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Abstract

In the alpine topography of western Norway rockslides constitute a potential danger for

generation of tsunamis in the fjords. The Åknes rockslide area was first brought to the

public’s attention in 1964, when local people claimed that the back scarp, located 700-900

m a.s.l. was widening. Bolts were installed on both sides of the back scarp and manual

measurement of the distance across was started in 1986. A comprehensive monitoring pro-

gram with several types of movement measurements is in operation in the rockslope area

today, funded by the Norwegian Natural Disaster Fund since 2004. Due to the potential

hazard for a tsunami generated as a result of a large scale rockslope failure, the rockslide

monitoring project is one of the most comprehensive in the world at present.

Among the most important issues in rockslope stability analysis are potential failure

geometry, shear strength of the sliding plane(s) and groundwater conditions. In a large

complex rockslide such as the Åknes sliding area, considerable uncertainties are related to

these factors.

Failure geometry at Åknes has been evaluated based on a combination of geophysical

and geotechnical datasets and an interactive 3D geovisualization model for visual analysis.

Geometric modelling and volume estimation of the sliding area has been carried out for

three different scenarios: Scenario A with a basal sliding surface located 40-55 m below the

surface (estimated area and volume 510,000 m2 and 20×106 m3, respectively); Scenario

B with a basal sliding surface located 105-115 m below the surface (estimated area and

volume 575,000 m2 and 43×106 m3, respectively), and Scenario C with a basal sliding

surface located 150-190 m below the surface (estimated area and volume 742,000 m2 and

85×106 m3, respectively). Of these, Scenario B has been concluded to represent the most

likely basal sliding plane location and hence the most realistic area- and volume estimates.

Potential sliding planes in a rock slope generally consist of geological layers or strata

which possess smaller shear strength than the surrounding rock mass. Shear strength
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estimation of sliding planes is always a key factor for reliable rock slope stability analysis.

At Åknes, the sliding plane is complex, consisting of a combination of:

(a) Unfilled joints (rock-to-rock contacts)

(b) Filled joints (gouge material)

(c) Bridges of intact rock

The shear strengths of components (a)−(c) span a great range, and before any kind

of stability analysis can be carried out, a realistic quantification of the resultant shear

strength of the combined sliding plane has to be made. A methodology for estimating

this resultant shear strength has been developed, resulting in a possible range of shear

strengths depending on the amount of unfilled joints, filled joints and bridges of intact

rock in addition to the normal stress (σn) acting on the sliding plane. Based on field

observations, drill core logging and back analysis, estimation of most likely composition of

the sliding plane at Åknes has resulted in an amount of 25-35% failure along gouge filled

joints, 1-3% intact rock failure and 62-74% failure along unfilled foliation joints.

Detailed data on displacements and meteorology are available based on extensive mon-

itoring of the slope since 2004. Analysis of the meteorological effects on displacements in

the back scarp of the Åknes rockslide has shown that the displacements are mainly related

to variations in groundwater level in the upper part of the slope. The groundwater level

is in turn affected by the seasonal meteorological variations. The largest net expansions

of the back scarp are recorded in spring, when the groundwater is fed by melting water

from snow in the catchment area in addition to rainfall. In winter, when the ground is

frozen and covered with a 1-3 m thick snow cover, no significant displacement is recorded.

Indications of reduced meteorological influence on the displacements with time have been

found for the analysed period (November 2004 - August 2008) as most of the displace-

ment events in the back scarp have been recorded in the first half of the period (September

2004−August 2006).
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Stability of the slope has been evaluated using 2D and 3D numerical modelling based

on Phase2 and FLAC3d, respectively. This analysis has incorporated data from geometry

analysis and shear strength analysis for the sliding plane(s), as well as data from field and

laboratory work and groundwater analysis. Analyses based on Phase2 show that a shear

strength according to a composition of 35% failure along gouge filled joints, 1% intact rock

failure and 64% failure along unfilled foliation joints results in a critical stability with a

Strength Reduction Factor (SRF ) of 0.96, while an alternative composition of 35% failure

along gouge filled joints, 3% intact rock failure and 62% failure along unfilled foliation

joints results in a SRF of 1.1.

Longterm stability of the slope has been evaluated based on the Burger-Creep Vis-

coplastic (c-visc) material model in FLAC3D. The analysis has shown that a set of

parameters believed to represent the present situation (a composite sliding layer with 3%

failure of intact rock, 35% failure along gouge filled joints and 62% failure along unfilled

joints and a fractured rockmass above the sliding layer with M-C parameters correspond-

ing to GSI 62; “good surface conditions”) results in stabilisation of the displacements

within the 100 years modeled. However, due to gradual reduction in the shear strength

parameters over time, the toe according to the analysis becomes unstable and the surface

displacements increase within the same time span with a set of parameters representing

a possible future scenario (a composite sliding layer with 1% intact rock, 35% gouge and

64% unfilled joints and a fractured rockmass corresponding to GSI 37; “fair surface con-

ditions”). Although exact timing of failure is not possible based on the modelling carried

out in this thesis, this analysis is believed to represent valuable basis for further analysis

which may be carried out as more knowledge regarding the geometry and composition of

the sliding plane(s) and the groundwater conditions in the sliding area become available.
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1 Introduction

1.1 Background

The term “geohazards” can be defined as: “a geological state that represents or has the po-

tential to develop further into a situation leading to damage or uncontrolled risk” according

to Norwegian Geotechnical Institute’s website. The term thus covers a very wide field.

Large scale rockslides represent a serious geohazard in Norway, mainly due to tsunamis

following the rockslides causing destruction and loss of lives. During the last 100 years,

174 people have lost their lives in three rockslide events in western Norway.

This thesis is prepared within the International Center for Geohazards (ICG), which

is a “Center of Excellence” appointed by The Research Council of Norway from 2003.

ICG is established by 5 partners; The Norwegian Geotechnical Institute (NGI) as the

host institution, Geological Survey of Norway (NGU), NORSAR, The University of Oslo

(UiO) and The Norwegian University of Science and Technology (NTNU). The activity

of the center is at present organized in nine projects where staff members of the partner

institutions and MSc-/PhD students from UiO and NTNU do research together:

Project P2 aRisk assessment for geohazards

Project P3 aSeismic hazard, risk and loss

Project P4 aStability of rock slopes

Project P5 aGeomechanical modelling

Project P6 aOffshore geohazards

Project P7 aSlope instability assessment and hazard zonation

Project P9 aSlide dynamics and mechanics of disintegration

Project P10 Tsunamis

Project P12 Monitoring, remote sensing and early warning systems

As can be seen from the projects involved, ICG research cover areas like landslides, clay

slides, slides in marine sediments, rockslides, earthquakes, tsunamis and related topics

such as risk assessment, hazard zonation, monitoring and early warning systems. This

thesis is a part of Project P4; Stability of rock slopes, and further focus will hence be on
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rock slope stability.

Historical rockslides in Norway documented in a geohazard database at the NGU show

that three counties with high, steep topographic relief of fjords and valleys are in particular

exposed to rockslides; Sogn & Fjordane, Møre & Romsdal and Troms (Blikra et al., 2006).

Initial site inspections thus were carried out at Nordnesfjellet (Troms county), Åknes,

Børa and Tafjord (all in Møre & Romsdal county) and Aurland (Sogn & Fjordane county)

which are rockslide sites described in Braathen et al. (2004). However, the Åknes sliding

area was chosen as an unique study area, mainly due to an allocation from the National

Fund for Natural Damage Assistance from 2004. The funding initiated establishment of

the Åknes/Tafjord project in the municipality of Stranda, and monitoring data from the

Åknes rockslide has been made available for this study through this project and NGU.

A high frequency of rockslides is generally identified in the county of Møre & Romsdal

by geological mapping on land and in fjords (Figure 1). Almost 200 individual events

have been mapped, with distinct concentrations in the inner fjord areas (Blikra et al.,

2006). The Storfjorden area where the Åknes sliding area is situated is defined as a “high

susceptibility zone” based on a spatial distribution and temporal pattern of events (Blikra

et al., 2005). A total of 59 individual events larger than 0.5×106 m3 are mapped in this

area (Longva et al., 2009; Blikra et al., 2005).

Some of the catastrophes in the counties of Møre & Romsdal and Sogn & Fjordane

are documented in Furseth (2006) and Bjerrum and Jørstad (1968), including Skafjellet in

1731, Tjelle in 1756, Loen (Ramnefjell) in 1905 and 1936 and Tafjord (Heggura) in 1934

(Table 1 and Figure 2). The Tafjord (Heggura) rockslide in 1934 destroyed the villages of

Tafjord and Fjør̊a, Figure 3(a) and 3(b) shows the village Fjør̊a before and after the slide,

respectively. The rockslide generated a tsunami of 12-14 m here and claimed 17 casualties

(Furseth, 2006).
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R
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Storfjorden

Romsdalsfjorden

3

Potential rockslope failures

High

Figure 1: Susceptibility map based on geological mapping, field investigations, georadar profiling,

refraction seismic profiling and excavations on land and in fjords (Blikra et al., 2006).

Rockslide Year aaVolume [m3] Htsunami [m] Casualties

Skafjellet 1731 > 0.1 × 106 30 17

Tjelle 1756 A.15 × 106 50 32

Loen 1905 A0.4 × 106 40 61

Tafjord 1934 A1.5 × 106 17 40

Loen 1936 A.01 × 106 74 74

Table 1: Selected historical documented rockslides in the counties of Møre & Romsdal and Sogn

& Fjordane. Htsunami refers to maximum recorded height of tsunamis in historical documents.
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Figure 2: The Åknes rock slope, the town of Stranda and historical rockslide locations discussed.

Tsunami modelling indicates that several settlements along the Storfjorden will be

endangered as a result of a large scale rock slope failure at Åknes (Eidsvig and Harbitz,

2005), among them the people living at the nearby communities Geiranger and Hellesylt

located by the fjord, and the town of Stranda, 15 km away from Åknes (Figure 2). In

addition, the large amount of tourists visiting the area during the summer months are

potentially affected as the Geirangerfjord is one of Norway’s most visited tourist attractions

(listed on the UNESCO‘s World heritage list).

4



(a) (b)

Figure 3: a) The village Fjør̊a before the rockslide at Tafjord (Heggura) in 1934 b) The village

after the slide. Photos from Furseth (2006).

1.2 Åknes rockslide area

The unstable slope at Åknes is oriented in NE-SW direction along the W-side of the

Storfjorden and was brought to the public’s attention in 1964, by local people claiming

that the back scarp was widening (Sandersen et al., 1996). Signs of instability at the

Åknes rockslide area have been evidenced by occurrence of three smaller rockslides, all

along the western boundary of the area, the most recent in 1960, with an estimated volume

of approximately 100,000 m3 (Kveldsvik et al., 2008, 2006). Monitoring of the back scarp

started in 1986 by the installation of two pair of bolts for manual reading of the distance

across the back scarp, and today, the rockslide monitoring project at Åknes is one of the

largest in the world.

Several master thesis and project assignments have been prepared related to Åknes

sliding area within Project P4, which this thesis has benefited from, including collection of

geological data (Ragvin, 2005; Holsbrekken, 2006), numerical studies of the slope (Ragvin,

2006), analysis of the the correlation between displacement and precipitation (Holsbrekken,

2007), analysis of borehole geophysical data (Aardal, 2006, 2007) and possible effects of

drainage (Moen, 2007, 2008). In addition, one PhD thesis has been prepared on static

and dynamic stability analyses of the slope (Kveldsvik, 2008).
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1.2.1 Description

Using the generally accepted landslide terminology of Petley (1978) and Cruden and

Varnes (1996), the main scarp is located approximately 700-900 m a.s.l., extending 800

m in E-W direction (Figure 4(a)). The main scarp is progressively developing toward the

east, where it at present ends with an opening of 0.5-1 m (Figure 4(b)). In the western

part, the opening is in the order of 2-3 m (Figure 4(c)). At the western end of the scarp, a

relieved graben structure with an estimated volume of 300,000-400,000 m3 has developed

(Figure 4(d)). The western flank is defined by a steeply dipping NNW-SSE strike slip fault

which is a dominant feature in the area, while indications of a NNE-SSW trending fault

with a gentle dip to the northwest might define the eastern flank of the area (Ganerød

et al., 2008). The toe is not defined, however, field mapping has revealed a line of springs

located at approximately 75-100 m a.s.l. (Frei et al., 2008), indicating a possible lower

boundary of the unstable area. Morphological compression features which are mapped in

field (Blikra, 2008), may also indicate a toe at this elevation.

Geophysical surveys by the use of 2D resistivity, refraction seismic and ground pene-

trating radar (GPR) have been carried out in order to map the subsurface (Ganerød et al.,

2008; Rønning et al., 2006). The surveys have indicated several scenarios for the basal

surface of rupture, and an undulating basal sliding surface located at 105-115 m has been

proposed as the most likely scenario in Nordvik et al. (2009).
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Figure 4: a) Åknes rockslide area, with photo locations b) Back scarp opening in the eastern part

(0.5-1 m) c) Back scarp opening in the western part (2-3 m) d) Relieved graben structure located

in the western end of the back scarp e) Foliation in the area f) Water infiltrating the back scarp

in spring.



1.2.2 Geology

The Åknes rockslide is located in the Western Gneiss Region. The bedrock of the area

is dominated by gneisses of Proterozoic age, which was altered and reworked during the

Caledonian orogeny (Tveten et al., 1988). The gneisses have a magmatic origin and

are described in the geological map sheet as undifferentiated gneisses that are locally

migmatitic in composition, varying from quartz-dioritic to granitic. On the basis of logs

from seven boreholes at the three drilling sites in the slope (Figure 5), three types of

gneiss; quartz-dioritic, granitic and gneisses rich in biotite have been identified (Ganerød

et al., 2007).

Geological conditions believed to contribute to slope instability and potential failure

at the Åknes rockslide area are: 1) a steep slope angle averaging approximately 35◦ and

2) foliation oriented parallel to the slope, dipping steeply S-SE along the main scarp

((Ganerød et al., 2008; Braathen et al., 2004)).

1.2.3 Hydrological conditions

The groundwater level is measured by piezometers which were installed in the upper and

middle borehole in November 2006. From November 2006 to August 2008, the groundwater

levels fluctuated between -42.5 and -46.5 m below the surface in the middle borehole, and

between -51 and -60 m in the upper borehole. Groundwater levels recorded in the boreholes

fluctuated simultaneously in this period, indicating a shared groundwater regime in this

area. The fluctuations were however, largest in the upper borehole, reflecting the close

location to the back scarp, which is believed to constitute a major feature for infiltration of

water to the sliding area. This is evidenced by high groundwater tables when precipitation

is high in autumn and spring when a combination of melting water (Figure 4(f)) and

precipitation infiltrates the back scarp (Grøneng et al., 2009).
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1.2.4 Displacement

Displacement in the sliding area is monitored at the surface by several instruments which

can be divided into manually and continuously displacement measurements (Figure 5):

Manually recording instruments

• Bolts in the back scarp from 1986 (a total of seven sets of bolts)

• GPS- and reflector points throughout the area since 2004 (a total of 18 GPS points

and 19 reflector points)

• Bolts for tape extensometer reading in selected joints from 2005 (a total of 14 sets

of bolts)

Continuously recording instruments

• Extensometers in the back scarp from 1993 (a total of five extensometers today)

• Ground-based radar scanning of the slope from the opposite side of the fjord (1-3

month campaigns since 2005)

• GPS-antennas since 2007 (a total of eight GPS-antennas)

• Ground-based radar with reflector points since 2009 (a total of nine reflector points)

• Totalstation with prisms since 2007 (a total of 21 prisms)

• Laser recordings for monitoring of a local graben structure since 2005 (a total of two

lasers)

In addition, five crackmeters/tiltmeters is being installed at the moment in selected joints

throughout the area. In general, the displacements in the back scarp show a steady widen-

ing over the last 18 years, on the average in the order of 18-25 mm/year (Kveldsvik et al.,

2006). According to manual measurement campaigns of GPS/reflector points operative

since 2004, the unstable slope can be divided into four areas based on the direction of move-

ment and velocity (based on measurements in the period October 2004−August 2007):

Area I SW individually moving graben structure defined by GPS8 and laser/reflectors

L1/R1 and L2/R2 with average annual displacement in the order of 70-145 mm/year

Area II S-SW moving area defined by GPS6-8, R4-8, R14-18 with average annual dis-

placement in the order of 70 mm/year
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Area III SE moving area defined by GPS9, GPS13, R9, R12-13 and R19 with aver-

age annual displacement in the order of 20 mm/year

Area IV Inconsistently moving area defined by GPS10-12, GPS14-18, R9-R11

The lower part of the slope is moving inconsistently due to unfavorable position of the

GPS points in terms of satellite signal reception, vegetation and meteorological factors

influencing the measurements (Nordvik and Nyrnes, 2009; Ganerød et al., 2008).

In addition to the monitoring of surface displacements, two boreholes (upper and mid-

dle borehole) are equipped with a Differential Monitoring System (DMS) since 2006. The

monitoring interval of the columns was -32 to -82 m in upper borehole and -16.5 to -66.5 m

in the middle borehole. Until July 2007, the data indicates a relative displacement around

-51 m to -52 m in the upper borehole, corresponding to a maximum of 1 cm/year and

at -34 m in the middle borehole, corresponding to approximately 1 cm/year (Kveldsvik,

2008). However, the length of the DMS-columns limits the measurement interval in the

boreholes, which allows for preliminary conclusions related to the displacement at depth

at present. The instrumentation was moved to lower parts autumn of 2007, and this will

allow documentation of potential movement in lager depths.
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(2009) for placement).



1.3 Objective

The objective of this thesis is to contribute to improvement of knowledge of the stability

at the Åknes sliding area, by studying in detail some important factors for slope stability.

The results are believed to increase the understanding of the following factors controlling

the slope stability at Åknes:

• The extent and geometry of the sliding area, including volume estimations

• The composition and shear strength of the sliding plane(s)

• The influence of groundwater and meteorology on the stability

• The time dependent deformation of the area, including predictions for future stability

1.4 Organisation of thesis

The thesis is divided into sections as described in the following:

Section 2 and 3: Theoretical basis and Methodology

Relevant theory related to rock slope stability and methods used are presented.

Section 4: Comments on main papers

The main papers prepared for publication are briefly discussed in sections 4.1-4.4. A

total of four main papers are prepared, all dealing with different factors controlling the

stability at Åknes.

Section 5: Discussion and Main conclusions

A joint discussion of the papers is presented and the main conclusions of the thesis are

drawn.

Main Papers

The main papers I-IV are included in full length.
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Appendices

Appendices in this thesis includes the following:

Appendix A Additional paper (Paper V)

Appendix B Front cover of reports I-II

Appendix C Total list of publications during PhD

In addition to the four main papers, contributions have been made to one paper dealing

with the geology at Åknes (Ganerød et al., 2008), and one report for the Norwegian Geolog-

ical Survey documenting the corelogging of 1,050 m of cores from a total of seven boreholes

at Åknes (Ganerød et al., 2007). One report has also been prepared for Dept. of Geology

and Mineral Resources Engineering at NTNU on determination of input parameters for

Barton-Bandis joint shear strength formulation (Grøneng and Nilsen, 2009).
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2 Theoretical basis

2.1 Stability of large scale rock slopes

Analysis of the stability of a large scale rock slope represents a challenge due to the

geological complexity and large volume of unstable mass normally involved (> 0.1 × 106

m3). Some of the early work on this topic with relation to slopes in hard unweathered

rock in Norway were carried out by Bjerrum and Jørstad (1968) and Terzaghi (1963). In

most cases, several factors influence the stability and rate of movement of a rock slope,

such as:

• Slope topography

• Orientation of discontinuity planes and foliation

• Shear strength of discontinuities and intact rock

• Groundwater pressure

• In situ stress conditions

• Seismic activity

• Freezing/thawing effects

The relative importance of each of these factors may vary considerably, however, in most

cases the orientation and characteristics of discontinuity planes and groundwater condi-

tions are the most important factors (Wyllie and Mah, 2004; Nilsen and Palmstrøm, 2000;

Hoek and Bray, 1981).

The discontinuities define the potential sliding plane(s), while the shear strength of

the discontinuities represents the resistance against failure. Groundwater may affect the

stability of a slope in several ways:

• By reducing the normal stress; groundwater pressure will reduce the normal stress

acting on the sliding plane(s) and by this reduce the friction along the sliding

plane(s).

• By acting as a driving force; the groundwater may act directly as a driving force in

tension joints.
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• By reducing the internal friction; the groundwater may reduce the internal friction,

i.e. the strength of joint filling material and possibly also cause swelling of gouge

material.

• Due to expansion by freezing; water expands by approximately 10% when freezing,

which may cause considerably displacements and forces reducing the stability.

• By causing erosion; in weak rock, flowing water may cause washout and erosion

reducing the stability.

Many authors, such as Wyllie and Mah (2004), Wieczorek (1996) and Coates (1990),

have discussed the relation between groundwater and slope stability in general terms.

Shear strength reduction of filled discontinuities in rock is dependent on the thickness of

the clay filling as discussed by Barton (1974). For large scale rockslides, processes working

at depth are the most important factor and such failures can be caused by several factors.

A study of four large historical rockslides in Norway (Loen 1905 and 1936, Tafjord in 1934

and Modalen in 1953) concluded that failures may have occurred as result of reduction in

shear strength due to increase in water pressure or by reduction in joint roughness due

to mechanical or chemical disintegration (Sandersen et al., 1996). Increase in the water

pressure could in turn be related to meteorological factors such as rainfall intensity, rate

of snowmelt, temperature, air humidity, wind velocity, solar radiation and snow depth.

Conceptually, rock slope failure can be seen as the progressive accumulation of events

with time that act to degrade the equilibrium state of the slope, with each event bringing

the slope closer to failure (Eberhardt et al., 2001). Each event could be related to different

groundwater-related triggering types, such as heavy rainfall/snowmelt or freeze-thaw cycle

which progressively reduces the effective strength or cohesion of the rock mass until a

triggering episode which eventually leads to slope failure. Internationally, the relation

between large scale rockslides and these triggering events has been widely discussed in

the literature. The most well known case is the 1963 disastrous Vaiont rock slope failure

in northern Italy (slide volume of 270×106 m3), which occurred as a consequence of the

construction of a 265 m high arch dam. The importance of rising and lowering of the
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reservoir level, precipitation and decrease of sliding resistance of the rock materials has

been discussed by Hendron and Patton (1985), Müller (1968), Kenney (1967) and Müller

(1964) amongst others. Additional international case studies where groundwater has been

discussed in relation to slope stability include for instance the 1991 Randa rock slope failure

in Switzerland, where heavy snowmelt has been discussed as one of several triggering

mechanisms (Eberhardt et al., 2001), the 1987 Val Pola rock avalanche in Italy (slide

volume of 40×106 m3) where heavy rainfall preceded the failure (Govi (2002) and references

therein), the 1907 Frank slide in Canada (slide volume of 30×106 m3) where freezing and

melting of snow in rock joints have been mentioned as a triggering factor (Cruden and

Martin (2007) and references therein) and the 1806 Goldau slide in Switzerland (slide

volume of 20×106 m3) where the effect of heavy rainstorms has been discussed (Terzaghi

and Voight (1979) and references therein).

2.2 Failure mechanisms

The mechanical behaviour of deep-seated landslides such as the one at Åknes is com-

plicated to fully understand due to the depth of the basal shear surface and associated

problems with localizing and accessing the zone of deformation. Several models of failure

mechanisms have been proposed in the literature, one of them by Stead et al. (2004) who

for the most complex case describes a failure mechanism involving deep-seated multi-block

failure with internal shearing in combination with brittle-ductile deformation for complex

deep-seated rockslides (Figure 6). Petley and Allison (1997) simulated the stress-srain

environment at the bottom of a deep-seated landslide and found that some materials (mu-

drocks) showed a combination of ductile and brittle deformation inducing long periods of

creep followed by sudden failure, supporting this failure mechanism. Petley (1996) has

also argued such a failure mechanism for the 1963 Vaiont slide, where the shear zone de-

formed as a result of mechanisms that were initially ductile (development of micro-cracks

in the clay layers withing the landslide), but which transitioned to a brittle state as strain

accumulated. The final failure was triggered by development of a discrete shear plane as
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Figure 6: Three levels of stability analysis and related failure mechanisms (Stead et al., 2004).

a result of the merging of the micro-cracks.

In addition to failure models, several classification systems of failure mechanisms of

rock slides have been proposed in the literature. Table 2 suggested by Hungr and Evans

(2004) is an example of a classification based on the rock structure and the mechanical

properties of the rock mass and includes examples of internationally well-documented

rockslides. In light of this classification, the Åknes slide is an unconstrained, compound

rock slide in strong rock (as described in Ganerød et al. (2008)), similar to the Vaiont

slide.
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Structural control No Systematic structural control

Dominant

mechanism

systematic Sliding Toppling

Kinematics structural Translational Compound Flexural Block

Constraint control Unconstrained Constrained

At toe At scarp

Mechanism Type A C D E F G H

Rock slump Block slide Structurally Block slide Compound Flexural Block

Wedge slide defined with toe slide topple topple

B compound breakout

Rock collapse slide

Typical behaviour Slow, Catastrophic - Slow Slow Slow -

in weak rock rotational (Mt. Granier) (Downie Slide) (Liard Plateau) (La Clapiere)

movement

(Plateau

d’Assy)

Typical behaviour Catastrophic Catastrophic, Catastrophic, Catastrophic, - - Catastrophic

in strong rock collapse, limited large (Madison) (Mystery Creek)

steep slopes, pre-failure pre-failure

(Elm) deformation deformation

(Goldau) (Vaiont)

Table 2: Classification of failure mechanisms of large rock slides (after Hungr and Evans (2004)).
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2.3 Time-dependent behaviour of deep seated landslides

Deep-seated landslides and large-scale rock avalanches are two types of mass movements

which display different movement rates, the former normally with very slow or extremely

slow rates of movement (very slow and extremely slow are defined as <1.6 m/year and <60

mm/year respectively, according to Cruden and Varnes (1996)), while the latter display

rapid or extremely rapid downslope movement (defined as >5 m/sec). According to Oyagi

et al. (1994), the ultimate failure of a slope has often been “prepared” by a long period

of extremely slow “creep” type movement. Deep-seated landslides which at present are

moving slowly, hence may represent the initial stage of slope movements which might lead

to accelerated deformations and finally large-scale rock avalanches (Oyagi et al., 1994).

Time-dependent behavior of deep seated landslides has been discussed in the literature

since the 1960’s (Dramis and Sorriso-Valvo, 1994), and various terms are used for these

phenomena. Some of them are listed in Table 3.

Ter-Stepanian (1966) identified different types of depth creep in rock slopes, including

Term Reference

Depth creep Ter-Stepanian (1966)

Deep-seated creep Nemčock (1972)

Deep-seated continuous creep Hutchinson (1968)

Sackung Zischinsky (1966), Savage and Varnes (1987)

Flow Petley (1978)

Mass rock creep (MRC) Radbruch-Hall (1978), Chigira (1992)

Deep-seated gravitational slope deformations (DGSD) Dramis and Sorriso-Valvo (1994)

Table 3: Classification of deep-seated slope movements.

planar depth creep in stratified rocks. This is for situations when the slope is oriented

parallel to the bedding planes and the geological structure represents alternation of strong

and weak strata (Figure 7(b)), which is also the case at Åknes (the geology of Åknes is

presented in Ganerød et al. (2008)).
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Figure 7: Creep mechanisms in rock masses after Ter-Stepanian (1966) a) Slab creep b) Consequent
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creep h) Insequent creep i) Compensating creep.

The term deep-seated gravitational slope deformations (DGSD) is widely used today,

and according to Dramis and Sorriso-Valvo (1994), DGSD can be described as a group of

mass movement phenomena characterized by the following:

• The deforming mass may or may not be bounded by a continuous yielding surface;

however, the continuity of such surface is not indispensable to explain the surficial

deformations.

• The volume of masses involved is of the order of several hundred thousands of cubic

meters or more, the thickness is several tens of meters or more.

• Scale factors, as discussed by Goguel (1978), may influence the mechanical proper-
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ties of the rock and, consequently, the deformation mechanism.

• The total displacement is small in comparison to the magnitude of the mass.

2.3.1 Time-dependent behavior of rock material

In rock mechanics, the idealized form of a creep curve can be divided into three separate

“regions” as shown in Figure 8, where the creep strain may be represented by (Jaeger and

Cook, 1968):

ǫ = ǫe + ǫ1(t) + V t + ǫ3(t) (1)

where ǫe is the instantaneous elastic strain, ǫ1(t) is the transient creep, V t is the steady-

state creep, and ǫ3(t) the accelerating creep.

S
tr

a
in

,
ε

I
Primary

II
Secondary

III
Tertiary

εe

Time, t

Figure 8: Idealized creep behavior for rock materials and cohesive soils (modified from Jaeger and

Cook (1968)).
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The three “regions” may be described as follows:

I : The strain-time curve is concave downwards, creep in this region is called primary or

transient.

II : The strain-time curve has approximately constant slope, creep in this region is sec-

ondary or steady-state creep.

III : The strain-time curve is accelerating, creep in this region is tertiary and leads rapidly

to failure.

According to Pomeroy (1978), the creep mechanisms for rocks can be explained based on

stress concentrations that must occur in non-homogenous materials when loaded. Natural

materials contain voids and cracks which if stressed will grow. The stress concentrations

may decrease as a consequence of cracks propagating, merging or by running into a pore.

One approach adopted to study the creep of geological materials is the rheological

approach, where idealized models (viscoelastic, viscoplastic, elasto-viscoplastic, Burgers,

nonlinear visco-plastic, etc.) are fitted to experimental behavior of specific materials

by means of numerical constants (Crosta and Agliardi, 2003). In this thesis, numerical

modelling by the use of rheological models has been carried out in Paper V (Grøneng

et al., 2009), and therefore a short description of the basic rheological models is given in

the next section.

Slope creep is due to modifications in slope geometry, material properties and geome-

chanical features of discontinuities (Crosta and Agliardi, 2003). The idealized form of

the creep curve may also apply to a creeping rockslope, as demonstrated by the sudden

increase in the deformation rate before complete failure as discussed for the Ruinon rock

slide (Crosta and Agliardi, 2003) and the Vaiont landslide (Kilburn and Petley, 2003;

Pomeroy, 1978), both in Italy.
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2.3.2 Rheological models

Rheological models offer a mathematical description of the fundamental behaviour for

creep. The models are built up as combinations of linear elasticity and viscosity, and

may be represented by simple mechanical models. The basic models are the Maxwell

and Kelvin rheological models which form Burger model when combined in series. The

Maxwell and Kelvin models consist of combinations of the linear elastic Hookean and the

perfectly viscous Newtonian substance, which are the two basic models in rheology (see

Figure 9).

Burger’s model gives the simplest representation of a material which shows an instan-

tanous strain, transient creep and steady state creep (Figure 9e). If the stress is released

after some time, displacements will be permanent. In view of the general creep curve in

Figure 8, the Burger’s model is the simplest model that can be used to trace strain up

to the onset of tertiary creep. The deformability constants have the following physical

meaning:

G2 is the elastic shear modulus

G1 controls the amount of delayed elasticity

η2 describes the rate of viscous flow

η1 determines the rate of delayed elasticity
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Figure 9: Basic rheological models (from Goodman (1980)).
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3 Methodology

3.1 Field work

Extensive field work with main focus on geological mapping has been carried out by the

author during the summers of 2004, 2005 and 2006. Outcrops throughout the area were

described in detail, including measurements of strike/dip, registration of joint frequency

and -continuity, joint roughness (JRC), Schmidt hammer rebound values, Q-values and

Geological Strength Index (GSI) values. Samples of rock and gouge were collected in

order to carry out laboratory analysis. The field work has also included follow-up and

core logging of four of the seven boreholes at three drilling sites in the area (summer of

2005). Fracture frequency, Rock Quality Designation (RQD), joint material and core loss

were registered together with a general description of the cores. The cores were also later

logged at the Geological Survey of Norway, where orientation of joints and foliation and

lithological logging were included. The logging resulted in an internal report (Ganerød

et al., 2007).

In addition, displacement measurements have been carried out by the use of tape

extensometer, which was used to measure the distance across selected joints throughout

the area based on two annual measurement campaigns from 2005 to 2008 (Kveldsvik and

Grøneng, 2007).

3.2 Laboratory testing

Laboratory testing of rock and soil has been carried out by the author at the NTNU/SINTEF

Engineering Geology and Rock Mechanics Laboratories and at the NTNU Geotechni-

cal Laboratory. Triaxial testing of rock and soil was performed as described in Paper I

(Grøneng et al., 2009) and basic friction angle for cores was determined and described in

Grøneng and Nilsen (2009).

In addition, the SINTEF Rock Mechanics Laboratory has tested cores obtained by

coredrilling at Åknes for several standard parameters which have been used in this thesis.

These tests have included deformability of rock (Young’s modulus, Ei), Poisson’s ratio
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(ν), Uniaxial Compressive Strength (UCS), tensile strength by Brazilian test (σt), sound

velocity (v) and density (ρ). Description of the testing methods and results are given in

Ganerød et al. (2007).

3.3 Numerical modelling

Numerical modelling is a more recent development in slope stability analysis than the

more traditional limit equilibrium method. Several numerical methods are offered (see

Figure 10) and characteristics, applications and limitations of the methods used in slope

stability analysis are described and discussed for instance in Eberhardt (2006), Wyllie and

Mah (2004) and Coggan et al. (1998). Two modelling tools have been used in this thesis

work; Phase2 developed by Rocscience and FLAC3D developed by Itasca. The choice

of modelling tools is based on the desire to perform parameter studies (Phase2) and to

model time-dependent characteristics with a three-dimensional model (FLAC3D). Both

programs are based on continuous differential models, however Phase2 is based on Finite

Element Method (FEM) whereas FLAC3D is based on Finite Difference Method (FDM).

NUMERICAL
MODELS

Continuous
models

Discontinuous
models

Differential
models

Block
models

Finite
element
method
(FEM)

Finite
difference
method
(FDM)

Distinct
element
method
(DEM)

Discontinuous
deformation

analysis
(DDA)

Figure 10: Numerical methods used in slope stability analysis.
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FEM divides the body into smaller “elements” of vari-

uyi qyi

i
uxi

qxi

uyk qyk

uxk

qxk

uyj qyj

uxj

qxj

j

k

Figure 11: Triangular finite

element with induced nodal

displacements and forces (uxi,

qxi, uyi, qyi, etc.) (Brady and

Brown, 2005).

ous shapes (e.g. triangles and rectangles for 2D-modelling)

held together at the “nodes” (vertices or mid-edge of the

elements). A representative 2D-element is shown in Figure

11, with the points i, j, k defining the nodes. Displacements

within the element are related to the displacements at the

nodes through so-called shape functions. Stresses are cal-

culated at one or more points inside each of the elements.

Transmission of internal forces between the edges of adja-

cent elements are represented by interactions at the nodes of

the elements.

In 2D-modelling based on the specific FDM used in FLAC, the body is divided into

a finite difference mesh consisting of quadrilateral elements. Inside the program, each ele-

ment is subdivided into two overlayed sets of constant-strain triangular elements, as shown

in Figure 12. The four elements are termed a, b, c and d. The deviatoric stress components

of each triangle are maintained independently, requiring sixteen stress components to be

stored for each quadrilateral (4×σxx, σyy, σzz, σxy). The force vector exerted on each node

is taken to be mean of the two force vectors exerted by the two overlaid quadrilaterals.

FLAC is advantageous for large deformations due to the fact that if one pair of triangles

becomes badly distorted, the corresponding quadrilateral is not used; nodal forces from

the other quadrilateral are used instead. Stresses and strains are calculated for each of

the four triangles and averaged to give the stress and strain for that element.

The finite element method and the finite difference method both produce a set of

algebraic equations to solve, however, the main difference between them is how they

are solved. The FDM in FLAC uses an “explicit” time marching method to solve the

algebraic equations, while matrix-oriented solution schemes are more common in FEM.

In the explicit calculation method (illustrated in Figure 13), the equations of motion are

solved to derive new velocities and displacements from stresses and forces. Strain rates
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Figure 12: (a) Overlaid quadrilateral elements used in FLAC (b) Typical triangular element with

velocity vectors (c) Nodal force vector (from Itasca (2002)).

are then derived from velocities and new stresses from strain rates. The calculations are

carried out over one timestep, during which velocities are assumed to be constant. This

requires that the timestep is smaller than the time it takes for information to pass from

one element to another.

Equilibrium Equation
(Equation of Motion)

F= du
dt

m

New velocities
and displacements

New stresses
or forces

Stress/strain relation
(Constitutive equation)

Figure 13: Explicit time marching calculation cycle (from Itasca (2002)).

In the FEM, an implicit method is often used for solving the equations, in which every

element communicates with every other element during one solution step and several

iterations are necessary before compatibility and equilibrium are obtained. More detailed

descriptions of FEM and FDM is given by Brady and Brown (2005) (FEM and FDM),

Itasca (2002) (FDM), Pande et al. (1990) (FEM) and others.
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3.3.1 Phase2

Phase2 is a 2D elasto-plastic finite element stress analysis program for underground or

surface excavations in rock or soil. The program can be used for a wide range of engineering

purposes, including support design, finite element slope stability analysis and groundwater

seepage analysis. A wide range of material models are offered in Phase2, version 6, as

shown in Figure 14. Detailed descriptions of program applications and material models

are given in the program manual (Rocscience, 2005).

CONSTITUTIVE MODELS

IN PHASE
2

Elastic models
1) Isotropic
2) Orthotropic
3) Transversely Isotropic

Plastic models
1) Drucker-Prager
2) Mohr-Coulomb

4) Generalized Hoek-Brown
5) Cam-Clay
6) Modified Cam-Clay

3) Hoek-Brown

Joint models
1) Mohr-Coulomb
2) Barton-Bandis
3) Geosynthetic Hyperbolic

4) Duncan-Chang Hyperbolic

Figure 14: Constitutive models available in Phase2 (Rocscience, 2005).

One of the major features of Phase2, version 6, is finite element slope stability analysis

using the Shear Strength Reduction (SSR) method. This option can be used with either

Mohr-Coulomb or Hoek-Brown strength parameters. The factor of safety, F, in FEM slope

stability analysis is defined as for traditional limit-equilibrium analysis (Duncan, 1996):

F =
Shear strength of material (rock or soil)

Shear strength required for equilibrium
(2)

The Shear Strength Reduction (SSR) method is widely used to determine the factor of

safety of a slope based on FEM. The method reduces the shear strength of slope materials

until the situation becomes unstable. Failure is defined as the point when when the finite

element model does not converge to a solution, because equilibrium cannot be maintained.

The critical factor at which failure occurs is taken to be the factor of safety.
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3.3.2 FLAC3D

FLAC3D is a 3D explicit finite-difference method (FDM) program for engineering me-

chanics computation. The three-dimensional program simulates the behavior of structures

consisting of soil, rock or other materials that undergo plastic flow when their yield limits

are reached. FLAC3D, version 3.0, offers twelve constitutive models in addition to eight

creep material models as shown in Figure 15.

CONSTITUTIVE MODELS

IN FLAC
3D

Elastic models
1) Isotropic
2) Orthotropic
3) Transversely Isotropic

Plastic models

1) Drucker-Prager
2) Mohr-Coulomb
3) Ubiquitos-Joint
4) Strain-Hardening/

5) Bilinear Strain-Hardening/

6) Double-Yield
7) Modified Cam-Clay
8) Hoek-Brown

Creep models
1) Viscoelastic model
2) Burger’s viscoelastic model
3) Two-component power law
4) Wipp model
5) Burger-creep viscoplastic model
6) Power law viscoplastic model
7) Wipp-creep viscoplastic model
8) Crushed salt constitutive model

Null model

Softening Mohr-Coulomb

Softening Ubiquitos-Joint

Figure 15: Constitutive models available in FLAC3D (Itasca, 2002).

Further details regarding the program applications and material models are given in the

program manual (Itasca, 2002).
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4 Comments on main papers

The main papers based on this PhD research are numbered I-IV and included in full length

after this introductory part of the thesis. Brief comments on the papers and the main

conclusions based on each paper are given in the following.

4.1 Paper I: Shear Strength Estimation for Åknes Sliding Area in West-

ern Norway

Sliding planes in rock masses have lower shear strengths than the surroundings and are

particularly susceptable to sliding displacement. There are different types of sliding sur-

faces, and for Åknes, it is believed that the zone of deformation is highly complex and

consists of a combination of the following:

(a) Unfilled joints (rock-to-rock contacts). These are believed to represent foliation in the

gneiss, and possibly also exfoliation.

(b) Filled joints containing gouge of 1-5 cm thickness.

(c) Bridges of intact rock.

Shear strengths (τ) of (a) to (c) cover a great range, and a methodology for how these

can be combined to form a resultant shear strength of the overall sliding zone has been

developed in this paper. The method also represents an alternative to the commonly used

method of back-calculation, where the shear strength is found based on assuming a safety

factor equal to one for failed slope.

The basic methodology in this paper is illustrated by Figure 16. As can be seen, the

method results in the resultant active friction angle (φa,res), depending on the relative

percentage of materials present in the sliding plane and the acting normal stress, σn,acting.
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Field and laboratory work;
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in-situ measurements of
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GSI

t ssoil n, range/ t srock n, range/ t sjoints n, range/

Shear strength ( )
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trockShear strength ( )
at acting normal stress

tsoil

Figure 16: Flowchart illustrating methodology for defining resultant shear strength parameters

(resultant active friction angle, (φa,res), cohesion (cres) and friction angle (φres)) of complex sliding

plane.
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The normal stress acting on the sliding plane has been calculated for two scenarios, with

sliding planes located 25 and 60 m below the surface, respectively, resulting in a normal

stress range of 0.5-1.3 MPa. Based on the methodology in Figure 16, the ranges of resulting

shear stress (τres) were determined to be 0.5-0.75 MPa and 1.05-1.3 MPa for sliding planes

located 25 and 60 m below the surface, respectively, and alternative compositions of the

sliding plane of 1-3% intact rock, 25-35% gouge and 62-74% rock-to-rock contacts. These

assumed compositions of the sliding plane were based on a combination of field observations

and drill core logging. Active friction angles calculated for the relevant normal stress range

and for the same assumed composition of the sliding plane were in the range 37-47◦ for

1% intact rock failure and 43-57◦ for 3% intact rock failure.

The methodology is used to calculate resultant cohesion (cres) and resultant friction angle

(φres) based on the active friction angle (φa,res) in Figure 16, which is used in numerical

modelling presented in Section 5.1 and Paper IV (Grøneng et al., 2009).

4.2 Paper II: Geovisualization, Geometric Modelling and Volume Esti-

mation of the Åknes Rockslide, Western Norway

This paper describes an interactive 3D software application (3D model) which integrates

geophysical, geological and engineering geological data collected from the Åknes rockslide

site during extensive field work in the summers of 2004-2007. Detailed geological mapping,

geophysical investigations and drilling of seven boreholes at three locations has generated

a vast amount of geological data. The 3D model is based on OpenSceneGraph (OSG)

which is a freely available high level library for development of 3D graphics applications.

The use of the interactive 3D model has enabled the determination of three scenarios for

the geometry of the rock slide and resulted in estimations of the geometric extent and

volume of potential rock slope failure for each scenario. Figure 17 illustrates the type of

data used as a basis for determining the three scenarios.

The geophysical investigations included in the geovisualization model are seven 2D

resistivity profiles (five slope parallel profiles with E-W strike, and two down-slope profiles
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with N-S strike, totalling about 10,000 m) and seven GPR (georadar) profiles (four slope

parallel profiles with E-W strike, one profile with NE-SW strike, and two down-slope

profiles with N-S strike, totalling about 5,300 m). Data from corelogging of seven boreholes

at three different sites in the rockslide area (three vertical holes to 150 m depth, one

inclined hole by 60◦ to 150 m depth and three vertical holes down to 200 m depth) were

also included in the 3D model as well as detailed photographs of the cores. Borehole

investigation data in the 3D-model included parameters as shown in Figure 17 (logging of

one borehole at each drilling site). Details on the geological and geophysical data included

in the 3D model are discussed by Ganerød et al. (2008).

Basis for determination of scenarios

CORELOGGINGGEOPHYSICAL DATA BOREHOLE INVESTIGATIONS

Fracture frequency
Core loss / crushed rock2D Resistivity

Georadar
Temperature
Conductivity
Gamma ray
Resistivity
Porosity

P-velocity

Figure 17: Flowchart illustrating type of data used in the interactive 3D-model for determination

of three different scenarios for location of the basal sliding surface at Åknes.

The three scenarios for location of the basal sliding plane were:

Scenario A An undulating basal sliding plane located 40-55 m below the surface, result-

ing in a horisontal area of 510,000 m2 and volume of 20×106 m3.

Scenario B An undulating basal sliding plane located 105-115 m below the surface, re-

sulting in a horisontal area of 575,000 m2 and volume of 43×106 m3.

Scenario C Basal sliding plane located 150-190 m below the surface, resulting in a ho-

risontal area of 742,000 m2 and volume of 85×106 m3.

Scenario B was concluded to be the most likely scenario while Scenario C was selected as

“worst case scenario” in this paper.
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4.3 Paper III: Meteorological Effects on Seasonal Rock Displacements

of the Åknes Rockslide, Western Norway

In this paper, the effects of the meteorology and groundwater on the relative stability of

the upper part of the slope were investigated. Results have been analysed for the period

November 2004−August 2008 from continuous displacement recordings by five extensome-

ters installed across the back scarp and two laser beams monitoring the displacement of

an individually moving graben structure located in the western end of the back scarp.

Surveillance by extensometers across the back scarp started as early as August 1993

by installation of three extensometers (Ext. 1, Ext. 2 and Ext. 3a). In August 2004, two

additional extensometers were installed (Ext. 4 and Ext. 5), in addition to changing the

direction of Ext. 3a (termed Ext. 3b after the new measuring direction). Recordings from

the extensometers thus are available for a 14-year period, as shown in Figure 18. However,

the records due to technical problems are not complete. For instance, measurements from

the five-year period from August 1998 to September 2003 are subjected to a high degree

of noise, due to an error in the daily reading routine. The extensometers have also been

periodically out of order, as evidenced by the more than two-year period from June 1996 to

September 1998, the four-month period from February 2002 to June 2002 and the nearly

two-year period from January 2003 to November 2004. During these periods, no deforma-

tion data has been registered. Due to lightning, which destroyed the data transmission

from the extensometers, data are also lacking for the period mid February to July 2008.

Ext. 4 and 5 have limited recordings due to damage by snow avalanches; Ext. 4 has no

recordings after July 2005 and Ext. 5 was operative only for a period of about one year

(November 2004−November 2005). Concerning periods with continuous recordings, the

total measuring period of 14 years thus can be divided into three periods:

1) August 1993−July 1996

2) September 1998−September 2003

3) November 2004−August 2008
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Figure 18: Extensometer records from the back scarp since August 1993.

In order to analyse the displacements in relation to the meteorology, it was decided to

focus on period 3) as data from a meteorological station at the Åknes site was available

from November 2004. Also, data from monitoring of groundwater levels in upper and

middle borehole were available from November 2006 and laser data from monitoring of the

graben structure in the westernmost part of the back scarp was available from December

2005. Period 1) is previously analysed with respect to meteorology by Larsen (1999) and

Sandersen et al. (1996) while period 2) is not relevant for detailed day-to-day analysis due

to the error in reading routine during this period.

A total of twelve “events”, where expansion or contraction of the back scarp has been

recorded by more than one extensometer, have been analysed in detail with respect to

meteorology and groundwater levels (where available). The paper concludes that the

relative stability of the upper area at Åknes is highly affected by the groundwater level.

Large fluctuations in groundwater levels in spring and early summer (due to varying feeding

of the groundwater from snowmelt in addition to precipitation), causes the largest net
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expansion of the back scarp. Stable groundwater levels in summer and early autumn result

in no significant displacement events in the back scarp while reductions in temperatures

to below 0◦C in autumn and early winter cause reduction of the distance (interrupted

by air temperature increases to above 0◦C due to the marine climate in the western

part of Norway causing expansion). In late winter the temperatures are stable below the

freezing point and the ground is covered with a 1-3 m thick snow cover, resulting in no

significant displacement. The results in this paper also show that a majority of events from

the extensometer records (10 out of a total of 12) were recorded in the first half of the

analysed period (September 2004−August 2006), indicating less significant meteorological

effects on the displacements in the back scarp in the last half of the period (September

2006−August 2008).

4.4 Paper IV: Time-dependent behavior of the Åknes Rockslide Area

in Western Norway

In this paper, an analysis of time-dependent deformation of the Åknes slope is carried out

based on numerical modelling. The Burger-Creep Viscoplastic (cvisc) material model in

FLAC3D was chosen for analysis since this model represents creep behavior up to onset

of tertiary creep. Geometry of the sliding plane was based on coordinates of the basal

sliding surface with the most likely geometry in the 3D geovisualization model presented

in Paper III (Nordvik et al., 2009). Considerable effort was related to the generation of a

rockslope model in FLAC3D. A methodology for reading coordinate files from airborne

laser scanning of the slope (representing the topography) and coordinates representing the

sliding surface from the geovisualization model (described in Paper II) and subsequently

generating the input file necessary for a model generation in FLAC3D was developed based

on MATLAB (MathWorks, 2006) as shown in Figure 19. Based on the input file generated

by the methodology presented in Figure 19, the modelling has been carried out as presented

in Figure 20. The modelling was carried out for two alternative sets of parameters, one

set believed to be representative of the present situation, and one believed to represent
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Reading and filtering out every
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representing the sliding surface
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3D

Generation of input file for

model in FLAC
3D

Definition of the base of
the  model

Generation of geological layers in MATLAB

Generation of coordinates for
bricks between the layers and
assignation of material group
for each brick

TOPOGRAPHY SLIDING SURFACE MODEL BASE

Geometrical input

“Generate brick”

Function

Figure 19: Methodology for reading coordinate files and generating input file in MATLAB for

model in FLAC3D.

a realistic future scenario. Parameters for the first case were determined by estimating a

composition of the sliding layer according to the methodology presented in Paper I, with

Mohr-Coulomb parameters representing 3% failure of intact rock bridges, 62% failure along

unfilled joints and 35% failure along gouge-filled joints. Creep parameters for the cvisc

material model were determined by calibrating the model to an average displacement rate

of 26 mm/year in the central area of the model (corresponding to monitoring data from

GPS/reflector points). Mohr-Coulomb parameters for the unstable rock mass above the

sliding layer were determined by laboratory testing of various types of gneiss in the area

(discussed under “Laboratory testing” in section 3.2). Scaling of the parameters to in-situ

condition was carried out based on RocLab (Rocscience, 2002) and an average measured

GSI-value 62 (presented in Paper I), reflecting “good surface conditions” according to

the GSI rating system. The rock mass below the sliding layer was modeled as an elastic

material in order to force the focus on the sliding layer and the rock mass above it. The

model was fixed at the base while the potential unstable rock mass above the sliding zone
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as well as the sliding zone itself were free to move down-slope, except for the toe. As the

toe does not daylight in field, the lower boundary of the model was fixed in the horizontal

direction. Several scenarios were modeled in search of a future scenario which resulting in

an unstable lower boundary in the model. For the sliding layer, an estimation of 1% failure

of intact rock bridges, 65% failure along unfilled joints and 35% failure along gouge-filled

joints was used to determine Mohr-Coluomb parameters. Creep parameters for the cvisc

material model and elastic parameters for the rock mass below the sliding layer were kept

constant. Mohr-Coulomb parameters for the unstable mass above the sliding layer were

determined by scaling the parameters from laboratory testing with a GSI 37, representing

“fair surface conditions”. The latter alternative parameters resulted in an unstable toe and

increased displacements throughout the 100 year period, indicating critical shear strength

parameters.

Application of model boundaries and initial gravity

Definition of watertable and water table parameters

Generation of geometrical model

Definition of Mohr-Coulomb parameters for each layer

Solving for initial state

Configuration of creep and definition of creep parameters for the sliding layer

Solving for 100 years

Evaluation of output

Evaluation of output

Figure 20: Methodology for creep modelling in FLAC3D.
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5 Discussion and conclusions

5.1 Discussion

The thesis covers a study of several factors important for slope stability at the Åknes

sliding area, as well as stability analysis based on numerical modelling. As each of the

main papers has an individual discussion, and important aspects have also been discussed

has been presented in Sections 4.1−4.4, an overall discussion is presented here. The

methodology for slope stability analyses typically consists of three steps: (1) Definition

of potential failure geometry, (2) Definition of parameters influencing on stability, most

importantly the shear strength of the sliding plane(s) and groundwater conditions and

(3) Analysis/calculation of safety factor or risk of failure by limit equilibrium methods or

numerical modelling. The papers prepared for this thesis are in principle related to the

steps as shown in Figure 21.

ROCKSLIDE

GeometryPaper II

Paper I

Paper III

Paper IV

Åknes case study

Shear Strength of the
sliding plane (s)

Groundwater
conditions

Analyses

Limit equilibrium
analysis

(+ additional Paper V)

Numerical
modelling

Figure 21: Flowchart illustrating the methodology for slope stability analyses and the relation

between the papers.
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The thesis thus deals with all the different steps of stability analysis, all essential for

the success of estimating the stability of large scale rockslides. A challenge has been to

process the increasing amount of datasets and new knowledge which have become available

in the Åknes project during the progress of the thesis. A methodology for estimation of

resultant shear strength of a complex sliding plane is presented in Paper I (Grøneng

et al., 2009), and resultant shear strengths are estimated for two scenarios; basal sliding

surfaces located 25 and 60 m below the surface, respectively. The groundwater table in

this analysis is assumed to be located at the depth of the lower sliding surface (60 m

below the surface) in this analysis. However, as more geological/geotechnical data and

sophisticated geovisualization became available, the location of the basal sliding surface

is adjusted in Paper II (Nordvik et al., 2009) to a geometry where it is undulating and

located 105-115 m below the surface. Analyses of meteorology and groundwater in Paper

III (Grøneng et al., 2009) show that the groundwater level fluctuated between -42.5 and

-46.5 m below the surface in the middle borehole, and between -51 and -60 m in the

upper borehole during the period analysed (December 2006−August 2008), indicating

a shared groundwater regime in the upper area. In order to carry out a verification

of the methodology for shear strength estimation presented in Paper I, with the most

likely geometry presented in Paper II (scenario B) and groundwater analysis in Paper

III, modelling has been carried out based on Phase2 (Rocscience, 2005) and the Shear

Strength Reduction (SSR) analysis. A sliding plane located at an average depth of 110 m

below the central part of the sliding surface has been modeled according to the findings in

Paper II, and alternatives of 1, 3 and 5% intact rock bridges in the basal sliding plane have

been studied. The parameters are hence calculated based on a normal stress of σn = 1.8

MPa, representing an average groundwater table located 60 m above the basal sliding

plane (σn=γrock×h×cosαslope-γw×hw). The groundwater levels have been estimated to

correspond to average groundwater levels in the upper and middle boreholes (-56 and -44

m, respectively), according to findings in Paper III. In the lower borehole, the groundwater

level was measured throughout July 2008, and an average groundwater level of -42 m has

been used in the lower area. Based on the occurrence of springs mapped in the field at an
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elevation of 75-100 m a.s.l. (mentioned in Paper II), the groundwater level is assumed to

daylight at the same elevation as the assumed toe. A likely amount of intact rock bridges

in the sliding plane is assumed to be in the order of 1-3% in Paper I, while the likely

amount of gouge is assumed to be in the order of 25-35%. Based on this, three scenarios

have been modeled, with 1, 3 and 5% intact rock, respectively. The amount of gouge is set

to 35% in all scenarios, hence, the percentages of unfilled joints are 64%, 62% and 60%,

respectively (see Table 5). A model has been generated in Phase2 as shown in Figure

9
4

0
 m

1 400 m

Upper BH

Middle BH

Lower BH

Solid rock

Fractured
rockmass

Sliding
plane

Figure 22: Model in Phase2 with a sliding plane located at an average depth of 110 m below the

surface.

22 with three layers; solid rock, a sliding plane (modeled as a continuous joint of 25 cm

width) and fractured rock mass above the sliding plane. Calculations are performed based

on body force only. As discussed in Paper I, assumptions have been made of how the open

characters of the back scarp and other discontinuities affect the stress conditions.

The solid rock is modeled as an elastic material, forcing the focus away from this part

of the model, while the fractured rock mass is modeled as a plastic material. Residual

values for c and φ is set equal to the initial values, 15 MPa and 48◦, respectively. The

input parameters for the respective layers are based on laboratory testing of rock cores

(Ganerød et al., 2007) and shown in Table 4. The parameters for the joint are calculated

based on the methodology presented in Paper I (cres and φres), and estimation of Joint
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Stiffness is carried out as described in Phase2 manual (Rocscience, 2005):

kn =
Ei Em

L(Ei − Em)
(3)

ks =
Gi Gm

L(Gi − Gm)
(4)

where

Em and Gm = rock mass modulus and rock mass shear modulus

Ei and Gi = intact rock modulus and intact rock shear modulus

kn and ks = joint normal stiffness and joint shear stiffness

L = mean joint spacing

As can be seen from Table 5, the resultant cohesion and friction angle (cres and φres)

for the sliding plane vary according to the percentage of intact rock. Erm is obtained from

RocLab by scaling the GSI-value to fit the friction angle, φres. The table also shows the

Strength Reduction Factors (SRF ) as obtained from SSR-analyses in Phase2.

Laboratory testing Input in RocLab Parameters from RocLab

Layer UCS [MPa] Ei [GPa] ν GSI mi c [MPa] φ[◦] σt [MPa] Em [GPa]

Solid rock 144 38.7 0.13 85 25 15 48 1.1 34.1

Fractured rock 144 38.7 0.13 62 25 11.5 43 0.3 21.9

Table 4: Input parameters and parameters obtained from RocLab.

Rock bridges [%] Gouge [%] Joints [%] φa,res [◦] cres [MPa] φres [◦] ν Erm [MPa] SRF

1 35 64 39 0.23 32.5 0.3 2 609 0.96

3 35 62 45 0.46 32.8 0.3 2 775 1.1

5 35 60 50 0.7 33.1 0.3 2 955 1.23

Table 5: Parameters for a joint (width=25 cm) 110 m below the surface (σn = 1.8 MPa) and

resulting SRF values based on Phase2.
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According to the results, parameters of 1% rock bridges (cres=0.23 MPa and φres=32.5◦)

result in a Strength Reduction Factor (SRF ) smaller than 1.0, reflecting an unstable sit-

uation, while estimations based on 3 and 5% rock bridges result in SRF > 1. Yielding

shown in Figures 23(a)-(c) indicates that a sliding plane with 3% intact rock, 62% unfilled

joints and 35% gouge (cres=0.47 MPa and φres=32.7◦) results in a realistic SRF -value.

Although the SRF is in this case above the critical value of 1, this is not characterised

as a stable situation. For instance, in rockslope stability analyses carried out for open

pit mines, the short-term and long-term factors of safety of 1.3 and 1.5, respectively, are

regarded to be the minimum acceptable value in Hoek and Bray (1981). In Wyllie and

Mah (2004), a range of 1.2-1.4 is given as acceptable factors of safety for slope designs

in mining situations. The effect of yielding along the sliding plane is distinct in all cases

although largest with 1% intact rock. Based on the modelling carried out here, failure of

2-3% intact rock bridges is believed to be realistic for the situation at Åknes at present.

Several simplifications have however been made in Phase2. For instance, the model

is a continuous FEM-model, while in reality, joint systems are believed to control the

displacements of the sliding area. Further, the sliding plane is modeled as a continuous

joint of 25 cm width at the base of the sliding rock mass. In reality, the sliding is believed

to be complex and takes place along several sliding planes. Also, the groundwater is

modeled at an average level in three boreholes, while the groundwater regime in the area

is believed to be more complex.
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Figure 23: Yielding with Mohr Coulomb parameters based on a) 1% failure of intact rock, 64%

failure along unfilled joints and 35% failure along gouge filled joints b) 3% failure of intact rock,

62% failure along unfilled joints and 35% failure along gouge filled joints c) 5% failure of intact

rock, 60% failure along unfilled joints and 35% failure along gouge filled joints.
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The longterm stability of the slope has been been modeled based on FLAC3D, as

presented in Paper IV (Grøneng et al., 2009). Two sets of parameters have been used, the

first set believed to be representative of the present situation at Åknes, and the second

set believed to represent a future situation. The first case results in a retardation of the

displacements of the slope, while the second set results in increased displacements and an

unstable toe. Figure 24 is an illustration of a possible development for the Åknes case,

based on analyses in this thesis: a gradual decrease of the shear strength for the sliding

plane as well as for the unstable mass located above from the assumed present situation

(sliding plane with 3% intact rock bridges, 35% failure along gouge filled joints and 62%

failure along unfilled joints and an unstable rock mass above with a GSI value 62) to

a future unstable scanerio (sliding plane with 1% intact rock bridges, 35% failure along

gouge filled joints and 64% failure along unfilled joints and an unstable rock mass above

with a GSI value 37).

Time, t

At present
Fractured rock: GSI=62
Sliding layer: 3% intact rock

2009

Future scenario
Fractured rock: GSI=37
Sliding layer: 1% intact rock
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Figure 24: Illustration of how a gradual decrease in shear strength from the situation at present

at Åknes might lead to slope failure, based on analyses in this thesis.

Major and minor triggering events most likely are represented by fluctuations in

groundwater levels (as discussed in Paper III) and seismic activity, as discussed by Kveldsvik

et al. (2009). Unfortunately, it is hardly possible to determine the time of failure by the

modelling carried out in this thesis. Still, it contributes to a better understanding of
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the factors controlling the stability at Åknes, and also defines a methodology for better

evaluating shear strength parameters for a composite sliding plane, as well as estimating

critical shear strength values for the unstable rock mass.
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5.2 Main conclusions

Based on the analysis in this thesis, the following main conclusions can be drawn regarding

the slope stability at Åknes and relating factors:

• A resultant shear strength may be estimated based on a methodology evaluating

the composition of a basal sliding plane and combining shear strengths of various

materials. The method requires calculation of the normal stress acting on the sliding

plane. Based on field observations and drill core logging, estimation of most likely

composition of the sliding plane at Åknes is 25-35% failure along gouge filled joints,

1-3% intact rock failure and 62-74% failure along unfilled foliation joints.

• Incorporating geotechnical and geophysical data into an interactive 3D geovisual-

ization model greatly enhances the analysis of probable geometries of an unstable

rockslope. At Åknes, the most likely geometry of the basal sliding surface is believed

to be an undulating sliding surface located 105-115 m below the surface, resulting

in area- and volume estimates for the unstable rock mass in the order of 575,000 m2

and 43×106 m3, respectively.

• Analysis of the meteorology and groundwater measured in upper and middle bore-

hole at Åknes in the period November 2006−August 2008 indicates that the ground-

water level at Åknes is highly related to the amount of water infiltrating the back

scarp. The greatest fluctuations in groundwater levels are found in spring, with

temperatures fluctuating around the freezing point in combination with snowmelt,

leading to large variations in discharge of meltwater into the back scarp in addition

to infiltration by precipitation. The lowest groundwater level is found during winter,

when the temperatures are below freezing point and no water is discharged into the

back scarp. Analysis of data from upper and middle boreholes suggests a shared

groundwater regime in this part of the slope.

• Analysis of the displacement recorded by five extensometers in the period September

2004−August 2008 shows that the largest net expansions of the back scarp are
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recorded in springtime (mid March through May) and early summer (June), mainly

due to large increases in the groundwater level as result of snowmelt. In summer

and early autumn (mid June through September), the groundwater level is stable

and no significant displacement events are recorded in the back scarp. In autumn

and early winter (October to mid January), decreases in air temperature to below

0◦C causes reduction in the distance across the back scarp, but due to the marine

climate, this is often interrupted by air temperature increases to above 0◦C causing

expansion. In late winter (mid January to mid March) no significant displacement

is recorded, due to stable frozen conditions and the presence of a permanent snow

cover.

• Measurements of the distance across the back scarp at Åknes in September 2004−August

2008 shows that the back scarp was more active in the first half (September 2004−August

2006) than in the second half of the period (September 2006−August 2008), indi-

cating less significant meteorological effect on the displacements in the back scarp

after September 2006.

• Numerical modelling based on Phase2 indicates that composition of the basal sliding

plane at Åknes with 3% failure of intact rock, 62% failure along unfilled joint and

35% failure along gouge filled joints results in a Strength Reduction Factor (SRF ) of

1.1, while an alterantive composition of 1% failure of intact rock, 64% failure along

unfilled joint and 35% failure along gouge filled joints results in a SRF of 0.96. This

indicates that the sliding plane today most likely consists of between 1% and 3%

intact rock.

• Analysis of the long term stability at Åknes based on the Burger-Creep Viscoplastic

material model available in FLAC3D shows that a set of parameters representing

the present situation (a composite sliding layer with 3% failure of intact rock, 35%

failure along gouge filled joints and 62% failure along unfilled joints and a fractured

rock mass above the sliding layer with M-C parameters representing a GSI of 62

“good surface conditions”) results in retardation of the displacements within a 100
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year period. However, due to gradual reduction in the shear strength parameters

over time, a set of parameters believed to represent a future scenario (a composite

sliding layer with 1% failure of intact rock, 35% failure along gouge filled joints and

64% failure along unfilled joints and a fractured rock mass above the sliding layer

with M-C parameters according to a GSI of 37 “fair surface conditions”) results in

an unstable toe and increased surface displacements.

• Reduction in the joint roughness along the sliding plane due to mechanical and/or

chemical disintegration in addition to major and minor triggering events such as large

fluctuations in groundwater level and seismic activity will contribute to a gradual

decrease in shear strength of the sliding plane(s) as well as the unstable rock mass

above. The exact time of failure at Åknes is, however, hardly possible to predict by

the modelling carried out in this thesis.
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a b s t r a c t

This paper deals with the unstable rock-slope at Åknes sliding area, located in the county of Møre and

Romsdal in western part of Norway. The sliding body has a complex geometry with several sliding

planes at different levels, involving unfilled joints, gouge material/brecciated material as well as bridges

of intact rock. Stability of the rock slope strongly depends on the shear strength of the sliding plane(s)

and this paper discusses the shear strength of the materials present, ranging between the strength of

intact rock and crushed, clay containing gouge material. Estimation of the in situ shear strength at the

Åknes sliding area is discussed on the basis of triaxial test results and the Barton–Bandis empirical

method. Triaxial tests have been carried out on samples of gouge material from a potential sliding plane

and intact rock specimens, while the empirical method has been applied for rock joints in the area.

Comparison and correlation with experimental results found in literature have also been made. The

resultant shear strength range for the zone of sliding has been found to be in the range of 0.5–1.3 MPa,

depending on the normal stress and the composition of the sliding zone.

Crown Copyright & 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Potential sliding planes in a rock slope are generally caused by
geological layers or strata which, compared to the surroundings,
possess smaller shear strength and are thus exposed for sliding
displacement. Shear strength estimation of sliding planes is a key
factor for reliable rock slope stability analysis. In large scale rock
slopes, the sliding plane in most cases is not uniform, but rather
complex, consisting of a combination of the following:

(a) unfilled joints (rock-to-rock contacts),
(b) filled joints (gouge material) and
(c) bridges of intact rock.

One well-known case where such complex sliding plane was
believed to exist was in Vaiont, for which numerous studies have
been conducted related to the character of the 1963-slide.
Whether interbeds of clay were present along the failure surface
has been discussed amongst other by Brolili [1], Müller [2,3] and
Kenney [4], but the report from Hendron and Patton [5] seems to
conclude that multiple layers of clay with 50–80% clay, commonly
1–2 cm thick, were present along most of the sliding surface.

Although the presence of a substantial number of rock-to-rock
contacts as well as shearing across bedding planes were acknowl-
edged by Hendron and Patton, the shear strength along the base of
the slide was assumed to be related to the residual strength of the
clay in the analyses of the failure.

The shear strengths of components (a)–(c) represent a great
span, and before any kind of stability analysis can be done, a
realistic quantification of the resultant shear strength of the
combined sliding plane has to be made. The methodology for
estimating this resultant shear strength, which is rarely discussed
in literature, is the main subject of this paper. The Åknes sliding
area in western Norway is used as case. Based on reliable
quantification of resultant shear strength, numerical analysis of
the rock slope will be carried out. Discussion of such analysis are,
however, beyond the scope of this paper.

At the Åknes rock slide area, field investigations indicate a
landslide with complex geometry. The results from an extensive
investigation program operating at Åknes since 2004 will be used
as a basis for analysis. In the following, the Åknes case will be
described, and a methodology for estimation of the resultant
shear strength of the Åknes case will be presented.

2. The Åknes rockslide area

The Åknes sliding area is oriented in NW–SE direction along
the W-side of Storfjorden in Møre and Romsdal County in western
Norway (Fig. 1). The area draws considerable attention in Norway
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due to the hazard of a tsunami which could be generated as a
result of a large scale rock slope failure. Tsunami modelling
indicates that several villages along the adjacent fjord Storfjorden
will be endangered [6] as well as thousands of tourists who visit
the fjords in the summer months. Documentation of historical
rockslides has shown that stability problems have occurred on
several occasions in western Norway, where the ice has eroded
deep valleys and fjords in metamorphic rock during the glacial
periods [7]. Geological mapping on land and in fjords in the
County has identified a high frequency of rock-slope failures since
the last glaciation, 10 000 years ago [8]. In Storfjorden, mapping by
swath bathymetry has revealed at least 59 rock-slope failures
larger than 0.5 million m3, illustrating the potential hazard due to
rock avalanches [9].

The Åknes rockslide area is situated in the slope below the
mountain Flosteinsnibba with an average slope angle of approxi-
mately 35�, and was brought to the public’s attention in 1964
by local people claiming that the tension crack associated to
the back scarp was widening [10]. The area and volume of the
potential unstable rock mass are estimated to be 780 000 m2 and
30–40 million m3, respectively [11]. The western boundary is
defined by a steeply dipping, NNW–SSE striking strike slip fault
while the eastern boundary is defined by a gently NW dipping,
NNE–SSW trending fault [12] (Fig. 2). The upper boundary of the
unstable area is represented by a distinct, more or less continuous
tension crack with approximate length 800 m (Fig. 3).

Annual downhill movement in the order of 1–4 cm has been
monitored at the back scarp since 1986 [10,13,14], and photo-
grammetric studies of displacement rates since 1961 indicate an
average displacement in the order of 6 cm/year [14], indicating
that the slope is deforming at a more or less constant rate. Signs of
instability have been evidenced by occurrence of three smaller
rockslides in the slope, all along the western boundary. The most
recent (1960) had an estimated volume of approximately
100 000 m3 [14].

The bedrock in the area is predominantly gneiss, Proterozoic in
age, and metamorphosed during the Caledonian mountain

building phase. The gneisses are magmatic in origin, classified
as undifferentiated quartz-dioritic to granitic, locally with mig-
matitic composition [15]. Petrographic logging of the rock cores
recovered from three drilling sites in the slope (Fig. 2) has
identified three types of gneiss varying from quartz-dioritic to
granitic as well as gneisses rich in biotite [12]. The gneisses rich in
biotite have an overall, south to southeast steeply dipping
foliation.

3. The sliding zone at Åknes

The geometry and overall properties of the sliding planes are
the most critical input parameters for a rock slope stability
analysis. The slope is partially covered with scree material which
restricts mapping of cracks and joints to sparse outcrops in the
area. However, on the basis of geological mapping, geophysical
surveys and drilling of boreholes, the internal structure has been
interpreted. The exact configuration and position of the sliding
plane are not yet finally defined, but one alternative believed to be
realistic is shown in Fig. 4.

Seismic surveys have indicated that the basal detachment
horizon has an undulating form and is located at 25–60 m
below the surface [12]. Geological conditions believed to con-
tribute to slope instability and potential failure at the Åknes
rockslide area are believed to be the steep slope angle averaging
approximately 35� and foliation oriented parallel to the slope
[11,12,14,16].

The foliation in the area can be studied in some detail in the
west wall of the crevasse which represents the western boundary
of the area. The characteristic style of the foliation can clearly be
seen in Fig. 5 (location P1). Interpretation of the seismic surveys
shows a possible sliding plane daylighting at approximately
150 m a.s.l. A potential evidence for this is a rock overhang, 50 m
long (location P2), at an elevation of approximately 175 m a.s.l.
(Fig. 6).
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On the basis of logs from seven boreholes at the three drilling
sites, it is evident that the rock mass is heterogeneous and
contains a considerable number of discontinuities [17]. Six of the
boreholes are vertical, three of them are drilled down to a depth of
200 m. Generally, the rock is heavily fractured down to 70 m
(average fracture frequency 10 fractures/m). In this depth interval,
crushed rock, breccia and gouge are common; typical thicknesses
are up to 30–40 cm for crushed rock and breccia, and up to 5 cm
for gouge. The theory of a complex sliding zone is supported by
the absence of a distinct sliding plane in the logs.

The objective of this study is to discuss a methodology for
reliable estimation of the resultant shear strength of the sliding
zone. Estimates of internal friction angle (f) and cohesion ðcÞ for
the gouge and rock material based on triaxial testing as well as
estimates for the various parameters of the Barton–Bandis
empirical method for unfilled joints thus will be made.

4. Shear strength of gouge material

4.1. Description of the gouge material

The gouge material was sampled from a weakness plane
located at the potential toe of the Åknes slide, approximately
180 m a.s.l. The plane daylights inside a cave, at the base of an
overhanging cliff, and is 1–3 cm thick. Although the amount of
accessible material was limited, three samples were successfully
collected from this plane. The grain size distribution of the
samples have been analyzed (Fig. 7), indicating that the clay
content varies from 9% to 19%. Semi-quantitative mineralogical
composition based on X-ray diffraction analysis is presented in
Table 1. Swelling mineral (smectite) was detected in one of the
samples but was not possible to determine quantitatively.
Swelling tests conducted on four samples from the area show a
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Fig. 2. Topographic map showing boundaries for the unstable area at Åknes, measurement locations, drilling sites and photo locations.
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free swelling of 89–103%, indicating an inactive gouge material
according to classification by the Norwegian Group of Rock
Mechanics [18].

Consolidation of the gouge material is assumed to correspond
with the actual overburden at the site of sample collection
(sv ¼ grock � h), which gives a maximum vertical stress of 300 kPa.
Previous shear displacement most likely has taken place, since
the gouge material probably is formed by a shearing process
which has caused crushing of mica-rich layers in the gneissic rock.
The shear strength is assumed to be at the residual value and
cohesion is assumed to be 0 due to the destruction of cohesive
bonds.

4.2. Triaxial testing procedure

Triaxial testing of gouge was performed at the NTNU
Geotechnical Laboratory according to procedures recommended
by the International Society of Soil Mechanics and Geotechnical
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Engineering (ISSMGE). The specimens had cross-sectional area of
A ¼ 23:2 cm2 and height h ¼ 10 cm, and were consolidated under
confining pressures of 50–300 kPa, based on estimated vertical
effective overburden at the sampling site. After consolidation the
specimens were loaded at a strain rate of 5% per hour. The
shearing phase was terminated after reaching 10% strain, due to
practical limitations.

It is not clear whether a drained or undrained stress response is
most applicable to the gouge material along the failure plane,
undrained shear strength is, however, selected. This is because the
rock/gouge interaction is uncertain at this stage, and by testing
the material in an undrained triaxial procedure, conservative
shear strength parameters for the material are estimated.

4.3. Results

Sampling necessarily results in sample disturbance due to
compression of the soil and removal of in situ confining stresses,

change in the moisture content due to transportation and storage
and desiccation during trimming and placing of the specimen in
the triaxial cell. However, in the Åknes-case, a more careful
sampling procedure was not possible due to the 1–3 cm thick
filled joint at a particular location in the sliding area. Due to the
sampling method, the estimation of confining pressures and the
choice of an undrained testing procedure, the friction parameters
based on this triaxial testing are believed to be conservative.

The results of triaxial testing are presented in terms of a
deviator stress path. Due to limited material available for testing,
the number of tests was limited to 3 for each of the 3 sample
locations (Fig. 8). In this study, the testing is carried out in order to
provide a rough estimate of the shear strength of the soil samples
as a whole.

Soils located in the sliding plane will be subjected to
differential shearing displacements due to the undulating nature
of the sliding plane, and therefore represent different shear stress
conditions in the soils. The shear stress at a strain of 2–5%,
depending on the trend of the individual triaxial curves defines
the design condition in this case. Sample 3 shows a slightly
dilative response, a common failure mechanism for non-cohesive
soils. Samples 1 and 2 show no indication of failure. The curve
representing the average design condition for each sample is
shown. Effective strength parameters for soil samples are shown
in Table 2.

The results indicate that the amounts of biotite and quartz
have influence on the strength. Sample 1 contains the lowest
percentage of quartz and highest percentage of micas and
possesses the lowest shear strength, while the sample with
highest content in quartz and lowest in micas (sample 3)
possesses the highest shear strength.
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Table 1
Semi-quantitative mineral distribution of samples taken from the weakness plane.

Mineral Sample 1 (%) Sample 2 (%) Sample 3 (%)

Quartz 9 12 21

Plagioclase 33 42 50

Alkaline feldspar 10 17 12

Micas 44 22 10

Caolinite 2 4 4

Amphiboles 2 3 3
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Some empirical data based on direct shear testing of fillings/
gouges from discontinuities are shown in Fig. 9. The results
represent peak friction angle and cohesion. As shown, the results
from the triaxial testing of the material from Åknes plot within
the empirical data representing ‘‘Fault gouge, shear zones, low
strength rock’’ and ‘‘Clay infilling’’ with low or no cohesion.

For Åknes, the mean test value, i.e. f ¼ 25� and c ¼ 0 kPa, is
used in the following.

5. Shear strength of unfilled rock joints

5.1. Basis for estimation

The shear strength of unfilled joints is governed by the joint
roughness, the rock strength at the joint surface and the normal
stress acting on the discontinuity, as defined by the Barton–Bandis
empirical equation [19]:

t ¼ sn tan fr þ JRC log10
JCS

sn

� �
(1)

where JCS is the joint compressive strength, fr is the residual
friction angle and JRC is the joint roughness coefficient. This
empirical method requires rock joint data obtained by a
combination of field work and laboratory testing.

5.2. Measurements and test procedures, results

Main focus concerning shear strength of unfilled rock joints at
Åknes has been on foliation joints, since sliding here mainly takes
place along the foliation. The character of foliation joints varies

from slickensided with low roughness to undulating due to
folding. In situ measurements of the JRC-parameter have given a
mean value of 8.5 for 21 locations when measured over 1 m
lengths in three different directions. Block size in the area is close
to 1 m and scaling as described by Barton and Bandis [19] has not
been required. The other parameters except the basic friction
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Table 2

Friction angles for gouge material, c ¼ 0 kPa.

Gouge Friction angle f (deg)

Sample 1 18

Sample 2 23

Sample 3 35
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angle, fb, have been estimated according to procedures described
in literature as indicated in Table 3. Measurement results for each
individual location are shown in Fig. 2.

Since no general standard or recommendation exists concern-
ing determination of basic friction angle, the NTNU-laboratory has
defined its own standard method for this [20] based on a sketch in
Barton and Choubey [21], indicating the principle.

Testing for determining the basic friction angle, fb, is carried
out on rock cores with a length/diameter ratio of 2.5. Each core is
sawn axially and placed in the apparatus, as if it was an intact
core. The apparatus is tilted by a hydraulic pump until the upper
part of the core starts to slide, and at this point the angle of tilting
is registered by an inclinometer with an accuracy of 0.11. The test
procedure results in 12 measurements for each core. Based on the
basic friction angle, the residual friction angle can be calculated as
follows [21]:

fr ¼ ðfb � 20Þ þ 20
r

R
(2)

where the parameter r refers to Schmidt–Hammer rebound value
on weathered joint surface and R refers to rebound on unweath-
ered joint surface. In the case of unweathered joints, fr will be
identical to fb. In accordance with the procedure for estimating
the JCS [22], the lower 50% of the rebound values were discarded.

6. Shear strength for intact rock

6.1. Sample collection and preparation

Shear strength of intact rock has been determined by triaxial
testing in the laboratory. The specimens tested in the triaxial cell
were cores recovered at depths of 85–145 m in the vertical
boreholes (Figs. 2 and 4). The 54 mm diameter cores from the
boreholes needed to be reduced to 38 mm in order to fulfil the
NTNU equipment requirements for triaxial laboratory testing
(Hoek-cell). Reduction was achieved by using special core drilling
equipment. Practical challenges in this procedure limited the
triaxial testing to 5 cores of each type of gneiss, i.e. to a total of 15
tests.

6.2. Procedure for triaxial testing

The triaxial rock testing was carried out according to the
procedure described by ISRM [23]. All specimens were kept at
room temperature and were dry when tested. The axial stress was
applied by a hydraulic testing machine and the confining pressure
supplied independently by an oil compressor. The SINTEF/NTNU
Rock Mechanics Laboratory in Trondheim was used for this
testing. For each rock type one specimen was tested at 0 confining
pressure, and two specimens were tested under confining
pressures of 2 and 4 MPa, respectively.

6.3. Results

In Fig. 10 the results of triaxial testing of intact rock samples
are shown. As can be seen, the granitic and dioritic gneisses have
similar strengths, with the former as the slightly strongest. Based
on mapping and site investigation, sliding along foliation joints
and in gouge material is believed most likely to take place in the
weakest gneiss variety (i.e. mica gneiss), while failure of rock
bridges most likely is believed to take place within the gneisses
with highest shear strength, representing the ‘‘gap’’ between
sliding planes (cf. Fig. 4). For intact rock, friction values for granitic
and dioritic gneiss as shown in Table 4 are therefore used in the
following. Although the number of triaxial tests was relatively
low, the values for intact rock are considered relevant since they
correspond well with what has previously been measured for
Norwegian gneisses at low confining pressures [24].

Scaling of the intact rock parameters from laboratory to in situ
has been carried out by applying the RocLab software [25]. The
GSI values for the 21 locations as shown in Fig. 2 vary greatly
(between 45 and 80). Most commonly, the GSI values are however
within the range of 60–70 in the central part of the area, and the
mean value of GSI ¼ 62 was used as a input in RocLab. Based on
this, Mohr–Coulomb parameters for the rock bridges were
calculated to c ¼ 12 MPa, f ¼ 48�.
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Table 3
Parameters used in Barton–Bandis empirical equation.

Parameter Value Comment

JRCfoliation 8.5 Measured over 1 m length on 21 locations. Procedure according to Barton and Bandis [32]

JCSfoliation 111 MPa Measured on 21 locations. Procedure according to ISRM [23] and chart from Deere and Miller [29]

fb 28� Measured on 12 cores, 32 mm in diameter

r=R 45/55 Rebound measured on 21 locations of foliation/unweathered joints

fr 24� Calculated using Eq. (2) according to Barton and Choubey [22]
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Fig. 10. The results of triaxial testing presented as s12s3-plots.

Table 4
Friction parameters for intact rock specimens.

Rock c (MPa) f (deg)

Dioritic gneiss 19 57

Granitic gneiss 25 59
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7. Discussion

In order to calculate resultant shear strength based on the test
results for the three different components, certain assumptions
need to be made. The main one is related to the rock stress
conditions of the Åknes sliding area. In theory, topography and
tectonics may increase the in situ stress considerably (based on
rock stress measurements in this part of Norway possibly by a
factor of 2–3 and more [24]). The open character of the back scarp
and other discontinuities as shown in Figs. 2–5 indicates that this
is, however, rather unlikely. It is therefore considered realistic to
calculate the normal stress on the sliding plane simply as the
weight component of overburden perpendicularly on the plane.
For overburden ranging from 25 to 60 m and an average dip angle
of 35� for the sliding plane (sn ¼ grock � h� cos aslope), this gives a
range of 0.5–1.3 MPa for the normal stresses. The resultant shear
strengths for the respective compositions of the sliding plane are
given in Table 5.

As discussed before, it is assumed that sliding along joints will
be on foliation joints, while failure in intact rock will be in dioritic
and granitic gneiss. The effect of the infilling on shear strength
will depend on both the thickness and strength properties of the
infilling material. If the thickness of the gouge material is more
than about 25–50% of the amplitude of the asperities, there will be
little or no rock-to-rock contact, and the shear strength will
correspond to the properties of the infilling [26]. The asperity
amplitude of foliation planes has been measured at several
locations in the area, and found typically to range between 10
and 20 mm. Based on this, it is assumed that the shear strength of
filled joints is governed by the shear strength of gouge.

Based on the resulting shear strengths of the various
components; analysis of the significance of the composition of
the sliding plane for the resultant strength have been made. The
results are shown in Figs. Figs. 11 and 12. As can be seen, the
resulting shear strength (tres) increases dramatically with in-
creasing percentage of failure in intact rock. This is as should be
expected due to the fact that intact rock by far inherits the highest
shear strength. Also as expected, the resultant shear strength is
higher for high percentage of failure along unfilled foliation joints
than for high percentage of failure in gouge filled joints. Thus, the
resultant shear strength of the sliding plane may vary consider-
ably, depending on the composition of the sliding plane.

Although difficult, and connected with a considerable degree
of uncertainty, an estimation of most likely composition of the
sliding plane at Åknes may now be made. The portion of intact
rock in the sliding plane is believed to be limited to local rock
bridges. Based on field observations and drill core logging, an
assumption of 1–3% of intact rock in the sliding plane is believed
to be fairly reasonable. Reliable estimation of the ratio between
jointed rock and gouge material in the sliding plane is also
difficult. The cores obtained from boreholes indicate that the
thickness of gouge in joints is limited to from about 10 to
maximum 50 mm. Field observations of the foliation in the
area favours the belief that a relatively large percentage of the
total sliding surface coincides with unfilled foliation joints.
An assumption of 25–35% gouge in the sliding plane is believed
to be fairly reasonable, leaving a percentage share of 62–74% of

rock-to-rock contacts. Based on these assumptions, the approx-
imate range of resultant shear strength will be as indicated by the
green sections in Figs. 11 and 12.

In rock slope stability analysis, the resultant shear strength
may be used directly as input. In limit equilibrium analysis, the
frictional parameters c and f are often used, and in some cases the
‘‘active’’ or ‘‘total’’ friction angle (fa), as described by Barton [27].
By using fa, frictional resistance is represented by one single
shear strength parameter, and for each respective composition of
the sliding plane, fa thus is defined by the following equation:

fa ¼ arctan
tres

sn
(3)

where tres is the resultant shear strength (as calculated in Figs. 11
and 12) and sn is the normal stress range (sn ¼ 0:521:3 MPa).

The resulting active friction angle curves for the Åknes case are
shown in Figs. 13 and 14. As can be seen, the variation in active
friction angle is greater when the sliding plane includes 1% intact
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Table 5
Shear strengths for estimated ranges of sn .

Material t at sn ¼ 0:5 MPa t at sn ¼ 1:3 MPa

Gouge 0.23 0.61

Jointed rock 0.48 1.11

Gneiss 12.5 13.4
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Fig. 12. Resultant shear strength versus percentage intact rock failure for various

material compositions of sliding plane located 60 m (sn ¼ 1:3 MPa) below the

surface. Green section indicates the assumed range of shear strength.
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rock failure than if it includes 3% intact rock failure. This is due to
a more distinct influence of unfilled joints and gouge in the first
case. The accelerating increase of fa with decreasing stress
emphasizes the importance of determining the friction para-
meters in accordance with the normal stress level in question, as
described by Nilsen [28].

The shear strength ranges indicated in Figs. 11–14 should be
regarded as indicative at this stage. The knowledge concerning
sliding plane character and stress conditions at great depth at
Åknes is still limited. There is also uncertainty connected to the
fact that the materials located in the sliding plane most probably
will be progressively weakened as shearing progresses along the
plane.

8. Conclusion

Based on field mapping and investigations, logging of cores
from boreholes and laboratory investigations of rock and soil, the

resulting shear strength for a sliding plane at Åknes located at 25
and 60 m below the surface, respectively, has been estimated to
0.5–0.75 and 1.05–1.3 MPa. This is based on assumption of 1–3%
intact rock failure, 25–35% failure along gouge-filled joints and
62–74% failure along unfilled foliation joints. The friction angle is
highly dependent upon normal stress level, with the highest value
of fa for the lowest value of sn. For the assumed composition of
the sliding plane, and depth of sliding plane of 25 and 60 m,
respectively, the resultant active friction angles for Åknes are
approximately 47237� for 1% intact rock failure and 57243� for
3% intact rock failure.

The main uncertainties associated with the Åknes sliding area
are the geometry of the complex sliding plane and the relative
distributions of the various material components which form this
plane. Site investigations and instrumentation can provide an idea
of the location of the sliding plane, but the distribution to a great
extent remain unknown.

The analysis and results presented here emphasize the need to
perform more thorough investigations of the potential sliding
plane at Åknes, particularly aiming at more exact estimation of
the composition of the sliding plane and the rock stress
conditions. The results illustrate that even very sophisticated
stability analysis cannot give reliable results if the material
composition and resulting shear strength of the sliding plane
are unknown.
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Abstract In the alpine topography along one of the long fjords with steep and high moun-
tain sides in western Norway the largeÅknes rockslide area is defined by a distinct back
scarp rising from 800 to 1000 m a.s.l. In 2004, an extensive monitoring program started,
including establishment of a meteorological station abovethe back scarp, 900 m a.s.l. This
paper evaluates the significance of meteorological conditions affecting the displacements
recorded by five extensometers and two laser sensors in the westernmost part of the back
scarp in the period November 2004-August 2008. Meteorological factors of importance for
the recorded activity in the back scarp are found to be melt water in spring and large tempera-
ture fluctuations around the freezing point in spring, earlysummer, autumn and early winter.
The seasonal activity in the back scarp is decreasing in the second half of the analyzed pe-
riod even though annual displacements are increasing, indicating that meteorological causes
are of decreasing importance for the displacements.

Keywords Rockslide· Meteorology· Displacement· Extensometer monitoring· Åknes

1 Introduction and study area

In the alpine topography of western Norway rockslides occurquite frequently. Especially
along the fjords sliding represents a significant threat to the population living there, as ev-
idenced in this century by the sliding catastrophes of Loen (1905 and 1936) and Tafjord
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Fig. 1 Locations of the̊Aknes rock slope, the town of Stranda, settlements and historical rockslides discussed.

(1934), where more than 170 persons lost their lives (Bjerrum and Jørstad (1968)). Rock-
slides are recurrent hazards in the steep rock slope atÅknes (Kveldsvik et al. (2006)), lo-
cated up to 1,000 m above sea level at the fjord Storfjorden (Fig. 1). Swath bathymetry
from the up to 320 m deep Storfjorden has revealed at least 59 rock slope failures of more
than 0.5×106 m3 to have occurred since the last glaciation 10,000 years ago (Blikra et al.
(2005)). In addition to the nearly 1,000 people living at thenearby communities Geiranger
and Hellesylt located by the fjord, there are 3,500 inhabitants in the town of Stranda, 15 km
away fromÅknes (Fig. 1). The̊Aknes rockslide area (Fig. 2) was first brought to the public’s
attention in 1964, when local people claimed that the back scarp was widening (Sandersen
et al. (1996)). This resulted in the installation of bolts onboth sides of the back scarp and
manual distance measurements across the back scarp began in1986. A comprehensive mon-
itoring program with several types of movement measurements is in operation in the rock
slope area today, funded by the Norwegian Natural Disaster Fund since 2004. At present,
the rockslide monitoring project is one of the largest in theworld, due to the potential haz-
ard of a tsunami generated as a result of a slope failure. Tsunami modeling indicates that
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the communities along the fjord system will be endangered (Eidsvig and Harbitz (2005)), in
addition to the tourist industry in the adjacent Geiranger fjord, listed on UNESCO’s World
heritage list. Current estimates indicate an unstable areaof 575,000 m2, with a volume of
about 40×106 m3. The slide is believed to take place along several sliding planes; with the
basal sliding plane (the base of the deforming mass) located105-115 m below the terrain
surface (Nordvik et al. (2009)).
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Fig. 2 TheÅknes rockslide area with back scarp monitoring.

Meteorological factors with seasonal variations might cause slope deformations, which
eventually lead to failure. The relationship between displacement of rockslide areas and sea-
sonal variation has been discussed internationally, e.g. recently by Willenberg et al. (2008),
Gunzburger et al. (2005), Crosta and Agliardi (2003) and Bogaard et al. (2000). In Norway,
the relationship between historical rockslides and meteorological factors has been analyzed
for four large scale historical rockslides (Loen 1905 and 1936, Tafjord 1934 and Modalen
1953), all located within 120 km from̊Aknes (Fig. 1), to evaluate the significance of me-
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teorological factors on initiating the rockslides (Sandersen et al. (1996)). No simple rela-
tionship between meteorology and initiation of rockslideswas found based on records of
precipitation and temperature available from meteorological stations. The intensities of pre-
cipitation/snowmelt were found to be normal, with recurrence intervals of only a few years,
when these large rockslides occurred. Other processes, notdirectly dependent on meteoro-
logical factors, like disintegration of irregularities along the slip surface due to physical or
chemical processes reducing the friction, or steady sliding movement bringing the center of
mass closer to its critical position, were mentioned as possible processes.

Establishment of a meteorological station atÅknes in November 2004, as part of the
rockslide monitoring program, enabled detailed studies ofmeteorological seasonal effects
on deformation. In this paper we focus on analyzing the various meteorological parameters
to investigate their potential influence on rock deformation presented by extensometer- and
laser recordings from the back scarp area, from 2004 throughout August 2008.

2 The history of deformation in the Åknes rockslide

Signs of instability at the̊Aknes rockslide area have been evidenced by occurrence of three
smaller rockslides, all along the western boundary of the area, the most recent in 1960, with
an estimated volume of approximately 100,000 m3 (Kveldsvik et al. (2006)). Photogram-
metric studies have indicated displacement in the order of 6cm/year since 1961 (Kveldsvik
et al. (2006)). Two sets of bolts for manual reading were installed across the back scarp in
August 1986, and supplemented by five sets of bolts in September 1989. On average, the
distances between the bolts have been measured manually every 2-3 years. The monitoring
of the back scarp deformation was extended by continuous recordings of three extensome-
ters starting in August 1993, and two additional extensometers were installed in October
2004 (Fig. 2).

The early monitoring of distances across the back scarp has been analyzed with respect
to seasonal variation by Larsen (2003), Larsen (1999) and Sandersen et al. (1996). Larsen
(1999) found that in the period 1986-1995 the bolt distance measurements showed changes
every year, assuming movements mostly caused by melt water from snow in the spring or
high precipitation during autumn periods. Larsen (2003) analyzed records from three ex-
tensometers in the period 1993-1995, and concluded that recording of one of them (Ext.
3) showed seasonal variations, with the most significant extension occurring in spring and
autumn/early winter. The extension seemed primarily to be connected to periods around
snowmelt in May and to periods with high precipitation in September to December. In win-
ter, January to April, when precipitation as rain in generalwas small and the joints covered
with snow, the recorded extension was negligible.

Sandersen et al. (1996) made a detailed study of the extensometer records also in the
period 1993-1995. They concluded that Ext. 1 had the largestdisplacements during the au-
tumn, Ext. 2 showed a slight increase in displacement rate throughout the period, and Ext.
3 had a specific pattern with no or little movement during the winter and summer months,
and marked displacement during springtime. No evident relation between precipitation and
displacement was found. This was believed to indicate that water pressure did not play an
important role on the movement. The effect of ice was, however, believed to be signif-
icant. Especially for Ext. 3, it seemed like the block was fixed when freezing started in
autumn/early winter, while displacement accelerated whenthe ice thawed in spring.
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3 Meteorology

In November 2004 the̊Aknes meteorological station was established at 900 m a.s.l. just
above theÅknes rockslide area. The station (Fig. 3) is a part of a largemonitoring and com-
munication system with remote data transfer, enabling online access to the data. Standard
meteorological parameters such as air temperature, humidity, radiation, wind velocity, wind
direction, snow depth and precipitation are measured approx. 2 m above the ground surface,
while soil temperature is measured at the boundary between soil and bedrock, with the sen-
sor placed on top of a rock surface covered by a soil layer, 5-10 cm thick. Meteorological
data are available from November 11 2004 and have been analyzed in hydrological years
(September 1 to August 31) between November 2004 and August 2008.

a)

b)

Fig. 3 Meteorological station at̊Aknes at 900 m a.s.l. operational from 11 November 2004. a) Precipita-
tion gauge (Oscillating string T-200 B from Geonor) b) Meteorological mast monitoring air temp/humidity
(Combinationsensor HMP45A from Vaisala), soil temperature (Thermistor 107 from Campbell), wind
speed/direction (Windobserver II from GILL), radiation (Combinationsensor CNR1 from Kipp&Zonen), and
snow depth (Ultrasoundsensor SR50 from Campbell). The measuring frequency is 5 sec for all instruments
except for the snow depth sensor, for which it is 15 min.

3.1 Temperature

Recorded hourly air- and soil temperatures are shown in Fig.4. Mean annual air temperature
(MAAT) varies from+2.8◦C to+3.8◦C. The average daily air temperature is generally neg-
ative from November/December to mid/end of April. Large temperature fluctuations around
0◦C are evident in autumn, winter and spring; temperature fluctuations of 7-11◦C within
1-2 days are not unusual, reflecting the marine climate. Soiltemperatures vary between 0◦C
and+15◦C in the period November 2004-September 2008 (Fig. 4). In winter, from Decem-
ber/January to April/May, when there is a layer of snow on top, the soil temperature is close
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Fig. 4 Hourly air temperature, soil temperature and outgoing longwave radiation recorded at̊Aknes meteo-
rological station 2004-2008.

to 0◦C. The daily variation in soil temperature is largest in springtime (May), with daily
variations up to 2.5-3◦C.

3.2 Snow duration and radiation

The snow depth is measured for two points at the meteorological station. These measure-
ments, however, can not be used as a basis for detailed analyses of snow depth and duration,
because the sensors have been periodically out of order. In addition, the measurements are
subjected to a high degree of noise throughout the analyzed period. Generally, the records
show that snow accumulates in November and melts completelyaway by the end of May.
The maximum snow depth varies between 1.5 and 2 m in the wintermonths at the meteoro-



7

logical station, while it is believed to vary between 0 and more than 4 m locally within the
sliding area.

Direct insolation is naturally highest from March to September, and has a significant
minimum from November to early February, when the alpine topography prevents direct
insolation. Outgoing radiation is highest from March to May, i.e. during the end of the snow
covered period, and reaches a low level as soon as all the snowis melted (see Fig. 4).

Estimation of the timing of the snow melting periods can be made by combining air-/soil
temperatures and radiation recordings with manual observations. Based on this the snow
melting period was from mid March to end April in 2005, from mid April to early May in
2006, from early March to mid April in 2007, and from late March to late April in 2008 (Fig.
4). The length of the snow melting period thus varies from 3 weeks to 1.5 months, controlled
largely by the timing of positive air temperatures, the length of freezing periods and the
annual snow thickness. This, however, reflects only the snowmelting at the location of the
meteorological station at 900 m a.s.l., i.e. above the back scarp. Snow stays significantly
longer in the back scarp and the graben structure, which are natural topographical lee sites
accumulating larger snowdrifts during winter. Snow avalanche threats from higher altitudes
generally exist until late June, indicating a prolonged period with water from snow melting
in the catchment area.

3.3 Snow- and rain precipitation

Precipitation measurements are carried out with a precipitation gauge (Fig. 3a) containing
an anti-freeze solution, i.e. all precipitation is recorded with no distinction between rain and
snow. Analysis of monthly precipitation rates atÅknes, from December 2005 to August
2008, show precipitation of 1600-1800 mm/year (Fig. 5). Most precipitation falls in autumn
(September-November) with monthly average rates of 190-280 mm. Maximum intensities
of 44 mm/hour occur in August. As the temperature is generally below the freezing point
from November to end of March/April, precipitation falls mainly as snow in this period. In
the spring and summer months from April to August, the precipitation is generally low, with
monthly average rates of 60-120 mm and low maximum intensities (8-11 mm/hour).

3.4 Wind speed and direction

Wind speeds generally are highest during winter, and low in summer. Mean annual wind
speeds range from 4.8 m/s to 5.8 m/s in the study period. Storms (wind velocities up to
20.8-32.6 m/s) occur mainly during autumn and winter months(mid November to March)
(Fig. 6). Storms are also recorded in April 2006 and 2007, June 2006 and August 2007.
The maximum wind speed of 29 m/s was recorded in December 2004. The dominating
wind direction is approx. 220◦, which is also the wind direction during the recorded storms,
indicating that the wind travels along the fjord from SW.

3.5 Meteorology ofÅknes

The meteorological data demonstrate a Dfc snow climate fully humid with cool summers,
according to the K ¨oppen-Geiger climate classification system (Kottak et al. (2006)). Due to
the location close to the west coast of Norway, theÅknes site is relatively often exposed to
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Fig. 5 Monthly precipitation December 2004-August 2008 atÅknes meteorological station.

low pressures approaching from the North Atlantic Sea, bringing intense and large amount
of precipitation and southwesterly winds. In summer the rain drains directly into the rock
slope, whereas in winter from November to April almost all precipitation accumulates as
snow. For the period 2004-2008, the annual precipitation (from September 1 August 31) was
in the range of 1600-1800 mm, of which 40-70% fell as snow. Dueto the alpine topography
the investigated rock slope only received direct insolation from February to October.

4 Groundwater

The groundwater system in the sliding area is believed to be primarily controlled by direct
precipitation feeding run-off water in summer and autumn, and in spring supplemented by
melt water from the sliding area itself and from snow accumulated in the back scarp, in
addition to melt water from the estimated 0.7 km2 catchment area above. The combination of
snow melt water, also from the area above the back scarp, and direct precipitation, potentially
can cause increased deformation.

The groundwater level is measured by piezometers in a D.M.S.IU monitoring system
(DMS (2009)), which were installed in the upper and middle borehole (Fig. 2) on November
30, 2006. Precipitation rates and daily groundwater levelsin the boreholes are shown in
Figure 7. The groundwater level fluctuates between -42.5 and-46.5 m below the surface in
the middle borehole, and between -51 and -60 m in the upper borehole. Groundwater levels
recorded in the boreholes are fluctuating simultaneously, indicating a shared groundwater
regime. The fluctuations are however, largest in the upper borehole, reflecting the close
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location to the back scarp, which is believed to constitute amajor feature for infiltration of
water to the sliding area.

In 2007, the snow melting period started in the beginning of March, and this coincides
with a sudden rise in the groundwater level in upper and middle borehole 11 days later
(from -57 m to -52 m in 5 days in upper borehole). The snow melting period lasted until mid
April at the meteorological station, and the large fluctuations in the groundwater level in
this period might reflect the temperature fluctuations around 0◦C and precipitation causing
discontinuous feeding of melting water to the ground. From end April/early May, the water
level decreased in the upper and middle borehole, suggesting a decreasing water influx.

In 2008, recorded air temperatures indicate that the snow melting period started in late
March. A period with temperatures below the freezing point is however recorded before the
temperatures raised and stabilized on temperatures above the freezing point in mid April.
This sudden rise in air temperature coincides with the sudden rise in the groundwater level
at the upper and middle borehole (from -60 m to -55 m in one weekin upper borehole),
reflecting that this significant rise in water levels clearlyis caused by the annual snowmelt.
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Lowering of the ground water level followed by stabilization in the upper and middle bore-
hole is evident from mid May 2008, indicating that the groundwater regime was supplied
with melt water from the catchment area above and/or the snowaccumulated in the back
scarp for additional two weeks after snow melting ended at the meteorological station (end
of April).

The autumn groundwater levels from September throughout October 2007 are relatively
high due to high precipitation (143 mm, 128 mm, 269 and 188 mm in July, August, Septem-
ber and October, respectively). From the beginning of November, till snow melting starts in
April 2008, the groundwater levels gradually drop (from -51m to -60 m in upper borehole
and from -42.5 to -45 in middle borehole), as less water is discharged into the area due to
temperatures below 0◦C. In the following summer, precipitation is less (37 mm and 74 mm
in July and August, respectively), which causes lower groundwater levels in upper borehole
this summer, showing that the groundwater levels in the summer and autumn months are a
result of the amount of precipitation.
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5 Displacement measurements in the back scarp and graben

The back scarp is the most intensively monitored geologicalstructure of theÅknes rock
slide, and its expansion clearly shows that the slope is unstable. This structure is an ap-
proximately 800 m long tensional fracture, progressively developing toward east, where it
currently ends with an opening of approximately 0.5-1 m. To the west, the opening is much
larger, with a well-developed 20-30 m wide graben. Manual measurements of the distance
between 6 installed sets of bolts, during a 18-year period until June 2004, show a steady
widening in the order of 2.8-32.7 mm/year of the back scarp.

The graben is a relieved structure (block) with an estimatedvolume of 300,000-400,000
m3, which is believed to be detached from the main sliding mass.The structure is, however,
considered to indicate instability and movement of the whole area. The relieved structure
moves towards SW, toward a large ravine, which defines the western boundary of the sliding
area.

5.1 Extensometers

Five extensometers (Ext. 1-5) (Fig. 8) are placed in telescopic steel pipes, fixed to solid rock
on each side of the scarp, and installed across the open back scarp (NGI 1996, 2005). Un-
til March 2006, the data was sampled once a day, stored locally in a datalogger, and then
transmitted by a solar powered cellular phone at the site. From March 22, 2006 the reading
frequency shifted from daily to every 5 minutes. The extensometers are all orientated in ap-
proximately N-S direction, which does not favor measurement of the true displacements in
the NW-SE oriented back scarp. The resultant displacement thus is larger. To analyse po-
tential seasonal variations, the measuring period betweenNovember 2004 and August 2008
was chosen, for which also meteorological data are available from theÅknes meteorological

Ext. 1 Ext. 2 Ext. 3b Ext. 4

Ext. 5

N S N SS N S N

SN

L2

L1

R1

R2

~100 m

E W

Measured distance

Measured distance

L1, L2

Fig. 8 Extensometers 1-5 located across the back scarp and lasers L1and L2 located at relieved graben
structure at̊Aknes.
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station, as presented above. Due to lightning, which destroyed the data transmission from
the extensometers, extensometer data are lacking for the period mid February to July 2008
(Fig. 9). Ext. 3 is termed ”Ext. 3a” until November 2004, whenit was reinstalled in a N-S
direction and termed ”Ext. 3b”. Ext. 4 and 5 have limited recordings due to damage by snow
avalanches; Ext. 4 no recordings after July 2005 and Ext. 5 was operative only for a limited
period of about one year (November 2004 - November 2005).

5.2 Lasers

The displacement of the graben structure is monitored by twolaser beams as the distance
from the two lasers (L1, L2) placed on the stable side of the back scarp to two reflectors (R1,
R2), situated in the moving graben structure (Fig. 10). The laser instrument is a DLS-B(H)
Distance Laser Sensor from DIMETIX (DIMETIX (2009)) with typical accuracy of 1.5
mm. Meteorological factors such as airborne particles (dust, fog, heavy rainfall and heavy
snowfall) as well as bright sunshine on the reflectors reducethe accuracy. Continuous laser
data has been recorded since 2005.

The laser distance measurements show quite steady rates when data is filtered for noise,
as seen in Fig. 10, although the records due to meteorological factors are not continuous.
Between December 2005 and August 2006, the upper and lower lasers recorded displace-
ment in the same order of magnitude (39 mm and 40 mm respectively). From September
2006 to August 2007, the upper laser recorded higher displacement than the lower (65 mm
versus 53 mm, respectively), which indicates that the blockslightly rotated. In 2007-2008,
the recorded displacements were of the same order of magnitude (74 mm was recorded at
both upper and lower laser). In addition to the rotation of the graben structure in the year
2006-2007, the recordings show increase of the annual displacements from 2006-2007 to
2007-2008 in the order of 9 mm for the upper laser and 20 mm for the lower laser.

5.3 Possible meteorological influence on extensometer and laser events

To analyse potential meteorological effects on displacements, selected events recorded by
the extensometers have been analyzed. In these analyses, anevent in the extensometer
recordings is defined as a significant increase and/or reduction in movement, recorded at
the same time for more than one of the extensometers. Based onthis, a total of 12 events
were identified, the four major in springtime, and the remaining minor events in autumn
(three), in winter (three) and in summer (two) (Fig. 9). In the following, one representative
event per season is discussed and analyzed in detail. The other events are summarized in
Tables 1-4.

5.3.1 April 2007

Between April 11 and May 1 2007, Ext. 2 and 3b recorded two 0.7-1 mm reductions of the
back scarp over 3-5 days and two periods of increased movements of 0.8-1.7 mm over 3-6
days (Fig. 11). Recordings from Ext. 1 show the same pattern (reduction-increase-reduction-
increase). A distinct increase of 1 mm is however recorded April 12-13 (prior to the first
reduction recorded at Ext. 1, 2 and 3b). The recorded displacements at Ext. 1 are also smaller
(reductions of 0.1-0.5 mm and increases of 0.3-0.5 mm). Laser data from monitoring of
graben structure are discontinuous in this period, however, the recordings indicate increasing
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displacements in the order of 4-5 mm for L1 (upper laser) and L2 (lower laser) from April
16 to May 1 (Fig 11).

The air temperature during this period fluctuated between -7.5◦C and+11.5◦C with two
significant cold periods and two relatively warm periods (Fig. 11). The recorded precipita-
tion was 115 mm, of which most fell as snow as the air temperatures was below 0◦C during
precipitation.

Groundwater levels fluctuated between -56 and -51.5 m in the upper borehole and be-
tween -45.7 and -44.5 m in the middle borehole. Increased displacements recorded by Ext.
2 and 3b and lasers seem closely controlled by a raising groundwater level in the upper
borehole produced by melt water production as the air temperature increased and became
positive in spring.

The air temperature variations seem to directly have affected the groundwater levels
in both boreholes in spring. Quickly rising air temperatures from below 0◦C to more than
+10◦C caused significant melting of snow, and thus production of melt water, which infil-
trated the back scarp, as well as the rock mass in the area around the back scarp. This lead to
large rise of the groundwater level in the upper borehole April 13-17 and April 24-27. When
the air temperature again fell below 0◦C, the groundwater level relatively quickly dropped
back in the upper borehole.

The first increase in deformation recorded by Ext. 1 April 12-13 seems to be caused
by a rising air temperature leading to production of melt water in the area where Ext. 1
is located (western part of the back scarp). Although this extensometer shows the same
pattern after the first increase in deformation as recorded at Ext. 2 and 3b, the latter show
the strongest correlation with measured groundwater levelin the upper borehole. Increasing
displacements recorded by the lasers also coincides with the air temperature rising above
0◦C on April 21 to higher temperatures in the period April 22-26. Decreasing displacements
recorded by the extensometers are preceded by periods of 5-7days with temperatures below
0◦C, which cause less melt water discharge and lowering of the groundwater. Importantly,
high wind speeds reached several times during the studied period, including a storm on April
10, did not affect the deformation recordings.

For this event it can be concluded that fluctuating temperatures above and below freez-
ing, causing significant snow melting, strongly affected the groundwater level which is be-
lieved to have caused increased displacements as recorded by the extensometers and lasers.

5.3.2 June 2006

In early June 2006, Ext. 1 and 2 recorded three periods of extension followed by reductions
of the width of the back scarp (Fig. 12). Recordings from Ext.3b and 4 show a similar
reaction with a delay of 1-4 days. The first and second reductions at Ext. 1 and 2 June 4-6
and June 8-11 were in the order of 0.3-0.4 mm. Ext. 3b and 4 showa small increase of the
distance across the back scarp in the same periods. Increased displacements of 0.4-0.5 mm
were recorded June 1-4, 0.1-0.3 mm was recorded June 6-8 and 0.3-0.9 mm June 12-14 at
Ext. 1 and 2. The laser distance recordings show increased displacements of 0.5 mm for L1
June 2-4 and of 1.5 mm for L2 June 2-6.

The air temperature fluctuated daily during this two-week period, with temperatures
between -1.5◦C and+20.5◦C (Fig. 12). The rise in temperature from 0◦C June 5 to+14-
20◦C June 10-12 is typical for the months of May/June, as shown inFig. 4. Precipitation
was relatively small during this period with a total of 20 mm,of which most fell during June
2-4. The precipitation is hence not believed to influence on the recorded event.
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The first contraction June 4-6 was recorded shortly after theair temperature dropped
to around 0◦C June 2-4. The increased displacement June 6-8 was recordedshortly after
the rise in temperature from about freezing point to+10.5◦C June 5-6, while the second
contraction June 8-11, was recorded during continued air temperature increase to+20◦C
on June 10. Increased displacement on June 12-14 was recorded shortly after a rapid rise in
temperature from+8◦C to+20◦C during the 3 day period June 10-12. Two days with strong
winds were recorded, including a storm on June 13, but again with no obvious influence from
the strong winds on the deformation recordings (Fig. 12).

For this event, the relatively quick air temperature increase to around+20◦C seems to
have triggered acceleration of the measured distance across the back scarp. This is believed
to be due to melting water from snow melting at higher altitudes, as the sliding area is
exposed to snow avalanches until late June, as described earlier.

5.3.3 October 2007

Between 11 and 28 October 2007, two small reductions of the width of the back scarp fol-
lowed by two larger extensions were recorded at Ext. 1-3b (Fig. 13), the net result being
a significant extension of up to 1.2 mm. All three extensometers recorded almost the same
during this period, except for a small reduction in distancerecorded by Ext. 3b on October
16-18. The reductions were generally 0.2-0.5 mm in one day, and the increases in displace-
ment 0.6-1.1 mm during a period of 2-7 days. Recordings from the lasers L1 and L2 showed
increased displacement for both lasers. Due to missing datarecordings in the period Octo-
ber 14-25 the degree of acceleration cannot be determined for L1. For L2, an increase in the
displacement of 3.5 mm from 11 to 18 October was however recorded.

The precipitation in September 2007 was high (269 mm) compared to September 2006
(116 mm), but for October it was low compared to the other monitored years (Fig 5). The air
temperature fluctuated between -3◦C and+11◦C in the period, with temperatures generally
above freezing except in the period October 17-19. The high precipitation the month before
is believed to have affected the displacement recordings asthis precipitation fell as rain and
caused high groundwater levels in September (Fig. 7). Although data from the groundwater
levels are missing for October 17-26, the records show that groundwater levels were high
until mid October (between -52 and -53 m for the upper borehole and between -43.5 and -43
m for the middle borehole). The period had significant air temperature fluctuations, from
around +8-10◦C and down to -3◦C.

The recorded reductions in distance across the back scarp were preceded by 6-12◦C
drops in air temperature in 1-3 days (October 11-12 and October 15-18). The first increase
in displacement coincided with a significant air temperature rise of up to+10◦C October
12-13, and the second increase coincided with the rise in airtemperature October 19-21,
in combination with the melting of the 63 mm snow that fell thedays before. There were
significant variations in wind speed during this period (Fig. 13), but as for the other events
there is no indication that wind controls the deformation recordings.

For this event, it can be concluded that high groundwater levels due to precipitation
and/or snowmelt when the ground was still unfrozen (according to Fig. 4), resulted in net
expansion of the back scarp, as well as increased displacement of the graben structure. Re-
ductions in the distance across the back scarp were precededby 2-3 days with temperatures
around or below the freezing point, which lead to lowering ofthe groundwater level.
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5.3.4 January 2006

During the first half of January 2006 a significant net expansion of the back scarp occurred,
caused by one large acceleration phase in the order of 0.4-1.5 mm recorded by Ext. 1, 2,
and 4 during January 10-17 (Fig. 14). At the same time both lasers recorded increased dis-
placements for the graben structure, L1 in the order of 5 mm January 13-22, and L2 in the
order of 6.5 mm January 10-21. An increase in displacement of0.8 mm at Ext. 2 was also
recorded on January 4-7, as well as a minor reduction of 0.2-0.4 mm in distance across the
back scarp at Ext. 1 and 2 on January 7-8.

The air temperature fluctuated between -6◦C and+4◦C on January 1-18, followed by
freezing. In total only 19 mm of precipitation fell during this period, and precipitation there-
fore is believed to have been of minor importance for the recorded event. The stable ground
temperature close to 0◦C during this period (Fig. 4) indicates that a thick snow cover ex-
isted. The increase in displacement recorded January 4-7 might have been caused by the
recorded 7◦C air temperature increase in 2 days up to 0◦C on January 1-3. The second in-
crease recorded January 10-17 coincided with an air temperature increase of 8◦C in 1-2
days, from minus to plus temperatures. Minor reductions in the distance across the back
scarp coincided with the significant temperature drop to below freezing point on January
7-8. Several storms were recorded during this period (January 10-11, 12 and 13-14), which
might have contributed to the recorded expansions.

In this event, increased expansion of the back scarp was recorded when hardly any pre-
cipitation occurred, but the ground was already snow covered. Air temperature increased
from freezing to around +2-4◦C giving periods of 1-4 days with positive air temperatures,
which must have caused production of melt water. This seems to be the most likely expla-
nation for the increased displacements recorded by Ext. 1, 2and 4 as well as at laser L1 and
L2. Some potential influence might be represented by the period of 3 storms in 4 days.
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6 Discussion

Tables 1-4 summarize the analyzed events and related meteorology. As shown, spring, early
summer, autumn and early winter are periods when the back scarp is active. Mid to end of
summer (July and August) as well as mid to end of winter (mid January throughout March)
generally do not include large displacement events. All events recorded by the extensometers
show reduction as well as increase in the distance across theback scarp, but the order is not
consistent. In some events, the distance is reduced before increased displacement is recorded
(April 05, May 05, December 04 and 05) while in other events, extensions are followed by
reduction in the distance across the back scarp (May 06, June05, October 05 and January
06). Some events have multiple phases where the distance is reduced and increased (April
07, June 06, November 05, and October 07). Most of the events are recorded in 2004-2005
and 2005-2006, indicating less activity in the back scarp inthe second half of the analyzed
period. This might be due to less precipitation and a generally lower groundwater level in
the second half of the period; however, precipitation data presented in Fig. 5 indicate that
2007/2008 recorded the highest annual precipitation.

The annual net expansion of the back scarp is increasing in the analyzed period; i.e. for
Ext. 1, 2 and 3b the annual expansion in 2005/2006 is 12.4, 19.6 and 14.1 mm, respectively,
while the expansion in 2007/2008 is 20.9, 24.5 and 16.7 mm, respectively. The meteorolog-
ical effects hence are believed to be of less significance on the displacements in the back
scarp in the last half of the period.

Analyses of the laser data show that for the periods where laser recordings are available,
all events recorded by extensometers are identified also by the laser recordings (Fig. 10).
This indicates that the same meteorological and geologicalfactors which affect the moving
graben structure also affect the displacement of the back scarp. The largest recorded event
by the extensometers in May 2006 was also the largest event recorded by the lasers, 3 mm
and 6 mm increase in displacement May 4-14.

For the four years analyzed, snow melting periods cause the largest annual deformation
event. The combination of melt water and large temperature fluctuations around 0◦C thus is
believed to be primarily responsible for these events. Typically, the air temperature fluctuates
considerably during spring (Fig. 4) and periods with relatively high air temperatures causing
increased production of melt water are recorded previous toall increased displacements
occurring in spring. For the April 2007 event, recorded reductions in the distance across
the back scarp coincide with periods of air temperatures below freezing and decreasing
groundwater level. This is, however, not the case for every event, three recorded reductions
in springtime, of a total of five analyzed reductions, are related to large decreases in air
temperature to below or around 0◦C.

Events in early summer are recorded in June 2005 and 2006 by extensometers (Table 2),
the latter also by lasers. In 2005 and 2006, snow melting at the meteorological station ended
in late April and early May (Fig. 4). As the catchment area is located at higher altitudes
above the back scarp, melt water is believed to have been fed into the back scarp after the
end of snow melting at the meteorological station until all snow was melted in the upper
catchment in mid-/late June. Like the events recorded in early spring, periods with high air
temperatures precede the recorded increases in displacements, but no consistent explanation
is found for the recorded reductions of distance across the back scarp, although two of the
three reductions can be related to decreases in the air temperature to below 0◦C.

In autumn, periods with heavy precipitation in combinationwith air temperature fluctu-
ations around 0◦C seem to have caused displacement events recorded by the extensometers.
In October 2005, a total precipitation of 441 mm was recorded, causing 1-2 mm expansion.
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For November 2005, the first increase in displacement most likely was caused by a period
of low temperatures, as opposed to the general trend with a period of high temperatures pre-
ceding increasing displacement. In October 2007, increased displacements recorded by the
extensometers as well as by one of the lasers (L2) were preceded by periods of high tem-
peratures. Recorded reductions in the distance across the back scarp are found to coincide
with decreases in air temperatures to below freezing, occasionally followed by a period of
1-5 days with low temperatures.

In early winter, air temperature rise to above 0◦C have caused events (December 2004
and 2005, January 2006) registered by extensometer as well as lasers. This is believed to be a
result of some production of melt water, when air temperatures occasionally have increased
to above 0◦C, and the ground has still been frozen. Periods of 1-4 days with positive air
temperatures (generally fluctuating between 1◦C-7◦C) have preceded the recorded increased
displacements, and caused some melt water production. Recorded reductions in the distance
are found to coincide with decreases in temperatures to below freezing followed by a period
of 1-5 days with negative air temperatures.

Air temperature and precipitation thus have been found to beimportant meteorological
parameters governing phases of increasing and decreasing distance across the back scarp as
well as increasing displacement of the graben. This is believed to be due to water infiltrating
the back scarp area (precipitation and/or melting water), and by this directly increasing the
driving force in the back scarp as well as reducing the normalstress on the sliding plane(s).
Both these effects will increase displacements. The great impact of groundwater pressure
on stability conditions and displacement for theÅknes slope has been confirmed by recent
analyses, i.e. Kveldsvik et al. (in press). For the upper borehole, a high groundwater level
(between 51 and 52 m below the surface) and/or fluctuating groundwater levels (3-4.5 m
change in water level within 1-5 days) seem to be the threshold for deformation events
recorded in April 07 and October 07 at extensometer 1, 2 and 3b. For the middle borehole,
the relation is less clear. A groundwater level of between 42and 44 m below the surface
and/or a fluctuation of around 1 m in 5 days could be suggested as a threshold for this
borehole. Wind speed and recorded storms have been found notto affect the displacements
to any large extent. Only in one event there is a slight potential influence.

The reduction of the distance across the back scarp is related to negative air temperatures
believed to be caused by a combination of thermal effects andlowering of the groundwa-
ter level, especially in the upper borehole. The significance of the former should not be
underestimated, for a thermal expansion of 6-9µm/m×

◦C for instance (normal range for
Precambrian gneiss according to Nilsen and Palmstrøm (2000)) a reduction of temperature
of 10◦C over a span of a 100 m, in theory will cause a contraction of 6-9 mm.
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Table 1 Summary of events and relevant meteorology in spring of the backscarp and graben structure in the
Åknes rock slide.

Date Deformation Meteorological cause

April 05 0.3-0.7 mm reduction (Ext.1,3b,5) All events are recorded during snow melting and are
believed to be closely related to temperature fluctuating
above and below freezing point producing varying
amounts of melt water and causing varying
groundwater levels (especially in upper borehole).
Increasing displacements are preceded by sudden rises
in air temperature (generally 5-10◦C rise in 1-3 days)
and periods of 2-8 days with high temperatures
(typically +5-15◦C). Recorded reductions in the
distance across the back scarp may be a result of
decreases in temperature (generally 8-18◦C decrease in
2-3 days) followed by 1-4 days with low temperatures
(-2 to -7◦C). The first decrease recorded at Ext. 1,3b
and 5 in April 2005 and the first decrease recorded by
Ext. 1, 2 and 3b April 2007 were not preceded by a
large drop in the temperature.

(2-11/4) 0.4-1.8 mm increase (Ext.1,2,3b,4,5)
0.3-0.5 mm reduction (Ext.1,2)

May 05 0.3-0.6 mm reduction (Ext.1,3b,5)
(2-9/5) 0.7-1.2 mm increase (Ext.1,2,3b,4,5)
May 06 0.9 mm increase (Ext.1)
(23/4-17/5) 0.6-2.5 mm reduction (Ext.1,2,3b,4)

0.9-1.9 mm increase (Ext.1,2,3b,4)
3.5-6 mm increase (L1,L2)

April 07 1.0 mm increase (Ext.1)
(11-30/4) 0.2-1.0 mm reduction (Ext1,2,3b)

0.7-1.6 mm increase (Ext.1,2,3b)
0.5-0.8 mm reduction (Ext.1,2,3b)
0.3-0.8 mm increase (Ext.1,2,3b)
4-5 mm increase (L1,L2)

Table 2 Summary of events and relevant meteorology in early summer of the back scarp and graben structure
in theÅknes rock slide.

Date Deformation Meteorological cause

June 05 0.5-1.0 mm increase (Ext.1,2,3b,4,5) The two events are both recorded in early summer,
shortly after the melting period ended at the
meteorological station, when temperatures were rising
from around freezing point to higher temperatures
(+6-8◦C in 2005 and+14-20◦C in 2006). This
warming in combination with melting water from snow
at higher altitudes in the area is interpreted to have
caused the increasing displacements recorded by the
extensometers. Recorded reductions in the distance
across the back scarp can be related to drops in the air
temperature (4-10◦C in 1-2 days) to below 0◦C, except
the second reduction recorded by Ext. 1 and 2 June 06.

(2-11/4) 0.4-1.8 mm increase (Ext.1,2,3b,4,5)
(4-11/6) 0.2-0.7 mm reduction (Ext.1,2,3b,4,5)
June 06 0.3-0.4 mm reduction (Ext.1,2)
(4-14/6) 0.1-0.3 mm increase (Ext.1,2)

0.3-0.4 mm reduction (Ext.1,2)
0.3-0.9 mm increase (Ext.1,2)
0.5-1.5 mm increase (L1,L2)
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Table 3 Summary of events and relevant meteorology in autumn of the back scarp and graben structure in
theÅknes rock slide.

Date Deformation Meteorological cause

October 05 0.7-1.0 mm increase (Ext.1,2) The combination of varying air temperature above and
below the freezing point and precipitation falling as rain
is believed to have caused variation in groundwater
levels in autumn. Precipitation falling as snow in
periods with temperatures below freezing has
contributed to the inflow of water into the back scarp
(and surrounding rock mass) only when the air
temperature rises again. The recorded increase in
displacements was preceded by a period of 2-5 days
with high air temperatures (+4-8◦C) in combination
with precipitation as rain (13-27 mm/day) and/or
melting of snow. Recorded reductions in the distance
across the back scarp coincide with drops in the
temperature (6-15◦C) to below freezing point in 2-4
days, occasionally followed by a period of 1-4 days
with low temperatures (0 to -5◦C).

(20-28/10) 0.4-0.8 mm reduction (Ext.1,4)
0.6-0.8 mm increase (Ext.3b,4,5)

November 05 0.3-0.5 mm reduction (Ext.2,3b,4)
(16-29/11) 0.4-0.9 mm increase (Ext.2,3b,4)

0.3-0.5 mm reduction (Ext.2,3b,4)
0.3-1.1 mm increase (Ext.2,3b,4)

October 07 0.2-0.4 mm reduction (Ext.1,2,3b)
(12-28/10) 0.3-1.0 mm increase (Ext.1,2,3b)

0.2-0.5 mm reduction (Ext.1,2,3b)
0.8-1.1 mm increase (Ext.1,2,3b)
4 mm increase (L2)

Table 4 Summary of events and relevant meteorology in early winter of the back scarp and graben structure
in theÅknes rock slide.

Date Deformation Meteorological cause

December 04 0.2-0.5 mm reduction (Ext.2,4,5) All events are inearly winter, before the soil
temperature has stabilized at temperatures below
freezing when a thicker snow cover has accumulated.
Increase in displacements are preceded by increasing
air temperatures (7-9◦C) from below freezing to
temperatures above freezing in 2-3 days, combined with
1-4 days with high temperatures (+1-7◦C). Reductions
in the distance across the back scarp are preceded by
decreases in temperature (3-7◦C) in 1-2 days followed
by 1-5 days with temperatures below freezing point
(typically between 0◦C and -6◦C).

(9-14/12) 0.3-0.8 mm increase (Ext.1,2,3b,4,5)
December 05 0.3-0.8 mm reduction (Ext.1,2,3b,4)
(8-17/12) 0.4-1.3 mm increase (Ext.1,2,3b,4)
January 06 0.2-0.8 mm increase (Ext.2,3b,4)
(4-17/1) 0.3-0.4 mm reduction (Ext.1,2)

0.4-1.5 mm increase (Ext.1,2,4)
2.5-3 mm increase (L1,L2)
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7 Conclusions

Based on the analyses in this paper, the following main correlations between recorded dis-
placements and meteorological factors have been found for theÅknes slide area:

– In spring (mid March throughout May) and early summer (June), water from snowmelt
has large impact on the displacements, causing the largest expansion of the back scarp.

– In summer and early autumn (mid June throughout September),no significant deforma-
tion events are recorded in the back scarp.

– In autumn and early winter (October to mid January), decreases in air temperature to
below 0◦C cause reduction in the distance across the back scarp, but due to the ma-
rine climate, this is often interrupted by air temperature increases to above 0◦C causing
expansion.

– In late winter (mid January to mid March) no significant deformation is recorded, due
to stable frozen conditions and the presence of a permanent snow cover.

– 10 out of a total of 12 analyzed events are recorded in the firsthalf of the period (Septem-
ber 2004-August 2006), indicating less significant meteorological effects on the dis-
placements in the back scarp in the last half of the period (September 2006-August
2008).
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Abstract

Numerical modelling based on the finite difference programcode FLAC3D and the Burger-Creep Viscoplastic material
model has been used for analysing time dependent behavior of the unstable rock slope at Åknes in western Norway. The
rockslide has an estimated volume of 43 million m3, with a basal sliding surface located 105-115 m below the surface.
Displacement measurements by GPS- and reflector points, which since 2004 have revealed average annual displacements
in the order of 26 mm/year in the central part of the sliding area, have been used to calibrate the model. The results
show that a set of parameters which are believed to represent the conditions of the slope at present time result in
displacements which stabilise within a 100 year period. However, since the shear strength is reduced for the sliding
surface and the unstable mass located above it over time, increased displacement and indications of failure at the toe of
the slope are evident within the same time span.

Key words: Rockslide, Numerical modelling, FLAC3D, Time dependent behavior, Burger-Creep Viscoplastic material
model

1. Introduction

Rockslides are a recurrent hazard for the steep rock
slopes in the western part of Norway, as evidenced in this
century by the catastrophic rockslides at Loen in 1905 and
1936 and at Tafjord in 1934 (Figure 1), where more than
170 persons perished [1]. In 1964, local people noticed
that a back scarp was widening in the S-SE dipping slope
located at Åknes [18], 600-900 m above the fjord Storfjor-
den. Swath bathymetry from the up to 320 m deep fjord
has revealed at least 59 rock slope failures of more than
0.5 million m3 to have occurred since the last glaciation
approximately 10,000 years ago, resulting in classification
as “high susceptibility zone” for this area based on a spa-
tial distribution and temporal pattern of events (Longva
et al. [14], Blikra et al. [3]).

In 2004, an extensive program of monitoring, investi-
gations and research was initiated due to the potential of
tsunami hazard as result of a large scale rockslope fail-
ure. Tsunami modelling has shown that several villages
along the fjord Storfjorden will be affected by a large scale
failure [6] as well as thousands of tourists who visit the
fjords in the summer months. Stability analyses of the
factors controlling the slope stability at Åknes therefore is
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of great importance. Previous numerical modelling of the
Åknes slope includes back-calculation of a historical insta-
bility at the western boundary of the slope, termed the
“1960-slide” (estimated volume of 100,000 m3) based on
UDEC [13], slope stability analyses based on UDEC and
DDA [11] as well as a dynamic analysis of the stability
based on UDEC [12]. This paper presents the results of a
time-dependent stability analysis of the slope by the use of
a creep material model available in FLAC3D, the Burger-
Creep Viscoplastic material model. Some general conclu-
sions are also drawn on the applicability of such analysis
for cases of complex, large-scale rockslides.

2. Åknes sliding area

The Åknes rockslide is located in the Western Gneiss
Region of Norway. The bedrock of the area is dominated
by gneisses of Proterozoic age, which have been altered and
reworked during the Caledonian orogeny [19]. The gneisses
have a magmatic origin and are described in the geologi-
cal map sheet as undifferentiated gneisses that are locally
migmatitic in composition, varying from quartz-dioritic to
granitic [19]. On the basis of logs from seven boreholes
at three drilling sites in the slope (Figure 2), three types
of gneiss, quartz-dioritic, granitic and gneisses rich in bi-
otite have been identified [7]. Recent studies estimate the
area and volume of the potential unstable mass to be in
the order of 575,000 m2 and 43×106 m3, respectively [15].
The western boundary of the unstable area is defined by a
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Figure 1: Location of the unstable slope at Åknes.

steeply dipping, NNW-SSE striking strike slip fault while
indications of a gently NW dipping, NNE-SSW trending
fault might define the eastern boundary [7]. The upper
boundary of the unstable area is represented by a distinct,
almost continuous tension crack with approximate length
of 800 m (Figure 2). Geological conditions believed to
control the slope instability and potential failure at Åknes
sliding area are believed to be the steep slope angle aver-
aging approximately 30-35◦ and foliation oriented parallel
to the slope ( Ganerød et al. [7], Braathen et al. [4]).

Extensive field work in the area in the summers of 2004-
2007 including detailed geological mapping, geophysical
investigations and drilling of seven boreholes at three lo-
cations has generated a vast amount of geological data.
Nordvik et al. [15] presented an interactive geovisualiza-
tion model for analysis of the geometry and volume based
on geological mapping, geophysical investigations by 2D
resistivity (five slope parallel profiles with E-W strike, and
two down-slope profiles with N-S strike, totalling about
10,000 m) and georadar (four slope parallel profiles with
E-W strike, one profile with NE-SW strike, and two down-
slope profiles with N-S strike, totalling about 5,300 m),
data from corelogging and geophysical borehole investiga-
tions. The interactive model enabled a refined analysis
of the collected data and defined three different scenarios
for location of the basal sliding surface at Åknes. A sce-
nario including an undulating basal sliding surface located

105-115 m below the surface was concluded to represent
the most likely geometry. The true geometry of the slid-
ing plane is however believed to be an even more complex
one, with several sliding planes at different levels, consist-
ing of a combination of unfilled joints, filled joints and
bridges of intact rock at different levels [10]. The lower
boundary of the unstable slope is not identified. However,
a line of springs located at approximately 75-100 m a.s.l.
as well as morphological compression features mapped in
field around the same elevation [2] may indicate a toe in
this area.

3. Numerical model

Generation of a 3D-model in FLAC requires recon-
struction of the surface topography and the internal struc-
ture. As the complex sliding geometry is not yet defined
in detail or fully understood, coordinates from the basal
sliding surface presented in Nordvik et al. [15] were used as
the best estimate to model the sliding layer in the model.
A 25 cm thick continuous layer representing the sliding
surface has been modeled in order to analyse the time de-
pendency of the sliding plane in this case. Topography has
been based on coordinates from airborne laser mapping of
the slope.

The numerical 3D model thus consists of three geolog-
ical units; the base layer termed “solid rock”, the sliding
surface termed “sliding zone” and the top layer consisting
of unstable rockmass termed “fractured rock”. The hor-
izontal element size is 25 m by 25 m, resulting in 13,440
elements as shown in Figure 3. The model is fixed at the
base while the potential unstable mass above the sliding
zone as well as the sliding zone itself are free to move
down-slope, except for the toe. As the toe does not day-
light in field, the lower boundary of the model is fixed in
the horizontal direction.

4. Displacements

Displacements in the slope have been monitored by
manually read GPS and reflector points since 2004 (Fig-
ure 2). Previous analyses of these datasets have been dis-
cussed in Nordvik and Nyrnes [16] and Ganerød et al. [7].
In general, the data show that the slope can be divided
into three main areas according to the different velocities
and directions measured by the GPS- and reflector points;
an Upper area which is moving in SW-direction, toward
the large ravine forming the boundary to the west, a Cen-
tral area which moves in a SE-S direction, and a Lower
area which is an indetermined at present due to inconsis-
tent/insignificant measurements. Vegetation and unfavor-
able satellite conditions in this area have been mentioned
as possible explanations [7]. Annual total displacement
rate for the points situated within the Central area (GPS4,
GPS8, R4, R5, R6, R10 and R16) are in the order of 15-
42 mm (Figure 4), with an average of 26 mm/year, and
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this has been used as basis for calibration of the numerical
model in FLAC3D. To use the central area as basis is
believed to be most relevant for the modelling carried out
here, since the upper area moves individually toward the
large ravine and deformation data from the lower area is
uncertain at present.

5. Groundwater

The groundwater level is measured by piezometers in
a D.M.S. IU monitoring system [5], which was installed in
the upper and middle borehole in November 2006. Data
from groundwater monitoring shows that the water levels
in the two boreholes fluctuate simultaneously, indicating a
shared groundwater regime [9]. The fluctuations are how-
ever, largest in the upper borehole, reflecting the short
distance from the back scarp, which is believed to consti-
tute a major source for infiltration of water to the sliding
area. The groundwater level varied by 9 m in the two-year
measuring period from December 2006 to December 2008.
The groundwater is at its highest levels in spring and au-
tumn, as it is influenced by high precipitation rates (in
autumn) and a combination of precipitation and melting
of a 1-3 m thick layer of snow which covers the area in
the winter (in spring) [9]. The groundwater level is higher
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Figure 4: Total displacements in the period 2004-2007 for
points located in the central area of the slope.

in middle borehole (between 42 and 46 m below the sur-
face) as than in the upper borehole (between 51 and 60
m below the surface). Average groundwater levels in up-
per and middle borehole during one year (between August
2007 and August 2008) were -56 m and -44 m, respectively.
A groundwater table has been generated in FLAC3D ac-
cording to this at the top slope, while at the bottom, the
groundwater level has been determined to be at the level of
the sliding zone, as indicated by the line of springs mapped
in field.

6. Input parameters

The sliding layer is modeled with a creep material model
available in the FLAC3D program, the Burger-Creep Vis-
coplastic material model (cvisc) which is a combination of
the Burger’s model and Mohr-Coulomb model (Figure 5).
The unstable mass above the sliding zone termed “frac-
tured rock” is modeled with the Mohr-Coulomb material
model while the base layer below the sliding zone termed
“solid rock” is modeled as an elastic material in order to
force the focus to be on the potential unstable rockmass.

Gk

ηk

t
GM

ηM

M-C

Figure 5: Burger-Creep Viscoplastic material model in
FLAC3D.

6.1. Mohr-Coulomb parameters

The zone of deformation at Åknes is believed to be
highly complex, consisting of a combination of (1) unfilled
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joints (rock-to-rock contacts), (2) joints filled with gouge
material and (3) bridges of intact rock. Large uncertainties
are related to the estimation of input parameters for such
a complex sliding surface. However, an attempt was made
for the Åknes case by Grøneng et al. [10], who presented
a methodology for calculating shear strength parameters
of a composite sliding plane. The methodology represents
an alternative method for estimation of shear strength pa-
rameters by combining shear strength of the various ma-
terials in order to obtain a resultant shear strength of the
overall sliding zone. The method requires an estimation
of probable composition of a sliding plane, which is dif-
ficult, and connected with a considerable degree of un-
certainty. However, based on field observations and drill
core logging, an estimation of most likely composition of
the sliding plane at Åknes resulted in 25-35% failure along
gouge filled joints, 1-3% intact rock failure and 62-74%
failure along unfilled foliation joints. Shear strength esti-
mation of rock and soil was based on triaxial testing and
Mohr-Coulomb failure criterion. For unfilled joints, a com-
bination of field investigations and laboratory testing was
carried out in order to determine the parameters necessary
for the Barton-Bandis joint shear formulation. Figure 6 il-
lustrates the procedure for calculating parameters accord-
ing to the developed methodology and as indicated, the
parameters are calculated according to an estimated nor-
mal stress acting on the sliding plane. The normal stress
used in this modelling has been calculated as an average
normal stress according to the weight component of 110
m overburden acting perpendicularly on the sliding plane
with an average dip angle of 35◦ (σn=γrock×h×cosαslope).
This gives a normal stress of 2.4 MPa. The effective nor-
mal stress was calculated by subtracting the pore pressure
acting on the plane by an average height of the groundwa-
ter above the sliding plane of 60 m, resulting in an effective
normal stress of σ́n=1.8 MPa. For the modelling presented
here, the methodology has been applied for two alternative
compositions of the sliding plane as shown in Table 1.

Alt. Intact rock
bridge [%]

Gouge
[%]

Unfilled
joints [%]

cres

[MPa]
φres

[◦]

1 3 35 62 0.46 32.8
2 1 35 64 0.23 32.5

Table 1: Two alternative resulting Mohr-Coulomb parameters
for the layer termed “sliding zone”.

Based on field work and laboratory testing of the var-
ious types of gneiss present in the sliding area, Mohr-
Coulomb parameters for the layers termed “solid rock”
and “fractured rock” were obtained as shown in Table 2.
Scaling of values from the laboratory testing and estima-
tion of Mohr-Coulomb parameters were carried out by us-
ing Roclab [17]. For the layer termed “fractured rock”,
a GSI of 62 was applied based on outcrop measurements
throughout the sliding area, reflecting “good surface con-
ditions” according to the GSI-rating system. Parameters

Definition of materials in a sliding plane

GOUGE INTACT ROCK BRIDGES UNFILLED JOINTS

Mohr-Coulomb
Barton-Bandis
empirical method

Field and laboratory work;
Triaxial testing of soil

Definition of probable location of sliding plane and

thereby normal stress acting on the plane, sn

Shear strength ( at
acting normal stress

tsoil)

Determination of likely amount of intact rock bridges (x ) in the sliding planerock

Determination of probable ratio of jointed rock (y ) / gouge (z )
in the sliding plane: x +y +z =100%

joints gouge

rock joints gouge

Field and laboratory work;
Triaxial testing of rock
and measurements of
GSI

Field and laboratory work;
Mesurements of

JRC, JCS, R, r & jb

Shear strength ( at
acting normal stress

trock) Shear strength ( ) at
acting normal stress

tjoints

Calculation of resulting  M-C paramaters for the sliding plane,
c andres resj

Mohr-Coulomb

Figure 6: Flowchart illustrating the methodology for estimating
shear strength parameters for a sliding plane as presented in
Grøneng et al. [10].

according to an alternative GSI of 37 were also calculated,
reflecting “fair surface conditions”.

Two combinations of parameters were used as a basis
for modelling; (1) a scenario where the sliding plane is
estimated to consist of 3% intact rock (in addition to 35%
gouge and 62% unfilled joints) and a fractured rockmass
above the sliding layer according to a GSI of 62 and (2) a
scenario where the sliding plane is estimated to consist of
1% intact rock (in addition to 35% gouge and 64% unfilled
joints) and a fractured rockmass above the sliding layer
according to a GSI of 37. The former scenario is believed to
represent the situation today, while the the latter is belived
to represent a future scenario, as the shear strength of
the sliding layer as well as the fractured rockmass located
above it gradually decreases over time. Decrease in shear
strength of the sliding layer could be a result of variations
in pore water pressure and reduction in the joint roughness
due to mechanical or chemical disintegration as discussed
in Sandersen et al. [18] while the surface conditions of the
rockmass decreases as a result of disintegration caused by
sliding movements along the sliding layer.

6.2. Creep parameters

Obtaining creep parameters for the Burger’s model (Kelvin
and Maxwell rheological model combined in a series) in
rock mechanics is normally carried out by creep labora-
tory tests on rock cores and fitting of the creep curve
to the parameters; ηK which determines the rate of de-
layed elasticity, GM which is the elastic shear modulus, ηM
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Unit γ Ei [MPa] ν GSI ERM [MPa] c [MPa] φ [◦] σt [MPa]

Solid rock 2,740 38,700 0.13 80 34,100 - - 0
Fractured rock (1) 2,740 38,700 0.13 62 21,880 11.5 43 0
Fractured rock (2) 2,740 38,700 0.13 37 5,030 8.17 35.5 0

Table 2: Material parameters for elastic (Solid rock) and Mohr-Coulomb (Fractured rock) material models.

which describes the rate of viscous flow and GK which con-
trols the amount of delayed elasticity [8]. In this case, the
sliding zone is modeled as a continuous layer with Mohr-
Coulomb parameters based on the assumption of a com-
posite sliding plane (3 and 1% intact rock bridges, 62 and
64% unfilled joints and 35% joints filled with gouge, re-
spectively). Laboratory testing is hardly possible for this
composite material. Therefore, creep parameters for the
layer termed “sliding zone” is obtained by calibrating the
model according to the annual, average displacement rate
of 26 mm/year in the central area. Displacements from
several gridpoints in the central area of the model were
evaluated after running the model for 1 year and calibra-
tion resulted in an alternative set of creep parameters as
shown in Table 3.

Unit GK ηK [Pas] GM ηM [Pas]

Sliding layer 0.43e13 0.43e13 0.43e11 0.43e11

Table 3: Creep material parameters for the Burger-Creep Vis-
coplastic material model.

7. Time dependent deformation

Displacements have been analysed for gridpoints at the
surface after simulation of creep for 1, 25, 50, 75 and 100
years. For parameters according to alternative (1) (3%
intact rock bridges in the sliding plane and a fractured
rockmass with M-C parameters representing a GSI of 62),
calibration was chosen to give total displacement of a grid-
point located in the central area of the model of 26 mm
after 1 year. Investigation of the displacement curve (Fig-
ure 7(a)) indicates a stabilisation of the movement in the
central area of the model after about 25 years. However,
due to a gradually decrease in shear strength of the sliding
surface as well as the unstable rockmass located above it,
this is not believed to represent the time dependent be-
havior at Åknes. Parameters according to alternative (2)
(1% intact rock bridges in the sliding plane and a frac-
tured rockmass representing a GSI of 37) shows a steady
increase in displacement throughout the 100 year creep-
ing period (Figure 7(b)). An investigation of the surface
displacements in the model shows that in case of alter-
native (1) parameters, the displacements after 100 years
of creep are in the range of 0.1-0.2 m in the central area
and at the lower boundary (Figure 8(a)). Investigation of
the displacement vectors for a longitudinal section in the
middle of the model shows a gradual decrease in the dis-
placements towards the lower boundary, indicating that

sliding along the creeping layer has not resulted in an un-
stable toe for alternative (1) parameters (Figure 8(b)). In
case of alternative (2) parameters, however, the displace-
ments are in the in the range of 0.4-1.0 m in the central
area of the model after 100 years, and at the toe, a zone of
displacements in the range of 1-1.8 m has developed (Fig-
ure 8(c)). Investigation of the displacement vectors in this
plane shows vectors moving out of the slope, a clear indi-
cation of failure in this area (Figure 8(d)). Shear strength
parameters according to alternative (2) thus are at a crit-
ical state.

8. Discussion

The presence of one single continuous sliding plane is
unlikely in the Åknes case. The analysis presented here
however takes into consideration what is believed to be
fairly realistic; a composite sliding layer consisting of in-
tact rock and sliding along unfilled and filled joints. Two
different alternatives of shear strength parameters have
been analysed, the first with parameters believed to repre-
sent the case today, and the second representing reduced
parameters believed to represent a realistic future scenario
due to gradually decrease of shear strength over time. Al-
ternative (1) parameters with an assumption of 3% intact
rock bridges in the sliding surface and surface conditions
characterised as “good” according to the GSI-system have
been found to result in displacements stabilizing after 25
years, while a reduction of the shear strength parameters
to 1% rock in the sliding layer and a more disintegrated
rockmass above the creeping layer according to “fair sur-
face conditions” results in increased displacements over
time representing a clear indication of model failure. It is
hence obvious that displacement along the creeping sliding
surface triggers plasticity of the fractured rockmass and
when the shear strength of the rockmass becomes below a
certain strength, failure will occur. How long this process
will take, is impossible to predict based on the modelling
that has been carried out. The results presented here are
based on a series of simplifications, the most important
ones being the simplification of the geometry representing
the zone of deformation and the groundwater conditions.
In a large scale rockslope such as the Åknes case, the slid-
ing zone is highly complex and seldom fully understood.
Hence, the numerical modelling at this stage should be re-
garded as preliminary analyses of the time-dependent be-
havior. Analysis of the meteorological effects on seasonal
rock displacements at Åknes carried out by Grøneng et al.
[9] showed that the groundwater plays an important role in
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Figure 7: Displacements from creep modelling in FLAC3D a) Displacement curve after simulation of creep for 100 years, alternative
(1) parameters b) Displacement curve after simulation of creep for 100 years, alternative (2) parameters.

the relative stability of the Åknes slope as the largest net
expansion of the upper tension crack is closely related to
high and fluctuating groundwater levels. A more sophisti-
cated analysis of how the changing groundwater level af-
fects the displacements (hereby also the stability) therefore
should be the next step in analysis of the Åknes case. Also,
a simplification of the geometry was made in this analysis
by modelling three homogeneous layers (solid rock, sliding
zone and fractured rock), and in further analysis geometry
should be improved as more knowledge becomes available.

Still, increased knowledge regarding the time-dependency
of the Åknes slide has been obtained through the analysis
presented here, and shear strength parameters resulting in
stable and unstable conditions in the model representing
the Åknes case have been found.

9. Conclusions

The large-scale Åknes rockslide area has been known
since the 1960’ies and extensive monitoring since 2004 has
revealed an unstable slope which has the potential to de-
velop into a catastrophic failure in the future. Stability
analyses are thus of great importance. Numerical mod-
elling of the slope stability has been carried out by the
use of FLAC3D and the Burger-Creep Viscoplastic mate-
rial model (cvisc). Creep parameters for the cvisc mate-
rial model which is used to model the sliding layer have
been defined based on the average annual slope deforma-
tion and Mohr-Coulomb parameters obtained by a combi-
nation of field investigations and laboratory experiments.
The model is run with two sets of parameters, one believed
to represent the present case, and one believed to represent
a future scenario. Modelling shows that the Åknes model

is stable with a set of parameters representing a compos-
ite sliding layer with 3% intact rock, 35% gouge and 62%
unfilled joints and a fractured rockmass located above the
sliding layer with M-C parameters according to a GSI of
62 (good surface conditions). However, due to gradual re-
duction in the shear strength parameters, the toe becomes
unstable and the surface displacements increase with a set
of parameters representing a composite sliding layer with
1% intact rock, 35% gouge and 64% unfilled joints and a
fractured rockmass corresponding to a GSI of 37 (fair sur-
face conditions). It should be noted that this is based on
several simplifications of the geometry and groundwater
conditions in addition to estimation of the composition of
the sliding layer. However, as more data is collected and
knowledge is gained on the groundwater regime, geometry
and the composition of the zone of deformation, the model
can act as a basis for further studies of creep deformation
in the slope.
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Figure 8: Displacements from creep modelling in FLAC3D a) Displacements at the surface, alternative (1) parameters b) Dis-
placements in a plane located in the middle of the model, alternative (1) parameters c) Displacements on the surface, alternative
(2) parameters d) Displacements in a plane located where the deformations are largest at the toe, alternative (2) parameters.
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Åknes is known as the most hazardous rockslide area in Norway at present, and is among the most
investigated rockslides in the world, representing an exceptional natural laboratory. This study focuses on
structural geology and the usage of geophysical methods to interpret and understand the structural geometry
of the rockslide area. The interpretations are further used to build a geological model of the site. This is a large
rockslide with an estimated volume of 35–40 million m3 (Derron et al., 2005) defined by a back scarp, a basal
shear zone at about 50 m depth and an interpreted toe zone where the sliding surface daylights the surface.
The rockslide is divided into four sub-domains, experiencing extension in the upper part and compression in
the lower part. Structural mapping of the area indicates that the foliation of the gneiss plays an important role
in the development of this rockslide. The upper boundary zone of the rockslide is seen as a back scarp that is
controlled by, and parallel to, the pre-existing, steep foliation planes. Where the foliation is not favourably
orientated in regard to the extensional trend, the back scarp follows a pre-existing fracture set or forms a relay
structure. The foliation in the lower part, dipping 30° to 35° to S–SSE, seems to control the development of the
basal sliding surface with its subordinate low angle trust surfaces, which daylights at different levels. The
sliding surfaces are sub-parallel to the topographic slope and are located along mica-rich layers in the
foliation.
Geophysical surveys using Ground Penetrating Radar (GPR), refraction seismic and 2D resistivity profiling,
give a coherent understanding of undulating basal sliding surface in the subsurface. The geophysical surveys
map the subsurface in great detail to a depth ranging from 30–40 m for GPR to approximately 125 m for
refraction seismic and 2D resistivity profiling. This gives a good control on the depth and lateral extent of the
basal sliding surface, and its subordinate low angle thrusts. Drill cores and borehole logging add important
information with regard to geological understanding of the subsurface. Fracture frequency, fault rock
occurrences, geophysical properties and groundwater conditions both in outcrops and/or drill cores constrain
the geometrical and kinematic model of Åknes rockslide.

© 2008 Elsevier B.V. All rights reserved.
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Geophysical surveys

1. Introduction

Unstable rock slopes pose a threat to the inhabitants along Nor-
wegian fjords, where prehistoric and historic rock avalanches have
created tsunamis, some causing severe casualties (Blikra et al., 2005a).
The site presented, Åknes, is located inwestern Norway (Fig. 1). This is a
large rockslide with an estimated volume of 35–40 million m3 (Derron

et al., 2005), defined by a back scarp, a basal shear zone at 50 m depth
and a toe zone where the basal sliding surface daylights the surface.
Continuous creep of the rock mass and the fact that Åknes is situated
above the fjord and in the vicinity of several communities aswell as one
ofNorway'smost visited tourist attractions (theGeirangerfjord, listed on
the UNESCO's World heritage list), have triggered a comprehensive
investigation program. The overall aim of the project is firstly, to assess
the likelihood that the rockslidewill accelerate into a rock avalancheand
secondly, to establish an earlywarning systemwith directmonitoring of
deformation (translationand rotation), so that the local communities are
able to evacuate in time.
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Fig.1. A) Location of the rockslide site of Åknes inwestern Norway. This site is found 150–900m above sea level in a SSE facing steepmountain slope. The main concern for this area is
that a rock avalanche will reach the fjord at the foot of the slope, and trigger a tsunami in the fjord system. B) Map that locates domains and sub-domains (1, 2, 3 and 4) and key
structures described in the text. C) Schematic profile (located in b) that outline domains, sub-domains and key structures.
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Recent regional studies of the area are summarized in Braathen
et al. (2004), Blikra et al. (2005a,b), Hermanns et al. (2006), Henderson
et al. (2006) andRoth et al. (2006). Henderson et al. (2006) suggest that
existing structures in the bedrock, such as foliation, faults and fracture
zones, are controlling the development of the rockslides that occur in
the fjord system. Where the foliation and slope angle coincide and
structural weaknesses are favourably oriented, the rockslide hazard is
considered greater (Henderson et al. 2006). Historical data from Åknes
reveals three moderately sized rockslide occurrences within a rather
short time interval: in the years 1850–1900, 1940 and 1962 (Kveldsvik
et al., 2006). Other recent studies from the Åknes area are presented by
Derron et al. (2005), who give an estimate of size of the rockslide,
and Kveldsvik et al. (2006) who present a brief summary of the in-
vestigations and the progress of the project, and analyses of the
100,000 m3 rockslide that occurred in 1962 (Kveldsvik et al., 2007).

Despite the number of regional and local studies, a detailed structural
understanding of the rockslide area is missing. A key issue has been to
locate the basal sliding surface of the rockslide, since this is a prerequisite
for precise volume estimation. Location of the basal sliding surface will
also lead to a better understanding of the sliding mechanism(s) of the
unstable area. The ongoing survey of the area is comprehensive and
includes borehole logging andmonitoring, which will help constrain the
location of the basal sliding surface or sliding zone more precisely and
yield additional quantitative data regarding spatial and temporal sliding
velocities. The aim of this study has been to describe the rockslide area
at Åknes by means of detailed structural surface mapping, supported
by subsurface data from 2D resistivity, Ground Penetrating Radar (GPR)
and refraction seismic profiling, core drilling and geophysical logging
of boreholes. Together, these data give a detailed 3D geological under-
standingof thearea, inwhich thedepth to– and thegeometryof thebasal
slide surfaces can be identified and described. A secondary goal of this
study has been to propose a geological model of the Åknes rockslide for
further numericalmodelling, including groundwater and slide dynamics.

Results from the study show that there are structural limits to the
rockslide area, consisting of the extensional back scarp zone at the top,
a steeply dipping, NNW–SSE trending strike slip fault as the western
boundary zone, a gentle dipping NNE–SSW trending pre-existing fault
as the eastern boundary zone and a compressional toe zone at the
bottom. The rockslide area is divided into four sub-domains (1 to 4),
two mapped on the surface (2 and 4) and two mapped in the sub-
surface bygeophysics (1 and 3, Fig.1). The geophysical surveys indicate
that the sub-domains are bound by the basal sliding surface with its
four subordinate, low angle thrusts that stack the bedrock lobes upon
one another, forming an imbricated thrust fan. The overall geometry is
that of extension in the upper part and compression in the lowerpart of
the slope. An outline of the rockslide is given in Fig. 1B and C.

2. Geological setting of Åknes Site

The Åknes site is a southward facing slope, with an average dip
angle of 30–35°, with a topography that stretches from sea level to an
elevation of 1300 m over a distance of 1500 m (Fig. 2). We propose
subdividing the rockslide area into five zones, based upon different
structural signatures. The unstable area is estimated to be 800 m
across-slope and 1000 m down-slope, with an upper boundary, the
Back Scarp Zone, located 800–900 m above sea level, and a lower
boundary, the Toe Zone, at 150 m above sea level. The western margin
is a steep NNE–SSE trending strike slip fault, called the Western
Boundary Zone, forming a narrow, deep crevasse in the mountainside
(Fig. 2). On the east side, the rockslide area is bound by a pre-existing
fault dipping gently (35–45°) to the west, called the Eastern Boundary
Zone. The fifth part of the rockslide is named the Central Zone.

The Åknes rockslide is located in the Western Gneiss Region. The
bedrock of the area is dominated by gneisses of Proterozoic age, which
was altered and reworked during the Caledonian orogeny (Tveten
et al., 1998). The gneisses have a magmatic origin and are described in

the geological map sheet as undifferentiated gneisses that are locally
migmatitic in composition, varying from quartz-dioritic to granitic
(Tveten et al., 1998). Within certain areas the gneiss has a distinct
metamorphic penetrative foliation (S1, dominantly 080/30) that is
folded around gently ESE-plunging axes (Tveten et al., 1998; Braathen
et al., 2004). The bedrock at the study sites alters from a white to light
pink, medium grained granitic gneiss to a dark grey biotite bearing
granodioritic gneiss, and further to a subordinate white to light grey,
hornblende to biotite bearing, medium grained dioritic gneiss. There
are also laminae, and up to 20 cm thick layers, of biotite schist within
the gneiss. All lithologies occur in layers parallel to the metamorphic
foliation.

3. Methods

3.1. Structural mapping

Structural mapping is conducted on outcrops in the field, where
fracture properties such as orientation, strike and dip with right hand
rule (RHR) measurement (Davis and Reynolds, 1996), length/persis-
tence and frequency is collected. The fracture frequency is measured
along a ruler in x direction parallel to foliation, y direction perpen-
dicular to foliation, and if possible in a third direction (z) to estimate
the block size. The foliation in gneissic rocks commonly represents a
weakness in the bedrock andwill therefore fracture along it, creating a
higher fracture frequency in that direction as demonstrated in Fig. 3.
This will give a dominance of fractures parallel to the foliation while
other fracture orientations most likely are underrepresented in com-
parison. The data is later analysed per locality, for example as lower
hemisphere stereo plots (Wulff net) of fracture orientation.

3.2. Core logging

A total of seven drill holes were drilled and cored at three sites in
the rockslide area. Three holes are vertical to 150 m depth; one is
inclined by 60° and goes down 150 m, while the remaining three are
vertical and 200 m deep. All cores have been logged (Ganerød et al.,
2007) for fractures (discontinuities) per metre giving a fracture fre-
quency per metre by depth (Nilsen and Palmstrøm, 2000). The frac-
tures are classified as foliation parallel or not, and the dip angle
between the core axis and the fracture is measured. Since the drill core
is not orientated, strike and dip was not measured. The drill hole
presented here is from the lowest drilling site and goes down to 150m
depth (Fig. 2).

3.3. Surface geophysical mapping

Geophysical methods such as Ground Penetrating Radar (GPR),
refraction seismic and 2D resistivity profiling have been used to map
the subsurface. Several lines were measured in the rockslide area, of
which parts will be presented here. The 2D resistivity and GPR data
were collected along the same profiles, while seismic acquisition was
limited to three profiles (Rønning et al., 2006).

3.3.1. GeoRadar
The GPR survey at the rockslide consists of seven profiles of alto-

gether 5300 m. One profile has NE–SW strike, four profiles are slope
parallel with E–W strike, and two are oriented down-slope with N–S
strike. The GPR profile presented has a total length of 250 m with a
NNW–SSE strike.

GeoRadar is an electro magnetic method that is used to detect
structures in the subsurface (Reynolds, 1997). With an antenna electro
magnetic pulses are sent into the subsurface, which are reflected off
surfaces with different dielectric properties and received by a receiver
antenna at the surface. The time of the propagating wave is recorded.
This measurement is repeated with a fixed interval, giving a
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continuous image of the subsurface structures. The penetration depth
and the resolution of the method depend on the signal frequency and
the material property, such as electrical conductivity and dielectricity.
High antenna frequency (MHz) will give good data resolution but
shallow penetration depths and visa versa. The GPR profiles were
acquired using a frequency of 50 MHz and a shot point interval of 1 m,
with a GPR system called Sensors & Software Pulse EKKO 100. This
gives reasonable resolution of the structures in the subsurface, but
limits the penetration depths to about 30, and not more than 50 m.
The velocity analysis (processed CMP-gathers) performed in the area
gave an average velocity to deep structures of 0.11 m per nano-
seconds (m/ns), which were used for depth conversion.

3.3.2. Refraction seismics
The seismic survey consists of one slope parallel profile with E–W

strike and two down-slope profiles with ~N–S strike, totalling 1440m.
The seismic profile presented has a total length of 420mwith a NNW–

SSE strike. For the seismic profiles the geophone spacing was 10 m,
with a total of 24 14 Hz vertical geophones depending on operator.
Shot point interval was 30 to 300 mwith 100 to 600 g of dynamite as
energizer for each shot (Rønning et al., 2006).

The seismic method is based on the recording of first arrival times
of P-wave travel time of waves in the subsurface. The wave propagates
with the elasticity of the material, and the range of the seismic P-wave
velocity calculated from the travel time of the wave, commonly range
from 200 m/s up to above 6000 m/s. In fractured bedrock the seismic
velocity is reduced dependent on fracture frequency, texture and filling
(Reynolds, 1997). The refraction seismic is a method that is developed
principally for mapping of horizontal layers, and is dependent upon
there being an increase in velocity with depth. If a layer has lower
velocity than the above laying layer, the seismic wave will not be
refracted in the rightmanner, but continue in depth and gives rise to the

phenomenon called a hidden layer. This layer is difficult to detect and
may be interpreted as part of the above laying layer (Reynolds, 1997).

3.3.3. 2D resistivity
The 2D resistivity survey consists of eight profiles, one oriented

NE–SW, five slope parallel with E–W strike, and two down-slope
profiles with N–S strike, totalling about 10.000 m. Here, a 420 m long
section out of an 1800 m long down-slope profile is presented.

The resistivity method measures apparent resistivity (with unit
Ωm) in the subsurface, which is a weighted average of all resistivity
values within the measured volume (Dahlin, 1993; Reynolds, 1997).
Measured apparent resistivities with different electrode configura-
tions are converted into a true 2D resistivity profile through inversion
(Loke, 2001). The 2D resistivity profiles were acquired according to the
Lund-system (Dahlin, 1993). Acquisition was collected with both
Wenner and Dipol/Dipol configurations, with an electrode spacing of
10 m for the shallow and 20 m for the deeper parts of the profiles. In a
few short profiles the electrode interval was reduced to 5 and 10 m
(Rønning et al., 2006). The depth penetration of the profile is appro-
ximately 130 m, with reliable data coverage to approximately 70 m
depth. Slightly resistive material of 3000 to 10.000Ωm, shown in blue
colour in the profile, may indicate material such as fractured and
water saturated bedrock (clay filled fractures commonly show re-
sistivity response lower than 1000 Ωm). 10.000 to 35.000 Ωm, shown
in green colours in the profile, indicate moderately resistive material,
for example fractured and unsaturated bedrock or less fractured but
water saturatedbedrock.Highly resistivematerial, 35.000 to 150.000Ωm
indicated with orange to red colours in the profile, may consist of
“unfractured” bedrock and dry, unconsolidated material.

3.4. Drill hole logging

All drill holes have been logged by geophysical methods such as
water conductivity, water temperature, natural gamma ray, resistivity of
the bedrock, and seismic P- and S-wave velocity. Here, only resistivity
and P-wave data are shown from the lowest drilling site, which goes
down to 150 m depth, are presented since the other logging results
concur these logs. All geophysical logging were performed using
Robertsson Geologging equipment (http://www.geologging.com).

3.4.1. Resistivity logging in drill holes
Resistivity is the inverse of electrical conductivity, and is thus easily

derived from the measured conductivity value. The resistivity probe
consists of one electrical current electrode and two potential electrodes;
making it possible to measure in two configurations; long and short
normal. For the longnormal configuration (LN) thedistancebetween the
current electrode and the potential electrode is 64 in. (1.60m), while for
the short normal (SN) the distance is 16 in. (0.40 m). The penetration in
the drill hole wall is commonly 1/5 of the electrode distance, and the
resolution of the data collected depends on the contrast in conductivity.
With such short interval in general, the probe can in detail map the
apparent resistivity of the surrounding bedrock, often equivalent to the
specific resistivity. The resistivity is affected by bedrock porosity,
conductivity of the pore water, the shape of the pore and possible
conductiveminerals in the bedrock. For example, an increase in fracture
frequency gives increased porosity, which reduces the resistivity
(increased electrical conductivity). During data acquisition the probe is
descended down the drill hole to log the electrical conductivity in the
drill hole, calculated from the known current and the potential

Fig. 2. Relief map of the Åknes site with stereographic presentation of the fracture distribution compiled from all localities studied. The picture (lower left) outlines the inferred area
involved in the rockslide (photo: M.H. Derron). The stereo plots show great circles (lower hemisphere equal area) of fractures mapped at different localities, where c. N–S striking
fractures are black, c. E–W striking fractures are blue and fractures parallel to the foliation are red. Structural symbols outline tectonic boundaries along the margin and inside the
rockslide area. The western boundary zone is a NNW–SSE striking and sub-vertical, strike-slip fault, whereas the eastern boundary zone is a pre-existing fault with shallow dip to the
west. The upper boundary is seen as a pronounced back scarp. Low angle sliding surfaces daylights at two levels in the slope, marked with a red hatched line (sub-domain 2 and 4),
while two sliding surfaces are mapped by geophysics, marked with red dashed lines (sub-domain 1 and 3). The foliation is folded and changes within the rockslide, strike 092/dip 44
(RHR) at the western boundary zone, 080/ 30 in sub-domain 2, and the toe zone differs from 066/20 to 093/32 (n=137).

Fig. 3. Example of how structural data such as fracture frequency is collectedwith the help
of scan lines. Fracture frequency is collected in x directionparallel to foliation, in y direction
perpendicular to foliation, and if possible in z direction to estimate the block size of the
area. Fracture frequency collected in y direction gives commonly the highest value.
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difference between electrodes (Rønning et al., 2006). The maximum
measurable resistivity with the logging equipment is 10.000 Ωm. If the
true resistivity in the drill hole exceeds 10.000 Ωm, this is seen as
constantmaximum resistivity on the log. Due to thehigh conductivity in
water the resistivity decreases in saturated fracture zones. It also
decreases in clay-rich zones. As water and clay are extensively found in
fracture and weakness zones, the aim for the resistivity analysis in drill
holes is consequently to detect the low resistivity zones.

3.4.2. Sonic logging of P-wave in drill hole
The purpose of acoustic logging of drill holes is to determine the

seismic velocity of the formation (bedrock). Seismic velocity is given in
the unit metre per second (m/s). The probe consists of one transmitter
and two receivers with an internal distance of 30.4 cm. The probe can
automatically calculate the seismic P-wave slowness (inverse of velocity)
frompicks offirst incoming P-waves for each centimetre in the drill hole.
For each 20 cm, the full waveform train is transferred to the data logger,
and fromthis, bothP- andS-wavevelocitycanbe calculated.Water- or air
filled fractures in rock will increase the travel times and thus decrease
the velocities, since the P-wave velocity in air and water are 330 m/s
and 1450–1530 m/s respectively (Reynolds, 1997). By detecting the

low velocity zones in the drill hole, one can discover weaknesses in
the bedrock that may be relevant for defining the stability of the rock.

4. Results

4.1. Structural surface mapping

The rockslide reveals gneissic bedrock that is folded. There are
significant variations in the orientation of the foliation, from very
steep and E–W striking in the upper part, near the back scarp, to E–W
striking and sub-horizontal in the lower parts (Fig. 2). This variation in
foliation occurs over a few tens of metres. In the boreholes the average
dip of the foliation is 31.7°, steepening slightly from top to bottom of
the slope (27° to 34°) (Kveldsvik et al., 2006).

Structural bedrock mapping on exposures leaves a large part
unmapped due to cover of vegetation and/or scree. Three distinct
fracture sets are mapped within the rockslide; steeply dipping
fractures with approximately N–S strike and E–W strike, and a third
fracture set parallel to the foliation. The dominance and intensity of the
different fracture sets vary between localities. The N–S fracture set is
present at all localities; its strike varies from NNW to NNE–NE (Fig. 2).

Fig. 4. The foliation of the bedrock controls the development of the back scarp. Where the orientation of the foliation is favourable for extensional fracturing (i.e. when sub-vertical or
dipping down slope), the back fracture follows the foliation. In contrast, where the foliation is not favourable for reactivation, the back fracture reuses pre-existing fracture sets that
commonly have an E–W strike, and is steeply dipping. Locally, the back scarp zone splits into segments that form relay structures (B). A) Map showing the back scarp zone and the
foliation along this zone experiencing extension. B) Example of site where the foliation is not favourable and the back (extensional) fracture has formed a relay structure between two
larger extensional fractures, the latter following the foliation. C) Example of back fracture that is controlled by the foliation, which is sub-vertical and undulating due to mesoscopic
folding. Both localities are monitored by extensometers, recording the horizontal and vertical movements along the back fracture.
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In contrast, the E–Woriented fractures are not present at all localities,
but when present, are prominent. An example is the back scarp, which
partly follows E–W fracture(s) (Figs. 2 and 4). The trends of these
steeply dipping fractures follow the main trends of lineaments in the
region (Gabrielsen et al., 2002; Henderson et al., 2006), of which the
most pronounced lineaments coincide with major fjords. Chronologi-
cal data of these structures have not been assessed.

Both outcrop and drill core studies indicate an increase in fracture
frequency in and near biotite rich layers of the gneiss, and with the
lowest fracture frequency in the fairly homogenous granitic gneiss
(Ganerød et al., 2007). The fracture frequency in outcrops varies from2
to 8 fractures per metre (f/m) in scan lines when measured parallel to
the foliation (see Section 4.1 for scan line description). Perpendicular to
the foliation, values as high as 23 f/m can be found. However, common
values are in the ranges of 8 to 12 f/m. In the drill cores, the fracture
frequency varies significantly, from1 f/m in undisturbed rock to 50 f/m.
The latter case is associated with fault rocks, such as breccias and
gouge, which appears in discrete zones. In general it is difficult to
distinguish between shear and extension fractures due to the lack of
markers. However, when there is evidence of separationperpendicular
to the fracture surface, the structures are called extension fractures.

Outside the rockslide, the fracture frequency is generally around
5 f/m. The highest fracture frequency occur perpendicular to the
foliation, reaching 9 f/m, while the lowest fracture frequency is pa-
rallel to the foliation, with 2 f/m (Table 1). Fracture continuity of the
different fracture sets has been estimated and varies within the
different zones of the rockslide. For fractures outside the rockslide, the
continuity parallel to foliation is 5 to 10 m, and for N–S trending
fractures, 2 to 5m. E–Wtrending fractures, while infrequent, are 1–2m
long (Table 1).

4.1.1. Back scarp zone
The back scarp zone is approximately 800 m long (Figs. 2 and 4). In

the west, the first 200 m is a cliff face that has seen one or more
rockslides. Thereafter follows a 20–30 m deep, 20–30 m wide and
150 m long graben that shows ongoing extension. The remaining
500 m is an overall open fracture. The extension along the back scarp
decreases from the west to the east. The back fracture has a scissor
shape, where themaximumwidth of 20–30m is found on thewestern
side, while thewidth decreases towards the east, where themaximum
width is 0.5–1m. The depth of the extensional back fracture is difficult
to estimate, since the fracture is partially filled with scree, sediments
and ice. The estimated depth in the western part is 60 m, and likely
decreases to the east. The back fracture shows both vertical and
horizontal separation with a general extension in the N–S direction,
directly down-slope (Figs. 2 and 4).

A striking feature of the back scarp zone is the variability in
orientation of bedrock foliation. North of this zone the foliation is
nearly slope parallel (Fig. 2). In general, the back fracture is steep to
sub vertical (Fig. 4), but changes along strike as the foliation is folded.
The folds in the back scarp zone are on metre to decimetre scale, are
close to tight and normally symmetrical and have short wavelengths.
The axial surfaces are sub-horizontal, and the mean vector for the fold
axis is 27° towards ESE. This folding makes the foliation change from
sub-vertical to sub-horizontal over short distances as shown in Fig. 2
and 4. Where the orientation of the foliation is favourable for
extensional fracturing (i.e. when striking ~E–W and dips sub-vertical
or down slope), the back fracture follows the foliation (Fig. 4A and C).
In contrast, where the foliation is not favourable for reactivation (i.e.
when striking ~N–S and dips sub-horizontal), the back fracture reuses
pre-existing fracture sets that commonly have an E–W strike, and is
steeply dipping. Locally, the back scarp zone splits into segments that
form relay structures. Most relays are hard linked in that connecting
fractures are cutting across the foliation between segments (Fig. 4A
and B). In the vicinity of the back scarp, extension fractures sub-
parallel to the back scarp are common, showing a separation of 10 to
12 cm. Riemer et al. (1988) demonstrate that extension preferentially
develops along the fold axis, as seen in the back scarp zone at Åknes.

In the back scarp zone all three fracture sets mentioned above are
present. However, there is a dominance of N–S oriented fractures. The
fracture frequency of the back scarp zone in general is low (Table 1).
The length of fractures parallel to foliation is about 10 m. In contrast,
N–S trending fractures are shorter (b2 m), as are the E–W trending
fractures (2–5 m, Table 1). The combination of long and short con-
necting fractures and low fracture frequency gives the back scarp zone
the largest block size of the site.

4.1.2. Western boundary zone
The western boundary zone is the structural limitation of the

rockslide to the west (Fig. 2) and is defined by a steeply dipping,
NNW–SSE striking strike slip fault. This fault forms a crevasse that is
prone to snowand rock avalanches. The crevasse has cliff sides that are
10 to 40 m in height (Fig. 2). The boundary fault has an extent that
exceeds the rockslide area; it can be traced as a lineament for several
km. This pre-existing structure is old, probably dating back to the
Devonian (Andersen et al., 1997; Braathen, 1999; Osmundsen and
Andersen, 2001).

In the western boundary zone, the fracture frequency is generally
low (Table 1). Continuity of fracture sets reveals similarities to the
back scarp, with lengths of 6 to 10 m for foliation-parallel fractures, 2
to 10 m for N–S trending fractures, and 0.2 to 2 m for E–W trending
fractures (Table 1). In addition, there is a NW–SE trending fracture set

Table 1
Fracture frequency (m−1), continuity of fractures sets, and block size of the different zones of the rockslide area

Fracture frequency
(m−1)

Back-ground
data

Back scarp
zone

Western boundary
zone

Eastern boundary
zone

Internal
zones

Toe
zone

Non-foliation
parallel fractures

2 2 2 3 8 4

Foliation parallel
fractures

9 5 7 13 17 11

Block size
(cm) 10–50 20–50 15–50 ~10–30 5–20 10–25

Continuity of fracture sets (along strike, m)
Foliation parallel
fractures

5–10 ~10 6–10 10 6–10 10–20

N–S fractures 2–5 0–2 2–10 2 ~5 ~2
E–W fractures (1–2) 2–5 0.2–2 1–2 ~1
NW–SE fractures 0.5–1

The value of each zone is an average based on 3 scan lines, perpendicular to and parallel to foliation, for each locality studied within that zone.
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with 0.5 to 1 m length. Within the western boundary zone, N–S
oriented, steeply dipping fractures dominate. This fracture set is sub-
parallel to the strike of the fault, which is defined by a zone of heavily
fractured rock (Fig. 2). In the upper part of this zone, there are several
extensional fractures (Fig. 5A). Some of these fractures follow the E–W
and N–S fracture patterns. Extensional separation along these
fractures varies from 10 to 50 cm. Three rockslide events have been
recorded along the western boundary zone (Kveldsvik et al., 2006,

2007). All three appear to have occurred as plane failures, with frac-
tures parallel to foliation acting as the basal sliding surface and N–S
and E–W oriented fractures acting as release surfaces.

4.1.3. Eastern boundary zone
The eastern boundary zone represents the eastern structural

limitation of the rockslide area and is defined by a gently NW dipping,
NNE–SSW trending fault. This structure is not well exposed in the

Fig. 5. A) Extensional fractures located in the Åknes slope. In sub-domain 1 are pre-existing fractures oriented c. N–S and c. E–Wreactivated by extension, with separation up to 50 cm.
In sub-domain 2 are extension fractures that are slope parallel observed as shown by example B) and C). These extension fractures are oriented perpendicular to the movement
direction (c. E–W trending and 60–90° dip to N–NNE), and are fractures probably caused by the movement of the rockslide.
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topography (Fig. 2). The fault zone is characterized by heavily frac-
tured rock sub-parallel to the well defined fault plane (089/48). No
fault rock has been found along the fault zone.

The fracture frequency is higher perpendicular to the foliation (7 to
21 f/m), than parallel to the foliation (1 to 5 f/m) (Table 1). Fractures
parallel to foliation are the longest, commonly in the range of 10 m,
whereas N–S trending fractures reach 2 m (Table 1). E–W oriented
fractures are absent. The foliation is in general dipping 44° to the south,
which is steeper than the general trend of the foliation in the rockslide.

4.1.4. Central zone
The central zone of the rockslide area (Fig. 1B), within the

boundaries described above and below, reveals a sub horizontal to
gently folded foliation that dips moderately towards the fjord. Folding
causes an undulating geometry of the foliation. Locally, the foliation
reveals more intense folds causing significant variation in the orien-
tation. In areas where the bedrock is more intensely folded, there are
hilltops and scarps suggesting that these sites are more resistant to

denudation. A sliding surface in biotite rich to biotite-schist layers is
mapable in outcrops of the central zone (Fig. 2). This shear zone is
heavily fractured with a width of 20 cm, similar to that described
below and illustrated in Fig. 6. Gouge can be observed as pockets along
fractures, however most fractures have a rock-on-rock contact. This
sliding surface forms the lower limit of sub-domain 2.

The fracture frequency of the central zone is the highest recorded in
the rockslide area, with the highest frequency perpendicular to the
foliation (average of 17 f/m, Table 1). Parallel to the foliation, the fracture
frequency is 8 f/m. The length of the fracture sets is comparable to the
other zones (Table 1). The high fracture frequency in combination with
fracture length gives the smallest block size (Table 1), consistent with
the observations that the central zone is heavily fractured and blocky on
the surface.

A striking feature in sub domain 2 is the occurrence of large
extensional fractures striking approximately E–W, perpendicular to
the direction of movement of the rockslide area (Fig. 5). These ex-
tensional fractures have an irregular shape and have a dip of 60° to 90°

Fig. 6. A) Sliding surface of the toe zone where the basal thrust daylights the rock slope surface. Due to upward and forward separation, the transported block is pushed on top of the
vegetated slope, causing the formation of a rock overhang that partly has caved in. B) Fault gouge is located as a thin layer (1–2 cm) with undulating thickness along the shear surface.
(C) Example of a network of thin gouge layers that fill fractures within the intensely deformed zone of the sliding surface. This sliding surface is exposed for at least 50 m along strike,
and the thickness of the gouge rich zone is approximately 20 cm on average along the exposure. The moss growing on the fractured zone indicates water seepage.
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Fig. 7. Geophysical data from Åknes. A) Map showing all the geophysical profiles collected in the rockslide area. The presented profiles b–d are only a selected section of a profile. Profile c and d are the same section, c. 450 m long, while b is
250m long and its location ismarked in profile d. B) GPR profile with NNW–SSE orientation and approximate 35m depth penetration. Above, profile without interpretations, below; profile showing shallow, undulating structures, interpreted to
be foliation-parallel layers that crop out at the slope surface (marked with red lines). C) Refraction seismic; above travel time (ms) vs. distance (m) for first arrival P-wave traces. Below, schematic profile showing four layers with increasing
velocities with depth. A–A` is line of cross section for thickness estimates. D) 2D resistivity profile, measuredwithWenner configuration, showing layers with different resistivity. Above, profile without interpretation, below; profile showing an
undulating resistivity contrast, interpreted as a sliding surface at the bottom of the low resistivity (blue) layer marked with black dashed lines. The profile has the same location as the seismic line (c).
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in a northerly direction. The separation on these fractures is slope
parallel, and varies from 40 cm to 2 m (Fig. 5). Extensional movement
can also be seen on N–S striking fractures, with separations of 10–
30 cm, which are mapped throughout sub domain 1 and 2. The latter
described fractures are probably rather frequent, but abundant co-
verage of scree and vegetation makes this a qualitative assessment.

4.1.5. Toe zone
The toe zone is defined by amajor sliding surface that daylights the

surface (Fig. 6).When observed, this sliding surface is near-parallel but
shallower dipping than the topographic slope, with an orientation
differing from 066/20 to 093/32. In the hanging wall, rocks are
transported both upward and down-slope forming rock overhangs, at
places developed into narrow, shallow caves. In these overhangs, slabs
of rock have broken off along the foliation, emphasising the position of
the sliding surface (Fig. 6A). The sliding surface is defined by fault rock
along biotite rich layers of the bedrock, as shown in Fig. 6. Locally, the
sliding surface is made up of a narrow (b20 cm) heavily fractured
zone. Along the long, nearly continuous exposures of the sliding
surface, the fault rock interval is up to 2 cm thick (Fig. 6B). The gouge
layers form along-strike, metre-long lenses and/or continuous
membranes of variable thickness, commonly in the range of some
millimetres to a few centimetres. They are also seen in a network of
shear fractures that are filled with gouge (Fig. 6C). The gouge is fine
grained and is light grey to dark grey. It contains clay size minerals
with some (10–20%) rock fragments. Gouge mineralogy derived from
XRD-analysis includes micas, quartz and plagioclase, with micas
spanning from smectite, chlorite, and kaolinite to serpentine. Where
the sliding surface is defined by a heavily fractured zone, parts of the
sliding surface are characterized by rock-on-rock contact. Ground-
water springs are common along the sliding surface (Fig. 6), where
both seepage and discrete outlets form.

The fracture frequency in the toe zone is in general 11 f/m for
foliation parallel fractures and 4 f/m for non-foliation parallel fractures
(Table 1), with the foliation-parallel fracture set dominating (Figs. 2
and 6). The length of the foliation-parallel fractures is 10–20 m,
whereas the N–S trending fractures are about 2 m and the E–W
trending fractures approximately 1 m (Table 1).

4.2. Subsurface mapping

4.2.1. Ground Penetrating Radar (GPR)
The profile shown in Fig. 7B is a 250 m long segment of a profile

with a total length of 1150 m. Close to the surface, the reflectors of the
GPR profile are parallel to the slope with a thickness of 1 to 3 m. This
first layer is interpreted to be scree material or other debris (Fig. 7B).
Reflectors at depth that are sub-parallel to the surface are interpreted
to reflect the foliation-parallel fractures in the bedrock (Fig. 7B). Two
of the interpreted reflectors (marked in red, Fig. 7B) daylight the
surface in the same area as mapable features of the seismic and 2D
resistivity profiles, indicating that multi-property layers are day-
lighting (Fig. 7). This is interpreted to be a sliding surface. Due to the
limited depth penetration, GPR cannot give any information of the
extent or depth of the sliding surface. However, the method gives
detailed information of the shallower subsurface. The second layer,
about 25 m thick, is interpreted to consist of heavily fractured and
drained bedrock, and is comparable to the second zone identified in
the seismic and 2D resistivity profiles (Fig. 7C and D) as well as in the
drill hole (Fig. 8).

4.2.2. Seismic
The seismic profile can be divided into four zones or intervals (Fig.

7C). The first, near surface zone is up to 5 m thick and has a seismic
velocity of 350 m/s. This zone (indicated in yellow colour in Fig. 7C) is
interpreted to consist of scree material. The second zone has an
approximate thickness of 30 m in the upper part and thins down to 3–

5 m down slope; the seismic velocity is about 1900 m/s. This zone is
interpreted to consist of heavily fractured rock that is unsaturated (light
green colour Fig. 7C). The third zone is approximately 65 m thick,
extending down to about 100 m depth (green colour). It has a seismic
velocity of 3800–3900 m/s. This interval likely consists of water
saturated, fractured bedrock (Fig. 7C). The fourth and deepest zone
extends below the seismic resolution, and has a seismic velocity of
5500 m/s. This indicates good rock quality and is consistent with less
fractured rock that is water saturated (orange colour, Fig. 7C). A
schematic cross section is presented in Fig. 6C to illustrate estimated
thickness of the different zones, which also match thicknesses from the
drill hole (Fig. 8).

Between 300 and 330m along the seismic profile, a low angle zone
reaching the surface has a seismic velocity of 2500 m/s. This is a lower
seismic velocity than the surroundingmaterial at 3900m/s, consistent
with high fracturing or porous rock (fault rock). The mapable, low
velocity layer has a length of 30 m at the surface. Due to metho-
dological weakness it is not possible to map the dip of the zone. The
low velocity layer might be a rather thin zone lying as a hidden layer
between the 1900 m/s (light green) and 3900 m/s (green) layers
(Fig. 7C).

4.2.3. 2D resistivity
The 2D resistivity profile in Fig. 6D shows zonation that is inter-

preted to consist of an approximately 5 m thick layer of scree material
at the top (red to orange colour). Below that is a 10–20 m thick layer
(light green colour) interpreted to be heavily fractured and drained
rock. The next layer has the lowest resistivity (blue colour). This layer
is about 20 m thick and is interpreted to consist of heavily fractured
rock that is water saturated. This low resistivity layer is undulating
and, when followed down-slope, daylights the surface at about
1200 m (blue colour, Fig. 7D). Another segment of the low resistivity
layer continues down-slope. The sliding surface is interpreted as being
located at the bottom of this low resistivity layer (blue colour). Near
the base of the profile is a layer with medium resistivity (green
colour), interpreted to consist of less fractured and water saturated
bedrock (Fig. 7D).

4.2.4. Drill hole data
The bedrock logged in the drill cores is the same heterogeneous

gneiss as mapped in outcrops, altering from medium grained granitic
gneiss, through dioritic gneiss to biotite-rich gneiss (Fig. 8). The folded
foliationmapped in outcrop scale (metres) is confirmed in centimetre-
scale in the cores, where the folds are close to tight with short
wavelength (Fig. 8B). The dominating fractures in the drill core are
parallel to the foliation,while the other two existing, steep fracture sets
mapped in outcrops are under-represented in the vertical drill hole.
The fracture frequency of the drill cores decreases with depth, as
shown in Fig. 8. In the upper fewmetres (0–5 m), fracturing is intense
and core loss is abundant (Fig. 8A). The following interval (5–42 m) is
heavily fracturedwith a fracture frequency up to 22 f/m. Several zones
up to 40 cm thick with crushed rock occur in the interval 18 to 23 m,
onewith a fracture frequency up to 50 f/m at 22mdepth (Fig. 8A). Fault
rocks, such as gouge, occur in narrow zones of up to 5 cm thickness,
while a 30 cm thick breccia zone is observed at 21.5 m depth (Fig. 8C).
This interval is unsaturated, since the water table is located at 42 m
depth (Fig. 8A). However, the groundwater level fluctuates seasonally.
The first two intervals have no recording of resistivity or P-wave
velocity in bedrock due to the lack of water in the drill hole (Fig. 8A,
Rønning et al., 2006). The next interval (42–70 m) consists of heavily
fractured rock that is water saturated. This section has a fracture
frequency up to 25 f/m, with an average of 7–9 f/m (Fig. 8A). There are
large irregularities in both resistivity and P-wave response, giving very
low values at several depths in this interval. The suggested location of
the sliding surface in the drill core is at 62 m depth, where a zone of
heavily fractured rock (25 f/m) and fault rock occurs. The sliding
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surface is thin (max 20 cm) and the occurrence of gouge and
ultrabreccia is patchy with a maximum thickness of 1–3 cm (Fig. 8).
The following interval (70–115 m) is less fractured, with an average of
5–10 f/m. The interval iswater saturated (Fig. 7A). The resistivity and P-
wave response for this interval reveal high resistivity levels from 8000
tomore than 10,000Ωmand a seismic velocity of about 5000m/s (Fig.
8A). There is a local minimum in both resistivity and P-wave at 115 m
depth that coincideswell with a 50 cm zone of heavily fractured rock in
the drill core that has a fracture frequency of 50 f/m (Fig. 8A). The
deepest interval (115–150 m) has a low fracture frequency (3–5 f/m),
which is regarded as background fracturing. The drill core section is
divided into five intervals (Fig. 8A).

5. Recorded movements of the slope

The rockslide area at Åknes was brought to the public's attention in
1964 by local residents claiming that the back scarp was widening
(Sandersen et al., 1996). Monitoring of the back scarp started in 1986
with the installation of two pairs of bolts for manual reading. In 1989,
an additional five pairs of bolts were installed. A continuous sur-
veillance program started in 1993 with three extensometers, and was
extended to five extensometers in 2005 (Fig. 9). Measurements in-
dicate a more or less steady rate of movement in the back scarp from
1986 to the present (Braathen et al., 2004; Kveldsvik et al., 2006); the
long-term average velocity varies from 1 to 3 cm/year. The angle

Fig. 8. A) Drill hole and drill core data that show that the fracture frequency decreases with depth. Five zones can be identified on the basis of fracture intervals and responses in the
resistivity and P-wave logs of the borehole walls. The colour codes are based on the zonation in the 2D resistivity profile given in Fig. 7D. This colour code is implemented on all
subsurface data, to visualise the zonation in the subsurface, with the exception that the blue and green zones in the drill core and 2D resistivity coincide with the green zone in the
seismic. B) Drill core showing that the bedrock is a granodioritic gneiss with a folded penetrative foliation on cm-scale. C) An up to 30 cm thick (proto-) breccia that occurs at 21.5 m
depth.

Fig. 9. Average annual slope movements recorded in the period 2004–2006. The vectors represent average total displacement per year. Measurement points no. 1–8 and 14–23 were
established in 2004, while point no. 9–13 was established in 2005. Recordings from points no. 6 and 9–13 are not consistent or significant, and thereby not represented by a
displacement vector. Maximum movements are recorded on the upper part of the slope, close to the back scarp and along the crevasse to the west (western boundary zone). The
extensometers are placed in telescopic steel pipes fixed on each side of the back scarp and are N–S oriented.
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between extensometers 3, 4 and 5 and the strike of the back scarp is
not perpendicular, which implies that the true displacements per year
exceed the recorded displacements.

A network of GPS-points and reflection prisms for total station
geodetic monitoring was established throughout the area in 2004
(point no. 1–8 and 14–23) and 2005 (point no. 9–13, Fig. 9). The
analysis of the surface movements is based on recordings from 13 GPS
points and 16 prisms, of which 5 of the monitoring points were mea-
sured by both GPS and total station. Measurement campaigns have
been carried out twice a year, and show consistent movements in the
upper part of the area for most points (Eiken, 2006). In the lower part,
the area is vegetated and unsuited for reflection points. Furthermore,
the GPS measurements are hampered by uncertainty, due to unfavour-
able conditions for satellite signal reception. The dataset is summarized
with displacement vectors in Fig. 9, representing annual displacements,
calculated as the average displacement from the two years of recording.
The orientation of the vectors is shown as the lateral orientation of the
total displacement vector at the last recording in 2006.

Two laser distance metres were installed in 2005 for monitoring of
the graben structure along the western part of the back scarp (Fig. 9).
The graben structure, with an estimated volume of 10–14 million m3,
is believed to move independently from the rest of the slope failure,
with a velocity on the order of 14 cm/year in an S–SE direction (GPS
point no. 3).

Surface displacements indicate creep of the whole unstable rock
slope, divided into two separate sliding bodies, sub-domain 1+2 and
sub-domain 3+4. The maximum movements are recorded on the
upper part of the slope, close to the back scarp and the crevasse to the
west, which explains the scissor shape of the back fracture with large
displacements to SW–SSW at the western side and smaller displace-
ments to S–SE at the eastern side (Fig. 9). Sub-domain 1, includes the
graben structure moves differently than the other domains with a
larger displacement rate in SW to SSW direction (point 18–20, Fig. 9).
This is most likely due to the lack of lateral support on the western

flank. Sub-domain 2 shows a lower magnitude of displacement, with
the vectors oriented in S to SSE direction (point 8 and 17, Fig. 9). In sub-
domain 3, represented by points no. 4, 5 and 8, displacements are
recorded toward SE on the order of 1.5 to 2.5 cm/year. In sub-domain
4, measurements are not consistent and some of the points do not
show a significant displacement during the period 2005–2006 (Fig. 9).
However, all points (points 10–13) in the lower part suggest a positive
elevation change on the order of 1 to 3 cm/year (Fig. 9). This indicates a
zone of compression and thereby thickening above a sliding surface in
the area, supporting existence of the toe zone mentioned earlier.

6. Discussion

6.1. Geological model based on observations

Observations and interpretations of data described above form the
basis for the geological model of Åknes rockslide area, as illustrated in
Fig. 10. The style of deformation, with bearing on the geometry of the
rockslide area, is that of an extensional fault system at the top and an
imbricate thrust fan further down-slope. In other words, the rock
slope failure can be divided into two; an upper part experiencing
extension (Figs. 1 and 4), and a lower part deforming by compression
(Figs. 1 and 6). The basal sliding surface split into four subordinate
layers that are partially stacked upon each other and bound by sliding
surfaces, two that daylight the surface (sub-domain 2 and 4) and two
indicated by geophysics (sub-domain 1 and 3, Fig.10). The depth to the
sliding surfaces differs within the four layers. In an east-west cross-
section, the depth to the sliding surface shows a general increase to
the west and decrease to the east. Down-slope, the sliding surfaces
have roughly the same depth, and cut up-section near the toe of the
thrust sheet (Fig. 7 and 8). The length and width of the sliding blocks
are fairly similar (Fig. 10).

To summarize, the structural mapping of the area shows that the
foliation is undulating along and across the slope. It controls the

Fig. 10. Geological model of the Åknes rockslide. The block diagram summarizes field observations and geophysical data. Interpretation of structural data correlated well with
structural interpretation from the 2D resistivity profiles, suggesting an undulating basal sliding surface with subordinate sliding surfaces that crop out at several levels of the slope.
The rockslide can be divided into four sub-domains with different structural characteristics and displacement patterns, where two of the marked sliding surfaces are mapped at the
surface and two sliding surfaces are interpreted from geophysical data (2D resistivity). The depth to the basal sliding surface varies, but in general increases towards the west.
Structural constraints of the rockslide area to the east and west are pre-existing faults. The top is delineated by an extensional back scarp. The toe zone forms the lower limit of the
rockslide are. The foliation is folded, especially in the back scarp zone, but also shows gentle variations down-slope and across-slope, as indicated in the figure by black dashed lines.
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development of the back scarp and the basal sliding surface and its
subordinate thrust zones. Along the back scarp, extension perpendi-
cular to the fold axis is common when it is favourable, giving open
fractures along the sub-veritcal foliation (Fig. 4C). Down-slope the
foliation is sub-parallel to the topographic slope, and where the
foliation dips shallower than the slope, there are thrusts daylighting
the surface as seen at two levels down-slope (Figs. 2 and 6). The
rockslide area can be further divided into five zones based on surface
characteristics, where the upper structural limitation of the rockslide
is the back scarp zone with its scissor like shape (Figs. 2, 4 and 9). The
separation along the back scarp zone is gradual and constant on a
yearly basis, with a larger movement of the western side than on the
eastern (Fig. 9). The western boundary zone is the structural western
limit of the rockslide area with a prominent crevasse formed along a
NNW–SSE trending strike slip fault. The displacement data show that
the upper western part of the rockslide area has the largest movement
rates (cm/year), with a SW displacement vector towards the crevasse
(Fig. 9). The eastern boundary zone is inferred as the eastern structural
limit of the rockslide area (Fig. 2). The displacement along the eastern
boundary zone is low or absent, as shown in Fig. 9, most likely due to
lack of points of measurement or low satellite signals in the densely
vegetated and steep terrain. However, the movement is inferred to be
rotational with maximum rotation in the upper part of the zone. The
central zone of the rockslide can be divided into four sub-domains
separated by subordinate, low angled, sliding surfaces mapped on the
surface and interpreted from geophysics (Figs. 2 and 10). In sub-
domain 2, several extensional fractures with slope-parallel separation
of up to 2 m are located (Fig. 5). These structures have formed
perpendicular to the displacement direction (Fig. 9). The total
displacement of sub-domain 1 and 2 is larger than that measured
for the sub-domain 3 and 4 (Fig. 9). The latter sub-domains has less
distinct features, but the occurrence of springs increases down-slope.
The toe zone is the lower limit of the rockslide and is defined by a
subordinate sliding surface that can be observed at the surface (Fig. 6).
The sliding surface is mapped as a low-angle thrust that is more or less
continuous. The displacement data for the toe zone is somewhat
contradictory, but the general trend seems to be a considerable portion
of upward movement (Fig. 9). This fits well with the interpretation of
the sliding surface as a thrust ramp that daylight the surface, consistent
with compression in the toe zone (Fig. 10).

An interpretation of the eight 2D resistivity profiles in a tied grid,
supplemented with drill hole data, GPR and seismic profiles, formed
the basis for the mapping of the subsurface with respect to the sliding
surfaces (Fig. 7) and, furthermore, the geological model of the rock-
slide area (Fig. 10). The structures interpreted in the subsurface from
geophysical data coincidewell with structures mapped on the surface.
In addition, the geophysical data indicate the position of the sliding
surfaces in the subsurface (Figs. 7 and 8). The two sliding surfaces
mapped on the surface (Fig. 2) are also well covered with geophysical
data, indicating the extent of the sliding surfaces where they are
covered by vegetation and scree. Furthermore, this forms the basis for
the extrapolations of the sliding surfaces where they are not exposed
(Figs. 2 and 10). The geophysical data indicate two additional sliding
surfaces (Fig. 10), with similar signatures to the two observed at the
surface. This divides the central zone into four sub-domains as indi-
cated in Fig. 10. All the sliding surfaces interpreted by 2D resistivity
have an undulating character, and daylight the surface along the slope.
They are shown as low resistivity zones and the sliding surfaces are
interpreted to be located at the bottom of these zones (Figs. 7 and 8).
The geophysical data also supports the location of the larger structures
forming thewestern boundary, as a sub-vertical structure, and eastern
boundary as a gentle, westward dipping structure.

The estimated area and succeeding volume of the four sub-
domains are given in Table 2. The preliminary volume estimate of the
rockslide is based on a sliding surface at 50 m depth, therefore
volumes of the sub-domains with a 50 m deep sliding surface is

included in the estimate (Table 2). A basal sliding surface at 65 m
depth, as presented here, is more likely and following volume
estimates are given (Table 2).

The displacement pattern of the rockslide area is complex (Fig. 9).
Extension in an N–S direction characterizes the back scarp zone. A
division into four sub-domains fits well with the pattern of move-
ments of the rockslide area. Sub-domain 1, with the graben structure
to the west comprises the area with the largest displacement rates, up
to 14 cm/year, and has displacement in a S–SW direction (Fig. 9). The
displacement rate is less in the other sub-domains and in general
decreases down-slope (Fig. 9). Sub-domain 2 shows a more southerly
to southeast displacement directionwith up to 5 cm/year (Fig. 9). Sub-
domain 4 has no displacement direction but shows slight (vertical)
upwards movement (Fig. 9), which sustain the indications of com-
pression of the toe zone (Fig. 10).

All observations of the basal sliding surface indicate that it is
undulating. Undulations can be caused by three scenarios; 1) growth
of the sliding surface as segments, where the undulating composite
surface is made up of several connected slip planes and where undu-
lations are found at broken fault segments. 2) heterogeneous biotite
schist layer extent and distribution, where layers of biotite schist are
linked by fractures, and 3) reactivated folded foliation. Due to the
evidence that the foliation is folded, as shown in Figs. 2, 4 and 8, and
the fact that the foliation controls the development of the basal sliding
surface with its subordinate low angle thrust zones (Fig. 6), the re-
activated, folded foliation model is plausible, either as the main con-
trolling factor, or in combination with the other two.

6.2. Geological model in light of other studies

Considering Varnes` (1978) classification of landslide types, Åknes
rockslide does not simply fit into one category but forms a complex
landslide, which is a combination of two or more principal types of
movement. Creep is considered to be continuous in the Åknes rock-
slide, contributing to the general deformation of the bedrock and
displacement of the rockslide. In the upper part of the Åknes rockslide,
sub-domain 1 and 2, indications of rotational slide movement is
observed in the combination of vertical and horizontal movement of
the back scarp as well as backward tilting of blocks (Fig. 9). Trans-
lational slide movement is observes along the western flank of the
rockslide, especially in sub-domain 1, where also the largest displace-
ment rates are measured. Abundant extensional fractures (tension
cracks) in a range of sizes are also observed along the western flank,
both with ~N–S and ~E–W strike. However, the toe zone and the
eastern flank, primarily sub-domain 3 and 4, of the Åknes rockslide
does not fit within Varnes` (1978) classification. This is hereby argued
due to control of pre-existing structures such as the fault forming the
western boundary zone and the ductile fabric of the bedrock, i.e. the
foliation controlling the basal sliding surface with its subordinate
thrusts that daylights at several levels, but ismost prominent in the toe
zone (Figs. 2, 6 and 10). Another argument for the distinctly different
appearance is that the Åknes rockslide has not evolved far enough to
display the common structures occurring in “the zone of accumula-
tion” according to Varnes` (1978) classification. Anyhow, the basal
sliding zone with its subordinate sliding surfaces observed at Åknes

Table 2
Approximate area and volume estimates of the four sub-domains

Approximate
area (m2)

Min volume (m3) −
50 m depth

Max volume (m3) −
65 m depth

Subdomain 1 102,264 5.1 million m3 6.6 million m3

Subdomain 2 118,755 5.9 million m3 7.7 million m3

Subdomain 3 155,787 7.8 million m3 10.1 million m3

Subdomain 4 117,454 5.8 million m3 7.6 million m3
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rockslide form thrusts, giving compression, and display as an imbri-
cated thrust fan (Fig. 10).

Braathen et al. (2004) define Åknes rockslide as a rockslide area,
given that the rockslide area has a relative low gradient (b45°),
weakness zones sub-parallel to the surface, and movement in the
lower parts leading to failures in the upper part of the slope. These
weakness zones are, for example, foliation and/or layering or pre-
existing fractures oriented sub-parallel to the slope. Results from this
study support the view that Åknes is a rockslide area, but with more
complex structures (Figs. 1 and 10). Braathen et al. (2004) further
address the rockslide kinematics in a down-slope direction. Results
from this study imply that Åknes fits with Braathen et al.`s (2004)
model of the combined extension–compression scenario, predicting a
high frontal friction.

Oppikofer and Jaboyedoff (2007) proposes another type of model
of Åknes rockslide based on DEM (digital elevation model) and
ground-based Lidar image analyses of Åknes and surrounding
occurred and potential rockslides. They use the asperity–amplitude
method to estimate the roughness of the foliation which gives the
geometry of the basal sliding surface, and analysis of spatial distri-
bution of steep fractures. This provides a model with primarily planar
back scarps and a stepped basal sliding surface, where the rockslide
is gravitational driven giving mainly translational movement. This is
a model similar to that of Eberhardt et al. (2004) described as
“sequential failure with internal shearing with yielding of rock
bridges” or “multiple step-path failure with intact rock bridges”. The
sequential failure model is similar to that proposed for the Randa
rockslide (Eberhardt et al., 2004). Eberhardt et al. (2004) demonstrate
that where sliding surfaces are predefined and controlled by pre-
existing structures less internal rock deformation is needed to achieve
failure of the rockslide. Tension cracks are commonly an indication of
internal rock deformation, and with regards to Åknes rockslide both
persistent pre-existing structures and tension cracks are observed,
indicating a more complex deformation mechanism with possibly a
combination of brittle and ductile behaviour (Eberhardt et al., 2004).
This may be the essential difference between the model of Åknes
rockslide presented by Oppikofer and Jaboyedoff (2007) and the one
proposed in this work. The model by Oppikofer and Jaboyedoff (2007)
is not considering the properties of the bedrock as strongly and show-
ing brittle behaviour, whilewe propose amodel basedmore on ductile
behaviour due to the control of pre-existing structures in the bedrock.
The most realistic model of Åknes rockslide is probably a combination
of that proposed here and that of Oppikofer and Jaboyedoff (2007).
However, themorphology of the rockslide models after failure is likely
to be similar.

Giraud et al. (1990) gives examples of rockslides controlled by pre-
existing structures, such as foliation, where the slope parallel foliation
forms potential slip planes, which increase the potential of rockslides
progressing into rock avalanches with minor changes in physical or
hydrogeological conditions as trigger. These are conditions that are
valid for Åknes rockslide, and emphasises the importance of pre-
exiting structures as a controlling factor. Giraud et al. (1990) also argue
that rockslides with pre-existing structures controlling the slip surface
are more likely exposed to translational or rotational types of move-
ment. Another model that has been proposed is the deep-seated slope
gravitational deformation model (DSGSD); a model that shows only
extension (Agliardi et al., 2001; Crosta and Agliardi, 2003). An
example of such DSGSD is the Ruinon rockslide (20 million m3) of
the Italian Alps. This deep-seated slope gravitational deformation
indicates one deep, more or less continuous sliding surface, and col-
lapse of the lower part of the slope (Agliardi et al., 2001). At Åknes
there is no indication of collapse in the lower part of the slope and
there is evidence of several sliding surfaces as well as a combined
extension–compression regime, making this model less viable for this
site. Seno and Thüring (2006) propose several different landslides
models, based on case studies from the Swiss Alps, varying from

rotational rockslides to rock slump, sag or deep-seated creep and
retrogressive landslide. However, these examples seems to be driven
by gravitation, commonly triggered by alteration in groundwater level,
and not controlled by pre-existing structures such as faults and ductile
deformation of the bedrock, even though two of the case studies have
slope parallel schistosity (Seno and Thüring, 2006).

Numeric modelling tools arewidely used for kinematic analyses and
stability calculation of rock slope (Eberhardt et al., 2004; Stead et al.,
2006), however, due to the large uncertainties in input parameters the
use of numerical modelling is mainly limited to back analysis (Meric et
al., 2005). Therefore, theneed for geological data to constrain themodels
is critical, and this work is an attempt of achieving constraints on
geological parameters thatwill be applied in numericmodels (Kveldsvik
et al., 2007; Nøttveit et al., submitted for publication).

6.3. Fracture distribution

Two hypotheses are entertained for the existing fracture sets
mapped in the rockslide area. Firstly, they are pre-existing fractures,
probably of Devonian age, which are reactivated due tomovements on
the basal sliding surface. Since all recorded fracture sets are present
throughout the rockslide area (Fig. 2), this indicates that the fractures
are pre-existing. Some of the fractures are reactivated due to shear
movement along the basal sliding surface, which coincides with
results of Henderson et al. (2006) from regional studies in the vicinity
of Åknes. In the second hypothesis, the fracture sets are caused by
shear movement along the sliding surface. Slope parallel fractures or
fractures that form perpendicular to the displacement direction are
indications of fractures caused by movement of the rockslide. Sub-
vertical extensional fractures (i.e. tension cracks), which seem to occur
randomly, have a strike (~E–W) more or less perpendicular to the
direction of movement (SSW) are observed in sub-domain 2 (Figs. 2, 5
and 10). This phenomenon is also observed in other sites in the vicinity
(Henderson et al., 2006). At Åknes both types of fractures occur, but the
majority of fractures are reactivated older structures. In addition,
logging of the drill cores show that the fracture frequency decreases
with depth, indicating reactivation of pre-existing fractures and/or
foliation rather than initialization of new fractures (Fig. 8).

6.4. Complex groundwater system

The groundwater systemof the rockslide area is fed byprecipitation
both in the rockslide area and in the catchments area. Several seasonal
streams flow into the back scarp. Runoff from snowmelt in the
springtime brings significant volumes of water into the rockslide area.
Several springs are observed at the site and groundwater seepage is
common along the observed sliding surfaces. The area beneath the toe
zone reveals abundant springs. In the lower part of the rockslide area,
towards the fjord, the groundwater table is close to the surface. This is
reflected in the shallow penetration depth of the GPR data from the
area. Water chemistry, including conductivity, temperature, pH, anion
and cation composition from the springs, may reflect the retention
time of the groundwater (Derron et al., 2007). The dataset indicates
short retention time in sub-domain 2, while springs from sub-domain
3 and 4 seemingly have longer retention times. The lowermost springs,
beneath the toe zone, indicate the longest retention time. In total, the
groundwater chemistry supports the zonation of the rockslide area, as
suggested in the geological model (Fig. 10).

In the boreholes, the groundwater table is between 42 and 52 m
depth (Fig. 8). The water table fluctuates seasonally, increasing by as
much as 5 m during snowmelt. The drill holes indicate a complex
groundwater system, with several inflows and outflows at different
depths and possibly perched groundwater aquifers. The latter is seen
by different temperatures and water conductivity. The depth to the
water table in the drill holes is similar to the top of the low resistivity
layer (blue) in the 2D resistivity profiles (Figs. 7 and 8).
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Hydraulic factors play an important role as contributing factors to
failure of all types of landslides (Giraud et al., 1990). For example,
studies of landslide in the Alps show that a large increase in rainfall
over a short timeperiod results in an increase in displacements (Giraud
et al., 1990; Crosta and Agliardi, 2003; Crosta et al., 2004; Seno and
Thüring, 2006). The heavy rainfall and additional runoff from glaciers
alsoworked as a triggering factor for accelerating displacement for the
Val Pola landslide in the Italian Alps (Crosta et al., 2004). Seno and
Thüring`s (2006) study show that alternations in groundwater level,
giving changes in pore pressure, is considered to be the main causes of
instability. In this light, melt water runoff and heavy rainfall may also
act as a triggering factor for the Åknes rockslide. Grøneng et al. (in
preparation) addresses the relation between displacement and pre-
cipitation for the Åknes rockslide.

6.5. Uncertainties

The geological model presented is based on all observations
described above. However, there are observations that are not in-
cluded in the geological model, such as mapped layers of low re-
sistivity in the 2D resistivity profiles measured above the back scarp.
This may be an indication of an unstable rock mass above the back
scarp, in which case the back scarp is not the upper limit of the
rockslide area. No field observations indicate movement above the
back scarp, other than structures related and close to the back scarp.
Several rockslides have occurred in the area to the west and east of
Åknes, resulting in rock avalanche deposits as large as 400 million m3

covering the fjord bottom (Blikra et al., 2005b). This raises the
question of how stable the rock mass outside Åknes rockslide is. The
supposed lower limit of the rockslide is the toe zone. However, inter-
ferometric sonar mapping of themountainside below sea level reveals
indications of a possible sliding surface daylighting at a depth of −20
to −50 m (Longva et al., 2007).

The seismic profile presented here is based on only five shot points
(Fig. 6C), which limits both the data resolution and the details mapped
in the section. Therefore, the details indicated in the interpretation of
the profile are debatable, especially with regards to the sub-vertical
structure indicated at ~300m. However, the layering of the four layers
with different seismic velocities is likely, which indicate that the two
uppermost layers thins out and truncate at the same area as the 2D
resistivity profile indicate a daylighting low resistivity layer (Fig. 7).

There are also indications from the boreholes that there may be
deeper sliding surfaces at depths from 115 to 190 m. This is supported
by intensely fractured layers encountered in the lower parts of the
drill cores (115 m, Fig. 8) and indications of good hydraulic conduc-
tivity at even greater depths (150–190 m). The latter was the likely
cause of loss of water during drilling. The loss of water can be explained
in several ways; i) a perched groundwater level that was punctured by
the drill holes, ii) a set of open fractures with good hydraulic commu-
nication, and/or (iii) a deep sliding surface in a weaker rock layer that
controls the groundwater flow at depth.

As indicated in the geological models presented in Fig. 10, bedrock
with higher fracture frequency than the host rock extends down to at
least 100 m. This suggests that there may be multiple sliding surfaces,
which is very often the case in deep-seated rock slides in crystalline
rock (Bonzanigo et al., 2000). This assumption is further confirmed by
the presence of heavily fractured rock at 115 m depth (Fig. 8), and is
alluded to in the discussion related to Fig. 10 (i.e. that the rockslide
may be deeper than the current geological model predicts). However,
at this early stage of the investigations no conclusive measurements
are given on the movements at deeper levels, hence, not included in
the proposed model in Figs. 1 and 10. The intention is to propose a
geological model of the rockslide based on existing and documented
data, and not infer a model on data that are not documented. Inclino-
meters are installed in some of the drill holes, at different depth, and
further work will elaborate on this issue.

The displacement measurements especially in sub-domain 4
(points 10–13) show divergence in direction and rates. There is incon-
sistency among the four lower points, making it difficult to draw
sound conclusions. The source of error of the measuring instrument is
regarded as 4mm, and according to Demoulin et al. (2007) variation in
groundwater levelmay contribute tomm-scale of local different vertical
displacement. However, all points in sub-domain 4 show an (vertical)
upward movement that exceeds the level of uncertainty.

7. Conclusions

• The aim of this work was to propose a geological model of the Åknes
rockslide based on structural mapping and interpretation of geo-
physical data from profiling and boreholes.

• The folded foliation controls the development of the back fracture.
Where the orientation of the foliation is favourable for extensional
fracturing (i.e. when sub-vertical or dipping down slope), the back
fracture follows the foliation.

• The folded foliation controls the development of the basal sliding
surface with its sub-ordinate sliding surfaces as low angle trusts; i.e.
the sliding surface is undulating due to gentle folds in the foliation of
the bedrock. The sliding surfaces are mapped where they daylight
the surface, and are characterized by the occurrence of fault rocks
such as gouge and breccia. In general, the depth to the sliding sur-
faces varies due to the undulation, generally increasing to the west
and decreasing to the east, with a maximum depth of 65–70 m.

• The rockslide area is divided into four sub-domains, confined by
sub-ordinate low angle thrusts that daylight the surface. These sub-
domains have different displacement patterns and rates, and have
the down-slope geometry of an imbricated fan. Extension char-
acterizes the two upper domains of the rockslide whereas com-
pression characterizes the two lower domains.

• The rockslide area is structurally confined with the upper rockslide
limit formed by the back scarp zone, whereas a pre-existing NNW–

SSE strike slip fault forms the western boundary zone. The eastern
boundary zone is a gentle westward dipping pre-existing fault, and
the toe zone forms the lower limit, where a sliding surface daylights
the surface.
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