


4. Data and methods

into a common window, due to the slightly varying grid scale of the
different cells in the module, as was done for the relative phases in [10].

Computing the phases of all the cells in a module thus results in
a spatial point pattern that is periodic in nature. From Chapter 3, we
know a great deal about how to analyze such patterns.

4.5 Analyzing the phase patterns

We want to investigate whether the assumption that the grid cells in a
module cover the space of possible phases uniformly is consistent with
experimental data. We may thus take as our null hypothesis that the
phase patterns are uniform and independently distributed set of points,
or in the language of point process statistics, that they were generated
by a periodic binomial process. To investigate this hypothesis, we use
the 𝐿-test from Section 3.8 with the 𝐿-function estimator for periodic
point patterns defined by Equations (3.37) and (3.38). We generate
1000 simulations of uniformly and independently distributed points
in the same window as the phases to determine the 𝑝-value for the
observed phase pattern under the null hypothesis. The value for 𝑟min
used in all tests is 𝑟min = 1.05/(𝑟max ∗ 𝜆), a value that is found by trial
and error and seems to work well.

To gain additional understanding of the characteristics of the phase
pattern, we also plot the 𝐿-function and pair correlation function of the
patterns, overlaid on simulation envelopes generated with 𝑎𝑙𝑝ℎ𝑎 = 0.05,
such that they contain the central 95 % of the distribution of function
values at each value of 𝑟 . The bandwidth in the estimator for the pair
correlation function is set to ℎ = 0.2/√𝜆.

To get a visual indication of the distribution of firing fields in the
module, in a way that does not depend on our definition of the grid
phase, we define the stacked firing rate as

𝑠u�u� = 1
𝑛

u�
∑
u�=1

𝑓 u�
u�u�

𝑓
u� , (4.40)

where 𝑓 u�
u�u� is the firing rate map of cell 𝑐, and 𝑓

u�
is its mean. Thus,

the stacked firing rate is defined, bin for bin across the experimental
environment, as the average of all the firing rates of the cells from the
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4.5. Analyzing the phase patterns

module in that bin, normalized such that the mean firing rate of each
cell is 1.

The pair correlation function and stacked firing rate are helpful aids
in the discussion of the results, but we will not perform any quantitative
analysis based on either of them.
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5
Results

The results of the analysis of the phase pattern in each module will
be presented using a similar set of figures for each module, starting
from Figure 5.2. The explanation for the figures is therefore stated here,
leaving the caption for comments pertaining to each particular figure:

• In the phase pattern plots, the blue dots show the grid phases,
the black line is the boundary of the phase space window, and the
green dots show the periodic extension of the pattern.

• The 𝐿-function plots are based on 1000 simulated patterns. The
blue curve and shaded area show the mean and central 95 %
envelope of the 𝐿-function estimators from the simulations, and
the green curve shows the estimator from the phase pattern. The
dashed red line shows the theoretical value 𝐿(𝑟) = 𝑟 . The yellow
vertical lines show the values of 𝑟min and 𝑟max used in Equa-
tion (3.42).

• The test statistic plots are based on the same 1000 simulated
patterns. The blue curve and shaded area show a kernel density
estimate and histogram of the of the test statistic 𝜏 from the sim-
ulations, and the green line shows the value of 𝜏 from the phase
pattern. The 𝑝-value of 𝜏 given the simulated distribution is stated
in the caption to each figure.

• In the pair correlation plots, the blue curve, shaded area and
green curve have the same meaning as in the 𝐿-function plot,
only replacing the 𝐿-function estimator with the pair correlation
function estimator. The dashed red line shows the theoretical
value 𝑔(𝑟) = 1.
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5. Results

(a) kmeans++ (b) Mean shift

Figure 5.1: Result of clustering the grid cells into modules. (a): The location of
all six lattice vectors for all the cells in the whole dataset, color coded by the
module the cell was assigned to. The modules are number 1–4 from the smallest
scale to the largest scale. (b): The location of all six lattice vectors for the cells
in the dataset that were assigned to a module by the mean shift algorithm, color
coded by the module the cell was assigned to. The modules are numbered 1–4
from the smallest scale to the largest scale.

Table 5.1: Properties of modules resulting from u�-means clustering. The mean
grid scale is defined as the grid scale of the template firing pattern of the module.

Module Number of cells Mean grid scale /cm
1 80 49.4
2 38 59.2
3 38 94.1
4 20 108.2

5.1 Modules from 𝑘-means clustering

The result of the kmeans++ clustering is shown in Figure 5.1(a). The
clustering provides four modules with the properties described in Ta-
ble 5.1. The analysis of the grid phases in these modules is presented
in Figures 5.2 to 5.9.
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5.1. Modules from 𝑘-means clustering
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Figure 5.2: Phase pattern analysis, u�-means module 1. (a): The phase pattern
has a much higher density of phases in the south and east of the window than
in the north and west. (b): The u�-value of u� computed from the pattern is
0.0, pointing strongly towards rejection of the periodic binomial process. (c):
The u�-function estimator from the phase pattern lies above the simulation
envelope for almost all values of u� , pointing towards a clustered pattern. (d): The
pair correlation function indicates a strong tendency towards clustering at the
smallest length scales, with an additional significant peak around 10 cm.

63



5. Results

−75 75
𝛿u� / cm

−75

75

𝛿
u�

/
cm

(a) Phase pattern

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
𝜏 / cm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

𝑓(
𝜏)

/
cm

−
1

(b) Test statistic

0 5 10 15 20 25 30 35
𝑟 / cm

0

5

10

15

20

25

30

35

𝐿
(𝑟

)
/

cm

(c) u�-function

0 5 10 15 20 25 30 35
𝑟 / cm

0

1

2

3

4

5

6

7

8

9

𝑔(
𝑟)

(d) Pair correlation function

Figure 5.3: Phase pattern analysis, u�-means module 2. (a): The phase pattern
has a tight cluster near the center and almost no points towards the southwest.
(b): The u�-value of u� computed from the pattern is 0.0, pointing strongly towards
rejection of the periodic binomial process. (c): The u�-function estimator from
the phase pattern lies above the simulation envelope for almost all values of u� ,
pointing towards a clustered pattern. (d): The pair correlation function indicates
a strong tendency towards clustering at the smallest length scales, with an
additional significant peak around 15 cm.
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−75 75
𝛿u� / cm

−75

75

𝛿
u�

/
cm

(a) Phase pattern

0 1 2 3 4 5 6
𝜏 / cm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

𝑓(
𝜏)

/
cm

−
1

(b) Test statistic

0 10 20 30 40 50 60
𝑟 / cm

0

10

20

30

40

50

60

𝐿
(𝑟

)
/

cm

(c) u�-function

0 10 20 30 40 50 60
𝑟 / cm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

𝑔(
𝑟)

(d) Pair correlation function

Figure 5.4: Phase pattern analysis, u�-means module 3. (a): The phase pattern
is quite evenly spread out, but thinner in the northwest of the window than
elsewhere. (b): The u�-value of u� computed from the pattern is 0.139. This does
not support rejecting the periodic binomial process at any relevant significance
level. (c): The u�-function estimator from the phase pattern lies more or less
inside the simulation envelope for almost all values of u� . This is highly consistent
with the periodic binomial process. (d): The pair correlation function generally
varies within the range of what one could expect for a periodic binomial process,
although it tends towards the clustered end of the spectrum at the shortest
length scales.
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Figure 5.5: Phase pattern analysis, u�-means module 4. (a): The phases are
only found close to the corners of the window, but the periodic extension reveals
that they are all more or less part of the same cluster, with empty space in
between. (b): The u�-value of u� computed from the pattern is 0.003. This
supports rejecting of the periodic binomial process at common significance levels
such as u� = 0.05 and u� = 0.005. (c): The u�-function estimator from the phase
pattern lies above the simulation envelope for almost all values of u� between
u�min and u�max, pointing towards a clustered pattern. (d): The pair correlation
function indicates a tendency towards clustering from the smallest length scales
up to around 25 cm.
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Figure 5.6: Stacked firing rate, u�-means module 1. The regions of highest
activity seem to form parallel lines along one of the grid axes of the module.
The regions of lowest firing rate almost form a grid pattern themselves, possibly
indicating that the module lacks cells in a particular region of phase space. In
general, it is easy to recognize common features in this plot and Figure 5.2(a),
as we could reasonably expect.
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Figure 5.7: Stacked firing rate, u�-means module 2. The regions of highest
activity form an almost perfect grid cell pattern, possibly indicating that the
module is dominated by cells in a particular region of phase space.
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Figure 5.8: Stacked firing rate, u�-means module 3. As in Figure 5.6, we see
a grid pattern made up of regions of low average firing rate, possibly indicating
that this module lacks cells in a particular region of phase space.
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Figure 5.9: Stacked firing rate, u�-means module 4. Like in Figure 5.7, the
regions of high activity in this module form a grid pattern, possibly indicating
that this module is dominated by cells in a particular region of phase space.
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5.2. Modules from mean shift clustering

Table 5.2: Properties of modules resulting from mean shift clustering. The mean
grid scale is defined as the grid scale of the template firing pattern of the module.

Module Number of cells Mean grid scale /cm
1 55 48.0
2 31 59.7
3 31 94.8
4 8 112.2

5.2 Modules from mean shift clustering

The result of the mean shift clustering is shown in Figure 5.1(b). The
clustering provides four modules with the properties described in Ta-
ble 5.2. The analysis of the grid phases in these modules is presented
in Figures 5.10 to 5.17.
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Figure 5.10: Phase pattern analysis, mean shift module 1. (a): The phase
pattern looks similar to Figure 5.2, but is certainly less dense. (b): The u�-value
of u� computed from the pattern is 0.004. pointing strongly towards rejection of
the periodic binomial process. This supports rejecting of the periodic binomial
process at common significance levels such as u� = 0.05 and u� = 0.005. (c):
The u�-function estimator from the phase pattern lies just above the simulation
envelope for almost the first half of u�-values, pointing towards a clustered pattern.
(d): The pair correlation function indicates a strong tendency towards clustering
at the smallest length scales.
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Figure 5.11: Phase pattern analysis, mean shift module 2. (a): Qualitatively,
this phase pattern looks very similar to the one in Figure 5.3. (b): The u�-value
of u� computed from the pattern is 0.0, pointing strongly towards rejection of the
periodic binomial process. (c): The u�-function estimator from the phase pattern
lies above the simulation envelope for almost all values of u� , pointing towards a
clustered pattern. (d): The pair correlation function indicates a strong tendency
towards clustering at the smallest length scales.
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Figure 5.12: Phase pattern analysis, mean shift module 3. (a): The phase
pattern is even more evenly spread out than in Figure 5.4. (b): The u�-value of u�
computed from the pattern is 0.481, placing right in the middle of the simulated
patterns, and giving no reason to reject the periodic binomial process. (c): The
u�-function estimator from the phase pattern lies inside the simulation envelope
for all values of u� . This is fully consistent with the periodic binomial process.
(d): The pair correlation function generally varies within the range of what one
could expect for a periodic binomial process.
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Figure 5.13: Phase pattern analysis, mean shift module 4. (a): The eight
phases from this module seem to stick close to the boundary of the window, but
look fairly evenly spread out when taking the periodic extension into account.
(b): The u�-value of u� computed from the pattern is 0.57. This does not suggest
rejection of the periodic binomial process. (c): The u�-function estimator from
the phase pattern lies within the simulation envelope for all values of u� , fully
consistent with a periodic binomial process. (d): The pair correlation function
indicates a very close correspondence between this pattern and what we could
expect from the periodic binomial process.
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Figure 5.14: Stacked firing rate, mean shift module 1. The lines of high activ-
ity from Figure 5.6 are still present, and the grid pattern formed by low-activity
regions is even more pronounced.
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Figure 5.15: Stacked firing rate, mean shift module 2. Like in Figure 5.8, we
see an almost perfect grid cell pattern formed by the regions where the module
as a hole is most active.
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Figure 5.16: Stacked firing rate, mean shift module 3. As in Figure 5.8, we
see a grid pattern made up of regions of low average firing rate.
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Figure 5.17: Stacked firing rate, mean shift module 4. Like in Figure 5.9, the
regions of high activity in this module seem to form a grid pattern.
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6
Discussion

The results presented in the previous chapter provide a very strong
indication that the phases of grid cells in a module are not necessarily
uniformly distributed. On the contrary, they show that there exist mod-
ules with an abundance of cells with similar phases. In particular, the
analysis presented in Figures 5.2 and 5.3 present extremely convincing
arguments for rejecting the assumption of uniformity for modules 1
and 2 in this dataset – for these modules, the test statistic quantifying
the deviation from uniformity virtually goes through the roof! Moreover,
the similar findings for the mean shift clustered versions of the mod-
ules, presented in Figures 5.10 and 5.15, show that the conclusion is
independent of the particular details of the clustering used and which
modules fringe cells are assigned to – the degree of non-uniformity is
very similar in the hard core of archetypical cells of each module, and
in the modules in their most inclusive definition.

For modules with larger scale, the situation is slightly different. In
this dataset, no evidence against uniformity is discovered in module
3, and for module 4 the evidence differs between the two types of
clustering (however, the failure to provide evidence against uniformity
in the mean shift clustered module 4 should perhaps not be taken too
seriously – as evidenced by the very wide envelope in Figure 5.13(c), we
should not really expect a statistically significant rejection of anything
with only 8 samples). Hence, the main finding in this analysis is not
that grid cell modules must have non-uniform coverage of phase space.
The significant finding is rather that there exist grid cell modules with
non-uniform coverage of phase space.
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6. Discussion

6.1 Implications

If this conclusion stands up to scrutiny, it will have considerable im-
plications for the credibility of different models for grid cell networks.
As explained in Chapter 2, models based only on continuous attractor
networks need uniform phase coverage to create grid cell-like dynamics.
Such models will therefore have to be modified to accommodate the new
evidence. At the same time, the relative standing and plausibility of
alternatives such as adaptation models may strengthened.

Since the findings here only suggest that grid cell modules can have
non-uniform phase space coverage, not that they must, there is no
immediate need for models that explicitly predict non-uniform phase
space coverage – they only have to allow it. Further analysis using data
from several animals will be needed to formulate more precise model
requirements.

6.2 Possible confounders

The analysis leading to these results is based on certain assumptions.
Crucially, we have trusted that Stensola et al. were successful in elim-
inating all duplicates of the same cell from the data in their original
analysis [9]. Including multiple recordings of the same cell in the same
environment would obviously lead to phase space clustering and might
contribute towards a result similar to the one observed here.

We have also assumed the absence of any topographical organization
of phases that could be resolved by the multisite tetrode recordings,
such that the dataset can be regarded a random and independent sam-
ple from the total grid cell population without bias towards particular
phases. If, instead, cells recorded on the same tetrode tended to be
close in phase, this assumption would not be justified, and we would
not be able to draw conclusions about the distribution of phases in
the total grid cell population based on our result. Experimental ev-
idence supports our assumption by indicating that grid phase lacks
topographical organization [3, 7, 10].

Finally, we have assumed that the absolute grid phase is comparable
over multiple recording sessions spanning several months. Previous
results suggest that absolute phase is less stable than pairwise relative
phase across multiple recordings [10]. However, unless the variations
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in absolute phase turn out to be in the form of systematic drift in
some direction, this should not be a problem – random perturbations of
absolute phases should not increase the probability of observing phase
clustering when comparing cells from different sessions.

6.3 Possible structure in the phase distribution

If the conclusion is drawn that the distribution of grid phases may be
non-uniform, the natural follow-up is to ask whether one can identify
any particular kind of structure in the distribution. We will not attempt
a rigorous approach to this question here, but based on the phase
patterns and stacked firing rates we can speculate a little bit and
perhaps stumble upon some fruitful topics for further research.

A striking feature of the stacked firing rate in Figure 5.6, which is
also obvious in the corresponding phase pattern in Figure 5.2(a) when
one knows what to look for, is the organization of high activity in bands
parallel to one of the grid orientation axes, with corresponding bands
of low activity in between. Similar features are evident in the phase
patterns for all modules: a band of low phase density strikes through
each phase pattern perpendicular to one pair of window edges, and
thus parallel to a grid orientation axis. This may indicate a systematic
anisotropy wherein the phase distribution is uniform in a dimension
parallel to one of the grid axes, and non-uniform in the perpendicular
direction. The anisotropy may perhaps even be related to the distortion
or shearing of the grid, since for both modules 1 and 2, the band of low
phase density runs perpendicular to the direction in which the window,
and hence the grid pattern, is most stretched.

A completely different kind of structure, only relevant for modules
with large grid scale, can be guessed from the stacked firing rate Fig-
ure 5.9 and the phase pattern Figure 5.5(a). We see that the module
has low activity in the center of the environment, and correspondingly
all grid phases are found close to the window boundary. But for grid
cells with scales this large, having a firing field at the center of the
environment would also mean that this would be the the only firing
field located within the environment, while cells with other phases
easily fit three fields in the box. If the dynamics of grid cell networks
favorize configurations where cells have more than one firing field within
the environment, this would naturally lead to a non-uniform phase
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distribution for modules with large scale.

6.4 Comparison with previous results

This is not the first time the distribution of grid cell phases is investi-
gated, and both Hafting et al. and Yoon et al. have failed to find evidence
for non-uniformity [7, 10].

An obvious difference between this work and the previous results
is the size of the dataset. For example, Yoon et al. assessed the grid
phase distribution based on 223 cell pairs, while here, the 80 cells in
module 1 alone give 6320 cell pairs. It is therefore not surprising that
we are able to draw new conclusions from this dataset.

Methodological differences are also likely to play a part. Hafting et al.
test the uniformity in one dimension of the absolute value of the relative
phase between pairs of cells, what we would write |𝜹u� − 𝜹u� |. But the
uniformity of these quantities is not equivalent to the uniformity of 𝜹u�

in two dimensions. The latter condition would imply a greater number
of large absolute phase displacements compared to small.

Yoon et al. choose to combine pairwise relative phases from many
different animals and experiments in their analysis.1 This is accom-
plished by projecting all the relative phases into a canonical lattice unit
cell that is independent of grid scale, orientation, and deformation. This
is an interesting approach if one wants to identify universal structures
common in all animals, that scale with grid scale in the phase distribu-
tion, such as a tendency of relative phase differences to have a length
that is a particular fraction of the grid scale (what we would identify as
a bump in the pair correlation functions of all modules), or a particular
direction with respect to the grid orientation axes. However, it does not
answer the more fundamental question, namely if the grid cells in a
module always cover the phase space uniformly or not. In particular,
if phases tend to cluster in ways that show little repeatable structure
across different animals, combining the relative phases from different
animals in one analysis will tend to smooth out the clustering and give
an impression of uniformity.

1Of course, only pairs of cells from the same animal are used to compute pairwise
relative phases.
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Hence, the present findings answer a slightly different question than
the previous results, and there is no need to consider the new findings
and the previous results incompatible.

6.5 Suggestions for further work

Although potentially significant, the results presented here also have a
preliminary character: they are based on a single animal, and several
objections such as the mentioned confounders can be raised. Further
work on this topic should therefore seek to answer some of the following
questions:

• Can these results be reproduced with data from other animals?

• Is there some topographical order in the grid phases in this dataset
that can explain the observed clustering of grid phases?

• How appropriate is the comparison of cells from different recording
sessions in phase space? Can similar results be obtained by only
considering cell pairs from the same recording session?

• Is there any identifiable common structure in the distribution of
grid phases?

In addition, the 𝐿-test should be complemented by another statistical
test to confirm the validity of the findings. The theory of point processes
has a lot more to offer, for example the 𝐽 -test [16].

6.6 Conclusion

Using a novel method for computing the absolute spatial phase of a
grid cell, and applying tools from the field of point process statistics to
analyze the distribution of phases within a module, we have found con-
vincing evidence that not all grid cell modules exhibit uniform coverage
of the spatial phase space by their cells. This is a new discovery, which
contrasts previous results without being incompatible with them. It has
implications of considerable significance for the development of theoret-
ical models for grid cell networks, in particular requiring adjustments
to models based on continuous attractor networks.
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A
Bravais lattices

A Bravais lattice is an infinite set of points arranged in a periodic pattern
that looks exactly the same from any of the points [26]. Any such lattice
can be characterized by a finite set of vectors known as the primitive
vectors. There are as many primitive vectors as the dimension of the
space in which the pattern is embedded, and each point in the lattice
can be written as a sum of an integer multiple of each of the primitive
vectors. For example, in two dimensions (which is the case most relevant
for firing patterns from grid cells in non-flying animals) a Bravais lattice
is defined by two primitive vectors 𝒂1, 𝒂2, and the translation between
two arbitrary points in the lattice can be written

𝑹 = 𝑛1𝒂1 + 𝑛2𝒂2 , (A.1)

with 𝑛1, 𝑛2 integer. The vectors 𝑅 are called the lattice vectors. Note
that there are many possible choices of primitive vectors for the same
lattice.

A.1 Primitive unit cells

A primitive unit cell of a Bravais lattice is any region that upon repeated
translation with every lattice vector 𝑅 tiles the space in which the lattice
is embedded, without overlap. There are several possible primitive unit
cells for a lattice, all having the same area. The two most commonly
used are the following:

• Parallelepiped: The parallelepiped (or parallelogram in two dimen-
sions) spanned by a set of primitive vectors for the lattice is always
a primitive unit cell.
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• Voronoi cell: The Voronoi cell is the set of points closer to a given
lattice point than to any other lattice point. For Bravais lattices
this is also known as the Wigner-Seitz cell.

For a two-dimensional Bravais lattice, the Voronoi cell is an irregular
hexagon with reflection symmetry through its centroid (except in the
case of a rectangular lattice, for which the Voronoi cell is a rectangle).
The Voronoi cell and a parallelogram cell for a perfect triangular lattice
are shown in Figure A.1.

A.2 Perfect triangular lattices

A perfect triangular lattice is usually characterized by primitive vectors
of equal length, |𝒂1| = |𝒂2| = 𝑙, at an angle 𝜑 = 𝜋/3 = 60∘ or 𝜑 =
2𝜋/3 = 120∘ to each other (these two descriptions are equivalent and
interchangeable: if 𝒂1, 𝒂2 are primitive vectors for a triangular lattice
and have 𝜑 = 𝜋/3, the vectors 𝒂′

1 = 𝒂1, 𝒂′
2 = 𝒂2 − 𝒂1 are primitive

vectors for the same lattice and have 𝜑′ = 2𝜋/3). A triangular Bravais
lattice is shown in Figure A.1.
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A.2. Perfect triangular lattices

𝒂1

𝒂2
𝜑

Figure A.1: Finite subset of a triangular Bravais lattice. The arrows show one
possible set of primitive vectors for this lattice. The vectors are of equal length,
and the angle between them is u� = u�/3. The Voronoi cell is shaded green, while
the parallelogram unit cell spanned by the primitive vectors is shaded purple.
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