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Summary

This thesis presents the outcomes of research carried out by the PhD candidate Ping Zhao
during 2012 to 2015 in Gjevik University College. The underlying research was a part of the
HyPerCept project, in the program of Strategic Projects for University Colleges, which was
funded by The Research Council of Norway. The research was engaged under the supervision
of Professor Jon Yngve Hardeberg and co-supervision of Associate Professor Marius Pedersen,
from The Norwegian Colour and Visual Computing Laboratory, in the Faculty of Computer
Science and Media Technology of Gjevik University College; as well as the co-supervision
of Associate Professor Jean-Baptiste Thomas, from The Laboratoire Electronique, Informatique
et Image, in the Faculty of Computer Science of Université de Bourgogne.

The main goal of this research was to develop a fast and an inexpensive camera based
display image quality assessment framework. Due to the limited time frame, we decided
to focus only on projection displays with static images displayed on them. However, the
proposed methods were not limited to projection displays, and they were expected to
work with other types of displays, such as desktop monitors, laptop screens, smart phone
screens, etc., with limited modifications. The primary contributions from this research can
be summarized as follows:

1. We proposed a camera based display image quality assessment framework, which
was originally designed for projection displays but it can be used for other types of
displays with limited modifications.

2. We proposed a method to calibrate the camera in order to eliminate unwanted vi-
gnetting artifact, which is mainly introduced by the camera lens.

3. We proposed a method to optimize the camera’s exposure with respect to the mea-
sured luminance of incident light, so that after the calibration all camera sensors share
a common linear response region.

4. We proposed a marker-less and view-independent method to register one captured
image with its original at a sub-pixel level, so that we can incorporate existing full
reference image quality metrics without modifying them.

5. We identified spatial uniformity, contrast and sharpness as the most important im-
age quality attributes for projection displays, and we used the proposed framework
to evaluate the prediction performance of the state-of-the-art image quality metrics
regarding these attributes.

The proposed image quality assessment framework is the core contribution of this re-
search. Comparing to conventional image quality assessment approaches, which were
largely based on the measurements of colorimeter or spectroradiometer, using camera as
the acquisition device has the advantages of quickly recording all displayed pixels in one
shot, relatively inexpensive to purchase the instrument. Therefore, the consumption of
time and resources for image quality assessment can be largely reduced. We proposed a
method to calibrate the camera in order to eliminate unwanted vignetting artifact primar-
ily introduced by the camera lens. We used a hazy sky as a closely uniform light source,
and the vignetting mask was generated with respect to the median sensor responses over



only a few rotated shots of the same spot on the sky. We also proposed a method to quickly
determine whether all camera sensors were sharing a common linear response region. In
order to incorporate existing full reference image quality metrics without modifying them,
an accurate registration of pairs of pixels between one captured image and its original is
required. We proposed a marker-less and view-independent image registration method to
solve this problem. The experimental results proved that the proposed method worked
well in the viewing conditions with a low ambient light. We further identified spatial uni-
formity, contrast and sharpness as the most important image quality attributes for projec-
tion displays. Subsequently, we used the developed framework to objectively evaluate the
prediction performance of the state-of-art image quality metrics regarding these attributes
in a robust manner. In this process, the metrics were benchmarked with respect to the
correlations between the prediction results and the perceptual ratings collected from sub-
jective experiments. The analysis of the experimental results indicated that our proposed
methods were effective and efficient. Subjective experiment is an essential component for
image quality assessment; however it can be time and resource consuming, especially in
the cases that additional image distortion levels are required to extend the existing sub-
jective experimental results. For this reason, we investigated the possibility of extending
subjective experiments with baseline adjustment method, and we found that the method
could work well if appropriate strategies were applied. The underlying strategies referred
to the best distortion levels to be included in the baseline, as well as the number of them.
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Introduction






Chapter 1

Research Introduction

My definition of an expert in any
field is a person who knows
enough about what'’s really going
on to be scared.

P.]J. PLAUGER

This chapter provides a brief introduction to the research. The motivation, research
goals, research questions, research methodology and the outline of this thesis are presented.

1.1 Research Motivation

Image quality is characterized by quantifying and analyzing a set of measurable image
quality attributes [44, 88]. The physical properties, such as screen dimension, display res-
olution, refreshing rate, etc., are associated with specific displays and/or their viewing
conditions. They impact the image quality, but they are unlikely to vary in a typical im-
age quality assessment cycle. In this research, we focused on content dependent image
quality attributes, such as brightness, contrast, colors, sharpness and artifacts; because
these attributes are essentially terms of visual perception [130], and they greatly impact
the visual experience. The existing research characterizing displays, such as CRT monitors
[17, 57, 56], and LCD screens [17, 57, 45, 56], were presented. The industrial communities
have also established many international standards, such as IEC9241-304 [75], IEC9241-305
[76], IEC9241-307 [77], IEC61966-3 [70], IEC61966-4 [71], IEC61966-5 [74], IEC61966-6 73],
IDMS 1.03 [69], SPWG 3.8 [166], and TCO 6.0 [169]. The research and standards mentioned
above were largely based on the measurements of colorimeters and/or spectroradiometers.
The spectroradiometers were primarily designed to quantify the average physical response
over a small spot area of displayed patches at discrete spatial locations. The measurements
are known to be accurate, but it may take a long time to collect a large number of sam-
ples; especially under low light conditions, which are typical for projection displays. In
addition, spectroradiometers are relatively expensive to purchase and they are likely to be
unavailable in the real practice of image quality assessment. In contrast, we can take full
advantage of a digital still camera to record all displayed pixels on the screen in one shot
[147, 62]. In this case, using camera as the acquisition device to measure the relative im-
age quality attributes can be a fast, inexpensive complementary to the spectroradiometer
based approach. However, cameras need to be carefully calibrated in order to eliminate
unwanted artifacts, which are mainly introduced by the camera’s optical and electronic
subsystems. Meanwhile, the acquisition settings should be optimized as well. In addition,
the work-flow of processing the raw camera sensor data and evaluating the image quality
with respect to the selected image quality metrics as well as the subjective ratings should be
defined. Thus, a camera based display image quality assessment framework is required; es-
pecially in the cases of incorporating full reference image quality metrics, which require an
exact mapping between each pair of pixels in the captured image and its original respec-
tively. In this context, the preservation of geometrical order, as well as the intensity and
chromaticity relationships between two consecutive pixels on the displays, should be max-
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1. RESEARCH INTRODUCTION

imized. A few full reference metric based image quality assessment frameworks with sim-
ilar ideas with scanners have been proposed in the research domain of printing [134, 181].
In these cases, shift invariant features which were highly dependent on the image content
was adopted, or a modified control point matching method was used. In the real practice
of projection displays, these methods were not suitable; it was not only because both the
type and amount of spatial distortion in the captured images might vary with respect to
the relative position and orientation between the projector, screen and camera, but also be-
cause in many cases people want to achieve a view-dependent image quality optimization.
Thus, a novel and more flexible image registration method should be proposed.

1.2 Research Goals

The first goal of this research was to develop a fast and an inexpensive camera based dis-
play image quality assessment framework. In order to increase the generalization and ap-
plicability of the proposed method, the framework should be independent from specific
type of image quality metrics. The existing full reference, reduced reference and no ref-
erence based image quality metrics without any modification should be incorporated into
the framework. In order to maximize the reliability, validity, and robustness of the im-
age quality assessment, the work-flow of the proposed framework should be proceeded
robustly.

The secondary goal was to implement the proposed framework for projection displays.
The main motivation behind is that existing related research was prettylimited. The ma-
jority of the research conducted was based on the measurements of spectroradiometer. To
our best knowledge, we were the first to propose a systematic approach of evaluating im-
age quality of projection displays with a digital still camera. By applying the proposed
framework in the field, we were able to observe, identify, and recognize the potential re-
search problems in actions. We might not merely come up with corresponding solutions,
but also simultaneously improve the framework design based on the experience learned in
an iterative manner.

The third goal of this research was to identify the most important image quality at-
tributes for projection displays, and evaluate the prediction performance of state-of-the-
art image quality metrics regarding these attributes with the developed framework. We
identified spatial uniformity, contrast and sharpness as the most important image quality
attributes for projection displays. The objective evaluation results were correlated with the
perceptual ratings collected from subjective experiments. One goal was to rank all metrics
intensively within each one of the full reference, reduced reference, and no reference cate-
gories. Another goal was to have a lateral comparison between different metric categories,
so that the category of metrics with the highest prediction performance can be identified
with respect to the statistical analysis of experimental results.

1.3 Research Questions

With respect to the research goals described above, we initiated this research by asking
several research questions:

1. What is the basic work-flow using a digital still camera to perform the image quality
assessment for projection displays?

2. How to calibrate cameras in order to eliminate unwanted imaging artifacts and opti-
mize the acquisition settings in the purpose of image quality assessment?

3. How do we incorporate existing full reference image quality metrics into the pro-
posed framework without modifying them?
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4. What are the most important image quality attributes for projection displays and how
do we evaluate them by using the developed framework?

5. What are the best state-of-the-art image quality metrics? Is there a clear advantage
using full reference image quality metrics over reduced reference and no reference
metrics?

The first question was related to the design of the image quality assessment framework.
The design involved identifying the key operational components and organizing them in a
well defined work-flow. This created a starting point for the rest of the research. The sec-
ond question was related to the fact that digital still cameras typically have many manual
settings, such as aperture, ISO, shutter speed, etc. In order to maximize the preservation of
captured image quality while minimizing the influence of artifacts introduced by the cam-
era system, we could not simply set everything to auto and hope the camera would do its
best. Instead, we should follow the well established international standards, and propose
novel ideas to solve the challenges. The third question is related to the research challenge
of incorporating existing full reference image quality metrics without modifying them. The
full reference image quality metrics require exact registration of pairs of pixels in one cap-
tured image and its original respectively. The registration method should be marker-less
and view-independent in order to maximize the flexibility and robustness of the proposed
framework. The fourth question is related to using the developed framework to evaluate
the most important image quality attributes. For different displays, the selection and eval-
uation priorities and criteria of image quality attributes can be different. The main purpose
was to confirm the validity, reliability and robustness of the proposed framework in real
projection environments. The fifth question was related to the use of the proposed frame-
work to evaluate the prediction performance of the state-of-the-art image quality metrics
with respect to their correlation with the perceptual ratings collected from subjective exper-
iments. In this process, we were able to benchmark and rank the metrics vertically in one
of the full reference, reduced reference, and no reference categories, as well as to compare
their performance laterally between different metric categories.

1.4 Research Methodology

First, we perform a comprehensive survey of literature regarding image quality assessment
involving both acquisition and assessment procedures. The purpose was to understand the
typical assessment targets, acquisition devices, calibration procedures, experimental setup,
viewing conditions, test charts, classifications and evaluation methods of image quality
attributes, international standards, data analysis methods, and common practice. In the
survey, it was found that the majority of existing research concentrated on the domains of
printing and desktop monitors. There were also a few works related to projection displays,
but the efforts were quite limited and none of them use cameras to acquire projections. So,
there was no experience that we could learn from the past. For this reason, our research
should be experiment oriented.

Then, we had to setup all equipment in the field, and performed image quality assess-
ment accordingly. In this process, we were expected to confront many practical issues, for
which we had to come up with corresponding solutions. We did not only design the im-
age quality assessment framework for general displays, but also implemented, tested, and
improved it specifically for projection displays. In order to achieve this goal, we identified
three typical viewing conditions of projection displays, and decided to setup our laboratory
to simulate the home-theater like darkroom environment. By simulating the environment
of real projection applications and conducting experiments in the field, we could actively
study the whole workflow of using a camera to perform image quality assessment in a
quantitative fashion. Meanwhile, we decided to implement the framework specifically for
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1. RESEARCH INTRODUCTION

projection displays, and used it to evaluate the state-of-the-art image quality metrics re-
garding the most important image quality attributes. With respect to the studies of the
evaluation outcomes, we could validate our framework and benchmark the image quality
metrics in a quantitative manner.

Both of the objective and subjective results were studied with respect to the statistical
analysis. In this context, we performed both descriptive and analytical studies to explore
the absolute values and the distribution of numerical data. In this process, we could iden-
tify and recognize the potential challenges in the research, and decide how to engage them
via further extended experiments or simulations. In this process, we used and modified
the framework iteratively. Then, the framewjonork was gradually tested and improved
with respect to the proposed novel ideas in the calibration and image quality assessment
procedures. The assessment was actually performed from both subjective and objective
perspectives. The motivation was to correlate the objective results with subjective results
in order to evaluate selected image quality metrics, by assuming that the subjective results
approximate the actual perception of an overall average observer. In this context, the statis-
tics based psychometric rating and scaling procedures were incorporated to minimize the
impact of the variance of judgment criteria between different observers.

In a summary, we had a survey to obtain the insight of existing knowledge, method-
ology and practice regarding image quality assessment for general displays, proposed an
image quality assessment framework based on the information obtained from the survey,
implemented the framework specifically for projection displays, used the framework to
conduct objective and subjective experiments in order to evaluate the state-of-art image
quality metrics regarding the most important image quality attributes for projection dis-
plays, and further improved the framework with respect to both quantitative and qualita-
tive experimental outcomes in an iterative manner.

1.5 Outline of Thesis

This thesis is intended to provide the potential readers with the understanding needed to
calibrate a digital still camera and use it to assess the image quality of displays, by first
introducing how to utilize both quantitative evaluation and psychophysical experiment to
engage the research, and then presenting the proposed image quality assessment work-
flow, methodologies and related experimental results. Therefore, this thesis is divided into
two parts and eleven chapters.

PART I includes Chapter 1 to Chapter 5. The motivation, goals, questions, and method-
ologies of this research project were presented in Chapter 1. An overview of the history
and definition of image quality, as well as the existing research methodologies regarding
objective and subjective experiments, were presented in Chapter 2. The research outcomes
and contributions from individual publication were summarized in Chapter 3. The discus-
sions related to individual publication and the relationship between them were presented
in Chapter 4. The conclusion and perspectives of this thesis were given in Chapter 5.

PART II includes Chapter 6 to 11. It presents the research outcomes as the main contri-
butions of this thesis via all publications.

PART III presents the experimental setup, the acquisition devices, test charts, and pro-
jectors that we used.



Chapter 2

Display Image Quality Assessment

The use of thesis-writing is to
train the mind, or to prove that
the mind has been trained; the
former purpose is, I trust,
promoted, the evidences of the
latter are scanty and occasional.

SIR THOMAS CLIFFORD ALLBUTT

In this thesis, a camera based display image quality assessment is presented. Prior
knowledge of fundamental principles of image quality is mandatory for fully understand-
ing the presented work. Hence, the goals of this chapter are to present an overview of the
underlying research area and provide a concise introduction to the image quality defini-
tions, image quality attributes, measurement instruments, objective assessment methods,
and subjective experimental methods.

2.1 What is Image Quality

Image quality is not a new term. The earliest history regarding “the quality of an image”
can be traced back to the beginning of 17th century, when optical instruments, the telescope
and the microscope were invented [43]. At that moment, image quality was no more than
an optical concept associated to the acquisition instruments. In recent years, thanks to the
rapid advancement of imaging technologies and the tremendous growth in the use of digi-
tal media, the scope of image quality has been greatly extended to cover the entire imaging
pipeline. For display image quality assessment, it is important to understand what we go-
ing to measure before we actually perform the assessment. Therefore, a clear definition to
image quality is required. However, there is no universal and comprehensive definition
yet. This is mainly because the term image quality may have significantly different mean-
ings to people from different perspectives with different concerns. In the existing literature,
several definitions of image quality have been proposed:

e Jacobson [82] defined image quality as the subjective impression found in the mind
of the observer relating to the degree of excellence exhibited by an image.

o Engeldrum [43] interpreted image quality as the integrated set of perceptions of the
overall degree of excellence of the image. In his theory of Image Quality Circle, the
concept of image quality was associated with customer perceptual rating, customer
perception, physical image parameters, and technology variables, of which the image
quality assessment components formed a closed loop (Figure 2.1).

e Janssen [83] followed visuo-cognitive processes to define image quality as the degree
to which the image was both useful and natural. In this case, the usefulness of an
image was defined as the precision of the internal representation of the image; and
the naturalness of an image was defined as the degree of correspondence between the
internal representation of the image and knowledge of reality as stored in memory.

7



2. DISPLAY IMAGE QUALITY ASSESSMENT

e Ridder et al. [39] divided image quality into three categories: fidelity, usefulness, and
naturalness. Among them, fidelity was referred to the reproduction accuracy of an
observed image in comparison to the original, which was assumed to have perfect
quality. Usefulness indicated image suitability for the designed task. Naturalness
was defined as a match between a reproduced image and the mental impression of
an observer, affected by memory traces.

e Fairchild [46] defined image quality as the perceptible visual differences from some
ideal and the magnitude of such differences.

e Yendrikhovskij [199] suggested that image quality was understood as the subjective
impression of how well image content was rendered or reproduced.

o Keelan [88] defined image quality as an impression of its merit or excellence, as per-
ceived by an observer neither associated with the act of photography, nor closely
involved with the subject matter depicted.

e The International Imaging Industry Association [31] defined image quality as the
perceptually weighted combination of all visually significant attributes of an image
when it was considered in its marketplace or application.

Based on the proposals presented above, it is not difficult to see that image quality is
commonly defined from the subjective perspective. This is mainly because humans are the
ultimate visual information interpreter. The visual stimuli are acquired by the human vi-
sual system, and the corresponding signals are further decomposed and forwarded along
millions of neuron pathwways in parallel to the human brain in order to interpret. Human
interpretations are fuzzy in nature. One observer may make his/her own independent
judgment regarding the the quality of an image even without knowing what image quality
actually is. From this point of view, image quality is a subjective and relative term, because
one observer may have significantly different perception criteria regarding one or more
specific image quality attributes. The underlying attributes are terms of visual perception
in the current concerns. These concerns may vary with respect to the imaging applications
and their related contexts. For example, one picture about an extreme sports man climbing
rocks was taken with a digital still camera; in this case, the motion blur for the move-
ments, the details of the person’s struggling face, and the image resolution for magazine
level printing can be the main concerns. The vivid colors of the background scene may
not be because the trees and sky might be completely de-focused in order to feature the
climber in the foreground. Due to the probabilistic nature of the human brain and its high
context dependence, ordinary people actually refer image quality as the overall quality of
an image reproduction with respect to his/her own perceptual opinion regarding a set of
weighted image quality attributes, while scientific researchers may refer image quality as
the mean perceptual opinions with respect to one or more visually significant attributes
in the concern of current application. In the qualitative approach, image quality can be
defined explicitly with well written text statements, but the corresponding computation
remains an open question for research discussions.

In an objective manner, image quality can be quantized as one or more numbers by
applying image quality metrics to the captured images with or without referring to their
originals, which are assumed to have perfect image quality. Depending on the availability
of the reference images, the metrics can be broadly divided into three groups: full reference,
reduced reference and no reference. In the full reference approach, image quality is defined
as the magnitude of quality degradation from the original image to its reproductions with
respect to one or more specific image quality attributes, and all pairs of pixels in the two
images are used. In contrast, the reduced reference based metrics count only image fea-
tures. The no reference based metrics determine the quality of an image blindly, absolutely
without its original. In all these cases, the scales of and the interpretations to the numeric
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Figure 2.1: The complete Image Quality Circle with the three connecting links: Sys-
tem/Image Models, Visual Algorithms, and Image Quality Models. [43]

quality indication are totally different. In other words, image quality is defined implicitly
with numbers in independent numeric spaces of such image quality metrics. Thus, the
quality of an image is the predicted image quality and it needs to correlate well with the
actual image quality in order to be claimed to be valid. In this case, the subjective image
quality forms an approximation of the ground truth.

With respect to the discussions above, image quality should be defined as the subjective
quality, which is an approximation of the actual image quality. The subjective image quality
stands for the mean perceptual opinions obtained from the statistical regression analysis of
subjective ratings, which are sampled from a specific human population with respect to
a few visually significant attributes in the concern of current imaging application. This
definition of image quality is used in the rest of this research.

2.2 Image Quality Attributes

Image quality requires a systematic assessment approach from both subjective and objec-
tive perspectives. In both cases, image quality is characterized based on a set of image qual-
ity attributes, which are terms of human perceptions [130]. The ultimate goal is to correlate
the objective assessment results with the subjective assessment results, so that we can even-
tually eliminate the demand of observers. Generally, image quality can be separated into
two levels: low-level/concrete attributes, which can be measured directly with instruments
or estimated based on the measurement results; high-level/abstract attributes, which are
abstraction of low-level attributes but they are strongly associated with observer’s exper-
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tise and experience regarding the underlying image quality attributes, such as naturalness
and usefulness. The difference between the two levels is not limited to the abstraction level,
but it seems that the importance of high level attributes lies in their ability to inform the
observer of the meaning of low-level attributes for the general quality [99].

Among the low-level attributes, physical properties such as screen dimension, display
resolution, refreshing rate, have impacts on the perceived image quality, but in a typical
work-flow of image quality assessment they can be assumed to be constants, since they
are independent from the image content and normally do not vary over time. In this
research, we used cameras as the acquisition devices. For this reason, we only focused
on the assessment of low-level perceptual image quality attributes, which were image
content dependent. There is a lot of research related to characterizing electronic devices
based on these image quality attributes. These devices were, but not limited to, printers
[130, 58, 133, 136, 135], CRT monitors [57, 17], LCD/LED monitors [57, 17, 45, 170, 67],
projection displays [176, 109, 177, 114, 167]. According to these studies, the image qual-
ity attributes can be generally divided into five groups: lightness, contrast, colorfulness,
sharpness, noises. Each group may include several sub-groups with respect to various
classification criteria. Most of the image quality attributes were studied with associations
to many other image quality attributes.

2.2.1 Lightness

Lightness stands for the perceived intensity of light coming from the image itself, rather
than any property of the portrayed scene [5]. It should be used only for non-quantitative
reference to physiological sensations and perception of light, so it ranges from “light” to
“dark” [130]. Lightness is a close concept to brightness, which is also a perceptual image
quality attribute. In this case, lightness is defined as the brightness of an area relative to
the brightness of a similarly illuminated area that appears white or highly transmitting
[105]. Lightness has a significant impact on the perceptual experience [47, 5]. The relation-
ship between relative brightness and saturation to lightness and chroma of a surface, for a
single-hue triangle in a hue-chroma-lightness space can be presented in Figure 2.2.

2.2.2 Colorfulness

Color is a human sensation and it represents the perception of incidental light acquired by
the human visual system. The accuracy of color reproduction in an image can be repre-
sented by the color distance between the image reproduction and its reference in a specific
color space. In most cases, when people use the term of color, they actually exclude light-
ness and refer the term of color to colorfulness, which is a perceptual attribute that covers
the aspects of hue, saturation and gamut [197, 167, 158]. The relationship between these
aspects can be demonstrated with the Munsell color system (Figure reffig:munsell). Thus,
colorfulness can be defined as the attribute of a visual perception according to which an
area appears to exhibit more of less of its hue. In this context, chroma is defined as the col-
orfulness of an area judged in proportion to the brightness of a similarly illuminated area
that appears to be white or highly transmitting, while saturation is defined as the colorful-
ness of an area judged in proportion to its brightness [68]. In addition, hue is defined as an
attribute of a visual perception according to which an area appears to be similar to one of
the colors, red, yellow, green, and blue, or to a combination of adjacent pairs of these colors
considered in a closed ring [15]. For electronic devices, such as scanner, printer, and dis-
plays, the color gamut stands for the entire range of colors that the device can reproduce
accurately in a specific color space. The color gamut is expected to be as large as possi-
ble, but none of the known devices can reproduce all colors [155]. Nevertheless, the most
pleasing color might not necessarily be the most accurate color [45].
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Figure 2.2: The conceptual relationship of lightness, absolute brightness, relative bright-
ness, chroma and saturation. [19]

2.2.3 Contrast

In most literature, contrast for an image was defined as a measure of the luminance vari-
ation relative to the average luminance in the surrounding region, however no standard
definition to contrast in a complex scene has been given. One most widely adopted defini-
tion for measuring image contrast is Michelson formula [120]:

Cy = Iaz — Imin

= 2.1
Imaz +Im7,n ( )

)

where I, and I,,,;,, stand for the maximum and minimum value of lighting respectively.
Another widely adopted contrast definition is the Weber fraction specially defined for sim-
ple test patterns [140]:
I, — 1,
C =
w Ib )

where I and I, stand for the foreground and background lightness respectively. In the
research domain of tone reproduction, contrast is defined as the rate of change of the rela-
tive luminance of image elements of a reproduction, as a function of the relative luminance
of the same image elements of the original image; on log-log coordinates, contrast is the
slope of the relationship between the reproduction and original [105]. In the cases for color
complex scene, we may define contrast approximately as a measurement of the luminance
and/or chromatic variations in one region relative to the average variance in the surround-
ing region in the same scene. There are two important aspects in the contrast research. One
of them is related to the contrast sensitivity function (Figure 2.4). DeValois et al. [40] in-
dicated that the contrast sensitivity of human visual system followed a certain curve with
respect to the current average luminance level, and the spatial frequency of luminance vari-
ations. Thus, an optimization for the image content or size can be achieved accordingly by

(2.2)
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Figure 2.3: Munsell Color System [47]

keeping the high spatial frequency components in the images, while the low frequency
ones are being eliminated [108, 138]. The other research aspect of contrast is related to con-
trast masking, which is a visual phenomenon of human visual system. The term is used
commonly to refer to any de-structive interaction or interference among transient stimuli
that are closely coupled in space or time [97]. Thus, the masked signal shows different
visual effect under the different contrast masking signal [49]. This effect is modeled either
with a threshold elevation image, or with a contrast transducer function calculated from the
masking curve of contrast discrimination experiments, given that the image is decomposed
into the appropriate spatial frequency bands [33].

2.2.4 Sharpness

Sharpness is an attribute defining how abrupt the boundaries are between different tones
and colors [85, 12, 191]. It is commonly recognized to be an important image quality at-
tribute for perceptual evaluation despite the technology used, and it is closely associated
with other attributes, such as lightness, contrast, and blur. Since sharpness defines the
amount of details the human can observe in image reproductions at a certain distance, it is
commonly referred to as the counterpart of blur. The human visual system has a remark-
able capability to detect image blur without seeing the original image, but unfortunately
the underlying mechanism is not well understood [63]. One way to determine sharpness
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is measuring the rise distance of the slant edges, or calculate the density of line pairs with
increasing spatial frequency, or do the corresponding analysis in the frequency domain,
where frequency is measured in cycles or in line pairs per distance (millimeters, inches,
pixels or degree). Specifically, the International Organization for Standardization defined
ISO 12233 to standardize the procedure of measuring the resolution and spatial frequency
responses (Figure 2.5) of camera lens with a special test chart [175].The existing research
regarding sharpness is largely focused on the design and evaluation of reduced reference
based and no reference based image quality metrics.

2.2.5 Aesthetic

Aesthetic properties related to the composition of the image (e.g. Rule of Thirds and Visu-
ally Weight Balance [87], see Figure 2.6), the photographic techniques (e.g. macro), the use
of colors and light, and the pleasantness of look-and-feel are highly subjective [36, 84, 116].
In most cases, when ordinary people talk about the image quality of a picture, they actually
refer to the aesthetic attribute. The corresponding assessment outcomes strongly depend
on the professional knowledge and practical experience related to photography, painting
and other art forms. In conventional approaches, the aesthetic properties were evaluated
based on hand-crafted visual descriptors to mimic the photographic rules [116]. Aesthetic
properties were largely used in real-time image retrieval systems, so the corresponding re-
search focused on the optimization of image feature extraction, descriptor generalization,
and minimizing the computational cost. In recent years, generic descriptors (e.g. Bag-of-
Visual-Words [34], Fisher Vector [81]) were proposed and implemented based on support
vector machines to learn the distribution of local statistics in the images. The image qual-
ity evaluation performance of these methods depends on the selection and use of training
data and methods, so the actual outcomes might not be deterministic. Unlike other image
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Figure 2.5: An example of spatial frequency response curves corresponding to different
levels of captured sharpness [4]

Figure 2.6: Two examples of object composition in photography according to the Rule of
Thirds [115]

quality attributes, the research related to aesthetic attributes assessment is more imaging
application oriented. In most cases, the attributes were largely used for either image clas-
sification or quality ratings. For example, Li el al. [101] designed a group of methods to
extract features to represent both the global and local characteristics of a pointing, and cor-
relate them with perceptual opinions. Surova et al. [180] proposed a method incorporating
spatial pattern, crown condition, percent crown cover, and a tree mortality index as aes-
thetic features to assess the quality of forest area images captured with a false color infrared
aerial photographs. Li et al. [100] proposed a framework to evaluate the aesthetic quality
of people faces by incorporating both perceptual features and social relationship features.
Datta et al. [37] designed an online real-time system for accepting uploaded photographs
and perform both classification and quality rating simultaneously.

2.2.6 Noises

Noise, such as speckles, spikes, reseals, missing data, marks, blemishes, banding and ab-
normalities, are created either in expectation or unexpectedly during the processes of ac-
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quisition, transmission, and processing of image data [90, 9]. Similarly, artifact is a range of
errors in the perception or representation of any visual information introduced to an image
in the processes, such as optical acquisition, digital sampling, image compressing and sig-
nal processing [182, 157]. The boundary between artifact and noise is fuzzy and subjective.
In this research, we think that artifact is a part of noise. Common artifacts were linked to
glossary items like lens distortion [188], reflection [122], blooming [193], chromatic aber-
rations [161], moire pattern [210], jaggies [201], ringing [198] ghosting [14], blocking [202]
and so on.

2.2.7 Relationships between Image Quality Attributes

Many types of perceptual image quality attributes were introduced in the previous sec-
tions, however they are not completely independent from each other. One image quality
attribute may have connections to one or more other attributes. For example, the estima-
tion of lightness is based on the measurements of luminance, which form a foundation for
the studies of many other image quality attributes. For example, in the study of percep-
tual contrast of projection displays, Majumder et al. [110] emphasized that luminance is
more important for perception than chrominance. In the White’s illusion phenomenon, the
relationship between the lightness of two gray regions was revealed to be the opposite of
what is predicted by local edge ratios or contrasts [189, 152]. In other studies [151, 24, 25],
lightness was also integrated into the computation of image contrast. In the study of dig-
ital printing, the banding and contouring artifacts were found to have connections with
lightness [30, 93]. Ridder [38] studied the naturalness of images with respect to the satu-
ration and lightness variations. It was found that the difference between naturalness and
quality diminished with decreasing lightness. In addition, the evaluation of contrast at-
tribute has a strong connection to the measurement of lightness, as well as colorfulness,
sharpness/blur, and artifacts as well. Several studies [11, 53, 8, 107] regarding contrast sen-
sitivity of human eye and its effects on image quality were presented, while other research
[13, 49, 196] focused on the modeling of contrast masking. In addition, several studies
[54, 148] for determining structural similarity or degradation based on contrast measure-
ments were presented. In these contrast studies focus on modelings, both luminance and
chrominance attributes were used.

Regarding the research of colors, a huge amount of effort has been expended. One
good example is the research related to color appearance modeling [92, 48, 123]. One color
appearance model includes predictors of at least the relative color appearance attributes,
such as lightness, chroma and hue [47], and it can be used to predict image quality. Such
a model addresses the perspectives of presented stimuli, viewing condition, colorimetry,
color appearance phenomena, and chromatic adaption etc. Color appearance models incor-
porate chromatic adaptations as well as the predictors of brightness and colorfulness. They
also adopt the color adaptation model as a module in the initial step, so this module can
be selected or replaced in preference. In the post-adaption step, adapted tristimulus data
and other additional data, like absolute luminance level, colorimetric data on the proximal
field, background and surround, are combined to provide higher level signals in order to
produce predictors of color appearance attributes.

2.2.8 Summary

Image quality can be characterized based on perceptual attributes from various perspec-
tives, however the selection of the most important image quality attributes has different
priorities in different research domains. For digital printing, the research [130, 58] sug-
gested that lightness, contrast, sharpness, artifacts, colors, and physical attributes are all
important. Lindberg [103] evaluated many image quality attributes, such as color gamut,
sharpness, contrast, tone quality, detail highlights, detail shadow, gloss level, gloss varia-
tion, color shift, patchiness, mottle, and ordered noise. Among them, the print mottle and
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color gamut were found to account for most of the variations with respect to the factor
analysis. Johnson [85] specially remarked colorfulness, sharpness, and contrast for print-
ing. For mobile displays, Gong et al. [59] suggested that clearness was the most important,
followed by naturalness, sharpness, colorfulness, contrast and brightness. In this context,
clearness is a high-level attribute associated with other low-level attributes; however, the
actual numeric relationship was not given in the research. In contrary, Kim et al. [91]
emphasized that naturalness had a high priority than clearness related to overall image
quality. For stereo displays, You et al. [200] and Lehtimaki et al. [98] pointed out that noise,
sharpness and perceived depth are priorities for stereoscopic imaging. Thomas et al. [176]
and Strand et al. [167] remarked lightness and colorfulness for projection displays, while
Majumder et al. [108, 94] indicated that lightness is more important than the colorfulness.
In this research, with respect to the literature, we can see that the image quality has strong
connections to contrast and sharpness image quality attributes despite the actual display
technology used. In addition, it was known that for projection displays spatial uniformity
is an important image quality attribute [112, 176, 110]. Hence, in this research, we pay
special attentions to contrast, sharpness and spatial uniformity by utilizing our proposed
image quality assessment framework.

2.3 Objective Assessment

The first step of an image quality assessment is the image acquisition. In this case, we use
one or more measurement instruments to acquire the physical responses of image repro-
ductions on the displays. Subsequently, we determine the image quality of these displays
by applying the corresponding metrics to the captured images with or without referring
to their originals. In this case, the expected assessment outcome is either an image qual-
ity score or a distortion map illustrating the image quality degradation. Many instrument
options are available for measuring the physical responses of image reproductions in var-
ious ways. It is important to first understand what types of acquisition instruments are
available, and what procedures we should follow in order to use them. In this section, we
briefly describe the most frequently used instruments for the image quality assessment.

2.3.1 Radiometer

A radiometer is an electronic device for measuring the intensity of radiant energy at a spe-
cific spot by non-contact means. In most cases, the radiometers employ only single pho-
tocell sensors to detect the emitted radiation, and it is common to incorporate an optical
filter with the radiometers in order to narrow the spectrum band of the measurement in-
terests. The optical filtering offers an adaptable and cost effective solution to the spectral
measurement. The radiometers are normally used to measure either irradiance or radiance
(Figure 2.7). In the latter case, the radiation of emission from a specific light source is being
quantified. In addition, if the level of exposure is required, then the integrated irradiance
measurement follows. Radiometers are commonly used to quantify the light which outside
the visible spectrum. For example, ultraviolet light which is widely used in the industry
for various applications, such as curing of photo-resists in semiconductor manufacturing,
curing of emulsions for printing or plate-making, and color-fastness testing. In these cases,
either radiance or irradiance measurement is conducted to quantify the range and peak
of the wavelength. The radiometers are also commonly known as radiation thermometers
because they can be used to measure the infrared energy of radiation emitted from the
material surfaces with respect to their thermal energies.

2.3.2 Photometer

In contrast to radiometers, a photometer is an optical instrument for measuring the lumi-
nance and illuminance of visible light, specifically to compare the relative intensities of the
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Figure 2.7: The principle of the original Crookes radiometer [26, 192].

light emitted from different sources. The photometers use luminous flux and luminous in-
tensity meters to measure the light. However, in real practice, the existing meters might not
available to meet the specific geometric requirements for the light measurement, and they
have to be customized by the manufacturers. The photometers are required to have spectral
responsivity to the light as a CIE standard observer (Figure 2.8), by following the CIE V' ()
function [153]. The function describes the luminous sensitivity of a human eye in photonic
conditions. Most modern photometers incorporate silicon photo-diodes with optical fil-
ters placed in front of the sensors. In these cases, the transmission of the filters and the
spectral response of the sensors can be combined to approximate CIE V' (\) function. The
measurement quality of one photometer is determined with respect to the errors between
the spectral responsivity of the photometer and the actual spectral power distribution of
the known light source being measured. In order to quantify the errors, CIE committee de-
fined the quality factor f; in order to measure the broadband light sources without spectral
mismatch correction [173]. The quality factors have been used by the photometer manu-
facturers and the lighting industry for years, but no official methods for determining the
uncertainties of the quality factors have been published [141]. For the image quality assess-
ment of displays, photometers were commonly used to measure or calibrate the luminance
outputs of displays, especially in the research domain of medical imaging of which the
gray-scale needs to be very accurate [187, 195, 95, 6].

2.3.3 Colorimeter

A colorimeter is a measurement instrument which applies three or more color filters to
the incident light, and it measures one or more of the following photometric properties:
luminance, illuminance, luminous intensity, luminous flux, and chromacity. The spectral
sensitivity of the filters also need to match the CIE tristimulus color matching functions in
order to emulate the human visual system. Therefore, the colorimeters can be used in the
scenes for which the photometers are required. A part of the incident light is expected to
be absorbed by the light filters, thus a lower light intensity strikes the photo-diodes. The
amount of light penetration and absorbency range of wavelength are important to char-
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Figure 2.8: The most widely used hand-hold photometer Konica Minolta CS-100 (left), and
the color matching functions for the CIE 1931 standard colorimetric observer (right) [172].

acterizing the filter transmittance, as well as calibrating the colorimeters. Eventually, the
filtered light is converted by the detectors into electronic signals, which directly yield the
standard CIE XYZ or CIE LAB tristimulus values as the measurement outputs. However, in
this process, the matching of spectral sensitivity of the filters to the standard CIE tristimu-
lus curves might have limited accuracy; then the quality of a colorimeter can be assessed by
following the procedure defined in CIE standard [72]. The colorimeters can be alternatives
to spectroradiometers, however they cannot provide detailed spectral information. For the
image quality assessment of displays, colorimeters were commonly used to measure the
luminance and chromacity for display calibrations. For example, a green filter is incorpo-
rated into an imaging colorimeter to perform the detection of mura or blemish artifacts for
flat panel displays [145]. Jean-Baptiste [176] and Liang [102] used a colorimeter to measure
the tristimulus values of a large amount of color patches, and used these measured values
to build up a 3D look up table in order to rebuild the color gamut of the specific imag-
ing device respectively. Son et al. [162] used a colorimeter to obtain the CIE XYZ values
of primary colors of a time-varying mobile beam projector, determined the corresponding
linear color transform matrix, and correct displayed colors accordingly. The well-known
colorimeters in the consumer market are, but not limited to, Spyder series, X-Rite il (Fig-
ure 2.9), X-Rite ColorMunki series, and ColorHug. These colorimeters are mainly used to
quickly calibrate display colors, so they do not have their own light source but they are
placed directly on the top of the screen surface. For scientific research, more advanced
colorimeters, such as CR series and LMT C series are used.

2.3.4 Spectroradiometer

Spectroradiometer is suitable for measuring the light source of which the spectral energy
distribution is required for analysis. They measure all aspects of the radiometric, photo-
metric, and colorimetric quantities of the light source, as well as the radiation spectrum
distribution. In other words, one colorimeter can be the a faster, less expensive and more
efficient alternative to an spectroradiometer, but with less measurement accuracy and with-
out detailed spectral information. The dispersion of light is usually accomplished in the
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Figure 2.9: The X-Rite i1 colorimeter for measuring colors of displays.

spectroradiometer by means of prisms or diffraction gratings (Figure 2.10). In this case,
the light is spread onto a linear CCD array as the energy detector. Normally, a spectro-
radiometer makes an additional measurement by following one measurement of the light
source with its aperture closed. This procedure is called “cooling down”, which is designed
to estimate the thermal or random noise inside the spectroradiometer. Because the detec-
tor signal is calculated by counting the number of photon strikes and its value cannot be
negative, the noise is assumed to have a Poisson distribution; the mean of the noise dis-
tribution is expected to have a positive value, therefore it can be estimated and removed
by subtracting it from the actually measured signals. In addition, since the photon strike
numbers are being integrated, the detector saturation must be carefully avoided with re-
spect to the exposure control. Due to these reasons, the entire measurement process of a
spectroradiometer may take a long time to finish, especially in a low light condition. The
CIE V (A) curve and color matching curves are stored in the software, which is used to
process the obtained power spectral distribution. Thus, the measurement errors associated
with the photometers and filter colorimeters can be largely avoided in the spectroradiome-
ter. So, adequate sensitivity, high linearity, low stray light, low polarization error, and a
spectral band-pass resolution of 5 nm or less are essential for spectroradiometer to obtain
good measurement accuracy.

2.3.5 Summary

According to the statements above, we can see that optical instruments can be used to
measure one or more aspects of the light source, such as radiometric, photometric, and
colorimetric properties. With respect to the experimental objectives, different instruments
should be used in different scenarios. Sometimes, two or more instruments can be com-
bined to use in one experiment. One typical case can be characterizing or calibrating the
instrument with lower accuracy with respect to the same type of measurements provided
by the instrument with high accuracy. Then, the common experiments can be performed
much faster with the characterized or calibrated instrument but with lower cost. However,
the accuracy might be limited, especially with respect to the variance and noise levels.
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Figure 2.10: The dispersion of light accomplished in the spectroradiometer by means of
prisms or diffraction gratings [179]

Nevertheless, the radiometers and photometers are normally used only for characterizing
the radiance and irradiance, while the colorimeters and spectroradiometers are used in the
cases of which the quantities of luminance, illuminance, and chromacity are demanded in
a specific color space. Since the colorimeters and spectroradiometer are required to match
the color matching functions of CIE standard observer, and their viewing angles are also
specified (e.g. 10 degrees or 15 degrees), they may be treated as objective observers. How-
ever, they cannot completely replace human observers due to the fact that many perceptual
capabilities are still not well understood [89].

2.4 Subjective Assessment

Image quality can be assessed either objectively or subjectively. In the former case, ob-
servers are replaced by optical instruments to observe the image reproductions. The ca-
pabilities and behaviors of the human visual system are simulated by the computational
metrics. However, the numeric results given by the metrics may have values in completely
different ranges with respect to different scales. Although it is possible to normalize the
metric results in their own metric space, the normalized metric results with the same value
have different meanings. Therefore, the most reliable way to benchmark the metric per-
formance is to correlate the metric results with the perceptual results. However, the actual
perceptual results are unknown and they are unlikely to be obtained accurately, but they
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Figure 2.11: Conceptual rating and scaling procedures of psychometric model

can be estimated with respect to the perceptual results collected from a small group of ob-
servers in the subjective experiments. In this case, the estimated perceptual results are as-
sumed to form a ground truth in the current experimental environment regarding a specific
image quality attribute. The collected perceptual results are assumed to have the identical
distribution as the actual perceptual results for the entire target population. Hence, the
statistic conclusions made upon the small group of observers can be generalized to cover
the entire target population. Until present, due to the lack of knowledge regarding biolog-
ical structure of the human visual system and human brain, subjective experiment is still
the most reliable way to perform image quality assessment [44]. The observer’s physical
condition, mental state, color experience and personal preference increase the variance of
sampled data and they are somehow difficult to be quantified precisely. As a result, a large
number of image stimuli and observers are required. The number of image stimuli is pro-
portional to the amount of time used by the observers, and the length of the experimental
study. There is constant trade off between the wish to have as many stimuli as possible and
the acceptable resource (time, money, observers, etc.) consumption. Usually, an agreement
between the number of stimuli and observers need to be found, which is likely to be a rea-
sonable midpoint. The goal of subjective experiment is to obtain the perceptual indications
regarding a specific image quality attribute or overall image quality. The typical work-flow
can be generalized as a conceptual psychometric model, which is divided into two major
procedures: rating and scaling (Figure 2.11).

2.4.1 Rating Procedure

In the rating procedure, the human visual system acquires the displayed images; then the
brain interprets the information to generate opinions regarding the underlying image qual-
ity attribute. These implicit perceptual and cognitive processes vary largely from one ob-
server to another, but they can be potentially influenced via the interactions with either the
instructor or the experimental environment in the field. In the case of image quality assess-
ment, the end product of the rating procedure is a matrix representing the numerical rat-
ings of each level of image distortion from all human observers. Brown et al. [21] presented
an excellent study regarding the challenges of interpreting the rating scales. They identi-
fied the research challenges and classified them into five major categories: unequal-interval
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judgment criterion scales, lack of inter-observer correspondence, linear difference between
group average criterion scales, lack of intro-observer consistency, perceptual and criterion
shifts. A good understanding of these problems is essential for advancing the design and
improvements of psychometric models. Suppose that we have four human observers A, B,
C, and D, and they are asked to rate three distortion levels of one test image with category
judgment method; obviously, each human observer has his/her own judgment criterion
scales. In this context, the challenges in the rating procedure can be briefly demonstrated
in Figure 2.12. Typically, the judgment criterion scales have different origins, ranges, and
intervals. The differences of origins and ranges are mainly due to the natural preference
for perception and/or the temporary variations of judgment criterion scales; they can be
estimated with linear transfer functions, which are formulated with psychometric scaling
models. However, so far there is no effective way to quantify the interval differences, since
the psychometric rating is completely an implicit perceptual and cognitive process. Em-
pirically, well trained observers with color expertise are more likely to have above average
equal intervals, while the non-experts are not. One may argue that it is possible to employ
Monte Carlo like statistical analysis to estimate the judgment criterion scales, however the
essential large amount of random tests are impractical to be applied to a large group of hu-
man observers. In many cases, the ratings from an individual observer can be inconsistent.
To the same stimulus, regarding a specific image quality attribute, one observer may give
completely different ratings in various rating sessions. If the variation can be assumed to
be a random factor which follows a normal distribution around the “true” perceived value.
The real perceived value can be estimated by statistical regression, but the trade off is that
the regression requires a large number of random samples of which the collection is both
time and resource consuming. Generally, the rating procedure is performed with one of the
following methods: rank order, category judgment, and pair comparison. The rank order
basically requires observers to use numbers to indicate their preferences of ranking for a se-
ries of image distortions for one test image regarding a specific image quality attribute. In
this case, the meanings of each rank number can be specifically defined by the experiment
designer. In some cases, the observers are provided with a series of statements describing
the meaning of the ranks. However, each of these descriptions is eventually associated with
a rank number. Category judgment is proceeded in a similar fashion. The main difference
between category judgment and rank order is that multiple image distortions can be clas-
sified into the same category, however it is not the case for rank order. From this point of
view, rank order is designed to evaluate if there is a perceptual difference between different
levels of image distortions. In this case, the observers are forced to make choices, even if
they find absolutely no difference between two image distortions. The category judgment
has a more flexible tolerance of small perceptual differences. Pair comparison is performed
based on the comparison between each pair of the image distortions. Since all possible
combination of pairs should given to the observers, the amount of workload for both ex-
perimental instructor and subject can be significant, if the number of image distortions is
large.

2.4.2 Scaling Procedure

In the scaling procedure, the raw ratings are transformed in order to distinguish the per-
ception of a stimuli and the corresponding judgment criterion scale for assigning rating to
that stimuli. The outcomes indicate the relative impression of the perceived image quality
attribute or overall image quality. They are meaningless without the references to the ob-
servers’ judgment criterion scales. Brown et al. [21] presented six typical scaling methods:

e Median rating: it uses median ratings over all human observers regarding a single
stimuli as the scaled ratings. There is no assumption of equal intervals of judgment
criterion scales. In contrast, it provides only the ordinal information of ratings.
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Figure 2.12: The judgment criterion scales of four human observers.

Mean rating: it uses mean rating as the scaled output, and it requires the interval of
judgment criterion scales must be equal. However, this assumption does not hold in
most cases.

Origin-adjusted rating: it removes the rating mean prior to aggregating them for each
human observer and it cancels the differences of origins of judgment criterion scale,
but not the differences of interval sizes.

Z-score: it is similar to origin-adjusted rating in removing the differences of shift. In
addition, it normalizes ratings with respect to their standard deviation, so the linear
differences between observers are eliminated. The definition and calculation of Z-
score are both simple; but the method accounts in both shift and normalization of
judgment criteria, which account for most of the variance in the judgment criteria
differences. So, it is very common for image quality researchers to use the Z-score
method to scale the raw subjective ratings.

Least square rating: it does not merely inherit the features of Z-score scaling, but also
counts in the correlations between individual and all observers in the same group.
Larger correlation indicates for larger contribution from individual observer to the
same group of observers.

Scenic beauty estimate: it was originally developed to scale ratings of scenic beauty of
forest area, but the procedures are also appropriate for use with ratings of other types
of stimuli. The differences in ratings are assessed by comparing an observer’s rating
distribution (assumed to have a normal distribution) for one landscape area against
each of several other landscape areas. It features with a relative operating charac-
teristic, where a bi-variate graph of the cumulative probability of the ratings for the
selected landscape, is compared against the cumulative probability of other ratings,
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respectively. The scaled outcomes are generated by calculating the distance of the
standardized relative operating characteristic from a positive diagonal of difference
matrix.

2.4.2.1 Baseline Adjustment

In a typical working cycle of subjective image quality assessment, the case may occur, in
the data post-processing phase, that the researcher realizes that it is mandatory to adopt
observations on additional image distortions to draw the final conclusions. For example, a
general tendency of human perception has been discovered; but the numerical distance be-
tween two consecutive distortion levels might be larger than they are expected. As a result,
many perception details within these pre-defined intervals are not available. Convention-
ally, the researcher needs to conduct a large new subjective experiment incorporating all
existing and additional image distortions. The purpose is to assess all stimuli to be rated
under the same circumstances, so the unwanted experimental artifacts between possibly
two or more separate sessions can be largely avoided. However, the whole process is non-
trivial and it may consume considerable time and resources.

Baseline adjustment can be a potential answer to this challenge. This method introduces
common stimuli to form a baseline in order to determine the comparability of ratings be-
tween different experiment sessions, and allows the computation of scale values expressed
relative to responses for the baseline stimuli [23]. The basic concept is depicted in Figure
2.13. The ratings for unique stimuli in both rating sessions are scaled respectively with
respect to the selected common baseline in either session, and then they are merged to gen-
erate the final ratings. Suppose that we have one human observer, who is asked to rate
four stimuli 1, 2, 3, and 4 in the first session and another two additional stimuli 5 and 6 in
the second session. In this case, stimuli 3 and 4 are selected to form a common baseline.
Notice that the ratings for them across the two rating sessions may have different values.
The ratings of unique stimuli 1 and 2 in the first session are scaled with respect to the base-
line in the rectangle on the left in Figure 2.13, and the ratings of unique stimuli 5 and 6
in the second session are scaled with respect to the baseline in the rectangle on the right
in Figure 2.13. Since we are merging the scaled ratings from the second rating session to
the first one, then the ratings for the baseline in the first session is scaled to generate the
scaled baseline which has zero mean and normalized standard deviation. Finally, all scaled
ratings are combined to be used as the final ratings. It is important that the stimuli for the
two sessions are rated under the same circumstances. In order to achieve this goal, the
following precautions should be followed [21]:

e the observers for each session should be randomly selected from the same observer
population,

e the observer groups should be sufficiently large,
e the baseline stimuli should be representative of the full set of stimuli to be rated,
¢ the non-baseline stimuli should be randomly assigned to the different sessions,

e all other aspects of the sessions (e.g., time of day, experimenter) should remain con-
stant.

Baseline adjustment is a higher level of abstraction on rating scaling, it must be inte-
grated with a specific scaling method which is mathematically well formulated. All scaling
methods introduced in the previous Section 2.4.2 can be adopted as the candidates. In this
paper, we choose to integrate Z-score scaling with baseline adjustment method. Z-score
scaling is widely used in the psychometric modeling, mainly because of the simplicity on
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Figure 2.13: Depiction of the basic concept of baseline adjustment method

its definition and it eliminates the problems of origin shifting and unequal range of judg-
ment criterion scales. Beyond this, the scores compute readily with computer programs. In
this context, the raw ratings are scaled in the following way [21]:

BZ;; = (Rij — BMR;) /BSDR;

where BZ;; stands for the baseline-adjusted Z-score of stimulus i for observer j, R;; stands
for the ratings assigned to stimulus i by observer j, and BM R; stands for the mean of
ratings assigned to the baseline stimuli by observer j, and BSDR; stands for the standard
deviation of ratings of the baseline stimuli by observer j; then the BZ;; are then averaged
across all observers to generate one scale value per stimulus as BZ;.

2.5 Image Quality Assessment Frameworks

In the past, much research have been conducted to develop various types of image qual-
ity assessment frameworks. For example, Zhang et al. [205] proposed an image quality
assessment framework for printing. The printed image reproductions were assumed to
be color patches and they were scanned four times in total and each time the scanning
resolution was set to 1200 DPL In the first time of scanning, the printing was scanned as
it was; while it was scanned three more times with different color filters. Then the color
information of pixels were converted into CIELAB color space, where the image quality
metrics S-CIELAB [206] was applied. In their approach, there was no image registration or
descreening process applied. Xu et al. [194] further extended the S-CIELAB metric based
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framework to adopt two control points located at the top-left and bottom-right corners of
prints respectively to provide assistance to image registration. The prints were scanned
at 300 DPI and the acquired images were descreened to eliminate halftone frequencies.
Eerola et al. [181, 41, 42] proposed a full reference image quality metric based framework
for halftone prints. The main idea was taking advantage of a high quality scanner to ac-
quire the printed images, descreening the acquired images with Gaussian low pass filter to
eliminate halftone frequencies, registering the descreened images at a sub-pixel level with
their originals based on scale-invariant features and rigid 2D homography transformation,
and then applying full reference image quality metrics to each pair of registered images.
In this process, the image quality degradation due to scanning was assumed to be mag-
nitudes smaller than the one of printing. In a similar fashion, Pedersen et al. [131, 132]
also proposed a full reference image quality metrics based framework for printing. In their
approach, control points at four corners of the printed images were used to produce appro-
priate affine transformation in the image registration process. Nuutinen [127] proposed
an image quality assessment framework specifically for image sharpness measurement
based on reduced reference metrics. Their method also employed scale-invariant features
to determine the geometric distortion. However, only the correspondence areas with high
local contrast (determined with Difference of Gaussian formula) were considered to be
matched. In addition, an orientation histogram based point descriptor was used to calcu-
late the match features for the key points in the images. For no reference image quality
metrics, Moorthy et al. [121] proposed a two-stage image quality assessment framework
to incorporate natural scene statistics. In their solution, support vector machine was used
to classify image distortions into one of four distortion categories, and then support vector
regression was employed to assess the distortion-specific image quality. Since no reference
metrics are not dependent on the original image, then image registration is not required.

With respect to the discussions above, it is clear that most of the existing image quality
assessment framework research were performed in the domain of either halftone printing
or digital photography. The state-of-art image quality assessment framework commonly
involves both control points for image registration and descreening process to eliminate
halftone frequencies. Especially, the image registration typically assumed that the geomet-
ric distortions can be linearly corrected by inverting typical rigid spatial transformations,
such as translation, scaling, rotation, and skew. Control point based image registration
can be assumed to be more reliable than image feature based approach, since it is inde-
pendent from the image content and the magnitude of actual image quality degradation.
However, for projection displays, conventional control points based approach might not
be suitable. Because the control points should be small enough in order to indicate pre-
cisely the locations of specific key points. However, for projection displays, the observers
or cameras might be far away from the projection screen, so that the control points can be
invisible or have a low appearance quality due to the limited visual acuity of observers or
the spatial resolution of cameras. So the control points projected on the screen must have
a certain size in order to be detectable. Thus, it is impossible to place these control points
on the edge of the projection area. In addition, the projection appearance (e.g. position,
size, and orientation) on the captured images is unknown in advance of image registration;
depending on the relative position, viewing angle and orientations of projector, screen and
camera, the projections are expected to have different spatial distortions on the captured
images. Thus, appropriate distortion correction models shall be applied. A good image
quality assessment framework should be adaptive and robust to the variations of viewing
distance, viewing angle, and relative orientations with minimized assumptions. After all,
the existing full reference, reduced reference, and no reference image quality metrics can
be incorporated and evaluated under the framework without any modification, and they
can focus on simply getting the registered image inputs and generating the corresponding
image quality scores. Subsequently, these scores are correlated with perceptual evaluation
results to evaluate their performance automatically. From this point view, a good image
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quality assessment framework for projection displays should be such a computational en-
vironment, which identifies the principal operational components of image quality assess-
ment in a well-defined workflow, be adaptive and robust to various experimental setup and
viewing conditions, incorporates existing image quality metrics without modifying them,
and performs the image acquisition and quality assessment tasks in a fully automated fash-
ion. Obviously, the existing image quality assessment frameworks primarily designed for
printing and digital photography did not meet this requirement well. Thus, we need to
propose a novel image quality assessment framework to confront the research challenges.

27






Chapter 3

Summary of Included Papers

A research problem is not solved
by apparatus; it is solved in a
man’s head.

CHARLES F. KETTERING

In this chapter, we present a brief summary of the seven included papers (A-G). This
summary outlines the scope, objective, methods used, results and principal conclusion re-
lated to each paper.

3.1 Paper A: Camera-based Measurement of Relative Image Contrast in
Projection Displays

Ping Zhao, Marius Pedersen, Jon Yngve Hardeberg, and Jean-Baptiste Thomas

In 4th European Workshop on Visual Information Processing
IEEE

Paris, France

pp. 112-117

June, 2013

3.1.1 Abstract

This research investigated the measured contrast of projection displays based on pictures
taken by uncalibrated digital still cameras under typical viewing conditions. A spectrora-
diometer was employed as a reference to the physical response of projection luminance.
Checkerboard, grayscale and color complex test images with a range of the projector’s
brightness and contrast settings were projected. Two local and two global contrast met-
rics were evaluated based on the acquired pictures. We used contrast surface plots and
Pearson correlation to investigate the measured contrast versus the projector’s brightness
and contrast settings. The results suggested that, as expected, the projector contrast has a
more significant impact on measured contrast than projector brightness, but the measured
contrast based on either camera or spectroradiometer has a nonlinear relationship with
projector settings. The results also suggested that simple statistics based metrics might pro-
duce a higher Pearson correlation value with both projector contrast and projector bright-
ness than more complex contrast metrics. Our results demonstrated that the rank order
of un-calibrated camera based measured contrast and spectroradiometer based measured
contrast is preserved for large steps of projector setting differences.

3.1.2 Motivation

At the beginning of this research project, it was found that the image quality assessment for
projection displays was not well studied in the existing literature. The existing research was
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largely carried out based on the measurements of spectroradiometer. The spectroradiome-
ters were designed to give accurate measurement to the physical response of incidental
light at a certain spot or over an area, but they were not suitable to measure a large num-
ber of samples. Specifically, it is impossible to measure the colors of individual pixels in a
complex color image. In addition, in low ambient light conditions which are very typical
for projection displays, it takes a long time for a spectroradiometer to have a single mea-
surement due to the time cost of essential photon integration and dark current estimation.
In contrast, using a digital still camera as the acquisition device can be an alternative ap-
proach to engage the study. The camera can record all pixels in the projection in one shot.
The modern cameras are capable of capturing images in high resolutions, and the camera
sensors are common to have high dynamic ranges. These features can be helpful for the
acquisition of image projections, so it is worth to investigate the possibility of using the
camera to acquire the projected images.

Then, it came to the problem of how we can use the camera to achieve the best acqui-
sition for image quality assessment, and what research challenges might be encountered.
However, to the best of our knowledge there was no such research conducted in the existing
literature. Therefore, the best way to conduct the research was to set up an experimental en-
vironment and simulate the typical viewing conditions for the projection displays; so that
the digital still camera can be used to capture the projected images in the field. In this pro-
cess, we could observe the phenomena, identify the problems, and further come up with
corresponding solutions. In order to evaluate the image quality of projection displays, we
needed to characterize it with image quality attributes, such as brightness, contrast, colors,
sharpness and noises. Based on these attributes, there were many attempts to character-
ize devices like CRT [57, 17] and LCD [57, 17, 45] displays. The goal of image quality
assessment of projection displays can be achieved in a similar fashion. Previous character-
izations of projection displays focused on black level estimation [10], display uniformity
[108, 176, 109] and colorimetry [176, 61], but limited attention was paid to measured con-
trast of the displayed images. The measured contrast of a displayed image has been shown
to be of a significant impact on visual experience [140]. In conventional approaches, the
contrast of displays was largely determined based on the simple ratios between the highest
and lowest measured luminance in the projections. The state-of-art image quality metrics
simulated the human visual system to determine the contrast with much more complicated
definitions. Nevertheless, the contrast predicted by these metrics had strong connection to
the measured luminance, but has limited dependence on the variations of projection geom-
etry and chromacity in the captured image. Thus, the measurement of relative contrast in
projection displays by using digital still cameras can be a good starting point for the entire
research project.

3.1.3 Methods

In this research, a low-end webcam Logitech QuickCam Pro 9000 (3264 x 2448 in pixels),
a prosumer DSLR camera Nikon D200 (3872 x 2592 in pixels), a high-end DSLR camera
Hasselblad H3D II (6490 x 4870 in pixels), and a spectroradiometer Minolta CS1000 were
used for the image quality assessment. The webcam was mounted on a table, which was
approximately three meters away from the projection screen. The other two cameras were
mounted on a tripod respectively, and they were approximately four meters away from
the projection screen. The pictures were always taken remotely with software installed on
the controlling laptop without physically touching the cameras. We used a LCD projector
SONY APL-AW15 (1280 x 768 in pixels). The projector was placed on a flat table in front of
the screen, and it was approximately 3 meters away. The projection was approximately 2 x
1 in meters on the screen. All projector settings related to the brightness, contrast and color
enhancements were switched off to make sure the input image was projected as it is. One
checkerboard, one gray patch and one color complex test image (768 x 512 in pixels) were
incorporated in the experiments. The color complex image was selected from Kodak Photo
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CD PCD0992 [52] based, on which the gray scale version was generated by using Matlab
function “rgb2gray”: L = 0.2989 x R+0.5870 x G +0.1140 x B. The test images were always
projected at the original resolution on the screen. Fluorescent light was incorporated to
simulate the ambient light for the typical projection environment at approximately 0 Lux
(dark room), 30 Lux (meeting room) and 300 Lux (day-light office) respectively.

The projections in the captured pictures were surrounded by the dark background. In
order to estimate the influence of surround on the measured contrast, all captured pic-
tures were processed respectively to generate a cropped version with the image content
only. However, both the cropped and noncropped picture versions were forwarded to the
image quality metrics. Eventually, for each group of captured pictures with the same im-
age content and under the identical viewing condition, we generated a surface plot for
the measured contrast with respect to the metric scores. In our experiments, we evaluated
four contrast metrics: Michelson [120], LAB Variance [139], RAMMG [150] and RSC [160].
Since the RAMMG and RSC shared various input parameter coefficients, we evaluated
several combinations of them which involved: channel weightings: (1,0,0), (1/3,1/3,1/3),
(0.5,0.25,0.25), pyramid scales: linear and log based scales, radius of center and surround
of receptive field: (1,2), (2,3), (3,4). These parameters were used and recommended by
Simone et al. in their investigation of measuring perceptual contrast [159]. Because the
selected image quality metrics had no parameter related to viewing distance, we placed
the instruments at the same location to make sure that they share a constant distance to
projection screen. In this case, the influence of viewing distance on measured contrast
was equal to all metrics. In order to reduce computational complexity, the level weighting
method was always set to variance and pictures were transformed into CIELAB space by
the metrics themselves. We also evaluated the performance of metrics by determining their
correlation between measured contrast and projector contrast, and the correlation between
measured contrast and projector brightness with respect to Pearson correlation coefficient.

3.1.4 Results

Based on the observation of experimental results, a conclusion could be made that the we-
bcam was not suitable for measuring contrast for projection displays, because the corre-
sponding contrast surfaces were not consistent in different viewing conditions. In contrast,
the Nikon D200 produced similar results as Hasselblad H3D II, however it was not the case
for Michelson contrast in the high light condition. In that case, the contrast surfaces for
Nikon D200 were smoother than the ones for Hasselblad H3D II. This was mainly because
the Hasselblad H3D II camera was more sensitive to the luminance and it was capable of
detecting the small spatial variance under both low and high light conditions. Although the
acquisition was more accurate, the corresponding relative contrast predicted by the metrics
was more sensitive to image noises. From this point of view, the camera Nikon D200 made
a trade-off between the two extreme cases; so it was preferred as a measurement instrument
for relative contrast of projection displays.

Under the low light condition, Michelson contrast had the maximum absolute value for
all types of cameras and test images, despite the projector contrast and brightness settings.
This result suggested that Michelson contrast was sensitive to measurement noises, and it
became very unstable in the high light condition. LAB Variance, RAMMG and RSC metrics
produced logistic-shape-like contrast surface. RAMMG and RSC metrics shared a general
shape of normalized contrast surface despite the parametric coefficients for the radius of
receptive center and surround. They were more sensitive to the increasing rate of projector
brightness and contrast than the LAB Variance metric, since the contrast surface appears
to be more bended. Pearson correlation was employed to determine the correspondence
between measured contrast and projector settings. The spectroradiometer based Michel-
son contrast correlated well with camera based RSC metric, while keeping the projector
brightness constant. The LAB Variance metric produced a higher correlation with low pro-
jector contrast, but the correlation decreased a lot while projector contrast increased. In the
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case projector contrast remained constant, the LAB Variance metric based contrast had a
higher correlation to spectroradiometer based Michelson contrast. The measured contrast
of RAMMG and RSC metrics correlated well with projector contrast and projector bright-
ness, and RSC metric produced approximate 12% higher correlation than RAMMG metric.
With respect to the experiments, we could see that the projector contrast has more signif-
icant impact than the projector brightness for the measured contrast with all metrics, as
expected. It lead to an asymmetric contrast surface. The measured contrast for digital still
cameras has a consensus with the one for the spectroradiometer.

3.1.5 Conclusion

In this research, several contrast metrics were evaluated based on pictures taken by uncal-
ibrated digital still cameras in the typical viewing conditions of projection displays. The
results showed that the projector settings have a great impact on the measured image con-
trast, and the impact of projector contrast setting is even stronger. Camera based Michel-
son contrast was proved not to be suitable for projection contrast measurement, while the
global metric LAB Variance produces higher Pearson correlation values than the compli-
cated local metric RAMMG and RSC on both brightness and contrast correlations. Thus,
we demonstrated that the rank order of uncalibrated camera based measured contrast and
spectroradiometer based measured contrast is preserved for large steps of projector setting
differences, and the digital still camera based acquisition could be an alternative approach
to the spectroradiometer based acquisition.

3.2 Paper B: Image Registration for Quality Assessment of Projection
Displays

Ping Zhao, Marius Pedersen, Jon Yngve Hardeberg, and Jean-Baptiste Thomas

In 21st International Conference on Image Processing
IEEE

Paris, France

pp. 3488-3492

October, 2014.

3.2.1 Abstract

In the full reference metric based image quality assessment of projection displays, it is
critical to achieve accurate and fully automatic image registration between the captured
projection and its reference image in order to establish a sub-pixel level mapping. The
preservation of geometrical order as well as the intensity and chromaticity relationships
between two consecutive pixels must be maximized. The existing camera based image reg-
istration methods do not meet this requirement well. In this paper, we propose a marker-
less and view independent method to use an un-calibrated camera to perform the task. The
proposed method including three main components: feature extraction, feature expansion
and geometric correction, and it can be implemented easily in a fully automatic fashion.
The experimental results of both simulation and the one conducted in the field demon-
strate that the proposed method is able to achieve image registration accuracy higher than
91% in a dark projection room and above 85% with ambient light lower than 30 Lux.

3.2.2 Motivation

In the full reference metric based image quality assessment [134, 137, 181], image quality
was evaluated with respect to a series of selected attributes. For projection displays, the
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camera could be used to quickly acquire the projection and record all pixels in one shot.
In addition, the measurement results were correlated well with spectroradiometer based
measurements for large steps of image distortions. In order to apply existing full reference
image quality metrics to the captured images without modifying the metrics, it was crit-
ical to achieve an accurate and fully automated image registration between the captured
image and its original version. Subsequently, the image content in the captured image
would share the dimension and resolution as the original one. The preservation of geomet-
rical order as well as the intensity and chromaticity relationships between two consecutive
pixels on the screen could be maximized. However, the existing camera based image reg-
istration methods did not meet this requirement well, because they either placed simple
assumptions on the projections and cameras in order to reduce the problem complexity,
or they tended to implicitly modify the captured image quality. The captured images were
expected to have various spatial distortions with respect to the relative positions and orien-
tations of the projector, screen, and camera. The camera lens introduced additional spatial
distortions. Hence, establishing a robust, accurate and reliable image registration for image
quality assessment for projection was required.

3.2.3 Methods

In this research, we proposed a marker-less and view independent method to use a camera
to quickly capture the projection and correct its nonlinear spatial distortions without cal-
ibrating a camera in advance. It had three major components: feature extraction, feature
expansion, and geometric correction.

3.2.3.1 Feature Extraction

One dot pattern and one cross pattern image was generated and projected in full screen
size in order to estimate spatial distortions. The dot pattern incorporated round solid black
dots evenly distributed in a M;x Ny grid layout, where M, and N4 represent the number
of columns and rows respectively. The cross pattern included crosses that shared the center
locations and radius with the dots in the dot pattern. Let’s denote the captured dot pattern
as 14, then a contour map C could be generated as

C = Mo (G (I0) — Gy (1), (3.1)

where the Gaussian filter G, with kernel size a (empirically a < 5) is adopted to reduce the
screen-door effect [7, 203]. The kernel size a should be kept as small as possible to preserve
the details in the captured image. The Gaussian filter G}, with kernel size b (empirically b >
41) was adopted to spread energy from highly illuminated pixels to their neighborhoods.
The median filter M, with kernel size ¢ (empirially ¢ = 3 ) was adopted to remove the salt-
and-pepper like noises, and to smooth the detected object contours. False contours might
be visible in the generated map C, and they could be eliminated by applying a binary
threshold. The output binary image I, could be expressed as

Ib _ { 1 C; > (1 — p)me +p'Lmaz (32)

0 otherwise

where C; denoted the ith pixel in contour map C, L,y and L,,,, denoted the minimum
and maximum gray values in the image respectively, and p € [0, 1] was a constant thresh-
old. Smaller value of p forced the detected projection boundaries to be compressed and
vice versa. The value of p had a contrary effect on the detected dot contours. Hence, the
pixels corresponding to positive thresholding were kept and the rests were removed. The
algorithm proposed by Suzuki et al. [168] was adopted to determine the contours and
their hierarchy relationships in the binary image I;. The outermost and longest object con-
tour corresponded to the projection area, while the innermost and shortest contours corre-
sponded to the dots. The remaining contours were therefore discarded. For each identified
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contour, a moving window (empirically size equals to 5) was placed along its pixels and
a dynamic threshold with respect to local statistics in the corresponding area of the origi-
nal captured image I; was calculated. Then, the contour pixel at the window center was
shifted toward its neighborhood either horizontally or vertically to achieve the goal of local
optimization. The local threshold T" was determined as

T:L~(17k4LL/2), (3.3)

where o denoted the standard deviation of gray values within the local window, L de-
noted the maximum gray scale level (256 for 8 bit image) and the constant & (empirically
k € [0.1,0.3]) indicated the confidence of the image quality of the captured image I,. In the
case of good image quality, the value of £ could be scaled down to 0. Otherwise, it should
be scaled up. Eventually, we adopted the algorithm proposed by Fitzgibbon et al. [51] to fit
dot contours into ellipses with respect to the least square error minimization, so the actual
center, size, and orientation of each ellipse could be estimated simultaneously. The esti-
mated ellipse centers would be slightly shifted according to the “cornerSubPix” algorithm
provided by the OpenCV library [16]. Such an algorithm incorporated the detected cross
centers from the cross pattern image to locally optimize the ellipse centers, since the dots
and crosses shared the center location and radius.

3.2.4 Feature Expansion

The detected dot grid needed to be expanded to cover the entire projection area. In this
case, we fitted the coordinates of all dot centers in the same row or in the same column into
a parametric natural cubic spline function as sample points, and estimate the parametric
coefficients accordingly. Once the spline functions were determined, we could generate
a smooth parametric cubic spline passing through each set of the feature points. In turn,
each spline was extrapolated to intersect with the detected contour of the projection area to
generate a pair of new feature points. Thus, in total, 2(My + N;) new feature points were
generated. The four extreme corners of projection contour could be determined by apply-
ing the split-and-merge algorithm proposed by Heckbert et al. [64] iteratively to eliminate
redundant pixels until only four corners are left. These corners were used as the feature
points as well. Eventually, we had (M, + 2) - (Ng + 2) feature points covering the entire
projection area. The reason to employ the natural cubic spline was to take the advantage of
its unique mathematical properties. A typical parametric formulation could be presented
as

3 3
2 (pe) =Y ik (pe — )",y (py) = D sk (py — ;)" (3.4)
k=0 k=0

where p, € [0, My + 1] and p, € [0, Ng + 1] were the two parametric coefficients for the
spatial coordinates of a point on the ith and jth spline section respectively; a;, and 8
were the local polynomial regression of kth parametric coefficient of the ith and jth spline
sections respectively; ¢; € [0, My + 1] represented the parametric coordinate of ith sample
point on spline z (p,), and ¢; € [0, Ny + 1] represented the parametric coordinates of jth
sample point on spline y (p,). Each feature point in the expanded dot grid represented one
sample point for the corresponding spline. The coefficients were estimated to make sure
that around each key point the two consecutive spline sections share the same first and
second derivatives; so the whole spline curve was differentiated and continuous below the
third polynomial order at all possible locations. In addition, the estimated splines were
adapted to local variance within each spline section. Higher order spline may not be em-
ployed to avoid adaptation to the errors inherited from the capturing process or from the
calculations above.
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3.2.5 Geometric Correction

We created a sub-pixel level mapping between the captured image and its reference, and
the captured image could be undistorted by down sampling with respect to a specified in-
terpolation method. The basic idea was to register pixels between the Cartesian coordinate
system in the camera space and a distortion independent coordinate system defined by
the expanded feature grid. Suppose the reference image resolution was given as N, x N,
in pixels and the capturing resolution as M, x M, in pixels. Any pixel P, = (z,y) where
z € [0,N, —1] and y € [0, N, — 1] in the original image corresponded to pixel P, = (u,v)
where u € [0, M, — 1] and v € [0, M, — 1] in the captured image and the pixel p,, in the
un-distorted image. Their coordinates were defined in the Cartesian coordinate systems
and their pixel correspondences in the distortion independent space were

_ (- (Ma+1) y-(Na+1)
Q“‘( N —1) " (N, — 1) ) 3.5)

u~(Md—|—1) U‘(Nd-f—].)

NG ey oo
respectively. The correspondence between P, and (),, as well as P, and ). were established
with respect to the expanded feature grid which was generated based on cubic splines.
Since the undistorted image was expected to exactly register with the original image, then
the coordinates of P, were equal to the ones of P, in the distortion independent space. Spe-
cial attention must be paid to the screen-door effect [7, 203]. The geometric correction might
introduce wave-like artifacts. A trade off had to be made between blurring the captured
image to register the geometry with the reference image, or distorting the reference image
to register it with the captured image. In this paper, we adopted the former approach to
make sure that existing full reference image quality metrics can be incorporated without
any modification.

3.2.6 Results

The experiment was performed in a controlled lab environment. A portable LCD projector
SONY APL-AW15 (1280 x 768 in pixels) was placed in front of a planar screen, and a DSLR
camera Nikon D200 (3872 x 2592 in pixels) was used for image acquisition. All 24 images
from Kodak Photo CD PCD0992 [52] were adopted for the test. We evaluated the proposed
method against the pictures either generated by simulation tools or the ones taken in the
tield. The experiments were separated into two parts: evaluations with artificial images
and images captured in the field.

In the first part of the experiment, the reference images and pattern images were scaled,
rotated, and translated respectively at a series of levels to simulate a specific type of spatial
distortion. The output images had the same resolution as the captured images. Since the ac-
tual distortions were known prior to the simulation, the image registration accuracy could
be evaluated with respect to the maximum absolute displacements of pixels from their
ideal locations. In cases where the scaling factors were greater than 1, the maximum dis-
placements are below 0.2 pixel. These small errors were largely negligible, if the capturing
resolution was at least two times higher than the original image resolution. The lowest dis-
placements were given for special rotation angles as expected. In other cases, the absolute
displacements were between 0.5 and 2 pixels, and they correspond to the misadjustments
of the contour fine-tune algorithm (Equation 3.3) due to blurred edges in the captured im-
ages. The proposed method was completely independent from spatial translations. We
also scaled and rotated all test images in a similar fashion and applied SSIM image quality
metric [185] (kernel size 5) to measure the structural similarity. This was largely ignored
by the conventional image registration evaluations. This metric incorporated the visibility
of structural errors; it concerned the displayed image content and was able to detect com-
plicated image quality issues like artifacts. The mean of similarity increased rapidly and
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the variance becomes smaller and more stable. Image rotation had limited influence on the
proposed method since the structure similarity were always above 0.98.

In the second part of the experiment, we used the camera to take pictures of each of
the projected reference image at 25 random locations and orientations in the field under
low light (0 Lux) and dimmed light (30 Lux) conditions respectively, since the light con-
dition had a great impact on the visual experience [207]. Then we applied SSIM metric to
the registered images and their references due to the lack of ground truth for the actual
projections. The minimum structural similarity was higher than 0.91 in all cases under the
low light condition, and it was above 0.85 in the dimmed light condition. The variance of
structural similarity between random locations were small, so the proposed method pro-
duced similar results despite the changes of camera position and orientations. The mean
and variance under the dimmed light condition were worse. This was because the ambi-
ent light reduced the contrast between projection boundary and its surroundings, and the
adjustment accuracy of contour fine-tune algorithm was influenced.

3.2.7 Conclusion

In this research, we proposed a marker-less view independent method to use an uncali-
brated camera to achieve a sub-pixel-level registration between the captured projections
and their reference images. The preservation of geometrical order as well as the inten-
sity and chromaticity relationships between two consecutive pixels on the display were
maximized. The experimental results against distortion simulations and captured images
proved that the registration accuracy was considerably high under typical light conditions
for projection systems. By incorporating this method, we could apply existing full reference
image quality metrics to captured projections without any modification to the metrics.

3.3 Paper C: Perceptual Spatial Uniformity Assessment of Projection
Displays with a Calibrated Camera

Ping Zhao, Marius Pedersen, Jean-Baptiste Thomas, and Jon Yngve Hardeberg

In 22nd Color and Imaging Conference

Society for Imaging Science and Technology
Boston, MA, USA

pp- 159-164

November, 2014.

3.3.1 Abstract

Spatial uniformity is one of the most important image quality attributes in visual expe-
rience of displays [177, 178, 114]. In conventional studies, spatial uniformity was mostly
measured with a spectroradiometer and its quality was assessed with non-reference im-
age quality metrics. Cameras are cheaper than radiometers and they can provide accurate
relative measurements if they are carefully calibrated. In this paper, we propose and im-
plement a work-flow to use a calibrated camera as a relative acquisition device of intensity
to measure the spatial uniformity of projection displays. The camera intensity transfer
functions for every projected pixels are recovered, so we can produce multiple levels of
linearized non-uniformity on the screen in the purpose of image quality assessment. The
experiment results suggest that our work-flow works well. Besides, none of the frequently
referred uniformity metrics correlate well with the perceptual results for all types of test
images. The spatial non-uniformity is largely masked by the high frequency components
in the displayed image content, and we should simulate the human visual system to ignore
the non-uniformity that cannot be discriminated by human observers. The simulation can
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be implemented using models based on contrast sensitivity functions, contrast masking,
etc.

3.3.2 Motivation

In the previous studies, it has been demonstrated that the digital still camera can be an
effective and efficient alternative to the absolute optical instruments with respect to the
correlations of measurement outcomes. With the proposed image registration method, it is
easy to incorporate existing full reference image quality metrics without introducing any
modification. The next research question to ask is how the proposed framework performs
for evaluating image quality attributes for displays, and how well the metric outcomes cor-
relate with perceptual results under this framework. For this purpose, we identified the
most important image quality attributes for projection displays. With respect to the litera-
ture survey, it was found that spatial uniformity has long been regarded as one of the most
important image quality attributes for displays [110, 112, 113, 119, 178]. Since the defini-
tion of spatial uniformity involves luminance aspect, it depends on accurate absolute mea-
surements in a specific color space. For this reason, spectroradiometers were commonly
incorporated to perform the task. In this research, we incorporated the camera as a relative
acquisition device to record the intensity of projections, implemented the core components
for projection displays, and used the framework to incorporate image quality metrics to
evaluate the spatial uniformity, and finally the correlation between metric results and the
perceptual results would suggest the reliability and efficiency of the proposed framework.

3.3.3 Methods

Spatial uniformity has a strong connection to the spatial variation of luminance across the
entire imaging area, so the camera needs to be calibrated in advance to ensure that its
optical and electronic systems introduce no additional unwanted influence to image quality
of captured images. For this reason, a method for vignetting correction and a method
for exposure optimization were proposed to quickly eliminate the vignetting effect and
optimize linearity of camera sensor responses.

3.3.3.1 Experimental Setup

The experiments took place in a controlled lab environment where the only illuminant in
the room was the projector. We used a portable three chip LCD projector SONY APL-AW15
(throw ratio: 1.5) to produce projections on a planar screen, which was naturally hanging
from the ceiling. The projector was placed on a table in front of the projection screen, and
the distance is approximately 3m with respect to the throw ratio of the projector. A remote
controlling laptop was connected to the projector via a VGA cable in order to generate full
screen projections (approximately 2 x 1.2 in meters, 1280 x 768 in pixels). We used a DLSR
camera Nikon D610 (6048 x 4016 in pixels) with a Sigma VR 24-105mm f/4G (VR off) lens
to capture the projections. The camera was fixed on a tripod and the pictures were taken re-
motely with a software control on the laptop without physically touching the camera. The
pictures were saved in raw format and rendered with Aliasing Minimization and Zipper
Elimination demosaicing algorithm [117] without automatic vignette correction, brightness
adjustment, gamma correction, noise reduction, etc.

3.3.3.2 Vignetting Correction

Vignetting effect stands for an undesirable gradual intensity fall off from the image center
to its external limits. It is caused by the non-uniform energy distribution of light on the
camera sensor array after light’s passing through the camera lens, assuming that the inci-
dent light is uniform. We corrected the camera vignetting based on the captured pictures of
a hazy sky, which was closely uniform in gray [128]. In the lab, we took several trial shots
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of projections with either minimum or maximum projector input intensity. In this process,
we adjusted the camera settings iteratively until all the captures are neither underexposure
nor overexposure. Then we kept all camera settings except the exposure time, used a neu-
tral light diffuser (white and semi-transparent) over the camera lens, and used the camera
to take multiple pictures toward the same spot of the hazy sky. Each time we took a picture
we rotated the camera a bit. Then we calculated the median of intensity response for each
pixel in all the pictures we took, and used them to generate a vignetting mask, which was
then applied to the camera RGB channels separately to correct the vignetting. In the ex-
periment, it was found that empirically 10 pictures were sufficient to generate convergent
median results, and the mask center was shifted upward and also a bit to the right. In order
to maximize the validity and reliability of image quality assessment, we should offer the
best effort to avoid assumptions. Our method placed no assumption about the camera or
the light condition, and the whole procedure can be finished within a few minutes.

3.3.3.3 Exposure Optimization

By applying the vignetting mask generated in the daylight condition to the low light condi-
tion for projection displays, we implicitly assumed that the camera always produced linear
responses. In order to verify this prerequisite, we separated the input intensity equally into
15 levels. For each level, we displayed a gray patch on the projection screen, and captured it
under all possible camera exposure times ranging from 1/4000s to 30s. Meanwhile, a light
meter was used to measure the luminance on the projection screen as a reference to the
camera. Then, we constructed surfaces of camera intensity responses versus the projector
luminance and exposure time. It was found that the response surface of one camera sen-
sor in one certain channel can be separated into two regions. In one region, the responses
were closely linear to all possible projector luminance with constant exposure time, and
vice versa. However, in the other region, the camera sensor had a very large boost in the
responses. This was obviously not due to the saturation protection. From this point of view,
the camera produced linear responses only for limited combinations of projector luminance
and camera’s exposure time. For this reason, we determined the strongest responses over
each camera intensity response for the maximum luminance under the two light conditions
with a common exposure time, and we continued to decrease the exposure time until the
ratios between such two sensor responses were approximately equal. A very small expo-
sure time was always safe, but it did not take the full advantage of the dynamic range of
camera sensors. Once this condition is met, the generated vignetting mask can be applied
to the camera despite of light conditions.

3.3.3.4 Projector Calibration

In this research, we adopted and extended the method proposed by Brown et al. [20] in
order to produce multiple levels of linearized non-uniformity on the screen. First, we
equally separated the projector intensity into 15 levels, and for each level we displayed
and captured a gray patch 10 times. Then the projector intensity transfer functions were
recovered by polynomial regression upon the median responses over all gray patches in
a color channel basis, in order to avoid temporary stability of both camera and projec-
tor. After this, we inverse the transform to compensate the non-linearity of camera re-
sponses in order to create flattened projections. Suppose that the scaling ratio of one pixel
p;; in an individual color channel on the ith row and jth column of the registered image
is r;; > 1, the corresponding regression function for the reference pixel is f (x) and its in-
verse function is denoted as f~! (z). The x stands for the projector input intensity of the
pixel p;;. The camera response of pixel p;; is denoted as ¢;; = f () - ;. In this context,
the projector input intensity for the pixel p;; at a certain non-uniformity level is defined as
g(x) = [71(f () - s(rij —m)), where m = 377, 30 ri;/ (g - ny), n, and n,, stand for
the width and height for the projection in pixels respectively, and s stands for a linear scal-
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ing factor of non-uniformity and it is under the constraint that f (0)-r;; < g;; (z) < f (z)-74
assuming that the projector input intensities are normalized to between 0 and 1. The value
of r;; can be determined as max (¢;;) / f (1), where the operator max stands for the maxi-
mum value of ¢;;.

3.3.3.5 Experimental Procedure

We displayed seven types of test images: two natural color pictures (the 15th and 23th pic-
ture from Kodak Photo CD PCD0992 [52]), three uniform colored patches with opponent
colors: yellow, magenta and cyan respectively, one gray patch (gray level: 0.5), and one
presentation slide like image with dark texts on a gradient background. We linearly scaled
each test image to produce multiple levels of non-uniformity. These scaling ratios were
normalized into the range between -1 and 1, and then they were split into five levels: -0.6,
-0.2, 0, 0.2 and 0.6. The level 0 corresponded to flattened projections. We also displayed
one image as it was to preserve the natural projector nonuniformity; so 42 images in to-
tal were presented to each observer. The experiment was set up as a category judgment
experiment with test images displayed in a randomized order. Ten observers were asked
to use category numbers between 1 to 5 to indicate the perceptual uniformity. The num-
bers correspond to the ranks between “not uniform at all” and “perfectly uniform”. At the
same time, the observers were also asked to use numbers between 1 to 5 to indicate how
the non-uniformity affect their pleasantness. The numbers correspond to the rank between
"very disturbing” and "not disturbing at all”. All ratings were scaled to generated Z-scores
[44]. We evaluated the uniformity with the following image quality metrics: LR defined in
VESA FPDM [183], LG based definition [104] (SFA), averaged standard deviation of RGB
values (Stddev), coefficients of variation [149] (Coeff), averaged Euclidean distance AE*,
in CIELAB color space (AEg;), PSNR-M [142], SSIM [185], and S-CIELAB [86].

3.3.4 Results

The experimental results included two parts corresponding to the subjective and objective
experiments.

3.3.4.1 Subjective Results

The first observation was that the rank order of non-uniformity was largely preserved for
the seven types of test images, as expected. If we assumed that the general tendency of Z-
scores was smooth, then they could be represented by parabolic curves. The curves might
be more or less skewed depends on the projected image content. The flattened projections
did not necessary correspond to the highest overall Z-scores, while small negative non-
uniformity and natural projection images had similar or relative lower Z-scores in many
cases, and either positive or negative large non-uniformity lead to the lowest Z-scores.
This observation supports the fact that the human visual system was not sensitive to small
variation of non-uniformity. The spatial non-uniformity was largely masked by the high
frequency components in the displayed image content, and we should simulate the human
visual system to ignore the nonuniformity that could not be discriminated by observers.
The simulation could be implemented using models based on contrast sensitivity func-
tions, contrast masking, etc. For the distorted slide like images, the Z-scores of flattened
versions were clearly greater than others. This was because such reference image has dark
texts on a large gradient background in a bright color, and the nonuniformity on a gradient
background could be easier to be detected by human visual system than that on a flat back-
ground, which was the case of a gray patches. The general tendency of mean Z-scores of
pleasantness were similar to the ones of perceived uniformity, and the Pearson correlation
between them were all above 0.98 for all test images, except the absolute mean values of
pleasantness were slightly larger in general. This observation suggested that the human vi-
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sual system had a certain degree of but limited tolerance on average against nonuniformity
on the displays. For the gray patches, the observers had a difficulty to distinguish the dif-
ferences between the small minus non-uniform, flattened, natural projections. In a similar
fashion, the pleasantness of small minus non-uniformity, flattened and natural projections
for the two natural images had similar values, but their corresponding perceived unifor-
mity had different mean values. This observation suggested that the non-uniformity was
masked by the complex colors of natural pictures, and in such cases achieving a restrained
uniform was not the only way to produce the best perceptual experience.

3.3.4.2 Objective Results

Based on the Pearson and Spearman correlations between the mean Z-scores of perceived
uniformity and objective results for all metrics. Obviously, none of the metrics worked
well for all types of test images, especially for natural color images. Simple metrics, such as
LR and SFA worked surprisingly better than others in many cases. We thought that it was
because in our experiment the non-uniformity for all pixels was globally scaled, so the rank
order of intensities in each primary color channel was largely preserved; although we apply
negative scalars to non-uniformity as well, the magnitude of scaled non-uniformity was
still comparatively smaller than the reference intensity values. However, in real practice,
the non-uniformity level of projections should be relatively small. The metric Coeff also
gave high correlations for patches but negative values for natural pictures. However, no
metric worked well for the natural color images and slide like images. In such cases, the
correlations were largely below 0.6. The metric S-CIELAB also adopted contrast sensitivity
functions, but it had slightly better correlation results than PSNR-M and SSIM metrics in
all cases. It was also interesting to figure out the reason why metric LR did not work
well in many cases, so we generated the plots of the subjective results versus the objective
results for the LR metric. It was clear that for the non-patch test images, the variance of
metric scores were largely compressed and a few outliers were visible. By examining the
metric scores, we found that these outliers corresponded to the flattened projection and
natural projection. Similar phenomena could be observed for other metrics. It suggested
that either that the metrics gave lower values for the flattened projection, or higher values
for the natural projection comparing to their expected values. In other words, the distance
between the two consecutive levels of perceived uniformity was more compressed than the
results of metrics.

3.3.5 Conclusion

In this research, we proposed a series of methods to calibrate a camera, and used it as a
relative acquisition device of intensity in order to evaluate the spatial uniformity of projec-
tion displays by incorporating image quality metrics. The experimental results suggested
that none of the frequently referred metrics worked well for all types of test images, espe-
cially for the flattened projections and natural projections. In such cases, the spatial non-
uniformity was largely masked by the high frequency components, and we should simu-
late the human visual system to ignore the non-uniformity that cannot be discriminated
by observers. The simulation could be implemented by using models based on contrast
sensitivity functions, contrast masking, etc. In addition, the colors could be considered to
be transformed into the frequency domain and analyzed at a smaller granularity in order
to engage the issue of contrast masking.

3.4 Paper D: Measuring The Relative Image Contrast Of Projection
Displays
Ping Zhao, Marius Pedersen, Jon Yngve Hardeberg, and Jean-Baptiste Thomas
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In Journal of Image Science and Technology
Society for Imaging Science and Technology
Volume 59, Issue 3, pp. 030404-1-030404-13
April, 2015.

3.4.1 Abstract

Projection displays, compared to other modern display technologies, have many unique
advantages. In this paper, we propose an objective approach to measure the relative con-
trast of projection displays based on the pictures taken with a calibrated digital camera in
a dark room where the projector is the only light source. A set of carefully selected natu-
ral images is modified to generate multiple levels of image contrast. In order to enhance
the validity, reliability, and robustness of our research, we performed the experiments in
similar viewing conditions at two separate geographical locations with different projection
displays. In each location, we had a group of observers to give perceptual ratings. Further,
we adopted state-of-art contrast measures to evaluate the relative contrast of the acquired
images. The experimental results suggest that the Michelson contrast measure performs
the worst, as expected, while other global contrast measures perform relatively better, but
they have less correlation with the perceptual ratings than local contrast measures. The lo-
cal contrast measures perform better than global contrast measures for all test images, but
all contrast measures failed on the test images with low lightness or dominant colors and
without texture areas. In addition, the high correlations between the experimental results
for the two projections displays indicate that our proposed assessment approach is valid,
reliable, and consistent.

3.4.2 Motivation

The main motivation was similar to the research for evaluating the spatial uniformity of
projection displays 3.4. In the existing literature, contrast has been proven to be an impor-
tant image quality attribute for displays [111, 108, 8, 154, 57]. For projection displays, the
contrast was largely evaluated with a spectroradiometer, but not with the digital still cam-
era. In this research, we continued to use the implementation of the core components of the
image quality assessment framework. The main purpose was to evaluate the state-of-art
of image quality metrics predicting the relative contrast, and benchmark them against the
perceptual results with respect to their correlations to the perceptions. The image quality
metrics were incorporated under the proposed framework. The results of the evaluation
can be used to improve the design of image quality measures, and they can also be ex-
tended in the development and enhancement of general image reproduction technologies.

3.4.3 Methods
3.4.3.1 Contrast Measures

The contrast measures for images could be broadly classified into two categories with re-
spect to their measurements at either the global or local level. With respect to the survey
of existing literature, we adopted the image quality measures, such as Michelson contrast
[120], RMS [129], Lab variance [139], RAMMG [150], RSC [160], and GCF [118], for the
evaluation. The Michelson contrast measure was selected because it was representative of
global contrast measurement and it was typically used as a reference for contrast measure-
ment in research. RMS and LAB variance measures were selected because they were repre-
sentative of measurements, which relied on statistics; however the RMS measure worked
only on luminance, while the LAB variance measure further took colors into account in
the perceptual uniform CIELAB color space. RAMMG and RSC measures were represen-
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tative of the measures incorporating low-level visual system models. The GCF measure
addressed the problem from the spatial frequency perspective.

3.4.3.2 Experimental Setup

In order to enhance the validity, reliability, and robustness of this research, we performed
the experiments under the same viewing conditions but at two separate geographical lo-
cations with two different projection displays and one group of observers at each location.
In this case, we had two separate experimental sessions in total. The first session was
conducted in France with 10 observers, and we used a portable three-chip LCD projector
Mitsubishi XL9 (1024 x 768 in pixels) to display images on the screen. The second session
was conducted in Norway with 17 observers, and we used another three-chip LCD projec-
tor, a SONY APL-AW15 (1280 x 768 in pixels). We used the same DSLR camera Nikon D610
(6016 x 4016 in pixels) with a VR 18-100 mm F/3.5-5.6G (VR off) lens to capture the images.
We selected 10 test images from the Colourlab Image Database: Image Quality [106] with
respect to their image content (800 x 800 in pixels). We normalized the RGB values of all
pixels in the test images, and transformed them in each color channel simultaneously with
the formula

Si = (C; —m) * (j +6) /6 +m, 3.7)

where §; stand for the scaled RGB value for the ith pixel in the distorted image, j is an
integer scaling factor for contrast distortion in the range [-3, 3], C; stands for the normalized
input RGB value for the ith pixel in the input image, and m stands for the mean of all
C; in the same color channel, so we obtained seven distortion levels for each test image.
Overscaled values (either larger than 1 or smaller than 0) were clipped.

3.4.3.3 Experimental Procedure

The subjective experiment was conducted by using the software QuickEval [126], which is
an interactive software running on the controlling laptop for psychometric scaling experi-
ments. All observers operated directly on the laptop, and they were experiencing exactly
the same stimulates in identical viewing conditions. Based on this system, each observer
was required to perform two assignments. In the first assignment, we displayed each group
of distorted images at the same time in randomized order. The observers ranked them in
a descending order with respect to their perception of contrast. In the second assignment,
the distorted images were ranked in a descending order with respect to the observers’ pref-
erence of contrast. All subjective ratings are scaled to generate Z-scores [44]. For the objec-
tive experiment, we used a camera as the acquisition device, and applied contrast metrics
to the registered captured images [208]. In this process, we set the camera up with ISO
100, and performed the MTF test [175] to acknowledge that the best aperture was f/7.1.
We adjusted the shutter speed setting iteratively to make sure that no camera sensor was
either underexposed or overexposed. We captured images in raw format, and applied the
spot white balance algorithm to correct the captured colors. We incorporated the method
proposed in our previous research to eliminate vignetting effect [209]. In the experiment,
we incorporated the contrast measures, such as Michelson contrast [120], RMS [129], Lab
variance [139], RAMMG [150], RSC [160], and GCF [118], into the proposed image quality
assessment framework.

3.4.4 Results

3.4.41 Subjective Results for Ranked Perceived Contrast

Based on the observation of the Z-scores of ranked perceived contrast for all projectors,
it was clear that the rank of perceived contrast has a closely linear relationship with the
actual rank of modified contrast. Since the Z-score values in all plots were monotonically
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increasing, the relationship between perceived contrast and the actual image contrast was
almost linear for all types of images.

3.44.2 Subjective Results for Preferred Perceived Contrast

The general tendency of the Z-scores of preferred contrast did not follow a linear relation-
ship with the actual image contrast. This observation suggested that the observers tend to
rank all distortions into two groups: either relatively less preferred (contrast level -3 to -1)
or more preferred perceived contrast (contrast level 1 to 3). In the group of less preferred
contrast, since the confidence intervals of Z-scores were largely overlapped, the perceived
contrasts had no significant difference, while in the group of more preferred contrast, the
confidence intervals were less overlapped. This suggested that the majority of observers
prefer the enhanced contrast even though the luminance might be overscaled. In some
cases, for both projectors at the contrast level 0 (original image) was neither preferred nor
not preferred because it was very close to the center line for all test images. The preferred
perceived contrast values for the two projectors were obviously different.

3.4.4.3 Objective Results for Ranked Perceived Contrast

We calculated the Pearson correlation coefficients between the metric scores and the mean
Z-scores of ranked perceived contrast. It was clear that, for the Mitsubishi projection dis-
play, most contrast measures produce high correlation coefficients above 0.85 for most im-
ages, except that the RMS and GCF measures produced low coefficients on test image 6.
However, the observation cannot be obtained from the SONY projector. For the SONY pro-
jection display, the Michelson contrast measure performed worst. Other contrast measures
had similar performance for both projection displays on test images 2, 3,4, 5,7, 8,9, and 10,
but not on test images 1 and 6. For the Mitsubishi projection display, the contrast measure
GCF performs badly with respect to its confidence interval. Although both projection dis-
plays were supposed to produce different contrast on the screens, the mean of correlation
coefficients over all test images followed a very similar general tendency. Based on the ob-
servation on the variance of confidence intervals, the RSC contrast measure produced the
most stable outcome regardless of the image content.

3.4.4.4 Objective Results for Preferred Perceived Contrast

It was clear that the Michelson contrast measure performs the worst. In addition, the RMS
and GCF measures both performed relatively worse for test image 6 for the two projection
displays as well. For the preferred contrast of both projection displays, the RAMMG and
RSC had the highest correlations; however, the correlation from the RAMMG was slightly
higher than that for the RSC contrast measure. This observation was different from the
one for ranked perceived contrast. The rank order between RMS, LAB, GCEF, RAMMG, and
RSC was largely preserved for test images 2, 3, 4, 5, 7, 8, 9 and 10, but not for test images
1 and 6. This observation could be obtained from the ranked perceived contrast for both
projection displays as well, but not from the preferred contrast for the SONY projection
display. By looking at the average overall contrast measurement performance, the general
tendency of the average Pearson correlation over all test images was almost the same as the
one obtained from the preferred contrast.

3.4.4.5 Overall Results

We determined the average performance of the contrast measures over all test images for
each projection display. Then, we calculated the Pearson correlation coefficients not on
a per image basis but over all test images, so we could observe the metric performance
regardless of the image content. We also calculated the Pearson correlations between the
average performances over all contrast measures with respect to their types of contrast
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versus the types of projection displays. With respect to the results, it was concluded that
the most preferred perceived contrast corresponds to the highest ranked perceived contrast:
even for test images 1, 2, 4, and 5 the highest preferred perceived contrast corresponded
to the second highest ranked perceived contrast. For related research in the future it is
unnecessary to explicitly distinguish them and do the experiments twice.

3.4.5 Conclusion

In this research, we proposed an objective approach to measure the relative contrast of pro-
jection displays in a controlled environment by using a calibrated digital camera. To our
best knowledge, it was the first of this type of research. The approach could be easily ex-
tended to measure other image quality attributes, such as sharpness and nonuniformity,
for all types of displays. The experimental results based on two separate projection dis-
plays suggest that the Michelson contrast measure had very low performance over all test
images, as expected. Other global contrast measures (RMS and LAB) performed relatively
better than the Michelson contrast measure, but they had less correlation with the percep-
tual ratings compared to the local contrast measures. The local contrast measure GCF had
similar performance to the RMS and LAB measures, but it performed worse than other
local contrast measures (RAMMG and RSC). The contrast measures RAMMG and RSC
performed the best overall, and have very close performance on contrast measurements
for almost all test images. With respect to the 95% confidence interval of the average mea-
surement performance over all test images, RAMMG had slightly improved correlations
with the preferred contrast over other metrics. Many contrast measures did not perform
well on the test images 1 and 6. These two images either had large area of low luminance
component or dominant color component, and they did not have obvious texture area. We
recommended local contrast measures incorporating low-level human visual system mod-
els, since they had better overall performance over global contrast measures in terms of
both contrast prediction accuracy and stability regardless of the image content. Since the
average correlations and stability of local contrast measures were good for many test im-
ages, we did not need to propose a new contrast measure, but rather to improve the models
of human visual system to predict the image contrast better in future research.

3.5 Paper E: Measuring Perceived Sharpness of Projection Displays
with a Calibrated Camera

Ping Zhao, and Marius Pedersen

Submitted to Journal of Visual Communication and Image Representation.

3.5.1 Abstract

Perceived sharpness is one of the most important image quality attributes for displays, be-
cause it determines how much details humans are able to perceive on the screen at certain
distances. However, this attribute was not well studied for projection displays in the ex-
isting literature. In this paper, we conduct an experimental study on measuring perceived
sharpness of projection displays based on the pictures taken with a calibrated camera in
a darkroom, and evaluating the performance of state-of-art sharpness metrics accordingly.
The basic idea is to apply Gaussian filtering to natural test images in order to simulate
the optical blurring process of projection systems, so that we can generate multiple levels
of image sharpness in a controlled manner without influencing the original properties of
projection displays. We project these filtered images onto the screen and invite a group of
human observers to give perceptual ratings on them. We calculate the correlation coeffi-
cients between perceptual sharpness and the one measured with state-of-art image quality

44



3.5 PAPER E: MEASURING PERCEIVED SHARPNESS OF PROJECTION DISPLAYS WITH A
CALIBRATED CAMERA

metrics. We find out that the average performance of full reference metrics are compara-
tively better than the reduced and no reference metrics. Among the full reference metrics,
SSIM, VIF and FSIM metrics perform well in terms of both accuracy and stability.

3.5.2 Motivation

The main motivation was similar to the research of evaluating the spatial uniformity and
contrast of projection displays. In the existing literature, sharpness has been recognized as
an important image quality attribute for displays [55, 190, 28]. For projection displays, to
our best knowledge, there was no such research related to using digital still camera to do
the image quality assessment. In this research, we continued to use the implementation of
the core components of the image quality assessment framework. The main purpose was to
evaluate the state-of-art of image quality metrics predicting the sharpness, and benchmark
them with respect to their correlations with the perceptual results. The sharpness metrics
could be broadly classified into three categories: full reference based, reduced reference
based, and no reference based. However, the existing research largely focused on only one
of them. In this context, one interesting research to do could be comparing the performance
of all types of metrics by referring to the identical perceptual data, and making conclusion
that which category of metrics has more advantages over others. In addition, we could also
compare the metric performance within each category to see which one performs better and
figured out the reason behind.

3.5.3 Methods

We used a portable three chip LCD projector SONY APL-AW15 (throw ratio 1.5) to produce
projections (1920 x 1080 in pixels, approximately 2 x 1.2 in meters on screen) on a planar
screen. The projector was put on a table placed in front of the projection screen about 3m
away. We used a DLSR camera Nikon D610 (6048 x 4016 in pixels) with a Sigma VR 24-
105mmf/4G (VR off) lens to capture projections. It was mounted on a tripod and placed
in front of the screen about 4m away. Pictures were taken remotely in raw format with
a software control on the laptop without physically touching the camera, and processed
with aliasing minimization and zipper elimination algorithm [117]. We selected seven test
images from the Colourlab Image Database: Image Quality [106] to generate six levels of
Gaussian blur with kernel size 11 and standard deviation 0, 0.5, 1, 1.5, 2, and 3 respectively.
We incorporated the method from our previous research to eliminate the vignetting effect
[209], and optimize camera settings in order to ensure the linear response of camera sensors
[209], and register the projections in captured images with their original image content
[208].

We invited 15 observers to give perceptual ratings to the perceived sharpness of pro-
jected image distortions. Each of them sat on a chair, which was placed at the camera
position. The viewing condition was similar to a home theater- like environment, where
the room was completely dark and the visual angle was about 15 degrees. The blurred test
images were displayed in a randomized order for every observer, and each time only one
of them was displayed. The experiment is set up with category judgment method. For
each displayed image, the observers were asked to indicate the overall perceptual sharp-
ness with a category label, which stands for the rank between ”"no blurring at all” and
“completely blurred” corresponding to the ratings numbers ranging from 1 to 9 respec-
tively. We adopt eleven representative image quality metrics in all three categories: SSIM
[185], VSNR [27], VIF [156], FSIM [204], RRIQA [186], RRED [163], LPC-SI [63], S-Index
[96], CPBD [124], JNBM [50], and S3 [184]. The metric performance were evaluated with
respect to the Pearson and Spearman correlation coefficients between the metric results and
the mean Z-scores of perceptual ratings.
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3.54 Results
3.5.4.1 Subjective Results

The perceptual ratings were collected from human observers, and they were scaled to gen-
erate Z-scores [44]. It was clear that the perceived sharpness decreased while the blur level
increased. However, their relationship should not be simply interpreted with a linear re-
gression model, since the Z-scores for test image 1, 4, 6 and 7 appeared to have a flat region
between the first and second blur levels. This observation suggested that there was a lower
bound threshold for observers to detect the sharpness changes. Another observation was
that the general tendency of Z-scores for all test images were fairly similar, and their value
ranges were almost identical. Investigation of the overall results incorporating all test im-
ages showed differences in the agreement between observers. For example, the variance
for the blur level 4 was larger than others in test image 1, and also the variance for the blur
level 1 in test image 5. However, the one or two outliers were minorities comparatively
to all human observers in such cases. This observation suggested that the observers had
agreements regarding perceptual sharpness despite of image content.

3.5.4.2 Objective Results

We calculated the Pearson correlation coefficients between the objective and subjective
sharpness for each test image. The purpose was to understand how well the metrics per-
form with respect to specific image content. It is clear that in most cases the correlation
coefficients are larger than 0.85; especially, for the SSIM, VIF, FSIM and LPCSI metrics, the
correlation coefficients were above 0.9 for all test images. In addition, the top rank metrics
had fairly close performance for most of the test images. From this perspective, the state-of-
the-art image quality metrics had good correlations with perceptual sharpness in general.
It was interesting to see which metric performs the best, and it could be more interesting
to figure out the root causes. We generated the plots of objective sharpness versus per-
ceptual sharpness for the VSNR, RRED, RRIQA, SIndex, CPBD and S3 metrics for specific
test images. It was clear that the VSNR and RRED metrics had inconsistent rank orders
on measured sharpness for test image 2 and 3. For the test images 4, the RRIQA, SIndex,
CPBD and S3 metrics all reserve the rank orders well, but they had inconsistent derivative
of curve between consecutive distortion levels. For the strongly blurred images, the deriva-
tives were less than expected; for the slightly blurred images, the derivatives were larger
than expected. In contrary, the VIF and FSIM metrics performed very well for test images
4 in both terms of rank order and derivatives.

3.5.5 Conclusion

In this research, we conducted an experimental study of perceived sharpness on projec-
tion displays in a home-theater like dark room. The perceptual results suggested that the
perceived sharpness followed a nonlinear tendency pattern, but its rank order remained
the same as the blur level increases. The correlations between the metrical and perceptual
results indicated that SSIM, FSIM and VIF metrics give excellent prediction performance
in most cases in terms of both correlation and its variance. According to the group com-
parison, full reference sharpness metrics had comparatively better prediction performance
than reduced reference and no reference metrics. In the coming future, we should turn
to focus on the design of a good sharpness metric based on the VIF metric for projection
displays following the hints that we obtained from this research.

3.6 Paper F: Extending Subjective Experiments for Image Quality
Assessment with Baseline Adjustments

Ping Zhao and Marius Pedersen
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In Mohamed-Chaker Larabi & Sophie Triantaphillidou, eds. Image Quality and System
Performance XII, Proceedings of 27th Annual Symposium on Electronic Imaging

The International Society for Optics and Photonics
San Francisco, CA, USA

pp- 93960R-1 - 9360R-13

February, 2015.

3.6.1 Abstract

In a typical working cycle of image quality assessment, it is common to have a number
of human observers to give perceptual ratings on multiple levels of distortions of selected
test images. If additional distortions need to be introduced into the experiment, the entire
subjective experiment must be performed over again in order to incorporate the additional
distortions. However, this would usually consume considerably more time and resources.
Baseline adjustment is one method to extend an experiment with additional distortions
without having to do a full experiment, reducing both the time and resources needed. In
this paper, we conduct a study to verify and evaluate the baseline adjustment method re-
garding extending an existing subjective experimental session to another. Our experimen-
tal results suggest that the baseline adjustment method can be effective. We identify the
optimal distortion levels to be included in the baselines should be the ones of which the
stimulus combinations produce the minimum standard deviations in the mean adjusted Z-
scores over all human observers in the existing rating session. We also demonstrate that it
is possible to reduce the number of baseline stimuli, so the cost of extending subjective ex-
periments can be optimized. In contrast to conventional research mainly focusing on case
studies of hypothetical data sets, we perform this research based on the real perceptual
ratings collected from a subjective experiment.

3.6.2 Motivation

Suppose that in an existing subjective experimental session, we have ratings of four lev-
els of image distortions; later, two additional distortions need to be introduced to extend
the existing subjective experiment. In this case, conventionally, we have to conduct a new
experiment with all six levels of image distortions. The overall amount of workload can
be demanding. In addition, in practice, the human observers involved in the new session
are unlikely to be identical to those who participated in the existing session. However, if
we have enough human observers, the averaged ratings regarding the existing image dis-
tortions should be statistically similar across the two sessions. In this context, a natural
research question to ask would be is it possible to take this advantage without executing
the entire experiment over again, especially when the amount of distortions is large. Base-
line adjustment can be a potential answer to this research problem. This method introduces
common stimuli (one or more distortions) to form a baseline in order to determine the com-
parability of ratings between different experiment sessions, and allows the computation of
scale values expressed relative to responses for the baseline stimuli [23]. The baseline ad-
justment is carried out separately for each original stimulus. Many existing studies had
introduced baseline adjustments into their scaling procedures [35, 66, 21, 23, 22, 65]. How-
ever, in these experiments, either the selection criteria of baseline was not discussed in
depth [35, 66, 21, 23], or the baseline stimuli were simply selected randomly from exist-
ing candidates [22, 65]. A natural research question to ask is what types of stimuli should
be included in order to form a representative baseline, and how many stimuli are essen-
tial? In this research, we conducted a study to verify and evaluate the baseline adjustment
method for extending subjective experiments. The first goal was to verify that the baseline
adjustment is an effective method, and the second was to identify the type and number of
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stimuli that we should use in the common baseline in order to minimize the experimental
workload and complexity.

3.6.3 Methods

Compared to conventional research focusing on case studies of hypothetical data sets, we
performed our research based on real perceptual data, which were collected from subjec-
tive experiment regarding perceptual spatial uniformity evaluation. We used the data to
simulate real scenarios. The natural non-uniformity for every pixel was scaled into seven
levels, and then we stacked them onto eight selected test images respectively; so 56 stimuli
in total were shown to each observer in a completely randomized order. We conducted the
experiment in a control lab environment, where we tried to simulate a home theater-like
environment and avoid unwanted imaging artifacts. In this case, two calibrated SONY
APL-AW15 LCD projectors (throw put: 1.5) were placed right in front of and about 3m
away from a planar screen to produce two projections (both 1.5 x 0.9 in meters) in paral-
lel. 20 human observers were invited to do the experiment; 13 of them had color science
background, while the rest did not. 14 of them were male and the rest were female. All of
them were required to have a mandatory visual acuity test. The observers were asked to
sit in front and between the two projections displayed in parallel. The visual angles were
around 20 degrees and the viewing distance was approximately 4 meter. Each observer
was asked to use a natural number between 0 (corresponding to completely uniform) to
10 (corresponding to not uniform at all) to indicate his/her opinion regarding the over-
all magnitude of perceived spatial non-uniformity. All observers were required to do the
experiment twice, which resulted in 2240 perceptual ratings in total.

In this research, we separated the image distortions into two groups (Figure 3.1). For
example, the first group included distortion level 1 to 6, and the second group included
distortion level 4 to 7. The ratings for distortion level 1 to 3 in the session 2 were ignored.
In this case, we were simulating a scenario which extended existing subjective experiment
with distortion level 1 to 6 in order to adopt additional distortion level 7; and the ratings for
distortion level 4 to 6 were used to form the adjustment baseline for Z-score scaling in both
rating sessions. Since the ratings were scaled on observer basis, we assumed that we were
scaling the ratings for “Image 1” from “Observer 1”. The ratings in "Part 1” were scaled
with respect to the "Baseline 1” in order to generate scaled ratings in ”Adjusted Part 17, the
rating in “Part 2” was scaled with respect to the “Baseline 2” in order to generate scaled
ratings in ”Adjusted Part 2”, and the ratings for distortion level 4 to 6 on “Image 1” from
“Observer 1” in ”Session 1” were scaled with respect to “Baseline 1” in order to generate
”Adjusted Ratings in Baseline 1”. Notice that the two baselines shared the same distortion
levels, but they might have different rating values. Each baseline included only the ratings
from “Observer 1” for all test images on the corresponding distortion levels. Eventually, all
adjusted ratings in the table below were merged to generate a full set of adjusted Z-scores.
Then the mean adjusted Z-scores over all observers were correlated with the non-adjusted
Z-scores over all observers in original “Session 1” to determine the performance of the
underlying baseline. Since the ratings for the two original sessions were collected from
the identical observers in the same circumstance, the average correlations are expected to
be high if the baseline was appropriately specified. In this context, we calculated both
Pearson and Spearman correlations. Obviously, there were many possible combinations
of distortion levels and unique distortion levels among the two sessions, so we wrote a
computer program to permute all combination possibilities and calculate corresponding
correlations accordingly.

3.6.4 Results

The experimental results were presented in two parts. In the first part, the average corre-
lation results and analysis were presented, the results could be regarded as image content
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Figure 3.1: The approach we proposed to study the validity and reliability of baseline ad-
justment for scaling subjective ratings.

independent. In the second part, the correlation results regarding individual image content
were presented. Regarding the overall correlation results, we elevated the observation to a
higher level, where we focused on the average correlations over all human observers and
all test images. The purpose was to identify the general tendency which enables the analy-
sis on how the correlation values associated with the number of distortion levels included
in baselines, despite of individual image content. So, we generated all possible distortion
combinations and calculated the average over all test images. Then, it was found that both
the mean Pearson and Spearman correlation values were monotonically increasing, while
the standard deviations were shrinking, as the number of distortion levels included in the
baseline increased. We concluded that, in general, despite the image content, the more
distortion levels we adopted in the baseline, the better and more stable correlations we
should have between the existing ratings and the expanded ratings; to a certain distortion
level combination included in the baseline, no matter how the unique distortion levels in
two session varied, the correlation values tend to less variant. However, meanwhile, the
workload of repeating the subjective experiments increased as well. Notice that, in each
category, the correlation values could rise up close to one. In other words, it was possible
to achieve high correlations without adopting all distortion levels in the baseline. Then the
question arises as to what were the most optimal distortion levels to be included in the
baseline, so the correlation values were as high as possible despite the actual combinations
of unique distortions levels involved for the existing and expanded sessions. Regarding
the correlation results for individual images, we found that the most optimal distortion
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levels to be included in the baseline did not necessarily correspond to the highest possible
correlation values, but they should produce the least correlation variance no matter how
the unique distortion levels are combined. In other words, with the presence of an optimal
baseline, the unique distortion level combinations had limited influence on the correlation
variance. In some cases, with a non-optimal baseline, the correlation might happen to have
the highest values, because the perceptual ratings were fuzzy in nature and the highest
correlation might be caused by random rating noises. This theory could be also supported
by the observations of mean and standard deviation of correlations. We came to the con-
clusion that the most optimal baseline gave the lowest possible standard deviation on the
correlation results. These optimal distortion levels should be included as many as possible
to improve the correlation results, and they were image content dependent.

In a typical situation of extending subjective experiments, we have only the raw ratings
for existing image distortion levels but not the ones for additional distortion levels. In this
case, we cannot relie on the correlations between different rating sessions to determine the
optimal baselines. However, we can use each of the known image distortion levels as a
baseline and calculate the adjusted Z-scores of the rest of ratings. Then, we determine the
correlation between the adjusted Z-scores and the original non-adjusted Z-scores to find
out which baseline is most optimal with respect to the method described in the previous
paragraph. This is an approximation approach because in this context we implicitly make
an assumption that the newly introduced image distortions have limited influence on scal-
ing the existing ratings. In other words, mean and standard deviation of selected baseline
in the new session are expected to be close enough to the ones in the existing session, and
the number of additional distortion levels should be small. Ideally, we should introduce
one additional image distortion at one time. If two or more are required, then the researcher
should adopt them one by one in an iterative fashion. The validity of this constraint is sup-
ported by the fact the best correlations are always associated with the cases that only one
additional image distortion is introduced at a time in the experiments.

3.6.5 Conclusion

In this research, we conducted a study to verify and evaluate the baseline adjustment
method regarding extending subjective experiments from one existing session to a new
session. The experimental results suggested that the baseline adjustment method works
effectively because both Pearson and Spearman correlations gave high values once the op-
timal baseline was specified. We identified the most optimal baseline should include the
combinations of image distortion levels that produce the minimum standard deviation of
the mean adjusted Z-scores over all human observers in the existing rating session. We
demonstrated that it was possible to reduce the number of image distortion levels included
in the baseline, however the trade off is the lost confidence of Z-score correlations between
the two rating sessions.
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Chapter 4

Discussions of Papers

Attempt the end and never stand
to doubt; Nothing’s so hard, but
search will find it out.

ROBERT HERRICK

In the previous chapter, the individual included paper has been summarized with re-
spect to the corresponding discussions and conclusions. In this chapter, the contribution of
the included papers will be discussed in context and the relationships between them will
be demonstrated. Then, a conclusion of the research contributions and possible ideas for
future works will be presented.

4.1 Paper A: Camera-based Measurement of Relative Image Contrast in
Projection Displays

In this research, it was our first attempt to use a digital still camera as the acquisition device
of static images displayed on the projection screen, and evaluate their image quality objec-
tively with state-of-art image quality metrics. Since there was no standard procedure for
using a camera to perform such a task that can be referenced in the literature, it was the best
option for us to set up an experimental environment, simulate typical viewing conditions
of projection displays, and try to establish an image quality assessment workflow. In this
process we were able to identify and recognize the potential research challenges and come
up with corresponding solutions. As a result, absolutely no uniformity correction, camera
optimization, restricted light controlling, color correction, image registration, and subjec-
tive evaluation were involved in this image quality assessment process. Due to this fact, we
decided to use the camera to evaluate the contrast attribute of projection displays. For one
thing, the four image quality metrics we incorporated counted in only luminance informa-
tion to predict image contrast at either a global or a local level. For another, the relative
luminance measurement was a relatively easier task for a camera to perform. Although
the patches displayed on the screen might not be fully uniform, the ratios of measured lu-
minance at different spatial locations were expected to be preserved despite of the camera
settings. In other words, the camera was uncalibrated, however its impact on the measured
contrast was assumed to be limited at the current stage of research. We used typical test im-
ages for contrast evaluations, such as checkerboard patterns, gray scale images, and color
complex images, in the experiments; it was because we had no prior information of how the
image content influence the final assessment results. In this research, we displayed the pro-
jections naturally as they were without any correction or enhancement, but with a range of
projector brightness and contrast settings. Although we had no prior information regard-
ing the tone response characteristics of the projection display, the measured image contrast
was expected to monotonically increase while either the value of projector brightness or
contrast setting increases. In this manner, even without projector calibration, we could be
able to generate multiple levels of contrast distortions for each test image. Thus, a contrast
surface could be produced for each image quality metric. Based on the plots of these con-
trast surfaces, we could observe the interactions between the measured contrast based on
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the camera and the projector settings. One trade off had to be made in this context. Each im-
age quality metric actually had its own independent contrast space, in which the range and
scaling of predicted contrast might be significantly different. However, their relationships
were not likely possible to be quantified precisely. Alternatively, we normalized the con-
trast values predicted by each image quality metric, and compared the general tendency of
contrast surfaces extensively among different image quality metrics. In the experiment, the
most important observation was that the rank orders of camera based measured contrast
for all image quality metrics were preserved for large steps of projector setting differences.
However, we still lack information on how the image quality metrics would perform for
small steps of differences. This requires a greater number of image distortion levels, which
were expected to be considered as future works. The experimental method in this research
was naive, however the results provided evidence to support that the camera based image
quality assessment approach actually worked. Then, the next stage of the research should
be investigating how to improve the camera based method by introducing uniformity cor-
rection, camera optimization, image registration, etc. In this approach, the image quality
assessment results were expected to be more accurate, more consistent, more reliable and
more robust. All these factors were important to establish a good image quality assessment
framework design, and the research upon them were conducted in the upcoming research
presented in Paper B, Paper C, Paper D, and Paper E respectively.

4.2 Paper B: Image Registration for Quality Assessment of Projection
Displays

There is a huge amount of image quality metrics in the existing literature, based on which
either an extension can be created or a relatively new research can be conducted. Thus, it
can be elegantly satisfying to have an unified image quality assessment framework to in-
corporate all the metrics without modifying them, and robustly evaluate the performance
of existing or newly introduced ones against the state-of-art. It is known that the image
quality metrics can be broadly classified into full reference, reduced reference and no ref-
erence categories. Among them, the full reference metrics require to establish an accurate
correspondence of pixels between one acquired image reproduction and its original. The
dimension and resolution of the two images must be exactly the same; meanwhile, the
preservation of geometrical order as well as the intensity and chromaticity relationship be-
tween consecutive pixels on the displays must be maximized. Thus, an accurate image
registration method is required. Although one projection display was typically shared by
multiple observers in the field, the image quality of the display is only possible to be opti-
mized for one observer at one location. However, this sweet spot is unknown in advance
of image registration design and it may vary over time. Hence, the underlying image reg-
istration method must be fast, robust, and view independent. In order to achieve the goals,
we proposed a computer vision based method for uncalibrated camera. The basic idea
was to take the advantage of a series of predefined light patterns with known geometric
information to detect the geometric distortion of captured images, and the distortions were
encoded in a cubic spline based distortion free coordinate system; then the distortions of
all subsequently captured pictures were corrected right after the pictures were taken. Cor-
respondingly, the proposed image registration method could be decomposed into three
major components: feature extraction, feature expansion and geometric correction. The
feature extraction component corresponded to the computer vision based geometric distor-
tion detection. The feature expansion component corresponded to the cubic spline based
distortion free encoding. The geometric correction component essentially incorporated ex-
isting image interpolation algorithms to correct the spatial distortions with respect to the
encoded distortion information, so it could be performed very efficiently. The experiments
were conducted from two perspectives. In the first part, we generated many artificially dis-
torted images by rotating, translating, and scaling the original test images independently,
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then applied the proposed image registration method. In this case, since all distortions
were known, we could evaluate the image registration performance in terms of minimum,
average and maximum absolute pixel shift errors. In the term of maximum shift errors, our
proposed algorithm could achieve less than 0.2 pixel for scaling with factor larger than 2
times, and up to 2.5 pixels for all types of rotations. For translation, the proposed method
was totally independent from this type of spatial distortion. These evaluation results were
independent from the captured image content. We also determined the magnitude of struc-
ture changes with respect to SSIM metric in order to evaluate the dependence of registration
errors against scaling and rotations. It was found that if the image resolution was at least
two times higher than the projection resolution the average structure loss was less than 0.06
for all types of scaling and less than 0.02 for all types of rotations. In the second part of the
experiment, we used the camera to take many pictures of the projection in the field, at com-
pletely random locations, with random viewing angles and orientations. Since we had no
ground truth in this case, we evaluated the image registration method in terms of structural
similarity. The experimental results of both parts suggested that our proposed method was
able to achieve registration accuracy higher than 91% in a dark room and above 85% with
ambient light lower than 30 Lux. From this point of view, the proposed method produced
less errors in the lower light condition. After a careful examination, the main source of
image registration errors was identified to be the projection contour detection algorithm.
In some cases, the algorithm did not work well to discriminate the projection area from
the background due to the color aberration along the edges. The root cause was that the
demosaicing algorithm did not handle the optical transaction from the background to the
foreground well. Although the proposed image registration method accounted for only
the luminance information to perform, the color aberrations issues led to unstable lumi-
nance variations along the projection boundaries. From this perspective, one possible way
to improve the method could be by taking multiple shots of one projection with the cam-
era, modeling the noises of camera sensor responses under the current viewing conditions
with respect to statistical analysis, and increasing the stability of measured data by post-
processing the data. Another possible improvement can be incorporating one additional
instrument (e.g. spectroradiometer) to characterize the background intensity, and use the
information to discriminate the foreground from the background independent of the cam-
era based background detection. The proposed image registration method was originally
designed for projection displays, however it can also be applied to other types of flat panel
displays with limited modifications.

4.3 Paper C: Perceptual Spatial Uniformity Assessment of Projection
Displays with a Calibrated Camera

Spatial uniformity had long been recognized as one of the most important image quality
attributes for projection displays. Compared to conventional research which largely reliess
on spectroradiometers to measure the averaged intensity response over several spot areas
at discrete spatial locations on the displays, using a camera as the acquisition device of dis-
played images has the advantage of quickly recording the intensity information of all pixels
in one shot. The goal of this research was to evaluate the uniformity of projection displays,
so the nonuniformity impact introduced by the camera’s optical and electronic subsystems
should be minimized. For this purpose, we proposed a method to take advantage of a hazy
sky as a nearly uniform light source to quickly create a vignetting mask for the underlying
camera lens, and applied them to all subsequently captured projection images in order to
eliminate the vignetting effect. One additional benefit of using this method was that the
dust shading effect could be eliminated as well, as long as the shadings of dust particu-
lates in the captured images appeared to be semi-transparent to the incident light coming
from all directions. With respect to the experimental data, it was found that empirically 10
pictures of the hazy sky were sufficient to create a good vignetting mask. In addition, we
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found that the camera sensors did not necessarily always give linear responses with differ-
ent combinations of shutter speeds and luminance magnitudes of incident light. Based on
the observation of our experimental data, we proposed an iterative method to quickly de-
termine the best camera settings in order to optimize linearity of camera sensor responses.
In one of our previous experiments, we had proposed an image registration method to
eliminate the geometric distortion of captured images. By integrating this method into the
current image quality assessment workflow, it was possible to compensate the intensity
transfer functions of projection displays in order to produce multiple levels of linearized
nonuniformity on the screen for the purpose of image quality assessment. In the experi-
ments, we incorporated several state-of-the-art image quality metrics measuring the image
uniformity, and benchmark them with respect to their correlations with perceptual results.
It was found that none of these metrics worked well with all types of test images, as ex-
pected. The main issue was that the spatial non-uniformity was largely masked by the
high frequency components in the displayed image content. In this case, the image quality
should simulate the human visual system to ignore the minor non-uniformity that cannot
be discriminated by observers. The underlying simulations could be implemented by using
models based on contrast sensitivity functions, contrast masking, etc. Using a digital still
camera to assess the spatial uniformity of projection displays has several advantages by in-
corporating our proposed methods, however this research also had several limitations. For
example, modern cameras commonly have very high image resolutions (up to 50 million
pixels in the state-of-art). In this case, calculating the medians for all pixels over many cap-
tured hazy sky pictures can be computationally inefficient, if the image processing software
can not handle the parallel computing well. GPU based computing can be an alternative
way to implement the proposed method. Another limitation of this research is that we have
found the high frequency components are important to uniformity evaluation, but we did
not really dig into the details. Especially those of determining the just-noticeable-difference
of spatial uniformity based on perceptual data analysis. However, this part of the work re-
quires a considerable amount of workload for greatly increasing the number of uniformity
distortion levels and the resources to conduct a larger scale subjective experiments. For this
reason, we may consider the related research as a part of the future work.

4.4 Paper D: Measuring The Relative Image Contrast Of Projection
Displays

Contrast is among the most important image quality attributes of image reproductions in
many different research domains, such as photography, printing, medical imaging, and dis-
play imaging etc. It defines the magnitude of presence of an object that can be recognized
in a scene. In the past, due to the lack of knowledge of biological structure and informa-
tion processing procedure of the human visual system, contrast was simply defined as a
ratio related to the highest and lowest measured luminance in an image, known as Michel-
son contrast. Inspired by this formulation, several alternative formulations defined con-
trast in similar ways, such as Weber fraction, root-mean-square, and LAB variance. Since
these formulations measured image contrast based on only two extreme pixels, in such
cases the contrast was defined at a global level. Recently, more contrast formulations were
proposed based on not only the luminance components but also the chrominance compo-
nents, such as Weber-Fechner, RAMMG, and RSC. These image quality metrics increased
the contrast measurement granularity and calculate the contrast at a local level. In such
cases, it was common to simulate the capabilities and behaviors of human visual systems
based on numerical calculations. In one of our previous studies (Paper A), we evaluated
the relative contrast of projection displays based on a digital still camera. In this research,
we incorporated our proposed image quality assessment framework to evaluate the per-
formance of state-of-the-art contrast measures based on a set of carefully selected natural
images. In order to enhance the validity, reliability, and robustness of our research, we
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performed the experiments in similar viewing conditions at two separate geographical lo-
cations with different projection displays. In each location, we had a group of observers
give perceptual ratings. Further, we adopted state-of-the-art contrast measures to evaluate
the relative contrast of the acquired images. The experimental results suggested that the
Michelson contrast performs the worst, as expected, while other global contrast measures
perform relatively better, but they had less correlation with the perceptual ratings than the
local contrast measures. The local contrast measures performed better than global contrast
measures for all test images, but all contrast measures failed on the test images with low
luminance or dominant colors and without texture areas. In addition, the high correla-
tions between the experimental results for the two projections displays indicated that our
proposed assessment framework was valid, reliable, and consistent.

4.5 Paper E: Measuring Perceived Sharpness of Projection Displays
with a Calibrated Camera

Perceived sharpness determines how much detail the observers are able to perceive on the
displays at a certain distance. Assuming that the human visual system is consistent for
sharpness perception over time, then the perceived sharpness is correlated with the sharp-
ness reproduction capability of the displays. From this point of view, sharpness is impor-
tant for assessing the image quality of displays with respect to their perception. However,
this part of research was not engaged in the past, particularly for projection displays. In
this research, we incorporated our proposed image quality assessment framework to per-
form the task and evaluate the performance of state-of-the-art sharpness metrics accord-
ingly. In the experiments, the selected test images were blurred with a Gaussian filter to
generate multiple levels of sharpness distortions. The purpose was to simulate the opti-
cal blurring process of a projection system without influencing its natural image quality
properties. These blurred images were displayed in a home-theater like dark room. In the
objective manner, several state-of-the-art image quality metrics measuring sharpness were
used, while a group of observers were invited to give perceptual ratings. The correlations
between the metric results and the perceptual results suggested that full reference metrics
had comparatively better performance than the reduced reference and no reference met-
rics. Among the full reference metrics, SSIM, VIF and FSMI metrics performed well in both
terms of accuracy and stability.

4.6 Paper F: Extending Subjective Experiments for Image Quality
Assessment with Baseline Adjustments

In a typical working cycle of image quality assessment, it is common to have a number
of observers give perceptual ratings on multiple levels of artificially distorted test images.
In some cases, the number of distortion levels in an existing subjective experiment session
may be found to be insufficient. For example, with no prior knowledge regarding a specific
image quality attribute, additional distortion levels will be needed in order to increase the
granularity of estimation of the just noticeable difference. In this case, a completely new
subjective experiment including the existing and newly added levels of distortion need
to be conducted. However, the new experiment may consume considerable time and re-
sources to conduct. In this research, we investigated the possibility of using baseline ad-
justment method to extend the existing subjective experiment. One purpose was to first
verify that the baseline adjustment method worked. Another purpose was to identify the
most optimal distortion levels to be included in the baseline, and the number of them. For
this purposes, we designed an experiment to incorporate the subjective data collected in
an existing image quality assessment experiment, and divided to data into two groups. In
this process, we made sure that there was an overlapping of distortion levels between the
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two groups of data. The subjective ratings for in overlapped region were used as the base-
line, however the ratings for the baseline in the two groups of data might not necessarily
be exactly the same. After this, we adjusted the subjective ratings for the unique distortion
levels in the two groups of data with respect to their own baseline respectively. All sub-
jective ratings were originally collected from one original experimental session. From this
point of view, if the selected baseline was optimal, then the Z-scores of adjusted subjective
ratings for the two groups of data were expected to have a high correlation. Compared
to conventional research regarding baseline adjustment method, we used the real subjec-
tive experimental data rather than self-generated hypothetical data. With respect to the
experimental results, it was found that the most optimal distortion levels to be included in
the baseline should be the ones in which the stimulus combinations produce the minimum
standard deviations in the mean adjusted Z-scores over all observers in the existing subjec-
tive experiment. Although it was the best for the baseline to include all distortion levels, it
was possible to reduce the number of baseline stimuli. The trade off in these cases would
be the reduced confidence interval of correlation values.

4.7 Discussion of Papers in Context

The main goals of this research were developing a digital still camera based image quality
assessment framework for displays, and using it to evaluate the state-of-art image quality
metrics regarding the most important image quality attributes for projection displays. Since
the research project has a limited time frame, we decided to focus our research on projection
displays. In order to achieve our goals, the research conducted in this thesis could be
broadly divided into three major components: framework design, performance evaluation
of state-of-the-art image quality metrics, and extending subjective experiments (Figure 4.1).

The core contribution was the digital still camera based display image quality assess-
ment framework, which was not bound by theories but a practice oriented design. For this
reason, at the very beginning of the PhD research, we evaluated the contrast of projection
displays based on the acquisitions of a digital still camera (Paper A). It was our first at-
tempt to set up a home theater-like dark room environment and perform the image quality
assessment accordingly. In this process, there was no projector calibration, camera cali-
bration, image registration, and subjective experiment involved at all. The main purpose
was to observe what research challenges we might encounter, then we could come up with
corresponding solutions. An important finding from this part of the research was that the
camera based image quality assessment method worked, since the rank orders to measured
contrast were preserved for large steps of projector settings. Inspired by this positive find-
ing, we decided to extend the research further. Although it was not stated in the research
paper, but we did establish a naive image quality assessment workflow based on a digital
still camera. The next research question to ask was about how to improve this workflow
and produce a concrete full framework.

In the existing literature, the image quality assessment frameworks incorporating re-
duced reference and no reference metrics have been addressed. However, to our best
knowledge, there was no research related to such a framework incorporating full refer-
ence metrics. The main research challenge was that a flexible, robust and accurate image
registration method was required in this context. For this reason, we proposed a novel im-
age registration method, which took advantage of cubic spline to establish a distortion free
coordinate system and correct the geometric distortions of captured images in the distor-
tion free space (Paper B); so the type and magnitude of spatial distortions had very limited
influence on the image registration results. From this point of view, compared to conven-
tional image registration methods, the camera did not necessarily have to be calibrated in
advance. This feature saved a lot of time and resources for the experiment. The image
registration method could be divided into two parts. The first part, known as geometric
detection (Figure 4.1), used projected light patterns to detect the geometric distortion in
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the captured images based on computer vision algorithms. This part of processing was
computationally intensive, however it needed to proceed offline only once. In the second
part, known as geometric correction (Figure 4.1), the distortions in all the subsequently
captured images can be immediately corrected in real-time by applying a specified image
interpolation algorithm. The proposed method was proved to work well in a dark room
environment, however the registration errors were sensitive to ambient light due to the
color aberration issues along the contour of the actual projection area. The image registra-
tion method was designed for projection displays. It is also possible to apply this method
to other types of displays with limited modifications. With the proposed method, the full
reference, reduced reference, and no reference image quality metrics can be incorporated
into the current image quality assessment workflow (Paper A). This is an unique feature
comparing with related research in the existing literature. An interesting phenomenon
was noticed in the experiments. Since the captured images needed to be down- sampled in
order to correct the geometric distortion, the screen door effect could be an issue in this con-
text [18, 203]. It stood for the unwanted high frequency tiny grid line artifacts introduced
by the projection system. Some of the digital still cameras with highly sensitive sensors and
a high image resolution were capable of capturing these details (e.g. Hasselblad HD III). In
such cases, with respect to specific implementations of image interpolation algorithms, the
undistorted images would appear to have various banding like artifacts. Basically these un-
wanted high frequency components were magnified unexpectedly. However, perceptually,
the majority of projector users were not be able to perceive these artifacts on the displayed
images. In this context, we argued that the image quality assessment of projection displays
was not necessarily to incorporate the most advanced cameras captured all the details on
the displays, but use a relatively worse camera to make sure that the perceptually visible
objects on the displayed images were captured. In fact, a similar conclusion had been made
in Paper A, where we incorporated three types of cameras and compared them extensively
with respect to the magnified noises.

In order to further extend the research, we implemented the proposed image registra-
tion method, integrated it into the image quality assessment work-flow, and used it to eval-
uate the most important image quality attributes for projection displays. In our research,
we identified spatial uniformity (Paper C), contrast (Paper D) and sharpness (Paper E)
as the most important image quality attributes, and we used the developed framework
to evaluate the prediction performance of state-of-the-art image quality metrics regarding
the three image quality attributes. Particularly, in this process of evaluating the spatial
uniformity attribute, we proposed a hazy sky based method to eliminate the vignetting
effect mainly caused by the camera lens, and we also proposed a method to quickly de-
termine the common linear response region for all camera sensors with respect to the cur-
rent combination of shutter speed setting and luminance level of incident light (Paper C).
The spatial uniformity, contrast and sharpness were evaluated objectively with the state-
of-the-art image quality metrics and subjectively with respect to the perceptual ratings.
The relationships between the objective and subjective results were mainly explored based
on Pearson and Spearman correlation coefficients, which were commonly used by many
other researchers to determine the linear correspondence and rank orders of paired data
samples. It was possible to apply other types of methods, such as Kendall Tau [125] and
Gamma Statistic [60]; but in most cases the Pearson and Spearman correlation coefficients
were simple, effective and sufficient for our research. In this process, we found that for a
few specific types of test images all the image quality metrics had low correlations with
the perceptual assessment results. In the failed cases of objective image quality assess-
ments, new metrics should be proposed by either extending the existing ones or coming
up with new ideas. In the former case, it is important to figure out the root causes. How-
ever, they strongly depend on the metric design details. Different image quality metrics
may have totally different reasons to fail on the predictions. In this context, the proposed
image quality assessment framework can be a very helpful tool to improve the design of
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metrics. Normally, the metrics has several potential components or parametric coefficients
that can be improved. Once the modifications are made, the identical image distortions
can be forwarded to the metrics to get a new set of results. These results can be compared
to the existing metric results to see how significantly the metrics have been improved. In
the cases that additional test images and their distortions need to be introduced in order to
verify the improvements, the image quality assessment framework can incorporated to au-
tomatically acquire the image reproductions, register them with their originals, determine
the metric scores, and correlate them automatically with the perceptual ratings. Thus, the
whole process can proceed much more robustly and faster, meanwhile the validity and
reliability of metric improvements are expected to be greater. For the newly proposed im-
age quality metrics, it is a similar situation, but in addition to benchmark the new metric
against the state-of-the-art.

In the evaluations of image quality attributes, the primary acquisition instrument of lu-
minance and chrominance component was a digital still camera. The camera itself was not
originally designed to give highly accurate measurement in all circumstances. It is only
possible to incorporate cameras to perform assessment of relative image quality attributes.
With different camera settings, such as ISO, shutter speed, and aperture etc, the values of
acquisition results vary quite a lot. Subsequently, the final image quality assessment results
regarding specific image quality metrics might be influenced. In this context, it is likely that
the framework users will make common mistakes (e.g. applying non-optimal aperture set-
ting for sharpness evaluation) without professional photography training and framework
usage experience. In addition, the acquired colors by one camera are only available in the
camera’s own color space. In the cases that standardized color spaces, such as CIE LAB and
CIE XYZ, are mandatory for applying certain image quality metrics, the camera needs to be
calibrated in advance to make sure that the camera’s color space is approximately the same
as the sRGB space, for example. In this case, the camera calibration introduces additional
measurement noises into the acquisition process. Besides, it is known that the camera is
composed of optical, mechanical, electronic and software subsystems. Among them, the
electronic subsystem is expected to the main source of imaging noises. For example, the
photons hit the photon-well in a similar fashion like the rain drops to the ground. Even the
incident light is ideally uniform, the number of photons dropping into the photons-wells
are not identical. The numbers of received photon by an individual photon-well during
the camera’s exposure period approximately follows a Poisson distribution. If the number
of photons received is large enough, it can be approximated with a normal distribution.
From this point of view, the photon-well is the first source of light measurement errors.
After this, the camera sensors need to convert light signal into analog electronic signal. The
conversion results might be greatly influenced by the thermal energies due to the gradu-
ally increased camera’s internal temperature. The modern digital still cameras typically are
equipped with advanced mechanical system and digital signal processors. They generate
a lot of heat while the pictures are being taken. These heats increase the working tempera-
ture of camera sensors and influences their dark current, sensitivities and response curves
of camera sensors. In addition, the electronic signal as well as the signal noises are both
magnified or re-scaled with respect to the current ISO setting. So, the signal conversion
is another potential source of imaging noises. The analog signals need to be converted to
digital signals, so that the captured signals can be stored or further processed. It is known
that this conversion re-samples the continuous analog signals at fixed intervals to produce
discrete digital signals. The losing of signal details can be a new potential source of imaging
errors. Since in the research we used raw image signals to perform image processing and
image quality assessment, the camera noises may have a great impact to the assessment
results. From this point of view, the modeling of camera imaging noises should be con-
sidered as an essential part of the image quality assessment framework, especially when
the modern cameras are common to have a large variance dynamic range for the result sig-
nals. However, it requires considerable time and resources to establish the noise models,
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Figure 4.1: The novel contributions carried out in this research.

and such studies are beyond the current research scope of this PhD thesis. It can be very
interesting for us to engage such research, but due to a limited time frame we leave them
to future works.

In the subjective experiments, it was found in many scenarios that the subjective exper-
iments needed to be conducted in multiple sessions, especially when additional distortion
levels were required to be integrated into the existing subjective experiment sessions. In
such cases, redoing a huge subjective experiment to include all distortion levels can be
time and resource consuming. We designed an experiment to investigate the possibility
of using baseline adjustment methods to extend the subjective experiments (Paper F). We
found that the answer was positive, and pointed out the most optimal distortion levels to
be included in the baseline and their number. The baseline adjustment method can be very
helpful when many distortion levels are needed in the subjective experiment. For exam-
ple, without prior knowledge the number of existing distortion levels of spatial uniformity
(Paper C), contrast (Paper D), and sharpness (Paper E) might be insufficient to determine
the just noticeable difference of these perceived image quality attributes. Avoiding redoing
a full subjective experiment can be very beneficial to scientific research. It was our first
attempt to address such a research challenge, so the experimental design did not cover all
possible scenarios of extending subjective experiments. For example, we used the exist-
ing subjective data to engage the study in the paper, and these data were collected from
the same group of observers. In real practice, the observers might not be identical between
two experiment sessions. However, in such cases, the proposed method can also be applied
but the current research needs to be further extended to take the variance of observers into
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consideration. In addition, the amount of data we used in the experiment is limited. In
order to shrink the confidence intervals further more subjective data are mandatory. From
these points of view, in order to extend the existing research, we will need to conduct a
relatively larger experiment by taking all potential influence factors into consideration in
advance. After this, it is possible to produce more valuable research outcomes.
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Chapter 5

Conclusion and Perspectives

Do what you can where you are
with what you have.

THEODORE ROOSEVELT

5.1 Conclusion

In this research, we proposed a camera based display image quality assessment framework,
which in general was composed of a calibration procedure and an evaluation procedure.
Although the calibration procedure can be computationally intensive with respect to the
numerical calculations related to computer vision processing, vignetting mask generation,
and searching for common linear response region of camera sensors, it was required to
performed only once in advance of the evaluation procedure. As long as the relative po-
sitions, angles, and orientation of projector, screen and camera, as well as the camera set-
tings remain constant, the evaluation procedure can be performed very efficiently in a fully
automated fashion. One unique feature of our proposed framework was the capability of
incorporating existing full reference image quality metrics without modifying them. In this
research, we implemented the framework for projection displays, and used the framework
to evaluate the prediction performance of state-of-the-art image quality metrics regarding
the most important image quality attributes for projection displays. The evaluated image
quality attributes were uniformity, sharpness, and contrast, however the proposed frame-
work was not bound by the possibilities. All the metric evaluations were supported by
the correlation of objective and subjective experimental results. In addition, we also inves-
tigated the strategies to extend subjective experiments with baseline adjustment method,
which is expected to save quite a lot of time and resources for subjective experiments. In
a broader point of view, the originally defined research scope have been fully covered by
the research presented in this thesis, all research goals have been successfully achieved,
and the corresponding research questions have been answered. The proposed image qual-
ity assessment frameworks were originally designed for projection displays, but could be
easily adapted to other types of displays with limited modifications.

In conclusion, with the results we have obtained, we believe that the camera based
acquisition approach can be a good complement to the conventional colorimeter and spec-
troradiometer based methods for image quality assessment. The trade offs to make in this
context are mainly the accuracy and stability of measurements. However, with careful cal-
ibration and optimization these shortcomings can be compensated. In addition, the invest-
ment cost of time can be largely reduced, while the flexibility of image quality assessment
is greatly increased. Therefore, we believe that our proposed methodology and procedures
related to the proposed framework can not merely be helpful for conducting scientific re-
search, but also potentially be helpful in the process of image quality enhancement for
general displays in industrial applications. So, with the unique features and advancements
introduced, we believe that our research outcome holds a positive position in the global
competition as opposed to alternative solutions.
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5.2 Perspectives

In this research, we have identified many research challenges in the process of evaluating
the image quality attributes with the proposed image quality assessment framework. The
methods corresponding to the challenges proved to work well. However, our thoughts
about the potential future research areas were not limited by the existing research scope,
many present methodology and procedures can be further improved.
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e A wider coverage of displays: The proposed image quality assessment framework

was originally designed for projection displays. However, it can be easily extended
to other types of displays, such as LCD or LED desktop monitors, AMOLED smart
phone screen, OLED television, etc. However, in such cases, more practical image
quality factors should be taken into consideration. For example, these displays are
typically used in a daylight environment or dimmer light environment, and the view-
ing conditions can be significantly different from the ones for projection displays. The
viewing distance, viewing angle, light artifact (e.g. sun light reflected by the front
glass of display), many other practical issues are influencing the image quality as-
sessment results. It is worth to apply our proposed framework in such environment
and observe what the potential research challenges can be found. These differences
can be addressed by modifying our proposed methods, or introducing new proce-
dure components into the existing work-flow. Since the framework is proceeded in a
fully automated manner, the improvement process and corresponding performance
evaluations can be greatly accelerated.

Camera modeling: The central topic of this research was the assessment of captured
displayed images, however the final outcomes have strong connections to the quality
of image produced by the camera. Thus, the image quality influence coming from
the camera itself should be minimized. In previous discussion (Section 4.7), we have
addressed the image quality issues related to imaging noises. However, more factors
need to be taken into consideration. For example, the international standards, such
as ISO 9241 Part 304 [75], Part 305 [76], Part 307 [77], ISO 12232, ISO 12233 [175],
ISO 14524 [78], ISO 15739 [79], ISO 19567 Part 1 [80], ISO 20462 [174], CIPA DC-003
[164], and CIPA DC-004 [165] defined the methods to determine the best exposure
index, ISO speed, and aperture settings, as well as the ways to evaluate the camera’s
resolution, spatial frequency response, opto-electronic conversion functions, texture
reproduction capability, noise level, camera sensor sensitivity, etc. These standards
introduced the possibilities to improve the camera imaging from multiple perspec-
tives. In this context, it could be advantageous to establish a camera model, decom-
pose the camera imaging pipeline into several different subsystems and signal pro-
cessing components, and improve the accuracy and stability of camera based image
quality assessment. The detailed process can be complicated but it has a great poten-
tial to promote the proposed image quality assessment framework by incorporating
the camera models as an essential part.

Developing a software toolbox: In this research, the proposed image quality assess-
ment framework is expected to be practice oriented. For this purpose, we expect to
implement the framework as an open source software toolbox, and make it available
to the public. Notably, image quality assessment can be processed in a fully auto-
mated fashion, and the proposed framework can be put into a more complicated real
practice oriented environment for improvement and advanced design. In addition,
the numeric results can be easily reproduced for validation and verification purposes.
In this context, other image quality researchers are able to benefit from our research
by incorporating the framework for their own benefit. Besides, it is also possible to
engage in collaborative opportunities with industrial partners, such as display man-
ufacturers, camera manufacturers, technical oriented medias, etc.
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ABSTRACT

This research investigated the measured contrast of projection
displays based on pictures taken by un-calibrated digital cam-
eras under typical viewing conditions. A high-end radiometer
was employed as a reference to the physical response of pro-
jection luminance. Checkerboard, gray scale and color com-
plex test images with a range of the projector’s brightness and
contrast settings were projected. Two local and two global
contrast metrics were evaluated on the acquired pictures. We
used contrast surface plots and Pearson correlation to inves-
tigate the measured contrast versus the projector’s brightness
and contrast settings. The results suggested, as expected, the
projector contrast has a more significant impact on measured
contrast than projector brightness, but the measured contrast
based on either camera or radiometer has a nonlinear relation-
ship with projector settings. The results also suggested that
simple statistics based metrics might produce a higher Pear-
son correlation value with both projector contrast and projec-
tor brightness than more complex contrast metrics. Our re-
sults demonstrated that the rank order of un-calibrated cam-
era based measured contrast and radiometer based measured
contrast is preserved for large steps of projector setting differ-
ences.

Index Terms— measured contrast, projection display,
digital camera, radiometer, metrics, Pearson correlation

1. INTRODUCTION

In the conventional market, LCD displays have been domi-
nating the share for a long time. This is especially true in the
desktop and mobile display market. However, nowadays, cus-
tomers have an increased wish to own a display with higher
resolution and larger area to visualize the information in a rich
user experience. Due to many manufacturing limitations, it is
difficult or not cost effective to produce a large scale display
with LCD flat panels, while a projection display has a strong
competency of high resolution, portability and flexibility on
specifications. The application [1], for example, could be
tiling multiple high brightness projectors to produce a large
perceptual seamless image. One core research topic for the
projection methodology is establishing a systematic approach

ISBN: 978-82-93269-13-7 ©2013 University of Paris 13

Jean-Baptiste Thomas

Université de Bourgogne
Dijon, France

to quantify and evaluate the quality attributes of projected im-
ages in an objective and automatic manner with carefully de-
signed and selected image quality metrics.

In general, Display Image Quality (DIQ) is characterized
based on the sets of device dependent and independent at-
tributes. The latter set includes, but is not limited to, the at-
tribute families of brightness, contrast, colors, sharpness and
artifacts (such as noise). Based on these attributes, there were
many attempts to characterize devices like CRT [2, 3] and
LCD [2, 3, 4] displays. The characterization of a projection
display shares a lot with these methods. Previous character-
izations of projection display focused on black level estima-
tion [5], display uniformity [1, 6, 7] and colorimetry [6, 8, 9],
but limited attentions were paid to measured contrast in the
actual quality of the displayed image. More specifically, the
measured contrast of a displayed image has been shown to be
of a significant impact [10] on visual experience. However,
apart from subjective observer based evaluation and classic
contrast measurement on the display itself there is no conve-
nient method to evaluate this parameter on a displayed image.

This paper presents a study on the measured contrast of
projected images. This study aims to understand the basic
interactions between brightness and contrast under typical
viewing conditions, evaluate the performance of contrast
metrics, and correlate projector settings, camera based mea-
sured contrast and radiometer based measured contrast of the
projected images. In this context, three types of cameras and
a radiometer were employed as the DIQ measurement tools.
The results of evaluation can be used to improve the design
of projection DIQ assessment methods. They can also to be
extended in the development and enhancement of general
projected image reproduction technologies.

This paper is organized as follows: first, in Section 2,
we introduce the background of image contrast and the met-
rics that were evaluated in this research. Then, in Section 3,
a full description of the controlled environment, equipment
setup and operation procedure for the contrast measurement
is given. With respect to the acquired pictures, a series of dis-
cussions upon the interaction between projector settings and
measured contrast is presented in Section 4. At last, conclu-
sions are drawn based on the data observations.
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2. BACKGROUND

Brightness can be defined as the perceived intensity of light
coming from the image itself, rather than any property of the
portrayed scene [11]; while we may say that contrast is a mea-
sure of the luminance and chromatic variations in one region
relative to the average variance in the surrounding region in
the same scene. So far, no one could give a convincible stan-
dard definition to contrast in a color complex scene. Some-
how, contrast in either simple or complex scenes could be
measured by metrics at local and/or global levels.

2.1. Global Contrast

One physical definition of contrast is given by Michelson for-
mula [12] for luminance based global contrast:

CM = (Lmax - Lmzn)/(Lmam + Lmin)a

where L, and L,,,;,, are the minimum and maximum lumi-
nance values respectively over all pixels of the entire image.
This metric can be implemented easily and is widely incor-
porated in researches as a reference in the performance eval-
uation of other contrast metrics. In the family of global con-
trast metrics, Weber-Fechner [13], Root-Mean-Square (RMS)
[14] and other definitions [15, 16, 17] were proposed as well.
They share the similar concept with Michelson contrast by
taking luminance information of extreme bright and dark pix-
els into account, but they have problem to deal with measure-
ment noises (illustrated in contrast measurement section) and
in many cases the contrast prediction is not appropriate [10].

The chrominance information in image should also con-
tribute to the prediction of perceived contrast. In this context,
an alternative metric referred as LAB Variance [18] was pro-
posed:

CLAB = R/std?(L) * std?(a) * std?(b)

This metric was defined in the perceptually uniform CIELAB
space and it takes simultaneously the luminance and chro-
matic channels into account. However, the equal weighting
on channels does not reflect a well-known fact that luminance
has stronger impact on the perceived contrast than chromi-
nance [19, 20, 21].

2.2. Local Contrast

Many researchers realized that perceived contrast is highly
local in nature. One of the local algorithms is RAMMG [22],
that takes the advantage of multiple pyramid levels of local
contrast information. The RAMMG metric subsamples the
input image and generates pyramid images in the CIELAB
space with nearest neighborhood algorithm. Then the local
contrast is calculated by summing up the absolute differences
between one pixel and its surrounding pixels in every channel
and at every pyramid level. The local contrast values from the

same channel would be normalized and finally be weighted.
The mean of outputs from all levels would be the prediction
of contrast over the entire image:

Np 3

/ 1 Ny
CRA]VIMG — N7L ZZZWJCIC

i=1 j=1 k=1

where N, stands for the number of pyramid levels, and NN,
stands for number of pixels in each pyramid images, C
stands for the local contrast for each pixel and its surround-
ings, and W; stands for the weight of each CIELAB channel.
Inspired by the design of RAMMG metric, other improved
versions like RSC [23] employed Difference of Gaussians
(DOG) formula to calculate the local contrast:

R.(z,y) — Rs(z,y)
RC(Ivy) +R5(x7y)

DOG(z,y) =

where (z,y) stands for the spatial location of center point in
the respective field, R, and R, stands for neuron responses of
center and surround component respectively. The DOG for-
mula was employed to take the spatial sensitivity in the center
of the receptive field into consideration, and the purpose was
to extend the edges and gradient information in the input im-
ages.

3. EXPERIMENTAL SETUP

3.1. Projector Setup

We used the SONY APL-AW15 which was a portable three
chip LCD high brightness projector. The projector was placed
on a flat table in front of the projection screen and was ex-
actly 3m away as it is depicted in Figure 1. The projection
principal axis was pointed at the screen and was perpendic-
ular to it. The projection resolution was 1280x768 in pixels.
On the screen, the projection size was approximately 2x1.2
meters. The projector was connected to a controlling laptop
with a VGA cable. In order to minimize the influence of pro-
jector temporally stability, the projector lamp was warmed up
at least one hour before each experiment section. All settings
related to projector’s brightness, contrast and color enhance-
ment were switched off to make sure the input image was
projected as it is.

3.2. Digital Camera

Three types of digital cameras were employed in the experi-
ments as the DIQ measurement tools. They were a low-end
webcam Logitech QuickCam Pro 9000, a prosumer DSLR
Nikon D200 with VR 18-200mm £/3.5-5.6G (VR off) lens
and a high-end DSLR Hasselblad H3D II with HC 80mm
lens. The resolutions for the three cameras were 3264x2448,
3872x2592 and 6490x4870 in pixels respectively. The web-
cam was mounted on a table which was 3m away from the
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Fig. 1. Projector and camera placement

projection screen, while the other two cameras were both
fixed on tripods that were 4m away. All cameras were man-
ually focused with highest possible optical sharpness and all
camera settings were fixed at certain values. The principal
axes of all cameras were pointed at the center of the projected
image and were quasi-perpendicular to it with a slightly vary-
ing angle due to the manual setup. The pictures were always
taken remotely with software installed on the controlling
laptop without physically touching the cameras. In order
to confirm the physical responses of projected images on
the screen, a radiometer Minolta CS1000 was mounted on a
tripod beside the digital cameras as a measurement reference.

3.3. Test Images

Three test images which had a resolution 768x512 were in-
cluded in the experiments as it is illustrated in Figure 2.
They covered the image categories of simple checkerboard,
gray complex and color complex. The use of checkerboard
was recommended in the projection contrast measurement
sections of international standard IDMS [24]. The color com-
plex image was selected from Kodak Photo CD PCD0992
[25] based on which the grayscale version was generated
by using Matlab function rgb2gray. The two complex im-
ages provides a smooth transition from a laboratory artificial
stimuli to a natural scene in a way which people usually
perceive and interpret objects in the real environment. The
images were always projected at the original resolution on
the screen.

3.4. Viewing Conditions

Three typical viewing conditions were considered in the ex-
periments. The projection screen was illuminated by the
fluorescent light with fixed luminance values (measured with
a light meter at a fixed position) at approximately 0 (low
light), 30 (dimmed light) and 300 lux (high light) respec-
tively. A darkroom gives O lux luminance. In a dimmed
meeting room like environment, the typical luminance is
around 30 lux; while in the office like environment in day-
light, the luminance could be around 300 lux. Whenever the
viewing condition was switched, there was always at least

Fig. 2. Test images

30 minutes idle period between two continuous experiment
sections to maximize the illuminant temporal stability.

3.5. Procedures

Since the resolution of original test image was smaller than
the projection resolution in the grayscale and color complex
cases, the actual image content of pictures taken by cam-
eras were wrapped by the surround. In order to estimate
the influence of surround on the measured contrast, in the
post-processing step, all pictures taken by cameras were pro-
cessed with Matlab scripts to generate a cropped version. The
cropped version contains only the actual image content with-
out surround or background. In the non-cropped version, the
surrounds were simply left as how they were illuminated by
the controlled light. Both the cropped and non-cropped pic-
ture versions would be input to the metrics.

Finally, for each set of pictures taken (project the same
test images that under the same viewing condition), we gen-
erated the contrast surface plots with respect to the outcomes
of metrics like it is demonstrated in Figure 3a. In our exper-
iments, we evaluated four contrast metrics: Michelson [12],
LAB Variance [18], RAMMG [22] and RSC [23]. Since the
RAMMG and RSC shared various input parameters, we eval-
uated several combinations of them which involved: channel
weightings: (1, 0, 0), (1/3, 1/3, 1/3), (0.5, 0.25, 0.25), pyra-
mid scales: linear and log based scales, radius of center and
surround of receptive field: (1, 2), (2, 3), (3, 4). These param-
eters were used and recommended by Simone et al. in their
investigation of measuring perceptual contrast [26].

Because these metrics had no parameter related to view-
ing distance which might have influence on the metric selec-
tion, we fixed measurement devices at the same location to
make sure that they share a constant distance to projection
screen. In this case, the influence of viewing distance on
measured contrast were equal to all metrics. In order to re-
duce computational complexity, the level weighting method
was always set to variance and pictures were transformed into
CIELAB space by the metrics themselves. We also evaluated
the performance of metrics by determining the correlation be-
tween measured contrast and projector contrast, and the cor-
relation between measured contrast and projector brightness
with respect to Pearson correlation coefficient.
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4. RESULTS AND DISCUSSION

4.1. Projector

The projector SONY APL-AW15 had a light leak issue due
to a fact that it is difficult to completely block the projec-
tor’s backlight. The black level of the projection increased
while the projector brightness increased, and it generated a
halo around the image content. This halo should contribute
to the perceived contrast, but it is beyond the scope of this
article. The solution we adopted was cropping the image con-
tent from the pictures and accounting only the pixels in that
image. In the case that the image resolution is smaller than
projector resolution, both cropped and noncropped (the area
other than the image content was black) picture versions were
used in the post-analysis step. In the evaluation of the four
metrics listed, the absolute values of measured contrast were
reduced comparing with non-cropped version but the general
shape of normalized contrast surfaces were almost identical.
This observation suggests that it is not necessary to crop the
image for either global or local contrast metric.

4.2. Digital Cameras

The webcam is not suitable for measuring contrast in the pro-
jection system, because the shape of contrast surfaces for the
webcam were not consistent under varying viewing condi-
tions. In analogy, the results for Nikon D200 are very simi-
lar to the ones for Hasselblad H3D II, except in the case of
Michelson contrast under high light environment. In such
case, the contrast surface for Nikon D200 is smoother than
the one for Hasselblad H3D II. Based on the observations, the
consumer DSLR camera Nikon D200 is preferred as a mea-
surement tool for projection contrast. Hasselblad H3D is a lit-
tle bit more sensitive to small luminance variation especially
in the low and high light conditions, but it consumes much
more time to take a large volume of pictures.

4.3. Contrast Measurement

Two global contrast metrics: Michelson’s definition, LAB
Variance, and two local contrast metrics: RAMMG and RSC
were evaluated. Under the low light condition, Michelson’s
definition always gave contrast value 1 for three types of cam-
eras and three types of test images despite the changes of pro-
jector contrast and brightness. This metric is very sensitive
to measurement noises as it is depicted in Figure 3a and be-
comes very unstable under high light condition. LAB Vari-
ance, RAMMG and RSC metrics all produce logistic shape
like contrast surface. The latter two metrics share a gen-
eral shape of contrast surface despite their radius of receptive
center and surround values, somehow the absolute values of
measured contrast are different. They are more sensitive to
increasing rate of projector brightness and contrast than the

Michelson Contrast (Checkerboard,30 Lux,Hasselblad H3D II)

Michelson Contrast

50 50

Projector Contrast Projector Brightness

(a)

Michelson Contrast (Minolta CS1000, 30 Lux, Intensity 0 and 255)

Michelson Contrast

100

50 50

Projector Contrast Projector Brightness

(b)

Fig. 3. Michelson contrast surface for checkerboard pictures
taken by Hasselblad H3D 1II (a) and Minolta CS1000 (b) under
dim light condition

LAB Variance metric, since the contrast surface appears to be
more bended.

Pearson product-moment correlation coefficient was em-
ployed to determine the correspondence between measured
contrast and projector settings. In Figure 5, we plotted Pear-
son correlation between radiometer based Michelson contrast
and camera based contrast of various metrics. The general
tendency of radiometer based contrast correlated well with
camera based contrast of RSC metric while remain projector
brightness constant. LAB Variance metric produced higher
correlation value at low projector contrast but the correla-
tion decreased a lot while projector contrast increased. In the
case projector contrast remained constant, the LAB Variance
metric gave a higher contrast correlation to radiometer based
Michelson contrast. The measured contrast of RAMMG and
RSC metrics correlated well with projector contrast and pro-
jector brightness, and RSC metric produced approximate 12%
higher correlation than RAMMG metric.
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Fig. 4. LAB Variance (a) and RAMMG (b) contrast surface
for color complex pictures taken by Hasselblad H3D II under
30 Lux viewing condition

4.4. Generals

Projector contrast has more significant impact than projec-
tor brightness on the measured contrast for all metrics as ex-
pected. The phenomenon can be observed from the height dif-
ference of left most and right most corner points of contrast
surface in Figure 3 and Figure 4. It leads to an asymmetric
contrast surface. The measured contrast for digital cameras
has a consensus with the one for the radiometer. As it is de-
picted in Figure 3, the general tendency of the two Michelson
contrast surfaces are similar to each other despite the contrast
value range.

5. CONCLUSIONS AND FUTURE WORKS

In this research, several contrast metrics were evaluated based
on pictures taken by un-calibrated digital cameras under typ-
ical viewing conditions. The results showed that the pro-
jector settings have a great impact on the measured image

Correlation between CS1000 based Michelson Contrast
and Hasselblad H3D Il based Contrast (30 Lux)

Pearson Correlation
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Fig. 5. Pearson correlation between measured contrast and
projector settings for color complex pictures taken by Hassel-
blad H3D II under 30 lux viewing condition

contrast, and the impact of projector contrast setting is even
stronger. Camera based Michelson contrast was proved not
to be suitable for projection contrast measurement, while the
global metric LAB Variance produces higher Pearson cor-
relation values than the complicated local metric RAMMG
and RSC on both brightness and contrast correlations. Thus,
we demonstrated that the rank order of un-calibrated cam-
era based measured contrast and radiometer based measured
contrast is preserved for large steps of projector setting differ-
ences. In the coming future, it will be important to incorpo-
rate psychophysical experiments to investigate the correspon-
dence between the perceived contrast and measured contrast.
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ABSTRACT

In the full reference metric based image quality assess-
ment of projection displays, it is critical to achieve accurate
and fully automatic image registration between the captured
projection and its reference image in order to establish a sub-
pixel level mapping. The preservation of geometrical order as
well as the intensity and chromaticity relationships between
two consecutive pixels must be maximized. The existing cam-
era based image registration methods do not meet this require-
ment well. In this paper, we propose a marker-less and view
independent method to use an un-calibrated camera to per-
form the task. The proposed method including three main
components: feature extraction, feature expansion and geo-
metric correction, and it can be implemented easily in a fully
automatic fashion. The experimental results of both simula-
tion and the one conducted in the field demonstrate that the
proposed method is able to achieve image registration accu-
racy higher than 91% in a dark projection room and above
85% with ambient light lower than 30 Lux.

Index Terms— image quality, image registration, spatial
distortion, projection display, full reference metric

1. INTRODUCTION

In the past decades, tremendous growth in the use of digital
media indicates that our daily life has been greatly impacted
by the rapid advancement of imaging technologies. Projec-
tion displays among various display technologies have unique
advantages such as portability, high resolution, and flexibility.
Recently, there has been an increased popularity of embed-
ding projectors in smart phones and video cameras [1]. Fur-
thermore, multiple projections can be tiled up to generate a
large perceptually seamless picture with the help of a digital
still camera [2]. It is cost effective for customers to visualize
information in a very high resolution without issuing a cus-
tomized manufacturing demand. Hence, projection display
image quality assessment becomes an increasingly interest-
ing and essential topic among both of scientific research and
industrial communities. In full reference metric based image
quality assessment [3, 4, 5], image quality is evaluated with
respect to selected attributes. In a typical projection system,
cameras are commonly used to acquire the scene, since they
are capable to record all pixels in one shot. It is critical to
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achieve a highly accurate and fully automatic image registra-
tion between the captured projection and its reference image;
then it is possible to apply metrics which require the distorted
image and its reference image share the dimension and reso-
lution. The preservation of geometrical order as well as the
intensity and chromaticity relationships between two consec-
utive pixels on the screen must be maximized. However, ex-
isting camera based image registration methods do not meet
this requirement well, because they either place simple as-
sumptions on the projections and cameras in order to reduce
the problem complexity, or they tend to modify the captured
image quality implicitly. The captured images are expected
to have various spatial distortions with respect to the relative
positions and orientations of the projector, screen, and cam-
era. The camera lens introduces additional spatial distortions.
Hence, establishing a robust, accurate and reliable image reg-
istration for PDIQ assessment is a non-trivial task.

In this paper, we propose a marker-less and view inde-
pendent method to use an uncalibrated camera to capture the
projection scene and correct its nonlinear spatial distortions.
The rest of this paper is organized as follows: first, in Section
2, we present the conventional image registration methods.
Then, in Section 3, the proposed method is presented. In Sec-
tion 4, experimental results are shown. At last, in Section 5,
conclusions are drawn based on the data observations.

2. BACKGROUND

Cameras are conventionally calibrated off-line in order to
eliminate lens distortion. The camera is typically modelled
as a pinhole and the global homography [6, 7] are presented
as a 4 x 3 extended nonsingular projective transformation ma-
trix H. The intrinsic and extrinsic parametric coefficients
[8, 9, 10] are estimated by a least-square-fitting technique
with respect to a large number of pair-wise feature observa-
tions. The captured features are assumed to be distributed on
a plane in the physical world. The pixel P, in the original
image corresponds to the pixel P; on the screen and the pixel
P, = H-Py in the captured image. H is defined as Equation
1 where s stands for the scaling factor for the homogeneous
coordinates of pixel P. and it correlates to the camera set-
tings like capturing resolution, focal length and aperture. a;;
(1,7 € {0,1,2}) are collectively called intrinsic parameters
of the camera, while 7;; and ¢; defining the rotation and trans-
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Fig. 1. Gray patterns with evenly distributed dots and crosses

lation of the view transformation respectively are collectively
called extrinsic parameters.
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The pincushion, barrel, and moustache distortions of the cam-
era lens are corrected by estimating the coefficients of inward
or outward displacements of feature points from their ideal
locations and inversing the transform. The features are de-
tected from a series of captured patterns whose physical di-
mension and appearance are known in prior. Many formula-
tions [11, 12, 13] are introduced accordingly. The geometric
distortions are then corrected by down sampling the captured
image and register it with the reference image by inversing
the perspective transformations like translation, scaling, rota-
tion, skewing, and shearing. In a summary, the conventional
image registrations require the camera lens distortion to be
identified manually in prior, and the camera settings must be
fixed for the use in the future. In real practice of projection
displays, an identical projection may appear to have differ-
ent types of distortions with slightly varied camera positions
and/or orientations. The camera is likely to be relocated in
the field in order to obtain a view dependent optimized image
quality. In such cases, the camera settings will be adjusted
and the camera must be recalibrated accordingly. The pro-
cess of conventional camera calibration involving both offline
and online procedures is non-trivial, so it makes camera based
PDIQ assessment inflexible and impractical.

3. PROPOSED METHOD

The proposed method has three major components: feature
extraction, feature expansion, and geometric correction.

3.1. Feature Extraction

Two gray patterns (Figure 1) are generated and projected in
full screen size in order to estimate spatial distortions. The dot
pattern contains round solid black dots evenly distributed in a
Mgx Ny grid layout, where M, and N, represent the number
of columns and rows respectively. The cross pattern includes
crosses that share the center locations and radius with the dots
in the dot pattern. Lets denote the captured dot pattern as I,
then a contour map C' can be generated as

C =M. (Ga (1a) — G (12)), ()

where the Gaussian filter G, with kernel size a (empirically
a < b) is adopted to reduce the screen-door effect [14, 15].
The kernel size a should be kept as small as possible to pre-
serve the details in the captured image. The Gaussian filter Gy,
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with kernel size b (empirically b > 41) is adopted to spread
energy from highly illuminated pixels to their neighborhoods.
The median filter M, with kernel size ¢ (empirially ¢ = 3 ) is
adopted to remove the salt-and-pepper noises, and smooth the
detected object contours. False contours might be visible in
the generated map C. In this context, the false detections of
object contours can be eliminated by applying a binary thresh-
olding. The output binary image I; can be expressed as

1
we{)

where C; denotes the ith pixel in contour map C', L,,;, and
L4, denote the minimum and maximum gray values in the
image respectively, and p € [0,1] is a constant threshold.
Smaller value of p forces the detected projection boundaries
to be compressed and vice versa. The value of p has an in-
verse effect on the detected dot contours. Hence, the pixels
corresponding to positive thresholding are kept and the rests
are removed. The algorithm proposed by Suzuki et al. [16]
is adopted to determine the contours and their hierarchy rela-
tionships in the binary image Ij,. The outermost and longest
object contour corresponds to the projection area, while the
innermost and shortest contours correspond to the dots. The
rest of contours are therefore discarded. For each identified
contour, a moving window (empirically size equals to 5) is
placed along its pixels and a dynamic threshold with respect
to local statistics in the corresponding area of the original cap-
tured image I is calculated. Then, the contour pixel at the
window center is shifted toward its neighborhood either hori-
zontally or vertically to achieve the goal of local optimization.
The local threshold 7" is determined as

ag
T:L~(1—k~L—/2), @)

where o denotes the standard deviation of gray values within
the local window, L denotes the maximum gray scale level
(256 for 8 bit image) and the constant k (empirically & €
[0.1,0.3]) indicates the confidence of the image quality of the
captured image I;. In the case of good image quality, the
value of k can be scaled down to 0. Otherwise, it should be
scaled up. Eventually, we adopt the algorithm proposed by
Fitzgibbon et al. [17] to fit dot contours into ellipses with
respect to the least square error minimization, so the actual
center, size, and orientation of each ellipse can be estimated
simultaneously. The estimated ellipse centers will be slightly
shifted according to the “cornerSubPix” algorithm provided
by the OpenCV library [18]. Such an algorithm incorporates
the detected cross centers from the cross pattern image to lo-
cally optimize the ellipse centers since the dots and crosses
share the same center location and radius.

C’L > (1 7P)Lmzn +p'Lmu,z
otherwise

3

3.2. Feature Expansion

The detected dot grid needs to be expanded to cover the entire
projection area, so that the image registration can be indepen-
dent from the geometry and content of projected images. In
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this case, we fit the coordinates of all dot centers in the same
row or in the same column into a parametric natural cubic
spline function as sample points, and estimate the parametric
coefficients accordingly. Once the spline functions are de-
termined, we can generate a smooth parametric cubic spline
passing through each set of the feature points. In turn, each
spline is extrapolated to intersect with the detected contour of
the projection area to generate a pair of new feature points.
Thus, in total, 2(My + N,) new feature points are generated.
The four extreme corners of projection contour can be deter-
mined by applying the split-and-merge algorithm proposed by
Heckbert et al. [19] iteratively to eliminate pixels until only
four corners are left. These corners are used as feature points
as well. Eventually, we will have (Mg + 2) - (Ng4 + 2) fea-
ture points covering the entire projection area. The reason to
employ the natural cubic spline is to take the advantage of its
unique mathematical properties. A typical parametric formu-
lation can be presented as

3 3
2 (pa) =Y ain (pe — )"y (py) = Y (py —¢;)" (9
k=0 k=0

where p, € [0, Mg+ 1] and p, € [0, Ng+ 1] are the two
parametric coefficients for the spatial coordinates of a point
on the 7th and jth spline section respectively; o and §;
are the local polynomial regression of kth parametric coef-
ficient of the 7th and jth spline sections respectively; ¢; €
[0, My + 1] represents the parametric coordinate of ith sam-
ple point on spline x (p;), and ¢; € [0, Ngq + 1] represents the
parametric coordinates of jth sample point on spline y (py).
Each feature point in the expanded dot grid represents one
sample point for the corresponding spline. The coefficients
are estimated to make sure that around each key point the two
consecutive spline sections share the same first and second
derivatives; so the whole spline curve is differentiate and con-
tinuous below the third polynomial order at all possible loca-
tions. In addition, the estimated splines are adapted to local
variance within each spline section. Higher order spline may
not be employed to avoid adaptation to the errors inherited
from the capturing process or from the calculations above.

3.3. Geometric Correction

We create a sub-pixel level mapping between the captured im-
age and its reference, and the captured image can be undis-
torted by down sampling with respect to a specified interpola-
tion method. The basic idea is to register pixels between the
Cartesian coordinate system in the camera space and a distor-
tion independent coordinate system defined by the expanded
feature grid. Suppose the reference image resolution is given
as N, x N, in pixels and the capturing resolution as M x M,
in pixels. Any pixel P, = (z,y) where 2 € [0, N, — 1] and
y € [0, N, — 1] in the reference image corresponds to pixel
P. = (u,v) where u € [0, M, — 1] and v € [0, M, — 1] in
the captured image and the pixel p, in the undistorted im-
age. Their coordinates are defined in the Cartesian coordinate
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systems and their pixel correspondences in the distortion in-
dependent space are

_(z-(Ma+1) y-(Nat1)

Q°‘( N1 7 (N, 1) ) ©
_ u~(Md+1) ”U'(Nd+1)

Q”‘( QL —1) (My—n) @

respectively. The correspondence between P, and @), as well
as P, and (). are established with respect to the expanded fea-
ture grid which is generated based on cubic splines. Since the
undistorted image is expected to exactly registered with the
reference image, then the coordinates of P, is equal to P, in
the distortion independent space. Special attention must be
paid to the screen-door effect [14, 15]. The geometric correc-
tion may introduce wave-like artifacts. A trade off has to be
made between blurring the captured image to register the ge-
ometry with the reference image, or distorting the reference
image to register it with the captured image. In this paper,
we adopt the former approach to make sure that existing full
reference image quality metrics can be incorporated without
any modification.

4. EXPERIMENT

The experiment is performed in a controlled lab environment.
A portable LCD projector SONY APL-AW15 (1280x768) is
placed in front of a planar screen, and a DSLR Nikon D200
(3872x2592) is used for image acquisition. All 24 images
from Kodak Photo CD PCD0992 [20] are adopted for the test
and they are displayed as they are. We evaluate the proposed
method against the pictures either generated by simulation
tools or the ones taken in the field.

4.1. Simulation

The reference images and pattern images are scaled, rotated,
and translated respectively at a series of levels to simulate a
specific type of spatial distortion. The output images have the
same resolution as the captured images. Since the actual dis-
tortions are known in prior for the simulation, the image reg-
istration accuracy can be evaluated with respect to the maxi-
mum absolute displacements of pixels from their ideal loca-
tions. In the cases scaling factors are greater than 1 (Figure
2a), the maximum displacements are below 0.2 pixel. These
small errors are largely negligible if the capturing resolution
is at least two times higher than the reference resolution (very
typical). The lowest displacements are given for special ro-
tation angles as expected (Figure 2b). In all other cases, the
absolute displacements are between 0.5 and 2 pixels, and they
correspond to the mis-adjustments of the contour fine-tune al-
gorithm (Equation 4) due to blurring edges in the captured im-
ages. The proposed method is completely independent from
spatial translations. We also scale and rotate all 24 testing im-
ages in a similar fashion and apply SSIM metric [21] (kernel
size 5) to measure structural similarity. This is largely ignored
by conventional image registration evaluations. The metric
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Fig. 3. SSIM for real captures under two light conditions, the image
registration is more accurate and stable under the low light condition
despite the changes of camera’s position and orientation

Table 1. Statistics of SSIM for simulation results

S15 | S20 | S25 | R15 | R30 | R45

min 0.815 | 0.887 | 0.924 | 0.968 | 0.966 | 0.970

max 0.964 | 0.978 | 0.985 | 0.994 | 0.993 | 0.993

95% int. | 0.902 | 0.940 | 0.960 | 0.983 | 0.982 | 0.984
+ + + + + +

0.017 | 0.010 | 0.007 | 0.003 | 0.003 | 0.003

Table 2. Statistics of SSIM for real captures
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Fig. 2. Simulated scaling on one image with max shift < 1.2 pixels
(a), simulated rotation on one image with max shift < 2.5 pixels (b),
simulated scaling and rotation on all images suggest the capturing
resolution should be as large as possible and the image registration
is insensitive to rotations (c)

incorporates the visibility of structural errors; it concerns the
displayed image content and is able to detect complicated im-
age quality issues like artefacts. Figure 2¢ (S for scaling,
”R” for rotation) and its corresponding statistics table (Table
1) illustrates that the mean of similarity increases rapidly and
the variance becomes smaller and more stable. Image rota-
tion has limited influence on the proposed method and since
the structure similarity are always above 0.98.

4.2. Captured Images

In a controlled lab environment, we use the camera to take
pictures of each of the projected reference image at 25 ran-
dom locations and orientations in the field under low light
(0 Lux) and dimmed light (30 Lux) conditions respectively,
since the light condition has a great impact on the visual ex-
perience [22]. Then we apply SSIM metric to the registered
images and their references due to the lack of ground truth for
the projections. The minimum structural similarity is higher
than 0.91 for all cases under the low light condition and it
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is still above 0.85 under the dimmed light condition. The
variance of structural similarity between random locations are
small, so the proposed method produces similar results de-
spite the changes of camera position and orientations (Figure
3). The mean and variance under the dimmed light condi-
tion are worse (Table 2). This is because the ambient light
reduces the contrast between projection boundary and its sur-
roundings, and the adjustment accuracy of contour fine-tune
algorithm is influenced.

5. CONCLUSION

In this paper, we propose a marker-less view independent
method to use an un-calibrated camera to achieve a sub-pixel-
level registration between the captured projections and their
reference images. The preservation of geometrical order as
well as the intensity and chromaticity relationships between
two consecutive pixels on the display are maximized. The ex-
perimental results against distortion simulations and captured
images prove that the registration accuracy is considerably
high under typical light conditions for projection systems. By
incorporating this method, we can apply existing full refer-
ence image quality metrics to captured projections without
any modification to the metrics. In the future, we will inte-
grate the method into an unified full reference metric based
image quality assessment framework for projection displays,
and study the perceptual properties of displayed images with
respect to the correlations between human observations and
metrics results despite of the actual projection geometries.
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Abstract

Spatial uniformity is one of the most important image qual-
ity attributes in visual experience of displays. In conventional
researches, spatial uniformity was mostly measured with a ra-
diometer and its quality was assessed with non-reference image
quality metrics. Cameras are cheaper than radiometers and they
can provide accurate relative measurements if they are carefully
calibrated. In this paper, we propose and implement a work-flow
to use a calibrated camera as a relative acquisition device of in-
tensity to measure the spatial uniformity of projection displays.
The camera intensity transfer functions for every projected pix-
els are recovered, so we can produce multiple levels of linearized
non-uniformity on the screen in the purpose of image quality
assessment. The experiment results suggest that our work-flow
works well. Besides, none of the frequently referred uniformity
metrics correlate well with the perceptual results for all types of
test images. The spatial non-uniformity is largely masked by the
high frequency components in the displayed image content, and
we should simulate the human visual system to ignore the non-
uniformity that cannot be discriminated by human observers. The
simulation can be implemented using models based on contrast
sensitivity functions, contrast masking, etc.

Introduction

In the past decade, tremendous growth in the use of digital
media implies that our daily life and work have been greatly im-
pacted by the rapid advancement of display technologies. Hence,
the image quality assessment of displays become an essential
topic for both scientific research and industrial communities. Pro-
jection displays have advantages like high resolution, portability
and flexibility. For example, multiple projectors can be tiled up to
form a large perceptual photometric seamless image [1]. It is cost
effective for users to visualize information in a very high resolu-
tion without issuing a customized manufacturing demand.

In general, the image quality of displays can be character-
ized by groups of image quality attributes. One group of them in-
cludes physical screen dimension, display resolution, refreshing
rate, viewing distance, and viewing angle etc. These attributes are
associated with a specific display and its viewing condition. They
indeed have impacts on the perceptual image quality, but in most
cases they are assumed to be constants within one working cycle
of image quality assessment. The rest of the attributes include,
but are not limited to, brightness, contrast, color gamut, sharp-
ness and artifacts (including noises). Among these attributes, the
spatial uniformity can be of a major importance for projection
displays [2, 3]. Researchers tried to achieve objective spatial uni-
formity with mathematical modeling, but soon they realized that
some restraints can be relaxed due to the limitation of perception

of Human Visual System (HVS) [1]. In recent studies [4, 5, 6],
radiometers were used as absolute acquisition devices to measure
the luminance and chrominance of projection displays. Measur-
ing with radiometers is time consuming. The devices are expen-
sive and they are likely to be unavailable in real practice. Digital
still cameras have been used to record projection pixels including
its background and surrounding on the displays [7, 8, 9]. Cameras
have the advantage that they can be placed at different locations
in order to achieve a location- and view-dependent image qual-
ity assessment, and the acquisition process are much accelerated.
However, cameras offer relative sensor responses upon the incom-
ing lights, so they need to be carefully calibrated in advance.

In this paper, we propose and implement a work-flow to use
a calibrated camera as a relative acquisition device to record the
intensity of projections, and evaluate the spatial uniformity of pro-
jections against image quality metrics. The correlation between
perceived and measured results suggest that the camera based im-
age quality assessment can be reliable and accurate.

This paper is organized as follows: first, in the background
section, we review the existing image quality metrics for spatial
uniformity assessment. Then in uniformity assessment section,
we describe the setup of our control lab environment, and demon-
strate how to calibrate a camera and a projector to produce mul-
tiple levels of linearized non-uniformity on the projection screen.
In addition, we also describe the experiment procedure and show
the experiment results. In the last section, the conclusions and
future works are presented.

Background

Many uniformity metrics have been proposed based on lu-
minance measurements of gray patches. Among the international
standards for image quality assessment of displays, FPDM [10]
defines uniformity as (100% - (Lin/Limax) ), where Ly, and Lygy
stand for minimum and maximum measured luminance respec-
tively. TCO 6.0 [11] defines a compliance threshold based on
four luminance samples as (Lyayx/Lmin), assuming that the min-
imum luminance is not even close to zero. SPWG [12] defines
uniformity as (100% - (Limax — Limin) /Lmax) based on thirteen in-
dependent luminance measurements. These metrics associate uni-
formity with Luminance Ratio (LR) between two extreme pixels.

However, Tang [13] and Ngai [14] demonstrated that the
LR based methods have inaccurate predictions of the non-linear
HVS. Tang [13] incorporated the viewing distance d and spa-
tial derivatives s of luminance to define the uniformity as SFA =
d? (Lmax + Lmin —2L) | s2, where L stands for the average of mea-
sured luminance. Further research from Samuelson et al. [21]
quantify the image quality of an illuminated surface with a pro-
posed spatial frequency analysis algorithm incorporating the dif-
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ference of Gaussian function, and they suggested that the aver-
age magnitudes of luminance contrast within selected spatial fre-
quency bands are related to the lighting quality of the scene rep-
resented by the image. Beyond these studies, Ashdown [15] in-
vestigated the influence of Luminance Gradient (LG) on the spa-
tial uniformity and they indicated that their results were more
correlated to the subjective perceptual ratings than LRs. How-
ever, these studies ignore the factor of viewing distance which is
important to the uniformity assessment. Meanwhile, other met-
rics based on statistical analysis and/or color distances in specific
color spaces were proposed. Poulin et al. [16] proposed a met-
ric to determine the spatial uniformity as (100% — STDEV (L)),
where STDEV (L) stands for the standard deviation (STDEV) of
luminance. Thomas et al. [4] used color differences AL and AC
measured with a spectroradiometer. The results suggested that the
chromaticity shifts are significant and they should be accounted
for. Another statistics based uniformity is defined as the variation

Y (Li—L)/(L(N—1)), where N stands for
the number of sample points [17].

of coefficient

There are also existing works that are relevant to the uni-
formity assessment based on captured images. In the domain of
printing, Green [18] proposed a metric for measuring smoothness
of color transforms. The metric computes the second derivative
from the vector of color differences. Besides, wavelet analysis
[19] and standard deviation [20] are common methods to analyze
non-uniformity (mottle). These methods were originally designed
for printings, but they can be used for displays in a similar fashion.

Uniformity Assessment

In this section, we describe the experimental setup and how
to use a camera and a projector to produce multiple levels of non-
uniformity on the projection display.

Experimental Setup

The experiments take place in a controlled lab environment
where the only illuminant in the room is the projector. We use
a portable three chip LCD projector SONY APL-AWI15 (throw
ratio: 1.5) to produce projections on a planar screen which is nat-
urally hanging on the ceiling. The projector is placed on a table in
front of the projection screen, and the distance is approximately
3m with respect to the throw ratio of the projector. A remote
controlling laptop is connected to the projector via a VGA cable
in order to generate full screen projections which have resolution
1280 x 768 in pixels. On the screen, the dimension of projection
area is approximately 2 x 1.2 in meters. We use a DLSR Nikon
D610 which has an imaging resolution 6048 x 4016 in pixels and
with a Sigma VR 24-105mm {/4G (VR off) lens to capture the pro-
jections. The camera is fixed on a tripod and the pictures are taken
remotely with a software control on the laptop without physically
touching the camera. The pictures are saved in raw format and
rendered with Aliasing Minimization and Zipper Elimination de-
mosaicing algorithm [22] without automatic vignette correction,
brightness adjustment, gamma correction and noise reduction etc.

Vignetting Correction

Captured pictures are known to have vignetting effect which
stands for an undesirable gradual intensity fall off from the im-
age center to its external limits. In this paper, we correct camera
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Figure 2. The generated vignetting mask for our camera Nikon D610 with
a Sigma VR 24-105mm /4G (VR off) lens

vignetting based on the captures of a hazy sky which is closely
uniform in gray [23]. In the lab, we take several trial shots of
projections with either minimum or maximum projector input in-
tensity. In this process, we adjust the camera settings iteratively
until all the captures are neither underexposure nor overexposure.
Then we keep all camera settings except exposure time, hook a
neutral light diffuser (white and semi-transparent) over the cam-
era lens, and use the camera to take multiple pictures toward the
same spot of the hazy sky. Each time we take a picture we rotate
the camera a bit. Then we calculate the intensity median response
for each camera pixel over all pictures we have taken, and use
them to generate a vignetting mask which is then applied to the
camera RGB channels separately to correct the vignetting.

In the experiment, we take 60 pictures of the hazy sky and
put 40 of them into a training set and the rest into a validation set.
The median responses are obtained based on 5, 10, ..., and 60 pic-
tures in the training set respectively. Then we apply correspond-
ing masks to the pictures in the validation set. The minimum
averaged standard deviation over all validation pictures indicate
that empirically 10 pictures are sufficient to generate convergent
median results. The mask we generate for our camera is shown
in Figure 2. We can see that the vignetting is not even closely
symmetric. The center has shifted upward and also a bit to the
right. This observation is contrary to common assumptions about
the vignetting symmetry in many literature (cos four law [24] for
example). In order to maximize the validity and reliability of im-
age quality assessment, we should offer the best effort to avoid
assumptions. Our method places no assumption about the camera
or the light condition, and the whole procedure can be finished
within a few minutes.

© 2014 Society for Imaging Science and Technology



Exposure Optimization

The daylight environment has a much higher luminance (nor-
mally above 1000 Lux) than the projection environment (around
10 Lux for example). In order to avoid either underexposure or
overexposure of captures, the camera’s exposure time varies be-
tween the two light conditions. The vignetting mask generated
in a daylight condition might not be appropriate for the low light
condition, since in this context we implicitly assume that all cam-
era sensors have linear responses. In order to verify the linearity,
we equally separate the range of projector input intensity into 15
levels. For each level, we display a gray patch and capture it un-
der all possible camera exposure times ranging from 1/4000s to
30s. Meanwhile, we use a light meter to measure the physical
luminance on the projection screen as a reference to the camera.
Then we construct surfaces of camera intensity responses versus
the projector luminance and camera’s exposure time.

The first picture in Figure 3 depicts the intensity response of
one camera sensor in the red channel. In the deep blue region, the
responses are closely linear to all possible projector luminance
while the exposure time is fixed, and vice versa. However, in the
aqua regions, such sensor has a large boost in responses. It may
be argued that this is because the camera sensor is closely satu-
rated in these cases. Then we can have a look at the second picture
in Figure 3 where the responses of another camera sensor in the
green channel is obviously not saturated. In this case, the boost
is still available at the areas where the blue and aqua regions in-
tersect. In this context, we can see that the camera gives linear
responses corresponding to limited combinations of projector lu-
minance and camera’s exposure time.

This conclusion seems to be trivial because the exposure
time should be kept below 2s in most cases. However, in order
to apply the vignetting mask generated in a high light condition
to a low light condition, we have to make sure that the camera
responses are all linear with respect to a common exposure time.
For this reason, we determine the strongest responses over each
camera intensity response for the maximum luminance under the
two light conditions with a common exposure time, and we con-
tinue to decrease the exposure time until the ratios between such
two sensor responses are equal. However, applying an exposure
time which is too small would not take the full advantage of the
dynamic range of the camera. Once this condition is met, the
camera’s exposure time is optimized, and the generated vignetting
mask can be applied to the camera despite of light conditions.

Image Registration

In the context of image quality assessment incorporating full
reference metrics, it is critical to achieve accurate and automatic
image registration between the captured image and its reference
image. Then we can apply existing full reference metrics with no
modification to them. The preservation of geometrical order as
well as the color relationships between two consecutive pixels on
displays are maximized. In our previous research [25], we pro-
posed a marker-less and view-independent method to use a cam-
era to do the image registration. The maximum pixel shift error
is below 0.2 pixel in the cases that camera resolution is higher
than projection resolution. With respect to the performance eval-
uations with SSIM metric [28], the image registration accuracy
is higher than 0.95 in a dark room environment and it is above
0.9 in a dimmed light condition where ambient light is below 30
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Figure 3. Intensity responses of one camera sensor in the red channel (1st
picture), and another sensor in the green channel (2nd picture)

Lux. In this paper, we adopt this method to extract projections
from the captured images, and make them have exactly the same
dimension and resolution as their reference images.

Projector Calibration

In order to assess the perceptual spatial uniformity, we pro-
duce multiple levels of linearized non-uniformity on the screen to
be observed and captured. Brown et al. [9] located the minimum
common achievable projector response for all pixels and gener-
ated a luminance attenuation map to correct the projection colors.
The linearity of projector’s intensity responses is assumed; other-
wise the inverse projector intensity transfer function is applied to
compensate for that. Pagani et al. [23] proposed a shading table
based automatic uniformity correction. The colors of each shad-
ing point are corrected by iteratively refining the projector output
intensities in order to avoid temporary stability problem of projec-
tors, and the colors of other pixels are linearly interpolated based
on its shading point neighbors.

In this research, we adopt and extend the method proposed
by Brown et al. [9] for its simplicity and effectiveness. First,
we equally separate the range of projector input intensity into 15
levels, and for each level we display and capture a gray patch
10 times. Then the projector intensity transfer functions can be
recovered by polynomial regression upon the median responses
over the gray patches at all intensity levels. In this way, we can
avoid the temporary stability problems of both camera and pro-
jector. However, it is computational inefficient to determine the
regression coefficients for all twenty million pixels of the cam-
era Nikon D610. We calculate only the coefficients for the refer-
ence pixel which gives the lowest camera sensor response upon
maximum projector luminance. The coefficients for other pixels
can be obtained by linearly scaling the one of the reference pixel.
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Figure 4. Polynomial regression of camera sensor responses

The method is processed in a color channel basis. After this, we
inverse the regression functions to compensate the non-linearity
of camera responses in order to create flattened projections. In
our experiment, Sth order polynomial regression is sufficient to
achieve good approximation. The projectors intensity transfer
functions for the reference pixel are depicted in Figure 4. Lower
order regressions (2nd order for example) produces slightly differ-
ent curves, but they may cause overcasting of dominated colors.
The polynomial regression may produce negative values which
are invalid. In such cases, we simply clip them because the abso-
lute values are small (< le —3) to be negligible.

Suppose that the scaling ratio of one pixel p;; in an individ-
ual color channel on the ith row and jth column of the registered
image is r;; > 1, the corresponding regression function for the ref-
erence pixel is f (x) and its inverse function is denoted as f~! (x).
The x stands for the projector input intensity of the pixel p;;. The
camera response of pixel p;; is denoted as c;; = f (x) - r;;. In this
context, the projector input intensity for the pixel p;; at a certain
non-uniformity level is defined as g (x) = £~ (f (x) -5 (r;j —m)),
where m = 27; | 2’}; \Tij/ (nx . ny), ny and ny stand for the width
and height for the projection in pixels respectively, and s stands
for a linear scaling factor of non-uniformity and it is under the
constraint that f(0) - r;; < g;j(x) < f(x) - ri; assuming that the
projector input intensities are normalized to between 0 and 1. The
value of r;j can be determined as max (c;;) /f (1), where the op-
erator max stands for the maximum value of ¢;;.

Experimental Procedure

We incorporate human observers and full reference image
quality metrics to assess the spatial uniformity of projection dis-
plays. We display seven types of test images (see Figure 5):
two natural color pictures (the 15th and 23th picture from Kodak
Photo CD PCD0992 [26]), three uniform colored patches with
opponent colors: yellow, magenta and cyan respectively, one gray
patch (the gray level equals to 0.5) and one slide like image with
dark texts on a gradient background. For each test image, we
linearly scale its natural projection’s non-uniformity to produce
multiple levels of non-uniformity. These scaling ratios can be nor-
malized into the range between -1 and 1, and then we split it into
five levels: -0.6, -0.2, 0, 0.2 and 0.6. The level 0 corresponds to
flattened projections where the projector’s natural non-uniformity
is canceled. We also display one image reserving the projectors
natural non-uniformity by displaying the image as it is; so 42 im-
ages in total are presented to each human observer.

The viewing condition is similar to a home theater environ-
ment where the room is dark, and the observers are located at the
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camera’s position. The test images are displayed to observers in
a randomized order. The experiment is set up as a category judg-
ment experiment. So, for each displayed image, the observers are
asked to indicate the perceptual uniformity with a category label
which stands for the rank between not uniform at all and perfectly
uniform corresponding to the ratings numbers from 1 to 5. At the
same time, the observers are also asked to indicate how the non-
uniformity affect their pleasantness with a category label which
stands for the rank between very disturbing and not disturbing at
all corresponding to the rating numbers from 1 to 5. The percep-
tual ratings are collected from 10 human observers and then they
are scaled to generate Z-scores [28].

We also evaluate the uniformity with the following image
quality metrics: LR defined in VESA FPDM [10], LG based
definition [13] (SFA), averaged standard deviation of RGB val-
ues (Stddev), coefficients of variation [17] (Coeff), averaged Eu-
clidean distance AE}, in CIELAB color space (AE,;), PSNR-M
[27], SSIM [28], and S-CIELAB [29]. The first four metrics
are commonly referred uniformity metrics in literature, while the
metrics AE?, is frequently referred to determine the perceptual
distance between two colors. Since the non-uniformity changes
the structure information in the images, we adopt SSIM as well.

Subjective Results

The first observation is that the rank order of non-uniformity
is largely preserved for the seven types of test images as expected
(see Figure 5). If we assume that the general tendency of Z-scores
are smooth, then they can be represented by parabolic curves.
The curves might be more or less skewed depends on the pro-
jected image content. The flattened projections do not necessary
correspond to the highest overall Z-scores, while small negative
non-uniformity and natural projection images have similar or rel-
ative lower Z-scores in many cases, and either positive or negative
large non-uniformity leads to the lowest Z-scores. This observa-
tion supports the fact that HVS is not sensitive to small variation
of non-uniformity. The spatial non-uniformity is largely masked
by the high frequency components in the displayed image content,
and we should simulate the human visual system to ignore the
non-uniformity that cannot be discriminated by human observers.
The simulation can be implemented using models based on con-
trast sensitivity functions, contrast masking, etc. For the distorted
slide like images (correspond to the 7th test image), the Z scores
of flattened versions are clearly greater than others (higher mean
value and no overlapping of confidence intervals). This is because
such reference image has dark texts on a large gradient back-
ground in a bright color, and the non-uniformity on a gradient
background can be easier to be detected by HVS than that on a
flat background which is the case of a gray patches (correspond
to the 1st test image). The general tendency of mean Z-scores of
pleasantness are very similar to the ones of perceived uniformity
and the Pearson correlation between them are all above 0.98 for all
test images, except the absolute mean values of pleasantness are
slightly larger in general. This observation suggests that the HVS
has a certain degree of but limited tolerance on average against
non-uniformity on the display. For the gray patch test images, the
observers have a difficulty to distinguish the differences between
the small minus non-uniform, flattened, natural projections. In a
similar fashion, the pleasantness of small minus non-uniformity,
flattened and natural projections for the two natural images have

© 2014 Society for Imaging Science and Technology
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similar values but their corresponding perceived uniformity have
different mean values. This observation suggests that the non-
uniformity is masked by the complex colors of natural pictures
and in such cases achieving a restrained uniform is not the only
way to produce the best perceptual experience.

Objective Results

Figure 6 demonstrates the Pearson and Spearman correla-
tions between the mean Z scores of perceived uniformity and ob-
jective results from all metrics. Obviously, none of these metrics
works well for all types of images, especially for natural color

images (the 2nd and 6th test images). Simple metrics like LR
and SFA work surprisingly better than others in many cases. We
think this might because in our experiment the non-uniformity for
all pixels is globally scaled, so the rank order of intensities in
each primary color channel is largely preserved; although we ap-
ply negative scalars to non-uniformity as well, the magnitude of
scaled non-uniformity is still comparatively smaller than the ref-
erence intensity values in the reference images. However, in real
practice, the non-uniformity level of projections should be rela-
tively small, otherwise the optical components of such a projector
should be replaced with new ones. The metric Coeff also gives
high correlation scores for patches but negative values for natu-
ral pictures (the 2nd and 6th test images). However, no metric
works well for the natural color images and slide like images (the
7th test images). In such cases, the correlation values are largely
below 0.6. S-CIELAB also adopts CSF but it has slightly better
correlation results than PSNR-M and SSIM metrics in all cases.
It is also interesting to figure out the reason why metric LR does
not work well in many cases, so we generate the plots of the sub-
jective results versus the objective results for the LR metric (see
Figure 7). It is clear that for the non-patch test images, the vari-
ance of metric scores are largely compressed and a few outliers
are visible. By examining the metric score values, we find out
that these outliers correspond to the flattened projection and nat-
ural projection. Similar phenomenon can be observed for other
metrics. It suggests that either the metrics give lower values for
the flattened projection, or higher values for the natural projec-
tion comparing to their expected values. In other words, the dis-
tance between the two consecutive levels of perceived uniformity
is more compressed than the results of metrics.

Conclusion and Future Works

In this paper, we propose and implement a work-flow to use
a calibrated camera as a relative acquisition device of intensity to
measure the spatial uniformity of projection displays. The exper-
imental results suggest that none of the frequently referred spa-
tial uniformity metrics works well for all types of test images,
especially for the flattened projections and natural projection of
natural color images. In such cases, The spatial non-uniformity
is largely masked by the high frequency components in the dis-
played image content, and we should simulate the human visual
system to ignore the non-uniformity that cannot be discriminated
by human observers. The simulation can be implemented using
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models based on contrast sensitivity functions, contrast masking,
etc. In addition, the colors can be considered to be transformed
into the frequency domain and analyzed at a smaller granularity
in order to engage the issue of contrast masking. In the coming
future, we should either improve the existing metrics or design a
new one to evaluate the spatial uniformity of projection displays.
Such a metric should be incorporated into a unified image quality
assessment framework for projection displays.
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Abstract. Projection displays, compared to other modern display
technologies, have many unique advantages. However, the image
quality assessment of projection displays has not been well studied
so far. In this paper, we propose an objective approach to measure
the relative contrast of projection displays based on the pictures
taken with a calibrated digital camera in a dark room where the
projector is the only light source. A set of carefully selected natural
images is modified to generate multiple levels of image contrast.
In order to enhance the validity, reliability, and robustness of
our research, we performed the experiments in similar viewing
conditions at two separate geographical locations with different
projection displays. In each location, we had a group of observers
to give perceptual ratings. Further, we adopted state-of-art contrast
measures to evaluate the relative contrast of the acquired images.
The experimental results suggest that the Michelson contrast
measure performs the worst, as expected, while other global
contrast measures perform relatively better, but they have less
correlation with the perceptual ratings than local contrast measures.
The local contrast measures perform better than global contrast
measures for all test images, but all contrast measures failed
on the test images with low luminance or dominant colors and
without texture areas. In addition, the high correlations between the
experimental results for the two projections displays indicate that our
proposed assessment approach is valid, reliable, and consistent.
© 2015 Society for Imaging Science and Technology.
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INTRODUCTION

Flat-panel display technologies in the liquid crystal display
(LCD) family have dominated the consumer market for
many years, and this is especially true for desktop/laptop
monitors, mobile phone screens, televisions, and many
large outdoor information displays. The strongest appeal
for consumers on displays is perhaps the ability to share
information and collaborate with teammates quickly, easily,
and conveniently. Projection displays, compared to other
display technologies, have unique advantages in terms of
portability, flexibility for deployment, and large screens to
visualize information for a target audience. Recently, there
has been an increasingly general interest to embed mini pro-
jectors into portable imaging devices such as smart phones
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or handheld video recorders, so that the pictures/videos can
be reviewed and shared with a crowd of people in the field
right after they are recorded.!*? In more advanced scenarios,
multiple projections can be tiled up to produce a single large
perceptual seamless image which visualizes information to
target audiences, and they will enjoy a fully immersive visual
experience.>* In this context, image quality assessment
of projection displays has gradually become an essential
topic in both academic research and industrial commercial
communities. The goal of image quality assessment is not
limited to the establishment of a unified approach to evaluate
the quality of image reproductions, but also in defining a
systematic way to continuously improve the perceptual image
quality within a closed work flow.

Image quality can be characterized and interpreted
based on a set of image quality attributes which are terms of
human perceptions of lightness, contrast, colors, sharpness,
and artifacts (including noises).” Physical properties such
as screen dimension, display resolution, and refreshing rate
have impacts on the perceived image quality, but in a typical
work flow of image quality assessment they can be assumed
to be constants, since they are independent from image
content and normally do not vary over time. In this paper,
we only focus on the image quality attributes which are
content independent. According to the existing literature,
there have been many attempts to characterize displays such
as cathode-ray tube (CRT)®7 and LCD®~® desktop/laptop
monitors. The characterization of projection displays has a
similar approach. Previous characterizations of projection
displays primarily focused on black level estimation,” display
uniformity,'~1? and colorimetry,'>!* but limited attention
has been paid to measuring the contrast of projected images
on the screen. More specifically, the measured contrast of an
image has been shown to be of a significant impact on the
visual experience.!4~16

Experiments measuring the contrast of projection dis-
plays have largely been conducted based on absolute acquisi-
tions with a radiometer or a spectrometer, etc.'!>!7>!8 These
devices are well designed to produce accurate measurements,
but they are expensive and require professional training; in a
typical projection environment where it is common to have
a low light condition, it takes a long time to collect a large
number of measurements at discrete sample spots. Using a
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camera as a relative acquisition device has the advantage of
recording all displayed pixels in one shot.!” Once we have
the captured images, we can process them with image quality
measures to predict the actual image contrast and correlate
these results with perceptual ratings. So, camera based
acquisition can be a fast alternative approach to measure the
relative contrast of projection displays at low cost.

This paper presents a study on the measurement of
relative contrast of projection displays based on acquisitions
with a digital single-lens reflex (DSLR) camera. The main
goal of this work is to evaluate state-of-art contrast measures
based on their correlations with subjective ratings. The
results of the evaluation can be used to improve the design
of image quality measures, and they can also to be extended
in the development and enhancement of general image
reproduction technologies.

This paper is organized as follows. First, in the next
section, we introduce the background of image contrast and
the state-of-art of contrast measurements. Then, in the third
section, a full description of the experimental environment,
setup, and experimental procedure is given. The results and
discussions on the interaction between measured contrast
and perceptual contrast are presented in the fourth section.
Finally, in the fifth section, conclusions are drawn based on
the data analysis.

CONTRAST MEASURES

The contrast measures for images can be broadly classified
into two categories with respect to their measurements at
either the global or local level. The global contrast measures
determine the contrast at each pixel or a few representative
pixels of the input image; so the contrast operator is
applied individually to each component without involving
its neighborhoods. However, at the local level of contrast
measurement, the neighborhoods are involved possibly by
following a hierarchical structure.

Global Contrast Measures
It is important to have a clear understanding of what image
contrast is before we start to measure it. However, giving
a comprehensive definition of perceptual contrast can be
difficult, because it depends on how subjective the observers
are, how the observers are related to the observation task, and
how much experience the observers turn out to have. Due
to these difficulties, the early research on perceptual contrast
confined itself to controlled viewing conditions with limited
types of visual stimuli. The studies began with measuring the
contrast of a periodic pattern such as a sinusoidal grating
with a simple formula at a global level.

The most commonly used global contrast measure is
defined with the Michelson formula

CM = (Lmax - Lmin)/(Lmax + Lmin),

where Lyax and Ly, stand for the maximum and minimum
luminance values, respectively.?! In a similar fashion, the
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contrast can also be defined with the Weber fraction
cW = AL/Ly,

where AL = (Lmax — Lmin)/2 and L stands for the
luminance of a uniform background around the stimulus.??
King-Smith and Kulikowski®® defined contrast as

CK = (Lmax — Lu)/La,

where L, stands for the average luminance of the visual
stimulus, while Burkhardt et al.** replaced L, with the
average luminance of the stimulus background. Among
these measures, Michelson contrast is the most widely
incorporated as a performance reference against others. It is
obvious that the measures assume that extreme luminance
values dominate the contrast of the whole image.

Pavel et al.?> proposed a root-mean-square (RMS)
measure

n

CRMS — Z(xi _ x’)z/(n -1,

i=1

where x; stands for the normalized luminance value at the
ith pixel, x” stands for the mean of x;, and n stands for the
number of pixels.>> With respect to the formula definition,
it is clear that this measure ignores the spatial frequency
of image content and spatial distribution of contrast in that
image. Pedersen et al.?® proposed a LAB variance measure

ClLAB = \3/ std2(L) * std?(a) * std2(b),

where L, a, and b define the coordinate of each pixel in
the perceptually uniform CIELAB color space. This measure
accounts both luminance and chromatic channels; however,
the equal weighting for each channel is inconsistent with
the known fact that luminance has stronger impact on the
perceived contrast than that of chrominance.?’ 2%

For image quality assessment of displays in industry,
the international standards TCO Certified Display 6.0°" and
SPWG Notebook Panel Specification 3.8*! both recommend
contrast defined as

CTCO = Lmax/Lmin~

The Information Display Measurements Standard 1.03%

follows a similar fashion, but further classifies contrast
measurements into multiple categories as signal contrast,
sequential contrast, starfield contrast, and corner-box con-
trast by taking the spatial information into account. Part 307
of ISO standard 241 defines contrast as

€30 — (Linax + Lp + Ls)/(Lmin + Lp + L),

where Lp and Lg stand for the luminance component
reflected from diffuse illumination and the luminance
component specularly reflected from large aperture sources
of illumination, respectively.>> The contrast definitions in
the international standards mentioned above were originally
designed to verify the display performance; however, the
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contrast of actual displayed images is not a part of their
concerns.

In summary, the existing global contrast measures are
largely inheritances or variations of Michelson contrast to
determine the contrast of displays. The contrast definitions
above account only the extreme or average luminance values,
and they are confined to specific viewing conditions with
gray patches or periodic patterns such as sinusoidal gratings;
as a result, their use in natural images might be inappropriate.

Local Contrast Measures
For contrast measurement, the local nature of contrast
changes across an image and spatial frequency content
are related and should be considered together.!* Local
contrast measures divide the images into many subimages,
possibly at multiple hierarchical levels, which may be
overlapped with each other; the contrast is defined by taking
pixel neighborhoods or specific local features into account.
Depending on the division granularity, the contrast can be
determined at a pixel level with respect to the luminance
and/or chrominance information in a certain color space.
Boccignone et al.>* followed the Weber—Fechner law to
replace the subject luminance with the luminance I(x, y, t)
of pixel (x, y) at instant ¢ and to replace the background
luminance with the average luminance Iy(x, y,t) in the
surrounding area of pixel (x,y) at instant t. The instant
t is changed by an iterative application of the anisotropic
diffusion equation; so the most optimal local contrast for a
pixel (x, y) is determined as

CMWE(x, y) = maxyefgyp ) I (%, y, 1) /Ip(x, y, D).

A.J. Ahumada® applied two rounds of low-pass filters
F, and F; to the input image I and generated two filtered
images:

To(x,y) =1(x,y) * Fa(x, y),
Ip(x, y) = 14(x, y) * Fy(x, y).

Then the local contrast for each pixel (x, y) is defined as

Clx,y)=1aCx,y)/Ip(x, y) — 1,

and eventually the final local contrast is calculated as

E(x,y) = C*(x,y) % Fe(x, ),

where F, is another low-pass filter. Despite the lumi-
nance information, the chrominance components in images
contribute to the measured contrast as well. Matkovic
et al.’® introduced a global contrast factor (GCF) method
to compute the local contrast by averaging the differences
between spatially filtered super pixels, and then the global
contrast is determined as the mean of local contrast with
respect to weighting factors that are estimated based on a
psychophysical experiment.

Peli et al.'* proposed calculating the contrast separately
at each pixel of an image to address the variation of contrast
across the whole image. In this case, multiple band limited
versions of the original image are obtained by applying
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a radically symmetric band-pass filter in the frequency
domain. Then the contrast for each limited band is defined as
the ratio between the filtered image and its local luminance
mean image. Tadmor and Tolhurst®” proposed a modified
contrast measurement for natural scenes based on the
conventional difference of Gaussian (DOG) receptive field
model. They proposed a contrast measurement scheme as

CMPOG — [R(x, y) — Ry(x, »)1/[Rc(x, y) + Rs(x, )]
at a pixel (x, y) in the image, where

x+3r.  y+3rc

Re(x,y) = Z Z Center (i —x,j—y)

i=x—3r; j=y—=3r,
and

x+43rs  y+3rs

Ri(x,y) = Z Z Surround (i —x, j — y)

i=x—3rs j=y—3r;

stand for the center and surrounding components of the
receptive field, respectively, with

Center (x, y) = exp[—(x/rc)z - (}’/rc)z]
Surround (x, y) = 0.85(rc /15)? exp[—(x/1)* — (y/19)1,

where r. and r, stand for the radius of the center and the
surroundings of the receptive field, respectively. Eventually,
the global contrast is calculated as the mean of the local
contrast measurements at many randomized locations in the
image.

Rizzi et al.3® proposed a contrast measure RAMMG
that subsamples the input image in order to generate
multiple pyramid images in the CIELAB space with a
nearest neighborhood algorithm. Then the local contrast is
calculated by summing up the absolute differences between
one pixel and its surrounding pixels in every channel and at
every pyramid level. The local contrast values from the same
channel are normalized and finally weighted. The final global
contrast is the mean of outputs from all levels:

RAMMG 1 Al NP
crmis _ LS S S ek

i=1 j=1 k=1

where N, stands for the number of pyramid levels, N}, stands
for number of pixels in each pyramid image, Ci stands for
the local contrast for each pixel and its surroundings, and W;
stands for the weighting factor which needs to be determined
for each CIELAB channel. Inspired by the RAMMG measure,
Simone et al.'® proposed a measure RSC which employs the
DOG formula. They did not merely recombine the mean
of averaged local contrast from each pyramid level in the
lightness channel, but also in the chromatic channel.

In summary, the existing local contrast measures
account for luminance and chrominance components as
well as the frequency component in the input images to
determine the local contrast at various granularities. The
global contrast is eventually determined by pooling local
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contrast values. In recent years, there has been a general
increasing interest in incorporating low-level neuron science
knowledge to improve contrast models further.

EXPERIMENTAL SETUP AND PROCEDURE

In order to enhance the validity, reliability, and robustness
of our research, we performed the experiments under the
same viewing conditions but at two separate geographical
locations with two different projection displays and one
group of observers at each location. In this case, we had two
separate experimental sessions in total.

Experimental Setup

The first experimental session was conducted at the Uni-
versity of Burgundy in France with 10 observers (6 males
and 4 females, age from 24 to 33), and we used a portable
three-chip LCD projector, a Mitsubishi XL9 (1024 x 768)
to display images on the screen. The second experimental
session was conducted at the Gjovik University College
in Norway with 17 observers (14 males and 3 females,
age from 25 to 53), and we used another three-chip LCD
projector, a SONY APL-AW15 (1280 x 768). All observers
were confirmed to have neither myopia vision nor color
deficiency. Both the Mitsubishi and SONY projectors are
three-chip LCD based, and they represent one dominant
projector category in the current consumer market. However,
the Mitsubishi projector has a more powerful bulb and it
appears to be much brighter than the SONY projector in
the default settings. Consequently, the Mitsubishi projector
suffers from a stronger light leaking problem. The Mitsubishi
projector appears to be optimized for document presentation
automatically so that the color of the displayed pictures
appear to be more bluish. The two projectors are widely used
by people for meetings and presentations on a daily basis;
their device status is “natural” so that the corresponding
perceived contrast is close to what we expect to experience
in real practice. Other aspects of the experimental sessions
were exactly the same. The projector was placed on a flat
table in front of the projection screen at a distance of 3 m
away (Figure 1(a)). In our experiments, we were simulating
a typical home-theater-like environment. All observers sat
in a dark room at an equal distance from the screen. The
viewing distance, projection area, and visual angles were all
fixed. It is possible for observers to sit closer to or get further
away from the screen in practice, but in that case the exper-
imental environment is totally different and the underlying
research should be extended to consider additional factors
(non-uniform sunlight illumination in a daylight meeting
room, for example). In this experiment, since all observers
were confirmed to have no myopia or color deficiency
difficulty, the visual acuity for them was approximately the
same. In the objective experiments, the camera was replaced
by the observers (Fig. 1(b)). The principal projection axis is
pointed at and is perpendicular to the screen center. On the
screen, the projection size was approximately 2 x 1.5 m. The
projector was connected to a controlling laptop with a VGA
cable. In order to minimize the influence of projector tempo-
rally stability, the projector lamp was warmed up at least one
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(a) (b)
Figure 1. The experimental sefup for both experimental sessions. The

projectors were placed at a distance of 3 m away from the screen. The
camera and observers were located at the same position, which was
about 4 m away from the screen. The experiments were conducted in
a home-theaterlike environment which was typical for projection systems.
(a] The setup for the camera and the projectors. (b) The setup for the
observers and the projectors.

hour in advance. All settings related to projector brightness,
contrast, and color enhancements were switched off to make
sure that the input image was projected as it was. In this
case, we assumed that the projection displays were uniform
in terms of both their luminance and chromatic nature.

For all experiments, we used the same camera to capture
the projections. We used a Nikon D610 DSLR camera
with imaging resolution of 6016 x 4016 and with a VR
18-100 mm f/3.5-5.6G (VR off) lens to capture the images.
We set the camera on a tripod and placed the camera
approximately at the height of the observers. The pictures
were always taken remotely with software installed on the
controlling laptop without physically touching the camera.
We selected 10 test images (Figure 2) from the Colour
Lab Image Database: Image Quality>® with respect to their
image content (800 x 800 in pixels), so we can cover as
many features as we may have in the natural images. The
features are, for example highlight/lowlight components,
wide range/dominant colors, and large smooth/texture areas.
We normalized the RGB values of all pixels in the test images
and transformed them in each color channel simultaneously
with the formula

Si=(Ci—m)*(j+6)/6+m,

where S; stands for the scaled RGB value for the ith pixel in
the distorted image, j is an integer scaling factor for contrast
distortion in the range [—3, 3], C; stands for the normalized
input RGB value for the ith pixel in the input image, and
m stands for the mean of all C; in the same color channel,
so we obtained seven distortion levels for each test image
(Figure 3). Any overscaled RGB values (either larger than 1
or smaller than 0) were clipped.

Since the main goal of this research was to evaluate
the performance of contrast measures, we only needed
to produce multiple levels of contrast distortions, and
certain perceptual contrast distances were expected between
consecutive distortion levels. A linear contrast tuning
is sufficient for achieving the goal without introducing
brightness differences between the distorted images, so
the variances of perceived contrast due to the perceptual
adaptation of luminance are minimized. It is possible to tune
the contrast with respect to other types of curves like sigmoid
curves; however, the tuning is not expected to significantly
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()

Figure 2. The thumbnails of the 10 test images. We generated 7 levels of contrast distortions of each test image, so there are 70 distorted images
in total for each observers to evaluate. The test images were carefully selected to cover many features such as highlight/lowlight components, wide
range,/dominant colors, and large smooth/texture areas. [a] st fest image, (b] 2nd test image, (c) 3rd test image, (d) 4th test image, (] Sth fest image,
[f) &th test image, (g) 7th test image, (h) 8th test image, (i) 9th test image, [j) 10th test image.

Positive/_\’
Scaling Original

d Image
i ti
9 ; Nega. ive
e i Scaling
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< :
= == Mean Value
2 |
0 1

Input Value

Figure 3. The linear transformation function. Positive scaling represents
an enhancement of the actual image contrast, while negative scaling
represents a decrement. After the scaling, the mean luminance remains
the same. All overscaled values were clipped.

affect the rank order of measured contrast, which is an
important aspect of determining correlation coefficients.

Experimental Procedure

Subjective Experiment

The subjective experiment was conducted by using the
software QuickEval,’® which is an interactive software
running on the controlling laptop for psychometric scaling
experiments. The software interacts with users within a
standard web browser. All observers operate directly on
the laptop and they are experiencing exactly the same
stimulates in identical viewing conditions. In short, the
experiment is performed locally in a controlled manner and
it is very different from many typical web-based perceptual
experiments.*"*?> Based on this system, each observer is
required to perform two tasks. In the first assignment, we
display each group of distorted images in randomized order
(corresponding to the same input image) on the projection
screen at the same time (Figure 4). The observers need to
rank this group of distorted images in a descending order
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Figure 4. A screenshot of the software QuickEval, which is an interactive
software running on the controlling laptop for psychometric scaling
experiments. The software interacts with users within a standard web
browser. Each observer is required fo rank the displayed images with
respect fo either perceived or preferred contrast. The images at the bottom
are distortion thumbnails, and the two larger windows on the top are used
to display images of interest in their original size.

based on their perceived contrast; so the images with higher
contrast should be ranked to the left, while the rest with
lower contrast will be ranked to the right. In the second
assignment, we display the images in the same way but we
require the observers to rank each group of distorted images
in descending order with respect to their own preference of
contrast. The images with the preferred contrast should be
ranked to the left, while the rest with less preferred contrast
should be ranked to the right. The two windows on the top
of the software are used to display observers’ selected images
at their original size. The software automatically records the
ranking results and exports them as a rating matrix in the
final report.

Objective Experiment

For the objective experiment part, we used a camera as
an acquisition device and further processed these captured
images with all types of contrast measures. We set the camera
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Figure 5. The Z-scores of ranked perceived contrast. The X labels stand for contrast disfortion levels in the range [—3, 3]. The number O stands for the
original image. All plots have identical Y value ranges. The circles stand for each Z-score of mean ratings for the distorted image, and the vertical bars
indicate the 95% confidence interval4% of Z-scores as 1.96 x | 1/+/N), where N stands for the number of observers. [a) Mitsubishi XL9 projection display.

(b) SONY APLAW 15 projection display.

up with ISO 100 to minimize the camera sensor noise, and
performed a standard MTF test*® in order to acknowledge
that the best aperture for the underlying camera and lens was
f17.1. We set the shutter speed at a certain value at the initial
state and we took several pictures of the peak white projection
and observed their histograms. We adjusted the shutter
speed setting iteratively to make sure that no camera sensor
was either underexposed or overexposed. Since we capture
images in raw format, we can apply the spot white balance
algorithm to determine the linear scaling factors of the RGB
channels respectively. Then we apply these factors to linearly
scale all subsequent pictures we take in order to correct
the captured luminance. Captured pictures are known to
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have a vignetting effect, namely an undesirable gradual
intensity fall off from the image center to its external limits.
We incorporated the method proposed in our previous
research*? to correct camera vignetting based on the captures
of a hazy sky which is closely uniform in gray.

In the experiment, we used the following image
quality measures to evaluate the image contrast: Michelson
contrast,”! RMS,?® Lab variance,’® RAMMG,*® RSC,'® and
GCE* The Michelson contrast measure was selected be-
cause it is representative of global contrast measurement and
it is typically used as a reference for contrast measurement
in research. RMS and LAB variance measures are selected
because they are representative of measurements which
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Figure 6. The Z-scores of preferred perceived contrast. The X labels stand for contrast distortion levels in the range [—3, 3]. The number O stands for the
original image. All plots have identical Y value ranges. The circles stand for each Z-score of mean ratings for the distorted image, and the vertical bars
indicate the 95% confidence inferval of Z-scores as 1.96 x [ 1/4/N), where N stands for the number of observers. (a] Mitsubishi XL projection display.

[b) SONY APL-AW15 projection display.

account on statistics; however the RMS measure works only
on luminance, while the LAB variance measure further take
colors into account in the perceptual uniform CIELAB color
space. RAMMG and RSC measures are representative of
the measures incorporating low-level visual system models.
The GCF measure addresses the problem from the spatial
frequency perspective.

EXPERIMENTAL RESULTS

We collected raw subjective ratings, scaled them, and
calculated the Z-scores;* meanwhile, we processed them
with selected image quality measures in order to evaluate the
image contrast.

J. Imaging Sci. Technol.
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Subjective Results

We collected the subjective ratings for the ranked perceived
contrast and preferred perceived contrast, respectively. All
collected raw ratings were scaled in order to calculate their
Z-scores.

Ranked Perceived Contrast

The Z-scores of ranked perceived contrast for the projectors
are shown in Figure 5. It is clear that the rank of perceived
contrast has a closely linear relationship with the actual
rank of modified contrast. Since the Z-score values in all
plots are monotonically increasing, the relationship between
perceived contrast and the actual image contrast is almost
linear for all types of images.
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Figure 7. The Pearson correlations between the mean Z-scores of ranked perceived contrast and the measurement scores for the ten selected test images
for (a) the Mitsubishi projection display and (b) the SONY projection display. The Y values are limited to between 0.5 and 1.

Preferred Perceived Contrast

The Z-scores of preferred perceived contrast for the projec-
tion displays are shown in Figure 6. The general tendency of
the Z-scores of preferred contrast no longer follows a linear
relationship with the actual image contrast. This observation
suggests that the observers tend to rank all distortions into
two groups: either relatively less preferred (contrast level
—3 to —1) or more preferred perceived contrast (contrast
level 1 to 3). In the group of less preferred contrast, since
the confidence intervals of Z-scores are largely overlapped,
the perceived contrasts have no significant difference, while
in the group of more preferred contrast, the confidence
intervals are less overlapped. This suggests that the majority
of observers prefer the enhanced contrast even though
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the lJuminance has been overscaled. In some cases, for both
projectors, the contrast level 0, which stands for the original
image, is neither preferred nor not preferred because it is
very close to the center line for all test images. The preferred
perceived contrast values for the two projectors are obviously
different.

Objective Results

The evaluations of the objective contrast measures are
presented first for the ranked contrast, and then for the
preferred perceived contrast for the two projection displays.

Ranked Perceived Contrast
We applied the measures to all modified images to calculate
the objective scores, and to determine the Pearson correlation
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The Average Meftric Performance for Ranked Perceived Contrast

The Mitsubishi Projection Display

0.95+

0.9+

085+

0.8+

The Average Metric Performance and Confidence Interval

0.75

Michelson RMS LAB GCF RAMMG RSC
The Image Quality Metrics

The SONY Projection Display

0.95F

0.85F

The Average Metric Performance and Confidence Interval

0.75

Michelson RMS LAB GCF RAMMG RSC
The Image Quality Metrics

Figure 8. The average performance for ranked perceived contrast with respect to distribution of their Pearson correlation coefficients. The circles indicate
the mean of correlation coefficients which are calculated on a per image basis. The bars stand for the 95% confidence interval.

coefficients between the objective scores and the mean
Z-scores of both ranked perceived contrast (Figure 7). Based
on the observation, it is clear that, for the Mitsubishi
projection display, most contrast measures produce high
correlation coefficients above 0.85, except that the RMS and
GCF measures produce low coefficients on test image 6.
However, the observation cannot be obtained from the
correlation results for the SONY projector. For the SONY
projection display, the Michelson contrast measure performs
relatively worse than the other contrast measures, and this is
especially true for test image 9. Other contrast measures have
very similar performance for both Mitsubishi and SONY
projection displays on test images 2, 3, 4, 5, 7, 8, 9, and
10, but not on test images 1 and 6. It is not very clear
which measure has the best performance in general. In this
case, we generated the box plots of the Pearson correlation
coefficients over all test images for both projection displays
(Figure 8). It is clear that the Michelson contrast measure
performs worse than other contrast measures, not merely
because it has a low average correlation value around 0.85,
but also its 95% confidence interval is much larger. For
the Mitsubishi projection display, the contrast measure GCF
performs badly with respect to its confidence interval as well.
Although the Mitsubishi and SONY projection displays are
supposed to produce different contrast on the screens, the
mean of correlation coefficients over all test images follow
a very similar general tendency. Based on the observation
on the variance of confidence intervals, the RSC contrast
measure produces the most stable outcome regardless of the
actual image content.

Preferred Perceived Contrast
For the preferred perceived contrast, we followed a similar
approach to calculate the Pearson correlation coefficients for

all contrast measures on all test images (Figure 9). It is clear
that the Michelson contrast measure performs the worst for
both ranked and preferred contrast. In addition, the RMS and
GCF measures both perform relatively worse for test image 6
for the two projection displays as well. For the preferred
contrast of both Mitsubishi and SONY projection displays,
the RAMMG and RSC still have the highest correlations;
however, the correlation from the RAMMG contrast measure
is slightly higher than that for the RSC contrast measure. This
observation is different from the one for ranked perceived
contrast. The rank order between RMS, LAB, GCE, RAMMG,
and RSC contrast measures is largely preserved for test
images 2, 3,4, 5,7, 8,9 and 10, but not for test images 1 and 6.
This observation can be obtained from the ranked perceived
contrast for both projection displays as well, but not from
the preferred contrast for the SONY projection display.
By looking at the average overall contrast measurement
performance shown in Figure 10, the general tendency of the
average Pearson correlation over all test images is almost the
same as the one obtained from the preferred contrast.

Overall Results

In Figs. 8 and 10, we showed the average performance
of the contrast measures over all test images for each
projection display. In this case, we calculated the Pearson
correlation coefficients not on a per image basis but we did
the calculation over all test images, so we could observe
how the metrics performed regardless of the image content
(Figure 11). In Fig. 11 we can see that, for the Mitsubishi
projection display, the mean correlation coefficients are
almost identical, and the 95% confidence intervals are
largely overlapped for both ranked and preferred perceived
contrast. This indicates that for the Mitsubishi projection
display the contrast measurements have almost the same
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Figure 9. The Pearson correlations between the mean Z-scores of preferred perceived contrast and the measurement scores for the ten selected test images

for (a) the Mitsubishi projection display and (b) the SONY projection display.

performance. However, for the SONY projection display, the
Michelson contrast measure performs relatively worse. For
both projection displays, the ranked and preferred perceived
contrasts share a similar general tendency.

We also calculated the Pearson correlations between the
average performances over all contrast measurements with
respect to their types of contrast versus the types of projection
displays. The results are shown in Table I. Considering that
the Michelson contrast measure produces low correlation
coefficients and large variances for most test images for
all projection displays, we removed the Michelson contrast
measure and recalculated the data; the results are shown in
Table II.

On looking at the data in Table I, it is clear that the
average performances of ranked and preferred perceived
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Table I. The Pearson correlations between the average correlation coefficients.

Contrast/Projector Ranked, Mit. Ranked, SONY Preferred, Mit. Preferred, SONY

Ranked, Mit. 1 0.7431 0.9629 0.8396
Ranked, SONY ~ 0.7431 1 0.8155 0.9668
Preferred, Mit.  0.9629 0.8155 1 0.9248
Preferred, SONY ~ 0.8396 0.9668 0.9248 1

contrast measurements have high correlations; they are all
above 0.9. However, there is no evidence to indicate that there
is any good relationship for ranked or preferred contrast
between one projection display and another, since their cor-
relation values are all below 0.85. After taking the Michelson
contrast measure away, the low coefficients presented in
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The Average Metric Performance for Preferred Perceived Contrast
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Figure 10. The average measurement performance for ranked perceived contrast with respect to the distribution of their Pearson correlation coefficients.
The circles indicate the mean of the correlation coefficients which are calculated on a per image basis. The bars stand for the 95% confidence interval.

Table I1. The Pearson correlations between the average correlation coefficients
without the Michelson contrast measure.

Contrast/Projector Ranked, Mit. Ranked, SONY Preferred, Mit. Preferred, SONY

Ranked, Mit. 1 0.9608 0.9409 0.8424
Ranked, SONY ~ 0.9608 1 0.9354 0.8829
Preferred, Mit. ~ 0.9409 0.9354 1 0.9696
Preferred, SONY  0.8424 0.8829 0.9696 1

Table I increase by a certain amount, and their values are all
above 0.9 in Table II. However, the correlation coefficients
of both ranked and preferred contrast between different
projection displays show no significant improvement. This
observation suggests that human preference on the perceived
contrast has a closely linear relationship with the ranked
perceived contrast. In this circumstance, we conclude that
the most preferred perceived contrast corresponds to the
highest ranked perceived contrast; even for test images 1,
2, 4, and 5 in Fig. 6(a) the highest preferred perceived
contrast corresponds to the second highest ranked perceived
contrast. For related research in the future it is unnecessary
to explicitly distinguish them and do the experiments twice.

CONCLUSION AND FUTURE WORKS

In this paper, we have proposed an objective approach to
measure the relative contrast of projection displays based
on pictures taken with a calibrated digital camera in a
controlled environment. To the best knowledge we have,
this is the first research regarding evaluating the perceived
contrast on projection displays based on the images captured
with a calibrated camera. This objective approach can be

easily extended to measure other image quality attributes
such as sharpness and non-uniformity for all types of
information displays. The metric performance evaluation
is based on two separate projection displays, so the validity
and reproducibility of the research have been enhanced.
The research feasibility is supported by the high correlations
between subjective and objective experimental results, as
well as the correlations between the two projection displays.
We classified the contrast measures into local and global
categories. For each category, we selected the representative
contrast measures and evaluated their performance with
respect to the Pearson correlations between subjective and
objective assessment results. The experimental results based
on two separate projection displays suggest that the Michel-
son contrast measure has very low performance over all test
images, as expected. Other global contrast measures (RMS
and LAB) also perform relatively better than the Michelson
contrast measure, but they have less correlation with the
perceptual ratings compared to the local contrast measures.
The local contrast measure GCF has similar performance to
the RMS and LAB measures, but it performs worse than other
local contrast measures (RAMMG and RSC). The contrast
measures RAMMG and RSC perform the best overall, and
they have very close performance on contrast measurements
for almost all test images. With respect to the 95% confidence
interval of the average measurement performance over all
test images, RAMMG has slightly improved correlations
with the preferred contrast. It is interesting to see that
many contrast measures do not perform well on the test
images 1 and 6. These two images either have large
area of low luminance component or dominant color
component, and they do not have obvious texture area. We
recommend local contrast measures incorporating low-level
human visual system models since they have better overall
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Figure 11. The average measurement performance for ranked perceived contrast with respect to the distribution of their Pearson correlation coefficients
over all fest images. The circles indicate the mean of correlation coefficients which are calculated on a per image basis. The bars stand for the 95%

confidence inferval calculated based on Fisher Z transformation.4” [a) The Mitsubishi projection display. [b) The SONY projection display.

performance over global contrast measures in terms of both
contrast prediction accuracy and stability regardless of the
image content. Since the average correlations and stability of
local contrast measures are good for many test images, we do
not need to propose a new contrast measure, but rather to
improve the models of human visual system to predict the
image contrast better in future research.
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Abstract

Perceived sharpness is one of the most important image quality attributes for displays, because it determines how much details the
humans are able to perceive on the screen at certain distances. However, this attribute was not well studied for projection displays
in the existing literature. In this paper, we conduct an experimental study on measuring perceived sharpness of projection displays
based on the pictures taken with a calibrated camera in a darkroom, and evaluating the performance of state-of-art sharpness metrics
accordingly. The basic idea is to apply Gaussian filtering to natural test images in order to simulate the optical blurring process
of projection systems, so that we can generate multiple levels of image sharpness in a controlled manner without influencing the
original properties of projection displays. We project these filtered images onto the screen and invite a group of human observers
to give perceptual ratings on them. We calculate the correlation coefficients between perceptual sharpness and the one measured
with state-of-art image quality metrics. We find out that the average performance of full reference metrics are comparatively better
than the reduced and no-reference metrics. Among the full reference metrics, SSIM, VIF and FSMI metrics perform well in terms
of both accuracy and stability.

© 2015 Published by Elsevier Ltd.

Keywords: sharpness, perception, image quality, projection display, image capture, camera calibration

1. Introduction

Nowadays, modern digital imaging with advanced media technologies composes an essential part of our daily life
and works. It is easy for ordinary consumers to capture what they see and record what they experience with portable
imaging devices even without professional training. Sharing stories with friends either in a face-to-face manner or over
the networks can be achieved by simply clicking a few buttons. One common way to do this is via projection systems,
which are typically configured with high brightness light sources and high definition displays to visualize image
reproductions. Comparing to other types of display technologies, projection displays have many unique advantages
like portability, flexibility for deployment, and large projection area for sharing information to a crowd of people. In
some scenarios, it is required to tile up multiple projections in order to produce a large perceptual seamless images
which visualize information to a crowd of target audience for immersive visual experience [1, 2]. In recent years, there
is an increasing general interest to embed projection systems into portable devices to further enhance the continuity
experiences between mobile imaging devices and socialization over the networks [3, 4]. Hence, display image quality
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assessment of projection systems becomes an interesting topic for both scientific research and industrial commercial
communities; because the underlying concept does not merely associate with a well defined systematic approach to
measure the quality of image reproductions with respect to human perceptions, but take real industrial engineering
practices into consideration as well.

Image quality is largely evaluated with respect to perceptual assessment results. The ultimate goal is to correlate
the objective results with the subjective results, so that we are able to eventually eliminate the demand of human
observers. In this context, image quality can be interpreted based on image quality attributes which are essentially
terms of perception, such as, but not limited to, lightness, contrast, color accuracy, sharpness, artifacts (including
noises), and physical properties of displays (screen dimension, display resolution and refreshing rate, etc.). Although
there are many attributes can be used to depict image quality, for the researches in various domains the selection of the
most important attributes has different priorities. For printing, Pedersen et al. [5] suggested that all the image quality
attributes mentioned above are important; Johnson [6] specially remarked color accuracy, sharpness, and contrast for
printing. For stereo displays, You et al. [7] and Lehtimaki et al. [8] pointed out noise, sharpness and perceived depth
are priorities for stereoscopic imaging. However, specific for projection displays, limited works have been done so
far. Thomas et al. [9] and Strand et al. [10] remarked lightness and color accuracy, while Majumder et al. [11, 12]
indicated that lightness is more important than the color accuracy. With respect to the literature above, it is clear
that despite of specific research domains and imaging technologies involved, sharpness is commonly recognized to
be an important image quality attribute for perceptual evaluation, and it is closely associated with other attributes like
lightness and contrast. Since sharpness defines the amount of details the human can observe in image reproductions at
certain distances, it is commonly referred as the counterpart of blur which is another typical image quality distortions.
Human Visual System (HVS) has a remarkable capability to detect image blur without seeing the original image, but
unfortunately the underlying mechanisms are not well understood [13, 14].

In this paper, we conduct an experimental study on measuring perceived sharpness of projection displays based
on the pictures taken with a calibrated camera in a controlled environment. The goal is to evaluate the performance
of state-of-art image quality metrics for image sharpness with respect to their correlations with perceived contrast
obtained from psychophysical experiments.

The rest of this paper is organized as follows. First, in Section 2, we present the state-of-art image quality metrics
for image sharpness. Then, in Section 3, we present our methods for calibrating the camera, introduce the experimental
environment. In Section 4, we demonstrate the subjective and objective results. Last, in Section 5, the conclusions
and future works are presented.

2. Sharpness Metrics

2.1. Overview

Conventionally, in an objective manner, sharpness was largely measured with respect to the definition of edges in
the image reproductions. The main idea is to detect edges in local regions, then compute the sharpness quality scores
in these regions at the detected edges, and eventually pool these scores to generate a number representing the global
sharpness quality. The edge information can be extracted based on Kurtosis [15, 16, 17], derivatives [18, 19], edge-
width [20, 21], histogram [22], power spectrum [23], and wavelet [24] etc. In the cases that the edges features are
largely visible, these features represent the quality of optical components in such an imaging system, so the measured
edge responses can be used as an estimate of the modulation transfer function [25]. In the ISO 12233 standard,
the modulation transfer function is determined with respect to the spatial frequency response of slanted edges [26].
However, it is insufficient to measure the sharpness by only focusing on a few strong edges, because images with very
sharp edges may have only a small amount of details [27].

The clarity of fine details or textures is another important factor of sharpness measurement. The details based
methods are slightly more advanced than the edge based methods, because they can be used to measure highly de-
graded images from where the edge information are difficult to be extracted. In the existing literature, the amount
of details are related to the perceived contrast in the regions of interest; so, recently, there is an increasing general
interest on developing perceptual models to simulate HVS. For example, Gao et al. [28] proposed a perceptual con-
trast model by introducing Weber’s law into an isotropic local contrast model in order to account in human luminance
masking effect, and then the sharpness is defined as an average contrast measured by the model in the regions of
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interest. Nuutinen et al. [29] determined sharpness based on the local energies which were calculated as the standard
deviation of the wavelet coefficients from the correspondence blocks detected between the image reproductions and
their corresponding reference images. They indicated that smooth regions cannot be used for sharpness measurements
since their structure energy remain unaltered with low-pass operations. With respect to the existing literature, just like
contrast, the definition of detail is fuzzy. In many cases, the researchers interpret sharpness in term of detail, but what
they actually refer to is edge; so, sharpness measurement is somehow context dependent. It is known that, the image
quality metrics can be generally classified into Full Reference (FR) based, Reduced Reference (RR) based, and No
Reference (NR) based methods [30]. The existing studies regarding sharpness metrics mainly focus on one specific
category of them, and the comparison between them is missing. In this paper, we propose to classify sharpness metrics
based on how they refer to the original test images, and evaluate their performance after. The main focus is on the
state-of-art sharpness metrics in each category.

2.2. Full Reference Metrics

The metric ”Structure Similarity Index Metric” (SSIM) [31] is commonly used to predict the degradation of
structures in image reproductions, as well as in many performance benchmarks against sharpness metrics. SSIM was
not specifically designed to measure sharpness, but it accounts in brightness, contrast and structure information to
estimate the image quality. These factors are widely accepted to have great influence on the perceptual sharpness.
Marziliano et al. [21] proposed two FR metrics to measure the sharpness of JPEG2000 compressed images. The
proposed metrics measure the magnitude of image blurring which is an image quality attribute contrary to sharpness.
Zhang et al. [32] proposed a metric “Feature Similarity based Index Metric” (FSIM) to measure the overall quality
of images. Firstly, they generated a local image quality map with phase congruence and image gradient magnitude as
features, and then utilized the phase congruence information again as a weighting function to derive the final image
quality score. The metric was not originally designed to measure sharpness, but the results might correlate with
sharpness. Another commonly referred image quality metric ~’Visual Information Fidelity”” (VIF) proposed by Sheikh
et al. [33]. This metric was derived from a statistical model for natural scenes, a model for image distortions, and
a HVS model in an information-theoretic setting. The image quality metric ~’Visual-Signal-to-Noise-Ratio” (VSNR)
presented by Chandler et al. [34] takes advantage of low-level HVS properties on contrast sensitivity and visual
masking via a wavelet-based model to determine if the distortions are below the threshold of visual detection. If the
distortions are supra-threshold, the low-level HVS property of perceived contrast and the mid-level HVS property of
global precedence are accounted as an alternative measure of structural degradation. These factors are known to have
influence on measured sharpness.

2.3. Reduced Reference Metrics

Wang et al. [35] proposed a RR metric "Reduced Reference Image Quality Assessment” (RRIQA) to decompose
image reproductions into multiple scales and orientations with respect to a steerable pyramid framework. The wavelet
coefficient histograms obtained from the reference image are fitted into a generalized Gaussian density model, while
the histograms are determined from the image reproduction as well. The Kullback-Leibler distance between the
probability distribution of the two sets of wavelet coefficients is adopted as a image quality predictor. Nuutinen et al.
[29] measured sharpness as the average difference in standard deviation of the wavelet coefficients among the top rank
correspondence blocks within the reference image and its reproductions. The blocks are detected by SIFT algorithm
which is believed to be robust. The main author also also proposed a similar wavelet based RR metric to measure
sharpness of digital printed natural images, but focusing only on the middle frequency energy in order to avoid
high frequency noises in the image reproductions [36]. In a similar fashion regarding the wavelet transformations
and sharpness determination, Cheng et al. [37] takes advantage Laplace distribution to determine the magnitude
of gradient in images, while Xue et al. [38] uses Weibull distribution. From the entropy information perspective,
Soundararajan et al. [39] proposed a method "Reduced Reference Entropic Differencing” (RRED) to measure the
difference between the entropy of wavelet coefficients of the reference image and its reproduction version. Although
it was not originally designed for sharpness measurement, but it was reported to correlate with perceptual image
quality well. Nevertheless, RR metrics largely rely on wavelet transformation, and they either takes advantage of edge
or detail as features to determine the image distortions.
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2.4. No Reference Metrics

Caviedes et al. [16] developed a content independent NR sharpness metric based on the local frequency spectrum
around the image edges, however this method has problems to predict sharpness quality when the artifacts become
dominant. Maalouf et al. [40] defined a sharpness metric based on the eigenvalues of the wavelet-based multi-scale
structure tensor to accumulate multi-scale gradient information of local regions. The structure tensor has the advantage
to identify edges in spite of the presence of noises, so the metric is suitable to be used to measure the sharpness of
color edges. Cao et al. [41] introduced a sharpness metric which takes the advantage of anisotropic diffusion to build
up a preliminary map of ringing artifacts and refined it by considering the property of ringing structure. Samira et
al. [42] proposed a method to measure color differences to determine the sharpness in local regions. This method is
good in the cases of which the color management is critical to the applications. Vu et al. [43] presented a block-based
metric ”Spectral, Spatial, Sharpness” (S3) to quantify the local perceived sharpness within and across images. Both
spectral and spatial properties of images are utilized to build up indexes for the standard deviation of the impulse
response used in Gaussian blurring.

Hassen et al. [14] developed a metric "Local Phase Coherence based Sharpness Index” (LPC-SI) to identify sharp-
ness as strong local phase coherence in the complex wavelet transform domain. They incorporated this metric into
a framework that allows for computation of local phrase coherence in arbitrary fractional scales. Leclaire et al. [44]
introduced a metric ’Sharpness Index” (SIndex) which can be used to measure the sharpness in a probabilistic scene
the surprisingly small variation of an image compared to that of certain associated random-phase fields. Narvekar et
al. [45] presented an improved no-reference metric based on “Cumulative Probability of Blur Detection” (CPBD).
This metric splits the image reproduction into several regions, and for each region a distinct quality class or qualitative
score is assigned, then a training base method was proposed to determine the centroid of the quality classes for the
assigned scores, and finally the index of image quality class is assigned as the measured image quality. Narvekar et al.
[46] proposed a NR metric based on a cumulative probability of blur detection. Comparing to the saliency-weighted
foveal pooling based measure developed by Sadaka et al. [47], their metric require no additional visual attention or
saliency maps. In the former case, the computational complexity can be largely reduced. Besides, Ferzli et al. [48]
derived from the measured just-noticeable blurs to develop a perceptual-based sharpness metric which is applied to
8x8 blocks instead of the entire test image. The metric account in the response of the HVS to sharpness at different
contrast levels. Wang et al. [49] proposed a metric to predict wavelet coefficients of local phase coherence structures
across scale and space in a coarse-to-fine manner. Another no-reference metric sharpness metric Just Noticeable
Blur Metric” (JNBM) proposed by Ferzli et al. [50]. It integrated the concept of just noticeable blur into a probability
summation model. The metric was reported to be able to predict the relative amount of blurriness in images with
different content.

3. Experimental Setup and Procedure

In our experiment, we use a calibrated camera to capture all pixels on the projection screen in one shot, and the
performance of selected state-of-art sharpness metrics are evaluated with respect to the perceptual ratings collected
from human observers. The experiments take place in a controlled lab environment where it is totally dark. We use
a portable three chip LCD projector SONY APL-AW15 to produce projections on a planar screen which is naturally
hanging on the ceiling. The projector is put on a table placed in front of the projection screen about 3m away with
respect to the throw ratio (1.5) of the projector. A remote controlling laptop is connected to the projector via a HDMI
cable in order to generate full screen projections which have resolution 1920 x 1080 in pixels. On the screen, the
dimension of projection area is approximately 2 X 1.2 in meters. We use a DLSR Nikon D610 which has an imaging
resolution 6048 x 4016 in pixels and with a Sigma VR 24-105mmf/4G (VR off) lens to capture the projections. The
camera is fixed on a tripod which is placed right in front of the projections about 4m away. Pictures are taken remotely
with a software control on the laptop without physically touching the camera. The pictures are saved in raw format and
rendered with aliasing minimization and zipper elimination demosaicing algorithm [51] without automatic vignetting
correction, brightness adjustment, gamma correction and noise reduction etc. We select 7 test images (see Figure 1)
from the CID database [52] to generate 6 levels of Gaussian blur with kernel size 11 and standard deviation 0, 0.5, 1,
1.5, 2, and 3 respectively. The selection criteria of test images is established based on the coverage of different image
features such as hue, saturation, lightness, contrast, skin colors, sky colors, grass colors, size of neutral gray areas,
color transition, fine details and text presence etc.
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Figure 1. The selected 7 test images selected from the CID test image database, each of them is incorporated to generate 6 levels of Gaussian
blurred images with fixed kernel size 11 and standard deviation 0, 0.5, 1, 1.5, 2, and 3 respectively. The selection criteria of the test images is
established based on the coverage of image features such as hue, saturation, lightness, contrast, skin colors, sky colors, grass colors, size of neutral
gray areas, color transition, fine details and text presence etc. The main purpose is to generalize the image features, so there will be no specific
specific dominant.

A digital camera needs to be calibrated in advance to make sure that the pictures taken from this camera will not
corrupted due to optical and electronic issues of the imaging system. For example, the vignetting effect is an optical
phenomenon which stands for the undesirable gradual intensity fall off from the image center to its external limits. It
corrupts all pixels in the captured pictures, and mask the luminance channel in a non-uniform manner. In this paper,
we incorporate the method from our previous research to eliminate the vignetting effect [53]. The basic idea is to take
the advantage of a hazy sky to use it as a closely uniform light source to illuminate on the camera. A luminance mask
is generated and to be applied to all pictures that we take subsequently in order to eliminate the unwanted vignetting
effect. Besides, we notice that some cameras do not always produce linear intensity response as expected with respect
to the current camera settings. For example, the cameras may intend to suppress the sensor responses when the actual
signal strength is reaching its upper bound limit. In this case, we adopt the method that we proposed in the same paper
to optimize camera settings in order to ensure that all camera sensors do give linear responses in all circumstances.

The FR and RR image quality metrics are known to require accurate pixel-wise or feature-wise correspondence
between the image reproductions and their originals respectively. Many existing researches, especially in the FR
approach, place assumptions either on the measurement environment or how the camera is actually deployed and used
in the field. We proposed an image registration method with minimized assumptions to engage the challenge [54].
Since the captured image contents are registered with their originals with confidence, we are able to apply FR, RR and
NR sharpness metrics without worrying about the geometry and resolution correspondence issues. In order to make a
fair comparison, in our experiments, we apply the registered images to all three types of image quality metrics.

We invite 15 human observers to give perceptual ratings to the projected image distortions. Each of them sits on
a chair which is placed exactly where we are supposed to place a camera. The viewing condition is similar to a home
theater like environment where the room is completely dark and the visual angle from the projection boundaries to the
principal axis of observation is about 15 degrees. The blurred images are displayed in a randomized order for every
observer, and each time only one image is displayed. The experiment is set up with category judgment method. For
each displayed image, the observers are asked to indicate the overall perceptual sharpness with a category label which
stands for the rank between no blurring at all and completely blurred corresponding to the ratings numbers ranging
from 1 to 9 respectively.

In this paper, we want to evaluate and compare the sharpness prediction performance of state-of-art image quality
metrics. For one thing, we can find out the metrics that correlate the best with perceptual sharpness of projection
displays; for another, we can compare the FR, RR, and NR metrics to see which category of them has more advantages
on the sharpness predictions in a group-wise comparison manner. To the best knowledge we have, researches from
this perspective have not been well engaged in the past. So, we adopt eleven representative image quality metrics in all
three categories: SSIM [31], VSNR [34], VIF [33], FSIM [32], RRIQA [35], RRED [39], LPC-SI [14], S-Index [44],
CPBD [45], INBM [50], and S3 [43]. There metrics were either designed to or can be potentially used to measure
image sharpness. The selection criteria is established based on the citation frequency, as well as the sharpness features
that the metrics rely on; so the typical sharpness metrics are covered in a certain degree, and the corresponding
observations will produce hints to the design of a good sharpness metric for projection displays. The performance
of these metrics are evaluated with respect to the Pearson and Spearman correlation coeflicients between the metric
results and the mean Z-scores of perceptual ratings.
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4. Experimental Results

4.1. Subjective Sharpness

The perceptual ratings are collected from human observers and they are scaled to generate Z-scores [55] (see
Figure 2). It is clear that the perceived sharpness decreases when the blur level increases. However, their relationship
should not be simply interpreted with a linear regression model, since the Z-scores for test image 1, 4, 6 and 7 appear
to have a flat region between the first and second blur levels. This observation suggests that there is a lower bound
threshold for observers to detect the sharpness changes. Another observation is that the general tendency of Z-scores
for all test images are fairly similar, and their value ranges are almost identical. An overall plot to incorporate all test
images is presented in the last plot of Figure 2. Investigation of the results show differences in the agreement between
observers. For example, the variance for the blur level 4 is larger than others in test image 1, and also the variance for
the blur level 1 in test image 5. However, the one or two outliers are minorities comparatively to all human observers
in such cases. This observation suggests that the observers have agreements regarding perceptual sharpness despite of
image content.

Z-scores of Perceptual Ratings for All Test Images
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55@@‘ 55@@-7 s Bgm.-. ¢ MAD:
[e) + o 1ot - O + 5 o) :
Sofi LK gOl+ I "EEI80* Iy, 80757 TH
? Bz P I§I ? By, 2 [+41* 7 &<
N T EN * N T T EN T B
-2 2 -2 + 2 +
1 2 3 45 6 1 2 3 4 5 6 1 2 3 45 6 12 3 45 6
Sharpness Levels Sharpness Levels Sharpness Levels Sharpness Levels
Test Image 5 Test Image 6 Test Image 7 All Test Images
w 2= o 2 _ » 2 5 & 5 2 T
(0] 25 T o T+ - B T - +
e FHAs: EE%Ra. -2 Faz: S IEEELt
gOF IEEG _gOoT .50 HB° iE@ 0% 4 :
N * F BN + BEN =L N R
-2 -2 4+ -2 -2 L %
1 2 3 45 6 1 2 3 45 6 1 2 3 45 6 12 3 45 6
Sharpness Levels Sharpness Levels Sharpness Levels Sharpness Levels

Figure 2. Z-scores of perceptual ratings collected from 15 human observers based on 6 blur levels of 7 selected test images. The blur is simulated
with Gaussian filter with kernel size 11 and standard deviation 0.5. The red dots stand for mean Z-scores for each blur levels over all human
observers, while the red bars stand for the median. The blue box stand for the 25% inner quantile of Z-scores, and the blue bars stand for 75%
outer quantile of Z-scores. The red crosses stand for outliers with respect to the 75% outer quantile. All plots are scaled to have the identical value
ranges for Z-scores from -2.5 to 2.5.

4.2. Objective Sharpness

4.2.1. Performance Comparison by Correlations

We calculate the Pearson correlation coefficients between the objective and subjective sharpness for each test
image (see Figure 3). The purpose is to understand how well the metrics perform with respect to specific image
content. It is clear that in most cases the correlation coefficients are larger than 0.85; especially, for the SSIM, VIF,
FSIM and LPCSI metrics, the correlation coefficients are above 0.9 for all test images. In addition, the top rank
metrics have fairly close performance for most of the test images. From this perspective, the state-of-art image quality
metrics have good correlations with perceptual sharpness in general. It is interesting to see which metric performs
the best, and it can be more interesting to figure out the cause of poor metric performance. For example, the VSNR
metric for test image 2, RRED metric for test image 3, RRIQA, SIndex, CPBD and S3 metrics for test image 4, have
correlation coefficients less than 0.8. In order to explore the common patterns, we generate the plots of objective

6
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sharpness versus perceptual sharpness for the VSNR, RRED, RRIQA, SIndex, CPBD and S3 metrics for specific
test images (see Figure 4). The value ranges of perceptual sharpness are limited to between -2.5 and 2.5, and they
are identical to the ones used in Figure 2. However, the value ranges of objective sharpness are not identical to all
test images, since the scales of actual metric results are image dependent. The straight lines represent the linear
regressions of objective sharpness versus perceptual sharpness based on least-square-fitting method. The circles stand
for the measured sharpness, and each of them corresponds to one sharpness distortion level. By looking at the plots,
it is clear that the VSNR and RRED metrics have inconsistent rank orders on measured sharpness for test image 2
and 3. For the test images 4, the RRIQA, SIndex, CPBD and S3 metrics all reserve the rank orders well, but they
have inconsistent sharpness derivatives between consecutive distortion levels. For the strongly blurred images (the
left most three distortion levels, their standard deviations for Gaussian blur are 3, 2 and 1.5 respectively) the sharpness
derivatives are less than expected; for the slightly blurred images (the right most three distortion levels, their standard
deviations are 1, 0.5 and 0 respectively), the sharpness derivatives are larger than expected. In contrary, the VIF and
FSIM metrics perform very well for test images 4 in both terms of rank order and sharpness derivative.

The Pearson Correlations Between Objective and Subjective Results
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Figure 3. The Pearson correlation coefficient between objective and subjective sharpness for each test image over all distortion levels. In the
experiment, we have 7 selected original test images, each image is blurred with Gaussian filter with kernel size 11 and standard deviation 0.5. We
invite 15 human observers in the subjective experiments to give perceptual ratings.

4.2.2. Performance Comparison by Groups

It is not very convenient in Figure 3 to point out which metric performs the best overall with respect to the
average prediction accuracy and stability. From this point of view, we generate box plots to depict the distributions
of correlation coefficients for each metric despite of image content (see Figure 5), so each data column in the plots
represents the correlation coefficients for all test images at all distortion levels for one specific metric. The red dots
stand for the means of coefficients while the red bars stand for the medians. The box stand for the 25% inner quantiles
and the bars stand for 75% outer quantiles of correlation values. The red crosses stand for outliers with respect to
the 75% outer quantiles. Comparing to the typical analysis in existing literature, we generate box plots instead of
introducing only means and confidence intervals. In this way, we are able to observe the mean, median and variance
as well as the outliers. Since the captured images in the experiments are all registered with their original ones, all
metrics in the experiments have the identical input images with the exactly the same dimension, content and optical
degradation. For convenience, we group the metrics into FR, RR and NR categories. SSIM, VSNR, VIF and FSIM are
FR metrics, RRIQA abd RRED are RR metrics, while the rest are NR metrics. Obviously, the average performance
of FR metrics is higher than NR metrics, and the FR metrics tend to give more stable outcomes with respect to
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The Objective Sharpness Versus Perceptual Sharpness
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Figure 4. The plots of objective sharpness versus the perceptual sharpness for specific test images. The ranges of perceptual sharpness scaled to
be between -2.5 and 2.5 which are identical to the ones used in Figure 2. However, the ranges of objective sharpness are not identical to all test
images, since the scales of metric results are image dependent. The straight lines stand for the linear regressions for objective sharpness versus
perceptual sharpness. The crosses stand for the sharpness predictions made by objective metric, and each of them corresponds to one sharpness

distortion level.

the variance. Since one goal of image quality assessment is to maximize the prediction accuracy of image quality
attributes, we should consider to incorporate FR metrics in priority.

4.2.3. Overall Performance Comparison

Notice that in the Figure 4 the scales of objective sharpness are not identical. This is mainly because each image
quality metric has its own sharpness scale regarding specific image content. In other words, the rank order of sharpness
predictions among different distortion levels might be well preserved but not between different test images for one
metric (see Figure 6). In this figure, we can see that the rank order of objective sharpness is well preserved within
each test image. However, the value range and variance of objective sharpness may vary a lot from one test image
to another. Although the objective sharpness are not normalized for all metrics, the sharpness prediction curves for
LPCSI metric are largely get across with each other, while for VSNR metric the curves have clearly distance from
each other. This observation suggests that the LPCSI metric adapts to image content better than the other two metrics,
and it should be applied in the circumstances that the generalization of sharpness prediction is a concern. In order
to compare the generalization performance, we calculate the Pearson correlations between objective and subjective
sharpness over all distortion levels for all test images for each metric (see Figure 7). It is clear that LPCSI metric
delivers the best overall generalization performance, and the corresponding correlation coefficient is larger than 0.85
even in Figure 6 we have seen that its sharpness prediction curves for test image 1 and 3 are relatively away from

others.

5. Conclusion

In this paper, we conduct an experimental study of perceived sharpness on projection displays in a home theater
like dark room. The perceptual results suggest that the perceived sharpness follows a nonlinear tendency pattern
but its rank order remain the same as the blur level increases. The correlations between the metrical and perceptual
results indicate that SSIM, FSIM and VIF metrics give excellent prediction performance in most cases in terms of
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The Overall Performance of Sharpness Metrics
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Figure 5. The prediction performance of sharpness metrics over all test images. The red dots stand for mean Pearson correlation coefficient for each
sharpness metric over all test images, while the red bars stand for the median. The blue box stand for the 25% inner quantile of correlation values,
and the blue bars stand for 75% outer quantile of correlation values. The red crosses stand for outliers with respect to the 75% outer quantile. The
notation FR and NR beside the metric names are the indications for FR and NR metrics respectively.

both correlation values and their variances. According to the group comparison, FR metrics have comparatively
better prediction performance than NR metrics. In the coming future, we should turn to focus on the design of a
good sharpness metric based on the VIF metric for projection displays following the hints that we obtained from this
research.
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Extending Subjective Experiments for Image Quality
Assessment with Baseline Adjustments

Ping Zhao and Marius Pedersen

Gjovik University College, Teknologivn. 22, 2815 Gjovik, Norway

ABSTRACT

In a typical working cycle of image quality assessment, it is common to have a number of human observers
to give perceptual ratings on multiple levels of distortions of selected test images. If additional distortions
need to be introduced into the experiment, the entire subjective experiment must be performed over again in
order to incorporate the additional distortions. However, this would usually consume considerable more time
and resources. Baseline adjustment is one method to extend an experiment with additional distortions without
having to do a full experiment, reducing both the time and resources needed. In this paper, we conduct a study
to verify and evaluate the baseline adjustment method regarding extending an existing subjective experimental
session to another. Our experimental results suggest that the baseline adjustment method can be effective. We
identify the optimal distortion levels to be included in the baselines should be the ones of which the stimulus
combinations produce the minimum standard deviations in the mean adjusted Z-scores over all human observers
in the existing rating session. We also demonstrate that it is possible to reduce the number of baseline stimuli,
so the cost of extending subjective experiments can be optimized. Comparing to conventional researches mainly
focusing on case studies of hypothetical data sets, we perform this research based on the real perceptual ratings
collected from an existing subjective experiment.

Keywords: subjective experiment, baseline adjustments, image quality, psychometric scaling

1. INTRODUCTION

Image Quality Assessment (IQA) is a complicated task, because it associates with many systematic methodologies
and one has to follow a well defined work-flow to engage his/her research problems. Many researches regarding
IQA have been done in the domains like color printing,'? flat-panel display,® ¢ image compression® ¢ and vision
science.”® Subjective IQA still remains the most precise way to quantify image quality,® despite the effort in
finding an objective quality metric.'® In order to extensively evaluate the quality of imaging metrics or systems,
a large number of image stimuli and human observers are required, and the scaling method should be carefully
specified as well. Experimental outcomes are usually constrained by the these factors. The number of image
stimuli is proportional to the amount of time used by the human observers, and the length of the scaling study.
There is constant trade off between the wish to have as many stimuli as possible and the acceptable resource
(time, money, observers, etc.) consumption. Usually, an agreement between the number of stimuli and observers
are found, which is a reasonable midpoint.

Perceptual ratings are commonly collected from multiple experimental sessions, where a session stands for a
group of human observers and their ratings on a set of stimuli. The entire process consumes considerable time
and resources. Many approaches have been proposed to address this research challenge. In ISO standard 20462-
2,11 triplet comparison was introduced to reduce the number of pairs to be evaluated by human observers or the
use of incomplete data.'? 16 These methods have the advantage of decreasing the number of stimuli that can be
evaluated. Engeldrum proposed a method to split the subjective experiment into different segments.” However
it can be problematic since observers need to come back several times in order to finish the experiment. Time is
always a limiting factor for subjective experiments, and therefore many guidelines can be found concerning the
maximum amount of time required. One hour limitation is a common rule of thumb,? 718 while the International
Telecommunication Union recommends 30 minutes time limitation,'® and Larabi recommends that the median
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time over the observers should not be more than 45 minutes.2? Software have also been created to allow for
large-scale experiments,?! for both laboratory and on-line experiments. Regardless of the method used they can
usually not be extended to include additional distortions or reproductions after the experiment is completed.
Suppose that in an existing session, we have ratings of four levels of image distortions; later, two additional
distortions need to be introduced to extend the existing subjective experiment. In this case, conventionally, we
have to conduct a new experiment with all six levels of image distortions. The overall amount of workload can
be demanding. In addition, in practice, the human observers involved in the new session are unlikely to be
identical to those invited in the existing session. However, if we have enough human observers, the averaged
ratings regarding the existing image distortions should be statistically similar across the two sessions. In this
context, a natural research question to ask would be that is it possible to take this advantage without executing
the entire experiment over again, especially when the amount of distortions is large.

Baseline adjustment can be a potential answer to this research problem. This method introduces common
stimuli (one or more distortions) to form a baseline in order to determine the comparability of ratings between
different experiment sessions, and allows the computation of scale values expressed relative to responses for the
baseline stimuli.??2 The baseline adjustment is carried out separately for each original stimulus. Many existing
researches have introduced baseline adjustments into their scaling procedures.??2” However, in these researches,
either the selection criteria of baseline is not discussed in depth,?272% or the baseline stimuli were simply selected
randomly from existing candidates.?%27 A natural research question to ask is about what types of stimuli should
be included in order to form a representative baseline, and how many stimuli are essential.

In this paper, we conduct a study to verify and evaluate the baseline adjustment method for extending
subjective experiments. The first goal is to verify that the baseline adjustment is an effective method, and
the second goal is to identify the type and number of stimuli that we should use in the common baseline in
order to minimize the experimental workload and complexity. Comparing to conventional researches focusing on
case studies of hypothetical data sets, we perform this research based on real perceptual data collected from an
existing subjective experiment. The rest of this paper is organized as follows: first, in Section 2, we study the
existing psychometric models for subjective experiments and discuss the research challenges for psychometric
ratings and scaling procedures. In Section 3, we present our experimental setup and results. At last, in Section
4, conclusions are drawn based on the data observations.

2. BACKGROUND
2.1 Psychometric Models

The goal of subjective IQA is obtaining the perceptual indications regarding a specific image quality attribute
or overall image quality. A typical work-flow can be generalized as a conceptual psychometric model which is
divided into two major procedures: rating and scaling.

In the rating procedure, the human visual system acquires the displayed images; then the brain interprets
the information to generate opinions regarding the underlying image quality attribute. This implicit perceptual
and cognitive processes vary largely from one observer to another, but they can be potentially influenced via the
interactions with either the instructor or the environment in the field. In the case of IQA, the end product of the
rating procedure is a matrix representing the numerical ratings of each level of image distortion from all human
observers. Brown et al.?® presented an excellent research regarding the challenges of interpreting the rating
scales. They identified the research challenges and classified them into five major categories: unequal-interval
judgment criterion scales, lack of inter-observer correspondence, linear difference between group average criterion
scales, lack of intro-observer consistency, perceptual and criterion shifts. A good understanding of these problems
is essential for advancing the design and improvements of psychometric model. Suppose that we have four human
observers A, B, C, and D, and they are asked to rate three distortion levels of one test image with category
judgment method; obviously, each human observer has his/her own judgment criterion scales. In this context,
the challenges in the rating procedure can be briefly demonstrated in Figure 1. Typically, the judgment criterion
scales have different origins, ranges, and intervals. The differences of origins and ranges are mainly due to the
natural preference for perception and/or the temporary variations of judgment criterion scales; and they can
be estimated with linear transfer functions which are formulated with psychometric scaling models. However,
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Figure 1. The judgment criterion scales of four human observers, A, B, C' and D, and they are asked to rate three
levels of distortions of one test image with category judgment method. Obviously, each human observer has his/her own
judgment criterion scales. The ratings they have made are (4,6,7), (0,2,5), (5,7,8), and (5,7, 8) respectively. Typically,
the judgment criterion scales have different origins, ranges and intervals.

so far there is no effective way to quantify the interval differences, since the psychometric rating is completely
an implicit perceptual and cognitive process. Empirically, well trained observers with color expertise are more
likely to have above average equal intervals, while the non-experts are not. One may argue that it is possible
to employ Monte Carlo like statistical analysis to estimate the judgment criterion scales, however the essential
large amount of random tests are impractical to be applied to a large group of human observers. In many cases,
the ratings from an individual observer can be inconsistent. To the same stimulus, regarding a specific image
quality attribute, one observer may give completely different ratings in various rating sessions. If the variation
can be assumed to be a random factor which follows a normal distribution around the true perceived value. The
real perceived value can be estimated by statistical regression, but the trade off is that the regression requires a
large number of random samples of which the collection is both time and resource consuming.

In the scaling procedure, the raw ratings are transformed in order to distinct the perception of a stimuli and
the corresponding judgment criterion scale for assigning rating to that stimuli. The outcomes indicate the relative
impression of the perceived image quality attribute or overall image quality. They are meaningless without the
references to the observers’ judgment criterion scales. Brown et al.?> presented six typical scaling methods:

e Median rating: it uses median ratings over all human observers regarding a single stimuli as the scaled
ratings. There is no assumption of equal intervals of judgment criterion scales. In contrast, it provides
only the ordinal information of ratings.

e Mean rating: it uses mean rating as the scaled output, and it requires the interval of judgment criterion
scales must be equal. However, this assumption does not hold in most cases.

e Origin-adjusted rating: it removes the rating mean in prior of aggregating them for each human observer
and it cancels the differences of origins of judgment criterion scale, but not the differences of interval sizes.



e Z-score: it is similar to origin-adjusted rating in removing the differences of shift. In addition, it normalizes
ratings with respect to their standard deviation, so the linear differences between observers are eliminated.

e Least square rating: it does not merely inherit the features of Z-score scaling, but also counts in the
correlations between individual and all observers in the same group. Larger correlation indicates for larger
contribution from individual observer to the same group of observers.

e Scenic beauty estimate: it was originally developed to scale ratings of scenic beauty of forest area, but the
procedures are also appropriate for use with ratings of other types of stimuli. The differences in ratings
are assessed by comparing an observers rating distribution (assumed to have a normal distribution) for one
landscape area against each of several other landscape areas. It features with a relative operating charac-
teristic, where a bi-variate graph of the cumulative probability of the ratings for the selected landscape,
is compared against the cumulative probability of other ratings, respectively. The scaled outcomes are
generated by calculating the distance of the standardized relative operating characteristic from a positive
diagonal of difference matrix.

2.2 Baseline Adjustments

In a typical working cycle of subjective IQA, the case may occur, in the data post-processing phase, that the
researcher realizes that it is mandatory to adopt observations on additional image distortions to draw the final
conclusions. For example, a general tendency of human perception has been discovered; but the numerical
distance between two consecutive distortion levels might be larger than they are expected. As a result, many
perception details within these pre-defined intervals are not available. Conventionally, the researcher needs to
conduct a large new subjective experiment incorporating all existing and additional image distortions. The
purpose is to make all stimuli to be rated under the same circumstances, so the unwanted experimental artifacts
between possibly two or more separate sessions can be largely avoided. However, the whole process is non-trivial
and it may consume considerable time and resources.

Baseline adjustment can be a potential answer to this challenge. This method introduces common stimuli
to form a baseline in order to determine the comparability of ratings between different experiment sessions,
and allows the computation of scale values expressed relative to responses for the baseline stimuli.?> The basic
concept is depicted in Figure 2. The ratings for unique stimuli in both rating sessions are scaled respectively
with respect to the selected common baseline in either session, and then they are merged to generate the final
ratings. Suppose that we have one human observer, who is asked to rate four stimuli 1, 2, 3, and 4 in the first
session and another two additional stimuli 5 and 6 in the second session. In this case, stimuli 3 and 4 are selected
to form a common baseline. Notice that the ratings for them across the two rating sessions may have different
values. The ratings of unique stimuli 1 and 2 in the first session are scaled with respect to the baseline in the
rectangle on the left in Figure 2, and the ratings of unique stimuli 5 and 6 in the second session are scaled with
respect to the baseline in the rectangle on the right in Figure 2. Since we are merging the scaled ratings from the
second rating session to the first one, then the ratings for the baseline in the first session is scaled to generate the
scaled baseline which has zero mean and normalized standard deviation. Finally, all scaled ratings are combined
to be used as the final ratings. It is important that the stimuli for the two sessions are rated under the same
circumstances. In order to achieve this goal, the following precautions should be followed:23

e the observers for each session should be randomly selected from the same observer population,

e the observer groups should be sufficiently large,

the baseline stimuli should be representative of the full set of stimuli to be rated,

the non-baseline stimuli should be randomly assigned to the different sessions,

all other aspects of the sessions (e.g., time of day, experimenter) should remain constant.



Baseline adjustment is a higher level of abstraction on rating scaling, it must be integrated with specific scaling
method which is well mathematically formulated. All scaling methods introduced in the previous Section 2.1
can be adopted as the candidates. In this paper, we choose to integrate Z-score scaling with baseline adjustment
method. Z-score scaling is widely used in the psychometric modeling, mainly because of the simplicity on its
definition and it eliminates the problems of origin shifting and unequal range of judgment criterion scales. Beyond
this, the scores are straight forward to compute with computer programs. In this context, the raw ratings are

scaled in the following way:2°
BZ;; = (Ri; — BMR;) /BSDR,

where BZ;; stands for the baseline-adjusted Z-score of stimulus ¢ for observer j, R;; stands for the ratings
assigned to stimulus ¢ by observer j, and BM R; stands for the mean of ratings assigned to the baseline stimuli
by observer j, and BSDR; stands for the standard deviation of ratings of the baseline stimuli by observer j;
then the BZ;; are then averaged across all observers to generate one scale value per stimulus as BZ;.
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Figure 2. Depiction of the basic concept of baseline adjustment method. In this case, stimuli 3 and 4 are selected to form
a common baseline. Notice that the ratings for them across the two rating sessions may have different values. The ratings
of unique stimuli 1 and 2 in the first session are scaled with respect to the baseline in the rectangle on the left, and the
ratings of unique stimuli 5 and 6 in the second session are scaled with respect to the baseline in the rectangle on the right.
Since we are merging the scaled ratings from the second rating session to the first one, then the ratings for the baseline in
the first session is scaled to generate the scaled baseline which has zero mean and normalized standard deviation. Finally,
all scaled ratings are combined to be used as the final ratings.

3. EXPERIMENT

The first goal of this research is to verify that the baseline adjustment is an effective method for extending
subjective experiments, and the second goal is to identify the type and number of image distortion levels that
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Figure 3. The 8 test images: one peak white patch, one neutral gray patch (normalized input gray value equals to 0.5),
three natural color images, and three slide-like images.

we should include in the baseline. In this paper, we focus on integrating baseline adjustments with Z-scores to
scale real perceptual ratings collected from an existing subjective experiment rather than hypothetical data.

3.1 Experimental Procedure

In this paper, we take the advantage of the data collected from an existing subjective experiment to simulate
the real scenarios. The subjective experiment was designed to evaluate the perceptual spatial uniformity of
projection displays. The natural spatial non-uniformity for every pixel was scaled into 7 levels, and then we
stacked the multiple levels of non-uniformity onto 8 carefully selected test images (see Figure 3) respectively; so
56 stimuli in total are shown to each observer in a completely randomized order. Since projection displays are
most commonly used in a dark room or a regular meeting room, then we decided to conduct the experiment
in a control lab environment where we try to simulate a home-theater-like environment. In this environment,
we can avoid wanted imaging artifacts (for example, non-uniform sun light passing though windows or varying
ambient light disturbance). In this case, two calibrated SONY APL-AW15 LCD projectors (throw put: 1.5)
were placed right in front of and about 3m away from a planar screen to produce two projections (both in
1.5x0.9m) in parallel simultaneously. 20 human observers were invited to join the experiment. 13 of them had
color science educational background, while the rest did not. 14 of them are male and the rest are female. All
of them were required to have a mandatory visual acuity test. The observers were asked to sit in front and
between the two parallel projections, so visual angles (around 20 degrees from the center line to the left or right
projection boundaries respectively) to the two projections were approximately the same (viewing distance was 4
meter). Each observer was asked to use a natural number between 0 (corresponding to completely uniform) to
10 (corresponding to not uniform at all) to indicate his/her opinion regarding the overall magnitude of perceived
spatial non-uniformity. All observers were required to do the experiment twice (each session was 20 minutes on
average), resulting in 2240 perceptual ratings in total.

For the experiment in this research, as it is demonstrated in Figure 4, we separate the image distortions
into two groups. For example, the first group includes distortion level 1 to 6, and the second group includes
distortion level 4 to 7. The ratings for distortion level 1 to 3 in the session 2 are ignored. In this case, we
are simulating a scenario which extends existing subjective experiment with distortion level 1 to 6 in order to
adopt additional distortion level 7; and the ratings for distortion level 4 to 6 are used to form the adjustment
baseline for Z-score scaling in both rating sessions. Since the ratings are scaled on observer basis, in this case,
we demonstrate how to scale the ratings for Image 1” from ”Observer 1”. The ratings in ”Part 1”7 are scaled
with respect to the ”Baseline 1”7 in order to generate scaled ratings in ” Adjusted Part 1”7, the rating in ”Part
2”7 is scaled with respect to the "Baseline 2” in order to generate scaled ratings in ”Adjusted Part 2”7, and
the ratings for distortion level 4 to 6 on "Image 1”7 from ”Observer 1”7 in ”Session 1”7 are scaled with respect
to ”Baseline 1”7 in order to generate ”Adjusted Ratings in Baseline 1”. Notice that the two baselines share
the same distortion levels, but they may have different rating values. Each baseline includes only the ratings
from ”Observer 1” for all test images on the corresponding distortion levels. Eventually, all adjusted ratings in
the table below are merged to generate a full set of adjusted Z-scores. Then the mean adjusted Z-scores over
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Figure 4. We separate the image distortions into two groups. For example, in this figure, the first group includes distortion
level 1 to 6, and the second group includes distortion level 4 to 7. The ratings for distortion level 1 to 3 in the session
2 are ignored. In this case, we are simulating a scenario which extends existing subjective experiment with distortion
level 1 to 6 in order to adopt additional distortion level 7; and the ratings for distortion level 4 to 6 are used to form the
adjustment baseline for Z-score scaling in both rating sessions. Since the ratings are scaled on observer basis, in this case,
we demonstrate how to scale the ratings for "Image 1”7 from ”Observer 1”. The ratings in ”Part 1”7 are scaled with respect
to the ”Baseline 1” in order to generate scaled ratings in ” Adjusted Part 1”7, the rating in ”Part 2” is scaled with respect
to the ”Baseline 2” in order to generate scaled ratings in ” Adjusted Part 2”7, and the ratings for distortion level 4 to 6
on "Image 1”7 from ”Observer 1”7 in ”Session 1”7 are scaled with respect to ”Baseline 1” in order to generate ” Adjusted
Ratings in Baseline 1”. Notice that the two baselines share the same distortion levels, but they may have different rating
values. Each baseline includes only the ratings from ”Observer 1”7 for all test images on the corresponding distortion
levels. Eventually, all adjusted ratings in the table below are merged to generate a full set of adjusted Z-scores. Then
the mean adjusted Z-scores over all observers are correlated with the non-adjusted Z-scores over all human observers
in original ”Session 1” to determine the performance of the underlying baseline. Since the ratings for the two original
sessions are collected from the identical human observers in the same circumstance, the average correlations are expected
to be high if the baseline is appropriately specified.



all observers are correlated with the non-adjusted Z-scores over all human observers in original ”Session 1”7 to
determine the performance of the underlying baseline. Since the ratings for the two original sessions are collected
from the identical human observers in the same circumstance, the average correlations are expected to be high
if the baseline is appropriately specified. In this context, we calculate both Pearson and Spearman correlations.
Pearson correlation compares the general tendency of two groups of data, while Spearman correlation focuses on
the rank order. Obviously, there are many possible combinations of distortion levels and unique distortion levels
among the two session, so we write a computer program to permute all combination possibilities and calculate
corresponding correlations accordingly. In this way, we have the flexibility to determine the optimal type and
numbers of distortion levels included in the baseline with respect to the correlation values. The only constrain
we apply here is that the merged full set of adjusted Z-scores must include all 7 levels of distortions, since the
correlations require the two groups of numerical data must share identical length.

3.2 Experimental Results

The experimental results are presented in two parts. In the first part, the average correlation results and analysis
are presented, the results can be regarded as image content independent. In the second part, the correlation
results regarding individual image content are presented.

3.2.1 Overall Correlation Results

In this section, we elevate the observation to a higher level where we focus on the average correlations over all
human observers and all test images. The purpose is to identify the general tendency which enables the analysis
on how the correlation values associate with the number of distortion levels included in baselines, despite of
individual image content. In order to achieve this goal, we generate all possible distortion combinations and
calculate the average over all test images. Then, we get the plots depicted in Figure 5. In the plots, the
horizontal axis indicates the number of distortion levels included in the baselines, and the vertical axis indicates
the corresponding correlation values. Each box stands for a category in which the distortion combinations share
the identical number of distortion levels in the baseline, even they might not have exactly the same distortion
levels. The distortion combinations in the plots cover all combination possibilities, except the category 6 is not
included because in that case there will be no distortion level selectable for simulated new rating session. The
blue boxes indicate the inner 25% quartiles, while outer bars indicate outer 75% quartiles. The bars inside the
inner boxes stand for the median values each category respecively, since they are very close to the mean values
indicated by the dots, then we know that the correlation distributions are approximately non-skewed.

Among all categories, the category 0 indicates the case that we apply only Z-score scaling without baseline
adjustment to the raw ratings of two sessions respectively, and calculate the correlations between them. In
category 7, all distortion levels are included in the baseline, then we apply the baseline adjustment Z-score
scaling to all ratings in both sessions. Since all distortions are adopted, in this case, the baseline adjusted Z-
score scaling is equivalent to the non-adjusted Z-score scaling, then the correlation values are exactly ones. It
is clear that both the mean Pearson and Spearman correlation values are monotonically increasing, while the
standard deviations are shrinking, as the number of distortion levels included in the baseline increases. So we
can make a conclusion that, in general, despite of the image content, the more distortion levels we adopted in the
baseline, the better and more stable correlations we should have between the existing ratings and the expanded
ratings; to a certain distortion level combination included in the baseline, no matter how the unique distortion
levels in two session vary, the correlation values tend to less variant. However, meanwhile, the workload of
repeating the subjective experiments increases as well. Notice that, in each category, the correlation values can
rise up close to one. In other words, it is possible to achieve high correlations without adopting all distortion
levels in the baseline. Then the question comes as what are the most optimal distortion levels to be included in
the baseline, so the correlation values are as high as possible despite the actual combinations of unique distortions
levels involved for the existing and expanded sessions.

3.2.2 Correlation Results for Individual Images

The correlation values do not merely vary with respect to the number of distortion levels included in the baseline,
but also vary with individual image content. The research purpose in this section is to identify the connections
between correlations and corresponding image content. We generate the plots of correlation values versus all
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Figure 5. The box plots of Pearson (left) and Spearman (right) correlation values over all test images, the variance in each
category is assumed to stem from the differences of judgement criterion scales between human observers but not between
their perceptions. The mean values of correlations are depicted with dots around the bars which stands for the median
values. Since mean values are calculated over all test images, they can be regarded as image content independent. In each
category, all distortion combinations share the same number of levels included in the baseline.The category 0 indicates
the case that we apply only Z-score scaling without baseline adjustment to the raw ratings in two sessions respectively
and determine the correlations between them. In category 7, all distortion levels are included in the baseline, then we
apply the baseline adjustment to all ratings in both sessions. Since all distortion levels are adopted, the baseline adjusted
Z-score scaling is equivalent to the non-adjusted Z-score scaling, then the correlation values are exactly ones.

possible distortion level combinations. In this process, we find out that for a certain distortion level combination,
the plot of Spearman correlation appears to be approximately a discrete version of Pearson correlation; so, in the
following discussions, we focus only on Pearson correlations. We generate the plot of mean Pearson correlations
over all human observers versus all possible distortion level combinations for each test image, and two of them
are presented in Figure 6.
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Figure 6. The plots of Pearson correlations versus all possible distortion level combination for test image 1 (left) and test
image 2 (right). The X axis stand for the index of all possible distortion level combinations, it ranges from 1 to 1080
because we have 1808 possible combinations in total. The Y axis stand for the Pearson correlation values. For convenience
to observe, we connect discrete correlation points with curves as they are illustrated in the figures. Consecutive correlation
points for which the corresponding distortion level combinations may adopt similar distortion levels.

It is clear that the correlation values change dramatically depending on the actual choice of distortion com-



binations. For test image 1, one distortion combination (existing session: 1, 3, 5, 6, 7, simulated new session: 2,
4, 7, baseline: 7, the numbers stand for the indexes of distortion levels) gives Pearson correlation 0.856, while
another distortion combination (existing session: 1, 4, 5, 6, 7, simulated new session: 2, 3, 7, baseline: 7) gives
Pearson correlation -0.02. Both of them share the numbers of distortion levels in the baseline and two simulated
rating sessions, and also they have exactly the same baseline, but the correlations are adversary. They only
differ on the combinations of unique distortion levels. This observation gives us a hint that the most optimal
distortion levels to be included in the baseline do not necessarily correspond to the highest possible correlation
values, but they should produce the least correlation variance no matter how the unique distortion levels are
combined. In other words, with the presence of an optimal baseline, the unique distortion level combinations
have limited influence on the correlation variance. In some cases, with a non-optimal baseline, the correlation
may happen to have the highest value among all, because the perceptual ratings are fuzzy in nature and the
highest correlation might be caused by random rating noises.

This theory can be also supported by the mean and standard deviation of correlations represented in Table 5.
Taking test image 3 into consideration, we represent the distortion combinations which have identical baselines
with one column of data in the table. The mean and standard deviation are calculated with respect to their
Pearson correlation values. First, we pay special attentions to the baselines which involve only one distortion
level (first 7 columns on the first row). It is easy to see that the distortion levels can be ranked with respect
to their corresponding standard deviations. In this case, the 4th baseline has the lowest standard deviation as
well as the largest correlation mean. Among the baseline having two distortion levels, the one with distortion
level 4 and 7 gives the minimum standard deviation as well as the highest correlation mean. Then we have
similar observations on the cases (marked with bold texts) where three and more distortion levels are involved
in the baselines. These baselines might not always give the best correlation values but they do give the ones
close to the best. Meanwhile the standard deviations are always optimal which means with the presence of
these baselines unique distortion levels have very limited influence on the correlation results. From this point of
view, we can make a conclusion that the most optimal baselines must include the distortion levels which gives
the lowest possible standard deviation on correlation results when only one of them is included in the baseline.
These optimal distortion levels should be included as many as possible to improve the correlation results. The
optimal baselines are always specified only to their corresponding image, since it is image content related.

In a typical situation of extending subjective experiments, we have only the raw ratings for existing image
distortion levels but not the ones for additional distortion levels. In this case, we cannot reply on the correlations
between different rating sessions to determine the optimal baselines. However, we can use each of the known
image distortion levels as a baseline and calculate the adjusted Z-scores of the rest of ratings. Then, we determine
the correlation between the adjusted Z-scores and the original non-adjusted Z-scores to find out which baseline
is most optimal with respect to the method described in the previous paragraph. This is an approximation
approach because in this context we implicitly make an assumption that the newly introduced image distortions
have limited influence on scaling the existing ratings. In other words, mean and standard deviation of selected
baseline in the new session are expected to be close enough to the ones in the existing session, and the number
of additional distortion levels should be small. Ideally, we should introduce one additional image distortion at
one time. If two or more are required, then the researcher should adopt them one by one in an iterative fashion.
The validity of this constrain is supported by the fact the best correlations are always associated with the cases
that only one additional image distortion is introduced at a time in the experiments of this paper.

4. CONCLUSION AND FUTURE WORKS

In this paper, we conduct a study to verify and evaluate the baseline adjustment method regarding extending
subjective experiments from one existing session to a new session. The experimental results suggest that the
baseline adjustment method works effectively because both Pearson and Spearman correlations give high values
once the optiaml baseline is specified. We identify the most optimal baseline should includes the combinations
of image distortion levels that produce the minimum standard deviation of the mean adjusted Z-scores over all
human observers in the existing rating session. We demonstrate that it is possible to reduce the number of image
distortion levels included in the baseline, however the trade off is to lose the confidence of Z-score correlations
between the two rating sessions. This is our first tempt to address such a research problem. Since we are using



the perceptual data collected from a small subjective experiment to simulate real scenarios, the type and number
of test images, image distortions, and human observers are limited. In the coming future, we should extend this
research with a larger experiment to claim statistic significance on the outcomes.
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5. APPENDIX

Table 1. The Mean and Standard Deviation of Pearson Correlations for All Groups of Distortion Combinations

Baseline 1 2 3 ) 5 6 7 1,2 [ 1,3 | 1,4 [ 1,5 | 1,6 | 1,7 | 2 3
Mean 758 | 852 | .859 | .975 | .942 | .892 | .957 | .894 | .916 | .969 | .923 | .898 | .952 | .864
Std 086 | .099 | .088 | .012 | .042 | .066 | .026 | .078 | .066 | .024 | .059 | .076 | .042 | .088
Baseline | 2,4 | 2,56 ] 2,6 | 2,7 | 3,4 ] 3,56 | 3,6 ] 3,7 | 4,5 | 4,6 | 4,7 | 5,6 | 5,7 | 6,7
Mean 972 | .901 | .881 | .928 | .970 | .903 | .897 | .043 | .974 | 079 | .984 | .926 | .959 | .948
Std 020 | .069 | .095 | .055 | .018 | .068 | .085 | .045 | .014 | .01l | .007 | .055 | .027 | .038

Baseline | 1,2,3 | 1,24 | 1,2,6 | 1,2,6 | 1,2,7 | 1,34 | 1,36 | 1,3,6 | 1,3,7 | 1,456 | 1,46 | 1,4,7 | 1,56

Mean 910 973 .900 .897 .939 1982 1926 913 .950 976 .980 .996 .921

Std .072 .021 .064 .084 .056 .015 .058 .075 .046 .021 .016 .001 .065

Baseline | 1,5,7 | 1,6,7 | 2,34 | 2,35 | 2,3,6 | 2,3,7 | 2,45 | 2,46 | 2,4,7 | 2,56 | 2,56,7 | 2,6,7 | 3,4,5

Mean 059 | 945 | 965 | .895 | .887 | .922 | .970 | .981 | .989 | .906 | .940 | .927 | .970
Std 038 | .052 | .020 | .070 | .091 | .058 | .018 | .012 | .008 | .077 | .046 | .064 | .018
Baseline | 3,4,6 | 3,4,7 | 3,5,6 | 3,5,7 | 3,.6,7 | 45,6 | 4,5,7 | 4,6,7 | 5,6,7
Mean 080 | .990 | .912 | .949 | .939 | .977 | .987 | .987 | .953
Std 011 | .008 | .072 | .045 | .054 | .0I3 | .006 | .006 | .035

Baseline | 1,234 | 1,235 | 1,2,36 | 1,2,3,7 | 1,245 | 1,246 | 1,24,7 | 1,256 | 1,2,5,7 | 1,2,6,7

Mean .982 1922 .908 .938 978 .982 .997 917 .948 .935

Std .014 .063 .081 .060 .020 .014 .001 .072 .051 .067

Baseline | 1,345 | 1,3,4,6 | 1,347 | 1,35,6 | 1,35,7 | 1,3.6,7 | 1,456 | 1,4,5,7 | 1,4,6,7 | 1,5,6,7

Mean 098 085 998 924 955 947 981 996 997 951
Std 018 013 0 -066 045 055 017 001 001 048
Baseline | 2,3,4,56 | 2,3,4,6 | 2,3,4,7 | 2,3,5,6 | 2,3,5,7 | 2,3,6,7 | 2,4,5,6 | 2,4,5,7 | 2,4,6,7 | 2,5,6,7
Mean 968 979 986 906 023 9238 081 990 992 938
Std 014 009 012 074 051 067 012 008 006 055
Bascline | 3,4,5,6 | 3,4,5,7 | 3,4,6,7 | 3,5,6,7 | 4,5,6,7
Mean 979 991 992 946 988
Std 013 008 006 048 005

Baseline | 1,2,3,4,5 | 1,2,3,4,6 | 1,2,3,4,7 | 1,2,3,6,6 | 1,2,3,5,7 | 1,2,4,5,6 | 1,2,4,5,7 | 1,2,5,6,7 | 1,3,4,5,6

Mean .982 1922 .908 1938 978 .982 1997 917 1948

Std .014 .063 .081 .060 .020 .014 .001 .072 .051

Baseline | 1,2,3,4,5 | 1,2,3,4,6 | 1,2,3,4,7 | 1,2,3,5,6 | 1,2,3,5,7 | 1,2,3,6,7 | 1,2,4,5,6 | 1,2,4,5,7 | 1,2,4,6,7

Mean .983 .987 .997 1927 .944 .9349 .9846 1998 .998

Std .015 011 .002 .068 .070 .087 .021 .001 .001

Baseline | 1,2,5,6,7 | 1,3,4,5,6 | 1,3,4,5,7 | 1,3,4,6,7 | 1,3,5,6,7 | 1,4,5,6,7 | 2,3,4,5,6 | 2,3,4,5,7 | 2,3,4,6,7

Mean .944 .985 .998 -999 .950 .997 977 .987 -990

Std .076 .020 0 0 .069 0 .007 .012 .010

Baseline 2,3,5,6,7 2,4,5,6,7 3,4,5,6,7
Mean 934 .993 9

Std .064 .007 .005
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Appendix A

Specifications

In the chapter, we present the specification sheets of the projectors, cameras, spectrora-
diometers and test charts used in the research.

A1 Projectors

The SONY BRAVIA APL-AW15 projector (Figure A.1) and Mitsubishi XL9U projector (Fig-
ure A.2) were used in the experiments. Their specifications are presented in Table A.1 and
Table A.2 respectively.

A.1.1 SONY BRAVIA APL-AW15

SONY BRAVIA APL-AW15 (Figure A.1) is a portable three-LCD-chip projector, which was
targeted at home-theater projection applications.

A.1.2 Mitsubishi XL9U

Mitsubishi XL9U (Figure A.2) is an affordable ultra-portable three-LCD-chip projector, which
was targeted at the projection applications for business meetings or personal presentations.

A.2  Acquisition Devices

The Logitech QuickCam Pro 9000 webcam (Figure A.3), Nikon D200 DSLR camera (Figure
A.4), Nikon D610 DSLR camera (Figure A.5), Hasselblad H3D II DSLR camera (Figure A.6),
and Minolta C51000 (Figure A.7) were used as the acquisition devices in the experiments.

Figure A.1: Sony BRAVIA VPL-AW15 Projector, reproduced from www.crutchfield.com
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A. SPECIFICATIONS

Table A.1: Specifications for Sony BRAVIA VPL-AW15 Projector [144]

Brightness 1,100 Lumens
Contrast 12,000:1
Auto Iris Yes
Native Resolution 1280x720
Aspect Ratio 16:9 (HD)
Video Modes 720p, 1080i, 1080p /60, 1080p /24, 1080p /50, 480p, 480i
Data Modes MAX 1920x1080
Digital Inputs HDMI
Vertical Keystone Correction Yes
HDBaseT No
Max Power 265 Watts
Voltage 100V - 240V
Size 12 x 37 x 32
Weight 5.8 kg
Lamp Type UHP
Lamp Wattage 165 Watts
Lamp Quantity 1
Display Type 2cm 3 LCD
Standard Zoom Lens 1.60:1
Standard Lens Focus Manual
Optional Lenses No
Lens Shift Vertical
Throw Dist (m) 1.9-59
Image Size (cm) 102 - 508
Throw Ratio (D:W) 1.36:1-2.19:1
Audible Noise 20.0dB
Speakers No
Digital Keystone Vertical

The cameras’ specifications are presented in Table A.3, Table A.4, Table A.5, and Table A.6
respectively.

A.2.1 Logitech QuickCam Pro 9000

Logitech QuickCam Pro 9000 (Figure A.3) was a very popular desktop webcam, which was
designed to be an alternative to ordinary integrated laptop webcam. It provides relatively
higher resolution and better image quality, and it incorporated a microphone and a speaker;
so it is suitable for having online meetings. In our research, the camera was used in Paper
A.

A.2.2 Nikon D200

Nikon D200 DSLR camera [?] is one of the classic DSLR cameras manufactured by Nikon. It
has less imaging features comparing to the state-of-the-art Nikon DSLR cameras, but they

share all the essential DSLR camera features. In our research, the camera was used in Paper
A and Paper B.

A.2.3 Nikon 610

Nikon D610 DSLR camera [?] is one of the top rank DSLR cameras manufactured by Nikon.
It has a lot of state-of-art imaging features. In our research, the camera was used in Paper
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A.2 ACQUISITION DEVICES

Table A.2: Specifications for Mitsubishi XL9U Projector [143]

Brightness 2,000 Lumens
Contrast 350:1
Auto Iris No
Native Resolution 1024x768
Aspect Ratio 4:3 (XGA)
Video Modes 720p, 1080i, 525i, 525p, 576i, 576p, 6251, 625p, 1125i, 480p, 480i
Data Modes MAX 1280x1024
Digital Inputs No
Vertical Keystone Correction No
HDBaseT No
Max Power 280 Watts
Voltage 100V - 240V
Size 9x26x26
Weight 2.7kg
Display Type 2cm 3 LCD
Standard Zoom Lens 1.20:1
Standard Lens Focus Manual
Optional Lenses No
Lens Shift No
Throw Dist (m) 14-7.6
Image Size (cm) 102 - 635
Throw Ratio (D:W) 1.49:1 - 1.81:1
Audible Noise 39.0dB
Speakers 2.0 W Mono
Digital Zoom Yes
Digital Keystone Vertical

Table A.3: Logitech QuickCam Pro 9000 specifications [1]

Width 3.5in
Depth 1.51in
Height 1.6in
Connectivity Technology Wired
Total Pixels 2000000 pixels, 1920000 pixels
Optical Sensor Type CMOS
Manufacturer Logitech
Interfaces 1xUSB 2.0 - 4 pin USB Type A
Camera Type Color, Color - fixed
Max Digital Video Resolution 1600 x 1200
Video Capture 640 x 480 @ 30 fps, 1600 x 1200 @ 30 fps

Microsoft Certifications

Certified for Windows Vista, Compatible with Windows 7

Image Sensor

2 MP CMOS, 2 MP, 1.9 MP

Battery Form Factor none
Focal Length 3.7 mm
Lens Iris F/2.0
Focus Adjustment automatic
Min Focus Range 3.9in
Computer Interface USB 2.0
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A. SPECIFICATIONS
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Figure A.3: Logitech QuickCam Pro 9000 webcam, reproduced from www.techtail.org

C, Paper D, Paper E, and Paper F.

A.2.4 Hasselblad H3D II

Hasselblad H3D II camera (Figure A.6) is a very high-end DSLR camera. It does not only
have a very good linearity in the sensor response and a large imaging sensor array, but also
it produces nice image quality. In our research, the camera was used in Paper A.

A.2.5 Minolta CS1000

Minolta CS1000 (Figure A.7) is a portable and well-designed high-end spectroradiometer to
provide accurate measurement of the electromagnetic radiation at specific spatial locations
in the visible spectrum. In our research, the camera was used in Paper A.
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A.2 ACQUISITION DEVICES

Table A.4: Nikon D200 DSLR camera specifications [2]

Effective pixels

10.2 million

Image sensor

RGB CCD, 23.6 x 15.8 mm, 10.92 million total pixels

Image size L (3,872 x2,592) / M (2,896 x 1,944) / S (1,936 x 1,296)

Sensitivity ISO equivalency 100 to 1600 in steps of 1/3,1/2, or 1 EV
Storage media CompactFlash (CF) Card (Type I/II) and Microdrive
LCD monitor 2.5-in., 230,000-dot, low-temp. polysilicon TFT LCD

Exposure metering

Matrix, Center-Weighted and Spot

Exposure modes

P S, A, and M

Interface

USB 2.0 (Hi-Speed): mass storage and PTP connectable

Power sources

Rechargeable Li-ion Battery EN-EL3e

Dimensions (W x H x D)

Approx. 147 x 113 x 74mm (5.8 x 4.4 x 2.9 in.)

Weight

Approx. 830g (11b 130z)

Table A.5: Nikon D610 DSLR camera specifications [3]

Effective pixels

24.3 million

Image sensor

35.9 x 24.0 mm CMOS sensor (Nikon FX format)

6,016 x 4,016 (L), 4,512 x 3,008 (M), 3,008 x 2,008 (5)
3,936 x 2,624 (L), 2,944 x 1,968 (M), 1,968 x 1,312 (S)

Image size 6,016 x 3,376 (L), 4,512 x 2,528 (M), 3,008 x 1,688 (S)
3,936 x 2,224 (L), 2,944 x 1,664 (M), 1,968 x 1,112 (S)
Sensitivity ISO equivalency 100 to 1600 in steps of 1/3,1/2, or 1 EV
Storage media SD and UHS-I compliant SDHC and SDXC memory cards
LCD monitor Monitor 8-cm (3.2-in.), approx. 921k-dot (VGA), TFT LCD

Exposure metering

Matrix, Center-weighted, Spot

Exposure modes

P S, A, M, U1, U2

Interface Hi-Speed USB
Power sources One EN-EL15 Rechargeable Li-ion Battery
Dimensions (W x H x D) Approx. 141 x 113 x 82 mm/ 5.6 x 4.4 x 3.2 in.
Weight Qpprox. 760 g/1 1b 10.8 oz (camera body only)

Table A.6: Hasselblad H3D II DSLR camera specifications [?]

Field of View Crop Factor 0.8
Waterproof No
Width 6 inch (153 mm)
Height 5.14 inch (131 mm)
Depth 8.35 inch (213 mm)
Weight 80.8 0z (2290 g)
Total Pixels 31 Megapixels
Optical Sensor Type CCD
Color Depth 48 bit
Max Resolution 6496 x 4872
Sensor Dust Reduction No
Viewfinder Optical TTL (through the lens)
Supported Flash Memory | CompactFlash, CompactFlash Type II
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A. SPECIFICATIONS

Figure A.4: Nikon D200 DSLR camera, reproduced from www.dpreview.com

Figure A.5: Nikon D610 DSLR camera, reproduced from www.dpreview.com
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A.2 ACQUISITION DEVICES

Figure A.6: Hasselblad H3D II DSLR camera, reproduced from www.camera-usermanual.com

Figure A.7: Minolta CS51000 spectroradiometer, reproduced from www.ueen.feec.vutbr.cz
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Appendix B

Test Charts

Several test charts were used for different purposes in our research. In advance of subjec-
tive experiments, Ishihara Color Plates - 38 Set [32] (Figure B.1) were shown to all invited
observers in order to confirm that none of the observers had color deficiency difficulty.
Meanwhile, the logMAR chart (Figure B.2) was also adopted to confirm that at a certain
distance all observers were able to reach a certain visual acuity level. The camera resolution
chart introduced by ISO 12233 standard [175] was incorporated into the camera calibration
procedure. The purpose was to determine the best aperture setting for the current combi-
nation of camera body and its mounted lens. Such a test chart was used in both Paper D
and Paper E.

Plate 1

Everyone should see number 12.

Plate 2
Normal view: 8

Red-green deficiency: 3

Plate 3
Normal view: 6

Red-green deficiency: 5

Figure B.1: Examples of Ishihara color plates for color deficiency test, reproduced from
unlimitedmemory.tripod.com
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B. TEST CHARTS
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Figure B.2: The logMAR test chart for the visual acuity test, reproduced from bjo.bmj.com
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Figure B.3: The camera resolution test chart introduced by ISO 12233 standard [175]
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Appendix C

Experimental Setup

In the experiments for Paper C, Paper D, and Paper E, we used a calibrated camera to
capture all pixels on the projection screen in one shot, and the performance of state-of-
art image quality metrics were evaluated with respect to the perceptual ratings collected
from observers. We used the projectors to produce projections on a planar screen, which
was naturally hanging on the ceiling. The projectors were put on a table placed in front
of the projection screen about 3 m away with respect to the throw ratio (1.5) of the projec-
tor C.1. A remote controlling laptop was connected to the projector via either a VGA or
HDMI cable in order to generate full screen projections. On the screen, the dimension of
projection area was approximately 2 x 1.5 in meters. The camera was fixed on a tripod,
which was placed right in front of the projections about 4 m away. Pictures were taken re-
motely with a software control on the laptop without physically touching the camera. The
pictures were saved in raw format and rendered with aliasing minimization and zipper
elimination demosaicing algorithm [117] without automatic vignetting correction, bright-
ness adjustment, gamma correction and noise reduction etc. We selected test images from
either The Colourlab Image Database: Image Quality database (CID:1Q) [106] (The full test
image database CID:1Q is available for downloading from http://www.colourlab.no/cid.)
or Kodak Photo CD PCD0992 [52] to generate multiple levels of image distortions. The
selection criteria of test images was established based on the coverage of different image
features such as hue, saturation, lightness, contrast, skin colors, sky colors, grass colors,
size of neutral gray areas, color transition, fine details and text presence etc. The image
selection criteria were established on expanding the coverage of these feature as much as
possible in order to generalize the observation outcomes.

The projection displays were known to have a few typical viewing conditions, such as a
home theater like dark room, a dimmed meeting room like environment with limited extra
light, and an office like daylight environment with strong ambient light bouncing in the
room. In this research, we setup the projector, screen and camera to simulate the first case
in a controlled manner. All of the observers were confirmed to have normal visual acuity

Screen Screen

Observer —9 Camera —9

/ Projector / Projector
@ A // 1.5m £ //>
R A —
— — —

m 3m
Figure C.1: The experimental setup for the research to simulate a home-theater-like dark
room environment

1.5m

m 3m
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C. EXPERIMENTAL SETUP

w T
e}

= c

< £ 5
c S =
: 3 3
% D Db B 8
a D, b c 3
—_— Q =
g g2
©

5 8
s D, D, D, i

D, D, D, -
Image 1 Image 1 Image 1

Distortion 1  Distortion 2 Distortion 3

Figure C.2: Illustration of the distortions perceived by the observers and captued by the
camera. In this figure, Dy, D,, and D, stand for the amount of image quality degradation
introduced by the Gaussian blurring procedure, projection display, and the camera respec-
tively. The values and summation of D), and D, are expected to be constant and they are
much smaller than the value of D;,.

and color vision (the low room illumination and visual capability tests recommended in
ITU-R BT.500-13 [146] and CIE 156:2004 [171]).

The digital still cameras were not originally designed to produce highly accurate ab-
solute measurements, and they need to be calibrated in advance of the acquisition. It is
known that a DSLR camera can be generally decomposed into optical subsystem, mechan-
ical subsystem, electronic subsystem, and software subsystem. Each component in each
subsystem has potential unwanted influence to the image quality of captured pictures. For
example, the optical geometric distortion introduced by the misalignment in the lens array,
the color aberration caused by the non-perfect demosaicing algorithm employed, and the
analog-to-digital conversion noise magnification due to the thermal energy emitted from
the internal imaging processor while pictures are taken etc. It is unlikely possible for us
to eliminate all possible image quality degradation introduced by the projector and cam-
era, however the majority of them, such as geometric distortions, vignetting effect, and
non-linearity of camera sensor response. From another perspective, there are three sources
of image quality degradation in our experiments: the Gaussian blurring procedure, pro-
jection display, and the camera. Let us denote the amount of image quality degradation
introduced by them as Dy, D), and D, respectively (Figure C.2). Therefore, the values
Dy, should be image content dependent, and they are what the image quality metrics are
expected to measure. Since we disabled all image enhancement features of the projector,
then all blurred test images were displayed as they were. Then the values of D, should
be the equal for all image quality metrics. In a similar way of consideration, the camera
was calibrated; so the values of D, were also almost identical to all image quality metrics.
So the image quality degradation introduced by the projector and camera had very limited
influence on the performance of metrics.

We invited human observers (recommended in ITU-R BT.500-13 [146] and CIE 156:2004
[171]) to give perceptual ratings to the projected image distortions. The observers sit in the
same location as the camera, which was placed approximately 4 m away from the screen.
This was because we tried to avoid the potential image quality degradation due to the
variation of observation position and viewing angle. The viewing condition was similar to
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a home theater like environment where the room is completely dark (recommended as low
illuminant environment in ITU-R BT.500-13 [146]) and the visual angle from the projection
boundaries to the principal axis of observation was about 15 degrees. The distorted images
corresponding to the same test images were displayed in a randomized order to every
observer.
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