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Abstract
Communication  between  spacecraft  in  deep  space  is  difficult  and  costly.  On  the  other  hand,
autonomous missions may behave suboptimally when starved for information. We investigate the
balance between communication and efficiency in planned asteroid exploration missions involving
multiple cooperating spacecraft. 

We produce a map over all available transfer windows in a 20 year period from a given initial orbit
within the asteroid belt. A swarm of spacecraft is tasked with exploring the asteroid belt via these
transfer opportunities, using an evolutionary algorithm to plan its routes. The amount of information
available to each spacecraft is varied between no information, occasional aggregated updates and
complete information about the plans of the other spacecraft. 

Comparing the performance of  swarms with different  amounts  of information,  we examine the
efficiency loss, in terms of scientific return, from limiting their ability to coordinate and conclude
that coordination is not necessary under the examined conditions. The sheer size of the asteroid belt,
and the wide variety of options means that autonomous spacecraft are unlikely to decide to explore
the  exact  same asteroids.  We find  that  it  is  not  necessary to  spend any significant  amount  of
resources on maintaining communication within the swarm. At least, unless the number of target
asteroids is significantly reduced compared to the full asteroid belt or a larger number of spacecraft
is involved.

Sammendrag
Kommunikasjon mellom romfartøy er krevende, men det er en mulighet for at autonome oppdrag
yter dårligere hvis kommunikasjonsnivået begrenses. Vi undersøker sammenhengen mellom ytelse
og kommunikasjon for planlagte asteroideutforskningsoppdrag som involverer flere samarbeidende
fartøy.

Vi produserer et kart over alle reisemuligheter mellom asteroidene i hovedbeltet i en 20 års periode,
med  utgangspunkt  i  en  gitt  startbane.  En  sverm  av  romfartøy  har  som  oppdrag  å  utforske
asteroidebeltet via reisemulighetene fra kartet. Kunstig evolusjon brukes til å planlegge fartøyenes
ruter, med varierende tilgang til informasjon om hva resten av svermen foretar seg. Alternativene vi
skal  se  på  er:  ingen  informasjon,  regelmessige  oppdateringer  med  begrenset  informasjon  og
øyeblikkelig full informasjon.

Ytelsesforskjellen mellom kommunikasjonsnivåene undersøkes med tanke på vitenskapelig gevinst.
Konklusjonen er at delt informasjon ikke er nødvendig for de undersøkte forholdene. På grunn av
den enorme størrelsen til  asteroidebeltet  og de mange valgmulighetene er det lite sannsynlig at
ukoordinerte fartøy velger de samme rutene. Det ser ut som det ikke er viktig å bruke store mengder
ressurser på å opprettholde kommunikasjon internt i svermen. Dette gjelder med mindre langt færre
asteroider anses som gode mål eller langt flere romfartøy er involvert.
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1 Introduction
Deep space communication is costly and difficult, but the cooperation of autonomous spacecraft
may suffer  without  it.  The  exact  trade  off  between  communication  cost  and  efficiency loss  is
important  for  future  space  missions  involving  multiple  autonomous  spacecraft.  We  seek  to
investigate this trade off.

1.1 Motivation

Space agencies are currently investigating a new class of multi-spacecraft  missions.1,2 A typical
target of these missions is the main asteroid belt.3,4 Given the huge variety of asteroids and the
limited lifespan of all spacecraft, a single probe would only be able to explore a scant handful of
asteroids.5 In  order  to  answer  the  many  open  questions  about  them,  visiting  dozens  or  even
hundreds may prove necessary.6 This is far beyond the capacity of a single spacecraft.

Traditionally, each spacecraft would be controlled individually from Mission Control on Earth. In
this case, the sheer number of spacecraft would require a tremendous amount of manpower. Even
simple satellite missions today have three or four mission controllers for every satellite in orbit. 2

The obvious solution is to make the vehicles more autonomous, but this leads to another problem;
one of coordination.

Communication is central to good cooperation, also for autonomous agents. Too little, and each
agent pursues its own goals independently of the rest.  Too much, and important time is wasted
communicating unnecessary information. This is not a trivial problem and compromises must be
painfully worked out.7

For spacecraft,  communication costs  more than just  time. To receive and transmit  data  without
using too much power,  spacecraft  must use a directional antenna.  Such an antenna needs to be
aimed, meaning the receiver and transmitter must be pointed towards each other.8 Consequently,
both parties must know in advance when communication will happen and the direction of the target.
The antenna is often rigidly mounted,  meaning the entire spacecraft must be rotated to aim it.4

Rotating  the  spacecraft  requires  power  for  flywheels  or  propellant  for  thrusters.  The  fixed
orientation of the spacecraft means that, during communication, rigidly mounted solar panels are
not angled to receive the maximum amount of light. Similarly, the propulsion system has a very
limited vector it can thrust in, making manoeuvring all but impossible.  To make matters worse, the
limited power and vast distances involved limits the bit rate to hundreds of bits/s at most.4

In  the  scarcely  populated  asteroid  belt,  target  asteroids  can  be  millions  of  kilometres  apart.
Spacecraft spread out significantly as they explore outwards through the belt and communication
gets more and more difficult. But how much is the performance of a swarm of spacecraft reduced, if
at all, when their ability to communicate lessens? Limiting the communication needs of a spacecraft
frees up resources for other purposes and allows it  to navigate more freely.  With less need for
resources,  a  lighter  and  cheaper  platform  can  be  used.  However,  limiting  the  amount  of
communication makes cooperation more difficult, and a compromise must be struck. But before we
can attempt to find a reasonable compromise we need to know what the spacecraft will be doing. 

The largest open question about the asteroid belt is the composition of the asteroids themselves.9

While Earth based spectrographic analyses has been able to gleam some understanding of their
chemical structure, the macroscopic build-up is hard to determine via telescope. Asteroids could be
loose piles of dust and rocks held together by mutual gravitational attraction. Alternatively, they
could be solid objects fused together by repeated collisions; its surface covered by more recent
debris and dust. Analysis is further complicated by there being at least a dozen classes with very
different chemical make up.10 It's  fully possible that some asteroid classes are “piles of rubble”
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while others are “dusty solids.”11

The question of asteroid composition is not merely academic. Should it become necessary to deflect
an asteroid that would otherwise impact Earth, it makes a big difference whether it is a dusty solid
or a rubble pile. A dusty solid has the structural integrity required to allow us to mount rocket
engines on it,  or use a nuclear warhead to vaporise part of it as an impromptu rocket engine.12

Attempting to deflect a rubble pile with these methods would only result in it scattering, so they
require entirely different strategies than dusty solids. 

Similarly, the fledgling asteroid mining industry is very interested in asteroid composition. Mining
techniques vary depending on the material in question. Solid asteroids are easier to attach spacecraft
to, while loose regolith can be easily scooped up with light machinery. Furthermore, information
about the density of an asteroid tells whether it might have an icy core, which would make it a
valuable source of hydrogen propellant. Greater understanding of the asteroids simplifies asteroid
mining; which in turn, through cheap in-space access to propellant, reduces the cost of future space
exploration.13

Unfortunately, the asteroids have not seen as much study as the Moon or Mars. Over the past 50
years, we have sent probes to every planet, but less than a dozen asteroids have ever even received a
flyby.  While  classification  schemes  differ,  most  divide  asteroids  into  4-24 categories  based  on
spectrography alone.10 The greatest  achievement to date has been the Japanese Hayabusa probe
taking samples  of  surface of  25143 Itokawa and managing to  return  them to earth despite  the
mission's constant technical issues.14

Otherwise,  progress  has  been  limited,  although  there  are  some  interesting  ongoing  projects.
Hayabusa 2 is currently headed for 1999 JU3; having hopefully ironed out the technical issues that
plagued its predecessor.15 NASA intends to launch OSIRIS-REx in 201616, and the Dawn mission is
currently  orbiting  1  Ceres  (the  first,  and  largest,  asteroid  ever  discovered)17.  Two  commercial
companies have also announced plans for asteroid prospecting: Deep Space Industries and Planetary
Resources.

These projects have only a few targets at most, leaving a lot to be explored. A more thorough survey
is needed to fully understand the diversity and composition of asteroids in the solar system. Perhaps
the most notable such project, NASA's PAM/ANTS mission,3 was cancelled years ago. It would
have involved a  thousand 1kg spacecraft,  making extensive  use of  future  nanotechnology.  The
European Space Agency (ESA) has a far more conservative project called the Asteroid Population
Investigation & Exploration Swarm (APIES) in its early stages of planning.4

APIES, which is described in detail in section 2.2, consists of 20 spacecraft; 1 HIVE and 19 BEEs.
The BEEs assume a formation around the HIVE and intercept passing asteroids. During a flyby,
they will capture as much data as possible while still remaining at a distance. The mission expenses
would be unacceptably high if these spacecraft are all to be remote controlled without extensive
automation.

1.2 Research Goals

The traditional strategy of remote controlling all spacecraft from Earth would not be feasible for
APIES. ESA plans to use swarm intelligence, but has not yet decided on any details. We hope to
contribute in  their  decision making by examining the value of  communication for a  simplified
model of the mission. Using a simple swarm based technique, we compare how the BEEs perform
with varying amounts of shared information. Hopefully, this will help ESA find the proper balance
between communication overhead and duplication of effort.
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1.3 Research Questions

We use a modified version of the APIES mission as explained in chapter  4. Our BEEs do not
perform flybys of passing asteroids, but seek out and orbit asteroids on their own initiative. 

We  will  investigate  how  well  a  swarm  of  spacecraft  operates  with  varying  amounts  of
communication. The spacecraft will use an evolutionary algorithm to navigate a simplified model of
the  asteroid  belt.  Different  fitness  metrics  are  used  depending  on  the  amount  of  information
available to the individual spacecraft.

To  evaluate  our  methods,  we  will  use  a  Monte  Carlo  Simulation,  described  in  section  3.6,  to
generate a large set of random solutions. We can compare the performance of our methods to this
statistical baseline. This both allows us to see how much better than random our solutions are and
how close to optimum we can get. 

The first test is the maximum attainable performance if the spacecraft are guided from Earth. The
planning is done with full access to all information known to the Earth-based Mission Controllers.
To simplify the problem, it is assumed that everything goes according to plan and no replanning is
necessary during the mission. As such, our first research question is:

RQ1 What is the maximum efficiency we are able to achieve when all spacecraft plan collectively
before the start of the mission and everything goes according to plan?

This is equivalent to giving orders to every spacecraft individually from an Earth based autonomous
system. Although this is certainly possible, it may be desirable to limit the use of the Earth based
Deep Space  Network transmitters  if  the  loss  in  efficiency is  not  too  high.  Tripp  and Palmer's
stigmergy method, described in section 3.5, is an established evolutionary method for reducing the
communication requirements of spacecraft  swarms. In order to quantify this efficiency loss, we
formulate our second research question:

RQ2 Is there a significant loss in efficiency when stigmergy mechanisms are used to reduce the
communication requirements of the swarm?

Given the sparsity of the asteroid belt, the loss in efficiency if there is no coordination at all may not
be insurmountable. Having a collection of individual agents would not be as much of a problem if
their initial dispersion goes well. Heterogeneity would help them avoid independently following the
same plan, but:

RQ3 Is heterogeneity enough to ensure reasonable efficiency even with no communication?

The three methods will be compared to one another and to the Monte Carlo baseline. We will vary
the rate of stigmergy updates and the level of heterogeneity to see how this affects the results. All
results will be placed in a two-dimensional graph showing their efficiency in the solution space. The
graph is a histogram of the utility versus percentage of solutions with that utility.

1.3.1 Hypotheses

We expect the distribution of the solution space to favour low efficiency solutions, displaying an
inverse relationship between scientific return and number of solutions with that level of scientific
return, as seen in Figure 1. The vast majority of randomly generated routes should be too propellant
intensive for the spacecraft and so visit few and low value targets. 

Our best  case scenario with full  communication (RQ1) is  not  expected to  reach the maximum
efficiency solutions found by Monte Carlo. Our algorithms will always have some inefficiency that
Monte  Carlo  Simulation  will  avoid  because  of  the  low probability  that  none  of  the  randomly
generated solutions will be extremely efficient. However, we still expect our minimum expected
utility to be well within the upper five percentiles of the solution space, making it better than at least
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95% of the solution space.

Stigmergy (RQ2) should display a wide range of utilities depending on the level of heterogeneity
and how often  updates  are  sent  out.  However,  we still  expect  to  find  parameters  for  which  it
performs at a similar level as full communication, although it should be unable to reach the same
efficiency. Because heterogeneity is used to avoid plan overlap, the performance of stigmergy is
expected to suffer as heterogeneity is reduced. A reduced frequency of updates should have the
same effect. We expect it to be better than at least 90% of the baseline solutions at peak efficiency.

The lack of heterogeneity should have the same effect on the alternative without communication
(RQ3), but to a larger degree. The solutions itself should not be able to reach the performance of the
stigmergy method due to the lack of coordination, but is still expected to be superior to a majority
of the baseline solutions. Without heterogeneity, the spacecraft should achieve roughly the same
performance as a single spacecraft, as they all pursue very similar plans. With ideal heterogeneity,
we expect them to beat at least 70% of the baseline solutions. 

Figure 1: Shows the hypothesised distribution of routes found during Monte Carlo Simulation 
according to percentage of the highest scientific return found. We hypothesise that the number of 
solutions in each 10% interval will be a fraction of the solutions in the previous. Only a small 
minority is expected to achieve a high scientific return.
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2 Background

2.1 The Space Environment

Our intuition tends to base itself on Earthbound assumptions which do not apply in outer space. We
typically assume that things slow down and eventually stop due to gravity and friction, which does
not happen to objects in space. We assume a fixed frame of reference, with a clearly defined “up”
and “down”. We tend to assume that vehicles are stationary when their engines aren't running and
no outside forces are acting on them. 

In the environment of space, however, things are very different. Everything is always in motion.
The location of a spacecraft changes by kilometres every second, so describing its current location
is of little use. Instead, we talk about orbits.

Everything in outer space is in some kind of orbit. The Moon orbits Earth, which in turn orbits the
Sun. The first thing to determine about an orbit is what it is orbiting, or what sphere of influence it
is in. For most of this thesis, we will be describing objects in the Sun's sphere of influence. The only
exception to this is when we talk about spacecraft orbiting an asteroid, in which case they are within
the asteroid's sphere of influence. 

The  second  thing  to  determine  is  the  characteristics  of  the  orbit  itself.  Typically,  we  use  six
characteristics defined by Johannes Kepler.18 The size of the orbit is determined by its semi-major
axis and its eccentricity, though it may be easier to understand in terms of periapsis and apoapsis
(Figure 2).  Periapsis  and apoapsis  are  the closest  and the farthest  the object  gets  to  what  it  is
orbiting, respectively. The semi-major axis is simply the average of the periapsis and apoapsis. The
eccentricity  is  a  metric  of  how big  the  difference  between  the  two  is.  An  eccentricity  near  0
indicates  a  circle-like  orbit,  while  the  apoapsis  tends  towards  infinity  as  the  eccentricity tends
towards 1.

Two more elements determine the plane of the orbit. For our purposes, this is generally the plane
compared with the plane defined by Earth's orbit around the Sun. The two relevant elements are the
inclination and the longitude of the ascending node. The inclination is simply the angle between the
two planes. The  ascending node is the point where the orbit crosses the reference plane heading
“upwards”; usually taken to mean towards the Earth's northern hemisphere for solar orbits. The
longitude of the ascending node is the angle in the Earth's orbital plane between the arbitrary chosen
longitude of 0 degrees and ascending node. By convention, a line drawn from Earth through the Sun
at Vernal Equinox is used as longitude 0 degrees.

The  argument of the periapsis is the angle between the periapsis and the ascending node in the
orbital plane. It determines where in the orbit the periapsis and, by extension, the apoapsis is. As

Figure 2: The basic orbital elements explained. The black
dot is the orbit's centre.
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such it is the final factor in determine the exact size, shape and location of the orbit, as seen in
Figure 3. So the only thing that remains is determining where in the orbit the object is at any given
time. 

The mean anomaly at epoch describes the location of the object at a chosen time (the epoch). The
mean anomaly is a mathematical construct which has the useful property of changing linearly with
time. This allows the mean anomaly at any given time to be quickly determined. The mean anomaly
can be readily used to determine the true anomaly, which is the angle between the object's current
location and its periapsis.

The HIVE from the APIES mission, described below, demonstrates a number of special cases. First
of all, its apoapsis, periapsis and semi-major axis are all at 2.6 AU, since its orbit is defined as
circular. This means it has an eccentricity of zero, since the eccentricity measures the difference
between apoapsis and periapsis. The inclination is also zero, as the HIVE is in the same plane as the
Earth, which has no inclination by definition. With no inclination, there is no ascending node, so its
longitude is typically assigned a value of zero (by convention). As the orbit is circular, the location
of the periapsis is undefined, so its argument is similarly assigned a value of zero. 

Due to the early stage of the APIES mission planing, its exact location within its orbit at a given
time is not yet known. With a circular orbit, the mean anomaly of the spacecraft is identical to its
true anomaly, as its is moving around the sun at a constant speed. The mean and true anomaly is
usually defined by the argument of periapsis, which was just assigned a value of zero. The argument
of periapsis is defined compared to the longitude of the ascending node, which is also undefined in
this case. Thanks to the way these values are defined in relation to each other, the end result is that
the anomaly is defined with respect to longitude 0 degrees (Vernal Equinox).

2.1.1 Transfer Windows

Space travel is very different from terrestrial navigation. With no friction or other major forces to
affect the spacecraft, it will continue to coast along its fixed orbit unless its rocket engines are fired.
Navigation is thus not simply pointing at your destination and turning the engines on. Instead, two
engine burns are used. The first manipulates the spacecraft's orbit so that it will intercept the target
asteroid (which is moving around the sun in a different orbit). Then, in order to not just keep flying
past the asteroid, a second burn is used to match orbits with it. From then on, the two objects will
orbit the sun together until another burn is used to change orbits yet again.

To successfully intercept an asteroid, the spacecraft and asteroid must arrive at the same place at the
same time. As can be imagined, this is not trivial to arrange. The challenge of finding orbits which
allow this is known as Lambert's Problem, after the man who first found a solution in the 18 th

Figure 3: Three more orbital elements illustrated. 
The blue surface is the orbit being examined, while 
the purple is that of the Earth.
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century. Specifically,  Lambert's Problem is the problem of finding an orbit which goes from one
given  point  at  a  given  time  to  another  given  point  at  a  later  given  time.  The  solution  is
mathematically complex, but can be near instantaneously calculated by a modern computer.

The engine burns expel propellant, exploiting Newton's laws to generate a force on the spacecraft.19

The total change in velocity that a spacecraft can produce with its available propellant is called its
ΔV (delta v) budget. Delta v is a shorthand for change in velocity. Each burn expends some amount
of delta v to change the spacecraft's orbit.

While it is theoretically possible to transfer between asteroids at any time, the  delta v costs are
usually  prohibitively  high  outside  of  rare  opportunities.  These  opportunities  are  referred  to  as
transfer windows. 

Transfer  windows  are  usually  calculated  by  way  of
pork-chop  plots.20 These  two dimensional  graphs  plot
the  transfer  cost  as  a  function  of  departure  time  and
transfer time. For manned missions, the goal is usually
to minimise transfer time, while keeping departure time
and transfer cost within acceptable limits. For unmanned
missions, and especially multi-target missions like ours,
the goal is to minimise transfer cost, while keeping total
mission time within acceptable limits.

The pork-chop plot  is  used to  find the minima at  the
peaks  of  the  contour  map.  Typically,  the  x-axis
represents time of departure, while the y-axis represents
either  arrival  time  or  time  of  flight.  In  the  example
shown in  Figure  4,  the  Mars  Reconnaissance  Orbiter
could  have  left  in  early  August  and  arrived  in  late
February 2006 with the bottom launch window. If the
launch was delayed to early September, it could take the
top launch window and arrive in October instead. In this
example, the red lines indicate fixed time of flight with
one line for every 25 days difference in time of flight. 

Unfortunately,  while  Lambert's  problem is  easy for  a
computer to calculate for a given set of departure and
arrival time, a two dimension grid search is needed to
actually  locate  transfer  windows.  Depending  on  the
desired resolution, this can quickly get computationally
demanding. In  Figure 4, NASA has sampled departure
dates 2 days apart, and arrival dates 5 days apart. 

2.2 APIES

The APIES mission4 features one Hub and Interplanetary VEhicle (HIVE) and 19 BElt Explorers
(BEEs). The mission focuses on known technologies and very little redundancy to reduce weight. It
will be launched on a Soyuz-FG/Fregat rocket, a reliable 15 year old Russian design. From there,
the  HIVE makes its  way towards  the  belt  via  a  Mars  gravity assist  and conventional  engines,
functioning as a mother ship for the BEEs. 

The  BEEs  are  designed  with  an  extreme  focus  on  component  reuse.  For  example,  the  main
propulsion system and the steering thrusters use the same propellant tank to save weight. Similarly,
the radio antenna doubles as a radar during the flybys and the same lens is used for both the camera

Figure 4: Shows an example of a simple 
pork-chop plot. There are two maxima, 
one in the middle of each “pork-chop”.45
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and the IR spectrometer on board. There is no redundancy on the individual BEEs, because losing a
couple does not jeopardise the mission. As a result,  each BEE weighs only about 45 kg, while
carrying sufficient instruments to detect the shape, mass, and composition of an asteroid. It barely
has enough power to run one system at a time, however, so it has to choose which system to have
active at any one time: engines, sensors, or communications. 

The HIVE carries all the propellant needed to reach
the asteroid belt in the first place, so it weighs in at
540  kg.  Heavy  solar  panels  and  long  range
communication  systems  make  up  most  of  the
remaining mass. The HIVE coordinates the swarm
and  facilitates  messaging  between  Earth  and  the
BEEs,  as  well  as  internal  communication  among
them.

The HIVE brings the BEEs out to a circular orbit
2.6 AU away from the sun, set in the same plane as
the Earth's. This orbit was carefully picked by the
APIES mission designers to balance a number of
requirements.  Propellant  limitations  had  to  be
balanced with the local density of the asteroid belt
and access to variety of asteroid types. At 2.6 AU,
the HIVE is placed right in the middle of the main
asteroid belt, close to where the density is highest.
It is also in the transitional region between the inner
asteroid belt, dominated by bright S-type asteroids
and the outer asteroid belt, which is dominated by
much  darker  C-type  asteroids  (see  section  2.3).
This ensures a wide variety of asteroids to sample
at the target location.

Once in the asteroid belt, the BEEs are launched from the HIVE and take up formation around it
(Figure 5).  The BEEs are deployed individually whenever a target of interest presents itself. Each
BEE is assigned an interception zone 0.05 AU across, and makes a flyby whenever an asteroid is
about to pass through that area. The spacecraft captures visual, IR, and radar data during the flyby,
allowing for estimates of the asteroid's volume and mass to be made. Within 16 minutes, the flyby is
finished and the asteroid is disappearing into the distance. The BEEs stay relatively far from the
asteroid, with a closest approach around 20-25 km away from the surface. The mission hopes to
investigate a hundred asteroids during six years. 

2.3 The Asteroid Belt

When we imagine an asteroid belt we often think of the dense fields of floating rock depicted in
mainstream science fiction.21 But this this not how the Asteroid Belt actually behaves. 

Not that there is any scarcity of asteroids. At the time of writing, well over half a million asteroids
have been identified and tracked.22 Estimates of how many there are in total vary significantly, but
its generally assumed to be in the order of tens of millions. 23

But the asteroid belt covers a massive area, as seen in  Figure 6. The inner and outer edges are
around 200 million kilometres apart, and the belt covers a roughly doughnut shaped area with a 2
500 million kilometre circumference. There is a spectacular amount of space available. Even with
millions of asteroids, there are trillions of cubic kilometres of empty space for each of them. 23

Figure 5: Shows how the BEEs of the APIES 
mission take up formation. The green areas 
are unambiguously patrolled by a single BEE.
Asteroids which pass through the net in the 
red areas have three possible interceptors. 
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While  asteroids  are,  on  average,  millions  of
kilometres  apart,  they  are  also  all  moving
around the sun at 15-25 kilometres per second.
Each has its own individual orbit,  taking 3-6
years to go around the sun. Close encounters
with Mars, Jupiter, and each other can alter the
orbits of asteroids significantly and collisions
are  common  on  a  geological  time-scale.
Luckily for us, the asteroid belt appears a lot
less dynamic over the course of a decade long
mission. 23

While collisions do occur fairly often, most are
relatively  serene  events.  Examples  include
asteroids in near identical orbits bumping into
each other at relative velocities of only a few
meters per second and pebbles impacting with
a  kilometre  sized  object.  Such  events  would
not pose a threat to an orbiting spacecraft. The
cataclysmic collisions seen in popular culture
are unusual enough that it is doubtful if even a
single such event will occur anywhere in the
belt  during  the  years  of  the  mission.  With  a
very low chance  that  asteroid  collisions  will
affect the mission at all, we can safely exclude
it from our model.

Encounters with planets and large asteroids can change an orbit enough to befuddle attempts to map
the asteroid belt. This does not affect the mission enough to warrant special modelling, however.
Fortunately, encounters only take place when the asteroid and planet are at the same place at the
same time, which as described rarely happens. Additionally, any such asteroids can be removed
from the model before planning as such encounters can be predicted decades in advance. 

2.3.1 Asteroid Naming

The majority of asteroids currently have temporary names chosen by the automatic system which
first discovered them. These typically consist of the year, a one letter code indicating when in the
year the observation was made, and a letter for how many asteroids have thus far been detected in
that period. They go through the letters alphabetically, though skipping I to avoid confusing it with
1. In recent years, more than 25 asteroids are usually discovered in any 2 week period, so a number
is added to the end to indicate how many times they have cycled through the alphabet in that period.
When a later set of observations confirm that the calculation of the object's orbit was accurate, it is
given the next available number as a prefix to its temporary name.48

As an example, take 210280 2007 TS39. It was discovered in the beginning of October 2007, as
indicated by the “T” and the “2007” in its name. The 39 indicates that this is the 40 th TS asteroid of
that year (the first being TS, the second TS1 and so on). S is the 18 th letter of the alphabet when I is
removed and the I-less alphabet is 25 letters long. That makes TS39 the 18+39⋅25  = 993rd asteroid
discovered in early October, 2007. It is also the 210,280th asteroid to ever get its orbit confirmed. 

The  temporary  designation  “2007  TS39”  may  eventually  be  replaced,  as  the  International
Astronomical  Union  is  working  to  find  permanent  names  for  every  asteroid.   However,  the
discoverer of the asteroid has a monopoly on suggesting names until 2017; ten years after its initial

Figure 6: A diagram showing the location and size
of the main groups of asteroids in the solar 
system.46
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discovery. After that, the public may suggest names as well.

2.3.2 Asteroid Classification

Asteroids  are  not  easy  to  classify.  Assigning  a  classification  to  an  asteroid  requires  detailed
observations of the asteroid over a wide frequency spectrum (largely infra-red, visual and x-ray). As
such, most known asteroids remain unclassified. 

Depending  on  the  classification  system  used,  there  are
anywhere  between  3  and  12  main  classifications  of
asteroids,  each  with  multiple  sub  classes.  The  earliest
classification  systems  were  based  on  how  brightly  the
asteroid shines in the night sky (corrected for asteroid size
and  distance  from  Earth).  More  recent  attempts  divide
asteroids by composition; a task made difficult by the lack
of hard data. There are, however, three classes of asteroid
which  have  been  present  in  nearly  every  classification
system  which  are  worth  taking  a  closer  look  at.  These
classes  are  believed  to  make  about  95%  percent  of  all
known asteroids  and virtually  all  asteroids  in  the  APIES
mission area, as seen in Table 1. 

The most common class of asteroid is the Carbonaceous or C-type asteroids. As the name suggests,
these are believed to contain significant amounts of carbon. They are challenging to detect due to
their coal black outer surface, but are believed to make up about 75 percent of all asteroids. It is
believed that carbonaceous chondrite meteorite samples recovered from impact sites are pieces of
C-type asteroids. This would indicate that they are a frozen mix of organic chemicals and water ice
condensed out of the cooler regions of the primordial solar nebula. But, as no samples have been
returned from any C-type asteroid, we will not know for sure until Hayabusa 215 returns to Earth in
December 2020. C-type asteroids dominate the outer parts of the main belt, from about 2.7 AU out
from the sun, but are found all over the solar system. In the area explored by the APIES mission, the
proportion of C-type asteroids is believed to be about 20%, with the number growing as one heads
further out.

The second most common class of asteroid is the Stony or S-type asteroids. These have seen more
study than C-type asteroids. They shine brightly and are therefore very easy to detect and track. The
only successful asteroid sample return to date, the first Hayabusa mission14, also targeted one. S-
type  asteroids  seem to  be  made out  of  stone,  mostly pyroxene and olivine.  They also  contain
chondrules, round grains of other materials formed from molten droplets. S-types are most common
in the inner asteroid belt, constituting almost 80% of the asteroids around 2.1 AU out, but can be
found just about everywhere in the inner solar system. At the APIES mission area, the proportion of
S-type asteroids is on the way down, being just over 60%.

The Metallic or M-type asteroids were originally thought to be made of metals. While some of them
almost certainly are, others have been found to have far too low densities to be made of metallic
compounds. The actually metallic asteroids are largely composed of nickel-iron alloys, with varying
amounts of stones and other metals. The composition of the non-metallic M-type asteroids remains
unknown. M-type asteroids do not seem to cluster into any particular region, though are noticeably
more common in proportion to other types in the main asteroid belt than elsewhere in the solar
system. Due to the predominance of non-metallic M-type asteroids, some classification schemes
rename the class as X-type asteroids to avoid implying a metallic nature.

While  these  three  classes  make  up  the  vast  majority  of  the  asteroids  in  the  solar  system,  the
remainder have proved difficult to classify. Not every classification scheme uses all these classes

Asteroid Class Distribution

Asteroid Class
Proportion among
Asteroids at 2.6 AU

C-type ~18%

S-type ~63%

M- or X-type ~19%

Table 1: Asteroid classes present in 
the APIES mission area.47
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and some asteroids fall into different classes depending on which scheme is used. D-type asteroids
fall somewhere between the C and S class; they are carbon rich, like C-types, but contain silicates
and very little water, like S-types. V-type asteroids are believed to be pieces of the large asteroid 4
Vesta, dislodged by impacts from other asteroids over the years. The O-type asteroids are believed
to  be  the  cause  of  a  relatively common meteorite  type,  though 3628 Božněmcová is  the  only
discovered O-type to  date.  The P-type asteroids  are typically found in the outer edges  of solar
system, and appear to have an icy core covered in rock and organic chemicals. T-types, L-types, and
K-types  all  have  a  clear  and  distinctive  absorption  spectra,  but  their  composition  remains
completely unknown.
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3 Related Work
Surprisingly, little research can be found investigating this type of problem and none in terms of
deep space missions. Research mostly focuses on single spacecraft missions and satellites in low
Earth orbit. Inspiration must therefore come from other fields.

3.1 Optimal Foraging

The problem appears similar to optimal foraging at  first glance,  which concerns itself  with the
foraging behaviour of animals in nature. Much can be said about optimal foraging and its details,24,25

but it can be summed up in a few points. The optimal strategy is found by maximising the animal's
rate of net energy intake given its biological limitations. This is done in pursuit of gaining a large
enough surplus for activities like breeding. An animal searches for nourishment in an area and upon
finding a potential food source, chooses whether or not to pursue it. The choice depends on various
factors, most importantly the handling cost versus the energy reward.

In  our  case,  the  spacecraft  have  a  non-replenishable  reserve  of  propellant.  Energy  is  simply
harvested from the sun, with a rate of intake mainly determined by the relative angle of the solar
panels. Unlike optimal foragers, the BEEs are unable to search for asteroids. The problem is to
reach them efficiently, not discover them. Rather than maximising the rate of intake, the goal is to
maximise the lifetime scientific return. Hence, we cannot use optimal foraging techniques.

3.2 Bidding

Traditional  multi-agent  systems tend to  use metaphors related to  economics  or political  theory.
Agents bid or vote on tasks, based on their internal models of the world. An agent might see that it
has a low cost transfer window to a high value asteroid and bid a relatively large amount on being
assigned to  visit  that  particular  target.  The agent  with  the  highest  bid  is  assigned to  visit  that
particular asteroid, while the remaining agents look for other opportunities. 26

The main problem with such systems is the large amount of required communication. Even if there
is only one bidding round, each agent needs to inform the others of its bid for every asteroid and
receive the others' bids in return. This can be done through an intermediary (the HIVE comes to
mind) or directly, though that would require even more communication overhead. 

Unless sophisticated algorithms are used for choosing what to bid, such agents tend to be short
sighted and greedy. While bidding makes a decent decision making algorithm, it is not a planning
algorithm in and of itself. Ideally, we would want an algorithm which handles  both  planning and
coordination.

3.3 Route Planning

What  about  algorithms  for  finding  the  shortest  route?  There  are  several  reasons  why  these
algorithms cannot be used directly. First of all, the goal is not to find the best route between two
given nodes. Rather, we want to find the best route from a specific node to any other node. As the
number of nodes is at least half a million, this quickly makes the problem intractably large. Second,
the nodes change value depending on whether other nodes have been visited. The algorithms would
have had to be modified to account for this. Third, each of the multiple spacecraft would need a
distinct route with minimum overlap. This means that any such algorithm must at least be adapted
to our problem, if this can be done at all.

The vehicle routing problem27 is another problem which looks similar to our problem. In essence, it
answers the question of how a fleet of vehicles should be routed to service customers at different
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locations at minimal cost. Many variants28 exist, but the  fixed fleet open vehicle routing problem
with capacity limits and time windows seems to be the closest. 

There are, however, a few complications. The first is that each customer (asteroid class) has a large
number  of  service  locations  (asteroids),  and visiting  one location reduces  the need to  visit  the
remaining ones. The vast distances and number of potential locations to visit means most can never
be reached. The cost of communication in time and energy is also not considered in the standard
versions of the problem. Another issue is that the vehicle routing problem is a general version of the
travelling salesman problem. As the travelling salesman is the text book example of an NP-hard
problem, that makes the vehicle routing problem NP-hard as well.

3.4 Genetic Algorithms

Genetic algorithms29,30 can be used to find approximate solutions to NP-hard problems if a good
genetic representation of the solution space can be chosen. That is, if a route through the asteroid
belt  can  be  represented  as  a  genotype  and  manipulated  by genetic  operators.  We  also  need  a
mechanism to translate a genotype to a phenotype, in our case to produce a node-to-node route.
Finally, we need a metric to evaluate each phenotype and give it a score representing its fitness. The
genetic operators should be chosen such that they maintain and evolve a population of ever more fit
genomes; hopefully while maintaining sufficient genetic variation to cope with any changes in the
fitness metric. 

Fitness metrics allow the relative fitness of two genomes to be compared. A fitness metric assigns a
fitness value that represents some absolute fitness to each genome in the population. When selecting
genomes for breeding, these values are used as a basis for the selection process. Naturally, desired
behaviour should increase the fitness value while unwanted behaviour should reduce the fitness
value. 

There are several reasons to  use a  genetic  algorithm for this  problem. The first  is  that genetic
algorithms can approximate solutions to NP-hard problems, producing a reasonably good solution
even when it is infeasible to find the optimal one. Additionally, a population of solutions is kept and
iteratively improved upon. If the circumstances change, the population of solutions should be able
to quickly adapt. In other words, if a spacecraft receives information that an asteroid it plans to
survey has  already been  visited,  solutions  involving  that  asteroid  will  receive  a  lower  fitness.
Alternative  members  of  the  population  will  receive  a  relative  boost  in  fitness.  Mutations  and
crossover may also eliminate the asteroid from the population completely within a few generations.

The most  important  reason for  why a genetic  algorithm works  well  is  that  it  does  not  require
specialised  domain  knowledge.  This  allows  us  to  spend more  time  focusing  on the  impact  of
communication. We will use a fairly straightforward genetic algorithm to evolve reasonably good
solutions. Our priority is on developing a more complex fitness function that will handle the varying
amount  of  available  information.  However,  algorithms tailored  to  the  problem would  probably
provide better solutions in the long run. 

3.4.1 Selection Methods

A variety of selection methods have been proposed over the years.30,31 The simplest  is probably
Elitism,  which simply selects the best  n options available. Typically,  it  is used when  n is large;
making the selection more a matter of pruning out bad solutions from the population than about
selecting good ones.

Tournament selection picks out a small number of random options and returns the best among them;
repeating this process n times. While this is a bit more computationally complex than Elitism, it is a
lot faster, as it does not require that the entire population be sorted in order of decreasing fitness. 
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Roulette-wheel selection chooses genomes to keep with a probability based on its fitness score. It is
also known as fitness proportionate selection. It can be imagined as a roulette wheel being spun,
where each slice is sized based on the fitness of the individual.

A variant  of  the  roulette-wheel  selection  is  stochastic  universal  sampling,  which  uses  multiple
evenly spaced markers instead of the single one traditionally used in roulette. This ensures that
some of the poor solutions survive, which may be desirable. It provides more genetic diversity
while still selecting more good solutions than bad. 

3.5 Stigmergy

Tripp and Palmer7,32 have investigated the use of stigmergy for a swarm of satellites orbiting the
Earth and photographing the surface. The swarm receives new tasks with a value and deadline,
which  are  incorporated  into  the  swarm's  overall  plan.  Stigmergy  is  used  to  create  a  form of
aggregated common knowledge of the swarm's activities. Each satellite reports  its  current plan,
which is incorporated into the aggregated statistics of the virtual environment. At regular intervals,
they all receive aggregated information in return. From this, they can see which tasks have been
completed, as well as which are scheduled to be completed in the near future. The method produces
overall satisfying results with high efficiency, low overlap, high degree of adaptability, low need for
communication.  The  largest  advantage,  however,  is  the  absence  of  satellite  to  satellite
communication.

In order to prevent overlap in the tasks chosen by the satellite swarm, Tripp and Palmer investigated
the use of heterogeneity. In their method, each member of the swarm is given a unique combination
of four personality characteristics. These four characteristics alter how the satellite assigns fitness
values to their future plans, and hence which tasks it will perform. The characteristics used by Tripp
and Palmer are:

• Greedy: makes the agent prefer high value targets. Since high value tasks presumably have
been given a high value because it is important that they are done, having a behaviour which
prioritises the important assignments is a logical first choice. Its also assumed that if there is
unavoidable overlap, it is better that said overlap is in regards to important tasks rather than
low value ones.

• Considerate: makes the agent avoid areas of previous overlap. As the satellite swarm is in
various orbits around Earth, agents can assume that areas of previous overlap are regions
which  multiple  spacecraft  pass  over  on  a  regular  basis.  Hence,  for  Tripp  and  Palmer's
scenario it makes sense to have a behaviour which avoids such areas in order to favour
regions the satellite is uniquely equipped to service. 

• Proactive:  makes the agent  avoid future areas of overlap.  Having information about the
plans  of  other  agents  is  only  useful  if  it  actually  influences  the  agent's  decision.  The
proactive behaviour causes agents to reconsider plans that involve tasks other agents intend
to do. 

• Obstinate:  makes the agent avoid changing its plan. The obstinate behaviour encourages
predictability.  If the agent has told the other agents in the swarm that it intends to do a
certain task, it can be assumed that the other agents will to some extent modify their plans to
take this  into account.  If  the agent  then instead chooses a new and different  task to do
instead, the old task may go uncompleted. 

By weighting  these  behaviours  differently in  the  fitness  function,  agents  end up with  different
priorities. Some are erratic and adaptable, filling in for whatever tasks are left over once the others
have settled on their plans. Others are predictable, picking high value targets and ensuring that the
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most important tasks get done. While homogeneous agents would still be able to coordinate, the
benefit of heterogeneity has been well demonstrated over a number of papers.7,32 

3.6 Monte Carlo Simulation

Monte Carlo Simulations33 are a popular way of mapping complex solution spaces. The idea is that
picking many random inputs and examining their aggregated outputs provides a good idea of what
outputs are likely and not. In our case, by having the BEEs pick random transfer windows, we can
examine the distribution of total scientific return to get an idea of what possible solutions exist. And
since each random simulation is done very quickly, we can run a lot of them, providing a good
mapping of the utilities in the solution space.

The main weakness of Monte Carlo Simulations is that they may have difficulty locating highly
unlikely outputs. If the graph of available transfer windows has few edges or a high degree of
clustering around a small group of asteroids (many roads leading to Rome, so to speak), it may be
rare to find a solution in which all 19 BEEs pick a disjointed set of asteroids to explore. We don't
consider it particularly likely that we will end up in this situation, as it is expected that there will be
hundreds of available transfer windows from any given asteroid. 

What we get out of a Monte Carlo Simulation is a probability distribution of a random solution
having a given utility. This provides a good baseline for later simulations, as we can examine how
our solution compares to just choosing randomly. We can also see how many percent of the possible
solutions are better than the solutions generated by our evolutionary algorithm. These properties
allow  us  to  use  Monte  Carlo  as  a  control  group,  providing  results  which  do  not  rely  on  an
evolutionary algorithm.

3.7 Nelder-Mead

The  Nelder-Mead  technique34 is  a  descent
algorithm designed to locate minima in multi-
dimensional problems with as few evaluations
as possible. It only evaluates the target function
at  a  few  points  per  iteration,  and  typically
converges  relatively  quickly.  The  algorithm
works by manipulating a special shape called a
simplex; moving and reshaping it  towards the
minimum.

A simplex  is  a  convex  shape  with  as  few as
possible vertices while still covering a range of
values in every dimension of the search space.
An n dimensional search would have a simplex
with  n+1 vertices.   This  is  because  a  one
dimensional  search  space  would  need  two
vertices to cover a range,  and each additional
dimension would need one more vertex to cover
it.   For  a  two  dimensional  search  space,  this
simply means a triangle. In generally terms, the
Nelder-Mead algorithm seeks to move the worst
vertex in the simplex to a better location in each
iteration of the algorithm. 

Nelder-Mead is based on an older algorithm which used a combination of reflecting a point across

Figure 7: A hue based illustration of the Nelder-
Mead simplex moving towards a minimum.
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the average of the other points in the simplex and moving all the points in the simplex closer to the
best one to work its way across the solution space. Nelder-Mead adds a couple of optimisations in
order to speed up convergence. If the reflected point is better than any other point in the simplex,
then it assumes it is on the right track, and expands in that direction, testing a point further out. If,
on the other hand, the reflected point is worse than every other point, it contracts the worst point in
towards the average of the other points. It only goes to the computationally expensive process of
shrinking the whole simplex towards the best point if  this  too fails  to  find a better  point.  The
process is depicted in Figure 7.

The main benefit of this method, compared to other descent algorithms, is that it does not require
the derivative of the value function to work. For complex value functions, like the delta v cost of
transfers, this is a major advantage. The derivative is not necessary known, and it may be far more
complex to compute it than to calculate the function's value at a few additional points. This also
makes Nelder-Mead particularly desirable for high dimensional problems. 
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4 Methodology
By the APIES plan, described in section 2.2, the BEEs will take up formation around the HIVE and
form a drag net of sorts 0.25 AU wide. BEEs are dispatched to intercept any asteroid which happens
to pass through the net, with the goal of getting within about 20km of it as it passes. There are
advantages and disadvantages to this technique. 

The main advantage is that it uses as little propellant as possible per interception. On the other hand,
it  offers  little  choice  about  which  asteroids  to  intercept.  They  simply  have  to  take  whatever
opportunities come along. Which means that if, by pure chance, a limited number of a certain type
of asteroid crosses the net, the scientific utility of the mission suffers. 

An  alternative  would  be  to  actively  seek  out  asteroids.  This  requires  more  propellant  per
interception, which means less asteroids visited over all.  On the other hand, not only can more
interesting asteroids be selected, but each can be studied in more detail. By going into orbit around
an asteroid, rather than just a swift flyby, a more detailed examination of its mass and composition
can be made with the same instruments. 

After careful consideration, we have decided to analyse this alternative architecture instead of the
one proposed by APIES. In addition to the reasons already discussed, the value of communication is
easier to determine in the more chaotic asteroid selection scheme than in a simple net. In APIES,
each spacecraft has its own intercept zone, so there is rarely any ambiguity about which BEE will
perform the flyby. In addition, the orbiting method is more widely used in other missions, including
PAM/ANTS3 and Dawn17. 

We have further decided not to investigate the robustness of the APIES plan, which would rely on
intelligent replanning and the redundancy of having 19 BEEs to overcome the relative frailty of
each individual  BEE. Hence,  we do not  require  our  model  to  include sudden failures  or  other
eventualities. While there are some interesting questions in regards to how well the APIES plan can
handle  failures,  these  are  tangential  at  best  to  our  primary  goal  of  determining  the  value  of
communication.

4.1 The Experiments

Specifically, we plan to do the following experiments based on our research questions (from section
1.3):

Exp 1 Our first and most basic experiment is a Monte Carlo simulation of the mission. This will
involve simulating thousands of randomly generated routes to provide a baseline against
which our AI can be compared. It naturally does not use the evolutionary planner module as
such,  though it  can generate  its  routes  through the same code used by the evolution to
generate random genomes.

Exp 2 The second experiment assumes that the BEEs have unlimited possibilities to communicate,
as represented by the co-evolution of plans. Every genome in every generation is paired up
with  those  from other  BEEs to  see  how well  they can  work  together.  We refer  to  this
experiment  as  the  Full  Communication experiment  or  scenario,  and it  corresponds with
RQ1.

Exp 3 The third experiment limits communication to occasional stigmergy updates (section 3.5) in
which every BEE is provided aggregate information about the actions and plans of the rest
of the swarm, updating their internal plan accordingly. This requires pausing the simulation
so that the BEEs can reconsider their routes whenever more information becomes available.
This is the Stigmergy experiment or scenario, based on RQ2.
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Exp 4 The final experiment, based on RQ3, has no communication at all, relying instead on the use
of  heterogeneity  in  the  fitness  functions  to  avoid  overlapping  routes.  In  this  No
Communication  scenario,  each  BEE plans  its  route  separately,  without  any information
about the other members of the swarm. 

4.1.1 Scientific Return

Having determined what to study, the next step is to ascertain how to measure success. The goal of
the APIES mission is  to  learn as  much as possible  about  the asteroid belt  given the resources
available.  The best  metric  by which  to  measure  our  success  is  thus  the amount  of  useful  data
collected. Not all data is equally useful, however. As the amount of data available about a class of
asteroid  increases,  one  reaches  a  point  of  diminishing  returns.  Once  the  density  and  surface
composition of a class is known with a fair amount of certainty there is not much more that can be
discovered with the limited instrumentation available.

Ideally,  the  BEEs  should  examine  a  multitude  of  different  asteroid  classes.  The  first  close
examination of a given class provides a wealth of new data. The second provides a valuable point of
comparison to help determine exactly which features are characteristic of the class and which are
individual to the asteroid. The third and consecutive asteroids provide less and less new information
about the class, although later asteroids may still reveal surprises. Revisiting an asteroid provides no
new information, as our version of the APIES mission spends enough time around each asteroid to
fully study it with the available instrumentation.

Each specific asteroid has its own intrinsic value, based on how interesting that asteroid is for the
scientists of the 2020s. Since we do not know what asteroids they will find interesting, we have
chosen to provide each asteroid with a random intrinsic value instead. This provides us with the
desired  differentiated  environment  without  requiring  the  manual  assignment  of  half  a  million
values.

As such, we will regard the utility of the asteroid to be two-fold. First,  there is a classification
utility, which depends on how many asteroids of that class has thus far been explored. Second, there
is an intrinsic value, which is unique to each individual asteroid. Revisits provide no added utility of
either type.

The BEEs are expected to spend a lot of time transmitting their findings to the HIVE. However, we
are saved from having to model dedicated transmission times by the fact that they are also expected
to spend a lot of time orbiting an asteroid while waiting for a transfer window or coasting between
asteroids. As per the unmodified mission described in section  2.2, this  “dead” time is  used for
information transfer instead of the craft simply going dormant. However, communication is not free
and there is a propellant cost associated with keeping their antenna aligned with the HIVE. As such,
a small amount of propellant is subtracted for each asteroid visited.

4.2 Transfer Windows

For a given departure and transfer time,  it  is  computationally simple to calculate  transfer  cost.
However, this is a transfer between two given asteroids (origin and destination), so the number of
calculations  scale  quadratically  with  the  number  of  asteroids  examined.  Up  to  half  a  million
asteroids may be within reach, and we have six years worth of time to search along both axis. As a
result, online generation of transfer windows is not feasible with our available computing power.

Instead,  a  set  of  locally  optimal  transfers  will  be  produced  offline  and  used  throughout  our
experiments. A slope climbing algorithm is used to find the peaks of a pork-chop plot without
having to calculate the cost of every possible transfer. Furthermore, an asteroid is only considered
as a viable origin asteroid if a path has been found by which it can be reached by a BEE. This



4 Methodology 21

should cut the computational time down to within feasible limits. 

It is possible that, even with these optimisations, the time required to generate a complete map of
viable transfer windows is too large to calculate on a reasonable time-scale. In which case we may
be forced to use a subset of the known asteroids within the mission area, and increase the BEEs'
available resources to compensate for the reduced density of asteroids.

When the calculations are complete, what remains is a set of viable transfer opportunities, each with
an associated cost. As each window connects a pair of asteroids, this can be modelled as a graph
structure with the asteroids as nodes and the transfer windows as edges. However, unlike typical
graphs, the edges can only be traversed at a specific point in time. At any rate, the graph is far
simpler than a physical model of the asteroid belt would have been.

4.3 Model

Our  model  is  a  simplified  representation  of  the  asteroid  belt  described  above.  The  goal  is  to
maximise a value Vsum representing the scientific return of the mission. The first time an asteroid is
visited, the asteroid's randomly assigned scientific value  Va is awarded for surveying the asteroid
itself. Additionally, there is a reward Vc for surveying examples of the asteroid's class. The first two
times members of the asteroid's class are visited, the award is the initial  value of the class  Cv .
Subsequent visits award  V c (n)=C v÷n , where  n is the number of unique members of the class
previously surveyed. The total value received from an asteroid is thus V a+V c . The scientific return
is highest when the BEEs visit as many unique high value asteroids as possible while ensuring that
several different classes are visited, preferably high value ones.

The asteroids  themselves  are  contained within  a  set  of  nodes
a∈ A .  Associated  with  each  asteroid  in  A is  a  set  of  time
dependent  edges,  W a ,  describing  all  transfer  windows
originating from that particular asteroid. W o, d  describes the set
of  transfer  windows  from an  asteroid  ao  directly  to  another
asteroid ad , ao≠ad .

A transfer  window  w∈W  consists  of:  origin  and destination
asteroids ao  and ad ; time of departure and arrival t o< td ; and
propellant  cost  p>0 .  From  this,  the  time  of  flight
T travel (t o , td)=td−t o  can be deduced. The propellant cost is the
calculated cost of the transfer, plus a small additional constant
Pcomms  representing the communication costs. These parameters

are summarised in Table 2.

A spacecraft  s∈S  represents our BEEs. Each spacecraft has
some amount of remaining propellant  sp and a  location.  sp is
reduced every time the spacecraft makes a transit, and starts at a
universal  Pmax .  At any given time, a spacecraft's  location is
either in orbit around an asteroid a  or using a transfer window
w .

The spacecraft takes a route r through the asteroid belt, which is
described as a list  of transfer  windows  r={w1, w2, w4, ... , wn }

with the following restrictions:

• For any w i  and w i+1 ,  w i  must arrive at the origin asteroid of w i+1  before the departure
time of w i+1 .

Transfer Window
Parameters

Name Symbol

Origin Asteroid ao

Destination Asteroid ad

Time of Departure to

Time of Arrival td

Propellant Cost P

Table 2: Parameters used by the 
Transfer Windows.

Spacecraft Parameters
Name Symbol

Propellant Remaining sp

Current Location location

Table 3: Parameters used by 
Spacecraft.
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• The sum of propellant costs psum=∑
i=0

n

p i  is always limited to the maximum capacity of any

spacecraft  psum≤Pmax .  If  a  new  route  is  considered  after  mission  start,  the  restriction
becomes  psum<sp≤Pmax ,  as  the  spacecraft  has  presumably  already  expended  some
propellant. 

4.4 Simulation

We chose to use an event based simulation, in order to minimise its computation complexity. Our
simulator consists  an ordered list  of events which are resolved one by one until  the mission is
complete.  Some  examples  of  events  include:  departures  from  asteroids,  arrivals  at  asteroids,
stigmergy updates, and the end of the mission. Each event has a given time in which it occurs.
Events can spawn new events (departures spawn arrivals or stigmergy updates spawning complete
new plans) and may or may not have an associated spacecraft.

This very simple simulation does everything we need it to, and is very light-weight. It is also fairly
simple  to  implement.  Spending  less  time  on  a  complicated  simulation  gives  us  more  time  to
implement the evolutionary algorithms, and a faster simulation lets us do more trials in the limited
time available. 

4.5 Evolutionary Planning

As  explained  in  section  4.1,  there  are  three  main  communication  systems  in  our  study:  Full
Communication, Stigmergy, and No Communication. All three have the same overarching goal and
solution: to maximise the scientific return of the mission by ensuring the spacecraft visit high value
targets and do not have overlapping paths. However, the tools available to the spacecraft differ
vastly in the three cases.

We would like to reuse as much of our code as possible between the different trials, both to avoid
skewing results in favour of whichever version of the code works best and to reduce work load.
Ideally, the only difference in code for the different trials should be the fitness function, and how
much information it has access to when assigning the fitness of a plan.

The Evolutionary Planning module makes up the bulk of our simulation code. As described above,
our  simulated  asteroid  belt  is  very  simple  and  light-weight,  once  it  has  been  generated.  The
evolutionary planning is what will likely take up the bulk of the run time. 

When the BEEs have full  communication or no communication at  all,  the planning is all  done
before the mission, and the simulation, starts. As we will see in section 4.5.2 below, however, the
co-evolutionary nature of the Full Communication experiment means that the fitness evaluation will
involve running the simulation multiple times. Stigmergy is slightly different, as the simulation will
have  to  pause  occasionally to  allow the  BEEs to  update  their  plans  with  the  new information
available. 

4.5.1 Genome

The most important part of a successful evolutionary algorithm is picking a good genotype. No
matter how clever the evolution is, it only works if the genotype maps well to the solution space.
The two main  categories  are  direct  representation,  where there is  a  one-to-one correspondence
between genotypes and phenotypes, and indirect representation, where the genotype provides the
parameters used to generate the phenotype.

Indirect representation can be easier to implement as it allows well established genetic operators to
be used, even on unusual problems. However, with a direct representation we can more easily be
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sure that the entirety of the solution space is covered, allowing better solutions to be located. On the
other hand, it typically requires more complex and customized genetic operators, which may slow
down the evolutionary process compared to the well established ones.

A naive indirect representation would be to have each gene be the number of transfers to ignore
before taking the next available transfer opportunity. In order to handle overflow, this would have to
be modulo the number of possible transfers from the asteroid. This is, naturally, a terrible genome
choice.  Any amount  of  modification  to  the  genome,  be  it  from crossover  or  mutation,  would
completely scramble the remainder of the route in unpredictable ways. The result is that the child of
two excellent routes would likely be worse than either parent, preventing fitness from rising over
time. 

While a more complex indirect representation could be devised to negate such issues, the amount of
effort which would have to go into crafting and verifying it would simply not be worth it in the
short  time  we  have  available.  Especially  as  we  were  quickly  able  to  locate  a  suitable  direct
representation. By directly using the spacecraft's route as the genome, we are able to minimise the
translation process from genotype to phenotype. The process simply involves cutting the genome at
the point at which the spacecraft runs out of propellant. 

In  addition  to  requiring  very little  computing  power,  this  makes  our  genomes  human readable
enough to simplify debugging. As this takes the form of a list of transfer windows (with a total list
length in the dozens at most), it is memory efficient. As described  below, this choice has led to
increased complexity of the selection process. The risk involved has been managed by picking a
method which rates the fitness of every possible child, which means we will not lose any good
solutions; even if the process is a bit slower as a result.

4.5.2 Fitness Metrics

With the genome chosen, the next most important part of an evolutionary algorithm is the fitness
metric. As described in section 4.1, we have a number of different fitness metrics depending on how
much information each BEE has access to. The three levels are:  Full Communication, Stigmergy,
and No Communication.

Full Communication

Full Communication allows the spacecraft to create one collective plan to avoid unnecessary loss of
performance  caused  by  overlapping  routes  or  visiting  low  value  targets.  A  simple  and
straightforward fitness metric to do this is simply to simulate the same scenario many times, but
with different sets of genomes. In a simulation, each spacecraft follows the plan of one genome,
which is awarded a score equal to the total scientific return of the scenario. The simulations are run
such that every genome is measured several times, and its final fitness is the average of the scores it
has been awarded. 

When genomes are drawn for evaluation, one is drawn from each BEE. This allows each population
to  specialise  and conquer  a  niche.  This  also  reduces  the  complexity of  testing  by limiting  the
potential number of genome combinations to test. 

A problem is that a set of genomes may produce a superior scientific return when paired together,
but not when combined with other genomes. Although the particular selection would be a superior
overall  plan,  the  fitness  value  would  still  be  close  to  average.  There  is  no  guarantee  that  the
particular selection will ever be made again, losing the superior plan. On the other hand, genomes
that do not work well with others may not be of any interest regardless of the one time scientific
return, as they may not be robust to change.

The problem can be solved by combining each selection into a super-genome. Unfortunately, time
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constraints make implementing two different genomes, genetic operators and selection processes
too time consuming. The multi-population method allows us to reuse code between the three levels
of communication, while the super-genome method only works with Full Communication.

The  precise  description  of  the  chosen  method  is  co-evolution  of  n populations,  one  for  each
spacecraft.  To evaluate  the  current  generation of  populations,  one genome is  drawn from each
population at random. The n randomly drawn genomes are tested by finding the combined scientific
return  V sum of the  n  routes described by the genomes. This process is repeated until all genomes
have been drawn at least k times. Once completed, each genome g is given a fitness value

Fg=

∑
i=0

kg

V sum,i

k g

, where: 

• k g , k g≥k  is the number of times g has been drawn, and

• ∑
i=0

kg

V sum,i  is the combined scientific return of all k g  tests.

Stigmergy

Section  1.1 explains  why  Full  Communication  is  not  realistic  due  to  the  excessive  overhead.
Stigmergy  (see  section  3.5)  reduces  the  level  of  communication  while  still  allowing  some
information  to  pass  between the spacecraft.  For  the  purposes  of  this  thesis  we have chosen to
modify Tripp and Palmer's stigmergy method slightly, since it has already been successfully tested
for space applications. 

Our variation on Tripp and Palmer's stigmergy method uses periodic updates to modify the values
of the asteroids and asteroid classes. Additionally, a number is assigned to each asteroid informing
the  spacecraft  how many spacecraft  plan  to  visit  it.  The  spacecraft  have  no  other  information
available regarding the other members of the swarm. They can not cross reference their plans with
the others and collectively evolve good solutions. Instead, they must maintain a separate genetic
population and attempt to use their limited information to guide evolution towards good routes that
do not overlap with those of others.

There are four characteristics in the stigmergy method: greedy, considerate, proactive and obstinate.
The greedy characteristic is simple; the agents want to maximise their fitness. Depending on how
much the agent focuses on greedy behaviour, it may or may not sacrifice personal gain for the good
of the swarm. 

Our model of the asteroid belt has the considerate behaviour baked into it by giving zero fitness to
the second BEE to explore an asteroid and reducing the value of a  class  based on how many
examples  of  it  has  been  investigated.  Our  reasoning  for  enforcing  such  a  heavy focus  on  the
considerate behaviour is that we have very limited resources, so we want to avoid overlap at all
costs. By contrast, resources were renewable in the scenario used by Tripp and Palmer.

The proactive behaviour uses the information about the other BEEs in the swarm to help build a
better global plan. If at least one other BEE plans to visit the same asteroid, the proactive fitness
gain from that asteroid is reduced to zero. Agents which have a high focus on proactive behaviour
will then likely change to another plan. The worst case scenario is that no agents visit the asteroid at
all. But, as explained above, we are far more worried about overlap than we are about any particular
asteroid going unexplored.

The obstinate behaviour provides extra fitness to asteroids which were part of the plan prior to the
update. These are the asteroids that form part of the aggregate information sent to the swarm. This
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added fitness is based on the scientific return of the asteroids in the route, so an obstinate agent with
a good route is less likely to change its plans. The worst case scenario for obstinate agents is the
opposite of the proactive one, namely that two agents have the same asteroid in their route. This can
only really be resolved if there is a stigmergy update in-between the visits, which, thanks to our
absolute focus on considerate behaviour, would cause the second agent to receive no fitness for
planning on visiting the asteroid at all.  

This leads us to the following fitness metric for spacecraft using the stigmergy method:

Fg=∑
a∈r

(V a+V c )⋅(1⋅G+{0,1}⋅P+{0,1}⋅O) , where:

• a∈r  is the set of asteroids in the route up for evaluation;

• V a+V c  is the total scientific value gained by visiting the asteroid, as described in
section 4.3;

• G,  P, and  O are  the  spacecraft's  values  for  the  greedy,  proactive,  and obstinate
characteristics, which range from zero to one.

From this, one can see that the fitness award for visiting an asteroid ranges from 0% to 300% of the
value in the model. The greedy characteristic is always active, as high value targets should always
be preferred over  low value targets,  with an importance of  G.  For each asteroid,  the proactive
characteristic is triggered (1) if no other spacecraft plan to visit the asteroid, while it otherwise
provides  no fitness boost.  The obstinate characteristic  acts  similarly.  It  provides  a fitness boost
governed by O if the asteroid can be found in spacecraft's previous plan. 

No Communication

The last fitness metric needed for our experiments is the one used when no information is available
at  all.  The  spacecraft  have  no  knowledge  of  the  whereabouts,  history  or  plans  of  the  other
spacecraft.  Without any coordination between the spacecraft,  heterogeneity is  essential  to avoid
overlapping plans. Unfortunately, the personality characteristics found in the stigmergy method are
not relevant here, as the spacecraft do not receive any updates. 

This means we do not have the luxury of reusing the characteristics above. Instead, we have to be
creative and devise potential characteristics. They must then be tested to see which ones increase
overall  swarm  efficiency.  These  characteristics  should  reduce  overlap  by  differentiating  the
spacecraft's decisions in a given situation. This must necessarily cause some spacecraft to choose
asteroids which seem sub-optimal based on their available information. The selected characteristics
should differentiate the spacecraft's decisions sufficiently to avoid overlap, but not cause a loss in
spacecraft efficiency greater than the gain in swarm efficiency. 

The  point  is,  as  stated,  to  differentiate  behaviour.  However,  as  the  spacecraft  spread  out  the
probability  of  decisions  overlapping  approaches  zero.  The  conclusion  is,  therefore,  that  the
characteristics should make the spacecraft deviate from the perceived optimal choice enough that
they diverge completely, after which overlap is no longer as large an issue. 

The one stigmergy characteristic we could reuse is greediness, as it is the only one which does not
rely on communication. As with stigmergy, however, the greedy characteristic is only useful as a
mediator. The important factor is how much relative focus the agent sets on making high value
choices over whatever other characteristics we can devise.

Another characteristic is the differentiation between early and late transfers; whether the spacecraft
prefers to linger in orbit around an asteroid or transfer immediately. In practice, we simply provide a
fitness  boost  or  penalty  to  routes  which  take  a  longer  time  to  complete.  Essentially,  we  are
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arbitrarily dividing the potential routes into multiple categories (in this case early and late transits)
to encourage diversity. Ideally, the high fitness solutions should be evenly distributed between the
different categories so that no agent systematically targets sub-optimal routes. 

A third characteristic is for the spacecraft to prefer low cost transfers over high cost transfers. The
locally  optimal  greedy  choice  is  the  transfer  which  provides  the  greatest  scientific  return  per
propellant  cost.  Hence,  varying how much priority the agent  gives to optimising each of these
factors should increase diversity without major reductions in total utility. In practice, we simply use
the number of transfer windows (which inversely correlates to average transfer cost) in the planned
route to provide a boost or penalty as above.

A fourth characteristic would make spacecraft prefer to visit asteroids of the class they first visited,
or to prefer asteroids of different classes. If the spacecraft somehow visit different classes to begin
with, this characteristic should make them continue the trend. On the other hand, if they begin by
visiting  the  same  class,  they  will  continue  visiting  the  same  class  over  and  over.  So  this
characteristic only helps if the other characteristics already ensure divergence. Asteroids belonging
to rare classes may also never receive any attention because the benefit is negated by the penalty of
visiting  one  more  class.  Because  of  these  disadvantages,  we  do  not  consider  this  a  viable
characteristic.

Whatever characteristics we choose, the fitness metric would look like the fitness metric of the
stigmergy method:

Fg=∑
a∈r

{(V a+V c)⋅∑
i=0

n

(c i⋅C i)} , where: 

• each Ci, 0≤Ci≤1  is the importance of the i- th characteristic, and 

• each ci is the value used as input for the characteristic.

As can be seen, the adjusted scientific value is multiplied by the sum of the contributions from the
characteristics. The first characteristic differentiates between high and low value targets:

cg=1 , as per the greedy behaviour in stigmergy.

The second and third characteristics similarly differentiate between the time of departure from an
asteroid and the cost of transfer:

c t=ta , where ta is the time of arrival at the last asteroid in the route.

cc=|r| , where |r| is the number of transfer windows in the route.

The end result is that the fitness of a genome is determined by the spacecraft's perceived utility of
the route it encodes, not the actual utility given by the model.

4.5.3 Selection Method

As  touched  upon  in  section  3.4.1,  different  selection  methods  have  different  strengths  and
weaknesses. Its not always obvious which is the best for a given task. Luckily, it is not particularly
difficult  to  implement  selection  algorithms,  and  experimentation  is  one  of  the  best  ways  of
determining which one to use. So we will implement a number of different options and see which
one works the best. 

Our goal is to find a selection method which doesn't cause a significant computational overhead,
while still providing just the right amount of evolutionary pressure.  We do not want too much
pressure, which could cause premature convergence. Nor do we want too little, which may lead to
sub-optimal results.
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The simplest way of determining which selection method to use is to try a wide range of them, and
use the one which provides the highest scientific return overall.  If computing time becomes an
issue, we can also compare how long each function takes, and use the best one which completes in a
reasonable time-scale.

4.5.4 Crossover Process

One of the weaknesses of using a direct representation is that individuals need to have valid routes
as their genome, which makes crossover and mutation more complicated. It is not a simple matter of
combining two good genomes, because if the first genome is cut at an asteroid  ai , the second
genome needs to be cut at ai  as well. 

As a result  we have had to design a customised selection process.  We start  by picking out all
individuals that include our current position. Normally, this would be the HIVE, but in stigmergy it
can theoretically be any asteroid. It is also possible that the BEE is currently en route to an asteroid,
in which case we use that one as the origin. The fitness values of these individuals can be compared
by ignoring any part of the route which comes before our position or after the BEE has run out of
propellant.

This  allows  us  to  select  the  first  parent  by  comparing  these  individuals  and  using  traditional
selection methods (as described in section  4.5.3 above).  We will  look at  a  number of different
selection methods to see which one works best. 

The other parent is less trivial to select. Our solution is to do things in a slightly different order. We
generate a random crossover point before selecting the second parent (Figure 8). That leaves us with
a single parent with a route that ends at an asteroid ac . We can then search through the population to
find other individuals which visit ac at some point, and generate children by crossing these with our
chosen parent. We naturally have to make sure that the second parent leaves ac after the first arrives
there.

We can calculate the fitness of these children, and compare them with children generated from other
initial parents. While this potentially produces a large batch of children, the population can easily be
cut down to size afterwards.

For mutations, the function is only slightly altered. Once a crossover point is chosen, we pick a
random transfer window away from ac , giving us one mutated gene. The route now leads to some
other asteroid am instead, and we look for parents which visit am at the correct time. From there the

Figure 8: Shows the process for generating children. Once a fit genome has been found, a random 
crossover point is selected and all compatible genomes are found. A child is generated with each 
compatible genome by adding the remainder to the beginning of the first parent. 
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process continues as above. This means that all the children produced by this process would share
the same mutated gene, which is a potential weakness of the method. 

Another special case is when the crossover asteroid  ac appears very early in the first individual’s
genome or very late in the second individual's genome. It is possible that the route is shortened
enough that the BEE still has sufficient propellant to transfer further at the end of the route. If this is
the case, the route can be extended with randomly generated transfers (another form of mutation) or
another crossover.

There are other ways to improve the selection process. We could go through each transfer in the
route  to  find  earlier  or  cheaper  transfers;  both  of  which  would  loosen  restrictions  for  later
generations.  We  could  add  individuals  generated  by  other  means  to  the  population;  greedy
algorithms may provide decent solutions or partial solutions. Depending on how much time we
have available,  we may implement  some of  these  improvements  but  our  main focus  is  not  on
building an evolutionary planning algorithm, so time is a limiting factor. 

Depending on our selection of parent asteroids and crossover points, we may end up with a lot of
children or very few at all. So the question of maintaining some form of population control becomes
relevant. 

Population  control  looks  different  depending  on  which  simulation  is  being  run.  With  No
Communication  or  Full  Communication,  the  plan  is  generated  before  the  simulation,  and  the
evolutionary  process  is  only  run  once.  With  Stigmergy,  however,  solutions  are  evolved  and
improved as new information becomes available.

With  the  pre-generated  plans,  we  can  generate  our  entire  initial  population  by  taking  random
transfer windows out from the HIVE. That way, our entire population consists of viable plans from
the start. As our entire population consists of viable plans with known fitness, we can use traditional
methods to eliminate the least fit members of the population. 

With Stigmergy, things are a little more complex. When the first information update occurs, the
BEEs have already implemented parts of their selected plan, so a lot of the non-selected plans are
out of date; they assume the spacecraft took a transfer window it ignored.

We can divide this population into two classes. First, we have the genomes that represent viable
plans. They include the BEE's current asteroid and present a complete route from there. The second
class does not include the current asteroid, but may still contain good routes for later crossovers.
Initially, the first class is going to be fairly small compared to the second, but it grows quickly as
new solutions are added to the population.

Some members of the second class will have been used as parents for the next generation. It is
possible that we could just remove these from the population, confident that at least some of their
genes live on. This is not ideal, but neither is maintaining a large number of solutions with unknown
fitness. 
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5 Implementation

To perform the experiments described in section 4.1, two main components were needed: a map of
the available transfer windows and a simulation of the mission itself. It was natural to divide the
parts into two separate code projects, as seen in Figure 9. The first project would compile a map of
the asteroid belt transfer windows and store it in a file. The second project would then simulate the
mission using the map and provide the desired experimental data.

This  approach was chosen because  of  the  inherent  complexity of  finding all  available  transfer
windows between the massive number of asteroids in the main belt. We expected the program to
take significant time to perform the calculations needed to generate the map; to the order of days, if
not weeks. This approach would allow us to begin implementing the second part while the map was
compiled.

5.1 Transfer Window Map

The overall plan for generating the database of transfer windows can be seen in  Figure 10. After
extracting asteroid data from the input file and generating asteroid objects, a depth first search is
started at the HIVE's initial position. The search is recursively called on individual asteroids as they
become reachable. The recursive call performs a one-to-all search for transfer windows using the
Nelder-Mead technique to speed up the process.  The PyKEP library (see section  A.2) provides
functionality for handling Keplerian elements and implements a solver for Lambert's problem. Once
the search terminates, all transfer windows found during the search will have been stored to file.

5.1.1 The Depth First Search

A depth first  search of possible  transfers can be more readily thought of as a tree structure of
possible routes. We would explore outwards from the HIVE along the first reachable asteroids in
the database, backtracking and iterating through possibilities whenever we run out of propellant or

Figure 9: Architectural overview of the implementation. The Map Generator uses a database of all 
asteroids in the belt to produce a transfer map. The map is used as input for the AI Simulator, which
uses the precomputed transfer windows.
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have explored all the possibilities from here on out.

As most asteroids could be reached through multiple routes, it was not strictly a tree search. We
needed to keep track of which asteroids had already been explored to avoid duplication of effort. On
the other hand, if a later route could reach an asteroid with more propellant to spare, it may be able
to reach further than the last exploration had. Our solution was to keep track of the highest delta v
available to spacecraft as they reached each asteroid. This information was propagated down the
transfers out from asteroids, so that the whole network remained up to date on the costs.

The resulting method was as follows (see also Algorithm 1 below):

1. The delta v available to the spacecraft as they arrive at an asteroid is compared with the
highest remaining delta v found so far. In the case of newly reached asteroids, this is 0m/s.
The HIVE is a special case, where the delta v available represents a full tank of propellant.
If the delta v available by the current route is higher than the highest found before,  the
available delta v is updated.

2. If we have have not already done so, we perform a one-to-all search of transfer windows out
from this asteroid as described below. In addition to storing every transfer window, we also
keep track of the cheapest transfer window to each target asteroid. An asteroid is reachable if
the cheapest transfer to it costs less delta v than we have available. 

3. If our available delta v has increased, either because this is our first visit to this asteroid or
because we have found a cheaper route, we recursively call this method on our reachable
asteroids. For these recursive calls the cost of the cheapest transfer to the reachable asteroid
is subtracted from the available delta v at the origin asteroid.

4. Once all reachable asteroids have been updated and returned, the method returns. 

Below is the same algorithm written in pseudocode: 

5.1.2 Finding Transfer Windows

Transfer windows between asteroids are usually found by determining the position of local minima
in pork-chop plots, as described in section 2.1.1. Evaluating every point in the plot using Lambert's
Problem at a resolution high enough to be sure of having found the minima is computationally
intensive. While it is certainly well within our capability for any one pair of asteroids, there are
simply too many asteroids to allow such lavish use of computing power. 

Instead we planned to use a gradient descent algorithm to quickly locate the minima. The main
advantage of such methods is that they require few evaluations of the delta v cost compared to a
full, high resolution evaluation of the whole search space. 

Our search space was a 2 dimensional region spanning six years of departure times (as per the
planned APIES mission duration), and up to six years of transfer times. While we suspected most
transfers would be under one or two years in duration (about half the asteroid's orbital period is
typical), it was possible that some transfer windows may feature a long, slow coast towards the
target asteroid. So we could not rule out longer transfers. 

All asteroids get an initial maxDeltaV of 0
The HIVE has the maxDeltaV of a full propellant tank
Starting at the HIVE, whenever an asteroid is reached:

If it is reached with more delta v than the previous maxDeltaV:
maxDeltaV is updated to the new delta v
If we have not searched for transfers from here, do so
For every asteroid we can reach:

Check how much delta v we have left when we reach it
Call this method on that asteroid with that delta v

Algorithm 1: Pseudocode implementation of transfer search algorithm.
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The function of the pork-chop plot is the delta v cost of a transfer with a given time of departure and
transfer time. This can be calculated in a straightforward manner if we have the velocity vectors of
the BEE before and after each engine burn. The delta v cost of a burn is the change in velocity, so
we simply calculate the magnitude of the difference between the final and initial velocity vectors to
find the cost. As explained in section 2.1.1, we need two burns to complete a transfer. The cost of
the two burns combined is the total delta v cost of the transfer.

As this function is quite complex, it  is practically impossible for us to determine its derivative
function. Many gradient descent algorithms rely on access to such a function, so we found ourselves
with limited choice of which function to use.  A well-known technique for these conditions is the
Nelder-Mead technique, described in section 3.7. Nelder-Mead, in addition to being able to handle
the problem at hand, is also known for being fast to converge in most cases and requiring few
evaluations of the target function. This made Nelder-Mead an ideal fit for our purposes. 

Each time Nelder-Mead is run, it finds one local minimum. To find all transfer windows between a
pair of asteroids, the method has to be run multiple times. The result is a set of possibly overlapping
local minima. Determining which elements of the set to keep and which were effectively duplicates
was not trivial.   At this point, we had very little information about how short transfer windows
usually are in the asteroid belt. Without that information, it would be difficult to determine whether
two discovered “transfer windows” represented two separate valleys in the pork-chop plot or were
both in the same valley. 

However, whether the elements were clustered around the same transfer window or represented
several nearby windows did not really concern us. If the windows were close enough to each other,
both in in time of departure and duration of flight, the BEEs would always prefer the one with the
lowest delta v cost. Similarly, if there were both long and short transfer time options at around the
same departure time and the shorter transfer time was cheaper, there would be nothing to gain from
taking the longer transfer. Which left us with a much simpler problem. We could simply compare
each element of the set with the other elements, and eliminate those which fit either of the following
criteria:

• There exists an element in the set with a lower delta v cost and a shorter duration of flight,
and with a time of departure within a given threshold value, or;

• There exists an element in the set with a lower delta v cost, and with both time of departure
and time of flight within a given threshold distance.

Picking the actual threshold value would have to be done by experimentation. We eventually settled
on 10 days, finding it a good compromise between reducing the complexity and giving the BEEs
enough options.

5.2 Implementation process

The base functionality for performing the search and generating the file was completed as planned
and expected. Implementing the Transfer Map Generator took far more time and effort than was
planned for, however. The process of implementing the Nelder-Mead search and solving Lambert's
Problem can be found in this section, while a description of the problems we faced and the process
of solving them can be found in Appendices B, C, D, and E.

5.2.1 Lambert's problem

Lambert's problem, as described in section 2.1.1, is the challenge of finding transfer orbits between
two given points at a given time. While techniques for solving the problem has been known for
centuries,  they tend to be fairly complex mathematical operations.  Luckily,  we did not have to
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devote time and resources to implement any of them ourselves, as the ACT's PyKEP library (see
section A.2) comes with an excellent solver built-in.

The PyKEP library proved easy to work with, even if we spent most of the first day hunting down a
mysterious bug (see section  H.1). The built-in Planet class had everything we needed to translate
between the Keplerian elements used by our database of asteroids and their position at any given
time. A built-in method of the Planet class takes in a time and returns the position and velocity of
the celestial object it represents at that time. We could insert that directly into Lambert's problem,
using the time of departure and the time of arrival as parameters for the two asteroids in question. 

The Lambert's problem solver returns the transfer velocity both at the departure point and, crucially,
at the arrival point. The delta v required for the first burn is the difference in the velocity vectors of
the departure asteroid and the transfer orbit at the departure point. For the second burn, we would
have had to propagate the spacecraft's motion along the orbit to determine its velocity at the start of
the second burn. But, to our pleasant surprise, PyKEP proactively provided the vector we needed.

The first running version of our code calculated transfer costs between Earth and Mars, and was
able to replicate pork-chop plots generated by NASA (Figure 11 below). Our delta v costs were off
by a  significant  margin,  as  our  code  does  not  take  the  planets'  gravity  wells  into  account.  A
significant amount of  delta v is expended in counteracting the force of gravity when leaving the
Earth, unlike the asteroids our code is set up to handle. As a result our windows' departure and
arrival dates were shifted towards each other to some degree.  The topmost window has shifted
downwards and left, while the bottom window has shifted upwards and right by about two weeks.

Each asteroid in our code is represented by an instance of the Asteroid class. Each Asteroid has a

Figure 11: A side by side comparison of our generated pork-chop plot compared with one 
generated by NASA for the Mars Reconnaissance Orbiter.45
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Planet class from the PyKEP library to handle the orbital parameters, a list of the cheapest transfer
window to all other asteroids, and a few other values required by the search algorithm. The list of
cheapest transfers is used to determine which of the destination asteroids need to calculate their own
transfers. Whenever the available  delta v is increased (by a cheaper route to this asteroid being
found), we can iterate through that sorted list, propagating the increased value to each one in turn. If
any of these need to make updates of their own, the code is paused until the destination asteroid is
finished, as is normal for depth first searches.

5.2.2 Nelder-Mead

The Nelder-Mead components were not quite as easy to set up. We tried a number of different
implementations35–39 over  the  course  of  a  few  days.  None  of  them proved  satisfactory.  Issues
included outdated code, poorly documented installation instructions, poor documentation in general,
code which would not compile out of the box, and in one case a price tag of 10 pence per line of
code. Eventually, we decided that it would be easier to implement the algorithm on our own.

The implementation process took a day, all told, and most of that was integration and debugging.
Actually coding up the algorithm took a little more than an hour. While the first write up of the code
worked correctly, it was very hard to read or analyse, so we made the decision to spend a bit more
time on producing helper methods. 

We produced a Flight class, which would contain all the information about a given transfer and
handle the mathematics required by Nelder-Mead. Most importantly, we implemented comparators,
so that we could compare two flights directly rather than having to extract the  delta v costs each
time. This also made sorting the flights in order of propellant efficiency easier. We also included the
addition and multiplication functions used by Nelder-Mead to move vertices around, so that we
could use an instance of the Flight class for each of our vertices. 

As the most expensive to calculate part of a
Flight is the  delta v cost, we implemented a
lazy evaluation of it. Around half the Flights
created  by  an  iteration  of  Nelder-Mead  are
never  evaluated,  so  we  managed  to
preemptively halve our run time.

Another  issue  which  had  to  be  settled  was
determining what initial simplexes to use, and
how many to evaluate in order to ensure that
all  the  transfer  windows  were  located.  Our
initial solution was cover the solution space
in simplexes, ensuring that every minima was
located  within  a  simplex.  We  divided  the
solution space into a grid, and divided each
cell  in the grid along the diagonal,  creating
two  triangular  simplexes  for  each  cell.  As
detailed in section  B.2, this turned out to be
unnecessary.

Our initial grid resolution for the placement
of  Nelder-Mead  simplexes  was  1000x1000,
which meant roughly two days between each
vertex.  The idea,  supported by some of our
initial  optimisations  (see  Appendix  B),  was
that most of these would be excluded and that

Figure 12: Example illustrating how the Nelder-
Mead simplexes were placed in the search space. 
The pork-chop plot shows the cost of transfer from 
Earth to Mars in 2005.



34 5 Implementation

only the  simplexes  near  the  minima  would  be  examined.  Throughout  the  optimisation  process
(ibid), the resolution was repeatedly reduced. Figure 12 illustrates the final  placement of simplexes
in our first search.

5.3 Assignment of Asteroid Values and Classes

In addition to a map of transfer windows, the AI Simulator also needed the scientific value of each
asteroid. There were two strategies: generating them at runtime, and generating values once and
storing them in a file. 

We opted for the second strategy to ensure that results
are  reproducible  and to  ease  analysis.  Additionally,  as
described  in  section  2.3,  the  class  of  most  asteroids
remain  uncertain.  Because  our  evolutionary  algorithm
relied  on  the  scientific  value  gained  from  exploring
multiple classes, those without an officially designated
class needed to be assigned one by us. 

The  process  involved  loading  a  database  of  asteroids,
assigning  a  random  value  (based  on  the  distribution
described in section  4.1.1) to each, and storing it  in a
new file with asteroid name, value, and class. Asteroids
without a class were assigned classes at random, with a
probability distribution equal to the distribution of the
main classes in the mission area (section  2.3), depicted
in  Figure  13.  To  differentiate  between  asteroids  with
classes assigned by us and those with known classes, the
assigned  classes  were  prefixed  with  “ASS_”.  The
algorithm  was  implemented  in  a  short  Python  script,
seen in Algorithm 2.

5.4 Revising the APIES Plan

As we started testing our program on smaller subsets of the Transfer Map, we quickly discovered
that transfer costs in the asteroid belt were higher than expected. In a map of 2095 asteroids, we
found over seven thousand transfer opportunities with a cost under 1700m/s, but only twenty with a
transfer cost under 500m/s. As the APIES BEEs only have 1700m/s of delta v available in total, this
meant that each BEE would only get to explore at most 2-3 asteroids. Of even greater concern was
that there were only three transfers out from the HIVE which cost less than half  of the BEE's
available delta v, and all three were to the same asteroid (2008 UK144; which happens to have a
very similar orbit to the HIVE).

While we expected this to be less of an issue when the full Transfer Map of asteroids was used,
rather than a randomly selected subset, it did suggest that the BEEs as envisioned by the APIES
plan were not optimally suited for this sort of exploration. The individual BEEs had relatively little

Figure 13: The distribution of randomly 
assigned classes from the three main 
types of asteroid in the mission region.
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For each entry in the asteroid database:
Retrieve its name and classification
If the classification is uncertain (contains a question mark):

Remove the question mark
Otherwise, if the classification is unknown:

Assign a classification at random
Set asteroid value to a random number between min value and max value
Write the modified entry (<name, classification, value>) to output file

Algorithm 2: Pseudocode explanation of how asteroids are assigned classifications 
and values.
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propellant,  as  they were  designed  to  make relatively small  manoeuvres  to  intercept  whichever
asteroids happened to pass through their dragnet, rather than actively seeking out asteroids on their
own. 

The APIES plan (detailed in section  2.2) calls for exactly 19 BEEs in order to create a complete
hexagonal drag-net (as seen in Figure 5 on page 8) centred on the HIVE. Available delta v per BEE
is dependent on how much of the Soyuz-FG/Fregat's payload is spent on propellant rather than
additional spacecraft. Since we do not need exactly 19 BEEs, it may be worth while to optimise the
mission load-out towards maximising the total available delta v. 

Table  4 shows  the  relationship  between  total
mission  delta v and the number of BEEs used.
The APIES mission description has a detailed
breakdown of the mass usage on the BEEs, but
bundles the propellant tank mass together with
other structural mass. This makes it difficult to
determine  how  adding  propellant  effects  the
total mass of the BEEs. Thus, we have made the
simplifying and pessimistic assumption that the
structural mass scales linearly with the mass of
propellant carried. Structural mass does include
the propellant tank, whose mass would increase
in tandem with its volume, but the relationship
is  sub-linear  and  a  substantial  fraction  of
structural  mass  is  entirely  independent  of
propellant mass. Our assumptions are therefore
slightly  pessimistic  with  regards  to  available
delta v per BEE. 

A simple analyses of the APIES mission load-
out suggests that bringing 12 BEEs and using
the  extra  mass  to  carry  more  propellant  per
remaining BEE would maximise the total  delta
v available.  That  would leave each BEE with
just  over  3400m/s  delta  v,  which  should  be
enough  to  allow  them to  explore  around  4-5
asteroids each. 

Total Mission Delta V
Number
of BEEs

Mass per
BEE

Delta v
per BEE

Total mission
delta v

19 43.39kg 1,699m/s 32,284m/s

18 45.80kg 1,916m/s 34,501m/s

17 48.49kg 2,143m/s 36,424m/s

16 51.53kg 2,378m/s 38,040m/s

15 54.96kg 2,622m/s 39,333m/s

14 58.89kg 2,877m/s 40,284m/s

13 63.42kg 3,144m/s 40,876m/s

12 68.70kg 3,424m/s 41,086m/s

11 74.95kg 3,717m/s 40,891m/s

10 82.44kg 4,026m/s 40,262m/s

9 91.60kg 4,352m/s 39,170m/s

8 103.05kg 4,697m/s 37,578m/s

7 117.77kg 5,064m/s 35,447m/s

6 137.40kg 5,455m/s 32,729m/s

5 164.88kg 5,874m/s 29,368m/s

4 206.10kg 6,325m/s 25,298m/s

3 274.80kg 6,813m/s 20,439m/s

2 412.21kg 7,345m/s 14,691m/s

1 824.41kg 7,931m/s   7,921m/s

Table 4: The relationship between number of 
BEEs and total mission delta v.
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5.5 AI Simulator

The main components of the AI Simulator are shown in  Figure 14. It uses the Transfer Map to
evolve and evaluate plans for exploring the asteroid belt. Its largest component is an Evolutionary
Algorithm designed to produce plans with a high expected scientific return for the simulator to
evaluate.

5.5.1 Plan

The overarching plan for the AI Simulator is described in chapter 4. The project consists of a model
of the asteroid belt (section  4.3), a light-weight simulation (section  4.4), an evolutionary planner
(section  4.5),  and some surrounding framework.  Each of  these components  would need further
refining for each of the four experiments we plan to use them to run (see section 4.1). What follows
are the implementation relevant details of the plan. 

Input and Transfer Map Handling

The AI Simulator needed two files for input. The
first  was  the  file  containing  the  asteroids,  as  per
section 5.3. It contained asteroid names, classes and
values. The second was the Transfer Map generated
previously,  with  a  file  format  described  in
Appendix C.

The two files would have to be stitched together to
provide  a  data  structure  of  the  asteroids  and  the
transfer  opportunities  between  them,  as  seen  in
Figure 15. The transfer map would be built like a
tree  structure,  with  each  asteroid  object  keeping
track  of  its  own  transfer  opportunities  and  each
transfer keeping a reference to both the origin and
the destination asteroid. The transfers out stored as
a map in each asteroid, with the destination asteroid
as the key. 

An important  thing to  note is  that the asteroids should not be changed in any way after  being
created. As the same transfer map would be used over every experiment, it was paramount that the
experiments not alter any of the asteroid's traits. Which in turn meant that the simulator would need
to keep track of which asteroids had been visited, rather than the asteroids themselves doing so. 

Figure 14: Shows the major components of the AI Simulator: the I/O component implements 
loading of the Transfer Map and asteroid values, the support code handles multi-threading and 
experimental set-up, the Simulator executes and evaluates plans, and the AI performs the evolution.
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The transfer window class would be very light-weight; little more than a (C-style) struct. Each
needed a reference to two asteroids (origin and destination), a pair of time stamps (departure and
arrival time), and a delta v cost. These values would be set by the input module as they were read
in, but otherwise remain unchanged throughout the program. 

Simulator

What all three experiments had in common was a need for a light-weight simulator to resolve the
events of the mission. As the evolution for the Full Communication scenario needed to run this
simulation multiple times for each genome evaluated, it would be preferable if this component was
as efficient as we could make it.

The resulting algorithm (as seen in Algorithm 3, above) is deceptively simple. It takes in a list of
routes  from the spacecraft  involved in  the  simulation,  and transforms each route into  a  list  of
asteroid arrival events. These events are combined into one long list, which is sorted by the time of
arrival at each asteroid. Then it simply iterates through this list of events, resolving each in rapid
succession. 

A few complications and special considerations do apply. First of all, the above algorithm did not
evaluate the validity of the route, including whether the spacecraft had enough delta v to complete
the  route.  This  was  done  deliberately  in  order  to  keep  the  simulator  scenario-agnostic.
Responsibility for evaluating validity of the routes was given instead to the evolutionary algorithm
and the individual spacecraft.  

Secondly, the Stigmergy scenario involved running simulations of shorter periods in between each
stigmergy update. This meant that we needed to be able to specify the starting and end times of the
simulation, and needed to keep track of information about what asteroids had been visited across
multiple partial simulations. 

We also wanted to code to be general enough that a sub-class could be used to evaluate the fitness
function  of  the  No  Communication  and  the  Stigmergy  genomes.  This  was  done  by  simply
performing the evaluation of the scientific return from an event in a separate method, which these
sub-classes could later override. 

Evolutionary Algorithm

The plan for the Artificial Intelligence is described in general terms in section  4.5. The genome
would be a route which may be longer than it is physically possible for the BEEs to travel or exactly
long enough, but never shorter. Should a genome end up being too short due to a crossover event or
otherwise, transfers would be randomly tacked on to the end until no more are possible.

For every route delivered to the simulator
For each transfer in that route

// Stigmergy Sims run with limited a time span at a time
Check whether the transfer arrives within the time span to be simulated

If so, create an event with that asteroid and arrival time
Place the event into a list of events

Sort the event list in order of ascending arrival time
Iterate through the events in chronological order

Add the event's asteroid to the list of visited asteroids
If no asteroids of this class have been visited before

Add the class to the list of visited classes
Add one to the number of visits to the class
// Override the following method to turn this into a fitness calculator
Calculate the points earned from the event
Add the points earned to the total score

Return the total score of the simulation

Algorithm 3: Pseudocode description of the simulator, including special 
considerations required.
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We wanted to avoid genomes shortening, as the utility of the mission was based on the total number
of asteroids explored. Not exploring another asteroid when one is available would be wasting the
remaining resources of the BEE. Additionally,  the way our crossover algorithm was set up (see
section  4.5.4)  meant  that  the  later  transfers  would  experience  more  evolutionary  pressure,  so
random extensions where possible was a useful way to prevent premature convergence. 

The evolutionary algorithm selected all possible mates from a given genome and crossover point.
This was done because of the relative rarity of viable mates, which would have to leave a given
asteroid after a given time.  As we did not know in advance exactly how rare viable mates would be,
a method was implemented which made every possible crossover for a given genome, which could
be used if it became difficult to find a mate in the population. 

By the same token, we chose to use generational mixing. The children of the current generation
competed with the existing population for the limited slots available for the next iteration. This
allowed  us  to  maintain  a  constant  population  size,  despite  a  variable  amount  of  children  per
generation. This also meant less evolutionary pressure when there were few new possibilities, and
more pressure when there were many new options. 

As described in section  4.5.3, we chose to implement a number of different selection methods.
These would all be unexacting algorithms to code, and should not present any difficulties. The rest
of the code was designed to be selector agnostic, using an interface to connect to any selector we
had implemented.

Support Code

There were two main areas of support code. The first was the entry point of the program which
would  set  up  the  experiments.  It  would  perform the  necessary  initialisations  and  define  what
experiments to run and how many times to run them. The second part of the support code would
handle multi-threading.

A configuration file, in the form of a static class, would contain all the system constants in order to
ensure that things would remain consistent throughout our experiments. This file also would have
details about how many experiments of what type to run. 

The multi-threading component  would use this  information to  schedule the  experiments  for  an
executor service, which would execute the experiments whenever a thread became available. The
executor would typically have one thread running for each computer core, but the number could be
overridden if needed.

5.5.2 Implementation Process

Unlike implementation of the Map Generator, the AI Simulator was implemented without much
complication. There were some issues regarding Java's handling of the binary Transfer Map file
produced  by the  Map  Generator,  described  in  section  E.2.  The  plans  for  both  the  AI  and  the
Simulator  also had to  be  altered  slightly to  overcome programming limitations  and unforeseen
complications.

Simulator

The simulator was straightforward to implement. As we had intended, the choice of an event based
simulation meant it was very easy to put the simulator together. All the complicated physics which
usually makes simulators difficult to code had already been handled by the Transfer Map generator.

The  biggest  change from the  initial  plan  came about  from a  desire  to  have  more  information
available for debugging and the complications involved in parallel processing. In the original plan,
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the simulator returned only a double value representing the scientific return of the mission. We
wanted to have more information available, so we modified the code to return the simulator itself
instead.

The simulator already had access to the routes of each spacecraft, which asteroids had been visited,
which asteroid classes had been visited (and how many from each class), and just about anything
else  we  might  want  to  know  about  the  result.  As  such,  the  modifications  needed  to  turn  the
simulator into a results object were minor. A few extra get-functions were needed to be able to
extract the required information and the code had to be modified to keep the routes in memory
rather than just using them in the constructor. 

The  sub-classes  which  were  to  serve  as  fitness  functions  for  the  Stigmergy  (Exp  3)  and  No
Communication (Exp 4) scenarios were also easy to write. The code was general enough to handle
varying  numbers  of  BEEs,  so  could  handle  the  fitness  calculation  for  a  single  spacecraft.  As
planned, the calculation of scientific return for an event was placed in a separate method which the
sub-classes could overwrite.

Of the two, Stigmergy was the more complicated. Because the simulator's environmental data was
used as the available stigmergy information, we could not allow the testing of a plan to alter the
state of the simulation. This meant that the evaluation of a genome's fitness would have to be done
separately from the usual event handling code, which was linked to the environmental data. We later
discovered that we had been unsuccessful in doing so, as documented in section H.6.

Evolutionary Algorithm

One of the principle advantages of evolutionary algorithms is that they are very easy to implement,
even  for  complex  problems.  In  some  cases,  ours  included,  the  genome  required  special
considerations with some of the genetic operators, but the algorithm itself is fairly robust. The only
real implementation difficulty we had with the evolutionary algorithm was that parts of it had to be
rewritten to allow for the Full Communication scenario's co-evolution requirement. Some processes
also had to be pulled out into external methods so that the sub-classes could override them. 

The basic evolutionary algorithm, which was also used directly by the No Communication (Exp 4)
version of the code is  detailed  below in  Algorithm 4.  The process was typical of evolutionary
algorithms.  The  population  is  seeded  by  randomly  generated  individuals,  after  which  the
generational code is run repeatedly until the final result is ready.

In  each  generation,  a  number  of  the  highest  fitness  genomes  were  selected  for  crossover.  As
potential crossover opportunities were few, every possible crossover was performed. The fitness of
each new genome was ascertained. For the No Communication scenario, each BEE had its own
fitness object; while the other experiments used different methods to determine fitness. Once their
fitness was known, the children were added to the population which was then pruned down to its
original size.

As seen in Algorithm 5 below, the Stigmergy scenario (Exp 3) required two major changes from the

// No Communication (basic) Evolution
Randomly generate initial population
For each generation:

Select a number of genomes in the population to generate children from
For each of those genomes:

Perform crossover on it and every candidate from the population
Determine the fitness of each child
Add all children to the population
Select a number of individuals from the population to be the next generation

Algorithm 4: The basic evolutionary algorithm, as used by the No Communication 
scenario.
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basic evolutionary algorithm. The first was that the evolutionary process took place multiple times
as  updates  from  the  environment  changed  the  expected  fitness  of  current  plans.  After  each
stigmergy update, many members of the population would be outdated; they relied on the spacecraft
having made different choices than it ended up doing. These plans were kept in a separate list in the
hope that they would be useful for later crossovers.

The second change was that the spacecraft in the swarm shared a fitness object, which kept track of
the available  information.  As with the No Communication scenario,  this  was a subclass of the
simulator code.  In every stigmergy update,  this fitness calculator was updated with information
about what the spacecraft had done and what they were planing to do.

With Full Communication (Exp 2), the whole evolutionary process had to be paused after each
generation so that multiple simulations could be run to examine the fitness of each new individual.
This co-evolution meant that the BEEs had to wait until everyone was finished with crossovers for a
given generation before it could select who to include in the next, as the fitness depends on how
well it worked with the other BEEs. 

As seen in  Algorithm 6 below, the Full  Communication code overrode every part  of the main
evolution method. Rather than running an evolution on its own, the co-evolution code controlled
separate  evolutions  for  each  BEE.  Whenever  the  evolutionary  code  would  have  performed  an
action, the co-evolution instead called that method on each BEE. The code started by initializing
each member of the swarm, calling an unmodified initialization method on each swarm member.
Each generation was split into a generating phase and a selection phase, with the fitness evaluation
sandwiched in the middle.

New No Communication Fitness Characteristics

While some concepts for communication-less fitness characteristics are discussed in section 4.5.1,
we had not yet settled on exactly which to use when we started implementing. 

// Stigmergy Evolution
Update the fitness calculator with the new stigmergy information
Copy the whole population into an array of outdated plans
Find every genome which leaves our current position after the current time:

Those genomes are now our population
For each generation:

Select a number of genomes from the population to generate children from
For each of those genomes:

Perform crossover on it and every candidate from the population
Perform crossover on it and every candidate from the outdated plans

Determine the fitness of each child based on available stigmergy information
Add all children to the population
Select a number of individuals from the population to be the next generation

Algorithm 5: The stigmergy evolution method, with differences from the basic 
process (Algorithm 4) highlighted.

// Full Communication Co-Evolution
For each BEE in the Swarm:

Randomly generate initial population
For each generation:

For each BEE in the Swarm:
Select a number of genomes from the population to generate children from
For each of those genomes:

Perform crossover on it and every candidate from the population
While there is a child which has not been in enough simulations:

Run a simulation with a random set of children which need more simulations
Add the score earned to each child's list of scores

For each BEE in the Swarm:
Add all children to the population
Select individuals from the population to be the next generation

Algorithm 6: The co-evolution method, with differences from the basic process 
(Algorithm 4) highlighted.
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We considered using the scientific return of the route directly as its fitness. If the search area was
wide enough, chances are each BEE would find a different route. If the area is not quite so wide,
there would be issues with multiple BEEs picking the same route. In early testing, we found that
with just the scientific return based greedy behaviour, we typically had one or two pairs of BEEs
pick identical routes in each run, even in larger test sets. Clearly, more variation was needed.

The other two behaviours we had already considered were both based on the same principle. We
would divide transfers into two categories, based on  delta v cost or time of flight. If the time or
delta v cost was below a given threshold, the transfer would receive a fitness boost. The boost
would depend on how highly the spacecraft prioritised the behaviour in question and how valuable
the target asteroid was.

During implementation, we hit upon a less binary solution, which would provide a proportion of the
full fitness boost to transfers which were above the threshold. We knew, from cursory examinations
of the transfer map, that there were significantly more high cost transfers in the map than low cost
transfers. As a result, rewarding only low cost transfers would have little effect. If only 1% of the
transfers were eligible for the fitness boost, chances were that there was a transfer in the remaining
99% which produced enough fitness to make up for the difference. 

We could have picked a threshold which neatly bisected the search-space, but that would provide a
static  boost  to  a  wide  range  of  transfer  costs.  This  would  not  provide  much  pressure  towards
reducing transfer costs. So the proportional approach was chosen. About 1% of the transfers in the
map would get the full boost. However, about 40% would get half the boost or more, which gave us
the best of both worlds. 

The formula was simple. If the cost or transfer time was equal or below a chosen threshold, the
transfer got the full fitness boost. If not, it got only a fraction defined by the threshold divided by
the cost. So if the transfer cost twice the threshold, it got half the fitness boost. 

One of the fitness characteristics we had quickly abandoned was the idea of having each BEE
specialise in a given class of asteroid, preferring to keep visiting the same ones. However, given the
nature of the solution space, we ended up implementing the reverse. As described in section 5.3, the
vast  majority  of  asteroids  in  our  transfer  map  belong  to  one  of  three  classifications  (assigned
randomly by us). As we expected each BEE to visit at least three targets, assigning a fitness boost to
classes not yet visited should result in roughly an equal number of each class being visited. At the
very least, we would expect each BEE to visit each class once with such a boost, meaning at least
12 of each would be visited.

This would not necessarily improve the diversity, in the sense that it did not prevent the BEEs from
targeting  the  same  asteroids,  but  it  would  increase  the  final  fitness  by  ensuring  that  no  class
becomes significantly over-represented. It would neatly allow us to incentivise diverse sampling
without requiring communication.

5.6 Analysing the Output

One of the first things we noticed when we started testing with a nearly complete data-set was that
the routes were shorter than we would have hoped. With No Communication, the BEEs typically
took routes with a length of 2 asteroids, while the Full Communication BEEs generally managed 3.
This  was  discouraging,  as  we  were  averaging  30-40  asteroids  explored;  far  less  than  the  100
envisioned by APIES. It also meant that our evolutionary algorithms were not particularly useful.

5.6.1 Selection Methods

As explained in section 4.5.3, we planned on implementing a number of different selection methods
and  seeing  which  of  them worked  the  best  for  our  purposes.  Once  the  rest  of  the  code  was
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reasonably stable, we ran some trials to see how the selection methods compare. We did 20 trials for
each scenario  for  each selection  method.  The average  scientific  return  and average  number  of
asteroids explored are documented in Table 5, below.

The first and most obvious observation which could be made from this table was that the selection
method has  little  effect  on the utility of  Stigmergy and No Communication runs.  This may be
because, unlike with Full Communication, these evolvers are not optimising towards the final score
but towards an internal fitness value. The exact fine tuning of this fitness value had not yet been
completed, so there may not be enough pressure towards achieving a higher score.

As described in section  H.6, we later discovered another reason for the poor performance of the
experiments with internal fitness representations. Due to a bug in the calculation of class value, the
evolvers  were  optimising  only  for  the  asteroids'  intrinsic  values.  As  a  result,  they  were  not
particularly effective at picking good solutions, no matter the selection method.

The Full Communication scenario, which used the scientific return as the fitness directly, made a
better comparator for the selection method. In this column, it can be seen that the scores came in
three rough tiers. The unmodified Roulette-wheel Selection lay nearly 50 points below the next
worst option. This was especially significant as the difference between the best and worst of 20
trials tended to be around 40 points. Similarly, Elitism was a full 25 points above the second best
option, which was the high pressure version of Roulette-wheel Selection. The others were all within
a 10 point range of each other.

It  was  telling,  if  not  particularly surprising,  that  the two best  selectors  were the ones with the
highest selection pressure. We knew that possible crossovers were rare in our populations, which in
turn lead to relatively few children being generated in each generation. With generational mixing,
this meant only a few genomes were eliminated per generation. As such, we wanted to make sure

Performance of Various Selection Methods

Selection Method
No Communication Stigmergy

Full
Communication

Science Asteroids Science Asteroids Science Asteroids

Elitism 363.5 25.2 367.5 25.8 524.6 35.7

Roulette-wheel Selection 360.8 25.2 366.4 25.5 441.4 31.6

Roulette-wheel Selection, lowest
fitness scaled to zero.

369.2 24.9 365.7 25.4 498.5 34.2

Tournament Selection, 3 genomes
per tournament

366.7 25.3 361.6 25.4 489.8 34.3

Tournament Selection, 5 genomes
per tournament

367.5 25.6 363.3 24.7 490.0 34.5

Stochastic Universal Sampling
(SUS) Selection

348.4 24.1 351.5 24.6 489.9 33.9

SUS Selection, lowest fitness
scaled to zero.

354.4 24.7 353.9 24.9 492.9 34.3

Table 5: Average scientific return and average number of asteroids explored for a variety of 
selection methods. 100 generations of 100 individuals, with 10 attempts to generate children per 
generation, a mutation rate of 5%, at least 4 co-evolution evaluations per full communication 
genome, and 12 stigmergy updates (one every 6 months).
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that the worst solutions are lost. This logic also applied to the other scenarios once they had been
fully optimised and bug fixed.

5.6.2 Excessive Cloning

There is no easy way to do crossover when there are low odds that any members of the population
visit the same asteroid. As a result, we only really performed crossovers when there was a duplicate
of the genome in the population, so most of our children were clones. In this environment, a high
mutation rate was the only way to keep the population evolving. And, in fact, we found we got the
best results when our mutation rate was about 60%.

Our first order of business was to prevent the premature converge caused by excessive cloning. As
we had generational mixing, it would not be helpful to produce any copies of an existing member of
the population. So we simply pruned out any children which were identical to one of their parents.
This gave us better scientific return on runs with low mutation rates, but did not increase overall
scientific return.

Before the cloning issue was resolved, mutation rates between 30-90% provided roughly the same
utility, although we got the best results with about 60-70%. After the crossover code was rewritten
to prevent cloning, we got significantly better results with low (0.5%) mutation rates. Mutation rates
between 10-85% now provided roughly the same utility, higher than any lower rate but lower than
without cloning measures.

While examining possible theories for why the routes remained so short, we implemented a simple
method which pruned out routes of length one from the transfer map. It simply checked whether
each transfer out from the HIVE arrived in time for any further transfers, and removed any which
which did not. The idea was that by making sure that every route was at least two asteroids long, we
could improve crossover and remove the least useful parts of the search area. 

The process worked, as can be seen in  Table 6, but not nearly as well as we could have hoped.
There are consistent improvements in scientific return for every possible mutation rate. The results
were still not any better than before we started making adjustments, however, and the routes were
still not as long as we would have liked.
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5.7 Extending the Mission

We found that  the BEEs typically ran out  of  time before they ran out  of  propellant.  It  wasn't
uncommon to see a BEE with over 1000m/s of delta v left at mission end. We looked at when they
arrived at  the last  asteroid in  their  route and discovered,  with few exceptions,  that  every BEE
arrived within a day of the end of the mission. 

A quick examination of the transfer database showed that half of all possible transfers only arrived
in the last few days of the mission. The reason for this was obvious in hindsight. The Nelder-Mead
simplexes (see section 5.2.2) are limited to searching within the available time of the mission. As a
result, whenever the search function is rising towards a peak with a time of arrival after the mission
conclusion,  Nelder-Mead  finds  a  “peak”  which  arrives  as  late  as  possible.  Additionally,  while
transfers which leave too early for travel are eliminated (see section  E.1), later transfers are not,
leading to late transfers being over-represented. 

The result is that, without a lot of evolutionary pressure or a high mutation rate, it is very hard for
the genomes to grow in length. If they are extended with an arbitrary transfer window, they will
reach the next asteroid in the last few days of the mission. This would in part explain why we were
getting so short routes. 

Effects of Varying the Mutation Rate

Mutation Rate
Average (Before

anti-cloning
measures)

Average (After
anti-cloning
measures)

Average (anti-cloning
and pruning dead ends

from HIVE)

100% 471.1 444.1 465.5

95% 518.6 485.5 511.5

90% 534.0 499.4 517.8

85% 533.1 512.9 528.3

80% 536.4 517.7 524.5

75% 538.0 516.4 525.5

70% 538.3 521.5 525.3

65% 535.3 523.4 529.0

60% 544.1 510.6 527.8

50% 540.8 521.5 531.6

40% 533.7 522.8 533.2

30% 532.5 522.1 528.2

20% 527.8 522.4 524.7

10% 508.0 522.0 525.9

5% 491.0 496.9 525.8

0.5% 451.9 508.5 513.8

Table 6: Average scientific return explored for a variety of mutation rates, using full 
communication. 100 generations of 100 individuals, with 10 attempts to generate children
per generation, an Elitism selector, and at least 4 co-evolution evaluations per full 
communication genome.
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While looking for other explanations, we did some statistics on the transfer windows we had thus
far generated. The average delta v cost of a transfer was about 1000m/s and the average flight time
was about 22 months. With 3400m/s of delta v available and 72 months worth of mission time, it
seemed we were short on both. 

In and of itself, the delta v should not be a problem. While only a quarter of the transfers in the
database cost under 900m/s and only 5% cost under 650m/s, the evolutionary algorithm should be
powerful  enough to find these cheap transfers.  The problem is  that waiting for cheap transfers
means less time for more transfers later, which means it is presently smarter for the BEE to make
many early, expensive transfers than to wait for cheap ones.

We expected that if the mission was not arbitrarily terminated after 6 years, the BEEs would be
capable of finding routes of length 5 or even 6 by taking their time and waiting for better options.
Our current data-set did not cover that time-span, however, so we would have to generate a whole
new Transfer Map. Increasing the mission duration would require an even more time consuming
search. Since the last one had run for 49 days and not yet finished, we were naturally hesitant to
begin anew.

However, as described in section E.1.1, we had in the mean time estimated that filtering on arrival
time in addition to  delta  v would massively reduce the number of asteroids we would need to
evaluate.  With these new improvements,  we estimated a  five-fold reduction in run time, which
would allow the seven weeks of execution to be replicated by a new one week search, and the entire
search to be completed in another.

Increasing the mission length would unfortunately increase the problems size, and thus the time
needed to complete the search. Whether the increased performance of a search algorithm would
suffice for allowing the larger problem to be solved required more thorough estimates than could be
made without actual implementations.

5.7.1 Adding Time Restrictions to the Search Algorithm

Up to this point, the search had restricted branching and depth of the search only by considering
delta v costs of transfers. Whenever new transfer windows were found, they were used to improve
the estimated cheapest cost of arrival for any asteroid reachable through them. Asteroids which
could never be reached cheaply enough were never included in the search as reachable asteroids. 

As seen in  E.1.1, this could be improved by considering time. The search could be changed, as
shown in  Algorithm 7, to attempt to enumerate every possible route, by using estimates of both
cheapest cost and earliest arrival to decide whether to make a recursive call. It would have two
parameters relevant to the algorithm: time of arrival and available  delta v. Only outgoing transfer
windows with a lower delta v cost than available and a time of departure after the arrival would now
be considered. 

At any node in the tree, it would generate outgoing transfer windows the first time it was reached,
and attempt to reach other asteroids with the available time and delta v. As the search progressed,

recursiveCall(timeOfArrival, remainingDeltaV):
If outbound search has not been done:

Search for outbound transfer windows
// previous best initialised at end of time and negative delta v
If timeOfArrival or remainingDeltaV improves previous best:

Update previous best // one or both values
For all transfer windows:

If timeOfDeparture > timeOfArrival & cost < remainingDeltaV:
// make recursive call on destination asteroid
recursiveCall(time of departure, remainingDeltaV – delta v cost)

Algorithm 7: The algorithm for restricting on time as well as delta v in the search.
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fewer and fewer transfer windows would be available due to the ever decreasing amount of delta v
and time available for outbound transfers. This would result in a smaller branching factor than the
previous search, which only considered delta v.

To  avoid  making  redundant  recursive  calls  that
cannot expand the search, every asteroid stores the
highest  amount  of  remaining  delta  v  and  the
earliest arrival it has ever been called with. Figure
16 illustrates  the  situation.  There  is  no  point
making new recursive calls  if  neither the highest
delta v or earliest  arrival is improved. An earlier
arrival would allow windows with earlier times of
departure to be traversed, while a higher amount of
delta v remaining would allow transfer windows to
be called with a better amount of delta v remaining.
If  neither  is  improved  upon,  there  is  no  point
making  a  recursive  call.  Because  every  transfer
window requires a strictly positive amount of delta
v  and  time,  a  search  will  never  progress  after
arriving at  an asteroid it  has already visited.  The
search would arrive with both less delta v and less
time available than before.

The new and improved search algorithm was benchmarked as described in  F.1. The speedup was
measured at a factor of roughly 13-14, while the initial estimate that led us to alter the algorithm
suggested a fraction of this. If the actual speedup would be equal to this measurement, the seven
week search would be completed in just two to three days and the entire search likely within a
week. The entire project would have been pushed ahead by weeks had the source of improvement
been discovered at the implementation stage. The speedup would likely allow a second search to be
performed if the longer mission would not increase the problem size several times over.

5.7.2 Expanding the Mission Length

As discussed above, the original 6 year time span of the mission limited the number of transfer the
spacecraft could make. The BEEs typically had about a 1000m/s of delta v left at the end of the
mission time, and were ignoring cheap transfers in favour of earlier options. Expanding the time
span would allow them to select cheaper, but later transfer windows and still not run out of time. 

Inspection of the Transfer Map revealed that no transfer windows had a duration of flight longer
than 4.4 years out of the available 6, and only 0.3% above 4 years. The reason for this is that
transfers much longer than this would require more than one revolution around sun, which would be
less efficient than half revolution transfers.40 

The choice of mission length fell on 20 years instead of the original 6. This was over three times the
original length, which should provide the BEEs with enough time to wait for cheaper transfers. We
wanted to make certain the BEEs were able to expend their reserve of propellant before running out
of time. More than 20 years would likely be unnecessary and move the new mission description
further from the original. Less than this could fail to alleviate the problem. 

With a 20 year mission, allowing for transfer up to 20 years would only waste computational time.
Because the low percentage of transfer windows with duration of flight above 4 years, the duration
of flight was limited to a maximum of 4 years. This would eliminate a large portion of the search
space and allow the use of fewer Nelder-Mead simplexes.

Figure 16: Illustrates the bounds check of the 
search. The two lines show the lowest delta v 
cost and earliest arrival time seen by an 
asteroid. Only a recursive call that moves the 
intersect point towards the bottom right 
(green area) could affect the result of the 
search.
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The  changes  to  the  Nelder  Mead algorithm
were  minor.  Figure  17 shows  the  modified
search space with the Nelder Mead triangles.
Reducing  the  number  of  Nelder  Mead
simplexes to 7x1 compared to the 11 used in
the 6 year  search would mean a substantial
speedup  per  asteroid  yet  still  provide  an
adequate coverage of the search space.

The modified search space was benchmarked
with the improved search algorithm, detailed
in  section  F.2.  It  would  seem  that  the
additional mission length negates the speedup
gained from modifying the search algorithm
and  reducing  the  number  of  Nelder-Mead
simplexes, meaning a full search could take
as long as the previous one. Fortunately, the
new  search  algorithm  produces  only  a
fraction of the junk data,  meaning it  would
produce roughly an order of magnitude more
valid routes given the same execution time.

Figure 17: Shows an example of how the initial 
Nelder-Mead simplexes would be placed in the 
modified search space. The pork-chop plot shows 
transfer opportunities from 2006 SB102 to 2001 
VX75 with a propellant limit of 1200m/s.
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6 Experimental Setup
The experiments, described in section 4.1, have a multitude of parameters with values discussed and
described throughout the previous chapters and some of the appendixes. This chapter summarises
the parameters and the reasoning for selecting their particular values.

6.1 Transfer Map Parameters

The Transfer Map Generator requires many
parameters to be set and tweaked before it
produces the desired result. The parameters
that are relevant to the search can be found
in Table 7.

The mission start is defined in days relative
to the reference epoch J2000, set at noon on
the 1st of January 2000, Terrestrial Time. It
has  been  set  to  the  planned  launch  of
APIES in 2020. As described in section 5.7,
the mission was extended from 6 years to
20 years due to  the short  transfer  lengths
achieved with the shorter option.

The spacecraft are allowed a maximum of
3424m/s delta v. Section 5.4 describes why
this  has  been  increased  from the  original
1700m/s  detailed  in  the  APIES  plan  and
how it  allowed  for  better  use  of  mission
resources.

Only transfer windows costing a maximum of 1200m/s are included in the search, as per section
B.4. This was necessary to shorten the time needed to generate the Transfer Map, and has the side
effect of ensuring that BEEs are not allowed to empty their propellant reserves in just one transfer.

The  Nelder-Mead  resolution  has  been  reduced  to  the  minimum of  what  would  work  reliably.
Section 5.7.2 discusses the choice, which landed on 7x1 Nelder-Mead simplexes; 7 in the axis of
mission duration and 1 in the axis of transfer duration. The resolution was sufficient for the search
while not requiring more computational time than absolutely needed. 

The precision of the Nelder-Mead algorithm, epsilon, was set to 1 day. This effectively meant that
any two transfer windows with less than 2 days difference between them in both time of transfer
and duration of transfer would be considered as examples of the same underlying transfer window.
The one with the most expensive cost of transfer was eliminated. Section 2.1.1 shows an example
where this precision was used by NASA, showing it is a reasonable choice. A Transfer Map where
most  transfers  take  at  least  a  year  would  also not  benefit  from a relatively minute increase in
precision.

The search  used a  filtered  database,  filtered down to about  a  third of  the asteroids  in  the  full
database.  Section  B.3 details  the  process  of  eliminating  asteroids  based  on  estimated  cost  of
reaching  them,  and  why  such  a  heavy  reduction  was  necessary  and  justifiable  given  the
computational cost of generating the Transfer Map. Benchmarking and testing used a reproducible
subset of asteroids in the filtered database, based on what percentage of the problem size could
easily be handled. For the full search, the percentage of asteroids to include was naturally set to the

Transfer Map Generator Settings
Parameter Value

Mission Start
7,305 days 

(1st of January 2020)

Mission Duration 7,305 days (20 years)

Maximum Transfer Duration 1,461 days (4 years)

Maximum Transfer Cost 1,200m/s

Spacecraft Delta V Limit 3,424m/s

Nelder-Mead Grid Resolution 15

Nelder-Mead Epsilon 1

Asteroid Database Size 212,077

Included Asteroid Percentage 100%

Table 7: Shows the parameters used when generating 
the Transfer Map.
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entire filtered database. 

6.2 Scientific Return Parameters

We  initially  considered  using  the  priority  information
available in our asteroid database as a source for how much
to value each asteroid. It turned out that most asteroids in the
database had not been assigned any special priority, and that
the  priorities  assigned  were  too  astronomy specific  to  be
much  help  to  us.  Most  priority  asteroids  were  given
observational  priorities  because  their  orbits  were  not  well
known or there was a limited window for when to observe
them,  rather  than  any  intrinsic  scientific  value  from  the
asteroid itself. 

So we had to produce our own asteroid values. The values
for each asteroid were randomly generated from the set of
real numbers between one and ten.  The class values were
assigned manually, however, with the values as seen in Table
8. The quick and dirty guideline we used was that classes
with more than one letter were worth 30 points, and single
letter designations were worth 20. This was done under the
assumption  that  scientists  would  have  some  high  priority
target classes in mind in any such exploration of the Asteroid
Belt.  With no way of predicting what classes would be of
special  interest  in  the  future,  it  might  as  well  be  these
classes. 

The most common classes (C-type, S-type and M-type) were given a lower priority, at 10 points, as
they are better understood than their more unusual brethren. Asteroids with classes assigned by us
were given a slight bonus, since we assumed that any such assignment would be provincial at best,
with a decent chance that a close examination would reveal misclassifications or other oddities. 

Section 5.3 describes the process of assigning values and classes to the asteroids. Investigation of
the asteroids included in the final Transfer Map showed that most of the asteroids were ones with
assigned classes.  This  was  unfortunate,  as  the  likelihood  of  arriving  at  one  of  the  11  actually
classified  asteroids  was  extremely  low.  To  make  matters  worse,  three  of  the  six  classes  with
members in the final Transfer Map were only represented once, the other two twice and six times.
As the class values do not reflect the relative rarity of these classes, the evolutionary algorithm
would have little interest in them.

Had we known the relative distribution of classes in the final data set before they were assigned, we
would have made sure the assignment method included all classes, not only the three most common
ones. This would have boosted the number of asteroids not belonging to one of the main three
classes  significantly and made them more important  for the evolutionary algorithms.  The class
values would also have been adjusted to reflect the extreme difference in frequency. The problem
was unfortunately not detected in time, however.

Reachable Asteroids
Asteroid

Class
Value Frequency

C 10 6

S 10 2

M 10 0

l 20 1

E 20 1

CP 30 1

ASS_C 20 7616

ASS_S 20 26608

ASS_X 20 7892

Table 8: Shows the assigned class 
values and number of asteroids of 
each in the reachable sub-set of 
asteroids.
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6.3 Baseline: Monte Carlo Simulation

For the Monte Carlo simulation the main determining factor in how well the simulation represents
the solution space is how many random solutions are generated. The more solutions we could test,
the better they would represent the solution-space. On the other hand, both time and computing
power were limited. 

Each BEE in a Monte Carlo simulation makes arbitrarily chosen transfers from its initial location,
with an equal probability of picking each transfer. As long as the BEE has the time and propellant to
make a transfer, it will keep picking random ones. The output of a single Monte Carlo run is the
combined scientific return from all 12 BEEs in the random mission.

One million (1,000,000)  routes were generated by the Monte Carlo Simulation to ensure a smooth
distribution of results. We expect the scientific return to range in the hundreds, which would mean
thousands of samples on average for each utility value in the range.

6.4 Evolutionary Parameters

There  are  a  number  of  parameters  which  need  to  be
decided  on  when  using  an  evolutionary  algorithm.  We
largely settled on using “standard” values, based on past
experience  from  previous  projects.  Other  values  were
more a matter of practicality, based on the computational
limitations and the limited time span available to us. The
values chosen are summarised in Table 9.

We chose to run a thousand trials for each experiment,
enough that it would take several hours to complete, but
not so much as to tax our capacities. We would typically
be running about 3 experiments per  night,  and another
couple while we worked on other computers. 

We settled on a conventional 100 generations per trial.
From experience we expected the fitness increase from
additional generations to start levelling off after about 50
generations,  so  that  more  than  a  hundred  generations
would generally be a waste of time. In order to be sure of
this, however, we chose to run one experiment for each
scenario with 200 generations.

The population size was fixed at one hundred, which is usually a decent number in our experience.
Maintaining a diverse population is necessary for a successful evolutionary algorithm, but a too
large population can slow things down. 

With generational mixing, as we had chosen to implement for this project, the biggest determinant
for how quickly the population converges is the ratio between the population size and the number of
children generated each generation. Given the nature of our crossover process (described in section
4.5.4),  the  number  of  children  generated  would  vary  considerably,  so  we  needed  to  attempt
crossover relatively often. As such we settled on making 20 crossover attempts per generation.

Our choice of selection method is detailed in section 5.6.1. We tried a number of different options
before settling on the simple Elitism selector, which would keep the best 100 genomes after each
generation.

We picked a relatively low mutation rate, considering we got the highest utility when we had a
mutation rate of around 50%. As seen in section 5.6.2, once we had solved the major issues with

Evolutionary Settings
Parameter Value

Number of Experiments 1000

Number of Generations 100

Population Size 100

Initial Parents 20

Selection Method Elitism

Mutation Rate 0.05

Co-evolution
Evalutations

5

Stigmergy Updates 10

Table 9: Parameters of the artificial 
evolution algorithm.
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excessive cloning, there was not much difference in utility unless the mutation rate was very low or
very high. We settled on 5%, reasoning that it would mean on average one mutant per generation,
with a potential for many more if it happened upon a mutation with a lot of crossover potential.

6.4.1 Full Communication

In order for our Full Communications evolver to determine the utility of a genome, it would need to
evaluate how well it worked together with genomes from the other BEEs. Each genome would have
to be evaluated multiple times, to ensure that the fitness it received was not dominated by bad luck
from being paired with poor options. 

But on the other hand, these simulations would take up a significant amount of time, and would
likely be the dominating factor in how long the experiment took, so we needed to limit the number
of evaluations as much as possible. We decided to run at least five evaluations of each genome. We
would, however, also run an experiment with ten evaluations, in order to determine whether five
was enough or not. 

In total, then, we would run three Full Communication experiments:

• The first would be a standard experiment, using the parameters as listed in Table 9.

• The  second  would  test  the  potential  improvements  from  more  fitness  evaluations  per
genome,  and  so  would  have  a  minimum  of  10  evaluations  per  genome  instead  of  5.
Otherwise remaining as described in the table.

• The third would test whether the we were terminating the evolutionary process to soon, and
would have 200 generations, instead of the original 100. 

6.4.2 Stigmergy

The  stigmergy  approach  developed  by  Tripp  and
Palmer7 is  based  on  the  swarm  occasionally
receiving updates on each others actions and plans.
The  frequency  of  such  updates  determines  how
reactive the swarm is, and also how often they re-
plan.  The  re-planing  process  takes  a  lot  of
computational  power,  with  each  stigmergy  update
being  equivalent  to  an  entire  No  Communications
trial. 

Given that the average length of a transfer within the
asteroid belt is about 2 years, we eventually settled
on 10 stigmergy updates, which would come 2 years
apart  in simulation time.  Anything more than that,
and  there  would  not  be  any changes  to  report  in-
between  updates,  which  would  simply  waste
computing  power.   So  we  picked  the  highest
practical  number,  in  order  to  not  limit  Stigmergy
more  than  necessary.  This  level  of  communication
would require one broadcast from Earth every two
years, so would still be a significant communication
saving over constantly remaining in contact.

The fitness function of each BEE is based on four behaviours, as described in section 3.5: Greedy,
Considerate, Proactive, and Obstinate. In order to function at the highest efficiency, different BEEs

Stigmergy Behaviour Settings
Greedy Considerate Proactive Obstinate

1 1 1 1

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 0 0 0

0.5 0 1 1

0.5 1 0 1

0.5 1 1 0

Table 10: The behavioural parameters of the
BEEs when running the Stigmergy method.
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should assign different weights to each behaviour. In situations with overlap, that should help them
adjust to avoid it without losing any efficiency. In order to test whether the Stigmergy behaviour is
actually  helping  the  result,  rather  than  the  extra  generations  of  evolution,  we  also  run  a
homogeneous variant. In this version, the BEEs only listen to the Greedy component of their fitness
function, so that they do not take the new information about the environment into account. 

For the standard heterogeneous experiment, we assigned each BEE different behaviours based on
different  binary  possibilities,  as  seen  in  Table  10.  The  current  thinking  was  that  the  Greedy
behaviour would be necessary to some extent, which is why the last three BEEs break the pattern;
being assigned 0.5 instead of the 0 which would have been expected. We had hoped to have time to
tweak these behaviours later, but never found the time. The Greedy variant used for the second
experiment assigned a weight of 1.0 to Greedy and zero to the rest for each BEE.

Like with the Full Communications evolver, we would run three experiments:

• The first, standard, experiment would use the distribution of behaviours from Table 10, and
the base evolutionary parameters from Table 9. This would be the main test of the stigmergy
approach.

• The  second  experiment  would  be  the  homogeneous  all  Greedy  variant.  Like  the  first
experiment, it would use the evolutionary parameters from Table 9. It would provide a data
point to differentiate between Stigmergy's effect on the scientific return and the effect of the
simple ability to improve plans as they went along.

• The  third  experiment  would  be  a  200  generation  experiment  to  test  whether  we  were
terminating  the  evolution  too  soon.  Since  there  was  no  difference  in  computational
complexity  in  the  first  two  experiments,  it  would  be  run  with  whichever  behaviours
functioned best.

6.4.3 No Communication

Our  last  level  of  communication  was  designed  to  test  the
efficiency cost from having no communication at all. The plan
was  to  use  heterogeneity  in  the  fitness  evaluations  of  the
individual BEEs to make it less likely for them to pick the same
options. If they naively tried to maximise their own contribution
to the mission's scientific return, they should end up taking the
same options, and thus producing overlap. Naturally, we would
have to test that assumption to be sure of whether deliberately
picking sub-optimal solutions actually produced a better run or
not. 

The heterogeneous weights were copied from the ones used by
stigmergy; again with the intention of improving them at a later
time. While the behaviours are different, they still needed to be
diverse and there happens to be the same number of them, so the
same array of weighs could be reused. 

The  experiments  are  similar  to  the  ones  done  for  Stigmergy
above: 

• The  first  experiment  would  use  the  standard  fitness
behaviours  from  Table  11,  in  addition  to  the  normal
evolutionary parameters from Table 9. It would test the
no communication approach we had come up with.

No Communication 
Behaviour Settings

Greedy Delta V Time Varied

1 1 1 1

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 0 0 0

0.5 0 1 1

0.5 1 0 1

0.5 1 1 0

Table 11: The behavioural 
parameters of the BEEs when 
running the No Communication 
experiment.
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• The second experiment  was designed to test  the necessity of heterogeneous agents.  The
agents would be fully Greedy, caring only to maximise their contribution to the scientific
return of the mission. It would otherwise be the same as the first experiment.

• The third experiment was, as with Full Communication and Stigmergy, designed to test for
premature termination.  Since there again was no difference in computational complexity in
the  first  two  experiments,  it  would  run  200  generations  with  whichever  behaviours
functioned best.

6.5 Route Lengths and Overlap

In order to test whether overlap actually is prevalent, we will compare the amount in our various
experiments. Specifically, the simulator will be modified to count how many times a spacecraft
visits an asteroid which has already been explored. Due to computational limitations, we only plan
to do this for our three standard experiments, the two purely greedy experiments and the Monte
Carlo baseline.

The number of unique routes in the Transfer Map will also be counted and sorted according to
length. This will provide some vital context about the nature of the solution space itself and an
indication as to whether the evolutionary algorithm or Monte Carlo is finding the best options. 
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7 Results
This chapter presents our results in a variety of tables and graphs. The first four sections below
provide  the  results  for  each  of  our  communication  levels  and  baseline  in  turn.  Section  7.5,
meanwhile, collects results from different communication levels into comparative graphs. Each of
the first four sections are organised as follows:

The first table in each section provides a basic overview of the performance of each experiment.
The averages and standard deviations for both scientific return and number of asteroids visited are
listed. The table also includes how many trials were run for each experiment. 

The second table provides more detailed statistics about the distribution of results. The quartiles,
min and max values, and the interquartile range are presented for both scientific return and asteroids
visited. Figures 31 and 32 on page 68 aggregate these statistics in a box and whiskers plot for easier
comparison.

Next follows a histogram for the scientific return of each experiment. The bin size for these graphs
is 1 point of scientific return, so that each column represents the number of result which would be
rounded  to  that  integer.  A column  graph  of  the  number  of  unique  asteroids  visited  by  each
experiment is also presented. 

The final graph in each section is a scatter plot depicting every trial we have run for that level of
communication. In order to improve readability, the number of asteroids visited for each trial is
modified by a random variable (up to +/-0.5). As the number of asteroids is always an integer value,
they would otherwise form difficult to read lines rather than clouds.  The Monte Carlo graph is not
included, as rending a million data-points proved too resource intensive. 
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7.1 Baseline: Monte Carlo Simulation

Monte Carlo Performance
Trials 1,000,000

Science Asteroids

Average 384.66 30.61

Standard Deviation 23.79 2.01

Table 12: The average and standard
deviation from a Monte Carlo 
Simulation of the solution space.

Figure 19: The distribution of asteroids visited from a Monte Carlo Simulation of the solution 
space.
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Figure 18: The distribution of scientific return from a Monte Carlo Simulation of the solution space.
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Monte Carlo Quartiles
Science Asteroids

Min 247.36 22

25th Quartile 369.22 29

Median 385.11 31

75th Quartile 400.72 32

Max 499.85 40

Interquartile Range 31.50 3

Table 13: The quartiles and related 
statistics from a Monte Carlo Simulation
of the solution space.
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7.2 Full Communication

Full Communication Performance
Standard

Experiment
10 co-evolution

evaluations
200 Generations

Trials 1,000 1,000 1,000

Science Asteroids Science Asteroids Science Asteroids

Average 659.20 48.17 670.80 48.70 665.55 48.41

Standard Deviation 15.38 1.57 21.21 1.58 15.88 1.58

Table 14: The average and standard deviation from a basic Full Communication 
run, a run with twice the co-evolution evaluations, and a run with twice as many 
generations.

Full Communication Quartiles
Standard

Experiment
10 co-evolution

evaluations
200 Generations

Science Asteroids Science Asteroids Science Asteroids

Min 613.51 44 618.44 43 612.23 43

25th Quartile 648.85 47 660.09 48 654.41 47

Median 659.08 48 669.88 49 664.46 48

75th Quartile 669.41 49 681.30 50 676.16 49

Max 709.70 54 715.60 53 711.50 54

Interquartile Range 20.56 2 21.21 2 21.76 2

Table 15: The quartiles and related statistics from a basic Full Communication 
run, a run with twice the co-evolution evaluations, and a run with twice as many 
generations.
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Figure  20: Distribution of scientific returns from a basic Full Communication run, a run with
twice the co-evolution evaluations, and a run with twice as many generations.
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Figure 21: Distribution of the number of asteroids visited from a basic Full Communication 
run, a run with twice the co-evolution evaluations, and a run with twice as many generations.
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Figure 22: Scatter plot of our results, from a thousand trials of each: a standard Full 
Communication experiment with 5 co-evolution evaluations and 100 generations, a variant 
with twice the examinations of each genome and a version with twice the generations.

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
600

610

620

630

640

650

660

670

680

690

700

710

720

Full Communication

Scatter Plot of Various Experiments

Standard Experiment 10 coevolutions 200 Generations

Asteroids Visited

S
ci

e
n

tif
ic

 R
e

tu
rn



60 7 Results

7.3 Stigmergy

Stigmergy Performance
Standard

Experiment
Homogeneous
Greedy Agents

200 Generations,
Greedy Agents

Trials 1,000 1,000 1,000

Science Asteroids Science Asteroids Science Asteroids

Average 664.07 54.36 686.18 54.57 694.16 55.68

Standard Deviation 19.01 2.05 18.58 2.18 19.72 2.09

Table 16: The average and standard deviation from a basic Stigmergy run, a run
with all greedy agents, and a 200 generation run with all greedy agents.

Stigmergy Quartiles
Standard

Experiment
Homogeneous
Greedy Agents

200 Generations,
Greedy Agents

Science Asteroids Science Asteroids Science Asteroids

Min 583.52 48 617.29 46 625.90 48

25th Quartile 651.79 53 674.68 53 681.46 54

Median 665.05 54 686.90 55 694.63 56

75th Quartile 676.83 56 699.56 56 707.83 57

Max 722.97 61 738.21 60 749.75 61

Interquartile Range 25.04 3 24.88 3 26.37 3

Table 17: The quartiles and related statistics from a basic Stigmergy run, a run 
with all greedy agents, and a 200 generation run with all greedy agents.
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Figure 23: Distribution of scientific returns from a basic Stigmergy run, a run with all greedy agents,
and a 200 generation run with all greedy agents.
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Figure 24: Distribution of the number of asteroids visited from a basic Stigmergy run, a run 
with all greedy agents, and a 200 generation run with all greedy agents.
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Figure 25: Scatter plot of our results, from a thousand trials of each: standard heterogeneous 
experiment, a homogeneous (all greedy) experiment, and a 200 generation experiment with 
all greedy agents.
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7.4 No Communication

No Communication Performance
Standard

Experiment
Homogeneous
Greedy Agents

200 Generations,
Greedy Agents

Trials 1,000 1,000 1,000

Science Asteroids Science Asteroids Science Asteroids

Average 665.38 54.40 687.04 54.57 694.52 55.78

Standard Deviation 13.81 1.97 18.24 2.16 19.51 2.12

Table 18: The average and standard deviation from a basic No 
Communication run, a run with all greedy agents, and a 200 generation run with
all greedy agents.

No Communication Quartiles
Standard

Experiment
Homogeneous
Greedy Agents

200 Generations,
Greedy Agents

Science Asteroids Science Asteroids Science Asteroids

Min 587.04 47 614.00 46 625.59 49

25th Quartile 653.18 53 675.37 53 681.55 54

Median 665.86 54 687.94 55 694.74 56

75th Quartile 678.26 56 699.42 56 707.30 57

Max 720.28 60 738.41 61 751.92 62

Interquartile Range 25.08 3 24.05 3 25.76 3

Table 19: The quartiles and related statistics from a basic No Communication 
run, a run with all greedy agents, and a 200 generation run with all greedy 
agents.
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Figure 26: Distribution of scientific returns from a basic No Communication run, a run with all 
greedy agents, and a 200 generation run with all greedy agents.
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Figure 27: Distribution of the number of asteroids visited from a basic No Communication 
run, a run with all greedy agents, and a 200 generation run with all greedy agents.

Figure 28: Scatter plot of our results, from a thousand trials of each: standard heterogeneous 
experiment, a homogeneous (all greedy) experiment, and a 200 generation experiment with 
all greedy agents.
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7.5 Combined Data

This  section provides a bit  more context  for  the data  presented so far.  Here we have included
experiments from multiple communication levels in the same graphs, so that they can be more
easily compared and contrasted. 

Figure 29 shows a scatter  plot  of our best  experiment  from each communication level.  This  is
defined  as  the  experiment  which  produced  the  highest  average  scientific  return,  though  the
experiments in question also have the highest mean and the highest maximum. As with the scatter
plots for individual communication levels, the asteroids visited have been modified by a random
variable(up to +/-0.5). This was done in order to improve readability.

Figure 29: Scatter plot of our best experiments within each communications level, from a thousand 
trials of each: Full Communication with a hundred generations and at least 10 evaluations of each 
genome, Stigmergy with homogeneous greedy agents and 200 generations, and No communication 
with homogeneous greedy agents and 200 generations.
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Figure 30 compares the distribution of scientific return from the same three experiments. In this
histogram, the bins cover a ten point range, so that the 660 bin contains all results from 660-670
(exclusive). The communication levels are presented in the same colours as they are in the rest of
the chapter.

Figure 30: Histogram of the scientific return of our best experiments within each communications 
level: Full Communication with a hundred generations and at least 10 evaluations of each genome,
Stigmergy with homogeneous greedy agents and 200 generations, and No communication with 
homogeneous greedy agents and 200 generations.
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Figures 31 and 32 present the quartile statistics from above in a more readily compared fashion. In
each experiment, the first line represents the first quartile (from the minimum to the 25 th quartile).
The box represents the inter-quartile range, within which the middle 50% of results were found. The
line inside the box is the median result, and the last line is drawn between the 75 th quartile and the
maximum value. 

Figure 31: Box and Whiskers plot comparing all the experiments run in terms of scientific return.
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Figure 32: Box and Whiskers plot comparing all the experiments run in terms of asteroids visited.
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7.6 Overlap

Table  20 contains  the  statistical  information  about  overlap  in  our  experiments.  It  provides  the
average and standard deviation for each experiment we tested overlap for and the quartile statistics
for the same experiments. The distribution of overlap is graphed in Figure 33.

Overlap Statistics
Monte
Carlo

Full Com:
Standard

Stigmergy:
Standard

Stigmergy:
Greedy

No Com:
Standard

No Com:
Greedy

Min 0 0 0 0 0 0

25th Quartile 0 0 1 1 0 1

Median 0 0 1 1 1 1

75th Quartile 0 0 2 2 2 2

Max 4 2 9 9 8 10

Interquartile Range 0 0 1 1 2 1

Average 0.08 0.06 1.6 1.5 1.4 1.6

Standard Deviation 0.29 0.24 1.4 1.5 1.3 1.4

Table 20: The overlap statistics and quartiles from our least computationally intensive 
experiments. Each point of overlap represents a BEE visiting a single already explored 
location. 

Figure 33: A comparison of the distribution of overlap levels in our six least computationally 
intensive experiments. 
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7.7 Route Lengths

Table 21 shows the routes and the beginnings of routes in the solution space. The table shows how
many unique asteroids can be reached by routes up to a given length, how many complete (non-
expandable) routes there are of a given lengths, and how many routes there are of that length which
still has available transfers away from it. Note that we have pruned out all length one routes, as
described in section 5.6.2.

Route Length Statistics
Route
Length

Reachable
Asteroids

Number of
Complete Routes

Number of 
Incomplete Routes

1   2,446 0 3,471

2 33,547 901,752 2,900,543

3 42,128 925,755,810 287,715,499

4 42,128 10,540,976,077 404,447,454

5 42,128 3,459,381,073 31,149,669

6 42,128 108,000,354 278,288

7 42,128 500,479 318

8 42,128 470 0

Sum 42,128 15,035,516,015 726,495,242

Table 21: A count of how many unique asteroids can be 
reached from the HIVE by routes of at most a given length, 
the number of complete routes which have a given length, 
and the number of route segments of a given length which 
can be expanded into longer routes.
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8 Discussion
The solution space had to be altered from the one originally envisioned due to the computational
problems that plagued the Transfer Map Generator (see Appendix B). The routes least likely to have
good utilities were excluded from the solution space with the result that the expected utility of a
random route is higher for our solution space. We were also unable to completely map the reduced
solution space, requiring the experiments to be run on an even smaller subset. 

The  implementation  can  be  summarised  as  the  process  of  discovering  how  severely  we
underestimated the problem size and attempting to handle the unrealistically large run time needed
to generate the map. The difficulty was not finding a solution, it was finding a good and efficient
solution. Most of the development time was spent reducing the problem size and finding techniques
for improving our algorithms by exploiting properties of the problem and solution space.

The first issue that cropped up was the implementation of the search algorithm, which was quickly
found lacking in terms of performance. The problem was not so much the time needed to compute
the transfer windows for a single asteroid pair; a few days of optimisations had reduced it down
from 15 minutes to roughly a millisecond. The problem was rather the large number of asteroid
pairs for which transfer windows would have to be computed; likely tens of billions. With these
numbers, it would take many weeks, if not months to generate the map.

The  full  database  of  asteroids  was  filtered  down  from  roughly  650,000  asteroids  to  roughly
210,000. Asteroids were first ordered according to semi-major axis and removed in ascending and
descending order until one was found that could be reached from the HIVE. The same process was
repeated  for  inclination,  removing  the  asteroids  with  the  highest  difference  in  inclination.  The
filtering reduced the problem size by roughly an order of magnitude, but may have eliminated parts
of the solution space. If so, the eliminated routes would be the ones which were the least likely to be
chosen  by  the  Evolutionary  Algorithms,  but  equally  likely  to  be  chosen  by  the  Monte  Carlo
simulation.

8.1 Solution Quality

In our hypotheses (section 1.3.1), we used a metric we called solution quality to examine how well
our evolutionary algorithms would do compared with Monte Carlo and each other. The solution
quality grades our results so that the worst result gets a score of zero percent quality, the best gets
one hundred percent quality, and the remainder a score depending on how close they are to each of
those. A solution which is 20% of the way between the lowest and the highest score, for example,
would have a 20% solution quality. 

Our results range from a scientific return of 247.36 to 751.92. These are roughly 500 points apart,
so each percentage of solution quality would correspond with about 5 additional scientific return
over the worst solution. Our 20% solution from above would thus have a scientific return of about
350 points.



72 8 Discussion

Our results, in terms of solution quality, are summarised in Figure 34. As can be seen, the Monte
Carlo simulation's results are centred at roughly 30% and ranges about 10% from that in either
direction. The evolutionary algorithms are similarly spread around 90% ranging from about 80% to
100%. 

8.2 General

The results did not show an improvement when using heterogeneous agents, quite the opposite.
Figures  31 and  32 show that homogeneous greedy agents performed noticeably better  than the
heterogeneous  ones.  Regardless  of  the  scenario,  heterogeneity does  not  seem to  provide  a  net
benefit. This result is most easily explained by there being virtually no overlap. As this is the case,
there is little to no benefit to be found using heterogeneity.

The heterogeneity as used in the No Communication scenario makes some spacecraft choose lower
utility routes on purpose, assuming that other spacecraft have chosen the higher utility choice.  The
difference in priorities should ideally decrease the utility less than the duplication of effort would
have  done.  However,  our  standard  experiment  does  not  seem  to  be  reducing  overlap  by  any
noticeable amounts, suggesting that the weights as they were are not having the desired effect.

Stigmergy uses  heterogeneity in  a  slightly different  manner.  The  additional  information  allows
spacecraft to know for sure whether others have made or currently plan to make the better choice
and not simply assume so. The result should be a lower utility penalty as they should only divert
from  their  perceived  best  choice  if  needed,  and  a  higher  benefit  as  they  should  be  able  to
preemptively avoid overlap. The results instead show an overall reduction in utility when using
heterogeneous agents, again without any reduced overlap. 

Based on the significant difference in both utility and overlap between Full Communication and the
other experiments, it seems that avoiding overlap (as the Full Communication evolver does) comes
with a harsh penalty to total utility. It seems it is better for the swarm to make a cheap transfer to an
already explored asteroid, in order to pick a different, high utility, path from there. As the Full

Figure 34: A comparison of the Monte Carlo and our AI results, in terms of solution quality as used
in our hypotheses. The AIs have been scaled down so that the total volume of the histogram is the 
same as the Monte Carlo's volume. 
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Communication evolver is aware of the overlap as soon as it happens, it seems it is unable to climb
past that dip in fitness to create long enough routes to overcome the temporary setback. 

8.3 Monte Carlo

In our hypothesis (section 1.3.1) we hypothesized that the Monte Carlo simulation would display an
inverse relation between scientific return and proportion of results. Instead we found something
which looked a lot closer to normally distributed, as can be seen in Figure 35.

There  are  a  number  of  factors  involved  that  account  this
discrepancy, illustrated in  Figure 36. First of all, we made our
hypotheses with the assumption that the BEEs would have the
same amount of propellant (and thus delta v) as proposed in the
APIES plan.  As described in  section  5.4,  we have since over
doubled  the  delta  v available  to  the  BEEs.  Additionally,  we
assumed we would be searching for all possible transfers, rather
than limiting ourselves to those beneath a given threshold cost
(see section B.4).

The result is that our solution space is not, as we had originally
thought,  dominated  by single  transfer  options  where  a  single
transfer  would  expend  the  entirety  of  the  BEE's  propellant
reserve.  Instead,  routes  with only a  single asteroid have been
pruned from the database (see section 5.6.2), and transfers were
limited to 1,200m/s in delta v cost; just over a third of the total
available.

As can be seen in  Table 22,  most  randomly generated routes
would visit 3 asteroids and over a 6th would visit even more. The
result is that an average Monte Carlo run visits over 30 asteroids,
where we had originally expected it to visit 19 or less. However,

Figure 35: Monte Carlo results compared with a Normal Distribution with a mean of 384.66 (the 
Monte Carlo's average) and a standard deviation of 23.79 (same as the Monte Carlo).

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%
1.80%
2.00%

Monte Carlo Compared with Normal Distribution

Monte Carlo Normal Dist

Scientific Return

P
ro

p
o

rt
io

n
 o

f R
e

s
u

lts

Route Length Probability
Asteroids

Visited
Percent of Possible

Routes

1   0.00%

2 23.72%

3 58.20%

4 17.42%

5   0.66%

6   0.01%

7 1.53⋅10−5 %

8 9.73⋅10−9 %

Table 22: The odds of a 
randomly generated route being 
of a given length. Based on route
length statistics from Table 21.
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less than one percent of possible routes visit more than 4 asteroids. As such, the probability of all 12
BEEs randomly picking such long routes in the same Monte Carlo run is vanishingly small.

It  is  further  interesting to  note that  due to  the transfer  cost limits,  there is  a  higher  chance of
generating a three asteroid route than a shorter two asteroid route. In our original hypotheses, we
would have assumed that it would be strictly less probable to generate a longer route than a shorter
one. 

Monte Carlo, with a million trails, did not manage to find a single solution with a scientific return
above 500. Of our nine thousand evolutionary trials, only four produced a scientific return below
600, and the lowest result (583.52) was significantly higher than the best produced by Monte Carlo.
This tells us that high utility solutions are extremely rare in the data-set. 

With a normal distribution it is possible to calculate the odds of finding a solution better than a
given value. The chance of randomly locating a solution which has a scientific return of at least as
good as the worst we found via evolution is 3.76E-17, or one in 26 quadrillion, assuming a mean
and standard deviation as given in Figure 35. While it is unlikely that the actual mean and standard
deviation happen to be exactly equal to those found from a million random samples, it is likely
fairly close.

The  extremely low chance  of  finding  a  good solution  makes  it  largely infeasible  to  solve  the
problem using Monte Carlo. Even with an extremely powerful computer capable of completing one
Monte Carlo run every nanosecond, it would take roughly a year on average to find a comparable
solution to the ones found by the evolutionary algorithm in a fraction of a minute.

The primary reason for this is that there is a very high branching factor in the data-set. As can be
seen in  Table 21, the search space balloons out in the 3-6 asteroids region. There are millions of
potential routes with just the minimum length of 2 and billions of routes with the 5-6 asteroid visits
we see in our good solutions.

Figure 36: Our hypothesis (Figure 1) compared with the final result, in terms of solution 
quality.
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Based  on  the  average  number  of
asteroids explored by the Monte Carlo,
we  can  estimate  how  long  routes  it
usually  finds.  An  average  of  30
asteroids, as seen in  Figure 37, for 12
spacecraft would suggest that each on
average explores 2.5 asteroids. This is
significantly  lower  than  any  average
we have with evolutionary runs, which
typically manage an average of at least
4  asteroids  explored  per  BEE  and
usually closer to 5. This is also slightly
lower than the distribution of asteroids
would suggest, even when the amount
of  overlap  (Figure  33)  is  taken  into
account.  It  is,  however,  close enough
that we can attribute the difference to
having  only  made  a  million  samples
from  a  solution  space  with  over  a
googol possibilities (around 10120).

It is worth noting that the method used by the Monte Carlo simulator to find random routes is
identical to the one used to generate the initial population for the evolutionary algorithm. Which
proves that the evolution is having a positive significant effect on the solution quality, since we
routinely reach over 55 unique asteroids.

8.4 Full Communication

The Full Communication algorithm managed to not only explore more asteroids on average than
Monte Carlo, it also achieved a higher average return per asteroid. The evolutionary algorithm is
able to selectively choose routes that visit several high value asteroids and classes, while Monte
Carlo relies on random chance to provide utility.

We hypothesised that our Full Communication algorithm would find solutions in the upper five
percentiles of the original solution space, as described in section 1.3.1. The algorithm turned out to
not only satisfy the hypothesis, it far exceeded it. It lies well within the upper trillionth of solutions
which could be found by Monte Carlo. A major contributor to this is the difference between the
hypothesised and measured distribution of solutions,  as seen in  Figure 38.  It  turns out that  the
distribution is tightly centred around a range of utilities far below the optimum, leaving plenty of
head room for search strategies to improve upon the statistical expected value.

Comparing the Full Communication scenario to the Stigmergy and No Communication alternatives
shows  a  striking  difference  in  strategy.  Figures  31 and  32 show that  the  Full  Communication
algorithm  produces  routes  of  lower  utility  that  visit  far  fewer  asteroids  than  the  other  two
algorithms, while the scientific utility per asteroid is higher. 

One contributor to this effect is the function for class utility. The function reduces the reward for
every visit to a member of the class. Due to the abundance of mainly three classes, more asteroids
visited  would  largely  mean  less  class  utility  per  asteroid  visit.  The  result  is  that  visiting  less
asteroids is likely to increase the average utility of the remaining asteroids while reducing overall
utility of the mission.

The Full Communication scenario allows the spacecraft to coordinate their plans to optimise the
return of class utility for the combined mission. Spacecraft able to visit rare classes can prioritise

Figure 37: Monte Carlo results compared with a Normal 
Distribution with a mean of 30.61 (the Monte Carlo's 
average) and a standard deviation of 2.01 (same as the 
Monte Carlo).
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them over  common classes  reachable  by many others  to  increase  overall  asteroid  and mission
utility. This also applies to the Stigmergy scenario, but to a lesser extent because the spacecraft are
not able to co-evolve a common mission plan. 

Three variations on the Full Communication algorithm were run, as per  6.4.1. Both doubling the
number  of  generations  and doubling  the  number  of  co-evaluations  improved the  results  of  the
algorithm, as can be seen in  Table 14. The two other scenarios were still able to achieve higher
utilities on average, however (Tables 16 and 18). Full Communication seems to have a strategy that
is less optimal than that of Stigmergy and No Communication.

Based on the differences in the amount of overlap, it is likely that the Full Communication has
prioritized reducing overlap over achieving higher utility. This suggests that the evolver is not able
to get past the reduction in fitness from overlap to find the longer route. 

Another,  more unfortunate possibility,  based on the similarity between the Full  Communication
overlap and that of Monte Carlo, is that Full Communication is still  effectively picking random
routes. This would explain why it seems to have the same amount of overlap as Monte Carlo gets
through random chance.  The much higher  utility achieved would seem to preclude this  theory,
however,  as  the  evolutionary algorithm is  clearly finding routes  better  than  any which  can  be
randomly discovered.

The co-evolution of Full Communication means that a BEE keeps routes that perform well with the
routes of other BEEs. It  does not differentiate between those that perform well because of low
overlap and those that perform well simply because they by chance are matched with high utility
routes. Just as low utility routes can be kept because of this, the opposite is also true; some good
routes can be eliminated due to unfortunate evaluations.  The random effect co-evolution has on the
estimated route utilities may have an adverse effect on what Full Communication is able to achieve.

Doubling the number of generations helped Full Communication's performance, as did doubling the

Figure 38: Shows the hypothesised and measured solution distribution versus the distribution of the
Full Communication algorithm. The vertical line shows approximately where the upper 5 
percentiles of the hypothetical distribution begins
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number  of  co-evaluations  per  route.  Increasing  the  number  of  generations  does  not  provide  a
significant benefit if the population has already converged on local maxima, suggesting that the
algorithm could not quite achieve optimal performance with 100 generations. The improvement was
only  marginal,  however,  meaning  that  a  full  doubling  of  the  number  of  generations  was  not
necessary.

Increasing the number of co-evaluations allows the utility of each route to better  be estimated.
Evaluations are performed with a wider range of routes, reducing the effect of random chance. Full
Communication  achieved  higher  utilities  on  average  with  additional  evaluations,  but  as  with
additional generations, it only increased performance slightly.

8.5 Stigmergy

The original hypothesis (see section 1.3.1) was that Stigmergy would not be able to reach the same
performance level as Full Communication because of its reduced level of communication. While
Full Communication should allow the spacecraft to act as one, Stigmergy only provides infrequent
updates on the current and past activity of the swarm. Reducing the communication was thought to
increase the level of overlap in routes and by that, reduce the overall utility of the mission. The
results  do  not  correspond  with  this  hypothesis.  Stigmergy,  with  its  initial  No  Communication
planning, is able to outperform the Full Communication scenario. 

One can see from Table 16 that the greedy variant is the best Stigmergy alternative. The greediness
has  the  spacecraft  attempt  to  maximise  individual  scientific  return.  They still  receive  and  use
information about the number of previous visits to the asteroid classes, which updates the perceived
utility of asteroids and may alter plans to avoid unwanted overlap. However, as Stigmergy and No
Communication seems to have very similar levels of overlap regardless of heterogeneity, it would
seem that the BEEs are unable to utilize the available information to avoid areas of overlap.

Alternatively, the BEEs are aware of the overlap, but avoiding it would reduce the total utility of the
mission to the point where it is not worth it. In this case, accepting some overlap during the mission
could perhaps allow the spacecraft to explore two separate high value targets accessible from a
single easily reached asteroid. 

In this case, it could be that working from a No Communication baseline is a blessing in disguise
for the Stigmergy evolver. The Full Communication evolver, which can detect overlap instantly,
may never be able to make the leap past the overlap to reach the peak utilities of the other evolvers.
The Stigmergy evolver  thus  starts  at  a  higher  utility,  where  reducing overlap  would  be  a  step
backward.

8.6 No Communication

The results in Figures 31 and 32 show that No Communication in no way lags behind the other two
scenarios. The hypothesis was that the performance of No Communication would suffer due to
overlap, where spacecraft generally visited the same asteroids and asteroid classes. The hypothesis
further  stated  that  the  communication  provided  by Stigmergy  and  Full  Communication  would
reduce and eliminate this problem, respectively. 

Instead, results show the opposite; the more information is available to the swarm, the worse it
performs. Only Stigmergy is able to achieve mostly the same average utility as No Communication,
and it uses an initial No Communication evolution to provide a base for further improvement. This
could  be an artefact  of  the  algorithms involved,  where  the  additional  information  confuses  the
evolutions and keeps it from finding the highest utility routes. 

No Communication has the disadvantage that it cannot detect or handle overlapping plans. This is in
no way a problem if the overlap is negligible. A general rule of thumb in computer science is that
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the more specialised an algorithm is, the better it performs if its assumptions are met at the cost of
reduced performance if they are not. The negative correlation between level of communication and
performance found in the result may have its root cause in this.

The results may depend on the Transfer Map consisting mostly of three asteroid classes with equal
values. It is possible that this distribution does not produce noticeable overlap by not encouraging
spacecraft to visit the same small subset of asteroids. There is still a question of intrinsic asteroid
values, ranging linearly from 1 to 10. Spacecraft should have been encouraged to target only high
value asteroids, but it seems this is not providing enough pressure to produce detrimental amounts
of overlap.

Other configurations may see more overlap. There could be significant amounts of overlap if the
asteroids followed a different value distribution or the asteroid class distribution had some classes
be both rare and valuable. For example, the amount of asteroids with values above 9 could be
limited  to  1% rather  than  10% and  a  fourth  class  with  twice  the  value  and a  fraction  of  the
frequency of the big three could be added. High value members of that class should then be targeted
by every BEE able to reach them, causing overlap.

8.7 Compared to APIES

The original APIES plan, as described in section 2.2, involved 19 BEEs in a net formation around a
central HIVE. It would have flown by a hundred asteroids over the course of 6 years. Our best
solutions would have 12 BEEs orbiting just over 61 asteroids over the course of 20 years. 

The biggest difference between our variant and the original APIES is the decision to orbit each
asteroid, rather than just do a flyby. With a flyby, the spacecraft would pass by the asteroid at a
significant velocity, while an orbiting spacecraft can study the asteroid for months on end, until the
transfer window to the next target opens. This decision was explained in chapter 4.

There is no easy answer to whether a detailed examination of 60 asteroids is better than a quick scan
of 100, as it depends on what one hopes to learn from the mission. Being able to orbit the asteroid
for months on end would allow the BEE to make very detailed examinations of the shape of the
asteroid,  its  mass,  and  the  spectrographic  reflections  of  the  surface  layer  (a  good  indicator  of
composition). A flyby, on the other hand, would only be able to gather data for 14 hours, and visual
imagery for only 15 minutes. As only half the asteroid would be pointed at the BEE during those 15
min, a large portion of the surface would go unexamined. The BEE would still be able to provide a
strong  estimate  of  the  shape  of  the  asteroid,  a  good  estimate  of  the  mass,  but  only a  limited
examination of the surface layer.

As such, which approach would provide the best return depends on the end goal.  For asteroid
deflection missions, the density (determined by the shape and the mass) is the most important, as it
is a strong indicator of whether the asteroid is a low density “lose pile of rubble” or a high density
“dusty solid”. For asteroid mining, on the other hand, the exact composition of the minable surface
material is important for determining the economic value of the asteroid. 

The  original  APIES mission  would  be  better  as  a  preparation  for  potential  asteroid  deflection
missions, as it provides exactly the data they need, and for a larger set of asteroids. Our variant
would  be  better  for  asteroid  miners,  especially  as  they could  assign  a  high  scientific  value  to
potentially minable asteroids a high value to classes known to consist of useful materials. A major
strong suit of our plan is the ability to direct the BEEs towards certain targets, rather than examining
whatever asteroids happen to pass through the net. 

The difference in the time required by the missions is noteworthy. The original APIES mission was
only 6 years long, with potentials for expansions if the swarm is still operational after that period.
Our  mission  time  is  significantly longer,  which  would  mean more  expenses  for  maintaining  a
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mission control centre on Earth. It also presents a bigger engineering challenge, as the BEE's would
need to be rugged enough to have a good chance of surviving the length of the mission. All in all,
this does mean that the APIES mission is likely cheaper, despite requiring 7 more spacecraft than
ours. 

8.8 Value of Communication

The original APIES plan uses unique intercept zones for each BEE, with some ambiguity of which
of three BEEs to perform an intercept of asteroids passing between the individual zones. For the
most  part,  the  ambiguity  can  be  avoided  completely  by not  intercepting  outside  the  zones,  or
manually assigning the ambiguous areas to specific BEEs. Although this  might not be an ideal
solution utilitywise, it would at least eliminate overlap. Because of this, the plan was modified to
increase the need for communication.  The BEEs were required to travel to asteroids instead of
moving within their  own intercept  zones  with the occasional ambiguous intercept.  An identical
starting point and state would aggravate the problem.

Unfortunately, it would seem that the modified plan has even less need for communication, as the
little overlap we see coincides with the highest scientific return.  As stated in  Appendix B, our
solution space is a subset of what we would have had if there was enough time, and the worst
solutions were eliminated first. And, by the time swarms of spacecraft are sent to the asteroid belt,
the amount of new asteroid discoveries will most likely have dwarfed the amount known at the time
of writing. In the few months since we first retrieved the “astorb.dat” asteroid database22, almost ten
thousand new asteroids have been discovered, an average of roughly 80 new asteroids a day. And
the rate of discoveries is rapidly increasing as better telescopes and computers become available.

Even with this heavily reduced solution space, the amount of overlap in spacecraft plans seems
trivial to the point of having little to no influence. The initial branching factor seems high enough
for  the handful  of  spacecraft  to  disperse and mostly find their  own routes  in  the asteroid belt,
making communication all but superfluous.  The goal of communication is after all to allow the
spacecraft to detect and avoid overlapping routes and thus avoid duplication of effort, all while they
pursue the same high value routes.  The sheer size of the asteroid belt seems to be enough to all but
eliminate the need for such measures. Actively avoiding the little overlap there is may also have a
greater adverse effect on the exploration than what can be earned with the saved propellant.

Considering the substantial  cost of launching a mission to the asteroid belt,  taking measures to
avoid a rare but potential problem is still justifiable. There may still be a need for communication to
control overlap with different algorithms, algorithm parameters, transfer maps, asteroid and class
values, or mission parameters.  Detecting and forestalling overlap before it causes a utility loss
would therefore be desirable, especially to ensure that they do not make the same opening transfer.
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9 Conclusion
We set out to find out how important communication is to the efficiency of an exploration swarm of
spacecraft  operating  in  the  asteroid  belt.  By comparing  evolutionary algorithms with  access  to
different levels of information about the activities of their peers, we could largely isolate the effects
of communication from other implementational factors.

Communication would be vital for missions involving a large number of spacecraft or a limited
number of target asteroids. However, the asteroid belt covers a vast area and contains hundreds of
thousands of asteroids. As no currently planned mission would involve more than 20 spacecraft, it
seems individual spacecraft can get by with attempting to maximise their own contribution to the
scientific returns of the mission without considering the others. 

In fact, we find that the costs associated with taking sub-par transfers to avoid overlap actually
reduces the amount of exploration done overall. Both with no communication at all and with limited
(stigmergy) communication, our evolvers performed better as purely greedy agents than with more
considerate  behaviours.  With  co-evolution,  we  have  found  that  it  takes  significantly  more
computing power to reach the same level of results which can be obtained by purely greedy agents.

We have implicitly assumed that a wide sampling was preferable to investigating specific targets.
With such a wide range of options it is not too hard to see why overlapping routes is unlikely to be a
problem. Even without  a  complete  database of  potential  transfers,  we had over  three  thousand
potential transfers out from our initial location. 

That is not to say that there was no overlap. But evolvers with a high degree of overlap do not
receive poor results in terms of unique asteroids explored or the scientific return of the mission.
Whether or not a specific overlap incident is harmful for a given mission is not as clear cut as we
initially had thought, and would have to be carefully considered by future mission planners.

9.1 Research Questions

In section 1.3, we introduced a number of questions we wanted to answer with this thesis. Having
completed our experiments, we are now capable of answering these:

RQ1 Full Communication was on average able to visit 48.7 asteroids and achieve a scientific
return  of  670.8,  compared  to  Monte  Carlo's  30.6  asteroids  and  384.7  science.  Full
Communication reliably produces mission plans far better than any found by Monte Carlo,
and thus far beyond the hypothesised upper five percentiles.

RQ2 Stigmergy was on average able to visit 55.6 asteroids and achieve 694.2 points of scientific
return.  There  does  not  seem to  be  any  performance  loss  whatsoever  for  the  particular
parameters used in our experiment. On the contrary, there seems to be a major performance
gain when reducing the degree of communication within the swarm. The stigmergy method
easily outperformed co-evolution.

RQ3 Heterogeneity  does  not  only  seem  sufficient  to  ensure  reasonable  efficiency,  it  seems
unnecessary.  Homogeneous  agents  did  not  suffer  an  efficiency  loss,  even  without
communication. Homogeneous No Communication was able to visit 55.8 asteroids and gain
694.5 points of scientific return. No other method produced better results.

9.2 Applications

To the best of our knowledge, no previous attempt has been made to map the transfer windows of
the asteroid belt at this scale. Our present database is somewhat limited; it is incomplete and was
built specifically to examine the potential transfers out from the HIVE's initial position. But the
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transfer map generator we have produced and tinkered with throughout the development process
can be of use for any multi-asteroid exploration mission, not just a modified form of APIES. 

As such, we have chosen to make our source-code available online as a git repository,* so that other
researchers can benefit from our work. As described in Appendices B, C, D, and E, we were caught
off guard by the sheer magnitude of the problem, and spent a significant amount of time working
around it. As a result, the transfer map generator has more optimisations and development than was
originally intended and is considerably more capable as a result.

Our actual results may potentially be of some use to mission planners. We have proven that it is
possible for a patient mission planner with access to a wide range of targets to explore multiple
destinations with very little propellant requirements. Our average BEE explored 4-5 asteroids with
3km/s of delta v. For comparison, NASA's Dawn mission had three times the delta v and explored
only two asteroids (4 Vesta and 1 Ceres). 

The Dawn mission was planned with specific targets in mind, which has been the traditional way to
design space probes. As discussed in section  1.1 however, that is changing with a new class of
cheaper  autonomous  spacecraft  being  developed.  This  thesis  does  demonstrate  the  capacity  of
evolutionary algorithms in autonomously planning missions, as well as establish that it is certainly
possible to explore a wide range of asteroids with only limited propellant. 

*Available at: https://github.com/yrgx1/astorb-transfer-map-generator

https://github.com/yrgx1/astorb-transfer-map-generator
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10 Future Work
Our principle limitation when it came to this project was the lack of calculation time. With access to
a more powerful computer or more time to run the calculations we could relinquish the time saving
measures we had been forced to implement. 

First of all, our search of the asteroid belt held a number of innate limitations. We observed that the
number of potential transfers grew exponentially as the maximum allowed delta v was increased. If
we could increase that limit from 1200m/s to the full propellant capacity of our modified swarm, the
search  space  would  much  more  closely  resemble  the  actual  environment.  Similarly,  we  could
expand the time limits even further, allowing BEEs to wait longer between transfers.

In addition to being useful for further experiments, such a map of asteroid transfers would have
intrinsic value on its own. To the best of our knowledge, a complete statistical analysis of asteroid
belt transfers has not been done and it would certainly be interesting, if time consuming, to produce
an all-to-all transfer database for main belt exploration. 

We could also go from simply transferring between asteroids to the more computationally complex
option of making flybys of asteroids. This would only require the BEEs to make one burn, but
would mean every transfer would leave the spacecraft in a unique flyby orbit rather than in orbit
around an asteroid. As a result, our branching factor would be massively increased and the reduced
propellant requirement would also increase the search depth. So it would be a significantly larger
search, which would allow for more exploration and a fairer comparison to the original APIES plan.

With sufficient access to computing power, we could also attempt to replicate a larger mission,
which would have significantly more potential for overlap and would require significantly more
communication  to  coordinate.  The  PAM/ANTS3 mission  proposed  by NASA's  Goddard  Space
Center would make an excellent case study. With a thousand spacecraft operating in a hundred
teams, it would be a significantly larger project than APIES, and thus more likely to run into the
issue we have investigated. 

ANTS  would  also  feature  multiple  types  of  specialised  spacecraft  with  different  types  of
instruments. As each scientific instrument would likely be able to make new discoveries about an
asteroid, each class of spacecraft would only have to worry about overlap from within its own class.
It would be interesting to see if the AI would naturally produce teams of spacecraft with a full set of
instruments, or find a solution other than the one envisioned by NASA. 

Given time to adjust the code, we could also change the way our evolution works. Thus far, the
evolutionary algorithm has terminated after a fixed number of generations. This is inefficient if the
solution  converges  quickly  and  may  be  sub-optimal  if  the  solution  has  not  yet  converged.
Implementing  a  convergence  test  could  make  the  evaluation  faster  or  at  least  provide  better
solutions.  We could investigate the effects  of increasing or decreasing the number of crossover
attempts per generations or vary the size of the base population.

One of the things we did make some preliminary investigations into was using an indirect genome
encoding (documented in section G.2). The results were not promising, but our investigations were
entirely done using a Transfer Map from the initial 6 year search, which was flawed in many ways.
It would be interesting to examine it closer with the extended time frame, in which we managed to
produce significantly longer routes.

Stigmergy's  reliance on on-board computational  power for real time planning would have been
interesting to  investigate.  The code would have to  be adjusted based on how much computing
power the spacecraft  can devote to evolutionary algorithms, perhaps by limiting the number of
generations each BEE can run depending on when it needs to make its next transfer. 
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Further experiments with other behaviours would also be interesting. In retrospect, a homogeneous
Stigmergy  based  swarm  might  be  better  off  with  the  Proactive  (avoid  future  overlap)  and
Considerate (avoid past overlap) than with the pure Greedy behaviour we actually tried. This should
avoid what little overlap we have, and thus be strictly better than the No Communication solution it
is based on. 

Our Full  Communication code did not perform as expected,  which may be due to the inherent
variance in the co-evolution evaluation method. In which case we could try a hybrid solution, which
gets  half  its  fitness  from co-evolution  and the  other  half  from the  equivalent  of  a  Greedy No
Communication evaluation of the genome. This would pressure it into producing more utility per
BEE while still receiving enough information about the other plans to improve the overall solution. 

Another possibility, based on the observed differences between Full Communication and our other
results, is that there is not enough pressure towards creating longer routes. Adding the total number
of asteroids explored to the fitness of a co-evolution evaluation would give slightly more fitness to
longer routes, which may be enough to push it into finding the better solutions found by the other
evolvers. As the scientific return tends to be about ten times as high as the number of asteroids
explored, this would result in the asteroid having about a 10% weight in the fitness function.

Another interesting option would be to run Stigmergy based on an initial set of plans produced by a
Full Communications run. It would be interesting to see whether this would behave any differently
than the  original,  No Communication-based,  solution.  Another  option would  be to  develop the
original plans using the Stigmergy code itself, which would effectively mean a pure greedy solution
as all of the other Stigmergy behaviours rely on information not yet available at that point. 

The  assignment  of  classes  and  class  values  to  asteroids,  which  we  did  in  section  5.3,  would
certainly have been done differently if we had known how few asteroids there are with known
classes. A potential improvement would be to occasionally assign one of the less common classes
when an asteroid's actual class is unknown, in order to ensure that the distribution of classes better
mirrors reality. 

We could also experiment with what happens if a small subset of asteroids receive a much higher
priority. We would expect this to case higher levels of overlap, but we have not had the time to
examine it thoroughly yet. 
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Appendix A Languages and Libraries
During discussion of the implementation described in chapter  5, we faced the question of which
programming languages  and third party libraries to  use.  This  appendix quickly summarises  the
reasoning behind which programming languages to use and which libraries were used within the
Transfer Map Generator described in section 5.1.

A.1 Choice of programming language

Choosing  which  programming  language  to  use  is  always  an  important  decision.  Given  our
experience,  there  were three  natural  choices:  C++,  Java,  and  Python.  The  three  have  different
strengths and weaknesses. Each component of the complete system could easily be developed in its
own language, as communication was designed around passing files. Matching component with
language would allow us to play to the strength of  each language while  largely avoiding their
weaknesses.

The first component was the Map Generator, which would produce a map of transfer windows.
Another component would assign a persistent scientific value to each asteroid. It would also assign
classes to those which have not yet been classified. The files from these components would be used
by the AI Simulator to produce the final results.

The strength of Python is  that it  has little  structural code and extensive standard libraries.  The
downside is that the lack of structural code makes large programs difficult to maintain. Although
reasonably  performing  code  can  be  written  in  Python,  its  strength  is  in  input/output  oriented
computing. This makes the language a natural choice for assigning values and classes to asteroids,
but a poor one for the more computationally challenging components.

C++ can produce the best performing code of our three options. Although the performance of Java
is  comparable  to  that  of  general  C++  code,  C++  has  the  advantage  of  also  allowing  high
performance C-like code where necessary. The language is mostly backwards compatible with C,
allowing the use of both C++ and C libraries. If high performance code or libraries are needed, C++
is be the natural choice. Unfortunately, C++ arguably requires more skill and effort to produce the
same quality code as Java. It generally requires more code and is far more error prone when writing
C-style code due to its explicit handling of memory.

Unfortunately, only one member of our team had sufficient training to quickly develop and maintain
C++ projects, so we wanted to limit the size of any such undertaking. The Map Generator was
meant to be a small and quick component to develop, with a need for third party libraries and high
performance. The choice thus fell on C++. 

The main component of the system was the AI Simulator. Because it would have to be developed by
both team members,  C++ was not an option. Performance was still  a concern and the program
would be relatively sizeable. The choice thus fell on Java, as it should handle both traits better than
Python.

A.2 Libraries Used

The first step to a coding project is generally to see how much of it other people have already
written. With this in mind, the first thing we did was to search for libraries with the functionality we
required,  most  notably  astrophysics  calculations  and  implementations  of  the  Nelder-Mead
technique.

We looked at writing the Map Generator in C++ to take advantage of its excellent performance in
order to minimise the time required to generate the Transfer Map. Secondly, taking advantage of
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parallel computation, the run time would effectively be reduced by a factor of 4 on the available
quad-core CPU (a 2.3GHz Intel Core i7-3610QM with 4 physical cores, 8 logical cores). This can
easily be achieved in C++ using OpenMP directives41.

The European Space Agency's Advanced Concepts Team (ACT) has produced a very successful
library for Keplerian mechanics called PyKEP42. While it is ostensibly a Python library, the majority
of PyKEP is written in C++ for efficiency. As we are using only C++ for the asteroid belt model, we
simply ignore the python bindings. PyKEP includes a rapid solver for Lambert's problem (described
in section 2.1.1) and translations between orbital elements and Euclidean position/velocity vectors
at a given time.

We have looked for a viable implementation of the Nelder-Mead technique, described in section
3.7. But, as explained in section  5.2.2, the free and open source implementations we found were
poorly  documented  or  otherwise  unusable.  After  two  days  of  searching  in  vain  for  a  usable
implementation we decided that it would be easier to implement our own.
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Appendix B Optimisations
This appendix covers the problems faced during implementation of the Transfer Map Generator in
more detail. Section 5.2 summarises the end result and main difficulties described in the following
sections.  The  limitations  put  on  the  Transfer  Map  Generator  influence  the  conclusions  drawn
regarding the research questions. It is important that the reader understands these limitations and
why they were necessary for the completion of the project.

The appendix covers the three aspects most relevant to the end result. It first describes the process
of simplifying the search required to find sufficient transfer windows between asteroid pairs, at the
cost of reduced accuracy. Second, it  describes how the problem size was reduced by removing
difficult to reach asteroids using a filter. And third, it describes how these two measures were not
enough, and which further reductions were taken in order to save on run time.

B.1 Initial Run Time Estimates

The map generator needed to take in a database of asteroid orbits and compute all transfer windows
for  asteroids  that  the BEEs could reach.  A naive solution  would  be an all-to-all  search  for  all
asteroids in the database. The complexity of such a search would be:

t runtime = O(n2
) , where n is the number of asteroids in the database.

The complexity of such a search would be prohibitively large unless n or the time needed to find the
transfer windows from one asteroid to another ended up being trivially small.

We had found a comprehensive database22 of every asteroid ever observed, compiled by Dr. Edward
Bowell at the Lowell Observatory. The database contained approximately 700,000 asteroids. We
expected to be able to eliminate asteroids outside the mission area, but several hundred thousand
would likely remain. We estimated that the time needed to find transfers between two asteroids, c,
was in the hundreds of microseconds to milliseconds range. This gave us a rough run time estimate
of:

t runtime ≈ c⋅n2
≈ 1ms⋅500,000² = 250,000,000 s ≈ 8 years

Even with a c of 100 microseconds, the model would not be completed in the few weeks available.
The complexity of the problem clearly had to be reduced.

A depth first search from the HIVE with a depth limited by the delta v available to the spacecraft
would reduce the complexity to a reachable-to-all search. If, as we suspected, only a fraction of the
asteroids would be reachable, this would reduce the run time greatly. The complexity of the search
would then be:

t runtime = O(r n) , where r is the number of asteroids reachable from the HIVE.

Looking at the previous estimate, even if the number of reachable asteroids were as low as 10% of
the total, the run time could still be in the order of months. 

Designing our code to take advantage of modern multi-core processors would allow the code to be
sped  up  by  a  factor  of  p,  the  number  of  physical  CPUs  available.  Hopefully,  this  would  be
sufficient, but there was no way to tell before we had implemented the code. Our upper limit of c,
assuming a maximum run time of one month, p=4 (quad core processor), and an estimated r of 10%
of n, was:

t runtime ≈
c⋅r⋅n

p
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c ≈
p⋅t runtime

r⋅n
≈

4⋅1month
0.1⋅500,0002 ≈ 400 µs

There  was  unfortunately  no  way  of  knowing  the  precise  values  of c,  r,  and  n until  we  had
implemented the search. Our original estimate of n was quite close; roughly 650,000. However, the
constant c was off by orders of magnitude. We had expected c to be roughly 1ms, give or take an
order  of  magnitude,  but  measured  it  at  roughly  15  minutes.  This  meant  that  any  attempt  at
estimating the value of r would take days, if not weeks. With the updated values of n and c, and the
initial guess of r=0.1n, the run time was estimated to:

t runtime ≈ c⋅r⋅n ≈ 15 minutes⋅0.1⋅650,0002
≈ 1,1 million years

This meant we would need a total speedup of more than ten million to have a chance at solving the
problem. Most of the development time was spent optimising the performance of the code to a point
where the constant was somewhat within acceptable limits, with an estimated single thread speedup
of 300,000 and a parallel speedup of 4. 

B.2 Reducing the Constant

The single most resource intensive code in the asteroid belt model generation was the Lambert's
problem solver, which would be run quintillions (1018) of times in the course of the full program.
Profiling  revealed  that  almost  100%  of  the  run  time  was  spent  solving  Lambert's  problem.
Improving the run time of  the  Lambert's  call  itself  was not  practically possible  as  the PyKEP
implementation had already been extensively optimised by the developer.  Naturally,  our  efforts
have instead been focused on reducing the required number of calls as much as possible. 

Our  first  optimisation  was  to  use  a  triangular  search  area,  ensuring  that  all  generated  transfer
windows  fit  within  both  departure  and  arrival  time  constraints.  Previously,  we  pruned  invalid
transfers only after they were generated. This halved our run time.

Secondly, our original version of the code divided the solution space into triangular sections and ran
Nelder-Mead  with  each  triangle  as  an  initial  simplex  for  the  algorithm.  This  proved  very
computationally expensive,  as  it  meant  running Nelder-Mead a million times per  asteroid  pair.
Some quick sketching revealed that the same initial points could all be investigated using one sixth
the number of simplexes, if a carefully chosen sub-set was used (as seen in Figure 39).

Furthermore,  since  we  were  effectively  producing  a  grid  of  search  points  in  the  process  of
generating  initial  points  for  Nelder-Mead,  we might  as  well  utilize that  information  in  picking
where to search. By excluding simplexes where every initial value was above a chosen threshold,
we were able to find all the same transfer windows while reducing search time by a significant but

Figure 39: Reducing the number of Nelder-Mead simplexes without evaluating fewer points.
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varying amount, (typically between 30-70%).

The Nelder-Mead technique  iteratively performs one of  several  transformations  on a  triangular
simplex depending on the measured fitness at the vertices. One of these transformations, called
reflection  in  the  algorithm,  flips  the  triangle  across  a  carefully  chosen  point.  As  long  as  only
reflection transformations have been performed, the simplex still has all its vertices on points in our
search  grid.  We  had  already calculated  the  delta  v costs  for  these  points.  In  addition,  in  rare
situations (roughly 4% in one test case), two or more simplexes are reflected such that they have all
the same points. Because Nelder-Mead is entirely deterministic, this would result in them climbing
to the exact same point.

We  chose  to  implement  a  reflection  only  version  of  Nelder-Mead.  This  algorithm  terminated
whenever a full Nelder-Mead would perform another transformation than reflection. Once every
initial  simplex had been run through this  algorithm we could remove duplicates and run a full
Nelder-Mead on the remaining simplexes. Not only did it save us from the 4% duplicated work
load, it also reduced the average number of iterations before Nelder-Mead converged by about 3, as
the initial reflections were done in advance without the necessity of solving Lambert's problem for
each of them. 

A later  innovation  on  the  limited  Nelder-Mead  was  to  perform  reflections  in  a  wider  set  of
situations. In essence, we performed reflections whenever this led to a better initial triangle. This
increased the savings, cutting out a third of all Nelder-Mead runs required.

We have also investigated varying the size of the search grid. Run time scales quadratically in the
resolution of the search grid, so we naturally wanted to make it as sparse as possible. On the other
hand, if the grid is too sparse we start missing launch windows entirely. With some experimentation,
we were initially able to reduce it to 50x50 (a resolution of approximately 45 days). 

The limiting factor was that we excluded all simplexes where none of the points of the simplex
were  within  the  delta  v limit  of  the  search.  As  the  resolution  was  reduced,  marginal  transfer
windows started  slipping through the  cracks.  Keeping every simplex  allowed us  to  reduce  the
resolution to 12x12 (6 months) without missing any transfer windows. 

With the reduced resolution, smarter selection of initial simplexes, and the reflection only Nelder-
Mead function, we managed to reduce the number of Nelder-Mead runs by a factor of 150,000. In
addition, the convergence time for the Nelder-Mead was reduced by a factor of about 6 (most of this
from the reflection only code), reducing the total Lambert calls down to trillions (1012).

B.3 Problem Size

Having cut the c constant as far as we could without losing accuracy, we started looking at the other
factors in the run time of the code. We wanted to be sure that we kept every reachable asteroid, r. 
However, searching for transfers to asteroids we could not possibly reach provided no benefit. The 
goal was to cut n, the size of our database, down to as close to r as possible. 

There were 676,327 known asteroids at the time of writing22. As this included asteroids as far out as
Jupiter and others closer to the Sun than Venus, chances were we could only reach a small number
of  these.  Our initial  estimates,  extrapolated from experiments  with a  small  sub-set of asteroids
(typically 0.1%-1.0%) was that there were about 10,000 to 50,000 reachable asteroids in total.

Our first pass filter was to remove asteroids whose location was not known with high precision.
This was used as a first pass filter largely because the database22 we used already included warning
flags for uncertainties, so it was very easy to implement. This first pass reduced the number by
32,032, a mere 5%.

The second pass was slightly more complicated.  With the limited  delta v available,  there were
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limitations on how much the BEEs could alter the potential energy of their orbits. In the standard
Keplerian elements (section 2.1), the semi-major axis is an indicator of the potential energy of the
orbit; how high up in the Sun's gravity well it is. As a result, we knew there would be a limited
range of semi-major axes that the BEEs would be able to explore. We did not, however, have any
easy way of determining that range. Similarly, changing ones inclination is a very delta v intensive
manoeuvre but it is not trivial to determine how expensive it is. 

However, it would be possible to search the database in order of increasing and decreasing semi-
major axis, and return the first asteroid with an available transfer window from the HIVE. Similarly,
we can order them by inclination and do the same. This reduces our problem size linearly, but risks
removing reachable asteroids if not done with care. The maximum delta v for the search should be
slightly higher than the capacity of the BEEs to be certain that no reachable asteroids are lost.
However, the reachable asteroids lost are the ones most difficult to reach, which would likely have
low priority in the evolutionary algorithm. With a delta v limit of 1700m/s, the database's size was
reduced down to a third (212,077 asteroids).

B.4 Heavy Optimisations 

Unfortunately, even reducing the run time by a factor of approximately 300,000 was not enough.
We were unable to reduce  c to less than roughly 3ms. With parallel execution on four cores, we
were able to effectively reduce c to approximately 700µs, still almost an order of magnitude more
than our available time allowed. 

With  at  most  a  few  weeks  available  for  computation,  this  alone  warranted  further  and  heavy
optimisation.  Unfortunately,  the  increase  in  BEE delta  v  capability,  from 1700m/s  to  3400m/s,
meant more asteroids could be reached. This increased the size of n to roughly 450,000, changing
the estimated run time:

t runtime ≈ c⋅r⋅n ≈ 700µs⋅300,000⋅450,000 ≈ 1.4 years

We first looked at the resolution of the Nelder-Mead search grid. Previously, the resolution was
12x12, as lower resolutions missed some transfer windows. However, reducing the resolution would
provide a significant speedup. After experimenting with different resolutions, we settled on 9x9,
which retained virtually all the transfer windows while halving the constant.

Secondly, the increased range of the BEEs allowed them to reach asteroids far outside the mission
area. With the filtering employed previously, most asteroids in the database were included, about
450,000  out  of  the  potential  650,000.  Exploring  these  asteroids  would  not  only  require  high
amounts of delta v, but would take the spacecraft far away from the main asteroid belt where most
asteroids reside. Returning to the main belt would require another expensive transfer. By filtering
asteroids not based on the 3400m/s delta v limit, but on the previous 1700m/s limit, the number of
asteroids was reduced back to the original number of roughly 210,000. The effect on the mission
was to eliminate likely inefficient transfers out of the main belt,  forcing the spacecraft to make
overall better choices. 

Although more than half the asteroids were removed, the number of reachable asteroids was not
impacted  the  same way.  The  asteroids  removed  by the  filtering  were,  after  all,  the  ones  most
difficult to reach. This left us with an extreme branching factor, where spacecraft were allowed to
spend most of their delta v travelling to difficult-to-reach asteroids without much range left. 

We similarly modified the code to only allow transfers with a cost of at most 1200m/s. This ensured
that BEEs would not be allowed to spend all their range exploring one or two asteroids, and instead
forced them them to make overall better choices. At the same time, these difficult-to-reach asteroids
would not be included unless there was a route to them conforming to the 1200m/s limit.  This
would, we hoped, eliminate a large fraction of the marginally reachable asteroids. 



Appendix B Optimisations 91

Both of these restrictions on the choices of the BEEs were motivated by a need for a reduction in
run time of the map generator. The run time of the AI Simulator would also likely benefit from a
smaller map of the asteroid belt, and thus a smaller complexity for the evolutionary algorithms.
However, removing the choices least likely to be considered good by the AI could influence its
behaviour and the measured value of communication.

Before starting the full scale map generation, we made a final estimate of its run time with the
following assumptions: r of 50,000-100,000 and n of 210,000 asteroids. This provides us with lower
and upper estimates of the run time:

t runtime ,low ≈ c⋅r low⋅n ≈ 350 µs⋅50,000⋅210,000 ≈ 40 days

t runtime ,high ≈ c⋅rhigh⋅n ≈ 350 µs⋅100,000⋅210,000 ≈ 85 days

We were unfortunately never able to know for sure whether the upper estimate was reasonable. The
search was ended prematurely after running for 49 days and reaching over 80,000 asteroids, as
explained in section 5.7. This places us towards the end of the expected range in terms of asteroids
reached, while the run time was closer to the lower estimate when ended.
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Appendix C Transfer Map File Format
This appendix describes the file format of the Transfer Map throughout the project. There were two
main versions of the format. The first was initially used to allow stable and reliable storage of the
file while the second variant was finished. The Map Generator initially used the first version and
was later converted to use the second. The following sections describe the initial file format, how
the format was too inefficient, how it was improved to produce the second file format, and the
relative efficiency of the two.

C.1 Initial File Format

The purpose of the Transfer Map Generator was to produce a file containing every transfer window
in the asteroid belt reachable by the spacecraft. The resulting file would be read by the simulator
and provide a working environment for the spacecraft.

For each transfer window, five things were necessary: origin asteroid, destination asteroid, time of
departure, duration of flight and cost of transfer. The asteroids would be represented by their names;
26 character/byte long strings. The numbers were naturally represented as 8 byte doubles.

To avoid producing an unnecessarily large file, transfer windows for the same asteroid pair were
grouped together. The redundant names were removed, producing a combined entry beginning with
the two names and a count specifying the number of transfer windows for the asteroid pair. The
time of departure, duration of flight, and cost of transfer were listed for each transfer window. The
resulting entries would look like this:

We wanted to be able to resume calculation should the program be interrupted. Losing all progress
would be acceptable if the program could be completed in a day or two. Losing two weeks of
progress, on the other hand, would be a severe setback. Resume functionality would also allow us to
replace the executable with an improved version without starting from scratch, as well as continue
execution on a more powerful computer if one were to become available to us. 

To resume, the partly completed model would simply be read back in on start up and used to speed
up the search. Ideally, this would allow the progress to be resumed immediately, only losing as
much time as the program was offline. New asteroid pairs would be appended to the original file as
the search continued.

The resume file contained every transfer window found during the search, but not all of those were
actually traversable. The cause for this is the possibility of a future route allowing an asteroid to be
reached earlier  or more cheaply.  This could in turn allow the use of a previously untraversable
transfer window. Only after the search is completed would we know for sure whether a transfer
window was traversable or not. 

Removing untraversable windows would not affect the results  found during simulation,  as they
could never be part  of a valid route. The map size would be reduced, however,  allowing for a
smaller file size, a shorter start up time, and a smaller memory footprint. 

This  would  only  be  a  concern  if  performance  was  inadequate,  the  file  size  or  start  up  time
excessive, or the memory footprint too large. The choice at the stage of planning was to wait and
see if the amount of junk data posed a problem. 

C.2 Possible Sources of File Size Improvements

The file produced by the project was initially estimated to not be large enough to pose a problem.

[origin name] [destination name] [count c of transfer windows] 
{ [transfer window]1, [transfer window]2, …, [transfer window]c }
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However, after some debate, we decided to boost the delta v limit of the spacecraft from 1700m/s to
3400m/s, as discussed in section 5.4. With twice the delta v, the spacecraft would likely be able to
visit  twice  as  many asteroids  each.  Since the  size was proportional  to  the  product  of  the total
number of origin-destination asteroid pairs, this would likely quadruple the file size. Four strategies
were identified and discussed, and are presented here.

The first was to compress the file using standard compression libraries. As a large portion of the file
would be repetitions of the same 26 byte asteroid names, the file should be easily compressible. We
chose not to do this because of the effort needed to implement the functionality compared to the
proportionally small problem. The potential for introducing defects and I/O overhead solidified our
position.

A second strategy was to generate a dictionary containing a mapping from asteroid names to unique
4 byte identifiers. This would reduce the file size significantly, as 52 bytes could be reduced to 8
bytes for every entry in the file, potentially halving the file size. However, adding the dictionary to
the beginning of the file would require a major rewrite of the otherwise stable code. 

Multiple transfer windows with the same origin and destination asteroids were already grouped in
the same entry. Adding one more layer of grouping would allow all entries with the same origin
asteroid to be grouped into one. While requiring one more counter, this would reduce the overhead
of the names significantly, proportional to the branching factor of the search. A branching factor of
100 would on average combine 100 entries into one, eliminating 99 copies of the same string. The
amortised  effect  would  be  to  reduce  the  size  of  the  origin  field  down to  just  over  two bytes.
Realistically, the branching factor could be much larger than this, further improving the reduction.
Because the origin field required about a quarter of each entry, roughly one quarter of the file size
would be eliminated by this method. Unfortunately, this would require a similar rewrite to the code
as the second strategy. 

While discussing how to increase performance, we considered whether we could round departure
times  and  flight  times  to  the  nearest  day (integer  operations  are  generally  slightly  faster  than
floating point operations). Rather than requiring a difficult rewrite, this only involved changing the
data types of the variables. Replacing the 8 byte double values we had been using with 2 byte shorts
significantly reduced our output file size. With three such values for every transfer window (time of
departure, duration of flight and transfer costs), this cut 18 bytes off for every transfer window in
the database. As mentioned in section  2.1.1, NASA uses a resolution of 2-5 days, so our 1 day
resolution is not unreasonable. Replacing the 4 byte transfer window counter with one of 1 byte
improved the reduction. These changes reduced the file size by about a third. 

C.3 The Improved File Format

The  file  format  could  be  improved  by  making  two  changes.  Although  reasonably  quick  to
implement, the risk of delaying the Map Generator's execution meant it was better to wait with the
implementation. The produced file could instead be converted to the new format after completion. 

The first change was to group entries originating from the same asteroid into one. Previously, all
entries originating from the same asteroid were added sequentially to the file. The new file format
changed  this  by  removing  all  occurrences  of  the  origin  asteroid's  name  except  for  the  first.
Immediately after the name, a counter was added. The value of the counter is equal to the number of
entries with the same origin asteroid. The new file format after the change:

entry = [origin name] [count c1 of destination asteroids]
{ [destination entry]1, [destination entry]2, ..., [destination entry]c1}

destination entry = { [destination name] [count c2 of transfer windows] 
{ [transfer window]1, [transfer window]2, ..., [transfer window]c2 }
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Additionally, asteroids in the database were assigned arbitrary 4 byte IDs to be used instead of the
26 byte names. An index in the beginning of the file, before all the entries, provides translation from
asteroid name to the arbitrary ID. The IDs are arbitrary to the extent that they only apply to the file
and the entries within it, but they are unique within the file. The format of the index is as follows:

The rest of the file is modified to use IDs rather than names:

C.4 File Format Efficiency Improvement

The reduction in the size of a test  file can be
seen in  Table  23.  The  table  shows actual  file
sizes  for  a  tiny problem size;  less  than  0.052.
The 1200m/s delta  v  limit  put  on the transfer
cost  means that  some asteroids are  within the
range of the BEEs but not counted as reachable
due  to  a  large  transfer  cost.  Increasing  the
density  of  asteroids  in  the  model  allows  the
more  “distant”  asteroids  to  be  reached  by
providing  intermediate  asteroids  that  can  split
the  total  transfer  cost  over  several  transfers.
Consequently, the number of asteroids that are
reachable  grows  faster  than  the  density,  so  a
density of 0.05 produces an even lower problem
size  than  0.052.  It  is  worth  noting  that  the
asteroid database was filtered to  3400m/s,  not
the 1700m/s used for the full Transfer Map.

Looking at the table, the original file represents the file produced by the full run using the old
format, only at less than a 0.052 of the size. Grouping entries with the same origin reduced the file
by roughly a  third,  not  a  quarter  as  previously estimated.  Because  the  original  format  already
incorporated the data type savings described previously, the larger reduction can be explained as the
same percentage reduction applied to a larger percentage of the total data. 

The  final  format  improves  upon  the  grouped  entries  format  by also  including  an  index  of  all
asteroids in the asteroid database. The experiment shows that the final format is about three times
more efficient than the original, and roughly twice as efficient as the grouped entry format. Three
numbers are provided in the table: the size taken up by the transfer data, the size required by the
index, and their combined size. The reason for this split is that the two components grow at different
rates. While the index grows linearly in the number of asteroids in the database, the growth of the
transfer data is O(reachable2). The experiment showed that about a third of the file size was used by
the index. As the problem size increases, this percentage should decrease and the relative efficiency
of the final format improve towards a file size a fifth of the original.

File Size Improvements
File Size

(KB)
% of

original

Original 5,514.2 100%

Grouped Entries Only 3,280.7 59.5%

Final
Format

Data 1,249.8 22.7%

Index 646.5 11.7%

Combined 1,896.3 34.4%

Table 23: File sizes for a problem size of 5% 
(22067 asteroids, 3048 reachable), database 
filtered down to 3400m/s, a BEE delta v limit of 
3400m/s and transfer costs limited to 1200m/s.

entry = [origin ID] [count c1 of destination asteroids]
{ [destination entry]1, [destination entry]2, ..., [destination entry]c1}

destination entry = { [destination ID] [count c2 of transfer windows] 
{ [transfer window]1, [transfer window]2, ..., [transfer window]c2 }

index = [count i of index entries] 
{ [asteroid name]1[ID]1, [asteroid name]2[ID]2, ..., [asteroid name]i[ID]i }
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Appendix D Transfer Map Memory Usage
It turned out that the in-memory representation of the Transfer Map had an overhead of several
hundred percent. This appendix describes the issues faced in reducing memory usage and how they
were  overcome,  with  the  end  result  that  the  larger  Transfer  Maps  would  barely  fit  in  system
memory.

D.1 Investigating the Initial Memory Usage

At one  stage,  a  large  Transfer  Map needed to be  converted  from the  initial  file  format  to  the
improved  file  format  (both  described  in  Appendix  C).  Unfortunately,  this  involved  loading
61,581,451 transfer windows from the file to a data structure in memory. The code functioned as
intended, though the process was killed by the operating system halfway through the file due to
excessive memory use. The structure in memory was apparently even less efficient than the initial
file format, requiring upwards of 10GB to load the 2GB initial file. If the search continued for much
longer, we would not be able to resume the search or process the resume file at all. 

Although the resume file could be finalised by converting it entry by entry without loading the
entire file to memory at once, this would not allow the search to be resumed. We instead chose to
improve the efficiency of the memory structure. The initial structure grouped all entries for a pair of
asteroids together in a list and packed these into a two dimensional index allowing for quick access. 

Table 24 shows lower bounds on the
memory  requirements  for  the
different  components  of  the  data
structure.  Actual  usage  depends  on
factors  like  memory  alignment
(padding), requirements specific for
the  implementation  and behind the
scenes  book  keeping  (for  instance
heap allocations). An example is the
transfers,  which  require  6  bytes  of
storage.  On  an  x86  or  x86_64
architecture machine, they are likely
padded  by  2  additional  bytes  to
place  each  Transfer  neatly  on  the
beginning of a memory word, every
4  or  8  bytes.  The  table  does  not
include  this  extra  overhead  for
simplicity,  but  still  shows  where
reductions are likely to help.

D.2 Modifying the Memory Structure

Changing the three 8 byte double precision numbers in our transfers to three 2 byte shorts reduced
their size to less than that of a pointer, which is 8 bytes on a 64bit system. The pointers therefore no
longer served a purpose and were removed relatively quickly. The pointers were used to ensure
persistence of the transfers within the application, but were no longer needed as the transfers would
always belong to a single unique object.

The transfer windows of an asteroid pair were grouped in an std::vector, a small wrapper around a

HashMap of Origin and (HashMap of Destination and List of Transfer)

Memory Usage of Original Transfer Map Structure
Size

(Bytes)
Approximate

Number
Estimated

Usage (MB)

Transfer 6 60,000,000 330

Transfer* 8 60,000,000 440

std::vector 24 30,000,000 690

std::string 59/8 30,000,000 1,700/240

std::unordered_map 12,000 65,000 740

Total - - 3,900/2,440

Table 24: Shows the various contributors to excessive 
memory usage in the original resume functionality. The 
memory required by the strings depend on whether strings 
are duplicated in memory or not.
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bare (C-style)  array.  There were 64,552 origin asteroids,  each with approximately 500 possible
destinations. Although the 24 bytes are usually insignificant, with close to 30 million of them they
do add up. A more lightweight solution was to store every transfer window in a single list, and
instead point to the range of transfers belonging to the asteroid pair. This would eliminate all but
one list and introduce two numbers; the first and last index of the range.

There were two choices of pairs; the indices could either be represented by two size_t (aka unsigned
long integer) or two plain unsigned integers. Both would be of the type std::pair and have zero
overhead. The size_t is guaranteed to always be able to represent the largest index the system is
capable of handling and not be any larger, which means 8 byte on our 64bit machines. However,
plain (possibly) 4 byte integers would be able to handle indices up to roughly 232 (~4,300,000,000),
a few orders of magnitude more than we have memory to handle. But an unsigned integer could
also represent a 2 byte integer, which would only support up to 216 transfer windows (~65,000). As
integers are 4 bytes on all our machines, we deemed the reduced cross platform support worth the
50% reduction in memory consumption.

The effective size of  std::string in our application is not easy to estimate. For the trivial case of
having only one occurrence of one name, the overhead is tremendous. The 26 character string must
be appended with a null character ('\0') and stored in a character array on the heap. This requires 27
bytes for the array and an 8 byte pointer to it. The string class stores the pointer to the array, an 8
byte number for the length and another 8 byte number for the capacity, as well as another 8 byte
number to count the number of references to the string. Finally,  an 8 byte pointer to the string
structure is needed for a total of 59 bytes.

Fortunately, the number is only valid if there are no duplicate strings, as our compiler will reuse
strings if it can safely do so. The reference counters and extra pointers ensure that assignment only
requires another pointer to the same string structure and the reference counter to be incremented. If
the hash maps we use take advantage of this, they should only have to store an 8 byte pointer to
existing strings, not the full 59 bytes. The table show the memory required for both cases.

The  std::unordered_map is designed to store large numbers of elements and to store and retrieve
them quickly. We required close to 65,000 of them, each with less than a thousand elements. As for
the  strings,  the actual  memory usage  of  one object  is  difficult  to  measure.  The  C++ keyword
sizeof() reported a class size of 56 bytes, not including the size of everything the class variables
reference through pointers. 

The hash map keeps  track  of  buckets  representing  one  hash  value,  containing  a  list  where  all
elements of that value are stored. For efficient lookup, the map attempts to keep the load factor
close to 1, meaning on average one bucket for each element. Although the limit can (and possibly
should) be overridden, it still means an additional list for each bucket. In our case, the total number
of buckets and lists should be close to 30 million. A small overhead quickly adds up when repeated
millions of times. 

As can be seen,  Table 25 accounts for less than half of the actual memory usage. The numbers
found in the table do not consider memory used behind the scenes, for instance memory padding
and the two 8 byte memory words required for every heap allocation. The estimates are also lower
bound, as not all memory usage of the effectively black box library classes can be discovered by
casual investigation.
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No suitable way was found for
eliminating  the  index,  so  the
overhead  of  the  hash  maps
themselves  was  not  resolved.
However,  one  of  their  main
sources  of  overhead  was  the
choice  of  asteroid  names  as
keys.  The  only  consistent
identifier for the asteroids was
their  names,  making  it  the
obvious  choice.  Part  of  the
change  to  the  improved  file
format  was  creating  an  index
translating from asteroid names
to  asteroid  ID,  valid  only
within the contents of the file.

By first passing the asteroid names through this index, the two dimensional transfer index could use
the IDs as keys. The strings used as keys required at least 8 bytes, as discussed previously, while
plain integers would halve this usage. The loading of initial file format was changed to translate the
names from the file into IDs before adding them to the index. The loading of improved format was
similarly simplified, as the name index of the file could be loaded and the transfer entries be applied
directly to the index without any translation.

The  changes  took  several  hours  to  implement,  partly  due  to  experimentation  with  methods
abandoned  in  favour  of  the  ones  discussed  here.  The  apparent  memory usage  was  eventually
reduced down to less than 2GB with new estimates as seen in Table 25. Interestingly, although the
actual  memory usage was reduced by a  factor  larger  than 5,  the estimated memory usage was
reduced by a factor of 2 only. Most of the savings came from sources we were not aware of or could
not  measure  easily.  The most  likely choice was inefficiencies  in  handling the large number of
strings. Another possibility was that hash maps could perform better when using integers rather than
strings for keys.

D.3 Reducing the Time Needed to Resume

Changing the data structure of the transfers in memory warranted a test of the resume functionality
to ensure that it still worked. Resuming was unfortunately painfully slow. Resuming had previously
only required skipping calculation for a few thousand asteroids, but now had to skip over 60,000.
Our development computer managed to skip roughly 500 every minute, which meant a full resume
would take a couple of hours. Additionally, as the resume process did not take advantage of parallel
computation, our main processing computer would only manage slightly more than that. 

A  couple  hours  was  spent  trying  to  increase  the  single-thread  performance  of  the  resume
functionality, but only about 20% of the run time could be eliminated. Most was spent performing
lookups in the index of transfer windows. This involved hashing the name of both asteroids in the
pair to obtain their IDs (lookup in the name index) followed by hashing of both their IDs to obtain
the indices into the transfer list (lookup in the transfer index). Performance was improved by not
repeating the lookup procedure for the origin asteroid for all potential destination asteroids. It would
be possible to iterate over the destination asteroids only and not every asteroid,  but this  would
require a reverse index from asteroid ID to asteroid object. As there was an easier way of resuming
quickly enough, this option was not pursued.

Multi-threading the resume loop of each asteroid was an easier option. Some changes were needed,

Memory Usage of Improved Transfer Map Structure
Size

(bytes)
Approximate

number
Estimated

usage (MB)

Transfer 6 60,000,000 330

std::pair<int,int> 8 60,000,000 440

std::string 59      200,000 11

int 4 30,000,000 110

std::unordered_map 12,000 65,000 740

Total - - 1,600

Table 25: Show lower bound on the estimated memory usage after
changing the structure of the transfer map stored in memory.
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but the performance was improved two-fold on the dual core development computer, to roughly
1500 asteroid every minute. The processing computer was expected to see yet another doubling of
performance due to its quad core CPU, improving performance by a factor of 5. This would allow
processing to be resumed in less than an hour even for 100,000 asteroids. 
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Appendix E Handling the Transfer Map File
Once the Transfer Map Generator (described in section 5.1) had completed execution, the end result
was a file containing every transfer window found during the search. These included those that were
never actually traversed by the search, but kept in case later discoveries would allow their origin
asteroids to be reached early and cheaply enough for traversal. This appendix describes the issue in
more detail and the algorithms used to remove the untraversable transfer windows and unreached
asteroids from the Transfer Map.

E.1 Finalising the Resume File

As can be seen in  Appendix D, the memory footprint of the Transfer Map file was quite large.
Additionally, the original 2.2GB file still required 500MB after converting it to the new file format.
Pruning the untraversable transfer windows would reduce both the amount of memory required and
the size of the file for little extra development time.

The untraversable transfer windows had one thing in common; they could never be part of any valid
route  because  the  origin  asteroid  could  not  be  reached  in  time  for  the  departure  with  enough
remaining delta v to complete the transfer. All such windows could be removed by an exhaustive
search from the HIVE, enumerating all valid routes through the asteroids belt and keeping only the
windows used during the search. After which any unreachable asteroids could be removed as well.
Such a search would have a high computational complexity, requiring every possible route to be
examined. A conceptually more complex, but computationally simpler algorithm would eliminate
most of the junk data.

Junk data comes from a couple of situations: either the transfer window cannot be reached with
sufficient propellant to make the transfer or it cannot be reached in time to make the transfer. A third
option is  that  the transfer window can be reached with sufficient  propellant,  but only after  the
window had closed, while all earlier routes are too costly.

The first group make up the leaves of our search tree, included in the file because we could not rule
out that a later, cheaper route would be found. We can find the cheapest way to reach a given
asteroid (ignoring the issue of time) by using the same methods used in the search itself. As seen in
Algorithm 8, this allows us to remove any asteroid which has a cheapest access route which is
beyond the BEEs' capacity, and any transfers to or from such asteroids. In addition, any transfers
out from an asteroid which would require more propellant than what the BEE can have left at that
point are removed.
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A similar method is used to remove windows which cannot be reached in time. Instead of keeping 
track of the most fuel efficient way to reach each asteroid we keep track of the earliest available 
transfer to it. After finding the earliest possible arrival time for each asteroid (ignoring the issue of 
available delta v), any windows which would require leaving before this can be removed from the 
Transfer Map. Any asteroids which cannot be reached with the transfers in the file can also be 
removed, along with all transfers to and from such asteroids.

Pseudocode for eliminating intractable time requirements can be seen in  Algorithm 9 below. The
algorithm begins at the HIVE and estimates the earliest arrival for all asteroids reachable from it.
Whenever an asteroid's estimate is updated, it is placed at the back of a queue for future processing
in case it can provide a better estimate to other asteroids. At the end, both transfer windows that
could never be used and asteroids that could never be reached are removed. 

Finding the last group, which cannot be reached cheaply enough in time for the transfer, would
require searching every possible route in the transfer map. This would require several orders of
magnitude more computing power than searching through the cheapest or earliest transfers, and
significantly more memory too. Given the enormous resources required and the relative little gain
expected, we decided to let this particular source of junk data be, until and unless we find that there
is still too much remaining. 

We expected the time restrictions to remove more windows than the delta v restrictions, as the delta
v restrictions were already to some extent coded into the search itself and therefore could only
remove leaf  data.  The time of  departure restrictions,  on the other  hand,  could  render  asteroids

For every pair of asteroids (asteroid1, asteroid2):
Store the cheapest transfer window from asteroid1 to asteroid2

Initialise every asteroid's cheapest cost to be infinitely large
Initialise the HIVE's cost to 0
Put the HIVE in the queue

While the queue is not empty:
Retrieve asteroid from queue
For all cheapest transfer windows originating from the asteroid:

If origin's cost + transfer window's cost < destination's cost:
Update destination's cost
Put destination in queue

// All asteroids now have their cheapest cost set correctly assuming no time issues
For all transfer windows:

Remove if cost of transfer + cost of origin exceeds the delta v limit
Remove any asteroid whose cheapest cost of arrival exceeds the delta v limit

Algorithm 8: Pseudocode method for pruning away unreachable transfers based on 
a delta v limit.

Initialise every asteroid's earliest arrival time to the end of time
Initialise the HIVE's arrival time to 0
Put the HIVE in the queue

While the queue is not empty:
Retrieve first asteroid from queue
For every transfer window originating from it:

If time of departure after the origin's earliest arrival
 And the arrival is before destination's earliest arrival:

Update destination's earliest arrival to window's time of arrival
Put the destination asteroid in the queue

// Any asteroid now has its earliest arrival time set to the earliest possible.
For all asteroids:

If earliest arrival is after mission end:
Remove the asteroid and all transfer windows originating from it

Otherwise:
Remove transfers with departure time before the asteroid's earliest arrival

Algorithm 9: Pseudocode method for removing intractable time requirements.
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inaccessible near the HIVE, removing the asteroid and its entire sub tree in one strike. By first
eliminating time restricted windows, fewer untraversable windows would be left when eliminating
leaf data, speeding up the process. 

E.1.1 Pruning a Test File

A test file was pruned to test the effectiveness of the pruning method. The results are shown in
Table 26. The original file was produced from a run with the same settings as for the previous file
format experiment (section C.3). One can see that time pruning removes a larger portion of the file.
Although delta v pruning alone removes more than half of it, most of that is also removed by time
pruning. This is to be expected as only leaf data is removed by the delta v pruning, which is also the
data most likely to break the time constraints.

Table 26 shows that approximately 30% of transfer windows would remain after  delta v pruning
and roughly 5% after time pruning. Two things were obvious: significant time was spent calculating
transfer windows that could never be used and far fewer would be calculated if time constraints
were enforced by the search. However, actually estimating the speedup without changing the search
algorithm would be difficult and mostly rely on guesswork.

Assuming that a search restricting both on time and delta v would produce the same proportion of
leaf data as a search restricting on delta v only, it should also produce 70% junk transfers and 30%
useful data. We see that only 5% of calculated data remains after pruning for both. In addition to
that useful data, we can expect two and a third ( 70 % /30 % ) times as much junk data. In total, we
would then end up needing to calculate three and a third times the 5% we actually want, which is
16.67% or a 6th of the current total. 

Another way of looking at it is to consider the number of useful asteroids with and without time
pruning. Delta v pruning keeps 3,048 asteroids, the exact number of origin asteroids for which
transfer windows have been calculated. Time pruning reduced this to 1,236, roughly 40%. In other
words, if this held true for the search, we would see a 60% reduction in run time. 

Regardless the actual speedup, it would seem there was a significant improvement to be made by
incorporating time restrictions in the search algorithm. It would be most appreciated even if it were
only 10-20%. So why did we not initially do this? In hindsight, it is difficult to fathom, as it should

Finalisation Performance on a Test File

In Original
Removed by

Time Pruning
Removed by

Delta V Pruning
Removed by

Both Combined
Remaining

After Pruning

File size
1,896 KB - - 1,788 KB 108 KB

100% - - 94.3% 5.7%

Asteroids
7,078 5,826 4,030 5,842 1,236

100% 82.3% 56.9% 82.5% 17.4%

Transfer
windows

132,993 125,170 91,736 125,257 7736

100% 94.1% 69.0% 94.2% 5.8%

Index size
22,067 - - 20,831 1,236

100% - - 94.5% 5.6%

Table 26: Shows the effect of pruning a resume file from a problem size of 5% (22,067 asteroids, 
3,048 reachable), database filtered down to 3,400m/s, a BEE delta v limit of 3,400m/s and transfer 
cost limited to 1,200m/s.
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have been obvious at the time.

When designing the search,  we first  considered limiting each asteroid's  search area to after the
asteroid's estimated earliest arrival. This would be very efficient in terms of the amount of the pork-
chop plot searched, but would be a lot more complex to code. Whenever a new and earlier route to
an asteroid was found, a new slice of the pork-chop plot would have to be searched and duplicate
transfers removed.

The Transfer Map generator was only supposed to be a small side project, but quickly turned out to
require far more effort than originally thought. Writing a complex generator of transfer maps in the
asteroid belt was never the goal. As we abandoned the search described above for a simpler search
of the entire pork-chop at once, time restrictions were forgotten. Not before we devised the time
pruning did we consider it again. Although tacking on an extra restriction on time for the same
search would require relatively little extra development time, this strategy did not occur to us until
the initial search had already started. It was, naturally, included in the second search (section 5.7.1).

E.1.2 Pruning the Transfer Map

It was, unfortunately, not possible to complete the final search given our strict deadline. The resume
file was pulled from the computer and the searched allowed to progress in case a larger map would
be needed at a later stage. The resume file was finalised as described in section  E.1, with results
shown in Table 27.

The search visited 42,128 asteroids in the 20 days it was allowed to run, far from the worst case of
the roughly 210,000 asteroids found in the database. How close the search was to completion can
only be guessed. In terms of data, the raw resume file grew to over a gigabyte. This is roughly twice
the size of the 500 megabyte resume file generated by the previous search before it was stopped in
favour of this search. What is interesting is that the previous search visited more than twice the
number of asteroids but produced half  the number of transfer windows. This search apparently
produced four times the number of transfer windows for every asteroid on average. 

The table clearly shows how limited the pruning algorithm is.  The search only visited roughly
42,000 asteroids, while the pruning considered almost 160,000 asteroids reachable. This means a
whopping three quarters of data not removed by the pruning should be considered junk. Section E.1
describes the pruning algorithm and why some sources of junk data were left alone due to time
restrictions. We knew that some of it would in reality be junk data, but did not expect this to be the
majority. 

Finalisation Performance on the Transfer Map

Original
Remaining after
Time Pruning

Finalised

File Size
1,140 MB  - 464 MB

100% - 40.7%

Transfer
Windows

129,426,200 48,696,908 48,696,755

100% 37.6% 37.6%

Asteroids
208,386 159,499 159,499

100% 76.5% 76.5%

Table 27: From left to right, the columns show three attributes for:
the original file,  file after time pruning, and the finalised file after
pruning for both time and delta v.
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Table 26 shows that the pruning algorithm removed roughly 94% of the data from the previous
search algorithm. This led us to believe that a speedup of up to 6 could be achievable by changing
it. The new data from Table 27 showed that the speedup would probably be higher than this.

Assuming that three quarters of the data remaining after the pruning was in fact junk, the estimates
should be multiplied by four. This changes the estimated speedup of 6 to 24, and the estimated 60%
reduction in run time to an estimated 90% reduction. As stated previously, the numbers were not
reliable, and the updated ones may not be much better. 

E.1.3 Improving Pruning Algorithm

The pruning algorithm described in section E.1 was extended by including a third pruning condition
before the two others. The original two conditions first removed any asteroid and window that could
not be reached when observing restriction on time, effectively disallowing time travel. The second
condition removed asteroids and windows that could not be reached within delta v constraints. They
did not, however, remove asteroids that could never be reached and windows that could never be
traversed by any valid route. 

The new search allowed a third condition to easily be put in place: removing non-visited asteroids.
Any asteroid not yet visited by the search would be an asteroid not presently reachable by any valid
route. They are only present in the Transfer Map file as destinations, and only because they could
end up being reachable after the discovery of new reachable asteroids. 

Although this condition would also have worked with the previous search algorithm, it would not
have  worked  nearly as  well  as  with  the  new search  algorithm.  The  previous  visited  far  more
asteroids than were actually reachable by a spacecraft, and any such asteroid would not be removed.
With the new search, these asteroids would not have been visited, and would therefore be removed
by the additional condition.

Removing non-origin asteroids is very simple. The algorithm, outlined in  Algorithm 10, simply
goes through the index and removes any destination asteroids that are not also present as an origin
asteroid. The transfers belonging to the removed asteroid pairs are simply left in the transfer list to
be discarded once the program ends. They are not copied to the finalised Transfer Map because they
are not referenced by the index.

As can be seen in  Table 28, the additional condition improved the effectiveness of the pruning

For all <origin, destination> pairs in index:
If there does not exist a pair in index with destination at the first position,

remove the pair from the index

Algorithm 10: Pseudocode for pruning non origin asteroids.

Finalisation Performance on the Transfer Map with Improved Algorithm

Original
Remaining after

Pruning Non-Origins
Remaining after
Time Pruning

Finalised

File Size
1,140 MB - - 324.5 MB

100% - - 28.5%

Transfer Windows
129,426,200 73,292,203 34,532,069 34,532,005

100% 56.6% 26.7% 26.7%

Asteroids
208,386 42,128 42,128 42,128

100% 20.2% 20.2% 20.2%

Table 28: Pruning the Transfer Map with the improved pruning algorithm.
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algorithm  significantly.  It  was  particularly  the  reduction  in  the  number  of  asteroids  that  was
important, as each pair required an additional entry in the index. The overhead for storing this in
memory was quite  significant,  as  described in  Appendix D, mostly due to  the way hash maps
function. Every asteroid pair that was pruned meant the removal of one hash, one key, and one list
from the index. Transfer windows that were removed with the pair were an additional source of
improvement.

There should still be some junk data left, as the pruning algorithm had not been changed to take
actual routes into account. It worked on the assumption that the earliest route was the cheapest route
and vice versa. Performing a proper search with matching transfer cost and time of departure/arrival
would require a radically different approach.

E.1.4 Reducing the Memory Requirements of the Pruning Algorithm

We were unfortunately not able to finalise the Transfer Map file straight away. The file was twice
the size of the one from the previous search, which required optimisation as described in Appendix
D. The problem we faced with the previous resume file was that the memory overhead of storing
the transfer windows and their metadata in memory was too large. 

The problem this time around, however, was the pruning algorithm, which allocated extra data to
store the pruned transfer map before removing the original from memory. This was not an issue
with the previous search, where close to 95% of the data was not duplicated. Not only did this
search  produce  a  file  twice  the  size  of  the  previous,  it  retained far  more  of  the  data  than  the
previous. The effect was that loading the file took most of system memory, and pruning would have
exceeded it. 

The solution was to not duplicate any data, even for a short amount of time. Previously, a new list of
transfer windows was created containing only the ones to keep. A new index of asteroid pairs and
indices was made containing only the pairs with windows left. Instead of this, the new pruning
algorithm reordered the transfer list, inserted asteroid pairs with windows left into a new index and
removed the asteroid pair from the old index. The result was a transfer list containing sequences of
valid  transfer  windows  separated  by  sequences  of  undefined  data,  and  an  asteroid  pair  index
pointing only to the valid sequences.

Reordering the transfer windows was an uncomplicated task.  A range of transfer windows was
associated with each pair, with begin and end indices stored in the index. Beginning at the start of
the index, each window was inspected to see if it should be included in the finalised file. Each time
a window was found that should not be included, the remaining windows were moved towards the
beginning as if the original window had been removed. The end result was a smaller range with the
same begin and a smaller end.

If there was at least one transfer window left in the range, its indices were inserted into a new
asteroid  pair  index.  The  asteroid  pair  was  then  removed  from  the  old  index.  As  the  search
progressed, the result was a slight reduction in memory usage rather than a large increase.

E.2 Loading the Transfer Map Into the AI Simulator

Loading the transfer map file into the simulator should have been a straightforward process, and for
the most part, it was. There was a problem, however: Java read the bytes in the wrong order. At
first,  we suspected  there  was  an  issue  with  the  file  or  the  logic  for  reading  it.  Inspecting  the
beginning of the file using a utility called “hexdump”43 revealed that the contents were correct,
however. The Map Generator, written in  C++, simply wrote the number directly to file, byte for
byte from memory. The AI Simulator, written in Java, was supposed to do the opposite. Although it
read the correct bytes, the Simulator produced completely different numbers. 
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It turned out this was due to a difference in endianness in C++ and Java. Machines using the x86
architecture store numbers in memory in Big-endian format. This applies to any code running on the
machine,  C++ or  Java alike.  This  meant  that  the  C++ code wrote  Big-endian numbers  to  file.
Unfortunately, Java's file reading functionality assumed the file was written in Little-endian with no
accessible way of reading Big-endian. 

For instance, the first number of the file was the file version number, 1, used to identify the file
format. On a Big-endian machine, this 4 byte integer is represented as  <0x01,0x00,0x00,0x00>,
which was what the file contained. Java's methods read the integer as if it were Little-endian and
converted it to Big-endian, producing the number <0x00,0x00,0x00,0x01> in memory. 

If it were C++, this could easily be solved by manually reading in 4 bytes, swapping the order of the
bytes  and  interpreting  them as  an  integer.  This  is  actively  discouraged  in  Java,  however,  and
required the use of a ByteBuffer wrapped around the stream. The buffer required a special flag to
convert the bytes from “Little-endian” to “Big-endian” before Java could correctly interpret the
bytes. After a number had been read, the buffer had to be reset and the process repeated.

After verifying that the numbers were indeed interpreted correctly, another issue became apparent:
the strings of the file seemed unintelligible and the file failed to load correctly.  It seemed Java
assumed strings were written in UTF-16 (two bytes per character)  with no way of overriding the
methods to read the (one byte) UTF-8 characters produced by C++. Strings had to be manually read
as bytes, then interpreted as a series of characters and finally converted to text strings.

E.2.1 Improving AI Simulator Transfer Map Loading

When loading the pruned and finalised transfer map into the AI Simulator, we faced a daunting
problem. Up to this point, we had only used transfer maps with a size of a few megabytes after
finalising. This Transfer Map required roughly 400 megabytes. It was quickly discovered that the
same issues that plagued the  C++ implementation also applied to the AI Simulator; the memory
overhead was too large to load the file.

The  first  issue  was  that  one  of  our  development  computers  had  32bit  Java  installed,  which
apparently only supported a heap size of up 1.5GB, far from what we needed. Removing the 32bit
Java and 32bit Eclipse IDE used for development and installing the 64bit variants solved this.

Once the loading could progress to fill all available system memory, another problem was revealed.
Reading the Transfer Map, a binary file, took far longer than expected. Loading the smaller transfer
maps we had previously used did not take long enough to notice the problem. It turned out that
Java's file reading and input streams do not buffer reads and writes; a dedicated buffer stream seems
to be required. Coming from  C++ where buffering is not only readily available but enabled by
default, this came as a surprise. Adding a  BufferedInputStream between the  FileInputStream (file
reading) and the DataInputStream  (byte reading) solved the problem. The time required to load the
entire file was reduced from an estimated 45 minutes to roughly 5 minutes. 

Loading of the file still only progressed to roughly 30,000 out of close to 130,000 asteroids on one
development computer before stalling. At this point, the Simulator stopped at a memory usage of
close to 4.0GB and started using all cores fully although the loading was performed sequentially.
This suggested some sort of internal garbage collection thrashing, which was found to be the most
probable cause.

The fact that loading the entire file would likely require 17GB was a source of concern. This was
far more than could be made available. To reduce the memory requirement of loading the file, the
structure of the map in memory was changed. The original used the same structure as originally
used in the Generator: two dimensional hash map with strings as keys and a list as the final value.
The list  was swapped out for a Java array,  which has a lower overhead than the list.   Loading
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stopped at roughly 40,000 asteroids after the change, suggesting a new total estimate of 13GB. 

This was still more than we could handle, and it was decided that an improved pruning algorithm
would be the best way to solve the problem. The process of improving the pruning is described in
E.1.3. The changed algorithm removed 25% of the file size and reduced the number of asteroids to
the number of asteroids visited. At this point, the Transfer Map stored in memory required roughly
2.6GB. The main problem was the second and third steps, however: loading the asteroid values and
classes and combining them with the transfer map for a  complete  representation usable by the
Simulator. 

Unfortunately, the internal representation used by the Simulator required more memory than the
optimised representation used by the Map Generator. To make matters worse, the code as written
created the internal representation before allowing garbage collection to collect the data found in the
transfer  map.  This  effectively duplicated  the  contents  in  memory until  loading  had completed,
which meant it could never complete. It would be best to reuse the technique of removing the data
immediately once it was no longer needed. This slowed down the memory growth by releasing the
roughly 2.6GB during the third step of loading.
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Appendix F Improving the Search Algorithm
Pruning untraversable transfer windows from the Transfer Map (see Appendix E) revealed a source
of  improvement  in  the  Generator's  search  algorithm.  Inspection  of  initial  results  suggested  the
search would benefit from allowing the duration of flight to be limited. While sections  5.7.1 and
5.7.2 describe the changes made to accommodate these modifications, this  appendix covers the
performance measurements to analyse their effects.

F.1 Benchmarking the Improved Search Algorithm

Table 29 shows the run times and asteroids visited for increasing problems sizes. The table only
covers a fraction of the total problem size, but still offered some insight regarding the total run time
requirements. Due to the high run time of the old algorithm, some of the values are missing. It
required roughly 18 hours to generate a map with a density of 8%, suggesting that the final two
values would likely require upwards of 24 hours each.

The number of asteroids visited is a more reliable metric than the run time. The run time can be
influenced  in  a  number  of  ways,  such  as  the  activity  of  other  processes  and  changing  air
temperature  (cooling).  The  measurements  were  also  made  on  a  development  computer  with
approximately half the computing power of the computer designated for map generation.

Looking at the results, one can see that the additional restriction on time reduced the number of
asteroids visited to a fraction. The original search would have completed in a fraction of the time
had we made the changes before starting the search, even if development would have delayed start
up a day or two. 

Comparing the old and Improved Search Algorithm

Problem Size
Search using cheapest

transfer (old)
Search using cheapest
and earliest transfer

Search using valid
routes (new)

Density Asteroids Visited Time (min) Visited Time (min) Visited Time (min)

0.01 2,096 95 2.29 14 0.37 14 0.34

0.02 4,142 554 26.5 39 2.01 39 1.89

0.03 6,194 1,274 95.3 80 6.21 80 6.16

0.04 8,270 1,997 201 128 13.2 128 12.6

0.05 10,415 2,850 365 180 23.0 178 22.5

0.06 12,551 3,602 551 251 38.3 249 36.2

0.07 14,727 4,424 797 331 59.4 329 56.3

0.08 16,846 5,282 1,076 398 83.0 396 76.7

0.09 19,021 - - 472 104 470 102

0.10 21,155 - - 586 143 584 141

Table 29: Shows the run time (development computer) and number of asteroids visited by three 
variants of the search algorithm. Leftmost is the old search algorithm, which allowed branching 
based on cheapest transfers only. Part of its results are mission due to excessive run time 
requirements. The middle shows an intermediate algorithm adding restrictions on time, allowing 
branching using the cheapest and earliest arrival without considering routes. The rightmost 
algorithm is the new search which requires valid routes, considering both time and delta v.
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On the other hand, it would seem we were not
wrong  when  we  chose  to  use  estimates  rather
than  actual  routes.  Only  two  asteroids  were
included in the estimate-driven search when they
should not have been.  The route-driven variant
is slightly better, however, and there is no reason
not to chose it. Run times even show that it is
slightly quicker. This may be an artefact of the
experiment,  which  did  not  control  for  tasks
running in the background or room temperature
and the likes.

The intermediate and new algorithms performed
similarly  to  one  another  and  both  vastly
outperformed the old search algorithm. A major
speedup was expected, maybe even by a factor
of 6 (section E.1.1). Table 30 shows this estimate
was  pessimistic.  The  data  points  suggest  a
speedup of roughly 13.7 (the average) and twice
what was estimated.

F.2 Benchmarking the Modified Search Space

An estimate of the run time requirements was needed before the second search, described in section
5.7, could be started. Table 31 shows the complexity and run time of several small problem sizes. 

The percentage of asteroids that  are  reachable by the search increases towards 70%. The most
probable cause for this is the 1200m/s limit put on transfers. As more asteroids are available, the
likelihood of finding a valid route to an asteroid increases. The subset of asteroids is also chosen at
random, making it representative of the full distribution except for the relative distances between
asteroids. It is therefore natural to assume the percentage will at least stay at 70% and probably
increase beyond what has been seen. Because the search ended at 6% density, it is assumed the
search will visit a larger percentage of asteroids, for instance 80%.

As described in  Appendix B, the run time can be described as the product of three factors: the

Extended Mission Run Time Measurements
Problem Size Solution

Density
Asteroids in

Search
Asteroid
Visited

Percentage
Visited

Run Time
(hours)

0.01 2,096 417 19.9% 0.08

0.02 4,142 1,680 40.6% 0.66

0.03 6,194 3,298 53.2% 1.95

0.04 8,270 4,921 59.5% 3.84

0.05 10,415 6,928 66.5% 6.46

0.06 12,551 8,733 69.6% 10.4

Table 31: Number of asteroids visited and run time required on development 
computer for various small problem sizes. Search was performed with a Nelder-
Mead grid resolution of 15 and maximum duration of flight of 4 years.

Speedup of the Improved Search
Algorithm

Density Asteroids Speedup

0.01 2,096 6.79

0.02 4,142 14.2

0.03 6,194 15.9

0.04 8,270 15.6

0.05 10,415 16.0

0.06 12,551 14.5

0.07 14,727 13.4

0.08 16,846 13.3

Table 30: Shows measured speedup when using 
the new search algorithm, data taken from Table 
29. The speedup is here defined by the reduction 
in asteroids visited.
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number of asteroids in the search, the number of asteroids visited by the search and a constant
representing the time needed to find the transfers from one asteroid to another. In this case, the first
is known to be 212,077 and the second estimated at 80% of this number, 169,662 asteroids.

The estimated run time of a full search on the development computer can then be computed by
scaling the results of the largest search up to the full density.  The result  must then be adjusted
according to the speed difference between the search and development computers. The computation
is shown below:

run _ time estimated=
fullasteroids⋅fullreachable

reducedasteroids⋅reduced reachable

⋅reducedrun _ time⋅speeddevelopment

run _ time estimated≈
212,077⋅169,662

12,551⋅8,733
⋅10.4hours⋅0.4≈57 days

Roughly two months of computation was unfortunately well outside what could be achieved; two to
three weeks at most. There was little that could be done to reduce this further except for acquiring a
more powerful computer. The upside was that the new search algorithm should produce roughly an
order of magnitude less junk data than the previous search algorithm, which ran for almost 50 days.
Running the new search for no more than a week would still likely produce a transfer map the size
of the one found by the first search. There was therefore not be a lack of data despite the search not
being allowed to run for more than 20 days.
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Appendix G Minor AI Simulator Components
This appendix covers minor components of the Artificial Intelligence Simulator that were either
abandoned or not important enough to cover earlier.

G.1 Optimise Genome

One of the more unusual operators we chose to implement was a genome optimiser. This new step
would look for alternative transfer windows available to the BEE for a given origin and destination.
If a cheaper window could be found which did not arrive any later than its current window, there
was no reason not to take the alternative transfer instead.  

The goal was to increase the amount of time and delta v available to the spacecraft after any given
transfer without damaging the flexibility of the evolutionary algorithm. Hence,  we had to limit
ourselves to unambiguously better transfers; any trade off between arrival date and propellant use
would have to be up to the AI. 

However, despite our best efforts, the optimisation code had very little effect on the utility of no
communication runs. It did increase the average number of asteroids visited by about 0.5 asteroids,
but at the same time it reduced the average scientific return by 1%. The mean scientific return was
unaffected by the code, though the poor solutions were significantly worse with the optimisation
code than without it.

G.2 Alternative Genome Encoding

As our crossovers were not really having the effect we would have liked, it was worth while to
consider some alternative ways to encode the genomes. Alternative direct representations would
have the same issues as our current encoding, due to the sheer width of the search-space. With many
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thousands of possible asteroids, there is little chance of two genomes visiting the same one.

So we would need to use an indirect encoding. A simple possibility has been described in section
4.5.1. It would involve having each gene be a number of transfers to ignore before taking the next
available transfer. While this is not a particularly good solution, a few minor improvements could
make it at least workable.

The first simple improvement would be to include a target asteroid class in the genome. Instead of
taking the nth possible transfer out from its current asteroid, it would take the n th possible transfer
out to an asteroid of the chosen class. Such an encoding would have to handle the situation when
there are no transfers available to that particular class, however. We could simply have a list of
classes sorted in order of rarity, and if no transfers to a given class is available the transformation
function would simply try the next class in the list. Given that the vast majority of asteroids belong
to one of three classes, it may actually be better to have four different options here, with the last
simply being “other”. This also has the useful feature of being encodable in two bits.

Another  possibility would  be to  target  asteroids  of  a  given value  range.  The value  of  a  given
asteroid is a double value ranging from 1.0-10.0 (exclusive), so each gene could for example have
an integer from 1 to 9 and only target asteroids with a value in the range of that number to one
higher. Again, it would have to handle the situation of there not being a possible transfer window
with  that  value,  probably by expanding the  search  each to  both  higher  and lower  values  until
transfer windows are located. 

The benefit of these changes is that they would allow the BEEs to retain specialisations without
requiring them to target specific asteroids. Specialisations on class, departure time, and value are all
possible.  The downside,  as described in section  4.5.1,  is  that they cannot reliably specialise on
specific routes or sections of the search space. 

A simplified version of this design was coded up and integrated with the rest of the simulator. The
major simplification was that if it failed to find a transfer which fit its value and class criteria, it
would revert to taking the nth possible transfer overall. Similarly, the n was modulo the number of
possible transfers at the time.

Unfortunately, the results from this implementation were discouraging. On average, the scientific
return was slightly below that of the original genome, but that was not a major concern. More
troubling was that the solutions had the same issues as the original genome. They still ran out of
time more often than propellant. This suggested that our transfer map was the real limiter for further
improvement, not the genome encoding.

One interesting thing to note is that, since one in four genes initially targets classes other than the
three assigned classes  (see section  5.3),  the alternative genome actually was better  exploring a
variety of classes. Not by much, since very few asteroids in our data-set have known classes, so
virtually all have gotten one of three classes assigned. But enough to be noticeably different to the
original genome encoding. 

G.3 Graphviz

The main thing we wanted out from the AI simulator was a list of scientific returns from each trial
run. From these numbers, we would be able to run statistical analysis and discern how much of an
effect communication had had on the amount of exploration done. 

In order to ensure that the scientific return was a useful metric, we also printed out how many
unique asteroids had been explored in each simulation. This made it easy to see whether higher
scientific return corresponded with more exploration. In addition, it also gave more of a view into
what was going on inside the simulation. But it was not sufficient to let us debug the process.
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We wanted to be able to look at the routes used in the simulation in a way which made it easy to see
where the BEEs had travelled. We could easily print out the routes themselves, but that would make
it difficult to see when multiple BEEs had visited the same location. While some asteroids have
names like “4942 Munroe”, which are relatively easy to distinguish from other asteroids, most have
less readable names like “241530 2010 CC77”. 

Our solution was to print the routes in a format readable by Graphviz44,  an open source graph
visualisation software package. Its syntax is fairly simple. Nodes are represented by text strings
surrounded by quotation marks. Edges are represented by an arrow made up of a dash and a greater-
than sign (->).  Square brackets can be used to assign properties to both nodes and edges. The
syntax used for describing a single transfer is shown below in Algorithm 11.

Graphviz identifies nodes by the text string within them, so it was straightforward to map asteroids
to nodes and transfers to edges within the program. If we have multiple edges going into the same
node, we know the asteroid was visited multiple times. 

Graphviz, with the default configuration, produced a tree graph. In our case, the top node was the
HIVE, which had 12 transfers leaving it. Each of those transfers arrived at an asteroid. Ideally, there
should be 12 separate asteroids on the second level; though multiple BEEs occasionally visited the
same asteroid. The third level consisted of the second asteroid in each BEE's route. Should multiple
BEEs visit the same asteroid, its location was set by the last route position which visited it.  In
Figure 41, we see that one of the BEEs travelled directly to 2002 GC76, while another went there
via 2003 WK33, so GC76 ended up in the third row, pushing 2002 QL38 into the fourth. 

Figure 41: Cutout from a Graphviz representation of showing two BEEs exploring the same 
asteroid. 

"Origin_Asteroid_Name (Origin_Class)" -> "Destination_Asteroid_Name
(Destination_Class)" [ label = "dv: Delta_V_Cost (Remaining_Delta_V left); 
arrival: Time_of_Arrival" ];

Algorithm 11: Graphviz syntax.
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Appendix H Selected bugs
Software never works perfectly on the first try. There are always some small errors or components
which do not work as expected. Most are relatively minor and easy to track down, but occasionally
we come across a bug that proves challenging to resolve. Instead of documenting these events as
they occur, which would have cluttered the text with occasional digressions, we have chosen to
gather them here in this appendix.

H.1 Lambert's Problem Returns NaN When the PyKEP::Planets Align

We spent most of our first day of coding trying to get Lambert's Problem to return an actual orbit,
rather than a pair of vectors filled with “not a number”. What we eventually discovered was that the
test  transfer  we were using,  a  simplified  Hohmann Transfer40,  was  an  edge case  that  common
solutions to Lambert's problem were poorly equipped to handle. 

In an idealised Hohmann Transfer, the departure position and arrival position are exactly half an
orbit  apart.  This  means  that  the  Sun  and  these  two  positions  form a  line  in  space.  Lambert's
Problem, meanwhile, relies on working within the plane defined by the triangle formed by those
three points. Naturally, when all three points are aligned, that plane is undefined and the whole
method fails. 

Our  solution  was  to  wrap the  Lambert's  Problem solver  in  a  method  which  checked  for  such
alignments, and to calculate the  delta v of such situations through other means. Specifically, we
could calculate the Hohmann transfer cost, since the reason we were testing with Hohmann in the
first place is that it is straightforward to calculate the delta V cost of a Hohmann transfer.

H.2 Auto Versus Auto&

During testing of the resume functionality,  we were surprised by the slow performance.  As the
overhead of the search was close to 0% due to the cost of solving Lambert's problem, we expected
the program to resume execution in virtually no time at all. Some time would be required to read
and process the file, but the rest should appear instantaneous. What we experienced was nowhere
near instantaneous.

To determine whether a pair of asteroids had already been computed, we had to first lookup a map
of all the destination asteroids for the given origin asteroid, and then find the specific destination
asteroid in that map. It turned out we had misunderstood a new feature of C++11. It includes the
keyword auto as a shorthand for manually specifying the type of a variable. 

During this process, we temporarily stored a reference to the second map, with a type of auto. What
we failed to understand is that auto always denotes a value type. Although the find function of the
map returned a reference to another map, it was stored by value. Because of the size of the map,
likely best measured in kilobytes, and the high frequency of lookups, this slowed down execution
tremendously.

The performance problem was solved by adding an ampersand after  the  auto keyword for  the
affected lines of code, making them auto& rather than auto. The performance increased by roughly
three orders of magnitude, to what we had expected.

H.3 Eclipse Crashes When Printing a Certain Line

We were using the IDE Eclipse during development of the AI Simulator. For some reason, one line 
of Java code ended up causing Eclipse to crash:

System.out.println("\t" + name + "\t" +id);
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Removing the line allowed both Eclipse and the Simulator to run successfully (and with flawed
results). Debugging the problem was out of the question, as the debugger would not start when the
line was included. Some careful and slow experimentation showed that it was the name string that
could not be printed. We never discovered the reason, but suspected some memory corruption. The
strange part is, it should be difficult to accomplish this in Java and, even if the code was flawed,
Eclipse should not have crashed when running it. 

H.4 HIVE is not Hive

At one point, the file format of an old Transfer Map file was converted to the new one. The process
itself finished seemingly without any errors, but the Transfer Map Generator was unable to resume
from the new file. It immediately quit during resume because it could not find an asteroid with the
name “HIVE” in the transfer index. This seemed strange, because if the HIVE was not included in
the index, how could any other asteroid be included. It was, after all, the origin of all origins in the
search.

Debugging revealed that there was indeed an asteroid named “Hive” in the Transfer Map file, and
that it was structured correctly. If so, why could the search not find it? Careful inspection revealed
that the asteroid called  “Hive” had changed name to  “HIVE” during development,  causing the
search  to  look  for  “HIVE” while  all  it  could  find  was  “Hive”.  The  conversion  process  was
amended by including a duplicate entry in the transfer index of files from the initial file format.
With the change, both “HIVE” and “Hive” pointed to the same data, fixing the problem.

H.5 Sorting in the Right Order

The first few results from our genetic algorithm were surprising to say the least. Not only were the
solutions poor, they seemed to get worse the more information they had available. This suggested
that there was something terribly wrong with our evolution. While it is obvious, in hindsight, that
what we were seeing was an attempt to minimise fitness, we initially assumed the issue was in the
assignment of fitness scores to asteroids.

There was, indeed, an issue there. As we had not yet set the scores for the individual asteroids,
every asteroid had the default -1 score. Meanwhile, however, the asteroid class scores had been set
and were in the 20-30 range. Which meant that until about 20 asteroids of a given class had been
visited, the total value of the asteroid remained positive. So while we thought our issue was due to
the AI trying to maximise a negative fitness, it was in fact minimising a positive one. 

We eventually traced the problem to the selection code. All our selection methods were sub-classes
of an abstract selector class, which among other things held a custom comparator for use with
ArrayList's  built  in  sort()  method.  The  comparator  was  written  perfectly  to  specification,  but
assumed that the sort() method sorted data with the largest value first. 

Interestingly enough, which order the sort method actually sorts things in is not particularly well
documented. We have not found any definitive statement from the javadoc which specifies which
order it uses. But by experimentation we found that if we reversed the comparator, the code once
again tried to maximise fitness. The evolvers still produced lower utilities with more information
but, as discussed in chapter 8, there were other explanations for that.

H.6 Fitness Evaluation and Class Value

In order to reuse as much code as possible, both the No Communications and the Stigmergy used
simulation code to evaluate the fitness of a genome. This included a method intended to keep track
of  the  current  point  value  of  each  asteroid  class.  This  method  made  persistent  changes  to  the
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simulator, decreasing the value of the class each time it was called (based on the function described
in section 4.3).

This meant that after the first few generations, the class value of any given class had been reduced
to the point where it  was effectively zero.  As a result,  the evolutionary algorithm had a fitness
function where visiting one or two asteroids with moderate to high asteroid specific values provided
more fitness than exploring three low priority asteroids. The solution was to reset the simulation
more thoroughly between each genome evaluation, which led us straight to the second problem. 

The Stigmergy fitness class served double duty, functioning both as a fitness evaluator for genomes
and a repository of the information known to the evolver at the time. This meant that we could not
simply reset the simulation, since it contained vital persistent information about the environment.
After some consideration, we ended up rewriting most of the genome evaluation code so that it
would pass along its own persistent information as method variables rather than storing it in the
object itself.

H.7 Math.random

When  Java  programmers  need  (pseudo)random  numbers,  they  usually  turn  to  Java's
“Math.random”.  This  is  normally  not  a  problem,  not  even  for  multiple  threads  working
concurrently. However, a problem arises when multiple threads have to create large amounts of
random numbers. If the previously mentioned strategy is used, all threads end up using the same
object, which causes a bottleneck due to locking. To overcome this, we initialised multiple random
number generators, one for each thread. These were then passed as method arguments wherever
random numbers were needed. This improved concurrent performance significantly on our dual
core development computers.
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