
Named Entity Recognition in the Climate 
Change domain
An examination of NER systems for 

climatological knowledge discovery

Sean William Holloway

Master of Science in Computer Science

Supervisor: Pinar Öztürk, IDI
Co-supervisor: Erwin Marsi, IDI

Department of Computer and Information Science

Submission date: July 2015

Norwegian University of Science and Technology



 



NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Named Entity Recognition in the

Climate Change domain

An examination of NER systems

for climatological knowledge discovery

by

Sean William Holloway

A thesis submitted in partiall fulfillment of the requirements for the

degree of Master of Computer Science (Civil Engineer)

in the

Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Computer and Information Science

July 2015

http://www.ntnu.no
sean.holloway@ntnu.no
http://www.ntnu.no/ime
http://www.ntnu.edu/idi/


Abstract

Climate change and its underlying processes is a complex and dynamic system that

spans multiple fields of science. The relationships and interactions of this world altering

phenomenon are difficult to analyse and do not always lend themselves to verification

through experimentation. In light of this, science turns to an analysis of the building

blocks of these interactions and attempts to build a larger model of what is thought to

happen, in the abstract. While this is difficult enough inside a single field of science,

climate change involves an unknown number of fields and the sheer amount of data is

overwhelming. A system which is able to automatically identify the building blocks

of these processes from scientific papers, and can then attempt to identify previously

unknown connections, would give scientists clues for experimentation and thought. The

creation of this system is the task of the Ocean-Certain initiative. In this paper, we

begin the process of realization of this new system by examining the problem space and

identifying goals that will make the task more concrete. Further, an analysis of existing

Named Entity Recognition systems will be performed to find those which are viable for

the Ocean-Certain project. Finally we look at chosen system improvements and give an

outline as to how these systems could be improved in future endeavours.
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Chapter 1

Introduction

This chapter contains the motivations behind this work as well as the Ocean-Certain

project as a whole. Included is a description of the research goals used as objectives in

this work (Section 1.2). Finally the structure of this thesis (Section 1.3) is given.

1



Introduction 2

1.1 Motivation

As science advances, scientists have naturally split into specializations in order to study

and understand the complex interactions within a field. It takes many years and large

amounts of work to build up a sufficient pool of background knowledge, in part due to

the specialized knowledge and training required. This specialization allows a scientist

to work on the cutting edge in their field and perform experiments to drive progress.

But what happens when a new field arises which crosses several different domains? How

would scientists go about identifying questions to experiment on and how would they

access the necessary knowledge to drive such experiments?

Typically a consortium of scientists will work together, using each other to fill in the

different areas of expertise. While this approach works in many projects there are varied

problems which can arise. A project may not have the funds or connections available

to employ all scientists necessary to adequately cover an entire problem task. During

the lifetime of a project it may enter into a new field in which no current member has

the requisite knowledge. Challenges of logistics and scheduling can impact a team’s

performance and project outcome. As in any project the resources allotted limit the

inclusion of personnel and specialists.

One way scientists fill in knowledge gaps is to rely on research articles published by other

members of the scientific community. This method can also introduce new problems,

such as identification of articles that are relevant, fact checking, and cross-validation.

The amount of literature on any one subject can be enormous and an extreme amount

of time can be used trying to find data which is applicable to a specific experiment.

The motivation behind Ocean-Certain is to take a new domain of research, climate

change, and attempt to alleviate the problem of overwhelming amounts of cross-field

data. To do so efficiently, existing tools will be found and evaluated by this study for

their viability in the creation of a larger system by future Ocean-Certain(OC) projects.
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1.2 Research Goals

1 - Identify system requirements

The first goal of this study is to identify the set of requirements for Named Entity

Recognition(NER) systems in order to find suitable candidates for evaluation. This

requires research into the types of information necessary in order to build a system that

can understand the processes within climate change research. Together with desired

output, other project requirements will be identified (such as availability, data-handling

capability, etc.) which further refine the system specifications. These requirements

will determine which systems are acceptable for subsequent formal evaluation against a

manually annotated set of data.

2 - Find feasible Named Entity Recognition systems

Once a set of specifications is identified, a search for candidate NER systems will be per-

formed. This search will be based off of survey papers, research articles, web searches,

competitions, related field practices, and previous experience of past and current sys-

tems. In order to cover as much ground as possible, it will not be required that each

system fulfill the system specifications precisely.

3 - Create ”Gold Standard” annotated corpus

One-hundred article abstracts will be taken from a larger set of ten-thousand articles the

Ocean-Certain project was given access to by the Nature Publishing Group1. These ab-

stracts will be manually annotated with required system information to form a standard

corpus against which candidate NER systems will be evaluated. This annotation task

will conform to a set of rules and guidelines iteratively formed from experience gained

while annotating. This process will include input from Natural Language experts, field

experts, and computer science experts in order to create a robust and consistent rule set

which suits both the OC project’s needs and conforms to this specific task.

4 - Select a sub-set of feasible NER systems

An evaluation of candidate systems will take place in several stages in order to select

those which show the most promise and allow for this work’s completion on schedule.

First, a system test will be performed in order to confirm that each system is working

1http://www.nature.com/
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as expected and is sufficiently up-to-date to be formally evaluated. Next, a rundown

of system specifications and capabilities will be discussed in order to identify a set of

systems that will undergo more thorough evaluation and error analysis.

5 - Performance evaluation and identification of system weaknesses

After a suitable set of systems for each variable type is identified, a formal evaluation

against the manually annotated gold standard will be performed. Each system’s perfor-

mance will be evaluated via the metrics of Precision, Recall, and F-measure.

Finally, an exploration of system weaknesses will be completed by examining the sets

of false positive and false negative results returned. This data will be used to identify

additional weaknesses in the annotation corpus, the annotation rules themselves, com-

mon system errors, and outliers such as spelling mistakes or the difficulty of complicated

formulations.

1.3 Thesis Structure

This paper will detail the work done in the field of Named Entity Recognition as it applies

to the Ocean-Certain Work Package One European Union project. From the explanation

of Ocean-Certain’s goals, a set of requirements will be outlined in order to direct the

search for feasible NER systems (Research Goal 1). Next, a search will be performed

to find as many NER systems that fully or partially fulfill these requirements (Research

Goal 2). A ”Gold Standard” corpus will then be created in order to evaluate how selected

NER systems perform versus Ocean-Certain’s needs (Research Goal 3). A subset of

the existing NER systems will then be selected based upon their capabilities, along

with additional considerations such as trainability, extensibility, and licensing practices

(Research Goal 4). Finally, each selected system will be evaluated for performance

against the Gold Standard corpus (Research Goal 5). Further, this paper will begin

exploratory work on Named Entity Recognition system improvements and will include

a discussion on further enhancements.

Chapter two will cover background information for the most important concepts in

this paper as well as work on related projects both in- and outside the Ocean-Certain

group. First a description of Ocean-Certain Work Package One and its goals, including
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information about data mining and literature based discovery is given. The reason for

Ocean-Certain’s choice of focusing on the biological pump in its initial stages is then

explained. Next this work will clarify Named Entity Recognition, what it is, and some

of the challenges encountered while working on this study. Finally an examination of

Named Entity Recognition methods utilized in other fields of study is outlined, as these

provided a starting point and basis for some of the methods employed here.

Chapter three starts with an explanation of the role Named Entity Recognition systems

play in various scenarios. This culminates in a description of why NER systems are

necessary and evaluated in this study. Part two details the identification of Named

Entity Recognition systems and describes additional considerations used in the selection

of these systems for formal evaluation. Next is a description of the experimental data set

utilised to evaluate the chosen NER systems. Finally an explanation of the evaluation

metrics Precision, Recall, and F-measure, along with error types and additional metrics

used is given.

In Chapter four this paper examines systems that were eventually selected for each

entity class and includes a discussion about each. This discussion will include back-

ground information and the reasons for their selection. Further this chapter covers the

experimental corpus and the guidelines used in its creation.

Chapter five will contain the results of this study’s formal evaluation and an examina-

tion of the strengths and weaknesses found for each system. When multiple evaluation

runs were necessary to gain a deeper understanding of how the system performs, each

version implemented and tested will be covered. At the end of each entity class is a

summary diagram and table for a comparative overview of performance. Finally an ex-

ploratory improvement of one selected system will be detailed and the outcome of these

improvements will be discussed.

Finally, this paper will conclude with an overview of this paper in Chapter 6.

Due to space considerations only system error output will be included in the appendix

in order to facilitate discussion. The full set of tables from each system test, along with

their evaluation on each abstract, is available upon request.





Chapter 2

Background and Related Work

This chapter is a detailed examination of the background concepts surrounding this work

and the Ocean-Certain project. Section 2.1.1 will first cover the Ocean-Certain project

and its overarching goals, along with the specifics of Work Package One. A discussion

of climate science and the biological pump, found in Section 2.1.1 and 2.1.3, is included

to give an understanding of the complexity of these systems as well as the necessity

of text mining/literature based discovery (See Section 2.1.2 for definitions). Next this

chapter will cover Named Entity Recognition from origins to current techniques and

practices. A look at some of the challenges facing this information extraction task that

were encountered during this work will then be given. Section 2.1.5 covers the connection

of variables together to form facts, which the results of this project will support. This

section includes work currently in progress by other members of the project team as

well as previous projects completed in the initial phases of Ocean-Certain Work Package

One. Finally Section 2.2 will give an overview of work done in related fields which gave

a starting point for the practices used in this study.

6
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2.1 Key Concepts

2.1.1 Ocean-Certain

Ocean-Certain(OC), formally OCEAN-CERTAIN - “Ocean Food-web Patrol – Climate

Effects: Reducing Targeted Uncertainties with an Interactive Network”, is an initiative

by the European Union to understand and support climate change research, starting by

focusing on the Biological Pump (see Section 2.1.3). This initiative will foster a deeper

understanding of current climate change research, and will assist both scientists and

policy makers in making decisions about future efforts by providing knowledge. To do

this, the project will use existing knowledge in the form of scientific papers and databases

to generate an overview of the field as well as attempt to fill in missing gaps. By creating

an interactive network of knowledge, the system will be able to identify areas of new

inquiry and provide a pointer for further research by scientists. Please refer to the OC

website1 for more information. Ocean-Certain Work Package One(OCWP1) is the first

stage of the Ocean-Certain initiative that will begin building a background knowledge

database from scientific articles and other sources. This task will be completed using

Literature-Based Knowledge Discovery and Text Mining.

2.1.2 Literature-Based Knowledge Discovery and Text Mining

OCWP1 will begin work on a system that is able to identify new knowledge from gathered

data by constructing facts which will later be used to produce a hypothesis. A diagram

of this process can be seen in Figure 2.1 created by OCWP1 project member Erwin

Marsi2.

On the left side are a collection of facts from scientific papers and other data, which are

currently held to be relatively true. It is not the purpose nor goal of the Ocean-Certain

project to determine the validity of these facts, rather it relies on the scientific community

to determine their truth. Together with a database of background knowledge, this new

system will be able to generate new hypotheses through inference3, a conclusion that

is reached based upon the factual evidence and a degree of reason. This is a simplified

1http://oceancertain.eu/what-is-ocean-certain/
2http://www.ntnu.edu/employees/emarsi
3https://en.wikipedia.org/wiki/Inference
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Figure 2.1: Literature Based Discovery concept

example of what is known as Literature-Based Knowledge Discovery(LBKD), named

for its dependence on facts generated from scientific writings. LBKD was pioneered by

Don Swanson(Swanson, 1986) to find connections in biomedical literature. While the

methods may be different, research into this type of discovery was continued(Mack and

Hehenberger, 2002) and is still ongoing(Holzinger and Jurisica, 2014).

There are a few important details to note in this concept, as these explain the goals

and assumptions it is built upon. To begin with the system is reliant on facts and

background knowledge in order to have the evidence necessary to infer a new hypothesis.

In order to generate the variables for these facts a technique known as Text Mining is

employed. Text mining in this context is the automatic processing of scientific writings

using Named Entity Recognition (See Section 2.1.4) in order to identify and extract

data(Tan, 1999) that can be used to build facts. Results of Named Entity Recognition

are in the form of annotated sentences, where specific entities are labeled with their

appropriate descriptor as in Figure 2.5. The process of combining these entities into

facts is the focus of a parallel project by Erwin Marsi and its description can be found

in Section 2.1.5. Text mining is also important in constructing background knowledge

through the processing of ontologies (connected data) and other sources.

Finally the validity of the plausible hypothesis is not to be verified by this system or the

OC project. It is a pointer for scientists and researchers to look at and confirm or deny.
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2.1.3 Climate Change and the Biological Pump

The field of climate science is a relatively new field which has garnered a lot of inter-

est from both the scientific community and the public at large. Governments around the

world have been seeking information on climate change over the past few decades(Houghton

and Callander, 1992; Change, 2007) in order to understand its ramifications. In the last

few years more and more research is being devoted to this field, as its importance is

fully realized(Pouchard and Noy, 2013; Marsi and Ardelan, 2014). This field involves

many different areas of science including; oceanography, meteorology, geochemistry and

biology. Even from this very short list, a wide range of expertise is needed to even begin

research.

While climate science on a global scale can involve an incredible amount of processes, it

was agreed upon that to start, a smaller area of focus was needed. Through examination

of scientific articles together with input from scientists from many fields, the Biological

Pump was chosen to be the ingress into this extensive field.

The Biological Pump

The Biological Pump is an important climatological process where carbon dioxide (CO2)

enters the world’s oceans in several forms(Ducklow and Buesseler, 2001). This process

is important for reducing the overall amount of CO2 in the atmosphere, thus reducing

the severity of the greenhouse effect together with overall temperature. This process

is driven by several inter-connected systems, and is also fragile(Orr, 2005). Changes in

temperature, atmospheric composition, CO2 density, and more can have wide ranging

effects on the effectiveness of the Biological Pump. A simplified diagram of this process

can be seen in Figure 2.2.

In the first stage known as the soft-tissue pump, phytoplankton use CO2 and other el-

ements during photosynthesis to make the structures they need to live (carbohydrates,

lipids, and proteins). This “fixes” CO2 from the air into the soft tissues of the phyto-

plankton, seen in the upper left quadrant of Figure 2.2. Organisms then feed on the

plankton and are in turn fed on by higher species, in a complex relation known as the

Food Web4. Next, particulates from plankton and the organisms in the food web slowly

sink to the bottom of the ocean and become a part of the sea bed in a process known as

4https://en.wikipedia.org/wiki/Food web
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Figure 2.2: A simplified biological pump

sequestration5. Once there, the particulates containing CO2 can remain for thousands

of years, and this is how the majority of CO2 is stored(CL, 2006).

The biological pump was chosen as it involves several fields of scientific study, includ-

ing chemistry, biology, and meteorology. It involves several different processes working

together e.g. the soft-tissue pump, the biological food web, and CO2 sequestration, to

form a greater whole. Thus it was seen a miniature version of the greater processes

Ocean-Certain will try to analyse and understand through Literature-Based Knowledge

Discovery.

5https://en.wikipedia.org/wiki/Carbon sequestration
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2.1.4 Named Entity Recognition

Named Entity Recognition(NER) is a sub-task of larger information extraction tasks that

arose from the MUC convention initiated and financed by DARPA6 (Defense Advanced

Research Projects Agency). The primary task of NER is to identify specific types of

information within data, and tags that information with meta data, e.g. the type of

information it belongs to(Nadeau and Sekine, 2007). For example if we wished to find

the names of any person in a report, an NER system would analyse the text and tag

any name it found with “Person”.

The Message Understanding Conference(MUC) began with defense related tasks in-

volving military reports(Grishman and Sundheim, 1996). DARPA assembled teams of

researchers to compete against one another to attain the best performance possible.

Teams would find ways to fill in data on events, commonly; agents involved, what the

cause was, time, date, and consequences of the event. A need for formal evaluation of

these results gave rise to some of the performance measuring practices still used today,

namely Precision, Recall, and the F-measure (See Section 3.2.4).

Eventually the MUC conference moved onto evaluation of more civil sources like jour-

nalistic articles. At MUC-3 news reports would be the new medium to be analysed,

looking for terrorist activities in Latin America(Grishman and Sundheim, 1996). This

shift in mediums would introduce new problems into the field as the structure of infor-

mation would be more varied and could include more languages. Up until the last MUC

conference, MUC-7, the problem definition would change many times from corporate

information to airplane crashes(Elaine Marsh, 1998).

Over the lifetime of the MUC conference it was noted that many of the tasks given

were based around finding specific information from resources. Early research(Coates-

Stephens, 1992; Thielen, 1995) found that the problem could be generalized into finding

proper names in articles. Eventually the first three named entities, Person, Location,

and Organization were identified as primary sources and called the “enamex” entities.

Later other important units would be found and classified. Time and date would be

termed “timex”, numbers and percentages as “numex”. These entities would be marked

6http://www.darpa.mil/
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with meta data tags that identify the group of information the entity belongs to. These

tags became known as annotations7.

In Figure 2.3 an example NER system pipeline can be seen, split into sub-tasks for the

extraction of named entities from textual data into a database. For this example, articles,

a form of textual document, are given to the NER system for processing. In Format

Analysis the system attempts to decipher what type of documents were given, in order

to better understand what information is important and what can be removed(Maynard

and Wilks, 2001). A typical situation would be if given an HTML document the NER

system would be able to strip away formatting and documents tags, while retaining the

text meant to be read by a user (which is typically the part to be processed). In some

cases only a single form of document is meant to be processed by the system, in which

case this step may be skipped.

The Tokenizer/POS tagger is responsible for segmenting the text and assigning Part-

of-Speech tags to each segment (or token). First the system will attempt to detect and

separate sentences based upon a set of rules and pattern recognition. This task has

challenges of ambiguity as sentence endings can be either relatively unambiguous (? or

!) or more difficult with a simple period (.) as these can be used in abbreviations like

“Mr. Anderson” or numbers (4.2%). A common method to overcome this challenge is

whenever the system detects a period it uses a binary classifier (yes/no) to decide if

the sentence is ending or not based upon rules8. Once sentence splitting is completed

the system will move on to segmentation, where each sentence is split into appropriate

segments e.g. words, punctuation, and numbers. This task attempts to detect a word

and normalize or stem it, as words can have multiple forms (run, ran, running) and these

need to be understood to be talking about a single action. The methods and practices

to solve this task are too extensive to cover in this paper but typically involve word

form dictionaries and lexicons, more information can be found in resources such as the

Stanford NLP Group9. More advanced systems could be asked to recognize a range of

additional concepts such as chemical formulae, mathematical expressions, or diagrams

in addition to simple words. Next the system attempts to assign a part-of-speech tag to

each token, in order to gain context and decipher how it fits into the larger structure.

The most common case would be marking verbs and nouns. If you wanted the system

7https://en.wikipedia.org/wiki/Annotation
8http://www.nactem.ac.uk/dtc/dtcTsuruoka.pdf
9http://nlp.stanford.edu/
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Figure 2.3: Example Named Entity Recognition Pipeline

to find “Person” then it could be more confident marking a token that was a noun as a

person rather than a verb. The difficulty here is that many words can belong to several

parts-of-speech. The word “well” can be used as an adverb (Writing is going well), a

noun (The well is dry), or an adjective (We are doing well).

This brings us to Entity Detection in which system looks at each token and attempts

to identify them as a Named Entity or not. While there are many different kinds of

identifiers, from hand-crafted rule sets to Hidden Markov Models, a gazetteer system is

common. Gazetteering is the use of crafted dictionaries or word lists that a system will

compare against each token to see if it is a viable candidate. These crafted dictionaries

allow for a very precise identification system, but are not very flexible in handling new

data. It is common for a dictionary entry to contain the exact word the system is to

find, as well as name variants. For example “John Smith” may also allow for “J. Smith”,

“John S.”, or “John”, depending on the degree of matching required. Once an entity is

ready to be classified the system moves on to Annotation in which it tags the entity

with the appropriate meta data. When complete the system will return either a list of

these annotated entities or the entire document with the annotations included in-line.

As the importance and practicality of the research done for the MUC conferences became

known the practice of Named Entity Recognition became more mainstream. New appli-

cations of NER were imagined and applied in different scenarios for many reasons. From

science, to news, to corporate information handling the methods and abilities of NER

systems would be driven forward in order to organize a new world. With the explosion

of the Internet a vast amount of data became more available, however the unstructured

and varied nature of that information would present new challenges for those trying to

analyse it. The ability to answer basic questions from text(Scaria and Clark; Berant

et al., 2014) could open new doors in data processing and comprehension, such as the

summary of knowledge in scientific articles. Social media would become an important
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source of information for many parties, and the extraction of information from these

mediums would be increasingly important. A corporation that was interested in how

it is perceived by users could use Named Entity Recognition to find tweets(Alan Ritter

and Etzioni, 2011) or blog posts that talk about their corporation. News channels could

comb through any number of sources in an attempt to find and report on new stories

in the quickest and most efficient manner possible.(Ekbal and Bandyopadhyay, 2008;

Miller and Stone, 1999) The applications of a system that can process huge amounts of

data at a rapid pace is only limited by the thinking of people who are willing to use it.

Three main methods of entity recognition are now commonly thought of as standard.

Rule-based is a strain where pattern matching and heuristics are leveraged to find rel-

evant information, however these systems are often very strict in the information they

find. ProMiner is an example system which uses a rule-based system for entity detec-

tion.(Hanisch and Fluck, 2005) This method is based on a sequence of rules that follows

a priority system to identify entities but is constrained by problems of data validity (no

false information), rule consistency (rules do not conflict), and rule independence (no

redundant rules), among others. The formation of this rule-set is very time consuming

and only typically used when processing known documents. An application of this could

be in the health sector for processing patient data sheets where it is already known what

type of information should be on each line.

Gazetteer systems use lexicons, dictionaries, and sets of pre-assembled information to

find entities that are sought after, but again this knowledge needs to be predetermined.

For example if a user wished to find any document that involves any “City” in the United

States a list of such cities would be compiled and the system would perform a direct

search of any entity found to see if it was on the list. While this may seem straight

forward, it can be difficult to compile such a list and is very time consuming. Data

validity is a problem due to real-world changes, in the example given new cities may

be built, or old ones disappear. A city may lose its status and become a town, or the

city could undergo a name change. Name variation is also a challenge, a “Person” could

be referred to as a range of names as in the examples given under the NER pipeline

explanation.

The most contemporary of the these methods are machine learning approaches which

use stochastic models and/or evolving weight calculations to identify candidate entities.
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Hidden Markov Models(Zhou and Su, 2002), Conditional Random Fields(Settles, 2004),

and Maximum Entropy(Borthwick, 1999) are examples of these types of systems. While

not dependent on a carefully crafted rule-set or dictionary, these methods depend on a

large amount of training data in order to adapt and update their system to match a

problem task. This training data and verification does require a significant amount of

resources and time to complete, however the benefit is a lower cost of maintenance versus

a rule-based system. A degree of human supervision is typically necessary in order to

resolve ambiguity and to refine a machine learning system, especially if transitioning to a

new problem area. A machine learning system will often have a poorer performance than

e.g. a rule-based system, but the ability to incorporate new data and the applications

towards ambiguous data hold the appeal of researchers.

Systems can also be comprised of one or more of these approaches in combination, to

handle the different challenges of each stage in the NER pipeline. Under the discussion of

the NER pipeline these different approaches are outlined to give a short introduction to

the varied methods used in solving these tasks. In this work a range of NER system types

are evaluated, from Chemspot’s CRF and pattern based matcher to the gazetteering

system of Linnaeus2. It is important to understand these different approaches in order

to more accurately define and understand the strengths and weaknesses of each system.

With this knowledge it is possible to impart information as to how each system can be

utilized or modified to fit the needs of the Ocean-Certain project.

Challenges facing NER

With the extensive applicability of Named Entity Recognition in different scenarios,

along with the evolving nature of information and its containers, there are many chal-

lenges facing NER today. In order to limit the scope of challenges faced system devel-

opers will often make an assortment of assumptions and limitations on what an NER

system is asked to do. Often it is assumed that an NER system will not be able to work

on an undefined amount of data types, they are typically crafted to handle a single type

such as text. Further, an NER system may only handle one or more formats of that

data type, whether it be web pages (HTML) or plain text.

The system designers will often choose a set of entity types the system will be able to

recognize, depending on the domain it is intended for. An example would be in news

text, Person/Organization/Location is common, while in bio medicine Gene/Protein
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names are the norm. Other limitations such as language, structure, context domain, or

types of identifiable information may be imposed. While a perfect system would be the

ideal, the degree of performance necessary to be useful can also be an assumption that

is made.

Next this paper will examine some of the challenges encountered in this work, in order

to gain an understanding of their structure and composition, as well as the impact they

can have in finding suitable NER systems for the larger OC project. Here the term

“language” is used as a representation of information based upon context, from normal

words to chemical formulae to numerical data.

Use of informal language

It is typical for anyone who is writing anything to introduce their own style of language,

taken from their upbringing, experiences, and interests. This can be evident in the use of

words, phrases, terms, or expressions used to convey their ideas. People working within

an area of expertise will often form their own informal set of terms that are communally

used and accepted by their peers, as these will be understood from that common context.

Often this problem will arise when extracting information from less formal sources such

as text messages, tweets, or blog posts(Alan Ritter and Etzioni, 2011; Liu and Zhou.,

2011).

While this is a smaller problem in scientific articles, as they are written to be read and

assessed by the wider scientific community, our project necessitates the examination

of articles from many fields of study. Cross-field variances in concept definition and

understanding, common term usage, data structuring, and contextual starting point can

lead to mis-identification of entities by an NER system.

In “A System for Adaptive Information Extraction from Highly Informal Text”(i Ale-

many and Carrascosa, 2011) this problem is examined. Research into using current

language processing tools together with string procedures, machine learning and custom

processing identified ways to handle such problems in short text messages, classified

ads, or tweets. It is noted that while some aspects of the problem could be solved by

standard tokenization and chunking, additional resources would be necessary to provide

acceptable performance on tasks like semantic tagging.
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Information chunking

Information chunks are sets of words that make up a larger entity, such as “United

Emirates” or “carbon dioxide”. In some forms the individual words are not entities by

themselves, but in the latter example “carbon” could also be taken as an entity alone.

Naturally a system that identifies “carbon dioxide” as a single entity is optimal but this

context sentitivy is not simple to implement.

This problem area is one that is faced by many NER systems and has a thorough

background of research, the paper “Named Entity Recognition using an HMM-based

Chunk Tagger”(Zhou and Su, 2002) uses Hidden Markov Models for information chunk-

ing. Compilation methods using the strengths of different systems together has been

attempted as described in “ETL Ensembles for Chunking, NER and SRL”(dos Santos

and Fernandes, 2010), which use bagging and random subspaces to perform chunking.

While these methods may be available the implementation of such could become a very

resource consuming task. In addition information chunking is often an embedded part

of an NER system, and therefore difficult to replace or modify. This makes a well

functioning information chunker an important part of our choice in NER system.

Applicability of different domain methods

A different type of challenge arises when one uses methods that are used in one do-

main towards another. As seen in previous sections, variances in grammar can have

a large impact on performance. Studies have seen as much as a forty percent reduc-

tion in performance when testing a system on the intended structured corpus, versus

an unstructured one(Ciaramita and Altun., 2005). Other differences in domain such as

common grammatical structures, naming conventions, specificity of entities, and more

can affect the tailoring of NER systems.

The Ocean-Certain goal of using current NER systems towards a similar, yet different

field could yield some of these problems. The hope is that by combining different NER

systems, using cross-validation and tailored resources, these individual systems can be

adapted to suit the project needs.
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2.1.5 Connecting variables into facts

As seen in Figure 2.2 (discussed in Section 2.1.3) there are many processes which

need to be identified by the Ocean-Certain system, and are necessary to understand the

Biological Pump as a whole. Each process is the combination of many sub-processes

which can each be further reduced to simpler and simpler forms. A process here is

defined as one variable having a direct relation to another variable, causing a change,

however for clarity larger macro-processes will also be referred to as a process. These

changes are typically distinct and definable such as increases or decreases, though these

are very simple examples and by no means a complete list.

To begin with three key factors were identified that would be imperative to building a

model of these processes;

Chemical compounds were a natural choice as carbon dioxide (CO2), along with many

other elements, are involved in the Biological Pump (Section 2.1.3). Without a knowl-

edge of how and where these chemical compounds act and relate, an understanding of

the Biological Pump is not possible.

Marine species were also a natural choice as these are the biological agents that perform

the CO2 fixations. Further, the food web also plays a large part in the movement of

carbon inside this system.

The third key factor, location, was decided upon after deliberation for its contextual

value. From surface waters (euphotic layer), to the deep sea bed, location information

can give a lot of information on what type of process is taking place. This informa-

tion will eventually allow the Ocean-Certain system to have increased confidence that

it understands the processes it is trying to identify. If the system can understand that

a paragraph is talking about the euphotic layer, it can be more confident that phyto-

plankton will probably be involved in photosynthesis.

In addition these variables have been studied in entity identification research previously.

This meant that it should be possible to find existing systems that would fulfill Ocean-

Certain’s needs without having to develop the systems themselves. As well as saving time

and resources, this would allow the Ocean-Certain team to focus efforts into improving

existing systems where necessary.
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Each of these three variables are referred to as entity types within the domain of

Named Entity Extraction. With these variables identified the system can then proceed

in attempting to connect them together with relations.

Entity Identification

Much like Swanson(Swanson, 1986) did in the mid-eighties to identify his hypothesis

on fish oil, and later simulated by others(Cameron and Rindflesch, 2013), this approach

attempts to identify variables and events which make up the building blocks of processes.

An event is an identifier used to denote a change of status of something, such as an

increase or decrease. A variable is an actor such as a species or chemical which is

affected by an event.

Figure 2.4: Example process

In Figure 2.4 a very simple process is illustrated, both “iron” and “phytoplankton” are

variables connected by a relation. The events “decreases” together with their variables

shows the process, namely that a decrease in iron leads to a decrease in phytoplankton.

The Ocean-Certain project’s approach attempts to identify these processes automatically

from thousands of scientific articles. Using Named Entity Recognition (NER) together

with machine learning, Ocean-Certain aims to be able to span multiple scientific fields

and any amount of data to create a database of such events.

To begin with, a system which is able to identify the variables which are deemed intrinsic

to these processes needs to be created. With the entity types chosen, work can begin on

finding NER systems capable of identifying them in text.

Figure 2.5: Example annotated sentence

Figure 2.5 is an example of the Ocean-Certain goal for existing NER systems. While

this example is from a manually annotated document, a system which is able to do this

automatically is the objective. In this example, NER systems are able to identify all

three of the target entity types (chemical compounds, species, and locations) embedded

in a sentence from an article abstract. The reason for researching and developing a
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Figure 2.6: Theme-agent relationship

system capable of this automatic annotation is the generation of facts as discussed in

Section 2.1.2. Finding NER systems capable of extracting these target entity types will

be the first step in creating the larger Ocean-Certain system.

Fact Creation

Fact creation is the task of creating process structures that the OC system will later

use in the creation of chains of processes. Previous work by Elias Aamot and Erwin

Marsi(Marsi and Ardelan, 2014) researched the creation of tools to connect variables

together with processes of change. This is a top-down approach to the problem which

gave insight into the types information that would be necessary. A snippet of their

program output can be seen in in Figure 2.6.

The basis of this study is the ability to find and annotate entities within scientific

articles that these processes will be built upon. This work is a bottom-up approach

which begins with finding these anchor terms to be connected together in future studies.

At its conclusion the imagined OC project system will work in these steps;

1. Define set of scientific articles to be analysed.

2. Identify and annotate key variables. (This study)

3. Expand key variables to include necessary information to create events.

4. Identify processes of change.

5. Connect events together to form the identifies processes.

6. Connect processes together in order to identify chains of processes.

The entities selected in Section 2.1.5, along with the additional requirements of NER

systems as explained above, form the set system requirements that will be used to find

NER systems.
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2.2 Other Related Work

2.2.1 NER in Bio-medicine

The field of bio-medicine has seen recent advancements in NER development that made

it a good starting point for this study, and the Ocean-Certain project. Often the ap-

plications of these technologies focus on the relationship between genes and proteins.

Their interactions connected with diseases and chemistry make up the foundation of

pharmaceutical innovation, a field which has a strong motivation and resource pool

to fund research. From the popular Watson computer being adapted for health-care,

“IBM’s Watson Gets Its First Piece Of Business In Healthcare”(Upbin, 2013) to the

extraction of events in “Event-based Information Extraction for the biomedical domain:

the Caderige project”(Alphonse, 2004) there are many comparisons to be drawn.

“Extracting synonymous gene and protein terms from biological literature”(Yu and

Agichtein, 2003) gives information on tasks that involve identifying synonyms of the

same entity, even from researchers within the same field. They examine four different

methods to solving this problem and evaluate the different methods over a large biomed-

ical corpus. Comparatively these methods could assist in developing a way to identify

cross-domain synonyms and structures of information which are similar. As chemicals

are an early focus “Information extraction technologies for the life science industry”

makes special mention of challenges related to recognizing these entities.

For the larger extraction problems, such as finding contextual information in relation to

events, we see studies such as “Open Information Extraction from Biomedical Literature

Using Predicate-Argument Structure Patterns”(Nguyen and Tojo, 2013). This study

attempts to extract any type of relation or fact from biomedical literature. “Learning

Recursive Patterns for Biomedical Information Extraction”(Berardi and Malerba, 2007)

uses inductive logic, recursion, and pattern recognition to try and find dependencies

between entities, a context sensitive task.

From this short list it can be seen that the field of bio-medicine has a large volume

of research applicable towards the Ocean-Certain project. However the fact that the

research focuses on a different domain means adaptation and ingenuity will be necessary

to be successful.



Chapter 3

NER in the Climate Change

domain

The first section of this chapter is a discussion on the necessity of Named Entity Recog-

nition in text mining scenarios, literature-based knowledge discovery, the Ocean-Certain

project, and this study. Section 3.2 begins with the initial guidelines for finding viable

NER systems along with criteria used to reject candidates for formal evaluation. Next,

this chapter details the choices made for the creation of an experimental data corpus

including size, scope, and content. Section 3.2.3 examines the guidelines and tools used

in creating the manually annotated ”Gold Standard” corpus that will represent a per-

fect system output to be measured against. The evaluation metrics and standards are

covered in Section 3.2.4 along with an explanation of the relationship between them,

together with their mathematical equations. Finally additional considerations that im-

pacted the choice of NER systems falling outside the scope of the previous sections are

discussed.

22
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3.1 Role of NER in text mining scenarios

As seen previously the role of Named Entity Recognition is the ability to automate the

process of finding specific kinds of information within data. This automation allows

for the processing of large amounts of data quickly, in order to perform various tasks in

order to accomplish a goal as described in Section 2.1.4. While the term ”data” can refer

to many things e.g. text, sound, or picture, the most common form applied to NER

is text. This study involves the evaluation of NER systems in order to find existing

systems that can process scientific text, and to determine their suitability for the larger

OC project. It is not the goal of this work to develop a new system, but to understand

the strengths and weaknesses of these existing systems in order to advise further work

on systems that may possess the capabilities to handle basic text mining.

Text mining1, described in Section 2.1.2, is the processing of text to identify requested

information using techniques of pattern recognition. The ability to classify a document,

find the semantic meaning of a statement, or determine the cause of an action can all

be seen as a goal of text mining. Named Entity Recognition forms the basis of text

mining by identifying the different parts of a text as belonging to a specific set entities,

or not. To classify a document we may wish the NER system to find the names of

people, organizations, or locations in order to determine what the document is talking

about.

3.1.1 NER in Literature-Based Knowledge Discovery(LBKD)

Pioneered by Don R. Swanson(Swanson, 1986) in 1986, LBKD is the examination of

existing knowledge from scientific articles in order to find new relations. Normally, new

knowledge is formed by experiments done in laboratories, but in this approach analysis

of current knowledge is iteratively combined in order to generate undiscovered relations.

To form his previously undiscovered hypothesis of fish oil helping migraine headaches,

known as the Reynaud-Fish Oil Hypothesis, Swanson used statistics to analyse current

facts and look for patterns, e.g. the statistically high data points where one term is

together in many publications with another. In a basic rendition of his scenario, two

facts were found;

1https://en.wikipedia.org/wiki/Text mining
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(1) Migraines are often caused by low magnesium levels.

(2) Magnesium levels in the body are elevated by taking fish oil.

The combination of these implies that by taking fish oil, it is possible to reduce a

migraine. While seemingly simple it is the process of determining all the facts from

large databases of publications that is the problem. Named Entity Recognition will

replace the statistical analysis by automatically finding the variables these facts are

based upon (discussed in the next section).

3.1.2 Text Mining and LBKD in Ocean-Certain

In the case of the Ocean-Certain project, Text Mining is to be combined with Literature-

Based Knowledge Discovery to process scientific articles related to climate change. This

processing has the goal of finding chosen entities in order to build up larger relations that

will be used to form facts. To begin, the entities Chemical Substance, Biological

Species, and Location were chosen to be the targets of existing NER systems.

Named Entity Recognition has the goal of finding what the Ocean-Certain project calles

agents of change within scientific articles. By finding these agents, it is possible to

understand the inner-workings of large processes. By an agent of change it is meant any

variable which causes the change in another variable, as seen in 2.4. Here we have two

variables, “iron” and “phytoplankton”, which have the relation that a decrease in iron

leads to a decrease in phytoplankton. This event is known as the “Iron Hypothesis”2

and could be postulated by facts found in scientific articles. To begin finding such an

event a Named Entity Recognition system would be tasked with finding the element

“iron”, as well as the biological species “phytoplankton”.

3.1.3 NER systems in this study

For this study we focus on NER systems that are able to identify the three chosen

entities of chemical compounds, species, and locations within scientific articles. The

use of existing systems will shorten the development of of the OC project and allow

the team members to focus on new systems or improvements/adaptations of the chosen

2https://en.wikipedia.org/wiki/Iron fertilization
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existing systems for their problem scenario. The evaluated systems are developed for

different domains and scenarios than Ocean-Certain’s target domain, climate change,

but by breaking down the OC task into sub-tasks, it is believed systems can be found

to solve some of these individual problems without the necessary resources required to

develop systems from scratch.

An example sentence together with the goal annotations can be seen in Figure 2.5,

where the chosen entities are tagged with their respective information type. Section

3.2.1 describes the initial requirements for candidate NER systems.

3.2 Evaluation Methodology

3.2.1 Pre-selection of NER systems

The initial requirements for a feasible NER system included being able to identify the

types of information required. The system should optimally be run locally but online

NER systems were also considered. A system which had an open license for use would

also be required, as Ocean-Certain does not want to spend an extensive amount of time

in legal negotiations. Access to the source code would allow OC to extend or adjust the

system as necessary, instead of being a black box where only pre- or post-processing steps

were available to improve performance. Systems which were more recent, or were more

recently updated, were also given a higher priority. While not crucial, it was thought

that advances in NER methods a system used would lead to better results under formal

evaluation.

Many systems were found that had additional problems that negated their inclusion

for formal performance review. This included being severely out of date or no longer

supported by any form of body. Many systems that were previously available became

pay-for or were bought up by bigger corporations that were not open to their use.

Some systems required the use of outside programs or other software which was not

available, or required an extensive knowledge of unknown languages/systems. This set

of requirements forms the basis for pre-selection of NER systems as detailed in Research

Goal 1.
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3.2.2 The experimental data set

There are many guidelines to creating an experimental data set, some of which were

not feasible due to time constraints. While automation of evaluation was a possibility

for some systems, others required manual calculation which proved to be a large task.

As there was only one assessor several limitations were accepted. It is also noteworthy

that this evaluation is only a precursor to larger tests in an attempt to narrow down our

choice of systems.

First, only twenty-five of the original one-hundred abstracts were used for this evaluation.

While not extensive by any means it was felt that this gave a good indication of what

a system could do and the performance level we would be working with. It also allowed

us to conduct more analysis for each system giving a deeper understanding of a systems

capabilities and limitations, rather than a shallow overview.

There was no attempt to ensure the existence of at least one mention in every abstract.

Although this can lead to a skewed statistical result it was felt that because our analysis

was sufficiently deep, these numbers would be understood in the context of a systems

limitations. In addition, with an understanding of the problem area we are working in

it is a certainty that this situation will arise when the system is put into practice. In

essence this made our data set more true to our actual data set than it would otherwise

be.

3.2.3 Manually annotated ”Gold Standard”

Manual annotation is a very domain knowledge intensive task and is the result of many

iterations. To assist in this an internal discussion page on the projects wiki was created to

assemble a set of rules and guidelines. These rules were added to based upon experiences

while annotating the one-hundred abstract corpus. Later these rules were discussed and

resolved in meetings with all members of the project team. This evaluation was run

using the first iteration rule-set and annotated corpus.

Annotation was done with the use of the Brat Rapid Annotation3 tool. This tool had

been used in previous work and was a good fit for this study. Brat is available both to be

3http://brat.nlplab.org/
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run on a web server for cooperative annotation and locally in the absence of web server

resources. A simple and intuitive graphical user interface allows for speedy annotation

while still maintaining an overview for precision. The system allows for multiple sets of

annotations over the same database, which allows for an iterative approach to annotation

and a history of past sets. Finally the annotations themselves are stored separately which

allows for automated evaluation which this experiment took advantage of in several cases.

This Gold Standard represents the “goal” in mind and would be the perfect result set

of an NER system.

3.2.4 Evaluation of NER systems

System evaluation is performed by inputting the abstract corpus into each system and

comparing the results given versus the gold standard. To be given a perfect score a

system would have to produce exactly the same identifications as in the gold standard,

with no missing or additional results.

A graphical representation of this process can be seen in Figure 3.1.

Figure 3.1: A simplified biological pump
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There are many types of evaluation statistics that can be generated for an NER system.

In the interest of focus, three important measures of performance were chosen with the

addition of two types of system error.

Two of those measures, Precision and Recall, form the basis of much deeper analysis

and are a good measure of performance(Powers, 2011). F-measure is used as an overall

statistical performance measure which, while shallow, gives an overview of how well a

system does. The identification of Type I and Type II errors (See Section 3.2.4) is a

commonly used analysis to identify system weaknesses.

Precision, Recall and F-measure

Precision and Recall are two sides of performance evaluation which measure how well

a system is able to identify correct terms, and how well it is able to identify as many

terms as possible. Put another way “Precision can be seen as a measure of exactness or

quality, whereas recall is a measure of completeness or quantity.”(Wikipedia, 2013)

Often the set of terms that we wish the system to identify is called the set of relevant ele-

ments. The relation of these terms can be seen in Figure 3.2 from Wikipedia(Wikipedia,

2013).

To calculate precision and recall three variables from the examination of system returned

results versus the gold standard are needed. True positives are entities the tested system

returned as a result and were also annotated in the gold standard. False positives were

entities the tested system returned as a result which were not in the gold standard.

False negatives are entities that the gold standard annotated as a valid entity but the

tested system did not return. True negatives are uninteresting as this is the set of results

not annotated which the system also did not return as a valid result. See below under

“Identifying Type I and Type II errors” for a more detailed explanation.

From these variables precision and recall can be calculated, as seen in Equation 3.1 and

3.2 respectively(Wikipedia, 2013);

Precision =
true positives

true positives + false positives
(3.1)

Recall =
true positives

true positives + false negatives
(3.2)
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Figure 3.2: Precision - Recall relation

F-measure is the harmonic mean of precision and recall, typically used as an overall

evaluation score. See Equation 3.3. As both precision and recall can be seen as the

ratio of hits versus misses, or a rate, the harmonic mean gives an average of these. It

is notable that given a precision and recall of zero, F-measure calculators will return

an F-measure score of 1 or 100%. This is equitable to recall and precision being set

to 100% given a divisor of zero and was discussed with OC project team members. As

this is technically correct it was allowed in this work, as the frequency of this happening

should be relatively small, but is taken under consideration during evaluation.

F −measure = 2 ∗ Precision ∗Recall

Precision + Recall
(3.3)
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Figure 3.3: Type I and Type II error relation

Identifying Type I and Type II errors

The identification of Type I (false positive) and Type II (false negative) errors gives

a sense of the cases when the system is not performing as expected. This requires

examination of both the gold standard data set and system returned results against one

another. A Type I error occurs when the evaluated system returns a result which are

not marked in the gold standard. These represent “false hits” and negatively impact

the precision score of the system, and the reason they appear is varied. Sources of Type

I errors could represent a failure of the gold standard to correctly annotate all instances

of an entity type, in this study it was found that systems which were to find chemical

compounds would annotate “water”, while the gold standard did not. Another source

of Type I errors is ambiguous words that the system is unsure about, often when the

word is capitalized but the system cannot resolve what the word is. Capitalized words

are regarded by most systems as important, and they will often be annotated regardless.

Type II errors are when the system has not annotated a term which is annotated in the

gold standard. This can be seen as “misses” by the system. Any time a system has

a Type II error this affects recall, or the coverage of terms expected to be annotated.

Again, the sources of these errors can vary, from a system unable to handle the scope

of data envisioned, to a problem with term identification or segmentation. A common

Type II error encountered during this study’s evaluation was the inability to correctly

identify terms that were separated by a white space.
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Conversely, a term which is annotated by both the evaluated system and the gold stan-

dard is a true positive or “hit”. True negatives, when the system does not annotate

a term and we do not wish it to, are not considered by this evaluation scheme. The

relation of these terms is visualized in Figure 3.3 to give a sense of how they fit together.

Additional considerations

Some performance errors are not taken into account in a strict precision/recall/f-measure

evaluation but have an impact on system performance. A system that covers more

entity types than was begun with in the gold standard is such a consideration. Where

possible this study will comment on and refine a system to more closely match the

intentions, e.g. the improvements to Oscar3. At times the capabilities and flexibility

of a system may result in the selection of that system over ones that have a superior

performance, exemplified in Linnaeus2. Throughout this evaluation these sources of

error are considered and covered under the discussion section for each system in Chapter

5.



Chapter 4

Experiment

Chapter four is an extensive discussion of the choices made in regards to which NER

systems to formally evaluate (Research Goal 4) from the original pool of discovered

systems (Research Goal 2). Each entity type is considered individually in Section 4.1,

including entity-specific requirements and reported performance of the NER systems on

various external corpora. Further is a description of the experimental data set used

in evaluation (Section 4.2) and the formal guidelines used in creating the manually

annotated gold standard (Section 4.3)(Research Goal 3).

32
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4.1 System selection

4.1.1 Chemical systems

Four systems were originally considered for this evaluation; CheNER(Usié and Valencia,

2014), Chemspot 2.0(Rocktäschel and Leser, 2012), Oscar3(Corbett and Murray-Rust,

2006), and Oscar4(Jessop and Murray-Rust, 2011).

Upon initial testing CheNER was not able to annotate data through the use of the

Graphical User Interface. The system simply returned no results from several different

abstracts which were chosen to contain different types of chemical compounds and had

chemicals represented in different forms. Examination of this error did not reveal any

cause but subsequently CheNER was dropped from formal evaluation.

Chemspot 2.0 was chosen as the system was relatively new, last updated in 2014, and was

accompanied by a review paper, in addition to being under a Common Public License.

From the Chemspot website1 the system is described as;

“a set of tools for named entity recognition and classification of chemicals in natural

language texts, including trivial names, abbreviations, molecular formulas and IUPAC

entities. Since the different classes of relevant entities have rather different naming char-

acteristics, ChemSpot uses a combined approach of employing a Conditional Random

Field and a dictionary, as well as pattern-based recognition, a classifier model and sev-

eral methods for consolidating all annotations. ChemSpot also performs named entity

normalization by assigning identifiers from numerous chemical databases. It achieves an

F1 measure of 79.0% on the SCAI corpus.”

Several factors are noteworthy here, mainly that the system handles different types

of chemical information such as names and formulae. The hybrid approach of using

Conditional Random Fields, dictionaries, and pattern based recognition is an approach

which is fast becoming an industry standard. Chemspot 2.0 also includes span data

alongside the system annotated entities, which helps in being precise with evaluation

scores. Automatic recognition of ChEBI identifiers and InCHI formulae are secondary,

but useful, pieces of information that are noted as being useful in later stages. These

1https://www.informatik.huberlin.de/de/forschung/gebiete/wbi/resources/chemspot/chemspot
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factors, together with the F1 measure on the SCAI corpus fueled our interest in this

system.

Oscar3 was chosen as a shallower Named Entity Recognizer with a focus on chemical

entities. The advantage of this system is that it can automatically annotate found entities

with chemical structures from the ChEBI ontological database. It also provides more

information alongside annotated hits such as confidence level, ontological ID numbers,

InChI structures, and language position information. As this was a shallower NER

system more false positive hits were expected, but pre- or post-processing was thought

to alleviate many of these errors. Oscar3 does not include any span data, however

the results are given in-line with the article text and in XML format. With sufficient

automation and parsing this span data would easily be retrievable where necessary.

Oscar4 is the updated version of Oscar3 and was considered in order to evaluate more

recent trends in NER systems. This system however is still in the early stages of devel-

opment and consists mainly of a core library toolset with an API. As formal evaluation

and use would require the creation of a wrapper program it was eventually set aside for

consideration at a later date. This was due to time constraints and the amount of work

it would take to create such a program simply for evaluation.

In the end it was decided to select both Chemspot and Oscar 3 for formal evaluation.

This would allow a more focused chemical NER system versus a shallower one, and both

seemed to be a good fit for the Ocean-Certain requirements. Since Oscar3 is a more

general NER system, it would naturally return a result set that would have an abundance

of errors. To alleviate this problem it was decided that evaluation of the result set would

happen in three stages; first the full result set would be analysed, then the result set

of just returned elements, finally the result set that consisted of elements and any hit

above a 90% confidence level. This would allow for the evaluation of Oscar3 in conditions

that were closer to Chemspot, as well as give an idea of what other capabilities Oscar3

possessed.
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4.1.2 Biological species systems

The three systems selected for testing were Linnaeus 2.0(Gerner and Bergman, 2010),

SPECIES(Pafilis and Jensen, 2013), and OrganismTagger(Naderi and Witte, 2011) which

all showed a reasonable aptitude for species identification.

Linnaeus 2.0 was released in 2011 and is a general purpose dictionary based matcher.

This system was interesting as it is very flexible both in terms of input and output.

Greater control over the system is given to users by way of having direct access to the

dictionary used for matching. There is also an option to run Linnaeus as a server instead

of locally, which allows for load balancing and the processing of a very large amount

of documents in a timely manner. With this scalability in mind, Linnaeus 2.0 was a

good match for both the current and future needs of Ocean-Certain. Original testing

of Linnaeus 2.0 was done using the internal general term matching dictionary which

contains the top ten thousand mentions from Medline.

SPECIES is a system developed after Linnaeus and uses, in part, its naming conventions

for binomials but also includes abbreviations, common names, and acronyms. Using the

NCBI Taxonomy it is also reported to be able to handle misspellings which can confuse

entity identification. The developers describe a command-line tool that is significantly

faster than Linnaeus. An interesting note was that SPECIES was developed on an

abstract-based corpus and it was thought this could be useful if Ocean-Certain decided

to pre-process new documents based upon their abstracts.

OrganismTagger uses a pipeline based system called GATE which was developed for

users to be able to build their own system using modules. This modularity would give

a large amount of flexibility to the system and its modular nature would be easier to

keep updated or fix as need be. OrganismTagger is a hybrid system which uses both

rule-matching and machine learning to achieve entity recognition and the performance of

such systems was desirable. Other considerations are the ability to normalize scientific

names as well as strain and common name detection. The system’s performance on the

OT (precision 95%, recall 94%) and Linnaeus-100 (99% and 97%) corpus are both very

intriguing. There was interest in seeing how the OrganismTagger system would perform

in a different problem space.
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4.1.3 Location systems

While location identification is one of the older entity extraction tasks it was equally

challenging finding systems to match the Ocean-Certain specifications. For this project

CoreNLP(Manning and McClosky, 2014), OpenNLP(Baldridge, 2005), and IllinoisNE

Tagger(Ratinov and Roth, 2009) were selected for evaluation.

CoreNLP is from Stanford Natural Language Processing Group as a model based clas-

sifier with a long continuous development history. This system uses CRF classification

and is able to use custom built models for entity identification. As one of the leading

systems in use in entity extraction it was a natural choice for consideration. In addition

the project team has previous experience with CoreNLP which is a valuable asset.

Apache OpenNLP is a Maven based system for common NLP tasks and is a command

line toolkit. This project is a collaboration from volunteers and the Apache Software

Foundation, developed with the idea of being a base system for larger systems to be built

upon. Using perceptron and maximum entropy machine learning techniques OpenNLP

is a pipeline system which can use trained models to identify entities. It is possible to

test each system function using the command line but can also be accessed through an

API for full system runs.

Finally IllinoisNE Tagger is a gazetteer system the can either identify enamex entities

or a larger 18-label entity set. The gazetteer is based upon Wikipedia, word class mod-

els, and non-local features to create a diverse entity tagger system. When considering

systems for formal evaluation this was considered a strength due to the varied nature of

our target entities.

4.2 Experimental data

Initial testing for the chemical systems will consist of twenty-five article abstracts from

the larger ten-thousand corpus data set. The evaluations will all use the same twenty-five

abstracts in order to evaluate their performance against each other. This initial testing

is to refine and streamline the evaluation process, as well as to begin refinements of the

Oscar3 system. Refinement was necessary as Oscar3 is a shallow NER system, meaning

it is designed to cover a lot of entity types and thus would not perform well against our
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evaluation scheme out of the box. After the initial testing run the abstract corpus will

be expanded to one hundred abstracts with the same guidelines. This would allow for

more data points in order to give a better overview of the tested systems capabilities.

These article abstracts were chosen for their focus around the biological pump and/or

relevance to climate change research. However, these articles were chosen at random

within those guidelines in order to avoid bias. As explained in Section 3.2.3, these

abstracts are not screened to always include at least one mention of an entity. This

decision means recall and precision scores can be skewed (as 0/0 is a 100% score) but as

this would affect every system equally, was disregarded. These articles covered several

different fields of study including microbiology, geoscience, nature, and microbial ecology.

4.3 Manually annotated ”Gold Standard”

To start, a basic annotation set was created to be the basis for subsequent annota-

tion runs and to begin discussion with OC project team members over specific outlying

examples. The initial annotating found the three chosen entity types (chemical com-

pounds, biological species, and locations) with the intention to find only specific entities,

no general names or types. As there is no one definitive biological species taxonomy,

the NCBI Taxonomy2 was used to check if a suspected word was a biological species

or not. Although this limits the annotations to only entities found within this tax-

onomy, it is considered a comprehensive one and used extensively. Modifiers such as

“human-induced” or “iron-binding” would not be annotated at first, in order to asses

the capability of systems to capture these more complex entities but not negatively im-

pact systems performance who cannot. Further, a modifier can change what type of

information is given in a very complex way, “water-column” is describing a location and

not the compound water. “Low-oxygen” is a term describing a detail of an environment,

and can be seen as an event. Given the large amount of work that would be required

to analyse and adapt to such changes, together with the relative sparseness of these

types of words, exclusion was determined to be the best path. The rule-set for the first

annotation run is summarised here and was based off the GENIA Corpus Annotation

Guidelines3 as well as the CRAFT Corpus Annotation Guidelines4.

2http://www.ncbi.nlm.nih.gov/taxonomy
3http://www.nactem.ac.uk/genia/
4http://bionlp-corpora.sourceforge.net/CRAFT/
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Annotation Run 01 - Only specific compounds, geographic locations, species.

No modifiers.

• Species names that are shortened will be annotated. Ex. C. Watsonii, P. Globosa.

• Complex compound formulae will not be annotated. Ex. C8H10N4O2

• A mention that contains a less specific entity as a subunit, annotate the larger

entity only. Ex. carbon dioxide as ”carbon dioxide”, not ”carbon”.

• Earth will be annotated.

• Human will be annotated.

• Species genus, phylum, or class groups will not be annotated. Ex. Synechococcus,

Prochlorococcus

• Compound acronyms will be annotated. Ex. DMS (dimethylsulphide), DMSP

(dimethylsulphidepropionate)

The second run of annotation includes an expansion of the biological species annotations

to include genus/phylum/class names. This was done to facilitate and evaluate the

improvements of Linnaeus2 (Section 5.4) as a more general species NER system. Two

other refinements were included, “sugar” would henceforth be annotated as a chemical

compound, as would “water”. While “coral” was annotated by many chemical systems,

it was chosen to not be included as this would cause confusion between the chemical

meaning and species.

In the final iteration, general species names such as “phytoplankton” and “human” would

be annotated. Modifiers connected to relevant entities not annotated in the first run

would now annotate the entity only. For example “human-induced” would now annotate

“human”. Continuing with the improvement of Linnaeus2, bacterial genus/phylum/class

would be annotated (e.g. Actinobacteria, Alphaproteobacteria) in order to assess the

coverage of the dictionary modifications for the system.





Chapter 5

Results and Discussion

This chapter contains the results from each system evaluation and a discussion detailing

the strengths and weaknesses found (Research Goal 5). Where necessary it will detail

improvements and adjustments taken under evaluation in order to provide a firm grasp of

each systems’ capabilities. In each evaluation the system weaknesses are outlined, with

a more detailed examination of Type I and Type II errors given. At the end of each

section is a summary showing average metric scores and a graphical presentation in order

to understand how the systems performed against each other within each entity type.

In Section 5.4 this paper examines the improvements made to the Linnaeus2 system

through expansion and improvement of the dictionary used for entity recognition via

gazetteering.
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5.1 Chemical systems

Initial testing of Chemspot 2.0 and Oscar3 on an experimental abstract corpus consisting

of twenty-five articles revealed the extent of Oscar3’s shallow NER implementation.

After consideration it was decided that the coverage from this system could possibly be

utilised and post-processing techniques would be implemented to asses how the system

performed as a purely chemical NER tool. Testing of this implementation was done by

filtering out different variations of the full Oscar3 output and evaluated versus previous

scores (Figure 5.1. The goal of this filtering was to keep as much recall as possible

while improving Oscar3’s precision. Results of both Chemspot 2.0 and Oscar3 on the

twenty-five abstract corpus (along with the different variations of Oscar3) is discussed in

Section 5.1.1. Finally both systems are tested on the full one-hundred abstract corpus

and will be discussed in Section 5.1.3.

5.1.1 25 abstract analysis

5.1.1.1 Analysis of Chemspot 2.0

Results of this evaluation can be found in Appendix A, Table A.1.

Chemspot 2.0 was able to pick out chemicals with an average amount of precision (67.1%)

and a reasonably high degree of recall (77.6%). The F-measure score of 71.9% is close

to the reports performance on the SCAI Corpus (79.0%)(Rocktäschel and Leser, 2012)

with the reduced performance being attributable to being in a more natural context and

being evaluated against a smaller amount of documents.

Both common chemical names and their formulas were often identified, even in the cases

when being connected to a non-entity such as “Low-oxygen”. Compound names were

also annotated fairly consistently even with variations in spelling.

Overall this system performed to expectations, however it was unable to identify com-

pounds which were split by white spaces. This would be a major shortcoming for the

Ocean-Certain system, and unless it is possible compensate with pre- or post-processing,

this would disqualify Chemspot 2.0 from use.
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The most common false positive (Type I) error was the labeling of the entity “water”.

Further discussion is warranted on whether “water” should be labeled as an entity, or

whether this result should be removed by post-processing but not counted against the

system. This is because it is a compound, yet such a general and widely used one that

the information benefits of taking this entity further are marginal at best. For the same

reasons “sugar” will also need to be discussed and its inclusion into the next round of

annotation decided.

System Type II errors showed a large weakness in Chemspot as the system is not able

to identify compounds which are divided by a white space. This can be seen in the

missed entities “carbon dioxide” (articles 10, 15, 18, 20, 21), “nitrous oxide” (article

17), and “hydrogen sulphide” (article 19). It seems Chemspot 2.0 simply annotates the

individual chemical instead of analysing surrounding words for larger compound names.

While this error could possibly be alleviated by post-processing steps, it would require a

large amount of time and resources to go back through each annotation result and find

out if it was possibly a part of a larger entity. This is a problem of information chunking

as described in Chapter 2 Section 2.1.4.

There are several additional considerations as the first annotation run did not annotate

compounds or chemicals that were connected to non-entities by a hyphen, e.g. “low-

oxygen”. Without previous knowledge of system capabilities this was decided in order to

simplify evaluation as much as possible and give as wide an array of systems a chance to

compete. The entity “DMSP” (dimethylsulphide propionate) is also understandably an

entity that an NER system would commonly miss as this acronym could stand for a wide

range of things. Pre-processing to add this acronym to a pattern based dictionary, or

post-processing for the identification of specific acronyms such as these may ultimately

be the best way to catch such examples.

5.1.1.2 Analysis of Oscar3 version 1

Results of this evaluation can be found in Appendix A, Table A.2.

As expected the Oscar3 system identified a large amount of entities, from chemicals

and compounds to acronyms and additional information. While this amount of results

gave a low precision score of 31.1%, it naturally gave a higher recall of 92.4%. With an
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overall F-measure of 38.7% it is easy to see that this system, by itself and in this form,

would not be very suitable for Ocean-Certain. However, leveraging the coverage of the

system could eventually allow for cross-validation of other systems or use as a contextual

information generator.

The large number of false positive results is immediately apparent but not unexpected.

Most commonly “marine”, “nutrient”, “water”, and “DOC” are annotated in error.

Many examples of capitalized names being annotated are seen (“Actinobacteria”, “Flavobac-

teria”, “Porites”) which are not useful in this context but could possibly be used to

cross-check for species later. One of the major errors of the Oscar3 system is the anno-

tation of “In” (articles 2, 4, 16, 23) as an element. This seems to occur when “In” is at

the start of a paragraph and could present some difficulty to verify later as an actual

element in the text. Further, “P” is being annotated as phosphorus (article 22) which

arises when a formal name is shortened, as in “P. Globosa”. As with the Chemspot

system “water” is an error which will possibly be annotated at a later stage, however

for consistency it is considered an error here.

Very few results were missed, only four from the entire data set. One is a misspelling

(“dimethyl sulphide”) which is not expected for a system to pick up. Two compound

names separated by a white space (“nitrous oxide” in article 17, “hydrogen sulphide” in

article 19) were also missed.

5.1.1.3 Analysis of Oscar3 version 2

Results of this evaluation can be found in Appendix A, Table A.3.

This result set is only annotations Oscar3 marked as “Elements” or having compound

formulae in the form of InCHI1 or SMILES2.

To assess if Oscar3 could perform in a more specific context versus Chemspot this

analysis was made on a subset of the total results returned. Trading some recall (84.9%)

in order to elevate the precision (65.5%) score. With an overall F-measure of 66.2%

Oscar3 does not perform as well as Chemspot but still has a higher recall rate. However

the weaknesses leading to Oscar3’s low precision score can nearly be halved by the

inclusion of “water” in the gold standard.

1http://www.iupac.org/home/publications/eresources/inchi.html
2https://en.wikipedia.org/wiki/Simplified molecular-input line-entry system
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Of the false positive, Oscar3 annotated a lot of instances of “water” and “waters” (ar-

ticles 2, 3, 4, 8, 10, 12, 13, 15, 16, 18, 22). Twenty-one errors are “water” which would

significantly change Oscar3s precision score and overall F-measure. As “In” and “P”

were annotated as elements these are still present as false positives.

False negatives increased as a result of this output filtering, notably missing some com-

pounds such as “dimethylsulphide”. It is interesting to see that “dimethylsulfide” is still

correctly annotated as an entity and this may be a result of dictionary bias or common-

name mistakes. Another error that is introduced is the system missing compound short

names, “CO2” (articles 12, 20, 24) in some instances. “DMS” and “DMSP” are also

missed as these are acronyms that may not be technically equated with their longer

forms.

These results are closer to what is expected of an NER system and it could possibly

be used together with either pre- and post-processing or crossed with results from the

entire result set.

5.1.1.4 Analysis of Oscar3 version 3

Results of this evaluation can be found in Appendix A, Table A.4.

This result set is annotations Oscar3 marked as elements, compound formulae in the

form of InCHI or SMILES, plus any annotation that had a confidence level of 90% or

higher.

This set was an evaluation of how confident Oscar3 was annotating entities which were

not specifically connected to an element or compound. Precision was only improved

by 0.1% (65.6%) while recall recovered a more significant amount (90.8%) versus the

elements-only result set of 85.9%. The overall F-measure recovered significantly as well

to 69.9% which is reasonably close to Chemspot’s score of 71.9%.

The inclusion of high confidence annotations introduced a few new false positive results

versus the elements only set. “Rhodophyta” and “Chlorophyta” from article 23 were

re-introduced along with “anoxygenic” in article 16.

This subset was able to recover “dimethylsulphide” as a result from article 3 as well as

“Dimethylsulfoniopropionate” from article 16. The system still misses “CO2” from quite
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a few articless, recovering some instances but not all. “DMSP” is still not recovered by

the system with this subset as anticipated, being a very unofficial acronym.

5.1.2 Chemical Compound Evaluation Comparison (25 abstract)

Figure 5.1 and the accompanying data table (Table 5.1) shows a comparison of evaluation

scores from the refinement of the Oscar3 system over the twenty-five abstract corpus

using Chemspot as a guideline.

Figure 5.1: Chemical NER Evaluation Summary (25 abstract)

System Name Avg Precision Avg Recall Avg F-measure

Chemspot 2.0 67.1% 77.6% 71.9%

Oscar3 31.1% 92.4% 38.7%

Oscar3 v2 65.5% 84.9% 66.2%

Oscar3 v3 65.6% 90.8% 69.9%

Table 5.1: Chemical NER Evaluation Data (25 abstracts)
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5.1.3 100 abstract analysis

5.1.3.1 Analysis of Chemspot 2.0

Chemspot’s performance over the one-hundred abstract corpus was comparable its per-

formance on the twenty-five abstract corpus, with a precision of 67.7%, recall of 76.3%,

and F-measure of 65.6%. These results show an ability to identify chemical compounds

in a large array of instances, however the shortcomings while applied to this studies’

scenario merits doubt as to Chemspot’s viability. An examination of system errors re-

veals a tendency to annotate capitalized terms even with no corresponding ontological

connection, along with abbreviations that have no discernible connection to chemical

elements. Further, the system misses large numbers of entities that occur over two or

more words, as seen in the twenty-five abstract evaluation.

Some errors given by Chemspot are attributable to choices made when developing the

annotation guidelines and can therefore be ignored. The false positive result “water” is a

common example of this, but at only 33/263 instances does not require specific handling

to avoid skewing results versus other systems. Similarly, the ability of the system to

find entities connected to modifiers, e.g. “low-oxygen” or “water-column” in articles 10

and 18 respectively, is a choice by the annotators to ignore as explained in Chapter 4

Section 4.3.

Elements of the system’s pattern recognition can be seen in the annotation of abbrevia-

tions previously connected to a chemical compound. The false positive “OMZ” (Oxygen

Minimum Zone) found in article 17, “BGE” (Butyl Glycidyl Ether) in article 58, show

how the system can connect these concepts together. However the exact conditions

necessary for this process need to be examined as it was not successful in every case.

Chemspot did not annotate “DMSP” (Dimethylsulfoniopropionate) seen in articles 16

or 75, while “DMS” (Dimethylsulfide) in article 16 was. While not a goal of this evalu-

ation, it should be noted the ability of a system to perform this kind of connection for

future studies as this capability may be leveraged in other systems.

An oddity noticed in Chemspot is the identification of “Trichodesmium” in articles 32

and 78. This study could not find any connection to a chemical compound and research

found that the identified word is a biological species. The term “Peninsula” was also

often misidentified (articles 26 and 33) and may indicate either attempts to annotate
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words that may be misspelled, or an over weighing of capitalized terms in decision

making.

Twenty false positives come from the apparent inability of the system to connect larger

entities together. Continuing on from the twenty-five abstract list we see examples in

article 29 with “calcium carbonate” and article 55 “nitrous oxide”. This is the biggest

failing of the Chemspot system, and while post-processing techniques may help to alle-

viate the issue it is not believed to be viable in this situation. This is because Chemspot

does not identify the later parts of these entities in any way, e.g. “carbonate” or “oxide”,

meaning an attempt to connect them together would require a full run by another NER

system to even begin connecting these entities together.

In cases where the system missed annotations we see one very large trend besides the

exclusion of multi-word entities discussed above. A large amount of these Type II errors,

one-hundred and fourteen of two-hundred errors (57 %) are the non-identification of

simple chemical element acronyms. These simple acronyms are often “C” (Carbon),

“N” (Nitrogen), and “P” (Phosphorus) as seen in articles; 32, 34, 35, 39, and more.

It is possible the ambiguity of these acronyms causes the system to not have enough

confidence in classifying them, however with the density of such acronyms in an article

the pattern recognizer should be able to pick these up. In addition, Chemspot touts

the cross validation of several types of classifiers (CRF, pattern-based, dictionary etc.

discussed in Section 4.1.1) which should be able to properly handle this identification.

With the double issue of missing multi-word entities and lacking the sensitivity to cor-

rectly identify simple acronyms, Chemspot 2.0 is not a good fit for the purposes of the

larger Ocean-Certain project. The system does show some aptitude for finding larger

acronyms which are connected to chemical compounds, and this capability could be

studied and improved upon in further work.
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5.1.3.2 Analysis of Oscar3 version 3

Oscar3 v3 was able to perform comparably or better than Chemspot in all areas, and

though this is the result of filtering Oscar3’s output, it did not require advanced system

changes or complex analysis to do so. The output filtering extracts output only where

entities are annotated as Elements, have an InCHI/SMILES compound formula, or an

identification confidence of 90% or greater. With these modifications, the precision

attained was 67.4%, recall 86.6%, and the F-measure 67.2%.

As with Chemspot, “water” was annotated by the system but counted as an error to

allow for comparison between systems. In future work this entity may either be an

allowed entity type or be filtered out of the output.

Oscar3 does show a tendency to annotate words which are technically element acronyms,

such as “In” (Indium) or “At” (Astatine), when they are capitalized at the beginning of

a sentence. This can be seen in a large amount of articles and comprises 36/199 (18%)

of the false positives reported by the system. Analysis of the system output does reveal

that while these errors are marked as elements, they often have a low confidence score

which could be used to filter them out, however this is not a comprehensive solution.

A better alternative to rectify these mistakes would be the use of pattern recognition

to detect when these occur at the beginning of a sentence, as in normal language you

would not start such an acronym.

A second trend in false positive results is the annotation of biological species which are

capitalized in the text. We see this in article 23 (“Rhodophyta”, “Chlorophyta”), several

articles with “Trichodesmium” (32, 78, 95), and article 37 with “Daphnia”. While the

cause of this is unknown, all of these annotations had a greater than 90% confidence

level. In the case of “Trichodesmium” the ending -esmium may be close enough to

common element endings with variations of -ium to warrant annotation by the system.

As the larger OC system will also be looking for biological species, it may be worthwhile

to have a cross-reference check with the other NER systems in order to decide which

entity type these belong to.

In opposition of Chemspot, the Oscar3 system shows a weakness in annotating slightly

more complex chemical compound acronyms e.g “O2”, “CO2”, “N2”, while it does well

identifying simpler acronyms. Oscar3 does come with the option to modify their string
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matching algorithms however, so this should be a relatively simple task to solve. It can

also be noted that the Oscar4 system will be further along in development by the time

of writing and may be more adequate in identifying these missed acronyms.

The coverage of the Oscar3 system lends itself to heavy modification and the extraction of

results as necessary by users, which sets it apart in terms of viability for the OC project.

Analysis of the weaknesses of this system show more room for improvement, with the

implementation of such being relatively inexpensive in terms of time and resources.

These factors make Oscar3 an appealing choice for chemical entity recognition and is

recommended by this study.
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5.1.4 Chemical Compound Evaluation Comparison

Figure 5.2 and the accompanying data table (Table 5.2) shows a comparison of evaluation

scores from the examination of chemical compound NER systems examined over the full

one-hundred abstract corpus in this work.

Figure 5.2: Chemical NER Evaluation Summary (100 abstracts)

System Name Avg Precision Avg Recall Avg F-measure

Chemspot 2.0 67.7% 76.3% 65.6%

Oscar3 v3 67.4% 86.6% 67.2%

Table 5.2: Chemical NER Evaluation Data (100 abstracts
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5.2 Biological species systems

5.2.1 Analysis of SPECIES

The SPECIES NER system was able to identify all the entities annotated in our gold

standard corpus, with few false positives. With a recall of 100.0% and a precision of

97.7% this system was able to find nearly everything this study required. However

it should be noted that this system is based on the NCBI taxonomy, which provides

more context for these scores as the gold standard is also based upon NCBI. In addition,

biological species that matched our annotation guidelines were few over the one-hundred

abstract corpus, only 64 entities found versus chemical compounds of which there were

693.

Of the false hits reported by the system, four are the result of the annotation guidelines

not allowing for modified entities such as “human-induced” in article 21 and “gamme-

Proteobacterium” in article 34. The comprehensiveness of the NCBI taxonomy and

the SPECIES system allowed for the inclusion of acronyms associated with species that

are not normally considered, e.g. viruses. Article 35 discusses a virus “PpV” which is

specific to the P. pouchetii bacteria and was thus annotated by SPECIES.

While this system, on the surface, seems more than adequate for Ocean-Certain it should

be judged in the context given. Upon further examination of SPECIES it is easy to gain

access to the individual files comprising the dictionary look-up terms and is extensible

by a user should they wish. However the fact that the system does not use any sort of

link to the NCBI taxonomy in their species list is something that should be considered

when choosing to do so.

5.2.2 Analysis of OrganismTagger

OrganismTagger(OT) is another NER system based around the NCBI taxonomy, but is

implemented via the GATE3 development platform. GATE provides a modular, pipeline

system for programs to be built and executed upon, provided they can build programs

compatible with the necessary modules they wish to use. This adds another level of

complexity and knowledge needed for developers not familiar with the system, but could

3https://gate.ac.uk/
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be used if given the time or the existence of previous experience. OrganismTagger uses

a hybrid detection system, combining rule-based NER together with machine learning

techniques to perform its task. The connection to the NCBI database gives the system

an edge in this evaluation, as the annotation gold standard was also based off of this same

database, but the performance of OT is still high nonetheless. With a recall just below

SPECIES at 99.0%, OT has a lower precision of 88.0% giving it an overall F-measure of

89.0%.

The system’s false positive errors are nearly all (17 of 20) instances of the NCBI database

containing very general names for certain biological species. As we can see in articles 17,

30, 36, 57, 61, 80 and 86 the entity “mum” is annotated, because it is a common name

for “Chrysanthemum”. Similarly “Canary” in article 14 is connected to the common

canary. These results could be removed from the dictionary OT uses, but this may be a

more difficult task given that you would have to modify the GATE module itself to do so.

The two other instances of false positives, “marine diatoms” and “marine bacterium” are

also common names given under specific species in NCBI. The one instance of “human”

annotated from article 28 is the result of the annotation gold standard not accepting

“human-induced”.

A single article, number 86, was responsible for OrganismTagger not receiving a 100%

score for recall in that it missed the entity “Richelia intracellularis” and its shortened

name “R. intracellularis” for unknown reasons. It is possible that this was an omission

from the dictionary used by OT in error.

The OrganismTagger did quite well on this task even with the low count of possible en-

tities to annotate, but its dependence on the GATE system warrants skepticism towards

its inclusion in the larger Ocean-Certain system. Unless the entire OC project decides to

use GATE, it would be technically difficult to streamline this system’s use and output

together with other systems that do not use GATE. In addition, the output formats

of GATE do not lend themselves towards easy parsing and can be difficult to handle

automatically. GATE’s reliance on a graphical user interface also makes it infeasible to

design automated systems around it, given the lack of command line tools. It should be

noted however that this study did not have previous experience with GATE and it is

possible that these issues are surmountable.
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5.2.3 Analysis of Linnaeus 2.0

Initial testing of this system uses the internal dictionary provided by the developers,

which is composed of the top ten-thousand most frequently mentioned species found in

MEDLINE. The MEDLINE4 database which is a collection of biomedical literature from

the U.S. National Library of Medicine. Linnaeus is a gazetteering system using a set of

dictionaries to positively identify entities and as such is an easy system to modify. In

Section 5.4 this study researches the expansion and adaptation of the Linnaeus dictionary

to improve performance while expanding the task domain.

Linnaeus was able to perform at a relatively equal level with SPECIES and Organism-

Tagger, while using a manually crafted gazetteer dictionary created from MEDLINE

articles. This system scored a precision of 85.8%, recall of 95.7%, and overall F-measure

of 84.3% which are good scores when applied to a different domain. Again, the low

amount of gold standard annotations should be taken into consideration when assessing

these scores.

As with OrganismTagger the Linnaeus system annotates common names of species,

“mum” and “canary” with the addition of “lake” (a common name for a shovel-nosed

lake frog) in articles 16, 30, 37, 59, and 61. This pushes the recall score slightly lower

than the previous two systems but should not be regarded as an additional hurdle. A

few other general names are also annotated, again similarly to previous systems, with

“marine diatoms” and “marine bacterium” marked as well as “bacteriophage” in article

22.

The Linnaeus system misses a total of six species names, “Phaeocystis pouchetti” in ar-

ticle 35, “Methylobacterium oryzae”, “Methylosulfonomonas methylovora”, “Hyphomi-

crobium sp” in article 45, “Trichodesmium tenue” in article 78, and “Richelia intracel-

lularis” in article 86. These names are possibly missed due to the internal dictionary of

Linnaeus only taking the top 99% of species names from Medline, and could be corrected

by a simple expansion of the dictionary. The original assumption that OrganismTagger

left out “R. intracellularis” in error may be incorrect given that Linnaeus also did not

mark this entity. It is possible that this species name is not commonly accepted enough

by the scientific community to warrant its inclusion in a formal dictionary. Consultation

4http://www.nlm.nih.gov/bsd/pmresources.html
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with biologists may be required for further refinement of dictionaries and guidelines cre-

ated as to the level of inclusion such a system should allow for non-recognized species

names.

Several factors besides performance should be considered when evaluating Linnaeus for

inclusion in the OC project system that set it apart from SPECIES and OrganismTag-

ger. The Linnaeus system is able to handle multiple format types (MEDLINE, PMC,

BMC, OTMI, text, etc.) for processing which could be expanded to include formats as

necessary by the project team. It is flexible in the types of outputs available (XML,

HTML, TSV, database) which allows for more options when developing a streamlined

system. An important consideration is that Linnaeus can be run as a server, allowing for

load-balancing and and multiple clients to be utilizing this resource simultaneously. As

the Ocean-Certain system is likely to be running a larger amount of processing tasks and

data sources, this capability may become crucial to building a well functioning system.
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5.2.4 Species Evaluation Comparison

Figure 5.3 and the accompanying data table (Table 5.3) shows a comparison of evaluation

scores from the examination of biological species NER systems examined in this work.

Figure 5.3: Biological Species NER Evaluation Summary (100 abstracts)

System Name Avg Precision Avg Recall Avg F-measure

SPECIES 97.7% 100.0% 98.2%

OrganismTagger 88.0% 99.0% 89.0%

Linnaeus2 85.8% 95.7% 84.3%

Table 5.3: Biological Species NER Evaluation Data
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5.3 Location systems

5.3.1 Analysis of CoreNLP

CoreNLP is the Named Entity Recognizer of the Stanford Natural Language Processing

Group’s processing tool and is created to identify the enamex entity types Person, Or-

ganization, and Location. Output is in an XML format with each entity type marked

making for easy extraction of locations for this evaluation. The OC project team has a

lot of experience with the use of CoreNLP and it is used in the system created in Work

Package One for connecting variables into facts (See Section 2.1.5). This system uses a

CRF classifier (explained in Section 2.1.4) and has the capability of users training their

own models in order to adapt the system to a different domain task.

Preliminary analysis recognized a problem in parsing this output as the performance of

CoreNLP was much lower than expected, with a precision of only 52.0%, and recall of

49.6%. Upon analysis it was found that when a location name occurred over several

words, such as “San Marco”, the system would correctly identify the different parts but

there was no easily definable connection between the two. By recognizing that these

entities naturally followed one another in the output, an adaptation was taken to merge

these different parts together to form a whole entity. This system change lead to a

second analysis of CoreNLP and is discussed in the next section.

5.3.2 Analysis of CoreNLP version 2

With the changes in output CoreNLP performs with a more reasonable degree of accu-

racy and coverage. Achieving a precision of 78.7%, recall of 74.0% with over F-measure

of 71.7% the system model and output parsing still needs a degree of work. With-

out a more extensive pattern-matching system in place to find entities that should be

connected together, the output evaluation is susceptible to entities that span across sen-

tences as is the case in article 16. In the text “Antarctic lake” and “Organic Lake” are

in different sentences, but the makeup of the XML output has no markers to show that

this is the case. The same error can be seen in two other cases where a location is at

the end of a sentence and the capitalized word at the start of the next is assumed to be
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part of the same entity. These cases are article 39 with “Baltic Sea Photosynthesis” and

article 48 with “Sargasso Sea Bacterioplankton”.

A main weakness of the CoreNLP system is the importance it places on capitalized

words, which leads to the annotation of many entities that are not one of its main

annotation types. This problem can be identified as a result of using a system on a

different domain than intended, as discussed in Challenges facing NER (Section 2.1.4).

In a conventional text such as a news story, the use of capitalized words would be nearly

exclusively used for enamex types, while in scientific texts a wider range of information

and proper names are used. A total of forty-two false positive errors across fifteen

articles are because of this, seen for example in article 6 with “Alphaproteobacteria”,

article 33 with “Flavobacteria”, “Alphaproteobacteria” and “Gammaproteobacteria”,

among others. As the CoreNLP system is model based, the training and refinement of

this system by building a new model is possible, but expensive to realize.

Examination of the false negative errors by the CoreNLP system do not show any exact

patterns as to why the system chooses to annotate some mentions of entities but not

others. In article 56 the system correctly identifies three instances of “Artic” but misses

two others with no discernible reason. It may simply be a result of the CRF classifier

model becoming confused, or the model may be applied to a scenario which is too

different. In either case a larger example set and evaluation would need to be performed

in order to update and adapt CoreNLP for use in the OC project.

We see from article 42 where CoreNLP identifies “Wadden Sea” versus the gold standard

“German Wadden Sea”, as well as “Northern Sweden” versus “Sweden” in article 59,

that exactly what defines a location needs to be considered further. While a dictionary

of places would be beneficial for this type of disambiguation, the creation of such is

difficult and carries with it a large maintenance requirement or it can quickly become

outdated. Whether to adapt a system to the researchers needs or to adjust the guidelines

of what is expected of the system is left up to future work.
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5.3.3 Analysis of OpenNLP

OpenNLP was an outlier in this evaluation given that it had a very high precision score

(93.0%) but had a low recall rate (57.0%). The combined F-measure of 63.4% was the

worst of the three evaluated systems if the first version of CoreNLP is not considered.

This was the only system to use Maximum Entropy Models (See Section 2.1.4) and

Perceptron based machine learning, and is built as tool which uses specific models to

find specific entity types. These models are easily changed and can be updated or

adapted with a reasonable amount of time invested. The developers of OpenNLP have

included extensive documentation on every stage of their pipeline, which is useful for

other projects attempting to refine the system behaviour.

A review of the false positive errors given by OpenNLP shows errors in segmentation

and pattern recognition when trying to tokenize words. Specifically parentheses seem to

confuse the system, seen in article 56 with “(8.15” and article 84 with “Mediterranean

Sea)” being annotated. Another pattern observed is the tendency to switch between an-

notating locations with additional parameters such as “North” (article 59), or not. This

can also be seen in article 34 where “South Pacific Ocean” and “Western South Pacific

Ocean” are annotated simply as “Pacific Ocean”. These errors represent a small inabil-

ity to deal with more complex name structures and require refinement of the tokenizer

to solve.

This inability may also be represented in the amount of false negatives given, as they

are often complicated structures. However the model used for this evaluation is likely

basic and not equipped to deal with the full range of location names used in the evalu-

ation abstracts. More obscure locations such as “Faroe-Shetland Channel” (article 53),

“Prydz Bay” (article 61), and “Bedford Basin” (article 98) may indicate a simpler model.

However even more basic examples of locations that would likely be included are also

missed, including common country names e.g. “Spain” in article 6, “Chile” in article

17, and “Canada” in article 92. Given these errors an extensive model would need to

be constructed if OpenNLP was chosen to be in the Ocean-Certain project system.

While the high precision is a quality that would be beneficial to Ocean-Certain, a high

recall rate is likely more important. With a high recall rate, pre- and post- processing

methods can refine output and improve precision without the system itself needing

substantial work.
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5.3.4 Analysis of Illinois NET

IllinoisNE Tagger is a system based on gazetteer dictionaries taken from Wikipedia and

uses word class models for the examination of unlabeled text. It has the ability to label

entities of four different types (person/organization/location/misc) or and expanded

eighteen entity type set. The system performed at an even level with other systems in

this class with a precision of 77.4%, recall of 72.5% and F-measure of 80.5%.

One of the main sources of false positive errors is the annotation of capitalized words

which are not locations. This pattern may reveal a tendency to assign too much im-

portance to capitalized words found in sentences. Examples are seen in eight separate

articles, notably article 13 with “Gamma-”, “Delta-” and, “Actinobacteria”, article 59

with “Cyanobacteria”, “Bacteroidetes”, “Flavobacteria”, and “Mimivirus” among oth-

ers. A second source of Type I error is the annotation of acronyms that could be referring

to a location, but taken in context are not. Article 14 has “PA” and “PE” annotated in-

correctly, article 45 has “NT”, and article 88 has “BLPR” in multiple instances. Further

examples of the system’s weakness in context and segmentation ability is the incorrect

segmentation of location names which span multiple words. This problem is one of infor-

mation chunking, and is exemplified in article 34 where IllinoisNE annotated “Western”

and “Western South” apart from the their main location name “Pacific Ocean”.

While some of the system’s Type II errors can be connected to a weakness of context

sensitivity or information chunking as explained previously, it also seems to lack an ex-

tensive location name dictionary. In article 6 both “Mar Menor” and “Albufera” are not

annotated despite having Wikipedia articles specifically about these locations. Addition-

ally, many locations are mis-identified as organizations or miscellanious by IllinoisNE

despite having an obvious connection to a location when taken in context. This issue of

context sensitivity is admittedly difficult, and may require and extensive modification

of the system’s dictionary to improve.
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5.3.5 Location Evaluation Comparison

Figure 5.4 and the accompanying data table (Table 5.4) shows a comparison of evaluation

scores from the examination of location NER systems examined in this work.

Figure 5.4: Location NER Evaluation Summary (100 abstracts)

System Name Avg Precision Avg Recall Avg F-measure

CoreNLP 52.0% 49.6% 47.5%

CoreNLP v2 78.7% 74.0% 71.7%

OpenNLP 93.0% 57.0% 63.4%

Illinois NET 77.4% 72.5% 80.5%

Table 5.4: Location NER Evaluation Summary Data
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5.4 Linnaeus2 Dictionary Improvements

Over the course of this work it was observed that the corpus articles would commonly

speak about biological species in different ways. These include referring to species groups

(e.g. Genus/Phylum/Class), and using very specific names for bacteria (strains). This

information was deemed sufficiently important to the larger Ocean-Certain project to

warrant examination. After consideration, Linnaeus was chosen for experimental dictio-

nary expansion for several reasons;

1. Linnaeus is primarily a gazetteer system and is dictionary based.

2. The included dictionary stems from MEDLINE entries, which were not available

to this project.

3. Current entries are already given with taxonomic connection information.

4. The simplicity of the dictionaries meant extension was not overly resource con-

suming.

In addition, it was possible to extract the additional species information that was nec-

essary from the NCBI Taxonomy. NCBI has structured their entity groups in a logical

way that made automatic parsing of the entries possible.

The goal of this experiment was to add more comprehensive species information to Lin-

naeus’ dictionary and asses its performance versus an expanded Gold Standard Annota-

tion. This would allow the Ocean-Certain project to estimate what future improvements

and refinement might cost in terms of resources. With the target Gold Standard being

significantly more complex, performance is not required to be superior to the previous

configuration. The results of this dictionary extension can be seen in Figure 5.5 and

each step is explained below. The segment marked “Initial test” shows the performance

score of Linnaeus from the initial evaluation completed earlier in this paper.

Master’s student Sindre Næss was tasked with extracting all Genus/Phylum/Class in-

formation from the NCBI Taxonomy, as well as bacterial names together with their

strains. His previous work with ontologies and the NCBI Taxonomy allowed for the

rapid compilation of this data and is described in his paper “Generalization of Named

Entities Using Linked Data”[cit].
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The first set of dictionary expansion information supplied was a list of Genus/Phylum/-

Class names for any species found in the NCBI Taxonomy. This list was added to the

full external dictionary supplied by the Linnaeus developers. A preliminary test to ver-

ify that the new information was understood and in use by Linnaeus was done, and is

seen in the performance graph (Figure 5.5) marked Expanded Dictionary. With a

reported recall of 100.0%, the system was now identifying more varied species informa-

tion from the original Gold Standard. The resulting drop in precision to 32.0% is a

repercussion of the system finding entities that were not currently annotated manually.

This verification allowed for the continuation of this experiment by expanding the set

of target species to be annotated.

While the original Gold Standard annotation included only specific species names (See

Section 4.3), it was now necessary expand the rule-set to include species groups and

strains. Any species group such as “Alphaproteobacteria” (a class of bacteria), or

“LKM11” (an environmental clade) was included. After completion of this annotation

run another evaluation of Linnaeus was taken marked as Gold Standard expansion.

When complete, the performance scores for Linnaeus were promising with precision back

up to 73.4%, though recall did drop to 81.2%. This recall drop is attributable to our

Gold Standard annotation now requiring the annotation of bacteria strains which our

new dictionary was not yet expanded to include.

Under Dictionary Improvement (Bacteria) the dictionary was again expanded to

include more specific bacteria names and strains. This is reflected in the (somewhat

marginal) improvement of precision and recall to 75.3% and 84.6% respectively. While

now performing near the level of similar systems like SPECIES and OrganismTagger,

an analysis of system errors showed that name variations for species were being missed.

A final improvement of the dictionary was to take the various added species names, and

generate their shortened names and variations using a Python script. For example “Cro-

cosphaera watsonii” would now also have the entries “C. watsonii” and “Corcosphaera

sp” added to allow the system to identify these variations as the same thing.

This final improvement gave another small increase in performance to a precision of

77.2% and a recall score of 91.0%. These scores are comparable to systems built solely

around the NCBI Taxonomy and over a much more intricate set of entities. Further

improvements are possible with the inclusion of additional taxonomical databases into
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the dictionary, and a refinement of existing name variations. The assistance of biologists

to determine a set of rules for name variation as well as allowed species names could also

be beneficial, as this specialized knowledge was not available at the time of writing.

Figure 5.5: Linnaeus 2 Dictionary Improvement Summary

Avg Precision Avg Recall Avg F-measure

Initial test 85.6% 95.7% 84.2%

Expanded
Dictionary

32.0% 100.0% 48.5%

Gold Standard
expansion

73.4% 81.2% 77.1%

Dictionary
Improvement 1

75.3% 84.6% 79.7%

Dictionary
Improvement 2

77.2% 91.0% 83.5%

Table 5.5: Linneaus 2 Dictionary Improvement Data





Chapter 6

Conclusion

The aim of this work has been the examination and evaluation of existing Named En-

tity Recognition systems for specific entity types. This evaluation is to determine the

strengths and weaknesses of each system, in order to ascertain their viability for the

Ocean-Certain initiative. A set of research goals was drafted in Chapter 1 in order to

clarify and direct the purpose of this study while underway. In Chapter 2, background

information on key concepts was provided to give readers the knowledge required to

understand the purpose of Ocean-Certain, as well as the terminology and methods used

in Named Entity Recognition. Further, the process of connecting variables into facts

was described in order to demonstrate the importance of finding suitable NER systems

to fit Ocean-Certain’s needs. Chapter 3 outlined the role of Named Entity Recognition

in different scenarios, along with the methodology used to evaluate the different sys-

tems covered. The reasoning behind the selection of certain NER systems for formal

evaluation along with the details of the ”Gold Standard” annotation set to be evaluated

against was given in Chapter 4. Finally the results of each system test, along with an

examination of the strengths and weaknesses revealed, was discussed in Chapter 5. An

objective opinion about the viability of each system, based upon the results and the

necessary work to improve performance, was also given. This study then went further

by expanding the capabilities of the Linnaeus 2.0 NER system in Section 5.4.
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Appendix A

System Evaluation Error Tables

In order to keep the size of this paper to a reasonable level, only the system error

tables will be included in the Appendix. These error tables list the false positive and

false negative errors of each system by abstract. The error results for the twenty-five

abstract tests are contained in a single table. To improve readability, each one-hundred

error table is broken up into 4 segments. These error tables are labeled in the following

format;

<system name> Errors <number> of 4

Summary evaluation results of precision, recall, and F-measure can be found for each

system in Chapter 5, at the end of their respective sections.

The full results tables for each system, showing the above metrics for each individual

abstract, will be included in a .zip file and is available upon request.

The full output tables, which show the system returned annotations versus the gold

standard over every article will be included in a .zip file with this thesis and is available

upon request.
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Table A.1: Chemspot 2.0 Errors (25 abstracts)
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Table A.2: Oscar3 v1 Errors (25 abstracts)
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Table A.3: Oscar3 v2 Errors (25 abstracts)
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Table A.4: Oscar3 v3 Errors (25 abstracts)
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Table A.5: Chemspot 2.0 Errors 1 of 4
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Table A.6: Chemspot 2.0 Errors 2 of 4
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Table A.7: Chemspot 2.0 Errors 3 of 4
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Table A.8: Chemspot 2.0 Errors 4 of 4
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Table A.9: Oscar3 v3 Errors 1 of 4
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Table A.10: Oscar3 v3 Errors 2 of 4
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Table A.11: Oscar3 v3 Errors 3 of 4
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Table A.12: Oscar3 v3 Errors 4 of 4
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Table A.13: SPECIES Errors 1 of 4
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Table A.14: SPECIES Errors 2 of 4
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Table A.15: SPECIES Errors 3 of 4
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Table A.16: SPECIES Errors 4 of 4
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Table A.17: OrganismTagger Errors 1 of 4
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Table A.18: OrganismTagger Errors 2 of 4
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Table A.19: OrganismTagger Errors 3 of 4
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Table A.20: OrganismTagger Errors 4 of 4
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Table A.21: Linnaeus 2.0 Errors 1 of 4
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Table A.22: Linnaeus 2.0 Errors 2 of 4
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Table A.23: Linnaeus 2.0 Errors 3 of 4
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Table A.24: Linnaeus 2.0 Errors 4 of 4
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Table A.25: CoreNLP v2 Errors 1 of 4
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Table A.26: CoreNLP v2 Errors 2 of 4
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Table A.27: CoreNLP v2 Errors 3 of 4
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Table A.28: CoreNLP v2 Errors 4 of 4
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Table A.29: OpenNLP Errors 1 of 4
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Table A.30: OpenNLP Errors 2 of 4
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Table A.31: OpenNLP Errors 3 of 4
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Table A.32: OpenNLP Errors 4 of 4
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Table A.33: IllinoisNE Tagger Errors 1 of 4
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Table A.34: IllinoisNE Tagger Errors 2 of 4
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Table A.35: IllinoisNE Tagger Errors 3 of 4
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Table A.36: IllinoisNE Tagger Errors 4 of 4
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