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Abstract
The main purpose of this work is to formulate and apply new computational strategies

for two contact-governed problems where existing finite element software suffer from
poor efficiency and lack of robustness. The first problem is concerned with trawl board
pull-over interaction of subsea pipelines while the second deals with reeling analysis of
history-dependent flexible pipes.

Previous numerical models for trawl-pipe interaction based on simplified geometry
modeling has struggled with contact-related convergence problems. A contact element
with a continuous description of the trawl board contact geometry and the pipe geometry
was therefore developed. The assumption of a rigid contact geometry for the trawl board
and the use of line-line and line-point contact kinematics resulted in good numerical ef-
ficiency properties. The ability to predict the pull-over responses depends heavily on the
modeling of the trawl board hydrodynamic loads. A fairly advanced six degree of freedom
load model with precomputed hydrodynamic coefficients was therefore established.

An extensive simulation work was carried out to validate the trawl-pipe computational
strategy and to identify sensitive model parameters. Regarding the former, the proposed
numerical model was demonstrated to predict pull-over load impulses within a 10% mar-
gin of model test measurements and was thus concluded to be capable of describing the
relevant effects of the pull-over. The sensitivity study revealed that the interaction be-
havior was greatly influenced by the board-pipe friction coefficient, the tension level in
the wire between board and trawl net, the towing line drag properties and the direction
of over-trawling. Due to the sensitivity of the input parameters, it was concluded that a
proper validation against experimental tests is necessary for future work of similar kind.
Further studies should aim to quantify the degree of non-conservatism present for non-
perpendicular crossings and attempt to improve current design load recommendations by
including more model parameters.

Reeling operations with history-dependent material behavior and extensive contact
interactions along the material transport route are often not feasible to simulate with con-
ventional finite element software. This relates to contact-related convergence problems
and the need for long meshes with small and equal-sized elements giving poor numerical
efficiency. These issues were successfully solved by developing a Lagrangian-Eulerian
beam formulation that enabled for a virtually fixed mesh in space. The proposed formu-
lation was subjected to various benchmark tests where it was demonstrated to provide
similar accuracy as the conventional Lagrangian method.

In recent years, subsea contractors have experienced torsional failures in spoolbase-
vessel load-out operations of flexible pipes. An idealized finite element model was there-
fore established to gain insight into such operations and to identify the mechanisms re-
sponsible for the generated torque. Torsional failures were identified for three different
mechanisms and strategies to avoid them were proposed. A comparison study against a
physical load-out operation should be conducted in future work to quantify the ability to
predict the torque and to reveal possible model deficiencies.
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Notation and conventions
– Vectors, tensors and matrices are written with bold letters and bold symbols, e.g. a, A,
ω and Ω. Second order tensors and matrices are always in upper case.

– All tensors are represented in a three-dimensional vector space with orthonormal basis
vectors.

– The term vector is used both for first order tensors and for matrices with dimension
N×1.

– The transpose of a vector, tensor or matrix is denoted by superscript >.

– The Einstein summation convention applies for repeated indices when vectors, tensors
and coordinate transformation matrices are written in indicial form. The index range is
implicitly assumed to loop over 1, 2 and 3, e.g.,

Aijai = A1ja1 +A2ja2 +A3ja3

– A first order tensor (vector) in a given coordinate representation is expressed in terms
of the coordinate basis vectors ei as follows

a = aiei

Alternatively, the matrix form is used,

b =
[
b1 b2 b3

]>
where the coordinate representation for bi is regarded arbitrary if not explicitly stated
or apparent from the context.

– The vector product is denoted by a cross and reads as follows for two vectors a and b,

a× b = εijkaibjek εijk =

 0
1
−1

if {i, j, k} is

 an acyclic sequence
a cyclic sequence
an anticyclic sequence

– The scalar product of two vectors a and b is denoted by a dot,

a ·b = aibi

– The tensor product of two vectors a and b is denoted by a⊗b. Under the action of the
tensor product, the vector c is mapped into a new vector according to,

(a⊗ b) · c = (b · c) a c · (a⊗ b) = (a · c) b
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– For a given coordinate representation, the second order tensor A is expressed as a linear
combination of the nine tensor products of the coordinate basis vectors ei as follows,

A = Aijei ⊗ ej

The second order tensor B is expressed on matrix form as follows,

B =

B11 B12 B13

B21 B22 B23

B31 B32 B33


where the coordinate representation for Bij is regarded arbitrary if not explicitly stated
or apparent from the context.

– Matrices are distinguished from tensors by context and appearance. Multiplications
involving tensor quantities are separated by the dot symbol while matrix quantities are
not, e.g.,

a ·B ·a´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
tensor

= a>Ba²
matrix

= aiBijaj
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

indicial

– The partial derivative of a quantity f is denoted by a comma in subscript followed by
the variable involved in the differentiation,

∂f

∂x
= f,x

– The Euclidean norm of the vector c is defined as,

||c|| =
√
c21 + ...+ c2n c =

[
c1 ... cn

]>
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Chapter 1

Introduction

1.1 Background and motivation

Slender marine structures such as rigid steel pipes, steel risers, flexible pipes, umbilical
cables, power cables and mooring lines involve several nonlinearities which are prone
to become computationally expensive. From a hydrodynamic viewpoint, slender struc-
tures give an insignificant disturbance on the fluid motion and the loading can therefore
be predicted by Morison’s equation with negligible computational costs. Contrarily, the
nonlinearities associated with the structural response result in significantly larger compu-
tational expenses. These nonlinearities arise due to history-dependent material responses,
three-dimensional motions with large rotations and displacements, external contact inter-
actions and internal cross-sectional contact constraints.

The differential equation that governs the structural response may be solved by numer-
ical techniques such as the finite element (FE) method, finite difference methods or finite
volume methods. The FE method has since its first scientific appearance [1, 2] almost six
decades ago become the preferred numerical method for structural problems. This relates
to features such as the ability to handle complex geometries, flexibility regarding the spa-
tial discretization, the strong mathematical foundation, the treatment of normal derivative
boundary conditions and the inherent interpolation of the field variables between the so-
lution points. In this work, the FE method was therefore taken as a prerequisite in order to
assure a broad applicability of the scientific contributions and to allow for implementation
into state of the art computer programs.

The overall objective of the present work is to develop and apply new computational
strategies for two contact-governed problems where commercial computer codes suffer
from lack of efficiency and poor robustness. The first problem deals with trawl gear and
subsea pipeline interaction as well as the gear hydrodynamic load description, while the
second focuses on reeling analysis of history-dependent beams. The thesis is therefore
divided into two parts regarding physical problems, however, both parts are concerned
with slender marine structures where the contact interactions represents a major challenge.
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INTRODUCTION

1.1.1 Trawl gear and pipeline interaction
The coexistence of bottom trawling fisheries and offshore oil exploitation has lead to
accidents with severe consequences for both parties. In 1997, the small fishing vessel
Westhaven capsized with four casualties in the North Sea during an attempt to release a
hooked trawl board from a pipeline [3]. Between 1998 and 2004, there were nine fishing
gear interactions that caused damage to subsea production equipment and pipelines on the
Norwegian shelf, in which at least one resulted in a major gas leakage [4]. Paradoxically,
many of these incidents occurred within the platform safety zones, where the structures
are not designed to withstand trawl loads, see Ref. [5]. In the United Kingdom, nearly five
hundred claims were raised to the Fishermen’s Compensation Fund between 2000 and
2013 in relation to fishing vessel and equipment damages caused by petroleum activities
[6]. Considering that interactions without damage remain unreported, the over-trawling
frequency is substantial and might lead to trawl-governed designs for pipelines which
are routed within fishing grounds. An accurate description of the interference loads is
therefore required in order to ensure sufficient structural integrity and to minimize the life
cycle costs.

The three standard trawl types for bottom trawling are illustrated in Fig. 1.1. The
concepts differ with regard to how the trawl net is kept open during harvesting. For the
otter trawl types, the net opening is provided by hydrodynamic forces acting on the trawl
boards, whereas beam trawling rely on a transverse steel beam mounted across the net en-
trance. In the Norwegian sector of the North Sea, the relative use of beam trawls in bottom
trawling was less than 1% in the period between 2000 and 2004 [8]. According to DNV
GL [7], clump weights typically have masses in the range 2 000 kg to 9 000 kg, while
heavy trawl boards can have steel masses up to 6 000 kg with hydrodynamic masses of at
least the same magnitude. Combined with a trawling velocity of 2 – 3 m/s, the interference

line

Sweep
line

net
Trawl

Pipeline

board

Warp

Trawl

(a) Single otter trawl

line

Trawl
net

Beam
trawl

Warp

Pipeline

(b) Twin beam trawl

Clump
weight

Trawl board

(c) Twin otter trawl with clump weight

Figure 1.1: Bottom trawl gear [7]
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1.1 Background and motivation

loading may therefore lead to a severe utilization of the pipeline capacity.
Nowadays, design of subsea pipelines subjected to trawl loads is in practice based on

the DNV-RP-F111 code [7]. This code divides the interaction into three parts according
to load characteristics and analysis method. The first part, referred to as the initial impact
phase, considers the energy absorbed from the impact load and the local cross-section
damage. The subsequent part, which is called the pull-over phase, deals with the global
pipe response due to the loads that build up when the gear is forced around and released
from the pipe. The third part is the rarely occurring hooking event in which the gear is
assumed to get stuck between the seabed and the pipe. Nine incidents with loss of trawl
gear, arguably due to pipeline hooking, were reported to the Norwegian Directorate of
Fisheries between 2011 and 2013.

With regard to current design practices, the pull-over loading is expected to have the
largest potential for improvements. The DNV-RP-F111 code provides fairly general pull-
over loads based on simple formulas that have been calibrated against model tests. In view
of this, the pipeline designers claim that the recommended pull-over loading is too con-
servative [9], which also has been demonstrated by FE simulations of pipelines subjected
to clump weight interaction [10, 11]. However, the model tests represent a limited number
of realizations and the trawl gear has changed in size and geometry since the tests were
conducted in 1990. Hence, at present there is no consensus in the subsea industry with
regard to the degree of conservatism incorporated in current design practices.

Use of numerical simulations for the trawl-pipe interaction problem represents an at-
tractive alternative since it avoids many of the drawbacks encountered in model testing.
Model tests suffer in general from large consumption of time with correspondingly high
expenses. Truncated trawl gear wire configurations are unavoidable in laboratory tests and
the small models may introduce bias due to scale affects. Furthermore, model tests have
low input parameter flexibility and poor ability to effectively reduce the statistical uncer-
tainty. However, to enable use of computer simulations, challenges have to be solved for
the trawl gear hydrodynamic load description and the handling of the contact interactions.

The interference loads depend strongly on the modeling of the hydrodynamic loads
and the trawl gear interaction behavior. For trawl boards, the interference is particularly
challenging due to the non-trivial hydrodynamics and the three-dimensional motions in-
volved. Therefore, the numerical model should preferably be based on an integrated
framework of computational fluid dynamics and the structural FE method. In a prelim-
inary work for enabling simulation of trawl board and pipeline interaction in 2009 by
Teigen at al. [12], such a framework was concluded to be unfeasible in a foreseeable fu-
ture due to the extreme computational resources needed. Thus, one is basically left with
a six degree of freedom (DOF) rigid body model with precomputed hydrodynamic coef-
ficients for the trawl gear. Such a model was used in work by Reite [13] who developed
a trawl board control system for midwater trawling. As opposed to his work, the depen-
dency of the trawl board hydrodynamic mass on the distance and the orientation relative
to the seabed must be described, as well as the Coriolis-centripetal loads that arise from
the large angular velocities which are present during the interaction. Furthermore, appro-
priate models must be established for the steady-state fluid loads and the pressure-induced
rotational damping loads.

3



INTRODUCTION

To capture the initial impact response, the pipe and possibly also the trawl gear must
be modeled as a flexible continuum with a detailed description of the contact surfaces.
Contrarily, for the pull-over and the hooking responses, beam elements suffice to capture
the pipe response and a rigid body model can be used for the trawl gear due to its high
rigidity compared to the pipe flexural stiffness. Such models have previously been used in
trawl board pull-over simulations, however, convergence issues related to loss of contact
were reported [14, 15]. The convergence problems occurred because the board contact
surface was approximated by cylindrical roller geometries giving disjoint surface regions
at the roller connection points. Thus, to avoid similar problems, the contacting surfaces
must be given a continuous description. Considering that small time steps are required
and that the interaction may last for more than ten seconds, the selected contact surface
representation should preferably allow for an efficient contact formulation.

1.1.2 Reeling operations
Slender marine structures undergo processes which involve material transport along a
predefined route both during manufacturing and installation. Typical examples are the
wounding process used for the cross-section components in flexible pipes and cables, off-
shore laying operations for steel pipelines, reeling of small-diameter steel pipes at spool-
bases as well as offshore installation and spoolbase-vessel load-out operations for flexible
pipes and cables, see Fig. 1.2.

Numerical reeling simulations are useful for purposes such as identification of unfore-
seen events prior to operations, post-analysis of failed operations, estimation of fatigue
damage during offshore installation and to provide initial configurations for on-bottom
buckling analysis of steel pipes. Use of Lagrangian beam models is considered to be

Figure 1.2: Spoolbase-vessel load-out operation for an umbilical cable [16]
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1.1 Background and motivation

the state of the art simulation method for pipe-laying operations. In work by Økland et al.
[17] on pipe-laying, this method was combined with a re-use of element strategy such that
the modeled pipe length could be kept constant. Reeling operations of history-dependent
flexible pipes and umbilical cables, such as the one illustrated in Fig. 1.2, are far more
challenging to simulate with Lagrangian beam formulations. This relates to the extensive
contact interactions present along the reeling path and the need for small and equal-sized
beam elements. Additionally, internal cross-sectional contact constraints and potential nu-
merical ill-conditioning due to the stick-slip behavior of the cross-section layers represent
a complicating factor.

Convergence problems related to the contact interactions are the main challenge in
reeling analyses. Therefore, analysts are often forced to apply cumbersome and time-
consuming strategies for the problem at hand. For instance, the ABAQUS software was
used in simulations of a simple reeling operation in work by Daly and Bell [18], where
a multistep procedure involving a large number of load and boundary conditions with
reactivation of contact surfaces was required in order to achieve convergence. A similar
reeling operation was studied by Jukes et al. [19] who reported that a full reeling anal-
ysis was particularly complex to undertake due to convergence issues. Alternatively, at
the cost of losing some accuracy, the contact interactions may be completely avoided in
certain problems by subjecting the pipe to imposed rotations that simulate the curvature
history experienced along the reeling route [20]. Also, the convergence difficulties may
be mitigated by using a dynamic analysis method instead of a static analysis method [21].
In summary, the current simulation practices are time-consuming and suffer from lack of
generality, even for relatively simple reeling processes.

A secondary challenge in reeling simulations is the poor numerical efficiency present
for models with a large number of DOFs. The mesh must often be several times longer
than the region of interest to avoid end-effects and to allow the steady-state configuration
to be attained. The moving mesh requires use of equal-sized elements whose size must be
sufficiently small to capture the response in the large-deformation regions. Furthermore,
the frequent changes in contact topology results in time-consuming contact searches and
the changing contact conditions might govern the time step size.

In this work, the challenges present in terms of convergence and efficiency are ad-
dressed by utilizing a Lagrangian-Eulerian description of motion. The basic idea here is
to separate the mesh and the material motions in such a way that the mesh becomes vir-
tually fixed in space. The treatment of the history-dependent material response represents
the main challenge for this strategy. There exist so far no examples in the literature where
the Lagrangian-Eulerian viewpoint has been utilized in history-dependent beam prob-
lems, however, the same challenges as present for arbitrary Lagrangian-Eulerian methods
formulated for solid mechanic problems must be dealt with. As stated by Donea et al.
[22], the standard Galerkin-based FE method suffer from lack of stability in convection-
dominated situations. This is the case with a virtually fixed mesh and thus some kind
of stabilization technique must be established. The Lagrangian-Eulerian analysis strategy
must further be capable of providing the same accuracy as the conventional Lagrangian
formulation. Regarding generality, the development must be formulated to comply with
standard beam formulations and the framework of computational elasto-plasticity.

5



INTRODUCTION

(a) Undesirable deformations of 4.5” umbilical
cable during reeling after fabrication

(b) Indication of loop formation at
free span between vessel and quay
in a flexible pipe load-out operation

Figure 1.3: Incidents with severe torsion

In recent years, extreme torque responses leading to torsional failure in flexible pipe
and umbilical cable reeling operations have occurred during installation offshore, in spool-
ing after fabrication and during load-out from onshore spoolbases, see Fig. 1.3. Such fail-
ures result in high expenses for the involved parties since the operations must be aborted
and new products must be manufactured. Presently, the available design codes [23–25] do
not provide any guidance on how to avoid the experienced torsional failure incidents. This
is simply because the mechanisms responsible for the failures have not yet been identified,
which again relate to the lack of a robust and efficient simulation tool for identification of
critical situations during the operation. However, significant torques are known to develop
in beams subjected to high curvature if the bending moment vector and the normal vec-
tor of the curvature plane are non-aligned. For flexible pipes and umbilical cables, such
non-alignments may be introduced due to the hysteretic bending response [26]. Thus, to
allow for prediction of the torque in reeling operations the history-dependent bending re-
sponse, the constitutive coupling introduced by the interlayer contact pressures and the
bending-torsional geometric coupling effect must be accounted for.

1.2 Objectives and scope of the work

In the first part of this work, the overall objective is to develop a computational strategy
for trawl gear and pipeline interaction able to predict pull-over loads with similar accu-
racy as model tests. The initial impact response and the hooking event are not considered,
however, the proposed simulation tool is expected to handle hooking events. The compu-
tational strategy is to be validated against experimental tests for trawl board interaction
only. Nevertheless, provided that agreement is demonstrated, the strategy should be ap-
plicable for clump weights and beam trawls which have a far simpler hydrodynamic load
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description. The present work also aims to identify sensitive model parameters, in partic-
ular parameters which are difficult to examine in experimental tests. Thus, for Papers I
and II which address the trawl-pipe interaction problem, the main objectives can be stated
as follows,

• Develop a robust and efficient contact model capable of describing the pull-over
interaction behavior in trawl gear and subsea pipeline interferences. [Paper I]

• Propose and calibrate a six DOF trawl board load model with precomputed hydro-
dynamic coefficients able to capture the relevant effects of the pull-over interaction
phase. [Paper II]

• Validate the trawl-pipe computational strategy against existing model tests of trawl
board and pipeline pull-over interaction [27]. [Paper II]

• Identify sensitive model parameters and quantify their influence on the pull-over
process. [Paper II]

The overall objective in the second part of the work is to develop a Lagrangian-
Eulerian formulation for reeling analysis of history-dependent beams. Based on the tor-
sional failures recently experienced by subsea contractors, the application part of the work
focuses solely on spoolbase-vessel load-out operations of flexible pipes. The formulation
is therefore expressed in terms of a standard flexible pipe constitutive model. The develop-
ment is expected to be applicable also for umbilical cables since they have a similar con-
stitutive description. Offshore installation operations and J2-plasticity models for rigid
steel pipes will not be considered. The aim of the numerical studies is to provide recom-
mendations on how to avoid torsional failures in flexible pipe load-out operations. Hence,
the main objectives for Papers III and IV which are concerned with reeling operations are
as follows,

• Develop a Lagrangian-Eulerian formulation for reeling analysis of flexible pipes
with a virtually fixed mesh in space. The formulation must be capable of providing
the same accuracy as the conventional Lagrangian method. [Paper III]

• Enable for prediction of the torque generated in flexible pipe reeling operations.
Thus, the hysteretic bending response, the bending-axial-torsional constitutive cou-
pling introduced via the interlayer contact pressures and the bending-torsional ge-
ometric coupling effect must be properly described. [Paper III]

• Propose a framework for efficient simulation of reeling operations based on the
developed Lagrangian-Eulerian formulation. [Paper IV]

• Identify driving mechanisms and propose mitigation strategies for the extreme torque
responses experienced in spoolbase-vessel load-out operations of flexible pipes.
[Paper IV]
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1.3 Thesis organization
The thesis is composed of a main section and an appended collection of four original
research papers. The main section consists of five chapters in which the four remaining
are organized as follows,

Ch. 2 Contains a literature review of previous work, state of the art modeling prac-
tices and FE formulations relevant for trawl-pipe pull-over interaction and
flexible pipe reeling analysis.

Ch. 3 Presents the nonlinear FE program developed for Papers III and IV. The fi-
nite elements required for simulation of reeling operations are described. A
combined verification and Newton convergence study is also presented.

Ch. 4 Gives an extended summary of the research papers and describes the new
FE techniques developed, the numerical modeling and the outcome of the
simulation work.

Ch. 5 Presents conclusions and recommendations for future work. The original
contributions are listed, limitations of the research are stated and the most
important implications of the work are described.

Papers I – IV are presented in full-length versions after the main section. The reader is
recommended to study the papers in order to fully comprehend all aspects of the research.
For a quick overview of the work one may study Chapters 1, 4 and 5 only.
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Chapter 2

Literature survey

The objective of this chapter is to summarize previous work relevant for the trawl-pipe
pull-over interaction problem and flexible pipe reeling analysis. The basic concepts of
beam contact formulations and arbitrary Lagrangian-Eulerian methods are described as
well as state of the art modeling practices for trawl boards and flexible pipes. Note that
some of the content is also presented in Papers I – IV.

2.1 Trawl-pipe pull-over interaction

2.1.1 Experimental work
Research on trawl-pipe pull-over interaction was initially based exclusively on model
testing. The first efforts can be traced back to a multiphase joint industry project (JIP) in
the 1970s [28–30], which was initiated by the oil companies operating in the North Sea.
Both small-scale and full-scale tests were conducted, in which the most important findings
for trawl board interaction were that spanning pipelines were subjected to larger forces
than pipelines resting on the seafloor, skew passings resulted in less severe loads than
perpendicular crossings and that pipeline hooking could be regarded as an unlikely event.
Additionally, it was concluded that pipelines with diameter 0.4 m and greater were able
to withstand trawl loads. In the following decades it therefore became general practice in
the North Sea to trench or cover all pipes with diameter less than 0.4 m.

Small-scale tests of protective subsea structures subjected to over-trawling of beam
trawls and trawl boards were conducted by Nygaard [31] in 1988. He concluded that the
interaction was dependent on the gear geometry, the weight of the towed equipment and
that small perturbations of the initial conditions could greatly influence the interaction
behavior. Furthermore, the most extreme towing line forces for elevated beam structures
were found to be more than twice as large as those measured in the JIP described above.

As heavier trawl gear was put into use during the 1980s and previous model tests had
presumed 100 – 150 m water depth and not accounted properly for span flexibility, it was
realized that new test data should be obtained with systematic variation of parameters
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such as span height, pipe lateral support conditions, towing velocity and towing line stiff-
ness. An extensive model test program for trawl board pull-over interaction was therefore
conducted by MARINTEK in 1990 on behalf of Statoil [27]. Parametrized load histories
suitable for design analysis were established from these tests [32], which in fact form the
basis for the pull-over loads recommended by the DNV-RP-F111 code [7] as of today.

Valdemarsen [33, 34] conducted full-scale over-trawling tests of pipes at low span
heights from the fishermen’s perspective. He concluded that trawl boards were signifi-
cantly hindered for crossing angles less than 40◦. The boards were seen to slide several
metres along the pipe before they eventually passed and fell flat onto the seabed in danger
of getting stuck on soft bottoms.

2.1.2 Numerical work

The use of numerical methods is motivated by the disadvantages present in model testing
such as the lack of input parameter flexibility, the need of truncated models and the high
expenses involved, as well as the desire to predict load effects in specific design cases
without unnecessary conservatism.

The first numerical model for prediction of pull-over loads appeared in work by
Horenberg and Guijt in 1987 [35]. They developed a two-dimensional finite difference
model for the interaction between a fixed pipe and a beam trawl, which was shown to
predict peak load and duration within a 10% margin of model test results. In 2008, Igland
and Søreide [10] used FE analysis to study the interaction between a clump weight and a
pipeline resting on the seabed, see Fig. 2.1a. They presented a successful validation study
against laboratory tests and demonstrated that the DNV-RP-F111 code was too conserva-
tive in case of soft seabeds. Similar clump weight simulations were conducted by Maalø
et al. [11] for span heights below 1 m. Their model was found to agree well with labo-
ratory tests and they revealed that the recommended peak design load could be reduced
by approximately 50% if span flexibility was taken into account. In summary, these three
contributions demonstrate that numerical models are capable of predicting pull-over loads

(a) Clump weight simulation by Igland and
Søreide [10]

(b) Trawl board model used by Møller and Longva

Figure 2.1: FE simulation of trawl gear pull-over
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when the trawl gear interaction behavior is predominantly two-dimensional.
Prediction of trawl board pull-over loads was addressed in a British JIP in the late

1990s with a two-dimensional finite difference model [36]. The simulation strategy pre-
dicted unreliable loads which were both conservative and non-conservative when com-
pared against model tests, arguably because of the inability to capture the true three-
dimensional interaction behavior. A more general approach based on FE analysis was
used in work by Møller [14] and Longva [15]. They used a simplified representation of
the board contact geometry based on rigid cylindrical rollers, see Fig. 2.1b, where the
presence of disjoint contact surface regions were reported to give convergence issues. No
comparison against model tests was considered. Thus, the validity of using numerical
simulations for trawl board and pipeline pull-over interaction has not been confirmed yet.

2.1.3 Trawl board hydrodynamic load modeling

The ability to predict realistic pull-over responses depends strongly on the modeling of
the hydrodynamic loads. This modeling is particularly challenging for trawl boards as
the interaction involves transient motions in all six DOFs. Previously, load estimation
has been dealt with by Teigen et al. [12] for bottom trawl boards and by Reite [13] for
midwater trawl boards. Since computational fluid dynamics is too slow for time domain
simulations, it is common to use six DOF hydrodynamic load models with precomputed
coefficients. The loads are then divided into steady-state parts and transient parts and
estimated separately.

The steady-state fluid loads are associated with the forces and the moments present
when the board travels along a rectilinear path at constant velocity. Regarding estima-
tion of these loads, much data is available in the literature such as the coefficients for
the NACA foil series presented in Ref. [37]. If high accuracy is needed, model testing of
the actual trawl board is generally required. The available options are wind tunnel exper-
iments as selected by Reite [13] and flume tank testing which was used in the work by
Teigen et al. [12], see Fig. 2.2a. The latter option is probably more convenient regarding
Reynolds number scale effects.

The transient loads may be divided into loads due to circulation build-up, damping
due to angular velocities and hydrodynamic mass loads [13]. Circulation build-up is as-
sociated with transient lift loads that arise due to sudden changes of the fluid relative
velocity vector, see Ref. [38]. In Reite’s work, precomputed coefficients for all three load
contributions were established by means of a vortex-lattice potential theory method. In
the work by Teigen et al., a standard potential theory method was applied to study a trawl
board and a pipe located on the sea bottom, see Fig. 2.2b. They demonstrated that the hy-
drodynamic mass was dependent on the distance and the orientation relative to the seabed
and the pipeline. Worth mentioning is that the hydrodynamic Coriolis-centripetal loads
were justifiably neglected in Reite’s application, while Teigen et al. did not address these
loads since they focused solely on estimation of hydrodynamic mass and steady-state fluid
loads.
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(a) Flume tank testing of multifoil board (b) Panel model of trawl board

Figure 2.2: Estimation of steady-state fluid loads and hydrodynamic mass [12]

2.1.4 Contact formulations

The rigidity of standard trawl gear is much larger than the pipe flexural stiffness. Conse-
quently, for the purpose of global response prediction, the trawl gear can be modeled as
a rigid body and a beam model can be used for the pipe. This modeling assumption was
utilized in the previous work described in Sec. 2.1.2, apart from Igland and Søreide who
relied on combined use of beam, shell and solid elements, see Fig. 2.1a.

The treatment of beam contact problems differs from the approach used for con-
tact problems involving continuum elements. A key differences is the geometric sym-
metry which makes distinctions like slave beams and master beams superfluous [39]. The
contact is further assumed to occur pointwise and the cross-sections are assumed unde-
formable [40]. Three-dimensional curves representing the cross-section can therefore be
used as basis for the contact kinematics.

The literature on beam contact is sparse in relation to the numerous publications avail-
able for conventional contact formulations. One of the first publications was made by
Souza de Corsi [41] who addressed a seabed-cable contact problem in analysis of moor-
ing lines. Thereafter, Maker and Laursen [42] proposed a formulation for the interaction
between a continuum medium and a rod modeled by beam or truss elements. Contact be-
tween two beams was first addressed in 1997 in the work by Wriggers and Zavarise [39].
They developed a contact formulation valid for circular cross-sections, which later was
extended to account for friction [43]. Similarly, Litewka and Wriggers presented a con-
tact formulation for two beams with rectangular cross-sections for the frictionless case
[44] and thereafter with friction included [45]. The idea of disengaging from the underly-
ing beam formulation was introduced by Litewka [46], who developed a C1-continuous
contact element without involving the beam rotational DOFs. This idea was accomplished
for arbitrary three-dimensional curves in the work by Konyukhov and Schweizerhof [47].
They used covariant derivatives to obtain consistent tangent stiffness matrices that were
independent of the discretization used for the underlying beam formulation.

In the references cited above, the contact constraints for the frictionless case were
imposed by either the penalty method or the standard Lagrange multiplier method [40].
Those concerned with frictional contact applied the penalty method. This is in fact mo-
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tivated since reversible tangential displacements as observed in experiments [48] can be
represented via the penalty regularized stick constraint [40]. As argued by Wriggers [49]
and Konyukhov [50], there is a similar motivation for the impenetrability constraint since
the penetration-dependent penalty force can be interpreted as a hyper-elastic constitutive
law. This is relevant for subsea pipelines as it may be desirable to allow for modeling of
elastic coating stiffness properties.

2.2 Flexible pipe reeling analysis

2.2.1 Arbitrary Lagrangian-Eulerian methods
The arbitrary Lagrangian-Eulerian (ALE) concept was introduced in 1964 under the name
Coupled Eulerian-Lagrangian by Noh [51] for a two-dimensional hydrodynamic problem
with moving fluid boundaries. Two decades later the ALE description was introduced in
solid mechanic problems with path-dependent material behavior by Liu et al. [52]. The
word arbitrary refers to the mesh motion which follows a rule selected for the problem at
hand. The ALE formulation reduces into an Eulerian formulation if the mesh velocity is
set to zero and into a Lagrangian formulation if the mesh and material motions are equal.

The objective of ALE techniques in solid mechanic problems is usually to avoid se-
vere mesh distortions in large-deformation problems without resorting to re-meshing and
updating of the mesh topology. Typical examples are simulation of metal forming pro-
cesses, necking tests and large-strain impact problems, see Fig. 2.3 and Ref. [53, 54]. The
ALE formulation may also function as a mesh adaptive method if the mesh motion rule is
defined to give increased element density in regions with strong solution gradients, such
as along yield lines in plated structures, see Ref. [55].

In the present work, the purpose is neither mesh regularization nor mesh adaptivity,
but rather to obtain a virtually fixed mesh in beam reeling analyses. Lagrangian-Eulerian
analysis methods for beams with elastic materials have been developed for problems in-
volving axial mass flow [56], sliding joints [57] and axially moving beams [58]. There
exist no examples in the literature where the Lagrangian-Eulerian viewpoint has been
utilized in beam problems with path-dependent material behavior. Nevertheless, the ba-
sic concepts and the challenges that must be dealt with are similar to those present for

ALE formulation Lagrangian formulation

Mesh and material are untied Mesh tied to material

Figure 2.3: ALE mesh regularization in a punch compaction simulation
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continuum-based ALE formulations.
ALE stress-update procedures are divided into two categories, coupled and uncoupled

methods. In the coupled method, the constitutive rate equation, including the convective
term, is integrated forward in time in a single step. This method has been employed for
instance by Ghosh and Kicuchi [59] who used an implicit global time-stepping algorithm
and in work by Liu et al. [52] for the explicit case.

The uncoupled stress-update method, also referred to as an operator split method,
is by far the most common in commercial software. This method can be interpreted to
divide the time step into a Lagrangian step, a mesh update step and a convection step,
see Ref. [60, 61]. No equilibrium iterations are executed after the convection step and
consequently the equilibrium becomes disturbed, however, as described by Donea [22]
the unbalance is not severe and can be handled as an extra residual load at the next time
step. The uncoupled method is often regarded as more advantageous because simpler and
more robust algorithms can be developed [61], it offers greater flexibility for the mesh
motion [62] and upgrading of an existing implicit Lagrangian implementation into the
ALE description is facilitated since no additional tangent stiffness contributions appear.

Since the material points do not coincide with the quadrature points, the history-
dependent constitutive variables must be convected through the mesh. Convection is pre-
sent also for the inertia term in the momentum balance equation. The spatial gradient of
the convected variables is known to introduce spatial oscillations in the Galerkin-based
FE method [63]. Such numerical instabilities can be avoided or mitigated by using a stabi-
lization technique on the convective term. Possible candidates are the streamline upwind
Petrov-Galerkin method used by Liu et al. [64] and the Taylor-Galerkin method developed
by Donea [65]. Other alternatives such as the least-square methods and the characteristic
Galerkin method may also be applied [66]. Regarding the present work, spatial instabil-
ities must be anticipated since the virtually fixed mesh represents a strongly convection-
dominated situation.

Additional challenges are introduced if the spatial gradient of the convected variables
is discontinuous across element borders, such that it cannot be reliably computed on el-
ement level [22]. Huétink et al. [67] therefore proposed a strategy based on least square
smoothing between quadrature points within the element and simple averaging between
elements. In work by Liu et al. [52], the spatial gradient ambiguity was solved by devel-
oping a weak formulation for the constitutive rate equation such that the convective term
containing the stress gradient transformed into a stress-velocity term. This is relevant for
beam models since the constitutive variables are usually assumed constant or interpolated
with C0-functions between the element nodes.

2.2.2 Constitutive modeling

The constitutive model applied for the flexible pipe is important for the ability to predict
torque responses in load-out operations. As seen in Fig. 2.4 the composition of the cross-
section with metallic and plastic layers is fairly complex. Constitutive models capable of
predicting the response of such cross-sections are normally based on separate models for
the axial-torsional and bending responses.
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Figure 2.4: Flexible pipe cross-section

Axial-torsional constitutive models, often called axi-symmetric models in the litera-
ture, have been addressed in several research efforts the last decades. In 1996, ten insti-
tutions participated in a benchmark study initiated by Witz [68], where the response of
a flexible pipe subjected to various combinations of tension and torque was considered.
The study concluded that the axial-torsional responses can be satisfactorily predicted pro-
vided that the interaction between the layers is accounted for. An important contribution to
axial-torsional response models is the work pioneered by Féret and coworkers in the late
1980s [69, 70]. Their model is in fact used as basis in current state of the art models which
are able to account for effects such as local helix bending moments and torque, material
nonlinearity, geometric nonlinearity, formation of radial gaps and tendon circumferential
gap closure, see e.g. Ref. [71, 72].

The bending response is characterized by a trivial linear-elastic contribution from the
plastic layers and a hysteretic contribution due to the stick-slip behavior of the tensile
helix layers. In general, the hysteretic bending response is difficult to predict accurately,
which also was concluded in Witz’s benchmark study [68]. Several models able to ac-
count for the hysteretic bending response have therefore emerged in the literature the last
decades. Some of them utilize individual tendon approaches and are not formulated in
the framework of computational elasto-plasticity, see e.g. Ref. [73]. Such models can
be computationally demanding and are not suitable for use in a general Lagrangian-
Eulerian stress-update procedure. Contrarily, the fairly advanced stress resultant based
elasto-plastic models proposed by Alfano, Bahtui and coworkers [74, 75] are regarded
as applicable. They used detailed FE simulations for calibration of the models and due
account was made for radial pressure loads. The disadvantage of their approach is the
considerable efforts needed to determine the material parameters and that the models
are only valid for a specific cross-section. A more attractive alternative was proposed by
Sævik [72], who formulated two elasto-plastic Coulumb bending models valid for generic
cross-sections, one detailed and one gross model, which were coupled with a separate axi-
symmetric model for determination of the interlayer contact pressures. Both models were
shown to predict fatigue damages of flexible pipes in good correlation with laboratory
tests. A similar strategy with a gross Coulomb bending model was presented by Skeie et
al. [76] for fatigue analysis of umbilical cables and flexible pipes. Although these bending
models have been validated for fatigue calculations and gained consensus in the industry,
they are still based on simplifying assumptions which strictly speaking must be validated
for the problem at hand.
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2.2.3 Torsional failure and bending-induced torque
Torsional failure in flexible pipe load-out operations have so far not been addressed in the
open literature. According to reports provided by MARINTEK, the failure modes identi-
fied in load-out operations are lateral buckling of the tensile helix layers, loop formation
and herniation buckling. The radial buckling mode for the tensile helix layers is also rel-
evant.

Lateral and radial buckling of the tensile helix tendons has been studied in work by
Vaz and Rizzo [77] with aid of detailed FE analysis. Østergaard et al. [78] developed a
mathematical model for global limit load prediction which were able to describe lateral
tendon instabilities for zero friction. Design formulas for both the radial and the lateral
buckling modes have been proposed by Sævik [79, 80]. Loop formation of risers in cate-
nary configurations have been studied by Ramos and Pesce [81] and Neto et al. [82]. Both
studies contributed with design formulas and concluded that Greenhill’s equation [83]
could be used also for curved configurations. The term herniation buckling above, refers
to the extreme situation where the inner tensile helix layer buckles radially through accu-
mulated openings in the outer tensile helix layer. This failure mode has so far not been
studied in the open literature.

Significant bending-induced torques are known to develop in flexible pipes because
of the hysteretic bending behavior. This phenomenon originates from interlayer friction
effects, which allow the bending moment vector to be non-aligned with the normal vector
of the curvature plane, such that a torque is needed to fulfill equilibrium. The generation
of such torques in flexible pipes has been studied in work by Fylling and Bech [26].
They derived simplified formulas for prediction of the induced torque and compared them
against FE results obtained with a corotational beam formulation.

2.2.4 Beam models
Most beam models for flexible pipes are based on a corotational description of kinemat-
ics, see Refs. [72, 84, 85]. This is also reflected in analysis software for slender marine
structures [86–89]. In brief, the corotational formulation employs element-based refer-
ence configurations which rotates and translates with the rigid body motion of the ele-
ments. This allows for re-use of linear beam elements in a geometrically nonlinear context
under the assumption of small deformations relative to the element-based reference con-
figurations. This assumption represents no limitation, since in case of violation, shorter
elements can be applied. Shear deformations in flexible pipes are negligible and thus most
corotational pipe models obey the Euler-Bernoulli kinematic relations. If material nonlin-
earity and higher-order strain terms are accounted for, the formulation is applicable also
for plastic collapse analysis [90] and plastic instability analysis [91].

Some examples of geometrically exact beam formulations in marine applications have
appeared in recent years, for instance in simulation of pipe-laying operations [93] and in
prediction of loop formation of flexible risers [82]. This type of formulation was proposed
by Simo [94] based on a generalization of Reissner’s two-dimensional finite strain beam
formulation [95]. The motion of the beam is described by the displacements of the cen-
troidal line and rotation tensors which give the orientation of the cross-sections. Shear
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deformations are inherently accounted for and the translations and the rotations along the
centroidal line can be independently interpolated. These formulations are coined geomet-
rically exact since they account without any approximations for the total deformation and
strains [96]. The beam elements exhibit shear locking for standard discretizations and it
is therefore common to use reduced integration [97].
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Chapter 3

MATLAB finite element program

The Lagrangian-Eulerian formulation developed in Paper III differs from the conventional
Lagrangian method. It would therefore not be feasible with regard to time-consumption,
in particular during the development phase, to implement the code into a commercial FE
program such as selected in Papers I and II. The available commercial codes [86–89]
are neither able to handle the non-symmetric equation system that appears because of the
Lagrangian-Eulerian viewpoint. A small FE program was therefore implemented in MAT-
LAB [98]. This software offers a well-designed debugging environment, non-symmetric
equation solvers, straightforward post-processing of results and numerous built-in func-
tions.

The MATLAB implementation is representable for the state of the art analysis method
for slender marine structures. The intention with this chapter is to describe details that had
to be excluded from Papers III and IV and to present a combined verification and Newton
convergence study for the implemented corotational beam formulation. The theory pre-
sented in the following is relevant also for Papers I and II, where the SIMLA computer
program [89] which has a similar beam formulation was used.

3.1 Coordinates, transformations and rotations
The global computational basis is taken to be a fixed Cartesian coordinate system with unit
base vectors Ei. For the vector a, the relation between its components in the coordinates
associated with Ei and ēi, is defined by the transformation matrix T according to,

āi = Tijaj Tij = Ej · ēi a = aiEi = āiēi TT>= I i, j = 1, 2, 3 (3.1)

where I is the identity matrix and the Einstein summation convention, both here and in
the sequel, applies for repeated indices. The index range is not stated in the following as it
is implicitly assumed to loop over 1, 2 and 3. The components of the second order tensor
A transform according to,

Ākl = TkiAijTlj Tij = Ej · ēi A = AijEi ⊗Ej = Āij ēi ⊗ ēj (3.2)
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The nodal rotation state and the orientation of the individual elements are defined by
proper orthogonal tensors that give the rotation relative to the global computational basis
Ei. For that purpose, the rotation of the vector a into the vector b, corresponding to the
rotation experienced when the Ei-triad is rotated into the ei-triad, is expressed in terms
of the rotation tensor Q as follows,

b = Q ·a Q = ei ⊗Ei Q ·Q> = ei ⊗ ei = I (3.3)

3.2 Quaternions
The rotation in Eq. (3.3) can be represented by the vector ψ=ψn, where ψ denotes the
angular rotation about the unit vector n. The corresponding quaternion representation
consists of a scalar q4 and a vector q defined by the relations,

q4 = cos

(
1

2
ψ

)
q = sin

(
1

2
ψ

)
n q =

[
q1 q2 q3

]>
ψ = ψn (3.4)

with the following parametrization for the rotation tensor,

Q (q4,q) =
(
q2
4 − q ·q

)
I + 2q4W (q) + 2q⊗ q (3.5)

where W is the skew-symmetric tensor that represents the vector cross product,

W (q) =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 (3.6)

The inverse relation of Eq. (3.5), which gives the quaternion parameters for a specific rota-
tion tensor is in the implementation based on Spurier’s algorithm, see Ref. [99]. The major
advantage of the quaternion representation is that the parametrization is non-singular for
all rotation angles. In the present work, the quaternions are used mainly because com-
pound rotations such as those encountered in the nodal rotation update scheme,

Q (q4,q) = U (u4,u) ·V (v4,v) (3.7)

with U and V parametrized according to Eqs. (3.4) and (3.5), can be efficiently computed
without matrix multiplications as follows,

q4 = u4v4 − u ·v q = u4v + q4u + u× v (3.8)

and requires also less memory since only four parameters need to be stored, rather than
all nine tensor components.

3.3 Principle of virtual work and linearization
The principle of virtual work expresses equilibrium in an integrated sense and is derived
by developing a weak formulation for the momentum balance equation, see e.g. Ref. [63].
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3.4 Nodal displacement update

For the quasistatic case, with the nodal displacement state r and the variation of the nodal
displacements δr, the virtual work equation can be expressed as,

δW (δr, r) =

Nb∑
δWb +

Nc∑
δWc +

Nk∑
δWk −

Nf∑
δWEXT = 0 (3.9)

where the summations are taken over Nb beam elements, Nc active contact constraints,
Nk spring elements and Nf external loads. Apart from the trivial load term δWEXT ,
explicit expressions for the virtual work contributions are presented in Section 3.5 – 3.7.

Equation (3.9) is nonlinear in terms of the displacement state and is therefore lin-
earized and solved with the Newton-Raphson method according to,

d (δW )

dr

∣∣∣∣
rc
dr =−δW (δrc, rc) dr =

[
dx1 dϕ1 ... dxNn dϕNn

]>
(3.10)

which results in a linear equation system with 6Nn−Nu unknowns when the arbitrariness
of δr is invoked.Nn is the number of nodes,Nu is the number of prescribed displacement
DOFs and superscript c refers to the current displacement state. The nodal translation
and rotation increments are denoted by dx and dϕ, respectively. For the case of reeling
analysis with a nearly fixed mesh, the following convergence norm is used as termination
criterion for the iterative solution process in Eq. (3.10),

εf >
||Rc

R||
1
2 ||R

c
EXT ||+

1
2 ||R

c
INT ||

Rc
R=Rc

EXT −Rc
INT δW =δrc>Rc

R (3.11)

where ||∗|| refers to the Euclidean norm of the unconstrained translatory DOFs, RINT

is the system internal load vector associated with the beam stress resultants, the contact
interactions and the spring elements while REXT contains the system external loads.

3.4 Nodal displacement update

The nodal position vectors are updated at each iteration step with the translation incre-
ments from the Newton solution procedure in Eq. (3.10) as follows,

xj = xpj + dxj j = 1, ..., Nn (3.12)

where superscript p refers to the previous displacement state. The nodal rotation state is
updated according to Eqs. (3.7) and (3.8) with U(dq4, dq) and V(qp4 ,q

p),

qj = qp4jdq4j − qpj · dqj qj = qpjdq4j + qp4jdqj + dqj × qpj j = 1, ..., Nn

(3.13)

where the quaternions dq4 and dq are obtained by inserting the nodal rotation increment,
dϕ=dϕn, from Eq. (3.10) into Eq. (3.4).
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3.5 Corotational beam formulation

The basic idea in the corotational approach is to decompose the motion of the element
into rigid body and pure deformation parts through the use of a reference frame that con-
tinuously rotates and translates with the element. The deformation is captured at the level
of the corotated reference, while the geometric nonlinearity of the arbitrarily large rigid
body motion is incorporated in the local-global transformation matrices. By assuming
small deformations relative to the corotated element frames, linear elements can be re-
used in a geometrically nonlinear context, which in fact is the main motivation for using
corotational formulations [100].

The corotational concept is illustrated in Fig. 3.1 where the initial configuration of
the element is denoted C0, the corotated element configuration is labeled C0n and the
deformed configuration is denoted Cn. All stress and strain variables are referred to the
straightC0n-reference which differs from the initialC0-configuration by the element rigid
body motion. The corotational formulation can therefore be regarded as computationally
equivalent to the total Lagrange formulation, however, issues such as membrane-locking
and artificial straining are avoided since the eliminated rigid body motion enables use of
low-order strain measures [101]. Alternatively, the updated Lagrange formulation which
employs Cn as the reference could be used. In that case, the stress and the strains must
be transformed to an appropriate computational basis and integrated over the deformed
volume. This approach is not preferred in situations where a corotational formulation with
high-performance linear elements can be used instead.

The implemented corotational formulation is described in Section 3.5.1 – 3.5.3. The
presentation follows closely Ref. [102], apart from the deformation DOFs which are based
on the nodal relative rotations rather than the natural deformation modes.

e3
e2

e1

e0
1

e0
3 e0

2

Cn

1
2u

ē2B

E1

E3 E2

xA

xB

C0

θ1B
θ2B

ē1Bθ2A

ē1A

θ3A

θ1A

ē3B

θ3Bē3A

C0n

ē2A

1
2u

Figure 3.1: Corotated beam element
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3.5 Corotational beam formulation

3.5.1 Deformation DOFs
The Euler-Bernoulli kinematic relations which imply no shear deformations are utilized.
As illustrated in Fig. 3.1, the element deformation DOFs therefore consist of the following
parameters,

v>
d =

[
u , θ1B − θ1A , θ2A , θ3A , θ2B , θ3B

]
(3.14)

where the components are referred to the corotated ei-basis. The axial elongation u is
computed from the initial element length L0 and the current secant length L as follows,
see Fig. 3.1,

u = L− L0 L = ||xB − xA|| (3.15)

The remaining parameters in Eq. (3.14) gives the rotation of the nodal ēi-triads rela-
tive to the corotated element triad ei. The latter triad is obtained by a three-step procedure.
First, the mean rotation based on the rotation tensors at the element nodes, QA(q4A,qA)
and QB(q4B ,qB), is computed,

s4 =
1

2

[
(q4A + q4B)

2
+ ||qA + qB ||2

]1/2
(3.16)

q̃4 =
1

2
(q4A + q4B) /s4 q̃ =

1

2
(q4AqB − q4BqA + qA × qB) (3.17)

and is thereafter employed to rotate the initial element basis e0
i from theC0-configuration,

see Fig. 3.1,

ẽi = Q (q̃4, q̃) · e0
i (3.18)

At last, the ẽi-triad is rotated via the smallest possible angle such that e1 is directed along
the element secant vector,

ẽ =
ẽ1 + t

||ẽ1 + t||
t =

xB − xA
L

(3.19)[
e1 e2 e3

]
= (I− ẽ⊗ ẽ) ·

[
−ẽ1 ẽ2 ẽ3

]
(3.20)

which gives the element rotation tensor,

Qe = ei ⊗Ei (3.21)

With the nodal rotation tensors Qj(q4j ,qj) and the element initial rotation tensor Qe0,
the rotation of the nodal ēi-triads relative to the ei-triad can now be obtained, see Fig. 3.1
and Eq. (3.3),

Qrr
j

(
qrr4j ,q

rr
j

)
= ēi{j}⊗ei = Qj ·Qe0 ·Q>

e j = A,B Qe0 = e0
i ⊗Ei (3.22)

Equation (3.22) must be projected into the corotated ei-basis by the transformation matrix
Te. By letting Eq. (3.22) be represented in the Ei-coordinates, Eqs. (3.2) and (3.3) yields
Te=Q>

e , and the relative rotation therefore reads,

Qrrl
j

(
qrr4j ,q

rrl
j

)
= TeQ

rr
j

(
qrr4j ,q

rr
j

)
T>
e = Q>

eQjQe0 j = A,B (3.23)
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where superscript l underlines that the quantities are expressed in the local ei-basis. With
aid of Spurier’s algorithm the quaternions are extracted and thereafter inserted into Eq.
(3.4) to give the rotational deformation parameters needed in Eq. (3.14),

θj = 2 cos−1
(
qrr4j

) qrrlj
||qrrlj ||

θj =
[
θ1j θ2j θ3j

]>
j = A,B (3.24)

In situations where ||qrrlj ||<< 1, the rotation parameters are instead obtained from a
truncated version of Eq. (3.4),

θj = 2qrrlj (3.25)

3.5.2 Element load vector
The virtual work of a single element in the corotated ei-basis is expressed in terms of the
variation of vd from Eq. (3.14) as follows,

δWb = δv>
d S (3.26)

with the energy-conjugate stress resultants defined as,

S =
[
N M1 −MA2 −MA3 MB2 MB3

]>
(3.27)

where the axial force N and the torque M1 are constant within the element and the bend-
ing moments M2 and M3 vary linearly between the element nodes. The constant shear
forces Q2 and Q3 are obtained from bending moment equilibrium as follows,

Q2 = −MB3 −MA3

L
(3.28)

Q3 =
MB2 −MA2

L
(3.29)

The stress resultants contained in S must be assigned a constitutive description. For sim-
plicity, the material behavior is assumed linear-elastic and the stress resultants are there-
fore obtained from the following constitutive stiffness relation in the corotated ei-basis,

S = Kd vd =
1

L


EA 0 0 0 0 0
0 GJ 0 0 0 0
0 0 4KE 0 2KE 0
0 0 0 4KE 0 2KE

0 0 2KE 0 4KE 0
0 0 0 2KE 0 4KE

vd (3.30)

whereEA is the axial stiffness,GJ is the torsion stiffness andKE is the bending stiffness.
When the stress resultants are added into Eqs. (3.9) and (3.10), the element load vector

must be on 12×1 format. For that purpose, the element displacement vector v is intro-
duced, which in terms of variational quantities is expressed as,

δv =
[
δwA δwB

]>
δwj =

[
δx1j δx2j δx3j δϕ1j δϕ2j δϕ3j

]
(3.31)
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3.5 Corotational beam formulation

where the variation of the nodal translation and rotation components are denoted by δxj
and δϕj , respectively. The virtual work in Eq. (3.26) can then be restated,

δWb = δv>P (3.32)

with the energy-conjugate 12×1 element load vector,

P> =
[

f>A m>
A f>B m>

B

]
(3.33)

where fj and mj are 3×1 vectors containing respectively the forces and the moments
at the element nodes. A relation between P and the stress resultants S is needed. This
relation is established with aid of the corotated unit vectors ei and Eqs. (3.28) and (3.29),

P = H S H =


−e1 0 − 1

Le3
1
Le2 − 1

Le3
1
Le2

0 −e1 e2 e3 0 0
e1 0 1

Le3 − 1
Le2

1
Le3 − 1

Le2

0 e1 0 0 e2 e3

 (3.34)

where the 12×6 matrix H also acts as a transformation for the load vector P by expressing
the corotated unit vectors ei in the Ei-basis.

Furthermore, the incremental relation between the element deformations vd and the
element displacement vector v is obtained by combining Eqs. (3.26), (3.32) and (3.34)

dvd = H>dv (3.35)

3.5.3 Element tangent stiffness matrix
The tangent stiffness contribution to Eq. (3.10) is found by linearizing the expression that
results when Eq. (3.34) is inserted into Eq. (3.32),

d (δWb) = d
(
δv>

)
H S + δv>dH S + δv>H dS (3.36)

The two first terms in Eq. (3.36) contribute to the initial stress stiffness matrix Kσ , while
the third term gives the constitutive stiffness matrix Kc. By means of Eq. (3.35) and the
incremental form of Eq. (3.30), the 12×12 tangent stiffness matrix can be expressed as,

K = Kc + Kσ Kc = H KdH
> Kσ =


kσ11 kσ12 kσ13 kσ14

kσ21 kσ22 kσ23 kσ24

kσ31 kσ32 kσ33 kσ34

kσ41 kσ42 kσ43 kσ44

 (3.37)

The initial stress stiffness matrix Kσ is shown to be important for the convergence prop-
erties in Section 3.9. A detailed derivation of the Kσ-matrix which opens for three alter-
native representations is therefore presented in the following.

The contribution to Kσ from the first term in Eq. (3.36) appears because the variation
of the rotational DOFs is configuration-dependent. As derived in Ref. [102], the variation
of a rotation is linearized as follows,

d (δϕ) = −1

2
δϕ× dϕ (3.38)
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with this and the skew-symmetric tensor W defined in Eq. (3.6), the first term in Eq.
(3.36) can be rewritten as follows,

d
(
δv>

)
H S =

1

2
δϕA ·W (mA) · dϕA +

1

2
δϕB ·W (mB) · dϕB (3.39)

which gives the following contributions to Kσ ,

1kσ22 =
1

2
W (mA) 1kσ44 =

1

2
W (mB) (3.40)

The second term in Eq. (3.36) accounts for the change of element length and the rigid
body rotation of the element. This linearization is therefore expressed as follows,

δv>dH S = δv>
dH

dl
S dl + δv>


dφ× fA
dφ×mA

dφ× fB
dφ×mB

 (3.41)

where the first term affects only the translation DOFs according to

δv>
dH

dl
S dl = (δxA − δxB) · 1

L
fQ⊗e1· (dxB − dxA) fQ = Q2e2+Q3e3 (3.42)

and gives therefore the following contributions to Kσ ,

2kσ13 = 2kσ31 = −2kσ11 = −2kσ33 =
1

L
fQ ⊗ e1 (3.43)

An expression for the incremental element rigid body rotation dφ is derived in Eq. (A.4)
in Paper III and reads as follows,

dφ = Ω dv Ω =
[
− 1
LW (e1) 1

2e1 ⊗ e1
1
LW (e1) 1

2e1 ⊗ e1

]
(3.44)

where W is the skew-symmetric tensor defined in Eq. (3.6). With aid of Eq. (3.44) and
by using W(dφ) for the vector cross product, the second term in Eq. (3.41) is found to
give the following contribution to Kσ ,

δv>


W(dφ) · fA
W(dφ) ·mA

W(dφ) · fB
W(dφ) ·mB

= δv> 3Kσ dv
3Kσ = −


W(fA ) Ω
W(mA) Ω
W(fB ) Ω
W(mB) Ω

 (3.45)

The initial stress stiffness contributions in Eqs. (3.40), (3.43) and (3.45) result in a
non-symmetric stiffness matrix Kσ . This is a consequence of including three-dimensional
rigid body rotations in the virtual work, where only the total force and moment contribute
to equilibrium, and thus the distribution of forces and moments on the element nodes
is not taken into account. As demonstrated in Ref. [102], a systematic procedure can be
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3.5 Corotational beam formulation

applied to restore full symmetry. The procedure relies on the fact that in a rigid body
motion,

krbi (dϕA − dϕB) = 0 (3.46)

because the rotation increments at the ends are equal, dϕA = dϕB . Therefore, the non-
symmetric Kσ-matrix can be made symmetric by modifying the second and the fourth
column according to,

Ksym
σ =


kσ11 kσ12 + krb1 kσ13 kσ14 − krb1
kσ21 kσ22 + krb2 kσ23 kσ24 − krb2
kσ31 kσ32 + krb3 kσ33 kσ34 − krb3
kσ41 kσ42 + krb4 kσ43 kσ44 − krb4

 (3.47)

where the krbi -matrices are simply selected so that symmetry is achieved. This procedure
is, however, not able to provide a unique stiffness matrix. In this work, the symmetrization
is selected to be identical with the one presented in Ref. [102], which gives a Ksym

σ -matrix
that is consistent with the initial stress stiffness matrix found by utilizing a geometrically
exact beam theory approach. When expressed in the local ei-basis, the symmetrized ma-
trix entries stemming from Eqs. (3.40), (3.43) and (3.45) reads as follows,

kσl11 = kσl33 = −kσl13 = −kσl31 =
1

L

 0 −Q2 −Q3

−Q2 N 0
−Q3 0 N

 (3.48)

kσl12 = kσl21

>
= −kσl32 = −kσl23

>
=

1

L

 0 0 0
−M2A M1 0
−M3A 0 M1

 (3.49)

kσl14 = kσl41

>
= −kσl34 = −kσl43

>
=

1

L

 0 0 0
M2B −M1 0
M3B 0 −M1

 (3.50)

kσl24 = kσl42

>
=

1

2

0 0 0
0 0 M1

0 −M1 0

 (3.51)

kσl22 =
1

2

 0 M3A −M2A

M3A 0 0
−M2A 0 0

 (3.52)

kσl44 =
1

2

 0 −M3B −M2B

−M3B 0 0
M2B 0 0

 (3.53)

Nonlinearity within the corotated element frame can be accounted for by including
higher-order strain terms [103, 104] possibly accompanied with higher-order approxima-
tions of the local deformational motion [105, 106]. With regard to the present work and
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the derived stiffness matrix entries in Eqs. (3.48) – (3.53), the stiffness effect caused by
the deformation modes for constant internal stresses is not represented. This effect can be
included via the linearized internal virtual work from a geometrically exact beam model,
in which the terms that are proportional to the internal stress resultants read,

d (δWσ) =

L0∫
0

[
d (δε1)N + d (δε2)Q2 + d (δε3)Q3 + d (δκi)Mi

]
ds0 (3.54)

where L0 denotes the element initial length, ε1 is the axial strain, κ1 is the torsion and
the bending curvatures are denoted κ2 and κ3. The shear strains ε2 and ε3 vanish for the
Euler-Bernoulli beam. By means of some intricate manipulations of Eq. (3.54), see Ref.
[102], the linearized internal virtual work can be restated as,

d (δWσ) =

L0∫
0

[
δθ>
,s0 δθ> ] [ 0 − 1

2W (M)
1
2W (M) L

L0
F

] [
dθ,s0
dθ

]
ds0 (3.55)

where the skew-symmetric matrix W is defined in Eq. (3.6) and M denotes the internal
moment vector. The axial component of M is set equal to the constant torque M while
the bending moments vary linearly between the element nodes,

M = Miei M1 = M Mk =
(

1− s0

L0

)
MkA +

s0

L0
MkB k = 2, 3 (3.56)

and the matrix F contains the axial force and the shear forces,

F =
1

2

 0 Q2 Q3

Q2 −2N 0
Q3 0 −2N

 (3.57)

For the incremental rotation field, linear interpolation is used for the torsion mode while
the bending polynomials are obtained by differentiation of the conventional Hermite shape
functions for the transverse displacement field,

dθ(s0) =

dθ1

dθ2

dθ3

=

 0 s0
L0
− 1

2 0 0 0 0

0 0 hθA 0 hθB 0
0 0 0 hθA 0 hθB

dvd = Ndθ dvd

hθA = 1− 4
s0

Lo
+ 3

s2
0

L2
0

hθB = 3
s2

0

L2
0

− 2
s0

L0

(3.58)

The same interpolation polynomials as above are used for the variation δθ. Hence, with
the 12×6 matrix H defined in Eq. (3.34), the local initial stress stiffness matrix reads,

4Kσ = H

L0∫
0

[
N>
dθ,s0

Ndθ
>
][ 0 − 1

2W (M)
1
2W (M) L

L0
F

][
Ndθ,s0

Ndθ

]
ds0 H> (3.59)
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3.6 Pipe-roller contact element

The 4Kσ matrix accounts for changes of the torsion and the bending modes at constant
internal stresses and introduces non-trivial coupling terms which are important for tor-
sional buckling phenomenons [102]. When Eq. (3.59) is appended to the ordinary initial
stress stiffness matrix in Eqs. (3.48) – (3.53), the total initial stress stiffness matrix reads
as follows in the local ei-basis,

kσl11 = kσl33 = −kσl13 = −kσl31 =
1

L

 0 −Q2 −Q3

−Q2
6
5N 0

−Q3 0 6
5N

 (3.60)

kσl12 = kσl21

>
= −kσl32 = −kσl23

>
=

1

L

 0 0 0
−M2A M1

L
10N

−M3A − L
10N M1

 (3.61)

kσl14 = kσl41

>
= −kσl34 = −kσl43

>
=

1

L

 0 0 0
M2B −M1

L
10N

M3B − L
10N −M1

 (3.62)

kσl24 = kσl42

>
=

L

30

 0 5Q2 5Q3

5Q2 −N 15
LM1

5Q3 − 15
LM1 −N

 (3.63)

kσl22 =
1

6

 0 2M3A +M3B −2M2A −M2B

2M3A +M3B
4L
5 N 0

−2M2A −M2B 0 4L
5 N

 (3.64)

kσl44 =
1

6

 0 −2M3B −M3A −2M2B +M2A

−2M3B −M3A
4L
5 N 0

2M2B +M2A 0 4L
5 N

 (3.65)

3.6 Pipe-roller contact element

3.6.1 Kinematics and contact search
The contact element consists of a rigid roller geometry and a curved circular pipe, see
Fig. 3.2. The pipe geometry is associated with a single beam element and is interpolated
by the conventional Hermite shape functions relative to the straight corotated reference
configuration. In the Ei-basis the pipe centerline therefore reads,

x (η) =h1xA + h2xB + T>Nθ (h3)θA + T>Nθ (h4)θB 1 ≤ η ≤ 1

h1 =
1−η

2
h2 =

1+η

2
h3 =

η3−η2−η+1

8
L

h4 =
η3+η2−η−1

8
L Nθ (h) =

0 0 0
0 0 h
0 −h 0


(3.66)

29



MATLAB FINITE ELEMENT PROGRAM

where the rotational deformation parameters at the beam element nodes θj are obtained
from Eq. (3.24), and the transformation matrix T is defined according to Eq. (3.1) with ēi
replaced by the beam element corotated unit vectors ei. The bending modes are included
such that a smooth contact geometry is achieved. This is beneficial for avoiding contact
search dead zones and issues with the contact force transfer when the contact point moves
to neighboring beam elements. The roller centerline is expressed in the Ei-basis in terms
of the roller node x̄C and the eccentricity vector r̄ (s̄), see Fig. 3.2,

x̄ (s̄) = x̄C + r̄ (s̄) r̄ (s̄) = s̄ Q̄C · ē0 s̄1 ≤ s̄ ≤ s̄2 (3.67)

where Q̄C is the roller node rotation tensor and ē0 is the roller unit tangent vector in the
initial configuration.

dϕ̄2C

dx2B

dx3A

dx̄1C

E3

E1

E2

x̄(s̄)

x(η)s̄

dϕ3A

θ2B

θ2A

dx1B

dϕ1B

dx3Bdx1A

dx2A

dϕ1A
dx̄2C

dx̄3C

dϕ̄3C

dϕ2B

dϕ3B
dϕ2A

dϕ̄1C

xB

xA

θ3B

θ3A

x̄C

Figure 3.2: Contact kinematics

A predefined range of beam elements is checked for contact at each iteration step. The
first step in the contact detection algorithm is to compute the minimum distance points of
the pipe and the roller. Because both geometries are circular, the points are computed
based on minimization of the centerline coordinates x

(
η
)

and x̄
(
s̄
)
,

d = min ||x (η)− x̄ (s̄)|| (3.68)

which results in the orthogonality conditions,[
x
(
η
)
− x̄

(
s̄
)]
· x,η

(
η
)

= 0 (3.69)[
x
(
η
)
− x̄

(
s̄
)]
· x̄,s̄

(
s̄
)

= 0 (3.70)

where the comma in subscript denotes partial derivative, e.g. x,η = ∂x
∂η . A local Newton

scheme must be employed to solve Eqs. (3.69) and (3.70) due to the cubic shape functions
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3.6 Pipe-roller contact element

used in Eq. (3.66). Details about formulation of the iterative scheme are given in Refs.
[39, 44]. The centerline parameters are denoted ηc and s̄c at the converged solution of the
minimum distance problem, and contact is defined to occur if the following inequalities
are fulfilled,

gn = ||x (ηc)− x̄ (s̄c)|| −R− R̄ ≤ 0 − 1 ≤ ηc ≤ 1 s̄1 ≤ s̄c ≤ s̄2 (3.71)

where gn is the normal gap, the pipe radius is denoted R and R̄ is the roller radius.

3.6.2 Element load vector and tangent stiffness matrix
The interaction is assumed to be frictionless since the product in reeling operations is
transported on rollers with negligible rotational resistance. The penalty method is em-
ployed to enforce the impenetrability constraint, gn≥0, and the virtual work contribution
from a single contact point therefore reads,

δWc = Fn(gn) δgn Fn (gn) ≤ 0 (3.72)

where Fn(gn) is assigned a hyper-elastic relation based on piecewise linear interpolation.
By taking the variation of Eq. (3.71) and utilizing the orthogonality conditions in Eqs.
(3.69) and (3.70), the normal gap variation can be expressed as,

δgn = [ δu(ηc)− δū(s̄c) ] · n̄ (3.73)

where δu and δū refer to the variations of the pipe and the roller translations at the contact
point, respectively. The roller outward unit normal vector n̄ at the contact point is defined
as follows,

n̄ =
x (ηc)− x̄ (s̄c)

||x (ηc)− x̄ (s̄c)||
(3.74)

The bending curvature and the bending moment must be continuous across element bound-
aries in the Lagrangian-Eulerian formulation. This implies that contact loads for the pipe
rotational DOFs cannot be included. The variation of the relative displacement at the con-
tact point is therefore discretized in terms of the pipe translation DOFs and the six roller
DOFs according to, see Fig. 3.2,

δu− δū = Nδ δv (3.75)

Nδ =
[
h1(ηc)I h2(ηc)I −I W(r̄ (s̄c))

]
(3.76)

δv =
[
δp δp̄

]>
δp =

[
δx1A δx2A δx3A δx1B δx2B δx3B

]
δp̄ =

[
δx̄1C δx̄2C δx̄3C δϕ̄1C δϕ̄2C δϕ̄3C

] (3.77)

where the hi-functions are given in Eq. (3.66) and W is the skew-symmetric matrix de-
fined in Eq. (3.6). In the Ei-basis the 12×1 element load vector P therefore reads,

δWc = δv>P P = N>
δ n̄Fn(gn) (3.78)
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In Paper I, the initial stress stiffness terms that results from d(δgn) was found to give
no significant benefits for the convergence properties. The linearization of Eq. (3.72) is
therefore established by regarding δgn as constant in terms of the displacement state,

d (δWc) = δgn
dFn
gn

dgn (3.79)

where dgn has the same structure as δgn in Eq. (3.73),

dgn = [ du(ηc)− dū(s̄c) ] · n̄ (3.80)

The pipe rotational DOFs must be included in the incremental displacement field because
the pipe geometry is interpolated in terms of the bending modes in Eq. (3.66). The relative
incremental displacement at the contact point is therefore discretized as, see Fig. 3.2,

du− dū = Nd dv (3.81)

dv =
[
dpA dpB dp̄

]>
dpj =

[
dx1j dx2j dx3j dϕ1j dϕ2j dϕ3j

]
dp̄ =

[
dx̄1C dx̄2C dx̄3C dϕ̄1C dϕ̄2C dϕ̄3C

] (3.82)

Nd =
[

T>NT̂ −I W(r̄ (s̄c))
]

(3.83)

where Nd has dimension 3×18, T is the transformation matrix for the beam element and
W is the skew-symmetric matrix defined in Eq. (3.6). An isoparametric approach is taken
and the 3×12 interpolation matrix N contains therefore the same shape functions as in
Eq. (3.66),

N =
[
h1(ηc)I Nθ(h3(ηc)) h2(ηc)I Nθ(h4(ηc))

]
(3.84)

The 12×12 transformation matrix T̂ in Eq. (3.83) contains the beam element transforma-
tion matrix T on the diagonal and an off-diagonal matrix Z that accounts for the change
of the bending deformation DOFs due to beam node translations, cf. Eq. (3.35),

T̂ =


T 0 0 0
Z T −Z 0
0 0 T 0
Z 0 −Z T

 Z> =
1

L

[
03×1 −e3 e2

]
(3.85)

With this, the 12×18 element tangent stiffness matrix K is expressed as follows in the
Ei-basis,

d (δWc) = δv K dv K = N>
δ n̄ n̄>Nd (3.86)

The non-quadratic form of K makes the system tangent matrix non-symmetric. This is a
consequence of not including the pipe rotational DOFs and the Z-matrix in the selected
normal gap variation δgn. This has, however, no practical consequence as the Lagrangian-
Eulerian formulation also introduces non-symmetric tangent stiffness matrices.
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3.7 Hyper-elastic beam-spring element
At start-up of the Lagrangian-Eulerian analysis strategy, the initial mesh domain is com-
puted by a spline interpolator and thereafter released and subjected to Newton-Raphson
iterations until equilibrium is achieved. Transverse springs are needed during this analy-
sis phase to ensure convergence. The spring element may also be used for modeling of
load-displacement boundary conditions at the mesh termination points.

The spring element consists of six DOFs associated with a single beam element node.
The increment of the spring translation components is computed by projecting the nodal
translation increment into the corotated ei-basis of the beam element,

si = spi + ei ·
(
xj − xpj

)
i = 1, 2, 3 j = A ∨B (3.87)

where superscript p refers to the previous equilibrium state and subscript j denotes the
beam element node, either A or B. The load step rotation increment of the nodal ēj-triad
is measured by the following rotation tensor,

Q∆
j

(
q∆
4j ,q

∆
j

)
= ēk ⊗ ēpk = Qj ·Qp>

j j = A ∨B Qp
j = ēpk ⊗Ek (3.88)

The rotation increment ∆ω is extracted from Q∆ with aid of Spurier’s algorithm and
Eq. (3.4). Thereafter, the increment is projected into the corotated ei-basis of the beam
element and added to the accumulated rotation from the previous equilibrium state,

ωi = ωpi + ei ·∆ω ∆ω = 2 cos−1
(
q∆
4j

) q∆
j

||q∆
j ||

i = 1, 2, 3 j = A ∨B (3.89)

where a truncated version of ∆ω similar to Eq. (3.25) is used for q∆<<1.
The 6×1 load vector P for the spring element is defined in terms of the virtual work

at the beam element node and reads as follows in the Ei-basis,

δWk = δv>P δv =
[
δx1j δx2j dx3j δϕ1j δϕ2j δϕ3j

]
j = A ∨B (3.90)

P = T̃>F T̃ =

[
T 0
0 T

]
F =

[
F1(s1) F2(s2) F3(s3) M1(ω1) M2(ω2) M3(ω3)

]> (3.91)

where the transformation matrix T is defined according to Eq. (3.1) with ēi replaced by
the beam element corotated unit vectors ei. The load components Fi and Mi are assigned
hyper-elastic relations based on piecewise linear interpolation. The following approxima-
tion is used for the element tangent stiffness matrix,

d (δWk) = δv K dv K = T̄>KlT̄

Kl =


kF1 0 0 0 0 0
0 kF2 0 0 0 0
0 0 kF3 0 0 0
0 0 0 kM1 0 0
0 0 0 0 kM2 0
0 0 0 0 0 kM3


kFi = dFi

dsi

∣∣∣
si

kMi = dMi

dωi

∣∣∣
ωi

(3.92)
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3.8 Additional features

The GLview Inova program [107] was used for visualization of the pipe geometry and
the contact rollers. In brief, this program offers basic geometric shapes which requires
only the current displacement state transferred as ASCII encoded data at selected load
steps. Both the pipe and the roller surfaces were modeled as a grid of rectangular plane
elements.

For the numerical studies in Paper IV, convergence failure occurred for cases where
one mesh endpoint was axially fixed and the other endpoint had a prescribed axial force.
An axial force control was therefore implemented where the endpoint with prescribed
force was held fixed and given appropriate displacement increments to retain the axial
force within a predefined interval. Several restarts throughout the analysis run would be
necessary without this feature.

Restart facilities are regarded as mandatory in any nonlinear FE code. The program
therefore stores element histories, result data, the displacement state and visualization
data at predefined load steps. A module for reading input text files was made based on
built-in MATLAB functions. Displacement boundary conditions can be imposed in the
global, the nodal or the beam element coordinate systems. For efficiency purposes, the
element load vectors and tangent stiffness matrices with associated transformations were
expanded symbolically by means of the Maple software [108], where the entries were
optimized and converted to MATLAB language with the code generator module.

3.9 Verification study and influence of tangent stiffness

To verify the implementation the 45◦ cantilever bend in Fig. 3.3 was considered. This
example was first studied in work by Bathe and Bolourchi [109] with an updated La-
grangian beam formulation. Later, Simo and Vu-Quoc [97] and Cardona and Geradin
[110] simulated the response with their geometrically exact beam models. Crisfield [111]
also studied the example with his corotational beam formulation.

The bend had a radius of 100 m and was located in the xz-plane in the unloaded con-
figuration. Eight elements with bending stiffness KE = 833.33 kNm2, torsion stiffness
GJ = 705 kNm2 and axial stiffness EA= 1 GN were employed. The load convergence

Table 3.1: {x, y, z} coordinates of tip vs. load level

Fy [N]

Beam model 300 450 600

Present 58.56, 40.47, 22.18 51.99, 48.72, 18.45 46.91, 53.64, 15.65
Crisfield [111] 58.53, 40.53, 22.16 51.93, 48.79, 18.43 46.84, 53.71, 15.61
Cardona and Geradin [110] 58.64, 40.35, 22.14 52.11, 48.59, 18.38 47.04, 53.50, 15.55
Simo and Vu-Quoc [97] 58.84, 40.08, 22.33 52.32, 48.39, 18.62 47.23, 53.37, 15.79
Bathe and Bolourchi [109] 59.2, 39.5, 22.5 – 47.2, 53.4, 15.9
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100 m
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Figure 3.3: Initial configuration of 45◦ cantilever bend

tolerance εf in Eq. (3.11) was set to 10−9. The conservative tip point load Fy was ap-
plied in a sequence of three load increments with magnitudes 300 N, 150 N and 150 N.
This gives a genuinely three-dimensional response which mobilizes axial force, bend-
ing moment and torque. According to Table 3.1, the present implementation predicts a
tip displacement that is well within the range of the previous studies. As expected, the
corotational formulation of Crisfield which employs an identical Euler-Bernoulli beam
element predicts almost identical tip displacements.

The derivation of the initial stress stiffness matrix in Section 3.5.3 opens for three dif-
ferent representations. Therefore, the convergence behavior of the following Kσ-matrices
was studied,

Case 1 The symmetric version presented in Eqs. (3.48) – (3.53).

Case 2 Similar to case 1, but includes also the local initial stress stiffness contribu-
tion as given in Eqs. (3.60) – (3.65).

Case 3 The non-symmetric version that results from Eqs. (3.40), (3.43) and (3.45).

The load convergence norm defined in Eq. (3.11) was set to 10−7 and 10−9, where the
former tolerance was found to represent the lower bound with regard to displacement
accuracy. The following conservative sinusoidal load was applied at the tip,

Fy = Fa sin

(
2π

T
t

)
T =3.0 s Fa=1 000 N (3.93)

As seen in Fig. 3.4, a reasonable number of equilibrium iterations is achieved for
cases 1 and 3 when the time step size is 0.1 s. Interestingly, the local geometric stiffness
matrix included for case 2 yields more iteration cycles. This trend is present also when the
iteration tolerance is increased to 10−9, see Fig. 3.5. In Table 3.2, the accumulated number
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of iterations up to 3.0 s simulation time is presented, where X marks that convergence was
not achieved within 500 iterations for a single load step. The limiting step size for case 2
is seen to be 0.15 s, while the first convergence failure for cases 1 and 3 occur for a step
size of 0.35 s. None of the cases were able to achieve reliable convergence for time steps
greater than 0.55 s. Observe that the non-symmetric matrix for case 3 gives slightly more
iterations than the symmetric version used for case 1.

Although it is hardly scientific to make conclusions from one single example, the
present study demonstrates that the non-symmetric Kσ-matrix and the associated sym-
metrized version have fairly good convergence properties. The local initial stress stiffness
matrix is in contrast not beneficial for the efficiency, however, non-trivial coupling terms
which are important for instability phenomenons like torsional buckling are introduced
via this matrix. The numerical studies in Paper III and IV were conducted with the local
initial stress stiffness matrix included.
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Figure 3.4: Number of iterations, εf =10−7, ∆t=0.1 s
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Figure 3.5: Number of iterations, εf =10−9, ∆t=0.1 s

Table 3.2: Accumulated number of iterations vs. time step size ∆t, εf =10−9

∆t [s] 0.01 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Case 1 1650 176 128 102 84 65 X 52 46 46 X
Case 2 1828 257 X 175 X X X X X X X
Case 3 1806 185 134 107 92 75 X 62 49 52 49
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Chapter 4

Extended summary of papers

Full-length versions of the papers are appended to the main part of the thesis. The two
first papers focus on the computational strategy for the trawl-pipe interaction problem,
while the two last ones are concerned with the Lagrangian-Eulerian analysis strategy for
reeling operations. For both topics, the first paper deals with theoretical aspects and basic
performances of the developed FE formulation, while the second paper completes the de-
velopments and emphasizes application on physical problems. The novelty of the research
in relation to previous work is described in a separate paragraph for each paper.

Paper I: A penalty-based contact element for pipe and 3D
rigid body interaction

This paper presents a contact element tailor-made for trawl-pipeline interference simula-
tions. The developed element is intended for prediction of the global pipe response such
that several simplifying assumptions beneficial for both numerical efficiency and robust-
ness could be utilized.

In previous beam contact publications, much effort is devoted to derivation of stiffness
matrices proportional to the contact forces, but without studying the resulting convergence
behavior [39, 44]. The benefit of including such matrices is therefore investigated in the
present paper. The friction kinematics has previously been based on parametrizations of
the beam centerline, see Ref. [43, 45]. In this work, a tangential gap measure which ac-
counts for centerline-surface eccentricities is employed instead. Furthermore, a continu-
ous rigid body contact geometry representation suitable for trawl gear is proposed and a
small comparison study against existing model test measurements is conducted.

A rigid body model was used for the trawl gear and the pipe was represented by
a corotational Euler-Bernoulli beam model. Due to the rigid body assumption, only six
DOFs were needed for the trawl gear and a continuous contact geometry description was
achieved by means of spherical and circular cylinder surfaces. The modeling of the contact
geometry is illustrated in Fig. 4.1 where the body is represented by a three-dimensional
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mesh of triangular elements. The surfaces in green color are included in the contact ge-
ometry while the plane surfaces are excluded. This is regarded acceptable because the
pipe is in practice approximately straight within the extent of a single triangular element.
With regard to numerical robustness, the selected contact geometry description is able
to provide smooth contact loads and has no issues related to dead zones in the contact
search. Two-parameter surface parametrizations with computationally expensive contact
searches were avoided. Instead, bounding planes as indicated in Fig. 4.1 were introduced
and the body kinematic relations were expressed in terms of a single parameter. This made
it possible to formulate an efficient line-line and line-point contact search strategy.

Body

Geometry

plane
Bounding

element

Figure 4.1: Modeling of the body contact geometry

The penalty method was selected to enforce the impenetrability constraints because
it enables for representation of the pipe radial stiffness. A piecewise linear hyper-elastic
relation between the normal contact force and the penetration was presumed in the imple-
mentation.

The friction kinematics was based on an alternative tangential gap measure compared
to previous work on beam contact. Rather than studying the contact point displacement
separately on the body and the pipe, the relative displacement on both surfaces were con-
sidered simultaneously. Surface eccentricities were taken into account such that the asso-
ciated moments and cases with rolling interaction behavior could be captured. The applied
Coulomb friction model was formulated in compliance with the framework of computa-
tional elasto-plasticity, in which a penalty regularization with constant stiffness was used
for stick and an implicit update scheme was established for the slip case.

Terms proportional to the normal contact force were accounted for when the tangent
stiffness matrices were derived. The change of the base vectors used to express the kine-
matic relations was neglected in order to obtain symmetric stiffness matrices. Likewise,
terms proportional to the friction force and changes of the contact tangent plane base vec-
tors were neglected. However, a non-symmetric slip tangent matrix related to coupling
with the normal gap was included and artificially symmetrized. The contact virtual work
contribution and the associated tangent stiffness matrices were presented on vector-matrix
format suitable for computer implementation.

The ability to predict interaction responses was examined by comparison against ex-
isting trawl board and pipeline pull-over model tests. A FE model was established of a
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2 600 kg polyvalent trawl board and a horizontally flexible pipe section with span height
set to 1 m and 3 m. Consistent time histories were demonstrated for the horizontal pipe
reaction force, the towing line tension and the pipe horizontal velocity. The interaction
behavior of the trawl board itself was not studied. After publication, when access to video
recordings of the tests was provided, it was realized that the characteristic board-pipe lock-
ing experienced for 3 m span height was not captured as the board rotated approximately
90◦ about the pipe axis prior to release, see Fig. 19 in Paper I. Consistent behavior with
negligible rotation was however achieved in Paper II with improved models for the board
hydrodynamic loads and the trawl gear wire configuration. This underlines the complexity
of the interaction and the need to validate also the trawl board motion.

The numerical performance was examined in 84 simulation runs for various com-
binations of the penalty stiffness and the board-pipe friction coefficient. No significant
improvement of the convergence properties was achieved by including tangent stiffness
matrices that were proportional to the normal contact force. Similarly, the convergence
properties did not improve when an artificially symmetrized slip tangent matrix associ-
ated with normal gap coupling was included. Regarding the overall efficiency, the ratio of
simulation time to CPU time was 1:40 on a 2.66 GHz processor and the convergence rate
was characterized by 2-3 Newton iterations per load step.

Paper II: Dynamic simulation of subsea pipeline and trawl
board pull-over interaction

In this paper the trawl board hydrodynamic load description is addressed, which combined
with the contact element developed in Paper I, completes the computational strategy for
prediction of trawl board pull-over loads on subsea pipelines.

In previous work, FE models of clump weights have been validated against a limited
number of model test runs and employed for comparison against design loads [10, 11].
The complex interaction behavior present for trawl boards has also been investigated,
however, no validation studies were conducted and contact-related convergence problems
were reported [14, 15]. In the present work, an extensive simulation work is carried out to
validate the proposed computational strategy, and thereafter sensitive model parameters
are identified and their influence on the pull-over loading are quantified. Thus, the novelty
of the work consists of the numerical studies, the proposed trawl board load model and
the application of the contact element developed in Paper I.

A six DOF rigid body model with precomputed coefficients was applied for the trawl
board. To account for seabed proximity effects, the hydrodynamic mass was expressed
as a function of the seabed gap and the board-seabed inclination angle. The Coriolis-
centripetal loads were included for both the structural and the hydrodynamic mass. Rather
than resorting to model testing, the fluid loads due to linear velocities were approximated
by a simple drag force model without any contributions from transient and lift-induced
effects. Possible eccentricity moments from the drag force were also neglected. This ap-
proach is regarded acceptable provided that the hydrodynamic angles of attack stay within
the stall regime during the interference. Furthermore, the velocity-dependent loads are of
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less importance since the equilibrium balance is dominated by contact loads and inertia
loads during the initial interaction phase. A pressure-induced rotational damping model
based on integration of the drag forces normal to the board surface was proposed and
tuned against the model test interaction behavior. Possible hydrodynamic interaction with
the pipeline was neglected.

(a) Model test

Hinged
warpline
connector

(b) Contact geometry in FE model

Figure 4.2: 1900 kg polyvalent trawl board

A validation study involving 34 model test runs was carried out with variation of the
pipe lateral support conditions, the span height, the towing velocity and the towing line
stiffness. The FE model established in Paper I was modified such that the tension in the
sweepline between the board and the trawl net could be adjusted toward the model test
value. A 2 600 kg V-board and a 1 900 kg polyvalent board were included in addition to
the 2 600 kg polyvalent board from Paper I. The approximation of the contact geometry
for the smallest trawl board is illustrated in Fig. 4.2. The pull-over load histories were
found to agree well with the model tests in terms of duration, maximum values and the
build-up phase, see Fig. 4.3. This good accordance was confirmed by the simulated pull-
over load impulse which in average deviated less than 10% from the reported model test
impulses. Furthermore, the trawl board interaction behavior was seen to be consistent
with video recordings of the laboratory test. In particular, the characteristic board-pipe
locking phenomenon experienced for the two polyvalent boards and the rather smooth
passings of the V-board were well captured. The proposed hydrodynamic load model
and the employed body-pipe contact element were therefore concluded to be capable of
describing the relevant effects of the pull-over process.

The pressure-induced rotational damping model for the trawl board was seen to be
important for the interaction behavior. Use of small damping levels resulted in too large
angular velocities and Coriolis-centripetal loads, which was demonstrated to give non-
conservative pull-over loads. Furthermore, the Coriolis-centripetal loads were found to
be important since the trawl board motion deviated from the model test behavior without
these loads.

A sensitivity study involving nearly 250 simulation runs was conducted based on the
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(a) 1900 kg P-board, 1 m span height, fixed pipe
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(b) 2600 kg V-board, 3 m span height, flexible pipe

Figure 4.3: Horizontal pipe reaction force

validated FE model. The board-pipe friction coefficient was seen to affect the interaction
behavior for low span heights, in which reduced coefficient values lead to significantly
smaller load levels and durations. For span heights above 2 m, less sliding motions were
present and the friction coefficient had consequently less influence. When the sweepline
tension was adjusted toward zero, the pull-over load impulses reduced by 10 – 20% and
40% for fixed and flexible pipe support conditions, respectively. This behavior must be
understood by the restraining effect the sweepline tension has on the trawl board motion,
which was most pronounced for flexible support conditions where the relative change of
tension was largest. The opposite trend appeared when the sweepline tension increased,
where some of the simulation runs experienced more than 100% increase of the pull-
over load impulse. The truncated towing line used in the model test was revealed to give
20 – 40% lower pull-over impulses than the full-length towing line. This occurred because
it was unable to account for the adrupt stiffness rise provided by the line drag forces when
the full-length catenary tightened up and the subsequent reduction toward the static stiff-
ness. As opposed to the basic assumption in current design practices [7], the most severe
responses did not occur when the trawling direction was perpendicular to the pipeline.
When the pipe was rotated 30◦ about the vertical axis compared to the perpendicular
base case, the maximum load and the duration became roughly twice as large for span
heights above 2 m. No clear statement could be provided with regard to the degree of
non-conservatism present in current design codes because the trawl board hydrodynamic
angles of attack were located outside of the validity range for several seconds. Never-
theless, the simulated trends were believed to be representable for the true interaction
behavior.

Paper III: A Lagrangian-Eulerian formulation for reeling
analysis of history-dependent multilayered beams
Reeling operations of multilayered beams with interlayer slippage are very demanding
and in some cases not feasible to simulate with conventional Lagrangian formulations.
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This relates to the moving mesh which provokes contact-related convergence problems,
see Refs. [18–20]. In addition, long meshes are often involved and the elements must
be small and equal-sized such that a poor numerical efficiency results. In the present
work, these issues are solved by utilizing a Lagrangian-Eulerian description of motion that
enables the mesh to be virtually fixed in space. The novelty of the work is considered to
be fairly high as the paper represents the first contribution where the Lagrangian-Eulerian
viewpoint is employed for a beam with path-dependent material behavior.

The multilayered beam was represented by a constitutive model valid for a flexible
pipe cross-section, see Fig. 4.4. The history-dependent bending response due to slippage
between the tensile helix layers was represented by a simple Coulomb model without
hardening variables. A separate constitutive model was employed for the axial-torsional
response and for determination of the interlayer pressures governing the stick-slip behav-
ior of the tensile helix layers.

External plastic
sheath layer

Anti-wear plastic
sheath layer Internal plastic

sheath layer

Pressure
helix layerTensile

helix layer

Figure 4.4: Flexible pipe cross-section

The Lagrangian-Eulerian formulation was developed by utilizing a fully coupled ap-
proach where the mesh motion, the material motion and the convective transport effects
were handled simultaneously. The material motion along the centroidal line was assumed
prescribed in terms of a boundary condition, while the mesh motion was computed iden-
tically as in the conventional Lagrangian approach. A quasistatic approach was utilized
as reeling operations normally involve low velocities and negligible accelerations. The
computational domain was represented by two-noded corotational Euler-Bernoulli beam
elements.

Due to the Lagrangian-Eulerian viewpoint, convective transport terms appear in the
history-dependent constitutive equations. For the bending moment and the bending curva-
ture, the material time derivative reads as follows relative to the corotated element frames,

Ȧ (χ, t) =
∂A

∂t
+ c

∂A

∂χ
(4.1)

where the first term on the right-hand side represents the change for a fixed value of the
mesh arc-length parameter χ and the second term accounts for the convective change ex-
perienced as the material travels with velocity c relative to the mesh. Numerical studies

44



EXTENDED SUMMARY OF PAPERS

 

 

LE

Con

6.0 s
3.0 s

1.6 s

0.8 s

0.4 s

0.0 s

M
χ

3
[k

N
m

]

Global x-coordinate [m]

−4 −2 0 2 4 6 8
−9

−6

−3

0

3

6

9
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(b) 20 kN sinusoidal transverse load, 6 s period

Figure 4.5: Bending moment evolution, outer tensile helix layer

revealed that the approximation selected for the gradient in Eq. (4.1) strongly influenced
the accuracy and the stability of the moment update algorithm, e.g. unacceptable per-
formance resulted when the approximation was based on information from one single
element. The difficulties were overcome by developing a weak form for Eq. (4.1) based
on C0-continuous shape functions between the element nodes. This enabled for commu-
nication with the neighboring elements via the boundary term by assuming continuity in
the constitutive variables across the element borders. The weak form provided also an
appropriate spatial weighting of the nodal values involved in the gradient approximation.
To avoid spatial instabilities, a simple upwind scheme that discarded information from
downstream elements was proposed.

An implicit backward Euler update scheme was formulated for the history-dependent
bending response. The weak form developed for Eq. (4.1) was here utilized for both the
curvature increments at the material points and the mesh-fixed bending moments needed
in the beam weak formulation. A tangent stiffness that accounted for the material transport
effect was derived by linearizing the moment update scheme.

Benchmark tests against the conventional Lagrangian formulation were carried out
for a simply supported beam configuration with 10 m span length. Constant transverse
loads and sinusoidal transverse loads giving three-dimensional responses were applied
at the midspan and the axial material velocity was set to 1 m/s. Figure 4.5a displays the
time evolution of the bending moment distribution for a case with 20 kN constant trans-
verse load and 25 kN axial load. Annotation LE and con refer to the Lagrangian-Eulerian
and the conventional simulation, respectively. The responses are seen to be coincident and
high accuracy is achieved even at locations where the bending moment gradient undergoes
large changes. Complete agreement was demonstrated also when the beam was subjected
to sinusoidal loads, see Fig. 4.5b. This confirms that the developed formulation is able
to handle temporal loadings and three-dimensional responses. The Lagrangian-Eulerian
formulation required in general shorter elements than the conventional approach. This
relates to the fact that the curvature increments are expressed in terms of the total curva-
ture, which becomes poorly approximated when too long elements are used. The tangent
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stiffness associated with material transport was found to be important for the convergence
properties. With this stiffness included, significantly larger time steps could be used and
the number of iteration cycles reduced by almost 50% for moderate step sizes.

Paper IV: On prediction of torque in flexible pipe reeling
operations using a Lagrangian-Eulerian FE framework

In this paper, the Lagrangian-Eulerian formulation from Paper III is extended into a frame-
work for simulation of reeling operations. The key novelties of the work are the outcome
of the numerical studies and the application of the Lagrangian-Eulerian formulation for
a flexible load-out operation which is not feasible to simulate with existing FE software.
Furthermore, simulation strategies for the analysis start-up phase and the operation start-
up phase are proposed and a consistent linearization scheme for the axial-torsional con-
stitutive model is presented.

The Lagrangian-Eulerian formulation as presented in Paper III requires use of a con-
ventional Lagrangian simulation to establish the mesh domain. To disengage completely
from the cumbersome Lagrangian analysis method, a stepwise procedure that utilizes a
cubic Hermite interpolator to compute the initial mesh configuration was proposed. At
analysis start-up, stabilizing springs were attached in the mesh transverse directions and
the overall stiffness of the FE model was reduced. Thereafter, the interpolated mesh con-
figuration was released and subjected to Newton-Raphson iterations until equilibrium was
achieved. From the converged configuration, the internal and external loads were gradu-
ally activated and the stabilizing springs were removed. The contact constraints along the
reeling route were enforced by the penalty method, which was found to be advantageous
with regard to convergence during computation of the initial mesh configuration.

To enable for simulation of the operation start-up phase, where material flows through
an empty mesh, moving weight factors for the constitutive stiffness and the gravity load
were introduced. By means of the weight factors, the mesh was divided into regions with
and without material, in which the material-filled region was gradually activated to simu-
late the moving material flow-front.

The Lagrangian-Eulerian framework was employed to study the torque generated dur-
ing start-up in the spoolbase-vessel load-out operation seen in Fig. 4.6. The flexible pipe
was modeled by corotational beam elements and assigned the same constitutive models
as applied in Paper III. The main objective was to identify plausible mechanisms and to
provide mitigation strategies for the torsional failures experienced by subsea contractors
in recent years. Here, three different mechanisms were found to provoke torsional failure
of the pipe.

The material transport effect alone exceeded a conservative estimate for the lateral
buckling stress of the tensile helix tendons by more than 300% when the induced torque
upstream of the turn-table acted in the stiff torsion direction. Even more severe torque
responses were identified for cases with 0.1 m−1 residual curvature in the plastic layers
and for unfavorable spool arm motions giving constrained geometric roll rotations at the
turn-table inlet. The latter mechanism was regarded as the most plausible explanation for
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the experienced extreme torque incidents.
The identified torsional failures can be mitigated by means of operational require-

ments. To avoid lateral tendon buckling of the inner tensile helix layer, the pipe should be
coiled onto the turn-table such that the induced torque yields torsion in the soft direction
at the ship deck. Regarding unfavorable spool arm motions, the personnel must be given
adequate training and a motion alarm system should be installed to keep the spool arm
within the safe region. Given that the presence of a significant plastic layer residual curva-
ture is plausible, it should be addressed in terms of storage specifications and inspection
routines prior to the load-out operation.

Turn-table

Upstream

Deck

Upper

Downstream

Spool

end

arm

free span
Lower

free span

fork

end

Figure 4.6: Truncated FE model of vessel turn-table and ship deck
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Chapter 5

Conclusions and future work

This thesis presents original contributions with regard to development and application
of FE formulations for slender marine structures subjected to contact interactions. The
underlying objective has been to develop analysis methods for contact-governed problems
where existing FE software suffer from lack of robustness and poor efficiency. In Section
5.1 the original contributions of the work are listed. Limitations regarding the developed
models and the numerical studies are described in Section 5.2. Concluding statements,
implications of the work and recommendations for future work are presented in Section
5.3 and 5.4.

5.1 Original contributions
The original contributions in this thesis can be summarized as follows,

i) The penalty-based contact element for pipe and rigid body interaction developed
in Paper I. A continuous contact geometry representation was established and the
formulated friction kinematics accounted for surface eccentricities with associated
moments such that cases with rolling interaction behavior could be captured.

ii) A six DOF trawl board load model with precomputed hydrodynamic coefficients
was established. Here, the existing hydrodynamic mass interpolation scheme in the
SIMLA software [89] was re-used.

iii) Based on item i) and ii), a computational strategy for simulation of trawl board and
pipeline pull-over interaction was proposed in Paper II. An extensive validation
study was carried out in which the simulated response behavior was concluded to
be in very good agreement with existing laboratory test results. The sensitivity of
parameters important for the pull-over loading was quantified.

iv) In Paper III, a Lagrangian-Eulerian formulation for reeling analysis of history-
dependent multilayered beams that enables for a virtually fixed mesh in space was
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developed. The proposed formulation was shown to predict responses with the same
accuracy as offered by the conventional Lagrangian formulation.

v) The FE formulation in item iv) was merged into a Lagrangian-Eulerian framework
for simulation of reeling operations in Paper IV. Plausible mechanisms responsi-
ble for the torsional failures experienced in spoolbase-vessel flexible pipe load-out
operations were identified and strategies for avoiding the failures were proposed.

5.2 Limitations

The body-pipe contact element in Paper I was formulated by assuming a rigid trawl gear
body and a corotational beam model for the pipe. Hence, information about the pipe wall
denting and the trawl gear deformations cannot be obtained. However, if the contact force
and the pipe radial deformation follows a hyper-elastic relation, possible influence on the
global response from the initial impact can be correctly represented.

The convergence properties reported in Paper I were obtained with a symmetric equa-
tion solver. As the consistent tangent stiffness is non-symmetric, the optimal convergence
rate of the Newton-Raphson method could not be utilized. Nevertheless, the presented
results are valuable since most structural FE programs use symmetric solvers.

A simple drag model was used for the trawl board steady-state fluid loads in Papers
I and II. Although the numerical model was shown to agree well with laboratory tests,
accurate predictions of the pull-over responses cannot be guaranteed in situations where
the trawl board hydrodynamic angles of attack are less than approximately 30◦ and for
cases where the contact loads and the inertia loads do not dominate the initial equilibrium
balance to the same extent.

For the specific load-out operation considered in Paper IV, the validity of the applied
flexible pipe constitutive model has not been confirmed. Model deficiencies may be pre-
sent in terms of end-termination effects during operation start-up, the disregarded helix
longitudinal slippage interaction and the neglected additional interlayer contact pressure
due to bending. The established FE model is thus applicable mainly for rough predictions,
identification of extreme responses and mutual comparison of responses.

5.3 Trawl board and pipeline pull-over interaction

5.3.1 Conclusions
The proposed computational strategy was demonstrated to predict pull-over impulses
within a 10% margin of the model test measurements. Furthermore, the trawl board in-
teraction behavior was found to be consistent with video recordings from the model tests.
The trawl board hydrodynamic load model and the board-pipe contact model are therefore
capable of describing the relevant effects of the interaction.

The following concluding statements can be drawn based on the numerical perfor-
mance tests, the validation study and the sensitivity study conducted in Papers I and II,
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• The Newton convergence properties did not improve when terms proportional to the
normal contact force was included in the tangent stiffness relation. Similarly, artifi-
cial symmetrization of the slip tangent matrix gave the same convergence properties
as obtained when the non-symmetric tangent stiffness due to normal gap coupling
was set to zero.

• Consistent pull-over loads were predicted in Paper I although the trawl board mo-
tions deviated from the model test behavior. Thus, the trawl board interaction be-
havior must also be examined in the validation study.

• The direct use of trawl board steady-state fluid loads in the transient interaction
phase seems to be acceptable. Also, provided that the trawling direction is per-
pendicular to the pipeline, the choice of modeling the board as a pure drag device
without eccentricity moments and lift-induced forces seems reasonable.

• Hydrodynamic board-pipe interaction can securely be neglected for pipe diameter
to trawl board height ratios less than approximately 0.3.

• The hydrodynamic Coriolis-centripetal loads must be accounted for in order to
achieve an interaction behavior that is consistent with model tests.

• The pressure-induced rotational damping model is important for the interaction be-
havior. If these damping loads are under-estimated, too large angular velocities and
hydrodynamic Coriolis-centripetal loads will arise, which was demonstrated to re-
sult in non-conservative pull-over loads.

• The pull-over process was seen to be significantly influenced by the following pa-
rameters: the direction of over-trawling, the board-pipe friction coefficient, the tow-
ing line drag properties and the tension level in the wire between board and trawl
net.

• A detailed contact geometry description of the interacting parts of the board is
necessary, e.g. the towing line connector must be modeled accurately as it governs
the board-pipe locking phenomenon that occurred for the polyvalent boards.

This work demonstrates that trawl board pull-over loads on subsea pipelines can be
accurately predicted by numerical simulations. However, the simulated behavior depends
strongly on some of the input parameters, such as the board-pipe friction coefficient, the
pressure-induced rotational damping coefficients and the tension in the line between the
board and the trawl net. A proper validation of the numerical model against experimental
tests is therefore regarded as mandatory. This makes the proposed strategy too expen-
sive for in-place design analysis of subsea pipelines. Hence, typical applications are in
research-oriented work such as establishment of pull-over loads for design codes and ex-
amination of the over-trawling ability of new subsea structures.

The main benefit with combined use of model testing and numerical simulations is
the possibility to remove model bias and to effectively reduce statistical uncertainty. For
instance, the truncated towing line applied in the laboratory test was demonstrated to
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result in non-conservative loads because it failed to represent the drag-dependent stiffness
of the full-length catenary configuration. This bias can readily be removed if a validated
numerical model is available. Uncertainties related to lack of observations in model tests
are often not feasible to reduce due to the high expenses, whereas additional test samples
can easily be generated with aid of numerical simulations.

The sensitivity study revealed that the pull-over loading depends on quantities which
are not explicitly accounted for in the DNV-RP-F111 code [7]. This implies that more
accurate design loads can be obtained if the missing quantities are introduced as variables.

The developed contact element has been extensively used in this work. No incidents
with loss of contact or convergence problems were detected. This motivates use of the
contact element in other interaction problems involving rigid bodies and pipes, espe-
cially if simple hydrodynamic load models can be used, such as in simulation of clump
weight over-trawling or hooking assessment of a de-stabilized trawl board towed flat on
the seafloor.

5.3.2 Future work
Non-perpendicular crossings at high span heights were found to induce considerable more
severe loads than perpendicular crossings. This conflicts with the basic assumption in cur-
rent design practices [7], however, the degree of non-conservatism could not be quanti-
fied as the validity range for the trawl board hydrodynamic angles of attack was violated.
Thus, the steady-state fluid loads at low angles of attack must be estimated in future work,
considering both in-plane directions of the board.

The recommended pull-over loading used in the industry today is based on more than
20 year old model tests. A natural step in future work is therefore to examine crossings of
the modern multi-foil boards considered by Teigen et al. [12]. In such a study, a further
improvement of the design loads should be undertaken by including parameters such as
crossing angle, board-pipe friction coefficient, span flexibility and pipe mass.

5.4 The Lagrangian-Eulerian formulation and flexible
pipe load-out operations

5.4.1 Conclusions
The Lagrangian-Eulerian formulation was subjected to benchmark testing against the con-
ventional Lagrangian method in Paper III, and thereafter employed in Paper IV to study
the torque generated in a flexible pipe spoolbase load-out operation with vertical-axis
vessel turn-table. The main conclusions from these studies can be summarized as follows,

• The Lagrangian-Eulerian formulation was demonstrated to provide the same ac-
curacy as the conventional Lagrangian method for simulation cases with constant
transverse loads, axial loads and temporal three-dimensional transverse loads.

• The tangent stiffness contribution from the material transport effect should be in-
cluded as it significantly improves the convergence properties.
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• A fully implicit integration of the convective terms is recommended in order to
avoid spatial oscillations.

• The Lagrangian-Eulerian formulation requires in general smaller elements than the
conventional Lagrangian method.

• Extreme torque responses giving torsional failure were identified for two different
mechanisms in the considered load-out operation, namely, unfavorable operator-
controlled changes of the pipe configuration and presence of plastic layer residual
curvature.

• The material transport effect may alone provoke torsional failure in load-out op-
erations and it yields also a significant contribution to the two identified extreme
torque mechanisms.

• The flexible pipe constitutive model must account for interlayer pressure changes
as cases with at least 50% friction moment increase relative to the initial value were
observed in regions where torque was induced. Also, the upstream roll stiffness and
the bi-linear torque-torsion relationship are important regarding the relative sharing
of torque between the turn-table and the ship deck.

Existing FE programs suffer from poor efficiency and contact-related convergence is-
sues in reeling simulations. The contact interactions often require use of cumbersome
analysis procedures and necessitate frequent user interaction throughout the analyses.
Therefore, complex reeling operations of multilayered beams, such as the one considered
in Paper IV, has until now not been regarded as feasible to simulate. As demonstrated, the
proposed Lagrangian-Eulerian framework is able to handle such operations without any
difficulties. The present work thus contributes to a significant advance of the state of the
art simulation practice for elasto-plastic beam problems involving transport of material.

The advantageous properties of the Lagrangian-Eulerian formulation are achieved
solely because of the virtually fixed mesh. With regard to robustness, the contact ge-
ometry undergoes significantly less changes such that potential convergence difficulties
related to the contact algorithms are mitigated. As opposed to the conventional formula-
tion, the mesh is allowed to be non-uniform and need only to cover the region of interest,
thus giving a considerable reduction of the number of DOFs. A noticeable efficiency im-
provement also results for the contact algorithms since the search range need only to cover
a few number of beam elements. Furthermore, in situations where stationary conditions
prevail, the Lagrangian-Eulerian formulation has superior efficiency as the contact loads
and the beam element stress resultants hardly change.

The Lagrangian-Eulerian formulation can readily be implemented into existing FE
software since it does not affect the underlying beam kinematics, the displacement update
scheme or the equation solver. Only the stress-update algorithm and the associated tangent
stiffness matrix for the beam model must be modified.

The developed formulation is in its current form expected to be appreciated in the
field of subsea engineering, where the main applications are identification of unforeseen
events prior to flexible pipe load-operations and post-analysis of failed operations. The
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development also opens up new possibilities for related problems involving beams and
material transport. This can for instance be offshore installation of flexible pipes and
cables, rigid steel pipeline laying operations or the wounding process for cross-section
components in manufacturing of umbilicals and flexible pipes.

5.4.2 Future work
As mentioned in Section 5.2, the flexible pipe constitutive model applied in Paper IV
has not been validated for use in load-out operations. The ability to predict the torque and
possible model deficiencies should therefore be investigated in future work. A comparison
study against a physical load-out operation involving validation of roll rates and torsion
is recommended.

The Lagrangian-Eulerian analysis strategy represents an attractive alternative for sim-
ulation of rigid steel pipeline laying operations. Compared to the conventional approach,
improved performance of the pipe-vessel contact elements is expected and the non-uniform
vessel-following mesh can be terminated at the seafloor point where stationary condi-
tions prevail. Future work should therefore aim to establish a J2-plasticity stress-update
algorithm with sufficient numerical stability and similar accuracy as the conventional La-
grangian method. Dynamic analysis must further be enabled as the contributions from
velocity-dependent loads and inertia loads can be significant. The convective acceleration
term is not expected to introduce particular issues since the axial inertia loads are small
compared to the tension.

54



References

[1] Turner MJ, Clough RW, Martin HC, Topp LT. Stiffness and deflection analysis of
complex structures. J Aeronaut Sci 1956;25:805–23.

[2] Argyris JH, Kelsey S. Energy theorems and structural analysis. Butterworth Sci-
entific Publications, London; 1960.

[3] Brown O. Report of the Inspector’s inquiry into the loss of the fishing vessel
WESTHAVEN AH 190 with four lives on 10 March 1997 in the North Sea. Marine
Accident Investigation Branch of the Department of the Environment, Transport
and the Regions: London; 1998.

[4] Utvikling i risikonivå - norsk sokkel, Fase 5 hovedrapport 2004 (text in Norwe-
gian). Petroleum Safety Authority, Norway; 2004.

[5] Fyrileiv O, Spiten J. Trawl gear protection within platform safety zones. In: Pro-
ceedings of OMAE2004 23rd International Conference on Ocean, Offshore and
Arctic Engineering. 2004, p. 217–23.

[6] Gómez C, Green DR. The impact of oil and gas drilling accidents on EU fisheries.
European Parliament, Directorate General for Internal Policies, Policy Department
B: Structural and Cohesion Policies, Fisheries; 2013.

[7] Recommended practice DNV-RP-F111, Interference between trawl gear and
pipelines, October 2010. Det Norske Veritas, Høvik, Norway; 2010.

[8] Birkely S, Sandberg JH, Urke HA, Palerud R, Abelsen R, Larsen LH. Op-
pdatering av regional konsekvensutredning for Nordsjøen - Konsekvenser for
fiskeri og oppdrettsnæringen: Aktivitet 2 og 3 - Fiskerinæringen og konsekvenser
av petroleumsvirksomhet (text in Norwegian). Tech. Rep. APN-421.3484.1;
Akvaplan-niva, Tromsø, Norway; 2006.

[9] Kristoffersen AS, Asklund PO, Nystrøm PR. Pipe-in-pipe global buckling and
trawl design on uneven seabed. In: Proceedings of the Twenty-second (2012) In-
ternational Offshore and Polar Engineering Conference. 2012, p. 166–72.

55



[10] Igland RT, Søreide T. Advanced pipeline trawl gear impact design. In: Proceedings
of the ASME 2008 27th International Conference on Ocean, Offshore and Arctic
Engineering. 2008, p. 271–7.

[11] Maalø K, Alsos HS, Sævik S. Detailed analysis of clump-weight interference with
subsea pipelines. In: Proceedings of the ASME 2012 31st International Conference
on Ocean, Offshore and Arctic Engineering. 2012, p. 725–32.

[12] Teigen P, Ilstad H, Levold E, Hansen K. Hydrodynamical aspects of pipeline over-
trawling. In: Proceedings of the Nineteenth (2009) International Offshore and Polar
Engineering Conference. 2009, p. 435–42.

[13] Reite KJ. Modeling and control of trawl systems. Ph.D. thesis; Norwegian Univer-
sity of Science and Technology, Trondheim, Norway; 2006.

[14] Møller MT. Simulation of interference between trawl gear and pipelines. Master’s
thesis; Norwegian University of Science and Technology, Trondheim, Norway;
2009.

[15] Longva V. Simulation of trawl loads on subsea pipelines. Master’s thesis; Norwe-
gian University of Science and Technology, Trondheim, Norway; 2010.

[16] Biglift shipping b.v. http://bigliftshipping.com/projects/offshore-supply-and-
support/2600mt-carousel-; Accessed 20.12.14.

[17] Økland OD, Giertsen E, Sævik S, Taby J. On the use of online monitored key pa-
rameters from pipe lay operations. In: Proceedings of the ASME 2008 27th Inter-
national Conference on Ocean, Offshore and Arctic Engineering. 2008, p. 301–7.

[18] Daly R, Bell M. Reeling strain analysis of a dynamic pipe in pipe riser. In: Offshore
Technology Conference. 2002, 14 pages.

[19] Jukes P, Eltahler A, Sun J. The latest developments in the design and simulation
of deepwater subsea oil and gas pipelines using FEA. In: Proceedings of the Third
(2009) International Deep-Ocean Technology Symposium. 2009, p. 70–82.

[20] Jukes P, Wang S, Wang J. The sequential reeling and lateral buckling simulation of
pipe-in-pipe flowlines using finite element analysis for deepwater applications. In:
Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering
Conference. 2008, p. 181–8.

[21] Szczotka M. Dynamic analysis of an offshore pipe laying operation using the reel
method. Acta Mech Sin 2011;27:44–55.

[22] Donea J, Ponthot JP, Rodríguez-Ferran A, Huerta A. Arbitrary Lagrangian-
Eulerian Methods. In: Encyclopedia of Computational Mechanics. John Wiley &
Sons Ltd. 2004.

56



[23] API 17B: Recommended practice for flexible pipe. American Petroleum Institute;
2012.

[24] API 17J: Specification for unbonded flexible pipe. American Petroleum Institute;
2008.

[25] API 17E: Specification for subsea umbilicals. American Petroleum Institute; 2010.

[26] Fylling I, Bech A. Effects of internal friction and torque stiffness on the global
behavior of flexible risers and umbilicals. In: Proceedings of the 10th International
Conference on Offshore Mechanics and Arctic Engineering. 1991, p. 489–96.

[27] Nygaard I. Trawl - Pipeline span interaction. Model tests. Final report. Tech.
Rep. 511191.01-07; Norwegian Marine Technology Research Centre (MARIN-
TEK), Trondheim, Norway; 1990.

[28] Gjørsvik O, Kjeldsen S, Lund S. Influences of bottom trawl gear on submarine
pipelines. In: Seventh Annual Offshore Technology Conference. 1975, p. 337–45.

[29] Carstens T, Kjeldsen S, Gjørsvik O. The conflict between pipelines and bottom
trawls - Some results from laboratory and field tests. In: Offshore North Sea Tech-
nology Conference and Exhibition. 1976, p. T–I/18: 1–28.

[30] Moshagen H, Kjeldsen S. Fishing gear loads and effects on submarine pipelines.
In: Twelfth Annual Offshore Technology Conference. 1980, p. 383–92.

[31] Nygaard I. Improved design for protective subsea structures. In: Subsea ’88 Inter-
national Conference. 1988.

[32] Verley RLP, Moshagen BH, Moholdt NC, Nygaard I. Trawl forces on free-
spanning pipelines. Int J Offshore Polar 1992;2:24–31.

[33] Valdemarsen JW. Trawling across pipelines. Tech. Rep. 09VF01785; Directorate
of Fisheries, Bergen, Norway; 1988.

[34] Valdemarsen JW. Trawling across 40" pipeline - Effects on trawl gear (text in
Norwegian). In: Fisken og havet, nr. 11 - 1993. The Institute of Marine Research,
Bergen, Norway; 1993.

[35] Horenberg JAG, Guijt J. An analytical and experimental analysis of trawl gear-
pipeline interaction. In: Nineteenth Annual Offshore Technology Conference.
1987, p. 563–72.

[36] OTH 561 - Guidelines for trenching design of submarine pipelines. Health and
Safety Executive, Norwich, United Kingdom; 1999.

[37] Abbott H, Doenhoff AEV. Theory of wing sections: Including a summary of airfoil
data. McGraw-Hill Book Company, New York; 1959.

57



[38] Newman JN. Transient problems. In: Marine hydrodynamics. The MIT Press;
1977, p. 230–2.

[39] Wriggers P, Zavarise G. On contact between three-dimensional beams undergoing
large deflections. Commun Numer Meth En 1997;13:429–38.

[40] Wriggers P. Computational contact mechanics, second edition. Springer-Verlag
Berlin Heidelberg; 2006.

[41] Souza de Cursi JE. Stress unilateral analysis of mooring cables. Int J Numer Meth
Eng 1992;34:279–302.

[42] Maker BN, Laursen TA. A finite element formulation for rod/continuum interac-
tions: The one-dimensional slideline. Int J Numer Meth Eng 1994;37:1–18.

[43] Zavarise G, Wriggers P. Contact with friction between beams in 3-D space. Int J
Numer Meth Eng 2000;49:977–1006.

[44] Litewka P, Wriggers P. Contact between 3D beams with rectangular cross-sections.
Int J Numer Meth Eng 2002;2:2019–41.

[45] Litewka P, Wriggers P. Frictional contact between 3D beams. Comput Mech
2002;28:26–39.

[46] Litewka P. Hermite polynomial smoothing in beam-to-beam frictional contact.
Comput Mech 2007;40:815–26.

[47] Konyukhov A, Schweizerhof K. Geometrically exact covariant approach for con-
tact between curves. Comput Method Appl M 2010;199:2510–31.

[48] Courtney-Pratt JS, Eisner E. The effect of a tangential force on the contact of metal-
lic bodies. In: Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences; vol. 238. 1957, p. 529–50.

[49] Wriggers P, Van TV, Stein E. Finite element formulation of large deformation
impact-contact problems with friction. Comput Struct 1990;37:319–31.

[50] Konyukhov A, Schweizerhof K. Computational contact mechanics - Geometrically
exact theory for arbitrary shaped bodies. Springer-Verlag Berlin Heidelberg; 2013.

[51] Noh WF. A time-dependent two-space-dimensional coupled Eulerian-Lagrangian
code. In: Methods in Computational Physics, Volume 3, Fundamental Methods in
Hydrodynamics. Academic Press, New York; 1964, p. 117–79.

[52] Liu WK, Belytschko T, Chang H. An arbitrary Lagrangian-Eulerian finite element
method for path-dependent materials. Comput Method Appl M 1986;58:227–45.

[53] Rodríguez-Ferran A, Pérez-Foguet A, Huerta A. Arbitrary Lagrangian-Eulerian
(ALE) formulation for hyperelastoplasticity. Int J Numer Meth Eng 2002;53:1831–
51.

58



[54] Bayoumi HN, Gadala MS. A complete finite element treatment for the fully cou-
pled implicit ALE formulation. Comput Mech 2004;33:435–52.

[55] Askes H, Rodríguez-Ferran A, Huerta A. Adaptive analysis of yield line pat-
terns in plates with the arbitrary Lagrangian-Eulerian method. Comput Struct
1999;70:257–71.

[56] Hong D, Tang J, Ren G. Dynamic modeling of mass-flowing linear medium with
large amplitude displacement and rotation. J Fluid Struct 2011;27:1137–48.

[57] Hong D, Ren G. A modeling of sliding joint on one-dimensional flexible medium.
Multibody Syst Dyn 2011;26:91–106.

[58] Vu-Quoc L, Li S. Dynamics of sliding geometrically-exact beams: large angle
maneuver and parametric resonance. Comput Method Appl M 1995;120:65–118.

[59] Ghosh S, Kikuchi N. An arbitrary Lagrangian-Eulerian finite element method for
large deformation analysis of elasto-viscoplastic solids. Comput Method Appl M
1991;86:127–88.

[60] Benson DJ. An efficient, accurate, simple ALE method for nonlinear finite element
programs. Comput Method Appl M 1989;72:305–50.

[61] Rodríguez-Ferran A, Casadei F, Huerta A. ALE stress update for transient and
quasistatic processes. Int J Numer Meth Eng 1998;43:241–62.

[62] Stoker HC. Developments of the arbitrary Lagrangian-Eulerian method in non-
linear solid mechanics. Applications to forming processes. Ph.D. thesis; University
of Twente, Enschede, The Netherlands; 1999.

[63] Belytschko T, Liu WK, Moran B. Arbitrary Lagrangian Eulerian formulations.
In: Nonlinear finite elements for continua and structures. John Wiley & Sons Ltd.;
2001, p. 393–449.

[64] Liu WK, Chang H, Chen JS, Belytschko T. Arbitrary Lagrangian-Eulerian
Petrov-Galerkin finite elements for nonlinear continua. Comput Method Appl M
1988;68:259–310.

[65] Donea J. A Taylor-Galerkin method for convective transport problems. Int J Numer
Meth Eng 1984;20:101–19.

[66] Donea J, Quartapelle L. An introduction to finite element methods for transient
advection. Comput Method Appl M 1992;95:169–203.

[67] Huétink J, Vreede PT, van der Lugt J. Progress in mixed Eulerian-Lagrangian finite
element simulation of forming processes. Int J Numer Meth Eng 1990;30:1441–57.

[68] Witz JA. A case study in the cross-section analysis of flexible risers. Mar Struct
1996;9:885–904.

59



[69] Féret JJ, Bournazel CL. Calculation of stresses and slip in structural layers of
unbonded flexible pipes. J Offshore Mech Arct 1987;109:263–9.

[70] Féret JJ, Momplot G. CAFLEX - A program for capacity analysis of flexible pipes,
Theory manual. Tech. Rep. 710668; Norwegian Marine Technology Research Cen-
tre (MARINTEK), Trondheim, Norway; 1989.

[71] Custódio AB, Vaz MA. A nonlinear formulation for the axisymmetric response of
umbilical cables and flexible pipes. Appl Ocean Res 2002;24:21–9.

[72] Sævik S. Theoretical and experimental studies of stresses in flexible pipes. Comput
Struct 2011;89:2273–91.

[73] Tan Z, Quiggin P, Sheldrake T. Time domain simulation of the 3D bending hys-
teresis behavior of an unbonded flexible riser. J Offshore Mech Arct 2009;131, 8
pages.

[74] Alfano G, Bahtui A, Bahai H. Numerical derivation of constitutive models for
unbonded flexible risers. Int J Mech Sci 2009;51:295–304.

[75] Bahtui A, Alfano G, Bahai H, Hosseini-Kordkheili SA. On the multi-scale compu-
tation of un-bonded flexible risers. Eng Struct 2010;32:2287–99.

[76] Skeie G, Sødahl N, Steinkjer O. Efficient fatigue analysis of helix elements in
umbilicals and flexible risers: Theory and applications. Journal of Applied Math-
ematics (Hindawi Publishing Corporation - open access journal) 2012;Article ID
246812, 22 pages.

[77] Vaz MA, Rizzo NAS. A finite element model for flexible pipe armor wire instabil-
ity. Mar Struct 2011;24:275–91.

[78] Østergaard NH, Lyckegaard A, Andreasen JH. On modelling of lateral buckling
failure in flexible pipe tensile armour layers. Mar Struct 2012;27:64–81.

[79] Sævik S, Thorsen MJ. Techniques for predicting tensile armour buckling and fa-
tigue in deep water flexible risers. In: Proceedings of the ASME 2012 31st Inter-
national Conference on Ocean, Offshore and Arctic Engineering. 2012, p. 469–82.

[80] Sævik S, Ji G. Differential equation for evaluating transverse buckling behavior
of tensile armour wires. In: Proceedings of the ASME 2014 33rd International
Conference on Ocean, Offshore and Arctic Engineering. 2012, 8 pages.

[81] Ramos RJ, Pesce CP. A stability analysis of risers subjected to dynamic compres-
sion coupled with twisting. J Offshore Mech Arct 2003;125:183–9.

[82] Neto AG, Martins CA. Structural stability of flexible lines in catenary configuration
under torsion. Mar Struct 2013;34:16–40.

60



[83] Bažant ZP, Cedolin L. Spatial buckling of beams under torque and axial force.
In: Stability of structures: elastic, inelastic, fracture, and damage theories. Oxford
University Press, Inc.; 1991, p. 46–9.

[84] Yazdchi M, Crisfield MA. Non-linear dynamic behaviour of flexible marine pipes
and risers. Int J Numer Meth Eng 2002;54:1265–308.

[85] Aguiar LL, Almeida CA, Paulino GH. A three-dimensional multilayered pipe beam
element: Nonlinear analysis. Comput Struct 2014;138:142–61.

[86] Sævik S. Bflex2010 - Theory manual. Tech. Rep. 700883.00.01; Norwegian Ma-
rine Technology Research Centre (MARINTEK), Trondheim, Norway; 2010.

[87] Sævik S. Usap - Theory manual. Tech. Rep. 700254.00.01; Norwegian Marine
Technology Research Centre (MARINTEK), Trondheim, Norway; 2010.

[88] Fylling I, Larsen C, Sødahl N, Ormberg H, Engseth A, Passano E, et al. Riflex the-
ory manual. Tech. Rep. STF70 F95219; Norwegian Marine Technology Research
Centre (MARINTEK), Trondheim, Norway; 1995.

[89] Sævik S. Simla - Theory manual. Tech. Rep. 700254.00.01; Norwegian Marine
Technology Research Centre (MARINTEK), Trondheim, Norway; 2008.

[90] Krenk S, Vissing-Jørgensen C, Thesbjerg L. Efficient collapse analysis techniques
for framed structures. Comput Struct 1999;72:481–96.

[91] Battini JM, Pacoste C. Plastic instability of beam structures using co-rotational
elements. Comput Method Appl M 2002;191:5811–31.

[92] Le TN, Battini JM, Hjiaj M. Dynamics of 3D beam elements in a corotational
context: A comparative study of established and new formulations. Finite Elem
Anal Des 2012;61:97–111.

[93] Jensen GA, Säfström N, Nguyen TD, Fossen TI. A nonlinear PDE formulation for
offshore vessel pipeline installation. Ocean Eng 2010;37:365–77.

[94] Simo JC. A finite strain beam formulation. The three-dimensional dynamic prob-
lem. Part I. Comput Method Appl M 1985;49:55–70.

[95] Reissner E. On one-dimensional finite strain beam theory: the plane problem. J
Appl Math Phys 1972;23:795–804.

[96] Romero I. A comparison of finite elements for nonlinear beams: the absolute
nodal coordinate and geometrically exact formulations. Multibody Syst Dyn
2008;20:51–68.

[97] Simo JC, Vu-Quoc L. A three-dimensional finite strain rod model. Part II: Compu-
tational aspects. Comput Method Appl M 1986;58:79–116.

61



[98] MATLAB Release 2013a, The MathWorks, Inc., Natick, Massachusetts, United
States. http://mathworks.com/products/matlab/; Accessed 17.01.15.

[99] Spurier RA. Comment on "Singularity-free extraction of a quaternion from a
direction-cosine matrix". J Spacecraft Rockets 1978;15:255-255.

[100] Felippa CA, Haugen B. A unified formulation of small-strain corotational finite
elements: I. Theory. Comput Method Appl M 2005;194:2285–335.

[101] Mathisen KM. Large displacement analysis of flexible and rigid systems consid-
ering displacement-dependent loads and nonlinear constraints. Ph.D. thesis; The
Norwegian Institute of Technology, Trondheim, Norway; 1990.

[102] Krenk S. Non-linear modeling and analysis of solids and structures. John Wiley &
Sons Ltd.; 2009.

[103] Pacoste C, Eriksson A. Beam elements in instability problems. Comput Method
Appl M 1997;144:163–97.

[104] Chen HH, Lin WY, Hsiao KM. Co-rotational finite element formulation for thin-
walled beams with generic open section. Comput Method Appl M 2006;195:2334–
70.

[105] Battini JM, Pacoste C. Co-rotational beam elements with warping effects in insta-
bility problems. Comput Method Appl M 2002;191:1755–89.

[106] Alsafadie R, Hjiaj M, Battini JM. Three-dimensional formulation of a mixed coro-
tational thin-walled beam element incorporating shear and warping deformation.
Thin Wall Struct 2011;49:523–33.

[107] Glview Inova, Ceetron AS, Trondheim, Norway. http://ceetron.com; Accessed
17.01.15.

[108] Monagan MB, Geddes KO, Heal KM, Labahn G, Vorkoetter SM, McCarron J, et al.
Maple advanced programming guide. Maplesoft; 2009.

[109] Bathe KJ, Bolourchi S. Large displacement analysis of three-dimensional beam
structures. Int J Numer Meth Eng 1979;14:961–86.

[110] Cardona A, Geradin M. A beam finite element non-linear theory with finite rota-
tions. Int J Numer Meth Eng 1988;26:2403–38.

[111] Crisfield MA. A consistent co-rotational formulation for non-linear, three-
dimensional, beam elements. Comput Method Appl M 1990;81:131–50.

[112] Recommended practice DNV-RP-C205, Environmental conditions and environ-
mental loads, April 2007. Det Norske Veritas, Høvik, Norway; 2007.

[113] Reite KJ, Sørensen AJ. Mathematical modeling of the hydrodynamic forces on a
trawl door. IEEE J Oceanic Eng 2006;31:432–53.

62



[114] Crisfield MA. Non-linear finite element analysis of solids and structures. John
Wiley & Sons Ltd.; 1997.

63



64



Appended papers

65





Paper I

A penalty-based contact element for pipe
and 3D rigid body interaction
Vegard Longvaa, Svein Sævika

a Department of Marine Technology, Norwegian University of Science and Technology
NO-7491 Trondheim, Norway

Engineering Structures, Vol. 56, 2013, pp. 1580 – 1592

Abstract

In this paper a contact element tailor-made for global response prediction of pipelines
subject to interaction with rigid 3-dimensional bodies is presented. A continuous repre-
sentation of the contact geometry is applied. The contact contribution to virtual work and
associated linearizations are presented on matrix format suitable for implementation into
computer codes based on a corotated description of beam kinematics. Experimental tests
of trawl gear and subsea pipeline interference are used to validate the performance of
the element. The benefit of including a tangent stiffness matrix proportional to the nor-
mal contact force and the effect of performing artificial symmetrization of the linearized
friction contribution are investigated in terms of numerical efficiency.

Keywords: Contact mechanics; Penalty method; Pipeline; Rigid body; Trawl gear

67





PAPER I

1 Introduction

Large networks of subsea pipelines for transportation of oil and gas are today in opera-
tion unprotected on the seabed. Future field developments tend to move into arctic waters
especially suitable for pipeline transportation systems. Both for existing and new instal-
lations the risk of interaction with bottom-trawling fisheries cannot be disregarded. The
heaviest trawl gears nowadays have a steel mass of 10 000 kg and are operated in arctic
waters [1]. With a trawling velocity of 2 – 3 m/s the interference loading may result in
a severe utilization of the pipeline capacity. The main objective of the present effort has
therefore been to develop a robust and efficient contact formulation for prediction of the
pipe response. An important synergy effect arise here since collisions between bodies and
other structures made of tubular elements may also be investigated.

Assessment of trawl and pipeline interference may be separated into two distinct parts
[1, 2]. The first part deals with local deformations of the cross-section at the contact
point, whereas the second focus on the global response of an undeformed pipe cross-
section. In this paper the developed finite element (FE) formulation is restricted to capture
only the latter response type. This has two important consequences for the computational
efficiency,

1) Contact formulations such as the conventional node-to-surface (NTS) approach [3]
used for continuum and shell elements can be avoided. Instead, a potentially much
more efficient formulation based on the FE framework for beam elements can be
developed.

2) The body can be assumed rigid such that its kinematical description is given by
only six degrees of freedom (DOFs).

With regard to item 2) negligible conservatism is introduced for the global pipe response
because the pipe flexural stiffness is small compared to the rigidity of standard trawl gears.
The rigid body assumption also implies that the contact patch test can be disregarded, see
e.g. [4].

3-dimensional surface representations used for contact problems have in the last deca-
des adopted interpolation techniques from the field of computer-aided geometric design.
Successful applications have been reported for meshes consisting of both triangular ele-
ments [5] and quadrilateral elements [6]. Subdivision schemes providing C1-continuity
for triangular and quadrilateral meshes have also been used [7]. With regard to application
in this work it must be noted that such approaches are computationally expensive, and that
a beam-to-surface contact search algorithm has to account for changes in three variables.
Previously, contact detection problems for the NTS procedure with two variables have
occurred when multiple candidate contact points exist or if the contact surface has been
distorted [8]. In order to ensure robustness and efficiency a simpler geometry represen-
tation of the rigid body, yet providing sufficient accuracy for the global pipe response, is
aimed for in this paper.

Contact problems in FE computations are usually solved by Lagrange multiplier meth-
ods [9, 10] or the penalty method [11, 12]. In this work the penalty approach was selected
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because it enables representation of the pipe coating stiffness via the regularized pene-
tration constraint. An analogous representation were employed by Wriggers et al. [11]
where the contact traction was expressed in terms of micro-mechanical properties of the
contact interface. The applied penalty stiffness must, however, be kept within a given in-
terval because low values can deteriorate the accuracy [13] and too large values may cause
ill-conditioning of the FE equation system.

Experiments addressing friction on metallic surfaces [14] have proven that the tangen-
tial displacement during stick and slip can be decomposed into a small elastic part and a
non-reversible plastic part, respectively. This advocate use of a penalty regularization for
stick and a constitutive interface law for slip. With the breakthrough of return mapping
algorithms in plasticity [15], consistent friction formulations for Newton-based solution
schemes could be developed. Yet, the non-associative nature of the slip rules lead to non-
symmetric matrices, see e.g. [11, 12, 16], which could not be consistently implemented
into computer codes with symmetric solvers. This issue was remedied by Laursen and
Simo [17] who used an augmented Lagrange method to obtain algorithmic symmetriza-
tion of the friction tangent matrix. Additional unknowns are, however, introduced with the
Lagrange-based approach which makes implementation into existing codes more cumber-
some.

In the literature only a handful of publications deals with contact involving beams.
Maker and Laursen [18] presented a model for interaction between a rod and a medium
modeled by continuum elements. A contact formulation for frictionless beam-to-beam
contact with circular cross-sections have been given by Wriggers and Zavarise [19]. Their
development were later extended in terms of a penalty-based friction formulation, but
without accounting for surface eccentricity moments caused by the friction force [20].
Similarly, contacting beams with rectangular cross-sections have been addressed by
Litewka and Wriggers both for frictionless behavior [21] and for a penalty-based fric-
tion formulation [22]. Much effort is put on derivation of tangent matrices proportional
to the contact forces in these publications, however, the effect of discarding them was
not investigated. A Hermite smoothing technique that provides contact FE equations in-
dependent of the underlying beam theory was presented by Litewka [23]. This idea was
recently accomplished for arbitrary 3-dimensional curves by Konyukhov and Schweizer-
hof [24]. In their approach friction due to rotational interaction could be accounted for
and consistent tangent matrices were derived by means of covariant derivatives.

Based on the provided background information the objectives of this paper can be
summarized as follows:

• Develop a contact element within an implicit solution scheme for global response
prediction of pipelines subject to interaction with a rigid body.

• Present a simple and robust way of modeling the contact geometry of 3-dimensional
rigid bodies interacting with beams.

• Study the numerical performance resulting from an artificial symmetrization of the
slip tangent matrix, and the effect of including a tangent matrix proportional to the
normal contact force.
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• Formulate a friction model which takes due account of surface eccentricities and
associated moments.

Section 2 begins with a description of the body geometry representation. The kinemat-
ics of the involved geometries are thereafter presented together with the contact detection
algorithm. In Section 3 the semi-discrete FE equations for the contact virtual work and
the associated linearizations are presented. Results from a validation study against exper-
imental data and numerical performance tests are given in Section 4. Conclusions and
findings of the work are summarized in Section 5.

2 Body geometry representation, kinematics and contact detection

2.1 Body geometry representation

The rigid body is modeled by a 3-dimensional mesh of geometry elements. A single el-
ement is shown in Fig. 1 and consists of a plane triangular plate with thickness 2R̄ sur-
rounded by circular-shaped edges and spherical-shaped corners with radius R̄. To obtain
a continuous description of the unit normal vector on convex surface regions the radius is
set equal for all geometry elements defining the rigid body. Beam formulations for nonlin-
ear analysis of pipelines are usually based on corotated straight elements with small local
rotations, see e.g. [25–27]. With regard to global response prediction it is hence permis-
sible to remove the flat plate surface, such that the contact geometry of a single element
consists of the three edges and the three corners seen in Fig. 1.

In contrast to approaches based on 3-dimensional surface interpolation with two pa-
rameters [5–7], the selected geometry representation yields a simple kinematical descrip-
tion in terms of one parameter. Straight lines coincident with the locus of center points
along the cylindrical-shaped edges are here used to express the contact kinematics. These
lines are parametrized in terms of the initial coordinates as,

X̄
(
η̄
)

=
1− η̄

2
X̄1 +

1 + η̄

2
X̄2 − 1 ≤ η̄ ≤ 1 (1)

where X̄1 and X̄2 refer to the center coordinates of the corners, see Fig. 1.

n̄3 n̄2X
Y

Z
X̄2X̄(η̄)

n̄1

X̄1
R̄

Figure 1: Body geometry element
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Regarding contact detection there is no need to use explicit mathematical expressions
for the edge and corner surfaces in Fig. 1. A sufficient description is obtained via Eq. (1)
and by introducing bounding plane functions H̄i at the corners and along the edges of the
body geometry elements. The bounding planes shown in Fig. 1 are defined in terms of the
outward normal vectors n̄i,

H̄i

(
P̄
)

= n̄i ·
(
P̄− P̄i

)
= 0 P̄ =

[
X Y Z

]
(2)

where P̄i is a coordinate point located on bounding plane H̄i. As illustrated in Fig. 1 two
bounding planes are needed to enclose the spherical corner surfaces, while one bounding
plane is sufficient for the cylindrical edge surfaces.

When a 3-dimensional body is modeled there will appear joint surfaces at corners and
along edges shared by surrounding body geometry elements. To avoid multiple definitions
of a single contact point these surfaces should be defined as non-overlapping regions.
Contributions from the solid plate part of the body geometry elements should also be
excluded. A joint surface ∂C̄ is therefore defined as the subset of coordinate points P̄ that
fulfill,

∂C̄ : P̄ ∈ ∂S̄ H̄i

(
P̄
)
≥ 0 i = 1, ..., N (3)

where ∂S̄ refers to the spherical corner surface or the circular cylinder surface of the edge,
see Fig. 2. The bounding plane functions H̄i consist of N contributions as defined by Eq.
(2). N is equal to the number of adjacent body geometry elements in case of an edge,
whereas for a corner N is equal to twice the number of neighboring body geometry ele-
ments. Equation (3) implies that contact at concave parts of the body cannot be described.
This is considered acceptable in view of the assumption of approximately straight pipe
elements.

The defined geometry may contain fully encapsulated corners and edges that should
be removed to speed up the contact search. This is enlightened for the rectangular box with
plane facets shown in Fig. 3. The front face center node has here eight bounding plane
functions, H̄1 – H̄8, stemming from four neighboring body geometry elements. There ex-
ist no coordinate points where all of the H̄i-functions are positive. Consequently, the

H̄2

∂S̄

∂C̄
H̄1

n̄2n̄1

Figure 2: Joint edge surface

72



PAPER I

n̄6

Y

Z

X

n̄1

n̄4

n̄3

n̄5

n̄2

n̄8

n̄7X̄
(
η̄
)

Figure 3: Contact geometry of a rectangular box

center node can be removed from the contact geometry. Based on similar arguments the
six edges indicated by dashed lines in Fig. 3 can also be removed.

2.2 Kinematics

The developed contact element is 3-noded and as depicted in Fig. 4 the DOFs associated
with the pipe are,

v =
[
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

]>
(4)

while the six DOFs that belong to the body are denoted,

v̄ =

[
v̄B

θ̄

]
v̄B =

[
v̄1 v̄2 v̄3

]>
θ̄ =

[
θ̄1 θ̄2 θ̄3

]>
(5)

Due account is made for the pipe rotational DOFs to obtain a C1-continuous pipe
centroidal curve. As discussed by Litewka [23] a continuous representation is beneficial
regarding convergence rate and smoothness of the solution. The contact element has been
implemented into a computer code [28] where a corotated description of the pipe kine-
matics is applied, identical to the formulation presented by Mathisen [27]. There the pipe
element centroidal displacement field relative to a straight line intersecting the nodal end-
points is expressed as,{

ud (η)
}

=
{
T
}>{

Nl (η)
}{

vlθ
}

(6)

where T is a 3× 3 transformation matrix for the considered pipe element. Curly brackets
are introduced here to emphasize the vector-matrix notation. The non-zero components
of the interpolation matrix Nl (η) are presented in Section 3.3, and vlθ contains the local
deformational rotations depicted in Fig. 4,

vlθ =
[

0 0 0 α1 φ1 ψ1 0 0 0 α2 φ2 ψ2

]>
(7)

The current configuration of the considered pipe element centroidal curve in global coor-
dinates is found by adding ud (η) to the straight pipe configuration defined by the updated
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)
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x̄Bv̄1

v11v8

Figure 4: Current configuration of pipe and body

global coordinates of the pipe element nodes, x1 and x2,

x (η) = ud (η) +
1− η

2
x1 +

1 + η

2
x2 − 1 ≤ η ≤ 1 (8)

The updated configuration of the body contact geometry is defined by the body edge
center lines. As illustrated in Fig. 4 these lines can be expressed by the updated global
coordinates of the body node xB and an eccentricity vector r̄

(
η̄
)
,

x̄
(
η̄
)

= x̄B + r̄
(
η̄
)

r̄
(
η̄
)

= R̄ ·
[
X̄
(
η̄
)
− X̄B

]
(9)

where R̄ is the body node rotation tensor. X̄B denotes the initial coordinates of the body
node and X̄

(
η̄
)

is the initial center coordinates of the considered edge or corner as given
by Eq. (1).

2.3 Contact detection

The body and the pipeline may occupy configurations with several contact points. Due
to topology reasons a single contact element cannot handle more than one contact point
at the same time. In Fig. 5 the contact detection algorithm for a single contact element
is illustrated. If the element was inactive in the previous equilibrium state the left branch
is entered, and a global contact search is performed to identify the body geometry ele-
ments that can obtain contact with the considered pipe element. A local contact search is
thereafter initiated for the identified body geometry elements to check if the conditions
for contact are fulfilled. If a candidate contact point is found it must also be ensured that
the point is not occupied by other contact elements.
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body corner/edge K with

Local contact search for
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Pipe loop

Deactivate contact
element for current
iteration step

I = J + 1?
Pipe loop index

Active contact element in
previous equilibrium state?

Contact point identified
in current iteration step

Contact point identified
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for pipe I = 1, ..., N
Global contact search

Contact for pipe I?

No

Yes

Contact for pipe I?

Yes

Yes

No
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Yes
Yes

No
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YesNo

Can pipe I obtain contact
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pipe I and relevant body
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Body contact point
occupied by an other
contact element?

Contact between pipe J
and body edge/corner K
in previous load step

pipe I = J, J − 1, J + 1 and

adjacent corners and edges

Figure 5: Contact detection algorithm

If contact was present in the previous equilibrium state this information is exploited
by entering the right branch in Fig. 5. The computational effort is here reduced since the
local contact search is executed only for pipe elements, edges and corners in the vicinity
of the previous contact point.

2.3.1 Global contact search

The objective of the global contact search is to reduce the computing time by removal of
unnecessary body geometry elements from the local contact search. At initialization joint
edges and joint corners are distributed among the body geometry elements. Each of the
body geometry elements is assigned a bounding sphere located at the geometric center of
the element, and the radius C is set such that it encloses the edges and corners, similar to
the body-based cell strategy described by Williams and O’Connor [29]. A circular cylin-
der geometry is used to represent the pipe element, see Fig. 6. The body geometry element
is included in the local contact search if its bounding sphere intersects the considered pipe
element cylinder.
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BODY C

x̄B

x2

x1

PIPE I

Figure 6: Global contact search

2.3.2 Local contact search

The local contact search is founded upon the assumption that contact is pointwise and oc-
curs at the so-called minimum distance points of the pipe and the body. Since the pipe is
circular and the body contact geometry is represented by cylindrical surfaces and spheres
with equal radius, the minimum distance points can be found based on the center coordi-
nates, x

(
η
)

and x̄
(
η̄
)
. The center distance is therefore minimized,

d = min ||x̄ (η̄)− x (η)|| (10)

which results in the orthogonality conditions,[
x̄
(
η̄
)
− x

(
η
)]
·x,η

(
η
)

= 0 (11)[
x̄
(
η̄
)
− x

(
η
)]
· x̄,η̄

(
η̄
)

= 0 (12)

The notation for derivatives ∂x
∂η = x,η has here been introduced. If the contact search

is executed for a body corner only Eq. (11) applies. Due to the term ud

(
η
)

in Eq. (8)
the orthogonality conditions are nonlinear in terms of the non-dimensional parameters. A
local Newton scheme is therefore employed to find the minimum distance points. Details
about formulation of the iterative scheme can be found in previous publications on beam
contact [19, 21, 24].

At the converged solution of the minimum distance problem the non-dimensional pa-
rameters are denoted ηc and η̄c. If their numerical values are within the domains given in
Eqs. (1) and (8), a penetration check is conducted by means of the expression,

gn = ||x̄ (η̄c)− x (ηc)|| −R− R̄ (13)

which henceforth will be referred to as the normal gap. The pipe radius is here denoted
R. If gn is non-positive the surface coordinate of the body candidate contact point is
calculated,

x̄s

(
η̄c
)

= x̄
(
η̄c
)
− R̄n (14)

where n is the pipe outward unit normal vector defined by,

n =
x̄ (η̄c)− x (ηc)

d
d = ||x̄ (η̄c)− x (ηc)|| (15)
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Contact is then defined to be present if the following conditions hold,

H̄i

(
P̄
)
≥ 0 P̄ = X̄B + R̄> ·

[
xs

(
η̄
)
− x̄B

]
i = 1, ..., N (16)

gn ≤ 0 (17)

where the N bounding planes of the considered edge or corner are defined according to
Eqs. (2) and (3).

3 Weak formulation, linearization and discretization

In this paper a conventional finite element approach based on the principle of virtual work
is employed. Equilibrium of the pipe and the rigid body is within this principle expressed
as,

δWINT − δWEXT + δWKIN +

Nc∑
i

(
δW {i}n + δW

{i}
T

)
= 0 (18)

where δWEXT and δWKIN represent the pipe and body virtual work contributions from
external and inertia forces, respectively, and δWINT denotes the pipe virtual strain energy.
These quantities will not be pursued further in this paper. δW {i}n and δW {i}T refer to the
virtual work due to normal and frictional forces at the i-th contact point, respectively,
defined in terms of variations of the pipe and body displacements. The variation of the
centroidal displacement field associated with a single pipe element is selected as,{

δu (η)
}

=
{
T
}>{

Nl (η)
}{

T̂
}{
δv
}

(19)

T̂ is here a 12×12 matrix with the pipe element transformation matrix T on its diagonal.
The corresponding variation for the body is given by,

δū
(
η̄
)

= δv̄B + δR̄ ·
[
X̄
(
η̄
)
− X̄B

]
δR̄ = S

(
δθ̄
)
· R̄

S
(
δθ̄
)

=

 0 −δθ̄3 δθ̄2

δθ̄3 0 −δθ̄1

−δθ̄2 δθ̄1 0

 δθ̄ =

3∑
i=1

δθ̄iEi

(20)

In this work the implicit HHT-α scheme [30] combined with Newton’s method is
employed to solve Eq. (18). This necessitates establishment of tangent matrices emerging
from linearization of the virtual work. All quantities that depend on the displacement state
should be accounted for when the linearizations denoted by the ∆-symbol are computed,
however, the transformation matrix T and the variation δR̄ will subsequently be regarded
as constant quantities with respect to linearization,

∆T = 0 ∆
(
δR̄
)

= 0 (21)

which is a necessity in our approach to obtain a symmetric tangent stiffness matrix for
frictionless interaction.
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gn

Fn

dFn
dgn

Figure 7: Force-indentation curve for coated pipe

3.1 Normal contact

In a penalty formulation the normal force virtual work contribution from a single contact
point can be expressed as,

δWn = Fn (gn) δgn Fn (gn) ≤ 0 (22)

where Fn (gn) is a constitutive law for the normal force that may be used to incorporate
stiffness properties of the pipe coating as indicated in Fig. 7.

To simplify notation the dependence on η and η̄ is omitted for quantities evaluated at
the current contact point, e.g. δu = δu (ηc) and x̄ = x̄ (η̄c). The normal gap variation is
found by taking the variation of Eq. (13). Since the contact point location depends on the
displacement state this quantity is expressed as,

δgn = [δū + x̄,η̄δη̄ − δu− x,ηδη] ·n (23)

which due to the orthogonality conditions in Eqs. (11) and (12) is reduced to,

δgn = [δū− δu] ·n (24)

In the following a similar approach as the one presented by Wriggers and Zavarise
[19] for two contacting beams with circular cross-sections will be used to establish the
linearization,

∆δWn =
dFn
dgn

∆gnδgn + Fn (gn) ∆δgn (25)

Variations and linearizations are computed in the same way, and ∆gn has therefore the
same structure as δgn given in Eq. (24),

∆gn = [∆ū−∆u] ·n (26)

The linearization of ∆δgn must be based on Eq. (23) rather than Eq. (24), because the
vanishing terms leading to Eq. (24) yield non-zero tangent contributions. Due to Eq. (21)
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the quantities ∆
(
δu
)

and ∆
(
δū
)

will be zero such that,

∆δgn = ∆δg{1}n + ∆δg{2}n (27)

∆δg{1}n = [δū + x̄,η̄δη̄ − δu− x,ηδη] ·∆n (28)

∆δg{2}n = [δū,η̄∆η̄ + ∆ū,η̄δη̄ − δu,η∆η −∆u,ηδη − x,ηη∆ηδη] ·n (29)

The linearizations, ∆η and ∆η̄, and the corresponding variations, δη and δη̄, are expressed
in terms of the elemental DOFs in 5. If the contact point is located on a body corner
Eqs. (28) and (29) simplify. In that case all terms containing δη̄ and ∆η̄ will vanish. An
expression for ∆n is obtained by linearization of Eq. (15),

∆n =
1

d
[I− n⊗ n] · [∆ū + x̄,η̄∆η̄ −∆u− x,η∆η] (30)

where I is the identity tensor. Inserting the expression for ∆n into Eq. (28) yields,

∆δg{1}n =
1

d
[δū + x̄,η̄δη̄ − δu− x,ηδη] · [I− n⊗ n]

· [∆ū + x̄,η̄∆η̄ −∆u− x,η∆η]
(31)

Information about the contact geometry is introduced via the ∆δgn-term. The benefit of
including this information is investigated in Section 4.

3.2 Frictional contact

In previous work on beam contact the friction kinematics have been based on paramet-
rized curves defining the deformed beam configurations [20, 22]. Such descriptions will
for a large diameter pipeline parametrized by the centroidal curve yield inaccurate pre-
dictions of the sliding distance and not capture the case of rolling, i.e. a pure rotation of
the body or the pipe about the instantaneous contact point. Recently, this was improved
by Konyukhov and Schweizerhof [24] who introduced a kinematic measure allowing for
rotational friction interaction. In the following an alternative approach that accounts for
both bending and torsional moments of the pipe will be developed.

A 2-dimensional representation is employed for the friction force FT and the tangen-
tial displacement of the contact point gT ,

FT = Fkk + Fmm (32)
gT = gTkk + gTmm (33)

where the base vectors, k and m, spanning the current tangent plane of the contacting
surfaces are established by the following rules,

k =
x,η
||x,η||

m = n× k (34)

The virtual work due to friction from a single contact point can then be expressed as,

δWT = δgT ·FT (35)

To develop the FE equations due to friction the main task is now to express δgT and FT
in terms of the pipe and body displacements.
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Figure 8: Relative displacement increment of previous contact points

3.2.1 Tangential displacement of the contact point

A kinematical measure of the tangential displacement may be obtained by separate con-
siderations of the contact point motions on the body and on the pipe, similar as in the
friction formulations presented previously on beam contact [20, 22, 24]. Alternatively, as
adopted in this work the relative displacement of the body and the pipe contact points can
be studied simultaneously. By mapping the contact points from the previous equilibrium
state into the current configuration, see Fig. 8, the relative displacement increment can be
defined as,

d = x
(
ηp
)

+RQ ·np − x̄B − Q̄ · r̄p (36)

The pipe centroidal coordinate of the previous contact point mapped into the current con-
figuration is given by x

(
ηp
)
. Surface eccentricities of the previous contact points are

defined by the pipe outward unit normal vector np and the vector r̄p, see Fig. 8. Both
eccentricities refer to the previous equilibrium state and are mapped into the current con-
figuration by the incremental rotation tensors Q and Q̄.

A standard multiplicative update scheme is used to compute the body incremental
rotation tensor,

Q̄{i+1} = exp
[
S
(
∆θ̄{i}

)]
· Q̄{i} Q̄{0} = I i = 0, 1, 2, ... (37)

Subscript 0 refers here to the previous equilibrium state, S is the skew-symmetric tensor
defined in Eq. (20) and ∆θ̄{i} denotes the body node spin obtained at the i-th iteration
step in Newton’s method. The exponential map of the skew-symmetric spin tensor S

(
∆θ̄
)

is approximated as,

exp
[
S
(
∆θ̄
)]

= I +
1

1 + 1
4∆θ̄ ·∆θ̄

[
S
(
∆θ̄
)

+
1

2

[
S
(
∆θ̄
)]2]

(38)

The pipe incremental rotation tensor is assumed to be multiplicatively decomposed
into a deformational rotation Qd and a rigid rotation Qr,

Q{i} = Qd{i} ·Qr{i} Q{0} = I i = 1, 2, 3, ... (39)
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Updating of the rigid part is based on the pipe transformation matrix T which is available
from the updated displacement state,{

Qr{i}
}

=
{
T{i}

}>{
T{0}

}
i = 1, 2, 3, ... (40)

The deformational part is found by interpolation with aid of Eq. (67),{
∆̂θd{i}

(
ηp
)}

=
{
T{i}

}>{
Nθ

l
(
ηp
)}{

vlθ{i} − vlθ{0}

}
(41)

where the changes of nodal deformational rotations are measured by the vector vlθ de-
fined in Eq. (7). Assuming small increments the exponential map in Eq. (38) yields the
deformational part of the incremental pipe rotation tensor,

Qd{i} = exp
[
S
(
∆̂θd{i}

)]
i = 1, 2, 3, ... (42)

Since the load increments are assumed to be small the sliding path can be approxi-
mated incrementally by straight line segments. The total tangential displacement is there-
fore expressed as a sum of the tangent plane projection of d and the tangential displace-
ment components from the previous equilibrium state,

gT = ∆̂gT + gPTkk + gPTmm ∆̂gT = [k⊗ k + m⊗m] ·d (43)

The variation of the tangential displacement is selected as,

δgT = [k⊗ k + m⊗m] · δd (44)

Noting that the non-dimensional parameter ηp is fixed the variation of d is given by,

δd = δu
(
ηp
)

+RS
[
δθ
(
ηp
)]
·Q ·np − δv̄B − S

(
δθ̄
)
· Q̄ · r̄p (45)

here δθ refers to the variation of the pipe centroidal rotation. The linearization ∆d has
the same structure as δd.

3.2.2 Friction force update scheme

In analogy with classical plasticity theory the tangential displacement is assumed to be
additively decomposed into an elastic part gE and a plastic part gP ,

gT = gE + gP (46)

where accumulation of elastic and plastic displacements occur in the states of stick and
slip, respectively. A simple constitutive relation is used to link the elastic tangential dis-
placement to the friction force,

FT = cEgE (47)

The elastic moduli is denoted cE and can be interpreted as a penalty regularization of
the stick constraint. A Coulomb slip criterion, analogous to the yield criterion in classical
plasticity theory, is used to distinguish between stick and slip states,

f (FT , Fn) = ||FT ||+ µFn (gn) ≤ 0 (48)
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Figure 9: Coulomb slip surface

where f = 0 during slip, f < 0 indicates stick and f > 0 is an inadmissible state, see
Fig. 9. The coefficient of friction is denoted µ and is here assumed to be independent of
both sliding velocity and accumulated tangential displacement.

The principle of maximum plastic dissipation yields a so-called associated slip rule,
where the slip increment is co-linear with the slip surface gradient∇f . As pointed out by
Michalowski and Mroz [31] this introduces artificial slip in the normal direction leading to
loss of contact in a Coulomb friction model. Hence, a non-associated flow rule is selected
as the evolution equation for slip,

ġP = λ̇
∂

∂FT
f (FT , Fn) = λ̇

FT
||FT||

(49)

where the slip rate parameter is denoted λ̇.
In this work the update of friction force is handled by an algorithm identical to the

backward Euler stress update scheme used in plasticity models. Given a tangential dis-
placement increment ∆̂gT , the first step in this algorithm is to presume stick behavior
and compute the elastic trial force,

FtrT = FpT + cE∆̂gT FpT = cE
[
gPEkk + gpEmm

]
(50)

where FpT is the friction force at the previous equilibrium state. The assumed state is then
checked according to the slip criterion in Eq. (48). In case of stick, f

(
FtrT , Fn

)
< 0, the

friction force is set equal to the elastic trial force in Eq. (50) and the update scheme is
terminated.

Slip takes place if f
(
FtrT , Fn

)
> 0, and a plastic return map must then be initiated

such that the consistency condition ḟ = 0 is enforced. In general friction models a local
Newton scheme is employed to update the friction force and internal variables, but for the
simple Coulomb model a closed-form expression of the friction force can be found,

FT = −µFn (gn) ntr ntr =
FtrT
||FtrT ||

(51)
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3.2.3 Stick

When the slip criterion in Eq. (48) indicates stick the friction force is given by the current
elastic tangential displacement,

FT = FtrT = cE
{

[k⊗ k + m⊗m] ·d + gPEkk + gPEmm
}

(52)

The virtual work in Eq. (35) is therefore expressed as,

δWT = cEδd ·
{[

k⊗ k + m⊗m + (k⊗ k) · (m⊗m)

+ (m⊗m) · (k⊗ k)
]
·d + gPEkk + gPEmm

+gPEk (m⊗m) ·k + gPEm (k⊗ k) ·m
} (53)

which due to orthogonality simplifies to,

δWT = cEδd ·
{

[k⊗ k + m⊗m] ·d + gPEkk + gPEmm
}

(54)

δWT = δd ·FtrT (55)

The linearization of the stick virtual work should be based on Eq. (53) because the terms
with orthogonal vectors yield non-zero tangent contributions, however, a simplified lin-
earization will instead be adopted here by setting,

∆
(
δd
)

= 0 ∆k = 0 ∆m = 0 (56)

The arguments for introducing the simplifications in Eq. (56) are as follows,

• Small increments must be applied due to Eq. (43). Requirements to numerical sta-
bility and rate of convergence can therefore be relaxed.

• The stick tangent matrix becomes symmetric.

• Setting ∆
(
δd
)

equal to zero is consistent with the simplifications introduced in Eq.
(21).

When the simplifications in Eq. (56) are imposed the linearized virtual work for stick can
be expressed as,

∆δWT = cEδd · [k⊗ k + m⊗m] ·∆d (57)

3.2.4 Slip

In case of violation of the slip criterion in Eq. (48) the virtual work is expressed according
to,

δWT = −µFn (gn) δd ·ntr ntr =
FtrT
||FtrT ||

(58)
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where FtrT is given by Eq. (52). The simplifications stated in Eq. (56) will also be exploited
for the slip case. Hence, the linearization ∆δWT can be computed as,

∆δWT = ∆δW
{1}
T + ∆δW

{2}
T (59)

∆δW
{1}
T =− µdFn

dgn
∆gnδd ·ntr (60)

∆δW
{2}
T =− µFn (gn) δd ·∆ntr (61)

where ∆gn is expressed in Eq. (26). The linearization of ntr contained in Eq. (61) is given
by,

∆ntr =
1

||FtrT ||
[
I− ntr ⊗ ntr

]
·∆FtrT (62)

and the linearization ∆FtrT is taken as,

∆FtrT = cE [k⊗ k + m⊗m] ·∆d (63)

Combining Eqs. (61), (62) and (63) yields,

∆δW
{2}
T = −cEµFn (gn)

||FtrT ||
δd ·

[
k⊗ k + m⊗m− ntr ⊗ ntr

]
·∆d (64)

3.3 Discretization of the displacement field

The linearized pipe centroidal displacement in the corotated element frame is given by
the matrix relation,{

∆ul
(
η
)}

=
{
Nl
(
η
)}{

∆vl
} {

∆ul
}

=
[
∆ul1 ∆ul2 ∆ul3

]>
(65)

where ∆vl is the iterative increment of the pipe local DOFs. The 3 × 12 interpolation
matrix Nl is selected in accordance with Euler-Bernoulli beam theory and its non-zero
components are given by,

N l
{1,1} =

1− η
2

N l
{1,7} =

1 + η

2
N l
{2,2} =

2 + η3 − 3η

4

N l
{2,6} =

η3 − η2 − η + 1

8
L N l

{2,8} =
2− η3 + 3η

4

N l
{2,12} =

η3 + η2 − η − 1

8
L N l

{3,3} = N l
{2,2}

N l
{3,5} = −N l

{2,6} N l
{3,9} = N l

{2,8} N l
{3,11} = −N l

{2,12}

(66)

here L is the updated pipe element length and η ∈ [−1, 1]. The linearized rotation of the
pipe centroidal line is needed for frictional contact. In the corotated element frame this
rotation is expressed as,{

∆θl
(
η
)}

=
{
Nl

θ

(
η
)}{

∆vl
} {

∆θl
}

=
[
∆α ∆φ ∆ψ

]>
(67)
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where the torsional angle ∆α and the bending rotations ∆φ and ∆ψ, see Fig. 4, are
approximated by linear interpolation along the pipe element. Strictly, the linearizations
∆u and ∆θ should be computed in the global coordinates accounting for changes in the
base vectors defining the corotated pipe element frame. In compliance with Eq. (21) this
was neglected such that the global interpolation matrices N and Nθ were obtained by
direct congruence transformation of the local interpolation matrices in Eqs. (65) and (67).

The linearized displacement of an edge or a corner of the body is expressed as,{
∆ū
(
η̄
)}

=
{
N̄
(
η̄
)}{

∆v̄
} {

N̄
(
η̄
)}

=
[
I3×3 −S

[
r̄
(
η̄
)]]

(68)

here the vector ∆v̄ contains the iterative increments of the body DOFs, the vector r̄ is
given by Eq. (9) and the 3 × 3 skew-symmetric matrix S is defined in Eq. (20). The
linearized displacement of the previous surface contact point mapped into the current
configuration is needed for frictional contact,{

∆ūp

}
=
{
N̄p

}{
∆v̄
} {

N̄p

}
=
[
I3×3 −S

[
Q̄ · r̄p

]]
(69)

Eccentricity of the surface point is given by r̄p and Q̄ is defined in Eq. (37). These quan-
tities are illustrated in Fig. 8.

Variations of the displacement field must also be interpolated in terms of the nodal
degrees of freedom. In order to obtain symmetric FE equations the variations are interpo-
lated by the same shape functions as used for the corresponding linearizations.

3.4 Discretization of normal contact

The variation of the normal gap in Eq. (24) is expressed in terms of the nodal degrees of
freedom by the following relations,

δgn =
{
δV
}>{

G1

} {
G1

}
=
{
Ñ
}>{

n
}

(70)

The 3× 18 matrix Ñ and the 18× 1 vectors δV and ∆V are defined as,{
Ñ
}

=
[
−N

(
ηc
)

N̄
(
η̄c
)] {

δV
}

=

[
δv
δv̄

] {
∆V

}
=

[
∆v
∆v̄

]
(71)

The discretization of ∆gn is given by the same matrices as used in Eq. (70). ∆δg
{1}
n in

Eq. (31) is discretized by,

∆δg{1}n =
1

d

{
δV
}>{

G2

}>{
G3

}{
G2

}{
∆V

}
(72)

where the matrices G2 and G3 are defined as,{
G2

}
=
{
Ñ
}

+
{
x̄,η̄
}{

ā
}
−
{
x,η
}{

a
} {

G3

}
=
{
I
}
−
{
n
}{

n
}>

(73)

Here the 1× 18 vectors a and ā are taken from the relation in Eq. (A.7) in case of contact
along a body edge. If the contact point instead is located at a body corner, ā is set to

85



PAPER I

zero and a is taken from Eq. (A.15). With this the quantity ∆δg
{2}
n in Eq. (29) can be

discretized as,

∆δg{2}n =
{
δV
}>{{

G4

}
+
{
G4

}>
+
{
G5

}}{
∆V

}
(74)

with G4 and G5 expressed as,

{
G4

}
=

[
−
{
N,η

(
ηc
)}>{

n
}{

a
}{

N̄,η̄

(
η̄c
)}>{

n
}{

ā
}] {

G5

}
= −

(
n ·x,ηη

){
a
}>{

a
}

(75)

The residual vector Sn containing forces and moments due to normal contact can now
be obtained from the virtual work expression in Eq. (22),

δWn =
{
δV
}>{

Sn
}

(76){
Sn
}

= Fn (gn)
{
G1

}
(77)

The tangent matrix is given by the linearized virtual work in Eq. (25) and is here split into
two parts, K∆gn

n and K∆δgn
n ,

∆δWn =
{
δV
}>{{

K∆gn
n

}
+
{
K∆δgn
n

}}{
∆V

}
(78){

K∆gn
n

}
=
dFn
dgn

{
G1

}{
G1

}>
(79){

K∆δgn
n

}
=
Fn
d

{
G2

}>{
G3

}{
G2

}
+ Fn

{{
G4

}
+
{
G4

}>
+
{
G5

}}
(80)

The matrix K∆δgn
n is proportional to the normal contact force and can therefore be inter-

preted as an initial stress stiffness matrix. Note that both tangent matrix contributions are
symmetric and that all quantities involved in Eqs. (77), (79) and (80) are evaluated at the
current contact point.

3.5 Discretization of frictional contact

The linearization and the variation of the relative displacement vector d are discretized
by identical matrices. The interpolation of δd is expressed as,{

δd
}

=
{
G6

}{
δV
}

(81)

with the 3× 18 matrix G6 defined by,{
G6

}
=
[
N
(
ηp
)

03×6

]
−
[
R
{
S
[
Q ·np

]}{
Nθ

(
ηp
)}

N̄p

]
(82)

3.5.1 Stick

In the state of stick the friction residual vector ST is obtained by discretization of Eq.
(55),

δWT =
{
δV
}>{

ST
}

(83){
ST
}

=
{
G6

}>{
FtrT
}

(84)
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and discretization of Eq. (57) yields the stick tangent matrix,

∆δWT =
{
δV
}>{

KT

}{
∆V

}
(85){

KT

}
= cE

{
G6

}>{
G7

}{
G6

}
(86)

Where G7 is the tangent plane projection matrix,{
G7

}
=
{
k
}{

k
}>

+
{
m
}{

m
}>

(87)

3.5.2 Slip

The discretized virtual work in Eq. (58) provides the slip residual vector ST ,

δWT =
{
δV
}>{

ST
}

(88){
ST
}

= −µFn
{
G6

}>{
ntr
}

(89)

The slip tangent matrix is given by the linearized slip virtual work in Eqs. (60) and (64).
This tangent matrix can be split into a non-symmetric part K∆gn

T related to coupling
with the normal gap and a symmetric contribution K∆gT

T associated with the tangential
displacement,

∆δWT =
{
δV
}>{{

K∆gn
T

}
+
{
K∆gT
T

}}{
∆V

}
(90){

K∆gn
T

}
= −µdFn

dgn

{
G6

}>{
ntr
}{

G1

}>
(91){

K∆gT
T

}
= −cEµFn

||Ftr||
{
G6

}>{{
G7

}
−
{
ntr
}{

ntr
}>}{

G6

}
(92)

The equation solver and the matrix storage system which have been used in this work
can only handle symmetric matrices. An artificial symmetrization of the non-symmetric
matrix contribution was therefore applied in the implemented code,{

K∆gn
T

}
sym

=
1

2

{{
K∆gn
T

}
+
{
K∆gn
T

}>}
(93)

Alternatively, the non-symmetric matrix can simply be set to zero. In Section 4 the nu-
merical performance resulting from these two approaches is investigated.

4 Numerical examples

4.1 Trawl board pull-over tests

A comparison study against experimental tests of trawl board and pipeline interaction in
1:6 scale ratio [32] was conducted to validate the performance of the element. A full-scale
FE model of the test setup in Fig. 11 was reconstructed by means of the SIMLA software
[28]. The 2 600 kg trawl board was represented by a 6 DOF rigid body model taking due
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connector
Towing line

Figure 10: Contact geometry of the trawl board

account of hydrodynamic mass, structural inertia, quadratic damping and forward-speed
induced loads. 205 edges and 71 corners with radius set to 0.01 m defined the board
contact geometry seen in Fig. 10.

The pipe section was modeled by 40 linear-elastic corotated beam elements and had
a diameter of 0.7 m and a length of 10 m. Fixed displacement boundary conditions were
imposed vertically at the ends, whereas horizontal linear springs accounted for lateral
pipeline flexibility. The pipe mass was set to 34 500 kg and horizontal dashpots were
attached at the ends to obtain dynamic properties equivalent to a full-length pipeline.

A prescribed displacement at the upper towing line end was imposed to obtain the
desired velocity of 3 m/s. Due to interaction with the pipe the lower part of the towing
line was modeled with beam elements of length 100 mm. The interaction was handled by
a beam-to-roller contact element [28] and the Coulomb friction coefficient was set to 0.6.
The trawl net was simply represented by a nodal point with a quadratic drag coefficient
in the towing direction. Fixed displacement boundary conditions were imposed vertically
and in the transverse direction for both the towing node and the trawl net node. Other
relevant properties of the FE model are listed in Table 1.

In case of 1 m pipe-seabed clearance the trawl board front edge initially gets into
contact with the pipe, while a secondary interaction occurs between the pipe and the
towing line, see Fig. 18a. During the first second the pipe accelerates to a velocity of
approximately 1 m/s and the board contact points move to the towing line connector, see
Figs. 18b and 18c. The connector device is shown in Fig. 10. As the towing line tension
increases the board rotates about the connector and the rear part gets lifted upward as
shown in Figs. 18c and 18d. The rear part of the board thereafter rotates downward due to
the gravitational force acting at the board geometric centre. This brings the board to the
configuration in Fig. 18e where it is released and pulled over the pipe section.

In Figs. 12 – 17 annotation "SIM" and "MOD" refer to the simulated response and the
model test response, respectively. The responses for 1 m pipe-seabed clearance in Figs.
12 – 14 demonstrate that evident variations exist within the experimental tests. With this
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Figure 11: Model test setup

Table 1: FE model properties

Quantity Symbol Value Unit

Penalty stiff. (constant) dFn
dgn

24 000 kN/m
Friction coeff. body-pipe µ 0.3 kN/m
Towing line stiffness 28 kN/m
Towing line tension ≈100 kN
Towing line inclination α 17 deg.
Trawl board height 2.2 m
Trawl board length 4.0 m
Trawl net quad. damping CD 8 kN/m2s−2

Pipe-seabed clearance H 1, 3 m
Support linear damping CL 10 kN/ms−1

Support quad. damping CQ 16 kN/m2s−2

Support spring stiffness K 2 kN/m

in mind the horizontal pipe reaction force in Fig. 12 is regarded as fairly well predicted
by the FE simulation. The good accordance is further confirmed by the pipe velocity and
the towing line tension which are coincident with the model test behavior until the board
is released, see Figs. 13 and 14.
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For 3 m pipe-seabed clearance the interaction is initially characterized by towing line
contact, see Fig. 19a. As seen in Fig. 16 this leads to a gentle acceleration of the pipe.
The board is raised from the seafloor and simultaneously rotated such that it hits into the
pipe from below as shown in Fig. 19b. When the towing line tension increases a rota-
tional motion is initiated that lifts the rear part of the board, see Figs. 19c – 19e. Note
that the gravitational force does not result in the same behavior as experienced for 1 m
pipe-seabed clearance. This is related to differences regarding the establishment of initial
board-pipe contact and the location of contact points on the towing line connector. The
board is released first when the pipe section reaches the maximum allowable displace-
ment, see Fig. 19e.

In the case with 3 m pipe-seabed clearance the duration, maximum value and build-up
of the horizontal pipe reaction force in Fig. 15 agree well with the model test. Note that
the dominant force peak at 8 – 9 s interaction time appears because the test rig reached its
maximum allowable displacement. Time histories of the pipe velocity and the towing line
tension, see Figs. 16 and 17, further demonstrate that the simulation is consistent with the
model test.
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Figure 12: Horizontal pipe reaction force for H = 1 m
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Figure 13: Horizontal pipe velocity for H = 1 m
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Figure 14: Towing line tension for H = 1 m
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Figure 15: Horizontal pipe reaction force for H = 3 m
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Figure 16: Horizontal pipe velocity for H = 3 m
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Figure 17: Towing line tension for H = 3 m

93



PAPER I

(a) t = 0.0 s

(b) t = 0.5 s

(c) t = 1.4 s

(d) t = 3.1 s

(e) t = 4.1 s

Figure 18: Evolution of the pull-over for H = 1 m
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(a) t = 0.9 s

(b) t = 3.1 s

(c) t = 4.1 s

(d) t = 6.8 s

(e) t = 9.0 s

Figure 19: Evolution of the pull-over for H = 3 m
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4.2 Initial stress stiffness matrix

The effect of the initial stress stiffness matrix K∆δgn
n was investigated in 48 frictionless

simulations by means of the established FE model. Note that equivalent linear damping
models were employed in these investigations due to issues with the tangent stiffness for
the quadratic hydrodynamic loads. The choice of penalty stiffness dFn

dgn
and the applied in-

terpolation functions for the pipe displacement field may be important for the convergence
properties. Two different sets of pipe interpolation functions were therefore applied,

A Use linear interpolation functions for the transverse
displacements in Eq. (65) :
N l
{2,2} = N l

{3,3} = 1−η
2 N l

{2,8}=N
l
{3,9}=

1+η
2

B Apply the interpolation functions as given in Eq. (66).

Three constant penalty stiffness values reflecting the radial stiffness range of subsea
pipelines were employed. The lowest value k1 was set equal to 3 000 kN/m and resulted
in a penetration of 35 mm at initial impact. The other applied values were k2 = 10k1 and
k3 = 100k1. A time step size of 0.0025 s just sufficient to capture the local eigenperiod
associated with k3 was used. Three convergence criterion norms for residual loads, iter-
ative displacements and energy were applied simultaneously with tolerances ε1 = 10−7

and ε2 = 10−5. The maximum number of iterations prior to subdivision of the time step
was set to 20. In Tables 2 and 3 the total number of Newton iteration cycles are listed.
"ISS" refers to simulations including the initial stress stiffness matrix as given by Eq.
(78), whereas "NO ISS" refers to cases using only the tangent stiffness given in Eq. (79).

Table 2: Accumulated number of iterations for H = 1 m

k1 k1 k2 k2 k3 k3
Case NO ISS ISS NO ISS ISS NO ISS ISS

A, ε1 6 173 6 173 9 656 7 091 6 879 6 504
B, ε1 7 121 6 173 6 706 6 716 6 204 9 025

A, ε2 3 639 3 639 3 690 3 690 3 930 3 938
B, ε2 3 638 3 639 3 690 3 690 3 949 3 937

Table 3: Accumulated number of iterations for H = 3 m

k1 k1 k2 k2 k3 k3
Case NO ISS ISS NO ISS ISS NO ISS ISS

A, ε1 11 804 11 452 8 317 8 313 7 047 7 072
B, ε1 11 804 11 452 8 499 8 313 7 037 7 020

A, ε2 3 792 3 792 4 034 4 034 3 858 3 858
B, ε2 3 792 3 792 4 034 4 034 3 858 3 857
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Table 4: Load convergence norm for case: B, ε1, k2, NO ISS, µ = 0, H = 1 m

Iter. No. t=1.2 s t=1.9 s t=2.4 s t=3.1 s

0 3.48 · 10−4 5.05 · 10−4 4.49 · 10−4 4.48 · 10−4

1 1.92 · 10−5 3.25 · 10−5 7.33 · 10−6 3.28 · 10−6

2 2.05 · 10−8 4.23 · 10−8 2.82 · 10−9 1.30 · 10−9

According to Table 2 the initial stress stiffness matrix results in both reduced and in-
creased number of iterations when the 10−7 convergence tolerances are applied for the
case with pipe-seabed clearance of 1 m. In case of 3 m pipe-seabed clearance the ad-
ditional tangent stiffness contribution is slightly beneficial when the 10−7 tolerances are
applied. No significant differences are present if the tolerances of 10−5 are applied, which
yield sufficient accuracy for most applications. Representative convergence characteris-
tics obtained without use of the initial stress stiffness matrix are displayed in Table 4.
Iteration step "0" refers to the predictor step in Newton’s method. The tabulated values
are proportional to the Euclidian norm of the system residual load vector and demon-
strate that good convergence rates are achieved. The single stiffness matrix given in Eq.
(79) provides thus a satisfactorily performance for contact problems involving corotated
beams and straight edges. This finding is consistent with results obtained by Konyukhov
and Schweizerhof [24] for a beam with low curvature at the contact point. In their study a
different expression for the initial stress stiffness matrix was applied.

4.3 Artificial symmetrization of the slip tangent matrix

The effect of using an artificial symmetrization of the slip non-symmetric tangent ma-
trix K∆gn

T was investigated for the case with 1 m pipe-seabed clearance. The penalty
parameters, time step size and convergence norms presented in Section 4.2 were used.
The friction coefficients were taken in the normal range for steel-steel contact with µ1, µ2

and µ3 set equal to respectively 0.2, 0.4 and 0.6. All of the simulations were conducted
without the initial stress stiffness matrix. In Table 5 the total number of Newton iteration
cycles are presented. "Zero" means that K∆gn

T is removed from the FE equation system
and "Sym" refers to cases using the approximation given in Eq. (93).

Table 5: Accumulated number of iterations for H = 1 m

k1 k1 k2 k2 k3 k3
Case Zero Sym Zero Sym Zero Sym

µ1, ε1 5 038 5 038 5 809 6 067 8 117 7 921
µ2, ε1 4 903 4 904 7 379 7 586 8 238 9 428
µ3, ε1 6 827 6 911 10 247 10 024 8 461 9 247

µ1, ε2 3 505 3 506 3 577 3 575 3 796 3 776
µ2, ε2 3 551 3 551 4 351 4 309 3 872 3 950
µ3, ε2 3 870 3 871 5 690 5 709 4 075 4 065
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Table 6: Load convergence norm for case: ε1, k2, Zero, µ = µ2, H = 1 m

Iter. No. t=1.2 s t=1.9 s t=2.4 s t=3.1 s

0 4.03 · 10−4 4.06 · 10−4 3.86 · 10−4 3.75 · 10−4

1 3.38 · 10−5 2.25 · 10−6 1.12 · 10−6 3.11 · 10−6

2 8.30 · 10−8 1.63 · 10−7 4.91 · 10−8 3.00 · 10−6

3 - 2.23 · 10−9 - 5.23 · 10−8

According to Table 5 the symmetrization cannot be regarded as beneficial when the
convergence tolerances of 10−7 are used. If the tolerances are set to 10−5 no significant
differences can be observed between the two approaches. Representative values of the
load convergence norm are presented in Table 6. The tabulated values indicate that the
convergence rates are reduced compared to the frictionless case in Table 4. However,
according to Table 5 the number of iteration cycles are acceptable when the convergence
tolerances are set to 10−5.

5 Conclusions

In this work a contact element for global response prediction of pipelines subject to in-
teraction with a rigid body was developed. A continuous contact geometry representation
providing numerical robustness was applied for both the body and the pipeline. The con-
tact kinematics were expressed by means of corotated beam theory for the pipeline and
straight line parametrizations for the rigid body. This lead to a robust contact search in
terms of two parameters and a computationally efficient overall performance. Information
about the contact geometry was included via an initial stress stiffness matrix for normal
contact. Due account were made for surface eccentricities and associated moments when
the friction model was formulated.

Validation against model tests of trawl-pipeline interaction demonstrated that the char-
acteristic responses were predicted with good accuracy. Consequently, in future research
the use of expensive model tests can be reduced and more accurate design loads with
reduced variability as compared to current practices [1] may be obtained. The effect of
including information about the contact geometry did in practice not improve the conver-
gence rate. Thus, for contact between approximately straight beams and straight edges it
is permissible to neglect terms proportional to the normal force when the linearizations are
established. Similarly, artifical symmetrization of the developed slip tangent matrix gave
the same convergence properties as obtained when the tangent stiffness due to normal
gap coupling was set to zero. Regarding computationally efficiency the ratio of simula-
tion time to CPU time was 1:40 during contact on a computer equipped with a 2.66 GHz
processor. The convergence rate was characterized by typically 2-3 Newton iterations per
time step. Compared to previous FE contact models applied by the authors in similar work
[33] this represents a reduction in CPU time by a factor of at least 5.
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Appendix: Linearization, variation and discretization of the non-dimensional pa-
rameters

The approach presented by Wriggers and Zavarise [19] will now be used to express ∆η,
∆η̄, δη and δη̄ in terms of the elemental DOFs. The starting point is to linearize the
orthogonality conditions in Eqs. (11) and (12),

∆ {[x̄ (η̄c)− x (ηc)] ·x,η (ηc)} = 0 (A.1)
∆ {[x̄ (η̄c)− x (ηc)] · x̄,η (η̄c)} = 0 (A.2)

which yields,

[x̄− x] · [∆u,η + x,ηη∆η] + [∆ū + x̄,η̄∆η̄ −∆u− x,η∆η] ·x,η = 0 (A.3)

and,

[x̄− x] ·∆ū,η̄ + [∆ū + x̄,η̄∆η̄ −∆u− x,η∆η] · x̄,η̄ = 0 (A.4)

The quantities in Eqs. (A.3) and (A.4) are then expressed in terms of the nodal displace-
ments and solved with respect to ∆η and ∆η̄. When organized on matrix format this can
be expressed as,{

∆η
∆η̄

}
=

{
a
ā

}{
∆v
∆v̄

}
(A.5)

and since the variations are computed in a similar way,{
δη
δη̄

}
=

{
a
ā

}{
δv
δv̄

}
(A.6)

The 1× 18 vectors a and ā are expressed by,{
a
ā

}
=
{
B−1

}[{
C
}{

N1

}
+
{
D
}{

N2

}]
(A.7)

Note that all matrices in Eq. (A.7) are evaluated at the current contact point. The coeffi-
cient matrix B has dimension 2× 2 and is given by,

{
B
}

=

[(
x̄− x

)
·x,ηη − x,η ·x,η −x,η · x̄,η̄
−x̄,η̄ ·x,η x̄,η̄ · x̄,η̄

]
(A.8)
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and the 2× 6 matrices C and D are expressed as,

{
C
}

=

[{
x,η
}> −

{
x,η
}>{

x̄,η̄
}> −

{
x̄,η̄
}>
]

(A.9)

{
D
}

=

[{
x− x̄

}>
01×3

01×3

{
x− x̄

}>
]

(A.10)

The 6×18 matrices N1 and N2 contain the displacement interpolation matrices presented
in Section 3.3 referred to global coordinates,

{
N1

}
=

[
N
(
ηc
)

03×6

03×12 N̄
(
η̄c
)] (A.11)

{
N2

}
=

[
N,η

(
ηc
)

03×6

03×12 N̄,η̄

(
η̄c
)] (A.12)

If the contact point is located at a body corner the dimensionless parameter η̄ is fixed
and ā will vanish. The matrix relations above therefore simplifies to,

{
∆η
}

=
{
a
}{∆v

∆v̄

}
(A.13)

{
δη
}

=
{
a
}{δv

δv̄

}
(A.14)

where the 1× 18 vector a is given by,{
a
}

=
1

b11

[{
C̃
}{

N1

}
+
{
D̃
}{

N2

}]
(A.15)

The coefficient b11 is equal to,

b11 =
(
x̄− x

)
·x,ηη − x,η ·x,η (A.16)

and the 1× 6 matrices C̃ and D̃ are expressed by,{
C̃
}

=
[{

x,η
}> −

{
x,η
}>] (A.17)

{
D̃
}

=
[{

x− x̄
}>

01×3

]
(A.18)
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Abstract

This paper presents a novel strategy based on the finite element method for prediction
of fishing gear interference loads on subsea pipelines. Trawl board pull-over interaction
is addressed with emphasis on hydrodynamic load representation, handling of pipe-trawl
contact and modeling of the trawl gear system. A validation study involving 34 model
test runs was carried out for three trawl boards with variation of pipe span height, towing
velocity, towing line stiffness and pipe support conditions. The simulated bias of the load
impulse was found to be within a 10% margin of the model test measurements. Based on
the validated numerical model a sensitivity analysis involving nearly 250 simulations was
conducted. The interaction behavior was seen to be greatly influenced by the board-pipe
friction coefficient, the tension level in the wire between board and trawl net, the towing
line drag properties and the direction of over-trawling.

Keywords: Pipeline; Trawl board; Pull-over; Interference; Fishing gear
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1 Introduction

Interaction between fishing gear and subsea pipelines is a crucial challenge for the co-
existence of fisheries and offshore hydrocarbon exploitation. Such interacting activities
exist for instance in the North Sea where large networks of pipelines have been left ex-
posed on the seabed since the 1970s. In the near future, oil and gas field developments are
expected in Arctic waters where bottom trawling is extensively used. The heaviest trawl
gear operated today are used in the Arctic fisheries with steel masses up to 10 000 kg
[1] and hydrodynamic masses of similar magnitude. Combined with a towing velocity of
2 – 3 m/s over-trawling events may result in a severe utilization of the pipeline capacity.
During the last decades optimization of the fishery has resulted in geometry changes of the
trawl gear and increased steel masses. This continuous development necessitates regular
updating and calibration of the design interference loads. Model testing has traditionally
been the preferred method for determination of trawl loads. Such tests suffer from high
economical costs, need of truncated models, bias due to small scale ratios and poor ability
to effectively reduce the statistical uncertainty. This paper attempts to avoid these draw-
backs by proposing a computational strategy for prediction of interference loads between
pipelines and fishing gear.

Assessment of pipelines subjected to trawl gear loads is commonly divided into three
parts according to load characteristics and response analysis method [2]. The first part fo-
cuses on energy absorption and denting of the cross-section due to the initial impact load.
The succeeding part is termed the pull-over phase in which the global pipe response due
to the long-duration interaction forces is the main concern. This response type is dynamic
and requires use of nonlinear finite element (FE) methods due to large lateral displace-
ments, seabed contact, axial force changes and possible elasto-plastic material response.
In current design practices simple physical models fitted to experimental results consti-
tute the basis for the recommended pull-over loading. The third part is the rarely occurring
hooking event where the trawl gear is assumed to get stuck between the seabed and the
pipeline. Hooking design load effects may be obtained by static nonlinear FE analysis of
the pipeline subjected to a prescribed vertical lifting height. With regard to current de-
sign recommendations [1], the pull-over loading seems to have the largest potential for
improvements. The focus in this paper is therefore exclusively on prediction of loads and
responses in the pull-over phase.

Research addressing the pull-over phase was initially based on laboratory tests and
full-scale tests. Extensive testing was carried out in a Norwegian joint industry project
(JIP) in the 1970s to study the interaction between pipelines and trawl gear [3–5]. Regard-
ing pull-over of trawl boards these tests revealed that spanning pipelines were subjected
to larger forces than pipelines resting on the seabed, skew passings resulted in reduced
loads as compared to perpendicular crossings and that hooking could be regarded as an
unlikely occurring event. Nygaard [6] conducted model tests of protective subsea struc-
tures subjected to interference with trawl boards and beam trawls, in which the behavior
was found to depend on gear geometry, weight of the towed equipment and that small
variations of the initial conditions could greatly change the interaction performance. An
extensive model test program was conducted in 1990 [7, 8], which forms the basis for
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the trawl board pull-over loads recommended by DNV today [1]. Verley [9] conducted
comprehensive parameter studies based on the recommended pull-over loads, and con-
cluded that the practice of not burying pipelines with diameter larger than 0.4 m was
non-conservative for pipes with large compressive axial forces. Further improvements of
the recommended design procedures for pull-over interaction has been the focus in many
research efforts the last decades, see e.g. Refs. [10–13]. Removal of unnecessary conser-
vatism by use of structural reliability methods on pull-over events was recently addressed
by Amdal, Røneid and Etterdal [14].

Numerical methods for response prediction of pipelines subjected to prescribed pull-
over loads were introduced in work carried out by Bergan and Mollestad [15] and Guijt
and Horenberg [16] in the 1980s. A 2-dimensional simulation model was proposed by
Horenberg and Guijt [17] able to predict a peak pull-over load and duration within 10%
margin of model test measurements for a fixed pipeline and a beam trawl. A similar 2-
dimensional strategy that also allowed lateral pipeline displacements was employed in a
JIP in the late 1990s, but was not able to predict realistic loads for trawl boards [18]. A far
more general approach was recently used by Igland and Søreide [19] who demonstrated
agreement between model tests and FE simulations of a clump weight interacting with a
pipeline resting on the seabed. In their work the recommended design load was found too
conservative in case of soft seabeds. Based on a similar approach Maalø, Alsos and Sævik
[20] validated a clump weight FE pull-over model against model tests of a fixed pipe sec-
tion at low span heights. They demonstrated that the maximum value of the recommended
design load could be halved if span flexibility was accounted for. The first step towards
FE simulation of the rather complex interaction between pipelines and trawl boards was
initiated by Teigen, Ilstad, Levold and Hansen [21]. They investigated seabed proxim-
ity effects of the hydrodynamic mass and used flume tank experiments for determination
of the forward-speed induced loads. Their work was later merged into FE simulations,
but issues with the contact model between board and pipeline were reported [22]. The
performance of the contact model was recently improved and consistent behavior with
experimental tests was demonstrated for a handful of cases [23, 24].

This paper outlines a computational strategy which has been partly presented previ-
ously in terms of a FE formulation for frictional contact between pipelines and rigid three-
dimensional bodies [24]. The present contribution focuses on FE modeling, handling of
contact between trawl board and pipe, representation of trawl board hydrodynamic loads
and application of the proposed strategy. The objectives of the present effort are summa-
rized as follows,

1) Validate a numerical pull-over model for trawl boards against existing model tests
considering variation of span height, towing line stiffness, board geometry, board
mass, pipe support condition and towing velocity.

2) Pursue the development of the six degree of freedom (DOF) trawl board hydrody-
namic load model used in previous investigations [22].

3) Apply a contact model for board-pipe interaction developed in previous work [23,
24] and validate its performance for the set of parameters listed in item 1).
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4) Identify sensitive parameters not examined in previous work and study their influ-
ence on the pull-over process.

The behavior of the trawl board and the associated hydrodynamic loads during inter-
action are far more complex than for clump weights and beam trawls. Hence, if agreement
is demonstrated for trawl boards it should be feasible also to achieve consistent behavior
for other trawl gear types.

Section 2 outlines the pull-over FE model employed for validation against existing
laboratory tests. In Section 3 the main ingredients of a contact element for rigid body and
pipeline interaction are presented. The trawl board equation of motion with emphasis on
the hydrodynamic loads is addressed in Section 4. Remarks on the proposed computa-
tional model, statistics of responses obtained in the validation study and the influence of
changes in sensitive parameters are presented in Section 5. Conclusions and recommen-
dations for future work are summarized in Section 6.

2 Pull-over model

An invariable requirement of the proposed computational strategy is that correct pipe
responses and realistic trawl board motions during interaction are predicted. In Section
5.3 these features are validated against model tests carried out by MARINTEK in 1990
[7], which in spite of its old age still represent the latest test program of adequate ex-
tent for trawl board pull-over interaction. In the tests parameter variation with respect to
board geometry, board mass, pipeline support condition, span height, warpline stiffness
and towing velocity was conducted with 1:6 scale ratio. According to the test documenta-
tion [7] trawl board scale effects and incorrectly represented seabed friction forces could
reduce the trawl net spreading force up to 40% when the scale ratio is 1:10. Such effects
are of minor importance in this work as the trawl gear equilibrium configuration and the
wire tension levels are to be tuned towards the model test measurements.

A full-scale reconstruction of the test setup was made by means of the SIMLA com-
puter software [25], see Fig. 1. As opposed to the model test, only the port side trawl
board was modeled and the starboard side of the gear consisted of a sweepline and a tow-
ing node at the trawl board location. The whole gear was accelerated to the considered
velocities of 2 m/s and 3 m/s, and during pipe interaction the two towing nodes were as-
sumed to maintain their prescribed velocity values. The water depth d was set to 31.2 m
and a flat surface with a friction coefficient of 0.3 was used to represent the ocean basin
floor. The coefficient was selected from the literature assuming steel-concrete interaction.
The applied damping consisted of Rayleigh damping for the pipe with a stiffness-factor
of 0.1 s−1 and numerical damping introduced via the recommended α-value of −0.05
for the HHT-α time integration scheme [26]. The Rayleigh damping was set equal to the
largest possible damping that could be used without artificially reducing the horizontal
pipe support reaction forces. Relevant parameters of the FE model which are not de-
scribed in detail subsequently are given in Table 1. These parameters were chosen based
on documentation and video recordings from the model tests.

In case of fixed span conditions the pipe section was not allowed to move horizontally
at the supports, whereas dashpots and springs were applied for flexible support conditions
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Figure 1: Configuration of FE model

to account for stiffness and damping of a full-length pipeline, see Fig. 1. Trenched support
conditions were also considered in the experiments, but due to an uncertain damping level
these tests have not been considered in the present work. The support damping for flexible
support conditions contained both linear and quadratic contributions. The span height
denoted H in Fig. 1 was set to 0 m, 1 m, 2 m, 3 m and 6 m. The pipe had a diameter of
0.7 m and was modeled by 40 corotated linear-elastic beam elements over a length L set
to 10 m. The equivalent pipe mass M was 34 500 kg including added mass. Increase of
added mass due to seabed proximity was accounted for in accordance with DNV-RP-C205
[27].

A truncated straight warpline was applied in the model tests with a linear spring at
the upper end accounting approximately for the stiffness of a full-length warpline, see
Fig. 1. The linear spring stiffness Kt was set such that the axial warp stiffness became
equal to 28 kN/m and 39 kN/m. Warpline angles α of 17◦ and 20◦ were used together
with the lowest and highest stiffness values, respectively. The line had a diameter D of
28 mm and an axial stiffness EA equal to 41 000 kN. Corotated beam elements with 4 m
length were applied in the upper part, whereas lengths of 0.1 m were used in the lower part
due to interaction with the pipe. A standard beam-to-roller contact model with a friction
coefficient set to 0.6 was employed to handle the pipe-warp interaction.

To investigate the validity of the truncated warpline model the water depth was in-
creased to 300 m and a 1 200 m warpline with diameter D equal to 28 mm was mod-
eled. Prior to the model tests, static FE analyses of a warpline with the same length were
conducted to determine the linear spring stiffness Kt at a tension level of 200 kN. Stiff-
ness and static forces from these analyses were used as a basis for setting the submerged
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Table 1: Model properties in full scale

Quantity Symbol Value Unit

Support linear damping CL 10.0 kN/ms−1

Support quad. damping CQ 16.0 kN/m2s−2

Support spring stiffness KP 2.0 kN/m
Pipe section quad. damping CP 3.5 kN/m2s−2

Warpline horizontal angle γ 0.5 – 3.0 deg.
Warpline truncated length 102.5 m
Warpline tension at 3 m/s ≈ 100 kN
Sweepline angle β 10 – 20 deg.
Sweepline length 110 m
Trawl net resistance at 3 m/s ≈ 150 kN
Water density ρ 1 000 kg/m3

weight. The Morison drag load formulation in Eqs. (1) and (2) with relative fluid velocity
vector in the normal direction v̇N and in the tangential direction v̇T was applied. The
coefficient CN was presumed independent of inflow angle and set to 1.6 assuming a six-
stranded helical wire [28]. CT was set to 0.1 based on coefficient values for trawl warps
applied by Reite [29]. By setting the submerged weight to 30.4 N/m, a chord stiffness of
28 kN/m at 200 kN pre-tension was obtained with a relative fluid velocity of 3 m/s in the
towing direction.

fN =
1

2
ρCND||v̇N||v̇N (1)

fT =
1

2
ρCTD||v̇T||v̇T (2)

The sweepline tension and the angle β in Fig. 1 are important boundary conditions for
the board prior to and during pipe interaction. For validation purposes their values must
be similar to those experienced in the model test. To avoid modeling of a computation-
ally demanding trawl net structure with uncertain drag properties the simple sweepline
configuration in Fig. 1 was employed instead. The sweeplines represent the physical lines
and 2/3 of the trawl net such that the angle β attains a correct value. Note that the large
spread of β in Table 1 is due to differences in hydrodynamic and geometrical properties
of the considered trawl boards. The sweepline tension prior to interaction was tuned on
a case-to-case basis by using appropriate values for the quadratic dashpot constant de-
noted CD1 in Fig. 1. Because the velocity of towing node 2 remained constant during
the interference, the port side sweepline tension during interaction was passively con-
trolled by the transverse motion of the trawl net node. A tension value close to zero in
the port side sweepline was obtained by using a very large quadratic dashpot constant
CD2 in the transverse direction, whereas maximum residual tension was achieved by re-
moval of the transverse drag force at the trawl net node. Tension values in between these
extremes were obtained on a case-to-case basis by simple tuning of the transverse drag
force. Linear-elastic corotated beams with diameter 28 mm and element lengths of 2 m
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were employed to model both lines. To properly handle cases with zero sweepline tension,
the element lengths were reduced to 0.1 m nearby the board. The vertical position of the
crowfoot node in Fig. 1 is an important parameter for the trawl board orientation, and its
neutral position was set to half of the board height above the seafloor. A mass of 1 665 kg
was assigned to the trawl net node based on documentation from the model test.

3 Trawl board and pipeline interaction

The trawl board and pipe interaction was handled by a penalty-based contact element
tailor-made for global response prediction of pipelines interacting with rigid bodies. As
illustrated in Fig. 2 the element is three-noded, in which six DOFs belong to a rigid three-
dimensional body and twelve DOFs are associated with a corotated beam-pipe element.
The rotational DOFs of the pipe are included to get a continuous description of the circu-
lar pipe geometry, which is beneficial regarding convergence rate and smoothness of the
solution [30]. The geometry of the rigid body is modeled by a three-dimensional grid con-
sisting of plane triangular elements with equal thicknesses tc. A single geometry element
is shown in Fig. 2 where only the circular-shaped edges and the spherical-shaped corners
contribute to the contact geometry. The removal of the flat top and bottom surfaces is jus-
tified because the bending curvature of the pipe elements is assumed small relative to the
straight corotated reference configurations, see e.g. [31, 32].

The geometry representation is beneficial firstly in terms of numerical robustness be-
cause the contacting surfaces have a continuous description. Secondly, the involved ge-
ometries consist of circular surfaces and spherical surfaces such that the contact kinemat-
ics can be expressed in terms of the pipe centroidal line and the straight center lines of the
body edges, denoted respectively by x

(
η
)

and x̄
(
η̄
)

in Fig. 2. This enables an efficient
contact detection algorithm in terms of two curve parameters for pipe-edge contact and

Pipe
node 2

Pipe
node 1

Pipe
I+1

I−1
Pipe

Pipe I

x
(
η
)

tc

Corner
Edge

node

Geometry
element

Body

geometry
Body contact

x̄
(
η̄
)

Figure 2: Contact kinematics and representation of body geometry
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one curve parameter for pipe-corner contact. Further details about the contact formulation
are given in [24].

The trawl boards considered in the model tests are depicted in Fig. 3. Two trawl boards
were of the polyvalent type with steel masses of 1900 kg and 2600 kg. These boards are
subsequently abbreviated R1900 and R2600. The third trawl board was of the V-type
with 2600 kg steel mass and is abbreviated V2600 in the following. The modeled contact
geometries are shown in Fig. 4. In total 111 edges and 50 corners were employed for the
R1900 board, the R2600 board had 197 edges and 71 corners and the V2600 board was
represented by 89 edges and 47 corners. The thickness denoted tc in Fig. 2 was set to
0.01 m. Relevant properties of the boards are given in Table 2.

Tangential contact forces were represented by a Coulomb model with friction coef-
ficient assumed independent of sliding distance and sliding velocity. The surfaces of the
model test trawl boards were covered with paint. Surface properties of the pipe section
employed in the tests are regarded as unknown. The test documentation [7] states that a

(a) R1900 (b) V2600

(c) R2600

Figure 3: Model test trawl boards
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x2

(b) V2600

warpline
connector

x3

x1
Rigid
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Figure 4: Contact geometry of trawl boards

concrete-coated pipe was considered, but this claim was not possible to confirm by the
underwater video recordings of the tests. Friction coefficients µ in the range 0.4 – 0.6
were applied in the simulations. This range of coefficient values is considered acceptable
in view of the surface degradation experienced during the tests and the different con-
tact geometry configurations occupied in the different test runs. To avoid artificially large
tangential displacements in the state of stick, the friction force was linked to the stick
tangential displacement by a penalty parameter of 2.5 · 106 kN/m.

The normal contact force was assigned a hyper-elastic constitutive law with a grad-
ually increasing stiffness until a force level of 170 kN was reached at 9 mm penetration.
Beyond 170 kN the normal stiffness had a constant value equal to 40 · 103 kN/m. This
stiffness is of similar magnitude as the one recommended by DNV-RP-F111 [1] for a
bare steel cross-section with the same dimensions as considered in this work. A realistic
stiffness characteristic is not regarded important for the pull-over responses aimed for in

112



PAPER II

this work. However, micro-mechanical properties of the contacting surfaces can be rep-
resented via the normal stiffness, see e.g. [33], which might be important to take into
account for very short durations. Possible damping forces proportional to the penetration
velocity at the contact point were neglected as it was observed that realistic values of these
forces had no influence on the interaction behavior.

4 Equation of motion for trawl board

The evolution of the pull-over is to a large extent governed by the hydrodynamic loads
acting on the board. Ideally the hydrodynamic loads could be estimated in an integrated
framework based on computational fluid dynamics and the structural FE method. Due
to the extreme CPU resource demands such frameworks are not feasible and use of pre-
computed hydrodynamic coefficients are instead favored [21]. In the following a six DOF
rigid body load model for the board is outlined. All quantities refer to coordinates defined
by the orthonormal base vectors ei in Fig. 5 which are fixed to the geometric center of the
board. Application of balance laws for linear and angular momentum yields,

TgMgv̈g + TgCg

(
v̇g

)
v̇g =−Ma

(
Θ,∆

)
v̈ −Ca

(
Θ,∆, v̇

)
v̇ − Fq2

(
v̇
)

− Fq1

(
Ψ1,Ψ3, v̇

)
+ Fc + Fs + Fw + Fg

(3)

in which Mg is the rigid body mass matrix and Cg is the rigid body Coriolis-centripetal
matrix. The corresponding hydrodynamic matrices are denoted Ma and Ca, respectively.
Hydrodynamic forces induced by linear velocities are contained in Fq1 and rotational
drag damping is included by Fq2. The vector Fc contains contact forces due to interac-
tion with the pipe. Seabed contact forces and trawl gear wire forces are contained in Fs

and Fw, respectively. Gravity and buoyancy forces are included in Fg with the buoyancy
center assumed coincident with the center of gravity (COG). Eccentricity moments are
taken into account for the load vectors Fc, Fs, Fw and Fg. A body moving close to a
wall boundary can be subjected to both attractive and repelling forces proportional to its

Table 2: Trawl board properties

Quantity Symbol R1900 V2600 R2600 Unit

Height h 2.10 2.38 2.46 m
Length l 3.60 4.13 4.44 m
Hydrodynamic thickness / ski thickness t 0.12 0.14 0.20 m
Steel mass m 1 900 2 600 2 600 kg
Submerged weight W 17.7 24.5 24.5 kN
COG rotational mass about x1-axis I1 1 294 1 934 1 885 kgm2

COG rotational mass about x2-axis I2 3 592 4 439 5 245 kgm2

COG rotational mass about x3-axis I3 2 298 3 385 3 358 kgm2

COG x1-coordinate xg1 −0.24 0.00 −0.15 m
COG x2-coordinate xg2 0.00 0.07 0.00 m
COG x3-coordinate xg3 −0.30 −0.42 -0.30 m
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(c) Inertial base vector system (Ei), body-fixed base vector system (ei),
DOFs and dimensions

Figure 5: Trawl board kinematics

velocity squared, see e.g. [34, 35]. Such effects and possible hydrodynamic interaction be-
tween the pipe section and the trawl board are neglected in Eq. (3). The vector v contains
the generalized displacements depicted in Fig. 5 and vg the corresponding displacements
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at the COG,

v =
[
v1 v2 v3 θ1 θ2 θ3

]>
(4)

vg = Tg
>v (5)

where the eccentricity transformation matrix Tg is defined in terms of the COG coordi-
nates xg,

Tg =

[
I3×3 03×3

S
(
xg

)
I3×3

]
S
(
xg

)
=

 0 −xg3 xg2
xg3 0 −xg1
−xg2 xg1 0

 (6)

Numerical time integration with the HHT-α method [26] and Newton’s method are em-
ployed to solve Eq. (3). The associated computations are executed in the inertial coordi-
nate system defined by the Ei-triad in Fig. 5. Velocity ṙ and acceleration r̈ needed in the
inertial coordinate system are obtained from,

v̇ = Tṙ (7)

v̈ = Ṫṙ + Tr̈ (8)

in which the 6× 6 transformation matrix T and its rate of change with respect to time are
given by,

T =

[
Q 03×3

03×3 Q

]
Ṫ = −

[
S
(
θ̇
)
Q 03×3

03×3 S
(
θ̇
)
Q

]

S
(
θ̇
)

=

 0 −θ̇3 θ̇2

θ̇3 0 −θ̇1

−θ̇2 θ̇1 0

 Qij = ei ·Ej i, j = 1, 2, 3

(9)

The hydrodynamic mass matrix is assumed diagonal at the trawl board geometric
center and is therefore expressed according to,

Diag
[
Ma

(
Θ,∆

)]
=
[
ma1 ma2 ma3 Ia1 Ia2 Ia3

]
mai = mai

(
Θ,∆

)
Iai = Iai

(
Θ,∆

) (10)

Seabed proximity effects of the hydrodynamic mass matrix are accounted for by the
seabed gap ∆ and the seabed inclination angle Θ, see Fig. 5. A third parameter giv-
ing the orientation of the base vector e1 relative to the seabed should also be included.
This parameter was excluded because model tests of trawl and pipeline interaction have
demonstrated that e1 ·E3 ≈ 0 when the board is in contact or close to the seabed, see Fig.
5. A linear interpolation scheme is employed to express the hydrodynamic mass in terms
of ∆ and Θ. The ∆-value is taken as the minimum distance between the trawl board ski
and the seabed, and the seabed inclination angle Θ is defined in terms of the seabed unit
normal vector which in this work is coincident with E3, see Fig. 5a,

Θ = cos−1 (E3 · e2)− 90◦ (11)
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The computation of hydrodynamic mass was carried out based on the geometry of
a rectangular box with aspect ratio h

l equal to 0.55 and thickness t set to 0.1 m. Three
different gap values ∆ were considered in these computations, 0.1 m, h

2 and 3
2h, with

the box oriented such that E3 ⊥ e1, see Fig. 5. The seabed gap of 3
2h represents the

unbounded fluid case in which the hydrodynamic mass is constant. Due to symmetry
about Θ = 0◦ the computations were executed for seabed inclination angles Θ equal to
0◦, 10◦, 20◦, 30◦, 45◦ , 60◦ , 75◦ and 90◦. Compared to the unbounded fluid case the
value of ma2 was found to increase 15 – 20% for ∆ = 0.1 m and |Θ| < 45◦. An identical
representation of the trawl board hydrodynamic mass has previously been applied by
Teigen et al. [21] and by Longva et al. [22]. The rigid body mass matrix Mg is assumed
diagonal at the COG and hence expressed identical as in Eq. (10) with mai = m and
Iai = Ii. The steel mass m and the mass moments of inertia Ii are given in Table 2
and were estimated by weight and geometric measurements of the boards applied in the
laboratory tests.

The hydrodynamic Coriolis-centripetal matrix is also expressed as a function of ∆
and Θ. This matrix can be written in terms of the angular velocity components as follows,

Ca

(
Θ,∆, v̇

)
=



0 −ma2θ̇3 ma3θ̇2 0 0 0

ma1θ̇3 0 −ma3θ̇1 0 0 0

−ma1θ̇2 ma2θ̇1 0 0 0 0

0 0 0 0 Ia3θ̇3 −Ia2θ̇2

0 0 0 −Ia3θ̇3 0 Ia1θ̇1

0 0 0 Ia2θ̇2 −Ia1θ̇1 0


mai = mai

(
Θ,∆

)
Iai = Iai

(
Θ,∆

)
(12)

The Ca-matrix together with Ṫ in Eq. (8) account in a consistent way for hydrodynamic
inertia loads associated with rotation of the body-fixed coordinate system. During pipe
interaction large angular velocities arise which in combination with the large value of
ma2 may result in considerable Coriolis-centripetal forces. In Section 5.2 the effect of
excluding the Ca-matrix and setting Ṫ = 0 in Eq. (8) is investigated. Munk moments
arising due to linear velocities are normally included in the Ca-matrix, see e.g. [36],
but are here excluded because the inviscid flow assumption is inappropriate for flat plate
geometries at large angles of attack [37]. The rigid body Coriolis-centripetal matrix Cg

is expressed on the same format as used in Eq. (12) with mai = m and Iai = Ii.
Before pipe interaction, the tension levels of the trawl gear wires and the trawl board

orientation must be similar to what were experienced in the model test. These quantities
are mainly governed by the hydrodynamic force and associated eccentricity moments
induced by the linear relative fluid velocity. A description of these steady-state fluid loads
can be established by wind tunnel testing as employed by Reite and Sørensen [38] or
by flume tank experiments as conducted by Teigen et al. [21]. Such experiments have
not been considered in this work due to economic restrictions and because the boards
are considered outdated for prediction of design loads from modern trawl gear. Instead, a
coarse approximation of the normal force coefficient was employed based on information

116



PAPER II

given in the DNV-RP-H103 code [28],

qf2

(
Ψ
)

= hlΓ ·

{
− sign (sin Ψ)

0.222+ 0.283
sin Ψ sign(sin Ψ)

Ψ ∈ [30◦, 150◦] ∪ [210◦, 330◦]

0 Ψ = 0, 180◦, 360◦
(13)

Here Ψ refers to the hydrodynamic angles of attack Ψ1 and Ψ3 depicted in Fig. 5, h
is the board height and l is the board length. The factor Γ accounts for 3-dimensional
effects and is set to 0.6 based on the drag coefficient value for a plate with similar as-
pect ratio inclined 90◦ to the incident flow in unbounded fluid. Stalling is expected ap-
proximately at Ψ = 30◦ and no attempt is made to predict reasonable qf2-values for
Ψ ∈ [−30◦, 30◦] ∪ [150◦, 210◦]. On this interval the force coefficient is simply obtained
by linear interpolation of the discrete values given in Eq. (13). With this the board is
simply modeled as a pure drag device without contributions from lift-induced forces and
moments. Hence, regarding validity of the numerical model it is a prerequisite that Ψ1

and Ψ3 stay within the interval [30◦, 150◦] ∪ [210◦, 330◦] when the board interacts with
the pipe. Prior to interaction there is relative fluid motion mainly in the x1x2-plane, and
in case of high span heights considerable velocities appear also along the x3-axis. The
loads due to linear velocities are therefore expressed as follows,

Fq1

(
Ψ1,Ψ3, v̇

)
=

1

2
ρ


qf1|v̇1|v̇1

qf2

(
Ψ
)
U2

qf3|v̇3|v̇3

0
0
0


qf1 = 2Cfhl

(
1 + 2 tl

)
qf3 = 2Cfhl

(
1 + 2 th

)
+ Cp3lt

Cf = 0.00615
Cp3 = 0.5

Ψ = Ψ3 , U2 = v̇2
1 + v̇2

2 if |v̇1| > |v̇3|
Ψ = Ψ1 , U2 = v̇2

3 + v̇2
2 if |v̇3| > |v̇1|

(14)

where Cf and Cp3 are associated with skin friction and pressure drag. During pipe in-
teraction the relative fluid motions are unsteady and rather complex due to pipeline and
seabed proximity effects. Equations (13) and (14) are strictly valid only for steady-state
conditions in unbounded fluid and must therefore be regarded as a rough approximation
of the true hydrodynamic loads. In view of this approximation possible eccentricity mo-
ments in DOF 4 and DOF 6 are neglected in Eq. (14). This is justified since experimental
tests [37, 39] have demonstrated that the normal force in DOF 2 acts nearby the geometric
center for Ψ ∈ [30◦, 150◦] ∪ [210◦, 330◦]. Transient lift loads are induced when there is
a sudden change of the relative fluid velocity vector, see e.g. [40]. Such loads are present
during the initial board-pipe interaction phase when the board decelerates and the angle
of attack Ψ3 undergoes a rapid change away from its steady value. However, as contact
loads and inertia loads dominate the equilibrium balance in this phase, the contribution
from transient lift loads is conveniently neglected in Eqs. (13) and (14).

A suitable rotational damping model must be employed because large angular ve-
locities arise when the board interacts with the pipe. This damping is beneficial also for
removal of unsteady motions when the trawl gear is accelerated to the desired velocity. In
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DOF 5 the damping was estimated by integration of skin friction forces when consider-
ing the board subjected to a pure angular velocity θ̇2, whereas a coupled damping model
based on the total velocity normal to the board was applied to obtain estimates for DOF 4
and DOF 6. The damping model is summarized as follows,

Fq2

(
v̇
)

=
1

2
ρ


0
0
0
qm1

qm2

qm3



qm1 = −Cp
h/2∫
−h/2

l/2∫
−l/2

x3v̇N |v̇N |dx1dx3

qm3 = Cp
h/2∫
−h/2

l/2∫
−l/2

x1v̇N |v̇N |dx1dx3

v̇N = v̇2 + x1θ̇3 − x3θ̇1

qm2 = 2θ̇2|θ̇2|Cf
h/2∫
−h/2

l/2∫
−l/2

(
x2

1 + x2
3

) 3
2 dx1dx3

Cp = 1.7 Cf = 0.00715

(15)

where the coefficientsCf andCp are assumed constant over the board surface. The damp-
ing in DOF 4 and DOF 6 is pressure-induced and serve as a passive magnitude control
for the Coriolis-centripetal forces emerging from the Ca-matrix and Ṫ, see Eqs. (8) and
(12). Due to the large value of the hydrodynamic mass, ma2, these forces could easily
be over-predicted if the angular velocity becomes too large. The selected value of Cp in
Eq. (15) was set based on comparison with video recordings and measured time histories
from the experimental tests.

5 Results and discussion

The considered simulation cases are summarized in Tables 3 and 4, where ID tags A – L
are used for result identification subsequently. These cases are further separated into span
heights H ranging from 0.0 m to 6.0 m involving in total 34 simulation runs. Throughout
this section annotation SIM designates the simulated responses and MOD refers to the
model test measurements. Due to property right issues all results are normalized with
respect to the averaged model test response.

5.1 Importance of the pressure-induced rotational damping model

The importance of the pressure-induced quadratic rotational damping in Eq. (15) is here
demonstrated for case I in Table 4 with 1 m span height. As shown in Fig. 6a, initial
contact is established at the board leading edge, and immediately a large positive rotation
about the x3-axis in Fig. 4c takes place such that the trailing edge hits into the pipe at
1.25 s interaction time, see Fig. 6b. A combined upward translation and positive rotation
about the x1-axis then follows until the board is released from the pipe as seen in Fig. 6c.
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ID Board Pipe B.C. Velocity Warp stiff.
[m/s] [kN/m]

A R1900 Fixed 2.0 28.0
B R1900 Fixed 2.0 39.0
C R1900 Flexible 2.0 28.0
D V2600 Fixed 2.0 28.0
E V2600 Fixed 3.0 28.0
F V2600 Fixed 3.0 39.0

Table 3: Identification of simulation cases

ID Board Pipe B.C. Velocity Warp stiff.
[m/s] [kN/m]

G V2600 Flexible 3.0 28.0
H R2600 Fixed 2.0 28.0
I R2600 Fixed 3.0 28.0
J R2600 Fixed 3.0 39.0
K R2600 Flexible 2.0 28.0
L R2600 Flexible 3.0 28.0

Table 4: Identification of simulation cases

In Fig. 7 annotation WOCC refers to simulations excluding the hydrodynamic Coriolis-
centripetal loads andCp refers to Eq. (15). The force histories demonstrate that aCp-value
of 1.7 gives good agreement with the model test in terms of duration, the initial interac-
tion phase and maximum load. A significant reduction of the duration results when the
Cp-coefficient is set to 1.0. By comparison with the corresponding WOCC response in
Fig. 7 it is evident that the reduced interaction time occurs due to over-prediction of the
angular velocity components and the hydrodynamic Coriolis-centripetal loads. Thus, the
pull-over evolution depends strongly on the pressure-induced rotational damping and non-
conservative behavior may result if the Cp-coefficient is set too low. According to Fig. 7
there are small differences between the simulations denoted WOCC in spite of the distinct
damping levels employed. This indicates that the damping level associated with Cp = 1.7
is not too conservative.

5.2 Importance of the hydrodynamic Coriolis-centripetal loads

In rigid body motions with small angular velocities, such as in seakeeping analysis of
ships and floating structures, the Coriolis-centripetal loads are usually neglected, see e.g.
[41]. The effect of excluding the hydrodynamic part of these loads was investigated by
removing the Ca-matrix in Eq. (3) and setting Ṫ = 0 in Eq. (8).

Without the hydrodynamic Coriolis-centripetal loads the motion of the R2600 board
was found to deviate from the model test behavior for fixed support conditions with
H ≥ 2.0 m. This is illustrated in Fig. 8 where a dominant negative rotation about the x2-
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(a) 0.0 s interaction time (b) 1.1 s interaction time (c) 1.6 s interaction time

Figure 6: Evolution of pull-over, ID: I, H=1 m
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Figure 7: Horizontal pipe reaction force, ID: I, H = 1 m

axis in Fig. 4c occurs due to the lever arm between the COG and the warpline attachment
point. By including hydrodynamic inertia loads associated with rotation of the body-fixed
coordinate system the same motion as experienced in the model test was captured. As
seen in Fig. 9 the interaction is then rather characterized by a positive rotation about the
x2-axis. The difference in interaction behavior occurs due to the Coriolis-centripetal force
contribution, ma2θ̇1v̇2, which increases from 0 kN to 40 kN in the x3-direction between
3.7 s and 4.8 s interaction time, see Figs. 9b and 9c. As demonstrated in Section 5.1 there
is a strong interplay between the pressure-induced rotational damping and the hydrody-
namic Coriolis-centripetal forces. Consequently, the board motion would deviate from the
consistent behavior in Fig. 9 if the coefficient Cp in Eq. (15) is altered significantly.

In contrast the R1900 and the V2600 boards had similar motions as in the model tests
regardless of the Coriolis-centripetal loads. For the R1900 board the Coriolis-centripetal
loads do not affect the motion because the towing velocity is reduced to 2.0 m/s and
the value of ma2 is reduced by 40% compared to the R2600 geometry. The interaction
behavior of the V2600 board is governed by the hinged warpline connector, see Fig. 3b,
and has therefore an average rotational velocity θ̇1 that is approximately 50% lower than
for the R2600 board.
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(a) 3.2 s interaction time (b) 4.2 s interaction time (c) 4.8 s interaction time

Figure 8: Pull-over evolution without hydrodynamic Coriolis-centripetal loads, ID: I, H=3 m

(a) 3.2 s interaction time

ma2θ̇1v̇2

(b) 4.2 s interaction time

ma2θ̇1v̇2

(c) 4.8 s interaction time

Figure 9: Pull-over evolution with hydrodynamic Coriolis-centripetal loads included, ID: I, H=3 m

5.3 Validation against model test results

The horizontal pull-over force is the primary response variable and should in principle
agree with the model test in terms of duration, force build-up and maximum load level.
The available data from the model tests consist of measured time histories, maximum re-
sponse values and pull-over force impulses. The pull-over force was derived via measure-
ments of the pipe acceleration in the tests. To avoid uncertainties due to the acceleration
measurements the pipe reaction forces have instead been emphasized in this work. A typ-
ical time history of the total horizontal reaction force for span heights H ≥ 2 m is shown
in Fig. 10. The interaction is initially characterized by contact between the warpline and
the pipe. In this phase the board is raised from the seabed and a gentle increase of the
horizontal reaction force takes place. In case of fixed pipe support conditions an abrupt
force increase similar as in Fig. 10 occurs when the board gets into contact with the pipe at
time Tw. During the board-pipe interaction phase the warpline tension increases linearly
with time and raises the total horizontal reaction force to the maximum value denoted
FMh in Fig. 10. The time instant Tt in Fig. 10 is used to quantify the pull-over duration,
and is taken at the instant when an evident drop of the horizontal force takes place. Loss
of contact between board and pipe is designated by TI and is employed for computation
of the pull-over force impulses,

It =

TI∫
0

√
F 2
hp + F 2

v dt Ip =

TI∫
Tw

√
F 2
hp + F 2

v dt

Fhp = Fh +Mah + CP |vh|vh

(16)
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Board-pipe interaction

tTw

FMh

Fh

TITt

Tp = Tt − Tw

Warp-pipe interaction

Figure 10: Definition of characteristic responses

in which Fv denotes the total vertical pipe reaction force and Fhp refers to the horizontal
pull-over force. The acceleration ah and the velocity vh of the pipe are only relevant for
flexible support conditions and are taken positive in the direction of over-trawling. The
employed values of M and CP are given in Section 2.

The trawl gear was not settled to the exact same steady configuration after the accel-
eration phase in the model tests. Differences could be observed prior to interaction for the
warpline tension, hit position along the pipe and the sweepline tension level. These ob-
servations imply that the trawl board orientation also was slightly changed. In some runs
small rotational board motions prior to impact were present as the boards bumped into
obstacles on the ocean basin floor. These variations influence the characteristic responses
and could therefore give an indication of the expected bias level for the simulation model.
To quantify the variability the coefficient of variation (COV) was computed,

V (Xmod) = 100% · SX,mod
X̄mod

X̄mod =
1

Nr

Nr∑
k

Xmod,k

S2
X,mod =

1

Nr − 1

Nr∑
k

[
Xmod,k − X̄mod

]2 (17)

in which the generalized response parameter Xmod refers to either Tt,mod, FMh,mod or
It,mod. The COV was computed only for tests repeated at least three times (Nr ≥ 3).

The bias W
(
X
)

was taken as the ratio of the simulated response Xsim and the aver-
aged model test response X̄mod from Eq. (17),

W
(
X
)

=
Xsim

X̄mod
(18)

The pull-over force impulse is regarded as the most important parameter for the global
pipe response since it contains information of both the duration and the load level. The
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averaged impulse bias W̄
(
I
)

and its standard deviation Z
(
I
)

were obtained by,

W̄
(
I
)

=
1

NH

NH∑
i

Isim,i
Īmod,i

Īmod,i =
1

Nr

Nr∑
k

Imod,k (19)

Z2(I) =
1

NH − 1

NH∑
i

[
W
(
Ii
)
− W̄

(
I
)]2

(20)

where NH denotes the number of considered span heights H for the relevant test cases.
As discussed in Section 4, a prerequisite for the validation is that the hydrodynamic

angles of attack Ψ1 and Ψ3 are kept outside the intervals [−30◦, 30◦]∪ [150◦, 210◦]. Rep-
resentative time histories of the angles are shown in Fig. 11, where the second annotation
letter refers to the span height in meters and the first letter to the ID tags in Tables 3 and
4. The runs with the V2600 board and the R2600 board are seen to be kept within the ad-
missible range of Ψ1 and Ψ3 throughout the pull-over. The first occurrence of board-pipe
contact corresponds to the abrupt change of attack angles in Fig. 11. Prior to the board-
pipe interaction phase the simulation runs with the R1900 board violate the validity limits
by about 5◦ – 10◦. This violation is regarded acceptable because the horizontal pull-over
force is only 5 – 10 kN in this phase, and the angles of attack are quickly brought within
the admissible range when board-pipe contact is established.

The trawl board orientation just prior to the board-pipe interaction phase was realized
to be important for the pull-over evolution for span heights H ≥ 2 m. The orientation is
governed by possible eccentricity moments in DOF 4 and DOF 6 associated with Eq. (14)
and the attachment points of the warpline and the sweepline. As noted in Section 4 the
eccentricity moments were neglected in view of the rough approximation inherent in Eqs.
(13) and (14). To get the same board orientation as observed in the tests for H ≥ 2 m, the
position of the crowfoot node depicted in Fig. 1 was shifted vertically on the range±0.5 m
away from its neutral position on a case-to-case basis. Note that no documentation was
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Figure 11: Hydrodynamic angles of attack

123



PAPER II

Table 5: Statistics of characteristic responses

ID H V
(
Tt,mod

)
V
(
Fh,mod

)
V
(
It,mod

)
W
(
Tw
)

W
(
Tt
)

W
(
Fh
)

W
(
It
)

W̄
(
It
)

Z
(
It
)

[m] % [-] % [-] % [-] [-] [-] [-] [-] [-] [-]

A

0.0 - 3.1 - - - 1.076 -

1.065 0.077
1.0 - - - - 1.111 1.126 1.145
2.0 4.1 9.4 17.6 1.064 0.974 1.195 1.111
3.0 0.0 3.0 2.5 1.026 0.986 1.149 1.021
6.0 0.4 0.9 1.8 1.027 0.980 1.136 0.979

B 3.0 0.8 1.4 0.5 1.069 1.005 1.143 0.991 - -

C
0.0 - - - - - 1.021 -

- -1.0 3.7 5.0 5.4 - 0.833 1.250 0.848
3.0 2.6 4.3 - 1.158 0.980 1.216 -

D 6.0 1.1 1.6 3.4 1.000 1.010 1.246 1.004 - -

E
1.0 0.0 13.0 6.8 - 1.000 0.983 0.967

0.940 0.0383.0 1.5 7.0 4.6 1.075 1.035 0.900 0.896
6.0 0.0 0.3 1.7 1.006 1.039 1.034 0.956

F
1.0 4.0 3.4 1.1 - 1.046 1.103 1.082

1.002 0.0843.0 0.0 3.5 4.9 0.984 0.971 0.896 1.009
6.0 2.6 4.5 2.6 1.027 1.061 1.078 0.914

G
1.0 10.2 11.3 12.7 - 0.885 1.152 0.833

0.916 0.0793.0 7.4 1.2 6.5 0.926 0.986 1.137 0.923
6.0 3.5 0.3 2.7 0.967 1.037 1.186 1.004

H
1.0 3.8 10.1 1.3 - 0.880 1.038 1.141

0.966 0.1643.0 0.6 2.5 3.2 1.205 0.941 1.137 0.817
6.0 1.4 1.4 2.3 1.044 1.018 1.210 0.942

I

0.0 - 1.2 - - - 1.146 -

1.098 0.096
1.0 6.7 10.9 6.3 - 0.981 0.987 1.109
2.0 4.3 1.8 6.2 1.171 1.009 1.034 0.876
3.0 2.1 1.1 2.5 1.145 1.042 1.153 1.004
6.0 0.6 2.7 3.6 0.964 1.007 1.167 0.982

J
1.0 3.8 2.4 9.4 - 0.919 1.012 0.895

0.901 0.0493.0 2.5 6.4 0.6 1.030 0.993 1.049 0.855
6.0 0.7 0.7 5.1 1.050 1.029 1.139 0.952

K 6.0 - - - 1.076 1.005 1.207 - - -

L
0.0 - 9.2 - - - 1.047 -

- -1.0 10.7 16.7 28.7 - 0.876 1.082 0.721
3.0 2.0 7.2 - 1.274 0.983 1.109 -

available for the sweepline-board attachment configuration employed in the tests.
Statistics of the characteristic responses are given in Table 5 with the ID tags A – L

defined in Tables 3 and 4. Duration and impulse for 0.0 m span height are not tabulated
due to the short interaction time. No impulses are reported for runs where the maximum
allowable pipe displacement was reached, but duration and horizontal force just prior to
the pipe hitting into the end stoppers are given. According to Table 5 the model test COVs
denoted by V

(
Xmod

)
are larger than 10% in 5 of 34 tests. Slight differences were pres-

ent for the initial conditions prior to interaction in these tests. Since the initial conditions
cannot be exactly reconstructed the simulation bias is expected to be at least 10%. Con-
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Figure 12: Horizontal pipe reaction force, ID: A, H = 1 m

 

 

MOD

SIM

Time, t [s]

F
h
/F̄

M h
,m

o
d

[-
]

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

1.2

Figure 13: Horizontal pipe reaction force, ID: A, H = 2 m

sidering that the tabulated COVs are based on only three observations the variability is
negligible in the majority of the tests.

According to Table 5 the bias W of the duration, the impulse and the maximum hor-
izontal force for the R1900 board are in the range 1.15-1.20 for some of the simulations
with fixed pipe supports. These bias values might be regarded as too large, but according
to the force histories in Figs. 12 and 13 the model test response is actually well captured
for these runs. In case of flexible pipe supports the bias is of the same magnitude, and also
here the simulation predicts the behavior experienced in the tests satisfactorily, see Fig.
14. For 3 m span height the characteristic board-pipe locking phenomenon experienced
in the tests is captured. This is illustrated in Fig. 15 where the warpline connector device
locks onto the pipe such that the board-pipe relative motion is negligible until the instant
the pipe reaches its maximum allowable displacement of 8.5 m. The force spike at 11.9 s
interaction time in Fig. 14 corresponds to the instant the pipe hits into the end stopper.
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Figure 14: Horizontal pipe reaction force, ID: C, H = 3 m

Figure 15: Board-pipe locking, ID: C, H = 3 m
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Figure 16: Horizontal pipe reaction force, ID: F, H = 1 m
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Figure 17: Horizontal pipe reaction force, ID: E, H = 3 m
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Figure 18: Horizontal pipe reaction force, ID: G, H = 1 m
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Figure 19: Horizontal pipe reaction force, ID: G, H = 3 m
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In case of fixed pipe supports the bias variables W in Table 5 are in average within
10% for the V2600 board. The good accordance is confirmed by the horizontal force his-
tories in Figs. 16 and 17. Note the nicely predicted local peaks in Fig. 17 arising when
new regions of the board surface get into contact with the pipe. The simulations for flex-
ible pipe support conditions have a slightly larger bias for the response parameters, but
as shown in Figs. 18 and 19 the horizontal force is still in very good agreement with
the model tests. Due to the hinged warpline connector seen in Fig. 3b, the V2600 board
passed smoothly over the pipe in the model tests and induced 40% lower loads than the
R2600 board [8]. The simulations confirmed these findings where the modeled warpline
connector in Fig. 4b allowed the board to rotate smoothly around the pipe in the same
manner as experienced in the tests. This underlines the necessity of a detailed contact
geometry description when aiming for realistic predictions of the interference loads.
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Figure 20: Horizontal pipe reaction force, ID: I, H = 3 m
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Figure 21: Horizontal pipe reaction force, ID: I, H = 6 m
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Figure 22: Horizontal pipe reaction force, ID: L, H = 1 m
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Figure 23: Horizontal pipe reaction force, ID: L, H = 3 m

According to Table 5 satisfactorily bias values W are obtained for the R2600 board
in case of fixed pipe supports. This is confirmed by Figs. 20 and 21 where the simulated
behavior is consistent with the model tests. Video recordings of the tests demonstrate
that the R2600 board got wedged under the pipe for H ≥ 2 m, and was released by a
moment induced via the warpline tension increase and the lever arm represented by the
rigid warpline connector seen in Fig. 4c. As illustrated in Fig. 9 for 3 m span height this
behavior was fully captured in the simulations. For flexible supports the case with 1 m
span height has a large impulse bias, but according to Fig. 22 the simulated response
is within the variability of the model test runs. The characteristic locking phenomenon
illustrated in Fig. 15 occurred also for the R2600 board for 3 m and 6 m span height. As
seen in Fig. 23 the horizontal force is predicted fairly well for 3 m span height, where
the force spike at 8.0 s interaction time corresponds to the instant the pipe hits into the
end stopper. During the locking phase the exact same board orientation as observed in the
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model tests was persistent until the pipe reached its maximum allowable displacement.
The good accordance with the laboratory tests relates to the applied contact geometry
description, and points out the importance of accurate modeling of the sloping edges on
the warpline connector device seen in Fig. 4c.

In view of the obtained results some comments regarding the simulation input param-
eters are needed. If the simulations were executed as simple blind tests it would not be
possible to achieve the same level of agreement with the experimental data. This is clear
from the rotational drag damping discussed in Section 5.1 and because the sweepline
tension level during the board-pipe interaction phase, the crowfoot node vertical position
and the board-pipe friction coefficient were tuned on a case-to-case basis. Note that the
sweepline tension adjustments were made solely to get the same tension level as experi-
enced in the tests.

The impulse is regarded as the most important parameter for pull-over events as it
contains information about both the load level and the duration. Averaged values of the
impulse bias W̄

(
I
)

are seen to be within 10% for each simulation case in Table 5. Except
for the case denoted ID H the associated standard deviation Z

(
I
)

is also within 10%. The
simulated horizontal force histories above demonstrate that the characteristics of the pull-
over interaction are consistently captured. Model test video recordings further confirm the
good accordance in terms of the locking behavior for the R1900 and the R2600 boards
and the smooth passings of the V2600 board. In view of the simulated bias values and
the largest model test COVs in Table 5 the numerical model is therefore regarded to be
successfully validated.

5.4 Influence of board-pipe friction coefficient

The friction coefficient µ between board and pipe was realized to be a sensitive parameter
for the characteristic responses. Values of µ on the interval 0.4 – 0.6 were applied in the
validation study in Section 5.3. Since these coefficients are regarded as upper range values,
the effect of reducing the tangential contact forces was investigated. Simulated responses
obtained in the validation study are regarded as benchmark values and are denoted by
Xref , while responses predicted with ∆µ =

{
− 0.1,−0.2,−0.3

}
are denoted by X .

The relative change of the characteristic responses for single simulation runs D and the
averaged relative changes D̄ were computed as follows,

D
(
X
)

=
X −Xref

Xref
D̄
(
X
)

=
1

NH

NH∑
i

D
(
X
)

(21)

in which X refers to either FMh , Tp or It defined in Fig. 10 and by Eq. (16). NH denotes
the number of span heights for the relevant simulation case.

The sensitivity of the friction coefficient is illustrated in Fig. 24, where labels A – L
refer to the ID tags in Tables 3 and 4. The charts demonstrate that the magnitude of the
averaged responses decrease when the friction coefficient is reduced. Although the pre-
dicted changes are significant, the resulting trend is expected because the frictional forces
oppose the motion of the board as it slides and rotates around the pipe. The observed
trend originates from the board-pipe interaction time Tp which in the extreme case with
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Figure 24: Overall sensitivity of board-pipe friction coefficient

∆µ = −0.3 is reduced by 10 – 20%. The reduction of Tp limits the warpline tension in-
crease and hence a smaller maximum horizontal force FMh results. Due to the combined
decay of load level and interaction time the drop of pull-over impulse becomes significant.
Note that ∆µ = −0.3 is perhaps too extreme as artificially large sliding motions along
the pipe were present in some of the simulation runs.

The dependence on span height is reflected in Fig. 25 for ∆µ = −0.2. According to
this chart the impulses are reduced by 30 – 60% for 1 m span height, while the impulse
decrease is less than 20% for higher span heights. These predictions are consistent with
the trawl board motions during interaction. In case of 1 m height the board approaches
the pipe horizontally and evident tangential contact point displacements occur during the
pull-over, see Fig. 6, whereas for H ≥ 2 m the board gets into contact with the pipe from
beneath as seen in Fig. 9 and the interaction is rather characterized by large board rotations
around the pipe with less degree of sliding. Notice that definite statements regarding the
pipe support condition cannot be inferred from Fig. 25.
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Figure 25: Span height sensitivity of board-pipe friction coefficient for ∆µ = −0.2
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5.5 Effect of warpline angle, nonlinear warpline stiffness and full-length warpline

Due to space limitations in the laboratory tests a straight warpline attached to a linear
spring assigned an averaged stiffness was used to represent the full-length warpline, see
Fig. 1. It is a challenging task to combine a reasonable warpline angle and a constant
stiffness value. The sensitivity of the warpline parameters and the validity of using a
truncated warpline model were therefore investigated in terms of three cases,

• Set the warpline angle αw to 13◦. This reduces the warpline angle by approximately
4◦ and 7◦ for the axial warp stiffnesses of 28 kN/m and 39 kN/m.

• Apply a nonlinear towing spring with similar static chord stiffness characteristic
as the warpline considered when the linear spring stiffness Kt in the model test
was set. The employed characteristic had an axial warp stiffness of 18 kN/m and
28 kN/m at respectively 100 kN and 200 kN tension. The R1900 board was not
considered since it had approximately 40 kN warpline tension prior to interaction
and a maximum warp force far below 200 kN.

• Use a warpline of length 1200 m with similar static configuration and stiffness as
considered in the model test to set the linear spring stiffness Kt. Details about the
full-length warpline are given in Section 2.

The warp-pipe interaction phase was elongated by several seconds for high span
heights when the warpline angle was set to 13◦. This interaction is of no interest for
comparison purposes and the impulse Ip in Eq. (16) is therefore emphasized. The change
of the impulse according to Eq. (21) with Ip,ref from Section 5.3 is shown in Fig. 26,
where the IDs A – L refer to Tables 3 and 4. The four runs in Fig. 26 with the largest
differences had not the same trawl gear wire tension levels and board orientation as in
the reference runs in Section 5.3. A tendency of 5 – 10% impulse gain is demonstrated
for the other runs with minor differences in the initial conditions. The change of warpline
angle alone seems therefore not to be that crucial. It is rather differences introduced via
parameters depending on αw that change the interaction performance.

The effect of a nonlinear spring at the towing node is reflected in Fig. 27. In case of
fixed pipe support conditions the predicted differences are insignificant, whereas 10 – 20%
change of the characteristic responses results for flexible supports. No clear trend can be
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Figure 26: Warpline angle sensitivity, αw = 13◦
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Figure 27: Effect of nonlinear warpline stiffness

inferred from these results, except that flexible supports are more susceptible for changes
of the warpline stiffness. Hence, provided that an appropriate stiffness is selected the
simulated results gives no reason to abandon the linear spring model applied in laboratory
tests.

According to Fig. 28 a significant increase of the characteristic responses results when
the full-length warpline model is employed. The impulse gain is 30% to 60% in the ma-
jority of the runs with evident rise of both maximum force FMh and board-pipe interaction
time Tp. This trend is somewhat unexpected because both Figs. 26 and 27 dictate less in-
fluence from use of a nonlinear stiffness characteristic and a reduced warpline angle. The
reason for the more severe responses stems from the normal drag forces arising when the
warpline catenary configuration tightens up, which cause a significant warpline stiffness
increase at the instant board-pipe contact is established. To quantify the effective stiff-
ness a separate tow of the warpline at 3 m/s velocity with 90 kN pre-tension subjected to
an immediate stop at the lower end was simulated. The resulting chord stiffness values
became equal to 51.8 kN/m, 28.5 kN/m and 32.2 kN/m at tension levels of respectively
100 kN, 150 kN and 200 kN. As opposed to the static stiffness characteristic, the apparent
stiffness undergoes a reduction as the warpline tension increases. This behavior explains
the significant increase of the characteristic response in Fig. 28, and provide also valuable
information with regard to future work relying exclusively on laboratory tests.
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Figure 28: Effect of full-length warpline
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5.6 Influence of sweepline tension during interaction

In the validation study presented in Section 5.3 the sweepline tension level during inter-
action was adjusted towards the model test tension by controlling the transverse motion
of the trawl net node. The tests with fixed pipe supports had typically 0 – 15 kN residual
tension during the board-pipe interaction phase, while 0 – 25 kN tension was present in
the tests with flexible supports. Two extreme cases were considered to reveal the signifi-
cance of the residual tension. In the first case a tension value close to zero was obtained
by setting the dashpot constant denoted CD2 in Fig. 1 to 200 kN/m2s−2, whereas in the
other case maximum residual tension was obtained with CD2 = 0 kN/m2s-2. In a realistic
situation these extremes may represent turning manoeuvres of the fishing vessel that alter
the port and starboard tension balance of the trawl gear.

A significant overall decrease of duration, maximum horizontal force and pull-over
impulse resulted from the simulations with reduced sweepline tension. This trend is illus-
trated in Fig. 29 for the relative change of the impulse It according to Eq. (21), where
annotations A – L refer to the IDs in Tables 3 and 4. For span heights H ≤ 3 m, irre-
spective of the board type, the impulses decrease by 10 – 20% for fixed pipe supports and
close to 40% reduction is predicted for flexible pipe supports. This occurs because pos-
sible residual sweepline tension, which here is lost or close to zero, serve to restrain the
motion of the board when it slides and rotates around the pipe. The relative decrease of
sweepline tension is largest for flexible pipe supports, and the reduction of pull-over im-
pulse is consequently more pronounced for these cases. Note the impulse decrease for ID
C at 3 m span height, implying that the maximum pipe displacement was not reached and
that the characteristic locking behavior illustrated in Fig. 15 was faded out. According to
Fig. 29 the R2600 board predicts an impulse rise of 40% for 6 m span height and fixed
pipe supports. Due to the loss of sweepline tension the board trailing edge is in this case
lowered compared to the configuration shown in Fig. 9a. The board must then rotate a
larger angle to get around the pipe, which in turn extend the interaction time such that a
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larger maximum load is achieved.
WhenCD2 was set to zero the averaged sweepline tension became equal to 10 – 20 kN

for the R1900 board and 20 – 40 kN for the two others during the board-pipeline interac-
tion phase. These values are approximately 10 – 15% of the simulated maximum warpline
tension, and the horizontal balance of forces is therefore not altered much. The raised
sweepline tension level resulted in an overall increase of the board-pipe interaction time
with a corresponding rise of the maximum horizontal force. According to Fig. 29 the
increase of impulse is significant in most of the runs, and especially pronounced for flex-
ible support conditions. This behavior is explained by the restraining effect the sweepline
tension has on the motion of the board. The motion restraint is most dominant for flex-
ible supports because the allowance of horizontal pipe displacement leads to a higher
sweepline tension level. For the R1900 board with 1 m span height the restraining effect
actually made the pipe reach its maximum allowable displacement of 8.5 m. This incident
and the large impulse rises in Fig. 29 indicate that the situation with zero trawl net trans-
verse resistance is perhaps too extreme. Nevertheless, the simulated behavior identifies
the sweepline tension as a crucial boundary condition for the board.

5.7 Influence of hit angle

In current design practices the most severe trawling direction is assumed to be perpen-
dicular to the pipeline axis [1]. The validity of this assumption was investigated in terms
of hit angles φ set equal to 60◦ and 120◦, see Fig. 1. The extreme cases of zero and high
transverse trawl net resistance were considered withCD2 in Fig. 1 set equal to respectively
0 kN/m2s−2 and 200 kN/m2s−2.

When φ was set to 60◦ reductions up to 50% were obtained for both the board-pipe
interaction time Tp and the maximum horizontal reaction force normal to the pipe axis
FMh . This behavior is reflected in Fig. 30 for the relative change of the pull-over impulse
Ip computed in accordance with Eq. (21). Annotations A – L refer to the IDs in Tables
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3 and 4. All of the impulses are reduced compared to the case φ = 90◦ with values
between −30% and −70% in most of the runs. The influence of the transverse trawl net
resistance is seen to be of less importance. This relates to board translatory motions along
the skew pipe axis that work to prevent the sweepline from going slack, and consequently
the tension level is not governed by the CD2-value to the same degree as previously. Note
that the R1900 and the R2600 boards have impulse drops for 3 m span height with flexible
supports. In these runs the board-pipe locking behavior illustrated in Fig. 15 was more or
less faded out, and for the R1900 board the maximum pipe displacement of 8.5 m was not
reached. These findings are consistent with previous research [5], in which skew passings
of trawl boards were found to induce less severe interaction loads than perpendicular
crossings.

In case of 120◦ hit angle and 1 m span height with CD2 = 200 kN/m2s-2 the maxi-
mum horizontal forces were reduced by 30% to 60%. Apart from the R1900 board which
passed easy over the pipe, dominant sliding along the skew pipe occurred for approx-
imately 10 m such that the durations were extended by up to 40%. Depending on the
degree of sliding this lead to both smaller and larger impulses compared to the case with
φ = 90◦.

With Cd2 set to zero and φ = 120◦ the behavior was more or less unchanged for
the R1900 and R2600 boards compared to H = 1 m and CD2 = 200 kN/m2s-2, whereas
significantly more severe loads were induced by the V2600 board. For fixed pipe supports
the V2600 board was restrained by a sweepline tension of about 35 kN when it rotated
around the pipe. As illustrated in Fig. 31 this resulted in a nearly twice as large horizontal
force compared to φ = 90◦. With flexible pipe supports the V2600 board was locked
between the seabed and the pipe as seen in Fig. 32 until the pipe reached its maximum
displacement of 8.5 m. This resulted in a 70% larger horizontal force and an impulse
gain of 450%. These results are consistent with the behavior illustrated in Fig. 29 for
CD2 = 0 kN/m2s-2, however, as noted in Section 5.6 the assumption of zero transverse
trawl net resistance is perhaps too extreme. Thus, the severity of the predicted loads does
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seabed

Figure 32: Board-pipe locking, ID: G, H = 1 m, CD2 = 0 kN/m2s-2, φ = 120◦

not necessarily imply that current design load recommendations are non-conservative.
A significant increase of both load level and duration were seen for span heights H ≥

2 m when φ was set to 120◦ both for CD2 = 0 kN/m2s-2 and CD2 = 200 kN/m2s-2.
Unfortunately, the trawl board hydrodynamic angles of attack Ψ1 and Ψ3 were kept within
the inadmissible range [−30◦, 30◦] ∪ [150◦, 210◦] for several seconds in these runs. The
obtained responses can therefore not be regarded as fully valid, however, the authors still
believe that the observed trends are representable for the true interaction behavior.

In Fig. 33 the extreme behavior forH ≥ 2 m and φ ≈ 120◦ is illustrated for the R2600
board. Annotation TRW refers to the truncated warpline in Fig. 1 and FLW refers to a
simulation with the full-length warpline considered in Section 5.5. Both the truncated and
the full-length warpline model predict a significant increase of the warpline interaction
time Tw with a local force peak of 0.8 · F̄Mh just prior to board-pipe contact, see Fig. 33.
The extension of Tw occurs because the warpline slides along the skew pipe, rather than
folding over the pipe and increase the local warp angle αw at the board. This prevents
board uplifting and instead a 20 m translatory board motion takes place along the skew
pipe until the warpline connector wedges onto the pipe. In this wedged configuration the
board trailing edge is close to being in contact with the seafloor, while in Fig. 9a the
trailing edge is in comparison located 2.8 m above the seafloor. Thus, the board has to
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rotate approximately 180◦ about its x3-axis to release from the pipe. This rotation takes
some time, see the extended board-pipe interaction time Tp in Fig. 33, and allows large
forces to build up as the warpline tension increases to 270 kN and 350 kN in the FLW
and TRW runs, respectively. Compared to the model test measurement for φ = 90◦ the
maximum horizontal forces in Fig. 33 increase respectively with 20% and 65% for the
full-length and truncated warpline models.

Non-perpendicular crossings with φ close to 120◦ were considered by Moshagen,
Kjeldsen and Holthe [42] in six full-scale tests for uncertain span height values between
1 – 4 m. Valdemarsen [43] conducted full-scale interaction tests aiming to detect potential
fishing gear damage, but only span heights less than the board height were considered.
Hooking tests with φ set to 110◦ and 135◦ were conducted by MARINTEK [44], however,
due to a short span length the interaction identified above could not develop. Thus, it
seems like the setup that resulted in extreme loads, H ≥ 2 m and φ ≈ 120◦, has not been
addressed thoroughly in previous efforts.

6 Conclusions and future work

In this contribution a novel FE-based approach for prediction of fishing gear interference
loads on subsea pipelines was proposed. The rather complex interaction arising in trawl
board pull-over events was addressed. Relevant issues for obtaining realistic response pre-
dictions were dealt with in terms of trawl board hydrodynamic loads, FE modeling of the
trawl system and handling of contact between pipe and trawl gear. The performance of the
numerical model was investigated by means of an extensive validation study, in which the
pull-over load impulses were predicted within a 10% margin of the model test measure-
ments. According to model test video recordings the characteristic interaction behavior
was captured consistently for all three trawl boards. The proposed trawl board hydrody-
namic load model and the employed board-pipe contact model are therefore capable of
describing the relevant effects. A sensitivity analysis was conducted to identify important
parameters for the simulated pull-over response. The interaction was revealed to depend
upon the board-pipe friction coefficient, the sweepline tension level during interaction,
the warpline drag properties and the pipeline hit angle.

Consistent interaction behavior was demonstrated in spite of the discarded hydrody-
namic interaction between the trawl board and the pipeline. This indicates that for pipe
diameter to trawl board height ratios less than approximately 0.3 it is acceptable to neglect
the presence of the pipeline. The use of trawl board steady-state fluid loads in the rather
complex and unsteady flow state present during the interaction seems to be acceptable,
however, the angle of attack validity range was violated for non-perpendicular crossings
with high span heights. In future work the focus should therefore be on estimation of
the steady-state loads induced by the linear relative fluid velocity at low angles of attack,
considering both in-plane directions of the board. In this regard flume tank experiments
are favored with the seabed gap and the hydrodynamic angles of attack as independent
variables, see [21].

According to the sensitivity study the pull-over process may change significantly if the
governing parameters are altered. This finding is consistent with the performance seen in
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model test when the initial conditions prior to interaction undergo small variations [6]. The
strong interplay between the hydrodynamic Coriolis-centripetal loads and the pressure-
induced rotational damping poses challenges with regard to the simulation input data,
even for experienced users with good knowledge about trawl board pull-over interaction.
Another difficulty is introduced by the board-pipe friction coefficient sensitivity for low
span heights. In future work of similar kind it is thus recommended to always conduct a
proper validation of the numerical model against experimental tests.

The recommended pull-over loading used by the industry today is founded upon 20
year old model tests and assumes that perpendicular crossings induce the most severe
loads. Our efforts demonstrate in contrast that non-perpendicular crossings at high span
heights can induce more severe loads, however, clear statements with regard to current
design practices cannot be inferred as the hydrodynamic load model validity range was
violated. A natural step in further work is therefore to investigate crossings of more mod-
ern board types, e.g. the multi-foil boards considered by Teigen et al. [21], with a proper
description of the steady-state hydrodynamic loads at low angles of attack. A small trawl-
pipeline model test program for validation purposes is here regarded as mandatory. Use of
numerical simulations is beneficial mainly for effective reduction of statistical uncertainty
and to avoid use of a truncated and possible non-conservative warpline model. The current
pull-over load recommendations [1] may also be extended with parameters such as trawl
gear crossing angle, board-pipe friction coefficient, span flexibility and pipe mass. The de-
pendence on these parameters is preferably obtained by numerical simulations due to the
reduced parameter flexibility and the high time consumption associated with laboratory
tests.

Modern trawl boards may have twice as large steel mass and surface area as those
considered in this work. The computational strategy is anticipated to simulate a realistic
interaction also for these boards provided that the hydrodynamic loads are well described.
Modern boards are optimized with respect to lift-to-drag ratio and the geometry can be
complex with openings in the board plane. Thus, simplified methods for prediction of
hydrodynamic loads may be inaccurate such that separate experimental testing of the
boards has to be conducted instead. The interplay between the Coriolis-centripetal loads
and the rotational damping may represent a challenge also for these boards. Compared
to the boards considered in this work an aspect ratio closer to unity is believed to be
beneficial, because this increases the structural and hydrodynamic inertia entries I1 and
Ia1, such that the rotational velocity θ̇1 in average becomes smaller and the interplay less
pronounced.
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Abstract

This paper presents a novel Lagrangian-Eulerian finite element formulation for reeling
analysis of multilayered beams with gross interlayer slippage. In contrast to the conven-
tional Lagrangian approach, the mesh becomes practically fixed in space, which yields
significant benefits for the performance of the contact algorithms and the overall com-
putational efficiency. The needed Lagrangian-Eulerian kinematic relations are derived,
special attention is given to the convective transport term for the constitutive variables
and an implicit update scheme for the elasto-plastic bending model is formulated. The
proposed formulation is shown to predict responses with the same accuracy as offered by
the conventional Lagrangian formulation.

Keywords: Lagrangian; Eulerian; Reeling; Flexible pipe; Elasto-plastic

143





PAPER III

1 Introduction

Flexible pipes and cables are widely used in the petroleum industry for fluid transport,
power supply and signal transmission. Due to the compliant behavior in bending, these
structures are reeled onto large carousels when transported to the production site. A typ-
ical reeling operation involves several kilometers of material, large-deformation zones,
history-dependent material effects and extensive contact interactions along the reeling
path. Use of the conventional finite element (FE) method to simulate such an operation is
a very demanding task, however, the process is fairly steady state and the material trans-
port occurs with low velocity along a virtually fixed route in space. This naturally points
toward a quasistatic Lagrangian-Eulerian formulation in which the material and the mesh
are not tied to each other. In that case the treatment of the history-dependent material
behavior becomes the main challenge.

Most of the arbitrary Lagrangian-Eulerian (ALE) procedures for path-dependent ma-
terials utilize an operator split method, see e.g. Refs. [1, 2]. In such methods the time
step is first simplified into a pure Lagrangian step which determines the material motion.
Thereafter, the mesh velocity and the updated mesh coordinates are computed in the sec-
ond step. Finally, a convection step is initiated to transfer the state variables to the new
integration points established in the second step. Due to the convection step, the equi-
librium is disturbed which leads to some loss of accuracy. However, greater flexibility
regarding the mesh motion is allowed for [3], simpler and more robust algorithms can
be developed [2] and upgrading of an existing implicit Lagrangian implementation into
the ALE description is facilitated since no additional tangent stiffness contributions and
global unknowns appear. Successful applications of the fully coupled approach where the
mesh motion, the material motion and the convective effects are handled together have
also been reported, see Refs. [4, 5].

The ALE description has been employed in three-dimensional beam problems to han-
dle joints sliding along the beam axis [6] and to model axial mass flow [7]. Problems
involving axially moving beams have been addressed with both the Eulerian description
[8] and the Lagrangian-Eulerian approach [9]. In the literature for fluid conveying pipes,
the Eulerian formulation is commonly applied, see the review paper by Païdoussis and
Li [10] and references cited therein. Common for these applications is the focus on the
dynamic behavior and the justifiable assumption of elastic structural responses. To the
authors knowledge, the Lagrangian-Eulerian viewpoint has not yet been utilized in beam
problems with history-dependent material behavior.

When conventional ALE formulations are used in large-deformation analysis of solids,
their objective is to reduce mesh distortions without resorting to re-meshing and updat-
ing of the mesh topology. In this work, the purpose is instead to separate the mesh and
the material motions such that the mesh becomes practically fixed in space. For reeling
analyses this strategy yields significant benefits in terms of,

1) Use of non-uniform meshes with large elements in small-deformation regions.

2) No need to model the vast amount of material stored on the reels.

3) Improved stability performance for the contact algorithms.
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4) Larger time steps due to less variations in the contact conditions.

5) Less changes in the contact element topology result in reduced time consumption
for contact searches.

Regarding item 1), the overall element size in a conventional Lagrangian simulation is
restricted by accuracy requirements at the most critical location along the reeling path. In
contrast, a Lagrangian-Eulerian description with a nearly fixed mesh imposes restrictions
only for the elements located within the large-deformation regions. This benefit yields,
together with item 2) above, a significant improvement of the overall computational ef-
ficiency. With regard to item 3), contact interactions often lead to convergence problems
in reeling analyses, making frequent user interaction throughout the simulation runs un-
avoidable. The Lagrangian-Eulerian procedure mitigates these issues as the motion of the
contact geometry is significantly reduced. Furthermore, use of low-order contact elements
is motivated as continuity of the contact geometry becomes less critical.

Due to the hysteretic bending behavior, significant bending-induced torques may de-
velop in multilayered beams [11]. This phenomenon originates from interlayer friction
effects, which allow the bending moment vector to be non-aligned with the normal vec-
tor of the curvature plane, such that an internal torque is needed to fulfill equilibrium. In
situations with low tension, as is the case in reeling operations, the torque may provoke
torsional instabilities with possible formation of loops, see Refs. [12–14]. Indeed, such
incidents have been reported by subsea contractors in recent years. To obtain accurate
predictions of the generated torque, all history-dependent effects that influence the reel-
ing path configuration must be accounted for, together with the coupling between bending
and axial-torsional responses introduced via the interlayer contact pressures.

Several hysteretic bending models have been developed for multilayered beams dur-
ing the last years. Tan et al. [15] proposed two bending models for flexible risers that were
able to account for interlayer friction effects. A more sophisticated approach able to ac-
count consistently for radial pressure loads was proposed by Alfano, Bahtui and cowork-
ers [16, 17], who employed small-scale detailed FE simulations to calibrate elasto-plastic
models for flexible risers. The disadvantage of such an approach is the considerable ef-
forts needed to determine the material parameters. This was remedied by Sævik [18] who
formulated two elasto-plastic bending models that were able to account explicitly for
the radial interlayer contact pressures. The models were merged into multilayered beam
elements and predicted fatigue damages for flexible pipes in good correlation with ex-
periments. Recently, Aguiar et al. [19] proposed a multilayered beam element for flexible
pipe analysis, however, explicit account was not made for the interlayer contact pressures.

Based on the background information above, the Lagrangian-Eulerian formulation
must comply with the following requirements,

• Predict steady and unsteady responses with the same accuracy as offered by the
conventional Lagrangian simulation.

• Properly describe the hysteretic bending behavior and the interaction between bend-
ing and axial-torsional responses.

• Provide accurate predictions of the bending-induced torque.
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The developed formulation may also be advantageous for simulation of subsea pipe-
line and cable laying operations. In that case the mesh motion at the upper end is set equal
to the motion of the surface vessel. Compared to a conventional Lagrangian simulation,
the motion of the pipeline mesh relative to the surface vessel reduces significantly, such
that the benefits stated above in item 1) – 5) apply. This approach is regarded as more
favorable than the re-use of element strategy proposed by Økland et al. [20].

The organization of the paper is as follows: Section 2 describes the constitutive model
employed for the numerical investigations. Section 3 presents the key novelties of the
work, in which the kinematic relations, the treatment of convective transport effects for
the constitutive variables and the update of the elasto-plastic bending model are addressed.
Thereafter, the virtual work contribution is presented and the constitutive part of the tan-
gent stiffness relation is derived. The numerical examples in Section 4 focus on bench-
marking against the conventional Lagrangian approach and demonstration of basic per-
formances. A simple reeling example is also presented to illustrate the new computational
strategy offered through the developed formulation. In Section 5 the work is summarized
and the conclusions are given.

2 Multilayered beam constitutive model

In Section 4 an unbonded flexible pipe is employed for benchmarking, numerical perfor-
mance tests and to simulate an idealized reeling operation. This pipe represents a typical
example of a multilayered beam with gross interlayer slippage. The constitutive model
of the pipe is outlined in the following, with emphasis on the history-dependent bend-
ing behavior as it represents the main challenge for the Lagrangian-Eulerian formulation.
The axial-torsional constitutive relations are also presented due to their coupling with the
elasto-plastic bending response.

The pipe cross-section is as illustrated in Fig. 1 made of several concentric layers.
With regard to load-bearing, the pressure helix layer supports radial loads, the plastic
sheaths contribute mainly in bending and the tensile helix layers balance axial, torsional,
bending and radial loads. Unbonded flexible pipes are categorized as slender structures
with negligible shear deformations. The shear forces are consequently computed from the
moment equilibrium equation, such that a constitutive description must be assigned to the
axial force N , the torque M1 and the bending moments M2 and M3. The generalized
stress vector σ̂ and the energy-conjugate strain vector ε̂ therefore reads,

σ̂ =
K∑
i=1

[
Ni M1i M2i M3i

]>
(1)

ε̂ =
[
ε κ1 κ2 κ3

]>
(2)

where i is the layer number, ε is the axial strain, κ1 is the torsion and the bending curvature
components are denoted κ2 and κ3. The strain components are assumed equal in all of the
K layers. For flexible pipes the response due to axi-symmetric loads is usually handled
by a separate constitutive model [18, 21]. The bending response for the plastic sheaths
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Figure 1: Unbonded flexible pipe cross-section

can be represented with a linear-elastic model, while the bending contribution from the
tensile helix layers requires use of an elasto-plastic model.

2.1 Axi-symmetric model

The purpose of the axi-symmetric model is to provide axial force, torque, radial contact
pressures and tangent stiffness parameters for each layer. A layer is either modeled as
a tubular homogeneous sheath or as a collection of uniformly distributed helix tendons.
Possible friction-induced effects, additional radial contact pressures due to bending and
end-termination effects are disregarded. Further, the pipe is assumed straight with uniform
strains and interlayer contact pressures within the section length considered. Rectangular
uniform cross-sections are used to represent the helix tendons. The interlayer radial con-
tact pressures and the geometry parameters involved in the model are defined in Fig. 2,
where subscript i refers to the identification number of both the layer itself and the inside
layer interface.

The axi-symmetric model is based on the early work of Féret and coworkers [22, 23].
The present model is extended to account for initial radial gaps between layers to ease
modeling of fabrication imperfections. When developing the model, the main steps in-
volve use of constitutive relations that link together equilibrium conditions and kinematic
statements. The equilibrium equations for the helix layers are formulated by means of
curved beam theory, see e.g. [24], and thin-walled shell theory is used for the sheath lay-
ers. A linear-elastic isotropic material is presumed and all kinematic relations are derived
assuming linear and small motions. This results in three independent equations for each
of the K layers formally expressed as,

hj (Ni, ∆ri, ∆ti, pi, pi+1, ε, κ1 ; zi) = 0 i = 1, ...,K j = 1, 2, 3 (3)
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in which N is the layer force in the pipe axial direction, ∆ denotes the change relative
to the unstressed configuration and z is a collection of parameters related to prescribed
local pressures, material properties and geometry properties. The remaining variables are
defined in Fig. 2. Notice that the generalized strain components ε and κ1 are assumed
equal in all layers. These strains are taken from the FE computation and are together
with the radial pressure p on the internal and external pipe surfaces regarded as known
quantities. The total number of unknowns in Eq. (3) is therefore equal to 4K − 1. To
obtain a solvable equation system, an interlayer continuity condition is introduced at each
of the K − 1 interfaces,

∆ri −
1

2
∆ti −

1

2
∆ti−1 −∆ri−1 − g{ini}i = gi gi > 0, pi = 0 i = 2, ...,K

∆ri −
1

2
∆ti −

1

2
∆ti−1 −∆ri−1 − g{ini}i = 0 gi = 0, pi > 0 i = 2, ...,K

(4)

where g{ini} is the radial gap in the unloaded configuration and g is the current radial gap,
see Fig. 2. The torque contribution from a sheath layer is computed separately in accor-
dance with the St. Venant’s solution for a circular cylinder, whereas the helix layer torque
contribution is obtained via the associated layer axial force resulting from the solution of
Eqs. (3) and (4).

An incremental constitutive relation is needed in the Newton-Raphson solution scheme.
This relation is obtained from the St. Venant’s solution for the sheath layer torques and
by computing the partial derivative of Eqs. (3) and (4) with respect to ε and κ1. For each
of the partial derivatives an equation system with 4K − 1 unknowns must be solved. The
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incremental relation from a single layer is formally expressed as,[
dNi
dM1i

]
=

[
Ni,ε Ni,κ1

M1i,ε M1i,κ1

] [
dε
dκ1

]
(5)

in which M1,ε is equal to zero for sheath layers and the comma in subscript means partial
derivative, e.g. ∂N∂ε = N,ε.

2.2 Elasto-plastic bending model for tensile helix layers

The bending response of a helix layer may be explained by considering an initially straight
pipe section that is gradually bent with constant interlayer radial pressures. At low cur-
vatures, the helix tendons are kept in place by friction, and a linear relationship thus
exists between the curvature and the change of tendon stress. In this situation, the bend-
ing moment is related to the curvature by a factor equal to the layer bending stiffness
contribution in an equivalent cross-section not allowing for interlayer slippage. As the
curvature increases, the change of tendon stress exceeds the available friction stress and
slippage along the helices starts developing at the neutral axis of bending. When slippage
is present around the whole circumference, the tendon stress and the resulting bending
moment remain unchanged if the pipe is subjected to a further increase of the curvature.
In previous work [18], this behavior was represented by a tri-linear moment-curvature
relationship, however, as the transition between start of slippage to full slippage is small
in terms of curvature, a bi-linear relationship corresponding to a Coulomb friction model
without hardening is employed here.

The bending model is formulated in the framework of computational elasto-plasticity
and is regarded valid if no significant end-termination effects are present. In order to
determine whether slippage is present or not, a slip function f is defined for each of the
tensile helix layers,

f (Mi,Msi) = ||Mi|| −Msi ≤ 0 Mi =
[
M2i M3i

]>
Msi = M0i +mi (µipi + µi+1pi+1) pi, pi+1 ≥ 0

(6)

in which f = 0 during slip, f < 0 indicates no slippage and f > 0 is an inadmissible
state. M0 is a constant moment stemming from the fabrication process, m is a parameter
depending on the helix geometry and µ is the interface friction coefficient assumed inde-
pendent of both slip rate and total curvature. In the literature, Ms is usually termed the
friction moment. The radial contact pressure p is obtained from the axi-symmetric model
according to Eqs. (3) and (4).

The rate of change of bending moment with respect to time is given by,

Ṁi = KEi (κ̇− κ̇pi) (7)

where a superposed dot marks that the rate is associated with a fixed set of cross-sectional
material particles, KE is the elastic modulus corresponding to the layer bending stiffness
contribution in an equivalent cross-section not allowing for slippage, κ̇ is the rate of total
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bending curvature and κ̇p is the rate of bending curvature associated with slip. The latter
rate is in accordance with Coulomb’s friction law given by a non-associative slip rule,

κ̇pi = λ̇i
∂

∂Mi
f (Mi,Msi) = λ̇i

Mi

||Mi||
λ̇i ≥ 0 (8)

in which λ̇ is the plastic rate parameter, determined by the consistency criterion ḟ = 0 if
slippage occurs and set to zero if f < 0.

In case of no slippage, the incremental constitutive relation is obtained by straightfor-
ward integration of Eq. (7) with κ̇p = 0. When slippage occurs, the incremental relation
valid for finite increments is established by linearizing the moment update scheme. If a
fully implicit backward Euler scheme is employed to integrate Eqs. (7) and (8) and to sat-
isfy Eq. (6), the linearization can be shown to result in the following algorithmic tangent
operator relation,[

dM2i

dM3i

]
= Cκ

(
Mtr

i ,pi
) [dκ2

dκ3

]
+ Cp

(
Mtr

i , ∂pi
) [dε
dκ1

]
Cκ

(
Mtr

i ,pi
)

=
KEiMsi (pi)

||Mtr
i ||

[
I2×2 − Mtr

i

||Mtr
i ||
⊗ Mtr

i

||Mtr
i ||

]
Cp

(
Mtr

i , ∂pi
)

=mi
Mtr

i

||Mtr
i ||
[
µipi,ε+µi+1pi+1,ε µipi,κ1 +µi+1pi+1,κ1

]
pi = {pi, pi+1} ∂pi = {pi,ε, pi,κ1 , pi+1,ε, pi+1,κ1}

(9)

where Mtr is the trial moment obtained by assuming no slippage during the finite curva-
ture increment, i.e. κ̇p is set to zero in Eq. (7). The pressure derivatives p,ε and p,κ1

are
computed by the same procedure used for the partial derivatives in Eq. (5). Notice that the
tangent operator is non-symmetric due to the coupling with ε and κ1. With regard to the
Lagrangian-Eulerian description in Section 3, it must be emphasized that Eqs. (6) – (9)
refer to a fixed set of cross-sectional material particles.

3 The Lagrangian-Eulerian beam formulation

3.1 Basics of the FE framework

Three Lagrangian kinematic descriptions are presently used for geometrically nonlinear
analysis of structures, the updated Lagrange (UL), the total Lagrange (TL) and the coro-
tational (CR) [25]. In the TL formulation, the variables are referred back to the initial
material configuration, whereas in the UL formulation they refer to a configuration which
is stepwise updated throughout the analysis. Both descriptions were applied for three-
dimensional beam problems in work by Bathe and Bolourchi [26], who demonstrated the
equivalence of the formulations and concluded that the UL description was most efficient.
In this work, the CR formulation is employed due to its successful applications for similar
multilayered beam models [18, 19], and because it allows for direct implementation into
existing computer software for flexible pipes and umbilical cables [27, 28].
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In the applied CR formulation, each finite element has attached an orthogonal co-
ordinate system that continuously rotates and translates together with the element. The
main idea behind this approach is to separate the rigid body motion from the deformation
modes. In this sense, the stress and deformation variables refer to a corotated configura-
tion, that conceptually differs from the TL reference by the element rigid body motion.
The deformations must be assumed small relative to the corotated reference configuration,
which thus limit the element size, however, no restrictions are imposed on the rigid body
motion. This motivates use of high-performance linear elements in a geometrical nonlin-
ear setting, possibly with material nonlinearity incorporated. Objectivity of the constitu-
tive variables is not an issue since the reference frame rotates together with the material.
In contrast to the resembling UL formulation, the corotated reference configuration is not
regarded fixed during iterative solution steps. The effect of referring the element internal
loads to the corotated basis should therefore, as indicated in Section 3.7, be reflected in
the tangent stiffness relation. Further details on formulation and application of corotated
beams are given in Refs. [29–31].

The proposed Lagrangian-Eulerian formulation is based on a fully coupled approach
where the mesh motion, the material motion and the convective transport effects are han-
dled simultaneously. The formulation is expressed in terms of corotated beam elements,
however, the development is readily convertible to other beam models such as those based
on geometrically exact beam theories [32, 33]. In contrast to the conventional ALE for-
mulations, use of the word arbitrary is avoided since there is no freedom of choice for
the mesh motion. The motion of the mesh is instead computed similarly as in the con-
ventional Lagrangian formulation, while the material velocity is specified by a boundary
condition. The formulation reduces to a Lagrangian description if the material velocity
is set equal to the mesh velocity, and the mesh becomes virtually Eulerian only when
stationary conditions have settled. The primary assumptions of the developed procedure
are,

• The bending curvature and the bending moment are regarded as continuous across
element boundaries.

• Concentrated bending moment loads are only allowed at the endpoints.

• The mass is uniformly distributed and cannot accumulate in the mesh.

The above assumptions impose no restrictions for reeling operations. If required, concen-
trated bending moments may be modeled by applying a couple on a short beam element.

3.2 Lagrangian-Eulerian kinematics

A typical reeling operation with material transport between two reels is illustrated in Fig.
3. The spatial configuration of the beam centroidal line is referred to as the computational
domain, and is represented by a three-dimensional curve in terms of the mesh arc length
parameter χ ∈ [0, Lχ]. Here, Lχ denotes the instantaneous length of material in the com-
putational domain. The spatial configuration of the material stored on the reels is not of
interest, and neither is it necessary to describe the initial configuration occupied by the
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Figure 3: Lagrangian-Eulerian kinematics

material particles. However, in order to describe the kinematics, a virtual material con-
figuration represented by the material arc length parameter X ∈ [0, LX ] is introduced,
where LX is the unstretched length including the material present in the computational
domain and the material lengths on the reels, LR1 and LR2, see Fig. 3.

The relation between the mesh parameter and the material parameter is defined by the
map,

X = Ψ (χ, t) (10)

There exists a one-to-one relationship between the material particles in the computational
domain and the corresponding particles located in a bounded region of the virtual material
configuration. Hence, the inverse relation of Eq. (10) can be defined,

χ = Ψ−1 (X, t) X1 (t) ≤ X ≤ X2 (t) (11)

where the bounds for X emphasize that the map is defined only for the set of material
particles which happen to be in the computational domain at time t. The three-dimensional
mesh motion is defined in terms of the map,

x = Φ̂ (χ, t) (12)

in which x represents the coordinates of the computational domain, see Fig. 3. The motion
of the material is given by,

x = Φ (X, t) X1 (t) ≤ X ≤ X2 (t) (13)

which for a fixed value of X yields the three-dimensional trajectory of a set of cross-
sectional material particles in the computational domain.

153



PAPER III

The material time derivative of a quantity f is in this work denoted by a super-
posed dot, e.g. ḟ (χ, t). If the quantity is expressed in terms of its material representation,
f (X, t), its partial time derivative ∂f

∂t tacitly implies the material time derivative. To ease
the notation, the independent variables of the functions in Eqs. (10) – (13) are not stated
explicitly in the sequel.

The mesh velocity is obtained from Eq. (12) as follows,

V̂ =
∂Φ̂

∂t
(14)

while the material time derivative of Eq. (11) provides the convective velocity,

c =
∂Ψ−1

∂t
(15)

which represents the material velocity along the line of centroids seen by a mesh-fixed
observer. The material velocity is obtained by computing the partial time derivative of
Eq. (13), or alternatively, via the material time derivative of Eq. (12),

V =
∂Φ

∂t
=
∂Φ̂

∂t
+
∂Φ̂

∂χ
∂Ψ−1

∂t
(16)

where ∂Φ̂
∂χ is a unit vector tangent to the line of centroids in the computational domain.

By inserting Eqs. (14) and (15) into Eq. (16), the following relation between the material
velocity, the mesh velocity and the convective velocity is obtained,

V = V̂ + c
∂Φ̂

∂χ
(17)

which states that the velocity of the material is equal to the mesh velocity superposed with
the convective velocity along the spatial centroidal line.

3.3 Conservation of mass

In a Lagrangian description, the conservation of mass is enforced via an algebraic equa-
tion for the mass density. This is not the case for non-Lagrangian meshes where a more
elaborate treatment is required. Considering an arbitrary material region Ωχ in the com-
putational domain, the principle of mass conservation states that at all times,

d

dt

∫
Ωχ(t)

ρ (χ, t) dχ = 0 (18)

where ρ denotes the mass per unit spatial length. Since the region Ωχ is a function of time,
the differentiation and the integration in Eq. (18) cannot be interchanged. The integral is
therefore pulled back to the fixed region ΩX in the virtual material configuration, which
with the Jacobian relation, dχ = ∂Ψ−1

∂X dX , is performed as follows,∫
ΩX

∂

∂t

(
ρ (X, t)

∂Ψ−1

∂X

)
dX =

∫
ΩX

(
ρ̇
∂Ψ−1

∂X
+ ρ

∂c

∂X

)
dX = 0 (19)
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where use was made of Eq. (15). By means of Eqs. (10) and (15) and the inverse Jacobian
relation, dX = ∂Ψ

∂χ dχ, push-forward to the computational domain yields,∫
Ωχ(t)

(
ρ̇+ ρ

∂c

∂X

∂Ψ

∂χ

)
dχ =

∫
Ωχ(t)

(
∂ρ

∂t
+ c

∂ρ

∂χ
+ ρ

∂c

∂χ

)
dχ = 0 (20)

and when recalling that the region Ωχ is arbitrary, the local form of the principle of mass
conservation follows as,

∂ρ

∂t
+ c

∂ρ

∂χ
+ ρ

∂c

∂χ
= 0 (21)

which is analogous to the continuity equation in fluid mechanic problems and can be
enforced by developing a weak formulation for the mass density, see Ref. [4]. However,
in this work the first term in Eq. (21) is set to zero as mass is not allowed to accumulate in
the mesh, and because the change of ρ due to longitudinal straining is assumed negligible.
Since the mass is uniformly distributed the second term is also zero, and the continuity
equation reduces to,

∂c

∂χ
= 0 (22)

which states that the convective velocity at a given time must be constant throughout the
mesh.

In view of Eq. (22), some clarifications regarding the boundary conditions for the
mesh displacement and the material velocity are needed. By multiplying Eq. (17) with
the unit tangent vector along the line of centroids, ∂Φ̂

∂χ , the following expression for the
convective velocity is obtained,

c (t) = V (χ, t)− V̂ (χ, t) (23)

in which V and V̂ denote the absolute velocities of the material and the mesh along the
centroidal line, respectively. When the material velocity is prescribed at a single nodal
point, the convective velocity is obtained directly from Eq. (23) and the mass conserva-
tion expressed in Eq. (22) is fulfilled regardless of the applied displacement boundary
conditions. However, if the material velocity is prescribed at another node in addition,
one of the nodes must be regarded as constrained in terms of the other, where the velocity
V̂ of the constrained node is given according to Eq. (23) such that Eq. (22) is satisfied.

3.4 Corotational beam kinematics

The Euler-Bernoulli kinematic relations are utilized as reeling operations usually involve
slender beams with negligible shear deformations. The element deformations are there-
fore expressed in terms of seven parameters,

v>
d =

[
u , θ1B − θ1A , v>

db

]
v>
db =

[
θ2A θ3A θ2B θ3B

]
(24)
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ē3B

θ1A

θ3A xA

e2

θ1B
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Figure 4: Beam element kinematics

where u is the axial elongation found from the secant length, the second entry is the
torsion angle increment over the element, vdb is related to bending and subscript A and B
refer to the element nodes. All of the parameters are referred to the coordinates associated
with the element corotated unit vectors ei, see Fig. 4. The rotation parameters measure
the rotation of the nodal triads, ēAi and ēBi, relative to the ei-vectors, and are computed
according to standard procedures given in Refs. [34, 35]. As the element deformations
must be small in the CR formulation, the mesh parameter χ of the deformed centroidal
line is in the sequel not distinguished from the arc length parameter for the straight line
between the element nodes.

The bending curvature at element node A and B is needed in the elasto-plastic bending
model. A linear curvature distribution over the element is assumed and the nodal bending
curvature is thus expressed as,

κχj =

[
κχj2
κχj3

]
= Nκjvdb j = A,B

NκA = − 1

L

[
4 0 2 0
0 4 0 2

]
NκB =

1

L

[
2 0 4 0
0 2 0 4

] (25)

where L is the current element length and subscript χ marks that the variable is evaluated
with the mesh parameter fixed. The torsion κ1 and the axial strain ε are, in line with the
axi-symmetric model in Section 2.1, assumed constant within the element,

κ1 =
θ1B − θ1A

L
(26)

ε =
u

L
(27)

The mesh velocity along the centroidal line V̂ is needed in order to determine the
convective velocity in Eq. (23), and is at the element nodes computed as follows,

V̂j =
1

∆t

(
xj − xpj

)
· ē1j j = A,B (28)

where the involved vectors are defined in Fig. 4, ∆t is the time step increment and super-
script p refers to the previous equilibrium state.

156



PAPER III

When developing the tangent stiffness needed in the Newton-Raphson solution scheme,
the element incremental nodal displacement vector dv is involved,

dv =
[
dqA dqB

]>
dqj =

[
dx1j dx2j dx3j dϕ1j dϕ2j dϕ3j

] (29)

which is linked to the incremental deformation parameters, dvd, via the following expres-
sion,

dvd = H>dv

H =


−e1 0 − 1

Le3
1
Le2 − 1

Le3
1
Le2

0 −e1 e2 e3 0 0
e1 0 1

Le3 − 1
Le2

1
Le3 − 1

Le2

0 e1 0 0 e2 e3

 (30)

where the H-matrix also serves as a transformation operator between the corotated coor-
dinates and the coordinates used to represent the ei-vectors.

3.5 Material time derivative of constitutive variables

The elasto-plastic bending model depends on the history experienced by the material par-
ticles and is hence updated by integration of the material time derivative. In contrast to a
Lagrangian formulation, the mesh points do not follow the material particles such that a
convective transport contribution must be accounted for. With aid of Eq. (15), the corota-
tional material time derivative of a corotated vector A is therefore expressed as,

Ȧ (χ, t) =
∂A

∂t

∣∣∣∣
[χ]

+ c
∂A

∂χ
A = A2e2 +A3e3 (31)

where the notation [∗] emphasizes that the variable inside the brackets is held fixed.
The constitutive variables in the elasto-plastic bending model are interpolated with C0-
functions between the element nodes, and the second term in Eq. (31) is therefore in
general discontinuous at the element boundaries. According to numerical investigations in
this work, both stability and accuracy depend strongly on the approximation selected for
the gradient, e.g. unacceptable performance resulted when the gradient was approximated
with nodal values from one single element only. This agrees with related work on ALE
stress-update algorithms in which the treatment of the spatial gradients represents the
main challenge [36]. To overcome this issue, a weak formulation for the material time
derivative is developed by multiplying Eq. (31) with a test function δA,∫

Ωm

δA ·
(
Ȧ−A,t[χ] − cA,χ

)
dχ = 0 (32)

where the integration is executed over element m. By rewriting the third term with aid
of the product rule of differentiation, the derivative of the constitutive variable gets trans-
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ferred to the test function and a boundary term emerges,∫
Ωm

δA ·
(
Ȧ−A,t[χ]

)
dχ+

∫
Ωm

c δA,χ ·A dχ− c δA ·A
∣∣
∂Ωm

= 0 (33)

The last term in Eq. (33) provides a natural means for setting up communication with
neighboring elements. By assuming continuity of the constitutive variable across the ele-
ment boundaries and using C0-functions for δA, the resulting expression reads,[

AXA,t

AXB,t

]
=

[
AχA,t

AχB,t

]
+

3c

L

[
AχA + AχB

−AχB −AχA

]
+
c

L

[
−4Ã

{m−1}
χB

2Ã
{m−1}
χB

]

+
c

L

[
−2Ã

{m+1}
χA

4Ã
{m+1}
χA

] (34)

where subscript A and B refer to the element nodes. SubscriptX and χmark that the vari-
able is evaluated by holding respectively the material parameter and the mesh parameter
fixed, see Section 3.2. The superscripted curly brackets are introduced to label vectors
that stem from the neighboring elements, where m − 1 and m + 1 refer to respectively
the elements adjacent to node A and B of element m. This consecutive element num-
bering is assumed in the following subsections without explicit notifications. The vectors
from the neighboring elements are also labeled with a superposed tilde to underline that a
transformation with all three scalar components is involved,

Ã{m±1}
r = er · e{m±1}

s A{m±1}
s r = 2, 3 s = 1, 2, 3 (35)

where the Einstein summation convention applies for repeated indices.
The weak form development above is beneficial since the gradient is approximated

with an appropriate spatial weighting of the constitutive variables and because it com-
prises information from adjacent elements. Still, a direct implementation of Eq. (34) could
result in spatial instabilities [37]. This can be circumvented by introducing an upwinding
technique to the Galerkin-based FE method. Several examples are found in the literature,
such as the streamline upwind Petrov-Galerkin method employed by Liu et al. [38] for
solid mechanic problems and the Taylor-Galerkin method applied by Donea [39] for con-
vection problems. The upwind scheme employed in this work was, however, established
by means of numerical experimentation and reads,

Ã
{m−1}
χB =

{
Ã
{m−1}
χB if c > 0

AχA if c ≤ 0
(36)

Ã
{m+1}
χA =

{
Ã
{m+1}
χA if c < 0

AχB if c ≥ 0
(37)

When combining Eqs. (36) and (37) with Eq. (34), it is clear that the scheme simply
prevents use of information located downstream relative to element m. Upwinding tech-
niques are known to introduce numerical dissipation and possible effects regarding the
accuracy is commented in Section 4.
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3.6 Update scheme for the elasto-plastic bending model

As for conventional Lagrangian beam formulations, the internal virtual work due to bend-
ing is expressed in terms of the mesh-fixed bending moment Mχ. In contrast, the elasto-
plastic model in Section 2.2 refers to the material-fixed bending moment MX . The re-
lation between incremental values of these moments is provided by the material time
derivative expression in Eq. (34). In view of the developments in Section 3.5, the integra-
tion stations are placed at element node A and B, and for the mesh moment the update
reads,

Mχj = Mp
χj + ∆Mχj Mχj = Mχj2e2 +Mχj3e3 j = A,B (38)

where Mp
χj is the mesh moment in the previous equilibrium state and the ∆-symbol, both

here and in the sequel, refers to an increment measured relative to the previous equilibrium
state. An expression for the mesh moment increment is obtained by integration of Eq. (34)
as follows,[

∆MχA

∆MχB

]
=

[
∆MXA

∆MXB

]
− γc∆t

L

{
3

[
MXA + MXB

−MXB −MXA

]
+

[
−4M̃

{m−1}
XB

2M̃
{m−1}
XB

]

+

[
−2M̃

{m+1}
XA

4M̃
{m+1}
XA

]}
− (1− γ) cp∆t

L

{
3

[
Mp

XA + Mp
XB

−Mp
XB −Mp

XA

]

+

[
−4M̃

p{m−1}
XB

2M̃
p{m−1}
XB

]
+

[
−2M̃

p{m+1}
XA

4M̃
p{m+1}
XA

]}
0 ≤ γ ≤ 1

(39)

where ∆t is the time increment, superscript p refers to the previous equilibrium state and γ
is the temporal weight factor for the convective terms. Note that for the convective terms,
the material moments MX are employed instead of the mesh moments Mχ to facilitate
the update itself and the forthcoming linearization.

The material moment increment needed in Eq. (39) is given by,

∆MXj = MXj −Mp
χj j = A,B (40)

in which Mp
χj refers to the mesh moment in the previous equilibrium state, i.e. the initial

material moment of the current time step. The material moment MX is updated accord-
ing to the interlayer friction model selected for the multilayered beam. In this work, the
Coulomb model in Section 2.2 is employed and the update is performed with a fully im-
plicit backward Euler integration scheme. For general friction models, the update requires
use of a local iterative scheme, but for the simple Coulomb model the following closed
form expression can be derived,

MXj =


Mtr
Xj

||Mtr
Xj ||

Msj if f
(
Mtr

Xj ,Msj

)
≥ 0

Mtr
Xj if f

(
Mtr

Xj ,Msj

)
< 0

j = A,B (41)

where f is the slip function, Mtr
Xj is the trial material moment andMsj is the slip moment

computed from the nodal interlayer pressures, see Eq. (6). In Fig. 5 the slip function and
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Figure 5: Coulomb slip function

the return map in Eq. (41) is illustrated. In view of the continuity assumption in Eq. (34),
the nodal interlayer pressures are obtained by a spatial weighting according to,

p
{m}
A =α1p

{m−1} + α2p
{m} p

{m}
B =β1p

{m+1} + β2p
{m}

α1 =
L{m}

L{m} + L{m−1} α2 =
L{m−1}

L{m} + L{m−1}

β1 =
L{m}

L{m} + L{m+1} β2 =
L{m+1}

L{m} + L{m+1}

(42)

where m refers to the element number and p is the interlayer pressure which is assumed
constant within the element. The trial material moment is obtained from Eq. (7) by as-
suming no slippage during the increment,

Mtr
Xj = Mp

χj +KE∆κXj j = A,B (43)

where the increment of material bending curvature ∆κXj is obtained by means of Eq.
(34) as follows,[

∆κXA
∆κXB

]
=

[
∆κχA
∆κχB

]
+
γc∆t

L

{
3

[
κχA + κχB
−κχB − κχA

]
+

[
−4κ̃

{m−1}
χB

2κ̃
{m−1}
χB

]

+

[
−2κ̃

{m+1}
χA

4κ̃
{m+1}
χA

]}
+

(1− γ) cp∆t

L

{
3

[
κpχA + κpχB
−κpχB − κ

p
χA

]

+

[
−4κ̃

p{m−1}
χB

2κ̃
p{m−1}
χB

]
+

[
−2κ̃

p{m+1}
χA

4κ̃
p{m+1}
χA

]}
0 ≤ γ ≤ 1

(44)

in which ∆t, γ and superscript p have the same meaning as in Eq. (39). The mesh bending
curvature κχ at the element nodes is determined from Eq. (25), while its increment is
expressed as,

∆κχj = Nκj [vdb − vpdb] j = A,B (45)
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with vdb and Nκ defined in Eqs. (24) and (25), respectively, and superscript p refers to
the previous equilibrium state.

Note that the Coulomb model applied in this work contains no hardening variables. If
such internal variables are present they could be updated by similar principles as presented
here. Likewise, if an elasto-plastic model is assigned to the torque or the axial force, the
update algorithm may be developed along the same lines as used above.

3.7 Weak formulation and linearization

A quasistatic modeling approach is utilized as reeling operations normally involve low
velocities and negligible inertia loads. The applied weak formulation contains thus con-
tributions only from the external loads and the internal stress resultants. The latter contri-
bution is for a single element expressed by a summation over the K load-bearing layers
according to,

δW = δv>H S

S =

K∑
i=1

[
Ni M1i −MχA2i −MχA3i MχB2i MχB3i

]> (46)

where H is the 12×6-matrix given in Eq. (30), v is the element nodal displacement vector
defined in Eq. (29) with incremental components and the δ-symbol refers to either virtual
work or virtual displacements. The axial force N and the torque M1 are obtained from
the axi-symmetric model in Section 2.1, the plastic sheath layer bending moments are
computed from their respective linear-elastic stiffness factors, while the bending moments
of the tensile helix layers are obtained via the update procedure in Section 3.6.

In the Newton-Raphson solution scheme the linearization of Eq. (46) with respect
to the nodal displacements is needed. This linearization provides the element tangent
stiffness matrices and is expressed as,

d (δW ) = d
(
δv>

)
H S + δv>dH S + δv>H dS (47)

where the first term appears because the variation of the rotational degrees of freedom
(DOFs) is configuration-dependent. The second term accounts for the change of element
length and the effect of rotating the element corotated unit vectors. The stiffness matrices
associated with these terms, including also a separate local geometric stiffness contribu-
tion, are based on identical matrices as presented by Krenk et al. [31].

The constitutive stiffness contribution emerges from the third term in Eq. (47). For
layers with linear-elastic bending behavior the associated stiffness relation is given by,

dSi =
1

L


Ni,ε Ni,κ1 0 0 0 0
M1i,ε M1i,κ1 0 0 0 0

0 0 4KEi 0 2KEi 0
0 0 0 4KEi 0 2KEi

0 0 2KEi 0 4KEi 0
0 0 0 2KEi 0 4KEi

H>dv (48)
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where KEi denotes the layer bending stiffness and the axial-torsional stiffness factors are
obtained from Eq. (5).

The bending constitutive stiffness for the tensile helix layers is established by lineariz-
ing the moment update scheme in Section 3.6. If a consistent stiffness representation is
used, the Newton-Raphson algorithm is able to provide quadratic convergence rates in
the vicinity of the solution [40]. All quantities that change between the iterative solution
steps must be accounted for in a consistent linearization, however, some of the involved
variables can be disregarded without destroying the convergence rate. Hence, the convec-
tive velocity c and the element length L are treated as constants when the moment update
scheme is linearized. The former quantity is indeed constant if the material velocity is pre-
scribed at a node that is fixed in the beam axial direction. In addition, terms proportional
to (∆t)

2 are neglected in the subsequent derivations.
Considering a single element m and a single tensile helix layer, an expression for

the iterative change of the mesh moments is obtained by linearizing Eqs. (38) and (39)
according to,

dMχA = d (∆MXB)− γ̂
[
3dMXA+3dMXB−4dM̃

{m−1}
XB −2dM̃

{m+1}
XA

]
γ̂ =

γc∆t

L

(49)

dMχB = d (∆MXB) + γ̂
[
3dMXA+3dMXB−2dM̃

{m−1}
XB −4dM̃

{m+1}
XA

]
(50)

where it must be emphasized that the upwind scheme in Eqs. (36) and (37) applies for the
moments that belong to the adjacent elements.

To ease the notation, the following superscripted labels are introduced for the consti-
tutive matrix Cp defined in Eq. (9),

{a}C
{b}
pj = Cp

(
M

tr{a}
Xj , ∂p{b}

)
j = A,B (51)

in which {a} refers to the element where the trial moment is computed and {b} denotes
the element where the pressure derivatives are defined. A similar notation is used for the
constitutive matrix Cκ defined in Eq. (9),

C
{a}
κj = Cκ

(
M

tr{a}
Xj ,p

{a}
j

)
j = A,B (52)

while the axial strain and the torsion are collected in the vector,

dω =
[
dε dκ1

]>
(53)

The first term in Eqs. (49) and (50) represents the iterative change of the material
moments. An expression for this change is obtained from the algorithmic tangent relation
in Eq. (9) and by linearizing the material curvature increment in Eq. (44). Since the in-
terlayer contact pressures are weighted according to Eq. (42), the result is expressed as
follows,

d (∆MXA) = C
{m}
κA dκ

{m}
χA + α1

{m}C
{m−1}
pA dω{m−1} + α2

{m}C
{m}
pA dω{m}

+ γ̂C
{m}
κA

[
3dκ

{m}
χA + 3dκ

{m}
χB − 4dκ̃

{m−1}
χB − 2dκ̃

{m+1}
χA

] (54)
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d (∆MXB) = C
{m}
κB dκ

{m}
χB + β1

{m}C
{m+1}
pB dω{m+1} + β2

{m}C
{m}
pB dω{m}

− γ̂C
{m}
κB

[
3dκ

{m}
χA + 3dκ

{m}
χB − 2dκ̃

{m−1}
χB − 4dκ̃

{m+1}
χA

] (55)

where the upwind scheme in Eqs. (36) and (37) applies for the curvature terms that stem
from the neighboring elements. These terms are due to the transformation in Eq. (35),
obtained from the following matrix relation,

dκ̃
{m±1}
χj = G

(
κ
{m±1}
χj

)
Ω{m±1}dv{m±1} −G

(
κ
{m±1}
χj

)
Ω{m}dv{m}

+ T
{m±1}
2×3

[
dκ
{m±1}
1

dκ
{m±1}
χj

]
j = A,B

(56)

where a detailed derivation of the expression above and definitions of the matrices G, Ω
and T are presented in 5.

The remaining terms in Eqs. (49) and (50) are associated with convective effects, and
should in principle be represented by relations similar to those given in Eqs. (54) – (55).
However, as contributions proportional to (∆t)

2 are neglected, the following expressions
are used instead,

dMXA = C
{m}
κA dκ

{m}
χA + α1

{m}C
{m−1}
pA dω{m−1} + α2

{m}C
{m}
pA dω{m} (57)

dMXB = C
{m}
κB dκ

{m}
χB + β1

{m}C
{m+1}
pB dω{m+1} + β2

{m}C
{m}
pB dω{m} (58)

while the terms that stem from the neighboring elements are expressed by means of the
same matrix relation used in Eq. (56),

dM̃
{m±1}
Xj = G

(
M
{m±1}
Xj

)
Ω{m±1}dv{m±1} −G

(
M
{m±1}
Xj

)
Ω{m}dv{m}

+ T
{m±1}
2×3

[
dM

{m±1}
1

dM
{m±1}
Xj

]
j = A,B

(59)

where the incremental moments in the third term are given by,

dM
{m±1}
1 =

[
M
{m±1}
1,ε

L{m±1}

M
{m±1}
1,κ1

L{m±1}

]
dω{m±1} (60)

dM
{m−1}
XB = C

{m−1}
κB dκ

{m−1}
χB + α1

{m−1}C
{m−1}
pB dω{m−1}

+ α2
{m−1}C

{m}
pB dω{m}

(61)

dM
{m+1}
XA = C

{m+1}
κA dκ

{m+1}
χA + β1

{m+1}C
{m+1}
pA dω{m+1}

+ β2
{m+1}C

{m}
pA dω{m}

(62)

The stiffness associated with Eq. (49) and (50) is obtained by relating the above ex-
pressions to the nodal displacements. Hence, by means of the H-matrix defined in Eq.
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(29), and the relations between the generalized strains and the element deformation pa-
rameters in Eqs. (25) – (27), the stiffness relation associated with bending of a tensile helix
layer can be expressed on 4× 12 format as,[

−dMχA

dMχB

]
= K{m}κ dv{m} + K{m−1}

p dv{m−1} + K{m}p dv{m}

+ K{m+1}
p dv{m+1} + γ̂

[
K
{m−1}
LE dv{m−1} + K

{m}
LE dv{m}

+ K
{m+1}
LE dv{m+1}

] (63)

where the four first matrices stem from the three first terms in Eqs. (54) and (55), and are
identical to those present in an equivalent Lagrangian formulation. The matrices related
to the Lagrangian-Eulerian description are labeled with subscript LE. These matrices
account for convective effects as they are scaled by the length of material transported
during a time step. In Section 4.4 the effect of discarding the KLE-matrices is examined
for various incremental step sizes. Note that the stiffness relation is non-symmetric, even
for the case when the convective velocity is equal to zero. In case of no slippage at a node,
the stiffness relation in Eq. (63) remains valid, provided that the corresponding nodal
Cp-matrix is set to zero and a matrix with the layer elastic bending stiffness KE on its
diagonal is introduced in place of Cκ.

The developed equations were implemented into a static nonlinear finite element code
written in MATLAB. For efficiency purposes, all stiffness matrices were expanded sym-
bolically by means of the Maple software, where the expressions for the matrix entries
were optimized and converted to MATLAB language by means of the code generator
module.

4 Numerical examples

The performance of the Lagrangian-Eulerian formulation is demonstrated for an unbonded
flexible pipe, whose cross-sectional properties are listed consecutively from the innermost
layer to the outermost layer in Tab. 1. The elastic modulus is denoted E, ν is Poisson’s
ratio,NT is the number of layer tendons and the remaining parameters are defined in Figs.
1 and 2. The constitutive parameters related to bending are presented in Tab. 2, where the
abbreviations THL1 and THL2 refer to respectively the inner and the outer tensile helix
layers.

In all simulations the time step size, ∆t, was set to 0.01 s and the temporal weight
factor for the convective terms, γ, was set to 1.0. Frictionless three-noded penalty-based
contact elements were employed to model the pipe supports. One of the nodes was at-
tached to a cylindrical roller with diameter 0.3 m, while the two other nodes belonged to
a beam element whose geometry was represented by a cylindrical roller. No contact loads
were thus present for the beam rotational DOFs, such that the continuity assumption uti-
lized in connection with Eq. (34) remained intact. The same low-order contact elements
were also used to model earth-fixed point loads. In that case, the loads were applied to the
roller nodes which were attached to linear 1 kN/m springs in the load directions.
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Table 1: Cross-section layer data

Layer type t [mm] r [mm] b [mm] E [MPa] ν [-] α [deg.] NT [-]

Plastic sheath 25 107.0 3 000 0.45
Pressure helix 10 124.5 12.5 210 000 0.30 −89 1
Plastic sheath 2 130.5 300 0.45
Tensile helix 5 134.0 12.5 210 000 0.30 40 49
Plastic sheath 2 137.5 300 0.45
Tensile helix 5 141.0 12.5 210 000 0.30 −40 51
Plastic sheath 25 156.0 300 0.45

Table 2: Bending constitutive parameters

Quantity Symbol Value Unit

Elastic bending stiffness - THL1 KE 3 388 kNm2

Elastic bending stiffness - THL2 KE 3 905 kNm2

Fabr. fric. moment - THL1, THL2 Ms0 8 000 Nm
Geometry parameter - THL1 m 0.008786 m3

Geometry parameter - THL2 m 0.010237 m3

Friction coefficient - THL1, THL2 µ 0.1
Total bending stiff. sheath layers 400 kNm2

Moment distributions for the outer tensile helix layer and curvature distributions at
selected time instants are presented in Sections 4.1 – 4.5. The reported time is measured
from the instant the material transport is initiated. Abbreviation Con and LE refer to re-
sponses obtained with the conventional Lagrangian approach and the Lagrangian-Eulerian
formulation, respectively.

4.1 Performance for increasing curvature and effect of axial force

The simply supported configuration in Fig. 6 with material transport in the positive x-
direction was considered. At the downstream-end, the torsional DOF was fixed and the
axial DOF was assigned a prescribed displacement ut. The prescribed displacement was
activated after the external loads were ramped to their desired levels. In the conventional

5 m5 m

Fy
Support

x
e2

e1

Fz

Fx

ut
e3

Support
guide 1 guide 2

Figure 6: Simply supported axially sliding beam
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simulation, ut was set such that the material velocity became equal to 1 m/s, while the
same effect was introduced in the Lagrangian-Eulerian simulation with ut set to zero and
the material velocity V prescribed to 1 m/s at the downstream-end. The pipe was modeled
by 80 elements with lengths of 0.25 m.

The accuracy for increasing curvature was examined with the earth-fixed point loadFy
in Fig. 6 set equal to 10 kN, 20 kN and 30 kN. In Figs. 7 – 9 the bending moment evolution
histories are presented, while the curvature evolution for the medium load level is shown
in Fig. 10. The maximum curvature for the smallest and the largest load was equal to
0.02 m−1 and 0.16 m−1, respectively. By comparing the moment responses for positive
x-coordinates, the speed of evolution is seen to increase with respect to the curvature level.
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Figure 7: Bending moment evolution, THL2, Fy=10 kN
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Figure 8: Bending moment evolution, THL2, Fy=20 kN
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For negative x-coordinates, there are no evident changes for the bending moment, as no
reversal of curvature takes place when material is transported through the mesh. Also,
the accuracy seems to be unaffected by potential dissipation introduced via the upwind
scheme proposed in Eqs. (36) and (37).

As seen in Figs. 7 and 8, the bending moment evolution obtained with the proposed
formulation and the conventional Lagrangian formulation are coincident. The good cor-
relation seen for the curvature evolution in Fig. 10 implies that the displacement state
is correctly predicted as well. Notice that the responses are accurately predicted also at
locations where large changes occur for the curvature and the moment gradients.

According to Fig. 9, the bending moment for the largest curvature level is satisfacto-
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Figure 9: Bending moment evolution, THL2, Fy=30 kN
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Figure 10: Curvature evolution, Fy=20 kN
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Figure 11: Bending moment evolution, THL2, Fy=20 kN, Fx=25 kN

rily predicted, however, a small offset is present at 0.4 s and the steep slope at midspan
is shifted slightly rightwards at 6.0 s. Numerical testing revealed that these offsets were
related to the presence of large displacements and the low-order contact formulation. At
midspan, the deflection was about 1.5 m and the rotations at the supports were approxi-
mately 20◦. Hence, a compressive axial force of 4 – 5 kN appeared at the midspan, whose
value was sensitive to the direction of the support forces and the midspan contact load.
For example, if the initial pipe configuration was moved axially 0.05 m the axial force
changed by 0.5 kN, which gave a change in the bending moment larger than the offsets
present in Fig. 9. For the curvature levels selected, the proposed formulation is there-
fore regarded to predict responses with the same accuracy as the conventional Lagrangian
approach.

The behavior when subjected to an elemental axial end-force Fx of 25 kN, see Fig.
6, was examined for the case with Fy equal to 20 kN. Without the axial end-force, the
midspan deflection was 0.56 m and the rotations at the supports were 8◦ prior to initia-
tion of the material transport. According to Fig. 11, the bending moment evolution is in
complete agreement with the conventional simulation. The slip moment is seen to remain
at about 8 kNm, which implies that the increase of interlayer contact pressures due to
the axial force is negligible. By comparison with the response in Fig. 8, it is clear that
the axial end-force affects the equilibrium configuration and the evolution of the bending
moment. In view of this, the developed formulation is regarded to give predictions with
the same accuracy as offered by the Lagrangian formulation also when axial forces are
present.

4.2 Influence of element size

The same example as considered in Section 4.1 was examined for element lengths L set
to 0.25 m, 0.5 m, 0.75 m and 1.0 m. The pipe was subjected to an earth-fixed point load
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Fy of 20 kN and the reference solution was taken as the one obtained with L = 0.25 m.
According to Fig. 12, the bending moment evolution is predicted with satisfactory

accuracy when 0.5 m element lengths are used. Only minor differences can be observed
as compared to the case with L = 0.25 m. Deviations from the reference solution appear
first when elements with 0.75 m length are used, see Fig. 13. In that case, inaccuracies
develop at locations where the moment gradient undergoes large changes, including also
the sharp transition between stick and slip at x ≈ −3.5 m.

A further increase of the element length to 1.0 m amplifies the inaccuracies, see Fig.
14. In this case, the slope at 8 m x-coordinate is not accurately represented and evident
discontinuities are present at the element boundaries. As continuity is assumed in con-
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Figure 12: Bending moment evolution, THL2, Fy=20 kN
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Figure 13: Bending moment evolution, THL2, Fy=20 kN
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Figure 14: Bending moment evolution, THL2, Fy=20 kN
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Figure 15: Bending moment evolution, THL2, Fy=20 kN

nection with Eq. (34), this solution is unacceptable and the maximum element length
is regarded as exceeded. The corresponding solution obtained with the conventional La-
grangian method is seen in Fig. 15. This solution contains also inaccuracies at locations
where the change of the moment gradient is large, but the deviations are in general less
severe when compared against the reference solution. The Lagrangian-Eulerian procedure
seems therefore to require shorter elements than the conventional approach. This behavior
is indeed expected, because the curvature increments in Eq. (44) are expressed in terms
of the total curvature, which becomes poorly approximated when too large elements are
used.
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4.3 Performance with temporal three-dimensional loads and prediction of bending-
induced torque

The ability to handle three-dimensional time-varying point loads was examined for the
simply supported configuration in Fig. 6. Two earth-fixed sinusoidal point loads were
applied at the midspan according to,

Fy (t) = Fa sin

(
2π

T
t

)
H (t) (64)

Fz (t) = Fa sin

(
2π

T
t− π

2

)
H

(
t− T

4

)
(65)

where H is the Heaviside-function, T denotes the load period and t is the time measured
from initiation of the material transport. The load amplitude Fa was set to 14 142 N and
the pipe was modeled by 80 elements with lengths of 0.25 m. Note that the reported
response is not realistic since the inertia loads were disregarded in the analysis.

Figure 16 displays the Mχ3-moment obtained with a load period T of 2 s and a mate-
rial velocity V of 1 m/s. The predictions from the Lagrangian-Eulerian procedure and the
conventional approach are seen to coincide in the region between the supports, whereas
amplitude errors are present for x > 5 m. According to Fig. 17, the deviations reduce sig-
nificantly when the material velocity is increased to 2.0 m/s, and vanish if the load period
is increased to 6 s, see Fig. 18. In these cases, a quarter wavelength is represented by four
and six elements, respectively, rather than just by two elements. Thus, the observed am-
plitude errors appear because the element length is not adapted to the load period and the
material velocity. The proposed formulation is therefore able to predict responses from
temporal loads with sufficient accuracy, provided that a proper element size is selected.
Also, the responses indicate that shorter elements as compared to the Lagrangian approach
are required. This is in line with the behavior demonstrated in Section 4.2.
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Figure 16: Bending moment evolution, THL2, T=2 s, V =1 m/s
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Figure 17: Bending moment evolution, THL2, T=2 s, V =2 m/s
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Figure 18: Bending moment evolution, THL2, T=6 s, V =1 m/s

Since the load components are out of phase, a non-alignment is introduced between
the normal vector of the bending curvature plane and the bending moment vector of the
tensile helix layers. Hence, a torque must be induced to satisfy the moment equilibrium
conditions. As demonstrated in Fig. 19 for a load period T of 6 s and a material veloc-
ity V of 1 m/s, the bending-induced torques predicted in the two approaches are coinci-
dent. Note that the plotted saw-tooth behavior relates to the assumption of constant torque
within the elements. This good correspondence indicates that the three-dimensional mesh
motion is accurately predicted as well. The same degree of agreement was present also
for the case with 2 s load period, which is not surprising as the torque is generated in the
midspan region where the bending moment evolution is accurately predicted.
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Figure 19: Torque evolution, THL2, T=6 s, V =1 m/s

4.4 Importance of the tangent stiffness and the γ-parameter

The effect of disregarding the KLE-matrices in Eq. (63) was examined for the example
considered in Section 4.3. A load period T of 2 s was used and the material velocity V
was set to 1 m/s. The following convergence tolerance defined in terms of the external
loads REXT and the internal loads RINT on system level was applied,

r =
||RR||

1
2 ||REXT ||+ 1

2 ||RINT ||
< 10−7 RR = REXT −RINT (66)

where ||∗|| refers to the Euclidean norm of the unconstrained translatory DOFs. The max-
imum number of iterations prior to subdivision of a time step was set to 20.

In Tab. 3 the mean number of iteration cycles per time step obtained with ∆t in the
range 0.005 – 0.02 s are presented. The iterations were sampled during the first 4 s after
the material transport was initiated, including cycles accumulated during potential time
step subdivisions. Time steps of 0.001 s were used for 0.1 s intervals when the load com-
ponents were reversed. No cycles were counted during these time intervals. Abbreviation
WLE refers to cases using the stiffness representation as given in Eq. (63), while NLE
refers to simulation runs where the stiffness related to material transport is deactivated.
The tabulated values demonstrate that the WLE runs can manage larger incremental steps,
and that the savings in terms of iteration cycles are nearly 50% for moderate step sizes.
Similar trends were observed for the cases with constant loads considered in Section 4.1.

Considering the residual norms ||RL
R|| obtained in the three last iteration cycles, with

L as the last, the following fraction is used to quantify the load convergence rate,

ζ =
log
(
||RL

R ||
||RL−1

R ||

)
log
(
||RL−1

R ||
||RL−2

R ||

) (67)
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Table 3: Iteration cycles and subdivisions vs. time step size

Case ∆t Subdivisions Mean iter./step

WLE 0.005 0 4.5
NLE 0.005 0 6.4

WLE 0.010 0 5.8
NLE 0.010 0 10.1

WLE 0.015 0 7.6
NLE 0.015 23 14.2

WLE 0.020 62 11.7
NLE 0.020 142 13.0

where the convergence rate is regarded quadratic for ζ > 2 and linear when ζ is close
to unity. In Fig. 20 the convergence rates obtained with ∆t = 0.01 s are presented. The
NLE run indicates that the convergence behavior is linear, whereas the convergence rates
are in the range 1.2 – 2.2 when the stiffness relation in Eq. (63) is utilized. Notice that
the discontinuities present at every 0.5 s correspond to reversals of the load components,
where time steps of 0.001 s were used, not giving representable convergence rates.

For the case considered in Section 4.1 with Fy = 20 kN, the temporal weight factor
for the convective terms, γ, was reduced to 0.0 and 0.5 in two simulation runs with ∆t =
0.02 s. Satisfactory predictions were then obtained in the region between the supports,
whereas oscillations appeared for x > 5 m, especially for the case with γ = 0.0. When
the time step was reduced to 0.005 s, the oscillations disappeared and no differences could
be observed compared to the run with γ = 1.0. This indicates that the value of γ should
be set equal to 1.0 regardless of the applied time step size.
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Figure 20: Load convergence rate, ∆t = 0.01 s
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In view of the presented results, the stiffness associated with the material transport
should be included as it significantly improves the convergence properties. The observed
characteristics are not directly comparable to those obtained in a conventional Lagrangian
simulation, as the behavior is governed by the contact interactions when the mesh is tied
to the material. Nevertheless, the convergence properties associated with the stiffness re-
lation in Eq. (63) are, according to the authors impression, similar to the ones present
in a conventional simulation. For cases where steady state conditions dominate, the pro-
posed formulation has of course superior convergence characteristics compared to the
Lagrangian approach.

4.5 Simple reeling analysis

The planar reeling operation in Fig. 21 was considered during the unsteady start-up phase.
Each reel was modeled with 25 cylindrical support rollers placed equidistantly around a
sector of 180◦. The out-of-plane rotational DOF at the inlet node and at the outlet node
were set such that the pipe curvature became equal to the reel curvature. All translatory
DOFs and the torsional DOF were fixed at the outlet node, whereas the pipe was free to
move axially and to rotate about the pipe axis at the inlet node. The distance between
the reel centers and the support roller nodes was set to 4.0 m. Element lengths of 0.5 m
were employed for the pipe parts that rested on the reels. In the regions with length sA,
the element size was increased gradually to LB toward the free-span region, see Fig. 21.
Throughout the region with length sB , the element size was kept at LB .

The analysis was initiated from a stressfree straight pipe configuration. An intermedi-
ate reeling configuration was established with the tensile helix layer bending moments set
to zero. In this configuration the axial force Fx, see Fig. 21, was set to 50 kN such that the
majority of the reel supports were in contact with the pipe. Thereafter, the elasto-plastic
bending model was activated with the material velocity V set to 1 m/s at the outlet node.

In Figs. 22 and 23 the evolution of the moment and the curvature are presented as a
function of the mesh parameter χ, see Fig. 21. The change of curvature is seen to be negli-
gible throughout the simulation. Hence, the additional bending moments introduced when
the elasto-plastic bending model is activated, are balanced mainly by moments caused by

Fx

sA = 13.5 m

inlet
χ

sA = 13.5 m sB = 23 m

outlet

4.0 m

Figure 21: Reeling configuration
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the axial force via free-span deflections. The regions with −0.23 m−1 curvature indicate
that the pipe rests on the reels and is not of interest. For the unconstrained parts of the
mesh, full slippage regions of 10 m develop rapidly at both ends during the first second,
see Fig. 22. Thereafter, the slippage region at reel 1 spreads toward reel 2 with approxi-
mately the same velocity as the material, until it stops midway between the reels at 15 s.
After this, only small changes takes place in the stick region, 30 m < χ < 60 m, as the
moment distribution approaches its steady state solution.

Use of 0.5 m and 3.0 m element lengths in the free-span region yields practically
the same moment distributions, see Fig. 22. In order to obtain accurate predictions, the
mesh must be able to capture variations of the curvature and the moment at all times.
The curvature is here the governing quantity since it acts as the driving mechanism in
the moment evolution. In this example, the essential is to capture a sharp curvature half-
wave with amplitude 0.004 m−1 and 14 m half-length that propagates toward reel 2 with
the material velocity. If elements longer than 3.0 m are used, the curvature wave is not
properly captured and deviations appear. In addition, the steep curvature gradients close
to the reels must be captured, e.g. evident inaccuracies appeared when elements with
length 2.0 m were used in this region. These observations underline the necessity of mesh
convergence studies of the problem at hand, even for cases where the selected mesh is
indeed able to represent the steady state solution.

This example demonstrates three prominent benefits of the proposed Lagrangian-
Eulerian formulation. Namely, there is no need to model the material stored on the reels
and the free-spanning region can be represented with six times larger elements than those
required in a conventional Lagrangian simulation. These two benefits considerably reduce
the computational efforts. Also, once the initial reeling path is established, there are no
concerns for convergence related to the contact interactions.
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Figure 22: Bending moment evolution, THL2
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5 Conclusions

In this work a Lagrangian-Eulerian formulation intended for reeling analysis of multilay-
ered beams with interlayer slippage was developed. A fully coupled approach that handles
the material motion, the mesh motion and the convective transport effects simultaneously
were employed. Kinematic relations for the mesh motion and the material motion were
derived, along with the restriction imposed by the principle of mass conservation. Re-
garding the elasto-plastic bending model, an expression for the gradient of the constitu-
tive variables was developed, an upwinding scheme was proposed and a backward Euler
update scheme was formulated. The developed equations were merged into the virtual
work equation for a conventional corotated beam formulation, and a tangent stiffness that
accounted for the transport of material was derived.

Numerical studies were conducted with focus on benchmarking against the conven-
tional Lagrangian approach and demonstration of basic performance characteristics. The
proposed formulation was found to predict responses with satisfactory accuracy both for
constant and temporal three-dimensional loads. Use of a tangent stiffness that accounted
for the material transport effects was demonstrated to give considerable benefits with re-
gard to the numerical efficiency. A simple reeling analysis was executed in which the
small-deformation region could be modeled with significantly larger elements than those
required to capture deformations and contact interactions at the reels. Also, due to the
nearly fixed mesh in space, no convergence problems related to the contact interactions
were encountered.

Appendix: Linearization of corotated vectors from adjacent elements

A matrix expression representing the linearization of Eq. (35) is needed when the element
tangent stiffness matrices are developed. The linearization is established by performing a
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differentiation according to,

dÃ{m±1}
r = der · e{m±1}

s A{m±1}
s + er · de{m±1}

s A{m±1}
s

+ er · e{m±1}
s dA{m±1}

s r = 2, 3 s = 1, 2, 3
(A.1)

where the change of the unit vectors is associated with a rotation dφ of the beam element.
This change can therefore be expressed by the relation,

der = −S (er) · dφ S (er) =

 0 − (er)3 (er)2

(er)3 0 − (er)1

− (er)2 (er)1 0

 (A.2)

in which (er)k refers to component k of er in the coordinate representation used for
the dot product in Eq. (A.1). By geometrical reasoning the rotation dφ is expressed as
follows,

dφ =
1

2
(dθ1A + dθ1B) e1 +

1

L
S (e1) [dxB − dxA] (A.3)

where the involved quantities are defined in Fig. 4 and in Eq. (29). The rotation can be
represented on matrix format in terms of the element displacement vector dv and the
3× 12-matrix Ω according to,

dφ = Ω dv Ω =
[
− 1
LS (e1) 1

2e1 ⊗ e1
1
LS (e1) 1

2e1 ⊗ e1

]
(A.4)

By means of Eq. (A.2) the first term in Eq. (A.1) can be expressed as,

der · e{m±1}
s A{m±1}

s =−A{m±1} ·S (er) · dφ A{m±1} = A{m±1}
s e{m±1}

s (A.5)

likewise, the second term in Eq. (A.1) is given by,

er · de{m±1}
s A{m±1}

s = −er ·S
(
A{m±1}

)
· dφ{m±1}

= A{m±1} ·S (er) · dφ{m±1}
(A.6)

where use was made of the skew-symmetric property of the tensor S. By inserting Eq.
(A.4) into Eqs. (A.5) and (A.6), the sought matrix relation can be expressed as,[

dÃ2

dÃ3

]
= G

(
A{m±1}

)
Ω{m±1} dv{m±1} −G

(
A{m±1}

)
Ω dv

+ T
{m±1}
2×3

dA
{m±1}
1

dA
{m±1}
2

dA
{m±1}
3


T {m±1}
rs = er · e{m±1}

s G
(
A{m±1}

)
=

[
A{m±1} ·S (e2)
A{m±1} ·S (e3)

]
(A.7)

where the scalar components dAr and dA{m±1}
s are represented in the coordinates associ-

ated with the unit vectors er and e
{m±1}
s , respectively. The matrices in the two first terms

of Eq. (A.7) are not restricted to a specific coordinate representation, however, to avoid
unnecessary transformations the involved vectors are expressed in the same coordinates
as used for the system FE equations.
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Abstract

In this paper a new framework for FE simulation of reeling operations that utilizes a
Lagrangian-Eulerian description of the beam kinematics is proposed. Compared to the
conventional Lagrangian formulation, significant benefits are achieved for the perfor-
mance of the contact algorithms and the overall numerical efficiency as the mesh is virtu-
ally fixed in space. The main ingredients of the Lagrangian-Eulerian framework and the
applied flexible pipe model are presented. An idealized spoolbase-vessel load-out opera-
tion was considered in order to gain insight into the torsional failure incidents experienced
by subsea contractors in recent years. Here, three different mechanisms were found to pro-
voke torsional failure of the pipe. Strategies to avoid the torsional failure incidents and FE
modeling remarks are provided.

Keywords: Flexible pipe; Reeling; Load-out; Torque; Lagrangian-Eulerian; Beam
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1 Introduction

Flexible pipes are nowadays widely used in riser and flowline transport systems for off-
shore hydrocarbon resources. Due to their compliant bending behavior, these pipes are
coiled onto large reels, carousels or turn-tables when transported to the production site. In
recent years, subsea contractors have experienced torsional failure incidents at the spool-
base when the pipes are being loaded aboard the cargo vessel. More precisely, the failures
have occurred for vessels equipped with vertical-axis turn-tables placed in confined cargo
holds. The pipe must therefore undergo severe curvature deformations and large rotations
of the curvature plane before it enters the turn-table. In such situations, the hysteretic
bending response is known to introduce significant torque responses [1]. As the load-out
operation is conducted with low tension, the bending-induced torque may provoke tor-
sional instabilities with possible loop formations at free spans, see Fig. 1a.

Torsional failure has also been reported in reeling operations of umbilical cables. Such
a failure is depicted in Fig. 1b, where the helical displacement pattern indicates the pres-
ence of a significant torque, however, in this case the torque is not necessarily related to
rotations of the curvature plane. Endal et al. [2] studied a similar situation for S-lay instal-
lation of subsea steel pipes, where residual curvature in the underbend region was found
to provoke instabilities characterized by large roll rotations and negligible transverse dis-
placements. The tension is considerably lower in a reeling operation, and it is therefore
plausible that residual curvature effects could lead to out-of-plane displacements similar
to those seen in Fig. 1b. Flexible pipes may develop a curvature set in the plastic layers
when subjected to long-term storage [3], which arguably relates to fabrication residual
stresses or material creep effects.

(a) Indication of loop formation at free span
between vessel and quay in a flexible pipe
load-out operation

(b) Severe helical deformations of
an umbilical cable during installa-
tion

Figure 1: Torsional failure in reeling operations
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Instabilities related to loop formation of risers have been studied in work by Ramos
and Pesce [4], who derived analytical formulas for the onset of instability and concluded
that Greenhill’s equation [5] could be used also for curved configurations. Recently, Neto
et al. [6] conducted an extensive numerical simulation work and provided formulas for
prediction of loop formation in flexible catenary lines. Flexible pipes subjected to severe
torsion may also fail by local buckling of the tensile armor tendons in the radial and lateral
directions [7]. These failure modes have been studied in work by Vaz and Rizzo [8] with
aid of detailed finite element analysis, and by Østergaard et al. [9] who developed a mathe-
matical model able to represent the lateral tendon instability mode which was merged into
a global model for limit load prediction. If the torsion yields compressive stresses in the
inner tensile helix layer, its tendons may buckle radially through accumulated openings
in the outer tensile helix layer. This failure mode is henceforth referred to as herniation
buckling and has been detected in a load-out operation, however, no one has hitherto ad-
dressed it in the open literature. In the present work, the failure modes themselves are less
emphasized and the focus is rather on prediction of the torque response.

Design codes for flexible pipes [3, 10] provide no guidance on how to avoid the tor-
sional failure experienced in load-out operations, simply because the mechanisms driving
the extreme torque have not yet been identified. Numerical simulations are regarded as the
preferred approach for providing more insight into the phenomenon. Most load-out opera-
tions involve several kilometres of material, numerous contact interactions along the reel-
ing path, large-deformation zones and history-dependent material effects. In simulation
of such operations, the conventional Lagrangian finite element formulation suffer from
time-consuming computations, as the mesh must be rather uniform and small elements
are needed in regions with large deformations. The contact interactions are also prone to
give convergence issues due to the large mesh motions involved. To avoid these draw-
backs, a Lagrangian-Eulerian beam formulation that enables for a virtually fixed mesh in
space was recently developed [11]. In the present paper, this development is extended into
a framework for simulation of reeling operations.

With regard to prediction of the generated torque, the constitutive model must account
for the hysteretic bending behavior and the interlayer radial contact pressure changes.
Several flexible pipe bending models that account for the stick-slip behavior of the ten-
sile helix tendons have been proposed in recent years. Tan et al. [12] proposed a simple
model based on a predefined moment-curvature relationship and a detailed model utiliz-
ing a multiple tendon approach. More advanced models formulated in the framework of
computational elasto-plasticity were proposed by Bahtui and coworkers [13, 14], who em-
ployed detailed FE analysis to calibrate flexible riser constitutive models. Their approach
provides high accuracy for the selected cross-section, however, considerable efforts are
needed to determine the material parameters. This was remedied in work by Sævik [15],
where two elasto-plastic bending models valid for generic flexible pipe cross-sections
were proposed and coupled together with a separate axi-symmetric model for determina-
tion of the interlayer pressures. Both models were successfully validated against labora-
tory fatigue tests.

In view of the background information above, the main objectives of the current work
are as follows,
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• Extend the Lagrangian-Eulerian formulation developed in previous work [11] with
the functionality required for robust and efficient simulation of reeling operations.

• Identify the source for the extreme torque responses experienced in flexible pipe
load-out operations.

• Propose strategies to avoid torsional failure incidents and provide insight into nu-
merical simulations of load-out operations.

The proposed Lagrangian-Eulerian framework is applicable also for simulation of
flexible pipe and cable installation operations. Compared to the conventional Lagrangian
approach, a significant reduction of the degrees of freedom (DOFs) is achieved as the
vessel-following mesh can be terminated at the seafloor point where stationary conditions
prevail. The development may also be applied for rigid steel pipe laying simulations if a
J2 plasticity stress-update algorithm is formulated.

2 Flexible pipe model

Both geometric and constitutive coupling effects must be accounted for in order to capture
the bending-induced torque in flexible pipe reeling operations. The constitutive coupling
is associated with the bending moment contribution from the tensile helix layers, as the
helix tendon slippage is governed by the interlayer radial pressures which depend on the
axial-torsional strain state. Further, the hysteretic bending behavior allows the bending
moment vector to be non-aligned with the normal vector of the principal curvature plane.
This non-alignment induces a torque in order to satisfy the torsional equilibrium equation,
and is thus responsible for a geometric coupling effect, see Ref. [1]. The pipe model must
also account for the bi-linear torque-torsion relationship and allow for three-dimensional
motions with large rotations and displacements. A quasistatic modeling approach is re-
garded appropriate as reeling operations are conducted at low velocities with negligible
accelerations.

To capture the effects described above, a corotational beam formulation with an elasto-
plastic bending model that accounts for the axial-torsional coupling is selected. This beam
model has previously been demonstrated to predict fatigue damage of flexible pipes in
good correlation with experimental tests [15].

2.1 Corotational Euler-Bernoulli beam element

In the applied corotational formulation, each beam element has attached an orthogonal
coordinate system that continuously translates and rotates with the element rigid body
motion. In this way, the deformation parameters can readily be extracted from the total el-
ement motion, which combined with the assumption of small deformations relative to the
element frames, enables for straightforward use of linear beam elements in geometrically
nonlinear analyses. Further details on corotational beams may be found in Ref. [16, 17].

In this work, the corotational beam formulation proposed by Krenk [18] is employed.
The Euler-Bernoulli kinematic relations are utilized as negligible shear deformations arise
in flexible pipes. Thus, the shear forces are obtained via the bending moment equilibrium
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Figure 2: Beam element kinematics

equations and only centerline translation quantities are needed in the kinematic descrip-
tion. As illustrated in Fig. 2, the element deformational DOFs consist of an axial elonga-
tion variable u and the rotation parameters, θjA and θjB , which measure the rotation of
the nodal unit triads, ējA and ējB , relative to the corotated element unit vectors ej . The
axial strain ε and the torsion κ1 are assumed constant within the element according to,

ε =
u

L
(1)

κ1 =
θ1B − θ1A

L
(2)

while the bending curvature components, κ2 and κ3, are interpolated with linear shape
functions,

κj =
3ξ − 1

L
θjA +

3ξ + 1

L
θjB j = 2, 3 − 1 ≤ ξ ≤ 1 (3)

Due to the assumption of small deformations relative to the element frames, suffi-
ciently short elements must be used in regions with large deformations. An additional
restriction for the element size appears in this work, because the straight two-noded beam
elements must capture the geometric effect responsible for the bending-induced torque
solely by the nodal equilibrium conditions.

2.2 Axi-symmetric model

The purpose of the axi-symmetric model is to provide torque, axial force, interlayer pres-
sures and tangent stiffness parameters for each layer. The model is based on the early
work of Féret and coworkers [19, 20], where a layer is either modeled as a collection of
uniformly distributed tendons or as a thin tubular sheath. The axi-symmetric response is
assumed unaffected by friction-induced effects, additional interlayer contact pressure due
to bending and end-termination effects. Furthermore, the axial strain ε and the torsion κ1

are assumed equal in all layers within a single beam element. The layer types, the geo-
metric parameters and the layer DOFs are defined in Fig. 3, where subscript i refers to
both the layer itself and the inside layer interface.
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Figure 3: Definition of layers, geometric parameters and axi-symmetric variables

The governing equations for the helix layers are based on curved beam theory, see Ref.
[15]. A linear-elastic isotropic material law is applied and the helix kinematics is estab-
lished by assuming linear and small motions. Local torque and bending moments along
the helices are neglected as they have no significant influence on the response of flexi-
ble pipes [21]. For a single helix layer, the following equations govern the axi-symmetric
behavior,

tan2 αiNi − 2πr2
i (pi − pi+1) = 0 (4)

∆ti
ti

+
νiNi

nibitiEi cosαi
+
pi + pi+1

2Eif
= 0 f =

nibi
2πri cosαi

(5)

Ni
nibitiEi cosαi

− sinαi ∆ri
ri

− cos2 αi ε− ri cosαi sinαi κ1 +νi
pi + pi+1

2Eif
= 0 (6)

where the geometric quantities are defined in Fig. 3, N is the layer axial force, p denotes
the interlayer radial pressure, n denotes the number of tendons, ν is Poisson’s ratio and E
denotes the elastic modulus. The helix layer torque is obtained by the relation,

M1i = Niri tanαi (7)

Regarding the sheath layers, a linear-elastic isotropic material law is assumed and the
governing equations are based on thin-walled shell theory and St. Venant’s solution for a
circular cylinder subjected to torque, see Ref. [20].

The set of active gap constraints is determined from the following interlayer continuity
relations,

∆ri −
1

2
∆ti −∆ri−1 −

1

2
∆ti−1 − g{ini}i = gi gi > 0, pi = 0 i = 2, ...,K

(8)

∆ri −
1

2
∆ti −∆ri−1 −

1

2
∆ti−1 − g{ini}i = 0 gi = 0, pi > 0 i = 2, ...,K

(9)
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in which g{ini}i denotes the interlayer radial gap in the unloaded state, which normally is
equal to zero. With this, the assembled equation system for all K layers and the P active
gap constraints reads,

[
A3K×(3K+P ) Aε

3K×1 Aκ1

3K×1

GP×(3K+P ) 0P×1 0P×1

]
s
λ
ε
κ1

 =

[
p3K×1

g{ini}

]

s =
[

∆r1 ∆t1 N1 ... ∆ri ∆ti Ni ... ∆rK ∆tK NK
]>

λ =
[
p{1} ... p{P}

]>
g{ini} =

[
g
{ini}
{1} ... g

{ini}
{P}

]>
(10)

where the subscripted brackets for the pressure and the initial gap are introduced to avoid
confusion with the interface index. In the solution procedure, the axial strain ε and the
torsion κ1 represent known values obtained from the FE computation. The matrix G holds
the constraints in Eq. (9) for the P interfaces with gap closure, the vector p is associated
with prescribed pressure loads, while A, Aε and Aκ1 contain coefficients from the layer
governing equations, see Eqs. (4) – (6).

The bending behavior is coupled to the axi-symmetric response via the interlayer pres-
sures. In situations with pressure variations, the global Newton-Raphson solution proce-
dure is known to perform poorly if this coupling is omitted in the tangent stiffness rela-
tion. Ad-hoc solutions are often employed to tackle this issue, e.g. the stiffness coupling
is neglected and the current pressure values are replaced by those obtained in the previ-
ous equilibrium state. Such approaches are not desirable and a consistent stiffness repre-
sentation is therefore proposed here. The sought linearization of Eq. (10) is consistently
obtained as follows,

[
A3K×(3K+P )

GP×(3K+P )

] [
s,D
λ,D

]
= −

[
AD

3K×1

0P×1

]
D = ε, κ1 (11)

where the comma in subscript denotes the partial derivative, e.g. λ,ε = ∂λ
∂ε . The coupling

of p,ε and p,κ1
with the bending response is described in Section 2.4. Once Eq. (11)

is solved, the axial force entries needed in the tangent constitutive stiffness matrix are
available from N,ε and N,κ1

, while the helix layer torque entries M1,ε and M1,κ1
are

readily obtained via Eq. (7). In this way, the iterative changes of interlayer pressure, layer
radius and layer thickness are consistently accounted for in the global solution procedure.
For a given strain state, the linearization in Eq. (11) yields a weakly unsymmetric axial-
torsional tangent stiffness matrix.
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2.3 Plastic sheath layer bending model

A standard linear-elastic bending model is applied for the plastic sheath layers. To account
for residual curvature effects the constitutive relation reads,

Mi = KEi

(
κ− κ{0}i

)
κ =

[
κ2 κ3

]>
KEi =

π

4

[(
ri +

ti
2

)4

−
(
ri −

ti
2

)4
]
Ei

(12)

where the geometric parameters are defined in Fig. 3, E denotes the elastic modulus and
κ{0} represents a constant residual bending curvature.

2.4 Coulomb bending model for tensile helix layers

The applied bending model was developed by Sævik [15], who employed a Coulomb
friction model to describe the stick-slip behavior of the tensile helix tendons, resulting in a
three-linear bending-curvature relationship. As the transition between stick and full slip is
small in terms of curvature, the bending response is instead approximated with a bi-linear
relationship here, which is equivalent to a Coulomb friction model without hardening.
The model is regarded valid if no significant end-termination effects are present and if the
longitudinal communication along the helix tendons due to slippage is not too dominant.

The governing equations are formulated in compliance with the framework of com-
putational elasto-plasticity. Hence, to determine whether slippage is present or not, a slip
function f is defined for each of the tensile helix layers,

f (Mi,Msi) = ||Mi|| −Msi ≤ 0 Mi =
[
M2i M3i

]>
Msi = M0i +mi (µipi + µi+1pi+1) mi =

4r3
i cosαi

tan |αi|
(13)

in which f = 0 during slip, f < 0 indicate no slippage and f > 0 is an inadmissible
state. The geometric parameters are defined in Fig. 3, Ms is termed the friction moment,
M0 is a constant moment stemming from the fabrication process and µ is the interface
friction coefficient assumed independent of both slip rate and total curvature. The contact
pressure p is obtained from the axi-symmetric model according to Eq. (10). The rate of
change of the bending moment with respect to time is given by the elastic relation,

Ṁi = KEi (κ̇− κ̇pi) κ =
[
κ2 κ3

]>
KEi =

1

2
Einibitir

2
i cos3 αi (14)

where the superposed dot denotes the material time derivative. In Fig. 3 the geometric
parameters are defined, ni is the number of tendons, E denotes the elastic modulus, κ̇
is the rate of total bending curvature and κ̇p represents the rate of bending curvature
associated with slip. The latter rate is in accordance with Coulomb’s friction law given by
a non-associative slip rule,

κ̇pi = λ̇i
∂

∂Mi
f (Mi,Msi) = λ̇i

Mi

||Mi||
λ̇i ≥ 0 (15)
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in which λ̇ is the plastic rate parameter, determined by the consistency criterion ḟ = 0 if
slippage occurs and set to zero if f < 0.

In case of no slippage, the incremental constitutive relation is obtained by straight-
forward integration of Eq. (14) with κ̇p = 0. If slippage occurs, the incremental relation
should be obtained from a consistent linearization of the moment update scheme. How-
ever, for brevity the continuum tangent relation valid for infinitesimal increments is in-
stead emphasized here, which for the selected slip function, elastic relation and slip rule
reads as follows,

Ṁi = Cκi κ̇+ Cpi ω̇ ω =
[
ε κ1

]>
Cpi = mi

Mi

||Mi||
[
µipi,ε + µi+1pi+1,ε µipi,κ1 + µi+1pi+1,κ1

]
Cκi = KEi

[
I2×2 − Mi

||Mi|| ⊗
Mi

||Mi||

] (16)

where the pressure derivatives p,ε and p,κ1
introduce a coupling with the axial-torsional

response such that the tangent operator becomes non-symmetric. These derivatives are
obtained in a consistent way by means of Eq. (11). With regard to the Lagrangian-Eulerian
description in Section 3, it must be emphasized that Eqs. (13) – (16) refer to a fixed set of
cross-sectional material particles.

3 The Lagrangian-Eulerian framework

3.1 Basics of the formulation

A detailed presentation of the Lagrangian-Eulerian beam formulation is given in Ref.
[11] where it is demonstrated to provide similar accuracy as the conventional Lagrangian
formulation. For completeness of the present work, the basic ideas and the assumptions
are repeated below, and in Section 3.3 the governing equations for the history-dependent
bending response are stated.

The main idea behind the developed formulation is to separate the mesh and the ma-
terial motion in such a way that the mesh becomes practically fixed in space. Compared
to the conventional Lagrangian approach, this strategy yields significant benefits for the
overall computational efficiency and the performance of the contact algorithms. The num-
ber of DOFs reduces considerably because the mesh need only to extend between the in-
let and the outlet of the reels. As opposed to the conventional formulation, non-uniform
meshes can be employed which thus enable use of large elements in small-deformation re-
gions. The contact element topology changes less frequently, which implies that potential
convergence issues related to the contact algorithms are mitigated and more efficient con-
tact searches can be executed. Also, larger time steps may be used due to less variations
in the contact conditions.

The formulation is based on a fully coupled approach where the material motion,
the mesh motion and the convective transport effects are handled simultaneously. The
mesh motion is computed similarly as in the conventional Lagrangian formulation, while
the material motion is given in terms of a single prescribed boundary condition. The
development is founded upon the following assumptions,
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• The bending curvature and the bending moment are continuous across element
boundaries.

• Concentrated bending moment loads are only allowed at the endpoints.

• The mass is uniformly distributed and cannot accumulate in the mesh.

• Inertia and velocity-dependent loads are disregarded.

None of the above assumptions impose restrictions for prediction of responses in reeling
operations. If required, concentrated moments may be modeled by a couple acting on a
short beam element.

3.2 Computational domain

The computational domain in a typical reeling operation is illustrated in Fig. 4, where
the centroidal line of the transported product is represented by a three-dimensional curve
in terms of the mesh arc length parameter χ. A conventional Lagrangian analysis can
be employed to establish the initial computational domain, however, such an approach
is cumbersome and spoils the advantages offered by the Lagrangian-Eulerian procedure.
Hence, a cubic Hermite spline interpolator is introduced to compute the initial nodal co-
ordinates, the unstretched beam element lengths and the initial nodal rotation parameters.

As seen in Fig. 4, the interpolated region is parametrized in terms of a local coordinate
η ∈ [−1, 1], which extends between the midpoints of two straight segments with end
coordinates x̂{m−1}, x̂{m} and x̂{m+1}. Global C1-continuity is ensured as the spline
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ē3

χ

Figure 4: Initial computational domain
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passes through and is tangent to the midpoint of the straight control lines. For a mesh
with N nodes, the piecewise spline interpolation is defined by the following formulae,

x (η) = X A B n(η) X =

x̂
{m−1}
1 x̂

{m}
1 x̂

{m+1}
1

x̂
{m−1}
2 x̂

{m}
2 x̂

{m+1}
2

x̂
{m−1}
3 x̂

{m}
3 x̂

{m+1}
3



A =
1

2


1 0 − l

{m}
c

l
{m}
a

0

1 1
l{m}c

l
{m}
a

− l
{m}
c

l
{m}
b

0 1 0
l{m}c

l
{m}
b

 B =
1

4


1 0 −3 2
−1 0 3 2

1 −1 −1 1
1 1 −1 −1


l{m}a =

∣∣∣∣x̂{m} − x̂{m−1}∣∣∣∣ l
{m}
b =

∣∣∣∣x̂{m+1} − x̂{m}
∣∣∣∣

l{m}c =

∣∣∣∣∣
∣∣∣∣∣ x̂{m−1} + x̂{m}

2
− x̂{m} + x̂{m+1}

2

∣∣∣∣∣
∣∣∣∣∣ m = 2, ..., N − 1

x =
[
x1 x2 x3

]>
n =

[
η3 η2 η 1

]> − 1 ≤ η ≤ 1

(17)

The orientation of the unit triads ēj at the beam element nodes, see Fig. 2, is obtained
by integration of the Serret-Frenet differential formula. In the initial configuration, the
elements are assumed to have zero torsion such that the differential change along the
mesh of the unit triads is given by,

dēj
dχ

= Ω ēj Ω = Q

 0 −κν 0
κν 0 −κζ
0 κζ 0

Q> Q =
[
ζ ν β

]
j = 1, 2, 3

(18)

where the geometric torsion κζ , the principal curvature κν and the Serret-Frenet unit
vectors, ζ, β and ν, are obtained according to,

κζ =
(x,η × x,ηη) ·x,ηηη
||x,η × x,ηη||2

κν =
||x,η × x,ηη||
||x,η||3

ζ =
x, η
||x, η||

β =
x, η × x, ηη
||x, η × x, ηη||

ν = β × ζ
(19)

In the implementation, Eq. (18) is integrated numerically from a nodal point with known
orientation. The integration is performed by means of the matrix exponential map to pre-
serve orthogonality of the unit triads ēj as follows,

ēj (χ+ ∆χ) = R∆χ ēj (χ) R∆χ = exp

[
∆χ

2

{
Ω (χ) + Ω (χ+ ∆χ)

}]
∆χ =

J (η) + J (η + ∆η)

2
∆η J = ||x,η||

(20)
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The quantities κζ , β and ν in Eq. (19) are not well-behaved if the principal curvature
approaches zero. In such cases the orthogonal matrix R∆χ is simply replaced with the
identity matrix.

The initial computational domain is released at analysis start-up and subjected to
Newton-Raphson iterations until equilibrium is achieved. Recommendations on how to
ensure convergence are given in Section 3.6. The update of the mesh displacement state
and the beam deformation parameters are throughout the analysis handled identically as
in the conventional Lagrangian formulation.

3.3 Path-dependent material responses

The axi-symmetric response and the plastic sheath layer bending response require no
specific treatment as they depend solely on the current strain state. The Coulomb bending
model depends in contrast on the history experienced by the material particles and its
evolution is therefore obtained by integration of the material time derivative. As the mesh
points are not tied to the material particles, a convective transport contribution appears in
the material rate equations. Hence, relative to the corotational element frames, the material
time derivative of the bending moment and the bending curvature reads,

Ṁ (χ, t) = M,t[χ] + cM,χ (21)
κ̇ (χ, t) = κ,t[χ] + cκ,χ (22)

where the notation [χ] emphasizes that the mesh arc length parameter is held fixed. The
convective velocity is denoted c and represents the material velocity seen by a mesh-fixed
observer. As the mass density per unit length is assumed constant, the principle of mass
conservation implies that c at a given time is constant throughout the mesh. The convective
velocity is obtained via the following relation,

c (t) = V (χ, t)− V̂ (χ, t) (23)

in which V and V̂ denote the absolute velocities of the material and the mesh along
the centroidal line. The material velocity V is given in terms of a prescribed boundary
condition at a single mesh point, while the nodal mesh velocity is computed as,

V̂j = xj,t · ē1j j = A,B (24)

where the involved vectors are defined in Fig. 2.
The bending moment components in Eq. (16) refer to material-fixed points, whereas

the mesh-fixed bending moments are needed in the beam weak formulation. In Eq. (21)
the mesh-fixed moments are represented by the partial time derivative term. These mo-
ments are computed by a fully implicit backward Euler integration scheme in the imple-
mentation, but for the sake of brevity, the mesh-fixed continuum tangent relation valid
for infinitesimal increments is instead emphasized here. This relation emerges when Eqs.
(21) and (22) are inserted into the material continuum tangent relation in Eq. (16),

Mi,t[χ] = Cκi κ,t[χ] + Cpi ω̇ + cCκi κ,χ − cMi,χ (25)
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in which the two first terms are pure Lagrangian contributions and the two last ones ap-
pear because of the Lagrangian-Eulerian viewpoint. The components of the axi-symmetric
strain vector ω and the bending curvature κ are readily obtained from Eqs. (1) – (3). The
convective terms containing the gradientsκ,χ and M,χ need a careful treatment to achieve
similar accuracy as in the conventional Lagrangian formulation. In previous work, simple
gradient approximations were seen to suffer from poor accuracy and spatial instabilities.
These issues were solved by means of a gradient approximation with a suitable spatial
weighting of the constitutive variables and an upwind scheme that discarded information
from downstream elements. Further details about the gradient approximation, an implicit
moment update scheme and the incorporation with the corotational beam formulation are
given in Ref. [11].

3.4 Roller contact formulation

In reeling operations, the product is transported on rigid rollers with negligible rotational
resistance. Sliding motions along the roller axes are usually limited, as the roller normal
contact interaction constrains the product in both of its transverse directions at numerous
points along the route. A frictionless contact model is therefore selected for the roller
interaction.

Due to the frictionless assumption, the contact kinematics is expressed identically
as for the Lagrangian description of motion. Although the mesh is practically fixed in
space, cases where the contact points travel across element boundaries can occur. The
beam geometry is hence interpolated by the conventional Hermite shape functions [22]
such that dead zones in the contact search and issues with the transfer of the contact
force are avoided. Thus, the contact element consists of two beam nodes with 12 DOFs
and a single node with 6 DOFs attached to the roller geometry. The contact loads for
the beam rotational DOFs are set equal to zero to comply with the continuity assumption
stated in Section 3.1. This implies that the contact tangent stiffness matrix becomes non-
symmetric, which has no practical consequence as the stiffness contributions associated
with Eq. (25) and the axial-torsional response in Eqs. (7) and (10) are also non-symmetric.

In FE computations, the impenetrability constraints are normally enforced by either
the penalty method or the Lagrange multiplier methods [23]. For the analysis procedure
outlined in Section 3.6, the standard Lagrange multiplier method resulted in convergence
difficulties at start-up, which hence made the penalty method to an obvious choice in
this work. The penalty method regularizes the contact force at the cost of not fulfilling
the impenetrability constraints exactly, where the degree of regularization is governed
by the so-called penalty parameter. This feature was seen to be beneficial with regard to
convergence during computation of the equilibrated initial mesh configuration.

3.5 Mesh stiffness and load factors

The computational domain illustrated in Fig. 4 represents the situation when material is
being transported between the reels. For the operation start-up phase, where the pipe-end
is guided toward and attached to the destination reel, an initial Lagrangian simulation
could be applied. However, that represents a cumbersome approach and it is desirable to
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rather utilize the established computational domain. Hence, by assuming that the pipe-end
follows the path defined by the current mesh configuration, its motion can be simulated by
means of moving weight factor distributions for the constitutive stiffness and the gravity
loads. For a single beam element with K layers, the bending stiffness parameters defined
in Section 2 and the distributed mass mg are therefore scaled according to,

K̄Ei = γiKEi m̄gi = γimgi i = 1, ...,K (26)

where the moving mesh weight factor is defined in terms of the Heaviside step function
H as follows,

γi

(
χ{m}
cg , t

)
=
χ1i − χ{m}cg

χ2i − χ1i

[
H
(
χ{m}
cg − χ1i

)
−H

(
χ{m}
cg − χ2i

)]
−H

(
χ{m}
cg − χ2i

)
+ 1.0

χji (t) =

t∫
0

cdt+ χji (0) j = 1, 2

(27)

which yields a linear increase of stiffness and gravity in the material flow-front region,
χ1 < χ < χ2. The convective velocity c is obtained from Eq. (23) and χ{m}cg denotes
the mesh coordinate at the midpoint of beam element m. The region with no material,
χ > χ2, is assigned a low bending stiffness KE0 to ensure a non-singular FE equation
system. This stiffness parameter is scaled similarly as in Eq. (26) by the following weight
factor,

γ0

(
χ{m}
cg , t

)
=
χ{m}cg − χ1

χ2 − χ1

[
H
(
χ{m}
cg − χ1

)
−H

(
χ{m}
cg − χ2

)]
−H

(
χ{m}
cg − χ2

)
χj (t) =

t∫
0

cdt+ χj (0) j = 1, 2

(28)

No scaling is applied for the axial and torsional stiffness parameters, as this could
give large interlayer contact pressures at the flow-front region leading to an artificial high
friction moment capacity. Notice that the flow-front region is defined independently for
each layer. This allows for a delayed activation of the Coulomb bending model, such that
numerical issues due to the low stiffness at χ > χ2 are avoided and the flow-front cur-
vature discontinuity can be taken mainly by the plastic sheath layers. Comparison against
the conventional Lagrangian approach for the simply supported beam examples consid-
ered in Ref. [11] indicated that a delayed activation of one and two element lengths had
no significant influence on the accuracy.
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3.6 Analysis execution

At analysis initiation, the mesh is released from the configuration described in Section
3.2 with relevant DOFs at the endpoints held fixed. This abrupt release introduces large
unbalanced loads prone to preclude convergence at the initial load step if the constitu-
tive models in Section 2 are activated. Hence, the analysis is initiated with a soft initial
linear-elastic constitutive model, small contact penalty parameters and with stabilizing
springs in the mesh transverse directions, see Fig. 4. The internal and the external loads
are thereafter activated in a stepwise manner, the penalty parameters are increased to
their appropriate values and the stabilizing springs are removed. The selected approach
involves the following sequence of steps,

1) Establish the initial computational domain as described in Section 3.2. Attach sta-
bilizing springs in the beam transverse direction and set the contact roller penalty
parameters to a lower bound value.

2) Compute the equilibrated initial computational domain by using an initial linear-
elastic constitutive model with stiffness properties set sufficiently low to handle the
iterative strain variations encountered during the initial load step.

3) Apply the gravity loads.

4) Increase the contact roller penalty parameters to their desired values.

5) Apply the loads from the axi-symmetric model, the plastic sheath layer bending
loads and the KE0-bending loads associated with Eq. (28).

6) Remove the stabilizing transverse springs and the loads from the initial linear-
elastic constitutive model.

7) Apply relevant boundary conditions at the mesh endpoints.

8) Adjust the tension level to the desired value.

9) Activate the elasto-plastic bending model and initiate the material transport.

The appropriate stiffness properties of the stabilizing springs, the initial penalty pa-
rameters and the initial linear-elastic constitutive model are interrelated. In this work, a
reasonable initial linear-elastic model was defined, thereafter the stiffness of the stabiliz-
ing springs was set sufficiently soft to avoid slow convergence and yet stiff enough to
avoid large mesh displacements, and at last the initial penalty parameters were adjusted
toward a lower bound value.

Due to the non-linearity present in the model, the established configuration depends
in principle on the order of the steps 1) – 9) above. In practice, there is yet no concern
regarding the solution uniqueness, because the numerous contact constraints along the
transport route preclude large differences in the computed equilibrium state.
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4 Generation of torque in flexible pipe load-out operation

The bending-induced torque generated in an idealized flexible pipe load-out operation
from an onshore spool base to a cargo vessel was investigated. The main contributions are
generated aboard the vessel where the bending curvature vector is large and undergoes
significant direction changes. A truncated FE model was therefore created of the onboard
turn-table and the load-out path on the ship deck, see Fig. 5. The turn-table has an angular
velocity in the physical operation. In the simulation, this rotation is conveniently avoided
due to the Lagrangian-Eulerian viewpoint. Regarding loop formation, the free span be-
tween the turn-table and the ship deck in Fig. 5 is not of major concern as it is short,
constrained by the spool arm and already has the shape of a helix. It is rather at free spans
located upstream of the ship deck the loops are prone to occur, e.g. the free span between
the vessel and the quay seen in Fig. 1a. The simulated torque is largest at the ship deck
and is therefore regarded as the target response parameter.

All contact interactions along the load-out path was modeled by frictionless rollers
with 0.3 m diameter. The configuration of the rollers is seen in Fig. 5, where all labeled
distances refer to the center points. On the ship deck the load-out path was defined by four
fork supports, and ten rollers placed along a quarter-circle of radius 2.0 m were employed
for the overbend support. Fifty rollers placed equidistantly around a 8.0 m diameter cir-
cle were used to represent the turn-table hub, while the floor was modeled by twenty
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equidistant rollers spanning outwards from the hub. The spool arm and the roller box are
operated by the vessel crew such that the pipe enters the turn-table in the desired way. A
fork was used to represent the spool arm with center distance between the long edges set to
0.8 m. The roller box was attached to the overbend support and had centerline dimensions
1.2 m× 0.8 m.

At the turn-table inlet where most of the torque is generated, the assumption of zero
friction is indeed regarded acceptable. This is because the deck tensioner and the turn-
table operate with slight speed variations, giving fluctuations in the touchdown point
(TDP) tension with associated axial slippage that reduces the ability to fix the roll DOF.
Consequently, the torque at the ship deck may be underestimated if friction resistance is
included. Additionally, a couple of metres downstream of the TDP there will be negligible
roll rotations due to the high roll stiffness provided by the Coulomb bending model. Pos-
sible missing friction forces are of no importance for the axial and the bending responses.

The mesh consisted of 154 corotated beam elements with lengths set to 0.5 m. At
the turn-table, the mesh extended about 1.5 coils downstream of the TDP, with a free
end of 3.0 m used for feed-in when adjusting the axial force, see Fig. 5. Self-contact for
the coiled part of the mesh was not modeled. The transverse DOFs at the downstream-
end were held fixed, while the axial DOF was given appropriate displacement increments
to keep the tension in the coiled part between 5 – 15 kN throughout the simulation. All
translatory DOFs were kept fixed at the upstream-end. To obtain conservative predictions
of the ship deck torque, the roll DOF at the downstream-end was free to rotate, while the
one at the upstream-end was held fixed. These boundary conditions represent the situation
during start-up of the operation, provided that the end of the pipe is connected to the turn-
table by a torque-free joint. Nevertheless, as will be indicated later, potential roll stiffness
at the downstream-end is of no importance if the mesh is terminated sufficiently far away
from the TDP.

The constitutive parameters of the flexible pipe are given in Table 1 with symbols
and parameters as defined in Section 2. Abbreviations THL1 and THL2 refer to respec-
tively the inner and the outer tensile helix layers. Material and geometric properties of
the composite cross-section are listed consecutively from the innermost layer to the out-
ermost layer in Table 2 with parameters as defined in Section 2.2. Each of the tensile helix
layer fabrication friction moments were set to 15% of the total friction moment capacity
at 20 MPa internal pressure based on laboratory test trends [24]. Regarding the torque
stiffness, soft and stiff directions are associated with torsion that yields respectively radial
separation and radial compression of the tensile helix layers. The selected friction coeffi-
cient represents an upper bound value as measured coefficients are normally in the range
0.07 – 0.2 [25].

The simulations were executed according to the procedure outlined in Section 3.6.
The material velocity V was set to 1.0 m/s at the upstream-end. Prior to initiation of the
material transport, the flow-front region was set to χ1=11.5 m and χ2=12.0 m, see Fig. 5.
A delayed activation of the Coulomb bending model corresponding to one element length
was employed with KE0 set to 40 kNm−2, see Section 3.5. Time steps of 0.005 s had to
be used during the unsteady start-up phase, while a step size of 0.02 s was applied when
stationary conditions started to settle.
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Table 1: Flexible pipe properties

Quantity Symbol Value Unit

Elastic modulus - THL1 KE 2 596 kNm−2

Elastic modulus - THL2 KE 2 991 kNm−2

Fabrication friction moment - THL1, THL2 M0 8 000 Nm
Geometry parameter - THL1 m 0.008786 m3

Geometry parameter - THL2 m 0.010237 m3

Friction coefficients - THL1, THL2 µ 0.2
Total bending stiffness sheath layers 400 kNm2

Total torque stiffness - stiff direction ≈8 000 kNm2

Total torque stiffness - soft direction ≈1 440 kNm2

Total distributed mass mg 100 kg/m

Table 2: Cross-section layer data

Layer type t [mm] r [mm] b [mm] E [MPa] ν [-] α [deg.] ni [-]

Plastic sheath 25 107.0 3 000 0.45
Pressure helix 10 124.5 12.5 210 000 0.30 −89 1
Plastic sheath 2 130.5 300 0.45
Tensile helix 5 134.0 12.5 210 000 0.30 ±40 49
Plastic sheath 2 137.5 300 0.45
Tensile helix 5 141.0 12.5 210 000 0.30 ±40 51
Plastic sheath 25 156.0 300 0.45

In Section 4.1 – 4.3 the simulated responses are presented. Regarding the sign con-
vention, both torque and roll rotation are defined positive in the clockwise direction when
looking downstream.

4.1 Importance of free span shape and tensile helix lay angle direction

The torque induced by the material transport effect during operation start-up was simu-
lated for several free span configurations by varying the position of the spool arm, the
roller box and the deck fork supports. Table 3 presents the bending-induced torque at the
upstream-end, Mue

1 , at the spool arm, Msa
1 , and the maximum value at the turn-table in-

let, M cs
1 . All torque values were sampled when approximately three coils of material had

been transported to the turn-table, which for most of the simulation runs coincided with
the steady-state value. The lay angles of the inner and the outer tensile helix layers are de-
noted by α5 and α7, respectively. The displacement components ux and uy in Table 3 are
defined in Fig. 5. A selection of torque response plots for the steady-state configuration
is presented in Figs. 6 – 9, where abbreviations SA and RB refer to the spool arm and the
roller box, respectively.

The driving mechanism for the torque is found in the lower free span and at the turn-
table inlet. In this region the y-axis curvature is gradually reduced, while the curvature is
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Table 3: Torque due to material transport versus free span shape and tensile helix lay angle direction

Case urby [m] usax [m] usay [m] udfy [m] α5 [deg] α7 [deg] Mue
1 [kNm] Msa

1 [kNm] M cs
1 [kNm]

1 0.0 −2.0 −0.5 0.0
40 −40 −80.9 −49.6 9.5

2 −40 40 −44.6 −21.4 30.8

3 0.0 1.0 −0.5 0.0
40 −40 −80.6 −53.3 6.3

4 −40 40 −45.6 −24.5 29.2

5 0.0 4.0 −0.5 0.0
40 −40 −46.4 −22.3 0.9

6 −40 40 −27.9 −9.4 12.4

7 2.0 −2.0 0.0 0.0
40 −40 −46.0 −37.2 11.1

8 −40 40 −30.4 −24.1 23.1

9 2.0 1.0 0.0 0.0
40 −40 −64.3 −55.1 −2.0

10 −40 40 −31.6 −26.4 25.5

11 2.0 4.0 0.0 0.0
40 −40 −45.6 −33.5 2.5

12 −40 40 −21.7 −13.7 20.3

13 4.0 −2.0 1.5 0.0
40 −40 −9.9 −27.7 5.5

14 −40 40 −3.6 −21.1 12.7

15 4.0 1.0 1.5 0.0
40 −40 −26.1 −42.2 10.8

16 −40 40 −7.5 −23.0 24.5

17 4.0 4.0 1.5 0.0
40 −40 −16.9 −19.8 3.6

18 −40 40 −6.2 −10.3 13.4

19 4.0 −2.0 0.0 4.0
40 −40 −67.7 −52.4 2.6

20 −40 40 −44.8 −34.8 18.9

21 4.0 1.0 0.0 4.0
40 −40 −66.3 −54.8 6.1

22 −40 40 −42.2 −35.8 22.9

23 4.0 4.0 0.0 4.0
40 −40 −53.7 −38.6 10.6

24 −40 40 −23.6 −14.3 30.3

constrained by the turn-table and kept rather constant about the z-axis, see Fig. 5. With the
presence of material transport, this causes a moment about the negative y-axis of approxi-
mately 8 – 10 kNm for 10 – 15 metres in each of the tensile helix layers, which thus yields
a positive rise of torque in the lower free span and at the turn-table inlet, see Figs. 6 – 9.
The torque rise, M cs

1 −Msa
1 , is according to Table 3 between 23 – 61 kNm. A few metres

downstream of the TDP, the bending curvature gradient about the y-axis is close to zero,
see Fig. 5, such that the material transport effect is unable to maintain the moment about
the negative y-axis. The torque therefore decays to zero over a couple of metres distance,
in which it transfers into a small positive y-axis bending moment in the tensile helix layers
with negligible increase of the associated curvature. Further downstream, only small fluc-
tuations around the zero level are present for the torque and the y-axis bending moment.
This implies that potential roll stiffness at the downstream-end is of minor importance if
the mesh terminates sufficiently far away from the TDP. A few simulation runs with the
downstream-end roll DOF held fixed confirmed this observation.

The torque values in Table 3 depend strongly on the tensile helix lay angle directions,
in which α5 = 40◦ and α7 = −40◦ are seen to give the largest upstream-end torque. For a
given free span shape, the lay angle directions have no significant influence on the torque
rise, M cs

1 −Msa
1 . However, as exemplified in Fig. 8, the torque distributions undergo a
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shift that reduces the upstream torque for the cases with α5 = −40◦ and α7 = 40◦. This
shift must be understood in terms of the stiff and soft torsion directions, see Table 1, the
high turn-table roll stiffness provided by the Coulomb bending model and the gradual
activation of the tensile helix layer bending stiffness as the material flow-front moves. For
the lay angles α5 = 40◦ and α7 = −40◦, the induced torque is counteracted mainly by
upstream torque. This occurs because the torsion in the upstream region acts in the stiff
direction, whereas the torsion downstream of the TDP works in the soft direction. When
the lay angles are reversed, the upstream region counteracts instead with torsion in the
soft direction, and a major part of the turn-table inlet region undergoes a stiffness increase
as the pipe there counteracts with torsion in the stiff direction. This relative change of
stiffness therefore shifts a significant part of the upstream torque toward the turn-table,
see Fig. 8.

According to Table 3, the position of the roller box affects the torque to a much larger
degree than the spool arm position. The responses obtained for cases 13 – 18 demonstrate
that there exist favorable roller box positions which reduce the upstream-end torque. This
becomes apparent by comparing Fig. 6 against Fig. 7 where the upstream torque is seen
to magnify and reduce, respectively. The cancellation behavior relates to the pipe config-
uration in the upper free span and at the overbend, which has the shape of a positive helix
that acts to cancel the torque induced in the lower free span and at the turn-table inlet. For
the cases considered, a favorable roller box position reduces the ship deck torque by up
to 70 kNm, see Table 3. Cancellation effects due to roller box displacements have indeed
been witnessed in load-out operations.

As seen in Fig. 6, case 5 with spool arm position usax = 4.0 m has a reduced upstream
torque compared to case 3 where usax = 1.0 m. Similar trends, but less pronounced, are
present for the other cases as well, see Table 3. This occurs because the selected spool arm
position reduces the y-axis curvature gradient for a couple of metres downstream of the
spool arm. Consequently, the negative y-axis moment in the tensile helix layers, which is
the driving mechanism for the torque, vanishes for a few metres.
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The effect of reducing the fabrication friction moment to 4 000 Nm in both of the
tensile helix layers was examined. The simulated torque distribution is denoted case 3* in
Fig. 9, and is seen to be roughly halved compared to case 3. This implies that the induced
torque is roughly proportional to the fabrication friction moment, which is also expected
as the contact pressures are small and the torque is not sufficiently large to alter the pipe
path.

4.2 Influence of spool arm motion

The influence of a 6 m spool arm displacement in the positiveX-direction was considered
for the cases listed in Table 4, with tensile helix lay angles α5 = 40◦ and α7 = −40◦.
The spool arm was kept at rest in the initial configuration defined by 0urby , 0usax , 0usay and
0udfy , see Fig. 5, until a material length corresponding to three coils had been transported
to the turn-table. Thereafter, the spool arm was assigned the velocity history in Table 3.
An extended mesh of length 96 m was used to ensure that the torque decayed to zero
before the mesh endpoint. In Figs. 10 and 12, the torque distributions are presented at the
instant the maximum torque was attained. The torque evolution at the upstream-end is
shown in Figs. 11 and 13 with the time measured from the instant the spool arm motion
was initiated.

Table 4: Initial position and velocity history for the spool arm

Case 0urb
y [m] 0usa

x [m] 0usa
y [m] 0udf

y [m] Spool arm velocity [m/s]

25 0.0 −2.0 −0.5 0.0 vsax =0.8 for t∈〈0.0 s, 7.5 s]

26 0.0 −2.0 −0.5 0.0
vsay =0.8 for t∈〈0.0 s, 5.0 s]→
vsax =0.8 for t∈〈5.0 s, 12.5 s]

27 4.0 −2.0 0.0 4.0 vsax =0.8 for t∈〈0.0 s, 7.5 s]

28 4.0 −2.0 0.0 4.0
vsay =0.8 for t∈〈0.0 s, 5.0 s]→
vsax =0.8 for t∈〈5.0 s, 12.5 s]

When the spool arm is moved directly with 0.8 m/s velocity in the positiveX-direction
for 6 m, the torque increases approximately linearly until the peak value is attained after
6 s, see Figs. 11 and 13. The maximum values at the upstream-end are 184 kNm for case
25 and 193 kNm for case 27, respectively. For cases 26 and 28, the spool arm is first dis-
placed 4 m in the positive Y-direction, which results in a far less torque rise during the
X-displacement.

The extreme response for cases 25 and 27 occurs because the part coiled on the turn-
table mobilizes a considerable torque to counteract the TDP geometric roll rotation im-
posed by the change in free span shape. This effect relates to the Coulomb bending model,
which allows the bending moment vector of the tensile helix layers to rotate rapidly such
that it becomes perpendicular to the turn-table-constrained pipe curvature vector. Thus,
large torques can be mobilized even for small roll rotations at the turn-table inlet. For
the present cases, the rotation of the tensile helix layer bending moment vectors spreads
gradually downstream on the turn-table. The friction moment capacity in each tensile he-
lix layer is between 8 – 12 kNm in the coiled part throughout the process, which implies
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Figure 11: Torque at upstream-end

that the contact pressures provide a noticeable contribution. For case 27, the maximum
contact pressure between the tensile helix layers is 4.6 MPa and occurs at the ship deck.
In contrast to the cases in Section 4.1, approximately half of the torque is induced at the
turn-table, see Figs. 10 and 12. Observe that the torque in Figs. 11 and 13 undergoes a
drop about 1.5 s before the final spool arm position is reached. This occurs because the
material transport effect counteracts with a larger torque than the one induced by the TDP
roll rotation. For case 25, the X-direction contact force on the spool arm changed from
40 kN to −25 kN during the prescribed displacement.

A test run was conducted for case 25 to examine the degree of roll restraint provided
by the Coulomb bending model. About 10 m downstream of the TDP, the roll rotation
was 53◦ when the Coulomb model was deactivated, whereas 3◦ rotation occurred with
the bending model activated. Thus, the Coulomb bending model gives a significant roll
stiffness contribution at the turn-table.
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Figure 13: Torque at upstream-end

The torque response was simulated for a fabrication friction moment of 4 000 Nm in
both of the tensile helix layers, see case 25* in Figs. 10 and 11. An extended mesh with
length 144 m was used such that the torque could decay to zero before the mesh endpoint.
As expected, the torque prior to the spool arm displacement reduces approximately by
50%. According to Fig. 11, the maximum value is attained at the same instant and the
torque rise is of similar magnitude as for case 25. The main difference is that the material
transport contribution is roughly halved and that the rotation process of the tensile helix
layer bending moment vector spreads further downstream on the turn-table to mobilize
more torque.

The 4 m initial displacement in the positive Y -direction which was prescribed for
cases 26 and 28 resulted in a different change of the free span shape during the positive
X-displacement. The mesh motion at the turn-table was then characterized by bending
action rather than constrained geometric roll rotation. Consequently, less torque was in-
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duced in the coiled part such that the upstream-end maximum values reduced by approx-
imately 40% compared to cases 25 and 27, see Figs. 11 and 13. This implies that the
extreme torque for cases 25 and 27 can be mitigated by using a spool arm motion path
that minimizes the pipe roll rotation at the turn-table inlet.

Some investigations were carried out for spool arm displacements from 0usax = 4 m
to usax = −2 m with lay angles α5 = −40◦ and α7 = 40◦. In that case, the magnitude of
the torque rise during the spool arm displacement phase was similar to the cases in Table
4.

4.3 Effect of residual bending curvature for plastic sheath layers

The unsteady operation start-up phase was simulated for the cases listed in Table 5, where
the index numbers refer to the layers subjected to residual curvature, numbered consecu-
tively according to Table 2 from the innermost to the outermost layer. The cross-section
orientation is defined by the ei-vectors in Fig. 5, while the residual curvature and the
resulting layer moment are defined according to Eqs. (3) and (12). The position of the
deck forks, the roller box and the spool arm was identical to cases 23 and 24, see Table 3.
In Figs. 14 – 17, the torque distributions are shown at the instant the material flow-front
reached the mesh termination point.

Table 5: Lay angle directions and residual curvature for plastic sheath layers

Case α5 [deg] α7 [deg] κ
{0}
2i [m−1] κ

{0}
3i [m−1] Layer index i for κ{0}i

29 −40 40 0.1 0.0 1, 3, 5, 7
30 −40 40 0.1 0.0 7
31 40 −40 −0.1 0.0 1, 3, 5, 7
32 40 −40 −0.1 0.0 7
33 40 −40 0.0 0.1 1, 3, 5, 7
34 40 −40 0.0 0.1 7
35 −40 40 0.0 −0.1 1, 3, 5, 7
36 −40 40 0.0 −0.1 7

For case 29, the pipe residual curvature vector has approximately the same direction
as the curvature constraint defined by the contact rollers at the overbend region and at
the turn-table. As seen in Fig. 14, the torque is therefore induced mainly in the free span
region and is of similar magnitude as the cases in Section 4.1.

An extreme torque response appears for case 31 where the upstream-end torque is
close to −300 kNm, see Fig. 15. The residual curvature vector and the contact roller cur-
vature constraints are here misaligned approximately by 180◦. This mesh configuration is
not stable when the plastic sheath layer bending loads are activated. Consequently, a roll
rotation was initiated when the material flow-front reached the turn-table inlet, which con-
tinued as the material coiled its way around the turn-table, giving an upstream-end torque
rise of about 180 kNm and a total roll rotation of 130 – 140◦ at the downstream-end. The
resulting non-alignment between the bending curvature and the bending moment, which
induces the torque, is therefore a compromise of the residual curvature, the roll rotation
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restraint provided by the Coulomb bending model and the material transport effect. Ob-
serve in Fig. 15 that the turn-table and the region upstream of the TDP contribute about
equally to the induced torque. The same behavior was present also for cases 33 and 35,
where the upstream-end torque was respectively −160 kNm and 270 kNm, see Fig. 16
and 17, with downstream-end roll rotations of about 45◦ and −60◦.

Regarding the evolution in time, the torque distributions presented for cases 29 and
33 coincide with the steady-state solution. For cases 31 and 35, the upstream-end torque
still increased at the end of the simulation, implying that the responses in Figs. 15 and 17
will become more severe as more material is coiled onto the turn-table.

The extreme responses reduce significantly or vanish when residual curvature is pres-
ent only in the external plastic layer, see the dashed lines in Figs. 15 – 17. No evident roll
rotation took place when the material was coiled around the turn-table, which means that
the selected residual curvature was not sufficiently large to change the configuration into
a state with significant torsion. Note that for cases 32 and 34, the upstream-end torque
values still represent an increase of approximately 30 kNm and 50 kNm compared to the
cases without residual curvature in Section 4.1.

5 Discussion

The simulated results must be seen in light of the conservatism incorporated for the
boundary conditions and the Coulomb bending model parameters. Regarding the former,
the upstream-end roll stiffness is governed by the length to the onshore turn-table and
the placement of low-radius bends along the load-out route. If the load-out path is long
and rather straight all the way from the onshore turn-table, the predicted upstream torque
would reduce drastically. Contrarily, if several bends are located nearby the ship deck,
which normally is the case due to limited space, the Coulomb bending model may pro-
vide considerable roll stiffness such that the upstream-end roll DOF could be regarded
fixed. Furthermore, critical situations may just as well occur in later phases of the opera-
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tion not considered in this work.
For the cases in Section 4.1 with α5 = −40◦ and α7 = 40◦, the largest compressive

tendon stress in the outer tensile helix layer due to axial straining, torsion and bending
was 27 MPa. This is far below the critical stress for the radial failure modes described in
Ref. [26], provided that an anti-buckling tape with realistic properties is applied. Signif-
icantly larger compressive tendon stresses occurred with α5 = 40◦ and α7 = −40◦, in
which cases 1 and 19 had compressive tendon stresses in the inner layer of 165 MPa and
138 MPa, respectively. In absence of interlayer friction, the tendon lateral buckling stress
is 52 MPa according to Ref. [27]. Although friction may increase the capacity by at least
a factor of two [26, 27], the authors believe that lateral tendon instability can be provoked
solely by the material transport effect when the torque acts in the stiff direction upstream
of the turn-table.

Extreme responses were identified in cases with unfavorable spool arm displacements
and plastic layer residual curvature. For cases 25 and 27, the largest tensile helix com-
pressive stress was respectively 364 MPa and 391 MPa, which severely exceed the tendon
lateral buckling capacity of 52 MPa. Failure would probably occur also if the tensile helix
lay angle direction was reversed, as high compressive stresses then would arise for large
spool arm displacements in the opposite direction. The tendon lateral buckling stress is
clearly exceeded also for the cases with plastic layer residual curvature. Herniation buck-
ling of the inner tensile helix tendons, see Section 1, was evaluated based on the buckling
load for a clamped straight beam with span length taken as the largest possible accumu-
lated gap of the outer tensile helix layer. In accordance to Ref. [28], this resulted in a
collapse load close to the yield strength, which arguably can be trigged by the simulated
maximum compressive inner tendon stress of 614 MPa that occurred in case 31, provided
that sufficient friction is mobilized to prevent lateral tendon buckling. Considering the
free span configuration in Fig. 1a, loop formation may be naively predicted by Green-
hill’s equation with k ∈ [1, 1.58], see Ref. [5]. Hence, in case of zero tension, 400 kNm2

bending stiffness and 190 kNm torque, the resulting critical span length is on the interval
L ∈ [6.6 m, 8.3 m]. Loop formation should therefore not be disregarded for the extreme
torque levels in Sections 4.2 and 4.3.

Large spool arm displacements are likely to occur several times during the operation.
For instance, when a layer of the turn-table has been filled, the subsequent layer must
be coiled in the opposite direction, either inward or outward. To ensure good packing
in this phase, the spool arm is arguably displaced in the X-direction to push the pipe
against the turn-table hub, the already stacked coils or the turn-table outer wall. Also, the
spool arm is throughout the operation actively used to counteract for tension variations
and to adjust the free span shape as the TDP migrates in the turn-table radial direction.
Regarding the presence of residual curvature, the pipe must be subjected to long-term
storage and the stress relaxation must take place throughout the thick internal plastic layer.
In view of these considerations, the authors believe that the extreme torque responses
experienced in load-out operations relate solely to the aggregate effect of unfavorable
spool arm displacements and material transport.

The failures identified above and the extreme torque responses can be avoided or
mitigated by means of operational requirements. With regard to lateral tendon buckling
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of the inner tensile helix layer, the turn-table inlet side should be selected so that the
induced torque yields torsion in the soft direction at the ship deck. Regarding the spool
arm, it cannot be permitted to displace such that large constrained roll rotations occur at
the turn-table inlet. This calls for personnel training and installation of a motion alarm
system for the spool arm. Potential issues due to residual curvature can be avoided with
aid of storage specifications and inspection routines prior to the operation. Regardless of
the effect that induces the torque, a long and straight load-out route upstream of the cargo
hold is favored, torsion in the soft direction at the ship deck is beneficial and the pipe
should preferably be given a helix shape at the overbend and in the upper free span that
cancels the torque induced in the lower free span.

The torque response and the governing failure mode depend on the actual case that
is considered. Simplified response prediction methods are clearly not feasible. Hence, to
ensure sufficient safety of load-out operations, numerical simulations should be applied
on a case-to-case basis. Regarding FE modeling of flexible pipe load-out processes, the
most important implications from the present study can be summarized as follows,

• The material transport effect must be properly accounted for as it may alone pro-
voke torsional failure. It yields also a noticeable contribution to the extreme torque
levels in Sections 4.2 and 4.3.

• Cases with at least 50% friction moment increase relative to the initial value were
observed in regions where torque was induced. Hence, the constitutive model must
account for interlayer pressure changes.

• The roll boundary condition at the downstream-end has no influence on the gener-
ated torque, provided that the coiled mesh length allows the torque to decay to zero
before the endpoint.

• The bi-linear torque-torsion relationship must be represented as it affects the rel-
ative sharing of torque between the turn-table and the ship deck. Here, the roll
stiffness at the upstream-end is also important.

• The torque induced by material transport is roughly proportional to the fabrication
friction moment M0 in cases with low interlayer contact pressures. However, the
M0-parameter is of less importance for the extreme torque rise associated with
constrained roll rotation at the turn-table inlet.

• Regarding prediction of loop formation, the actual free spans along the load-out
route should be modeled such that sag effects, the stick-slip bending stiffness and
the support conditions are correctly represented.

6 Conclusions and further work

In this work a Lagrangian-Eulerian framework for simulation of flexible pipe reeling op-
erations was presented. The bending response of the tensile helix layers was represented
by a Coulomb model and account was made for interlayer pressure variations due to axial
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straining and torsion. A consistent linearization scheme for the axial-torsional response
and the interlayer pressures was presented. Guidelines for the Lagrangian-Eulerian anal-
ysis strategy were provided and an interpolator method for the initial mesh configuration
was proposed. A truncated finite element model of an idealized flexible pipe load-out
operation with material transport from an onshore spoolbase to a cargo vessel was estab-
lished. The torque response at operation start-up was examined in terms of reeling path,
tensile helix lay angle direction, prescribed spool arm motions and presence of residual
curvature in the plastic layers. Unfavorable spool arm motions and residual curvature ef-
fects were found to cause failure, in which the former was regarded as the most plausible
source for the extreme torques experienced in load-out operations. Failure solely due to
the material transport effect was detected for cases where the torque upstream of the turn-
table acted in the stiff torsion direction. Strategies to avoid the torsional failures were
proposed and implications for the FE modeling were given.

At present the numerical model is applicable primarily for rough torque predictions,
identification of extreme torque events and for mutual comparison of simulated responses.
The validity of the modeling assumptions and the applied constitutive model should there-
fore be examined in future work. A comparison study against physical reeling operations
with validation of roll rates and torsion is recommended. Measurements of the fabrication
friction momentM0 are also encouraged as the torque due to material transport is roughly
proportional to M0 for small contact pressures. Such a study enables also a more accurate
evaluation of the torsional failure utilization factors. For that purpose it is desirable to
improve the current tendon lateral buckling criterions [26, 27] with regard to the resisting
effect provided by interlayer friction. The Lagrangian-Eulerian framework has provided
robust and efficient simulations throughout this work and is highly recommended to use
also in future studies.
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