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Abstract: (−)-∆9-Tetrahydrocannabinol is the principal psychoactive component of the 

cannabis plant and also the active ingredient in some prescribed drugs. To detect and 

control misuse and monitor administration in clinical settings, reference samples  

of the native drugs and their metabolites are needed. The accuracy of liquid 

chromatography/mass spectrometric quantification of drugs in biological samples depends 

among others on ion suppressing/alteration effects. Especially, 
13

C-labeled drug analogues 

are useful for minimzing such interferences. Thus, to provide internal standards for more 

accurate quantification and for identification purpose, synthesis of [
13

C4]-∆
9
-tetrahydro-

cannabinol and [
13

C4]-11-nor-9-carboxy-∆
9
-tetrahydrocannabinol was developed via 

[
13

C4]-olivetol. Starting from [
13

C4]-olivetol the synthesis of [
13

C4]-11-nor-9-carboxy-∆
9
-

tetrahydrocannabinol was shortened from three to two steps by employing nitromethane as a 

co-solvent in condensation with (+)-apoverbenone. 
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1. Introduction 

(−)-∆
9
-Tetrahydrocannabinol (∆

9
-THC, 1), is a product of the female flowering parts of Cannabis 

sativa (marijuana), and is the main psychoactive substance in the plant. As compound 1 and analogues 

act on the cannabinoid receptors, the cannabinoid group of compounds is also medicinally useful. 

Among others, development have led to the ∆
9
-THC-containing drug Sativex

®
, indicated for treatment 

of moderate to severe spasticity due to multiple sclerosis [1], and Marinol
®

, used in the treatment of 

chemotherapy-induced nausea and vomiting [2]. The ∆
9
-THC analogue Nabilone™, also an approved 

drug, is indicated efficient in treatment of the same conditions [2,3]. However, recreational use and 

continued illicit use of marijuana have increased the importance of having methods to determine usage 

by individuals. 

In vivo ∆
9
-THC (1) undergoes phase I metabolism to yield 11-hydroxy-∆

9
-tetrahydrocannabinol 

(11-OH-THC, 2) peaking immediately after smoking, Scheme 1. Metabolite 2 is also psychoactive,  

but is rapidly oxidized to the inactive metabolite (‒)-11-nor-9-carboxy-∆
9
-tetrahydrocannabinol  

(THC-COOH, 3), which slowly increases and plateaus after 2–4 h [4]. Metabolism occurs mainly in 

the liver by cytochrome P450 enzymes 2C9, 2C19, and 3A4 [5]. The main urinary metabolites occur as 

phase II conjugates of glucuronic acid, and less commonly as sulphate, glutathione, amino acids, and 

fatty acid conjugates. The main site for glucuronidation is the carboxylate at C-11, but 11-OH-THC (2) 

may undergo phase II metabolism as well. 

Scheme 1. Major phase I metabolites derived from ∆
9
-THC (1). 

 

Efficient analysis of both drugs and their metabolites are required in the fields of pharmacology, 

clinical toxicology and forensic toxicology, but also for workplace drug testing, testing of driving 

under the influence of drugs, doping analysis and rehabilitation programs. Since these analyses are 

often performed by mass spectroscopic techniques, reference samples of the native drug, its main 

metabolites and suitable standards are needed for identification and quantification purposes. Stable 

isotope labeled internal standards (SIL IS) are added to correct for error in the sample preparation and 

co-eluting substances that could alter or suppress the signal [6]. Deuterated internal standards with 

varying degree of labeling are currently used as IS in quantification of cannabinoids [7–11]. 

However, under certain conditions the MS ionization of the analytes is influenced differently from 

that of its deuterium labeled analogues, due to slight differences in retention. This potentially leads to 

inaccuracies in the quantification [12,13]. Urine analysis of ∆
9
-THC (1) and its metabolites by  

LC-MS/MS is especially challenging, due to the presence of unstable compounds and strong adsorption to 
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hydrophobic surfaces and the need for enzymatic pre-processing of the sample prior to analysis. 

Further, the importance of an effective sample clean-up prior to cannabinoid analysis to remove matrix 

interferences and maintaining a high extraction efficiency has been highlighted [14]. Also, 

Scheidweiler et al. [15] concluded that urine samples from different individuals gave matrix effects not 

observed during method validation, contributing to inaccurate cannabinoid quantification. It is also likely 

that the challenge with ion suppressing/alteration or matrix effects will be even more pronounced by 

the use of high resolution techniques such as UHPLC-MS/MS. This indicates that there is a need for a 

better SIL IS for cannabinoid analysis. 
13

C-Labeled IS are particularly suitable for minimizing ion 

suppression/alteration effects in LC-MS/MS analysis, therefore the quantitative analysis in various 

biological samples are particularly accurate and reproducible. However, to avoid “overlap” with the 

natural 
13

C in the native compound in MS detection, the number of labeled atoms must preferably be at 

least three. Recently, the success of substituting deuterated IS with 
13

C IS has been shown in the case 

of amphetamine and methamphetamine quantification [16]. The use of 
13

C as labeled compounds as IS 

is also widely known and appreciated in other fields of analytical chemistry [17–21]. Based on this 

background we disclose herein a synthesis of [
13

C4]-labeled Δ
9
-THC (1) and Δ

9
-THC-COOH (3) made 

via [
13

C4]-olivetol. 

2. Results and Discussion 

2.1. Strategy Selection and Synthesis of [
13

C4]-Olivetol 

Our aim was to find an efficient synthesis of 
13

C-labeled (−)-(6aR,10aR)-6,6,9-trimethyl-3-pentyl-

6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol, termed Δ
9
-THC (1), and its main urine metabolite 

Δ
9
-THC-COOH (3). Previously developed routes towards Δ

9
-THC (1) involve both reactions with  

5-pentyl-1,3-benzenediol (olivetol) and various chiral natural derived terpenes [22–25] and asymmetric  

syntheses [26–28]. Herein, we have focused on the use of terpenes for introducing the correct 

stereochemistry. Due to the lengthy and rather complicated synthesis of the terpenes, it was decided to 

label olivetol. Moreover, labeled olivetol (I) is also a useful building block for the second target, 

namely Δ
9
-THC-COOH (3). The goal was to introduce at least three [

13
C] atoms in olivetol, and 

several strategies were considered, see Scheme 2. 

A key intermediate was assumed to be protected 5-(bromomethyl)benzene-1,3-diol derivatives, II, 

which can be converted to olivetol analogues (I) by metal catalysed coupling [29] or olefination 

chemistry [30] using IV or V. Another precursor is [
13

C6]-3,5-dihydroxybenzoic acid (VII), available 

by synthesis from [
13

C6]-benzoic acid [31]. Depending on the following strategy (olefination or C-C 

coupling) additional steps are needed. As the benzoic acid routes appeared long with expected lower 
13

C atom efficiency, we decided to prepare an olivetol derivative with four carbons in the alkyl chain by 

using commercially available [
13

C4]-n-bromobutane. The chemistry performed is shown in Scheme 3. 

A Wurtz type reaction between 1-(bromomethyl)-3,5-dimethoxy-benzene (4) and the Grignard 

reagent made from [
13

C4]-n-bromobutane in the presence of dilithium tetrachlorocuprate gave 78% 

isolated yield of [
13

C4]-1-(3,5-dimethoxyphenyl)pentane (5). The major by-product observed was the 

3,5-dimethoxybenzyl dimer. By-product formation was somewhat increased by running the reaction in 

tetrahydrofuran instead of diethyl ether. To obtain [
13

C4]-olivetol (6) the dimethoxy ether groups were 
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removed by heating compound 5 in pyridine hydrochloride at 200 °C. Trimethylsilyl iodide could also 

be used, although purification was more tedious in this case. The Wittig strategy using 

butyltriphenylphosphonium salt in combination with the non-labeled benzaldehyde (V) was also 

briefly tested. The first step involving formation of the Wittig salt was slow in toluene and needed 

several days at reflux to reach full conversion. On the other hand both the alkene forming step, and the 

hydrogenation of the olefin with palladium on carbon as catalyst proceeded smoothly. Thus, by tuning 

of the first step, this route might be highly useful. 

Scheme 2. Retrosynthetic route to 
13

C-labeled olivetol derivatives. 

 

Scheme 3. Synthesis of [
13

C4]-olivetol (6). 

 

2.2. [
13

C4]-Labeled Δ
9
-THC and Δ

9
-THC-COOH 

In the synthesis of [
13

C4]-Δ
9
-THC (1), [

13
C4]-olivetol (6) was simply condensed with the terpene 7 

in the presence of boron trifluoride as Lewis acid following the procedure of Silverberg et al. [25], 

Scheme 4. Alternative acid catalysts for such transformations has been published by Rosati et al. [32]. 

After purification by preparative HPLC the product was isolated in 61% yield as a colourless oil 

(purity >99%). The product gradually darkened upon storage at −20 °C, however, no change in 

chromatographic purity was noticed. 
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Scheme 4. Synthesis of [
13

C4]-Δ
9
-THC (1). 

 

[
13

C4]-Δ
9
-THC (1) was analysed by GC-MS and the retention times were compared with that of native 

Δ
9
-THC obtained by hexane extraction of a Cannabis Sativa hybrid strain. The superimposed 

chromatograms showing identical elution, and the overlaid total ion chromatograms of [
13

C4]-Δ
9
-THC (1) 

and native Δ
9
-THC are shown in Figure 1. 

Figure 1. Comparison of GC elution and the total ion chromatograms of [
13

C4]-Δ
9
-THC (1) 

and native Δ
9
-THC.  
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Synthesis of [
13

C4]-Δ
9
-THC-COOH (3), was more complex than that of 1. Based on previous 

reported total synthesis, we decided to utilise ketone 8 as a late stage precursor (Scheme 5). 

Ketone 8 was obtained in two steps from (+)-nopinone diacetate (9), and [
13

C4]-olivetol (6) [33]. 

First, an acid catalysed stereoselective and regioselective Michael type addition gave [
13

C4]-10. 

Compared to the previous report the yield was increased from 33% to 72% by using two equivalents of 

the terpene 9 [33]. Treating [
13

C4]-10 with trimethylsilyl triflate gave [
13

C4]-8 in 82% isolated yield. 

Scheme 5. Synthesis of [
13

C4]-Δ
9
-THC-COOH (3) from [

13
C4]-olivetol (6). 

 

An alternative procedure towards 8 that was previously used in the synthesis of the structurally 

related compound Nabilone™ [34] was also investigated. By this one-step reaction between (1R,5R)-

6,6-dimethylbicyclo[3.1.1]hept-3-en-2-one ((+)-apoverbenone, 11) and 5-(1,1-dimethylheptyl)resorcinol in 

the presence of aluminum chloride, a low 16% yield was reported [34]. However, we were able to 

increase the yield in this transformation up to 67% by the use of nitromethane as co-solvent in the 

condensation between [
13

C4]-olivetol (6) and 11. Although the exact role of nitromethane has not been 

investigated it is assumed that the improvement in part is due to increased solubility and mixing of 

aluminum chloride. Nitromethane has also been reported to modify/reduce the activity of the 

aluminum chloride, which might also be an important aspect [35]. It should be noted that both of the 

terpenes 9 and 11 in the end yielded the natural enantiomeric form of (-)-Δ
9
-THC-COOH (3) in 

contrast to other possible strategies [36]. 

The precursor 8 was then transformed to [
13

C4]-Δ
9
-THC-COOH (3) in three operations. Treatment 

with triisopropylbenzenehydrazine yielded the corresponding hydrazone, which was carefully dried 

prior to treatment with butyl lithium in n-hexane in the presence of tetramethylethylenediamine 

(TMEDA) and then gaseous CO2. Scrupulously dry and pure reagents were needed in this 

transformation. Kachensky et al. [37] reported on a 9/1 ratio of Δ
9
/Δ

8
 THC-COOH by using a 10% 

solution of TMEDA. The dilution factor was however not mentioned. Following these conditions, only 

the Δ
8
-isomer was obtained in our earlier test reactions. This is in line with that observed by Nikas  

et al. [33]. Decreasing the concentration by fifty percent by addition of more of the TMEDA/n-hexane 
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solvent mixture had a positive effect. The crude product contained a 6/4 ratio of [
13

C4]-3 and the  


8
-regioisomers, which corresponds with that reported by Nikas et al. [32]. Purification was done first 

by silica-gel column chromatography to remove structurally unrelated impurities, followed by two 

crystallisations to arrive at a final purity of 97.5%. A chromatogram of the prepared material as 

compared to the native substance is shown in Figure 2. Preparative HPLC was used to recover 

additional [
13

C4]-Δ
9
-THC-COOH (3) from the mother liquor giving a total yield of 18%. The 

enantiomeric excess of Δ
9
-THC-COOH (3) was determined by self-induced non-equivalence by  

1
H-NMR spectroscopy of ketone intermediate [

13
C4]-8 [38] and was found to be 96% ee.  

Figure 2. LC chromatogram of [
13

C4]-Δ
9
-THC-COOH (3) as compared to native Δ

9
-THC-

COOH. The impurities are [
13

C4]-Δ
8
-THC-COOH and Δ

8
-THC-COOH, respectively.  

 

3. Experimental Section 

3.1. Chemicals and Analysis 

Bulk solvents were purchased either from LabScan (Gliwice, Poland) or Merck (Darmstadt, 

Germany). Deuterated solvents were purchased from CDN Isotopes Inc (Pointe-Claire, QC, Canada). 

All chemicals or reagents used were of highest purity available and purchased from Sigma-Aldrich 

(Oslo, Norway) or Acros (Geel, Belgium). All solvents and chemicals were used as is without further 

purification unless otherwise stated. Anhydrous solvents were used as is and stored over activated 

molecular sieves. The silica-gel used for flash chromatography was Merck silica gel 60 (230–400 mesh). 

For chromatography, thin layer chromatography (TLC) silica gel 60F254 Merck plates/sheets were 

employed with visualization under UV light at 254 nm. 
1
H and 

13
C-NMR spectra were recorded from 

Bruker Advance DPX instruments (400/100 MHz). Chemical shifts (δ) are reported in ppm rel. to 

13C4-Δ9-THC-COOH 

Δ9-THC-COOH 
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tetramethylsilane. Due to the high intensity of the 
13

C-labeled carbons as compared to those unlabeled, 

and multiple coupling, some NMR resonances were not detected. In this study the non-labeled benzoic 

carbonyl signal at around 166 ppm was difficult to detect, experiencing extensive coupling by the 

neighbouring 
13

C-isotopes. Isotopic purity and accurate mass determination in positive and negative 

mode on the final product was performed on a “Synapt G2-S” Q-TOF instrument from Waters with a 

resolution of 5 ppm. Samples were ionized by the use of an atmospheric pressure solids analysis probe 

(ASAP). No chromatography separation was used prior to the mass analysis. HPLC analysis was 

performed on an Agilent 1200 with atmospheric pressure chemical ionization (APCI)/ electrospray 

ionization (ESI) multimode ionization. Acetonitrile was used as the mobile phase in combination with 

water buffered at pH 3 with formic acid. Column used was XBridge™ C18, 5 µm, 4.6 × 150 mm from 

Waters or Hilic Plus, 3.5 µm, 4.6 × 100 mm from Agilent. GC-MS analysis was performed on Agilent 

6890 with EI ionization, Agilent column HP5MS, 30 m, 0.25 mm internal diameter, 0.25 µm film. 

Preparative HPLC of [
13

C4]-∆
9
-THC (1) and [

13
C4]-∆

9
-THC-COOH (3) was performed with 19 × 150 mm 

XBridge prep C18, 5 μm column purchased from Waters. [
13

C4]-∆
9
-THC (1): eluent: acetonitrile/water 

(90/10), flow: 11 mL/min, run time 9 min; [
13

C4]-∆
9
-THC-COOH (3): acetonitrile /20 mM formic acid 

in water (60/40) hold 5 min, ramp to 90% acetonitrile, flow: 14 mL/min, run time 15 min. The identity of 

all products and intermediates were confirmed by co-elution with unlabeled materials and comparison 

of NMR spectra to confirm their structures. 

3.2. Synthesis of [
13

C4]-1-(3,5-Dimethoxyphenyl)pentane (5) 

A solution of [
13

C4]-butyl magnesium bromide (3.50 mmol) cooled to 0–5 °C, generated from 

[
13

C4]-butyl bromide and magnesium in ether (3.5 mL, 1 M), and was added dropwise to a mixture of 

3,5-dimethoxybenzyl bromide (14, 0.71 g, 3.07 mmol) in diethyl ether (20 mL) and dilithium 

tetrachlorocuprate (0.1 mL, 0.1 M in tetrahydrofuran) also at 0–5 °C. The reaction was allowed to 

warm slowly to room temperature and then stirred for 8 h. The reaction mixture was quenched by 

addition of saturated ammonium chloride solution (5 mL) followed by 10% sulphuric acid (25 mL). 

The organic layer was separated and the aqueous layer was extracted with diethyl ether (20 mL). The 

resulting emulsion was passed through glass wool and the organic layers were combined and dried 

over magnesium sulphate. The product was purified by silica-gel column chromatography  

(n-heptane/acetone, 93/7, Rf = 0.35) yielding 0.51 g (2.40 mmol, 78%) of pure [
13

C4]-3,5-

dimethoxyphenyl-1-pentane as a clear liquid; purity: 99% (GC-MS): 212.2 (29), 168.1 (11), 152.1 

(100), 137.1 (7), 121.1 (5); 
1
H-NMR (400 MHz, CHCl3) δ: 0.74–1.15 (m, 3H), 1.15–1.31 (m, 2H),  

1.43–1.62 (m, 3H), 1.73–1.91 (m, 1H), 2.51–2.66 (m, 2H), 3.76–3.88 (m, 6H), 6.35 (t, J = 2.3 Hz, 1H), 

6.40 (d, J = 2.3 Hz, 2H); 
13

C-NMR (101 MHz, CHCl3) δ: 14.0 (dd, J = 34.4, 3.7 Hz), 22.5 (ddd,  

J = 34.8, 32.1, 2.2 Hz), 30.6–31.9 (m, 2C), 35.8–36.6 (m), 55.1 (2C), 97.5, 106.4 (2C), 145.3, 160.6 (2C). 

3.3. Synthesis of [
13

C4]-olivetol (6) 

[
13

C4]-3,5-Dimethoxyphenyl-1-pentane (5, 0.51 g, 2.40 mmol) was mixed with pyridinium 

hydrochloride salt (8.00 g) under argon. The mixture was heated at 200 °C until no more starting 

material was detected by GC (2 h). The reaction mixture was cooled to 22 °C, water added (20 mL), 

and the reaction mixture extracted with toluene (3 × 20 mL). The organic phase was dried over 
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magnesium sulphate, and then evaporated in vacuum. The product was purified by silica-gel column 

chromatography (toluene/diethyl ether, 5/1, Rf = 0.42) yielding 0.42 g (2.28 mmol, 95%) of  

[
13

C4]-olivetol (6) as a semisolid colourless liquid that crystallized upon standing to light pink crystals; 

purity: 99.5% (GC/MS): 184.1 (32), 138.1 (9), 124.1 (100); 
1
H-NMR (400 MHz, DMSO-d6) δ: 0.65–1.04 

(m, 3H), 1.05–1.20 (m, 2H), 1.26–1.51 (m, 3H), 1.56–1.73 (m, 1H), 2.36 (tt, J = 7.5, 3.9 Hz, 2H), 

5.91–6.10 (m, 3H), 8.99 (br. s., 2H); 
13

C-NMR (101 MHz, DMSO-d6) δ: 13.9 (dd, J = 34.4, 3.7 Hz), 

22.0 (ddd, J = 34.8, 31.1, 2.2 Hz), 30.0–31.4 (m, 2C), 34.9–35.5 (m), 99.9, 106.3 (d, J = 1.5 Hz, 2C),  

143.9–144.4 (m), 158.1 (2C). 

3.4. Synthesis of [
13

C4]-(−)-∆
9
-THC (1) 

A 25 mL round bottom flask was dried in the oven, fitted with a septum and cooled. The flask was 

thoroughly flushed with argon. (+)-p-Menth-2-ene-1,8-diacetate (7, 0.46 g, 1.82 mmol) and [
13

C4]-olivetol 

(6) (0.34 g, 1.85 mmol) were added. Anhydrous dichloromethane (15 mL) was added and stirred under 

an argon atmosphere. The solution was cooled at −5 °C and boron trifluoride diethyl etherate (243 µL, 

1 eq) was added. The solution gradually darkened to red. After 20 min, the reaction was quenched with 

10% Na2CO3 (5 mL). The layers were separated and the organic layer was washed with 10% Na2CO3 

(20 mL). The combined aqueous phases were extracted once with dichloromethane (20 mL). The 

organic solutions were combined and washed with water (20 mL) and brine (20 mL), and then dried 

over magnesium sulphate. The crude yield was 1.32 g of a brown oil, which was purified further by 

preparative HPLC to yield 0.36 g (1.13 mmol, 61%) of [
13

C4]-(−)-∆9-THC (1); purity ≥ 99%;  

(GC-MS) 318.2 (84), 303.2 (100), 275.2 (42), 258.2 (20), 243.1 (23), 235.1 (60), 221.1 (7), 197.1 (9); 
1
H-NMR (400 MHz, CDCl3) δ: 0.88 (dm, J = 124.2 Hz, 3H), 1.10 (s, 3H), 1.08–1.53 (m, 7H), 1.42 (s, 

3H), 1.66–1.77 (m, 1H), 1.69 (s, 3H) 1.89–1.96 (m, 1H), 2.14–2.21 (m, 2H), 2.44 (td, J = 7.6, 1.6 Hz, 

2H), 3.21 (dm, J = 11.0 Hz, 1H), 4.76 (s, 1H), 6.15 (d, J = 1.5 Hz, 1H), 6.28 (d, J = 1.6 Hz, 1H),  

6.30–6.34 (m, 1H); 
13

C-NMR (101 MHz, CDCl3) δ: 14.0 (dd, J = 34.6, 3.7 Hz), 19.3, 22.5 (t,  

J = 33.9 Hz), 23.4, 25.0, 27.6, 30.6 (dd, J = 33.9, 3.7 Hz), 31.2, 31.5 (t, J = 33.9 Hz), 33.6, 35.3–35.7 

(m), 45.8, 77.1–77.2 (m), 107.5 (d, J = 1.5 Hz), 109.0, 110.1 (d, J = 1.6 Hz), 123.7, 134.4, 142.8 (dd,  

J = 3.7, 1.6 Hz), 154.1, 154.8; HRMS (ES
+
): calcd for 

13
C4C17H31O2 [M+H]

+
: 319.2458;  

found 319.2461. 

3.5. Synthesis of [
13

C4]-(4R)-4-(4-pentyl-2,6-dihydroxy-[
13

C6]-phenyl)-6,6-di-methyl-2-norpinanone (10) 

p-Toluenesulphonic acid monohydrate (1.60 g, 8.37 mmol) was added to a degassed solution of 

[
13

C4]-olivetol (6, 1.10 g, 5.98 mmol) and (+)-6,6-dimethyl-2,2-diacetoxy-3-norpinene (9, crude 

mixture, 2.80 g, 11.7 mmol) in chloroform (100 mL) at 0 °C under an argon atmosphere. The reaction 

mixture was warmed to room temperature and stirred for 3 days. Water was added (2 mL) and the 

reaction further stirred for 30 min. The mixture was diluted with diethyl ether (30 mL) and washed 

sequentially with water (20 mL), saturated aqueous sodium bicarbonate (20 mL), and brine (20 mL). 

The organic phase was dried over magnesium sulphate and the solvent was removed under reduced 

pressure. The residue obtained was dry flashed on silica-gel (n-heptane/diethyl ether, 55/45) in a 

Büchner funnel to remove unreacted terpenes. Further purification by silica-gel flash column 

chromatography, (n-heptane/acetone, 7/3, Rf = 0.35) gave 1.38 g, (4.33 mmol, 72%) of [
13

C4]-10 as a 
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yellow semisolid. GC-MS: 320.2 (60), 304.2 (27), 277.1 (51), 260.1 (10), 267.1 (18), 237.1 (100), 

222.1 (24), 197.1 (63), 150.0 (48), 123.0 (14), 83.0 (36); 
1
H-NMR (400 MHz, CDCl3) δ: 0.89 (t,  

J = 6.8 Hz, 3H), 1.00 (s, 3H), 1.16–1.34 (m, 4H), 1.37 (s, 3H), 1.47–1.65 (m, 2H), 2.32 (t, J = 5.2 Hz, 

1H), 2.39–2.46 (m, 2H), 2.46–2.57 (m, 2H) 2.61 (t, J = 5.1 Hz, 1H), 2.66 (dd, J = 18.8, 8.7 Hz, 1H), 

3.50 (dd, J = 19.0, 7.6 Hz, 1H), 3.96 (t, J = 8.2 Hz, 1H), 5.36 (br. s., 2 H), 6.19 (s, 2H); 
13

C-NMR  

(101 MHz, CDCl3) δ: 14.02 (dd, J = 34.4, 3.7 Hz), 22.2, 22.5 (dd, J = 35.1, 33.7 Hz), 24.5, 26.2, 29.5, 

30.4–32.1 (m, 2C), 35.2, 38.0, 42.2, 46.8, 57.96, 108.8 (2C), 113.7, 142.7, 155.0 (2C), 217.8. 

3.6. Synthesis of [
13

C4]-(6aR,10aR)-6,6a,7,8,10,10a-Hexahydro-1-hydroxy-6,6-dimethyl-3-pentyl-9H-

dibenzo[b,d]pyran-9-one (8) 

Trimethylsilyl trifluoromethanesulphonate (3.81 mL, 0.3 M solution in nitromethane, 1.14 mmol) 

was added to a solution of (4R)-4-(4-[
13

C4]-pentyl-2,6-dihydroxyphenyl)-6,6-dimethyl-2-norpinanone (10, 

961 mg, 3.02 mmol) in anhydrous dichloromethane/nitromethane (3/1, 90 mL) at 0 °C under an argon 

atmosphere. The reaction mixture was stirred for 6 h. The reaction was quenched with saturated 

aqueous sodium bicarbonate/brine (1/1, 20 mL). Diethyl ether (20 mL) was added. The organic phase 

was separated, and the aqueous phase was extracted with more diethyl ether (20 mL). The organic 

phase was washed with brine (20 mL), and dried over magnesium sulphate. Solvent evaporation and 

purification by silica-gel flash chromatography (toluene/ethyl acetate, 85/15, Rf = 0.39) afforded 790 

mg (2.47 mmol, 82%) of [
13

C4]-8 as a white foam; purity: 94% (HPLC); (GC-MS): 320.2 (100), 305.1 

(34), 277.1 (17), 260.1 (54), 237.1 (84), 197.1 (16), 150.1 (43); 
1
H-NMR (400 MHz, CDCl3) δ: 0.69–1.09 

(m, 3H), 1.09–1.24 (m, 2H), 1.13 (s, 3H), 1.33–1.61 (m, 4H), 1.48 (s, 3H), 1.65–1.85 (m, 1H), 1.97 (td, 

J = 12.1, 2.8 Hz, 1H), 2.08–2.24 (m, 2H), 2.38–2.56 (m, 3H), 2.59–2.71 (m, 1H), 2.90 (td, J = 12.1,  

2.8 Hz, 1H), 4.18 (dt, J = 15.2, 2.8 Hz, 1H), 6.25 (s, 1H), 6.28 (s, 1H), 7.84 (s, 1H); 
13

C-NMR (101 MHz, 

CDCl3) δ: 14.0 (dd, J = 34.4, 3.7 Hz), 18.8, 22.5 (dd, J = 35.1, 33.7 Hz), 26.9, 27.8, 30.4–32.1 (m, 2C), 

34.9, 35.5 (dd, J = 32.9, 4.4 Hz), 40.8, 44.9, 47.4, 76.6, 107.8 (d, J = 1.5 Hz), 107.9, 109.0 (d, J = 1.5 Hz), 

143.5 (dd, J = 3.7, 1.5 Hz), 154.5, 155.5, 215.1. 

3.7. Synthesis of [
13

C4]-(6aR,10aR)-6,6a,7,8,10,10a-Hexahydro-1-hydroxy-6,6-dimethyl-3-pentyl-9H-

dibenzo[b,d]pyran-9-one (8) Using 11 

(+)-Apoverbenone (11, 300 mg, 2.20 mmol) was dissolved together with [
13

C4]-olivetol (6, 0.34 g, 1.85 

mmol) in anhydrous dichloromethane/nitromethane (2/1, 5 mL) at 0 °C under an argon atmosphere. To 

this solution fresh anhydrous aluminium chloride is added in small portions (247 mg, 1.85 mmol). The 

reaction mixture was stirred for 3.5 days. The reaction was poured on crushed ice and diethyl ether was 

added. The organic phase was separated, and the aqueous phase was extracted with more diethyl ether 

(20 mL). The organic phase was washed with brine (20 mL), and dried over magnesium sulphate. 

Solvent evaporation and purification by silica-gel flash chromatography (toluene/ethyl acetate 85/15, 

Rf = 0.39) afforded 397 mg (1.24 mmol, 67%) of [
13

C4]-11 as a white foam 94% (GC/MS), which can 

be crystallized from dichloromethane and pentane for higher purity. The spectroscopic properties were 

identical to that reported in Section 3.6. 
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3.8. Synthesis of [
13

C4]-(−)-∆
9
-THC Acid (3) 

Compound [
13

C4]-8 (138 mg, 0.43 mmol) and 2,4,6-triisopropylbenzenesulphonylhydrazide  

(128 mg, 0.43 mmol) were mixed in anhydrous toluene (10 mL). After 1 h reaction time at  

22 °C, the solvent was evaporated under reduced pressure to give benzenesulphonic acid, 2,4, 

6-tris(1-methylethyl)-2-[(6aR,10aR)-6,6a,7,8,10,10a-hexahydro-1-hydroxy-6,6-dimethyl-3-pentyl-9H-

dibenzo[b,d]pyran-9-ylidene]hydrazide as a foam which were further dried over phosphorous 

pentoxide and vacuum overnight. This material was dissolved in a mixture of dry n-hexane freshly 

distilled over sodium /TMEDA from a new bottle (6 mL, 1/1 ratio) under an argon atmosphere at  

−78 °C. n-Butyl lithium (387 µL, 0.96 mmol, 2.5 M solution in n-hexane) was added to this solution. 

The reaction mixture was stirred for 20 min at −78 °C and then it was warmed to −5 °C over a 10 min 

period and stirred at this temperature for an additional 20 min. The reaction mixture was cooled to −78 °C 

and a second portion of n-butyl lithium (194 µL, 0.77 mmol) was added. Following the addition, the 

mixture was stirred for 10 min at −78 °C and then allowed to warm to 0 °C over a 10 min period. 

Stirring was continued for 20 min at 0 °C or until N2 evolution ceased, and then dry CO2 was bubbled 

into the reaction mixture for 30 min. The pH was adjusted to 2 by the addition of 5% aqueous HCl 

solution at 0 °C, and the mixture was warmed to room temperature and extracted with diethyl ether  

(2 × 30 mL). The ethereal solution was washed with brine (20 mL), dried (magnesium sulphate), and 

the solvent was evaporated under vacuum. The residue obtained was purified by dry flash 

chromatography on silica gel (n-heptane/ethyl acetate, 7/3) to give a mixture of [
13

C4]-(−)-∆
9
-THC-

COOH (3) and [
13

C4]-(−)-∆8-THC-COOH (6/4) as a semisolid oil (135 mg, 0.39 mmol). This residue was 

boiled in n-hexane (20 mL) and a few drops of chloroform were added until nearly all the material 

dissolved. The solution was then slowly cooled to give a gelatinous mixture which was filtered to give 

41 mg of a white solid material with a ratio of ∆
9
/∆

8
/ratio of 7/3. This material was further 

recrystallized from chloroform (0.5 mL) which was slowly diluted with pentane by evaporative 

diffusion to give the product as white needles (25 mg, 0.07 mmol, 11%) with 97.5% purity [
13

C4]-(−)-

∆
9
-THC acid and 2.5% of [

13
C4]-(−)-∆

8
-THC acid. The mother liquors containing product were further 

purified by preparative HPLC which also yielded more of the [
13

C4]-(−)-∆9-THC-COOH purity ≥ 99%; 

(total yield 18%); mp 201.9–202.6 °C; 
1
H-NMR (400 MHz, CDCl3) δ: 0.66–1.06 (m, 3H), 1.07–1.22 

(m, 2H), 1.11 (s, 3H), 1.32–1.53 (m, 4H), 1.43 (s, 3H), 1.71 (t, J = 11.1 Hz, 2H), 2.00 (dd, J = 12.6, 7.3 

Hz, 1H), 2.34–2.49 (m, 3H), 2.55 (dd, J = 19.0, 6.3 Hz, 1H), 3.36 (d, J = 10.9 Hz, 1H), 6.16 (s, 1H), 

6.24 (s, 1H), 8.10 (d, J = 1.5 Hz, 1H), -OH and COOH protons could not be detected; 
13

C-NMR (101 

MHz, CDCl3) δ: 14.0 (dd, J = 34.4, 3.7 Hz), 19.0, 22.5 (dd, J = 35.1, 33.7 Hz), 24.2, 25.2, 27.5, 29.8–32.3 

(m, 2C), 34.6, 35.1–35.9 (m), 44.3, 77.1, 106.8, 107.5, 109.5, 128.5, 143.1 (m), 144.7, 154.6, 154.7, 

171.1; HRMS (ES
+
): calcd for 

13
C4C17H28O4Na [M+Na]

+
: 371.2019; found 371.2018. 

4. Conclusions 

Synthetic routes towards [
13

C4]-∆
9
-THC and [

13
C4]-∆

9
-THC-COOH have been developed for their 

use as stable isotope labeled internal standards. These compounds are especially suited to minimise 

impact of ion suppressing/alteration effect in LC/MS-MS quantification. To the best of our knowledge 

preparation of these 
13

C-labeled compounds is being here for the first time. Several methods were 
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tested at each step to identify synthetic routes that were efficient, fast, high- yielding and allowing for a 

straight forward purification. Both [
13

C4]-∆
9
-THC and [

13
C4]-∆

9
-THC-COOH were prepared via [

13
C4]-

olivetol made in-house from 1-(bromomethyl)-3,5-dimethoxybenzene and [
13

C4]-n-butylmagnesium 

bromide in the presence of dilithium tetrachlorocuprate. Synthesis of [
13

C4]-∆
9
-THC proceeded in 61% 

yield from [
13

C4]-olivetol. In preparation of [
13

C4]-∆
9
-THC-COOH, the yield of the precursor [

13
C4]-

(6aR,10aR)-6,6a,7,8,10,10a-hexahydro-1-hydroxy-6,6-dimethyl-3-pentyl-9H-dibenzo[b,d]pyran-9-one, 

was improved by applying nitromethane as co-solvent. The final challenging step gave after a tuning 

of solvent dilution and amount of tetramethylethylenediamine at best a 6/4 mixture of [
13

C4]-∆
9
-THC-

COOH and the [
13

C4]-∆
8
-THC-COOH isomers. [

13
C4]-∆9-THC-COOH was isolated in 18% yield after 

several purification steps. 
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