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Abstract

The IP network was built decades ago, and with today’s use of Internet,
a new network layer protocol is much needed. Named Data Networking
(NDN) is a proposal for content-centric discovery and routing. Yet, the
public key infrastructure issue has not been solved in NDN. Identity-based
cryptography (IBC) seems to be applicable to wireless sensor networks,
and even more applicable when deployed over NDN.

In this paper I will explain the NDN architecture and the basics of IBC.
Further, I will model and implement a trust model in a thought sensor
network using IBC, running over NDN.

Implementing and testing my proposal verifies the relevancy of IBC over
wireless sensor network running over NDN, and the usability of developing
applications over NDN.

I formally and informally prove the security in the protocols suggested
for device registration and data pull under deployment in the application.





Sammendrag

IP nettverket ble bygd for flere tiår siden, og med dagens bruk av Internet
ser vi at en ny nettverksprotokoll er sårt trengt. Named Data Networking
(NDN) er en foreslått nettverksprotokoll som baserer seg på innhold,
istedenfor punkt-til-punkt arkitekturen som er grunnlaget for IP. Selv
med flere tiårs bruk av Internet, er ennå ikke problemene med Public
Key Infrastructure (PKI) løst. I NDN, har man heller ikke klart å finne
en løsning på dette. Identitetsbasert kryptografi (IBC) viser seg å være
anvendelig til trådløse sensornettverk, og enda mer når sensornettverket
kommuniserer over NDN.

I denne masteroppgaven forklarer jeg NDN arkitekturen og de grunnle-
gende prinsippene i IBC. Jeg modellerer og implementerer en applikasjon
for å demonstrere bruken av IBC over NDN i et tenkt sensornettverk.

Implementasjonen og testingen av mitt bidrag verifiserer relevansen av
IBC i et sensornettverk som kjører over NDN, samt brukervennligheten
rundt det å utvikle applikasjoner over NDN.

Jeg formelt og uformelt beviser sikkerheten i protokollene som er foreslått
til enhetsregistrering og dataforespørsel i applikasjonen.
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Chapter1Introduction

1.1 Motivation

The translation from name to address and location is a fundamental problem to all
networks. Named Data Networking (NDN) is a proposal for content-centric discovery
and routing approach to networking going on at the University of California, Los
Angeles (UCLA), which is part of the inspiration and a contact point for this work.

In general, the name to address resolution can either be maintained by a catalogue
lookup service, such as Domain Name System (DNS) (Internet) and Home Location
Register (HLR) (mobile networks), or resolved on-the-fly by a protocol on request,
such as Address Resolution Protocol (ARP) (Local Area Network (LAN)). There
has been done a tremendous amount of work on the naming problem in distributed
systems, some became big failures (e.g. X.500) others such as the web Uniform
Resource Locator (URL)s are very successful. Bringing things even further, the Digital
Object Identifier (DOI) system is a Uniform Resource Identifier (URI) directed at the
content/object itself rather than a location. Very much related to the name/address
problem is the information security problem of efficient and practical public key
distribution, which remain unsolved in practice, even though a significant number of
digital certificate and verification protocols and schemes have been proposed, and
systems tested over the last two decades. One notable and early theoretical proposal
is Adi Shamir’s Identity-Based Cryptography (IBC) proposal [Sha84], and subsequent
work, that may be revisited and applicable to NDN.

1.2 Problem and Scope

Designing a new network protocol for the future Internet, one of the most significant
changes should be security. Trust management plays a big part in security, and thus
we cannot design trust management on known Internet Protocol (IP) failures such
as X.500. Public Key Infrastructure (PKI) is a tough challenge to solve and it is

1



2 1. INTRODUCTION

probably not a rigid solution, but rather case specific. NDN is being designed with
security in mind, but the issue of trust management is yet to be solved.

In addition to the problem description, I also address the trust management issue in
a thought sensor device network using IBC. By using the Named Data Networking
Forwarding Daemon (NFD) I will implement my proposal for such sensor network
over NDN, and contribute with ideas and concepts around such network.

1.3 Methodology

When developing applications over NDN it is important to understand the archi-
tecture of the protocol. I will study the protocol, reading the guide for NDN
developers [ASZ+15] and papers published by the NDN-team1 describing protocol
features in addition to existing applications running over NDN.

The concept of IBC should be thoroughly understood, as I will apply it in my
application. Thus I will study IBC, finding relevant papers at Google Scholar2.

Establishing a solid background knowledge in these topics, I first design the application
flow in sequence diagrams. Based on the Application Programming Interface (API) to
the Named Data Networking Client Library in Python (PyNDN2), I try to implement
the proposed design and see where changes can be made to minimize communication
overhead, maximize security (i.e. Confidentiality, Integrity and Availability (CIA))
and maximize usability. The implementation will be tested and cryptographic
parameters will be measured. I will prove the security in the protocols I propose and
finally I will discuss the work done.

1.4 Outline

This thesis will first introduce NDN, one of the proposed protocols for the future
Internet. I will explain the architecture of NDN as well as some related work regarding
my application proposal and IBC. The concept of IBC will also be explained. The
specifications for the Health Sensor System (HSS) application will be explained in
detail and implementation choices will be discussed. I will present the results of the
implementation and testing. At last, a discussion around the research topics in the
thesis will be presented and finally my conclusion around the same topics.

1NDN Publications - http://named-data.net/publications/
2Google Scholar - https://scholar.google.no/



Chapter2Background

"We model the future on the past. Sometimes that’s a mistake."

— Van Jacobsen, SIGCOMM 2001

This chapter will give a brief overlook of the motivation for Information-Centric
Networking (ICN), as well as explaining details of the ICN protocol NDN. The NDN
architecture will be reviewed. Finally there will be a quick summary of related work
to this thesis.

2.1 Motivation for Information-Centric Networking

When Internet was created in the 1960’s, the researchers where inspired by the
existing communication network; the telecommunication network. Because it was
natural and logical to think that people would send and receive short messages
and instructions, the point-to-point communication model was a logical choice of
architecture. As Internet has developed, the traffic has increased enormously over
the past few years. In the Global Internet Phenomena Report 1H2014 done by
Sandvine [San14], shows that close to 64% of all IP traffic in North America was
Real-Time Entertainment streaming. In Figure 2.1 it can easily be seen that most of
the traffic is content download, and not communication as Internet originally was
designed for. With this in mind, the IP architecture does not provide an efficient
transport model for what we are actually using the network for.

When designing the IP network, security was not the first priority. A logical thought
considering that they did not know what the Internet is being used for nowadays
and how big it has become. Many protocols related to Internet has been designed
and deployed mainly with the goal of functionality, not thinking about security. In
the years after the birth of Internet it was discovered that Internet needed security
at several layers, due to the increase of application requirements and transmission
importance. Internet Protocol Security (IPsec) is a very good example of work trying
to patch up security flaws in the design of Internet.

3



4 2. BACKGROUND

(a) North America (b) Europe

Figure 2.1: Peak Period Aggregate Traffic Composition in (a) North America and
(b) Europe, fixed Access [San14]. In North America, Netflix alone is responsible for
34.21% of all content download.

Today, WiFi is disseminated across homes and buildings in many countries. Wireless
technology has grown rapidly and it is predicted continuous growth in the years to
come [Ros14]. The Internet of Things (IoT) trend is coming and the IP network is
not designed for broadcast. Therefore wireless connection is not as easy as it should
and could be. Devices should easily be able to communicate directly with each other
without having to interconnect through a router.

Another problem is the network redundancy. Looking at Figure 2.1 and read-
ing [San14] where it comes to light that Netflix stands for 34.21% of all content
download in America, one can conclude that there are a lot of movies downloaded
from x users geographically located close. And thus the network path from the
source (e.g. Netflix) to this geographical place is allocated x too many times. This is
because a node in an IP network does not know what it processes, but rather the
packet’s endpoints, i.e. where it goes and where it comes from, hence the node throws
all packets after use. The fact the every node knows nothing about the content the
process, makes every node dumb. The network is designed for redundancy when it
comes to content download.

These design failures are some the reasons why the research for the future Internet
began. ICN [ADI+12] is a concept developed under this research. It is built upon
delivery of content, rather than the point-to-point model we previously have seen
in IP. ICNs goal is to build an infrastructure of a new Internet that can achieve
efficient, secure and reliable distribution of content. In 2012 Internet Research Task
Force (IRTF) established ICN working group.
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2.2 Content Centric Network & Named Data Network

The first network protocol purposed for ICN, Content Centric Networking (CCN), was
presented by Van Jacobsen at a Google Talk in 2006. He, amongst other contributors
of CCN, has been working on developing the Internet as we know it since the early
start. Jacobsen has contributed to Transmission Control Protocol (TCP)/IP with his
flow control algorithms [Jac88] and TCP header compression [Jac90]. CCN focuses
on naming content, instead of naming IP-addresses. The research project is lead by
Palo Alto Research Center (PARC). A branch of CCN is the NDN [ZAB+14] research
project started in 2010, which Jacobsen also has contributed to. One of the biggest
contributers is UCLA, with Lixia Zhang in the lead. Zhang is known for her contribu-
tion to, amongst many other, Resource ReSerVation Protocol (RSVP) [BZBH97] and
Media Access Protocol for Wireless LANs (MACAW) [BDSZ94]. The NDN project
is also one of few projects funded by National Science Foundation (NSF) in their
Future Internet Architecture (FIA) program [Fou].

2.3 NDN Architecture

Since the knowledge of how NDN works is not disseminated amongst computer
scientists, it is essential for this thesis to describe how it works. This section will
describe the basic architecture of NDN [ASZ+15] and compare some solutions with
the equivalent solutions in IP.

2.3.1 Brief Introduction

In NDN there are two types of packets, Interest and Data packet. All Data has
be given a content Name by its publisher. To publish some content to the network,
a user has to register the prefix, i.e. announcing the contents Name, which tells the
network that the content can be retrieved on the announced Name. The retrieval
can only be achieved if someone expresses an Interest to the content Name. If a
user expresses Interest in the Name, the network will route the Interest to the
closest node that holds the Data. The Data packet can be retrieved from any node,
trusted or not, over any type of communication channel, secure or not. This is due
to that the network layer demands a signature from the content’s publisher. Finally
the requester will receive the Data packet containing the content requested. The
Data can be verified by the requester ensuring that the publisher who “owns” the
content actually is the owner, because its cryptographically signed. If confidentiality
is needed, the Data can be encrypted, thus the communication channel does not need
to be secured.

A NDN node is slightly different to an IP node. Since the Data is linked to a Name
and signed by its publisher, the node can cache the Data and be able to satisfy other
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Interests to the same Data. This provides natural multicast in the network, and
will ease the network load drastically.

Securing the Data rather than the connection, leads to a network where one can
easily verify the connection between content and its publisher.

2.3.2 NDN - Based on Existing Concepts

The goal for the network design is essentially making it more secure and applicable
for content without removing the communication service that IP was designed for.
Designing a new network protocol we have to look at what measurements have been
done in the existing IP network to tailor it towards content sharing. As the reader
might notice after reading the background material, NDN is built upon concepts that
we can map to well working solutions deployed over TCP/IP. Some examples are:

– BitTorrent - The concept of sharing bits of files between peers in a network is
a well-working distributed method for sharing content. Requesters do not care
where the content come from, but only that the content is what is requested.

– Content Distribution Network (CDN) - Many Application Service Providers
(ASPs), such as Netflix and YouTube, have found out that their service performs
a lot better for their costumers if they cache up their data close to where the
users is located.

2.3.3 Packets

There are two types of packets in NDN; Interest packet and the corresponding
answer, i.e. the Data packet, illustrated in Figure 2.2.

Figure 2.2: Interest packet and Data packet. Reconstructed from [Jac09].
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The Interest packet specifies a content Name. The Name can have a hierarchical
structure and signatures can be added after the URI, e.g. “/ndn/no/ntnu/haakon/-
file/1/<signature>”. An Interest can also contain a set of different Selectors to
specify original requirements for the Data response. Some of the Selector fields are:

– KeyLocator - can be used to specify where the Public Key for the signature
can be found.

– Exclude - can be used to specify a list or a range of names that should be
excluded from the Name. I.e. if the Name is “/ndn/no/ntnu” and the Exclude
contains “/item”, the returned Data cannot contain “/ndn/no/ntnu/item”.

– MustBeFresh - if True, a node cannot answer with a Data packet where the
FreshnessPeriod has expired. FreshnessPeriod is a time value of how long some
Data is fresh.

– ChildSelector - can be used to select either the leftmost (least) or the rightmost
(greatest) child, e.g. content version.

– Min/MaxSuffixComponents - refers to Name components that occur in the
matching Data beyond the prefix.

The Nonce field sets automatically. This is used to uniquely identify an Interest
and prevent looping in the network.

The Data packet is a response to the Interest packet, and contains the content
Name and the Content itself. It also has a MetaInfo field that is used to specify
the FreshnessPeriod (milliseconds), ContentType and FinalBlockId. When someone
requests a file “/ndn/no/ntnu/haakon/file/1” with an Interest, the response will
have the same Name, but also containing the file.

Because a Data packet can only exist if there is a corresponding Interest, NDN
is pull-based. Hence unsolicited Data packets will be thrown away, i.e. there is no
content in the network, that is not requested from someone. This reduces unwanted
traffic compared to User Datagram Protocol (UDP) in IP, and minimizes the Denial
of Service (DoS) vulnerability drastically.

2.3.4 Names

In today’s Internet we are well familiar with the mapping of URL and IP addresses.
This mapping, done by the DNS, eases the pain of remembering an IP version 4
(IPv4) (32-bit) address and lately also IP version 6 (IPv6) (128-bit) addresses.
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In a NDN network a node does not have an address nor a Name. The routing of
packets is done by content lookup, rather than address lookup. This means that all
content in the network do have a Name. When an Interest is sent, each node asks
the network: “Where can I find a node that can provide me with this content?”.

There is no strict rules for a Name in NDN. This means that a network node only
routes an Interest based on longest prefix match. Naming is left to the application
design, thus it can be customized for the applications best purpose. However the
network assumes hierarchical structured names, hence routing will perform better
with a hierarchical Name design.

For the network to perform even better, the Interest can append some Selectors
that can help the network to decide which Data to retrieve and where to route.
With Selectors a partially known Name can successfully retrieve the right Data.
E.g. when a user want to download the newest version of some content, lets say
“/ndn/no/ntnu/haakon/file/<version?>”, but do not know which version is the
newest, the user can append a ChildSelector to choose the newest version, if several
versions are offered.

The fact that Data has a Name makes Simple Distributed Security Infrastructure
(SDSI) and IBC highly applicable to NDN. Namespace-based trust was introduced
in SDSI [RL96], binding names to public keys. IBC will be explained in detail
in chapter 3, and is a key topic in this thesis.

2.3.5 Network Node

It may sound like a impossible task to force todays network from IP to NDN.
But looking at history, IP first ran over the telecommunication network and later
established its own physical network, NDN can run over the IP network and later
create its own physical network. Also, if we look at an existing model of an IP
node Figure 2.3 and compare it to a NDN node Figure 2.4, we see that they look
much the same. The only significant difference in hardware is the storing capacity,
which becomes cheaper and cheaper each month. However, the logic behind a NDN
node is a bit more complex, and thus lead to more knowledge about what content the
node has to offer. To understand this, the following entities in a NDN node should
be understood:

1. Face - A term used for generalization of different interfaces, e.g. physical like
Ethernet, or overlay like TCP and UDP. A Face can also be a UNIX-domain
socket for communication with a local application.

2. Pending Interest Table (PIT) - All pending or recently satisfied Interests are
stored here, together with the incoming and outgoing Face. If a new incoming
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Interest matches an entry in the PIT, the incoming Face will be added to
the entry.

3. Content Store (CS) - When a node receives a Data packet that has the corre-
sponding entry in the PIT, it stores the Data packet in CS as long as possible.
The CS works like a cache for the node.

4. Forwarding Information Base (FIB) - Forwarding strategy is stored for each
Name prefix. When a node forwards an Interest, it will do a longest prefix
lookup in the FIB and send the Interest further to the best matching Face.

Figure 2.3: Model of IP node. A packets enters the node through an interface. The
node decides whether the packet is for the node itself, or passes it further to next
node, found in the FIB. Reconstructed from [Jac09].
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Figure 2.4: Model of NDN node. A packet enters through an Face. The node checks
whether the Interest is already queried in the PIT, or stored in the CS, or passes
it further to next node, found in the FIB. Reconstructed from [Jac09].

In contrary to an IP node, a NDN node knows what content comes through itself.
Since all content is associated with a Name, a NDN node can know 1) what is requested,
but not satisfied (i.e. stored in PIT), and 2) what has been satisfied earlier and still
available, i.e. still cached in CS. With this knowledge the network can now satisfy
Interests with content already stored in cache, hence the network can naturally
offer multicast on network layer. Figure 2.5 illustrates a NDN network where we can
see that the network does not nearly has to send equal amount of content than in
an IP network. The mobile expresses an Interest (1) in a file named /ntnu/file1.
The Interest finds its way to the publisher of the file, and thus the publisher
responds with a Data packet (2) named /ntnu/file1 containing the file, and the
Data finds it way back to the mobile. When the second computer expresses the same
Interest (3), the consecutive node has already cached the Data response matching
to the Interest in its CS, hence the Interest is satisfied already at this point (4),
and not forwarded any further. Same happens when the third computer expresses
again the same Interest (5) to the network. Given that the file (/ntnu/file1)
these computers are interested in is 4 gigabyte, the network saves a lot of traffic with
multicast provided by NDN. Best case scenario in NDN is illustrated in Table 2.1.
Every node is saving bandwidth in a NDN network compared to nodes in an IP
network. Worst case scenario, where cached Data is thrown away, the NDN nodes
will perform equal to the IP nodes.
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Figure 2.5: Multicast in NDN.

Node Data in/out IP Data in/out NDN % bandwidth needed in NDN
node1 8GB/8GB 4GB/8GB 50%/100%
node2 8GB/8GB 4GB/4GB 50%/50%
node3 12GB/12GB 4GB/8GB 33%/66%
Publisher -/12GB -/4GB -/33%

Table 2.1: Node bandwidth allocation comparison in IP and NDN (best case). Mobile,
2nddevice and 3rddevice requests /ntnu/file1 (4GB). The NDN nodes allocates
bandwidth 44.3% (incoming) and 66.3% (outgoing) compared to IP nodes.

2.3.6 Incoming Interest

In Figure 2.6 we see an incoming Interest through a Face. The node checks the
PIT for pending or recently satisfied Interests. If there is no match, the node will
do a lookup in CS to see if a corresponding Data packet is cached. If there is a match
in the PIT it will only add the Face to the PIT entry. If there is a match in the
CS the node will return the Data. If there is no match in either the PIT or the CS
the node will make a new PIT entry and do a longest prefix match lookup in the
FIB to decide which Face(s) to forward the Interest. The node waits for incoming
Data and satisfies the PIT entry when the Data arrives, explained in subsection 2.3.7.
Each PIT entry has its own routing strategy. I.e. whether, when, and where to
forward the Interest.
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Figure 2.6: Decision tree for a NDN node when receiving an Interest.

2.3.7 Incoming Data

In Figure 2.7 we see incoming Data. The node will check the PIT for an entry, if a
match is found the node will forward the Data to all the Faces registered in the PIT
entry. If no match, the node will disregard the Data because it is unsolicited content.
The node checks the Data from local applications cached in CS first, if there is no
match, it stores the content in CS and sends the Data to all requesters (i.e. through
all Faces stored in the PIT entry).
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Figure 2.7: Decision tree for a NDN node when receiving Data packet.

2.3.8 Security

Below I will present why NDN facilitates good security properties, explaining some of
the security aspects around NDN discussed in [SJ09], and the difference in securing
data and securing channel.

Trusting Host versus Trusting Content

Doing a whole lot of mapping at different layers is not a good security model. Each
mapping introduces a potentially vulnerable target for forgery. The IP network
is designed in a way that makes us want to trust the host. What we are actually
trusting is the mapping of the URL to the IP address. DNS points to a host address
that speaks for the URL you are interested in, and thus if someone manages to forge
this address exploiting DNS Security (DNSSec), you cannot tell if you talk to the
right host.

As seen in Figure 2.8 the security in NDN is dealt with in one layer, rather than over
several layer as needed in the IP architecture, i.e. Transport Layer Security (TLS),
DNSSec, IPsec, etc.



14 2. BACKGROUND

Figure 2.8: NDN versus IP architecture. The building blocks of the NDN architecture
are named content chunks, in contrast to the IP architecture’s fundamental unit of
communication, which is a point-to-point channel between to endpoints identified by
IP addresses. [ZAB+14].

The content is rarely encrypted and the confidentiality is not preserved, unless there
is established a secure channel using e.g. TLS. This is a problem due to the issues
concerning tampering and eavesdropping. The content the host we trust provides can
contain malicious software and important information can be swapped even though
the channel is secured. This is the concept of securing the channel, and the trust
is based on certificates. This trust is an issue itself. Due to the global PKI and
essentially because the certificate is signed by a Trusted Third Party (TTP) all trust
comes outside the namespace. This makes it problematic to retrieve content over IP
from other sources than the trusted host because you do not trust any other than
the host you are connected to via the secure channel. The host does not provide
any assurance that the content is verified by the host itself, it only assures a secure
channel.

A goal is to get the desired content from the intended source, unmodified in transit.
Therefore a better solution would be to trust the content rather than the host of the
content. This concept requires us to change the network trust. Skipping 1) all the
trust based in mapping of hosts, 2) where the data comes from, and 3) securing the
channel. The content should be linked to the publisher and this linkage should be
signed by the publisher. The concept is to mathematically prove that the content
originates from the believed publisher, and that its not modified nor been exposed
to unauthorized parties (if necessary). This introduces a possibility that anyone can
retrieve any piece of data from anyone, trusted or not, regardless of secure channel
or not. The question is how can this idea be achieved? As Diana Smetters and
Van Jacobsen says [SJ09], we must ensure the content’s validity, provenance and
relevance.
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– Validity - Complete and unmodified content from the publisher.

– Provenance - Should the publisher be trusted with the content requested?

– Relevance - Is the content what the requester intended?

There exist concepts to achieve these goals. One can do hash verification on the
content to be sure that the content is unmodified. But there should also be a binding
between the Name to the content. However, this does not provide provenance nor
relevance because the publisher is not linked to the data, and thus we cannot be
sure the publisher knows what the content contains. Hence there should be a linkage
between the publisher, the Name and the content. A solution is to do a triple mapping
of the Name (N) and content (C), cryptographically signed by the publisher (P) seen
in Equation 2.1. This mapping is unique, relying on the hash computation done
in the signing, providing validity, provenance and relevance. A requester can easily
verify the Name and content binding, as well as authenticating that the data originates
from the publisher who knows what the content is. Anybody can retrieve M(N,P,C) and
verify the content and publisher mapping, hence an untrusted host and an insecure
channel is not so bad anymore.

M(N,P,C) = (N, C, SignP (N, C)) (2.1)

A clear benefit of this approach is that it scales. The Name can be of any form
because of the nature of hashing. Different naming rules should apply for different
applications as there are no global naming rules that are optimal for each application.

This concept is integrated in the NDN protocol and it is required that every packet
delivered from application layer is signed by the application. The protocol also
provides an easy way for the application to encrypt data providing confidentiality.
Encrypting the content with symmetric keys that are distributed to parties obtaining
access right to the content together with the validity, provenance and relevance
provides a way of securing data rather than securing communication channels.

Anonymity

Based on the nature of this architecture, NDN facilitates the practice of anonymity
in the network. In a Tor network [DMS04], each node participating in a circuit
only knows the two neighboring nodes. Only a global passive adversary that can
monitor the entire network is able to decide the whole packet path, hence an
adversary can know who is requesting and who is responding. Since the packet
format (subsection 2.3.3) in NDN has no source or destination specific field as in a
IP packet, the privacy of the network is more similar to a Tor network. If a packet
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is captured at any arbitrary point of its path, the only information an adversary
will get, is the two nodes between the packet capture and the content Name. Unless
monitoring a complete network, it should be close to impossible to track packets.
However, because of the semantic naming there are some issues related to privacy
as it easily can be seen in the Name what the content contains in many cases. Also
since signing of each Interest is required by the sender, some privacy information
might leak. DiBenedetto et al. try to address these problems in [DGTU12] with an
approach that use existing solutions from the Tor network. In 2010 the NDN-team
planned to implement TORNADO [ZEB+10, Section 3.7], the NDN version of Tor,
to demonstrate the privacy preservation capabilities of the network.

2.3.9 Attacks

Paolo Gasti et al. identifies several DoS attacks on NDN in their paper about DoS
and Distributed Denial of Service (DDoS) in NDN [GTUZ13]. Other works have
been done related to DoS in NDN [WCZ+14, SNO13, CCGT13]

In [LZZ+15] Zhang et al. propose an extension of the NDN protocol for addressing
the access problem of cached Data in nodes. The NDN network is also potentially
susceptible to content poisoning attacks which Ghali et al. addresses in [GTU14].

2.4 Related work

The work in this thesis builds upon three main concepts: synchronization, theoretical
sensor networking and IBC. Some related work done will shortly be presented in this
section.

There have been done work to show that NDN is well suited for synchronization.
A synchronization application built by the NDN-team is ChronoSync [ZA13]. As
explained in chapter 4, I use ChronoSync to achieve synchronization of files over
NDN. There is also an application called iSync [FAC14], which is a scalable and high
performance synchronization protocol.

Amadeo et al. [ACM14] propose a solution for reliable retrieval of Data from different
wireless producers which can answer to the same Interest packet. This is highly
applicable to a sensor network where you want to communicate with the closest
sensor, e.g. the light in this room. In [ASLF14] Abid et al. simulate Data aggregation
in wireless sensor networks. Jeff Burke et al. addresses efficient and secure sensing
over NDN [BGNT14]. Burke has also contributed in developing and installing a
system that secures building management systems at UCLA using NDN [SDM+14].

There is little research done on IBC in NDN. In [ZCX+11] Xinwen Zhang et al.
propose a hybrid scheme with traditional PKI and IBC.
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There is done some research on Elliptic Curve Cryptography (ECC) in Wireless
Sensor Network (WSN) [LN08, SOS+08]. Leonardo B. Oliveira et al. [OAM+07]
argued in 2007 that Identity-Based Encryption (IBE) is applicable to WSN. Oliveira
et al. measured on a MICAz node (with the ATmega128 microcontroller, 8-bit/7.38
MHz processor, 4KB SRAM, 128KB flash memory) running TinyOS that the average
execution time to compute a pairing is 30.21s. It is worth noticing that Yusnani
Mohd Yussoff et al. [YHB12] tested an IBC implemenation on ARM prcessor, and
measured energy consumption on a device with a processor that runs at 20mA, 3.6V
with frequency 667MHz to be 26.9 mJ.

Harsh Kupwade Patil and Stephen A. Szygenda have wrote a book about security
for WSN using IBE [PS12]. The book explains relevant concepts in addition to
summarize many research papers within the scope.

My contribution is unique due to

– the combination of using IBC in a WSN setting, running over NDN.

– the protocol proposals for device registration and data pull in a sensor network.





Chapter3Identity-Based Cryptography

This chapter will present the concept of IBE and Identity-Based Signature (IBS), and
why it is highly applicable to use this type of cryptography in NDN. The possibilities
to use the file synchronization module to do key distribution and revocation will be
introduced.

3.1 Notations

Notations related to IBC used throughout this thesis is listed in Table 3.1.

Symbol Description
MPKi Master Public Key belonging to i
MSKi Master Secret Key belonging to i
SKi Secret Key (private key) belonging to i
PKi Public Key belonging to i
IDi Identity belonging to i

Table 3.1: IBC notations used throughout the thesis.

3.2 Concept

IBE was first proposed by Shamir [Sha84] in 1984. Shamir proposed a scheme for
IBS, but not a scheme for IBE. The concept of IBE builds upon every user having
an Identity (ID) that is used as the Public Key (PK). This ID can be anything, i.e.
email, phone number, Social Security Number (SSN), or a Name (subsection 2.3.4).
The Secret Key (SK) that is extracted from the ID is issued by a TTP. Notice
that if every user could have created their own SK, then so could anybody else
with the same computational power, since the user does not obtain any “privileged”
information about its ID [Bid06]. This eliminates the need of certificates because the
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SK allocation itself is a verfication by the TTP. The IBE implementation remained
unsolved until 2001, when Dan Boneh and Matthew K. Franklin proposed [BF01].
However the scheme has only been shown to be secure within the random oracles
model [Wat04], hence less practical.

IBE is based on performing asymmetric encryption with a publicly know ID working as
the PK. As seen in Equation 3.1, the ID can be a Name (e.g. “/ndn/no/ntnu/haakon”).
Hence the Name becomes the PK (from now referred to as ID). Therefore IBE is
highly applicable to NDN.

IDdevice = PKdevice = Namedevice (3.1)

In IBE there is a TTP that is called Private Key Generator (PKG). The PKGs
task is to extract a SK given an ID and provide public parameters (Master Public
Key (MPK)) needed for performing encryption, decryption, signing and verifying.
In Figure 3.1 the IBC methods is illustrated in practice. Equation 3.2 shows the key
pair ID and SK which is used in IBC.

(IDdevice, SKdevice) (3.2)

First the PKG runs Setup(). device1 can then request a SK by sending IDd1 to the
PKG. In return the device1 receives the SKd1 as well as the MPKPKG. device2, which
is already a part of the trust domain, sends a signed request for Data to device1.
device1 verifies the signature and responds to the request with a signed, encrypted
content. device0, which do not have a SK generated from the PKG and thus is not a
part of the trust domain, sends a request to device1 that is declined.

1. Setup() generates the key pair (MPK, Master Secret Key (MSK)). These
keys are used by only the PKG to extracting secret keys, encryption and
decryption.

2. Extract(MPKPKG, MSKPKG, IDdevice) generates a secret key from a given ID.

3. Encrypt(MPKPKG, IDdevice, message) encrypts the message.

4. Decrypt(MPKPKG, SKdevice, cipher) decrypts the cipher generated from the
encryption.

5. Sign(MPKPKG, SKdevice, message) signs a hash digest of the message (e.g. Se-
cure Hash Algorithm 1 (SHA1)).

6. Verify(MPKPKG, IDdevice, message, signature) verifies the signature.
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Figure 3.1: Methods of an IBC systems illustrated in practice. The PKG calls
Setup() which generates the key pair (MPK, MSK). Device1 then requests registration
by sending its IDd1 to the PKG. PKG extracts the SKd1 composing the key pair
(IDd1, SKd1). After retrieving the SKd1, device1 receives an request for a resource,
signed by another device in the trust domain. The request is verified and the resource
requested is encrypted and sent as a response. Finally, device2 verifies the response
and decrypts the resource content. Device0 requests the same resource, but the
request is denied because the verification fails, due to its inadequate signature.

To encrypt a message with IBE, the user encrypts a Content-Encryption Key (CEK)
with the recipients ID. The user encrypts the message using the CEK together with
symmetric encryption [AMS09, section 2.2.2], and sends both the encrypted CEK
and the encrypted content to the requester.

It is two main concepts which holds a great part of the security in an IBC system.
The security of IBC depends mainly on the secrecy of the PKG, therefor it is crucial
to deploy a secure PKG. Also, it is important to identify each device before issuing
SK. Approving wrong devices and allocating SK to an adversary would compromize
the system.

There are some drawbacks related to IBE such as issues around trusting the PKG
considering that the PKG generates all SKs. If the PKG is compromised by an



22 3. IDENTITY-BASED CRYPTOGRAPHY

adversary, the adversary will retrieve all SKs belonging to the corresponding ID.
Suspicion of Man In The Middle (MITM), where the PKG is the adversary, can be a
problem for users. The same issue does however occur in Kerberos, which is a well
recognized security system. Initializing might also be a problem because to allocate
SKs, a secure channel has to be established. However, this is not a bugger problem
than in existing networks. Pre-shared secrets or Diffie-Hellman key exchange might
be a good solution.

3.3 Security

When designing protocols in cryptography one first usually designs an ideal system
where all parties have random oracle access, then proves the security. A random
oracle is like a “black box” that outputs truly random numbers. Second, one replaces
the oracle access with a hash function. This gives an implementation of an ideal
system in the real world, but without random oracles [BR93]. It is perfectly fine
to make statements based on the ideal system, but debatable whether the same
statements yields for the implementation in the real world. Canetti et al. concluded
that there exist secure schemes in the Random Oracle Model, but for which any
implementation of the random oracle results in insecure schemes [CGH04]. Boneh
and Franklins IBE scheme is only secure when using random oracles, and relies on
elliptic curves [BF01].

Following the Standard Model one does not resort to the random oracle heuristic and
does not rely on non-standard complexity assumptions. Hence proving security in
the standard model is preferably. In 2004 Boneh and Boyen proposed a fully secure
scheme in the standard model [BB04]. However the scheme is not efficient.

The complexity assumptions is based on bilinear maps. Let G1 and G2 be groups
of prime order p, and g be a generator of G. We say that G has a bilinear map
e : G1×G2 → GT if e is efficiently computable, e is bilinear, i.e. e(ga, gb) = e(g, g)ab

(for all a and b), and e is non-degenerate, i.e. e(g, g) 6= 1. For more details about
bilinear maps and Bilinear Diffie-Hellman Problem (BDH) used in IBE, the reader is
encouraged to take a look at [BF01, Nac05].

First practical scheme was introduces by Brent Waters [Wat04]. But as David Nac-
cache states in his paper [Nac05], Waters’ scheme without random oracles introduces
too large public parameters (164Kilobyte (KB)!). Naccache proves that he was able
to construct a practical and fully secure scheme in the standard model based on the
Decisional Bilinear Diffie-Hellman Problem (DBDH) assumption. The scheme is a
modification of Waters’ scheme, but with public parameters of just a few KB size.
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Waters created a fully secure IBE system with short parameters under simple
assumption in 2009 [Wat09].





Chapter4Key Distribution Scheme

This chapter will first introduce the application that makes the key distribution
scheme possible over NDN. The application, File Synchronization Module (FSM),
is designed to be applicable to any other distribution of files over NDN. The key
distribution scheme and key revocation I use in the chapter 5 will be presented.

4.1 File Synchronization Module

The FSM is built upon ChronoSync, which is explained in Appendix A. The goal
for the FSM is to distribute Data to a large group of nodes. Each node wants to
verify that the distributed Data originate from the publisher. Each node always want
to obtain the newest version of the Data. One example where FSM is applicable is
when we want to distribute a list of public keys within a domain. Let us say there is
a list owner, e.g. a TTP that could be a university like the Norwegian University of
Science and Technology (NTNU). NTNU wants to distribute to a large set of nodes,
i.e. each student and employee at NTNU. Every node want to have every public key
in NTNUs domain up-to-date. When the list of public keys gets updated, caused by
for instance a key revocation or a key initialization, every node should immediately
synchronize with the updated list.

There can be two types of roles in the FSM.

1. Distributor

2. Subscriber

Distributors are list-owners and have read-write access. Subscribers only have read
access. A node can be both a distributor and a subscriber, and there can be
several distributors that are equal, i.e. several owners of the list. However, there
is one root distributor (i.e. the true owner) that should be able to delegate write
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access to other nodes that should act as a distributor. One can verify the root
distributor because the IDdistributor is a part of the synchronization group’s Name (i.e.
/../<id_to_root_distributor>/../). The capabilities is distributed to all nodes
and signed by the root distributor. These capabilities is needed so that every node
can verify the integrity and authenticity of the distributed list. If confidentiality
is required, it can be achieved by symmetric encryption, and key exchange in the
subscription protocol, i.e. using asymmetric encryption. However this becomes quite
complicated concerning possible key leakage and redistribution of a new symmetric
key when the number of subscribers is high. In the case of public keys list, the data
would not have to be confidential, but rather rely on integrity and authenticity.

In Figure 4.1 the subscribers (a, b and c) wants to subscribe to the distributor’s (d)
list of public keys. In order to achieve this goal, the following actions should occur.

1. d announces that it wants to distribute a list to the network by registering the
synchronization group prefix.

2. a, b and c ask for subscription to this list, and somehow authenticates them
selves to d if confidentiality is required.

3. d approves those who should be approved, and returns a symmetric synchro-
nization key. This step is only done if confidentiality is required.

4. a, b and c now knows that they are a part of the synchronization and have
read access. They expresses a Sync Interest with their state, receiving Sync
Data whenever d has announced a newer state.

4.2 Key Distribution

In traditional PKI, each public key is signed by a certificate authority and the
generated certificate is sent as a response over a secure channel then validated by the
the client. I want to make the certificate authority obsolete by distributing every ID
with the PKG acting as a Key Distribution Center (KDC), as explained in the above
section. In Figure 4.2 we see that the PKG multicasts the ID list to all devices that
have joined the trust domain. Each device can verify the integrity and authenticity
of the sync state Data and validate that the ID list surely originates from its own
PKG, i.e. the distributor.

4.3 Key Revocation

Key revocation in systems are studied well in traditional PKI. However, few alterna-
tives to revocation schemes in IBE PKI have been proposed. One suggestion is to
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Figure 4.1: File Synchronization in NDN.

allocate secret keys with the ID combined with some sort of date, e.g. month-year or
just year [BF01, section 1.1.1]. In this alternative a user has to renew its secret key
each time the date changes, i.e. either the month or the year depending on the date
format. The problem with this revocation solution is that it can be cumbersome for
the PKG. Boldyreva et al. proposes a revocation scheme [BGK12] based on efficient
key-update, which makes the workload for the PKG a lot easier. This scheme was
only proven secure in the selective-ID setting where adversaries can attack an ID
given they choose which one at the beginning of the game. The work done by Benoît
Libert and Damien Vergnaud in [LV09] solves this problem. However, efficiently
delegating both the key generation and revocation functionalities was a problem left
open. Jae Hong Seo and Keita Emura solves this in [SE13].

Basically there exist two use cases where we want to renew a SK:

1. when the SK is compromised.

2. when the renewal period has expired.

If a key is compromised, we want to revoke the key immediately letting everybody
know that this specific ID has been revoked. One problem with key revocation is
that there is no way of revoking this key, and thus the ID has to be changed and
distributed. However, a partially revocation can be sufficient in some networks.
By partially, I do not mean revoking the SK, but rather only distributing the new
ID to every node in the trust domain. In short, the compromised key should be
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Figure 4.2: FSM with tree devices (subscribers) and a PKG (distributor).

removed from a distributed ID-list and the list containing only valid IDs should be
disseminated. With the FSM, the list is distributed automatically when updated,
and only a DoS attack together with a compromised key would make the system
vulnerable.

Some periodic renewal might be necessary in many systems because it is not always
known that a key has been compromised. If such an ID structure is applied, the key
distribution should only contain the base key of each device.



Chapter5Sensor Application

In this chapter the sensor application will be presented. I present the threat model,
the application protocols device registration and data pull, and finally an informal
secure analysis of these protocols and the whole system. I also present a more
formal analysis by modeling the protocols in Security Protocol Description Language
(SPDL).

5.1 Health Sensors

There is an ongoing discussion of when the health technology revolution will come to
human bodies now that IoT has become so popular. By revolution, I mean sensors
placed in the human body. Sensors that can read your blood pressure, heart rate
and measure insulin levels. Sensors that can detect whether your body is missing a
substance, or if it is poisoned. There is no limit for what can be done. Everything that
should be measured, will be measured by sensors integrated in the human body. But
who will be able to read the data? Or perform instructions to the sensors/devices?
There is some major privacy issues related to this discussion, and problems that
needs to be solved.

In 2011, Jerome Radcliffe discovered that his insulin pump easily could be hacked [Rad].
Basically the pump would take instructions from anyone and do anything, with no
questions asked. This is a worst case scenario when it comes to hacking medical
devices attached to a human.

For this matter I propose a HSS that is built upon NDN with IBC ensuring a secure
and locked environment. First, let me introduce you to The Stig. He has developed
diabetes and he does not want to manually monitor his glucose levels and adjust the
insulin pump every meal. He has injected a Continuous Glucose Monitor (CGM) to
monitor his glucose levels and report to the insulin pump, automatically. In addition
to his diabetes, he has a heart disease which forces him to monitor his heart rate at
any given time. In Figure 5.1 we can see The Stig with all his sensors and devices.

29
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The CGM reports periodically to the insulin pump, and all sensors reports to The
Stigs mobile so that The Stig can watch what is going on.

Figure 5.1: Health Sensor System (HSS). The image illustrates a trust domain
administrated by the Stig. Devices exchange data securely and trust is established
between them using the HSS trust model.

5.2 Health Sensor System

To obtain a secure system, trust have to be established between the sensors and the
devices. There need to be integrity controls, confidentiality protection and access
control. In the following sections, I will describe the protocols suggested for achieving
the mentioned goals.

5.2.1 Rendezvous Authentication

One of the best solutions for authentication of an identity in cryptography is ren-
dezvous authentication, the concept of meeting face-to-face for authenticating who
you are talking to. Most cases in IoT we have the advantage of identifying devices in
a physical manner. This means that it is possible to authenticate devices, such as
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sensors. Typically, this kind of authentication will rely on 1) manually inspection
and 2) digital connection, e.g. through Near Field Communication (NFC). In the
proposed system, I assume that this type of authentication is achieved in a secure
manner and do not discuss how this should be done. Typically this kind of authen-
ticated connection should be used to preload a secret key to devices, establishing
authentication in a later phase.

5.2.2 Threat Model

Threats that I find relevant for the HSS can be categorized into three main categories:
threats to privacy, threats to availability and threats to control. I assume the following
threat model:

1. An adversary might try to eavesdrop information (privacy).

2. An adversary might try to send bogus commands, e.g. injection, replay and
MITM (control).

3. Jamming, node compromise (such as theft of mobile) and DoS (availability).

I assume that the PKG cannot be compromised by any adversary, and thus the MSK
will always be hidden from any adversaries. However, it is extremely important that
the machine which plays the role of the PKG is secured in a physical manner, as well
as remote access security. The PKG is the single point of failure in the whole system.

An idea introduced by Aaditeshwar Seth and Srinivasan Keshav in [SK05, Section
5.4] is to avoid storing the SKs in devices that is more likely to be lost or stolen, e.g.
a mobile. Using Hierarchical Identity-Based Cryptography (HIBC), one can extend
the key hierarchy by another level that is time-based. These time-based keys can
then be downloaded to the mobile on a daily basis, hence the time the mobile will
be compromised is reduced.

5.2.3 System Initialization Phase

When The Stig is setting up his HSS, first he has to configure the PKG. Any type of
computer can play the role of the PKG and The Stig has chosen his home server,
from now “the PKG”. The Stig is now the only admin user in the system, hence he
has full control over which device that should be granted access to the trust domain.
The PKG runs the Setup() which creates key pairs that is used to do IBE and IBS.
Second, he wants his mobile device, from now “the mobile”, to be a part of the
PKGs trust domain, and further add all of the other devices and sensors, from now
“device(s)”. This is done through a device registration phase.
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5.2.4 Device Registration Phase

The goal for the device registration protocol is to achieve a secure one-round secret
key exchange. For the protocol to be secure, there are several issues that need to be
addressed. 1) The response message containing the secret key has to be encrypted.
This can be achieved by using a pre-shared symmetric key to do encryption on
the SK. 2) The response message has to be signed by the PKG for integrity and
authenticity reasons. 3) A nonce has to be present for replay protection. The
pre-shared symmetric key should be a temporary random generated key. Thus the
device registration Interest between the device and the PKG can be unique. This
implies that the device can authenticate itself in a way that an adversary cannot do.

The device registration is divided into two phases. Phase 1 is the sharing of a
temporary random key tk used to achieve confidentiality and authenticity in phase
2, illustrated in Figure 5.2. Phase 2 is the SK allocation, illustrated in Figure 5.3.

Phase 1. Trust is difficult to be established without a rendezvous authentication
or any form of pre-established trust chain like e.g. a certificate chain. I do not
assume that every device is a part of such trust chain before registration, and thus
the trust between the device and the PKG has to be based on the concept explained
in subsection 5.2.1, with manually inspection of the device and preloading of a
temporary random key tk. The packet flow of the key preloading, done over e.g.
NFC, is shown in Figure 5.2. The device generates a temporary random key tk and
together with the IDd, are loaded onto the PKG. The device receives the IDPKG and
the MPKPKG in return. Since IDP KG = NameP KG, the device know the Name the
Init Interest should have. It can also verify signatures from the PKG, with the
MPKPKG. Before phase 2, an admin user has to approve the requesting IDd and the
corresponding tk.

Phase 2. Now that both the device and the PKG possesses the shared secret tk and
the device has been approved by an admin user, phase 2 can begin. The device sends
an Init Interest that contains its IDd and a nonce which is encrypted with the
tk. The PKG decrypts the message and uses the received IDd to extract the SK for
the device (this will be the SKd belonging to the PKGs trust domain) and uses the
tk to do symmetric Advanced Encryption Standard (AES) encryption on the secret
key. The Data response to the Init Interest will contain the encrypted SKd, the
nonce and a signature. To finish the device registration protocol, the device decrypts
the SKd, checks the nonce and verify that the SK allocated actually belongs to the
earlier received MPK and that is corresponds to its IDd. The device has established
a trust with its PKG and can verify other devices within this trust domain.

Now that the mobile is authenticated, devices can connect to the mobile through e.g.
NFC for device registration. This results in a rendezvous authentication between the
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pkgdevice
IDd, tk (msk, mpk), (IDpkg, skpkg)

IDd || tk

IDpkg || mpk

Admin manually approves IDd

Figure 5.2: Device Registration, phase 1. The messages are exchanged through
e.g. NFC (subsection 5.2.1), and thus are protected against any adversaries outside
the range of the NFC signal (~1 meter). At first the Device generates a temporary
random key tk and sends this key together with its IDd to the PKG. The PKG
responds with its IDPKG and MPKPKG. Finally an admin user has to approve the
requesting device.

device and the mobile, and if the mobile is given the authorities to perform device
registration (Access Control List (ACL) in subsection 5.3.1), the new device can join
the PKGs trust domain.

Security Analysis

It is important that the protocol possesses properties such as privacy, availability
and control. I shortly present a formal security analysis by modeling the protocol in
SPDL and verifying certain claims through Scyther [Cre08]. After that, an informal
discussion of the security in the protocol will be presented.

Scyther. The analysis proves that the protocol is confidential, replay and injection
resistant, and possesses properties such as integrity and authenticity. All claims
made (i.e. alive, secret, weakagree, niagree, nisynch) holds, thus no attacks is
detected in Scyther. The SPDL code of the protocol can be reviewed in section B.1.

Authenticity. The protocol holds the required authenticity and integrity. The pre-
shared temporary random key tk is shared in an assumed secure manner, thus
appending an encrypted message to the Init Interest will lead to authentication
for the PKG as it will decrypt the cipher with tk authenticating the device. Thus the
encryption, with the tk as key, protects against MITM attacks. The response Data
is hashed and signed with the PKGs SK which provides authenticity and integrity
for the requesting device since it has already retrieved the MPK and IDPKG in phase
1. The signature can easily be verified, and since an adversary do not obtain a
polynomial time algorithm that can forge the SK the device can be sure that the
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pkgdevice

IDd, tk (msk, mpk), (IDpkg, skpkg)
c1 = AES_Enctk[IDd || n]

Interest: c1

IDd̃, ñ = AES_Dectk[c̃1]
AccessControl(IDd̃)
sk = Extract(mpk, msk, IDd̃)
c2 = AES_Enctk[sk]
s = Sign(mpk, skpkg, (c2 || ñ) )

Data: c2 || ñ || s

Verify(mpk, IDpkg, c2, s)
sk, n̂ = AES_Dectk[c2]
n̂ == n
mpk

Figure 5.3: Device Registration, phase 2. The device sends a Init Interest
encrypting nonce n and its IDd. The device receives the response, decrypts the
cipher c1, checks if the IDd is approved, extracts the secret key corresponding to IDd,
encrypts the secret key and finally signs the Data. The device verifies the nonce and
decrypts the received cipher, obtaining the SKd.

message is signed by the corresponding IDPKG. Thus the signature protects against
MITM attacks.

Confidentiality. The SK will be encrypted with the pre-shared temporary random
key tk, and thus the confidentiality is preserved. An adversary will only be able to
know the MPK, cipher texts, signatures and both IDs, which is not required to be
confidential and not sufficient to compute the SK that is extracted. The adversary do
not obtain a polynomial time algorithm that can forge the signature or the tk from
the known parameters. Hence an adversary has to obtain a algorithm to compute
the SKs, which is the same polynomial time algorithm as in the sub section above
that the adversary do not have access to.

Replay. Since the adversary cannot compute tk nor forge the signature, it cannot
send encrypted, signed Interest nor Data that is captured at any arbitrary point.
Devices keep track of the nonce corresponding to a device registration, hence a replay
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with will be detected and thrown away.

5.2.5 Deployment Phase

The goal for the data pull protocol is to achieve a secure one-round data pull with
authorization and integrity. For the protocol to work and the data pull to be
successful, 1) both devices has to belong to the same trust domain (i.e. has registered
with the same PKG) and 2) the requester has to have granted access rights for the
resource requested.

The flow of the protocol is illustrated in Figure 5.4. First the requester has to express
an Interest to the target device asking for a specific resource. The requester signs
the Interest and appends it to the content Name. The publisher checks whether the
requester has access rights to the requested resource and verifies that the requester is a
part of the same trust domain. If the requester is authorized, the publisher responds
with the Data containing the resource. The publisher will also do a symmetric
encryption on the Sensor Data and do a asymmetric encryption on the CEK with
the requester’s ID. This step is only performed if Data confidentiality is needed. Then
the Data packet is signed and sent. Finally the requester receives the Data, verifies
the signature and decrypts the Sensor Data.

Security Analysis

It is important that the protocol possesses properties such as privacy, availability
and control. I shortly present a formal security analysis by modeling the protocol
in SPDL and verifying certain claims through Scyther. After that, an informal
discussion of the security in the protocol will be presented.

Scyther. The analysis proves that the protocol is confidential, replay and injection
resistant, and possesses properties such as integrity and authenticity. All claims made
(i.e. alive, secret, weakagree, niagree, nisynch) shows no attacks in Scyther.
The SPDL code of the protocol can be reviewed in section B.2.

Authenticity. The protocol holds the required authenticity and integrity. The message
is hashed and signed with the senders SK which provides authenticity and integrity.
The signature can easily be verified by the receiver. Since an adversary do not obtain
a polynomial time algorithm that can forge the SK one can be sure that the message
is signed by the corresponding ID. Thus the signature protects against MITM attacks.

Confidentiality. All Data that flows through the HSS can be encrypted if necessary.
When a resource is requested, the publisher will do an access control to decide
whether the IDrequester has the right capabilities. The CEK will be asymmetrically
encrypted, and the resource data will be symmetrically encrypted, thus both key and
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PKGDeviceMobile

(IDm, skm, mpk) (IDd, skd, mpk) (msk, mpk)
m1 = (IDd || n || request)
s1 = Sign(mpk, skm, c1)

Interest: m1 || s1

Verify(mpk, IDm, m1, sign)
AccesControl(IDm, request)
c_cek = Encrypt(mpk, IDd, cek)
c = AES_Enccek(data || ñ)
c2 = (c_cek || c)
s2 = Sign(mpk, skd, c2)Data: c2 || s2

Verify(mpk, IDd, c2, sign)
cek = Decrypt(mpk, IDm, c_cek)
data, n̂ = AES_Deccek(c)
n̂ == n

Figure 5.4: Data pull under deployment. The mobile sends a Sensor Interest to the
device appending the request for a resource and a nonce n. The Interest is signed with
the mobile’s secret key skm and verified by the device. The device checks whether
the mobile has a valid capability for the requested resource and encrypts the data if
granted. The Data response is signed with the device’s secret key skd. The mobile
decrypts of the content encryption key cek and the cipher c, checks whether the
received nonce n̂ is equal to n and finally accepts the data as correct.

data is confidential and only available to whoever has the corresponding SKrequester
to the IDrequester. An adversary will only be able to know the MPK, nonce, request,
cipher and both IDs, which is not required to be confidential and not sufficient to
compute the resource data. The adversary do not obtain a polynomial time algorithm
that can compute the resource data from the cipher and other known parameters.
Hence an adversary has to obtain a algorithm to compute the SKs, which is the same
polynomial time algorithm as in the sub section above that the adversary do not
have access to.

Replay. Since the adversary cannot forge the signature, it cannot send Interest nor
Data that is captured at any arbitrary point. This is due to the nonce presence in
all packets. Devices keep track of the nonce corresponding to a data pull, hence a
replay with will be detected and thrown away.
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5.2.6 Key Distribution using File Synchronization Module

The Stig wants to have full control over the devices that are a part of the trust domain,
and be able to remove a device if necessary. Each device should have an updated
list of all IDs. The distribution of this list can easily be achieved by using the FSM
(section 4.1 & section 4.2). The PKG will be the distributor in this synchronization
and each device will be a subscriber.

5.3 Informal Security Analysis

In this section an informal security analysis of the whole system is presented. Access
control will first be presented, along with CIA, and finally the trust model.

5.3.1 Access Control

Since the IDdevice is appended to the Interest and the Interest is signed by the
corresponding SKdevice, the ID of the device can easily be authenticated. When a
device retrieves an Interest for its Sensor Data, there should be an authorization
mechanism on the requested resource. One can argue that once a device has been
authenticated in the PKGs trust domain, everyone in the domain can be sure that
each device will not abuse the resources available. However, due to scalability and
cautiousness this is not a secure way to handle access control. If a device does not
need a privilege, it does not need it. Hence it should not have it. That is the least
privilege access principle, which is default in Capability Based Approach to IoT
Access Control [GPR12]. This approach has some additional benefits for the HSS,
such as

– delegation support - A device can grant access rights to other devices, as well
as granting the right to further delegate these rights to a third device.

– capability revocation - If the PKG has granted delegation rights to a mobile,
and the mobile is not found trustworthy after some time, the capabilities issued
by the mobile can easily be revoked.

– information granularity - Specific resources from a device can be granted access
to in different granularity.

Another solution can be an ACL based approach equivalent to what Wentao Shang
et al. did in [SDM+14].
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5.3.2 Confidentiality

Generally, the confidentiality is achieved by doing asymmetric encryption on a CEK
that is used for symmetric encryption on the content. As explained in the sequence
diagram (Figure 5.4) presented in the above sections, each Interest appends the
requester’s ID (Equation 3.1). Since the IDrequester always is appended it can always
be used to do asymmetric encryption, hence all CEKs can be encrypted only for the
requesting device, and thus the confidentiality in the system can always be achieved.

5.3.3 Integrity and Authenticity

Each device will obtain a SK allocated by its superior PKG, as explained in section 3.2.
With the concept from rendezvous authentication ( subsection 5.2.1) together with
the PKGs MPK, one can trust that the device is authorized to the PKGs trust
domain. Hence all signed packets can be verified by anyone with the MPK. In this
setting, a verified signature acts as an assurance of authentication and integrity.

5.3.4 Availability

This is a harder problem to solve. The network is purely wireless, hence vulnerable
to jamming.

An adversary could try to send infinite Interests to a device with an invalid signature,
hence the device may be overloaded with work and might run out of battery fast.
Therefore one should check the MPK before doing any crypto. This is also why I
have chosen to append the MPK in the packet, illustrated in Figure 6.3.

5.3.5 Trust Model

For a system to be secure, cryptography together with trust is essential. The HSS
trust model is built upon trusting a centralized authority (typically the user’s home
server), rendezvous authentication and IBC. The fact that it runs over NDN makes
it easier to achieve security goals and usability for developers.

The ID is the Name of the device, and all content published by the device will begin
with this Name, hence it is easy to verify that the publisher is the owner of the content.
To be able to verify and encrypt messages, the device need the MPKPKG and the
ID of the user it wants to communicate with. If allowed by the PKG, the public
parameters MPKPKG is public for everybody that is not a part of the trust domain
as well. To be able to sign and decrypt messages the device has to be verified by
an administrator that controls the PKG and be issued a SK such that (IDdevice,
SKdevice). Because every device trust its administrator and likewise is trusted by its
administrator, each device should trust other devices after verifying their signature.
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As stated, it is assumed that an adversary do not obtain a polynomial time algorithm
that can forge a valid signature or forge a valid SK.

As proposed, the application should follow the least privilege access principle.





Chapter6Implementation and Testing

This chapter will first introduce the most significant frameworks that must be
installed to be able to run NDN applications. Then the design and architecture
will be explained. The source code is left out from the appendix due to the size
inconvenience, but referenced as an open GitHub repository [Mø15]. Finally, the test
result will be presented.

6.1 Installing Named Data Networking Forwarding Daemon

Several libraries is required for experimenting in a NDN environment. Installation
guides can be found at the Github project [NT15a]. First we need to install the
Named Data Networking C++ library with eXperimental eXtension (ndn-cxx). ndn-
cxx is a implementation of NDN primitives. It is a fundamental framework that
NDN application requires. Second we need to install the NFD [AMY+] which is a
network forwarder and also in the core implementation of NDN. The major modules
implemented in NFD is:

– Core - Common services shared between the different NFD modules (such as
hash, DNS resolver, face monitoring etc.).

– Faces - Generalization of different interfaces, explained in subsection 2.3.5.

– Tables - PIT, CS, FIB, explained in subsection 2.3.5.

– Forwarding - Packet processing.

– Management - Enables users/programs to interact with the NFD forwarder
state.

– Routing Information Base (RIB) Management - Managing routing protocols
and application prefix registration.

41
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The NDN project is under development, and thus the implementation of NFD has
its deficiencies. Ideally we want the devices to communicate directly with each other
using WiFi, without running over IP. This face functionality is not yet implemented,
and thus NDN is running over IP in my experiments.

6.2 Installing PyNDN2

The work done in this thesis is written in Python, hence the PyNDN2 [NT15b] is
used. This is an easy to use implementation of NDN and comes with great code
examples.

Because the NDN protocol require signing of Data packets (subsection 2.3.8) some new
implementation in the PyNDN2 source code was necessary to be able to sign and verify
with IBS. I added the python/pyndn/sha256_with_ibswaters_signature.py file
that follows the pattern of the existing RSA Signature (python/pyndn/sha256_with_
rsa_signature.py) and is of type Signature. Some small additions in the python/
pyndn/encoding/tlv_0_1_1_wire_format.py and the python/pyndn/encoding/
tlv/tlv.py is added so PyNDN2 recognizes the IBS when the Data packet is encoded
and decoded. The files edited can be found under src/other/charm/ in [Mø15].

6.3 Installing Identity-Based Cryptography

To be able to run IBC the Pairing-Based Cryptosystems (PBC) [Ben07] needs to be
installed. I use the Charm framework [AAG+13] which implements several IBE and
IBS schemes in Python. Charm is a framework for rapidly prototyping cryptosystems.

Some small modifications had to be done in the Waters-IBS [Wat04] implementation
in Charm. In charm/schemes/pksig/pksig_waters.py there is a global variable, i.e.
waters, that is used throughout all the methods in pksig_waters.py. The problem
is that this variable is declared in the setup(), which is only called at PKG, and not
by another devices that do not play the role of a PKG. And thus, the declaration
of waters must be moved to the __init__() in pksig_waters.py, which is called
by every device using the scheme. The file can be found under src/other/pyndn/
in [Mø15].

6.4 File Synchronization Module - Implementation

FSM is a python application that runs over NDN and synchronizes all files in a
specified path, with all participants within the synchronization room. Application
goals are explained in section 4.1. The module is highly based on the Python
implementation of ChronoSync [NT15b, test-chrono-chat.py]. The code can be
retrieved from the thesis work repository [Mø15, fileSync.py]
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The implementation of the FSM does not correspond 100% to the application goals.
The distributor/subscriber model is not implemented, and neither is the IBS. The
latter is because all packets that are sent is managed by ChronoSync. ChronoSync
uses the PyNDN2 KeyChain to sign and verify all Interest and Data packets. The
IBS integration explained in section 6.2 is not implemented with the KeyChain, hence
this is added to the future work. I do however demonstrate that it works perfectly
fine to perform both IBE and IBS over NDN in the HSS implementation.

The module triggers synchronization when files that are watched is changed, or when
a file is added or removed. A library that makes it possible to watch files in OS X,
Linux or Windows, is Watchdog [Pyt]. The implementation is illustrated in the class
FileWatch in Figure 6.1.

6.5 Health Sensor System - Implementation

The HSS is a python application that runs over NDN. Application flow is explained
in chapter 5. The implementation does not deal with sensor data retrieval from
actual sensors, nor deal with sending instructions from devices to each other, but
rather focuses on the trust model and security in protocols between devices in the
network. The code is divided into several pieces shown in Figure 6.1.

The Device class [Mø15, device.py] implements the role of a device that can express
Interest and offer Data. The PKG class [Mø15, publicKeyGenerator.py] implements
the role of a PKG. Both classes uses PyNDN2, to be able to run over NDN, and
IndetityBasedCryptography, to be able to perform IBC. IdentityBasedCrypto [Mø15,
identityBasedCrypto.py] implements two IBE schemes and one IBS scheme from
Charm. These schemes are listed below:

Waters05 [Nac05] that is a variant of Brent Waters IBE scheme [Wat04], but with
smaller key size, hence more practical.

Waters09 [Wat09] that is also a fully secure implementation of IBE scheme.

Waters [Wat04] that is a implementation of IBS scheme.

6.5.1 Key Storage

Storing of secret keys should be done in a secure fashion. Sufficient key storage is
not implemented.
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Figure 6.1: Package and slass topology related to the work done in conjuction to
this thesis.

6.5.2 Name Structure

As explained in the Name subsection 2.3.4, the Name structure in NDN is left to
application developers to decide. Using IBC, it is essential that the ID is publicly
known. Therefore the ID of every device should be concatenated with the Name. A
device register the prefix /ndn/no/ntnu/<device>/<resource> and hence its ID is
/ndn/no/ntnu/<device>.
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6.5.3 Access Control

In access control subsection 5.3.1 I present a possible solution for access control.
This is however not implemented in the application, because it is considered too
high workload for this thesis, the suggested solution is implemented in Java, and not
Python.

6.5.4 Packet Design

The packet format is designed with Google Protocol Buffers, which is a language-
neutral, platform-neutral, extensible mechanism for serializing structured data.1
Device registration packets have the structure presented in Figure 6.2. Initially, the
idea was to have the cipher appended to the content Name. However, I experienced a
problem where the Init Data never arrived at destination node. After some research
in ndn-cxx documentation I found that the packets have a MAX_NDN_PACKET_SIZE of
8800 bytes and the Init Data exceeded this limit and reached 8904 bytes. Because
the cipher is approximately 2KB and was appended to the content Name in the
Interest, the Data response off course had to have the same content Name, hence
2KB overhead in the Name. The cipher can as easily be appended to the KeyLocator
Name, hence the Data response can be 2KB less, resulting to a 6866 bytes Init Data
packet.

Sensor packets have the structure presented in Figure 6.3. The code can be reviewed
in [Mø15, messageBuf.proto].

Init Interest. The Init Interest can be seen in Figure 6.2 and consist of three
fields: Content Name, KeyLocator and MustBeFresh. KeyLocator can be of type
Name. As described in the NDN Packet Format [NT], generally this field can be used
to specify where to download the certificate used to sign the Interest. However, in
the trust model I use this field to publish the requesters Name, i.e. the requesters
public key. This is very useful when using IBE and IBS.

Init Data. The Data response to the Init Interest is illustrated in Figure 6.2.

Sensor Interest. As in the Init Interest the KeyLocator field is used to define
the IDrequester. The packet is illustrated in Figure 6.3.

Sensor Data. The Data response to the Sensor Interest uses the same structure
as the Init Data. It is illustrated in Figure 6.3.

The Init and Sensor Data responses in the HSS have a structure that is defined
in [Mø15, messageBuf.proto]. The fields are:

1Google Protocol Buffers - https://developers.google.com/protocol-buffers/
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– MessageType is an enum and can be either Init or Sensor.

– EncAlgorithm is an enum and represents which type of encryption scheme is
used on the content.

– IbeAlgorithm is an enum and represents which type of IBE scheme is used on
the CEK.

– IbsAlgorithm is an enum and represents which type of IBS scheme is used to
sign the Data.

– MasterPublicKey is the PKGs public parameters used to do IBE.

– SignatureMasterPublicKey is the PKGs public parameters used to do IBS.

– SymmetricKey is the symmetric key used to encrypt the content. The key is
encrypted. Only used in Sensor Data.

– Cipher is the encrypted content.

– Session is a nonce.

Figure 6.2: Init Interest and Data

6.5.5 Running the Code

First the NFD must be started on each device shown in Listing 6.1, if not already
running. Then we have to make sure that each device participating in the network
know the Name and IP address binding, since the testing will run NDN over IP. This



6.5. HEALTH SENSOR SYSTEM - IMPLEMENTATION 47

Figure 6.3: Sensor Interest and Data

is accomplished by registering the mapping in the FIB at each device showed in the
second line in Listing 6.1.

On the device playing the role of the PKG, run the code presented in Listing 6.2.
This will create the key pair MPKpkg and MSKpkg and register the prefix where the
other nodes can find the PKG.

On the device playing the role of e.g. a sensor, run the code presented in Listing 6.3.
This will automatically register the prefix of the sensor, and start the initialize
protocol with the PKG.

On the device playing the role of the user device (e.g. a mobile), run the code
presented in Listing 6.4. This will automatically start the initialize protocol with the
PKG. Running r will make the device expressing an Interest for sensor Data from
the sensor.

1 $ nfd−s t a r t
2 $ nfdc r e g i s t e r /ndn/no/ntnu/<data−device> udp://<device−ip−address>
3 $ nfdc r e g i s t e r /ndn/no/ntnu/<pul l−device> udp://<device−ip−address>
4 $ nfdc r e g i s t e r /ndn/no/ntnu/<pkg> udp://<pkg−ip−address>

Listing 6.1: Start NFD

1 $ python app l i c a t i o n . py
2 $ pkg

Listing 6.2: Start PKG

1 $ python app l i c a t i o n . py
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2 $ data

Listing 6.3: Start a device registering a prefix.

1 $ python app l i c a t i o n . py
2 $ pu l l
3 $ r

Listing 6.4: Start a device that will express Interest in Data.

6.6 Testing

In this section it will be presented which computers will be used during testing. The
testing results will be presented together with the key/content sizes related to the
HSS.

6.6.1 Computers

The plan was to test the application with several Raspberry Pi’s to simulate a sensor
network, with limited computation power. However this is not possible with the
Charm framework as it is not compatible with ARM processors. The HSS is tested
over several computers presented in Table 6.1. Each computer is assigned an ID
which will be used for reference in the performance measurements.

ID Computer Operating System Processor
C1 Macbook Pro 64-bit OS X 10.10 Intel Core i7 @ 2.0GHz
C2 Garsbook 64-bit Ubuntu 14.04 LTS Intel Core i5 @ 3.0GHz
C3 HP 64-bit Ubuntu 14.04 LTS Intel Core i7 @ 2.8GHz

Table 6.1: Computers used during tests.

6.6.2 Key Sizes

It is listed in Table 6.2 the different sizes for keys related to the IBE and IBS that is
used in the HSS implementation. The CEK is a random GT element (section 3.3),
and extracted to 40 bytes when performing encryption and decryption with AES.
I would prefer to extract and send the extracted version of the CEK, i.e. the hash
value of 40 bytes, but the implementation of the IBE encryption scheme demands a
certain type of format for the input, and thus the whole CEK must be sent.

6.6.3 Performance

To be able to evaluate if IBC is applicable to devices with small computation power
and limited battery, it has to at least perform somewhat in the range of regular
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Data Scheme Size
Content Encryption Key (CEK) Hash(GT ) 244 bytes
IBE Master Public Key Waters09 2014 bytes
IBE Secret Key (SK) Waters09 1164 bytes
IBE Encrypted CEK Waters09 1472 bytes
Encrypted SK AES 1633 bytes
IBS Master Public Key Waters 2360 bytes
IBS Secret Key (SSK) Waters 260 bytes
IBS Signature Waters 412 bytes
Encrypted SSK AES 437 bytes

Table 6.2: Sizes of different keys used in the health sensor system implementation.

asymmetric encryption (read RSA), and signing. Naccache suggested that if the
prime p is 1024-bit, the scheme would provide equivalent security as a RSA 1024-bit
key. For comparison reasons, the RSA key pair is therefore generated with the size of
1024-bit. In Table 6.3 the performance from running different cryptographic methods
on the computers listed in Table 6.1 are presented.

Method Scheme C1 C2 C3
IBE PKG key pair generation Waters09 99.65 ms 27.09 ms 36.08 ms
IBE Secret Key (SK) generation Waters09 56.14 ms 17.86 ms 23.27 ms
IBE Encrypting CEK Waters09 41.65 ms 18.91 ms 24.86 ms
IBE Decrypting CEK Waters09 20.70 ms 9.87 ms 12.86 ms
Encrypting SK AES 0.13 ms 0.10 ms 0.15 ms
IBS PKG key pair generation Waters 97.55 ms 27.15 ms 35.02 ms
IBS Secret Key (SSK) generation Waters 9.76 ms 2.87 ms 3.72 ms
IBS Sign Waters 9.90 ms 2.88 ms 3.69 ms
IBS Verify Waters 7.58 ms 2.66 ms 4.32 ms
Encrypting SSK AES 0.06 ms 0.02 ms 0.04 ms
RSA (1024-bit) key pair generation RSA 254.27 ms 119.34 ms 165.99 ms
RSA Encryption (40 bytes) RSA 14.80 ms 4.40 ms 6.52 ms
RSA Decryption (40 bytes) RSA 14.72 ms 4.45 ms 6.49 ms
RSA Sign RSA 16.15 ms 4.59 ms 6.69 ms
RSA Verify RSA 15.72 ms 4.53 ms 6.74 ms

Table 6.3: Cryptographic methods time chart. Each measurement is the mean time
of 100 rounds and measured in milliseconds.

The device registration protocol described in subsection 5.2.4 and the data pull
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protocol described in subsection 5.2.5 is tested on the computers listed in Table 6.1.
The results of the round trip time are presented in Table 6.4.

Protocol C1 C2 C3
Device Registration 57.7 ms 23.8 ms 32.3 ms
Data Pull 61.4 ms 31.0 ms 46.2 ms

Table 6.4: Round trip time chart. Time is measured in milliseconds.

The HSS is tested on two of the computers in Table 6.1. The topology is shown
in Figure 6.4.

Figure 6.4: Health Sensor System implementation tested over two computer. C3
runs two nodes, i.e. the PKG and one device. C1 runs a second device.

6.7 NDN Testbed

The NDN testbed is a network of NDN nodes created for research purpose. NTNU
joined the testbed contributing with the 24th node in the NDN testbed. The map of
the NDN testbed is shown in Figure 6.5. The NTNU node is used during testing
and experimentation.
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Figure 6.5: NDN Testbed Map





Chapter7Discussion

In this chapter the work done in conjunction to this thesis will be discussed. First I
will talk about NDN and the pros and cons using IBC in NDN. Then I will discuss
some central topics in the HSS. Testing results, scalability issues and other applicable
networks for the application will be mentioned.

7.1 Named Data Networking

NDN facilitates a lot of concepts that shows to be a huge benefit for todays Internet,
and the predicted increase of IoT. The naming of content and content routing provides
usability to IoT and WSN. Bandwidth redundancy in the network is reduced, security
properties in network layer is provided, and the linkage between data and its publisher
can easily be proven. It is easier for machines to communicate directly, without
having to interconnect through a router. Broadcast and multicast comes naturally,
hence wireless communication can be done in a simple manner.

Developing applications on top of NDN is easy once a basic perception of the NDN
architecture is understood. The PyNDN2 framework comes with good examples of
how to develop simple applications with packets that are signed and encrypted.

The concept of naming data introduces more simplicity, but also a new way of
application design thinking. Addressing and security is dealt with in one place in the
architecture compared to in an equivalent system over IP. A problem with WSN in
IP networks, is that it is a limited number of IP addresses (especially in IPv4). So
the global scalability issue arises due to the potentially large number of sensors that
could be deployed. With the naming rules in NDN, this is not an issue. Security
is easily applied in NDN which is shown to be a huge problem to many systems
nowadays.

A huge advantage is that one can ask the network for content, and easily verify
the signature. The Interest a requester expresses, has the same content Name as
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the Data received in return. Hence the signature will be signed by a SKpublisher
corresponding to the ID part of the content Name.

7.2 Identity-Based Cryptography in Named Data
Networking

The concept of IBC appears to be highly applicable to IoT and WSN [PS12]. Running
IBC over NDN, makes it even more practical, because of the naming concept that
NDN is built upon. As mentioned it is easier to secure data, relate data to publisher,
and authenticate that the publisher is aware of what content it published. I believe
that using IBC in a WSN running over NDN should make applications with security
less complex and more practical than using security such as RSA running over IP.

Using ID as public key eliminates the binding of ID and certificate. Compared to
ordinary PKI where the recipient have to download the public key certificate to verify
the digital signature. This is practical and results in less communication overhead
when establishing connection, and reduces energy consumption. IBC implies less
keys involved, only SK and MPK have to be stored at each device. IDs of each device
have to be known and distributed anyway in existing sensor networks (IP addresses).
Also, the mapping done by DNS is eliminated, because IP addresses is no longer
needed. Exchanging data between nodes can be done with cryptography completely
without the PKG after device registration. However, there is an issue of having a
TTP. The PKG generates all secret keys to every node in its trust domain. This
kind of trust model leads to a single point of failure. The model will only work for
networks where users trust the PKG because of the key escrow problem. This means
that 1) the users do not care that the PKG can monitor traffic or 2) they trust that
the PKG will not monitor traffic. In WSN this is not a problem. Typically networks
that users might reacts to this kind of security structure could be telecommunication
and email services. However, there is limited security in these types of network
anyway. Telcos have full control over all data flowing through their servers and email
actors such as Google states that their system is analyzing all content related to a
Google user, including email [Gib14]. The problem is that these actors do not want
to make all content opaque for themselves, because they use it for their business. My
point being, if this is going to be the case anyway in the future, when the network
switches over to NDN they could secure their systems with cryptography such as
IBC to make it more difficult for adversaries to eavesdrop or perform any other form
of attacks.

Another problem is key revocation. In ordinary PKI a device can create its own
new key pair when compromised. This is not possible with IBC, because the PKG
is needed to extract the SK. One suggestion has been to add a timestamp to the
Name (e.g. monthly), but this introduces overhead for the PKG which has to renew
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private keys for everybody each month. Also, one typically wants to reduce the time
of vulnerability. Worst case, an adversary could act as an legit user for a month.
With the FSM as a key distribution scheme, every user will be notified when an
identity is revoked and replaced.

However, periodically renewal of keys might not be an issue in the HSS due to its
natural size of devices participating in such a network. One does not always know
when a SKdevice is compromised, and thus periodic renewal of secret keys is a security
measure that might be worth the cost.

Another problem occurs if the PKG must renew its key pair, MSK and MPK. Then
secret keys for all devices have to be renewed.

A comparison of IBC and other solutions is shown in Table 7.1. In IBC, the number
of keys a node has to manage is smaller than any other solution. There is no need
for digital certificates, and it is not possible to forge a signature. Compromise of a
single CEK, will only lead to compromise of the content which was encrypted using
this key. Compromise of a SK, will only lead to compromise of the device which
holds the corresponding ID.

Key distri-
bution

Number
of keys

Key Di-
rectory

Digital
certifi-
cate

Forward
encryp-
tion

Nonrepudiation

Symmetric key
cryptography

Problematic O(n2) At each
node

No No No

Random key
predistribution

Simple O(n) At each
node

No No No

PKC Complex O(n) At each
node and
key cen-
ter

Yes No Yes

IBC Simple N No No Yes Yes

Table 7.1: Comparison with PKC and IBC [PS12, Table 9.6].

7.3 Scalability

Distributing the ID-list can be an issue, as the list can grow linearly with the number
of participants in the trust domain. However, this might not be a huge problem in the
use case which is addressed in this thesis. Lets set an upper limit for the ID to be 20
bytes. Considering that the number of devices in the HSS will not grow larger than e.g.
100 devices, the list will almost be 2 kilobyte of data ((20B/1024) ∗ 100 = 1.95KB).
In a sensor network where the number of sensor can exceed 1 million sensors, the list
of every ID can be cumbersome for each device. 1 million sensors will approximately
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require 19 megabyte of data ((20B/1024/1024) ∗ 1000000 = 19.07MB), which will
have to be synchronized. However, in such sensor networks, each node does not need
to know all other names, but rather the name its gateway, i.e. a sink node. Such
logic scheme is not implemented or considered a part of this thesis.

7.4 Preshared Secret

The sharing of a temporary random key tk to register a device is assumed to be
preloaded in an offline mode or done in a controlled wired environment, i.e. not
tapped. As mentioned, I suggest using NFC to perform the sharing of tk. The NFC
signal is hard to eavesdrop outside a radius of 1 meter, thus the sharing is assumed
to be secure. However, in scenarios where a node cannot share a tk in a physical
manner, one have to rely on performing the device registration with some sort of
asymmetric encryption. But this solution introduces the question “who is able to
play the role as a device?”. The downfall is that it removes the authentication process
that is performed when preloading the tk.

7.5 Key Distribution

The FSM makes it possible for users to know who has a valid ID within the PKGs
trust domain. One drawback with the key distribution scheme I have proposed,
is DoS on Sync Interest and Sync Data. For the sender to be 100% sure that
the message is encrypted with the latest ID, the sender has to rely on that it has
received the latest sync state available from the PKG. Likewise when a receiver
verifies a signature from another device in the trust domain, it has to rely on the
same principle to be able to know if the belonging ID is still valid. In the case where
an adversary has found a SK, the SK is compromised and the adversary can try
to deny the distribution of a updated list, i.e. running a DoS on the Sync Data,
from the distributor. This however, is a complicated attack. An updated list would
spread fast in a large network. Performing DoS on every node is not easy, and would
block the network access for the adversary anyway. In [SA99] Frank Stajano and
Ross Anderson mentions possible DoS attacks, such as radio jamming and battery
exhaustion. All applications that relies on some sort of crucial information derived
using FSM (section 4.1) are vulnerable to this kind of DoS.

One question left to be solved is how expensive the Sync Interest would be for each
device. The Sync Interest should be expressed periodically for always having the
updated ID-list. In equivalent networks deployed over IP, Hello messages is often
used, hence the Sync Interest can be modified to be a combination of Hello and
Sync Interest.
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7.6 Testing

The application is not tested with real sensors, hence I cannot conclude with anything
regarding the computational power of such devices, nor the life time of the battery
when performing IBE.

An interesting question is the performance difference of IBC versus RSA. In Table 6.3
we can see that IBC is performing better on key generation, signing and verification
than regular asymmetric cryptography, RSA. However encryption and decryption of
CEK is not performing better with the IBE schemes I use, but the difference is minimal
compared to the results Xinwen Zhang et al. got in their implementation [ZCX+11],
which was 1.7 seconds difference with IBE compared to RSA.

Looking at Table 6.4 and studying the Table 6.3, we can see that the time spent
on each protocol can be correlated to the time spent doing IBE Encrypting CEK
and IBE Decrypting CEK operations. We can see that the data pull on C1 takes
about 61 ms. This protocol involves one IBE Encrypting CEK (41 ms) and one IBE
Decrypting CEK (20 ms). Hence it seems that the IBC requires most of the time of
this protocol. The results listed are done in a virtual environment, hence the total
latency should be somewhat more in a deployed network.

7.7 Other Use Cases

The trust model used in the HSS can be used in any network where the issues of
having a TTP is accepted. Such systems can for instance be:

1. Home automation systems

2. Building Automation System (BAS)

3. Building Management System (BMS)

4. Health care systems

5. Military networks

6. Sensor networks such as disaster, habitat and hazard monitoring

And thus this trust model using IBC over NDN could be widely used in the future.





Chapter8Conclusion and Future Work

In this chapter the conclusion of this thesis will be presented and the future work
will be listed.

8.1 Conclusion

A new network protocol is much needed due to the lack of security in existing networks
and the continually increase of data traffic around the world. This thesis explains
the architecture of the proposed future Internet protocol NDN. NDN facilitates a lot
of concepts that shows to be a huge benefit for todays Internet, and the predicted
increase of IoT. The naming of content and content routing provides usability to IoT
and WSN. The concept of IBC shows to be highly applicable to IoT and WSN, and
running IBC over NDN, makes it even more practical. This is because of the content
naming concept that NDN is built upon. It is easier to secure data, relate data to
publisher, and authenticate that the publisher is aware of what content it published,
than in an IP network. Using IBC in a WSN running over NDN makes applications
with security less complex and more practical than using equivalent security such as
RSA.

In this thesis I have developed an application thought to be deployed in a WSN,
written in Python with IBC used for signing and verification, encryption and de-
cryption. The system is running over the new network protocol called Named Data
Networking. The work shows how applicable NDN together with IBC are for IoT.
The application is tested to see how the suggested protocols for device registration
and data pull performs with IBC. I have proven that my suggested proposal is a
secure system that can easily be implemented, achieving confidentiality, integrity
and authenticity, as well as trust.
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8.2 Future Work

The implementation of the HSS does not include integration of the FSM, which is a
part of the future work. The system is not tested on relevant sensors and devices to
measure latency and performance.

An implementation of a full worthy IBC solution in PyNDN2 is not implemented. This
implementation should include making IBC as a part of the PyNDN2 framework,
so that developers easily can make use of IBE and IBS performing encryption,
decryption, signing and verification.

The IBC schemes used in the Charm framework does not provide a scheme that
implements IBE and IBS together in one scheme. This should not be a huge task
to implement, but it will decrease the device registration round-trip time as well as
minimizing the use of several keys, i.e. easier key management. It is explained how
to derive a signature scheme from any IBE scheme [Wat09, Section 4].
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AppendixAChronoSync

Since NDN provides multicast in the network layer as explained in Figure 2.5,
we do not have to think of network load in the same way as in IP. To achieve
distributed synchronization of a Dataset, the NDN-team has developed ChronoSync,
a decentralized synchronization framework over NDN. ChronoSync assumes that a
group of nodes knows the Name of a synchronization group, e.g /ndn/broadcast/
FileSync-0.1/<group_room>/. The synchronication application is built upon state
digests, which is that each participating node stores a hash of its current Dataset. Each
node in a ChronoSync application broadcasts its sync state in a Sync Interest (e.g.
/ndn/broadcast/FileSync-0.1/<group_room>/<state>). When a node receives
a Sync Interest, it will inspect the state of the Interest, and compare with its own
state. Each node holds a state tree that is used to detect new and outdated states.
If the incoming Interest state is equal to the receiving node’s state, the node has
no reason to do anything, as the system is in a stable state from the node’s point
of view. If not, the receiving node has to find out whether the incoming Interest
is 1) a state the node itself has been in, or if its 2) a new state. In case of 1), the
receiving node has new Data and should provide the new content as a response to
the incoming Interest. In case of 2), the receiving node should send out a Recovery
Interest for the new state.

1. Sync Interest is an Interest that a participating node sends out to discover
new Data.

2. Sync Data is a response to 1), if a participating node has new Data.

3. Recovery Interest is an Interest sent out if a node discovers that another
node has a newer state.

4. Recovery Data is a response to 3).
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When the group is in a stable state, each Sync Interest is equivalent, hence only
one entry at each router’s PIT is created, forming a temporary multicast three. This
Interest is periodically sent out from each subscriber maintaining the multicast
three, resulting in that the producer has the possibility to answer the Sync Interest
with Sync Data whenever the producer has a new Dataset.

ChronoSync is only taking care of Data discovery, and leaves other logic to the
application that is using ChronoSync. Such logic can be e.g. what should happen
when a new participant enters the room. Should all history be downloaded? Or who
is allowed to publish content in each synchronization group?

ChronoSync is explained in detail here [ZA13].



AppendixBFormal Security Analysis Code

B.1 Scyther Security Analysis of Device Registration

Scyther is a tool for verifying the security in protocols. The security verification for
the device registration phase 2 is modeled in the SPDL code presented in Listing B.1.
To better understand the SPDL code, Table B.1 presents the mapping of Figure 5.3
to the code.

Figure SPDL Code Description
IDd D Identity of the device
IDPKG PKG Identity of the PKG
n R Random nonce
sk SK Secret key to an identity
c1 = AES_Enctk[IDd || n] c1 = { D, R }k(PKG,D) AES encrypted content
c2 = AES_Enctk[sk || ñ] c2 = { SK, R }k(PKG,D) AES encrypted content
s = Sign(mpk || skpkg || c2) s = { SHA1(c2) }sk(PKG) Signature

Table B.1: Mapping of the Figure 5.3 and the SPDL code.

1 hashfunction SHA1;
2 usertype SecretKey ;
3
4 const pk: Function ;
5 secret sk: Function ;
6 inversekeys (pk ,sk);
7
8 macro c1 = { D, R }k(PKG ,D);
9 macro c2 = { SK , R }k(PKG ,D);
10 macro s = { SHA1(c2) }sk(PKG);
11 protocol HSSDeviceRegisteration (PKG , D)
12 {
13
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14 role PKG
15 {
16 var R: Nonce;
17
18 recv_1 (D, PKG , c1);
19
20 fresh SK: SecretKey ;
21
22 send_2 (PKG , D, c2 , s );
23
24 claim_PKG1 (PKG , Alive);
25 claim_PKG2 (PKG , Secret , SK);
26 claim_PKG3 (PKG , Weakagree );
27 claim_PKG4 (PKG , Niagree );
28 claim_PKG5 (PKG , Nisynch );
29 }
30
31 role D
32 {
33 fresh R: Nonce;
34
35 send_1 (D, PKG , c1);
36
37 var SK: SecretKey ;
38
39 recv_2 (PKG , D, c2 , s );
40
41 claim_D1 (D, Alive);
42 claim_D2 (D, Secret , SK);
43 claim_D3 (D, Weakagree );
44 claim_D4 (D, Niagree );
45 claim_D5 (D, Nisynch );
46 }
47 }

Listing B.1: Device Registration SPDL
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B.2 Scyther Security Analysis of Data Pull

Scyther is a tool for verifying the security in protocols. The security verification
for the data pull is modeled in the SPDL code presented in Listing B.2. To better
understand the SPDL code, Table B.2 presents the mapping of Figure 5.4 to the
code.

Figure SPDL Code Description
IDd D Identity of the device
IDm M Identity of the mobile
n R Random nonce
sk SK Secret key to an identity
c_cek = Encrypt(mpk || IDd || cek) ccek = { cek }pk(D) IBEncrypted CEK
c = AES_Enccek(data || ñ) c = { data , R }k(M,D) AES encrypted content
m1 = (IDd || n || request) m1 = (M, D, R) Message
c2 = (c_cek || c) c2 = (M, c, ccek) Message
s1 = Sign(mpk || skm || c1) s1 = SHA1(m1) sk(M) Signature
s2 = Sign(mpk || skd || c2 s2 = SHA1(c2) sk(D) Signature

Table B.2: Mapping of the Figure 5.4 and the SPDL code.

1 hashfunction SHA1;
2 usertype ContentEncryptionKey , Content ;
3
4 const pk: Function ;
5 secret sk: Function ;
6 inversekeys (pk ,sk);
7
8 macro m1 = (M, D, R);
9 macro s1 = { SHA1(m1) }sk(M);
10 macro ccek = { cek }pk(D);
11 macro c = { data , R }k(M,D);
12 macro c2 = ( M, c, ccek);
13 macro s2 = { SHA1(c2) }sk(D);
14
15 protocol HSSDataPull (M, D)
16 {
17 role M
18 {
19 fresh R: Nonce;
20
21 send_1 (M, D, m1 , s1 );
22
23 var cek: ContentEncryptionKey ;
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24 var data: Content ;
25 recv_2 (D, M, c2 , s2 );
26
27 claim_M1 (M, Alive);
28 claim_M2 (M, Secret , cek);
29 claim_M3 (M, Secret , data);
30 claim_M4 (M, Weakagree );
31 claim_M5 (M, Niagree );
32 claim_M6 (M, Nisynch );
33 }
34
35 role D
36 {
37 var R: Nonce;
38
39 recv_1 (M, D, m1 , s1 );
40
41 fresh cek: ContentEncryptionKey ;
42 fresh data: Content ;
43 send_2 (D, M, c2 , s2 );
44
45 claim_D1 (D, Alive);
46 claim_D2 (D, Secret , cek);
47 claim_D3 (D, Secret , data);
48 claim_D4 (D, Weakagree );
49 claim_D5 (D, Niagree );
50 claim_D6 (D, Nisynch );
51 }
52 }

Listing B.2: Data Pull SPDL
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