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Abstract: The selective synthesis of sulfonate surfactants with side chains containing 
ether- and hydroxy groups was carried out using cyclic sulfates as epoxide analogues. 
The main chain was elaborated from 1,2-dodecane sulfate by the addition of various 
hydroxy/alkoxysulfonates. Ethyleneoxy- and 1,2-propyleneoxy- groups were introduced 
using ethylene sulfate and 1,2-propylene sulfate, respectively.  
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Introduction 

 
The development of modern surfactants has seen rapid progress over the last decades. Research 

into the influence of changes in the polar head-group, the apolar tails, as well as semi-polar segments, 
such as ether groups, has attracted considerable attention, fueled partially by the discovery of new 
applications where surfactants have proven useful. One such application was the use of surfactants in 
Enhanced Oil Recovery (EOR), both in micellar polymer flooding and in foam treatment. These new 
applications created a need for new knowledge about such amphiphiles, including the relationships 
between their structure and activity. One important aspect is the behavior of these compounds in the 
appropriate environment. For surfactants to be used in EOR, especially in seawater, dissolved divalent 
cations cause major problems, making the traditional surfactants less soluble. Surfactants containing 
polyether segments, in ionic or non-ionic surfactants, showed greater tolerance toward divalent cations 
[1]. 
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In studies related to Enhanced Oil Recovery our group has been involved with the selective 
synthesis of a variety of surfactants. We now describe the selective synthesis of a series of hydroxy 
sulfonate surfactants of the general formula shown in Figure 1. 

Figure 1. 
 
 
 
 
 
These molecules were required as standards for identification purposes and for Structure Activity 

Relationship (SAR) studies. The structures of these products are made up of a lipophilic tail consisting 
of a dodecyl group, further extended with (n) ethyleneoxy-, EO-units in the main chain and (m) 1,2-
propyleneoxy-, PO-units as side chains. The hydrophilic part of the structure consisted of a sulfonate-
group attached to the main chain via a 1,3-propylene group. A prerequisite in this effort was that 
starting materials must be inexpensive and readily available in large amounts, that the syntheses must 
be short and concise and all transformations be highly selective. 
 
Results and Discussion 
 

EO-units have traditionally been introduced using ethylene oxide. This always resulted, however, 
in formation of inseparable mixtures of homologues caused by the nucleophilicity of the primary 
product [2]. In addition, the corresponding oligomerized epoxides are normally obtained as a by-
product, e.g., polyethylene glycol in the case of ethylene oxide. A serious problem in SAR studies is 
also the fact that polyethylene glycol is difficult to separate from the product and usually escapes 
detection in analyses. To alleviate these problems, we decided to explore the concept of using cyclic 
sulfates as the chemical equivalents of epoxides for the introduction of alkyloxy groups. Cyclic 
sulfates are far more reactive than the corresponding epoxides [3] but at the same time they exhibit the 
ability to self-protect, since mono-alkyl sulfates are poor electrophiles and hence will not oligomerize. 
The EO-units may therefore be introduced by reacting an alcohol with the cyclic ethylene sulfate, 2, 
and subsequent acidic hydrolysis to form the alcohol [2].  

A number of cyclic sulfates were readily obtained by oxidation of the corresponding cyclic sulfite. 
Two convenient methods for the synthesis of cyclic sulfates were published in 1988. They are both 
based on the Ruthenium catalyzed oxidation of the corresponding sulfites. The most widespread 
method today is the one published by Gao et al. [4] using sodium metaperiodate as the stoichiometric 
oxidant. However, a more economical method using sodium hypochlorite was reported in a French 
patent [5]. We have applied a modification of the hypochlorite promoted oxidation, Scheme 1.  
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In the laboratory we routinely prepared the sulfates on a multimolar scale. The cyclic sulfates were 
prepared in good yields, i.e., ethylene sulfate, 2, (98 %) 1,2-propylene sulfate, 3, (96 %) and 1,2-
dodecene sulfate, 4, (90 %). 
 
Synthesis of the main chain.   

 
For the construction of the main chain in the target molecules 1, we adopted a converging strategy. 

The side chains were introduced sequentially to retain control of selectivity. The main chain, 
consisting of the hydrophobic tail, the EO-units, and the sulfonate group, was obtained in one step by 
adding the appropriate hydroxysulfonate moiety to 4.  Thus, the reactions of 4 with hydroxysulfonates 
5a-c in dry DMF together with sodium hydride, gave the sulfate-sulfonates 6a-c, (n = 0 - 2) which did 
not react further with 4 as compounds 6a-c are not nucleophilic. Hydrolysis in refluxing 2M 
hydrochloric acid gave the hydroxy sulfonates 7a-c, Scheme 2. 

 
Scheme 2 

 
The products were isolated by continuous extraction with isoamyl alcohol followed by 

concentration and washing with cold diethyl ether to remove soluble impurities such as isoamyl 
alcohol and 1,2-dodecanediol. The yields for pure compounds 7b and 7c, obtained as white powders, 
were satisfactory (78 - 80 %). However, for 7a the yield never exceeded 37 %, presumably due either 
to reaction with small amounts of water in the reaction mixtures or the poor solubility of 5a in the 
reaction medium. The purity of all three hydroxysulfonates, 7a-c, were satisfactory, as determined by 
HPLC [6] and 1H-NMR analysis. The products were all hygroscopic.  

Compounds 5b-c were readily available by the reaction of ethylene glycol and diethylene glycol, 
respectively, with 1,3-propane sultone, 8, as shown in Scheme 3. For the compounds with no EO-
group in the main chain, the commercially available 3-hydroxypropane-1-sulfonic acid 5a was used. 
This product, however, consisted of an approximately 2:1 mixture of the desired 3-hydroxypropane-1-
sulfonic acid, 6a, and its corresponding dimmer, 4-oxa-heptane-1,7-disulfonic acid, 9, as was 
determined by NMR and elemental analysis. The sodium salt was obtained after neutralization with 
sodium carbonate, concentration, recrystallization and drying by azeotropic distillation with toluene. 
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Scheme 3 
 

Synthesis of the side chain.  
 

The propyleneoxy groups (PO) in the side chain were elaborated by the addition of the cyclic 1,2-
propylene sulfate, 3, to the hydroxy groups of 7a-c in dry THF at 50°C, using sodium hydride as base. 
The intermediate sulfate-sulfonates were hydrolyzed with 2M hydrochloric acid, yielding the branched 
hydroxysulfonates 10a-c. The side chain was further extended by repetition of this sequence to give 
the products 11a and b (Scheme 4). The addition of the corresponding alkoxy anions to 3 took place at 
the 1-position with good regioselectivity. The NMR spectra actually showed no signs of the 
corresponding 2-addition products. 
  

Scheme 4 
 

 
The regioselectivity was expected to be equal to, or better than was found for nucleophilic addition 

of the less hindered 2-butanol to 3, which gave a 95:5 ratio of the 1- and 2-addition products. Thus, the 
reaction was studied by adding 2-butanol to 1,2-propylene sulfate, 3, in THF/NaH. The product 
composition was determined by GC analysis. The identities of the products were determined after 
oxidation (pyridinium dichromate/DMF) to the corresponding ketone and carboxylic acid respectively, 
which were separated and identified by their characteristic spectroscopic properties, Scheme 5. 
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Scheme 5 

 
The overall yields for the attachment of one PO-unit to the main chain were satisfactory, generally 

being in the range of 85 to 98 % of the desired products, which were isolated as waxy materials after 
purification by column chromatography. The degree of alkylation was calculated from 1H-NMR data 
from the integral values for the different methyl groups. These results were also confirmed by HPLC 
analysis. The experimental procedure used here gave not always full conversion in the PO-alkylation 
steps. Even large excess of reagents for prolonged periods of time rarely gave full conversion. 
Preparative separation of the different alkylation products was not practically possible. 

 
Spectroscopic analysis.  
 

 The hydroxysulfonates 1 were analyzed by 1H-NMR. 13C-NMR did not produce spectra with 
acceptable signal to noise ratios. This may be ascribed to the formation of micelle structures in D2O 
affecting the relaxation conditions for the molecules. The 1H-NMR spectra of the hydroxysulfonates 
were in good agreement with the proposed structures. Compound 7a gave a spectrum in which all 
signals could be assigned to the structure. The methylene groups next to the sulfonate groups exhibited 
a characteristic AA'XX'-patterns around δ 3.4. This signal was recognized in all products 1. Upon 
introduction of the EO- or PO-groups, the region for the ether protons became highly complex and 
made full assignment impossible. Calculation of the degree of the side chain alkylation was 
determined from the integrals for the two methyl signals at approx. 0.9 and 1.1 ppm, respectively, 
which were completely resolved. 
 
Conclusions 
 

The selective synthesis of the desired hydroxy surfactants 1 was demonstrated from readily 
accessible starting materials using a strategy applying cyclic sulfates as epoxide analogues. 
Ethyleneoxy- and 1,2-propyleneoxy- groups were introduced using ethylene sulfate and 1,2-propylene 
sulfate, respectively. Yields of the pure compounds were generally satisfactory. The alkylation with 
1,2-propylene sulfate was often difficult to drive to completion. The purity of the surfactants was 
determined by HPLC and 1H-NMR analysis.  
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Experimental 
 
General 
 

All chemicals and solvents applied were of synthesis quality unless otherwise stated. The 1,2-
dodecanediol was of bulk quality, (97 - 98 %). THF was freshly distilled from sodium prior to use and 
N,N-dimethylformamide was distilled and then stored over 3Å molecular sieves. Dichloromethane 
used in the oxidation of cyclic sulfites to cyclic sulfates was of bulk quality. Acetonitrile for HPLC 
analysis was of HPLC grade. NMR-spectra were recorded for CDCl3 solutions (unless otherwise 
noted) on a Jeol JNM-EX 400 FT NMR System, and Bruker Avance DPX300 or 400 instruments. IR 
spectra were obtained with a Nicolet 20SXC FT-IR Spectrometer. Mass spectra were obtained on a 
AEI MS 902 double focusing high resolution instrument equipped with electron impact ionization (EI, 
70 eV). GLC analyses were recorded on a Perkin-Elmer Auto System with a Chrompack CP-5 CB 
column. HPLC analysis were performed using a Perkin-Elmer instrument consisting of a LC 250 
binary pump, LC 600 autosampler equipped with a 10 µL sample loop, LC 30 refractive index detector 
and a LC 290 BIO UV variable wavelength absorbance detector (190 - 360 nm). A conductivity 
detector (Conductivity Monitor, Pharmacia) was also used. As integrator, a PE-Nelson Model 1020 
was utilized. The column used was a ChromSphere C18 (4.6 x 250 mm, Chrompack). 
 
Cyclic sulfites: general procedure.   
 

The appropriate diol (4.00 mol) was dissolved in dichloromethane (1000 mL) and thionyl chloride 
(571 g, 4.80 mol) was added slowly to the reaction mixture under a nitrogen atmosphere. The evolved 
gases were led into a trap of aqueous sodium hydroxide. The reaction was continued until gas 
evolution ceased and GLC analysis indicated full conversion to the cyclic sulfite. The solvent was 
removed to give the crude product. 
 
Ethylene sulfite was distilled under reduced pressure (b.p. 65 oC/12 mm Hg), yielding a clear liquid 
(409.3 g, 95 % yield). The purity was > 99 % (GLC). The spectroscopic properties were in agreement 
with those reported in the literature [7]. 
 
Propylene sulfite was prepared using the same procedure. The yield was 409.3 g (95 %) of a 63:37 
mixture of diastereomers (GLC/1H-NMR) after distillation (b.p. 55 oC/12 mm Hg). The purity was 
>99 %. 1H-NMR: δ 1.43 (d, J = 6 Hz, 3H), 1.60 (d, J = 6 Hz, 1.8H), 3.88 (dd, J = 7 Hz, J = 8 Hz, 1H), 
4.28 (t, J = 9 Hz, 0.6H), 4.51 (dd, J = 6 Hz, J = 9 Hz, 0.6H), 4.58-4.67 (m, 0.6H), 4.70 (dd, J = 6 Hz, 
J = 8 Hz, 1H), 5.07-5.15 (m, 1H) ppm; 13C-NMR: δ 17.6, 18.7 (two diastereomers), 71.3, 72.9 (two 
diastereomers), 76.6, 80.3 (two diastereomers) ppm; IR (neat): 2987, 2939, 2901, 1458, 1386, 1204, 
1135, 1101, 1054, 965, 949, 907, 830, 744, 744, 710, 677 cm-1 ; MS (120°C, 70 eV) [m/z (% rel. int.)]: 
122 (4, M+), 110 (1), 92 (21), 58 (10), 57 (14). 
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Cyclic sulfates: general procedure.  
 

The cyclic sulfite (0.50 mol) was dissolved in dichloromethane (400 mL) and cooled in an ice bath. 
Water (150 mL), a saturated solution of sodium hydrogen carbonate (200 mL), and ruthenium 
trichloride hydrate (0.158 g, 0.70 mmol, 0.14 mol%) was added to the reaction mixture. An approx. 
11 % solution of hypochlorite (340 mL, ca. 0.50 mol) was then added to the reaction mixture with 
vigorously stirring and cooling over a period of 35 minutes. When GLC-analysis showed that all of the 
sulfite was consumed, the two phases were separated, and the aqueous phase was extracted with 
dichloromethane (3 x 150 + 2 x 100 mL portions). The combined organic phase was washed with brine 
(200 mL) and stirred with Norit A™ and isopropanol (0.05 mL) at 10°C for 40 minutes. Anhydrous 
MgSO4 was added and the solution was stirred for an additional 5 minutes. The solution was filtered 
through a small pad of Celite®, leaving a clear liquid, and the solvent was removed by evaporation 
under reduced pressure, yielding the product. 
 
Ethylene sulfate (2) was obtained in 70 % yield as a white solid of > 99 % purity (GLC); m.p.: 92.5-
93.0°C; 1H-NMR: δ 4.76 (s, 4H) ppm; 13C-NMR: δ 68.8 ppm; IR (KBr): 2998, 2923, 1357, 1195, 
1121, 1005, 976, 898, 872, 776, 651, 621 cm-1; MS (170°C, 70 eV) [m/z (% rel. int.)]: 124 (82, M+), 
123 (9), 81 (21), 66 (48), 65 (57), 64 (30), 48 (100). 
 
Propylene sulfate (3) was obtained in 80 % yield and > 99 % purity after distillation (b.p. 50o at 0.1 
mm Hg); 1H-NMR: δ 1.61 (d, J = 6.4 Hz, 3H), 4.32 (t, J = 8.4 Hz, 1H), 4.75 (dd, J = 5.7 Hz, 
J = 8.6 Hz, 1H), 5.14 (m, 1H) ppm; 13C-NMR: δ 18.0, 74.7, 80.5 ppm; IR (neat): 2993, 2944, 2913, 
1383, 1208, 1058, 983, 849, 822, 770, 651 cm-1; MS (150°C, 70 eV) [m/z (% rel. int.)]: 138 (4, M+), 
137 (9), 123 (100), 65 (12), 64 (30), 58 (20), 57 (26), 55 (12), 48 (20). 
 
1-Dodecene sulfate (4).  
 

1,2-Dodecanediol (100.0 g; 0.494 mol) was dissolved in dichloromethane (1000 mL) and stirred at 
room temperature. Thionyl chloride (60 mL, 0.82 mol) was added over 20 minutes under a nitrogen 
atmosphere, and the evolved gases were led into a trap of aqueous sodium hydroxide. After 3.5 hours, 
GLC-analysis indicated full conversion to the cyclic sulfite, which was not isolated but oxidized 
directly in the next step. A saturated solution of sodium hydrogen carbonate (250 mL) and solid 
sodium hydrogen carbonate were added until no more gas was formed. Ruthenium trichloride hydrate 
(approx. 19.0 mg, 0.017 mol%) was added to the reaction, and an approx. 5 % solution of hypochlorite 
(800 mL, approx. 0.56 mol) was added slowly with vigorous stirring. After 4 hours GLC analysis 
indicated that all of the sulfite was consumed. The two phases were separated, and the aqueous phase 
was extracted with dichloromethane (3 x 250 mL). The combined organic phase was washed with 
water (200 mL) and brine (2 x 250 mL). Isopropanol (0.5 mL) was added, and the solution was dried 
over anhydrous MgSO4. The solution was filtered through a small pad of silica gel and the solvent was 
removed by evaporation under reduced pressure, leaving a clear colorless oil. The product was further 
dried in vacuo. Yield: 123.7 g (95 %); purity: 98 % (GLC); 1H-NMR: δ 0.88 (t, J = 7 Hz, 3H), 1.27-
1.50 (m, 16H), 1.76 (m, 1H), 1.92 (m, 1H), 4.34 (t, J = 8 Hz, 1H), 4.x (dd, J = 6 Hz, J = 9 Hz, 1H), 
4.98 (m, 1H) ppm; 13C-NMR: δ 14.1, 22.7, 24.6, 29.0, 29.3, 29.3, 29.5, 29.6, 31.9, 32.2, 73.0, 83.3 
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ppm; IR (neat): 2926, 2855, 1467, 1388, 1211, 985, 826, 779, 722, 651 cm-1; MS (150°C, 70 eV) [m/z 
(% rel. int.)]: 247 (1, M - HO), 213 (48), 166 (17), 138 (11), 126 (10), 124 (14), 123 (11), 111 (13), 
110 (22), 109 (24), 98 (13), 97 (38), 96 (71), 95 (51), 85 (13), 84 (26), 83 (54), 82 (100), 81 (64), 71 
(25), 70 (46), 69 (68), 68 (69), 67 (68), 64 (14), 57 (50), 56 (47), 55 (87), 54 (61). 
 
Sodium 6-hydroxy-4-oxa-1-hexanesulfonate (5b).  
 

Dry ethylene glycol (500 mL, 8.97 mol) was added to sodium (10.0 g; 0.44 mol) under a nitrogen 
atmosphere at room temperature and this mixture was stirred until all sodium was dissolved. 1,3-
Propyl sultone (8, 52.4 g; 0.43 mol) was added to the reaction mixture, which was heated to 95°C for 3 
hours. Most of the excess ethylene glycol was removed under reduced pressure. The crude product was 
dissolved in water and continuously extracted with isoamyl alcohol for 20 hours. The solvent was then 
removed under reduced pressure, and the product dried by azeotropic distillation with benzene to give 
68.0 g (77 % yield) of a white solid; purity: +98 % (1H-NMR); 1H-NMR (D2O): δ 2.01 (m, 2H), 2.93-
3.04 (m, 2H), 3.59-3.75 (m, 6H) ppm; 13C-NMR (D2O): δ 26.9, 50.5, 63.1, 71.7, 73.9 ppm; IR (KBr): 
3413, 2936, 2873, 1446, 1417, 1360, 1197, 1122, 1065, 623 cm-1. 
 
Sodium 9-hydroxy-4,7-dioxa-1-nonanesulfonate (5c).  
 

This compound was prepared from diethylene glycol and 1,3-propane sultone (8), using a 
procedure similar to the one described above. The yield was 80.5 g (75 %) of > 98 % pure product (by 
1H-NMR); 1H-NMR (D2O): δ 2.00 (m, 2H), 2.96 (m, 2H), 3.62-3.67 (m, 10H) ppm; 13C-NMR (D2O): 
δ 26.8, 50.5, 63.0, 71.7, 71.9, 72.1, 74.3 ppm; IR (KBr): 3416, 2934, 2871, 1456, 1419, 1352, 1198, 
1127, 1109, 1065, 623 cm-1. 
 
Sodium 9-hydroxy-4,7-dioxa-1-nonadecanesulfonate (7b).  
 

 Sodium 6-hydroxy-4-oxo-1-hexanesulfonate (5b, 12.00 g; 58.2 mmol) and sodium hydride 
(4.19 g; 174.6 mmol) was added to a flask and placed under a N2-atmosphere. Dry DMF (200 mL) was 
added, and the reaction was stirred at room temperature for 3.5 hours. Cyclic 1,2-dodecane sulfate (4,  
26.09 g; 98.7 mmol) in dry DMF (35 mL) was slowly added. The reaction was stirred at room 
temperature overnight. The reaction mixture was cooled in an ice bath and quenched with ethanol 
(30 mL). The solvent was removed under reduced pressure, the crude product was added 2 M 
hydrochloric acid (300 mL), and refluxed for 3 hours. The reaction was cooled in an ice bath, and the 
pH was adjusted to ~14 with NaOH. The solution was extracted continuously with isoamyl alcohol for 
3:30 hours. The isoamyl alcohol was removed under reduced pressure, the crude product washed with 
ether and dried in vacuo, yielding 17.6 g (77 %) of 7b as a white powder, pure according to HPLC and 
1H-NMR analysis. 1H-NMR (D2O): δ 0.88 (t, J = 6.6 Hz, 3H), 1.30 (m, 16H), 1.46 (m, 2H), 2.03 (m, 
2H), 2.97 (m, 2H), 3.41 (dd, J = 7.7 Hz, J = 10.4 Hz, 1H), 3.52 (dd, J = 3.1 Hz, J = 10.5 Hz, 1H), 3.64-
3.70 (m, 6H), 3.80 (m, 1H) ppm; IR (KBr): 3350, 2955, 2923, 2857, 1654, 1617, 1468, 1420, 1355, 
1288, 1238, 1212, 1127, 1068, 799, 736, 721, 628 cm-1. 
Sodium 6-hydroxy-4-oxa-1-hexadecanesulfonate (7a).  
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This product was obtained in 37 % yield from 5a and 4. The product was pure according to HPLC 
and 1H-NMR analysis. 1H-NMR (D2O): δ 0.87 (t, J = 6.8 Hz, 3H), 1.29-1.50 (m, 18H), 2.00-2.06 (m, 
2H), 2.97-3.01 (m, 2H), 3.43 (dd, J = 7.4 Hz, J = 10.7 Hz, 1H), 3.55 (dd, J = 3.4 Hz, J = 10.7 Hz, 1H), 
3.59-3.71 (m, 2H), 3.83 (m, 1H) ppm; IR (KBr): 3444, 2958, 2915, 2850, 1469, 1444, 1420, 1401, 
1360, 1322, 1280, 1234, 1194, 1161, 1124, 1067, 1051, 905, 878, 797, 721, 629 cm-1. 
 
Sodium 12-hydroxy-4,7,10-trioxa-1-docosanesulfonate (7c).  
 

This product was obtained in 80 % yield from 4 and 5c. The product was pure according to HPLC 
and 1H-NMR analysis. 1H-NMR (D2O): δ 0.87 (t, J = 6.6 Hz, 3H), 1.29-1.45 (m, 18H), 2.02 (m, 2H), 
2.96 (m, 2H), 3.42 (dd, J = 7.5 Hz, J = 10.5 Hz, 1H), 3.53 (dd, J = 3.2 Hz, J = 10.5 Hz, 1H), 3.63-3.69 
(m, 10H), 3.81 (m, 1H) ppm; IR (KBr): 3378, 2928, 2913, 2849, 1469, 1421, 1356, 1330, 1266, 1245, 
1201, 1130, 1069, 908, 892, 798, 734, 721, 628 cm-1. 
 
Sodium 6-decyl-9-hydroxy-4,7-dioxa-1-decanesulfonate (10a).  
 

Hydroxysulfonate 7a (1.50 g; 4.33 mmol) and sodium hydride (0.26 g; 10.8 mmol) were dissolved 
in freshly distilled THF (20 mL) under a N2-atmosphere. The reaction was heated to 55°C for 1 hour. 
Propylene sulfate (3, 0.90 g, 6.49 mmol) in dry THF (10 mL) was added, and the reaction was stirred 
at 55°C overnight. The reaction mixture was cooled in an ice bath and quenched with ethanol (2 mL). 
The solvent was removed under reduced pressure. The product was dissolved in 2 M hydrochloric acid 
(50 mL) and refluxed for 4 hours. The reaction was cooled in an ice bath and neutralized with NaOH 
(aq.). The solution was extracted continuously with isoamyl alcohol for 3.5 hours and the isoamyl 
alcohol was removed under reduced pressure. The product was loaded onto a column of silica gel and 
eluted with acetone (2 x 250 mL, frac. 1-2), acetone-ethanol 9:1 (450 mL, frac. 3-14), acetone-ethanol 
1:1 (450 mL, frac. 15-26) and pure ethanol (450 mL, frac. 27-38). The fractions were analyzed by TLC 
using ethanol as eluent. Fractions 10 to 34 contained the product. The solvents were removed under 
reduced pressure and the product was dried in vacuo, yielding 1.34 g (77 %) of a waxy solid. The 
purity of isolated 10a was 85 % according to 1H-NMR analysis, with a 15 % content of the non-
alkylated substrate 7a. 1H-NMR (D2O): δ 0.76 (t, J = 6.7 Hz, 3H), 1.05 (dd, J = 6.4 Hz, J = 2.3 Hz, 
2.6H), 1.18-1.41 (m, 18H), 1.91 (m, 2H), 2.87 (m, 2H), 3.29-3.65 (m, 7.6H), 3.86 (m, 0.9H) ppm; IR 
(NaCl): 3334, 2954, 2922, 2852, 1466, 1190, 1110, 1054, 617 cm-1.  

 
 Sodium 9-decyl-12-hydroxy-4,7,10-trioxa-1-tridecanesulfonate (10b).  
 

Obtained in 86 % yield (4.95 g) from 7b and 3. The purity was 97 % according to 1H-NMR (it 
contained 3 % of the hydroxysulfonate 7b). 1H-NMR (D2O): δ 0.88 (t, J = 6.4 Hz, 3H), 1.14 (m, 2.9H), 
1.29-1.50 (m, 18H), 2.01 (m, 2H), 2.95 (m, 2H), 3.38-3.69 (m, 11H), 3.93 (m, 1H) ppm; IR (NaCl): 
3440, 2954, 2923, 2854, 1467, 1367, 1277, 1190, 1145, 1117, 1053, 954, 616 cm-1. 
 
Sodium 9-decyl-15-hydroxy-12-methyl-4,7,10,13-tetraoxa-1-hexadecanesulfonate (11b).  
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Obtained in 96 % yield from 10b and 3. The purity was 95 % by 1H-NMR (it contained 5 % of 
hydroxysulfonate 10b). 1H-NMR (D2O): δ 0.88 (t, J = 6.5 Hz, 3H), 1.16 (m, 5.7H), 1.29 (m, 16H), 
1.50 (m, 2H), 2.02 (m, 2H), 2.96 (m, 2H), 3.35-3.77 (m, 14H), 3.95 (m, 1H) ppm; IR (NaCl): 3447, 
2954, 2924, 2855, 1466, 1208, 1192, 1117, 1058, 618 cm-1. 
 
Sodium 12-decyl-15-hydroxy-4,7,10,13-tetraoxa-1-hexadecanesulfonate (10c).  
 

Obtained in 91 % yield from 7c and 3. The purity was > 98 % (1H-NMR); 1H-NMR (D2O): δ 0.78 
(t, J = 6.5 Hz, 3H), 1.05 (m, 3H), 1.19 (m, 16H), 1.41 (m, 2H), 1.92 (m, 2H), 2.86 (m, 2H), 3.30-3.62 
(m, 15H), 3.84 (m, 1H) ppm; IR (NaCl): 3457, 2924, 2855, 1466, 1366, 1352, 1289, 1192, 1144, 1115, 
1060, 953, 936, 880, 842, 797, 733, 619 cm-1. 
 
Sodium 12-decyl-18-hydroxy-15-methyl-4,7,10,13,16-pentaoxa-1-nonadecanesulfonate (11c).  
 

Obtained in 94 % yield from 10c and 3. The purity was 90 % (1H-NMR). The product contained 
10 % of hydroxysulfonate 10c. 1H-NMR (D2O): δ 0.87 (t, J = 6.7 Hz, 3H), 1.16 (m, 5.5H), 1.29 (m, 
16H), 1.52 (m, 2H), 2.03 (m, 2H), 2.97 (m, 2H), 3.35-3.75 (m, 18H), 3.97 (m, 1H) ppm; IR (NaCl): 
3446, 2925, 2854, 1468, 1414, 1367, 1352, 1288, 1194, 1143, 1112, 1057, 618 cm-1. 
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