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Abstract

Wind farms are widely developed even if several unsolved problems need to be faced. The rotor-

wake interaction involves different physical phenomena, not yet fully understood, directly af-

fecting the overall wind farm power production. Numerical models and engineering rules have

always been used to design wind farm layout but a spread between power predictions and re-

sults is verified. In this context wind energy research assumes a "back to basic" approach, by

means of wind tunnel experiments, under controlled conditions, that represent the method to

calibrate and correct the theoretical simulation models.

The aim of this project is to provide a useful set of wind tunnel measurements focused on the

wake-rotor interaction analysis and on wind farm power output optimization. A benchmark

is obtained, arranging a two-turbine wind farm, in order to calibrate numerical models and to

show a wind farm case study.

Two three-blade wind turbine models are used in the present study. Despite some small geo-

metrical differences, they are both equipped with the same blade-set, based on the NREL S826

airfoil, and they have a rotor diameter of D = 0.9 m.

A characterization concerning power performances and wake features of both turbines is per-

formed, in order to obtain reference values for array efficiency assessment. The used reference

velocity is set to Ur e f = 11.5 m/s. Afterwards, the two models are arranged inline building a

two-turbine wind farm case. Different tests are carried out varying several parameters: the

separation distance between the models (3D, 5D and 9D), the inflow condition (low and high

turbulence background level) and both turbines tip speed ratios.

First turbine wake measurements reveal that the velocity deficit recovery and the radial expan-

sion of the wake are dependent on the flow turbulence. Higher the turbulence, faster the veloc-

ity recovery and bigger the expansion. As a consequence, high turbulence flows allow an earlier

transition from near to far wake. Turbulence generation is analysed and related to the rotor

operating point.
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The array parametric study points out that the overall efficiency increases by moving further

downstream the second turbine, rising the background turbulence level and by choosing a suit-

able operating point for each turbine. The analysis suggest to obtain the maximum wind farm

efficiency by an accurate management of these different parameters: a strong reliance on down-

stream distance and on turbulence level is confirmed, smaller variations are found depending

on the turbines operating point, but the relevance is still essential.
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Chapter 1

Introduction

"Sustainable development is development that meets the needs of the present without compro-

mising the ability of future generations to meet their own needs" [10].

1.1 Wind energy

Wind power has been extracted and used as an energy source since the 1st century BC, for grain-

grinding or pumping water purpose (first known windmill historical reference). At the end of

19th century, after electrical generators appeared, the first modern wind turbine was built, con-

verting energy into electricity. [2] This technology has not been extensively developed until late

1960s, when the environmental consequences of the industrial development came up. The mid-

1970s Oil Crises gave a further push to find alternative energy resources: the so called sustain-

able energy.

The interest in renewable energy is increasing during the last decades, pushed also by European

objectives as 20-20-20 by 2020. This agreement prescribes a 20% reduction in greenhouse gases

emissions, a 20% increase in the consumed energy coming from renewable resources and a 20%

improvement of the energy efficiency to be accomplished by the year 2020. In this scenario

wind energy could be a big resource for a renewable energy mix. Moreover, on the economical

aspect, it has to be considered that wind power reduces the exposure of our economies to fossil

fuel price volatility. [11]

The world has reached on June, 2014 a total capacity of about 337 GW installed wind power.

Only in Europe between 2000 and 2013 more than 100 GW of capacity was added. [12]

The latest trend in wind turbines is well described by the sentence the bigger, the better, which

1
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Figure 1.1: Trend in wind turbines size and capacity during the last decades

means that the turbines are increasing in size (tower height and rotor diameter) in order to have

bigger capacity and to guarantee lowest installation and maintenance costs per MW installed.

Bigger diameters allow a greater amount of available wind energy, at the meantime taller tur-

bines benefit from higher flow velocities. Figure 1.1 is explicative of this trend. Off shore in-

stallations can benefit even more from high capacity machines. Lower infrastructures costs for

foundation and sub-sea transmissions make larger rotors more competitive. Despite this, in-

creasing the size, wake interference effects become a major issue.

Wind power suffers of high investment costs: stakeholders as investors, financiers or policy

makers are highly responsive in predicting the future energy extraction from a wind farm. There

are two main issues: predict the wind for a given location and knowing how much energy the

turbines can extract for a certain wind speed. Wind forecasts features are out of the scope of

the thesis; while for the knowledge of the power production of a turbine or a wind farm, pre-

dictions of rotor performances and wake-rotor interferences need to be made with the smallest

error range. For this reason full scale and model experiments are promoted, as well as modeling.

1.2 Wind farm

The trend for wind energy is in arranging wind turbines in cluster. The main interest is in max-

imizing the energy extraction from a given land, additionally facilities required in a wind farm

decrease in costs if the turbines are quite close. Installation and maintenance costs decrease

for a wind farm with respect to the same extracted energy from turbines positioned far away

from each other, especially when it comes to offshore facilities. Despite this, turbines cannot

be located too close one another. As further described the wake behind a rotor is affecting the
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available energy in the wind. A turbine that is positioned inline of another one, with respect to

the wind direction, will suffer of the velocity deficit and the turbulence induced by the first.

The minimum distance of approximately 10D is necessary to fully recover the wake flow to the

velocity freestream condition, while even higher distances could be recorded as regards the

turbulence intensity recovery [13]. However, due to the dimension of the given land and the

infrastructural cost the economical optimum is often reached for smaller downstream separa-

tions. Modern wind farms are usually spaced around 7-8D in the main wind direction, and even

closer in cross wind direction [14, 15]. Additionally to the optimization of power production

and cost-effectiveness, structural loads need to be highlighted. The wake is characterized also

by an increase of turbulence level that could be responsible for fatigue issues. Peculiar excitation

frequency should be considered for structural integrity of blades and tower.

For this reason wake issues increase. The importance of understanding and estimating wake

rotor interaction is evident.

The minimization of array losses is possible only after a good insight on the wake issue; and

this is still not reached. Experiments and numerical simulation can be used together to obtain

the best results. Experiments on full scale wind turbines are suffering of unknown freestream

conditions, lack of a systematic data bank and above all they are very costly and time consuming.

Numerical simulations are instead very flexible, less expensive and faster, but they need to be

validated as they relies on approximations. In this scenario wind tunnel experiments fit. Even

if they are limited in terms of scaling to the real wind turbines, they can be used for models

validation and can provide innovative insights into the physics of the problem.

1.3 Motivation and outline of the thesis

The main objectives of the thesis can be summed up as:

• improve the insight in the physics of wind turbine rotor-wake interaction, by experiments

on the 2-turbines array.

• create a benchmark for calibrating numerical models, in which all boundary conditions

are well described and documented, so are the results.

• study different parameters affecting the wind farm power output, prioritizing the overall

efficiency instead of the single turbine.
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• find a criteria for optimizing the total power production for this peculiar wind farm, con-

sisting of a row of 2 inline machines

The experimental investigation, carried on during the present thesis, consists of power and

thrust performances measurements, as well as wake characterization in different configura-

tions. The parameters that have been considered while analysing the turbine array are: the

downstream separation distance between wind turbines, the tip speed ratio for both machines,

and the turbulence level in the incoming wind.

Three downstream distances are examined: 3D, 5D and 9D. In all cases the turbine are posi-

tioned inline.

As regards the tip speed ratio, both turbines values are varied over a quite wide range crossing

the optimum value. The usual operating mode of a real machine is to set the pitch angle, the

tip speed ratio and the yaw angle in order to extract as much energy as possible from the inflow

wind of each turbine. It means that every wind turbine operates with the maximum power co-

efficient for lower than rated wind speed. However, in a wind farm, this operating mode is not

optimum in terms of overall efficiency because of wake effects induced by each row of turbines

on the downwind ones. It might be possible to find a different strategy for maximizing the wind

farm efficiency. In recent studies as [16, 17, 18, 19, 20] the possibility of varying the tip speed

ratio from the optimum point is analysed. Other parameters could be varied at this purpose

such as the pitch angle of the rotor blades, the yaw angle of the turbine and the lateral shift

considering the wind direction, but they will not be analysed during the present work.

The last parameter investigated is the inflow condition, two different cases are studied: a low

turbulence level, typical of a wind tunnel test section, and a high monitored turbulence level,

built through the interposition of a meshed grid at the inlet of the test section. It is able to gener-

ate an homogeneous and isotropic turbulence [21], and it is characterized by 10% of turbulence

intensity on the first rotor plane. When analysing wind turbine performances in a wind tunnel,

one of the major limitations is represented by the low turbulence incoming flow. In real life op-

erations a turbine works in the atmospheric boundary layer, which is typically characterised by

a turbulence intensity of the order of 10-15%. Slightly smaller values can be observed in offshore

conditions. Turbulence intensity strongly affects both wind turbine performances and wake de-

velopment, modifying the wake-rotor interactions for a row of machines. For this reason in the

current thesis work, one of the investigated parameter is the dependency on turbulence back-

ground level.



Chapter 2

Aerodynamics of wind turbines

The second chapter of the present thesis deals with some basics on wind turbine aerodynamics.

The purpose is to give an overview of the phenomena described in the following.

2.1 Definitions

This section summarizes some of the main parameters used to describe the operation of a wind

turbine.

The rotational velocity of the main shaft is usually adimensionalized as the tip speed ratio. It rep-

resents the ratio between the tangential velocity of the blade tip and the free-stream (reference)

velocity as stated in the following:

T SR =λ= ωR

U∞
(2.1)

where R is the rotor tip radius [m], ω the rotational velocity (in [rad/s]) and U∞ the undisturbed

free stream velocity, upstream from the rotor [m/s].

The local speed ratio along the blade id calculated using the radius r instead of tip radius R:

λr (r ) = ωr

U∞
(2.2)

The main parameters used for describing turbine performances are the power coefficient CP and

5
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the thrust coefficient CT . They are conventionally defined as:

CP = Power
1

2
ρU∞3 Ad

(2.3)

CT = T hr ust
1

2
ρU∞2 Ad

(2.4)

where Ad is the rotor swept area, so
1

2
ρU∞3 Ad is the wind total power crossing the rotor section,

and
1

2
ρU∞2 Ad a dynamic reference force. It will just be reminded that the torque acts in the

tangential direction, that is perpendicular to the wind. The power is calculated multiplying the

generated torque by the rotational speed ω. The thrust is the force acting in the axial direction,

thus in the air flow orientation.

2.2 Rotor aerodynamic theory

2.2.1 Momentum theory and actuator disk concept

A wind turbine is extracting kinetic energy from the wind, so the flow slowed down when passing

through the rotor, converting wind energy into the main shaft rotation. The simplest model

describing this phenomenon is the ideal actuator disk model and it is generally attributed to

Betz (1926). It can be used to determine:

• The ideal power available for being extracted by a wind rotor.

• The thrust on the ideal rotor.

• The effect of the flow after passing through the rotor (wake).

For a detailed description of the method see [2, 1] , just a brief introduction will be given here.

In this model it is considered just the energy extraction process, without any focus on the design

of the turbine. The main flow assumptions are: steady, inviscid, incompressible and irrotational.

Moreover only axial forces act on the turbine. A stream tube is setted as control volume, as in

Figure 2.1. Assuming no air passing throw the lateral walls of the stream tube and neglecting

air density changes (M a < 0.3 that under normal air condition means U∞ < 100 m/s) the mass
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Figure 2.1: Stream tube [1]

continuity equation can be written:

ρA∞U∞ = ρAdUd = ρAwUw (2.5)

The subscript∞ refers to the upstream undisturbed flow, d to the rotor plane and w to condition

in the far wake as in Figure 2.2. It is possible to see the velocity trend at different downstream

positions, as well as the step change in pressure on the rotor plane which is the reason of the

energy extraction process. The static pressure increases from its upstream undisturbed value

(p∞) to p+
d , before dropping suddenly on the rotor plane. This pressure difference (p+

d −p−
d ) is

associated to the axial force exerted on the disk. Then the pressure gradually recovers in the

wake to the free stream value p∞.

Figure 2.2: Actuator disk model [1]

This model introduces the axial flow induction factor a, defined as the ratio between the stream-

wise velocity reduction (the difference between the undisturbed flow and the flow at the rotor
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plane) and the free stream velocity as in Equation 2.6.

a = 1− Ud

U∞
(2.6)

Defined the power coefficient CP and the thrust coefficient CT as in Section 2.1; it can be demon-

strated that the power and the thrust coefficients can be expressed as a function of the axial

induction factor by:

CP = 4a(1−a)2 (2.7)

CT = 4a(1−a) (2.8)

The air after passing the rotor cannot be reduced to zero for mass continuity, thus there is a

limit in power coefficient even for an ideal, loss-free system. By differentiating Equation 2.7

with respect to a, it can be found that the maximum achievable power coefficient (CP,max) is 16
27

and it is called Betz limit. This limit does not take into account any kind of losses that are present

in a real case, especially the energy loss in the wake rotation, in viscous friction and by the finite

number of blades. So this is an upper conservative limit that no real machine can exceed.

At optimal CP , the thrust coefficient CT is equal to 8
9 . Note that, as the velocity is decreasing

behind the turbine, for mass conservation Aw > Ad leading to the expansion of the wake. The

higher CT , the larger the expansion.

2.2.2 Rotary disk theory

When passing over the blade, airflow induces forces on it producing blades rotation. According

to the Newtonian laws, equal and contrary forces are exerted by the rotor on the flow, resulting

in a flow rotation in the wake in the rotor’s opposite direction. The rotor imparts to the flow a

rotational component of velocity, increasing its rotational kinetic energy that is a certain source

of energy loss [2]. It means that the efficiency of a real turbine is quite far from the Betz limit,

where no wake rotation is assumed. This limit is commonly referred as Glauert’s limit, consid-

ering Glauert’s work [22].

For a complete discussion of the theory refers to [2], here it will just be underlined the depen-

dency of the CP,max from the TSR, for future comparisons. Defined the tip speed ratio as in

Equation 2.1, in Figure 2.3 the Glauert’s maximum power coefficient is plotted against the Betz

limit. It can be noticed that the losses due to wake rotational effects are reduced as the tip speed

ratio gets higher.
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Figure 2.3: Power coefficient: Glauert’s limit [2]

2.2.3 Blade element theory and Blade element momentum theory (BEM)

In the previous theories the geometry of rotor blades is not considered, but to be able to calcu-

late the efficiency of a real rotor it is needed to couple the aerodynamic characteristics of the

airfoil with the momentum theory previously analysed.

The Blade element theory is the mathematical process, involving dividing a blade into several

small parts, between different radii (as in Figure 2.4). Each element is considered totally inde-

pendent from the others and the forces on each element are calculated from lift and drag coef-

ficient of the airfoil. After the forces are determined on each element, they have to be integrated

along the blade and over one rotor evolution.

Figure 2.4: Blade element
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The Blade element momentum theory combines both blade element theory and momentum

theory. It differs from the momentum theory because the forces are produced by the blade

instead of an actuator disc. The BEM theory (fully described in much of the literature [2, 1, 23, 3])

is mainly used to analyse the performance of wind turbine blades in steady state conditions.

Assuming that the airfoil theory is also valid for a wing element of limited length, the BEM

method requires to divide the finite blade in an infinite number of blade elements and calcu-

late the forces acting on each blade element. These forces match the ones coming from a flow

annulus, derived by the momentum theory.

Few assumptions have to be taken into account. The following has to be assumed:

• The wind speed and direction has to be constant, so the flow around the blades will behave

in a so-called steady state situation.

• There has to be a uniform wind speed over the whole turbine rotor, so the wind shear due

to the boundary layer-effects of the terrain is neglected.

• There is no flow in the radial direction of the blade, so each blade element is totally inde-

pendent of the others.

• The blades have a perfect stiffness and does not flex or bend.

• The forces on the rotor sections can be calculated by the 2D characteristics of the blade

airfoil.

Because of these assumptions, a lot of factors are not taken into account. Nevertheless, by using

this simple method one can be able to give good a first estimation of the average performance of

the turbine. After the forces are calculated on all infinitesimal elements, they are summed up to

get the total forces on the rotor. Referring to the relative velocity on the airfoil, infinitesimal lift

and drag can be calculated, and then the resultant forces acting on each blade element can be

decomposed along the axial and the rotational direction, respectively thrust and torque forces.

For applying this method Cl and Cd airfoil coefficients have to be known.

The major weaknesses in basic BEM are [24]:

tip losses A flow around the blade tip due to pressure differences is not take into account, but a

correction factor can be applied (for example Prandtl’s one) [22]

Wind shear The incoming flow is stationary by assumption, varying the wind with height, the

variations appear to the individual blade element as highly unsteady.



2.3. WAKE AERODYNAMICS 11

Turbulence Small scale turbulence creates different wind speed in different points on the blade

and this factor cannot be considered.

Dynamic inflow All temporal variations cannot be studied.

2.3 Wake aerodynamics

The wake behind a wind turbine is the result of interactions between incoming flow and tur-

bine’s blades. Wake fundamental aspects of a wake are momentum deficit and increased level

of turbulence as it has already been investigated by [25]. Moving far downstream of rotor plane,

the characteristics of the wake heavily changes due to multiple parameters. The evolution of the

wake features have inspired researchers to divide the wake region in different parts. A widely

shared classification led to distinct 2 areas:

1. Near wake

2. Far wake

A schematic representation of these areas is shown in Figure 2.5. In the following sections a

review of these characteristics is presented.

Figure 2.5: Wind turbine wake schematization [3].

2.3.1 Near wake

Vermeer et al. [25] consider the near wake as the area just behind the rotor where the properties

of the rotor can be recognized. In this area, rotor characteristics such as number of blades,
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Figure 2.6: Tip and Bound vortices [3].

blade aerodynamics, 3D effects, tip and root vortices are distinguishable. Due to this aspects,

near wake researches are focused on performance and power extraction mechanisms, trying to

relate physical aspects in the wake to blade’s aerodynamic features. The extension of this area is

not well defined, the length is highly dependent on several parameters that make it varying from

time to time. Generally a length up to 1D downstream the rotor plane is established in a full-

scale turbine case. The near wake extension is mainly dependent on the background turbulence

level. Lower the turbulence, longer the near wake region. In off-shore wind turbines, because of

the lower turbulence with respect to on-shore situations, longer extensions are found. For the

same reason, wind tunnel experiments, characterized by a very low turbulence inflow, present

the longest near wake [26].

In order to understand the flow characteristics in the wake some 3D aerodynamic key-concepts

are called to mind. Considering a wing, it can be represented as a finite length structure with

airfoil cross-section. In order to generate lift over it, a pressure difference between the lower and

upper surfaces needs to be created. As it is a finite length structure, at the tip the pressure differ-

ence is unbalanced; air flows around the tip from higher to lower pressure side; therefore, at the

wing extremities, tip-vortices are generated. The lift generated over the wing can be attributed

to a distributed bound vortex via Kutta-Joukowski law: L = ρV∆Γ. Bound vortex and tip vortex

form a horseshoe vortex. As depicted in Figure 2.6, the two tips vortices have the same intensity

but opposite sign so they are in balance.

It can be demonstrated that the vortex system generated by a finite wing induce a down-wash

velocity. When calculating the wing performances, this effect is considered by reducing the ge-

ometric angle of attack. For a deeper insight in the finite wing theory refers to [27].

A wind turbine blade is a "rotating wing" so tip vortices at the blade tip and root vortices at the

hub are shed.
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As previously explained, wing tip vortices have opposite rotating direction each other, similarly

in a wind turbine blade, root and tip vortex rotate in the opposite direction.

Considering a three blade turbine rotating counter-clockwise when seen from upstream as in

Figure 2.7, tip vortices will produce a spiral that is rotating in the opposite direction. Respect-

ing the Newtonian laws, the rotor imparts to the wake a torque equal and contrary to that one

exerted by the fluid on the rotor.

The wake structure in the near wake region is influenced by the distribution of the bound circu-

lation along the blade and so it depends on the rotor performances.

In a design condition, the lift distribution over the blade can be considered approximately con-

stant. According to Kutta-Joukowski law, even if the circulation Γ(r ) is constant, close to tip

and root, a strong gradient established, leading the lift to zero value and resulting in the vortex

generation. Out of the design condition, in addition to tip and root vortex, other vortexes can

be originated so that the lift and circulation distribution are not constant anymore along the

blade. Corresponding to a circulation gradient, a vortex sheds into the wake [14, 4]. Further-

more the velocity induced by the vortex system affects the blades local inflow conditions, thus

the aerodynamic forces over the blade can not be calculated by using the geometric angle of

attack: corrections need to be applied.

These phenomena are visible into the near wake region so, studying the flow in this region,

useful information can be extracted about the rotor blade functioning.

Figure 2.7: Turbine blade’s vortices [4].
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2.3.2 Far wake

The far wake region, as Varmeer et al. [25] describe, starts when the shear layer of the near wake

reaches the wake axis; it was found that a good approximation is to consider the beginning of

this region between 2 to 5 diameters downstream the rotor plane. Different features character-

ize the far wake region compared to the near wake ones. Peculiar velocity deficit profiles and

turbulence intensity distributions distinguish this region.

The wake is considered completely developed, so an axisymmetric behaviour and absence of

streamwise pressure gradient
(
∂P
∂x = 0

)
can be assumed (refer to Figure 2.2). Velocity deficit and

turbulence intensity result in a self-similar (Gaussian) distribution in the cross-section. In real-

ity those assumptions are too strict. Observations have demonstrate that the point of maximum

velocity deficit is below the turbine axis and the point of maximum turbulence intensity above

it, as it is pointed out in [28]. For this reason, the ground presence and the ambient shear flow

have to be taken into account to better describe the far wake behaviour.

The velocity deficit recovery is more rapid than the decay of turbulence intensity. As argued

in [13] turbulence intensity is still noticeable after 15D while velocity deficit is usually almost

negligible. The wake recovery is highly dependent on background turbulence level. Higher is the

turbulence in the free flow, faster is the wake recovery because of the greater momentum fed into

the wake by the turbulence itself. For this reason, wind tunnel experiments on model turbines

with low background turbulence show a larger distance for a full wake recovery. According to

this theory, several experiments [14, 29] show that velocity deficit and turbulence intensity are

not restored to the free stream values at 15D downstream the rotor.

In this region, efforts are focused on analyzing wind turbine interferences when arranged in

cluster by defining wake models, wake interferences features and turbulence models.



2.4. CHARACTERISTIC CURVES OF A WIND TURBINE 15

2.4 Characteristic curves of a wind turbine

When describing turbine performances, it is convenient to express them by means of non-

dimensional parameters, obtaining dimensionless curves characteristics of the turbine. CP -λ

and CT -λ curves are the most important.

The CP -λ curve is the usual method of presenting the power performance of a wind turbine. In

Figure 2.8 an example of a performance curve for a modern wind turbine is depicted.

Figure 2.8: Wind turbine CP curves [1]

Comparing it to Figure 2.3 in which the Betz limit and the Glauert’s corrected curve are repro-

duced, it has to be underlined that several corrective factors have to be considered. Modern

three blades, horizontal axis wind turbines usually reach a maximum CP value of around 0.45 to

0.50 [2] which is significantly below the Betz limit. These differences are due to several aerody-

namics but also mechanical (bearings and gearbox) and electrical-conversion losses.

The real CP curve features a maximum point at a certain tip speed ratio λ for which the ideal

flow conditions are achieved in every section of the blade; it means that the optimal angle of

attack occurs leading to the maximum airfoil performances. This is usually the design operating

configuration.

At lower than the design tip speed ratio λ, negative angles of attack in the inner sections of the

blade causes aerodynamic stall. This segment of the curve is usually referred as "stalled region"

[30]. Decreasing the tip speed ratio, the stall will affect a bigger part of the blade, until the whole

blade is stalled and there is no power production.

At higher than design tip speed ratios the power is still increasing, but the power coefficient is

not. The angles of attack on the airfoils get bigger, thus the flow is separated in a sector of the

blade profile and causes a considerable amount of drag which decrease the efficiency of the

wind turbine [1].
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Raising the tip speed ratio, the inner part of the blade starts acting as a propeller, energizing the

fluid, while the outermost part is still extracting energy from the wind. When the amount of

energy imparted to the flow and extracted are in balance, the CP reaches the zero value. This

operating point is called "run-away" as it would be the working condition for a wind turbine

that is not connected to an electrical generator but is left free to rotate.

The other characterizing curve for a wind turbine rotor is the CT -λ. The CT parameter is very im-

portant for the construction of the rotor support and the structural design of the turbine tower.

[1]. The thrust coefficient continuously grows with increasing tip speed ratio. An example of

the thrust curve is depicted in Figure 2.9. In the transition zone, from the stalled region to the

optimal tip speed ratio, a smaller gradient can be observed (λ ≈ 4 in Figure 2.9) because the

not-stalled regions present a smaller drag. After reaching the optimal tip speed ratio the slope is

quite constant.

Figure 2.9: Wind turbine CT curve example [5]



Chapter 3

Experimental Setup and Methodology

In this chapter, a description of experimental facility, instruments and model turbines are intro-

duced, then the methodology used to elaborate the experimental data are shown and explained.

3.1 Wind tunnel

The experimental study is performed in the main wind tunnel at the Department of Energy

and Process Engineering at NTNU (Trondheim). It is a closed-loop wind tunnel as it is shown

in Figure 3.1. The driving fan can achieve a maximum power of P = 220 kW which leads to a

maximum wind speed of U∞ ≈ 30 m/s in condition of empty tunnel. After passing through the

fan, the air is canalized in the upper part of the tunnel, where several grids and honey combs are

used to decrease the turbulence level; then the test section inlet contraction is used to speed up

the flow before entering the test section. The latter is 2.71 m wide and 11.14 m long and it has

a flexible roof that has been adjusted to have a zero pressure gradient along the test section at a

speed of U∞ ≈ 14 m/s. The tunnel heights are shown in Table 3.1.

X (m) Height (m)
0.000 1.801
1.281 1.801
5.621 1.813
8.435 1.842
11.150 1.851

Table 3.1: Wind tunnel test section heights

Section 4.1 will be spend defining the main flow characteristics in the wind tunnel.

17
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Figure 3.1: NTNU wind tunnel [6]

Inside the test section an automatic traverse mechanism is installed. It enables the accurate

positioning of measurement instruments, as well as the movement while experiments are run-

ning. The position of the probe can be controlled by a computer in three-dimensions using a

dedicated LabVIEW®software.

3.2 Model wind turbines

Two model wind turbines are used for the present study, they are equipped with the same set

of 3 blades, but present some differences in the tower and hub. The model and blade geometry

was completely designed at NTNU and it is fully described in [8]. Only the main features will be

shown here.

3.2.1 Airfoil

The rotor was designed with three blades using the NREL S826 airfoil (shown in Figure 3.2)

throughout the span.

This is a 14 % thickness profile, designed by NREL for being used close to the tip of full scale

wind turbines [31]. It is studied to be optimal at Re = 2 · 106, in this condition it gives a high

lift (CL= 1.42), a gentle stall (due to a separation ramp close to the trailing edge on the suction

side) and it is quite insensitive to roughness. This insensitivity is due to an early transition to

turbulence on the suction side; this aspect is one of the reason why this profile was chosen, in

fact the early transition ought to also reduce Re dependency behaviour and this is a good feature

as it will be used in a model scale in which the Re number is usually much lower than in a full

scale wind turbine.
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Figure 3.2: Blade profile: airfoil NREL S826

The airfoil NREL S826 was tested for Reynolds numbers between Re= 106 and Re= 3 · 106 by

Somers [31] , and from Re= 4 ·104 to Re= 1.2 ·105 by Sarmast [7] (results are shown in Figure 3.3).

The results obtained for lower Reynolds numbers are comparable with the high Reynolds start-

ing from 1 ·105, below this value airfoil performances are quite different and present hysteresis

in the lift and drag curve, both in the pre-stall and post-stall regions. However, approaching

Re=105, the airfoil characteristics tend to the ones at high Reynolds numbers (106) and this is a

beneficial behaviour in terms of scaling the experiment (see Section 3.2.3).

The Reynolds dependency is connected with separation phenomena. According to [8, 32, 33],

this effect can be related to a laminar separation bubble near the blade leading edge on the suc-

tion side. This argumentation is supported by data on airfoil coefficients presented in Figure 3.3.

The different behaviours at low Reynolds numbers clearly respect the creation of a separation

bubble.

3.2.2 Models description

The turbine models used in this study have a slightly different geometry, even if they are equipped

with the same set of blades. All dimensions are presented in Figure 3.4(a) and 3.4(b). It is pos-

sible to see that turbine T1 presents a bigger hub, which results in having larger rotor diameter

(D1= 0.944 m) than turbine T2 (D2= 0.894 m).

Both turbines has a 0.37 kW motor, controlled via a SIEMENS®Micromaster 440 frequency con-

verter, which is able to finely adjust the rotational speed of the turbines. The rotor can operate

up to 3 000 rpm, the converter allowed power to be consumed from or to be supplied to the

motor. When the turbine is producing power, it is dissipated in a 300 W electrical heater.
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Figure 3.3: Lift coefficient of airfoil NREL S826 tested at low Reynolds numbers [7]

Blockage

Analysing the performances and wakes of a turbine in a closed test section the effect of the

blockage has to be considered as it can increase the calculated performances as well as disturb

the wake expansion (see Section 2.3). The velocity tends to rise in the tunnel as a consequence

of the reduction of the available section for the undisturbed flow around the turbine.

The solid blockage for the turbine model T1 (the bigger one) inside the NTNU wind tunnel is

14.2%. It represents the ratio between the rotor swept area (π4 D2
1) and the cross section of the

wind tunnel. Some older experimental results [25, 34] suggest not to exceed 10% when analysing

turbine performances in a closed test section, even if our value is slightly bigger it is not consid-

ered an issue as in numerical simulation it can be taken into account adding test section walls.

Another aspect of the blockage that has to be discussed regards the wake expansion. The inter-

ference of the wind tunnel floor can be approximated with the one of the ground in a full scale

turbine, as the tower height is quite respected considering the scaling factor. Walls interference

can be compared to the one presents in a real wind farm from other turbines on the sides. The

main problem regards the roof of the tunnel that let not the wake expand freely in that direction

and considerably deform the shape of the wake. It has to be remembered that as a test case, all

these factors can be taken into account in a simulation, so it will not be further discussed.
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(a) First turbine (T1) geometry

(b) Second turbine (T2) geometry

Figure 3.4: Turbines geometry
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3.2.3 Rotor and blades design

During the blades design process the TSR was set to 6 and the nominal angle of attack to 7 °

for an undisturbed inlet velocity (U∞) of 10 m/s. As it was designed to be a challenging test

case the tip is sharply cut, to generate strong tip vortices, and the transition region between

the cylindrical part and the innermost airfoil is a linear ramp. The chord length is bigger (≈ 3

times) than what is in a full scale wind turbine (considering a scaling factor of 1:100) in order

to increase the Reynolds number in the model turbine; this aspect is also beneficial in terms of

manufacturing the blade, permitting higher accuracy. This choice will give a smaller value for

the aspect ratio, increasing three dimensional flow effects as well as the strength of tip and root

vortices compared to an ideal chord distribution. All these factors will raise the difficulties as a

test case for numerical modellers. The twist angle distribution is quite strong due to the high

rotational speed at which it is supposed to operate to reproduce TSR= 6 (considering U∞ ≈ 10

m/s and its radius).

Figure 3.5: Model blade. (a) Azimuthal projection (b) Streamwise projection [8]

Scaling

Even if the present study is not thought to be scaled to a full scale turbine but to be compared

with simulation of the same setup, the scaling issue is going to be briefly discussed to present a

limitation of wind tunnel experiments.

The model turbines presents a geometry scaling factor of about 1:100 but the problem of scaling

is much bigger when talking about wind generator as there are a lot of conditions to reproduce.

The most important are:



3.3. INSTRUMENTS DESCRIPTION 23

• The TSR has to be matched with a full scale turbine.

• The Reynolds number at which the airfoil is working has to be reproduced.

• The inlet flow velocity should be the same.

Considering the same wind free stream velocity but a much smaller radius the TSR is reproduced

increasing the rotational speed. This is a compromise as the high rotational speed induces 3D

effects on the airfoil, improving its performances by delaying stall, that would not be present

in a full scale turbine. The bigger problem is represented by the Reynolds number because it is

much smaller in a model. The local Reynolds number based on the blade tip speed and tip chord

is Rec,t i p ≈ 105 while for a real one this parameter is at least one order of magnitude higher. In

this case the airfoil is chosen to reduce the Reynolds dependency but it is always present and

the effect on turbine performances will be further discussed in Section 4.2.1.

3.3 Instruments description

All instruments used during different sets of measurements are described in this section.

Barometer

The ambient pressure is acquired through a mercury barometer produced by Lambrecht. It

consists in a mercury column calibrated in the unit of mmHg that has to be manually read. The

instrument resolution is 0.1 mmHg.

Thermocouple

The temperature in the wind tunnel is constantly monitored through a thermocouple placed

inside the test section, in order to take into account air density variations due to temperature

changes. It is also used during hot wire measurements for temperature correction.

The thermocouple is a K type (Chromel/Alumel). The analogue voltage from the thermocouple

is sent to a National Instruments NI 9211 thermocouple board and converted into temperature.
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Differential manometer

A differential manual manometer is used, after being tilted it has a resolution of 1 Pa. The

manometer is calibrated so that from the alcohol column is possible to directly read the dif-

ferential pressure in Pa. It was used to check all pressure transducers calibration factors before

starting each measurement campaign.

Pressure transducer

Two in-house assembled pressure transducers are used. Both of them have a pressure capacity

range of 10 inches of water ( ≈ 2200 Pa), covering all the measurements range.

For the calibration of the instrument refers to Section 3.4.

Static Pitot probe

A Pitot probe is installed inside the test section to calculate the velocity of the flow. The pres-

sure difference (between the static pressure and dynamic one) is measured thanks to a pressure

transducer (see section 3.3) and then converted into velocity of the flow through Equation 3.1,

derived from Bernoulli’s Equation.

U∞,pi tot =
√

2× (ptot −pst at )

ρ
(3.1)

This instrument measures the velocity of the flow in the position in which is installed. Pitot

probe has a low frequency response (compared to the frequency of turbulent events) so it is

not suitable for measurements in a turbulent flow. In case of high turbulence, also the velocity

mean value measured by the Pitot probe can be affected and it is needed to be corrected by theα

factor as in Equation 3.2 [35]. To avoid a decrease in accuracy because theα factor is dependent

by turbulence length scale, the Pitot probe is not used as reference when turbulence intensity is

significant, instead the inlet nozzle pressure difference is considered.

U∞,pi tot =
√

2× (ptot −pst at )

ρ
−α · (u′)2 (3.2)
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Inlet nozzle

Before entering the test section air is passing through a contraction (Figure 3.1), which is used

as a nozzle to measure the inlet velocity.

Pressure taps are distributed over the biggest and the smallest section perimeters, allowing to

record a differential pressure between them. Measuring the differential pressure between p1

and p2 (respectively pressure in the first position and in the second) and knowing the area ratio

between A1 and A2, from Bernoulli equation it is possible to calculate the bulk velocity as in

Equation 3.4.
A2

A1
= 1

4.36
(3.3)

U∞,bulk =
√√√√√ 2(p1 −p2)

ρ

(
1−

(
A2

A1

)2) (3.4)

This instrument is used to calculate the reference velocity when measurements with a GRID at

the inlet test section are performed. The grid is positioned after the second set of holes. For

taking into account the pressure drops of the contraction itself and on the downstream GRID an

empirical correction factor is found (see Section 3.8). The reference velocity will be calculated

as in Equation 3.5.

U∞ =U∞,bulk ×0.84 (3.5)

Figure 3.6: Sketch of the inlet nozzle.
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Hot wire anemometer

The instrument operation principle is to obtain the flow velocity by evaluating the convective

heat transfer from an heated wire to the cold fluid. A single hot wire probe is shown in Figure 3.7,

the sensor consists of a very thin tungsten wire (length ≈3 mm and diameter of 5µm) connected

with two prongs. An electronic circuit (CTA: constant temperature anemometer) heats the wire

up and keeps constant its temperature by regulating the supplied current in a proportional way

to the velocity change; a correlation between these two variables can be found.

Figure 3.7: Hot wire probe [9]

The main features of this instrument that makes it suitable for these experiments are its high

temporal and spatial resolution: it can measure fluctuations of very high frequency and eddies

down to the order of mms. For these reasons it is used for measuring the velocity and the turbu-

lence intensity in the wake of the turbine and in all situations with a high turbulence intensity.

The instrument functioning is described more in details. The measuring chain is sketched in

Figure 3.8. The probe is installed in the tunnel where the velocity has to be measured, then it is

connected to the Anemometer in which a CTA circuit and a signal conditioner are present. The

signal, after being conditioned, is connected to the A/D Board for being digitally converted and

acquired by a computer.

Figure 3.8: Typical constant temperature anemometer (CTA) measuring chain [9]

The probe used during the measurements is made up of a single wire and it is positioned so that
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the streamwise component (mean velocity and fluctuations) could be measured. The CTA cir-

cuit contains a Wheatstone bridge as depicted in Figure 3.9. Rw is the hot wire probe resistance,

which is connected to one arm of the bridge. The wire is heated up exploiting Joule’s effect.

When the quantity of heat loss varies, due to the flow velocity variations, more current has to be

supplied by the circuit, in order to keep the wire temperature constant.

Figure 3.9: Wheatstone bridge of constant temperature anemometer

The system voltage output is amplified by an operational amplifier (G), so it is used as a feed-

back to maintain the wire temperature constant [36]. The result is that the voltage difference

E represents the heat transfer so that the flow velocity can be evaluated. The wire temperature

can be chosen varying the resistance R3 in the circuit.

The high gain of the servo loop amplifier, combined with the sensor low thermal inertia, give a

very high frequency response. The effective frequency that could be detected by the equipment

installed is always tested as described in Section 3.4.

The main issues connected with hot wires probes are related to directional and flow temperature

sensitivity.

The instrument is sensitive both to flow velocity and direction; using a single wire, as in our case,

only one velocity component can be detected. It has to be considered the three dimensional flow

can affect the measure of the streamwise velocity. Considering the implicit three-dimensionality

of the flow field in a wake of a wind turbine it has already been tested using LDV technique [14]

the influence of other flow directions in the measurements and it results that they are included

in the accuracy range of the hot wire (see Section 3.9).

The second problem regarding hot wire measurements is connected to its temperature sensi-

tivity. Changing the temperature at which the flow is investing the wire the bridge voltage E will

change for the same setted velocity. "A 1K change gives an error of approx. 2% in velocity" [9].
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During data analysis this limit can be reduced using a temperature correction for the voltage, for

this reason the temperature in the tunnel is always monitored via a thermocouple placed close

to the hot wire.

For the calibration of the instrument refers to Section 3.4.

Torque transducer

Inside both turbines nacelles a torque transducer HBM® T20WN is installed (see Figure 3.10)

Figure 3.10: Cross section of T2 nacelle.

The nominal maximum torque that can be measured is ±5 Nm for T1 and ±2 Nm for T2. It is

converted into a signal of ±10 V in both cases, so the calibration coefficients are respectively

0.5 Nm/V and 0.2 Nm/V. The characteristic tolerance of the instrument is ±0.2% of the voltage

measured and the output signal for a zero torque is ±0.2 V.

RPM sensor

The two model wind turbines are also equipped with an optical RPM sensor inside the hub cas-

ing (see Figure 3.10). A metallic disc with a small hole is fixed to the rotor axis, peaks in voltage

are registered by the sensor for each blade rotation and send to the NI®acquisition system. The

time between two peaks is measured and averaged over the whole acquisition period, obtaining

the RPM value.
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Aerodynamic balance

A six-component force balance, produced by Carl Schenck AG, is mounted below the tunnel

floor. A turbine is mounted on the balance and the thrust force is measured. During this thesis

project no yaw misalignment is tested, so just the force in the axial direction is acquired.

3.4 Instruments calibration

Pressure transducer calibration

Before performing each set of measurements, the calibration coefficient of the two pressure

transducers are checked using a manual manometer (see section 3.3). For the calibration pro-

cedure the manual manometer and the pressure transducer are connected in parallel. Different

inputs are given and always both the alcohol column [Pa] and the voltage [V] are acquired. Fig-

ure 3.11 shows an example of the calibration curve found for one of the pressure transducers.

All pressure transducers used during measurements are checked many times during the whole

experimental period.
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Figure 3.11: Typical pressure transducer calibration curve.
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Hot wire calibration

The probe is calibrated against a standard Pitot tube, positioned 50 mm on one side, in free

stream condition. Before every measurement session calibration procedure is executed. A 4th

order polynomial is used to fit the calibration curve, relating the acquired voltage to the mea-

sured Pitot velocity. The anemometer output is corrected for temperature variations before cal-

culating the regression curve. A typical calibration curve is plotted in Figure 3.12. The RMS of the

deviation of the measured points from the regression curve is calculated and always results in a

magnitude order of 10−3. The temperature correction is performed by a in-house programmed

MATLAB® routine.
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Figure 3.12: Typical Hot Wire calibration curve.

A square wave test (according to [9] ) is performed to check the frequency response and it always

results in values no lower that 10 kHz. As it is considered an upper limit, the highest acquisition

frequency is always 5 kHz (half of the square wave test not to add accuracy uncertainties as

suggested in [9]).

Torque sensor calibration

Both torque sensors calibration coefficients are checked before each set of measurements, here

it will just be reported an exemplary process of calibration curve testing.
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The rear part of the shaft is blocked and a constant torque on the front part is exerted putting a

reference weight at a fixed distance from the centre. This process is repeated varying the weights

and the voltage is acquired. The linear dependency between the torque [Nm] and the voltage

[V] is found so the calibration coefficient and its tolerance checked. In Figure 3.13 an example

is shown. The blue dots are the acquired points. The red line is the evaluation of the linear

regression and error bars represent the deviation of the measurement points from the regression

line. The black dashed lines are the limit of accuracy of the instrument. As all points are inside

the area between the black dashed lines, the instrument calibration is verified.
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Figure 3.13: Typical torque transducer calibration curve.

Aerodynamic balance calibration

The process of calibration is similar to one of the torque sensor, defined weights are putted onto

an hanging device, creating note force values. A linear dependency is found by regression of

acquired data. Figure 3.14 shows the calibration regression line.
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Figure 3.14: Typical aerodynamic balance calibration curve.

3.5 Data acquisition and Control systems

The data acquisition system (DAQ) used during experiments is a NATIONAL INSTRUMENTS
®NI 9215 data acquisition board. The analog signals are treated by amplifiers circuits before

acquisition, in order to reduce the discretization errors. The acquisition and control software is

programmed in LabVIEW®, the interface unable both a real time signal monitoring as well as an

acquisition window, which make it possible to save data into ASCII-formatted text files.

For each set of measurements the acquisition frequency and the number of samples could be

set. For performances measurements the sampling frequency is set to 2 000 Hz and the number

of samples to 60 000, resulting in a 30 s sampling time.

When sampling the signal for hot wire measurements an higher frequency is used. A low pass fil-

ter setted at 2 500 Hz is applied and then the signal is sampled at 5 000 Hz. A sampling time of 40s

lead to collect 200 000 samples. These conditions allow spectra analysis respecting Shannon-

Nyquist sampling theorem [37]. During hot wire measurements time series of all points are

recorded in order to be able to reconstruct the signal with all its turbulent fluctuations properly.
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3.6 Measurement campaign

For the thesis purpose two different classes of measurements are performed: wind turbine per-

formances curves and wake assessments. Various settings are tested.

Firstly a characterization of the inlet flow field in two different configurations (low and high tur-

bulence background level) is performed using a Pitot tube and a hot wire probe. For the empty

tunnel it must be ensured a uniform mean velocity profile and a low turbulence background

level on the future rotor swept area. The expansion of the boundary layer along the tunnel is in-

vestigated too. When mounting the grid (described in Section 4.1.2) the turbulence level on the

rotor plane and the decay along the tunnel is analysed, as well as the uniformity of the flow ve-

locity. In both cases a power spectral density analysis is performed for testing the flow frequency

regularity.

Thereafter, CP and CT curves are measured independently for both model turbines for a num-

ber of different wind tunnel inlet speeds (U∞) in both inflow configurations. All experiments are

taken with the single turbine at 2D from the inlet test section. Fixed U∞, thrust and torque on

the shaft are recorded ranging the tip speed ratio (indeed the rotational velocity) from λ = 1 to

the runaway point. The main reasons are having working reference points for further compar-

isons and ensuring regular operating features of wind turbine blades. Wake measurements on

a horizontal line at hub height behind turbine T1 are performed at three axial stations (3D, 5D

and 9D) downstream the turbine, for different TSR. The goal is to have an overview of the inlet

flow conditions for the second turbine

Subsequently both wind turbines are installed in the tunnel and the parametric study of power

output and thrust is carried out. The first wind turbine is fixed below the wind tunnel floor on

a support at 2D from the inlet, while the second turbine is positioned over the aerodynamic

balance, to allow thrust measurements, in three different axial stations: 3D, 5D and 9D from the

first rotor plane. All experiments are repeated for the two different flow conditions: low and high

turbulence. In each configuration a matrix ranging the tip speed ratios of both turbines is made.
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3.7 Data processing

Evaluation of Power ant Thrust curves

The performances of a wind turbine are usually described in terms of power and thrust curves

(for details refer to Section 2.4). The torque on the shaft T and the thrust force FT are measured

together with the reference inflow velocity U∞ and the rotational speedω. The power generated

by the turbine can be calculated as: Power =ωT . Then the tip speed ratio λ, CP and CT can be

derived using respectively Equations 2.1, 2.3 and 2.4 to obtain the performances curves.

Evaluation of flow measurements

The flow field is measured using the hot wire probe, when the evaluation of velocity deficit and

turbulence intensity is required.

The velocity deficit is defined as the ratio between the mean velocity in a defined position U

and the freestream reference velocity U∞ as in Equation 3.6. It results to be a non-dimensional

parameter [-] describing the momentum loss in the wake.

V el oci t y de f i ci t = U

U∞
(3.6)

The reference velocity is calculated according to Section 3.8, while the mean velocity is obtained

averaging the N instantaneous values recorded Ui as in Equation 3.7.

U = 1

N

N∑
i=1

Ui (3.7)

When calculating the velocity from hot wire output voltage a temperature correction is neces-

sary as the bridge voltage E is very sensitive to fluid temperature. "A 1 K change gives an error

of approx. 2% in velocity" [9]. Before converting the acquired voltage E into velocity, a cor-

rection factor is applied according to [9], so that the corrected voltage Ecor r is calculated. The

temperature changes in air never exceeds the suggested range of ±5 °C.

Ecor r =
(

Tw −T0

Tw −Ta

)0.5

·E (3.8)

The turbulence that the rotor promoted on the flow requires a statistical analysis of the signal
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acquired from the hot wire because of its random nature. Figure 3.15 shows an example of a

recorded velocity signal U (t ) in a turbulent flow.
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Figure 3.15: Example of an acquired velocity signal in a turbulent flow.

The actual velocity Ui can be split up into 2 parts: the local mean velocity U and the fluctuation

u′
i :

Ui =U +u′
i (3.9)

The turbulent fluctuation u′ is defined as the standard deviation of velocity (statistical second

order moment) as in Equation:

u′ =
√√√√ 1

N −1

N∑
i=1

(Ui −U )2 =
√√√√ 1

N −1

N∑
i=1

(u′
i )2 (3.10)

Therefore the turbulence intensity TI [%] can be calculated as the ratio of the turbulent fluctua-

tion u′ and the local mean velocity U :

T I [%] = u′

U
∗100 (3.11)

As already mentioned, spectral analysis provides information about how the energy is distributed

with respect to frequency. In latter analysis the power spectral density is calculated using the dis-

crete Fourier transformed, windowed with a Hann function. A window length of 3 125 samples,
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with an overlap of 1 500 (≈ 50%) is used as a compromise between quality of results, calculation

efficiency and smoothness of the signal. It results in a frequency resolution of 1.6 Hz. Figure 3.16

shows the comparison between a full DFT calculation (Discrete Fourier Transformed) and two

overlapping methods of a signal recorded in the turbine T1 wake.
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3.8 Reference velocity

The reference velocity has to be chosen and clearly described in order to have a set of mea-

surements that could be compared with numerical tests. It is decided to consider two different

instruments as reference in the two incoming flow conditions. When the tunnel is empty a Pitot

probe is used, while when the grid is mounted the inlet nozzle is preferred because of its char-

acteristics.

During experiments in the empty tunnel, the reference position of the Pitot probe has to be

chosen. The reference velocity should not be affected both by the turbine induction and by

wind tunnel walls, as it is supposed to be the undisturbed inflow velocity. Different velocity

measurements are taken in all the positions marked in the sketch in Figure 3.17 while the turbine

is running. The reference position is taken as a compromise between avoiding the influence of

the wind tunnel walls and the turbine induction. After considering the results and the accuracy

of the instrument, the position marked with the big red circle is chosen. It is located at the same

height of the turbine hub.

Figure 3.17: Position of the reference Pitot probe: front view of wind tunnel section.

When running experiments with the grid, due to the high turbulence induced, the inlet contrac-

tion system is used to set the reference velocity. Anyway, because of its characteristic (see 3.3)

an experimental correction factor has to be applied, taking into account for pressure losses over

the grid.

Several velocity measurements are taken both in a vertical line in the centre of the tunnel and

in a horizontal line at the hub height using hot wire anemometer. Also the velocity from the

contraction is registered. By the average of these results the experimental correction factor is

found to be 0.84 for an incoming flow of roughly 11.5 m/s.
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3.9 Measurement accuracy

The accuracy of the whole measurement chain is calculated according to [37]. The calibration

accuracy of instruments is taken into account considering a 95% confidence interval. The total

uncertainties is obtained via the RSS (root of the sum of the square) method and combined via

the formula [38]:

ωR =
(

n∑
i=1

[
ωxi

∂R

∂xi

]2
)

(3.12)

where R is the variable, function of the parameters xi . Therefore the accuracy of the resulting

reference velocity, thrust, torque and hot wire velocity can be estimated.

The air density is corrected for ambient pressure at the beginning of each experiment, but the

error induced on the results is considered negligible. The air humidity is not taking into account.

The main issue could be on hot wire heat transfer, however, according to [9], the influence is very

small and thereby negligible.

The reference flow velocity measured with the Pitot probe (U∞ = 11.5 m/s) results in an accuracy

of ±0.1 m/s, i.e. ±1%, while with contraction nozzle (not considering the effect of the empirical

correction factor) it is almost double.

As regards the power curves for both turbines, an example is depicted in Figure 3.18. None of

the measurements exceed a relative error of ±5% if the runaway point is not considered. The

accuracy in tip speed ratio calculation is considered negligible and it is not inserted in the graph

as never overtake ±0.5%.

With respect to free stream and wake flow measurements using the hot wire probe, it should be

noticed that there are several factors affecting the measurement chain: the probe itself, its in-

stallation and calibration, the anemometer circuit and the data acquisition board. There is the

possibility of misalignment of the probe with respect to the velocity component that is going to

be measured. This source of error is considered negligible as it is not moved between the calibra-

tion procedure and the measurements. Drift and noise from the CTA anemometer is ignored too

as all the experiments were conducted during a short period of time just after calibration. Post-

calibrations are also conduced and data are evaluated using the two polynomial curves. Data

exceeding an arbitrary velocity difference of ±0.1 m/s, using the two calibration coefficients, are

disregarded. The digital conversion of the analog voltage output can be a source of error, but

the influence onto the overall measurement uncertainty is estimated to be very small [9] if an

appropriate data acquisition board is used. The chosen sampling frequency and the analogical

low-pass filter help on reducing this source of error. According to literature (e.g. [9]), one of the

most important source of error in hot wire measurements is the temperature variation in the
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Figure 3.18: Power coefficient curves for the two turbine models running with a
downstream separation distance of 3D. The second turbine curve is obtained with
the first turbine running at optimum TSR. The errorbars represent the evaluated ac-
curacy.

flow. In this project the signal is temperature-corrected as already described in Section 3.7 so

that no additional uncertainties are introduced.

The main source of error for hot wire measurements is assumed to be originated during the cal-

ibration process: the hot wire is calibrated against a Pitot tube, connected to a pressure trans-

ducer. The pressure transducer calibration is performed using a manual manometer. So the flow

velocity depends on a manual reading of an alcohol column. Each of these steps is evaluated

and results in a velocity accuracy that never exceeds ±0.2 m/s, while for turbulence intensity an

error estimation of ±0.1% is obtained.

In other studies [14], wake measurements using a single hot wire probe are compared with two-

component Laser Doppler Velocimetry showing good agreement. So the tridimensionality in-

trinsic in a turbine wake does not strongly affects single hot wire measurements.
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Chapter 4

Results and discussion

In the present chapter the results of major interest are presented: first the characteristics of the

inlet flow are described, then a single turbine is characterized, both in terms of performances

and wake to allow comparison with the power output parameter study, presented in the third

section.

4.1 Inlet Flow Field characterization

Initially, the flow field in the test section is scanned. A complete characterization of the flow in

the wind tunnel has to be accomplished, in order to analyse wind turbine performances and

wakes, moreover to supply to numerical modellers the inflow conditions.

In order to check the main features of the flow at the reference wind speed (Ur e f = 11.5 m/s)

some tests are taken. Other studies have been performed before in NTNU wind tunnel, but at

different wind speeds [14].

For the present study two inflow conditions are considered: the empty tunnel (low background

turbulence) and the flow after a meshed grid (high background turbulence).

4.1.1 Empty tunnel

In the empty tunnel configuration the flow is characterized. In order to check the boundary layer

expansion, the velocity is measured at the vertical centreline of the tunnel at different stations

along the tunnel. The incoming flow velocity is set at 11.5 m/s at the future hub height z/R = 0.

This is the reference value used for presenting the results in a dimensionless shape. In Figure 4.1

41
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the outcomes are depicted. The different downstream positions are measured from the inlet test

section and the diameter of the first turbine (D1 = 900mm) is used as reference.

The boundary layer growth on the floor is visible along the tunnel.

It has to be underlined that the boundary layer expansion does not affect the measurements as

at 7D from the inlet, the flow facing the rotor plane (−1 < y/R < 1) is still uniform. In the area

where the rotor will be positioned the results spread is confined in the range of ±1%. So the flow

in the wind tunnel will be considered uniform over the rotor swept area.
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Figure 4.1: Flow mean velocity profiles in the empty tunnel, measured at different
downstream positions (2D, 5D and 7D from the inlet), in the vertical centreline. Non-
dimensional values are obtained using the value measured at the wind tunnel centre.

At 2D from the inlet, where the first turbine is standing, more tests are carried out (see Section

4.1.3).

The streamwise component of the turbulence intensity (u′/Um), at 2D downstream from the

inlet test section, is measured in an horizontal line at the future hub height. The maximum value

recorded is 0.5%. Previous measurements have shown a turbulence level of 0.3% [34, 14] and 1%

[5]. Despite the small spread in results, all these measurements present very low turbulence

levels as expected in a wind tunnel.
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4.1.2 Grid

In order to increase the turbulence level in the tunnel a mesh grid is installed at the test section

inlet. A grid is used to obtain a good approximation of decaying homogeneous turbulence [39].

The interest in analysing performances and wakes in a different inflow condition comes from

the significance of including turbulence effects in the experimental dataset.

The grid mesh size is M = 0.240 m and the mesh shape is depicted in Figure 4.2.

Figure 4.2: Mesh grid installed at the inlet test section. The turbine is not installed
during these measurements

Passing through the grid, the turbulent kinetic energy (TKE) increases; as there are no turbu-

lence sources along the tunnel, the TKE decays moving far from the grid. The measured tur-

bulence intensity distribution is shown in Figure 4.3. So the mean turbulence intensity and its

deviation are derived:

• At 2D from the grid (future turbine location) it is found (10±0.3)%.

• At 5D it is (5.2±0.4)%.

• At 7D it is (4.4±0.4)%.

These mean values are in good agreement with the turbulence decay law after a grid in a wind

tunnel [39].

The mean velocity is not totally independent on the spanwise coordinates. As depicted in Fig-

ure 4.4, at the three different downstream positions the flow seems to accelerate both at the top
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Figure 4.3: Turbulence intensity [%] in the flow after the grid at different downstream
positions (2D, 5D and 7D from the inlet), measured in the vertical centreline of the
tunnel.

and at the bottom of the tunnel. Nevertheless considering the future rotor position (−1 < z/R <
1) the flow can be considered uniform with a deviation from the centre line that never exceeds

±0.2%.

4.1.3 Flows comparison at 2D from the inlet

After the first analysis of the flow along the tunnel is completed, it is decided to deeper investi-

gate the flow characteristics at 2D from the inlet, where the first turbine will be installed. In this

position, a turbulence intensity and mean velocity scans are accomplished at the same height

where the turbine hub will be placed.

The mean velocity is adimensionalized with the value obtained at the tunnel centreline (y/R =
0). In Figure 4.5 the two different inflow conditions are compared.

Considering the empty tunnel a slight increase can be pointed out for y/R > 0.5, however it is

found to be smaller than 5%, so it is not considered affecting the measurements significantly.

In the range −1 < z/R < 0.5, the velocity is uniform within ±0.5%. The results are in good

agreement with previous tests, for example in [8] the flow uniformity across the test section

was ±0.27%.
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Figure 4.4: Flow mean velocity profiles after the grid, measured at different down-
stream positions (2D, 5D and 7D from the inlet), in the vertical centreline of the tun-
nel. Non-dimensional values are obtained using the value measured at the wind
tunnel centre.

Regarding the flow after the grid, a stronger variation for the mean velocity depending on the

spanwise coordinates is noticeable. At 1.8 m far from the grid, the stream has not totally recov-

ered and flattened. Nevertheless the deviation from the mean value does not exceed ±4%, so it

is considered acceptable for the following measurements.

4.1.4 Power Spectral Density

The spectrum of the incoming flow is analysed, determining how the turbulent kinetic energy is

distributed among the eddies of different sizes.

During the set of measurements formerly described, the velocity is acquired and recorded as

time series from the hot wire. In post-processing, a spectrum analysis is performed to check the

incoming flow regularity in frequency. For each point, the Power Spectral Density is calculated

implementing the discrete Fourier transformed in a MATLAB®script.

A turbulence spectrum, for each point of the 2D horizontal velocity scan, is elaborated for the

empty tunnel configuration. In Figure 4.6, three particular spectra, at y/R = 0;1.5;1, are rep-

resented; moreover the average of the 25 spectra is plotted ("mean spectrum"). The spectrum

does not vary significantly in different positions of the test section and does not present peaks
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Figure 4.5: Flow mean velocity profiles, measured at 2D from the inlet, on a horizon-
tal line, at future hub height. Comparison between the 2 different incoming flows.
Non-dimensional values are obtained using the value measured at the wind tunnel
centre.

for particular frequencies, as expected.

The same analysis is performed with the grid positioned at the test section inlet and the resulting

spectra in Figure 4.7 are obtained. No variations are recorded varying the location of the mea-

surement point. Furthermore the turbulence does not present peaks in frequency, meaning that

after 2D, time and length scale of the grid typical eddies have been dissipated. It means that af-

ter 2D, time and length scale of the grid typical eddies have been dissipated and the turbulence

in the flow does not present peaks in frequency peculiar frequencies of the grid

The black dotted line (in Figure 4.6 and 4.7) represents the Kolmogorov "−5/3" spectrum. It is

the trend of the energy cascade in the inertial subrange. In the grid case (Figure 4.7) between

102 and 103 Hz, the tendency perfectly match the theory.

It has to be underlined that the magnitude of the PSD in the grid configuration is double with

respect to the empty tunnel case. This is the effect of higher turbulence level introduced by the

grid.
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Figure 4.6: Power Spectral Density of the flow in the empty tunnel.
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Figure 4.7: Power Spectral Density of the flow in the tunnel after the grid.
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4.2 Single turbine

Several studies of performances and wakes behind a single turbine have been performed in pre-

vious projects at NTNU [8, 14, 32] However, in the present work, some boundary conditions are

different, as incoming flow characteristics and reference velocity. For this reason and for having

a term of comparison when analysing an array of two wind turbines, some basic performance

and wake experiments are carried out.

The different models (T1 and T2) are tested for performances in two different incoming flow

conditions: low and high background turbulence levels. Afterwards, wake measurements in an

horizontal line are performed behind T1 in order to define the incoming flow experienced by

the second turbine.

The experiments are carried out with a single turbine standing alone in the tunnel, at 2D from

the inlet on the aerodynamic balance. The turbine is located in the centre of the tunnel section,

the hub centreline is at (826± 1) mm of height. All the dimensions are reported in Figure 4.8.

The downstream positions represent the distances at which the horizontal line scanning of the

wake is performed, defining the locations of the future second turbine of the array.

Figure 4.8: Experimental setup for a single turbine.

4.2.1 Power output and thrust

The power coefficient curves of the two model turbines, varying the tip speed ratio λ and the

free stream velocity U∞, are depicted in Figure 4.9. The CP is obtained with a low background
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turbulence level. The first turbine (T1) curves are illustrated in Figure 4.9(a). The CP is recorded

for six inflow wind speeds, from U∞ = 8.7 m/s to U∞ = 11.7 m/s, while for the second turbine

(T2), the six velocities cover a range between U∞ = 8 m/s and U∞ = 12 m/s (Figure 4.9(b)). In

Figures 4.9(c) and 4.9(d) a magnified view is shown.

Considering the first turbine (4.9(a)), differences in CP curves are getting smaller starting from

U∞ = 10.9 m/s. However, the maximum point of the 10.9 m/s curve is slightly smaller than the

others and the curve presents a flatness on top. Starting from 11.4 m/s this behaviour tends to

disappear. One of the purpose of the array investigations is to find the optimum point of the

"wind farm", so a flatness on the power curve is not considered acceptable and a reference wind

speed of 11.5 m/s is chosen.

For the following array analysis, it has to be pointed out that the maximum CP value for turbine

T1 in low turbulence flow is CP = 0.47 at λ = 6 for the chosen reference velocity. The runaway

tip speed ratio is λ = 11.4. CP values are found in agreement with results presented in similar

studies [14, 40].

The distinct drops in CP around the design tip speed ratio (λ= 6) are the effect of a Reynolds de-

pendent behaviour of the airfoil (see Section 3.2). Because of that, at low wind speed the torque

generated by the blades decreases. This effect is shown up to 10.9 m/s, lowering in intensity,

increasing the reference velocity.

The same attitude can be observed for turbine T2 (Figure 4.9(b)). However, the magnitude of

these effects is actually lower: at U∞ = 8 m/s the bump is less deep than the one of turbine T1 at

U∞ = 8.7 m/s (Figures 4.9(d) and 4.9(c)).

The blade design is carried out considering the hub diameter of turbine T2. On the other hand

Turbine T1 has a slightly bigger hub diameter, affecting the aerodynamic of the blade. Therefore

the maximum CP value of turbine T2 is higher than the turbine T1, resulting in a CP = 0.48

obtained at λ close to 6 and U∞ = 11.5 m/s. This value is slightly bigger (≈ 5%) than what found

by Krogstad et al. [8] for the same tip speed ratio. Even if the boundary conditions were quite

similar, the difference is probably due to the reference velocity as in that case it was used the

pressure drop across the contraction corrected by an empirical factor (n.a.), while for the present

work a pitot probe is used (Section 3.8). For the same reason, velocity independent power curves

were found from ≈ 9.5 m/s, while in the present study (in agreement with [14, 32, 33, 5, 41] ) ≈ 10

m/s need to be reached to avoid this dependency for T2.
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Power coefficient curves are also recorded in a high background turbulence level flow (10% on

the rotor plane) for the 2 turbines (Figures 4.10 and 4.11). Investigations at different wind speeds

have shown a lighter Reynolds dependency behaviour (as expected). The turbulent flow, hitting

the blades, prevents the laminar bubble formation over the airfoils. Nevertheless lower the wind

speed, lower the CP values.

In this case maximum CP values (at U∞ = 11.5 m/s) are measured atλ= 6 and they are CP = 0.48

for turbine T1 and C p = 0.50 for turbine T2.

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

λ

C
p

 

 
8.5 m/s
10 m/s
11.5 m/s
11.9 m/s

Figure 4.10: Power curves of the first model turbine in high turbulence flow. Com-
parison between different incoming wind speeds.

Results show a slightly increase in the power curve when analysing the performances in a high

turbulent flow. One of the reason may be found in the airfoil behaviour, which seems showing

better performances with a high turbulence level, especially for turbine T1. The result slightly

diverge with what found by Mikkelsen [21], but some boundary conditions are different, as well

as the reference velocity method that is used in the two different cases. As the differences in peak

power performances are widely insight the accuracy of the instruments, it will not be further

discussed.

The following Table 4.1 can be derived, summing up the maximum power coefficient that each

turbine can reach with the two inflow conditions. These values will be used as reference for

considerations on the array efficiency.

The thrust coefficient is investigated too. As regards T1 thrust, it is checked to be in agreement
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Figure 4.11: Power curves of the second model turbine in high turbulence flow. Com-
parison between different incoming wind speeds.

CP T1 [-] CP T2 [-]
low turbulence (empty) 0.47 0.48
high turbulence (grid) 0.48 0.50

Table 4.1: T1 and T2 Maximum Power coefficient CP,max in stand alone configuration
for the two incoming flow conditions.

with previous results (e.g. [34]) for the incoming reference velocity; however an intensive study

is not carried out as this parameter does not vary in the different array configurations. Con-

versely, T2 thrust is recorded over a wide range of inlet wind speeds in order to have a term of

comparison for the following studies.

The thrust curves for turbine T2 are presented in Figure 4.12. On the left side the results obtained

with a low turbulence level on the incoming flow are shown. Hardly any difference can be found

varying the inlet wind speed. A small deviation can be observed for the 8 m/s curve between

λ = 5 and λ = 7. Due to the Reynolds number dependency, a much lighter effect is present on

thrust curves, comparing it with power curves. On the right side high turbulence thrust curves

are depicted. At low tip speed ratios the different velocities curves are totally congruent, while

approaching runaway points a certain spread in results is present. It has to be underlined that

high turbulence background level heavily affects the thrust coefficients of the turbine, leading

to stronger loads on the tower.
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Figure 4.12: Thrust curves for T2: Comparison between different incoming wind
speeds and considering the two incoming flow conditions.

According to Betz theory, the thrust coefficient of a wind rotor can reach a maximum value of 1.

In this case the models are installed in a closed test section, so they are affected by blockage,

speeding up the flow. This effect leads to a higher thrust coefficient, as the reference speed is

lower than the actual velocity felt by the rotor. Moreover thrust measurement is not the result

of the axial decomposition of blade loads, but it is taking into account the whole turbine (tower

and hub included). Measurements of the turbine thrust with no blades reveals a coefficient of

CT ≈ 0.1. However, more than 50% of the tower height is hidden by the rotating blades, so it is

decided not to subtract this value from the total CT measured.
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4.2.2 Wake of a single turbine

The object of this project is to analyse turbine wake effects on the performances a second tur-

bine located downstream. Hence a preliminary study of a single turbine wake is carried out.

Horizontal wakes are recorded at the hub height of the turbine, velocity deficit and turbulence

intensity are analysed in several configurations: at different distances behind the turbine (3D,

5D and 9D), with the turbine running at TSR = 4, 5 and 6, both in a low background turbulence

level and in a high background turbulence level (10% over the rotor plane).

The velocity deficit in the wake depends on momentum deficit behind the rotor, thus on the

thrust coefficient (CT ). In Figure 4.13, velocity deficit curves are shown, measured at 3 different

downstream positions in a low background turbulence level. On the X-axes local velocity is

adimensionalized by the free stream velocity (Ur e f ); on the Y-axes the radius relative position

is represented. The turbine is running at TSR=6 so that CT of the turbine is constant. Moving

downstream from the rotor plane, velocity deficit recovers as momentum is fed into the wake

through the shear layer. Meanwhile, momentum feeding produces the radial expansion of the

wake. In a full scale turbine, flow velocity reaches the incoming free stream value radially outside

the wake; in wind tunnel experiments this velocity is found higher than the freestream value

because of blockage effect. The flow inside the wake presents a lower value than U∞, according

to the mass conservation, a higher value is achieved outside.
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Figure 4.13: Horizontal velocity deficit profiles at 3D, 5D and 9D distance behind the
turbine working at optimum TSR (λ= 6) in a low background turbulence level flow.



4.2. SINGLE TURBINE 55

As it is noticeable from Figure 4.13 the flow velocity outside the wake reaches even 15% higher

values then the incoming free stream velocity (e.g. 3D distance). Similar results are obtained

in [34, 40]. The wake limits are well defined by a constant velocity profile (even if the value is

higher than Ur e f ). At 3D the transition region between the wake and the free stream is abrupt

while for 9D it is more gradual according with the physical phenomenon.

In Figure 4.14 turbulence intensity curves are shown, measured at 3 different downstream posi-

tions in a low background turbulence level. On the X-axes the turbulence intensity [%] is repre-

sented, while on Y-axes the radius relative position is kept.
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Figure 4.14: Horizontal turbulence intensity profiles at 3D, 5D and 9D distance be-
hind the turbine working at optimum TSR (λ = 6) in a low background turbulence
level flow.

As described in Section 2.3 the wake region can be divided in 2 areas: the first where the charac-

teristics of the rotor can be recognized (Near wake), the second where the flow is considered

completely developed, axisymmetric and with absence of streamwise pressure gradient (Far

wake). For a full scale turbine, as explained in [25], the transition between near and far wake

can be evaluated from 2D to 5D downstream the rotor, depending on the background turbu-

lence level. In wind tunnel experiments, it happens further downstream as described in [26].

In Figure 4.13 and in Figure 4.14 the transition between these 2 areas can be detected. In 4.13

a smoothness in the velocity profile is detectable increasing the downstream distance, even if

at 9D the Gaussian shape is not assumed. So the full transition to far wake is not ended. In

Figure 4.14 the rotor characteristics are visible at 3D and 5D by the presence of distinct peaks.
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Those peaks reveal the tip vortex and the nacelle, typical of the near wake region, while at 9D tip

vortex pair up and break down into turbulence by increasing the turbulence level in the wake.

For these reasons it can be affirmed that transition to far wake is occurring at higher distance

from the rotor with respect to full scale cases.

In Figure 4.15 and Figure 4.16 velocity deficit and turbulence intensity are shown in the same

configuration but in a high background turbulence level (10% on the rotor plane).
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Figure 4.15: Horizontal velocity deficit profiles at 3D, 5D and 9D distance behind the
turbine working at optimum TSR (λ= 6) in a high background turbulence level flow
(10% on the rotor plane).

The velocity deficit curves start to show axisymmetric characteristics already at 5D downstream

the rotor plane (Figure 4.15), while at 3D the rotor footprint is still evident; it means that the tran-

sition from near to far wake is completed between 3D to 5D. Conversely in the low background

turbulence level case still at 9D the axisymmetry does not appear, as clear from Figure 4.13.

Thus, the turbulence induced by the grid accelerates the near-far wake transition, in terms of

velocity deficit profile, because of a stronger mixing phenomenon in the flow.

The turbulence intensity curves, in Figure 4.16, show that turbulence peaks are less deep and

abrupt with respect to the low background turbulence case. Anyway peaks are still visible at 5D,

even if the transition to far wake is completed. As already explained in Section 2.3 this is due to

the different recovery rate between turbulence intensity and velocity deficit to the unobstructed

levels.
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Figure 4.16: Horizontal turbulence intensity profiles at 3D, 5D and 9D distance be-
hind the turbine working at optimum TSR (λ = 6) in a high background turbulence
level flow (10% on the rotor plane).

It has to be considered that the turbulence levels depicted in Figure 4.16 took into account the

overall turbulence intensity level so, when compared with Figure 4.14, the peaks generated by

the turbine in case of high turbulence background level are lower then the peaks in case of low

turbulence background level.

The operating tip speed ratios of the turbine have a decisive impact on the wake evolution. Tip

speed ratios are affecting the aerodynamics of the blade: varying the rotational speed of the

rotor, the actual angle of attack along the blade is modified, so each blade section works in a

different configuration. As described in [34], at much higher then optimum TSR, the outer blade

sections tend to work at almost null angle of attack. At the same time, the inner sections generate

negative lift and feed momentum into the wake. The result is an high turbulence intensity along

the centre line. These phenomena are noticeable in the wake characteristics.

In Figure 4.17 these effects are shown by representing velocity deficit and turbulence intensity

in the wakes at a given distance from the rotor, at different TSR. In Figures 4.17(a) and 4.17(b)

velocity deficit and turbulence intensity are measured at 3D distance from T1 rotor plane. In

Figures 4.17(c) and 4.17(d) and in Figures 4.17(e) and 4.17(f) respectively 5D and 9D velocity

deficit and turbulence intensity are illustrated.

Focusing on Figures 4.17(a), 4.17(c), 4.17(e), at a given downstream location (e.g. 3D) the radial



58 CHAPTER 4. RESULTS AND DISCUSSION

transit position between wake and undisturbed flow is constant, so no TSR dependency on ra-

dial expansion can be deduced. This validates the engineering wake models that fix the wake

rate growth parameter to a constant value in order to describe the expansion itself; this param-

eter is modelled only depending on the flow turbulence background level [42, 43, 44, 45, 46].

From Figure 4.17(a), being the flow in the near wake region, the characteristics of the rotor is

highly evident. Varying the TSR, rotor turbine sections work in different ways, directly influ-

encing the velocity deficit. Even if the variation in tip speed ratios is quite small (5 É T SR É 7),

velocity deficit curves differ particularly in the inner part (y/R ≈ 0). This is even more clear in

Figure 4.17(b) where big variations in turbulence intensity are registered in the same TSR range.

In Figures 4.17(c) and 4.17(e) variations in the inner wake areas are no longer visible due to the

higher distances from the rotor plane.

At 5D distance (Figure 4.17(c)), differences in velocity deficit are found very small varying the

TSR so, velocity deficit curve for T SR = 4 is given. The variations between TSR 5 and 6 curves

are smaller than between TSR 4 and 5: this is due to the rotor functioning. At T SR = 4 lower

energy is extracted, so higher velocity is reached in the wake. After T SR = 4 the CP and the CT

are strongly rising (Figures 4.9(a) and 4.12(a)). Close to the design point (T SR = 6) CP and CT

variations are smaller resulting in similar velocity deficit profiles behind the rotor. At T SR = 4

less energy is extracted so higher velocity is reached in the wake.

A general feature that is detectable, comparing the off-design working conditions, is about the

turbulence intensity strength. Increasing the TSR of the turbine, the turbulence intensity in the

wakes increases, since higher thrusts on the turbine induces strongest mean velocity gradients.

This is visible in Figures 4.17(b), 4.17(d) and 4.17(f) where both tip peaks and the overall level

are monotonically increasing with the TSR.

Finally, at 9D behind the rotor plane, (Figures 4.17(e) and 4.17(f)) almost no difference is en-

countered with TSR variations.
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Similar considerations can be worked out also for a single turbine in an high background tur-

bulence flow. In Figure 4.18 wake measurements from the grid configuration are drawn varying

TSR and distances. In each of the Figures 4.17(a), 4.17(c) and 4.17(e) no appreciable difference

is seen induced by TSR variation; the high turbulence level introduced by the grid induces an

high mixing, smoothing the velocity deficit. The same consideration applies to the streamwise

turbulence intensity (Figures 4.17(b), 4.17(d) and 4.17(f)). Only a small TSR dependency can be

detected 3D after the turbine (4.17(b)) as a overall increase in the turbulence intensity rising the

TSR, but similar profiles are shown.

The TSR dependency in the analysed range (5 É λ1 É 7) is found not to be very strong in all the

study cases. This is expected not to widely affect the T2 performances. As no big differences

are present in the T2 incoming flow, not very far behaviour are awaited in T2 power perfor-

mances while working in array. This analysis will be held in next Section (4.3). However, it

has to be taken into account that the wake measurements are performed on an horizontal line,

so they are representative of the flow, but do not fully describe flow asymmetries and three-

dimensionality. This is a limit for comparison with the power performances, but still a good

insight can be achieved with the actual measurements.
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(a) Velocity deficit, 3D from the rotor.
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(b) Turbulence intensity, 3D from the rotor.
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(c) Velocity deficit, 5D from the rotor.
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(d) Turbulence intensity, 5D from the rotor.
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(e) Velocity deficit, 9D from the rotor.
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(f) Turbulence intensity, 9D from the rotor.

Figure 4.17: Horizontal velocity deficit and turbulence intensity profiles at 3D, 5D
and 9D distance behind the turbine working at different TSR (λ = 5,6,7) in a low
background turbulence level flow .
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(a) Velocity deficit, 3D from the rotor.
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(b) Turbulence intensity, 3D from the rotor.
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(c) Velocity deficit, 5D from the rotor.
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(d) Turbulence intensity, 5D from the rotor.
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(e) Velocity deficit, 9D from the rotor.
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(f) Turbulence intensity, 9D from the rotor.

Figure 4.18: Horizontal velocity deficit and turbulence intensity profiles at 3D, 5D
and 9D distance behind the turbine working at different TSR (λ = 5,6,7) in a high
background turbulence level flow (10% on the rotor plane) .
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4.3 Array configuration

In this section it is described the array power output performed with the second turbine (T2)

working in the wake of T1. The experimental setup consists of the two turbines distributed

along the tunnel as in Figure 4.19. The distance between the turbines is varied. The two models

are aligned in the centre of the test section and the hub height is set to 826 mm from the floor,

for both turbines. Experiments are run under both flow conditions.

Figure 4.19: Experimental setup for the array of 2 turbines

4.3.1 Parametric study of power output

When two turbines are aligned, the wake of the upstream machine is the inlet flow to the sec-

ond one. The downstream turbine feels therefore a complex inflow, characterized by lower av-

eraged velocity, high turbulence intensity, non-uniform neither symmetric velocity profile and

non isotropic turbulence (refer to wind turbine wake features, already described in Chapter 2).

The power output parametric study of the wind farm arranged in the tunnel consists in the

variation of:

TSR The tip speed ratio of both turbines is ranged. The first turbine is regulated at a fix TSR

while a complete CP curve for the second turbine is obtained. It results in a matrix of TSR

of both turbines. λ1 varies from 3 to 10 and λ2 from 1 to 7 (adding the runaway point), the

matrix is shown in Figure 4.20. A total number of 196 measured points (14x14) is obtained.
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Figure 4.20: Example of input TSR.

Inflow turbulence Another parameter used is the turbulence background level. All experiments

are performed under two different incoming flows: high and low background turbulence

level. The inflow conditions are deeply analysed in the former Section (4.1).

Downstream distance The second model is positioned at three downstream distances from the

first turbine: 3D, 5D and 9D (considering the second turbine diameter D = 894mm as

reference).

Varying these parameters, 6 analysis configurations are defined as described in Table 4.2. For

each configuration the TSR matrix is carried out.

NAME Downstream distance Turbulence level
A 3D low (empty tunnel)
B 5D low (empty tunnel)
C 9D low (empty tunnel)
D 3D high (grid)
E 5D high (grid)
F 9D high (grid)

Table 4.2: Summary of the different array configurations.

It is checked, for confirmation of results quality, that the power coefficient curves of the first tur-

bine match what presented in Section 4.2. The turbine T2 is not affecting power performances
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of T1, accordingly, the differences are always widely inside the instruments accuracy. In latter

section these results will be presented.

It is decided to describe in this Chapter all the results coming from an exemplifying config-

uration (A), while, all the outcomes from the 6 different configurations are fully accessible in

Appendix A. Moreover a detailed comparison is presented in the following, emphasizing differ-

ences and similarity in terms of power production.

It is reminded to the reader that the reference velocity is set to 11.5 m/s.

4.3.2 Array performances for configuration A: 3D downstream separation

distance and low background turbulence level

The two turbines performances and the thrust of the second turbine are recorded for fixed in-

flow condition (low turbulence) and downstream distance (3D).

In Figure 4.21 the power coefficient of the second turbine is depicted for different tip speed

ratios of both turbines. On the left side a surface fitting all the recorded data (blue dots) shows

the CP trend for the second turbine (on Z-axis). The X-axis represents λ2, while Y-axis λ1. On

the right side a selection of data is illustrated to highlight more clearly the results. Sectioning on

a plane parallel to X-Z for a defined λ1 value (Y) the curves are obtained.

2

4

6

8

4
5

6
7

8
9

10
0

0.1

0.2

T2 tsr
T1 tsr

T
2 

cp

(a) CP T2 surface

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

T2 tsr

T
2 

cp

 

 
T1 TSR=3
T1 TSR=4.1
T1 TSR=6.5
T1 TSR=7.5
T1 TSR=8.1
T1 TSR=10.1

(b) CP T2 selection of results

Figure 4.21: Second turbine T2 power coefficient curves. T2 operating in T1 wake
(Configuration A: 3D downstream distance and low turbulence background level).

Several considerations require to be shown. The power coefficient presents very small values if

compared with the result achieved when T2 stands alone in the test section. If running alone,



4.3. ARRAY CONFIGURATION 65

the maximum CP recorded is 0.48, while in this configuration it is ranging from 0.12 to 0.24,

depending on T1 operating point. One of the reason is that both turbines are using the same

reference velocity: actually the incoming flow to the second turbine presents a smaller averaged

velocity because T2 is in T1 wake. Moreover the incoming flow is by no means constant on the

rotor swept area. Refer to Section 4.2.2 for the detailed description of T1 wake. The T2 power

curves are shown in Figure 4.22 in two different cases: when running alone and when running

behind T1 working at its optimum (λ1 = 6). A shift towards smaller values in tip speed ratios is

visible. It is an effect of using the same reference velocity for the two turbines as the tip speed

ratio is calculated on it (Equation 2.1).

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

λ
2

C
P

 

 
T2 alone
T2 after T1 (λ

1
=6)

Figure 4.22: T2 power performances in 2 conditions: running alone and after T1 at
its optimum working point (λ1 = 6).

The second turbine performances depend on the TSR of the first machine. As the first turbine is

close to the optimal point (λ = 6), it extracts as much energy as possible from the wind so that

there is not much left behind for the second turbine. On the other hand, when the first turbine

is running at λ far from the optimum, more energy is available for the second turbine. This

behaviour is clear on the surface plot (Figure 4.21(a)). It can be noticed an asymmetry in the at-

titude of recovering T2 performances while T1 moves away from the optimum working λ. When

λ1 is smaller than 6, higher CP could be reached compared with cases of λ1 > 6. This behaviour

suggests that tip speed ratios are better decreased than increased from the optimum value, if

one wants to guarantee more energy for the downstream turbine, varying this parameter.

Another aspect to analyse is the absence of non-uniformities in power curves which can be re-
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lated to laminar effects (Reynolds dependency). An approximated inlet velocity is of the magni-

tude of 8 m/s, so this effect should be visible; however the turbulence induced by the upstream

turbine and the asymmetries in the flow have the same effect of the grid in terms of smoothing

the power curves.

After analysing the power coefficient curves of the downstream turbines, thoughts on the array

efficiency can be assess. For each configuration λ1 −λ2 the power coefficients are summed and

divided for the sum of the maximum that the two turbines would be able to reach as standalone

(Table 4.1), so the array efficiency (E [%]) is obtain (Equation 4.1). E = 100% would be obtained

if T2 were not affected by T1 wake.

E = CP,T 1 +CP,T 2

CP,T 1max +CP,T 2max
∗100 (4.1)

The array efficiency is exhibited in Figure 4.23. Fitting the measured points (blue dots), a surface

is derived (4.23(a)). In Figure 4.23(b) a contour plot of maximum values is extrapolated. It is

possible to underline that the maximum is reached running the first turbine at λ1 ≈ 5, and the

second at λ2 ≈ 4. These values differs from what found in stand alone functioning (λ1 = λ2 = 6,

Section 4.2).

The relevant aspect is the variation in λ1 with respect to the stand alone condition in order to

get the maximum array efficiency. The operating point of the first turbine needs to be reduced

down to 5, so that a bigger amount of energy is left to the downstream turbine. The λ2 variation

is less relevant as the second turbine always works in its actual optimum condition. The tip

speed ratio of T2 is highly affected on the decision to use the same reference velocity for the two

machines.

For this reason, to resume the tests executed in this configuration (A: 3D downstream separation

distance, low background turbulence level), the plot in Figure 4.24 is created depending on λ1.

With the blue square is described the power coefficient curve for the first turbine and the red

dots states for the maximum power coefficient that could be reached by the second turbine (at

a given λ1). This trend line shape highlights what has been described before: moving away from

the design λ1 a bigger amount of energy is available for being extracted by the second turbine,

so the T2 CP raises. The black line is the sum of the power coefficients of both machines, thus it

is directly proportional to the array efficiency E defined in Equation 4.1. It is evident that, for a

wide range of tip speed ratios, the array efficiency is quite constant.

During the experiments the thrust of the second turbine is recorded too. T2 CT is depicted in

Figure 4.25 varying λ1.
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Figure 4.23: Array efficiency (Configuration A: 3D downstream distance and low tur-
bulence background level).

A correspondence between CP and CT of the second turbine is visible varying λ1. Minimum

values of CP corresponds to lower CT . From λ1 = 5 (not shown) to λ1 = 7.5 the T2 CT curves

present the smaller values, this is the same range in which the maximum achievable T2 CP is

lower. This behaviour is due to the smaller velocities felt by turbine T2.

The thrust coefficient, as not referred to the actual incoming flow velocity, is not suitable for

loads considerations on the tower. As a matter of fact, the T2 CT presents smaller values than

in standalone conditions, while it is known that loads on the tower strongly increase when the

turbine is operating in a wake. The high turbulence level in the wake causes the increasing of

fatigue loads on the downstream turbine [1, 2]. Nevertheless thrust coefficients are very impor-

tant for being compared with numerical simulations, so they are recorded and illustrated in the

present project.

Similar discussion in terms of general trend could be made for all the 6 configurations analysed.

The same graphs will be shown in Appendix A for all the analysed configurations, as a bench-

mark that could be useful for comparison with numerical simulations.
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Figure 4.24: Summary of Power performances (Configuration A: 3D downstream dis-
tance and low turbulence background level).
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Figure 4.25: Second turbine T2 thrust coefficient curves. T2 operating in T1 wake
(Configuration A: 3D downstream distance and low turbulence background level).
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4.3.3 Comparison of performances

A comprehensive discussion of the similarities and differences will be held in the following,

while, as already mentioned, all the results are available in Appendix A.

First, T1 performances independence in the different configurations will be described. In Fig-

ure 4.26 the results are shown. Both in case of low and high turbulence level, the CP curves,

obtained while the second turbine is running at different downstream distances, match quite

perfectly the stand alone results. So no dependency of T1 power performances from T2 opera-

tion point is demonstrate. The second turbine induction appears negligible already 3D in front

of itself, not affecting T1 performances.
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Figure 4.26: T1 power performances measured during all experiments. No depen-
dency from T2 operation is shown.

In order to discuss the performances of the second turbine, it is decided to non-dimensionalize

the T2 CP with the value obtained in a standalone condition. Values from Table 4.1 are used.

The turbine efficiency will therefore be defined as in Equation 4.2.

ET 2 [%] = CP w ake

CP st and alone
∗100 (4.2)

In the following Figure 4.27, it is shown the maximum efficiency that the second turbine can

achieve varying the tip speed ratio of the first turbine. First of all, it is possible to observe a

shift towards higher values, for bigger rotor distances. In both inflow conditions (Figures (a) and

(b)) the blue curve (describing the configurations characterized by 3D distance between rotors)

presents the smallest values because the two turbines are quite close to each other. Respectively,
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increasing the distance to 5D and 9D, better performances can be achieved. Due to the wake re-

covery, increasing the distance from the first rotor, more energy is available for the downstream

turbine and the efficiency rises as expected.
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Figure 4.27: Maximum T2 efficiency depending on T1 operating point: comparison
of all configurations.

An evident difference between the two different incoming flows is in the efficiency values, for a

fixed downstream distance. Higher values are reached with the grid positioned at the inlet test

section for all input λ1. This effect is owed to the capability of turbulence to accelerate the wake

recovery. As the wake recovery is much faster, higher performances for downstream turbines

can be achieved in a high turbulent inflow. This is a positive effect in terms of full scale turbines

but should also give an alarm bell when running wind tunnel experiments, pretending them to

be an exemplary case for the real world. The grid increases the turbulence from 0.5% to 10% and

this unable a turbine efficiency recovery up to 6%.

Another general trend has to be underlined: for all the configurations, the curves have a mini-

mum CP value for λ1 ≈ 6 and it increases moving away from the optimum T1 TSR. The reason

of this behaviour have already been described in the previous section, but data confirms that

the percentage of recovery from the minimum value, varying λ1, is higher in low turbulence

background level.

Comparing λ1 = 3 and 9 with respect to λ1 = 6, for each configuration the percentage of re-

covery can be calculated, resulting in an evident bigger value for the low turbulence situation.

Figure 4.28 represents the efficiency recovery earlier described. Comparing cases with the same

separation distance (i.e. A-D, B-E, C-F) it is evident that the grid limits the recovery with respect

to the empty tunnel situation. This should be considered when hypothesis of varying the tip
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speed ratio for maximizing wind farm efficiency are tested in the wind tunnel. A high turbu-

lence could significantly affect the magnitude of the second turbine recovery in a bad way. This

chart is also very explicative regarding the asymmetry in recovery that we can obtain raising or

lowering the tip speed ratio from the optimum point. Clearly a decrease is advisable to allow

higher T2 efficiency. It is reminded that the CT is also important when considering the wake

velocity deficit. As it is monotonically increasing with λ1, this is another aspect suggesting to

reduce the tip speed ratio to ensure higher velocities to the second turbine.
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Figure 4.28: T2 efficiency recovery for λ1 = 3 and λ1 = 9 with respect to λ1 = 6

The total array efficiency could be assessed. It is obtained combining both turbines power co-

efficient as already described in Equation 4.1. The results are depicted in Figure 4.29. For the

three distances, at a given λ1, the maximum T2 CP achievable is added to T1 CP , so the ar-

ray efficiency curve is calculated depending on λ1. On Figure(a) outcomes from configurations

with low turbulence level (A, B and C) are plotted, while in (b) outcomes from high turbulence

level incoming flow (D, E and F). The increase in array efficiency with downstream distance is

registered. It is worthy of remark that wind tunnel walls highly affect the free expansion of the

wake and the velocity deficit recovery. Therefore solid blockage badly influences the T2 power

performances.

Focusing on the low turbulent incoming flow, it is observable a quite constant value over a wide

range of T1 working points. For λ1 varying from 4.5 to 6.5, E is constant within ±0.57%. Con-

sidering the measurements accuracy, very small differences could be detected for this λ1 range.
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Figure 4.29: Maximum array efficiency depending on T1 operating point: compari-
son of all configurations.

It means that this array of turbines, working in low turbulent flow, could work showing the best

performances over a quite wide λ1 range. Taking a closer look to the results, slightly higher

values are reached for λ1 ∈ [5,5.5] but measurements with better accuracy would have been

necessary for these considerations.

Different conclusions could be made in case of high turbulence as the results show a more clear

trend. Referring to the same λ1 range, the array efficiency varies of ±1.05%, having a maximum

for λ1 ∈ [5.5,6] and decreasing considerably on both sides.

The necessary second turbine tip speed ratios to obtain the maximum performances are in the

range λ2 ∈ [4,5].

The array efficiency, for a given downstream separation distance, can be compared with respect

to the turbulence inflow background level.

It can be pointed out that both in case of 3D and 5D a slightly higher value is reached in case of

high turbulence. This is in agreement with the consideration of a faster wake recovery.

A deeper analysis is necessary for the 9D case. As depicted in Figure 4.29 at 9D the array effi-

ciency in the grid configuration is lower than in empty case. This would disprove the registered

trend for 3D and 5D separation distances. However the grid effect at 9D after T1 is very low, the

predicted turbulence intensity 11D downstream of the grid is evaluated to be ≈ 3% ([39] and

Section 4.1.2). T2 inflow conditions in low and high turbulence background level become very

similar on T2 rotor, as clear comparing T1 wakes: Figures 4.13 and 4.15 (green lines), as well

as Figures 4.14 and 4.16 (green lines). In agreement T2 CP are similar, so the variation in array
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efficiency is due to the different reference T2 CP used.

In conclusion, Table 4.3 can be devised to summarize the maximum array efficiency that is

achievable in each configuration. The necessary operating tip speed ratios are also listed.

Configuration Max array efficiency [%] λ1 −λ2

A 62.8 5−4
B 66.5 5.5−4
C 78 5−5
D 63 5.5−4
E 67.5 6−4.5
F 77 6−5

Table 4.3: Summary of the maximum array efficiency. For each configuration the
corresponding tip speed ratios are underlined.
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Figure 4.30: T2 thrust coefficients for λ1 = 6. Comparison between the different con-
figurations.

As regards T2 thrust coefficient, it can be highlighted that, varying λ1 in a fixed configuration,

CT is proportional to the T2 maximum achievable power coefficient due to the higher averaged

velocity felt by the turbine itself. The different study cases can also be compared. In Figure 4.30

the T2 thrust curves are depicted (the same colour represents the same separation distance,

while the same symbols are used for the same inflow condition). T1 tip speed ratio is always set

to extract as much energy as possible (i.e. λ1 = 6).
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Two main trends can be pointed out: the thrust coefficient curve raises both increasing the

downstream separation distance and the turbulence inflow background level. Moving further

downstream the second turbine (see cases A-B-C and D-E-F) the wake recovery phenomenon

allows a higher averaged inflow velocity to T2, causing an amplification in T2 thrust coefficient

values; in fact greater CT values are obtained for bigger distances.

Comparing cases of low and high flow turbulence background level, considering the same sep-

aration distance (see cases A-D, B-E and C-F), it is remarkable the increase in CT values, height-

ening the turbulence. This effect is achieved through the combination of two factors. The wake

recovery is faster in high turbulence case (as already demonstrated in Section 4.2.2), resulting in

greater wake averaged velocity for a given downstream distance; moreover the turbulence itself

increase the rotor thrust as the single turbine measurements pointed out. The combination of

these occurrences results in a much stronger thrust in a high turbulent background level flow.

4.3.4 T1 wake-T2 performance correlation

A wake-rotor interaction can be evaluated by analysing both the velocity deficit in T1 wake at a

fixed downstream distance and the CP curves for T2 operating in that position.

In Figure 4.31(a), the velocity deficit is measured at 3D distance from T1 operating at TSR= 5,6,7.

As already discussed in Section 4.2.2, in a low background turbulence situation, 3D separation

is not enough to allow the transition from near to far wake, so the depicted velocity deficit is

representing the near wake area. Thus even small variations in turbine TSR, strongly the affect

velocity deficit itself. Consequently, if a second turbine works in this position, its performances

will be directly affected by these TSR changes (Figure 4.31(c)). As it is clear from Figure 4.31(a)

by increasing the TSR from 5 to 7, velocity deficit peaks become deeper in the region 0.5<y/R<1.

Turbine T2, experiencing this flow field, will extract less energy as the rotor sections in the region

0.5<y/R<1 will experience lower velocity. It is called to mind that the outermost part is the most

important for power extraction purpose, in fact the first useful blade section is at y/R ≈ 0.2.

This situation differs from what represented in Figure 4.31(b) and 4.31(d). In 4.31(b) velocity

deficit curves are shown behind T1 at 9D distance, in a high turbulence background level. The

far wake features are established, resulting in Gaussian velocity deficit profiles, λ1 independent.

Small changes in T1 TSR only marginally affect the CP curves of a turbine located in this position

and this behaviour is clear in Figure 4.31(d).

T1 tip speed ratio variations result to have a different impact on T2 power coefficient curves, de-

pending on T1 wake characteristics. A bigger effort would be required for a deeper understand-
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Figure 4.31: Correlation between T2 incoming flow (T1 wake) and T2 performances.

ing of this interaction, nevertheless a preliminary consideration can be deduced by these exper-

iments: for the tested model turbines, greater the differences in T1 velocity deficit, stronger the

effects on T2 power performances.
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Chapter 5

Conclusions

In this project, performances and wake measurements downstream a single turbine are per-

formed to asses the different parameters influencing the wake development and structure. Then

rotor-wake interaction is evaluated focusing on different parameters affecting the overall power

production in a wind farm. The study parameters are: Tip speed ratios of both turbines, separa-

tion distance and turbulence level in the incoming flow.

Performances and wake measurements are carried out on stand alone turbines. The rotor aero-

dynamics of the turbines is tested in two incoming turbulent flow conditions and for several

inlet wind speeds. A Re dependency behaviour is observed. In order to avoid this effect, an in-

let velocity of 11.5 m/s is setted as reference. The CP,max and the optimum tip speed ratio are

recorded for the two flow conditions to have a reference working point necessary for the param-

eter study in the "wind farm configuration". In a low turbulent background level slightly lower

performances are found compared to the results of the high free stream turbulence (10%). At

the optimum tip speed ratio (λ = 6) the maximum CP values are: 0.47 and 0.48 respectively for

turbine T1 and T2 in the low turbulent flow whereas in the high turbulent flow 0.48 and 0.50.

The T1 wake is characterized to analyse its evolution and structure, depending on downstream

position, turbine inflow condition and TSR. Velocity deficit and streamwise turbulence intensity

are measured on horizontal line at hub height at 3D, 5D and 9D downstream positions. Moving

downstream from the rotor plane, velocity deficit recovers as momentum is fed into the wake

through the shear layer. Meanwhile, momentum feeding produces the radial expansion of the

wake. In a high turbulence background level flow, this effect is much stronger resulting in faster

expansion and recovery. It has to be remarked that a free wake expansion is not allowed due

to tunnel walls, so these boundary conditions need to be taken into account for modelling this

phenomenon. Near-Far wake transition is evaluated in both turbulence level cases underlining

77
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that in the high turbulence case appears earlier due to the higher momentum feeding. The

velocity deficit curves in the low turbulence situation does not show a full distinct transition to

far wake as, even at 9D, a Gaussian shape is not assumed. Increasing the turbulence level the

transition seems to appear much earlier, between 3 to 5D, because of the measured Gaussian

velocity deficit curves already at 5D.

Measuring the wake turbulence intensity, tip vortices can be revealed. The magnitude of these

peaks is highly dependent on the turbulence background level. At 3D distance, maximum val-

ues of TI (15%) are seen, both in case of low and high turbulence level; however it has to be

considered that the turbine turbulence generation is different if related to the turbulence back-

ground level. Inflow turbulence affects also the wake downstream evolution. Comparing the

same downstream positions, the high turbulence level in the flow induces the turbulence inten-

sity peaks to be faster homogenized.

The impact of the turbine operating tip speed ratio on the wake evolution is evaluated. Varying

the TSR around the optimum value, the actual angle of attack along the blade is modified, and

the effect is detectable on the footprint in the rotor downstream flow. The remarkable conclu-

sions are: the wake expansion is not affected by TSR in both inflow conditions; in near wake

region TSR effects are more evident in the inner part of the wake (y/R ≈ 0). In this area, increas-

ing the TSR, higher velocities are registered because of smaller energy extraction by the inner

part of the rotor; turbulence intensity variations are also identified. This behaviour is stronger

in low turbulence background level measurements. Regarding the turbulence intensity, increas-

ing the TSR of the turbine, higher values are reached, the reason is in strongest mean velocity

gradients achieved.

All the considered parameters are influencing T2 performances as it is working in the T1 wake.

A 2-turbine wind farm is arranged in the tunnel, placing the two models inline in the test section.

Focused on obtaining the maximum power output from the array, a parametric study is accom-

plished, varying the tip speed ratio of both turbines, the separation distance and the turbulence

background level in the incoming flow; therefore a benchmark case is obtained.

The array efficiency parameter is introduced (Equation 4.1) to compare the results from the

different configurations. The variation of the parameters differently affects the array efficiency.

The downstream separation distance allows to recover the wake velocity deficit, leading to strong

variations of the array efficiency. In low turbulent case an increase in efficiency from 3D to 5D

of 6.0% is found, and from 3D to 9D of 17.3%. With the grid installed at the inlet, an efficiency

recovery of 7.6% is calculated from 3D to 5D, whereas from 3D to 9D is 14.0%. The difference in

efficiency recovery is directly connected to the wake evolution along the tunnel. In fact, higher
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turbulence induced by the grid accelerates the velocity deficit recovery. Until the grid effect is

distinct (5D) the high turbulent case presents a bigger efficiency recovery, whereas it does not

appear at 9D as the grid induced turbulence is negligible. Where T1 wakes are very similar (9D),

similar efficiency recovery rates are expected, however the values without the grid are bigger

because reference power coefficients used are different (Refer to Section 4.3.3 for a complete

discussion). In conclusion, the grid can modify the inflow background turbulence level until a

certain downstream position (x/D < 9); in this region, a general trend of accelerated efficiency

recovery is verified.

It is worthy of remark that the grid induced turbulence is decaying along the tunnel, having

different effects with respect to the axial stations. This diverge with respect to the real case situ-

ation, but the main purpose of wind tunnel experiments is to create a benchmark, in which all

boundary conditions are under control and handleable by CFD models.

TSR influence on array performances is accessed too. Varying the tip speed ratio of both tur-

bines, power performance changes can be detected. In order to increase the total power ef-

ficiency, T1 TSR can be varied with respect to the stand alone condition. A bigger amount of

energy is available for the downstream turbine if λ1 is not set to optimum. In each configura-

tion, to get the maximum array efficiency, λ2 has to be set at its actual optimum value (λ2 ≈ 4).

The shift with respect to the stand alone value (λ2 ≈ 6) depends on the used reference velocity.

A quite constant array efficiency is found over a T1 TSR range: 4.5 É λ1 É 6.5. In low turbulence

background level E is constant within ±0.57%, while in high turbulent flow E the array efficiency

varies of ±1.05%. Small differences were expected as the analysed T1 wakes were found not to be

strongly dependent on λ1. A slightly shift towards values smaller than optimum (λ1 < 6) seems

to show up to obtain the best array efficiency in all configurations: in detail, in low turbulence

background level the optimum is achieved for λ1 ∈ [5,5.5], while in high turbulence background

level for λ1 ∈ [5.5,6]. However, considering the accuracy range, these differences become very

small.

As regards the second turbine thrust coefficient, it can be highlighted that, varying λ1 in the

same configuration, it is proportional to the T2 maximum achievable power coefficient because

of the averaged velocity felt by the turbine itself. For a fixed λ1, the thrust of the second turbine

is found to be dependent on turbines separation distance and flow turbulence characteristics.

It can be pointed out that the thrust coefficient curve raises both increasing the downstream

separation distance and the turbulence inflow background level.

The parametric study points out a strong array efficiency dependency on turbine separation

distance and inflow turbulence level. As regards the TSR effect on the array efficiency, it is found
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to be small around the optimum point. The relevance is still essential in wind farm optimiza-

tion, even if in the present wind tunnel study slight variations are found. The parametric study

suggests to obtain the maximum array efficiency by an accurate management of the different

parameters.

It is worthy of remark that the results on the array efficiency optimization are relative to this pe-

culiar 2-turbines wind farm arranged in the tunnel. Data and considerations can not be directly

applied to real cases, but they can still give a good insight on the problem, likewise they can be

used as a fully controlled experiment to compare with numerical simulations.

The main goal of creating a benchmark for being compared with numerical simulations has

been achieved. An improvement of the insight in the physics of wind turbine rotor-wake inter-

action has been pursued.

5.1 Limitations

The major limitations found during the present thesis work are following described.

The high solid blockage (14.2%) produces performances modifications in wind tunnel experi-

ments when compared with real case situations and it also affects the wake evolution. However,

this effect is not an issue for numerical simulation comparison.

Misalignment inaccuracies of the two turbine rotor axis are not deeply evaluated, while they

could interfere in the rotor wake interaction process.

The blades pitch angle is set to zero for all the measurements, anyway some inaccuracies should

have been considered as the rotor assembly is designed to be manual.

5.2 Future work

The parametric study can be implemented by increasing the number of parameters. In the cur-

rent project, the array power output optimization is carried out varying both turbines tip speed

ratio, the downstream separation distance and the turbulence background level.

More parameters could be introduced such as yaw angle, blade pitch angle and different incom-

ing flow conditions.

Yawing the turbines the wake evolution will be deflected, so the wake-rotor interaction is modi-

fied. This effect results in a different array power output and could be a challenge for modellers.
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Pitching the blades will also affect turbine performances and wake structure, adding a possibil-

ity for individual turbine control in the perspective of the optimization of the wind farm power

output. Therefore it is important that simulation models are calibrated for this parameter.

Different incoming flows can be tested, non uniform flows can be particularly interesting as they

would be challenging both in inlet flow simulation and in flow-rotor interaction.
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Appendix A

Array configurations: full results

A.1 Configuration A: Empty tunnel, 3D
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Figure A.1: Second turbine T2 power coefficient curves. T2 operating in T1 wake
(Configuration A: 3D downstream distance and low turbulence background level).
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Figure A.2: Array efficiency (Configuration A: 3D downstream distance and low tur-
bulence background level).
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Figure A.3: Summary of Power performances (Configuration A: 3D downstream dis-
tance and low turbulence background level).
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Figure A.4: Second turbine T2 thrust coefficient curves. T2 operating in T1 wake
(Configuration A: 3D downstream distance and low turbulence background level).
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A.2 Configuration B: Empty tunnel, 5D
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Figure A.5: Second turbine T2 power coefficient curves. T2 operating in T1 wake
(Configuration B: 5D downstream distance and low turbulence background level).
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Figure A.6: Array efficiency (Configuration B: 5D downstream distance and low tur-
bulence background level).
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Figure A.7: Summary of Power performances (Configuration B: 5D downstream dis-
tance and low turbulence background level).
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Figure A.8: Second turbine T2 thrust coefficient curves. T2 operating in T1 wake
(Configuration B: 5D downstream distance and low turbulence background level).
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A.3 Configuration C: Empty tunnel, 9D
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Figure A.9: Second turbine T2 power coefficient curves. T2 operating in T1 wake
(Configuration C: 9D downstream distance and low turbulence background level).
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Figure A.10: Array efficiency (Configuration C: 9D downstream distance and low tur-
bulence background level).
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Figure A.11: Summary of Power performances (Configuration C: 9D downstream dis-
tance and low turbulence background level).
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Figure A.12: Second turbine T2 thrust coefficient curves. T2 operating in T1 wake
(Configuration C: 3D downstream distance and low turbulence background level).
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A.4 Configuration D: Grid, 3D
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Figure A.13: Second turbine T2 power coefficient curves. T2 operating in T1 wake
(Configuration D: 3D downstream distance and high turbulence background level).
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Figure A.14: Array efficiency (Configuration D: 3D downstream distance and high
turbulence background level).
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Figure A.15: Summary of Power performances (Configuration D: 3D downstream
distance and high turbulence background level).
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Figure A.16: Second turbine T2 thrust coefficient curves. T2 operating in T1 wake
(Configuration D: 3D downstream distance and high turbulence background level).
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A.5 Configuration E: Grid, 5D
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Figure A.17: Second turbine T2 power coefficient curves. T2 operating in T1 wake
(Configuration E: 5D downstream distance and high turbulence background level).
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Figure A.18: Array efficiency (Configuration E: 5D downstream distance and high
turbulence background level).
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Figure A.19: Summary of Power performances (Configuration E: 5D downstream dis-
tance and high turbulence background level).
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Figure A.20: Second turbine T2 thrust coefficient curves. T2 operating in T1 wake
(Configuration E: 5D downstream distance and high turbulence background level).
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A.6 Configuration F: Grid, 9D
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Figure A.21: Second turbine T2 power coefficient curves. T2 operating in T1 wake
(Configuration F: 9D downstream distance and high turbulence background level).
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Figure A.22: Array efficiency (Configuration F: 9D downstream distance and high
turbulence background level).
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Figure A.23: Summary of Power performances (Configuration F: 9D downstream dis-
tance and high turbulence background level).
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Figure A.24: Second turbine T2 thrust coefficient curves. T2 operating in T1 wake
(Configuration F: 9D downstream distance and high turbulence background level).
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