11)

where F (t, x,m) is given by (6.10). The diffusion means that the agents’
isolation may degrade or upgrade randomly over the course of time, which we
interpret as damages and repairs done to the isolation as time goes by. We
will in section 6.4.3 look at what happens when σ depends on the control α.

We used ∆t
∆x = 1

4 for these tests, and measured convergence by comparing
the interpolated solutions of m(x, T) for coarser grids to the finest solution
with 2560 spatial nodes. The convergence rate appears to be approximately of
order 1; see figure 6.10 for convergence rates and figure 6.11 for a comparison
of the solutions m(x, T) as the grid is refined.

Consider the solutions of (u, α,m) presented in figure 6.12. We see that
agents gather into two separate distributions (the ”poor” and ”rich”), and that
which of these they end up in depend on what their initial level of isolation
was. We also see that agents with a decent level of isolation (x ∈ [0.4, 0.5])
chose to invest in upgrades at a higher rate (higher α) than those of a lesser
level of isolation (x < 0.4), in order to ”catch up” with the ”rich” agents.

60 Chapter 6 . Numerical tests

Figure 6.10: Convergence rates of m(x, T) for the canonical mean field game in
section 6.4.1. The rates appear to be of first order.

Figure 6.11: Comparisons of solutions of m(x, T) as the mesh is refined in section
6.4.1.

Note that the cost of electricity in (6.10) peaks at t = 0.5, and compare this
to when the agents playing catch up reach very high isolation levels. The
downgrades the ”poor” distribution does as t = T approaches is both due to
the terminal cost uT , in which they are punished for their level of isolation,
and the maintenance cost outweighing the electricity discount. The ”rich”
distribution only slightly downgrade when t > 0.9.

We should mention that this game very closely resembles canonical MFG
(2.4). As such, this numerical convergence is not necessarily as speculative as

6.4. Application: Economicmodelling 61

Figure 6.12: Contours of the solutions of (u, α,m) for 2560 spatial nodes, for all
times t and states x. These are the solutions of the economic modelling case in
section 6.4.1.

other cases.

6.4.2 Canonical MFG, without diffusion
In this case we chose the same input functions (6.11) as the last section, but
instead chose to set

σ = 0.

As such, there was no random damage or improvement to the isolation.

This greatly affected the convergence properties of the iteration procedure,
and in many cases caused the iteration to simply diverge in the sense that
‖mk(T, ·)−mk−1(T, ·)‖1 never gets past a certain value; see figure 6.13. While
attempting to tune the coefficients in (6.10) to induce better behaviour, it
was discovered that the choice of coefficients in (6.10) that affect m-terms
also greatly influenced whether the iteration procedure is able to converge
at all. In particular, the greater the role of m in the cost, the tougher it is
to achieve convergence, if it is possible at all. In addition, refining the grid

62 Chapter 6 . Numerical tests

Figure 6.13: Norms of the change ‖xk−xk−1‖ for the quantities (α, u,m) in a case
where convergence was not achieved. In the bottom right corner is the successful
convergence of another case; the oscillatory shape is typical of solving the MFG
equations.

seems to hinder convergence in the sense that exponentially more iterations
are required to make the fixed point iteration converge (if it converges at
all). This inspired the alternative approaches detailed in section 6.3; both
were able to achieve convergence in some cases in which the straight-forward
approach failed. While other cases were not successful to converge to the
true solution (with no damping or viscosity), the experiments done with both
viscosity and damping sequences give slightly different results that shed light
on a probable cause of the lack of convergence when using these methods.

In figure 6.14 we compare results for using both damping and viscosity
sequences. We see that there is less change in the solution for the damping
sequences, whereas the viscosity sequence has a more obvious transition from
smeared out solution, to the spikes showing as the viscosity decreases. In the
two bottom rows, note also the qualitative difference between the results; the
viscosity sequence has only in a single case produced the second peak that

6.4. Application: Economicmodelling 63

all the damping sequence solutions have produced.

We were able to use a viscosity sequence to achieve convergence for 60
spatial nodes. See figure 6.16 for the solutions, and figure 6.15 for a comparison
of the progress of the viscosity sequence versus a damping sequencec. Compare
this solution to those in figure 6.14, and note how, typically, the viscosity has
influenced the computation in such a manner such that the second peak never
appears. Note also that there is no congregation of agents at the rightmost
boundary.

We have plotted the solution of (α, u,m) for 60 spatial nodes in figure
6.16. Note the distinct separation of agents that occur around x = 0.2, due
to the sudden change in the control α at the same location. It is our current
understanding that since any deviation (due to damping and/or viscosity
sequences) in the location of this jump in the control will have a profound
downstream effect on the solution of m, as we can observe that agents flock
into two separate distributions. A change in the location of this control jump
will greatly change the maximum value in these distributions, particularly
as the mesh is refined. This may also explain the results in figures 6.14 and
6.15, in particular the differences between the intermediate solutions of the
damping versus viscosity sequences.

It should be noted that we experienced a slightly better results by decreas-
ing the ratio ∆t

∆x . This allowed in some cases to reach lower levels of artificial
viscosity and/or damping. It could be that a higher order time integration
method is prudent to use.

The lessons learned here may be helpful for the development of schemes
that combine or innovate the ideas presented in section 6.3 in order to solve
low-to-no-diffusion MFG equations, or MFG with a cost function L with a
highly influential m-term. We would also like to remark that this case seems
to satisfy conditions in theorem 3.

6.4.3 Mean field game: constant vs. controlled diffusion
We altered (6.11) by changing the velocity and cost functions. The new
problem becomes

L(t, x, α,m) =
0.5α2 + 0.4x

1 +m(t, x)
+ 2 sin(πt)(1− 0.95x),

cThis same case had failed to converge when using a viscosity sequence where coefficients
were only slightly different, roughly |δn − δn−1| < 10−4. The successful sequence used a
greater difference between the coefficients, which may be seen in figure 6.15. This implies
which implies that the choice of viscosity sequence matters as well.

64 Chapter 6 . Numerical tests

f(t, x, α) =

{
(1− 0.5 sin(πt)− 0.25x)α if α ≥ 0

0.1α if α < 0
,

uT (x) =0.

In addition to the maintenance cost discount, agents get a similar discount
for upgrading/downgrading their isolation; see L. The velocity f is radically
changed. We may attach additional expenses to any upgrade the agents
do by penalising fd. First of all, downgrading (α < 0) is more expensive
than upgrading. As the price of electricity becomes more expensive, it also
becomes more expensive to upgrade. This is reflected in the sin-term in f .
The x-term in f reflects the fact that upgrading becomes more expensive the
more isolation agents already have.

We ran these tests for two different choices of σ:

σ1(t, x, α) = 0.1

σ2(t, x, α) = 0.1 (1 + |α|(1− x))
(6.12)

We introduced a control-dependence in σ2, which deserves a comment. We
may interpret this as an inherent uncertainty of the end-product when agents
upgrade/downgrade their isolation. This uncertainty decreases the better
isolation agents have, which can reflect the increased skill of the labourers
who do the work.

We used ∆t
∆x = 1

4 for these tests and measure convergence as we have done
for the other experiments in this case. We get similar first-order convergence
as for the canonical MFG; see figure 6.17. The solutions for the finest meshes
used for both cases are shown in figure 6.18. The solution for the controlled
diffusion were similar to the solution for constant diffusion, with the only
remarkable difference being a smoother solution for the control α.

There are obvious differences between this case and the earlier case from
section 6.4.1, seen by comparing figures 6.12 and 6.18. In the case of this
section, almost no agents at any time are downgrading their isolation due
to the penalty of doing so. In fact, the solution of α for the same times t
remain quite homogeneous over all isolation levels x, even more so in the
controlled diffusion case. As a results, agents only accumulate into one obvious
distribution. A similarity in both cases is that agents seem to decrease their
spending at around t = 0.5. This makes sense in the context of the price of
electricity p(t) begins to decrease at this time. In the case of this section, the
time t = 0.5 is also the lowest point of f(t, ·, ·).

dFor example, with f(t, x1, α) = 0.5α and f(t, x2, α) = α, we see that agents at state
x1 will have to use a higher α than agents at state x2 in order to attain the same velocity.

6.5. Application: Evacuation 65

In exploring the effect of controlled diffusion, we attempted to use choices
of smaller coefficients for σ2 in (6.12) while still producing convergent solutions.
No such coefficients were found.

This case is completely unlike the less general forms of the MFG equations,
and the theorems that apply for these are hard to put in context of this case,
particularly due to σ2. The running cost L is however strictly convex and C1

over α, which we argued earlier is related to the variable p in the MFG form
(2.1). As such, closer inspection of this case compared to theorem 1 may
result in the revelation that this case satisfy the conditions of this theorem.

6.5 Application: Evacuation
For the tests in this section we used the MFG equations to model an evacuation
scenario in which a distribution of agents wish to exit an area via one or more
exits, while avoiding congestion. In these tests we were primarily interested
in seeing change in the solutions depending on what inputs are used, so that
no convergence analysis is attempted.

6.5.1 On our treatment of obstacles and target locations
In crowd dynamics it is prudent to operate with goal locations that agents will
actively pursue. This is a natural way to handle the modelling of anything
between panicked evacuation and fevered pursuit of teenage idols. The goal
location(s) can be implemented into the MFG equation by adding a distance
cost G to the cost function L. This can be done with an ordinary metric like

G(x, y) = (x− x0)2 + (y − y0)2.

Barring other costs, agents will likely follow a straight line to reach (x0, y0).
This becomes problematic when impassable obstacles are introduced. Unless
the distance cost is in some way accommodated to deal with the obstacles,
agents are likely to smash into walls or get stuck in corners while pursuing
the straightest path. This makes no physical sense in the context of rational
agents, which the MFG equations model.

In order to accommodate obstacles for the distance cost, we opted to use
the solution of the Eikonal equation

|∇G| = C (6.13)

where C = C(x, y) is the cost associated with moving into the point (x, y).
We set C as

C(x, y) =

{
∆x when (x, y) not in obstacle,

100∆x otherwise
(6.14)

66 Chapter 6 . Numerical tests

for all our tests. By setting G(x0, y0) = 0 for any preferred locations, G will
have its minima at any favoured locations, its maxima at obstacles, and will
be increasing away from the favoured location. See figure 6.19 for a visual
example. We used the fast marching methode to solve (6.13).

6.5.2 Numerical experiment
For this test we considered evacuation from a room with two doorways,
one which is narrow and one which is wider. The narrow exit is closest
to the agents, while the wide one is further away; see figure 6.20. The
obstacles are placed at Ω1 = [0.0, 0.2] × [0.4, 0.5],Ω2 = [0.5, 1.6] × [0.4, 0.5]
and Ω3 = [1.7, 2.0]× [0.4, 0.5]. We use the functions

f(α1, α2) = (α1, α2)T ,

L(t, x, y, α1, α2) =
1

2

(
α2

1 + α2
2

)
+G(x, y) +

1

ε
m(x, y),

A = [−2, 2]× [−2, 2],

where G is the solution of (6.13) for the obstacles shown in figure 6.5.2.
With this cost function, agents wish to reach the target area while avoiding
concentrations of other agents. We will be interested in seeing qualitatively
how many agents decide to take the longest path by varying the parameter ε
in (6.5.2), which dictates the level of aversion. We use a reasonable amount of
diffusion to help with convergence and to keep with the theme of a panicked
evacuation.

To measure convergence for the fixed point iterations, we used the norm

en = sup
t∈[0,T]

‖mn(t, ·, ·)−mn−1(t, ·, ·)‖1. (6.15)

and stop when en ≤ 10−3. In our computations we used ∆x = ∆y = 1/20 =
5∆t. We set the diffusion tensor as D = 0.05I, and keep the control bounded
in A = [−2, 2]× [−2, 2]. Part of our experiment was also to take a closer look
at the role of the terminal time T for models like this.

6.5.2.1 The role of T
We set ε = 50 and chose two different terminal times, T1 = 1.5 and T2 = 4.
We compare the solutions at approximately the same time t in figure 6.21. It
is obvious that figure 6.21 does not show a snapshot of the same solution,
even if all other parameters are equal. In fact, agents for the T2-case quickly

eWe describe fast marching method in section D in the appendix.

6.5. Application: Evacuation 67

Table 6.5: Results for different choices of the congestion parameter ε from the test
in section 6.5.2. The percentage of agents in the left half of the domain at t = 1.03
is shown in the rightmost column. For ε = 5, the fixed point computation did not
converge.

ε Iterations Detour agents
50 9 13.70%
25 13 14.67%
10 35 17.03%
7.5 70 18.07%
6 374 18.97
5 Failed N/A

evacuate (total evacuation around t = 1.5) and spend the rest of the time
slowly accumulating into the goal location. For the T1-case, the solution for
t = 1.4 in figure 6.21 was qualitatively the same at t = T1.

We may explain the behaviour of the T2-case by recalling that the agents
aim to minimize the cost over time, where the cost is influenced by how
fast they move and where they are located. For the longer T , it is thus the
most profitable to move quickly (α high) to near the preferred location, and
spending the rest of the running time moving very little (α ≈ 0) around this
area. In order to create the same effect for the shorter time frame, one would
have to subsidise moving quickly by increasing the influence of G in (6.5.2).

6.5.2.2 The role of the congestion parameter ε
We chose T = 2.5 for these computations, using (6.5.2) for a selection of
different congestion parameters ε. We expected both that the number of
iterations required grew for decreasing ε, and that the number of agents who
take the detour through the wide exit increase as the narrow exit becomes
congested. In particular, we will compare the total percentage of agents inside
the left half of the domain shown in figure 6.20 (in x ∈ [0, 1]) at t = 1.03. We
summarise our findings on this in table 6.5. Note that the iterations required
grew exponentially as ε decreased, while the difference on the percentage
of detouring agents is not very significant. In figure 6.22 we compare the
solution of m at t = 1.03 for the highest and lowest ε-values used. The
solutions are qualitatively similar, but the lower ε has caused the solution to
be more diffused; that is, agents spread out more in order to avoid congestion.
Indeed, it seems that the increased amount of agents who detour through the
wider exit (see table 6.5) is primarily due to this increased diffusive behaviour.
Referring to the terrain laid out in figure 6.20, we see that agents will tend

68 Chapter 6 . Numerical tests

to take the detour once they move into an area where x < 1.1 (the shortest
path for this region is through the narrow exit). More diffusive behaviour
will naturally mean that agents tend to drift into this region and take the
detour. We would have hoped to find a case in which agents would have
chosen to take the detour in a more obvious fashion, but for any smaller
choices of ε the fixed point iteration failed to converge. In order to model a
proper evacuation scenario, there are several minor changes possible to what
we have used here. While the choice of T has a big influence, this could also
be counterweighted with a higher penalty on G, and possibly also a terminal
cost associated with staying in the evacuation zone.

6.6 Application: Pursuit of moving object
In this case we considered a scenario in which agents wish to be close, but
not too close, to a moving object. Agents have limited movement when
congested, but have no aversion to simply being in a crowded area. Besides
an interesting application, these tests also served the purpose of attempting
convergence analysis of the solutions of (1.1). For convergence of the solution
procedure we again use the norm (6.15).

Distance to the object is indicated by the function d(t, x, y) = d1(t, x) +
d2(t, y). We summarise the choice of functions for (1.1a)(1.1b) below,

f(α1, α2) = (α1, α2)T ,

L(t, x, y, α1, α2) =
1

2

(
α2

1 + α2
2

)(
1 +

1

20
m(t, x, y)

)
+ 2d(t, x, y)

+ 200 exp

(
−d1(t, x)2 + d2(t, y)2

0.012

)
,

A = [−3, 3]× [−3, 3],

(6.16)

where

d(t, x, y) = d1(t, x) + d2(t, y),

d1(t, x) = |x− cos(t)|,
d2(t, y) = |y + sin(t)− 1|,

(6.17)

are distance functions. We used T = 1 and the domain Ω = [0, 1] × [0, 1].
The agents’ initial distribution was given as

m0(x, y) =

{
C if (x, y) ∈ [0.1, 0.6]× [0, 1]

0 otherwise
,

6.6. Application: Pursuit of moving object 69

where C is such that
∫

Ω
m0dx = 1. Observe that d(t, x, y) tells us that the

object moves in a semi-circle from (x0, y0) = (1, 1) to (xT , yT) = (0, 0). We
will be interested in seeing the effect of the increased cost in L as agents get
too close to the object. We did tests on this case for two choices of D:

D1 = 0.05I,

D2 =

[
D(d) D(o)

D(o) D(d)

]
{
D(d) = 0.03125

(
1 + 0.1 ln

(
1 +

√
d1(t, x)2 + d2(t, y)2

))
D(o) = 0.0125

.

In the case for D2, the agents experience more diffusion the closer they get to
the object, in addition to cross-diffusion. The coefficients in D2 are chosen to
attain convergence even as the grid was refined. This choice of D2 required
the use of the nonlinear diffusion flux from section 4.2.2.3. For both tests we
used ∆t

∆x = ∆t
∆y = 0.2.

We present a comparison of solutions for both choices of D in figure 6.23.
This is a case that highlights the future-anticipating nature of the MFG
equations. As we have a strong cost associated with being too near the
object, agents pave the way for the object to pass by them. Due to the sheer
computational cost of computing these cases, only a handful of solutions were
produced. As the case with D2 did not converge for the coarsest resolution,
its convergence rate plot has only three data points; see figure 6.24. For finer
resolutions than those used to compare for numerical convergence in figure
6.24, the solution procedure did not converge for any of the cases. These
computations took literally hours to do, and we have thus not attempted to
use viscosity or damping sequences to induce better behaviour. An obvious
solution would be to use more diffusion in D, but we realised that this would
smear out the interesting ”paving-of-way” we see in figure 6.23. The results
in figure 6.24 could imply that for our earlier cases with convergence for the
MFG equations may equally refuse to converge in the solution procedure as
the grid is refined. However, we argue that the finest resolution attempted,
∆x = ∆y = 1/60, does not rid the scheme sufficiently of artificial viscosity
terms introduced by using upwinding. We will return to this in the next
chapter.

70 Chapter 6 . Numerical tests

Figure 6.14: Comparison of results using the viscosity and damping sequence
procedures (left and right columns, respectively) for the numerical test in section
6.4.2. The solutions for m(x, T) are plotted for decreasing coefficients: 20, 30 and
40 spatial nodes on the top, middle and bottom row respectively. Note that the
solutions become increasingly qualitatively dissimilar as the mesh is refined.

6.6. Application: Pursuit of moving object 71

Figure 6.15: Comparison of results using the viscosity and damping sequence
procedures (bottom and top, respectively) for the numerical test in section 6.4.2.
Shown is the solution for m(·, T) plotted for decreasing coefficients, for 60 spatial
nodes. Convergence has been reached for the viscosity sequence, whereas the
damping sequence had its final successful damping coefficient at 0,265. The difference
in damping coefficient value for the other solutions is 5 · 10−3.

72 Chapter 6 . Numerical tests

Figure 6.16: Solutions of (α, u,m) for the numerical test in section 6.4.2 for
∆x = 1/60,∆t = 0.1∆x.

Figure 6.17: Convergence rates for m(T, x) for the MFG tests in section 6.4.3.

6.6. Application: Pursuit of moving object 73

Figure 6.18: Comparison of the solutions of m(t, x), α(t, x) for the MFG tests in
section 6.4.3.

74 Chapter 6 . Numerical tests

Figure 6.19: Visual representation of the location preference function G for 2D
mean field games. The white area indicate the obstacles, while the light patch in
the upper right corner indicate the preferred location. The value of G increases
as the colors grow more red. The shortest path from any point may be found by
following the normal direction of the contour lines in a direction of lighter colour.

Figure 6.20: Obstacles and initial distribution of the case in section 6.5.2. The
agents are evenly distributed within Ω = [1.1, 1.9]× [0.1, 0.2].

6.6. Application: Pursuit of moving object 75

Figure 6.21: Comparison of the solution at time t ≈ 1.35 for two different choices
of T . We have used T = 1.5 on the left, and T = 4 on the right.

Figure 6.22: Comparison of the solution at time t = 1.03 for two different choices
of ε. While qualitatively similar, the lower ε seems to have a more diffused solution.
Note the scale difference.

76 Chapter 6 . Numerical tests

Figure 6.23: Comparison of the pursuit case in section 6.6. The left column shows
results for D1, the right for D2. The time values are (t1, t2, t3) = (x, y, z), from top
to bottom. The yellow ball is the target object. Observe that the agents literally
pave the way for the object in order to avoid getting too close to it.

6.6. Application: Pursuit of moving object 77

Figure 6.24: Convergence plots for the cases D1 (left) and D2 (right). These
results lose their value when considering that neither converged for the highest
resolution of 60 nodes in each spatial direction. The last convergent solutions for
both are for 50 nodes in each spatial direction.

Chapter 7

Discussion of findings
This section serves to both revisit concerns raised throughout the text, and
to discuss other topics not necessarily covered in the text.

7.1 Discretisations and optimisation
In this section we will reflect on the apparent strengths and shortcomings of
our methods, compared to the goals laid out at the end of chapter 2.

7.1.1 TheHJB discretisations
We presented numerical schemes for the HJB equation in one and two
dimensions in chapter 3. We have not experienced any cases of unwanted
behaviour for these methods which could not be contributed to any other
cases. Indeed, the solutions for the potential u we see in the tests in section
6.4 appear smooth, especially compared the corresponding solutions of the
distribution m and the control α. The schemes are also positivity-preserving
in the semi-implicit formulation for similar conditions to those of the FP
schemes.

One downside of the HJB schemes is that they are of first order. This is
especially due to the discretisation of the Hamiltonian, which is critical for
computing the optimal control. The brute force methods use the discretised
Hamiltonian to compute the optimal control, and will have an error of the
same order as the discretisation used for the HJB equation.

In addition, the schemes’ nature as finite difference methods may be a
disadvantage if the methods are applied to more general grids.

7.1.2 The FP discretisations
We presented finite volume schemes for the FP equation in chapter 4. These
schemes are conservative, positivity-preservinga and can easily be modified
to apply for more general grids. Conservativity ensures that the running cost
L will not experience any artificial damping or amplification due to mass

aWhen (4.20) is satisfied.

80 Chapter 7 . Discussion of findings

being produced or removed by the numerical scheme. We have made choices
between various ways to define the convective and diffusive fluxes. It could
have been interesting to do an investigation to see whether we could produce
different results for the MFG equations when using different fluxes.

The discretisation of the two-dimensional FP equation (4.17) calls for
discretising the diffusion tensor D. This is trivial on Cartesian grids when D is
diagonal, but is considerably more challenging when it is not. While we have
presented an unconditionally monotone scheme to approach this in section
4.2.2.3, this scheme is nonlinear and hence computationally intenseb. It bears
repeating that the use of a Cartesian grid simplified the generation of the
nonlinear diffusion matrix, in particular for the condition that D is diagonally
dominant (this condition stems from the scheme for the 2D HJB equation).
Alternate ways of dealing with the diffusion tensor involves remeshing the
grid such that the cell edges are orthogonal to the direction of D. In this way,
no special treatment of the off-diagonal terms of D is necessary. However, this
puts the cell centres for the solution of m away from the nodes for the HJB
scheme, and away from the solutions of u, α. This will require interpolation
to evaluate. In addition, for a case such as D2 in the pursuit model in section
6.6, this remeshing would be required for each time step.

In conclusion, the discretisation we have presented is sound. Despite the
potential use of a nonlinear method to evaluate D correctly, the Cartesian
grid simplifies the generation of the matrix for this method. Experiments
with more advanced convection fluxes could have been done.

7.1.3 Optimisationmethods
Computing the optimal control quickly is a crucial step for the use of our
numerical method, in order to produce results within a practical amount of
time. As such, considerable time has been spent implementing, testing and
optimising the running time the optimisation methods. Several lessons learned
during implementation of these methods in NumPy are found in appendix
E. However, the use of native NumPy functions may itself be crippling to
the performance of the functions. NumPy is built upon Python, which is
renowned for its simplicity of syntax, but is generally very slow compared to
the likes of Fortran. Within the constraints of using Python with NumPy,
however, the methods perform reasonably well. We have presented several
different approaches that each have their own strengths and weaknesses.

There are two more technical ways to speed up the methods; decreasing
the rate of cache misses and using less memory. The methods suffer slowdowns
from cache misses, and the obvious solution for this is to increase the cache

bIt must be said that the Cartesian

7.2. Convergence of the solution procedure 81

size. Graphical processing units (GPUs) offer orders of magnitude more
cache memory than the processor we have used for our computationsc. GPU
programming is becoming more accessible and common, and is the most
obvious next step for improving our methods. We should note that there is
no readily available GPU-support for NumPy.

The other way is to decrease memory usage by using smaller data quanti-
ties to store number. For example (using C-terminology), instead of using
64-bit doubles, 32-bit floats serve the purpose just as welld while taking only
half the memory.

7.2 Convergence of the solution procedure
In this section we revisit factors that have been observed to influence the
convergence of the solution procedure for the mean field game equations. The
factors are presented in descending order of their perceived influence.

7.2.1 Influence of distribution costs on convergence
We have with the tests in section 6 seen that the influence of distribution
m in the running cost L has a profound effect upon the fixed-point con-
vergence properties of the MFG equations. In particular we refer to table
6.5 from section 6.5.2. Here we demonstrated that increased dependence
of the distribution m in the cost L leads to more iterations being used to
attain convergence, if at all. We should point out that L increased with m
in this case. However, we also experienced increased iteration count when
doing experiments on the no-diffusion case in section 6.4.2e. Here, L was a
decreasing function of m. This essentially means that the more coupled the
MFG equations (1.1) are, the more difficult convergence is to attain.

We also experienced that this phenomenon seems related to grid resolution.
In particular, given the same choice of functions for (1.1a)(1.1b), we could
experience convergence to a solution for a course resolution, only to have it
fail for a finer resolution. We argue that this is related to m-terms in the
cost in two ways. The first relates to the terms proportional to the second
spatial derivatives of u,m in the local truncation errors of our methodsf.
These introduce artificial diffusion that dissipates with decreasing spatial

cThe processor used in this thesis has 4MB of cache memory, while commercial GPUs
have cache sizes ranging into Gigabytes.

dExcept maybe for vanishingly small precisions for the computations
eWhen viscosity sequences were used in these experiments, the experiments with a

lower dependence on m were able to converge faster and to lower viscosity than those with
a higher dependence on m.

fThese are typically introduced from our use of upwinding.

82 Chapter 7 . Discussion of findings

resolution at rate O
(

(∆x)
2
)

. It is well-known that diffusion in general helps

convergenceg. It is conceivable that the artificial diffusion introduced by
the truncation error has an influence. In any case, solutions tend to be
more smeared out for lower grid resolutions; see in particular figure 6.11 for
solutions of m(T, x) for increasing grid resolution. Here, the coarsest solution
barely resembles the finest solution.

We may rationalise all these accusations by going back to the theorems
on existence and uniqueness in section 2. In theorem 1, a condition upon
the cost function F (x,m) from (2.1a) is that F satisfies suitable growth
conditions over m. Increased dependence on m means that the cost L will
increase/decrease faster with m. This applies especially for terms like

L(t, x, α,m) =
1

2
α2 (1 + βm(t, x)) ,

where m, in addition to a coefficient β, scales with the control α. We would
expect even worse behaviour for this case.

7.2.2 Choice of initial guess
We have experienced that the choice of initial guess of the solution of m can
influence the convergence of the solution procedure. The straight-forward
approach we generally have used is to let the initial guess be that m(t, x) =
m0(x). We have presented two ideas that have proved somewhat effective at
provoking convergence in cases where this straight-forward approach failed.
It was discovered during our work that similar experiences are reported
by Achdou in [3]. Achdou approached this by essentially using viscosity
sequences as we described in section 6.3.

In section 6.4.2 we examined the behaviour of both viscosity sequences
and damping sequences on a case in which there was no diffusion. The results
of that section imply that while viscosity sequences may suitable in some
cases, damping sequences seem to produce intermediate solutions that more
closely resemble the true solution qualitatively. We also experienced that in
one case, the choice of viscosity sequence determined its successh. We have
also attempted to interpolate the solution of the same case from a coarser
resolution, and use this as initial guess. This was in general not as successful
as viscosity sequences.

gSee in particular the only difference between the cases in section 6.4.1 and 6.4.2; added
diffusion.

hIn particular in terms of the difference between two coefficients, δn − δn+1. Where an
increasingly smaller difference had failed to yield convergence of the solution procedure, a
larger suddenly difference was used to yield convergence to the true solution.

7.2. Convergence of the solution procedure 83

We postulate that if m is competing with other cost terms in L, it is likely
that the true solution of the MFG equations (if it exists) is so highly unlike
that solution which is produced in the first iteration. This may lead to that
the fixed-point iteration requires many more iterations, or is simply doomed.

7.2.3 Diffusion
The role of diffusion is probably intimately connected to m-terms in the
running cost L. We have seen the effect diffusion has by considering the same
model equation with or without diffusion in sections 6.4.1 and 6.4.2. With
diffusion, convergence occurs, without it is extremely challenging. This is
unsurprising, but it provides hints as to what may cause the lack of fixed-
point convergence in other cases. The greater the effect of m, the greater
the influence on α from changes in m. If there is not sufficient diffusion to
dissipate and smear out the solutions, thus decreasing the concentration of
agents (and the amplitude of m), we experience a lack of convergence.

It appears that the case of controlled diffusion is not wholly relatable
to the adage of the more diffusion the better. In the one-dimensional test
in section 6.4.3, we presented a convergent case for a choice of diffusion
function σ that was proportional to the optimal control α. Specifically, we
ran experiments with the two diffusion functions,

σ1 = 0.1,

σ2 = 0.1 (1 + |α|(1− x)) .

Note that σ1 ≤ σ2. Any lesser choices we made of coefficient for σ2 yielded
solutions that would not converge for finer resolutions. It should be noted
that the solutions for the MFG equations with controlled diffusion is highly
speculative, and as we have experienced, likely to not converge as the mesh
is refined.

7.2.4 Time step refinement
To a certain extent, we experienced during our various tests and experiments
that refining the timestep tends to decrease the number of iterations required
for convergence. When using viscosity and damping sequences, we were also
able to reach convergence for slightly lower influences of these sequences
when the time step was refined. One thing that happens when the timestep
is refined, is that the truncation error is decreased. This warrants the idea
of using higher order time integration methods. These methods generally
require the storage of solutions for several times, which may be unwanted.
However, the solution procedure for the MFG equations requires that all

84 Chapter 7 . Discussion of findings

solutions for all timesteps are stored. This makes such methods feasible for
solving the MFG equations.

There may be another, maybe more likely explanation to this behaviour.
The control α may be rapidly changing, and small variations in its solution
may have profound downstream effects on the solution of the distribution m
(as we argued in section 6.4.2). Refining the timestep means that the control
will be evaluated at more points. This again leads to any rapid changes in
the control to manifest themselves and influence the downstream (in time)
solution of m.

7.2.5 Precision of optimisationmethods
In a few cases we experienced that using insufficient precision in the opti-
misation methods could slow down convergence in terms of iteration count,
or even hinder it altogether. This was easily avoided by simply refining the
control search space, and in general seem to be a tag-along effect of any of
the other factors. We must point out that any precision attained using the
optimisation methods is only precise within the discretisation error of the
Hamiltonian in (1.1a).

7.3 Modelling with theMFG equations
In this case we present an overview of our subjective opinion about how to
pick functions to model real world scenarios.

In some of the numerical tests of chapter 6 we choose functions for (1.1)
that at least heuristically modelled several real-world scenarios. A bit of care
should be used when choosing functions, as a ”too difficult” configuration
might not converge. This seems to apply particularly to introducing control
dependence in σ or D.

If the agent velocity f is dependent upon the control, it would be prudent
to also limit the size of the control domain A. First of all, this will help keep
the HJB and FP schemes within the conditions of their positivity-preservation.
Secondly, the magnitude of α is intuitively how much effort or money or
energy agents spend. In its context as a physical size, it makes sense to keep
it bounded. In some cases we have also penalised the agent velocity in order
to model the increased cost to take an action.

The only way to penalise or reward association with the distribution m
is to introduce m-terms into the running cost L. As we know, a too-high
dependence causes problems with convergence. Hence it is prudent to spend
some time scaling these terms, either by doing several experiments and picking

7.3. Modelling with theMFG equations 85

one that produces convergence, or by scaling the m-terms with the physical
context of the other quantities, like the control α.

For the evacuation scenario in section 6.5, we introduced the use of the
Eikonal equation (6.13) as a way to deal with obstacles. While we believe
the arguments for using this approach make it the better modelling option
over a naive distance function, we have not attempted the other approach
for this scenario. Using the Eikonal equation may be unsuitable for cases in
which any desired locations move, like the object in section 6.6.

Chapter 8

Conclusion
In this thesis we have developed robust and general numerical methods for
solving the mean field game equations, as well as brute-force optimisation
methods for solving the optimal control. The schemes have been verified and
used on challenging MFG test scenarios. The coupled nature of the MFG
equations lead to the necessity of a solution procedure for solving the equations
in an alternating fashion. We experienced, like Achdou reports[3], that there
are cases for which the straight-forward application of this procedure fails. We
present building blocks for more complex and potentially successful solution
procedures.

An intuition for the causes of this lack of convergence has been developed
and reported on, after a range of numerical tests. In addition, we introduce
alternative solution procedures with slightly better convergence properties.
Some of the results for our convergent cases remain speculative, as they are
in general unsupported by existing existence theorems.

Based on our experiences, we propose topics of future work to deal with
the numerical solution of the MFG equations. We also present some ideas
for improvements to our solution methods.

8.1 Future work
The primary concern we have about this work is the lack of convergence for
the solution procedure. We have presented the factors we suspect influence
this in section 7.2. Of particular interest to us is the influence of the initial
guess for m(t, x), which is also reported by Achdou[3] to in some cases hinder
convergence altogether. To the author of this thesis, this appears to be an
issue worthy of theoretical analysis in order to develop a greater intuition to
the behaviour of the solution procedure convergence. We also believe there
to be potential for developing computational algorithms that use variations
and developments of damping and viscosity sequences to enforce convergence.
These algorithms may also use higher order time integration.

The discretisations we have used are only of first order, though they
satisfy positivity-preservation and preserve the mass of the distribution.
Recall however that the discretisation order of the HJB equation dictates

88 Chapter 8 . Conclusion

the order of the approximation of the Hamiltonian. This in turn influences
the precision of the computed control α. The optimisation methods we have
developed only find a solution that is still influenced by discretisation errors.
Increasing the order of this discretisation could lead to higher precision in the
control α, which again has a great influence on m. It is possible that such
high order methods will require more complicated methods to deal with the
diffusion tensor D than we currently have used for the 2D Fokker-Planck.

Appendix A

Heuristic derivation of the
MFG equations
In this section we derive the general forms of the MFG equations (1.1a)(1.1b),
from the perspective of stochastic optimal control. For the sake of presentation
we neglect any technical details required in the arguments. We point the
interested reader to [17][18][7][15] for more viewpoints on how the MFG
equations may be derived. We remind the reader of the two primary sizes in
MFG; the potential or cost u(t, x) and the distribution of agents in the field
m(t, x).

A.1 Derivation of HJB equation
Suppose the position of an agent in the state space is given by

Xt = x+

∫ T

t

f(Xx
t , αt)dt+

∫ T

t

σ(Xx
t , αt)dBt, (A.1)

where f(x, α) is the velocity, σ(x, α) is the amount of noise or uncertainty.

Recall that for Brownian noise, E(
∫ t

0
F (t, ω)dBt) = 0 for a process F with

suitable conditions. Suppose also that the agent wishes to minimise the cost

u(t, x) := inf
α∈A

E

(∫ T

t

L(s,Xs, αs,ms)ds+G(XT)

)
(A.2)

for some running cost L and terminal cost G. We will need the differential of
(A.2), which is provided by Ito’s lemma:

du =

(
ut + fDu+

σ2

2
D2u

)
dt+ σDudBt. (A.3)

90 Appendix A . Heuristic derivation of theMFG equations

We apply the principle of dynamic programming to (A.2) by first splitting
the integral,

u(t, x) = inf
α∈A

E
(∫ t+∆t

t

L(s,Xs, αs,ms)ds

+

∫ T

t+∆t

L(s,Xs, αs,ms)ds+G(XT)
)

and then applying theorem 4.3.3 in [22] to yield

u(t, x) = inf
α∈A

E

(∫ t+∆t

t

L(s,Xs, αs,ms)ds+ u(t+ ∆t,Xt+∆t)

)
. (A.4)

We integrate (A.3) to find an expression for u(t+ ∆t,Xt+∆t):

u(t+ ∆t,Xt+∆t)− u(t,Xt) =∫ t+∆t

t

utdt+

∫ t+∆t

t

(
fDu+

σ2

2
D2u

)
dt+

∫ t+∆t

t

σDudBt

We insert this into (A.4) and approximate all the integrals as
∫ t+∆t

t
x(s)ds =

∆tx(t). Note that the last integral vanishes from the expectation of a
Brownian integral.

u(t, x) = inf
α∈A

E
(∫ t+∆t

t

(
L(s,Xs, αs,ms) + ut + fDu+

σ2

2
D2u

)
ds

+ u(t, x) +

∫ t+∆t

t

σDudBt

)
≈ inf
α∈A

E
(

∆t

(
ut + L+ fDu+

σ2

2
D2u

)
+ u(t, x)

+ σDu(Bt+∆t −Bt)
)

= inf
α∈A

E
(

∆t

(
L+ fDu+

σ2

2
D2u

))
+ u(t, x) + ut(t, x)∆t

Dividing by ∆t gives us the Hamilton-Jacobi-Bellman equation:

ut + inf
α

L+

N∑
i=1

fi
∂u

∂xi
+

1

2

N∑
i=1

N∑
j=1

(
σiσj

∂2u

∂xi∂xj

) = 0. (A.5)

A.2. Derivation of the Fokker-Planck equation 91

A.2 Derivation of the Fokker-Planck equation
Let us define the distribution m in the context of this derivation:∫

D

m(t, x|s, y)dx = Pr (Xt+s ∈ D|Xs = y) = Pr (Xt ∈ D|X0 = y) . (A.6)

Keeping in mind (A.1), we introduce an arbitrary function φ = φ(Xt) with
boundary conditions φ(X0) = φ(XT) = 0. Following Ito’s lemma, we integrate
over t ∈ [0, T]:

0 = φ(XT)− φ(X0) =

∫ T

0

dφ

=

∫ T

0

(
φt + fφx +

σ2

2
φxx

)
dt+

∫ T

0

(σφx) dBt.

Next, we take the conditional expectation E (·|X0 = y) = E(·) of the above
expression. Note also that the second integral vanishes from the expectation
of a Brownian integral.

0 = E

(∫ T

0

(
φt + fφx +

σ2

2
φxx

)
dt+

∫ T

0

(σφx) dBt

)

= E

(∫ T

0

(
φt + fφx +

σ2

2
φxx

)
dt

)

=

∫
R

(∫ T

0

(
φt + fφx +

σ2

2
φxx

)
dt

)
m(t, x|s, y)dx

=

∫
R

∫ T

0

(φtm) dtdx+

∫
R

∫ T

0

((fm)φx) dtdx+

∫
R

∫ T

0

(
σ2

2
φxx

)
dtdx.

Note that we have set m = m(t, x|s, y). We will now isolate φ by integrating
by parts:∫

R

∫ T

0

(φtm) dtdx =

∫
R

(
(mφ)

∣∣T
0
−
∫ T

0

φmtdt

)
dx

∫
R

∫ T

0

((fm)φx) dtdx =

∫ T

0

∫
R

((fm)φx) dxdt

=

∫ T

0

(
(fmφ)

∣∣∞
−∞ −

∫
R

((fm)xφ) dx

)
dt∫

R

∫ T

0

(
σ2

2
φxx

)
dtdx =

∫ T

0

((
σ2mφx

2

) ∣∣∣∞
−∞

dt−
∫
R

(
σ2m

2

)
x

φxdx

)
dt

92 Appendix A . Heuristic derivation of theMFG equations

=

∫ T

0

(
σ2mφx

2
− (σ2m)xφx

2

) ∣∣∣∞
−∞

dt

+

∫
R

∫ T

0

(
σ2m

2

)
xx

φdtdx

We may neglect the boundary terms by choosing suitable boundary conditions
upon φ, and are left with∫

R

∫ T

0

(
−mt − (fm)x +

1

2

(
σ2m

)
xx

)
φdtdx = 0.

From the arbitrariness of φ, we end up with the Fokker-Planck equation,

mt + (fm)x =
1

2

(
σ2m

)
xx
.

for the probability distribution of the agents’ location.

A.3 A closing word on the derivations
Strictly speaking, these derivations only apply to the actions of a single
agent, and considerable work is put into other derivations to making the
equations apply for a continuum of agents. As such, the Fokker-Planck
equation becomes not the probability density of the state of a single agent,
but the distribution of the field of agents. We turn the interested reader to a
derivation of the canonical MFG equations based on game theory in [7].

Appendix B

M-matrices
M-matrices are matrices of a special but common form, for which no all-
encompassing definition exist. Numerous conditions that define a matrix to
be an M-matrix are found in [5]. Among their primary properties that make
them relevant to our work is their diagonal dominance and inverse-positivity.

Definition 5. A matrix A is said to be inverse-positive iff its inverse
A−1 = (a−1

ij)n×n satisfies

(a−1
ij)n×n ≥ 0∀i, j ∈ [1, n]. (B.1)

The condition (B.1) is equivalent to A−1 being nonnegative.

From [5] we have the following useful lemma:

Lemma 1. For an irreducible matrix A = (aij)n×n satisfying ai,i > 0∀i ∈
[1, n] and ai,j ≤ 0∀i, j ∈ [1, n], if A is weak diagonal dominant in rows, that
is

n∑
j=1

ai,j ≥ 0∀i ∈ [1, n] (B.2)

with strict inequality for at least one term in (B.2). Then the matrix A is an
M -matrix, and its inverse is nonnegative.

Appendix C

Ornstein-Uhlenbeck process
solution
In this section we find the solution of (6.5),

mt − γ(xm)x = Dmxx

m0(x) = δ(x− x0)

Multiply both sides by e−ikx and integrate over R to yield

m̃t + γkm̃k = −Dk2m̃

m̃0(k) = e−ikx0
(C.1)

for m̃ = m̃(t, k). We then use the method of characteristics to get

dm̃(t(s), k(s))

ds
=
∂m̃

∂t

∂t

∂s
+
∂m̃

∂k

∂k

∂s
= −Dk2m̃

which applies for

∂t

∂s
= 1⇒ t(s) = s

∂k

∂s
=
∂k

∂t
= γk ⇒ k(t) = k0e

γt

We solve the differential equation,

dm̃

dt
= −Dk2m̃ = −Dk2

0e
2γtm̃

m̃ = Ce−
Dk20
2γ e2γt ⇒ m̃ = exp

(
−ik0x0 −

Dk2
0

2γ

(
e2γt − 1

))
m̃(t, k) = exp

(
−ikx0e

−γt − Dk2

2γ

(
1− e−2γt

))
The last expression is the Fourier transform of a Gaussian with mean µ(t) =

x0e
−γt and standard deviation σ(t) =

√
D
γ (1− e−2γt). We take the inverse

96 Appendix C . Ornstein-Uhlenbeck process solution

Fourier transform and get the fundamental solution

mF (t, x) =

√
γ

2πD (1− e−2γt)
exp

(
− γx2

2D(1− e−2γt)

)
.

Appendix D

Fast marchingmethods for
obstacle handling
The fast marching method (FMM) is a numerical method introduced by
Sethian (see for instance [21]) for solving Eikonal equations. In our work it
was used to compute the location preference function G for MFG in 2D in
section 6.5.2. We will provide a short description of FMM in the context of
our work.

We will divide the nodes in the mesh into three disjoint sets, K,T, U to
indicate the known, trial and unvisited nodes. The set K holds all nodes
whose values of G(x, y) we know, T holds all nodes whose values we have
some estimate or guess on, and U holds all sets we have not considered yet.
It will also be necessary to do bookkeeping on the estimated values of the
nodes in T . This will be clearer as we briefly explain the algorithm.

We initialise the method by setting nodes corresponding to the preferred
location(s) into K, and setting the neighboursa of these nodes into T . We
then proceed as follows:

1. Select the node n0 in T that has the smallest estimated value, and put
this node into K.

2. Put the neighbours of n0 that are in U into T .

3. For each of the neighbours of n0, ni, set their new estimated value as

val(ni) = min (val(n0) + C(xi, yi), val∗(ni)) ,

where val∗(ni) refers to any previously computed estimate.

This algorithm is run until all nodes are in the set K.

aFor our finite volume method, we let the cells that share edges be neighbours.

Appendix E

Implementation details and
lessons learned
In this section we present some tips and tricks that proved necessary for
implementing the methods detailed in this thesis, as well as to speed up certain
subroutines. All our work has been done using the Python libraries SciPy
and NumPy. NumPy, not unlike Matlab, is optimised for handling vector
broadcasting and N-dimensional arrays, and has linear algebra routines based
on BLAS. As such, the most time-consuming parts of running the code has
been generating matrices, evaluating functions and running the optimisation
routines detailed in this section. As work progressed and familiarity with
NumPy increased, these routines were all vectorised to yield substantial
code speedup. This section will provide some code examples for the most
substantial learned lessons. The tricks used should be easily extended to
similar languages and tools that is optimised to handle arrays, such as Matlab.

E.1 Handling N-dimensional arrays for optimisationmethods
A challenge when implementing the optimisation methods in 2D is the need
to handle three- or four-dimensional arrays. In particular, to find and refer
to the minimum values in these arrays along a certain axis, and to update
the search domains along certain axes. This case is curious, as the NumPy
documentation has no examples on how to use the library for such cases.
Thankfully, experiments have yielded a fast way to do this. Critical here are
the NumPy functions numpy.argmina and numpy.indicesb.

We present a snippet from the 3D scatter method, showing only explicitly
the part of the code that finds the best values for α1 given some guess on α2.

Scat t e rSea r chVec to r i s ed . py
import numpy as NP
import InputFunct ions as IF

aIn our context, numpy.argmin returns the indices of the minimum values along an
axis in a NumPy array.

bThis function returns arrays corresponding to indices that allow access to all values
in an array.

100 Appendix E . Implementation details and lessons learned

de f Sca t t e rSea r chVec to r i s ed (SearchX , SearchY , x , y , . . .) :
####
#inputs : vec to r x , vec to r y , vec to r SearchX , vec to r SearchY ,

other arguments
#output : vec to r BestX , vec to r BestY
. . .

#make 3D func t i on c a l l
ValueArray = IF . Hamiltonian (SearchX , BestGuessY , x , y , . . .)
#f i n d i n d i c e s o f minima along alpha 1 ’ s a x i s
ind1 = NP. argmin (ValueArray , a x i s =1)
#generate i n d i c e s r equ i r ed to a c c e s s minimum va lues in

ValueArray
ind0 , ind2 = NP. i n d i c e s (ind1 . shape)
#s t o r e minima
BestGuessX = SearchX [ind0 , ind1 , ind2]
. . .
r e turn BestGuessX , BestGuessY

The indices in ind1 allow access to the minimum values of ValueArray along
the relevant axis, provided we have all the indices to the other axes, which is
provided by the call to numpy.indices. Note that we have assumed that the
search values over α1 is stored in the second axis of the array ValueArray.
The code above is easily altered to deal with cases where this is the wrong
axis. A detail that caused some confusion when implementing is that the line

BestGuessX = SearchX [ind0 , ind1 , ind2]

returns a 2D arrayc.

E.2 Lessons learned on updating the search space
This is a continuation of the last section. Now that we have the current best
guesses, we want to update the search domain with these values. The naive
method for this is to simply use nested for-loops to iterate over each of the
best guesses and generate a new search space around these. As for-loops
generally slow down Python code when arrays become large, we spent time
researching the use of Python generators to replace the nested for-loops
that seem obvious to use. With some timing experiments it was discovered
that this actually caused the code to run slower, and is a rare case in the
implementation in which for-loops were the fastest option.

cFor the 4D optimisation method, the corresponding line will return a 3D array, and
the procedure in the code example will have to be repeated. This is messier, and given
the lackluster performance of this method, we will spare the reader of the details of this
inferior method.

E.3. Quickmatrix generation 101

We present and explain the ”fancy generator” method below. We will use
standard Python functions, as well as the NumPy function numpy.linspaced.

Scat t e rSea r chVec to r i s ed . py
import numpy as NP
import InputFunct ions as IF
de f Sca t t e rSea r chVec to r i s ed (SearchX , SearchY , x , y , . . .) :

####
#inputs : vec to r x , vec to r y , vec to r SearchX , vec to r SearchY ,

other arguments
#output : vec to r BestX , vec to r BestY
. . .

#1s t s tep : get l i s t o f i n d i c e s f o r a c c e s s i n g va lue s in the
ve c t o r s x , y

x ind = range (SearchX . shape [0])
y ind = range (SearchX . shape [2])
#2nd step : use gene ra to r s to c r e a t e l i s t s o f i n d i c e s
my l i s t = [(j , k) f o r j in x ind f o r k in y ind]
myl i s tx = [x [0] f o r x in myl i s t] #a l l x−i n d i c e s
myl i s ty = [x [1] f o r x in myl i s t] #a l l y−i n d i c e s
#3rd step : update the search space
SearchX [myl istx , : , myl i s ty] = NP. array ([np . l i n s p a c e (BestGuessX [

j , k]−ax , BestGuessX [j , k]+ax ,N[0]) f o r j in x ind f o r k in
y ind])

SearchY [myxl ist , : , myyl i s t] = NP. array ([np . l i n s p a c e (BestGuessY [
j , k]−ay , BestGuessY [j , k]+ay ,N[1]) f o r j in x ind f o r k in
y ind]) d

. . .
r e turn BestGuessX , BestGuessY

Note that ax is the current ”search width” for the scatter search, and Nx
is the number of points we evaluate for in each scatter evaluation. The list
mylist contains all permutations of the indices in x ind and y ind. When
running time profiling is used on the code above, the second step in particular
is extremely fast. It is the third step, the use of the generated lists to update
the search space, that is much slower than simply using nested for-loops.

There may be some break-even point using a very fine grid resolution
where the above code is faster than using nested for-loops, but this has not
been tested.

E.3 Quickmatrix generation
For all computations on the HJB and FP equations in this thesis, it will be
necessary to generate new computation matrices for each time step. Recall

dThe function call numpy.linspace(start,stop,N), returns N points evenly dis-
tributed between the values start and stop.

102 Appendix E . Implementation details and lessons learned

that our methods yield linear systems of the form

Ax = By,

where A represents the diffusion terms and B represents the convective terms.
While cases in which the diffusion is constant allow us to only generate the
diffusion matrix A only once, B will always be necessary to generate for each
timestep. If one uses nonlinear methods like the one in section 4.2.2.3, quick
matrix generation becomes especially important.

A naive implementation would involve a double for-loop in which elements
in some empty matrix is altered, value by value. For high-level languages like
Python, this is exceedingly slow. For speeding up this, we note that due to our
Cartesian grid, the matrices will be sparse, banded matrices built by diagonal
vectors. With some light work, these vectors can be generated, naively
by using a single for-loop to iterate over each element and insert/add the
respective value, and faster by simply generating them as the sums of vectors
from vectorised function calls. To insert these vectors along the diagonals of
a sparse matrix, one should use the SciPy function scipy.sparse.diags. See
an example below:

GenerateConvection . py
import s c ipy as SP
import numpy as NP
import InputFunct ions as IF
de f GenerateConvection (time , x , a , dt , dx) :

####
#inputs : s c a l a r time , vec to r x , vec to r a (c o n t r o l) , s c a l a r dt ,

s c a l a r dx
#output : spa r s e convect ion matrix
####
#make v e c t o r i s e d func t i on c a l l s
sigma = IF . Sigma (time , x , a)
v e l = IF . Ve loc i ty (time , x , a)
#generate the f l u x v e c to r s
FluxEast , FluxWest = IF . GenerateConvectionFlux (sigma , ve l)
#generate d iagona l v e c t o r s
ze ro = NP. z e ro s (x . s i z e)
ea s t = −dt/dx∗NP. minimum(FluxEast [1 :] , z e ro [1 :])
west = dt/dx∗NP. maximum(FluxWest [: −1] , ze ro [: −1])
here = 1−dt/dx∗(NP. maximum(FluxWest , ze ro) − NP. minimum(

FluxEast , ze ro))
#return sparse , d iagona l matrix
re turn SP . spar s e . d iags ([here , east , west] , [0 , 1 , −1])

The function scipy.sparse.diags takes two arguments, a list of vectors that
will make up the diagonals, and another list that hold the offsets from the
main diagonal on which to place the vectors. It is important that the lengths

E.3. Quickmatrix generation 103

of the vectors match the length of the diagonal the offset implies they are to
be placed in.

Bibliography
[1] I. Aavatsmark. “Comparison of Monotonicity for some Multipoint Flux

Approximation Methods”.
In: Finite Volumes for Complex Applications V. 2008.

[2] I. Aavatsmark.
“Multipoint flux approximation methods for quadrilateral grids”.
In: 9th International Forum on Reservoir Simulation, Abu Dhabi, 9-13
December 2007. 2007.

[3] Y. Achdou. “Finite Difference Methods for Mean Field Games”.
In: Hamilton-Jacobi Equations: Approximations, Numerical Analysis
and Applications. Lecture Notes in Mathematics.
Springer Berlin Heidelberg, 2013, pp. 1–45.
url: http://dx.doi.org/10.1007/978-3-642-36433-4_1.

[4] G. Barles and E. R. Jacobsen. “On the convergence rate of
approximation schemes for Hamilton-Jacobi-Bellman equations”.
In: Mathematical Modelling and Numerical Analysis 36.1 (2002),
pp. 33–54.

[5] A. Berman and R. J. Plemmons.
Nonnegative Matrices in the Mathematical Sciences.
Academic Press, Inc., 1979.

[6] F. Camilli and F. J. Silva. “A semi-discrete in time approximation for
a first order-finite mean field game problem”.
In: Networks and Heterogeneous Media 7.2 (2012).

[7] P. Cardaliaguet. Notes on Mean Field Games. Available online at
https://www.ceremade.dauphine.fr/c̃ardalia/ as of 12th July 2015.
2013.

[8] E. Carlini and F. J. Silva. “A Fully Discrete Semi-Lagrangian Scheme
for a First Order Mean Field Game Problem”.
In: SIAM Journal on Numerical Analysis 52.1 (2014), pp. 45–67.

[9] E. Carlini and F. J. Silva. “A Semi-Lagrangian scheme for a
degenerate second order Mean Field Game system”.
In: Preprint (2014). arXiv: 1404.5932v1 [hep-th].

[10] D. A. Gomes and J. Saúde.
“Mean Field Games Models - A Brief Survey”.
In: Dynamic Games and Applications 4 (2 2014), pp. 110–154.

http://dx.doi.org/10.1007/978-3-642-36433-4_1
http://arxiv.org/abs/1404.5932v1

106 Bibliography

[11] O. Guéant. “Mean Field Games with a Quadratic Hamiltonian: A
Specific Approach”.
In: Mathematical Models and Methods in Applied Sciences 22.9 (2012).

[12] O. Guéant. “New Numerical Methods for Mean Field Games with
Quadratic Costs”. In: Networks and Heterogeneous Media 7.2 (2012).

[13] O. Guéant, J.-M. Lasry, and P.-L. Lions.
“Mean Field Games and Applications”.
In: Paris-Princeton Lectures on Mathematical Finance 2010.
Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2011,
pp. 205–266.
url: http://dx.doi.org/10.1007/978-3-642-14660-2_3.

[14] A. Lachapelle, J. Salomon, and G. Turinici.
“Computation of mean field equilibria in economics”.
In: Mathematical Models and Methods in Applied Sciences 20.4 (2010).

[15] J.-M. Lasry and P.-L. Lions. “Mean field games”.
In: Japan Journal of Mathematics 2 (2007), pp. 229–260.

[16] R. J. LeVeque. Finite-Volume Methods for Hyperbolic Problems.
Cambridge University Press, 2002.

[17] P.-L. Lions. “Jeux à champ moyen. I. Le cas stationnaire.”
In: Comptes Rendus Mathematique 343 (9 2006), pp. 619–625.

[18] P.-L. Lions.
“Jeux à champ moyen. II. Horizon fini et contrôle optimal.”
In: Comptes Rendus Mathematique 343 (10 2006), 679–684.

[19] P.-L. Lions. Lectures on mean field games. Online lecture series. 2011.
url: http://www.college-de-france.fr/site/en-pierre-louis-
lions/course-2011-2012.htm.

[20] J. Salomon and G. Turinici.
“A monotonic method for solving nonlinear optimal control problems
with concave dependence on the state”.
In: International Journal of Control 84.3 (2011), pp. 551–562.
url: http://dx.doi.org/10.1080/00207179.2011.562548.

[21] J. A. Sethian. Level Set Methods and Fast Marching Methods. 2nd ed.
Cambridge University Press, 1999.

[22] J. Yong and X. Y. Zhou.
Stochastic Controls: Hamiltonian Systems and HJB Equations.
Springer New York, 1999.

http://dx.doi.org/10.1007/978-3-642-14660-2_3
http://www.college-de-france.fr/site/en-pierre-louis-lions/course-2011-2012.htm
http://www.college-de-france.fr/site/en-pierre-louis-lions/course-2011-2012.htm
http://dx.doi.org/10.1080/00207179.2011.562548

Bibliography 107

[23] G. Yuan and Z. Sheng. “An improved monotone finite volume schemes
for diffusion equation on polygonal meshes”.
In: Journal of Computational Physics 231 (2012), pp. 3739–3754.

[24] G. Yuan and Z. Sheng. “Monotone finite volume schemes for diffusion
equations on polygonal meshes”.
In: Journal of Computational Physics 227 (2008), pp. 6288–6312.

[25] R. E. et al. Finite Volume Methods. Online notes. Available online at
http://www.cmi.univ-mrs.fr/ herbin/PUBLI/bookevol.pdf as of 12th
July 2015. 2003.
url: http://www.cmi.univ-mrs.fr/~herbin/PUBLI/bookevol.pdf.

http://www.cmi.univ-mrs.fr/~herbin/PUBLI/bookevol.pdf

	Summary
	Sammendrag
	Preface
	Nomenclature
	Contents
	Introduction
	The mean field game equations
	An overview of the thesis

	Theoretical background and objectives
	Existence and uniqueness of solutions
	Previous work on numerical methods for canonical MFG
	Objectives of our discretisations

	Discretisation of the Hamilton-Jacobi-Bellman equation
	Finite differences in one dimension
	Finite differences in two dimensions

	Discretisation of the Fokker-Planck equation
	Discretisations of the Fokker-Planck equation in one dimension
	Finite volume discretisation of the Fokker-Planck equation in 2D

	Computing the optimal control
	Discretisations
	Brute force scatter search method
	Hybrid method
	Error propagation from computed control
	Vectorised versions
	A note on brute force computations for the 2D problem

	Numerical tests
	Verification tests
	Optimisation method performance tests
	On solution procedures on MFG
	Application: Economic modelling
	Application: Evacuation
	Application: Pursuit of moving object

	Discussion of findings
	Discretisations and optimisation
	Convergence of the solution procedure
	Modelling with the MFG equations

	Conclusion
	Future work

	Heuristic derivation of the MFG equations
	Derivation of HJB equation
	Derivation of the Fokker-Planck equation
	A closing word on the derivations

	M-matrices
	Ornstein-Uhlenbeck process solution
	Fast marching methods for obstacle handling
	Implementation details and lessons learned
	Handling N-dimensional arrays for optimisation methods
	Lessons learned on updating the search space
	Quick matrix generation

	Bibliography

