
Optimizing for Energy in High-Level
Programming Languages on Embedded
Devices

Péter Henrik Gombos

Master of Science in Computer Science

Supervisor: Gunnar Tufte, IDI
Co-supervisor: Stefano Nichele, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

iii

Abstract

The use of embedded systems has exploded recently, and thus also the number of de-

velopers for embedded systems. But the traditional way of programming embedded

computers is hard and error prone, and the use of high-level programming languages is

preferred. Unfortunately, with high-level languages come a high level of power usage.

This thesis examines techniques of bringing high-level programming languages,

specifically JavaScript, to embedded computer systems, with a focus on driving down

the energy use. Three different JavaScript engines, Tessel, Espruino, and io.js, are tested

on the Tessel hardware and the Raspberry Pi. The tests consists of trivial operations run

in a loop repeatedly.

io.js is shown to execute the programs the fastest of the three engines, and also uses

the least amount of power per iteration. The Tessel is shown to have a sub-optimal

implementation of some operations, which limits its performance. Espruino runs the

benchmarks poorly, as they were not written with the execution model of Espruino in

mind.

It is concluded that by increasing the execution speed of the software platforms, the

system will be more power efficient.

v

Sammendrag

Bruken av integrerte datasystemer har eksplodert de siste årene, og dermed også an-

tallet utviklere for disse systemene. Men den tradisjonelle måten å programmere in-

tegrerte systemer på er vanskelig og full av feilskjær, og bruk av høynivå programmer-

ingsspråk er å foretrekke. Uheldigvis kommer høynivåspråk med et høyere energifor-

bruk.

Denne oppgaven undersøker teknikker for å bringe høynivå programmeringsspråk,

spesifikt JavaScript, til integrerte datasystemer, med et fokus på å begrense energy-

forbruket. Tre forskjellige JavaScriptimplementasjoner, Tessel, Espruino og io.js, blir

testet på to hardwareplattformer, Tessel og Raspberry Pi. Testene består av trivielle op-

erasjoner i en løkke reptertet et stort antall ganger.

io.js kjører programmene raskest, og bruker også minst energi per iterasjon. Ytelsen

til Tessel på noen operasjoner begrenses av suboptimal implementasjon av disse op-

erasjonene. Siden programmene testet er skrevet i standard JavaScript, kjører ikke Es-

pruino disse effektivt. Espruino kjører programmer på en spesiell måte, og krever at

kode er skrevet for denne modellen for å være effektiv.

Konklusjonen er at ved å øke kjørehastigheten til softwareplattformene vil systemet

bli mere energieffektivt.

vii

Preface

This work is the report for my Master’s project at Norwegian University of Science and

Technology (NTNU). The project was performed during the spring semester of 2015

at the Department of Computer and Information Science. Associate Professor Gunnar

Tufte has been the supervisor of the project.

I assume the reader has some programming knowledge, but it should be possible to

follow the project without any prior knowledge.

Acknowledgement

I would like to thank my parents, whom without I truly could not have completed this

project. Also, I want to thank Gunnar Tufte, his input on both the project and this thesis

has been invaluable.

Cover image is by Jay Hilgert.

Péter Henrik Haldorsen Gombos

Contents

Abstract . iii

Sammendrag . v

Preface . vii

Contents viii

1 Introduction 1

1.1 Embedded devices . 2

1.2 Compilation and interpretation . 3

1.3 JavaScript . 4

1.4 Problem . 5

1.5 Related work . 5

1.6 Outline of this thesis . 7

2 Creating an Energy Efficient Platform 9

2.1 Hardware . 9

2.2 Software . 12

3 Method 15

3.1 Benchmarks . 15

3.2 Hardware Platforms . 17

Silicon Labs EFM32 Giant Gecko . 17

3.3 Software Platforms . 18

viii

CONTENTS ix

Tessel . 18

Espruino . 19

io.js . 19

Operating system . 21

3.4 Experimental setup . 21

Data manipulation . 23

4 Results 25

4.1 Base Power Usage . 26

4.2 Program time . 27

4.3 Current samples . 28

4.4 Average current drawn per sample . 32

4.5 Iterations per sample . 32

4.6 Energy use per iteration . 33

5 Discussion 35

5.1 The benchmarks . 35

5.2 Comparison between the platforms . 36

Running time . 36

Per sample values . 36

Energy use . 37

5.3 Why is Espruino so slow? . 38

5.4 The Shift program on Tessel . 38

5.5 What does current draw mean? . 41

5.6 Documentation problems . 41

ptxdist on Giant Gecko . 41

Tessel runtime on Raspberry Pi . 42

5.7 Error in logged measurements . 42

6 Conclusion 45

6.1 Future work . 46

Bibliography 49

1

Introduction

Energy consumption in embedded computer systems is a topic of increased impor-

tance, with the explosion of their use in recent years. This rise is driven by the concept

of the Internet of Things (IoT). IoT means that some physical device is connected to the

Internet, allowing it to be remotely controlled and have functionality that an isolated

system can not have. (Kopetz, 2011) Embedded systems allow the development pro-

cess to tailor both hardware and software to the specific use of the system, making the

embedded system not a general programmable computer. Despite the advantages this

gives for the application, such as specific optimizations, this makes it harder to develop

a system, as there is no common platform. Additionally, an embedded system designer

needs to be knowledgeable in both the software and hardware domain, and developing

both will add time to the development of the device.

A solution to these problems is to use more generalized hardware, and use software

abstractions to ease the development. But this gives away a lot of the low-level con-

trol over the device, losing the possibilities for many optimizations, and adds overhead

to the execution process. As an attempt to consolidate these two competing impulses

when developing an embedded application, this work will try to investigate the en-

ergy consumption of using high-level programming languages on embedded devices.

Specifically, the use of JavaScript as the development language on different software

and hardware platforms is investigated.

1

2 CHAPTER 1. INTRODUCTION

1.1 Embedded devices

So what exactly is an embedded computer system? In Wolf (2008), it is defined as

“any device that includes a programmable computer but is not itself intended to be

a general-purpose computer”. Grimm et al. (2013) says they are “the integration of

a (microelectronic) system and its software into a larger, often autonomous, system

that often monitors and/or controls equipment without the need for manual interven-

tion.” From these definitions, it can be understood that an embedded system is a pro-

grammable computer that interacts in some way with the physical world in a device-

specific application. Embedded systems range from ABS brakes in a car to cell phones.

When designing an embedded computer system, the resources can be individually

tailored to the application of the system. For example, using Bluetooth is popular for

communicating with embedded systems, but if the application does not require wire-

less communication, there is no need to add Bluetooth capabilities to the design. This

tailoring applies to every part of the system, requiring the designer of the system to

balance contradicting constraints and needs. In a battery driven system, a powerful

battery that lasts a long time would be optimal, but the size of the battery will limit the

systems’ usability. For example, the battery used by the Tesla Model S can power the car

for almost 430 km. A similar battery in a cell phone would last for a long time, but as

the battery weighs nearly 600 kg, it would be impractical. (2013 Tesla Model S Review,

Car and Driver) Other constraints imposed on the systems can be memory size, storage

space, maximum operating temperature and deadlines for delivering data.

Power consumption is a constraint that is especially important in embedded sys-

tems, in a way that is not relevant to some other computer systems, like desktop ma-

chines. A battery powered device needs to keep functioning for the longest time pos-

sible on a single charge. But many systems cannot be charged at regular intervals, for

example sensor systems in areas that are hard to reach, such as at the bottom of the sea

or embedded in concrete. These systems need to be able to function for a long time on

a single battery. As lower energy use also means lower heat dissipation, better energy

efficiency will lead to a cooler system, which is crucial for hand-held devices like cell

phones.

1.2. COMPILATION AND INTERPRETATION 3

1.2 Compilation and interpretation

When computers first appeared, they were programmed manually with binary code,

which is time-consuming and error prone to write, and requires the programmer to re-

member various arbitrary codes. Instead, assembly languages were developed, the first

already in 1949 with further developments through the 1950s, which provides a one-to-

one mapping of easier to remember function names to the machine code. (Salomon,

1992) While far better for the programmer, assembly programming is still very time con-

suming and difficult to write, and when creating a complex application, the data models

the assembler provides are too basic. Virtually all programs written today are written in

a high-level programming language, requiring translation of the programs to a format

that the machine can run. (Aho et al., 2006) This translation can be done in two different

ways, compilation or interpretation.

Figure 1.1: A compiler producing intermediate code, and a computer executing the pro-
gram

Compilers take source code in a given language as input and outputs code in an-

other form either into a lower level language or into another programming language

entirely. Compiling to another high-level language is known as transcompiling, or sim-

ply transpiling. The compiled program when run takes the input and produces an out-

put. Figure 1.1 illustrates how a compiled program runs on a computer. An interpreter,

on the other hand, is a program running the code while at the same time taking any

input, and then produces the output, illustrated in fig. 1.2.

4 CHAPTER 1. INTRODUCTION

Figure 1.2: An interpreter executing a program on a computer

While compilation and interpretation give a lot of advantages over writing programs

in assembly language, they do add some overhead while running programs. A compiler

that translates anything but a trivial program can produce many equivalent and correct

outputs. There are often many ways of implementing the abstractions of a high-level

language in a lower language. Usually, there will most likely be added more instruc-

tions after a compiler pass compared to writing the assembly code by hand. In the case

of interpretation, the interpreter running on the computer by definition adds extra in-

structions. On the other hand, adding automated passes of the code allows for some

optimization techniques, which will be explored in chapter 2.

1.3 JavaScript

JavaScript is a dynamic, weakly typed language, created for allowing interactivity on

web pages. Developed in 1995 by Netscape, it became the basis of the ECMAScript stan-

dard in 1997. (A Short History of JavaScript) This standardization of JavaScript allowed

it to become the most used programming language on the web, by being available in

every browser. Currently, almost 90% of web pages uses JavaScript. (W3Techs, a) Newer

developments in the JavaScript world is Node.js, later forked into io.js, a standalone

framework for running the V8 JavaScript engine, allowing for the use of JavaScript on

the server side. More on the io.js framework and the V8 engine is presented in chap-

ter 3. With being available in just the last three years, already 0.2% of all websites are

currently using some server side JavaScript. (W3Techs, b)

1.4. PROBLEM 5

This dominance of JavaScript on the web has created a large community around

the language, with a lot of tools and available open source software. In NPM, the Node

Package Manager, over 150,000 JavaScript packages are available for download.1 As

more people are using JavaScript, there is a drive to expand its areas of deployment

and usage, seen through all the different projects with the aim of running JavaScript

directly on hardware. Besides the benefits of being a high-level language, there is also

the bonus for the developer not to have to learn a new programming language when

developing for an embedded platform.

1.4 Problem

When creating embedded systems, there’s often a need to use lower level languages

to achieve the desired power and speed requirements. It can be difficult to program

in these languages, with few abstractions and a hard to understand data-model. On

the other hand, high-level languages offer many improvements for the developer, as

well as a familiar programming environment. Unfortunately, high-level language often

mean a high level of energy use. To consolidate the competing directions of embedded

development, this thesis asks:

“What are energy efficient ways of bringing high-level programming lan-

guages to embedded devices?”

This question will be explored by comparing the energy use of some JavaScript en-

gines, particularly with the Tessel 1 and a Raspberry Pi board running Espruino and io.js

while running benchmark code.

1.5 Related work

The first research into optimizing software to achieve better energy performance was

done by Tiwari et al. (1994). Before their work, power measurement tools were only

available at the circuit and logic level. They introduced a way of estimating the energy

cost of the instructions that are available on the processor, by measuring the current

flow into the microprocessor with an ampere meter. Also introduced was a model for

1https://www.npmjs.com/

https://www.npmjs.com/

6 CHAPTER 1. INTRODUCTION

estimating the power consumption of a program by looking at the instructions of the

program. With this data, they could optimize code running on the processor by using a

strategy that minimizes the use of power-hungry instructions.

Russell and Jacome (1998) found that the model developed by Tiwari et al. was

needlessly detailed. Their model estimates power consumption of a program within

8% accuracy, by using the average power consumption per cycle of the processor, mul-

tiplied with the execution time in cycles of the program. Their conclusion is that adding

optimizations that minimize execution time of a program, will also reduce the energy

consumption of the same program.

Ortiz and Santiago (2008) looked at source code optimizations to find if they could

lower the energy consumption. They found that the impact of the optimization tech-

niques varied between the platforms used. This device specific optimization was ex-

plored further by De Lima et al. (2013), where the authors tried to find a set of compiler

optimizations that give the best result for the given program. They did this by reducing

the number of possible sets of optimizations, and then tested code compiled with the

sets of optimizations, finding the set that provided the best performance gain or was

most power efficient. While their research focused on a desktop computer, the same

could be done for an embedded system.

Kavvadias et al. (2004) found that they could estimate the energy consumption of a

program by using the base cost of each instruction. The model they developed shows

that the energy use is dependent on the instruction energy use, the interinstruction

costs of each instruction pair, and the costs of pipeline stalls.

PE =
n∑
1

Ei +
n−1∑

1
Oi ,i+1 +

∑
ε (1.1)

Shown in eq. (1.1) is the mathematical model of their research, where Ei is the en-

ergy consumed during the execution of instruction i, Oi , j is the interinstruction cost of

instructions i and j, and ε is the cost of a pipeline stall. The model shows that reducing

either the number of pipeline stalls or the number of instructions in the program will

reduce the energy consumed by the program.

In other research done in the same field, Valluri and John (2001) found that compiler

optimizations done for speed positively affected energy consumption. Specifically, re-

1.6. OUTLINE OF THIS THESIS 7

ducing the number of instructions that the processor needs to execute, reduces energy

consumption. Some optimizations that the research found favorable for energy use

were loop unrolling and function inlining.

Fortuna et al. (2010) found promising results in trying to parallelize JavaScript pro-

grams running on the web. In the design, JavaScript is inherently single-threaded, which

might lead to bottlenecks during execution. While the hardware platforms tested in this

thesis does not support parallel execution, it might be possible to use some of the tech-

niques in the paper to achieve better performance on future devices.

1.6 Outline of this thesis

Chapter 2 (page 9) goes deeper into what can be done to create an energy efficient em-

bedded device. In chapter 3 (page 15) the method of the experiment is explained, to-

gether with the rationale behind the experiment. The results of the this experiment is

presented in chapter 4 (page 25), and these are discussed in chapter 5 (page 35). Con-

cluding remarks are added in chapter 6 (page 45).

2

Creating an Energy Efficient Platform

When creating an energy efficient computer, there are two main parts to focus on, the

hardware and the software. Often they have to work together to create the best possible

system. This chapter will explain different energy saving techniques, by exploring both

the hardware and the software view.

2.1 Hardware

An easy way of saving energy is to let the computer run slower, executing fewer instruc-

tions in the same amount of time. As it is the act of executing an instruction that draws

energy, running fewer instructions will lead to lower power use. But as demonstrated

by fig. 2.1, if the execution time of a program on a slower computer is long enough, the

total energy use may be higher than on a faster computer.

To exploit this behavior, dynamic scaling of the clock, as well as the input volt-

age, can be used. By letting the operating system gather data from performance- and

energy-critical events, the operating system can manage the demands of each applica-

tion. (Weissel and Bellosa, 2002) Later research has found that the gain from dynamic

frequency scaling has diminished, as, for instance, sleep states in processors has be-

come better. (Le Sueur and Heiser, 2010)

Sleep states, or low power states, is a term for states where less of the computer’s

resources are available. While waiting for input, for instance, the CPU does not need to

be running, as it has no work to do. Doing so is called busy-wait, and consumes a lot

of energy, because the execution is spending time in a loop where the only thing done

9

10 CHAPTER 2. CREATING AN ENERGY EFFICIENT PLATFORM

Figure 2.1: Energy use of a fast processor (red) against a slow processor (blue) running
the same program

is checking if the computer has received any input. It is the computer equivalent of

children on a road trip constantly asking “are we there yet?” Introducing interrupts is a

better concept, where the application tells the operating system that it is waiting for an

interrupt. The OS can then either schedule other programs to run or turn off resources

that are not needed to wake up again, i.e. enter a sleep state. When the event that the

program is waiting for happens, the OS fires an interrupt and gives control back to the

program. In the program, a special function called interrupt handler runs, gathering

the input. In input-heavy programs, where the time spent waiting for data dominates

the calculation time, a lot of energy can be saved by using sleep states.

For example, the Silicon Labs EFM32 Giant Gecko has five energy modes with dif-

ferent hardware capabilities available in each mode, as shown in fig. 2.2. EM0 is the

normal running mode, where the CPU is available. In figure 2.2 it is shown in light

green. (EFM32 Giant Gecko Reference Manual, 2014) The EFM32GG990 uses typically

219 µA/MHz when operating in EM0, the normal running mode. When entering EM1,

the first and lightest sleep mode, the typical value is 80 µA/MHz, and in the deepest

sleep mode, EM4, it only consumes 0.02 µA. The use of these energy modes does have

some drawbacks, namely that waking up from deeper sleep modes takes time. On the

EFM32GG990 device, it takes 163µs to wake up from the deepest sleep mode, which

2.1. HARDWARE 11

Figure 2.2: The energy modes of the Silicon Labs EFM32 Giant Gecko

might cause problems in timing sensitive systems. Also, it consumes more energy to

wake up from a sleep state. (EFM32 Giant Gecko 990 Datasheet, 2014)

Sleep states taken further lead to turning off parts of the computer. Because of

the failure of Dennard Scaling (faster transistors and more of them on a chip leads to

progress) in recent years, the term dark silicon has been introduced. When more and

more transistors are running on a single chip, the heat of the device becomes too high to

sustain, and some parts of the chip must be turned off, or kept dark. This is a disadvan-

tage when the goal is to use as much of the chip at the same time as possible. Research

is currently being done into leveraging this property when designing the system, i.e.

purposely turn off some parts of the chip that can be beneficial. (Taylor, 2012)

Kumar et al. (2003) created an architecture for multiple heterogeneous cores, using

existing cores with a similar instruction set. By using an informed strategy for choos-

ing the core to run the program on, and having the ability to switch core dynamically

while running, they achieve an increase in energy efficiency. Similarly, the SHMAC (The

Single-ISA Heterogeneous MAny-core Computer)1 project tries to create a computer

with multiple different cores. Here some cores are more capable of specific tasks than

others, using accelerators, out-of-order processors or vector processors. The computer

can then allocate a particular core for a task, and turn off the parts of the CPU that are

not used. In the same way as Kumar et al. described, energy can be saved by the turn-

1http://www.ntnu.edu/ime/eecs/shmac

http://www.ntnu.edu/ime/eecs/shmac

12 CHAPTER 2. CREATING AN ENERGY EFFICIENT PLATFORM

ing off of the machine while at the same time achieve a performance boost by using

specialized hardware. (Jahre, 2013)

2.2 Software

Running optimized code on the platform might lead to lower power consumption, as

shown by Kavvadias et al. (2004) and Valluri and John (2001). Optimizing the code leads

to fewer instructions in the program, which leads to lower energy use for the entire

program. When compiling a program, instead of naively translating each expression

into instructions, the compiler can analyze the source code and optimize the use of

instructions. Some of the common optimizations the compiler can do, are listed below.

(Aho et al., 2006, chap. 9)

Global common subexpression

Find some subexpression in the code that is calculated multiple places, and in-

stead only calculate it once, putting the result of the calculation into the places

that redundantly calculated the expression.

Constant folding

Deducing that some variable or calculation is constant, and replacing it with this

constant.

Dead code elimination

Finding that some part of the code is unreachable at run-time, and instead of

having to add the unreachable code to the compiled code, eliminate it.

Function inlining

Move a function definition to the place where the function is called in the code,

to remove the added work of calling a function.

Loop unrolling

Reduce the number of iterations in a loop by doing more work in each iteration,

for example, do the calculations for originally three iterations in one.

2.2. SOFTWARE 13

Code-motion

Find code that is loop-invariant, i.e. calculations that does not need to be calcu-

lated for each iteration in the loop, and move it outside the loop body.

Reduction in strength

Swap an expensive instruction for a cheaper one, e.g. change a multiplication by

two with a left shift.

The strength of these optimizations becomes apparent when the compiler performs

several of them and multiple times. For instance, after a function inlining, some ex-

pression in the code that was former the function can be a constant, which could lead

to some code in the function being dead. As shown by De Lima et al., the order of the

techniques can impact the results of the optimization.

An interpreter executes the code as it runs, and it cannot get the insight a compiler

does to perform optimizations. If the interpreter were to implement the same tech-

niques, it would have to do two passes of the code, and the whole purpose of the inter-

preter would vanish. But there is a middle ground, called just-in-time compilation, or

JIT compilation for short.

A JIT compiler runs as the program is executing, just like an interpreter. But it does

not necessarily only translate one expression at a time, it can compile larger blocks,

allowing for optimizations on these parts before execution. (Aycock, 2003)

Another way of making the software save energy is to not execute code at all. With

the rise of Internet-connected devices, it has become feasible to load off the computation-

heavy operations to some other computer. A typical example of this is making a server

create queries and retrieve data from a database, which might be computation inten-

sive. A newer example is in gaming, where a handheld device gets rendered 3D data

from a dedicated gaming computer as a video stream and sends input signals back. The

PlayStation Vita2, made by Sony, is a small gaming device, that can play any PlayStation

4 game through a network connection, despite not being powerful enough to render

the games.

The operating system on an embedded system uses energy. While strictly speaking

not needed for writing assembly programs, when the computer runs high-level pro-

2https://www.playstation.com/en-us/explore/psvita/

https://www.playstation.com/en-us/explore/psvita/

14 CHAPTER 2. CREATING AN ENERGY EFFICIENT PLATFORM

grams, the operating system performs actions that is either required or convenient.

But the more features the operating system has, the more actions are performed in the

background, leading to higher energy use. Thus to save energy, optimizing the oper-

ating system can yield results. When designing an embedded platform, there are two

main strategies to use. Either create a minimal framework that functions as an operat-

ing system, or use an existing system and optimize it for the device.

3

Method

To fulfill the goals of this thesis, an experiment comparing the energy use of differ-

ent JavaScript engines was developed: Measuring the current drawn while executing

benchmark programs in different JavaScript engines on various hardware platforms,

and using these measurements to find the power usage of a single expression. By run-

ning the programs a large number of times, it is possible to obtain an average power

consumption of the expressions. All of the programs are trivial operations in a loop,

and by calculating the average consumption the energy cost of a single expression in

the JavaScript engine can be found.

The experiment will look at three different software solutions to execute JavaScript

code, each with its implementation tactic, namely Tessel, Espruino and io.js. The tests

consist of running these software solutions on two different hardware platforms, the

Tessel 1 and the Raspberry Pi 1 Model B.

The goal of the experiment is to look at differences in the energy use of the different

JavaScript implementations, which means that it is not the exact numbers that are of

interest, but the trends.

3.1 Benchmarks

When testing the platforms, the benchmarks consisted of four programs, all following

a similar pattern: Evaluating an expression in a loop repeated 1,000,000 times. The

programs are named after the expression used in it, testing various JavaScript features;

Addition, Multiplication, Closure, and Left shift. The addition program is shown in list-

15

16 CHAPTER 3. METHOD

ing 3.1, and the multiplication program in listing 3.2, using basic mathematic opera-

tions.

for(var i = 0; i < 1000000; i++) {
var a = 1;
var b = 2;
var c = a + b;

}

Listing 3.1: The Addition program

for(var i = 0; i < 1000000; i++) {
var a = 1;
var b = 2;
var c = a * b;

}

Listing 3.2: The Multiplication program

In listing 3.3, the Left shift program is shown. Like the addition and multiplication

program, it consists of a single expression, left shift. To left shift a by b is to add b zeros

to the end of a’s binary representation. For example:

110 << 210 = 12 << 102 = 1002 = 410

for(var i = 0; i < 1000000; i++) {
var a = 1;
var b = 2;
var c = a << b;

}

Listing 3.3: The Left shift program

for(var i = 0; i < 1000000; i++) {
var a = 1;
var c = (function () {return a})();

}

Listing 3.4: The Closure program

The Closure program, seen in listing 3.4, evaluates a closure, which accesses a global

variable. A closure is a concept often used in JavaScript programs, where an unnamed

local function is evaluated where it is defined. In this example, it may seem trivial, but

as JavaScript only has a scope per function, closures are an important tool to not clutter

the global scope. And with the single threaded nature of the language, as well as its

higher order, closures are an important flow control concept in applications.

3.2. HARDWARE PLATFORMS 17

3.2 Hardware Platforms

Figure 3.1: Raspberry Pi Model B, source:

https://commons.wikimedia.org/wiki/File:RaspberryPi.jpg Figure 3.2: The Tessel 1

As can be gathered from table 3.1, the Raspberry Pi is a much faster machine than the

Tessel, clocked at almost four times higher, and with 16 times the amount of RAM. This

difference means that the Raspberry Pi can run larger programs and do it faster, but

also that it will use more power.

Raspberry Pi Tessel
CPU BCM2835 LPC1830
Core ARM1176 ARM Cortex M3

Architecture ARMv6 ARMv7
Clock Speed 700 MHz 180 MHz

RAM 512 MB 32 MB
Flash SD-card 32 MB

Table 3.1: Comparing a Tessel 1 with a Raspberry Pi 1 Model B (Raspberry Pi FAQs;
Tessel Harwdare Documentation)

Silicon Labs EFM32 Giant Gecko

When developing the experiment, another hardware platform was intended to be tested.

The Giant Gecko from Silicon Labs is a microcontroller created for low energy use cases,

described further in section 2.1. To develop applications for the platform, Silicon Labs

sells development boards. In this project, the EFM32GG990-DK3750 was used for this

purpose. It uses a CPU that is summarized in table 3.2. It is a much less powerful device

than both the Tessel and the Raspberry Pi, clocked at a third of the Tessel, and contain-

ing a small fraction of the memory available on the other platforms.

https://commons.wikimedia.org/wiki/File:RaspberryPi.jpg

18 CHAPTER 3. METHOD

CPU GG990
Core ARM Cortex M3

Architecture ARMv7
Clock speed 48MHz

RAM 128KB KB
Flash 1024 KB

Table 3.2: Key data of the Giant Gecko 990 (EFM32 Giant Gecko 990 Datasheet, 2014)

3.3 Software Platforms

Tessel

Tessel1, developed by Technical Machine, is a project created for offering software de-

velopers a platform for developing hardware applications. It consists of both a hard-

ware platform, described above, and a software platform. This software platform in-

cludes a runtime for the hardware, interpreting the code; a command line interface to

easily run programs, and a compiler. Instead of interpreting JavaScript, Tessel compiles

it to Lua and interprets the generated Lua code on the device.

Lua is another programming language, designed to be fast and lightweight, and

is easily embeddable. In many ways, it is similar to JavaScript, so a translation from

JavaScript to Lua is not very difficult. There exists two main implementations of Lua,

the official interpreter, and LuaJIT, a highly optimized just-in-time compilator, and vir-

tual machine. (About Lua)

One of the rationales behind choosing Lua as the intermediate language was that

Lua has a low memory profile and is easy to embed. The V8 engine was the only al-

ternative at the design time of the Tessel. But at the time, Technical Machine did not

think using V8 could be reconciled with the low power goals they had for the Tessel. To

further drive down energy use, the LuaJIT compiler was introduced, first only using the

virtual machine, but with the goal of enabling just-in-time compilation in the future. (A

New Engine For Your Tessel, 2014)

The compiler of the Tessel, the Colony Compiler2, is a simple lexical parser, that

translates the JavaScript expressions into the Lua equivalents. Consequently, while a

1https://tessel.io
2https://github.com/tessel/colony-compiler

https://tessel.io
https://github.com/tessel/colony-compiler

3.3. SOFTWARE PLATFORMS 19

complete compilation of the source code is done, it does not do any optimizations to

the output.

Recently, Technical Machine has shifted focus away from creating a truly low-power

device. Ease of development is more important for the Tessel going forward than min-

imizing the power consumption. Therefore, the Tessel 2 will run io.js using a Linux-

based operating system. (Moving Faster With io.js, 2015)

Espruino

Espruino3 is another project that aims to bring hardware to software developers, also

through JavaScript. But unlike Tessel, the goal is to target devices with memory as small

as 128kB Flash and 8kB RAM. The Espruino project consists of both a software and a

hardware platform, but to achieve the low memory goal, the software implementation

includes a lot of trade-offs.

The Espruino virtual machine (VM) is an almost complete JavaScript implementa-

tion. The difference between Espruino and other JavaScript implementations is that it

does not translate the source code to byte code but executes the source directly, one

expression at a time. As the developers want to keep the JavaScript source code on

the device while executing to be able to edit it on the device, it is not translated due to

memory concerns. If the VM translated to intermediate bytecode, it would need twice

the amount of storage for the same program to keep it all on the device.(Espruino In-

terpreter Internals)

Other optimizations done for memory minimization include using a linked list for

storage of arrays and objects, allowing for constant time insertion and deletion. Also

available are typed arrays which are a direct mapping of memory to the data structure,

allowing write applications with a more optimized memory model. (Espruino Perfor-

mance Notes)

io.js

io.js4 is a framework created with the goal of using the V8 JavaScript engine without a

browser, and with a rich input and output (I/O) API. The framework is asynchronous

3http://www.espruino.com/
4https://iojs.org

http://www.espruino.com/
https://iojs.org

20 CHAPTER 3. METHOD

and event-driven, designed for creating scalable network applications. The io.js frame-

work uses an event loop that runs callbacks, functions that are registered to be run

when an arbitrary event happens. io.js is therefore different from traditional thread-

based programming platforms, where I/O blocks further execution of the code. (About

Node.js)

As a wrapper around V8, io.js also functions as an easy way of installing a JavaScript

runtime on computers, allowing JavaScript to be an alternative to other programming

languages.

io.js is a fork of Node.js, with a different development schedule and philosophy. Cur-

rently, io.js uses a newer version of the V8 engine than Node.js. But the io.js team has

recently announced that they will be joining the new Node Foundation and renaming

the project Node.js soon.5 Thus the terminology in this thesis a bit hard, as io.js may

suddenly have changed its name. But as the future Node.js will be more or less based

upon the io.js project, the least confusing at the moment is to use io.js consistently.

V8

The V8 JavaScript engine is built by Google, and used in the Google Chrome Web Browser.

It is developed with a focus on creating the fastest JavaScript engine possible and out-

performs all other major JavaScript engines available today. There are three major de-

sign areas to achieve the speed required (V8 Design Elements):

Fast property access, as JavaScript is a dynamic language, property access usually

is slow, due to it requiring a dictionary lookup. V8 uses dynamically created hidden

classes to be able to access properties from offsets, requiring a single load instruction.

It only requires these classes to be created once for each object, which leads to a faster

creation of any other objects of the same class.

Dynamic machine code generation, the engine uses just-in-time compilation, di-

rectly to bytecode. Because of the hidden classes created for the fast property access,

the compiler can guess that after property access, the current class will be used for all

future accesses in the same section of code.

5https://medium.com/node-js-javascript/io-js-week-of-may-15th-9ada45bd8a28

https://medium.com/node-js-javascript/io-js-week-of-may-15th-9ada45bd8a28

3.4. EXPERIMENTAL SETUP 21

Efficient garbage collection, V8 uses a strategy for memory reclaiming that aims at

running for as short time as possible. To do this, it stops program execution when per-

forming garbage collection and does not process the whole heap in most collection

cycles.

Operating system

An operating system is needed to run programs on a computer, controlling the input

and output mechanisms, and schedule which program is to run. The Tessel 1 firmware

includes a basic OS, so a developer does not need to set up an OS.

The website of Raspberry Pi recommends the Raspbian Linux distribution, which is

based on Debian 7. Since the Raspberry Pi has an ARMv6 processor, but Debian only

supports ARMv7 natively; this distribution was created separately. But Raspbian is not

actively maintained, and has become quite outdated. Debian is currently in version 8.

uClinux is used through the PTXdist build system to get an operating system on the

Giant Gecko. PTXdist consists of a complete toolchain for building Linux, and a lot of

rules to build packages for various systems, among them the Giant Gecko DK3750.6

It is not a distribution, but an “executable documentation”, meaning that it contains

the steps necessary to build the target system in scripts that can be read or executed.

(Pengutronix, 2014)

3.4 Experimental setup

To power the experiment, the Keysight E3631A power supply was used. As both the

hardware platforms were running experiments at the same time, they were both con-

nected to the power supply, with a common ground. The voltage was set to 5.015V, as it

is the recommended operating voltage for both the Raspberry Pi and the Tessel. (Power

Supply, Raspberry Pi Foundation; Powering Tessel, Technical Machine) The multimeter,

Keysight 34410A, was connected in series with the power supply and the device, set to

ADC measurement. There was one multimeter for each device while running in paral-

lel. Figure 3.3 shows a circuit diagram for this experiment. Both devices received power

through a Micro USB cable. A cable was cut, and with clamps, the power and ground

6http://git-public.pengutronix.de/?p=OSELAS.BSP-EnergyMicro-Gecko.git

http://git-public.pengutronix.de/?p=OSELAS.BSP-EnergyMicro-Gecko.git

22 CHAPTER 3. METHOD

wires were connected to the power supply. (Universal Serial Bus Micro-USB Cables and

Connectors Specification, 2007)

The multimeter supports logging over LAN, allowing to monitor the experiment re-

motely. Together with the Raspberry Pi’s remote SSH-access, the experiments on the

Pi could be remotely started and controlled. To fully automate the experiment on the

Raspberry Pi, a shell script was written to restart the program when it had run its course.

After each run, the device would sleep for 0.5 seconds before the reset, to tell the differ-

ence between each run.

Figure 3.3: Circuit diagram of the experiment

3.4. EXPERIMENTAL SETUP 23

Figure 3.4: The hardware setup of the experiment

Unlike the Raspberry Pi, the Tessel hardware does not allow for remote access while

it is running on external power because the USB port is the only communication port

able to flash the Tessel. Instead, the program was written to the internal flash, which

will start to run whenever the Tessel boots. Then the hardware was reset from software

after each program run. This feature did not exist in the platform, but was written for

this experiment, and has since been accepted into the project.7 After the approximate

wanted number of runs, the logging was stopped.

Data manipulation

The Benchvue Software can export the measurement data in CSV format, in two columns

with a timestamp and the sampled data at that time. A Python program read these files

and performed the required manipulations on the data.

7https://github.com/tessel/t1-firmware/pull/140

https://github.com/tessel/t1-firmware/pull/140

24 CHAPTER 3. METHOD

When the Raspberry Pi was sleeping, the current was always under 0.39 µA, and at all

other times it was above. This threshold was exploited to create a stream with only the

samples taken while a program was running. The stream was then split up into blocks

of as many samples as the average program contains. To find the energy consumed

during each program run, the blocks were added up. The average of these sums was

then the average power usage of one experiment.

The current readings through the reset procedure were removed to get similar data

from the Tessel. With the reset procedure not as clear as the sleep dips in the power

readings of the Raspberry Pi, it was more difficult to remove the excess data. Instead

of filtering the data below a threshold, the time data was used to remove the samples

after each program has been run. By using the approximate running times in table 4.1

(page 27), and the timed reset of 12.8 s, it was possible to estimate the start and end

of each program run. These start and end points were used to remove the samples in

between, which corresponded to the reset procedure. Then the samples kept were used

in the same manner as for the Raspberry Pi programs.

The average current drawn by each program was divided by 1,000,000 to show the

current drawn by each iteration. The electric power used in each iteration was then

calculated with the formula:

P = IV

This finds the amount of work done by the processor for each iteration in the bench-

marks.

4

Results

First shown in section 4.1 are the base power usage of both tested hardware platforms,

i.e. the current drawn when no program is running. The Raspberry Pi is shown to draw

more than twice the current than the Tessel does.

Next, in section 4.2 the approximate time for running the various programs on each

software platform are tabulated. These numbers were used to find the average current

drawn by a program run.

Then in section 4.3, graphs of the current samples taken from the running of each

program on every platform are presented, to illustrate the typical appearance of the

current drawn during a program run.

In section 4.4, the average current drawn per sample is shown, allowing for direct

comparison with the results from section 4.1. The results show that the Tessel draws far

less current than the Raspberry Pi, but also that the Espruino VM draws less than io.js.

The number of iterations per sample is shown in section 4.5, where it is shown that io.js

manages to perform an order of magnitude more iterations per sample than the other

platforms.

Lastly, in section 4.6, the calculated average current drawn and power used by a

single iteration of each program on every platform is shown. Here it can be seen that

despite drawing the most amount of current when running, io.js is the most efficient

one per iteration.

25

26 CHAPTER 4. RESULTS

4.1 Base Power Usage

In figures 4.1 and 4.2, power measurements of both hardware platforms running with

no active program are graphed. All the noise that can be seen is various background

programs running, like networking and resource management.

Figure 4.1: The Raspberry Pi running with no active program

With a sample set over 10 minutes, the average current drawn per sample is 0.378A

on the Raspberry Pi with no running program.

4.2. PROGRAM TIME 27

Figure 4.2: The Tessel running with no active program

In the Tessel graph, fig. 4.2, there is a lot less noise. The high readings that can be

seen are from the WiFi-chip that the Tessel hardware provides. About every 12 seconds

the Tessel gathers a list of all WiFi networks that are within range, and check if any of

them is recognized.

With a sample set over 10 minutes, the average current drawn per sample is 0.162A

on the Tessel with no running program.

4.2 Program time

In table 4.1, the approximate times of running the programs are gathered. To note is

the running time of the Left shift program on the Tessel, which is much higher than

any other running time. The closure program also systematically uses a longer time on

every platform.

Addition Multiplication Left shift Closure

Espruino 0m 48s 0m 48s 0m 49s 1m 19s
io.js 0m 3s 0m 3s 0m 3s 0m 4s

Tessel 0m 19s 0m 19s 6m 12s 2m 17s

Table 4.1: Approximate time of each program

28 CHAPTER 4. RESULTS

4.3 Current samples

This section shows the results gathered by the multimeter, as described in section 3.4.

Shown in figs. 4.3 to 4.6 are graphs of the samples of the four benchmarks running on

each platform, cut to approximately one program run.

(a) io.js (b) Espruino

(c) Tessel

Figure 4.3: Samples of the Addition Program

In fig. 4.3a, the Addition Program running on io.js is shown. The big dips that can be

seen are the sleep command that is used to differ between each run. The same is visible

in fig. 4.3b, where an Espruino run of the same program is shown. The spikes that can

be seen in fig. 4.1 are not visible during the sleep procedure, due to other OS functions

being paused.

4.3. CURRENT SAMPLES 29

(a) io.js (b) Espruino

(c) Tessel

Figure 4.4: Samples of the Multiplication Program

In figs. 4.3c, 4.4c, 4.5c, and 4.6c, the current samples taken of the Tessel is shown. In

all of these figures, the current drawn during the reset procedure can be seen.

30 CHAPTER 4. RESULTS

(a) io.js (b) Espruino

(c) Tessel

Figure 4.5: Samples of the Left Shift Program

As the Left Shift program uses much longer time on the Tessel, fig. 4.5c is different

from all others. The regularity of the WiFi chips activities is especially clear here.

4.3. CURRENT SAMPLES 31

(a) io.js (b) Espruino

(c) Tessel

Figure 4.6: Samples of the Closure Program

Comparing fig. 4.6c with the other samples that were taken off the Tessel, the values

vary more when running the Closure program. When translating the Closure program,

more than one instruction must be used. From the figure, it is clear that some of these

instructions uses less power than others.

32 CHAPTER 4. RESULTS

4.4 Average current drawn per sample

Add
Espruino 0.409 A

io.js 0.419 A
Tessel 0.203 A

Multiplication
Espruino 0.409 A

io.js 0.419 A
Tessel 0.203 A

Shift
Espruino 0.409 A

io.js 0.419 A
Tessel 0.219 A

Closure
Espruino 0.406 A

io.js 0.422 A
Tessel 0.215 A

Table 4.2: Average current drawn per sample

Table 4.2 shows the average current drawn per sample of each program, with the

same data as used in table 4.4. As can be seen, io.js draws the most current per sample.

4.5 Iterations per sample

The number of iterations done per sample is shown in table 4.3 using the number of

samples taken in the experiments.

These values are tied to how fast the programs run, as a program that runs for a

longer time will be sampled more often because the sample rate being constant.

Add
Espruino 4.8

io.js 64.0
Tessel 8.1

Multiplication
Espruino 4.7

io.js 64.1
Tessel 7.8

Shift
Espruino 4.6

io.js 63.9
Tessel 0.7

Closure
Espruino 3.0

io.js 63.9
Tessel 1.8

Table 4.3: Iterations per sample

4.6. ENERGY USE PER ITERATION 33

4.6 Energy use per iteration

Add
Tessel io.js espruino

Current (µA) 158.18 55.286 844.32
Power (µW) 793.27 277.26 4,234.3

Multiplication
Tessel io.js espruino
165.67 55.276 844.16
830.84 277.21 4,233.5

Closure
Tessel io.js espruino

Current (µA) 1,196.3 70.896 1347.9
Power (µW) 5,999.4 355.54 6,759.7

Shift
Tessel io.js espruino
3,334.5 55.276 862.05
6,723 277.21 4,323.2

Table 4.4: Energy per iteration in loop

In table 4.4, the calculated average current drawn and power used per iteration in

each program is collected. The values are shown in µA, thus as the number of iterations

are 1,000,000, the values in the table also represent the average current drawn by the

entire program run.

5

Discussion

In this chapter, the results shown in the last chapter are discussed, along with issues

that arose with the method.

5.1 The benchmarks

The benchmarks in the experiment were chosen to test some JavaScript features, in a

way that mimics the work done by Tiwari et al. But instead of just testing one instruc-

tion, JavaScript expressions are tested. The Closure program especially demonstrates

this point, as a function definition and call uses many instructions in an assembly im-

plementation. But also the other programs contains more than a simple operation, with

the use of variables translating into memory accesses.

An optimizing compiler should be able to reduce the number of instructions in all of

the benchmarks. For example by using constant folding, the variable lookup in each of

the operations could be removed. After this constant folding, the expression itself could

be found identical in every iteration of the loop, causing the compiler to move it out of

the loop. The operation in the loop would then simply become a variable declaration.

In the Closure program, the function could be inlined, resulting in the operation also

being just a variable declaration.

35

36 CHAPTER 5. DISCUSSION

5.2 Comparison between the platforms

This section compares the results of the different platforms, through the running times

of the programs; the values found per sample and the calculated per iteration results.

Running time

Execution time on the Raspberry Pi is 3.89 times faster than on the Tessel, as the Rasp-

berry Pi’s clock runs that much faster. Adjusting table 4.1 on page 27 for this, the con-

jectured running times of the programs on the Tessel if the hardware was as powerful as

the Raspberry Pi are shown in table 5.1. As can be seen, the Tessel speed of the Addition

and Multiplication program is comparable with the io.js version. Listing 5.2 shows that

the JavaScript operation is translated directly to the equivalent Lua operation, making

the program run very efficiently. The cause of the massive performance loss in the Left

shift program is described in section 5.4.

Addition Multiplication Shift Closure
Espruino 48 s 48 s 49 s 79 s

io.js 3 s 3 s 3 s 4 s
Tessel 4.88 s 4.88 s 95.6 s 35.21 s

Table 5.1: Adjusted running times

The Closure program uses a longer time on each platform, due to a function not

being represented by a single instruction. As the V8 engine behind io.js includes JIT

compilation, a lot of the extra work that a closure needs can be optimized.

While the values shown here can give an idea into the speed differences, the num-

bers are not an exact prediction. Other factors than just the clock speed might influence

the running times on different platforms. For example the memory access speed, com-

munication bus performance and peripherals that the hardware provides could have

an impact.

Per sample values

As seen in table 4.2, io.js draws most current per sample, but just 0.01 A more in most

cases. But by referencing table 4.3, it is clear why it is higher than the other two, but

5.2. COMPARISON BETWEEN THE PLATFORMS 37

still uses less energy per iteration, as table 4.4 show. Because io.js executes the program

much faster, a lot more iterations are done per sample.

Comparing these results to the average energy drawn by the platforms when run-

ning no program, section 4.1, the percentage of the current drawn by the program is

shown in table 5.2. This table demonstrates that most of the energy consumed when

running programs on the devices goes to powering the device. The operating system or

additional hardware the platform provides, such as light emitting diodes (LEDs), can be

examples that draw additional power.

Add
Espruino 7.58%

io.js 9.88%
Tessel 20.2%

Multiplication
Espruino 7.58%

io.js 9.88%
Tessel 20.2%

Shift
Espruino 7.58%

io.js 9.88%
Tessel 26.0%

Closure
Espruino 6.90%

io.js 10.4%
Tessel 24.7%

Table 5.2: Percentage of current drawn by program

When running programs on the Tessel, more of the current drawn goes to the pro-

gram because the OS is specifically tailored to just running the programs on the Tessel

hardware. The OS on the Raspberry Pi is a generic system created for everyday use on

the device. It supports a graphical user interface and has many packages pre-installed.

By changing to a more optimized OS, with fewer features enabled, the energy usage

could be lowered.

Energy use

Comparing the energy use of the Tessel and io.js, shown in table 4.4, it is clear that the

scenario illustrated in fig. 2.1 holds true. The energy used by running a program in

io.js on a faster computer is lower than using Tessel on a slower one. That means if the

need is to run the program using the least amount of energy, it is better to use io.js on

the Raspberry Pi. But, as can be seen from section 4.1, if the faster device is running

while the slower is finishing up, it will use more power overall. If the system cannot be

38 CHAPTER 5. DISCUSSION

powered down after it is done running, the energy saved while running the program will

be for nothing.

As seen by Valluri and John (2001), optimizing for speed will lead to lower energy

use. By looking at table 5.1 and table 4.4, there is a lot to improve on the speed of both

the Espruino on the Raspberry Pi and the Tessel.

5.3 Why is Espruino so slow?

With the goal of the Espruino project being to create a low-power JavaScript embedded

unit, it seems counter-intuitive that it uses so much energy when running on the Rasp-

berry Pi. Seen from table 4.4, it is a power of magnitude worse than running io.js on the

same platform. Why is this?

When the Espruino executes code, it does so directly from the source, evaluating

one expression at a time. With the entire program being a loop, this leads to a lot of

time being put into parsing the program. After 1,000,000 iterations, this parsing can

add up to quite a lot.

Additionally, the memory model of Espruino does not scale with many lookups. As

it is using a linked list to store variables, doing a lot of variable arithmetic, as all the

programs do, leads to more lookups in this list.

Espruino cannot do optimizations, as it executes the code given to it. When de-

veloping code for the Espruino, one should take into account the limitations of the

platform. It may not run all code fast, but code optimized for it should be better. A

solution for runing generic code faster on Espruino could be to add some software that

optimizes the JavaScript code before running it. While fixing some problems, this runs

counter to the goal of Espruino to give the developer the ability to debug JavaScript that

is running on the device.

5.4 The Shift program on Tessel

When running the Left shift program on the Tessel, it needs a lot more time than any

other program and thus use a lot more power. The code running must be analyzed to

find out why.

5.4. THE SHIFT PROGRAM ON TESSEL 39

In listing 5.1, the entire code generated by the Colony Compiler, the JavaScript to

Lua compiler used by the Tessel, of the Left shift program is shown. Comparing the

code in the while loop with code generated for the Multiplication program, seen in list-

ing 5.2, there is quite a significant difference between what the compiler produces for

the different operations. Lua does not have an operator for the left shift operation like

JavaScript does, but the same behavior is available through the bit-module. To main-

tain control over what is global variables in the Tessel firmware, bit has been renamed to

_bit, which is why this is used when calling the shift operation. Therefore, the operation

in line 8 of listing 5.1 is equivalent to the JavaScript operator.

return function (_ENV, _module)
local exports, module = _module.exports, _module;
local i, a, b, c = i, a, b, c;
--[[0]] i = (0);
while ((i)<((1000000))) do
--[[38]] a = (1);
--[[53]] b = (2);
--[[68]] c = _bit.lshift(_G.tointegervalue(a),_G.tointegervalue(b));
local _r = i; i = _r + 1;
end;
return _module.exports;
end

Listing 5.1: Lua code generated by the Colony Compiler for the Shift Program

--[[35]] a = (1);
--[[47]] b = (2);
--[[59]] c = ((a)*(b));

Listing 5.2: Lua code generated for the Multiplication program (excerpted)

As the ECMAScript standard requires the values in a shift expression to be cast to

integers, the compiler explicitly casts the values to integers. (Ecma International, 2011,

section 11.7.1) This casting is implemented in the framework, and can be seen in list-

ing 5.3.

As seen, js_toprimitive is called on the value, to ensure that Lua only tries to convert

a primitive to a number and thus avoiding error. The implementation of js_toprimitive

can be seen in listing 5.4. While all the function calls are built-in Lua functions in the

40 CHAPTER 5. DISCUSSION

_G.tointegervalue = function (val)
val = tonumber(js_toprimitive(val))
if val == nil then

return 0/0
else

return math.floor(val)
end

end

Listing 5.3: tointegervalue from the
Tessel runtime code (Source: https://
goo.gl/xwNXyZ#L43

local function js_toprimitive (val)
if type(val) == ’table’ then

val = val:valueOf()
if type(val) == ’table’ then

val = tostring(val)
end

end
return val

end

Listing 5.4: js_toprimitive from the Tes-
sel runtime code (Source: https://goo.
gl/xwNXyZ#L23

end, adding extra instructions is hurting the performance. When performing a sin-

gle bit shift instruction, two calls to tointegervalue are issued, and each of those calls

js_toprimitive once, for a total of 4 function calls in the framework code. With the addi-

tion of the Lua built-in function calls, three per operand, as well as the two comparisons

at least 14 instructions are added to ensure type safety for the left shift operation. This

number assumes that only a single instruction is used per function call, which is a low

estimate.

A way to remove a lot of this overhead when executing would be to let the compiler

do optimizations to check if the operand is an integer at compile time, i.e. do constant

folding. While this might hurt the compilation speed, the trade-off should be worth it

to make the instruction faster, at least in some cases.

But there is no need for the compiler to do any type validation here. The implemen-

tation of JavaScript in the Colony compiler tries to follow the JavaScript specification,

and the shift implementation is exactly after the standard. Lua, just as JavaScript, is a

dynamic and weakly typed language. The left shift operation in Lua works on exactly the

same numbers as the JavaScript operation. In the current implementation, the casting

to integers is done twice, adding at least twice the amount of work needed. If the com-

piler had taken into account how the Lua interpreter executes the operations, much

more energy could be saved. With the finding of this expression with a bad implemen-

tation, it is not hard to imagine that there are other operations in the framework that

also will waste energy. By optimizing the compiler for creating better Lua code could

reduce the power usage.

https://goo.gl/xwNXyZ#L43
https://goo.gl/xwNXyZ#L43
https://goo.gl/xwNXyZ#L23
https://goo.gl/xwNXyZ#L23

5.5. WHAT DOES CURRENT DRAW MEAN? 41

5.5 What does current draw mean?

Why is measuring the current drawn interesting when investigating energy use of a

computer? The power is a measurement of the amount of work done per second. When

the computer gets more instructions to do, i.e. a program is started, the amount of

work done increases. As the computer cannot generate energy from nothing, no known

mechanism in the universe can, it needs to get the energy from other sources. The elec-

tric power formula,

P = IV

shows that to increase the power, either the current or the voltage have to increase.

Since the power source keeps the voltage constant, the only way for the device to in-

crease the power is to draw more current. The increase seen in current drawn when

starting a program is corresponding to the increased work done by the computer.

5.6 Documentation problems

ptxdist on Giant Gecko

As mentioned in chapter 3, the experiment was planned to be done on the Giant Gecko

as well, by using PTXdist. While setting up the distribution and installing it on the devel-

opment board was easy enough, getting the software to run the experiments was much

harder.

Tried first was downloading a pre-compiled version of io.js for ARMv7 architecture,

which the official io.js website provides. This version was copied to the binary folder

of the operating system on the Giant Gecko and given running permissions. When io.js

then was started through the shell access, an error occurred, saying “applet not found.”

It seemed that Busybox caused this error, which is a program that provides normal shell

programs to minimal systems. Busybox tried to execute the command as it was a pro-

gram supplied by Busybox, but it could not find the program since it was not a Busybox

applet.

One possibility was that there was some issue with the binary file. If so, the solu-

tion would be to cross-compile the program. When cross-compiling the program, an

issue with library files not being present arose. The explicit locations of the libraries

42 CHAPTER 5. DISCUSSION

were used to combat this when building, which fixed this issue. But after copying the

compiled file to the device, the Busybox error was persistent.

Neither the documentation nor any web searches yielded answers to what the prob-

lem was. When asking people associated with PTXdist, they could not answer to why

this happened. A guess to what happens is that Busybox somehow is invoked first when

running other programs. To actually run programs that are not a part of Busybox, some

setting that tells Busybox to not run its applet must be set, but if this is the case, it is not

documented anywhere.

Instead of wasting more time trying to get programs to run, it was decided to focus

on the platforms that were already running. This anecdote would be an example of how

hard it is to use microcontrollers.

Tessel runtime on Raspberry Pi

Another planned test to run was to use the Tessel runtime on the Raspberry Pi, allowing

for better comparison between the hardware platforms. But the Raspbian Linux distri-

bution has not been updated in a long time, due to the Raspberry Pi 1 having an ARMv6

processor instead of ARMv7 that Debian supports natively. A lot of the dependencies

needed to build the Tessel runtime were out of date, making the build process hard to

complete. Not being the primary target for the Runtime, and as the Raspberry Pi is a

slow development platform, there exists no documentation on how to fix the depen-

dency issues.

The Raspberry Pi 2, just released this spring, has an ARMv7 processor, which the

standard Debian distribution supports.(Tessel 2 Hardware Overview) With the new hard-

ware, up to date packages built for the Debian ARM distribution will become available.

After updating the dependencies, the build process should be no problem.

5.7 Error in logged measurements

When analyzing the data from the Keysight Benchvue application, a bug showed itself.

For some data sets, when manipulating the timestamps of the measurements, many

of the samples were not included. When graphing this data, an arbitrary cut emerged.

Looking at the data, it was clear that the data formats were in 12-hour format, where

5.7. ERROR IN LOGGED MEASUREMENTS 43

the hour field went from 01 to 12, and then back to 01. When some of the experiments

went on through either noon or midnight, the continuity of the samples was broken.

The affected lines in the result files were changed using a simple search and replace

tool. As only the hour field needed replacement, and the maximum theoretical strings

that needed to be changed was 12, this was not automated, but simply carried out for

each data set required. There should be no issue with the results because of these edits.

There might be some settings in the application to use a 24-hour clock when writing

the time stamps. But as the solution described above was satisfactory, it was decided to

not throw away the data already acquired.

6

Conclusion

In the following chapter, the conclusions that this thesis can draw are mentioned. Broadly,

measures that decrease the number of instructions in a program will lead to lower

power usage on embedded platforms. Finally, some ideas for future work are presented.

By the discussion in section 5.4, it can be concluded that the Colony Compiler which

translates JavaScript to Lua in the Tessel framework can save energy. Firstly, by out-

putting Lua code that does not have to do more work than necessary, and secondly, by

utilizing common compiler optimizations.

An optimizer for the Espruino VM, outputting JavaScript code optimized for the

special needs of the framework, could lower the energy use on the platform. This is

only necessary if there is a need to run standard JavaScript programs. When developing

new programs for the platform, these limitations should be taken into account, as this

can save energy.

If the goal is to use less energy on a platform, an area to look at is to minimize the

power used by the operating system. Table 5.2 show that most of the power used is by

the OS, even on the Tessel, which has a device-specific OS.

While both hardware platforms tested in this thesis are embeddable, they are quite

different. The Raspberry Pi is a more powerful device, and can execute the programs

faster, but at the cost of higher power usage. As the total energy used during the exe-

cution of a program was lower on the Raspberry Pi with io.js, using io.js might actually

save energy. However, if the device continues to run after the program has finished, the

costs outweigh the initial gains. Even if it is possible to turn off the system after execu-

45

46 CHAPTER 6. CONCLUSION

tion is over, the cost of turning the device on again might also be higher than what was

saved during execution. Thus, the choice of device when designing for saving energy

needs to be a balanced decision.

The Tessel 2, released in the fall of 2015, will use io.js. A conclusion from this thesis

is that it might not increase the power consumption of the new device, compared to the

Tessel 1.

The JavaScript engine that uses the least amount of power per iteration in the ex-

periment is the fastest one. This suggests that optimizing for speed is also optimizing

for lower energy use. Together with a basis in the literature, the recommendation of this

thesis is to focus the design of embedded frameworks to execute faster in order to lower

the power consumption.

The results of the projects suggests that the answer to the research question, “what

are energy efficient ways of bringing high-level programming languages to embedded

computer systems?”, is that focusing on creating a framework that executes programs

as fast as possible is the most energy efficient.

6.1 Future work

According to the research in this paper, more tests are warranted. As the energy use of

the different expressions tested varied as much as it did, it would be interesting to test

more operations on the different platforms. With the Tessel implementation shown to

be not optimal, further tests of other expressions could find other parts of the frame-

work that can be improved.

To confirm the suggestion that the engines tested in this project would use less en-

ergy if the JavaScript code was optimized, more tests could be done. For example, per-

form an identical project as laid out in this report, only using the benchmarks optimized

as in section 5.1. Besides using benchmarks that has been manually optimized, an opti-

mizer for JavaScript could be developed, allowing for tests of automated optimizations.

A way of automating the experiments on the Tessel, would be to connect it to a

computer using another modified USB cable. A USB cable carries its signal through

four cables, two are for Vcc and ground, while the last two are for the data connection.

There should be no problem in powering the device from an external power supply, as

6.1. FUTURE WORK 47

done in the experiment, and at the same time delivering data from a computer.

The benefits of this are to get the same control over the programs run as through the

shell of the Raspberry Pi. This would remove the need for resetting the Tessel from the

software itself, making it easier to see where the program runs in the sample data.

However, there is no guarantee that this will work, as it is undocumented in the

specification. There should be no connection between the power and data lines when

using a USB cable, but implementations might vary. To use this technique, testing

needs to be done. Because of timing limitations in this project, the solution described

in chapter 3 was decided to be sufficient.

With both the Raspberry Pi 2 and the Tessel 2 being released in 2015, the experi-

ment done in this project could be tested on those platforms as well. Also, testing the

Espruino Pico hardware, in the same way, could yield interesting results as this would

be comparing with a truly low power device.

Bibliography

V8 Design Elements. https://developers.google.com/v8/design. Accessed: June

23, 2015.

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles, Tech-

niques, & Tools. Pearson Education, 2 edition.

Aycock, J. (2003). A brief history of just-in-time. ACM Comput. Surv., 35(2):97–113.

Csere, C. (2012). 2013 Tesla Model S Test. http://www.caranddriver.com/reviews/

2013-tesla-model-s-test-review. Accessed: June 14, 2015.

De Lima, E., De Souza Xavier, T., Faustino da Silva, A., and Beatryz Ruiz, L. (2013). Com-

piling for performance and power efficiency. In Power and Timing Modeling, Op-

timization and Simulation (PATMOS), 2013 23rd International Workshop on, pages

142–149.

Ecma International (2011). ECMAScript Language Specification. http://www.

ecma-international.org/ecma-262/5.1/Ecma-262.pdf.

Fortuna, E., Anderson, O., Ceze, L., and Eggers, S. (2010). A limit study of javascript par-

allelism. In Workload Characterization (IISWC), 2010 IEEE International Symposium

on, pages 1–10.

Grimm, C., Neumann, P., and Mahlknecht, S. (2013). Embedded Systems for Smart Ap-

pliances and Energy Management. Addison Wesley.

49

https://developers.google.com/v8/design
http://www.caranddriver.com/reviews/2013-tesla-model-s-test-review
http://www.caranddriver.com/reviews/2013-tesla-model-s-test-review
http://www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf
http://www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf

50 BIBLIOGRAPHY

Jahre, M. (2013). SHMAC: An Infrastructure for Heterogeneous Computing Sys-

tems Research. http://www.ntnu.edu/documents/139931/80945963/

eecs-shmac-hipeac-csw.pdf/d6c2b771-0c40-47d4-a3e9-17b5e9f0d58d.

HiPEAC Computing Systems Week, Tallinn.

Joyent. About Node.js. https://nodejs.org/about/. Accessed: June 23, 2015.

Kavvadias, N., Neofotistos, P., Nikolaidis, S., Kosmatopoulos, C., and Laopoulos, T.

(2004). Measurements analysis of the software-related power consumption in mi-

croprocessors. Instrumentation and Measurement, IEEE Transactions on, 53(4):1106–

1112.

Kolker, E. Tessel 2 hardware overview. https://tessel.io/blog/113259439202/

tessel-2-hardware-overview. Accessed: June 22, 2015.

Kopetz, H. (2011). Internet of things. In Real-Time Systems, Real-Time Systems Series,

pages 307–323. Springer US.

Kumar, R., Farkas, K., Jouppi, N., Ranganathan, P., and Tullsen, D. (2003). Single-isa het-

erogeneous multi-core architectures: the potential for processor power reduction.

In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM Interna-

tional Symposium on, pages 81–92.

Le Sueur, E. and Heiser, G. (2010). Dynamic voltage and frequency scaling: The laws

of diminishing returns. In Proceedings of the 2010 International Conference on Power

Aware Computing and Systems, HotPower’10, pages 1–8, Berkeley, CA, USA. USENIX

Association.

lua.org. About Lua. http://www.lua.org/about.html.

McKay, J. Moving faster with io.js. https://tessel.io/blog/112888410737/

moving-faster-with-io-js. Accesed: May 7, 2015.

Ortiz, D. and Santiago, N. (2008). Impact of source code optimizations on power con-

sumption of embedded systems. In Circuits and Systems and TAISA Conference,

2008. NEWCAS-TAISA 2008. 2008 Joint 6th International IEEE Northeast Workshop

on, pages 133–136.

http://www.ntnu.edu/documents/139931/80945963/eecs-shmac-hipeac-csw.pdf/d6c2b771-0c40-47d4-a3e9-17b5e9f0d58d
http://www.ntnu.edu/documents/139931/80945963/eecs-shmac-hipeac-csw.pdf/d6c2b771-0c40-47d4-a3e9-17b5e9f0d58d
https://nodejs.org/about/
https://tessel.io/blog/113259439202/tessel-2-hardware-overview
https://tessel.io/blog/113259439202/tessel-2-hardware-overview
http://www.lua.org/about.html
https://tessel.io/blog/112888410737/moving-faster-with-io-js
https://tessel.io/blog/112888410737/moving-faster-with-io-js

BIBLIOGRAPHY 51

Pengutronix (2014). How To Become a PTXdist Guru. http:

//www.pengutronix.de/software/ptxdist/appnotes/OSELAS.

BSP-Pengutronix-Generic-arm-Quickstart.pdf.

Raspberry Pi Foundation. Power Supply. https://www.raspberrypi.org/

documentation/hardware/raspberrypi/power/README.md.

Raspberry Pi Foundation. Raspberry Pi Frequently Asked Questions. https://www.

raspberrypi.org/help/faqs/.

Russell, J. and Jacome, M. (1998). Software power estimation and optimization for high

performance, 32-bit embedded processors. In Computer Design: VLSI in Computers

and Processors, 1998. ICCD ’98. Proceedings. International Conference on, pages 328–

333.

Ryan, T. A new engine for your tessel. https://tessel.io/blog/102381339917/

a-new-engine-for-your-tessel. Accessed: May 7, 2015.

Salomon, D. (1992). Assemblers and Loaders. Ellis Horwood, Upper Saddle River, NJ,

USA.

Silicon Labs (2014a). EFM32GG Reference Manual. http://www.silabs.com/

Support%20Documents/TechnicalDocs/EFM32GG-RM.pdf.

Silicon Labs (2014b). EFM32GG990 Datasheet. http://www.silabs.com/Support%

20Documents/TechnicalDocs/EFM32GG990.pdf.

Taylor, M. B. (2012). Is dark silicon useful?: Harnessing the four horsemen of the com-

ing dark silicon apocalypse. In Proceedings of the 49th Annual Design Automation

Conference, DAC ’12, pages 1131–1136, New York, NY, USA. ACM.

Technical Machine. Powering Tessel. https://tessel.io/docs/power.

Technical Machine. Tessel hardware documentation. https://tessel.io/docs/

hardware. Accessed: June 23 2015.

Tiwari, V., Malik, S., and Wolfe, A. (1994). Power analysis of embedded software: a first

step towards software power minimization. Very Large Scale Integration (VLSI) Sys-

tems, IEEE Transactions on, 2(4):437–445.

http://www.pengutronix.de/software/ptxdist/appnotes/OSELAS.BSP-Pengutronix-Generic-arm-Quickstart.pdf
http://www.pengutronix.de/software/ptxdist/appnotes/OSELAS.BSP-Pengutronix-Generic-arm-Quickstart.pdf
http://www.pengutronix.de/software/ptxdist/appnotes/OSELAS.BSP-Pengutronix-Generic-arm-Quickstart.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md
https://www.raspberrypi.org/help/faqs/
https://www.raspberrypi.org/help/faqs/
https://tessel.io/blog/102381339917/a-new-engine-for-your-tessel
https://tessel.io/blog/102381339917/a-new-engine-for-your-tessel
http://www.silabs.com/Support%20Documents/TechnicalDocs/EFM32GG-RM.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/EFM32GG-RM.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/EFM32GG990.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/EFM32GG990.pdf
https://tessel.io/docs/power
https://tessel.io/docs/hardware
https://tessel.io/docs/hardware

52 BIBLIOGRAPHY

USB Implementers Forum, Inc. (2007). Universal Serial Bus Micro-USB Cables and

Connectors Specification. http://mgvs.org/public/shema/datasheet/usb_20/

Micro-USB_final/Micro-USB_1_01.pdf.

Valluri, M. and John, L. K. (2001). Is compiling for performance — compiling for power?

In Lee, G. and Yew, P.-C., editors, Interaction between Compilers and Computer Ar-

chitectures, volume 613 of The Springer International Series in Engineering and Com-

puter Science, pages 101–115. Springer US.

w3. A short history of javascript. https://www.w3.org/community/webed/wiki/A_

Short_History_of_JavaScript. Accessed: May 12, 2015.

W3Techs. Historical yearly trends in the usage of client-side programming languages

for websites. http://w3techs.com/technologies/history_overview/client_

side_language/all/y. Accessed: May 12, 2015.

W3Techs. Historical yearly trends in the usage of client-side programming lan-

guages for websites. http://w3techs.com/technologies/history_overview/

programming_language/ms/y. Accessed: May 12, 2015.

Weissel, A. and Bellosa, F. (2002). Process cruise control: Event-driven clock scaling for

dynamic power management. In Proceedings of the 2002 International Conference

on Compilers, Architecture, and Synthesis for Embedded Systems, CASES ’02, pages

238–246, New York, NY, USA. ACM.

Williams, G. (2015a). Espruino Interpreter Internals. http://www.espruino.com/

Internals. Accessed: June 23, 2015.

Williams, G. (2015b). Espruino Performance Notes. http://www.espruino.com/

Performance. Accessed: June 11, 2015.

Wolf, W. (2008). Computers as Components: Principles of Embedded Computing System

Design. 2 edition.

http://mgvs.org/public/shema/datasheet/usb_20/Micro-USB_final/Micro-USB_1_01.pdf
http://mgvs.org/public/shema/datasheet/usb_20/Micro-USB_final/Micro-USB_1_01.pdf
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
http://w3techs.com/technologies/history_overview/client_side_language/all/y
http://w3techs.com/technologies/history_overview/client_side_language/all/y
http://w3techs.com/technologies/history_overview/programming_language/ms/y
http://w3techs.com/technologies/history_overview/programming_language/ms/y
http://www.espruino.com/Internals
http://www.espruino.com/Internals
http://www.espruino.com/Performance
http://www.espruino.com/Performance

	Abstract
	Sammendrag
	Preface
	Contents
	Introduction
	Embedded devices
	Compilation and interpretation
	JavaScript
	Problem
	Related work
	Outline of this thesis

	Creating an Energy Efficient Platform
	Hardware
	Software

	Method
	Benchmarks
	Hardware Platforms
	Silicon Labs EFM32 Giant Gecko

	Software Platforms
	Tessel
	Espruino
	io.js
	Operating system

	Experimental setup
	Data manipulation

	Results
	Base Power Usage
	Program time
	Current samples
	Average current drawn per sample
	Iterations per sample
	Energy use per iteration

	Discussion
	The benchmarks
	Comparison between the platforms
	Running time
	Per sample values
	Energy use

	Why is Espruino so slow?
	The Shift program on Tessel
	What does current draw mean?
	Documentation problems
	ptxdist on Giant Gecko
	Tessel runtime on Raspberry Pi

	Error in logged measurements

	Conclusion
	Future work

	Bibliography

