
Integrating a Web-Based Editor in the
Cloud with TDT4100s Course Wiki

Lasse Brudeskar Vikås

Master of Science in Computer Science

Supervisor: Hallvard Trætteberg, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

Summary
Learning how to develop software is by itself not an easy task; Even more so if
there is a steep learning curve at the initial stages just to configure the devel-
opment environment. For the students at NTNU in the course TDT4100, the
exercises they need to work on requires many steps to set up the development
environment before they can begin working on the code.

In this research, a previously created web editor was used and developed
further to fit the new requirements. The web editor itself, due to the requirements,
had to support many features that would have existed in the students’ local
development environment, such as working on multiple files, syntax highlighting,
error/warning checking, content assists, running code and performing tests.

As well as having these features, the web editor had to be available for the
students for each exercise they have to work on. This meant that the web editor
must support being initiated from the location of any exercise, with the content
that was required for that exercise. The instructor of the course must be able
to decide where the web editor should be, and what content is required for the
exercise.

The result from this research is two artifacts; Confluedit and Eclipsky. Con-
fluedit has the responsibility of initiating the web editor by giving it the exercise
description, while Eclipsky handles the projects and serves the web editor.

To verify the quality of Eclipsky, performance measuring and usability testing
was performed. The performance of the implementation was within the require-
ments, with the highest average delay just above half a second from starting a
new exercise. When measuring the basic use of the web editor, operations like
updating the resources, content assists and error/warning checks had a delay be-
low 25ms. Although there were some usability issues that needs to be looked
into, the overall quality was satisfactory.

I

Sammendrag
Å lære hvordan man utvikler programvare i seg selv ikke en enkel operasjon;
Spesielt ikke hvis det er en bratt læringskurve i starten bare for å konfigurere
utviklingsmiljøet. For studenter på NTNU i emnet TDT4100 krever oppgavene
som de må jobbe med å sette opp ett lokalt utviklingsmiljø, noe som tar mange
steg før de kan begynne å kode.

For denne forskningen ble det brukt en allerede eksisterende web editor som
ble utviklet videre for å dekke de nye kravene. Web editoren i seg selv måtte, på
grunn av kravene, støtte mange funksjoner som studentene ville hatt i sitt lokale
utviklingsmiljø. Disse funksjonene er blant annet å kunne jobbe med mange filer,
syntaksmerking, feil/advarsel varsling, innholdshjelp, kjøring av kode og utføre
tester.

I tillegg til disse funksjone, måtte web editoren være tilgjengelig for studentene
for alle oppgavene de må jobbe med. Dette betyr at web editoren måtte støtte
å bli opprettet fra lokasjonen til enhver oppgave med det innholdet som kreves
for den gitte oppgave. Instruktøren i emnet må kunne bestemme hvilken lokasjon
web editoren skal kunne opprettes i, og hvilket innhold som kreves for øvingene.

Resultatet fra denne forskningen er to artifakter; Confluedit og Eclipsky. Con-
fluedit har ansvaret for å åpne opp web editoren ved å gi den en beskrivelse av
oppgaven, mens Eclipsky tar seg av prosjektene og dele ut web editoren.

For å verifisere kvaliteten av Eclipsky ble det gjort forskjellige evalueringer.
Dette besto av å måle ytelse og utføre en brukertest. Ytelsen på systemet var
innenfor kravene med en høyest gjennomsnittlig verdi på like over ett halvt se-
kund på å opprette ett nytt prosjekt. Under måling av selve bruken av editoren,
funksjoner som å oppdatere ressursene, innholdshjelp og feil/advarsel varsling
hadde en gjennomsnittlig ventetid på under 25ms. Til tross for at det ble oppda-
get noen problemer med brukervennligheten som må jobbes videre med var den
totale kvaliteten til systemet tilfredsstillende.

II

Preface
This project was defined by Hallvard Trætteberg at the Department of Computer
and Information Science at the Norwegian University of Science and Technology.
I would like to thank Hallvard Trætteberg for the support throughout the project.

I would also like to thank all the anonymous participants that was part of the
usability testing, which helped make this research possible.

Also a special thanks to Ole Kristian Nakken and Petter Troseth Almås for
the help in structuring the report and giving valuable suggestions.

III

IV

Contents

1 Introduction 1
1.1 Goals . 2

1.1.1 Goal 1 Student Availability 2
1.1.2 Goal 2 Student Usability 2
1.1.3 Goal 3 Instructor Usability 3
1.1.4 Goal 4 Extensibility . 3

1.2 Structure . 3

2 Background and Theory 5
2.1 Quality Attributes . 5

2.1.1 Product quality . 5
2.1.2 Quality in use . 6

2.2 The Course . 6
2.2.1 Assignments . 6
2.2.2 Exercises . 7
2.2.3 Tests . 7
2.2.4 Avoiding environment configuration 8

2.3 Eclipse . 9
2.3.1 Eclipse Java editor features 9

2.4 Assignment System prototype . 12
2.4.1 Gamification . 13

2.5 Scalability . 13
2.6 Confluence . 14

2.6.1 Page editor . 14
2.6.2 EMFS . 15

3 Method 17
3.1 Development method . 17
3.2 Literature . 18
3.3 Data gathering . 18

V

3.4 Usability testing . 18
3.4.1 Types of testing . 19
3.4.2 Performing usability test . 19
3.4.3 Post-testing survey . 19

4 Results 21
4.1 Overall design . 21
4.2 Requirements and constraints . 22

4.2.1 Editor Functionalities . 22
4.2.2 Editor Performance . 23
4.2.3 Implementation Constraints 23

4.3 Confluedit – Instructor’s viewpoint 24
4.3.1 Creating the macro . 24

4.4 Confluedit – Students’ viewpoint 24
4.4.1 Initializing project on Confluedit 25

4.5 Eclipsky . 26
4.5.1 Serving web page . 27
4.5.2 Compiling and running code 30
4.5.3 Towards cloud service . 30
4.5.4 OSGi-runtime . 32

4.6 Properties of a project . 36
4.6.1 taskId . 36
4.6.2 difficulty . 36
4.6.3 effort . 36
4.6.4 xemfs . 36

4.7 Communication components . 37
4.7.1 Refresh/Update component 37
4.7.2 Close component . 37
4.7.3 Completion component . 37
4.7.4 Run component . 37
4.7.5 Test component . 38

5 Evaluation 39
5.1 Confluedit . 39
5.2 Performance of Eclipsky . 39

5.2.1 Test platform . 40
5.2.2 Results . 40
5.2.3 Starting project . 41
5.2.4 Editor tasks . 41
5.2.5 Run/Test performance . 42

5.3 Scalability . 42
5.4 Usability testing . 42

VI

5.4.1 Task performance . 43
5.4.2 All task scores . 43
5.4.3 Combined results . 47

5.5 Issues . 47
5.5.1 Running code . 47
5.5.2 Content assist . 48
5.5.3 Individual run time . 48
5.5.4 Test result . 48
5.5.5 Altering the UI . 49
5.5.6 Conclusion . 49

6 Discussion 51
6.1 Usability testing . 51

6.1.1 Content assist . 52
6.1.2 Run time . 52
6.1.3 Testing . 52
6.1.4 UI . 52

6.2 Cloud . 53
6.3 Tested exercises . 53

7 Conclusion 55
7.1 Future research . 55

7.1.1 Including EMFS in Confluence 55
7.1.2 Learning Analytics . 56

Appendices 61

A Workflow I

B Test plan III
B.1 Purpose . III
B.2 Research Questions . III
B.3 Participant Characteristics . IV
B.4 Method . IV
B.5 Session outline . IV
B.6 Test Environment . V
B.7 Moderator Role . V
B.8 Tasks . V
B.9 Post-test questions . VII

VII

C Test result IX
C.1 Task notes . IX
C.2 Post-test question . XIII

C.2.1 Was there any problems/difficulties when using the product
that prevented you from solving the tasks? XIII

C.2.2 Did you find the product easy to work with? If so, why? . . XIII
C.2.3 Was it easy to understand and use the test panel for solving

the tasks? . XIV
C.2.4 What did you think about how the resources was managed

in the system? . XV
C.2.5 Is there anything else about the system that you would

want to have been handled differently? XV
C.2.6 If you imagine yourself as a new student in this course,

would you consider using this product instead of the current
implementation? . XV

D Performance measurements XVII

E Source Code XXI

VIII

List of Figures

2.1 An example of the meta data associated with an exercise. 7
2.2 An exercise from the course Wiki, with superimposed, colorized

divisions for the different parts as well as a mock-up of the editor . 8
2.3 An example of the use of content assist with System.out. 10
2.4 An example of the use of templates. Left side: Initiated code

suggestions. Right side: “main” template chosen. 10
2.5 An error marker will show additional info when the programmer

hovers over the marker icon. 11
2.6 Warning marker that are being rendered because the programmer

have an unused variable in the code 12
2.7 The page editor, with both standard HTML-elements and a macro

for including code blocks. 14
2.8 A simple illustration of how different modules can coexist inside a

plugin . 15

4.1 Different parameters that must be entered into the plugin 25
4.2 The content of the macro with XEMFS-language. The file struc-

ture is described, where the content can either be in-line or down-
loaded. 26

4.3 The web editor with the different functionalities labeled with num-
bers . 28

4.4 The web editor with all tests passed 29
4.5 All bundles (except no.hal.eclipsky.services.workspace.http) with

their components . 34
4.6 The no.hal.eclipsky.service.workspace.http bundle with all its com-

ponents . 35

A.1 A overview of the entire implementation II

IX

X

List of Tables

5.1 Hardware for the testing platform 40
5.2 Results from measuring different functions in the web editor 41
5.3 P1’s score for the three tasks . 44
5.4 P2’s score for the three tasks . 45
5.5 P3’s score for the three tasks . 45
5.6 P4’s score for the three tasks . 46
5.7 P5’s score for the three tasks . 46
5.8 A summary of all participant’s result for each task 47

B.1 Task 1 . VI
B.2 Task 2 . VI
B.3 Task 3 . VI

C.1 Results from all participants in Task B.1 X
C.2 Results from all participants in Task B.2 XI
C.3 Results from all participants in Task B.3 XII

D.1 Performance of ensuring a project, opening up a ensured project
and changing resources . XVIII

D.2 Performance of running a project with and without run configura-
tion, and testing . XIX

D.3 Performance of doing basic tasks in editor XX

XI

XII

Abbreviations

AJAX Asynchronous JavaScript and XML. 25, 26

AST Abstract Syntax Tree. 16

DSL Domain-Specific Language. 16, 36

EMF Eclipse Modeling Framework. 16

EMFS EMF File System. V, VII, 15, 16, 23, 36, 53,
55, 56

HTML Hyper-Text Markup Language. IX, 14, 21, 26

IDE Integrated Development Environment. 1–3, 9,
10, 12, 22, 23, 41, 51, 52, 56

JDT Java Development Tools. 23, 32, 37

MSc Master of Science. IV

NTNU Norwegian University of Science and Technol-
ogy. I, II, IV, V, 1

OSGi Open Service Gateway initiative. VI, 9, 27, 30–
33, 53

PDE Plug-in Development Environment. 9, 32

RCP Rich Client Platform. 9

UCD User-centered design. 18

UI User Interface. VII, 49, 52

XEMFS Xtext based EMFS. IX, 16, 23, 24, 26, 39, 51,
56

1

2

Chapter 1

Introduction

Over the last years, code editors on the web has become topic of discussion for
replacing the traditional desktop code editors and IDE’s. These web editors tend
to either be very simplistic, e.g. only having syntax highlighting, or to approach
a full-fledged IDE experience. However, none are approaching a solution that is a
cross between the two counterparts, which can be utilized when teaching students
how to develop software.

Learning how to develop software is by itself not an easy task. This is even
harder for a student if there is a steep learning curve at the initial stages just to
configure the environment. If a student manages to configure a local development
environment with a full-fledged IDE, the functionality a student needs will be
met, but the IDE has a plethora of other functions that might confuse a student.
There exists different cloud based editors already, but they tend to be either to
simple or to advanced. For the course TDT4100 - Object-oriented programming
at the Norwegian University of Science and Technology (NTNU), the students
have to deal with this problem when learning how to write code for the Java
platform.

The goal is a web-based code editor for ad-hoc usage for students to work
on exercises. The solution should be both functional, with essential features like
error markers and code completion, and have the ability to run and test the code.
It should also be simple to use.

In order for students to be able to take the exam, they must pass 10 assign-
ments. Each assignments consists of about 5 exercises that the students must
work on, which is found on the course wiki. Creating the exercises takes a lot of
work, and including the exercises on the course wiki is also time consuming. The
instructors need to be able to quickly configure new exercises on the course web
site, including dependencies on tests, existing files and libraries, and have both
the editor and back-end behave appropriately.

1

1.1. GOALS

This thesis will cover the architecture, implementation and evaluation of such
a system.

1.1 Goals
The main problem this thesis tries to solve is making it easier for students to
write code when learning how to develop software. To get a better control of the
different aspects of this, the problem description have been divided in to goals
that describe what the final implementation will try to achieve.

The goals are as follows:

Goal 1 Student Availability
Students must be able to start working on an assignment from the course
wiki

Goal 2 Student Usability
Design the web editor to the responsiveness and usefulness of a local appli-
cation

Goal 3 Instructor Usability
Implementing a solution that makes it easy for instructors to add new as-
signments

Goal 4 Extensibility
The system should be implemented in such a way that it supports future
expansion/changes

1.1.1 Goal 1 Student Availability
As the users have access to the exercises through the course wiki, the cloud
based service must be accessible through here. The web editor should there-
fore be rendered on the page on request from users, and the exercises must be
configured/prepared on the server running a form of Eclipse.

1.1.2 Goal 2 Student Usability
Although syntax-highlighting is supported in most JavaScript editors (Wikipedia,
2015), having more of the functionality that a full-blown IDE offers for users
would make the web based editor for this implementation much more useful.
The problem is finding out how much features too add, as adding too much could
lead to confusion/performance troubles, and adding too little would force the
users to go back to configuring/installing a local IDE instead.

2

CHAPTER 1. INTRODUCTION

The intended context for this product is for students who have gone through
the basics of Java, but have done so in a simple text editor. Although the
students do not have any experience with an IDE at this point, the functionality
of the web editor should reflect those that exist in an IDE for both transferring
the students’ obtained skills and easing the transition over to a full-fledged IDE
later. In order to find out how well this implementation fits the students, user
tests will be performed as part of a qualitative analysis.

The most prominent functionalities that an IDE has that a simple text-editor
is lacking is context sensitive content assists (hereafter referred to as content
assists), error/warning markers, running code and get the output. These func-
tionalities will be explained in section 2.3.1.

1.1.3 Goal 3 Instructor Usability
Since the final implementation will be used on the course wiki, it has to support
the different exercises the instructors have created for the students to work on. As
these exercises require different technical attributes, the web based editor must
be able to handle all the potential exercise descriptions (preferably at run-time).

When instructors create an exercise, they use a lot of time to both write codes
and create tests. The usability aspect this goal must fulfill here is that it should
be an efficient task for an instructor to incorporate the exercises in the course
wiki.

1.1.4 Goal 4 Extensibility
Future exercises could use completely different problem descriptions that the
course wiki currently offers. If the implementation is unable to handle a specific
type of problem, the work required to fix the problem should be minimal. Sepa-
ration of concerns and abstractions is therefore a key part of the system, which
should satisfy extensibility in the definition of Johansson and Löfgren (2009).

1.2 Structure
This section describes what the different chapters contains and shows the struc-
ture of the report.

Chapter 1: Introduction Presents the motivation of the research, and the
goals associated with it.

Chapter 2: Background and Theory Discuss the theory and technologies
that are used in this research, and the previous work it is based on.

3

1.2. STRUCTURE

Chapter 3: Method Describes the type of research, and how the research was
performed.

Chapter 4: Results Detailed description of the different aspects of the imple-
mentation, as well as the requirements and goals it tries to solve.

Chapter 5: Evaluation Outlines how well the implementation answers the re-
search questions

Chapter 6: Discussion Summarizes the results found in chapter 4 and dis-
cusses future research

Chapter 7: Conclusion Presents a conclusion to summarize the research. 5.

4

Chapter 2

Background and Theory

In this chapter, the different quality attributes related to the research is defined.
Further, the current system, the previous implementation this work is based on
and the relevant technologies are outlined.

2.1 Quality Attributes
ISO standards are used to verify if the implementation meet the goals of the
research. The ISO/IEC FCD 25010 standard is for software architecture and is
concerned with two main points; “Quality in use” and “product quality”. From
product quality, the most relevant definitions are the ones related to usability
and the maintainability. As for quality in use, the effectiveness is also important
for the implementation.

2.1.1 Product quality
Usability

The degree to which a product or system can be used by specified users
to achieve specified goals with effectiveness, efficiency, and satisfaction in a
specified context of use.

There is no ISO standard for extensibility, but Johansson and Löfgren (2009)
defines it as follows:

Extensibility
The ability of a system to be extended with new functionality with minimal
or no effects on its internal structure and data flow.

5

2.2. THE COURSE

Extensibility relies mainly on three other quality attributes, namely modifia-
bility, maintainability and scalability. In short, the three quality attributes has
these three concerns:

Modifiability
A system is modifiable when a change involves the least number of changes
to the least number of possible elements.

Maintainability
To design a system to allow for the addition of new requirements without
risk of adding new errors.

Scalability
The ability of a system to expand in a chosen dimension without major
modifications to its architecture.

2.1.2 Quality in use
The effectiveness of a system refers to the distinction between building the system
correctly (the system performs according to its requirements) and building the
correct system (the system performs in the manner the user wishes) (Bass, 2007).

Effectiveness
Effectiveness is a measure of whether the system is correct.

2.2 The Course
The course wiki1 is created for the students to have a site where they can find
the curriculum, code examples and all their exercises. These exercises and code
examples explains both rudimentary programming concepts (like for-loops) and
more advanced subjects (object-orientation and even graphical programming, e.g.
JavaFX). The TAs and the course instructor (henceforth, “instructors” will mean
both) has access to alter every page by updating the content through a admin
interface. In order to be able to take the exam, a minimum of 10 assignments must
be solved, where each assignment in average consists of five different exercises that
the students will find in the course wiki.

2.2.1 Assignments
Since the assignments are used to verify if the students have passed the course
and are able to take the exam, each exercise are given properties that relate to

1https://www.ntnu.no/Wiki/display/tdt4100/

6

https://www.ntnu.no/Wiki/display/tdt4100/

CHAPTER 2. BACKGROUND AND THEORY

the difficulty and the effort it takes to solve it. For each exercise, meta data
describing the curriculum coverage, scope and required fulfilment of the exercise
are listed in a table, like shown in figure 2.1. These are mainly used by the
instructors when creating assignments.

Figure 2.1: An example of the meta data associated with an exercise.

2.2.2 Exercises
The exercises for the course are diverse, and a lot of them utilize the standalone jar
named JExercise2 for testing the solutions. This jar contains the JUnit framework
and specific utility classes. On the course wiki, exercises will have direct links
to files/classes (hosted on the Github page for JExercise). Students have to
download the relevant files into their local project, write code to try to solve the
exercises, execute tests designed for each exercise, and verify if they have written
their code correctly based on the test results. All of these exercises requires the
students to write a few classes on their own, which would be quick to compile
and run.

In the exercise seen in Figure 2.2, the first section tells the students to create
a class named Account with the attributes and methods that are described in the
text. In the second section, the student is told to write down a state diagram of
how they think the Account class will behave under a certain circumstance. In
the third section, the rest of the exercise is explained. For Figure 2.2, a mock up
of how the editor might look like is superimposed in this section. The different
classes, running the code/tests, and a possibility to download the relevant files
are not shown in this mock-up.

2.2.3 Tests
The code that is provided for each exercise are the tests that the students need to
save inside their projects in order to test their code. As well as the classes that test
the code, they can also download files that contains a simple, custom language.
This is the language that have been used to generate the aforementioned test class,
and is designed so that it’s more human readable for the students to understand

2https://github.com/hallvard/jexercise/

7

https://github.com/hallvard/jexercise/

2.2. THE COURSE

Figure 2.2: An exercise from the course Wiki, with superimposed, colorized di-
visions for the different parts as well as a mock-up of the editor

what the test class is actually doing. Usually, students will develop in an iterative
process by alternating between running tests and altering their code to make all
tests pass.

2.2.4 Avoiding environment configuration
As described in the report by Rasmussen and Åse (2014) and in the preliminary
study (Vikås, 2014), first time setup can be a difficult and time consuming task for
a first year student. In order to start writing code, the student must download the
correct JDK (Java Development Kit) and configure the system variables/paths.

8

CHAPTER 2. BACKGROUND AND THEORY

Then, the Eclipse IDE must be downloaded, and in some cases it has to be
configured correctly before it’s ready for use. Afterwards, the students have to
download a plugin to Eclipse that will perform the unit testing as well as a Java
archive (JExercise standalone) that contains the classes that is used for testing
their code.

On the course Wiki, the students can find guides to help them configure the
development environment. Although the guides are helpful, they are also very
long (by necessity). This leaves room for troubles when students have to follow
all these steps, as one mistake along the way could lead to the student being stuck
and not know how to both find the mistake and correct it. Even if the students
can configure the environment, they will still have to add the JExercise archive
for each assignment that requires it. This isn’t necessarily hard, but it do take
some extra time each time.

2.3 Eclipse
Eclipse is an Integrated Development Environment (IDE) that have been created
for developing applications. It is used by millions of software developers, and is
built upon a modularity infrastructure. By using Eclipse Rich Client Platform
(RCP), developers can create new applications by including any modules from
the Eclipse base. In order to load these module in to an application, the Plug-
in Development Environment (PDE) package must be installed as part of the
Eclipse installation. This package is needed for creating bundles that can run in
an implementation of the Open Service Gateway initiative (OSGi) specifications.
Equinox is an implementation from the OSGi-specifications, which is what Eclipse
is built on (McAffer, VanderLei, & Archer, 2010).

2.3.1 Eclipse Java editor features
In Eclipse, there are many features which will help the developers write code
faster and with less keystrokes. Considering that the implementation should avoid
having too many features that would confuse the students and/or slow down the
system, only a subset of these are included as part of the implementation.

Content assist

One of the basic forms of help that Eclipse provides to developers are content
assists. It provides the possibility to complete class names, method names, pa-
rameter names and more. Code assists also allow for defined keywords to be
expanded into any of the items mentioned, such as the keyword “NPE” that can
be expanded into NullPointerException (Clayberg & Rubel, 2008).

9

2.3. ECLIPSE

Figure 2.3: An example of the use of content assist with System.out.

In figure 2.3, content assist has been invoked on the context of System.out..
The output here are a list of the different methods that are available, the type of
parameters it accepts, and the value it returns.

Templates

Figure 2.4: An example of the use of templates. Left side: Initiated code sugges-
tions. Right side: “main” template chosen.

The Eclipse IDE also provides templates, which can generate source code
patterns directly in the code. A common template keyword is “sysout” which

10

CHAPTER 2. BACKGROUND AND THEORY

can generate System.out.println() directly in the code. There also exists more
advanced keywords, e.g. “‘main”, which will create a whole method block.

Figure 2.4 show how the state of the code in Eclipse changes when utilizing
templates. Both content assist and the code assist features are activated by using
the hot-key combination Ctrl+Space (Clayberg & Rubel, 2008).

Built-in Java compiler

According to the Eclipse JDT Plug-in Developer Guide3, Eclipse uses a built-
in compiler to build code incrementally or in batches. This builder has smart
features, such as not only checking if the code is syntactically correct but also
semantically. The syntactical analysis can see if there is an error in the syntax,
but it doesn’t check for the semantic validity. For example, a programmer could
write syntactically correct code that uses a method that should exist in another
resource in the class path, but if that method doesn’t exist, the code would fail
when it’s executed. Having the check for semantic validity will give feedback to
the programmer of the error in the code without having to compile and run it
first.

Error/Warning markers

Figure 2.5: An error marker will show additional info when the programmer
hovers over the marker icon.

A common feature for IDE’s is to have error checking of the code, which is
not often found in text editors. When a programmer creates an error in the code,

3http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Fguide%
2Fjdt_api_compile.htm

11

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Fguide%2Fjdt_api_compile.htm
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Fguide%2Fjdt_api_compile.htm

2.4. ASSIGNMENT SYSTEM PROTOTYPE

Eclipse will denote the line with the problem and give an explanation of what
is wrong (Rasmussen & Åse, 2014). By utilizing the built-in Java compiler in
Eclipse, both semantic and syntactical errors can be displayed to the programmer.
The markers are invoked every time a programmer alters the code after a set
interval from the last key-stroke.

Figure 2.6: Warning marker that are being rendered because the programmer
have an unused variable in the code

Another feature that the built-in compiler supports is to give warnings, which
is executed in the same way error markers are. These will make the developers
aware of any mistake they might have done, but it still means that the code will
compile and run. An example of a warning is when the programmer creates a
variable which is unused. In figure 2.6, an example of a warning marker from
having an unused variable is shown.

2.4 Assignment System prototype
The artifact from the research by Rasmussen and Åse (2014) was a standalone
assignment system to allow for a web editor to connect with Eclipse. As a stan-
dalone system, it consists of two parts; The web editor itself and the back end
that handles the work students do with assignments. The Assignment System
prototype have been created as a first step in providing more development fea-
tures directly in the browser. Communication from the web editor goes through
WebSocket on the web page via a Play Framework4 web server. The web server
initiates the connection with the Eclipse instance through a socket consisting of

4https://www.playframework.com/

12

https://www.playframework.com/

CHAPTER 2. BACKGROUND AND THEORY

WebSocket and the Akka Framework5. This make the web server responsible
for relaying all communication between those two endpoints (Rasmussen & Åse,
2014).

The prototype had many of the required features that a final implementation
would need, but it had some problems that made it difficult to use the whole
system when performing this research. Firstly, it was hard to work with due to
its unnecessary complexity and its lack of modularity, which makes it hard to
use on different platforms. Secondly, it used the Play Framework for providing a
whole web site, which wouldn’t fit properly in the course wiki that is built on a
Confluence server.

2.4.1 Gamification

The supervisor wanted to support gamification. The prototype included gami-
fication aspects, which was created to encourage learning. An aspect of gami-
fication is to award the work students do, e.g. giving badges to students who
have solved exercises and displaying a list of the students who have solved most
exercises/assignments.

2.5 Scalability

Scalability is a quality attribute to a system. The two main kinds of scalability
are horizontal- and vertical scalability. The horizontal scalability refers to adding
more resources to logical units, such as adding more units to a cluster of servers.
Scaling up (vertical scalability) refers to adding more powerful components to
a unit, for instance adding more RAM to a server. One of the problems with
scalability is to do it effectively, which means that the system should be able to
scale without having to disrupt operations for the users and gain a measurable
improvement of the system (Bass, 2007).

As discussed by Rasmussen and Åse (2014), the latency in communication
between the student on the course wiki and Eclipse grew linearly with each new
client and isn’t a big performance problem. Creating a new exercise would take
a lot longer, as the prototype would have to create a new instance of Eclipse for
each project. The suggested way of mitigating this problem was to only have
one Eclipse instance running on a server and create a new project within the
workspace instead.

5http://akka.io/

13

http://akka.io/

2.6. CONFLUENCE

2.6 Confluence

The course wiki is built upon the Confluence framework by Atlassian6. One of
the great aspects of the framework is its openness that allows users to expand
upon the initial product (Koplowitz, 2010, p.7). Although Confluence is meant
for collaboration between teams in an enterprise environment through wiki pages,
it’s used for giving relevant information to the students in this course.

2.6.1 Page editor

Figure 2.7: The page editor, with both standard HTML-elements and a macro
for including code blocks.

The page editor in Confluence is shown in figure 2.7, which include both simple
text that has been formatted with HTML as well as the more advanced Code
Block macro. Confluence doesn’t expect the users to learn markup language
for inserting different objects and styles, but relies on a WYSIWYG-approach
(What You See Is What You Get). For authorized people who creates and edits
pages, this means that they can see the result of the alteration in real time before
submitting the change. There are some content that need to be altered when the
page is accessed, and for that the Confluence supports macros.

14

CHAPTER 2. BACKGROUND AND THEORY

Figure 2.8: A simple illustration of how different modules can coexist inside a
plugin

Plugins

To extend Confluence, the easiest and recommended way is to create a plugin. A
plugin consists of a combination of modules that each serve individual purposes,
which can be tied together to create new functionality (see Figure 2.8). There
exists more than 30 different predefined modules that a developer could use as
part of a plugin, and one of those are macros. The macros enrich the page content
in an easy and modular way by having the possibility to attach independent meta
data to every instance of a macro, so that it can render the content in a unique
way. It is up to the developer of the plugin to decide what the macro shall render,
which means that the raw input data does not need to be shown to the user. The
editor in this research will use the content from a macro to configure the project.

Another module that Confluence provides is the REST plugin module. The
module provides a HTTP path on the server that plugins and scripts can com-
municate with, and the module can give a response in the form of JSON and/or
XML-data. Since the REST API is an open standard, any web development
language can access the REST module.

2.6.2 EMFS
To make the process of downloading the relevant files for an exercise, the students
can use an Eclipse plugin that is linked to in the course wiki. This plugin will
automatically download the required files and configure the project locally by

6https://www.atlassian.com/

15

https://www.atlassian.com/

2.6. CONFLUENCE

using EMF File System (EMFS), a project developed specifically for creating
new projects in a Eclipse workspace. The EMFS project uses EMF and Xtext,
which are tools to generate code from a simple Domain-Specific Language. The
DSL-language, Xtext based EMFS (XEMFS), is parsed by a parser inside the
EMFS project, and the project contains models that the XEMFS can map to.
XEMFS describes the file and folder structure in a project, and can fill the content
of the files either inside the description or by providing links to external resources.
The XEMFS-language can easily be expanded to support new features, as long
as the parser and models in EMFS supports it.

Eclipse Modeling Framework and Xtext

Eclipse Modeling Framework (EMF) is a framework for making model-driven
development less time consuming. In short, model-driven development consists
of two aspects; Creating models and processing a model, e.g. generate code.
Instead of creating UML-diagram, XML-representation of the model, and the
Java interfaces for the data model, developers can create a EMF-model and
generate the other artifacts from the model. The goal of EMF is to be able
to both create the code and the model at the same time, as well as being the
middle ground between the extremes of having full model-driven development and
“the code is the model”-approach to development (Steinberg, Budinsky, Merks,
& Paternostro, 2008).

Xtext is a framework that supports the creation of textual Domain-Specific
Language (DSL), which can be used to generate code. By using Xtext, developers
can create a grammar that can be parsed and mapped to models and properties
in the form of an Abstract Syntax Tree (AST). This AST can then in turn be
used to map to a previously created model (Efftinge & Völter, 2006).

In short, developers can use Xtext to create a custom language that can be
parsed to generate code.

16

Chapter 3

Method

This chapter will discuss the method used for this thesis and implementation
project.

3.1 Development method
Due to the fact that the final result from this project is an artifact/product to
be used with IT technology, the "Design and Creation"-method have been chosen
as the strategy for this thesis. The strategy requires either constructs (entities,
objects, data flows), models, methods (algorithms, patterns) or instantiations (a
working system that demonstrate the constructs/methods/etc.), but usually it’s
permutation of all of these (Oates, 2006).

To make sure that this project is not only a solution to a technical problem,
the research have to include academic qualities such as analysis, explanation,
argument, justification and critical evaluation. The project must also, in some
way, contribute to the knowledge of science (Oates, 2006).

The strategy is typically a problem-solving approach to science, which uses
an iterative process in five steps:

Awareness Recognizing and articulate the problem

Suggestion Proposing a way to solve the problem by creativity

Development Implement the suggestion

Evaluation Asses the worth/deviations of the implementation according to the
initial goal

Conclusion Summary of the design process, all new knowledge and (potential)
loose ends

17

3.2. LITERATURE

3.2 Literature

In order to obtain relevant articles, the Google Scholar1 service was used. Since
this service uses search queries to give a list of articles, different search terms
have been applied in order to find the relevant articles. One of the plus sides of
using Google Scholar is that it’s easy to find articles about mainstream subjects,
but on the other side it makes it harder to find articles in new fields. This is due
to the Google Scholar ranking system (Beel & Gipp, 2009).

3.3 Data gathering

In order to obtain data for this project, usability testing were performed to ana-
lyze different aspects of the implementation. Such aspects include the usefulness,
speed of operation, and how easy the artifact is to use for the participants. As the
artifact’s target group is students that are considered “beginners” in computer
programming, the participants in the user testing were all first year students from
the masters study in computer science. These students have recent experience in
working with the assignments on the current system, and is therefore in a good
position to compare the old system with the new implementation. According to
Whitehead (2006), five users should be sufficient to check whether a feature is a
problem or a success. Due to constraints in time and resources, only five students
were included.

3.4 Usability testing

In order to assess the usability of the final product, a usability test was conducted.
(Rubin & Chisnell, 2008) explains what usability is in the following way: “In large
part, what makes something usable is the absence of frustration in using it.”, and
goes on to define usability as “[when] the user can do what he or she wants to
do the way he or she expects to be able to do it, without hindrance, hesitation,
or questions”. Usability testing are used to collect empirical data by testing the
product on a representation of end users while they do realistic tasks. There are
two main approaches to usability testing; Checking the system with formal tests
to see if the system confirm/refute specific hypotheses or use an iterative cycle of
tests (User-centered design (UCD)) in order to mold the product in to a usable
final product.

1http://scholar.google.com/

18

http://scholar.google.com/

CHAPTER 3. METHOD

3.4.1 Types of testing
There are three types of testing that are part of usability testing; Exploratory
(or formative), assessment (or summative) and validation (or verification). For
the exploratory testing, (Rubin & Chisnell, 2008) states that this type of testing
is performed at an early stage to see “whether the user intuitively grasps the
fundamental and distinguishing elements of the interface.”. Exploratory testing
is in regard to the high-level aspects of the system to see how the user perceives
the effectiveness of using the product. This means that user only needs to be
exposed to enough functionality to be able to test the system, which can be
a mock-up/prototype of the product and all its functionality. It is encouraged
to have an open dialog with the participant so that the participant might, for
example, come up with ideas on how to improve the product. This helps form
the final design.

Assessment testing is about testing if the user can perform a full-blown realis-
tic task, rather than just exploring the intuitiveness of the product. It evaluates
the usability of the lower-level functions of the system and see how efficiently it
has been implemented (Rubin & Chisnell, 2008).

For this research, the usability testing approached the exploratory testing
type with aspects of assessment testing. The product is a working prototype,
but all the functionality of a final system has not been implemented. This means
that the testing was performed as an exploratory test, but the tasks the user had
to solve was related to realistic tasks (assessment testing).

3.4.2 Performing usability test
User testing was conducted with an observer present to guide the users through
the testing. As no personal information is required in this research, the users
that participate are anonymous. The way the testing was performed was by first
introducing the users to what this implementation tries to achieve. Then, they
were presented with different tasks that they tried to complete. Even though an
observer was present, the observer would only give small hints if the user was
stuck, and only answered questions that did not reveal how to solve the whole
task. For each task, the observer wrote down notes on how well the user handled
the task and any useful points that occurred in the dialog with the participant.

3.4.3 Post-testing survey
After all the tasks had been completed, an evaluation of the system was performed
in the form of questions from the observer. These questions was in the form of
open questions on the different aspects of the system to (possibly) get more

19

3.4. USABILITY TESTING

information than what was written down during the task-solving phase. The
following list contains all the different questions asked to the participants:

• Was there any problems/difficulties when using the product that prevented
you from solving the tasks?

• Did you find the product easy to work with? If so, why?

• Was it easy to understand and use the test panel for solving the tasks?

• What did you think about how the resources was managed in the system?

• Is there anything else about the system that you would want to have been
handled differently?

• If you imagine yourself as a new student in this course, would you consider
using this product instead of the current implementation?

The usability testing was performed in Norwegian, but all the results have
been translated in to English.

20

Chapter 4

Results

4.1 Overall design
This chapter will describe the overall design and flow of the system, which involves
the interaction between the front end, back end and all other related services that
makes the implementation work.

The system is split in two main parts; The implementation in the course wiki
as a plugin (named Confluedit) and the implementation which serves the web
editor (named Eclipsky). Eclipsky is the main back end solution that handles all
the operations related to exercises, but it also provides a presentation layer by
serving the web editor. The following lists shows how the different responsibilities
is divided in the system:

Confluedit

• Retrieving a unique user identification based on either user id (if logged in)
or session id

• Storing exercise description to be sent to the back end when establishing a
connection

• Determining which Eclipse instance to send the request to.

• Inserting an iframe1 on the page that the user uses to interact with the
backend.

1http://www.w3schools.com/tags/tag_iframe.asp - A HTML-tag that indicates a inline-
frame on a web page

21

http://www.w3schools.com/tags/tag_iframe.asp

4.2. REQUIREMENTS AND CONSTRAINTS

Eclipsky

• Converting exercise description to project resource

• Handling HTTP-requests, XMLHttpRequests and WebSockets

• Compiling and running code based on requests from the user

• Provides a graphical web interface for each project

For a overview of the system, figure A.1 shows the flow of operations when a
student wants to work on an exercise.

4.2 Requirements and constraints
All the requirements and constraints for the implementation in this research are
discussed here. Since the requirements/constraints have different aspects, they
have been divided in to these groups:

EF Editor Functionalities

EP Editor Performance

IC Implementation Constraints

4.2.1 Editor Functionalities
As described in Goal 2 Student Usability, several IDE-features should be part of
the editor. The list below are labeling the different editor functionalities (hereby
named EF) that have been selected to be part of the system:

EF1 The editor shall support syntax highlighting

EF2 The editor shall support content assist

EF3 The editor shall support error markers

EF4 The editor shall support warning markers

EF5 The editor shall provide a resource navigator

EF6 The editor shall provide a “run code” button

EF7 The editor shall provide a console output

EF8 The editor shall provide a “run test” button

22

CHAPTER 4. RESULTS

EF9 The editor shall display test errors

EF10 The editor shall display failed tests

EF11 The editor shall display passed tests

4.2.2 Editor Performance

It’s not enough that the editor has the functionality of a local IDE, it must also
feel like a local editor when it comes to the performance. Since there are many
factors that can impact the performance of an application over the Internet, the
measurements listed here are for the context of running the application locally.
Still, some resources (like the test classes) needs to be downloaded and will have
some impact on the performance.

Another factor that isn’t part of the requirement is the effect of the system
with many users. A future system should support scaling and be able to start
new servers dynamically if the load on the system is too high.

EP1 Starting a project should take less than one second.

EP2 Basic editor tasks should take less than 250ms.

EP3 Running code/tests should take less than 500ms.

4.2.3 Implementation Constraints

Since NTNU wishes to use this implementation and develop it further, a set of
constraints about the technologies to be used in this implementation must be
met.

IC1 The server side code must be written in Java

IC2 To create projects, EMFS must be used.

IC3 Eclipse’s JDT must be used to manage the workspace and editor function-
alities.

IC4 Students must be able to access the web editor from a Confluence server.

IC4 Instructors must be able to insert XEMFS into a Confluence macro.

23

4.3. CONFLUEDIT – INSTRUCTOR’S VIEWPOINT

4.3 Confluedit – Instructor’s viewpoint
The Confluedit part of the system must be installed in a Confluence environment.
From this environment, the instructors in the course are able to enter information
inside a Confluence macro when editing a page, which students can see when
visiting the page and optionally start the exercises from a button on the page.

One of the responsibilities for the Confluedit plugin is to find an Eclipse
instance to pass a request to when a student wishes to work on an exercise. In
the current implementation, it only looks for a Eclipsky instance in local host.

4.3.1 Creating the macro
When creating the macro for Confluedit, the following information must be en-
tered in for it to work:

1. taskId

2. difficulty

3. effort

4. xemfs

The meanings of these properties are discussed in section 4.6.

From the figure 4.1, the different properties that are part of the Confluedit
plugin (except xemfs) are shown. After the instructor have entered relevant
information and clicked the “insert” button, the macro editor with an empty body
is displayed. In figure 4.2, the content of the body has been filled with a valid
XEMFS description. The purpose of the XEMFS description is to accommodate
both the Goal 3 Instructor Usability by offering an expressive language to define
a exercise. The macro body does not provide syntax-highlighting for writing in
XEMFS, but it does not need to. Eclipse supports the possibility of writing the
XEMFS code and verify that it is correct before pasting it in Confluedit, and its
how the instructor writes the code now. The language itself is further discussed
in section 4.6.4.

4.4 Confluedit – Students’ viewpoint
For students, the Confluedit plugin will only appear when they are visiting a page
in the course wiki that the instructor have included to the page. When a student
enters the page, the only visible part of the macro is a rectangle with button(s)
inside it. A button to start the project is always present, but if the user isn’t

24

CHAPTER 4. RESULTS

Figure 4.1: Different parameters that must be entered into the plugin

logged in to the system, a log-in button will be displayed as well. As it is now, all
properties that macro have are rendered on the page with hidden elements. The
difficulty and effort properties are not used, but are there for later development.

One of the requirements of the implementation is that a student should be
able to work on an exercise without having to log in. If a student only want
to work on an exercise without it being related to their account, the project in
Eclipsky will be associated with the students current session id in Confluence.
The problem with session id in this context is that the student might not get
back what they worked on at a later time (see section 4.6.1).

To ensure that a student can work on a project that have been previously
worked on, it is recommended to be logged in. Every student in the course
has an account in Confluence, with a unique id attached to it that Confluedit
can fetch. This unique id will never change for students’ accounts, so they are
guaranteed to get their previous work back.

4.4.1 Initializing project on Confluedit
When the log-in button is clicked, a JavaScript-script will execute and get the
hidden information from the macro that is rendered on the page. This information
is then passed on to a REST-service within the Confluedit plugin via an AJAX-
call. Inside this service, it will check if the user is logged in, and if so, load the
user id from Confluence. If the user isn’t logged in, the user’s session id will be

25

4.5. ECLIPSKY

Figure 4.2: The content of the macro with XEMFS-language. The file structure
is described, where the content can either be in-line or downloaded.

loaded instead. Now that all the information required is present, a HTTP-call to
an instance of Eclipsky is initiated. Eclipsky will then respond with a redirect
to a URL that contains the requested project, which Confluedit will send back
as a response to the AJAX-call. On the users page, the current HTML for the
Confluedit macro will be replaced with an HTML iframe. The iframe will be
directed to the URL that was returned from the AJAX-call, so the user can see
the content from their project in Eclipsky inside the course wiki.

4.5 Eclipsky
This section is in regard to everything that happens on the back end, which
involves every responsibility mentioned in section 4.1.

Eclipse have been chosen based on the previous implementation discussed by

26

CHAPTER 4. RESULTS

Rasmussen and Åse (2014) and Vikås (2014), which this report is based on. By
having Eclipse as the base platform, the supervisor required the use of OSGi to
create the implementation discussed in this report. The previous implementation
relied on other technologies, such as a standalone web server to communicate with
Eclipse, but these technologies have been not been included. Instead, a web server
have been included as a OSGi bundle (amongst other bundles) to create a simpler
system to manage, since everything resides in the same application.

There is an important distinction to make her between the words editor and
web editor. The web editor means the whole page that is served, and it includes
the editor (and other elements). The editor is where the student can write code
on the web page.

4.5.1 Serving web page
The web server included in Eclipsky is Jetty, which has the design motto “Don’t
put your application into Jetty, put Jetty into your application.”. It supports
many new web features (such as WebSockets), and is designed to have a small
memory footprint2. As Eclipsky only need to serve one page, the web editor, a
small and simple web server is an appropriate solution. This should also help
with EP1 (start performance) if a Eclipsky instance need to be started on a new
server in a cloud solution.

When students starts exercises from Confluedit, the web editor page that will
be presented to them look like the example shown in figure 4.3. After the exercise
is completed, it might look something like figure 4.4.

Editor

The editor functionalities EF1 (syntax highlighting), EF2 (content assist), EF3
(error marker) and EF4 (warning marker), as seen in figures 4.3 and 4.4, are all
part of the editor. The base editor is the Ace editor written in JavaScript. It is
recommended and used by Rasmussen and Åse (2014), which have been utilized
to accommodate the requirements for this implementation.

When a student presses Ctrl+Space, Eclipsky will give the student content
assist (EF2) about which methods are available in a list. If the student has er-
rors in the code, an error marker (EF3) is displayed, while warnings will display
a warning marker (EF4). By hovering over this item in the editor gutter, infor-
mation about the error or warning is displayed to the user, as seen in figure 4.4.

As discussed in the background regarding error/warning markers in Eclipse,
the code will only be evaluated after a set interval from the last keystroke (see
section 2.3.1). This concept is also used in the editor. The code is only transferred

2https://webtide.com/why-choose-jetty/

27

https://webtide.com/why-choose-jetty/

4.5. ECLIPSKY

Figure 4.3: The web editor with the different functionalities labeled with numbers

to Eclipsky after a interval of 500ms from the last keystroke, and Eclipse will
generate any potential error/warning markers and return it to the editor.

Resource navigation

As the exercises requires the student to work in multiple files, the resource nav-
igator is located at the top of the editor. This is to reflect the interface of the
Eclipse editor which also manages opened files above the editor.

Test panel

In order for students to verify that the code they have written is correct, they
will need to able to run tests and see the output. When a student clicks the test
button, the test panel will be filled with tests results. Each of the individual tests

28

CHAPTER 4. RESULTS

Figure 4.4: The web editor with all tests passed

will return in one of three states; error (EF10), failed (EF11) and passed (EF11).
For error and failed, the result can be expanded to display a message about what
went wrong.

Running code/testing

If students wishes to run code in the current resource, pressing the run button
(EF6) will display the result inside the console output (EF7), as shown in fig-
ure 4.3. In order to run code from the different resources, the student must switch
to the desired resource and press the run button from that state.

The testing works much in the same way as running code. This means that
each test run is done in each resource, and that the result displayed in the test
panel is related to the current resource.

Connection

When the page is loaded, a connection to the back end is attempted. If the
browser doesn’t support WebSockets, it will use a fallback to XMLHttpRequest
to handle the communication. All communication is handled by a JavaScript-

29

4.5. ECLIPSKY

module that implements the pub/sub (publish/subscribe) pattern, as well as
FIFO (First In, First Out) stack for communicating with the server.

By having a pub/sub pattern, any module can subscribe to the events and
handle it in different ways. For instance, when a student runs tests and the
result comes back from Eclipse, the editor module will cache the result while the
interface module will render it on the page.

Since the web editor can’t know about the state in Eclipse, a FIFO stack
have been implemented to try to avoid the two systems having different states.
The stack contains all the latest commands to be sent to Eclipse, but the next
command in the list won’t be sent until the last command returns. For example,
if a user alters the resource and runs a test right after, the test command won’t be
sent until Eclipse returns a list of error/warning markers (potentially an empty
list). This should increase the chance of the commands running at the same state
on Eclipse as it happened in the web editor.

4.5.2 Compiling and running code
In order to run code in a Java class, it needs a main-method. If the student
wishes to run the code in the current resource they are working with on the web,
this method needs to be implemented (or else an error message will return in
the console output). This is not necessarily the case with other programming
languages, so no checks on the existence of a main-method is included.

4.5.3 Towards cloud service
As part of the Goal 1 Student Availability, the project should be available for
all students that access the course wiki. Although a fully scalable system is
not implemented, some of the base functionality is in place. The bundles git
and mqttlogging (with prefix no.hal.eclipsky.services.) are part of the
approach to scalability and establishing a cloud service. Unless otherwise stated,
the bundles will be written in the report without the prefix.

A bundle is package of binary code that can run independently in a OSGi-
environment, yet be dependent on other bundles or have other bundles depen-
dent on it. OSGi, in short, is a framework with an application that manages
bundles (more on OSGi in section 4.5.4). For the bundles that exists in an
OSGi-application, accessing other bundles can only be done by an interface that
they expose outwards. The bundle itself does not have any main program, but
can start threads and access both internal (the OSGi-application) and external
resources, e.g. databases or network communication. During the lifetime of a
application, the bundles can be installed, uninstalled or updated at any time.
This means that the bundles themselves must implement ways to deal with these
events in the application.

30

CHAPTER 4. RESULTS

There were 514 students registered in the course in spring 2013, according to
the preliminary study (Vikås, 2014). In order to have a system that responds
to Goal 2 Student Usability, the server shouldn’t have too long response times
that would affect the usability of the system. For that reason, a requirement for
the system is to be easily made horizontally scalable in the future by adding new
servers if the load on a server is too high. To communicate what the current
load of a server is, and to be able to determine which server to use when a
student starts working on an exercise, the MQTT-protocol was selected by the
supervisor. In its current state, the MQTT-client in Eclipsky only submits events
to the broker.

MQTT is a lightweight, binary protocol that implements the classic pub/sub
(publish/subscribe) pattern with a central broker. The protocol is based around
the concept of topics, which clients can either subscribe to (i.e. receive updates
from other clients) or use them to publish updates (Collina, Corazza, & Vanelli-
Coralli, 2012).

One instance per server

As discussed in section 2.5, the most important thing to fix was to have one
instance of Eclipse running on the server, and have projects sharing that instance.
This is the way the system works now as a OSGi-application (see section 4.5.4).

By having just one instance of Eclipse, all projects will exist in the same
workspace. One of the benefits of having this solution is that there only need to
exist one project in the workspace that contains all required files that the projects
needs. As well as making the first time creation of projects faster when Eclipsky
don’t have to download these files, it will also take up less space on the storage
drive.

Persistent storage

As discussed in the preliminary study (Vikås, 2014), the code from the exercises
that the students work on should be stored on the server so that they are able
to get it back when they open up the exercise again.

If Eclipsky runs in different servers, every time the student want to work on
a previous exercise, code that the student has already written must be loaded
into the server the broker selects. No implementation of a persistent storage is
currently in this implementation, as it isn’t required for running a single instance
of Eclipsky.

31

4.5. ECLIPSKY

4.5.4 OSGi-runtime
In the workspace of Eclipse, a target platform defines all the bundles for which
the code will compile with. Which bundles to be included under compilation
can be selected from Eclipse, which, by deselecting unwanted bundles, can give
speed improvements when compiling the code. To be able to build bundles in
Eclipse, any packages that include the Java Development Tools (JDT) or Plug-in
Development Environment (PDE) can be used(McAffer et al., 2010).

The JDT implements both the UI-components in Eclipse and the underlying
core components. When developing a plug-in for Eclipse, these bundles becomes
available to the developer.

In order to use these tools, the code for the back end consists of multiple
bundles that can run inside the same OSGi-application. These bundles, with full
name, include the following:

1. no.hal.eclipsky.services.emfs

2. no.hal.eclipsky.services.git

3. no.hal.eclipsky.services.monitoring

4. no.hal.eclipsky.services.mqttlogging

5. no.hal.eclipsky.services.workspace

6. no.hal.eclipsky.services.workspace.http

Each bundle have their own responsibility in the system, and the internal
communication is handled by Equinox (the OSGi-application).

Bundles

In section 4.5.3, the properties of a bundle was explained. Since bundles can be
replaced during run time, new versions of the components can be added without
having to stop the service. The following list will explain briefly what each
bundle’s responsibility is:

no.hal.eclipsky.services.emfs
The emfs-service provides an interface to import resources in to the project,
either from the file system, network communication or from a description
of the content inside the Xtext description.

no.hal.eclipsky.services.git
This bundle is used to retrieve and store resources to git.

32

CHAPTER 4. RESULTS

no.hal.eclipsky.services.monitoring
Receives information about request and responses when requests are sent
to the communication components (see section 4.7).

no.hal.eclipsky.services.mqttlogging
Receives the same events as the monitoring-bundle, and communicates
these with a MQTT broker.

no.hal.eclipsky.services.workspace
Provides an interface to interact with the Eclipse workspace

no.hal.eclipsky.services.workspace.http
Uses a Jetty Web Server to communicate with HTTP/WebSocket, and
provides the communication components defined in section 4.7.

Each bundle contains description of the different components inside that
the OSGi-application uses for managing the system. These components usu-
ally provides an interface class that other components inside the bundle (or other
bundles) can use, and a component-specific implementation of that interface.
For all the bundles shown in figure 4.5, a relation arrow points to the differ-
ent components it provides and the name of the interfaces. Both monitoring
and mqttlogging uses the ServiceLogger as an interface to receive events, and
handles them in their own way. For the EmfsService, the addImportSupport()-
method accepts ImportSupport-objects in the none-to-many relation. This re-
lation tells OSGi that the interface in the component can be called many times
with ImportSupport-objects. There is also a remove method in negation with
every add-method, except for methods that start with set.

Since the workspace.http-bundle contains 12 components, a second model
has been created. Figure 4.6 shows the components, with the same way of describ-
ing each as with figure 4.5. An exception to the interpretation of the description
is that some of the components have the same interface, so the implementation
class has been used instead. This is the case for all the grey and blue com-
ponents, which all have the SourceEditorServletService-interface. The blue
components (the bottom row) are used with running the project, and the grey
components (row above the blue components) are related to the basic editor tasks.
Another set of components that exposes the same interface are those in purple,
located in the topmost row. These implement the ServiceServlet interface. An-
other exception to the interpretation is the WorkspaceHttpService-component
in dark orange, which doesn’t use an interface but exposes itself.

In order to support Goal 4, the architecture of the workspace-bundle uses
generic project elements that are extended to be specific for Java. These generic
elements could be used to create new project types in the future.

33

4.5. ECLIPSKY

Figure 4.5: All bundles (except no.hal.eclipsky.services.workspace.http) with
their components

34

CHAPTER 4. RESULTS

Figure 4.6: The no.hal.eclipsky.service.workspace.http bundle with all its com-
ponents

35

4.6. PROPERTIES OF A PROJECT

4.6 Properties of a project
Each project has properties associated with it that have different responsibility.
The task id is used to identify projects, and the xemfs is used for generating a
project. difficulty, effort and editable are properties that is not related to the
project files in Eclipsky, but related to the exercise.

4.6.1 taskId
As the system needs to provide the possibility for students to open up a project
that they have previously worked with, a unique identifier must be generated for
each student on each exercise. If the student doesn’t want to log in to the course
wiki, the current session id for the student will be chosen instead. The unique
project name will be constructed by concatenating the students id (either from
session or from being logged in) with the task id using a hyphen (-), represented
as $userId-$taskId.

4.6.2 difficulty
Each exercise has a difficulty property to it which the instructor must assign a
value. This value can be changed without affecting the back end, as it is meant
to give the student visiting the course wiki an idea of the difficulty of the task.
The value is in the form of a percentage.

4.6.3 effort
To give the students an estimate about the time required to solve an exercise,
the effort property tells the student what time the instructor thinks the student
would need.

4.6.4 xemfs
The xemfs property mentioned in section 4.3.1 is part of the EMFS project dis-
cussed in the earlier work (section 2.6.2). It provides a language and the ability
to convert from the DSL-language to instances of classes, but the specifics won’t
be discussed further in this report. The purpose of using EMFS is to accommo-
date Goal 3 Instructor Usability by offering a flexible way to construct exercises
from the web, which can automatically create a project in Eclipse based on the
description.

36

CHAPTER 4. RESULTS

4.7 Communication components
All components that handle the communication between the Eclipse workspace
and the web editor exist inside the no.hal.eclipsky.services.workspace.http-
bundle. Even though each component have individual tasks, they can utilize the
other components to complete their task.

4.7.1 Refresh/Update component
As the name implies, this component handles refresh and updates. When a
student starts an exercise or switches between resources, a refresh message is
sent to the back end containing the name of the requested resource. Whenever a
student alters the content of the resource in the editor, an update message with
the name of the altered resource is sent to the back end. The response from the
back end is a list of error/warning markers for the resource in its altered state.

4.7.2 Close component
In order to switch between resources and build/run them, the resource must be
closed. This is because Eclipsky creates a WorkingCopy of a resource, which is
an object in memory with the content of the file. This service is used to save the
WorkingCopy of a resource to the file system, and is used by the Run and Test
components.

4.7.3 Completion component
This component provides the content assist suggestions to the web editor for a
given offset in the resource. The way the implementation uses content assist is
by getting proposals from the JDT through a WorkingCopy (see section 4.7.2).
These proposals exposes, among other things, the name, relevance, modifier (the
context of a proposal) and the signature (parameter(s) and return type). The
signature is in the form of a string that must be parsed to become human readable,
and has not been included in the implementation.

4.7.4 Run component
When the run button is pressed on the web editor, this component will get called
and run the current resource that is open in the editor. It will look for a run
configuration of the current resource, and generate one if it doesn’t exist, before
running the code as-is. The component will respond when the process is done
running.

37

4.7. COMMUNICATION COMPONENTS

4.7.5 Test component
For running tests, a test runner is required. The test runner need to know the test
suite and the test class to run the code on, and is independent of each students’
exercises. In the workspace of Eclipsky, there is a reference to a project which
contains all test suites, the JUnit framework and a test runner (see section 4.5.3).
When a student presses the test button on the web editor, a similar process to
the run component will be executed in Eclipse. The difference is that instead of
launching the resource, the test runner will be executed with the relevant test
suite as well as the class to run the test on passed in as arguments.

38

Chapter 5

Evaluation

In order to asses how successful the implementation both satisfies the require-
ments and the main goals of the research, an evaluation was performed. It’s
mainly divided in two parts; Analytical evaluation and qualitative user testing.
The analytical evaluation will look at how well the implementation satisfies the
requirements when considering performance, while the qualitative user testing
will consider the usability quality attribute.

5.1 Confluedit
As the Conluedit plugin was only used in a development environment, a thor-
ough evaluation of its approach to quality attributes has not been conducted.
Evaluating it in this context would be irrelevant for the students as well.

From the perspective of an instructor, creating a macro would look pretty
much identical on the course wiki and the development environment. The goal for
an instructor, Goal 3, is in regards to the usability of adding/altering an exercise.
Due to the implementation constraint IC4, simply implementing a macro that
accepts XEMFS would cover the usability aspects.

5.2 Performance of Eclipsky
In order to validate the performance of Eclipsky, the different functionalities of
the web editor was compiled in to a list of tasks. The different tasks that are
defined as follows:

Ensure project The first time a project is configured

Opening After a project has been set up locally, access it again.

39

5.2. PERFORMANCE OF ECLIPSKY

Resource Changing between resources in the web editor

Run existing Run code in the web editor for the first time

Run new Run code after a run configuration is created

Test Perform tests in the current resource

Cont. assist Perform content assist in the current resource

Markers Updating resource and get error/warning markers

To get a data set to evaluate, 20 measurements was performed for each task.
The measurements was done by seeing the load time of the web page and compar-
ing the time stamps of WebSocket frames. As discussed in section 4.5.1, editor
events will have a delay of 500ms before being transmitted. This delay is not
part of the measurements, only the time it takes to send the request to Eclipse
and get a result back has been recorded.

5.2.1 Test platform
Section 4.2.2 contains requirements for the performance of the implementation.
In order to verify that the implementation actually performs as required, the
different functionalities was tested and measured. The testing was performed on
a desktop PC with the specifications listed in table 5.1.

Component Description

CPU Intel i5 2500k, 6MB Cache, 4 cores, 3.30GHz

Memory 8GB DDR3 1333Mhz

Storage SSD: OCZ Vector 150 256GB

OS Windows 8.1 64-bit

Table 5.1: Hardware for the testing platform

5.2.2 Results
All the results from the measurements are listed in chapter D, and a summary is
presented in table 5.2. With the exception of Rel. std. dev. (relative standard
deviation), the values are written in milliseconds. The standard deviation, de-
noted as σ (sigma), is the amount of variation around the mean value of a data
set. The relative standard deviation shows the variation of the mean in the form

40

CHAPTER 5. EVALUATION

of a percentage value. NB! All values have been rounded to remove decimals
according to the precision of the measurements.

Task\Result Average Std. dev. Rel. std. dev. Max Min

Ensure project 632 67 2% 788 525

Opening 594 52 9% 680 492

Run existing 120 10 8% 136 109

Run new 175 35 20% 273 137

Test 210 4 2% 221 203

Cont. assist 24 25 106% 103 5

Markers 9 5 50% 21 4

Resource 4 5 135% 17 0

Table 5.2: Results from measuring different functions in the web editor

5.2.3 Starting project
Since some of the exercises require Eclipsky to download some files, the Internet
connection on the testing platform are relevant to the measurements. With a
download speed of about 30Mbps on the connection, downloading a relevant file
takes roughly 50ms. This measurement could be even lower in a server park.

The performance requirement EP1 required a maximum delay of one second
for starting a project. Both the tasks Ensure project and Opening show an
average below this requirement, but the max value for starting a new project is
relatively close to the maximum. Even though the system had to download files,
it seemed to have a low impact on the actual load time of the system, considering
the average for Ensure project is only 38.45ms greater than Opening.

5.2.4 Editor tasks
After the editor has been loaded, a WebSocket connection is established with
Eclipse. The measurements of these tasks should be as low as possible to imitate
a local IDE, and according to EP2 (basic editor tasks) the requirement is that
each task should take less than 250ms. The basic tasks in the editor consists of
Cont. assist, Markers and Resource, and all of these have a average measurement
below 25ms.

41

5.3. SCALABILITY

The standard deviation shows a small fluctuation over the average value, but
the relative standard deviation is quite high. Considering that these are very
low values, it doesn’t require much variation in order to result in a high relative
standard deviation. Since changing resources takes between 0ms (min) and 17ms
(max), it is a negligible performance hit. However, the content assists have a
significant difference between the lowest and maximum values compared to the
error/warning markers and switching resources.

5.2.5 Run/Test performance
Measuring run/test performance is hard to do since the amount of operations
included in a run time can vary greatly from exercise to exercise, and even between
students. The code that was measured included simple object instantiations and
printing to standard output, which requires very little computation power. The
measurements are therefore a baseline of what kind of performance the system
might provide.

Per the requirement EP3, running code and tests should take less than 500ms.
With the simple code written for the tasks Run existing, Run new and Test,
each task used less then the requirement. Running a project for the first time
does use some more milliseconds and with a greater standard deviation, but the
measurements from Run existing and Test are the ones that is actually relevant
for working on a project.

5.3 Scalability
In order to be able to start up Eclipsky as fast as possible, a headless run config-
uration was crated. This configuration will start Equinox itself, and it will only
include the bundles that Eclipsky need in order to complete its operations. When
executed on the test platform with the hardware described in table 5.1, Eclipsky
would be available to use within 3 seconds.

This is probably fast enough if a new Eclipsky instance is started up before
the other instances has filled up its capacity, and direct any new students to the
instance when its ready.

5.4 Usability testing
In order to verify how well the implementation of the web editor satisfies the
product quality (usability) and the quality in use (effectiveness) aspects of the
quality attributes, a usability test was performed. 5 students, hereby participants,
who volunteered was selected to be part of the usability test. The goal of the
testing was to see if:

42

CHAPTER 5. EVALUATION

1. The system responded to the expectation of the participants

2. The system offers efficiency and satisfaction to the participants

Before performing the usability tests, a test plan was made (see appendix B).
In the test plan, the different research questions and tasks that would be per-
formed in the usability testing was outlined. After the testing with the partic-
ipants was performed, all of the data was compiled together to different tables
and diagrams that offers an insight about how well the product is perceived from
a user’s perspective. As the participants must remain anonymous, they will be
given the pseudonyms P1 to P5.

5.4.1 Task performance
Each of the tasks include a Description, State, Success Criteria and Benchmark.
The Description is what the observer explains to the participants about what
they have to try to achieve. State is what the starting state of the task must be,
and the Success Criteria is what the user must end up with before it is completed.

The benchmark describes what is used to rate the usability of some part of
the implementation with each participant. In the test plan, a list of research
questions have been made based upon Goal 2, which is related to the usability
aspect of the students. Each of these questions have been given an equal weight
when it comes to measuring the participants’ satisfaction level with the system.

The research questions have different spans; Some span through the whole
system while some are just for some of the tasks. For each task, the research
questions that are related to that task (and not the whole system) are given a
score. If a research question is not part of task, the result will display a hyphen
instead.

5.4.2 All task scores
Each participant and their score for each task are laid out in the tables 5.3 to 5.7.
The task’s result have been calculated by testing if that for each participant, the
system accomplish the research question related to the task. For each related
task, a possible score of either 1 or 0 (“yes” or “no”, respectively) have been
assigned. The final result score for each task has been calculated by the following
equation: ∑n

i=1 ti
n

(5.1)

where ti is the value of each research question, and n is the number of research
questions related to that task. In the case where a research question wasn’t
answered in the test, the question will not be included in the equation.

43

5.4. USABILITY TESTING

Research Q.\Task T1 T2 T3

Finished 1 1 1

Test panel - 1 0

Running vs. testing 1 1 0

Code completion 0 - -

Response time 1 1 1

Result 75% 100% 50%

Table 5.3: P1’s score for the three tasks

44

CHAPTER 5. EVALUATION

Research Q.\Task T1 T2 T3

Finished 1 1 1

Test panel - 1 0

Running vs. testing 0 0 0

Code completion 0 - -

Response time 1 1 1

Result 50% 75% 50%

Table 5.4: P2’s score for the three tasks

Research Q.\Task T1 T2 T3

Finished 1 1 1

Test panel - 0 1

Running vs. testing 1 1 1

Code completion 0 0 -

Response time 1 1 1

Result 75% 60% 100%

Table 5.5: P3’s score for the three tasks

45

5.4. USABILITY TESTING

Research Q.\Task T1 T2 T3

Finished 1 1 1

Test panel - 1 0

Running vs. testing 1 1 1

Code completion 0 - -

Response time 1 1 1

Result 75% 100% 75%

Table 5.6: P4’s score for the three tasks

Research Q.\Task T1 T2 T3

Finished 1 1 1

Test panel - 1 0

Running vs. testing 1 1 1

Code completion 0 - -

Response time 1 1 1

Result 75% 100% 75%

Table 5.7: P5’s score for the three tasks

From looking at the tables 5.3-5.7, some patterns can be found. An obvious
observation is that all participants were able to finish their tasks and did not get
hindered by the response time of the system. Therefore, the parts of the system
that must be further analyzed are related to the test panel, running vs. testing
code, and code completion.

46

CHAPTER 5. EVALUATION

5.4.3 Combined results
All of the scores from every participant have been used to individually calculate
mean averages for participants and tasks, as shown in table 5.8. In order to see
if there is any outliers in the research, a standard deviation for the results of
each task was calculated. When used with the average of a data set, denoted
as 〈T 〉, the range, < a, b >, of the mean variation values can be calculated. By
using a data set from one of the three tasks, T , the range was calculated from
the equation 5.2:

[a, b] = 〈T 〉 ± σ (5.2)

Participant Task 1 Task 2 Task 3 Average

P1 75% 100% 50% 75%

P2 50% 75% 50% 58%

P3 75% 60% 100% 78%

P4 75% 100% 75% 83%

P5 75% 60% 100% 78%

Avg. 70% 79% 75% 75%

Std. dev. 11.18% 20.12% 25% 9.6%

Table 5.8: A summary of all participant’s result for each task

5.5 Issues
From the results of both the performance evaluation and the usability testing,
performance did not occur to be a problem. The issues are therefore related to
the other functionalities of the web editor, and will be discussed further in this
section.

5.5.1 Running code
In order to find the lowest value in the mean variation for Task 1, the standard
deviation of this task was subtracted from the mean average. When taking the
values from table 5.8, the lowest value becomes 58.82% (70% − 11.18%). The

47

5.5. ISSUES

only participant below this score is P2, with a score of 50%. The reason for this
participant’s deviation from the mean should be explored.

When comparing table 5.4 (The result of P2) with the other participants
(table 5.3, 5.5, 5.6, and 5.7), the only outlier is the research question related to
running vs. testing. The reason why the observer gave P2 a 0 mark on that
research question comes from the fact that P2 attempted to run the code by
using the Test-button instead of Run at the first run, as stated in table C.1.

5.5.2 Content assist
As is seen for the notes in table C.1, all participants expected that the editor
would support templates. After realising that the editor didn’t have support
for it, they continued to use the system without trying the code assistant. This
meant that most of the participants never actually used the feature, as it was not
as functional as the one they were used to in Eclipse.

Only one of the participants tried to use the content assist feature to get
a method, but since it only list method names and not the parameters, the
participant didn’t know what argument to put inside the method.

5.5.3 Individual run time
A recurring problem with the participants was that they didn’t intuitively under-
stand that the run time only executed on the active resource. One of the events
was that P4 ran the test in resource 1, and understood that an error was caused
by an error in resource 2. P4 then changed to resource 2 and fixed the code,
executed a test in resource 2 and then went back to resource 1. Inside resource
1, the old test output was still present (with an error). The participant thought
that there must still be an error in the code, even though it was fixed. How-
ever, the participant also stated that after knowing how it worked it was easy to
understand.

The way testing was implemented in JExercise allowed for students to run
tests on all resources in the project, and it was therefore expected that the same
behaviour was implemented in Eclipsky. P1 suggested that if the test was exe-
cuted on each individual resource that the resource name should be part of the
title for the test panel. If it was possible, P1 would prefer it if all tests related to
a project got executed when testing was initiated.

5.5.4 Test result
Participant P1, P2 and P3 wanted the test results to include more information
about the error message. P1 also wanted to see a stack trace of the error message
to see what line caused the error, as well as a more descriptive name for the

48

CHAPTER 5. EVALUATION

method to understand what it was testing. Another feature request from P1 was
the ability to choose explicitly which tests to execute, instead of having all tests
for a resource run as in the implementation.

5.5.5 Altering the UI
The participants also expressed some changes that they would like when it came
to the User Interface (UI). As stated in section 5.5.3, P1 suggested that the test
panel should include the name of the resource as a title. P1 also wanted that the
console had the title Console above it, as it wasn’t immediately understood what
it was.

All participants, except P2, would like to have the ability to customize the
design. These customizations include the ability to change the text size (for
readability) and different color themes in the editor.

5.5.6 Conclusion
Through the test results, many problems with the usability was pointed out.
However, at the end of the usability testing, the participants was asked if they
would have used the web editor if they were back at the start of the course without
the knowledge they now have. Most replied that they would have preferred to
use this system at the start of the course and for solving exercises. P4 had even
skipped doing exercises at the start of the course, because of the troubles of
configuring the development environment. Thise participant noted that using
the web editor was much simpler to use.

49

5.5. ISSUES

50

Chapter 6

Discussion

Through this research, an implementation of a web editor for students was cre-
ated. While the research was based on previous work (Rasmussen & Åse, 2014),
the goals, constraints and requirements have changed to include new aspects.
As well as analyzing the use of the implementation for students, the instructor’s
usability have been included based on the preliminary study (Vikås, 2014).

In order to cover Goal 1 Student Availability and Goal 3 Instructor Usability,
a Confluence plugin was created that can easily be included in the course wiki.
From the perspective of an instructor, adding or altering an exercise is done by
using XEMFS, a language already used for the creation of exercises in JExer-
cise. This means that the instructor can use the descriptions that was previously
written in XEMFS for all exercises when adding web editor to a page.

To satisfy Goal 2 Student Usability, the implementation Eclipsky was cre-
ated. Eclipsky serves the web editor and handles the IDE-functionality that the
users see in the web editor. To see how well Eclipsky satisfied the usability as-
pect, performance of the system was tested by measuring response time and the
effectiveness was tested by performing usability tests with student.

6.1 Usability testing
When performing the usability testing, several usability problems was discovered.
Before discussing the problems that was uncovered, it is important to note that
the participants is not the target demographic of the system, which is students
that have only gotten through the basic programming course.

The participants in the usability testing was all familiar with the use of Eclipse
to solve assignments using JExercise, and was used to the features available
from that IDE. Students that will be using this system in the future will most
likely only have used a regular text editor, where they would have to manually

51

6.1. USABILITY TESTING

compile/run code. This means that the expectations of the participants for the
system might be higher than the target demographic. Another thing to note is
that the sample size was quite small (5 participants), and that the results would
have probably been very different with more participants.

6.1.1 Content assist

For the final implementation, the content assist should at least display the pa-
rameter and return type of a method, and preferably include templates as well.
Templates might not be that important for the students that will be using the
final system, but considering that all participants expected the feature to be there
it might be a good feature to add. It could help ensure that the students will use
the implementation longer before switching over to an IDE.

6.1.2 Run time

There was some confusion for the participants about which resources that was
part of a run time. Since the confusion could be affected by the participants’ use of
JExercise and an IDE, this problem might not occur with the target demographic.
As P4 stated, after knowing how it worked it was easy to understand. It would
therefore probably be sufficient to introduce the implementation and explain how
it works to all students during a lecture.

6.1.3 Testing

Even though all participants managed to use the tests eventually, some had prob-
lems with the content of the tests not being informative enough. Having too much
information could potentially be overwhelming for the target demographic, but
having more understandable test names and descriptions would most likely be
beneficial.

6.1.4 UI

Most of the User Interface did not cause any usability problems, but the par-
ticipants still wanted to customize it to their liking. Including the ability to
change the text size inside the editor should probably be implemented, since the
implementation could be used by students with reduced eye sight. Having the
possibility to change between different themes could be beneficial for the same
reason, but also satisfy the students’ personal preferences.

52

CHAPTER 6. DISCUSSION

6.2 Cloud
Since the final implementation will run in the cloud, the implementation as it is
now must include more functionality related to the cloud before it is ready. In a
cloud solution, servers goes up/down at different times. If a student worked with
a project on one server, the same project files should be available to the other
servers if/when the first one goes down. To achieve this, a persistent storage
solution must be available so that a server running Eclipsky can both store files
there and retrieve them at any time. One solution is to use Git, which Eclipse
has built in support for and some of the included bundles already use.

Some Cloud services can offer the possibility to run as an OSGi-bundle, which
could help reduce load time as it doesn’t need to boot an entire virtual machine.
As of now, the hardware that the final implementation will run in is not known,
but having a system that has a low start up time is recommended. When used
locally, it is at least much more performant compared to the previous work by
Rasmussen and Åse (2014).

6.3 Tested exercises
Even though there are over 30 different exercises listed on the course wiki, only
a few was tested in the implementation. Considering that EMFS will be used to
create the project files, which is the same as in JExercise, it is assumed that they
will work in this implementation as well.

Since the implementation runs on the web, creating java window objects is
not possible. Exercises that require students to use a window could therefore not
be tested with this implementation.

53

6.3. TESTED EXERCISES

54

Chapter 7

Conclusion

Configuring a local development environment and using sophisticated software
can be a barrier for students learning to program computers. A cloud based web
editor opens up the opportunity for students to write code right away, and to do
so without the barriers of configuring the local development environment.

After the prototype was created, usability test was conducted with 5 stu-
dents to check its viability. The participants both solved tasks and discussed the
product with the observer, which resulted in qualitative data. Even though the
participants met obstacles when working with the product, everyone completed
the assigned tasks.

In regards to Goal 1 Student Availability of this research, the Confluedit
plugin was created to work with Eclipsky. Though many of the goals have been
met, Goal 2 student usability was not complete. While the performance was
never a problem during the performance measurements and usability testing, the
functionality wasn’t always what the participants expected.

7.1 Future research
As have been discussed previously in this chapter, more usability testing should
be performed to verify the usability problems of the system. This is also relevant
for the features will be fixed or added into the final implementation.

7.1.1 Including EMFS in Confluence
The preliminary study (Vikås, 2014) discussed several ways of introducing the
students to the web editor on the course wiki. One of the suggestions was to
have the code available when the student opened the page for an exercise, but
had to perform an action (e.g. press a button) to initiate the connection with the

55

7.1. FUTURE RESEARCH

Eclipse instance to configure the project. In order to achieve this, a possibility
is to include EMFS parser into Confluence and use the functionality of EMFS to
create the editor with static resources.

In order to achieve this, a web editor should be rendered on the page from
the Confluedit plugin with the resources described in XEMFS. After the student
activates the connection with Eclisky, Eclipsky will have to configure the project
locally. When Eclipsky is done, the editor could be either be swapped out with
an iframe that contains the web editor from Eclipsky (as it is implemented now)
or just replace the content in the editor with the files in Eclipsky.

7.1.2 Learning Analytics
Learning analytics is about collecting data for analysis and reporting about learn-
ers and their contexts. The goal is to get a greater understanding and to optimise
learning. In order to analyze how students solve exercises, Sørhus (2015) created
a Eclipse plugin to capture file changes, markers and tests that students do in
the Eclipse IDE. One of the purposes is to analyze what the students does in
each exercise, but a problem arose in trying to distinguish the specific exercises.
This is due to students altering or creating their own project and package names
for the exercises. By having a cloud based solution, all of the project, package
and resource names will be predefined and can not be altered by the students. If
the analytical plugin was included in Eclipsky, distinguishing exercises should be
trivial, and the final solution would be quite robust.

56

Bibliography

Bass, L. (2007). Software architecture in practice. Pearson Education India.
Beel, J. & Gipp, B. (2009). Google scholar‘s ranking algorithm: an introduc-

tory overview. Proceedings of the 12th International Conference on Sci-
entometrics and Informetrics. Retrieved from http://www.sciplore.org/
publications / 2009 - Google_ Scholar ’ s _ Ranking_Algorithm_ -- _An_
Introductory_Overview_--_preprint.pdf

Clayberg, E. & Rubel, D. (2008). Eclipse plug-ins. Pearson Education.
Collina, M., Corazza, G. E., & Vanelli-Coralli, A. (2012). Introducing the qest

broker: scaling the iot by bridging mqtt and rest. In Personal indoor and
mobile radio communications (pimrc), 2012 ieee 23rd international sympo-
sium on (pp. 36–41). IEEE.

Efftinge, S. & Völter, M. (2006). Oaw xtext: a framework for textual dsls. In
Workshop on modeling symposium at eclipse summit (Vol. 32, p. 118).

Johansson, N. & Löfgren, A. (2009). Designing for extensibility: an action research
study of maximising extensibility by means of design principles. Retrieved
October 6, 2015, from https://gupea.ub.gu.se/bitstream/2077/20561/1/
gupea_2077_20561_1.pdf

Koplowitz, R. (2010). Enterprise social networking 2010 market overview. For-
rester. Retrieved November 19, 2014, from http : / /webjam - upload . s3 .
amazonaws . com/UKIm0Swakr_ Enterprise%20Social% 20Networking%
202010%20Market%20Overview.pdf

McAffer, J., VanderLei, P., & Archer, S. (2010). Osgi and equinox: creating highly
modular java systems. Addison-Wesley Professional.

Oates, B. J. (2006). Researching information systems and computing. SAGE Pub-
lications Ltd.

Rasmussen, C. & Åse, D. (2014). A web-based code-editor.
Rubin, J. & Chisnell, D. (2008). Handbook of usability testing, second edition:

how to plan, design, and conduct effective tests. Wiley Publishing, Inc.
Sørhus, S. K. (2015). Applying learning analytics in the course tdt4100 at ntnu.
Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008). Emf: eclipse

modeling framework. Pearson Education.

57

http://www.sciplore.org/publications/2009-Google_Scholar's_Ranking_Algorithm_--_An_Introductory_Overview_--_preprint.pdf
http://www.sciplore.org/publications/2009-Google_Scholar's_Ranking_Algorithm_--_An_Introductory_Overview_--_preprint.pdf
http://www.sciplore.org/publications/2009-Google_Scholar's_Ranking_Algorithm_--_An_Introductory_Overview_--_preprint.pdf
https://gupea.ub.gu.se/bitstream/2077/20561/1/gupea_2077_20561_1.pdf
https://gupea.ub.gu.se/bitstream/2077/20561/1/gupea_2077_20561_1.pdf
http://webjam-upload.s3.amazonaws.com/UKIm0Swakr_Enterprise%20Social%20Networking%202010%20Market%20Overview.pdf
http://webjam-upload.s3.amazonaws.com/UKIm0Swakr_Enterprise%20Social%20Networking%202010%20Market%20Overview.pdf
http://webjam-upload.s3.amazonaws.com/UKIm0Swakr_Enterprise%20Social%20Networking%202010%20Market%20Overview.pdf

BIBLIOGRAPHY

Vikås, L. B. (2014). Integrating a web based editor in a course wiki for tdt4100
object-oriented programming at ntnu.

Whitehead, C. C. (2006). Evaluating web page and web site usability. In Pro-
ceedings of the 44th annual southeast regional conference (pp. 788–789).
ACM.

Wikipedia. (2015, May). Comparison of javascript-based source code editors. Re-
trieved May 11, 2015, from http://en.wikipedia.org/wiki/Comparison_
of_JavaScript-based_source_code_editors

58

http://en.wikipedia.org/wiki/Comparison_of_JavaScript-based_source_code_editors
http://en.wikipedia.org/wiki/Comparison_of_JavaScript-based_source_code_editors

BIBLIOGRAPHY

59

BIBLIOGRAPHY

60

Appendices

61

Appendix A

Workflow

In order to explain the entire flow of the system, figure A.1 contains a BPMN-
diagram that explains the work flow for a student who wants to solve an assign-
ment.

I

Figure A.1: A overview of the entire implementation

II

Appendix B

Test plan

This plan outlines the different aspects of performing the usability test. The tests
and the test plan was constructed based on the structure described by Rubin and
Chisnell (2008).

B.1 Purpose
The purpose of conducting this usability test is to see if the participants perceives
the functionality of the artifact in the way it was designed, as well as finding out
if the participants would find the artifact useful enough to be preferred over the
way assignments are solved now.

B.2 Research Questions
For the usability testing, the only goal that has been taken into consideration is
Goal 2, which is related to the student usability of the system (See section 1.1.2
in the thesis for more information). The research goal have been expanded into
the following questions:

1. Are any of the participants unable to finish a task?

2. How easily does the participant understand how to use the test-panel when
solving assignments?

3. Are the participant able to understand the difference between running the
main-method and the tests?

4. How easily does the participant understand how to change between re-
sources?

III

5. How easily and successfully does the participant figure out how to perform
code completion?

6. Does the response time from the server cause frustration for the user?

B.3 Participant Characteristics
Since the implementation is designed for a very specific target group, the partic-
ipants will all have the same characteristics. All participants are part of the first
year for a MSc degree in computer science at NTNU, and have approximately
the same skill set. This means that they all have some programming experience,
and have recently used the current implementation to solve assignments. These
are also the same assignments the new implementation is designed to work with.
Since the participants have recent experiences with the current system, they
should have a good insight when it comes to comparing the new implementation
with the old one.

B.4 Method
For acquiring participants, the supervisor of the research will send out a request
to all students currently in the subject and ask if they want to participate in the
test with a free dinner as a reward. Considering the timing of the test is close to
the students finals, the reward might help encourage them to participate. The
expected amount of volunteers is low, so the required group size has been set to
five.

Since the numbers of participants is low, a within-subjects design has been
chosen. This design lets all participants try to accomplish every task, instead
of splitting them up to groups where each solve different tasks. A problem with
this approach is the potential of transfer of learning, e.g. a participant will find
it easier to solve task B after first solving task A. A mitigation of this problem is
to have the participants solve the tasks in different order, but since some of the
tasks depend on each other, the order of the tasks can’t be randomized for each
participant. However, this problem is also mitigated by having participants with
the same type of prior experience, which is the case in this research.

B.5 Session outline
Each test session will last for 20 minutes, which includes introducing the software,
participants performing tasks and post-test questions. During the introduction,
the moderator will inform that the participants will be anonymous and that they

IV

will not be tested on their programming proficiency, as well as information on
the test procedure.

The test procedure includes the moderator observing the participants while
they try to think out loud every step of the way. This is to help the moderator
with estimating the benchmarks afterwards. If the participants ask questions,
the moderator should not give them direct information on how to solve a task
unless needed to go to the next task.

B.6 Test Environment
For the testing procedure, a room at NTNU have been booked for two hours
where each participant takes their turn in trying to solve the tasks. When it
comes to equipment, the participants will use their own computers to perform
the tasks. As the solution is web-based, all modern web browsers should be able
to run the site without problem.

B.7 Moderator Role
The moderator will have the role of an observer, and sit in the room with the
participants to describe each task they have to solve. As the participants perform
their tasks, the moderator will be available to answer questions and offer some
assistance. Some follow-up questions might be asked to help with the benchmark
if the participants reading aloud is not enough. After the test phase, the mod-
erator will ask the post-test questions. Along the way, the moderator will take
notes of the participants responses and behaviour.

B.8 Tasks
In the following tables, the different tasks have been outlined with the different
components. The Description gives a brief explanation of the task the participant
have to achieve, while the State explains the state the project has to be in before
the task begins. A Success criteria explains what the final result should be, while
the Benchmark outlines what is used to evaluate the participants performance of
the test. The benchmark are compiled from the research questions in section B.2.

V

COMPONENTS DESCRIPTION

Description Create a main-method that will test the Card.java’s
toString()-method, and run it.

State Start in Card.java with the default content.

Success criteria The participants get an output from the Card.java’s
toString()-method in the console

Benchmark Participants understands which button to press to run
the code, and not run tests. Participants also identifies
that it’s the console that will display the output.

Table B.1: Task 1

COMPONENTS DESCRIPTION

Description Complete the Card.java-class and have all tests for it
pass.

State Start in Card.java with the default or previous con-
tent.

Success criteria Participants are able to write code and run tests to
ensure that the class passes the tests

Benchmark The participants are able to understand the problem
markers and make use of the test panel to see if there are
any errors in the current state they are in. They must
also be able to conclude when all tests have passed.

Table B.2: Task 2

COMPONENTS DESCRIPTION

Description Have all tests for the assignment pass.

State Start in Card.java with state from task B.2.

Success criteria All of the tests related to the assignment should pass.

Benchmark Participants are able to make use of the test panel to
both see if there are any errors in the current state they
are in, and to conclude that all tests have passed.

Table B.3: Task 3

VI

B.9 Post-test questions
The post-test questions have two purposes; Get (more) information from partic-
ipants that wasn’t written down during the tests and get the participants’ true
evaluation of the product. This gives the participants the possibility to, amongst
other things, explain their view of the product and express their personal prefer-
ences.

The first question is an open one about what participants thought about the
product, so that the they have the possibility to express what they really think
without being constrained by the questions. If there was any problems during
the test that wasn’t (completely) answered, the participants will be asked to
explain why that was. Afterwards, the rest of the questions will be related to the
questions in section B.2.

During all these questions, the focus will be on problems and difficulties that
the participants experienced and not so much on solving those problems. How-
ever, if the participant expresses a solution, it will be written down as it could
be useful later.

VII

VIII

Appendix C

Test result

C.1 Task notes
During the tasks, the observer took notes about what the participants told the
observer and the participants interactivity with the editor. This led to a lot of
useful notes, but all of them was not related to the current task. The unrelated
notes have therefore been placed in the post-question section C.2 under appropri-
ate and relevant questions. For this section, the notes for each task/participant
only mention the main information used for determining the benchmark.

IX

Task 1: Create a main method

Description Create a main-method that will test the Card.java’s toString()-
method, and run it.

Benchmark Participants understands which button to press to run the code,
and not run tests. Participants also identifies that it’s the console that will
display the output.

Participant Notes

P1 Tries to use templates, which is not implemented.
Ctrl+S when trying to run.

P2 Tries to use templates, which is not implemented.
Pressed test instead of “compile and run” the first
time

P3 Tried to use templates

P4 Tried to use templates

P5 Tried to use templates and Cmd+S shortcut to run
the program

Table C.1: Results from all participants in Task B.1

X

Task 2: Complete Card.java

Description Complete the Card.java-class and have all tests for it pass.

Benchmark The participants are able to understand the problem markers and
make use of the test panel to see if there are any errors in the current state
they are in. They must also be able to conclude when all tests have passed.

Participant Notes

P1 Used code completion correctly. Didn’t understand
the problem as it was stated in the problem marker
(mostly skill related).

P2 Acknowledge error markers in the code, but doesn’t
hover over to check the content. Clicks "compile and
run" before clicking "test".

P3 Utilized the information from a test run to solve the
task. Used a long time beforehand by switching be-
tween resources before realizing where the test panel
was.

P4 Read the information in the error marker in order
to solve the task, solved the tests on the first try.

P5 Runs tests first and use that information before try-
ing to solve. Doesn’t utilize code completions.

Table C.2: Results from all participants in Task B.2

XI

Task 3: Complete Assignment

Description Have all tests for the assignment pass.

Benchmark Participant are able to make use of the test panel to both see if
there is any errors in the current state they are in, and to conclude that all
tests have passed when they actually are.

Participant Notes

P1 Confusion about whether to click "compile and run"
first before clicking "test", as the "test" button
doesn’t have a "compile and test" description. Con-
fusion about tests being related to each file, and not
seeing all the tests at the same time.

P2 Doesn’t realize that the tests are for each individual
class. Utilized test message to reason about solving
the task, and whether it was concluded. Clicked
"compile and run" before "test".

P3 Understood that the test was a per-class basis.

P4 Used the Test panel’s drag functionality. Expected
that the tests had been performed on every class.

P5 Runs test first, but doesn’t check information inside
the error. Runs tests in all resources to ensure task
is completed.

Table C.3: Results from all participants in Task B.3

XII

C.2 Post-test question
After the test phase, the participants was asked some open questions about the
system. All the questions with each participant’s answer is listed below.

C.2.1 Was there any problems/difficulties when using the
product that prevented you from solving the tasks?

P1 Tried templates, which doesn’t work. The console should have a title so that
it’s easier to understand what it is and what it does.

P2 Missing templates and the lack of showing possible parameters for methods.

P3 Not really. Would prefer if there was templates. Experienced a bug where
trying to use code completions, where it removed text due to there being
errors in the line above.

P4 Noticed that templates didn’t work. Thought that all tests for all files would
run on "test", and not just the current one. Would prefer longer error
messages.

P5 No, but was less efficient due to the lack of templates.

C.2.2 Did you find the product easy to work with? If so,
why?

P1 Completely fine to work with. Very useful with semi-filled classes.

P2 Likes that a closing-bracket is automatically added when writing a opening-
bracket. The lack of available options made it very easy to work it, as the
other stuff could cause confusion. Very user friendly in that regards.

P3 Liked the structure with having both tests and possibility to run the code
on the resources.

P4 It felt intuitive and it was easy to start coding. This was a big contrast to
the other system which had resulted in skipping assignments at the start
of the year.

P5 Due to the lack of possibilities, the product felt minimalistic. This made it
easier to work with.

XIII

C.2.3 Was it easy to understand and use the test panel for
solving the tasks?

P1 Finding out how to run tests was more intuitive than in Eclipse. Would rather
have the test details arrow pointing towards the text when it’s collapsed
and pointing down when open. Would also want a description in a test
run that states which line numbers in the code that caused the test to
fail. Didn’t like that the test panel changed size automatically. When
tests succeed, it would be nice to see what the test actually checked. Not
intuitive if the code will be compiled when running tests, or if you have
to do that manually. Would want the possibility to choose what tests to
run. To indicate that the tests are on a per-resource basis, the title of the
tests panel should include the resource name. Tests in the current resource
that depended on other resources should not appear, as it looks like it’s the
current resource that has the error (Alternatively run all tests every time on
all resources). Preferably, the test details should save the open/closed state
when switching between resources. Tests that has an OK status should
not have animations on click. The name of each test didn’t give enough
information about what it was trying to achieve.

P2 Confused about the meaning of the Test at first, and thought the first er-
ror meant that the test was ok (The method was supposed to return an
Exception on illegal arguments).

P3 Didn’t quite understand what the test panel and the "test" button did. Un-
derstood right away that the tests where on a per-resource basis, but would
like more information in the dialog (both on errors and successful tests).

P4 Yes, due to the cleanliness and availability of the panel. Made it easy to
perform tests often, and resizing the panel was useful.

P5 Yes. The color and symbols was also easy to understand.

XIV

C.2.4 What did you think about how the resources was
managed in the system?

P1 Liked that the resources was in tabs, but had some confusion about the tests.

P2 Understood right away, easy to use.

P3 Liked the structure with the split into "running code" and "testing code".
Good thing that you can’t close a resource.

P4 At first, somewhat confusing, since it was expected that tests would be ran
on all files. However, it’s not really a problem but something you need to
be aware of.

P5 Content with the way things are now, as it makes it easier to have an overview
of the system.

C.2.5 Is there anything else about the system that you
would want to have been handled differently?

P1 Tabs should have a brighter color for readability. The color theme and text
size of the editor should be changeable by the user. Code completion should
include parenthesis on new objects.

P2 Adding templates and parameter for methods.

P3 Possibility to change text size in the editor.

P4 More customizable design/layout, like themes and text size.

P5 Would prefer a different theme, preferably a bright one.

C.2.6 If you imagine yourself as a new student in this
course, would you consider using this product in-
stead of the current implementation?

P1 Not for own projects, but would use it at the start of the course to solve
assignments. Liked that it removes the need for setting up either Eclipse,
Jextest or the project resource files manually. Would personally transfer
over to an IDE after a while, as that is what you would have to use when
getting a real job.

XV

P2 Would use this product for the assignments, and Eclipse for other things like
own projects.

P3 See the possibility of having this as a platform for having programming ex-
ams, but would rather use Eclipse as it gives freedom to structure own
projects.

P4 Due to the experience with the current implementation, yes. In bigger sys-
tems and for normal use, Eclipse would be preferred. For the assignments,
this solution would be much simpler to use.

P5 Yes. It would make it much easier to start with an assignment, and it’s much
harder to make any mistakes with this system since there is only a limited
amount of modules that is accessible.

XVI

Appendix D

Performance measurements

This chapter contains all the raw data from performing performance measure-
ments on the web editor from Eclipsky.

XVII

Meassure\Task Ensure Project Open Resource

1 697 522 17

2 604 628 7

3 563 557 1

4 628 582 1

5 788 585 3

6 648 658 1

7 620 666 1

8 661 631 0

9 684 558 7

10 529 574 2

11 619 589 11

12 676 492 1

13 641 656 1

14 667 542 1

15 629 527 2

16 527 634 1

17 725 596 1

18 611 612 1

19 525 581 2

20 597 680 17

Table D.1: Performance of ensuring a project, opening up a ensured project and
changing resources

XVIII

Meassure\Task Run existing Run new Testing

1 110 137 221

2 111 168 213

3 113 166 211

4 111 161 209

5 113 168 209

6 109 167 209

7 112 165 208

8 110 163 209

9 110 177 210

10 113 164 215

11 136 175 210

12 117 156 210

13 118 158 209

14 130 181 209

15 133 163 209

16 127 165 212

17 136 160 207

18 129 153 210

19 130 273 207

20 128 271 203

Table D.2: Performance of running a project with and without run configuration,
and testing

XIX

Meassure\Task Content assist Markers

1 103 7

2 12 21

3 12 5

4 7 11

5 8 19

6 78 10

7 8 4

8 13 8

9 48 4

10 21 12

11 19 11

12 22 8

13 23 13

14 15 11

15 25 4

16 20 4

17 19 7

18 7 8

19 5 12

20 8 8

Table D.3: Performance of doing basic tasks in editor

XX

Appendix E

Source Code

The implementation that was created in this research is located in public reposi-
tories on Github. Since the base implementation of Eclipsky was created by the
supervisor, a separate forked repository was created. Confluedit, however, resides
in a single repository.

Eclipsky - Base https://www.github.com/hallvard/eclipsky

Eclipsky - Fork https://www.github.com/bvx89/eclipsky

Confluedit https://www.github.com/bvx89/confluedit

XXI

https://www.github.com/hallvard/eclipsky
https://www.github.com/bvx89/eclipsky
https://www.github.com/bvx89/confluedit

	Introduction
	Goals
	Goal 1 Student Availability
	Goal 2 Student Usability
	Goal 3 Instructor Usability
	Goal 4 Extensibility

	Structure

	Background and Theory
	Quality Attributes
	Product quality
	Quality in use

	The Course
	Assignments
	Exercises
	Tests
	Avoiding environment configuration

	Eclipse
	Eclipse Java editor features

	Assignment System prototype
	Gamification

	Scalability
	Confluence
	Page editor
	emfs

	Method
	Development method
	Literature
	Data gathering
	Usability testing
	Types of testing
	Performing usability test
	Post-testing survey

	Results
	Overall design
	Requirements and constraints
	Editor Functionalities
	Editor Performance
	Implementation Constraints

	Confluedit – Instructor's viewpoint
	Creating the macro

	Confluedit – Students' viewpoint
	Initializing project on Confluedit

	Eclipsky
	Serving web page
	Compiling and running code
	Towards cloud service
	osgi-runtime

	Properties of a project
	taskId
	difficulty
	effort
	xemfs

	Communication components
	Refresh/Update component
	Close component
	Completion component
	Run component
	Test component

	Evaluation
	Confluedit
	Performance of Eclipsky
	Test platform
	Results
	Starting project
	Editor tasks
	Run/Test performance

	Scalability
	Usability testing
	Task performance
	All task scores
	Combined results

	Issues
	Running code
	Content assist
	Individual run time
	Test result
	Altering the ui
	Conclusion

	Discussion
	Usability testing
	Content assist
	Run time
	Testing
	ui

	Cloud
	Tested exercises

	Conclusion
	Future research
	Including emfs in Confluence
	Learning Analytics

	Appendices
	Workflow
	Test plan
	Purpose
	Research Questions
	Participant Characteristics
	Method
	Session outline
	Test Environment
	Moderator Role
	Tasks
	Post-test questions

	Test result
	Task notes
	Post-test question
	Was there any problems/difficulties when using the product that prevented you from solving the tasks?
	Did you find the product easy to work with? If so, why?
	Was it easy to understand and use the test panel for solving the tasks?
	What did you think about how the resources was managed in the system?
	Is there anything else about the system that you would want to have been handled differently?
	If you imagine yourself as a new student in this course, would you consider using this product instead of the current implementation?

	Performance measurements
	Source Code

