
Doctoral theses at NTNU, 2015:147

Doctoral theses at N
TN

U, 2015:147
Anders W

illersrud

Anders Willersrud
Model-Based Diagnosis of 
Drilling Incidents

ISBN 978-82-326-0950-5 (printed version)
ISBN 978-82-326-0951-2 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

,
M

at
he

m
at

ic
s 

an
d 

El
ec

tr
ic

al
 E

ng
in

ee
rin

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g 
Cy

be
rn

et
ic

s



Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Anders Willersrud

Model-Based Diagnosis of 
Drilling Incidents

Trondheim, May 2015



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

ISBN 978-82-326-0950-5 (printed version) 
ISBN 978-82-326-0951-2 (electronic version) 
ISSN 1503-8181
ITK Report 2015-2-W

Doctoral theses at NTNU, 2015:147

Printed by Skipnes Kommunikasjon as



To Cecilie





Summary

Oil and gas drilling is an advanced process with very little instrumentation, where
drilling fluid is transported through rotating drillstrings of up to several kilometers,
possibly at extreme depths with high pressure and temperature. A drilling bit is
used at the bottom of the drillstring to crush the formation, and the drilling fluid is
used to carry the cuttings to the surface, as well as maintain the pressure in the well.
Drilling is a costly operation, especially offshore. Incidents can occur that may slow
down the progress. Detecting such incidents manually, especially those occurring
down in the well, may be difficult. Early symptoms may give small variations in
pressure, temperature, and flow rates, possibly covered in measurement noise.

The push for drilling more complex wells in more remote locations demands more
from the drilling control and monitoring system. With advances in drilling control
technology such as managed pressure drilling, and sensor technology such as wired
drill pipe, the complexity of the control system greatly increases. With a high data
rate of sensor readings, as well as lower operation margins, an efficient automatic di-
agnosis system is instrumental in reducing operational delays. This thesis presents
different model-based methods for achieving early diagnosis of different drilling inci-
dents, possibly distinguished from sensor bias, and with estimation of the incident
magnitude. The model-based diagnosis system consists of two parts; first some
residuals are generated using either adaptive observers or analytical redundancy
relations, then changes to these residuals are detected using a statistical change de-
tection algorithm, required due to measurement noise. Univariate and multivariate
generalized likelihood ratio tests are applied, using the probability density function
that best matches the noise of the residuals. The thresholds are found using the
probability distribution of the test statistic, determined by a specified probability
of false alarms. The probability of fault detection is also found as a function of the
threshold, where data during the incidents are available.

Data from a medium-scale flow loop is used to test the diagnosis method, where
the noise of the residuals fits the t-distribution well. A multivariate change de-
tection method considering multiple residuals jointly is found to be superior over
a univariate method considering each residual separately, and is used to detect
and isolate the different incidents occurring in the test data. Furthermore, the t-
distribution is shown to give an increased probability of detection compared with
assuming the more common Gaussian distribution. Simulation of a drilling inci-
dent in the high-fidelity multi-phase simulator OLGA with Gaussian noise in the
measurements is also considered.

The diagnosis framework proposed in this thesis is module-based, where the
methods in each module are simple enough to be implemented in drilling monitoring
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software at the rig, and can be run in real-time. However, a limitation with the
proposed method is that good data during the normal operating mode is required
for reliable detection and isolation. Future work and implementations should take
this into account, and facilitate automatic acquisition of new data when changes to
the process are made.
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Chapter 1

Introduction

Oil and gas reservoirs are hydrocarbons contained in subsurface sedimentary
porous rock formations. The hydrocarbons are reached by drilling a well into the
formation. Geologists determine probable locations for oil and gas, which then may
result in drilling of exploration wells. Once a sufficient amount of hydrocarbons are
determined, it can be decided to develop the field. Production wells are then drilled
at positions determined by the reservoir engineering group, maximizing expected
production (Bourgoyne Jr. et al., 1986).

Figure 1.1: Offshore rigs: semisubmersible to the left, jackup rig to the right.

Hydrocarbon formations can exits both in onshore and offshore locations. Whereas
onshore wells can be drilled with relatively small equipment, offshore drilling is a
high cost operation requiring expensive drilling rigs and personnel. Offshore wells
can be drilled in the range of shallow waters close to land, to deep-water drilling,
and ranging from equatorial locations to a harsh arctic environment. Typical drill
rigs include self-contained platform rigs and jackup rigs for shallow water, and
semisubmersible rigs and offshore drillships for deep water and locations with high
mobility requirements. An illustration of a semisubmersible rig and a jackup rig is
shown in Fig. 1.1.

Cost of drilling is a major part of the total field development cost. In a recent
report by the Norwegian Petroleum Directorate (2014) on costs at the Norwegian
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Chapter 1 Introduction

Continental Shelf (NCS), it is stated that “drilling new development wells has ac-
counted for about 50 per cent of the investment” for oil and gas fields, where offshore
wells are drilled exclusively. Furthermore is it stated that “most developement wells
on the NCS are drilled from mobile units. Rig hire and various forms of well ser-
vices account for the bulk of the cost of drilling such wells. Rig hire alone comprises
45 per cent of the cost of a well.”. The report also states that the drilling efficiency
has great significance for the cost of the well, where efficiency can be measured as
drilled meters per day. The cost development in the latest 15 years is shown in
Fig. 1.2, showing the increasing marked rig rate for semisubmersible rigs, as well
as the in increased cost per well on the Norwegian Continental Shelf. These figures
are also representative for offshore drilling costs in other parts of the world.

Figure 1.2: Global rig rates in USD/day (black line) and cost per well on the Norwegian Conti-
nental Shelf (blue bars). From the Norwegian Petroleum Directorate (2014).

1.1 Drilling oil and gas wells

This section will give an introduction to rotary drilling for oil and gas, describing
different subsystems and equipment on the rig, and new emerging technologies.
During drilling different incidents can occur which may delay progress, or lead to
abandonment of the well. Diagnosis of these incidents is the topic of this thesis.
The different incidents which can occur are presented, and challenges in detecting
them are discussed.

1.1.1 Rotary drilling

The drilling rig consists of multiple subsystems, each with a specific task. The
most important parts are briefly described in this section which are necessary for
understanding the problems encountering in the following chapters, however for
a more thorough introduction the reader is referred to drilling literature, such as
Bourgoyne Jr. et al. (1986); Mitchell and Miska (2011). An overview of equipment
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1.1 Drilling oil and gas wells

and systems on a drilling rig is shown in Fig. 1.3, showing miscellaneous equipment,
the hoisting system, the drilling fluid circulation system, the blowout preventer
(BOP), and the drillstring with the bottomhole assembly and drill bit.

Drilling fluid circulation

When drilling into a formation, a drilling fluid is circulated through the drillstring,
through the rotating drilling bit crushing the formation, and back to the surface
through the annular section surrounding the drillstring, see Fig. 1.3 for details.
The main purpose of the drilling fluid is to transport out the crushed formation
particles, while maintaining pressure in the well. Other purposes include cooling
and lubrication of the rotating bit and drillstring, fluid loss avoidance, chemical
functions, and transmitting hydraulic power to the rotating bit. Drilling fluids
are typically either water-based or oil-based, and contain several additives giving
certain density, viscosity and lubricity properties (Mitchell and Miska, 2011).

Hoisting system

The hoisting system is used to move the drillstring in and out of the well, called
tripping (Mitchell and Miska, 2011), and is mounted in the derrick as shown in
Fig. 1.3. As drilling is progressing, a new drillpipe is connected to the drillstring
in an operation called a connection. The opposite operation is when the drillstring
is removed from the well for various reasons, where the drillpipes are disconnected
and stored at the rig. Reasons may be due to replacement of a worn drill bit,
maintenance of downhole logging equipment or the drillstring, or completion of the
well.

Rotary system

The rotary system using a rotary table consists of a swivel connecting the rotary
system and the circulation system, and a kelly, used to transmit torque to the
drillstring using kelly bushings. On modern rigs a topdrive replaces the kelly, kelly
bushings, and the rotary table (Mitchell and Miska, 2011), and is illustrated in
Fig. 1.3.

Casings and well pressure margin

To stabilize the formation and seal it from the well, a series of steel casing pipes are
cemented at different depths. The lowest casing position is called the casing shoe,
and marks the beginning of the contact between the well and the formation. At
this position and downwards, the pressure in the well is required to stay within the
formation pore pressure and the formation fracture pressure, illustrated in Fig. 1.4.
This is often denoted as the pressure window or drilling margin. If the formation
is permeable, and the pressure in the well is lower than in the formation, fluids will
start to flow into the well. This influx of formation fluids, often called a kick, may
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Chapter 1 Introduction

Figure 1.3: Components of rotary drilling including derrick with hoisting system, the circulation
system, and the drillstring, bit and casings. In offshore drilling a marine riser is used
from the seabed up to the rig (not shown).
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1.1 Drilling oil and gas wells

Figure 1.4: Overview of drilling with pressure margins. The well is open to the formation below
the casing shoe, and in conventional drilling this part must have a well pressure above
the pore pressure and below the fracture pressure.

in the worst case lead to a blowout if left unhandled (Bourgoyne Jr. et al., 1986). In
the other end of the pressure window is the fracture pressure. This is the pressure
where the formation starts to fracture, which can give permanent damage and loss
of drilling fluid to the formation, reducing production capabilities and inducing
significant costs.

If the well is drilled with a well pressure above the pore pressure, it is drilled
overbalanced, which is the conventional way of drilling. If the well pressure is inten-
tionally kept lower than formation pore pressure, the well is drilled underbalanced.
Only the overbalanced case is discussed in this thesis.

Casings are cemented in sections and planned based on gathered information on
the pore and fracture pressure in the well. The operation of cementing in casings
is very expensive, and a major cost of drilling (Mitchell and Miska, 2011). It will
also halt the drilling progress. Casing programs should therefore be planned to
minimize cost. How often new casings are needed are dependent on the pressure
window. With a narrow pressure window, new casings are required at a short
interval. Since new smaller casings often are cemented inside above wider ones,
there is a limit on how many segments of casings that can be placed. A possible
solution to this limitation is to use managed pressure drilling (MPD), which is
discussed in Sec. 1.1.2.

Another defining factor of how often new casings are needed is the kick tolerance,
which is the maximum influx volume of formation fluids before a possible fracture
of the weakest point in the well, which typically is at the casing shore (Redman Jr.,
1991).
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Chapter 1 Introduction

Safety systems

Well control is the task of maintaining a pressure in the well inside the pressure
window. This is achieved by using ‘at least two independent barriers between hydro-
carbons in the reservoir and the environment at all times ’ (Bellarby, 2009). During
normal drilling conditions this is achieved using an overbalanced hydraulic column
of the drilling fluid and a filter cake as a primary barrier, and casings and a blowout
preventer (BOP) as the secondary barrier.

If the pressure in some parts of the open well decreases below the pore pressure,
an unwanted influx in the well can occur. This inflow of formation fluids into the
annulus can be stopped using the BOP. In other words did the primary barrier fail,
necessitating the secondary barrier. A stack of different BOPs is installed making
it possible to run the drillstring in and out of a closed well, as well as being able to
close a well without a drillstring inside the BOP.

Rotary control devices are used to achieve a closed circulation of drilling fluid,
and is used in managed pressure drilling and underbalanced drilling. In a recent
study by Jablonowski and Podio (2011) it was found that using a rotary control
device decreases the occurrence of blowouts, thus increasing safety.

1.1.2 Drilling technologies

The oil and gas industry is quite conservative, where new technology takes years
of maturing before it is applied in the field. However, there has in later years been
introduced several new technologies which increases control and monitorability of
the drilling process, where available real-time data yield great value to the drilling
crew (Macpherson et al., 2013). As easy accessible reservoirs become more scarce,
field development is moving towards remote areas and deep high-pressure and high-
temperature wells. For some of these cases, conventional drilling with little well
control possibilities and little instrumentation can be a challenge, if possible to
drill at all. Two of the new technologies maturing on the marked today is managed
pressure drilling (MPD) for increased well control (Elliott et al., 2011) and wired
drill pipe for increased instrumentation along the well.

Wired drill pipe has been used in over 100 wells worldwide as of the writing of
Pixton et al. (2014), and is often used together with MPD with a high requirement
of well control precision. However, the volume of raw data is already too high to
process manually by the drilling operator, and is expected to grow even more in
the future with expected growth in drilling-system complexity (Macpherson et al.,
2013). This motivates the need for automated drilling monitoring and analyzing
tools, detecting and isolating possible drilling incidents. This thesis explores differ-
ent methods for designing such tools.
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1.1 Drilling oil and gas wells

Managed pressure drilling

In conventional drilling the pressure in the well can be controlled by changing
the fluid density and the pump flow rate. Since the top of the annulus is open to
atmosphere, the pressure in the well is a function of hydrostatic pressure of the fluid
column, and the friction due to fluid circulation. The combination of hydrostatic
pressure and friction is often called equivalent circulating density (ECD) in the
drilling community. Since a certain flow rate is required for sufficient hole cleaning,
the well pressure is typically only changed by changing the density of the fluid
pumped into the well. This is a slow process, since the fluid already present must
be replaced by a new fluid with another density. In wells with small pressure margin
between the pore pressure and fracture pressure, referring to Fig. 1.4, it may be
difficult to maintain within the pressure window in the whole open borehole. The
result is an increased need for new casings sealing off the well from the formation.
This is a time-consuming process, slowing down drilling progress. In addition, since
each new casing section often is cemented inside the previous ones, there is a limit
on how many times new casings can be cemented in, and thus a limit on the total
length of the well.

One technology handling these difficulties is managed pressure drilling. By seal-
ing off the top of the annulus with a what is called a rotating control device, and
using a choke manifold, the induced back-pressure (pressure upstream the chokes)
can be controlled directly and with a high accuracy. With a pressure in the top
of the annulus higher than atmospheric pressure, a better pressure gradient in the
well can be applied using an appropriate drilling fluid density, which is illustrated
in Fig. 1.5, thus opening possibilities to drill in wells with narrow pressure windows
and reducing the need for new casings.

Incident diagnosis with managed pressure drilling is studied in this thesis as a
case study. This is a case where there are even higher demands for narrow pressure
margins compared to conventional drilling, making early diagnosis instrumental.
Another important reason for choosing MPD as a case study is the fact that the
experimental flow-loop used in major parts of the thesis was rigged for MPD tech-
nology. However, the diagnosis methods can also be applied to conventional drilling,
since it can be viewed as a special case of MPD, where the choke is permanently in
a fully opened position.

Wired drill pipe measurement technology

The most common downhole measurement tool is the mud pulse telemetry technol-
ogy where the signal is transported in the drilling fluid as pressure pulses (Jellison
et al., 2003). These pulses travel with the speed of sound, compared to the speed of
light using electrical signals. For wells of up to ten kilometers long, this is causing
several seconds of signal delay. Furthermore does the sensor technology require a
continuous circulation of drilling fluid, and has a limited bandwidth.

Wired drill pipe is a new sensor technology with a dedicated signal wire along the
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Chapter 1 Introduction

Figure 1.5: Managed pressure drilling with a narrow pressure window between pore pressure and
fracture pressure. Note that with conventional drilling the well pressure would be
lower than the pore pressure, making the well underbalanced in some parts of the
open hole.

drillstring, see, e.g. Jellison et al. (2003); Pixton et al. (2014). This enables low-
latency, high-bandwidth transmission of downhole data to the topside monitoring
system. Dedicated pressure and temperature sensors can be installed at desired
positions along the well, giving available measurements in real-time. Downhole
pressure data is valuable information which makes it possible to take actions to
prevent or fix borehole problems almost as soon as they develop, giving increased
diagnostic possibilities (Dalton et al., 2003). In addition to increased monitorability
of the well pressures and temperatures, the wired pipe technology can be used for
optimizing casing point selection, eliminating wireline log runs, and monitoring of
drillstring and bit wear and vibrations (Jellison et al., 2003).

The diagnosis methods developed in this thesis assumes wired drill pipe installed,
but would still work without these measurements available. However, without the
downhole measurements there will be fewer fault isolation possibilities, limiting the
possibility to differentiate different incidents from each other, and determining the
position of the incident. This is studied as a case in Chapter 6, where no downhole
measurements are available.

1.1.3 Drilling incidents

Cost of drilling is a major part of the total field development cost, where rig hire and
various forms of well services account for the bulk of the cost of drilling such wells.
With high drilling costs, especially for offshore drilling, keeping the non-productive
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1.1 Drilling oil and gas wells

time (NPT) to a minimum is of great interest for the oil and gas companies. In
Godhavn (2010) the NPT for all wells drilled in Europe is reported to have been
between 20-30 % in the period of 1997-2007, with an average today being between
20-25 %. A significant part of the downtime is related to well instabilites and
lost circulation, another significant part is due to failure of equipment including
pumps, valves, sensors, and communication. Maintaining effective drilling with a
high reliability in equipment and reducing downhole incidents is therefore a high
priority.

Equipment topside can be monitored with suited condition monitoring solutions.
Health status of topside pumps, valves, pumps and sensors can be logged and
analyzed using a monitoring software that gives feedback to relevant personnel
responsible for drilling the well.

Monitoring of downhole incidents which can delay or even damage the well is
a more challenging task. Traditionally, there has been very little instrumentation
downhole, which makes it difficult to detect and diagnose incidents at an early
stage. As a problem develops undetected, its severity may increase resulting in
possible major drilling downtimes, or abandonment of the well or even more severe
consequences. Methods for early detection and diagnosis are therefore instrumental
in decreasing downtime, keeping costs at a minimum, which is the research focus
of this thesis. Some of the incidents which can occur downhole are illustrated in
Fig. 1.6 and presented in the following subsections, which are successfully detected
and isolated in the work done in this thesis. To some extent, the position and
magnitude of the incidents are also localized and estimated.

Influx of formation fluids

An influx of formation fluids can occur when the pressure in the well is lower than
in the formation. An influx, often called a kick, is a severe incident in drilling. If
left unhandled, the situation can develop into a full blowout, which is a danger for
personnel, the rig, and also the environment.

Referring to Figs. 1.4 and 1.5, an influx can occur when the well pressure drops
below the formation pore pressure in some parts of the well open to the reservoir
(below the casing shoe). Fluids then start flowing from the pores in the rock into
the well. If the fluid contains gas, the mixture in the well changes. Since gas has
lower density, gas bubbles (not dissolved in the drilling fluid) will reduce the mixture
density noticeably. As the gas travels upwards in the well, the pressure decreases
and thus the gas volume increases, further decreasing the mixture density. With
reduced density, the pressure in the well decreases due to decreased hydrostatic
pressure. This will increase the difference in pressure between the reservoir and
the well, called the drawdown, further increasing the gas influx into the well. If
this continues without interference, a possible scenario is a well filled with gas with
pressure close to the reservoir pressure in the whole well (up to several hundred bar
pressure), also at the rig topside.

Due to its severity, kick detection is a widely studied drilling incident. Detection
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Chapter 1 Introduction

Figure 1.6: Downhole drilling incident studied in this thesis, including choke plugging, bit nozzle
plugging, influx of formation fluid, loss of drilling fluid to the reservoir, pack-off and
drillstring washout.

methods range from simple methods (Jardine et al., 1994; Swanson et al., 1997;
Choe et al., 2007; Reitsma, 2010), to more complex ones (Hargreaves et al., 2001;
Santos et al., 2007; Gravdal et al., 2010a; Cayeux et al., 2012b; Hauge et al., 2013).

Today, kicks are mainly detected by monitoring the difference between flow out
and in of the well. If this difference in flow is greater than zero, it is a primary
indicator of a kick (Mitchell and Miska, 2011). Detection can be done by using
flow rate measurements of pump flow, and out flow, and comparing the difference.
If these measurement are not available, the volume of the drilling fluid storage
tank, called the mud pit, is monitored. An increase indicates a kick. A secondary
indicator is drilling breaks, which is a sudden increase in bit penetration rate. An-
other indicator is a change in the pump pressure, but this can also be a result of a
drillstring washout or twist-off (Mitchell and Miska, 2011).

If a kick is detected and the drilling crew decides to take action, the well is shut
in, the pump is stopped and the blowout preventer (BOP) is closed around the
drillstring. Then follows a lengthy operation of handling the kick, including circu-
lating it out and replacing the drilling fluid to a heavier kill mud. This downtime
contributes to slowing down the overall drilling progress.
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1.1 Drilling oil and gas wells

Lost circulation

In conventional overbalanced drilling, one control objective is to keep the pressure
in the well above the formation pore pressure. In normal conditions the drilling fluid
remains in the well, due to additives in the fluid forming a thin, low-permeability
layer called a filter cake (Mitchell and Miska, 2011). Loss of fluid to the forma-
tion, also called circulation loss, occurs due to high-permeability formations or
if fractured formations are encountered or created due to too high well pressure
(Bourgoyne Jr. et al., 1986). The upper limit in the drilling window, which is the
fracture pressure, is therefore also important referring to Fig. 1.4. Lost circulation
is one of the most common and troublesome downhole problem in drilling. If the
drilling fluid enters an oil and gas reservoir, productivity can be reduced and thus
possibly lowering the total production potential from the reservoir (Mitchell and
Miska, 2011). Lost circulation is detectable by a lower flow rate out of the well than
into it. Detection of fluid loss can partly be viewed as the opposite as an influx,
and thus are many of the detection methods for influx also applicable for detecting
fluid loss, see, e.g., Reitsma (2010); Cayeux et al. (2012b); Hauge et al. (2013).

Three different diagnosis steps for lost circulation are listed in Mitchell and Miska
(2011), where the first step is to determine at what depth the loss is occurring, the
second step is to describe the type of loss zone, and the third step is to evaluate
the severity of the loss. Different lithologies will affect the loss differently. If the
loss is slowly increasing, the loss zone is typically a high-permeability and porous
layer, such as sandstone. If a large and sudden loss is encountered, a fracture is a
probable cause.

Different methods for finding the lost circulation zone are described in Mitchell
and Miska (2011). The effect of temperature change of the drilling fluid is logged
by using a temperature recording device that is run on wire in the well. Another
possibility is to use a radioactive-tracer survey, or a spinner survey where a spinner
changes rotation where there is a loss. All these methods are time-consuming and
require halting of normal operation. Motivated by this fact, methods in this thesis
investigate what kind of diagnosis can be done real-time during drilling without
interfering with normal operation.

Drillstring washout

Drillstrings can be up to several kilometers long and are rotating with high torque
and speed, and will get fatigued over time. Forming cracks and holes are severe
indicators of durability loss of the drillstring. If left unhandled, these weak spots
may break with a result in a complete twist-off of the pipe. In such an event, the
broken pipe needs to be removed in a lengthy fishing operation (Bert et al., 2009).
An unsuccessful job means that a sidetrack needs to drilled. This operation can
can take between two and twelve days to complete (Macdonald and Bjune, 2007).
The cost of equipment is alone around one million USD, and the rig rate in the
range of 0.2-6 million USD, referring to Fig. 1.2. If the fatigue is detected prior

11



Chapter 1 Introduction

to twist-off, called leak-before-break state, the cost is 1/10 (Macdonald and Bjune,
2007). Drillstring washouts, which are leakage from the drillstring to the annulus,
are thus important to detect as soon as possible in order to reduce costly delays.

Pack-off

A pack-off is a collection of debris concentrated around the drillstring, failed to be
transported out of the well. This will partially or fully restrict circulation flow,
which typically result in a stuck pipe and significantly increase the possibility of
a fractured formation (Dalton et al., 2003). A cause of pack-offs can be loose or
unconsolidated formation sands which collapse into the wellbore, or schists and
shales which restrict drillstring movement and circulation flow. Other effects which
cause caving of the wellbore include drillstring vibration and overpressured shales
which collapse around the pipe (Johnson et al., 2013).

To avoid cuttings (crushed formation particles) to pack off around the drillstring,
a high rotation of the drillstring can be used, as well as a high circulation rate.
However, these actions may increase the likelihood of a washout and a complete
twist-off (Johnson et al., 2013).

Plugging of drill bit nozzles

When drilling, small particles from the cuttings may enter the drill bit nozzles,
partially or fully plugging one or several of them (Cayeux et al., 2012a). A plugging
will increase the pressure drop over the bit, and thus the pump pressure. However,
since the pressure in the well is unchanged, this incident is not as severe as some
of the other incidents described above. Diagnosis is nevertheless important as it is
important to know if the increased pump pressure is due to a plugging of the bit
nozzles, or, for example, a pack-off. If a plugging of some of the nozzles is diagnosed,
the drilling crew will be notified about the incident, and correct assessment of the
situation can be done.

Plugging and washout of MPD choke

If managed pressure drilling is applied, the drilling fluid with cuttings are trans-
ported through the MPD choke manifold. Similarly as with the drill bit, the chokes
can thus be partially (or fully) plugged, increasing the pressure over the chokes.
This will affect the pressure in the annulus, and actions must be taken immediately
(Cayeux et al., 2012a). Pressure loss over the choke is not sufficient to diagnose a
choke plugging; the combination of circulation flow, fluid properties, and pressure
drop over the choke has to be taken into account to correctly diagnose a choke plug-
ging. Similarly, the MPD chokes may also be washed out, reducing controllability
of pressure in the well.
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Sensor faults

A diagnosis system relies on sensors integrity for correct diagnosis. In the oil and gas
industry, redundant safety critical sensors are often installed. A simple method is to
use a voting function on the sensors, see, e.g., Willsky (1976); Venkatasubramanian
et al. (2003c). If one of the sensors is behaving irregularly, an alarm is activated and
the measurement is discarded. Downhole measurements in drilling is not usually
available today. If available, redundant sensors can not be expected. A fault
diagnosis system which handles sensor faults will thus be important in diagnosis
of the drilling process. These concerns are discussed in Sec. 1.2.1 about system
redundancy.

A dedicated detection algorithm may be applied to detect signals which com-
pletely drops out. Such an implementation would be possible to implement without
process knowledge. Measurement bias is a more challenging task. If, e.g., a pressure
sensor starts to drift, it may look like an actual increase in pressure. If not detected
and handled by the diagnosis system, a false alarm may be set off. If a diagnosis
system continues to provide false alarms, it will be regarded as unreliable, and may
no longer be used. Handling sensors errors and faults is thus instrumental for the
integrity of the diagnosis system.

1.1.4 Challenges in detecting and isolating different drilling incidents

One question one might ask is why more advanced diagnosis methods are needed.
With an increased number of sensors available with a high update rate, keeping
manual track of changes in the signals may be a tiresome and overwhelming task for
the driller. Another problem is that effects of a beginning incident on measurements
are usually marginal and therefore hard to notice. Moreover, they can be covered
in measurement noise, making early detection manually quite a challenging task.
With an integrated diagnosis system running in the background which detects small
changes to process variables as well as handling measurement noise, the driller can
be notified at an early time of an incident, increasing the probability of handling
the situation correctly before it escalates. Furthermore, the different incidents
described above will affect pressure and flow differently. It is a challenging task to
systematically detect these incidents and isolate them from one another.

Detection and isolation of different drilling incidents have been studied exten-
sively, where a major part of the methods addresses influx diagnosis. Different
methods range from only suggesting solutions (Aldred et al., 1998; Reitsma, 2010;
Johnson et al., 2014), to using simple mathematical models of the process (Jardine
et al., 1994; Swanson et al., 1997; Choe et al., 2007; Daison and Belavadi, 2008),
to methods using advanced process models, advanced estimation, or both (Gravdal
et al., 2010a; Cayeux et al., 2012a,b; Hauge et al., 2013). An alternative to using
physical models is to use neural networks (Arehart, 1990) or so-called case-based
reasoning (Skalle et al., 2013; Kucs et al., 2015). Other solutions suggest to add
sensors such as an acoustic interferometer (Vestavik et al., 1990), or to use alter-
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native drilling methods such as micro-flux control (Santos et al., 2007). Several
of these publications and solutions describe methods for detecting one or several
of the incidents, but only a few handle most or all. There also exist a numerous
of commercial software and solutions with varying complexity, such as DrillEdge
by Verdande Technology using case-based reasoning (Raja et al., 2011; Gundersen
et al., 2013), eDrilling by eDrilling Solutions (Rommetveit et al., 2007, 2008), and
the FLAG influx and loss detection service technology by Schlumberger (Schlum-
berger, 2014). Using statistical methods has been suggested in Hargreaves et al.
(2001); Gulsrud et al. (2009), although detection and isolation of small incidents
covered in measurement noise is not commonly handled.

In this thesis different diagnosis methods using a simple hydraulics model to-
gether with statistical change detection are used to detect that some drilling in-
cident is evolving, to find out which incident it is, and to isolate the part of the
well where it is occurring. Diagnosis of pack-offs is studied in Chapters 2 and 5,
and different diagnosis methods for drillstring washouts are derived and tested in
Chapter 3. Diagnosis of multiple incidents is conducted in Chapter 4, as well as in
Chapter 6 where also sensor bias drift is correctly detected and isolated.

1.2 Introduction to fault diagnosis

This section will give an introduction to the concept of fault diagnosis. Some ter-
minology will be presented, and an overview of possible system representations and
classifications are given. Methods applied in the following chapters are presented
and put into context of different fault diagnosis methods. The motivation is to
detect and isolate the incidents described in Sec. 1.1.3 as early as possible, with as
few false alarms as possible, using methods which are easy to tune and implement
in a drilling system.

1.2.1 System redundancy

A wide range of applications are dependent on control and monitoring systems to
function. They range from large and complex processes such as oil refineries or
a nuclear power plants, and in this case a drilling rig, to smaller fast moving jet
fighters, or small equipment such as a hard disk drive. Common for all is that they
have a normal operating mode which serves to maintain safety and operational
objectives. For the nuclear power plant, cooling of control rods in the reactor is the
necessary safety and operating objective for the overall goal of power production.
A hard disk drive can be used in a server handling sensitive information, while the
fighter jet has to maintain the safety of the pilot of all costs.

In order to make these systems fault tolerant, redundant systems are often imple-
mented. It is possible to differentiate between hardware and analytical redundancy
(Blanke et al., 2006). Hardware redundancy, or physical redundancy, is achieved by
installing separate physical systems (Frank, 1990). In process facilities there are
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independent safety systems, as well as parallel critical equipment such as pumps
and valves, and planned emergency shutdowns. An aircraft has several indepen-
dent control systems, hardwired for increased safety. The server handling sensitive
information will have redundant hard disk drives, should one fail. Analytical redun-
dancy is achieved by having software systems which are tolerant to faults. As an
example can an observer estimate process values should a sensor fail. Moreover, a
fault tolerant control system can reconfigure the control structure if a fault occurs.
The reconfiguration may decrease performance, but the alternative could be a sys-
tem failure. Fault diagnosis plays an instrumental part in these systems. In this
thesis, methods using analytical redundancy will be studied for diagnosing drilling
incidents.

1.2.2 Terminology

Some terminology is presented in this section, including different types of faults in
the sense of position and time scale, the difference between additive and multiplica-
tive faults are defined, as well as defining differences between faults, disturbances
and modeling error.

System faults

It is typical to divide the location of the fault to three different locations (Blanke
et al., 2006).

• Sensor fault : loss of signal from the sensor, or bias in the measurements.

• Actuator fault : loss or partial loss of control of an actuator.

• Process fault : An unwanted change in the system, changing the dynamical
input/output behavior.

Different faults happen on different time scales. In Isermann (1997) the time de-
pendency of faults are categorized into the three following:

• Abrupt faults,

• Incipient faults,

• Intermittent faults.

Abrupt faults are sudden faults such as a component breakdown. Incipient faults
are slowly varying faults such as changes to the process or wear of actuators and
bias drift of sensors. Intermittent faults are irregular faults coming and going, such
as faults in a computer system or instability in connection with a field measurement.
Different diagnosis methods are beneficial for the different time dependency of the
faults, which will be described in Sec. 1.4, as well as in later chapters.
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Additive and multiplicative faults

Faults can be classified as either additive faults or multiplicative (Isermann, 1997,
2005). Additive faults occur in the model as unknown functions of time multiplied
with known system matrices, whereas multiplicative faults are known functions
of time multiplied with unknown matrices (Venkatasubramanian et al., 2003c).
Typical additive faults can be sensor bias, whereas multiplicative faults are typically
changes in process parameters. Consider the nonlinear system

ẋ = g(x, u, θ0) (1.1)

y = h(x, u, θ0) (1.2)

with inputs u, states x, nominal parameters θ0 and outputs y, which is subject to
some faults. If the fault affects the system parameters, changing them from θ0 to
θf , the system representation with multiplicative faults can be written as

ẋ = g(x, u, θf ) (1.3)

y = h(x, u, θf ). (1.4)

If the fault is additive, the system can be written as

ẋ = g(x, u, θ0) + fx + fu (1.5)

y = hf (x, u, θ0) + fy (1.6)

where fx are system faults, fu actuator faults and fy sensor faults.

Faults, disturbances and modeling errors

If the process is not correctly modeled, modeling errors may look like faults in the
fault diagnosis algorithm. The sensitivity to modeling error is thus a key problem
in methods based on analytical redundancy (Frank, 1990). In order to minimize
false alarms the model should try to capture:

• Faults in actuators, sensors and components in the process.

• Disturbances.

• System noise and measurement noise.

It is important to note that faults are not considered as disturbances or noise, since
a fault is some change in the process which should be detected and handled. Not
all disturbances and noise can be perfectly modeled. It is therefore common to use
a threshold on the decision function, where a trade-off between false alarms and
detection rate has to be considered, see, e.g., Venkatasubramanian et al. (2003c);
Blanke et al. (2006); Ding (2008). In this thesis, measurement noise is handled by
using statistical change detection, together with thresholds determined by the noise
distribution of the test statistic in the fault-free case.
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1.2.3 Fault diagnosis definition

Faults in sensors, actuators, or in the plant itself are in many cases crucial to detect
and handle. There are several levels of how accurate the location and position of a
fault can be pinpointed. Fault diagnosis is usually a term (Isermann, 1997) which
can be divided into

• Fault detection: detect that an abnormal situation has occurred.

• Fault isolation: determine the type and location of the fault.

• Fault estimation: estimate fault magnitude.

1.3 Fault diagnosis methods

Methods for fault diagnosis are quite wide-ranging, covering a large range of
research fields. In the three series paper collection Venkatasubramanian et al.
(2003a,b,c) the authors try to classify the different methods, where the main fam-
ilies of methods are model-based methods and data-based methods, also called pro-
cess history-based methods. Model-based methods can be divided into quantita-
tive model-based methods which rely on some first-principles model of the system,
whereas in qualitative model-based methods the physics of the process is expressed
in qualitative functions around different units in the process (Venkatasubramanian
et al., 2003a). Data-driven methods do not use known process knowledge, but
analyse large amount of historical process data to enable later diagnosis, see, e.g.,
(Venkatasubramanian et al., 2003b; Yin et al., 2012). The different methods are
illustrated in Fig. 1.7.

Model-based fault diagnosis has typically been used in aerospace, electrical and
mechanical systems. For complex nonlinear systems, such as chemical plants, data-
based system for fault diagnosis has been most common (Zhang and Jiang, 2008).
Data driven methods may be beneficial for large systems where modeling may be
difficult or too cumbersome, while model-based methods utilize some known model
structure in diagnosing faults. Quantitative model-based methods are often called
observer-based fault diagnosis methods (Frank, 1990; Frank and Ding, 1997; Ding,
2008). The idea in these methods is to apply well-known observer design from con-
trol theory in order to estimate occurring faults. Dependent on the system and the
residual generation, different observer designs can be applied. Another type of the
quantitative methods is to use analytical redundancy relations (ARR) to generate
residuals which are only functions of known inputs and outputs, and possibly their
derivatives. For linear system this includes the parity relations approach.

1.3.1 Diagnosis research in drilling

Due to their severity, a major part of research in drilling incident diagnosis concerns
detection of influx and lost circulation. For influx detection it is common to only

17



Chapter 1 Introduction

Figure 1.7: Classification of fault diagnosis methods. The methods used in this thesis are high-
lighted, namely model-based quantitative methods using adaptive observers and ana-
lytical redundancy relations. Adapted from Venkatasubramanian et al. (2003c); Zhang
and Jiang (2008).

use the difference in flow rate in and out of the well (Mitchell and Miska, 2011).
Either by measuring directly, or indirectly measuring the drilling fluid storage, as
described in Sec. 1.1.3. However, as argued in Sec. 1.1.4, for early detection and
correct incident type isolation, more advanced methods are required.

Methods for systematic diagnosis of drilling incidents can be divided into the
three approaches defined in Sec. 1.3. The first approach is the quantitative model-
based method, where some physical model of the well is used. Research concerning
detection of influxes was studied in Hargreaves et al. (2001); Santos et al. (2007);
Gravdal et al. (2010a); Hauge et al. (2013), poor hole cleaning was diagnosed in Gul-
srud et al. (2009), and several incidents were diagnosed in Cayeux et al. (2012a,b);
Ghilardi et al. (2013); Martins et al. (2013). Wired drill pipe measurements were
used together with a very simple model for estimating the equivalent circulating
density for pack-off detection and isolation in Coley and Edwards (2013). Torque
and drag diagnosis was studied in Niedermayr, Michael Pearse et al. (2010).

In Abdollahi et al. (2008); Skalle et al. (2013), a qualitative model-based method
was used to diagnose different incidents by using a symptom-recognition system
with qualitative measures such as “sudden loss” and “increased rate of penetration”.

A data-driven approach was used in Raja et al. (2011); Gundersen et al. (2012),
where case-based reasoning using real-time data was matched to previous known
experiences of drilling incidents. In Nybø (2010), possibilities for using data-centric
methods using soft computing and machine learning were discussed. A Bayesian
network was used in Ashok et al. (2013); Ambrus et al. (2013) to detect drilling
incidents and sensor faults.
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1.3.2 Selecting methods for drilling incident diagnosis

As pointed out in Venkatasubramanian et al. (2003c), the different diagnosis meth-
ods can be quite far apart, and it can be difficult to select the best suited method for
the problem at hand. In choosing diagnosis methods in this thesis we have chosen
to follow the philosophy of using simple methods, which can be implemented and
installed as a part of a drilling process monitoring system. Since simple models of
the drilling hydraulics are available, this thesis will focus on the quantitative meth-
ods of the model-based methods family, highlighted in Fig. 1.7. The simple model
(Kaasa et al., 2012) (with some extensions) has been thoroughly studied and tested
within our research group, see, e.g., Stamnes et al. (2011b,a); Zhou et al. (2011);
Hauge et al. (2013); Landet et al. (2013); Mahdianfar et al. (2013). This insight
gives a benefit for designing good model-based diagnosis methods. Data-driven
diagnosis methods could also be used, as discussed in Sec. 1.3.1. However, these
methods require training based on historical data, exposing them to data with
known faults. This can be a challenge if data during faults are scarce or not avail-
able, and diagnosing new types of incidents may be difficult without prior recorded
data.

1.4 Model-based fault diagnosis methods

In order to quantify the fault, a residual sensitive to faults is designed in such a way
that it has zero value in the fault-free case and a nonzero value during faults. If
possible, the residual function should also be designed such that different faults will
affect the residual in different ways, making it possible to identify and isolate the
different faults from each other. Designing such residuals are often called residual
generation. Then doing a residual evaluation, a fault may be detected and isolated,
possibly with an estimation of its magnitude. The different stages in a model-based
fault diagnosis system is shown in Fig. 1.8. The residuals generated are evaluated
in order to detect, and possibly isolate and estimate the faults. The result can be
given as an alarm, and possibly be applied in a fault-tolerant control system.

There exists many books and survey papers on the topic of change detection and
fault diagnosis. Noticeable books include Basseville and Nikiforov (1993); Gertler
(1998); Chen and Patton (1999); Patton et al. (2000); Blanke et al. (2006); Isermann
(2006); Ding (2008); Isermann (2011), and book chapters Frank et al. (1999). Some
of the survey papers are Willsky (1976); Isermann (1984); Chow and Willsky (1984);
Frank (1990); Gertler (1997); Isermann (1997); Alcorta Garćıa and Frank (1997);
Frank and Ding (1997); Venkatasubramanian et al. (2003c,a,b); Isermann (2005);
Zhang and Jiang (2008); Hwang et al. (2010). The methods used in this thesis are
presented in the following sections, as well as putting them in context related to
other model-based diagnosis methods.
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Figure 1.8: Model-based fault diagnosis. Adapted from Ding (2008).

1.4.1 Residual generation

The first part of a model-based fault diagnosis method is the residual generation.
A model of the process and the faults is used together with the inputs and outputs
of the process to determine the consistency between the system and the model
(Blanke et al., 2006).

Faults can occur in the actuators, the process, and in the measurements, illus-
trated in Fig. 1.8. In addition, there can be process disturbances and measurement
noise. The measured outputs of the process is compared to the process model
output in some way to generate the residual r. The residual should be designed
sensitive to process faults such that

r = 0, H0 : null hypothesis (1.7a)

r 6= 0, H1 : alternative hypothesis (1.7b)

where H0 is the hypothesis that no fault has occurred, and H1 is the hypothesis
that the system is subject to some fault.

In order to be less sensitive to noise and modeling errors, a threshold h can be
applied on the residual. The threshold can be fixed to a given constant value h,

g(k) ≤ h, H0 : null hypothesis (1.8a)

g(k) > h, H1 : alternative hypothesis (1.8b)

where g(k) is some decision function as a function of the residual r at sample time
k.

Early methods for residual generation were mostly developed for linear systems,
whereas generalization to non-linear systems has been derived in later years. Of the
model-based quantitative methods (recall Fig. 1.7) it is common to use observer
techniques from control theory, such as state observers, Kalman filters, parame-
ter estimation and adaptive observers, as well as analytical redundancy relations
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(Venkatasubramanian et al., 2003c; Ding, 2008). The different methods are briefly
described in the following subsections, where adaptive observers and analytical re-
dundancy relations will be used in later chapters.

State estimation

State estimation in the form of Luenberger-type observers or Kalman filters can be
used to generate residuals used for fault diagnosis. There are different approaches
described in the litterature, including the dedicated observer approach and the fault
detection filter (Frank, 1990).

In the dedicated observer approach, full-order or reduced order observers can be
applied, which are either linear or nonlinear. One observer can be used, or a bank
of observers. There are two ways of using a bank of observers for fault diagnosis
(Zhang et al., 2002). In the dedicated observer scheme (DOS) proposed by Clark
(1978) each observer is sensitive to one fault, while in the generalized observer
scheme (GOS) proposed by Frank (1990), each observer is sensitive to all faults
but one. The fault detection filter is a full-order state estimator with a special
choice of the observer gain matrix (Frank, 1990).

Parameter estimation

Detecting a non-measurable parameter drift requires online parameter estimation
(Venkatasubramanian et al., 2003c). Multiplicative faults cause changes to the sys-
tem parameters, see Sec. 1.2.2, and can be estimated using a parameter estimation
method. If the different faults cause changes to different system parameters, fault
isolation is also possible. However, for large systems, parameter estimation may be
too complex for online fault diagnosis (Venkatasubramanian et al., 2003c).

Using parameter estimation for fault diagnosis may be particularly useful for
incipient (slowly varying) faults (Frank, 1990; Isermann, 2006). These observers
often require that the change in the parameter θ is piece-wise constant, i.e., θ̇ = 0.
This is an assumption best suited for slowly varying faults. Furthermore will this
behavior of the parameter estimation give slower reaction to sudden changes than
state-observer and analytical redundancy relations methods (Isermann, 2006).

Joint state and parameter estimation

If parameter and state estimation is combined, both multiplicative and additive
faults are possible to detect (Isermann, 2006). Adaptive observers may be used
to jointly estimate parameters and states. An overview of adaptive observers can
be found in, e.g., Besançon (2000); Zhang (2002, 2005). Another possibility is to
augment the parameters in the state vector in Kalman filters.

The benefit of jointly estimating states and parameters using such methods is
that early abrupt changes can be detected, as well as slowly varying incipient faults
caused by parameter drifts. Another benefit is improved robustness against model
uncertainties (Frank and Ding, 1997). Adaptive observers for fault diagnosis has
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been a subject for extensive research in later years, including Zhang (2000); Jiang
et al. (2004); Xu and Zhang (2004); Caccavale et al. (2008); Zhang et al. (2010);
Fan et al. (2013).

Analytical redundancy relations

Analytical redundancy relations (ARR) are functions of the inputs and outputs and
their derivatives, and can be used to generate non-linear residuals (Staroswiecki and
Comtet-Varga, 2001). These residuals can be used for fault detection and isolation
by checking for inconsistencies between the actual plant and the model. The benefit
of using ARR is that systematic methods for matching inputs and outputs can be
used to generate the residuals, such as using graph matching (Blanke et al., 2006;
Svärd et al., 2013), giving specified detection and isolation capabilities.

Parity relations are one specific type of analytical redundancy relations for linear
systems (Blanke et al., 2006). The parity space method developed by Chow and
Willsky (1984) is a systematic way of generating a residual for systems with a linear
state model, using the parity relation.

The residuals generated by ARR typically have very fast reaction time after
sudden faults (Isermann, 2006). For linear systems, is was shown in Gertler (1991)
that once the design objectives are selected, parity equations and observers lead to
identical or equivalent residual generators.

Comparing residual generation methods

Combining parameter and state estimation gives benefits from both state estima-
tion methods and parameter estimation methods, as discussed above. This can
be achieved using, e.g., an adaptive observer or a Kalman filter with parameters
included in the state vector. Another method is to use the analytical redundancy
relations to generate the residuals, giving some other properties. Similarities and
differences between the two approaches are listed in Tab. 1.1, with the preferred
method for each property highlighted. The table is based on Tab. 14.1 in Isermann
(2006), and is an extension of Tab. 6.1 in Chapter 6.

With combined state and parameter estimation, it may be possible to estimate
the fault magnitude, while maintaining relatively fast detection, whereas this may
require additional estimation using analytical redundancy relations. The strength
of using ARR is a possibility of fast detection of changes, combined with a sys-
tematic framework for fault detection and isolation, also isolating actuator and
sensor faults. Fault diagnosis using adaptive observers is the topic in Chapters 2-5,
whereas diagnosis using ARR is investigated in Chapter 6.

1.4.2 Residual evaluation

In model-based fault diagnosis the residual generated is ideally only sensitive to
the faults, and insensitive to disturbances and noise. Due to model discrepancies,
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Table 1.1: Comparison of state and parameter estimation with analytical redundancy relations
for fault diagnosis. The text is highlighted for preferable methods. Adapted from
Isermann (2006).

Characteris-
tics

State
estimation

Parameter
estimation

Combined
state and
parameter
estimation

Analytical
redundancy
relations

Fast detection Relatively
fast,
dependent on
tuning

Relatively
fast,
dependent on
tuning

Relatively fast,
dependent on
tuning

Fast

Detecting and
isolating sensor
and actuator
bias

Dependent on
model and
setup

Dependent on
model and
setup

Dependent on
model and setup

Inherent

Estimation of
fault magnitude

Possible, if
fault is a state

Possible, if
fault is a
parameter

Possible, but
dependent on
model and setup

Requires additional
estimation

Propagation of
measurement
noise

Dependent on
tuning

Dependent on
tuning

Dependent on
tuning

Needs to be handled
if measurement
differentiation is
required

Design of
method

Dependent on
model and
observer
stability

Dependent on
model and
observer
stability

Dependent on
model and
observer
stability

Straightforward if
tools are available

Model
parameters

Known,
constant

Unknown,
time-varying

Unknown,
time-varying

Known, constant

Excitation
requirements

No Possibly Possibly No
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these external effects will affect the residual. It is thus necessary with a residual
evaluation to determine if the change in the residuals is due to a fault, minimizing
the effect of disturbance and noise.

According to Ding (2008) there are two types of residual evaluation methods,
which are

• Norm based methods,

• Statistical methods.

Both methods evaluate the generated residual, where a threshold is used to detect
a fault. The threshold is selected with a trade-off between false alarms and fault
detection rate. The norm-based method generates some norm of the residual which
is compared to the threshold. However, often statistical methods are required in the
decision making (Venkatasubramanian et al., 2003c). Of the statistical methods, the
most common are the cumulative sum (CUSUM) and the generalized likelihood test
(GLRT) (Blanke et al., 2006; Basseville and Nikiforov, 1993). Due to measurement
noise and unknown residual values after a change, the GLRT statistical method is
used for residual evaluation in Chapters 3-6.

Norm-based methods for change detection

The norm-based methods have less online calculation compared to statistical meth-
ods, and allows a systematic threshold computation using robust control theory
(Ding, 2008). It is thus a method which is closer to control theory, where the idea
is to generate some norm of the residual r and compare it to the threshold h,

‖r‖ ≤ h, H0 : null hyptohesis (1.9a)

‖r‖ > h, H1 : alternative hypothesis (1.9b)

Some common intuitive evaluation functions using the output directly are listed
in Ding (2008), such as the the peak value,

hpeak = ‖r‖peak = sup
t≥0

(
Nr∑
i=1

ri(t)
2

)1/2

, (1.10)

the trend analysis,
htrend = ‖ṙ(t)‖trend, (1.11)

the root mean square (RMS) value over the time interval of length T ,

hRMS = ‖r(t)‖RMS =

(
1

T

∫ t+T

t

‖r(τ)‖2dτ

)1/2

, (1.12)

and the average value,

havg = ‖r(t)‖avg = sup
t≥0
‖r̄(t)‖peak, r̄ =

1

T

∫ t+T

t

r(τ)dτ. (1.13)

The norm-based methods are not used in this thesis and thus not studied in any
further details.
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Measurement noise

The Gaussian distribution is most commonly used to model the distribution of
measurement noise. However, it is applied for convenience rather than necessarily
motivated by the nature behind the generation of data (Agamennoni et al., 2012).
Outliers are one cause of non-Gaussian noise in measurement data, which occur
quite often (Pearson, 2002). Outliers are data points which do not match the ma-
jority of the available data, and can be seen as spikes in a trend plot. Other causes
are due to process effects, such as in Wu (1993), where non-Gaussian measurement
noise with heavier tails was reported in a radar system.

One such heavier-tailed distribution is the t-distribution, which is found to best
match the noise in estimated parameters and ARR residuals in this thesis, using
experimental field data. Reports of non-Gaussian t-distributed measurement noise
in data from gravitational-wave detectors are given in Röver et al. (2011), where
measurement noise originates partly from instrumental noise, partly from physical
sources.

If X has the p-variate t-distribution with ν degrees of freedom, center µ and
correlation matrix S, it is related to the normal distribution (Kotz and Nadarajah,
2004) as

X = R−1Y + µ, (1.14)

if Y is a p-variate normal distribution with zero mean and covariance matrix R,
and if νR2/σ is a χ2 random variable with degrees of freedom ν, independent of Y .

As will be shown in the following chapters, noise in the studied test data is
found to match the t-distribution quite well. However, for the sake of simplicity,
the statistical methods described in this chapter concern Gaussian noise which is
independent and identically distributed (IID).

Statistical methods for change detection

Typically, a fault will result in some changes in process variables and/or parame-
ters. However, due to measurement noise, estimated states and parameters will be
affected. This is the case found in the experimental data used in this thesis. One
way of detecting such changes is to use a change detection algorithm on a given
set of estimated parameters or residuals which are constant for the fault-free case
H0, which is the method applied in later chapters. A good overview of algorithms
is given in Basseville and Nikiforov (1993); Blanke et al. (2006).

Given a random variable z(k) with probability function f(z; Π), and with sta-
tistical parameters Π. If z(k) has a Gaussian distribution with mean value µ and
variance σ2, the statistical parameters will be Π = {µ, σ}, with probability density
function (PDF)

f(z;µ, σ) =
1

σ
√

2π
exp

(
−(z − µ)2

2σ2

)
. (1.15)

The change detection algorithm needs to determine when the statistical param-
eters Π change from Π0 to Π1. Several of these algorithms use the log-likelihood

25



Chapter 1 Introduction

ratio of an observation z,

s(z) = ln
f(z; Π1)

f(z; Π0)
. (1.16)

with the fundamental statistical property

E(s; Π0) < 0, (1.17a)

E(s; Π1) > 0. (1.17b)

One of the simplest algorithms for change detection is the geometric moving
average (GMA) algorithm, where an exponential weighting of the observations is
used. Given a forgetting factor α, the decision function can be written recursively
as

g(k) = (1− α)g(k − 1) + αs(k), g0 = 0, (1.18)

where s(k) is the log-likelihood in (1.16).
Of the more advanced change detection algorithms, the cumulative sum (CU-

SUM) algorithm by Page (1954) is commonly used, see, e.g., Basseville and Niki-
forov (1993); Blanke et al. (2006). This algorithm uses a hypothesis test of whether
the statistical parameters Π are more likely to be Π0 or Π1. It is thus a require-
ment that the statistical parameters are known before and after a change. If this
is not the case, the generalized likelihood ratio test (GLRT) algorithm can be used
(Willsky and Jones, 1976). Both algorithms are based on the log-likelihood ratio
(1.16) of a series of observations z(k), k = {1, . . . , N}. Based on knowledge of the
statistical parameters after change, these algorithms can be applied:

• The cumulative sum (CUSUM) algorithm if Π1 is known,

• The generalized likelihood ratio test (GLRT) if Π1 is unknown.

Cumulative sum (CUSUM) algorithm

Consider the cumulative sum of the log-likelihood function (1.16) of a random
variable z(k) with N observations,

S(k) =
k∑
i=1

s(z(i)) =
k∑
i=1

ln
f(z(i); Π1)

f(z(i); Π0)
, (1.19)

where k is the current sample time. From the statistical properties (1.17), S(k)
will tend to have a negative drift before the change, and a positive drift after. A
possible decision function is then

g(k) = S(k)− min
1≤j≤k

S(j). (1.20)

If there is only a change in the mean µ = E(z) without change in the variance
σ2 = VAR(z) of a Gaussian distributed signal z(k) with PDF given by (1.15), the
decision function can be written recursively as

g(k) = max

(
0, g(k − 1) +

µ1 − µ0

σ2

(
(z(k)− µ0 + µ1

2
)

))
, (1.21)
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see, e.g., Blanke et al. (2006). A change between the two hypotheses

null hypothesis H0 : Π = Π0,

alternative hypothesis H1 : Π = Π1,

is detected if g(k) increases above a threshold h, namely

if g(k) ≤ h accept H0,

if g(k) > h accept H1.

Generalized likelihood ratio test (GLRT)

In the CUSUM algorithm it is assumed that the parameters Π1 are known. In
the generalized likelihood ratio test (GLRT) algorithm this requirement is relaxed
so that also the case with unknown Π1 can be handled. As with the CUSUM
algorithm, the cumulative sum of the log-likelihood between the two probability
density functions can be defined as

Skj (Π1) =
k∑
i=j

ln
f(z(i); Π1)

f(z(i); Π0)
. (1.22)

In (1.22) the statistical parameters Π1 at H1 are unknown. To estimate these, the
maximum likelihood of the parameters can be used (Basseville and Nikiforov, 1993;
Blanke et al., 2006), obtained by solving

Π̂1 = arg max
1≤j≤k

max
Π1

Skj (Π1). (1.23)

To limit the data window, only the last M samples are used, giving a GLRT decision
function

g(k) = max
k−M+1≤j≤k

max
Π1

Skj (Π1), (1.24)

where a change is detected if g(k) > h, where h is a threshold.
If the probability density function for the scalar signal z(k) is Gaussian, and if

only the mean is changing, the GLRT statistic is given by (see, e.g., Basseville and
Nikiforov (1993); Blanke et al. (2006)),

g(k) =
1

2σ2
max

k−M+1≤j≤k

1

k − j + 1

[
k∑
i=j

(z(i)− µ0)

]2

. (1.25)

Determining thresholds and probability of detection

In control theory, robustness and sensitivity of the control system are important
aspects. In the same way, the performance of a fault diagnosis system is measured
based on a low probability of false alarms, PFA, and high probability of detection,
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PD, (Kay, 1998; Ding, 2008). A trade-off between false alarms and detection rate
has to be made when selecting thresholds, since these are conflicting properties.

The threshold value h can be determined based on the distribution of the test
statistic g(k), with a specified probability of false alarm, PFA. If the signal z(k)
has a Gaussian distribution, where each sample is independent and identically dis-
tributed (IID), the GLRT statistic (1.25) follows asymptotically the χ2

r distribution
under H0, with r degrees of freedom (Kay, 1998).

However, if the data is non-Gaussian and/or not IID, other distributions such as
the Weibull and the lognormal distributions better describe the test statistic, see,
e.g., Galeazzi et al. (2013); Blanke et al. (2012); Fang et al. (2015).

Given a distribution fg(x; Π) with statistical parameters Π, which accurately de-
scribes the GLRT statistic g(k). Let F (x; Π) be the cumulative distribution, and
Q(P ; Π) be the inverse cumulative distribution with probability P . Let Π0 be the
statistical parameters of the test statistic data under H0 fitted to the distribu-
tion fg(x; Π). Then the threshold value h can be determined based on a specified
probability of false alarms, PFA (Kay, 1998),

h = Q(1− PFA; Π0). (1.26)

If sufficient data is available to determine the statistical parameters Π1 under H1,
the probability of detection PD with given a threshold h is

PD = 1− F (h; Π1). (1.27)

This method for determining thresholds, and in some cases the probability of de-
tection, will be studied in Chapters 3-6.

1.4.3 Fault isolation

In most systems it is desired to know where the fault has happened. If a processing
plant has a leakage or a broken valve, it is much faster to replace the part if the
operators and technicians know where the faulty equipment is located. If the fault
diagnosis system is used as a part of a fault-tolerant control system, fault isolation
can be a requirement. If an aircraft has a stuck rudder, the control system has to
know what kind of fault that is occurring and where it is, in order to counter-act
for it.

The generated residuals r ∈ RNr may be viewed as a vector, where changes
to the elements can be detected using an appropriate change detection algorithm.
There are different procedures for fault isolation based on the residuals. A simple
approach is to evaluate each element ri in r against a corresponding threshold hi.
The different faults can then be isolated if each fault has a unique effect on the
residuals. If a priori knowledge of the cause and effects between residuals and faults
are known, the faults and residuals can be organized in a fault look-up table, see,
e.g., Gertler and Singer (1990); Blanke et al. (2006).
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Figure 1.9: Change direction of mean ∆µ of residual r ∈ R2. The fault with change direction D1

has the lowest Euclidean distance, and is thus isolated.

A challenge with a univariate method as explained above is that it can be difficult
to determine a threshold for each residual ri. If the residual value is close to the
threshold, correct isolation may be difficult. This can partly be solved by using
more complex logic, but this logic may be cumbersome to service over time, and
difficult to expand. An alternative is to use a multivariate method, using the change
direction of r or a subset of it for fault isolation, see, e.g., Gertler and Monajemy
(1995); Yin (1998); Venkatasubramanian et al. (2003c). A fault can be isolated if
the change direction of the residual is in a neighborhood of a fault vector. This is
illustrated as an example in Fig. 1.9, where a fault is represented by the change
in mean of r, and is closest to the unit fault direction D1. A challenge with this
method is that the computational complexity can be quite high for even a moderate
number of residuals.

A graphical comparison between a univariate and a multivariate approach is
shown in Fig. 1.10 for a case with two residuals normally distributed with standard
deviation σ, and with mean µ = 0 for the fault-free case and µ = 1 for the fault
case. By using thresholds h1 = 3σ for residual r1 and h2 = 3σ for residual r2

independently, a large portion of the H1 data (red crosses) will be below either one
of the thresholds (below h2 and to the left of h1). This results in a lot of missed
detections, giving a low detection rate PD. If a higher detection rate is desired,
the cost is an increased false alarm rate. Using a multivariate approach with the
same threshold of 3σ, the detection rate is greatly increased, with an unchanged
false alarm rate. In the figure, false alarms are blue data circles outside the solid
black threshold circle, while missed detection is red data points inside the threshold
circle.
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Figure 1.10: Example where data at H0, shown in blue circles, is normally distributed with µ = 0
and σ = 0.3 for two residuals r1 and r2. Fault data is shown with red crosses, with
µ = 1 and unchanged variance. Different thresholds of 3σ are plotted, using two
independent univariate tests (dashed and dashed dotted lines), and a multivariate
test (solid circle). Notice that the multivariate method covers approximately the
same amount of H0 data, but much less of the H1 data. The result is that detection
rate is noticeably increased with the same false alarm rate.

1.5 Research objective

The main objective of this thesis is to develop methods which detects and isolates
the downhole drilling incidents described in Sec. 1.1.3 as early as possible, with a
low number of false alarms. Early detection of an event, as well as determining
type and location, greatly reduces the outcome of the incident. This will save time,
additional cost, and maintain safe operations in oil and gas drilling. The main
research objective of the thesis can be summarized as follows:

Research objective

Develop efficient fault diagnosis methods for oil and gas drilling which are
easy to use with little tuning needed, while at the same time have early detec-
tion and isolation properties and with a low false alarm rate.

1.6 Outline and contributions of the thesis

Of the model-based methods, the main parts of this thesis will use adaptive ob-
servers for parameter and state estimation, in particular friction parameters and
flow rates. These are then used for fault diagnosis of the different incidents. Due
to noticeable noise in the estimates using test data, statistical change detection
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methods are proven to be necessary. Detuning the observers can be used to reduce
the effect of the noise, but this will increase detection time, which is not a desired
behavior. As pointed out in Sec. 1.4.1, analytical redundancy relations have some
other properties for diagnosis. This is studied in Chapter. 6, where also diagnosis
of sensor bias is possible, but with limitations in fault magnitude estimation. The
main contributions in each of the following chapters are summarized as:

• Chapter 2 contains preliminary results using model-based fault diagnosis
of pack-offs in drilling, where the main contribution is the development of
the adaptive observer used in later chapters. A bank of observers is used to
estimate friction parameters, used to detect and isolate the position of the
pack-off, where the model is correct for the correct position of the incident.
The method is tested on a simulation case where the process model has the
same structure as the observer model, but with a slightly more advanced
friction model.

This part consists of Willersrud and Imsland (2013).

• Chapter 3 continues the work of Chapter 2, applying the adaptive observer
on data from an experimental flow-loop test case, containing tests of a drill-
string washout. For small washouts, changes to the estimated parameters are
small, and covered in noise. The distribution of the noise of the estimated
parameters is determined to fit the t-distribution well after white filtering,
which has heavier tails compared to the Gaussian distribution. Due to noise,
changes to the mean of the estimated parameters are detected using a statis-
tical change detection algorithm. Three different change detection methods
are tested, one univariate and two multivariate, where the multivariate ap-
proach showed superior detection properties. The main contributions of the
chapter is the development of the univariate and multivaritate GLRT for the
t-distribution, combining this with an adaptive observer and specified thresh-
old levels based on probability of false alarm, and applying this as a drilling
incident diagnosis method.

This part consists of Willersrud et al. (2015c), based on preliminary results
in Willersrud et al. (2013b).

• Chapter 4 applies the methods developed in Chapter 3 on a series of down-
hole drilling incidents tested in the flow-loop, including gas influx, lost circula-
tion, bit nozzle plugging, and drillstring washout. A multivariate generalized
likelihood ratio test is used to detect the incidents, and isolate the type.
Detection properties assuming a t-distribution of the noise in the estimated
parameters is compared to assuming Gaussian distribution, showing a clear
benefit with the t-distribution. The main contribution of this paper is to ap-
ply previous results on a series of different drilling incidents, developing and
testing an isolation method based on change direction of carefully selected
parameters and states.
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This part consists of Willersrud et al. (2015d), based on preliminary results
in Willersrud et al. (2013b).

• Chapter 5 investigates how the method in Chapter 3 and 4 can be applied
for diagnosing pack-offs, which was not tested in the flow-loop. The diagnosis
framework is tested on simulated data from the high-fidelity multi-phase sim-
ulator OLGA, also showing diagnosis where the noise is Gaussian distributed.
The main contribution in this chapter is to demonstrate the diagnosis method
developed in Chapters 3 and 4 on a full-scale pack-off simulation case, where
the noise is Gaussian.

This part consists of Willersrud et al. (2015a).

• Chapter 6 investigates the use of analytical redundancy relations (ARR)
for fault detection and isolation, as opposite to using adaptive observers as
in the previous chapters. Benefits and drawbacks of the two methods are
compared, where ARR gives isolation of sensor bias drift and and actuator
faults, in addition to downhole incident isolation. However, estimation of fault
magnitude requires additional estimation methods. The main contribution
of this chapter is to derive residuals using analytical redundancy relations
for the specific drilling model, and demonstrate diagnostic properties on the
flow-loop data using the framework developed in Chapter 3 and 4. Detection
and isolation capabilities without downhole sensors is also investigated. The
paper has a discussion of benefits and challenges using ARR, compared to
using adaptive observers which was done in the previous chapters.

This part consists of Willersrud et al. (2015b).

• Chapter 7 concludes the thesis, discussing the different diagnosis methods
applied on both experimental flow-loop data as well as simulated data. Pos-
sible future research directions are indicated.

Comment on the contents of the thesis chapters

Each chapter contains one peer-reviewed conference or journal paper, and is there-
fore self-contained. As such, parts of the introduction and background material
will have some slight repetition, including model description and presentation of
the experimental flow-loop.

1.6.1 Publications

The following list of publications forms the basis of the thesis:

Journal publications

• Willersrud, A., Blanke, M., and Imsland, L. (2015b). Incident detection and
isolation in drilling using analytical redundancy relations. Control Engineer-
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ing Practice, 41:1–12.

• Willersrud, A., Blanke, M., Imsland, L., and Pavlov, A. (2015d). Fault diag-
nosis of downhole drilling incidents using adaptive observers and statistical
change detection. Journal of Process Control, 30:90–103.

• Willersrud, A., Blanke, M., Imsland, L., and Pavlov, A. (2015c). Drillstring
Washout Diagnosis using Friction Estimation and Statistical Change Detec-
tion. IEEE Transactions on Control Systems Technology, PP(99).

Conference papers

• Willersrud, A., Blanke, M., and Imsland, L. (2015a). Early pack-off diagnosis
in drilling using an adaptive observer and statistical change detection. In Proc.
IFAC Workshop on Automatic Control in Offshore Oil and Gas Production,
Florianopolis, Brazil.

• Willersrud, A. and Imsland, L. (2013). Fault Diagnosis in Managed Pressure
Drilling Using Nonlinear Adaptive Observers. In Proc. European Control
Conference, pages 1946–1951, Zürich, Switzerland.

Additional publications

The following additional conference papers are not included directly in the thesis,
but acts as preliminary and background work. The first paper is an overview paper,
which Sec. 1.1 in the introduction is based upon. The next paper is preliminary
work which included in in Chapters 3 and 4.

• Willersrud, A., Imsland, L., Blanke, M., and Pavlov, A. (2015e). Early Detec-
tion and Localization of Downhole Incidents in Managed Pressure Drilling.
In Managed Pressure Drilling and Underbalanced Drilling Operations Conf.
and Expo., SPE/IADC 173816, pages 1–9, Dubai, UAE.

• Willersrud, A., Imsland, L., Pavlov, A., and Kaasa, G.-O. (2013b). A Frame-
work for Fault Diagnosis in Managed Pressure Drilling Applied to Flow-Loop
Data. In Proc. Dynamics and Control of Process Systems, pages 625–630,
Mumbai, India.

The following publication was written in the period of the PhD study, but is not
included in the thesis:

• Willersrud, A., Imsland, L., Hauger, S. O., and Kittilsen, P. (2013a). Short-
term production optimization of offshore oil and gas production using non-
linear model predictive control. Journal of Process Control, 23(2):215–223.
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Chapter 2

Fault diagnosis in managed pressure drilling using
nonlinear adaptive observers

The work in this chapter was published in Willersrud and Imsland (2013).

Summary

A bank of nonlinear adaptive observers is used for fault diagnosis in oil
and gas drilling where managed pressure drilling (MPD) is applied. The
particular fault considered is formation of a pack-off, causing increased
friction in one part of the annulus. The process model is a simplified
hydraulics model with a Newtonian fluid. All states in the model are
assumed measurable, an assumption based on planned implementation
of the wired drill pipe measurement technology. A fault detection ob-
server is used to detect that a pack-off is being formed somewhere in the
annulus. Then a set of fault isolation and approximation observers, one
for each possible fault, is used to isolate the location of the pack-off and
estimating its magnitude. Isolation is done by using residuals of annu-
lar friction estimation. The method for fault diagnosis is illustrated in
a simulation study.

2.1 Introduction

Drilling of onshore and offshore oil and gas wells has traditionally been done
manually by a driller. As technology has advanced, more sophisticated online mea-
surements have been available, e.g., depth, penetration rate, topside pump rates
and pressures, and drilling fluid (“mud”) flow return rate from the borehole. These
measurements have mainly been used as information to the driller, and have to a
little extent been used for automated closed-loop control or automated diagnosis of
the operation. One of the exceptions where automated control has been applied is
managed pressure drilling (MPD), where closed loop control of topside chokes keeps
annular wellbore pressure within margins of pore pressure and fracture pressure.

A new measurement technology called wired drill pipe has recently been intro-
duced (e.g., Nygaard et al. (2008)), which increases the bandwidth and sampling
rate drastically compared to traditional mud pulse telemetry. It will then be possi-
ble to have a more continuous measurement of downhole conditions during drilling
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such as downhole pressure and rate of penetration, as well as added measurements
such as flow through the bit and distributed pressure and temperature sensors
along the drillstring (Long and Veeningen, 2011). This technology may become
instrumental in future drilling operations, as an increasing number of wells are less
accessible, at high depths with small pressure margins. Operating within smaller
margins, increased supervision of the drilling operation will be even more important.
Incidents such as kicks (uncontrolled influx into the wellbore), pack-off (wellbore
plugged around the drill string), loss of drilling fluid to the formation, and blocking
of the drill bit need to be detected and handled.

In this paper the work done in, e.g., Stamnes et al. (2011a); Grip et al. (2010) will
be used as background for including early fault warning of when and where a pack-
off is being formed in the annulus, using a bank of adaptive nonlinear observers.
By utilizing the wired drill pipe technology, the pack-off can be located with much
higher accuracy. A similar study has also recently been done on a well in the Gulf
of Mexico, but with manual detection of the pack-off formation (Long and Veenin-
gen, 2011). Detection was done by observing an increase in equivalent circulating
pressure for all pressure sensors below the pack-off. Another example of using the
technology for diagnosis has recently been studied in Gravdal et al. (2010b), where
an uncented Kalman filter (UKF) has been used to detect and isolate a kick.

This rest of the paper is organized in seven short sections. In the following
section the concept of fault diagnosis is explained with emphasis on application in
an MPD system. In Sec. 2.3 the model of the drilling process is presented, with
some unknown parameters representing process friction and faults. In Sec. 2.4 a
nonlinear adaptive observer for the process is presented, and in Sec. 2.5 the concept
of using a bank of these observers for fault diagnosis is described. How this can be
implemented for the drilling process is explained in Sec. 2.6. We then carry out a
simulation case in Sec. 2.7 and give some concluding remarks in Sec. 2.8.

2.2 Fault diagnosis

System faults, disturbances and modeling error will all alter a system’s behavior.
The difference is that disturbances and modeling error are factors which typically
are suppressed by filtering and robust control, whereas faults in a system must be
detected and handled. There have been published several books on the subject
lately (Blanke et al., 2006; Isermann, 2006; Ding, 2008). The problem of fault diag-
nosis consist of first detecting the error through fault detection, finding the source
of the problem through fault isolation and then identify its magnitude through fault
identification. Fault diagnosis is not only important in itself, but also key if a good
fault-tolerant control system is to be implemented Zhang and Jiang (2008). Adap-
tive observers for fault diagnosis has been studied in, e.g., Xu and Zhang (2004);
Besancon and Zhang (2002). The ideas have then been extended to have a bank
of adaptive observers (Zhang, 2000; Zhang and Jiang, 2006; Zhang et al., 2010).
Extended Kalman filters can also be used to design adaptive observers, but will
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Figure 2.1: Detection of pack-off in MPD (Adapted from Kaasa et al. (2012)). The measurements
are labelled with blue circles.

usually only guarantee local convergence (Xu and Zhang, 2004; Zhang, 2000).

The method in this paper is to use a bank of Lyapunov based adaptive observers
in order to detect and isolate a fault using measurements from the wired drill pipe.
The formation of a pack-off is typically an incipient (slowly varying) fault repre-
sented by increased friction, favoring the use of adaptive observers with parameter
estimation (Frank, 1990). In addition there is an overall annular wall friction which
can vary for other reasons. The idea behind the fault diagnosis setup is that a fault
between two pressure sensors will give an increased pressure differential between
these sensors. The bank of observers consists of one observer detecting that a fault
has occurred, and one observer for each possible fault each assuming that only the
corresponding fault has occurred. Then only the observer estimating the actual
fault will get a correct estimate, isolating the fault.

2.3 Hydraulic drilling model

The model used is based on the simple hydraulics model in Kaasa et al. (2012),
where a schematic overview is shown in Fig. 2.1. The model has simple one-phase
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incompressible flow relationships for a Newtonian fluid, and can be represented as

dpp
dt

=
βd
Vd

(qp − qbit) (2.1a)

dpc
dt

=
βa
Va

(qbit + qbpp − qc) (2.1b)

dqbit

dt
=

1

M
(pp− pc− F (qbit, θ)− (ρa− ρd)ghTVD) (2.1c)

where pp [bar] is the drilling pump pressure, pc [bar] is the choke pressure, qbit [L/s]
is the flow through the drill bit, and qbpp [L/s] is the back-pressure pump. In
the drill string and annulus, respectively, the bulk modulus is β{d,a} [bar] and the
volume is V{d,a} [L]. The vector θ is the unknown parameters. The choke flow can
be represented by the choke equation (Manring, 2005)

qc = Cvuc
√
pc − p0

where Cv is the choke constant, uc is the choke opening, and p0 is atmospheric
pressure. The densities ρ{d,a} [kg/m3] and cross sections A{d,a} [m2] of the drill pipe
and annulus are assumed known. Thus

Mi =

∫ Li

Li−1

ρi(x)

Ai(x)
dx, i ∈ {d, a}

is assumed know, where Mi [bar · s2/L] is the integrated density per cross section
over the segment ∆Li = Li [m] − Li−1 [m]. We will use M = Md + Ma as the
total integrated value of the hydraulic system from the the pump to the choke.
Furthermore, the true vertical depth hTVD [m] is assumed known.

2.3.1 Friction model

The total friction F (q, θ) in the system (2.1) can be divided into friction through
the drillstring Fd(q), including pipe friction and bit friction, and annular friction
Fa(q, θ). As argued in Kaasa et al. (2012) the flow dynamics will be faster than the
pressure dynamics, and we can thus assume that the flow through the system can
be approximated by the measured flow qbit through the bit. Furthermore, since we
measure the pressure drop pbit− pp over the drill string and assume known density
ρd and viscosity µd, the friction Fd(q) in the drill string can be assumed known and
given as

Fd(q) = Fpipe(ρd, µd, Ld, q) + kbit(ρd)q
2

where pipe friction is modeled based on Newtonian fluid assumption including
laminar flow, turbulent flow, and a transition zone.

The flow in the annulus is modeled in a similar way, but for the observer design
we will assume that this flow is laminar, without loss of generality. For laminar
flow of a Newtonian fluid, the pressure drop Fa,i(q, θ) = ψciq in an annular segment

38



2.3 Hydraulic drilling model

i will be dependent on the length and diameter of the segment by a factor ci, as
well as some unknown parameter θ = ψ. The constant ci can be calculated as

ci =

∫ Li+1

Li

1

(dh(l)− do(l))2 (d2
h(l)− d2

o(l))
dl

where dh(l) [m] is the annular diameter and do(l) [m] is the outer drill string diam-
eter. ∆Li = Li+1 − Li [m] is the length of the segment.

2.3.2 Pack-off in the annulus

The fault studied in this paper is the formation of a pack-off, which is a (partially)
plugged annulus around the drill string caused by accumulation of cuttings. One of
the reasons for this to happen can be a too low circulation flow (Aadnoy et al., 2009).
Pack-off is modeled using the orifice equation for incompressible fluids (Manring,
2005). The friction Fa(q, θ) in the annulus can thus be represented as

Fa(q, θ) =
N∑
i=1

Fa,i(q, θ) =
N∑
i=1

(
ψciq + φiq

2
)

(2.2)

where θ =
[
ψ, φ>

]>
are the unknown parameters we wish to estimate, and N is the

number of annular segments between pressure measurements, and thus also number
of faults. We will distinguish between the unknown annular friction parameter ψ
and the parameters representing the set of possible faults

F := {φ1, . . . , φN} (2.3)

where each element is the friction parameter φi in (2.2) corresponding to increased
pressure due to, e.g., pack-off.

2.3.3 Measurements with wired drill pipe

In addition to the topside pressures pp and pc, wired drill pipe is used to measure
downhole pressure pbit and flow qbit, as well as three pressure measurements p1, p2,
p3 along the annulus, see Fig. 2.1. By defining Fa,i(q, θ) in (2.2) as the friction
between the pressure sensors in the annulus, the following equations represent the
relation between pressure and friction

p1 = pc + Fa,1(q, θ) +G1(ρa)

p2 = p1 + Fa,2(q, θ) +G2(ρa)

p3 = p2 + Fa,3(q, θ) +G3(ρa)

pbit = p3 + Fa,4(q, θ) +G4(ρa)

where Gi(ρa) is the hydrostatic pressure difference between the two measurement
points.
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2.4 Nonlinear adaptive observer framework

In this section we will present the nonlinear adaptive observer used as a basis for
parameter and fault estimation. It is assumed that all states are measured, giving
the system on the form

ẋ = α(x, z, u) + β(x, z, u)θ (2.4a)

z = η(x, z, u) + λ(x, z, u)θ (2.4b)

where x(t) ∈ Rn are the states, z(t) ∈ Rm are additional measurements, u(t) ∈ Rp

are the inputs, θ ∈ Rq are unknown parameters, and α(·), β(·), η(·) and λ(·) are
locally Lipschitz. The observer with theorem and proof is based on an observer in
Besançon (2000), adapted to the system representation (2.4).

Theorem 2.1. Given an observer on the form

˙̂x = α(x, z, u) + β(x, z, u)θ̂ −Kx(x̂− x) (2.5a)

˙̂
θ = −Γβ>(x, z, u)(x̂− x)− Λλ>(x, z, u)(ẑ − z) (2.5b)

ẑ = η(x, z, u) + λ(x, z, u)θ̂ (2.5c)

where Kx,Λ,Γ > 0 are tuning matrices, and with θ̇ = 0. Let ex = x̂ − x and

eθ = θ̂ − θ be variables for the error dynamics, where e =
[
e>x , e>θ

]>
= 0 is an

equilibrium point. Then e = 0 is globally exponentially stable if

Γ−1Λλ>(·)λ(·)− β>(·)K>Kβ(·) > kIq (2.6)

for some constant k > 0, where Iq ∈ Rq×q is the identity matrix.

Proof. Let a continuously differentiable positive definite Lyapunov function be
given by V = 1

2
e>xK

−1
x ex + 1

2
e>θ Γ−1eθ. Then the time-derivative of V is given by

V̇ = e>xK
−1
x ėx + e>θ Γ−1ėθ

= e>xK
−1
x β(·)eθ − e>x ex − e>θ β>(·)ex − e>θ Γ−1Λλ>(·)ez

= e>xK
−1
x β(·)eθ − e>x ex − e>θ β>(·)ex − e>θ Γ−1Λλ>(·)λ(·)eθ

where it has been used that ėx = β(·)eθ − Kxex, ėθ =
˙̂
θ − θ̇ =

˙̂
θ = Γβ>(·)ex −

Λλ>(·)ez, ez = λ(·)eθ. Using that e>xK
−1
x β(·)eθ−e>θ β>(·)ex = −1

2
e>x (In −K−1

x ) β(·)eθ−
1
2
e>θ β

>(·) (In −K−1
x )
>
ex, we can write

V̇ = −
[
e>x , e>θ

] [ In Kβ(·)
β>(·)K> Γ−1Λλ>(·)λ(·)

] [
ex
eθ

]
= −e>Φ(·)e

where K = 1
2
(In−K−1

x ). From Proposition 16.2 in Gallier (2011) on the Schur com-
plement, we have that Φ(·) > kIn+q, if and only if Γ−1Λλ>(·)λ(·)−β>(·)K>Kβ(·) >
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2.5 A bank of observers for fault diagnosis

kIq, using that Iq is invertible and positive definite. Provided that (2.6) holds,
V̇ < −k‖e‖2 and thus according to Theorem 4.10 in Khalil (2002) the equilibrium
point e = 0 is globally exponentially stable.

Note that if β(·) is bounded and λ>(·)λ(·) > 0 there exist some tuning parameters
Kx, Γ and Λ such that (2.6) is fulfilled. The matrix function β(·) is bounded as
the physical flow x3 = qbit through the system always will be bounded, while
λ>(·)λ(·) > 0 can be interpreted as a requirement for persistence of excitation.

2.5 A bank of observers for fault diagnosis

The procedure of making a bank of N+1 observers, where N is the number of faults
in some fault class F , is based on the methods presented in Zhang (2000); Zhang
et al. (2002). The idea is to have one fault detection observer (FDO) to detect
faults. After a fault is detected, the N remaining fault isolation and approximation
observers (FIAOs) are used to isolate the fault and estimate its magnitude. There
are two ways of using a bank of observers for fault diagnosis Zhang et al. (2002). In
the dedicated observer scheme (DOS) proposed by Clark Clark (1978) each observer
is sensitive to one fault, while in the generalized observer scheme (GOS) proposed
by Frank (1990) each observer is sensitive to all faults but one.

In this paper we will use the DOS scheme. The FDO only estimates the unknown
process parameters ψ, while the jth FIAO in addition estimates one possible fault
parameter φj in F , while assuming the rest of φ zero.

2.5.1 Fault detection observer (FDO)

The FDO will be used to detect that a fault has occurred by detecting changes in
the estimate of the plant parameters ψ without estimating the fault parameters φ.
The observer (2.5) with φj = 0 will be

˙̂x0 = α(x, u) + β0(x)ψ̂0 −Kx(x̂0 − x) (2.7a)

˙̂
ψ0 = −Γ0β

>
0 (x, z)(x̂0 − x)− Λ0λ

>
0 (x)(ẑ0 − z) (2.7b)

ẑ0 = η(x, z) + λ0(x)ψ̂0 (2.7c)

where β0(x) and λ0(x) are reduced matrices with columns corresponding to ψ in
β(x) and λ(x), respectively. The gain matrices are Kx, Γ0 and Λ0.

2.5.2 Fault isolation and approximation observers (FIAOs)

The FIAOs are designed such that each observer only estimates one of the faults φj
in F , in addition to the plant parameter ψ. The fault isolation observer for fault
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Chapter 2 Fault diagnosis in MPD using nonlinear adaptive observers

φj can then be written as

˙̂xj = α(x, u) + β0(x)ψ̂j + βj(x)φ̂j −Kx(x̂− x) (2.8a)

˙̂
ψj = −Γ0β

>
0 (x, z)(x̂j − x)− Λ0λ

>
0 (x)(ẑj − z) (2.8b)

˙̂
φj = −Γjβ

>
j (x, z)(x̂j − x)− Λjλ

>
j (x)(ẑj − z) (2.8c)

ẑj = η(x, z) + λ0(x)ψ̂j + λj(x)φ̂j (2.8d)

where β0(x) and λ0(x) are the same as in the FDO (2.7), and βj(x), λj(x) are the

corresponding regressors for φ̂j. The tuning parameters will be the same as for the
FDO in addition to Γj and Λj. Not that this observer is on the same form as (2.5),
but with θ split into ψ and φj.

2.6 Fault diagnosis of the drilling process

In this section the methods for fault diagnosis presented in Sec. 2.5 will be ap-
plied to the drilling case. The simplified hydraulics drilling model (2.1) can be

written on the form (2.4) where z =
[
p1, p2, p3, pbit

]>
, x =

[
pp, pc, qbit

]>
,

u =
[
qp, qbpp, uc

]>
, and with system matrices

α(x, u) =

 −βd
Vd

(x3 − u1)
βa
Va

(x3 + u2 − Cvu3

√
x2 − p0)

1
M

(x1 − x2 − Fd(x3)−∆ρghTVD)

 (2.9a)

η(x, z) =


x2 −G1

z1 −G2

z2 −G3

z3 −G4

 (2.9b)

where we have used ∆ρ = ρa − ρd. Further will θ, β(x) and λ(x) be dependent on
the specific FDO or FIAO.

2.6.1 Fault detection observer

In the fault detection observer a fault-free system is assumed, and thus only the
annular friction θ = ψ of the parameters is estimated using the observer (2.7). In
addition to (2.9) the corresponding system vectors will be

β0(x) =
1

M

[
0, 0, −x3

]>
(2.10a)

λ0(x) =
[
c1x3, c2x3, c3x3, c4x3

]>
(2.10b)

The requirement for convergence (2.6) will be Λ0

Γ0
(
∑N

i=1 c
2
i )x

2
3 + K2

3,3x
2
3 > k, where

K2
3,3 is the third row and third column of 1

2
(I3 − K−1

x ). This will be fulfilled for
non-zero flow x3 = qbit, and appropriate Γ0,Λ0, K.
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2.6 Fault diagnosis of the drilling process

2.6.2 Fault isolation and approximation observers

For each of the jth fault isolation and approximation observers the unknown friction
ψ and the possible fault φj will be estimated, giving an unknown parameter vector

θ =
[
ψ, φj

]>
. The system vectors β0(x) and λ0(x) are the same as (2.10), while

the FIAO specific vectors will be

βj(x) =
1

M

[
0, 0, −x2

3

]>
, λj(x) = x3ej (2.11)

where ej is the jth column of the identity matrix I4. Here the requirement for
convergence (2.6) will be[

Λ0

Γ0
0

0
Λj
Γj

][(∑N
i=1 c

2
i

)
x2

3 c2
jx

3
3

c2
jx

3
3 x4

3

]
+
K2

3,3

M2

[
x2

3 x3
3

x3
3 x4

3

]
> kI2

which also is fulfilled if x3 is non-zero with some positive tuning parameters. Note
that the last term is only positive semi-definite, meaning that convergence is en-
forced by the first term, representing the additional measurements z.

2.6.3 Residual generation and evaluation

Residuals are generated from the fault diagnosis method and define some measure
on the fault in the system. In this paper the total annular friction Fa(q, θ) in (2.2)
will be the basis for the residual generation and evaluation. Using the approach in
Zhang (2000), we can define the residual as

ξj := F̂a(q, ψ̂0, 0)− F̂a(q, ψ̂j, φ̂j) (2.12)

where F̂a(q, ψ̂0, 0) is the estimated annular friction in the FDO and F̂a(q, ψ̂j, φ̂j) is
the estimated friction in the jth FIAO. The idea is that if there is a fault φj in the
fault set F defined in (2.3), the jth FIAO will successfully estimate the friction,
making ξj (close to) zero. Note that as in Zhang (2000), this method is limited to
the case of a single fault happening.

The FDO for the drilling process is designed to detect increases in the total
annular pressure which is similar to finding the equivalent circulating density. Of
the available additional measurements z, only the pressure in the top and bottom
of the annulus will be used for the FDO, making z = pbit.

A threshold µdet on ψ̂0 will be used for fault detection, giving a fault time tfault

if the threshold is exceeded, i.e., ψ̂0 > µdet. Then a threshold µisol on ξj is used for
fault isolation, where a fault is isolated if ξj < µisol. The magnitude of the fault will

then be F̂fault := φ̂jq
2. In order to make the detection and isolation more robust, a

simple exponential moving average filter (Basseville and Nikiforov, 1993)

sk = (1− α)sk−1 + αsk (2.13)

with forgetting factor α is used to filter ψ̂0 and ξj.
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2.7 Simulation of the drilling model

The drilling model (2.1) is simulated using a fifth order fixed step solver with added

Gaussian measurement noise with standard deviations σx =
[
0.5, 0.1, 0.1

]>
and

σz =
[
0.5, 0.5, 0.5, 0.5

]>
. The parameter values are given in Tab. 2.1 based

on an example in API (2006), and where the the back-pressure pump is not used
(qbpp = 0 L/s). The model contains a marine riser, drill collars, drill pipe and
drill bit, giving different diameters for different sections of the drill string and
annulus. The model’s initial values x(0) are pp(0) = 230 bar, pc(0) = 2.2 bar and

qbit(0) = 22 L/s The observers are initialized with x̂(0) = 0.7x(0), ψ̂j(0) = 0.7, and

φ̂j(0) = 0. The observer gains found through tuning are Kx = diag{0.5, 0.5, 3},
Γ0 = Λ0 = 1 × 10−3 and Γj = Λj = 1 × 10−6. The pump is initially running
with flow qp = 22 L/s. At 10 minutes the pump is turned off resulting in zero flow
through the bit until it is turned on again at 30 minutes. This mimics the common
situation of a pipe connection. Note that the initial pump flow gives turbulent
flow in the annulus, even though the observer was designed for laminar flow, see
Sec. 2.3.1.

Table 2.1: Drilling model parameters.

βa 5 000 bar Effective bulk modulus annulus
βd 14 000 bar Effective bulk modulus drill string
Ma 5.2 bar · s2/L Integrated density per cross section
Md 10.8 bar · s2/L Integrated density per cross section
Va 287× 103 L Volume of fluid in annulus
Vd 61× 103 L Volume of fluid in drill string
ρa 1.30 kg/L Density of fluid in annulus
ρd 1.10 kg/L Density of fluid in drill string

µd, µa 0.038 Pa · s Viscosity of drilling fluid
hTVD 3760 m True vertical depth of bit
Ld, La 6609 m Length of drill string/annulus
uc 30 % Choke opening
µdet 1.0 bar s/L Fault detection threshold
µisol 0.20 bar Fault isolation threshold

The simulated state estimation is shown in Fig. 2.2. The good state estimation
is as expected, since all states are directly measured. When the flow is zero, the
pump pressure pp is reduced to the difference in hydrostatic pressure between the
drill string and the annulus, caused by different densities. The choke pressure pc
is now atmospheric. The parameter estimation is shown in Fig. 2.3 where ψ̂0 is
the annular friction coefficient estimated by the FDO and ψ̂j, j ∈ {1, . . . , 4} are

the parameters estimated by the FIAOs. A fault is detected when a filtered ψ̂0

exceeds the threshold µdet. This happens at tfault = 26.23 min. The actual pack-
off φ2 between pressure sensors p1 and p2 starts to form at t = 16.7 min, shown
in the lower plot in Fig. 2.3. The estimates φ̂j shown in the same plot are the
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Figure 2.2: State estimation of pump pressure, choke pressure and bit flow.

estimates of fault φj by the jth FIAO. It can clearly be seen that the fault φ2 is
correctly estimated by the FIAO number 2, while the other FIAOs erroneously tries
to estimate the fault to be in φ1, φ3 and φ4, respectively. The reason that the fault
is detected first after circulation resumes, is the requirement of a non-zero qbit = x3,
as discussed in Sec. 2.6. Intuitively, this can be explained by the fact that the effect
of increased friction is not seen when there is no flow, which also can be seen from
the friction estimate in the upper plot in Fig. 2.4.

The residuals shown in the lower plot in Fig. 2.4 are the filtered signal of (2.12)
using filter (2.13). A fault is isolated if after t > tfault, the filtered ξj is below the
threshold µisol. This happens for residual ξ2, thus isolating the fault to a pack-off
being formed between measurements p1 and p2, see Fig. 2.1. The magnitude of the
fault in terms of pressure loss due to friction will then be given as F̂fault = φ̂2x

2
3 =

9.7 bar at full circulation.

2.8 Conclusion

In this paper a simplified nonlinear hydraulics model for drilling of oil and gas is
combined with a bank of nonlinear adaptive observers in order to detect, isolate
and identify that a pack-off is being formed. Utilizing the additional measurements
available in the novel wired drill pipe technology, all states in the model are assumed
directly measured in addition to a set of pressure transmitters distributed along the
drill string. A fault detection observer is used in order to detect that a fault occurs.
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Chapter 2 Fault diagnosis in MPD using nonlinear adaptive observers

Figure 2.3: Estimation of friction parameter ψ0 in the annulus by the FDO (red), and fault param-

eter φj by the jth FIAO. The fault is correctly estimated by φ̂2 (blue), and incorrectly

by the other φ̂j (grey).

Figure 2.4: Friction estimates F̂a and filtered fault isolation ξj . In the lower plot, the fault (blue)
is isolated by FIAO-2 to be φ2, while the other ξj are plotted in grey.
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2.8 Conclusion

Then a set of fault isolation and approximation observers are used to isolate the
position of the fault as well as its magnitude. Simulation of the simplified model
shows that a fault is successfully detected and isolated between two pressure sensors
as long as there is circulation of drilling fluid. As future work we hope to apply
this method in a high-fidelity drilling simulation environment as well as on a real
data set.
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Chapter 3

Drillstring washout diagnosis using friction
estimation and statistical change detection

The work in this chapter was published in Willersrud et al. (2015c), which is partly
based on preliminary results in Willersrud et al. (2013b).

Summary

In oil and gas drilling, corrosion or tensile stress can give small holes
in the drillstring, which can cause leakage and prevent sufficient flow
of drilling fluid. If such washout remains undetected and develops, the
consequence can be a complete twist-off of the drillstring. Aiming at
early washout diagnosis, this paper employs an adaptive observer to
estimate friction parameters in the nonlinear process. Non-Gaussian
noise is a nuisance in the parameter estimates, and dedicated general-
ized likelihood tests are developed to make efficient washout detection
with the multivariate t-distribution encountered in data. Change detec-
tion methods are developed using logged sensor data from a horizontal
1400 m managed pressure drilling test rig. Detection scheme design is
conducted using probabilities for false alarm and detection to determine
thresholds in hypothesis tests. A multivariate approach is demonstrated
to have superior diagnostic properties and is able to diagnose a washout
at very low levels. The paper demonstrates the feasibility of fault diag-
nosis technology in oil and gas drilling.

3.1 Introduction

Drilling is a major part of the total oil or gas field development cost. As the
easy available reservoirs are being depleted, there is a trend that boundaries for
drilling is pushed in the sense of more extreme environments, such as the arctic, or
deep wells with high pressure and high temperature. With increasing depth and
drilling at more remote locations, the cost of drilling is further increased and it is
essential to minimize non-productive time, that amounts to 20-25 % of total time
in operation (Godhavn, 2010).

Different incidents can happen downhole or topside that cause downtime, or
even abandonment of a well. Emerging advanced drilling methods such as managed
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pressure drilling (MPD) (Godhavn, 2010; Godhavn et al., 2011) brings along new
instrumentation to the rig, which allows one to have methods for detecting abnormal
situations. One such situation is drillstring washout, which will be studied in this
paper. A drillstring washout is a hole or cracks in the drillstring caused by wear,
such as corrosion or tensile stress (Bert et al., 2009). Such weakness can result in
a complete twist-off of the pipe, which may cause an extra three to twelve days of
drilling, in worst case abandonment of the well (Macdonald and Bjune, 2007). Early
yet sure diagnosis of a drillstring washout is essential. The challenge is that a small
washout gives tiny changes in pressure and flow rate of the circulated drilling fluid,
and is difficult to detect in noisy measurements signals. In addition to detecting the
occurrence of the washout it is of great value to isolate the position of the defect,
making inspection and replacement more effective.

Detection of other critical incidents have been studied using different detection
methods. Probably the most studied case is an influx of formation fluid, or kick, see
Hargreaves et al. (2001); Gravdal et al. (2010a); Cayeux et al. (2012b); Hauge et al.
(2013). Others are lost circulation of drilling fluid to the formation, pack-off of
drilling cuttings around the drillstring, and plugging of the drill bit nozzles. All of
these will affect drilling operation. Simulation and detection of different downhole
drilling incidents, including drillstring washout, were discussed in Cayeux et al.
(2012a) with some tests on real data in Cayeux et al. (2012b). There a high fidelity
model was fitted to data and used to detect abnormalities. Knowledge-modeling
was used for classification of different incidents by Skalle et al. (2013) and a Bayesian
network was shown to detect sensor and process faults in Ambrus et al. (2013).

A challenge with monitoring and diagnosis of downhole conditions in drilling is
the lack of measurements. Most commonly, low frequency measurements with mud
pulse telemetry from the downhole assembly has been available (Godhavn, 2010).
With high data rate, low latency transmission from downhole sensors, actions can
be taken at an earlier stage in order to avoid borehole stability problems (Dalton
et al., 2003). Recently, wired drill pipe technology has emerged as a technology with
distributed sensors along the drillstring, providing measurements at high sample
rate in real time (Godhavn, 2010; Veeningen et al., 2012).

Although increased instrumentation facilitates increased diagnosis, there are still
problems with measurement noise. Different statistical methods can be applied in
order to increase detection. In Hargreaves et al. (2001), a statistical cumulative
sum (CUSUM) algorithm was applied in order to increase kick detection while
maintaining a low false alarm rate. In Gulsrud et al. (2009), skewness of the
statistical distribution was used to detect poor hole cleaning. An adaptive observer
for friction estimation was presented in Willersrud and Imsland (2013) and applied
on data in Willersrud et al. (2013b), but direct washout diagnosis was not feasible
due to very poor signal to noise properties on the parameter estimates.

This paper proposes to use statistical change detection methods to diagnose
downhole drilling incidents. The focus is on drillstring washout. The proposed
method, depicted in Fig. 3.1, consists of using a reasonably simple mathematical
model together with a nonlinear adaptive observer to estimate a set of friction
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3.2 Flow-loop test facility

Figure 3.1: Overview of fault diagnosis method using an adaptive observer and statistical change
detection for fault diagnosis, where y are measurements, θ̂ are estimated parameters,
and ∆µ(θ̂) is the change in mean of the estimated parameters.

parameters and combine this with dedicated change detection. The estimated pa-
rameters will remain (close to) constant during normal operation, but change when
there is a washout in the system. Data from a medium scale flow loop designed and
tested by the oil and gas company Statoil ASA is used to test the diagnosis method.
Due to noise in the measurements the friction estimates are shown to be noticeably
affected. Detection and isolation possibilities are studied using the changes that
develop in estimated parameters during a washout. Dedicated change detection al-
gorithms are derived for the multivariate t-distribution that is observed from data,
based on a generalized likelihood ratio test (GLRT) approach. A GLRT for each
parameter is tested against a threshold using univariate probability distributions
of the noise, and changes to all parameters jointly can be considered using mul-
tivariate distributions. Detectors are derived for both univariate and multivariate
distributions and their performances are compared.

Referring to Fig. 3.1, the scope of the paper is as follows. Sec. 3.2 presents the
test rig and test scenarios, Sec. 3.3 presents the nonlinear dynamic model of the
process, and the nonlinear adaptive observer used for parameter estimation (first
block in the figure). Sec. 3.4 motivates the need for statistical change detection,
and Sec. 3.5 presents an analysis of the noise distribution of the estimated pa-
rameters. A dedicated diagnosis scheme is derived in Sec. 3.6 for the multivariate
t-distribution at hand (second block), and isolation of the washout position is an-
alyzed in Sec. 3.7 (third block). Findings are validated using experimental data in
Sec. 3.8. A discussion and conclusion completes the paper.

3.2 Flow-loop test facility

To test the diagnosis methodology, we will use data from tests on managed pressure
drilling technology conducted by Statoil in a 1400 m horizontal flow loop test setup
at premises of the International Research Institute of Stavanger (IRIS), Norway.
The flow loop was rigged with the possibility of emulating various faults including
drillstring washout.

Fig. 3.2 shows a schematics with drillstring washout highlighted, and parts of the
physical setup is shown in Fig. 3.3. Water is used as drilling fluid and pumped by a
piston rig pump with flow rates in the range of 0–2000 L/min (0–0.033 m3/s). The
drill bit consists of three parallel valves, and the pipes are 700 meter circular steel
pipes of 0.124 m and 0.155 m inner diameter, for drillstring and annulus respectively.
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Chapter 3 Drillstring washout diagnosis

Figure 3.2: Drilling system with measurements p, q, choke opening uc, and friction parameters θ.
A drillstring washout is a leakage from the drillstring to the annulus, resulting in less
flow in the lower part of the system and drill bit.

The flow loop is instrumented with topside measurements including standpipe and
choke pressure, and pump and choke flow. Four pressure sensors in the annulus and
one in the drillstring, upstream the bit, emulate a wired drill pipe. The technology
quality for wired drill pipe pressure sensors is presently not as good as the pressure
sensors used in the flow loop. Whether the accuracy is sufficient for the use we
propose here, has not been investigated.

Although the flow loop is designed to capture key dynamics in a real drilling
circulation system, there are some obvious differences. Since the loop is horizontal,
the effects of gas expanding as the gas is percolating up the annulus will not be
captured. Other differences is lack of annular effects and drillstring rotation. Cut-
tings (crushed formation rocks) transportation is also not included. However, the
flow loop uses pumps and chokes that are used in real drilling, and measurements
will be affected by bias and noise as at a real rig.

Data from a series of tests carried out by Statoil at the test rig is used to test
the fault diagnosis method. Even though several incidents are tested, for clarity of
presentation only the drillstring washout case will be used in this paper. Diagnosis
of other incidents is the topic in Willersrud et al. (2015d). Drillstring washout
is a challenging case with small changes to pressure due to friction, without any
net change of flow in and out of the well. To emulate drillstring washout, a valve
located half way along the flow loop was gradually open, releasing the flow from
the drillstring section of the flow loop to the annulus section.
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3.3 System model and adaptive observer

Figure 3.3: Flow-loop setup components for drillstring washout and gas injection (left) and for
drill bit nozzles (right).

Table 3.1: Flow-loop physical parameters.

βd,a 2.2× 109 Pa Effective bulk modulus
ρd,a 1000 kg/m3 Drilling fluid density
Ma 3.74× 107 Pa s2/m3 Integrated density per cross section
Md 5.81× 107 Pa s2/m3 Integrated density per cross section
Va 13.2 m3 Volume of fluid in annulus
Vd 8.56 m3 Volume of fluid in drillstring

hTVD 2.14 m True vertical depth of bit
Ld, La 700 m Length of drillstring/annulus

3.3 System model and adaptive observer

The model-based fault diagnosis method in this paper is based on parameter estima-
tion using the simplified hydraulics model in Kaasa et al. (2012) as a process model
together with an adaptive observer. As the authors argue, the simple model man-
ages to capture the key components of the flow dynamics in drilling. Furthermore,
a high-fidelity model with many parameters may not give a better result in prac-
tice, due to challenges in configuration and calibration. However, the simple model
has some limitations. In realistic situations, the particular bottom hole assembly
(tools at the end of the drillstring) used may give other setups near the bottom
which may imply that detected changes in friction can be caused by other incidents
than those considered herein. Moreover, we assume that the friction pressure loss
is in steady state, which means that care must be taken in interpreting detections
in periods just after known transients such as changing pump rates, drilling bit off
bottom, and change of drillstring rotational velocity.

The simple model has been applied for estimation and control purposes in Hauge
et al. (2013); Grip et al. (2010); Zhou et al. (2011); Stamnes et al. (2011a). This
section presents the model as well as the adaptive observer utilizing wired drill
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pipe measurements. The adaptive observer was derived in Willersrud and Imsland
(2013), and used in a preliminary study on fault diagnosis of the flow loop data
in Willersrud et al. (2013b), with simpler assumptions about the noise probability
distribution, detecting changes to each friction parameter separately.

3.3.1 Simplified hydraulic model

Referring to Fig. 3.2, let pp be the pressure at the pump, pc be the pressure upstream
the choke, and qbit the flow through the bit. The pump flow is denoted by qp, and
qc is flow through the choke. The model used is based on the model in Kaasa et al.
(2012), given by

dpp
dt

=
βd
Vd

(qp − qbit), (3.1a)

dpc
dt

=
βa
Va

(qbit − qc(pc, u)) , (3.1b)

dqbit

dt
=

1

M
(pp−pc−F (θ, qbit)−(ρa−ρd)ghTVD) , (3.1c)

where ρj is the density, Vj the volume, and βj the bulk modulus of the control
volume indexed j ∈ {d, a} for drillstring and annulus, respectively. The true vertical
depth of the well is hTVD, g is the acceleration of gravity, and the integrated fluid
density per cross section is M =

∫ L
0

ρ(x)
A(x)

dx where L is the total length from pump to

choke, and A(x) is the cross section at position x. The unknown friction parameter
vector θ is estimated by the adaptive observer. The total friction is modeled by

F (θ, q) = θbfb(q) +

Nd∑
i=1

θd,ifd(q) +
Na∑
i=1

θa,ifa(q), (3.2)

where fd(q), fb(q), and fd(q) model the flow characteristics in the drillstring, bit,
and annulus, respectively, and θ is a vector of assumed constant friction parameters
to be estimated. The friction is more accurately modeled by complex models de-
pending on well geometry and the non-Newtonian properties of drilling fluids, but
in the spirit of simple models to be updated by measurements, we will here assume
that f(q) is given by f(q) = q for laminar flow and f(q) = q2 for turbulent flow.
The flow through the choke is given by

qc(pc, u) = sgn(pc − pc,0)gc(uc)
√
|pc − pc,0|, (3.3)

where gc(uc) is the choke characteristics found empirically for choke opening uc ∈
[0, 100], pc,0 is the pressure downstream the choke.

Wired drill pipe technology extends the number of pressure measurements down-
hole. Let pd,i, i ∈ {1, . . . , Nd} be the measurements in the drillstring, and pa,i, i ∈
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3.3 System model and adaptive observer

{1, . . . , Na} in the annulus, see Fig. 3.2. The pressure difference is a function of
friction and hydrostatic pressure,

pd,i = pd,i+1 − θd,ifd(q) +Gd,i, (3.4a)

pa,i = pa,i+1 + θa,ifa(q) +Ga,i, (3.4b)

where Gj,i = ρjg(hj,i − hj,i+1) is the hydrostatic pressure difference between sensor
pj,i at depth hj,i and sensor pj,i+1 at depth hj,i+1. The corresponding friction be-
tween the sensors is given by θj,ifj(q), where θj,i is the constant friction parameter
and fj(q) is the flow characteristics in the drillstring and annulus, respectively. For
typical flow rates in the test rig the Reynolds number is large enough to indicate
turbulent flow in both drillstring and annulus, giving fd(q) = fa(q) = q2, which
also was found empirically in Willersrud et al. (2015d). The pressure drop over the
drill bit is given by

pa,1 = pd,1 − θbfb(q), (3.5)

where θb is the friction parameter in the drill bit. The flow characteristics fb(q) is
typically given by fb(q) = q2, see, e.g., Bourgoyne Jr. et al. (1986).

3.3.2 Nonlinear adaptive observer

Estimation of parameters in the nonlinear system could be achieved by extensions
to the extended Kalman filtering (EKF) techniques that estimate noise covariance
online and hence would not need knowledge of noise and process disturbance co-
variances. This is described for linear systems in Ljung (1979), and Zhou and
Blanke (1989) extended the EKF to continuous nonlinear systems with discrete
time measurements. Also the later particle filter approaches could be applied.
Here, a nonlinear observer approach is used that is based on deterministic stability
analysis but still relies on persistent excitation to get parameter convergence.

An adaptive observer for system (3.1) was suggested in Willersrud and Imsland
(2013) and is repeated here for completeness. The model is developed such that
all states are measured, and such that the friction parameters, θ, are unknown but
constant (on the time scale considered here) in the fault-free case. The system (3.1)
can be written as

ẋ = α(x, u) + β(x)θ, (3.6a)

z = η(x, z) + λ(x)θ, (3.6b)

where x(t) ∈ RNx are the states, z(t) ∈ RNz are the additional measurements,
u(t) ∈ RNu are the inputs, θ ∈ RNθ are unknown parameters, and α(x, u) ∈ RNx ,
β(x) ∈ RNx×Nθ , η(x, z) ∈ RNz and λ(x) ∈ RNu×Nθ are locally Lipschitz functions.
The observer is based on a nonlinear observer in Besançon (2000), adapted to the
system representation (3.6) with additional measurements z. It is assumed that z
in (3.6b) is given explicitly.
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Chapter 3 Drillstring washout diagnosis

Specifically, the system (3.1) with measurements (3.4) written on the form (3.6)
will have system vectors and matrices

x =
[
pp, pc, qbit

]>
, u =

[
qp, uc

]>
, (3.7a)

z =
[
pd,1, . . . , pd,Nd , pa,1, pa,1, . . . , pa,Na

]>
, (3.7b)

θ =
[
θd,1, . . . , θd,Nd , θb, θa,1, . . . , θa,Na

]>
, (3.7c)

α(x, u) =

 βd
Vd

(u1 − x3)
βa
Va

(x3 + u2 − qc(x1, u3))
1
M

(x1−x2−(ρa − ρd)ghTVD)

 , (3.7d)

β(x) =

 0 0
0 · · · 0

− 1
M
x2

3 − 1
M
x2

3

 , (3.7e)

λ(x) =

−x
2
3

. . .

x2
3

 , (3.7f)

η(x, z) =
[
z2 +Gd,1, . . . , zNd +Gd,Nd−1, x1 +Gd,Nd , z1,

zNd+3 +Ga,1, . . . , zNd+Na+1 +Ga,Na−1, x2 +Ga,Na

]>
.

(3.7g)

Theorem 3.1 (Willersrud and Imsland (2013)). Given an observer on the form

˙̂x = α(x, u) + β(x)θ̂ −Kx(x̂− x), (3.8a)

˙̂
θ = −Γβ>(x)(x̂− x)− Λλ>(x)(ẑ − z), (3.8b)

ẑ = η(x, z) + λ(x)θ̂, (3.8c)

where Kx,Λ,Γ > 0 are tuning matrices, and with θ̇ = 0. Let ex = x̂ − x and

eθ = θ̂ − θ be variables for the error dynamics, where e =
[
e>x , e>θ

]>
= 0 is an

equilibrium point. Then e = 0 is globally exponentially stable if

Γ−1Λλ>(·)λ(·)− β>(·)K>Kβ(·) > kINθ , (3.9)

for some constant k > 0, where K = 1
2
(INx − K−1

x ), and IN ∈ RN×N is the
identity matrix.

The proof of Thm. 3.1 is given in Willersrud and Imsland (2013) and is based
on a Lyapunov function for the error dynamics (see also, e.g., Besançon (2000);
Rajamani and Hedrick (1995)). Note that if β(·) is bounded and λ>(·)λ(·) > 0,
there exist some tuning parameters Kx, Γ and Λ such that (3.9) is fulfilled. The
matrix function β(·) is bounded as the physical flow x3 = qbit through the system
always will be bounded, while λ>(·)λ(·) > 0 can be interpreted as a requirement
for persistence of excitation and will be fulfilled whenever there is flow through
the well. If Γ > 0 and Λ > 0 are fixed, it can be seen from (3.9) that there is a
maximum value of K>K, thus a minimum and maximum value of Kx, with K>K

56



3.3 System model and adaptive observer

Figure 3.4: Actual washout in experiment measured over washout emulation valve, measured as
pressure loss at different flow rates {q0, . . . , q6}. The color coding shown to the right
shows the pressure drop ∆p(qi) for each flow rate qi, where higher flow rates give
higher pressure drop. This information is not known to the diagnosis methods, but
shown for reference.

smallest for Kx = INx . Furthermore, (3.9) shows that there is a lower bound on
Γ−1Λ as a function of Kx, β(·) and λ(·), where increasing Λ and Γ gives higher
noise magnification, while lowering them gives slower parameter updates. Since
these estimates are used for detection, it is desirable with fast updates of estimated
parameters after a change, giving requirements on the tuning matrices. Noise in
the estimates is hence inevitable.

3.3.3 Estimating parameters from flow-loop measurements

The adaptive observer (3.8), with system vectors and matrices (3.7) is applied
on data from the flow-loop experiments sampled at 10 Hz, during a time interval
when a drillstring washout is occurring. The actual washout in the experiment
is plotted in Fig. 3.4, measured as a pressure drop over an opened valve. This
information is not known to the detection algorithm, but shown for reference. As
described in Sec. 3.2, the test setup has Na = 4 pressure measurements in the
annulus and Nd = 1 pressure measurements in the drillstring. For appropriate
scaling in the model, bar is used as unit for pressures, and L/s for flow rates.
All parameters in Tab. 3.1 are scaled accordingly. The observer is initialized with

x̂(0) =
[
16, 5, 15

]>
, θ̂(0) = 10−4 ×

[
9.7, 23.5, 1.7, 0.24, 0.34, 4.9

]>
, and

configured with the parameters listed in Tab. 3.1. The observer gains are chosen
such that (3.9) is fulfilled and with sufficiently fast response of the observer such that
a stepwise change in a friction parameter could be tracked with a rise time of 1 s.
The values used are Kx = diag(3, 3, 3), Γ = Λ = 5× 10−5×diag(1, 1, 10, 10, 10, 10),
where ‘diag’ denotes a diagonal matrix.

The estimated topside pump pressures pp and pc are shown in the upper panel
of Fig. 3.5, and the flow through the bit in the lower panel. Both pressures are
directly measured, giving good estimates as expected. The flow through the bit
qbit is not measured. By ignoring flow dynamics in the drillstring, bit flow can be
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Chapter 3 Drillstring washout diagnosis

Figure 3.5: State estimation and measurements of pump pressure (pp), choke pressure (pc), and
bit flow/pump flow (qbit/qp) during a washout. The flow rate and choke pressure
is constant, while the pump pressure decreases during the washout due to reduced
friction in the system.

assumed equal to the pump flow, qbit = qp. This assumption is no longer valid

during a washout, resulting in a change in estimated parameters θ̂. The estimated
parameters are shown in Fig. 3.6. These plots show that the effect of a washout is
visible in the parameters θ̂d and θ̂b, but much less in θ̂a,1, . . . , θ̂a,4. The latter are
essential to isolate the washout location.

3.4 Statistical change detection

Detecting change of parameters in a linear system is a classical problem in statistics.
An overview of methods that are applicable for linear systems with Gaussian noise is
provided in Basseville and Nikiforov (2002). When the quantities for which change
detection are desired have non-Gaussian distributed noise, the change detection
problem is harder but solvable. When the quantities under test are time-wise
correlated and non-Gaussian, tests can be achieved but analytical methods may
not be available to determine thresholds that give desired false alarm and detection
probabilities.

A widely applied methodology is based on a likelihood ratio test, which maximizes
the probability of detection PD with a given false alarm probability PFA (Kay,
1998). The test will differentiate between the null hypothesis H0 and the alternative
hypothesis H1 using the probability density function (PDF) under each hypothesis.
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3.4 Statistical change detection

Figure 3.6: Estimated parameters θ̂d, θ̂b and θ̂a1 to θ̂a4.

If the statistical parameters under H1 are unknown, the generalized likelihood ratio
test (GLRT) can be applied.

The proposed method in this paper is to use parameter estimation to track phys-
ical changes in friction. With noise in the measurement, and with desired fast
detection, parameter estimates are inevitably subjected to random variation. Thus
is statistical change detection used to obtain desired false alarm rate and detection
properties. Statistical change detection furthermore gives us isolation capability
with known statistical properties. Methods for statistical change detection in fault
diagnosis were applied in Galeazzi et al. (2013); Hansen and Blanke (2014) and
applications are referred in Hwang et al. (2010) where GLRT was employed for
detecting change in estimated parameters.

The need for statistical change detection is illustrated by inspecting θ̂d and θ̂b
plotted in Fig. 3.6, which are affected the most by a drillstring washout. Fig. 3.7
shows the fault free case H0, and the fault-case H1(qi) for different washout flow
rates qi, see Fig. 3.4. The contour lines show two and three standard deviations cal-
culated as if data were Gaussian. The upper plot illustrates that the small washout
flow rate q1 is difficult to detect from the parameters while keeping the false alarm
rate low. For the friction parameters θ̂a,1 and θ̂a,2 in the annulus in the lower plot
in Fig. 3.7, it is not possible to distinguish the different cases. Without a statistical
change detection approach, it may be possible to detect a washout through change
in θ̂d and θ̂b, albeit with poor false alarm versus detection performance, but it would
not be possible to determine the washout position.
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Chapter 3 Drillstring washout diagnosis

Figure 3.7: Scatter plot of estimated parameters without washout (H0), and with different flows
of washout (H1(qi)), where flow rates are corresponding to the washout pressure drop
shown in Fig. 3.4. Ellipsoids show 2σ and 3σ for no washout (blue), minimum (yellow)
and maximum washout (dark red).

3.5 Probability distribution

The statistical change detection algorithm presented in Sec. 3.6 utilizes the proba-
bility density function (PDF) of the noise in order to detect a change. With a vector
of estimated parameters θ̂, it is possible to detect a change in each parameter iso-
lated, using univariate distributions, or to jointly detect change in the multivariate
distribution. The different distributions will be presented in this section.

3.5.1 Probability distribution of estimated parameters

Most commonly the noise of a signal is assumed to be independent, identically
distributed (IID) Gaussian white noise. However, if the noise of the signal has
heavier tails it will be more accurately represented with another distribution. The
estimated parameters are nonlinear functions of the measurements, which are not
independent due to the nature of the observer, where the innovations are integrated
from one time step to the next. For most distributions, it is rather difficult to find
analytical expressions for the likelihood ratio L(x) over a window N ,

L(x) =
f(xk−N+1, . . . xk;H1)

f(xk−N+1, . . . xk;H0)
=
f(xk;H1|xk−1, . . . xk−N+1) · · · f(xk−N+1;H1)

f(xk;H0|xk−1, . . . xk−N+1) · · · f(xk−N+1;H0)
, (3.10)

if the signal is non-white, since conditional probabilities would have to be included.
If the signal has non-white noise, a whitening filter can be applied in order to
get close to white noise. IID Gaussian noise for θ̂ was assumed in Willersrud
et al. (2013b), whereas a closer look on the distribution after white-filtering will be
studied in this paper.
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3.5 Probability distribution

Figure 3.8: Normal probability plot of white-filtered estimated parameter θ̂b for different distri-
butions. Data plotted in blue.

To find a candidate distribution, the cumulative distribution of the white-filtered
estimated parameter θ̂b is plotted as illustration in the probability plot in Fig. 3.8 for
different distributions. The dashed straight line represents the Gaussian cumulative
distribution function (CDF), whereas the heavier-tails distributions, such as the
Student t, Laplace and Cauchy will have a curved profile. Laplace and Cauchy
distributions have been applied in other detection problems in Hansen and Blanke
(2014, 2012). Comparing with the estimated parameter in blue, these heavier tail-
distributions clearly better fit the data. The Kolmogorov-Smirnov test p-values of
the white-filtered estimated parameters for the different distributions are given in
Tab. 3.2. Here only Student t and Cauchy distributions have a p-value above 0.05 for
all estimated parameters, which is a typical threshold used to reject the hypothesis
that data have the corresponding distribution. Due to the high p-value for the
Student t-distribution, this is chosen as best fit, although the Cauchy distribution
could also be a candidate.

Table 3.2: p-value for different distributions.

Parameter Gaussian Student t Laplace Cauchy

θ̂d ∼ 10−10 0.57 (ν = 2.2) 0.14 0.16

θ̂b < 10−12 0.94 (ν = 2.1) 0.069 0.14

θ̂a1 < 10−12 0.26 (ν = 1.8) 0.0024 0.28

θ̂a2 < 10−12 0.58 (ν = 1.7) 0.075 0.17

θ̂a3 ∼ 10−8 0.58 (ν = 2.4) 0.38 0.16

θ̂a4 < 10−12 0.44 (ν = 1.6) 0.0031 0.49
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Chapter 3 Drillstring washout diagnosis

3.5.2 p-variate t-distribution

Generally, the p-variate t-distribution with center µ, correlation matrix S, and
degrees of freedom ν > 0 has the joint probability density function

f(x;µ, S, ν) =
Γ((p+ν)/2)

Γ(ν/2)(πν)p/2|S|1/2

[
1+

1

ν
(x−µ)>S−1(x−µ)

]− p+ν
2

, (3.11)

where Γ(z) =
∫∞

0
tz−1e−1dt is the Gamma function. For ν > 1, E(x) = µ, for

ν > 2,Var(x) = Sν/(ν − 2) (Kotz and Nadarajah, 2004).
If each parameter is considered individually, a univariate t-distribution with p = 1

can be used to represent the distribution of the estimated parameters. If changes to
all parameters are considered simultaneously, the p = Nθ multivariate distribution
will have to be used.

The degrees of freedom ν in the univariate Student t-distribution are also listed
in Tab. 3.2 for each estimated parameter. Note that the if ν = 1, (3.11) is the p-
variate Cauchy distribution. If ν →∞, (3.11) is the p-variate Gaussian distribution
(Kotz and Nadarajah, 2004).

3.6 Generalized likelihood ratio test

The size of the washout affects the magnitude of change in the friction parame-
ters, but the magnitude of change is unknown. A generalized likelihood ratio test
(GLRT) can hence be applied for change detection. The GLRT utilizes the distri-
bution of the noise in the estimated parameters to best fit a t-distribution. In this
section, the GLRT for univariate distributions is described, together with multi-
variate distributions where the direction of change is assumed known or unknown,
respectively.

Change detection for parameters with Gaussian noise were thoroughly treated
in Basseville and Nikiforov (2002), a GLRT detector was derived for Cauchy dis-
tributed test quantities in Blanke and Hansen (2013), but a GLRT detector for the
t-distribution has not been found in the literature.

3.6.1 GLRT with univariate Student t-distribution

To detect changes in the vector of estimated friction parameters, changes to each
parameter can be considered independently, using a generalized likelihood ratio test
with univariate Student t-distributions. The detection problem is to differentiate
whether a signal x belongs to the null hypothesis H0 or the alternative hypothesis
H1. If only the statistical parameter µ changes, whereas σ and ν are assumed
constant, the detection problem with θ̂ ∈ R is

H0 : θ̂ ∼ t(µ0, σ, ν), (3.12a)

H1 : θ̂ ∼ t(µ1, σ, ν). (3.12b)
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3.6 Generalized likelihood ratio test

To reduce computational cost, the window-limited GLRT is used where
0 ≤ Ñ < N (Willsky and Jones, 1976; Lai, 1995), which is given by

g(k) = max
k−N+1≤j≤k−Ñ

ln

∏k
i=j f(θ̂(i); µ̂1, σ, ν)∏k
i=j f(θ̂(i);µ0, σ, ν)

, (3.13)

where µ̂1 is the maximum likelihood estimate of the mean µ1 atH1, and f(x;µ, σ, ν)
is the univariate PDF (3.11) with p = 1.

A change between the hypotheses (3.12) is detected if the decision function g(k)
is above a threshold h,

if g(k) ≤ h accept H0,

if g(k) > h accept H1.

With univariate distributions, Nθ decision functions g(k; θi) will have to be checked
against corresponding thresholds hi.

3.6.2 GLRT with multivariate t-distribution and known direction of
change

Detecting a change in a multivariate Gaussian distribution where the direction is
known but magnitude unknown, is described in Basseville and Nikiforov (1993);
Blanke et al. (2006). This is generalized to the multivariate t-distribution in this
section, and the derivation is provided in Appendix 3.A.2.

Let the change detection problem with θ̂ ∈ RNθ be

H0 : θ̂ ∼ t(µ0, S, ν),

H1 : θ̂ ∼ t(µ0 + wΥ, S, ν),

where w is the change magnitude and Υ is the change direction with ‖Υ‖ = 1,
assuming that S and ν are unchanged. The generalized likelihood ratio decision
function (Basseville and Nikiforov, 1993; Kay, 1998) is given by

g(k) = max
k−N+1≤j≤k−Ñ

ln
supw

∏k
i=j f(θ̂(i);µ0+wΥ, S, ν)∏k
i=j f(θ̂(i);µ0, S, ν)

. (3.14)

With a derivation (see Appendix 3.A.2) similar to that of a multivariate normal
distribution in Basseville and Nikiforov (1993); Blanke et al. (2006), the estimate
of magnitude of change with distribution (3.11) is

ŵ(k, j) =
Υ>S−1(Θ̄(k, j)− µ0)

Υ>S−1Υ
, (3.15)

where

Θ̄(k, j) =
1

k−j+1

k∑
i=j

θ̂(i). (3.16)
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The resulting decision function will then be

g(k) = max
k−N+1≤j≤k−Ñ

p+ν

2

k∑
i=j

[
− ln

(
1 +

1

ν
(θ̂(i)−µ0−ŵΥ)>S−1(θ̂(i)−µ0−ŵΥ)

)
+ ln

(
1 +

1

ν
(θ̂(i)−µ0)>S−1(θ̂(i)−µ0

)
)

]
. (3.17)

3.6.3 GLRT with multivariate t-distribution and unknown direction of
change

If no assumption of direction of change is assumed, the MLE µ̂1 of the mean at H1

has to be found. From Appendix 3.A.1, the MLE of the mean µ1 is given by

µ̂1 =
1

k−j+1

k∑
i=j

θ̂(i), (3.18)

and the GLR decision function is given by

g(k) = max
k−N+1≤j≤k−Ñ

p+ν

2

k∑
i=j

[
− ln

(
1 +

1

ν
(θ̂(i)−µ̂1)>S−1(θ̂(i)−µ̂1)

)
+ ln

(
1 +

1

ν
(θ̂(i)−µ0)>S−1(θ̂(i)−µ0)

)]
. (3.19)

3.6.4 Thresholds based on GLRT test statistic approximated by a
Weibull distribution

If the GLRT input was Gaussian and IID, the test statistic g(k) would asymptoti-
cally follow a χ2

r distribution and with r unknown parameters, r degrees of freedom
under H0, and a non-central χ′2r (λ) distribution with non-centrality parameter λ
under H1 (Kay, 1998). This would make it possible to set a threshold correspond-
ing to a desired probability of false alarms and of detection. However, for real
applications with correlated input, g(k) is not χ2

r distributed. Distributions seen
in real applications depend on properties of the case. A Weibull distribution best
fitted residuals from aircraft attitude data in Hansen and Blanke (2014); a lognor-
mal distribution best fitted the GLRT test statistic from narrow band correlated
ship motion data in Galeazzi et al. (2013). The distribution of the test statistic is
therefore studied in this section, based on real data.

Having tested several possibilities, the Weibull distribution was found to give a
good fit to the test statistic. The Weibull distribution has the probability distribu-
tion F (x;α, β) and the density function f(x;α, β), given by

F (x;α, β) = 1− e−(x/α)β , x ≥ 0, (3.20a)

f(x;α, β) =
β

α

(x
α

)β−1

e−(x/α)β , x ≥ 0, (3.20b)
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3.7 Fault diagnosis

where α > 0 is the scale parameter and β > 0 the shape parameter.
Let PFA be the probability of false alarm under H0. Then using the inverse CDF

gives a threshold h with the given probability PFA,

h = Q(1− PFA;H0, α0, β0) = β0 (− ln(PFA))1/α0 . (3.21)

The given threshold h will also determine the probability of detecting a fault
under hypothesis H1 with probability PD,

PD = 1− F (h;H1, α1, β1) = e−(h/α1)β1 . (3.22)

3.7 Fault diagnosis

Changes to the different parameters are used to detect a washout and isolate its
position. As seen in Fig. 3.2, a washout will decrease the flow in the lower parts
of the drillstring and the annulus, as well as in the drill bit. This will result in
a decrease in the estimated parameters, since the estimator assumes equal flow
throughout the system. Friction changes in the drillstring and bit are considerably
higher than in the annulus, and they are thus used for detection. A washout is
detected if both θ̂d and θ̂b have a negative change, as listed in Tab. 3.3. At the
position of the washout, the related friction parameter will have a positive change.
There will still be some friction loss in this section, however only the pressure sensor
in the beginning of the section will be affected by reduced flow. The net effect is
an increase in pressure drop in this section, which is used to isolate the washout.
The other annular friction parameters must be unchanged or changing in negative
direction.

Table 3.3: Fault isolation of drillstring washout with increasing (+), decreasing (−) and unchanged
(0) variables. X denotes ignored change in parameter.

Detection Isolation

θ̂d θ̂b θ̂a,1 θ̂a,2 θ̂a,3 θ̂a,4

Washout 1 (f1) − − + −/0 −/0 −/0
Washout 2 (f2) − − −/0 + −/0 −/0
Washout 3 (f3) − − −/0 −/0 + −/0
Washout 4 (f4) − − −/0 −/0 −/0 +

W.o., unknown pos. (f0) − − X X X X

3.7.1 Isolation based on individual parameter changes with univariate
distributions

If changes to each parameter are individually considered, a GLRT on each estimated
parameter is used for fault diagnosis. There will be one threshold for each estimated
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parameter, determined based on a specified probability PFA of false alarm. Let the
possible faults be

fi ∈ F , (3.23)

where fi represents a washout between sensor pa,i and pa,i+1, corresponding to
friction parameter θa,i, and F are all possible locations of washout. Location of
washout position from friction parameters are listed in Tab. 3.3, based on the
changes to friction shown in Fig. 3.2. If the changes in estimated annulus parameters
are inconsistent with regards to rows in Tab. 3.3, the position cannot be isolated,
although a washout may still detected if θ̂d and θ̂b have a negative change (f0).

3.7.2 Isolation in multivariate distribution with known direction of
change

If the direction of change is limited to the possible known vectors of change direc-
tions Υi ∈ Y , isolation is done by finding the Υi with the largest change magnitude
w. This will reduce the problem of inconsistent changes to parameters as found in
the univariate case in Sec. 3.7.1, due to some parameters being below its threshold.

For each data sample, the largest ŵ(Υi) is found from (3.15) with fault isolation
position

fisol := arg max
i
ŵ(Υi) =

Υ>i S
−1(Θ̄(k, j)− µ0)

Υ>i S
−1Υi

, (3.24)

and used to find the value of g(k) in (3.17) with ŵ(Υi|i = fisol). Hence is it only
necessary to calculate g(k) for one type of fault, although (3.15) will have to be
calculated for each Υi.

3.7.3 Isolation in multivariate distribution with unknown direction of
change

In this case, the fault fisol ∈ F can be isolated by finding the largest projection of
change in mean (µ̂1 − µ0) onto the vectors Υi ∈ Y ,

fisol = arg max
i

Υ>i (µ̂1 − µ0)

Υ>i Υi

. (3.25)

The difference between this method and the known direction case in Sec. 3.7.2 is
that µ̂1 is used explicitly in the decision function g(k), giving the possibility to
detect other faults not specified in Y . If the change direction is close to orthogonal
to Y , g(k) in (3.19) would still be affected, whereas ŵ in (3.15) would be close to
zero, giving close to zero value for the decision function (3.17). However, isolation
is still dependent on finding the minimum distance to some possible fault vectors,
such as Y . Comparing isolation (3.24) and (3.25), the difference is in fact that the
changes are scaled with S−1 in ŵ in (3.17), taking the correlation into account.
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Figure 3.9: Estimated flow rate of drillstring washout. Can not be validated due to lack of mea-
surements.

3.7.4 Estimating washout magnitude

In addition to isolating the position of the washout, described in Sec. 3.7, it is
also of great value to get an estimate of the leakage magnitude. During normal
operation, the flow through the bit will be equal to the pump flow at steady state,
qbit = qp. During a washout, some of the flow is diverted through the leaking hole,
giving qwo = qp − qbit at steady state, where qwo denotes the washout flow rate.
Since the observer (3.8) assumes all states measured, including qbit, the estimated
friction parameters will change during a washout. Friction loss over the bit will
be ∆pH0

bit = kbitq
2
p with no washout, and ∆pH1

bit = kbit(qp − qwo)2 during a washout,
where the bit friction parameter kbit is unknown. However, the pressure losses
are estimated to be ∆p̂H0

bit = θ̂H0
b q2

p, ∆p̂H1
bit = θ̂H1

b q2
p. An estimate for steady state

washout is therefore

q̂wo = qp

(
1−

√
θ̂H1
b

θ̂H0
b

)
. (3.26)

The estimated washout (3.26) is low-pass filtered and plotted in Fig. 3.9, showing
flow rates in the range 0–60 L/min (0–0.001 m3/s), which is up to 6 % of the total
flow. Note that the actual washout plotted in Fig. 3.4 is measured in pressure loss,
not in flow rate, and thus cannot be used to validate (3.26), although a significant
co-variation can be observed. Furthermore is the estimated washout flow rate only
valid if a fault is isolated as a washout. If not, the change in estimated parameter
θ̂b could have other causes.

3.8 Fault diagnosis based on experimental data

The estimated parameters from the case of drillstring washout are analyzed using
the three different methods described in Sec. 3.6 for change detection, namely
univariate change detection, multivariate change detection with known direction,
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and multivariate change detection with unknown change in mean and unknown
direction.

3.8.1 Change in univariate distributions

The first approach is to consider each parameter individually, testing each estimated
parameter against a corresponding threshold. As seen in Tab. 3.3, a washout is
detected if θ̂d and θ̂b have a negative change, and the estimated annular parameters
θ̂a,i are used to locate the washout.

The parameters during H0 are assumed known in the decision function (3.13).
However, relevant data for the fault free case before the washout is sparse, hence
are the statistical parameters µ0, σ and ν found by using maximum likelihood
estimation of the estimated parameters between 685 and 775 s (11:30 and 13:00
min), and between 1045 and 1100 s in a previous test. The GLRT decision function
(3.13) for each estimated parameter is plotted in the two upper panels in Fig. 3.10,
using window lengths N = 150 samples for detection and N = 400 for isolation,
with Ñ = N/4. To find thresholds, the probability of false alarm is specified to
be PFA = 10−5 (0.0024 false alarms per hour) for detection and PFA = 10−3 (0.09
false alarms per hour) for isolation. Comparing these plots with the actual washout
in Fig. 3.4, changes to θ̂d and θ̂b seem quite easy to detect, with large numerical
values of g(k) during a washout and small without it. However, θ̂a,i are less affected
making isolation more challenging, although in a real drilling situation the isolation
window could easily be chosen 10 to 20 times larger.

In Fig 3.11, the GLRT of θ̂a,3 with data during H0 is plotted in a probability plot
together with a fitted Weibull distribution. This friction parameter will determine
isolation of the washout. Also plotted is data under hypothesis H1 with washout
flow rate q1 corresponding to a pressure loss between 1 and 2 bar, see Fig. 3.5, and
flow rate q6 with pressure loss of 8 bar. The statistical parameters of the fitted
Weibull distributions (3.20a) during H0, H1(q1) and H1(q6) are listed in Tab. 3.4,
also showing the corresponding threshold values and detection probabilities PD.
For convenience, the table shows the missed detection probability PM = 1− PD.

Table 3.4: Threshold and probability of detection based on fitted Weibull distributions with pa-
rameters α and β, with changes to independent univariate distributions.

PFA N h α0 β0 α1(q1) β1(q1) α1(q6) β1(q6) PM (q1) PM (q6)

θ̂d 10−5 150 39.0 3.68 1.04 141 4.65 264 8.62 2.54× 10−3 ∼ 10−9

θ̂b 10−5 150 38.3 3.1 0.971 405 8.07 645 28 ∼ 10−10 < 10−12

θ̂a,1 10−3 400 40.1 6.49 1.06 78.7 4.36 187 4.21 0.0515 1.54× 10−3

θ̂a,2 10−3 400 15.7 3.98 1.41 11.5 1.28 65.2 5.56 0.775 3.66× 10−4

θ̂a,3 10−3 400 21.8 5.56 1.41 24 1.2 58.3 2.26 0.59 0.102

θ̂a,4 10−3 400 11.0 4.19 2.0 31.9 3.52 4.99 1.61 0.0233 0.972

As illustrated in Fig. 3.11, θ̂a,3 has a quite small value for probability of detection
at q1, meaning that isolation for small washout flow rates is quite uncertain. If PD
was to increase, the threshold should be lower with a penalty in increased PFA.
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3.8 Fault diagnosis based on experimental data

Figure 3.10: Decision function g(k) for each estimated parameter and resulting fault isolation.
Actual washout shown in grey.

Figure 3.11: Weibull probability plot of GLRT under H0, H1(q1) and H1(q6) for estimated pa-

rameter θ̂a,3 fitted to Weibull distributions. Threshold shown with dashed line.
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Using the thresholds listed in Tab. 3.4, the resulting fault isolation is shown in
the bottom of Fig. 3.10. Isolation of the position is quite uncertain in the first 3
min where the washout is ramping up (q1 and q2). When the washout rate reaches
a high level, isolation is quite certain. The reason for no isolation for a short period
at around 13 and 15 min is due to a longer window for isolation than for detection,
combined with a sudden change in washout flow rate. The estimated θ̂a,3 is above
the threshold for the first 2 min, even though there are no faults. The reason is
probably due to external factors (disturbances) in the process.

3.8.2 Multivariate distribution with known direction of change

The second case is to use the multivariate distribution, and limit the possible di-
rections of change to a predefined set of vectors Υi ∈ Y , as described in Sec.3.6.2,
with isolation as described in Sec. 3.7.2. The assumed possible change directions
for detection and isolation are column vectors of

Ῡdet =

[
−1
−3

]
, Ῡisol =


1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 0 1

 , (3.27)

where Υi = Ῡi/||Ῡi||. The magnitude of the friction parameter in the bit increases
approximately three times the magnitude of the friction parameter in the drillstring.
It is assumed that all parameters in the annulus are affected equally.

The white-filtered estimated parameters θ̂det ∈ RNd+1 and θ̂isol ∈ RNa are fitted
to multivariate t-distributions using the Expectation-Conditional Maximization Ei-
ther (ECME) algorithm (Liu and Rubin, 1995). The decision functions for detection
and isolation are plotted in Fig. 3.12, together with resulting isolation. In the mid-
dle panel, the isolation functions gisol(k) are plotted for each Υi ∈ Y , showing that
a washout at position three gives the highest value. Note that isolation is based on
maximum ŵ(Υi) given by (3.24), and thus only one decision function is required to
be calculated. Parameter values, thresholds and detection probabilities are listed
in Tab. 3.5. The threshold value h for gdet(k) was selected to give a false alarm
probability PFA = 10−5 from the data under H0, for isolation PFA = 10−3 is used.

Table 3.5: Threshold and probability of missed detection PM based on Weibull fit with known
change direction Υ of a multivariate distribution.

PFA N h α0 β0 α1(q1) β1(q1) α1(q6) β1(q6) PM (q1) PM (q6)

Detection 10−5 150 65.6 3.81 0.858 527 7.70 782 17.6 ∼ 10−7 < 10−12

Isolation 10−3 400 76.5 14.1 1.14 55.8 1.14 592 14.2 0.761 ∼ 10−12

No washout is isolated in the first 3 min. The reason may be that changes in the
parameters do not correspond directly to the directions (3.27). Furthermore, these
directions may not be entirely accurate, where also correlation S affects the change
direction (3.15). Compared to the univariate case in Fig. 3.10, accuracy in isolated
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3.8 Fault diagnosis based on experimental data

Figure 3.12: Decision function g(k) with known direction of change Υ. Isolation based on largest
ŵ for each direction of change Υi ∈ Y, with g(k) plotted for each direction. Actual
washout shown in grey.

position is increased for higher washout flow rates (after 6 min). The detection
probability PD is higher for the multivariate method, and for higher washout rates
the detection probability in isolation is significantly higher (lower PM).

3.8.3 Multivariate distribution with unknown change in mean and
unknown direction

In the third case, no assumption about change direction is made in the decision
function, making it sensitive to all changes. Isolation given by (3.25) is done by
finding the change in mean closest to possible change vectors, here given by (3.27).

The decision function gdet(k) for the multivariate distribution of θ̂d and θ̂b is
plotted in the top of Fig. 3.13, which is used for detection. The parameters θ̂a,i
are used for isolation, with detection function gisol(k) plotted in the middle panel.
Isolation is plotted in the lower panel. The thresholds are based on fitted data to
Weibull probability functions, plotted for gisol(k) in Fig. 3.14. Comparing with the
univariate method in Fig. 3.11, much less of the H1 data is left of the threshold,
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Figure 3.13: Decision function g(k) with unknown change in mean and unknown direction of
change. Isolation based on finding change in mean closest to possible change direc-
tions Υi ∈ Y. Actual washout shown in grey.

giving better isolation. Parameter values, thresholds and detection probabilities
are listed in Tab. 3.6.

With this method a washout is detected almost immediately and is isolated
around the 3 min time stamp. The difference between this very successful ap-
proach and the previous method is that assumption about direction is only made
for isolation. Furthermore, isolation is only done based on changes in mean (3.25),
not scaled with S as in (3.24).

Table 3.6: Threshold and probability of missed detection PM based on Weibull fit with change in
µ1 of a multivariate distribution.

PFA N h α0 β0 α1(q1) β1(q1) α1(q6) β1(q6) PM (q1) PM (q6)

Detection 10−5 150 61.6 6.64 1.10 550 7.11 810 16.5 ∼ 10−7 < 10−12

Isolation 10−3 400 88.5 24.2 1.49 154 5.82 711 7.34 0.0392 ∼ 10−7
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3.9 Discussion

Figure 3.14: GLRT for isolation under H0, H1(q1) and H1(q6) for multivariate distribution with
unknown direction of change, fitted to Weibull distributions in a Weibull probability
plot. Threshold shown with dashed line.

3.9 Discussion

The friction model used in the adaptive observer is quite simple, but proved to work
satisfactory for the washout case. If the method was to be applied during a large
range of pump flow rates and with different drilling fluid densities, a more sophisti-
cated friction model may be required. Nevertheless, for the current process, it has
been sufficient in order to provide convincing detection of washout and isolation of
the position of the leakage.

Two vector-based (multivariate) methods were compared. Method one, GLRTwΥ,
assumed a known direction Υ, but unknown magnitude w. The direction vectors
were determined from expected changes to the parameters with different washout
locations. The second method, GLRTµ1 , assumed an unknown direction and mag-
nitude of change in the vector µ1.

The main difference between the two multivariate methods was that method
one limits detection to already specified fault directions, other faults may not be
detected. Method two calculates g(k) based on the new estimated direction of
change, and then isolates the position based on already assumed known directions.
A disturbance not corresponding to the defined directions would impact the decision
function in the second case, but much less in the first. A challenge can be to find
the correct change directions. In this study, there was only data from one washout
location available, the others are assumed with same structure and values.

Detection was based on both drillstring and bit parameters changing in the neg-
ative direction, and probability of detection was clearly best using the multivariate
methods.
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Isolation was also efficiently done with the multivariate methods, with the multi-
variate GLRTµ1 approach being clearly superior in isolation performance. Isolation
during the first 3 min was difficult, both due to transients in the system during the
test and definitely due to the tiny changes in friction compared to a significant noise
level in the parameter estimates. In a real drilling operation, the window size could
be 10 min or more instead of the 40 s used here for reasons of the short duration of
each washout level during the experiments. The longer isolation window would give
significantly better isolation properties while fast detection could still be obtained
since different window sizes are used for detection and isolation.

Based on the experiments reported here, it would be feasible to implement a
diagnostic method usingH0 data from normal operation to learn a feasible threshold
h from test statistic data for given operational conditions. The detection scheme
would be sufficiently sensitive to detect and locate a drillstring washout.

The methods presented in this paper have been successfully tested on the diffi-
cult drillstring washout case, but are applicable on all downhole incidents during
drilling, that would cause detectable changes to friction and flow. This is studied
in Willersrud et al. (2015d), detecting and isolating numerous incidents. It is noted
that the validation of the proposed method is based on drilling conditions and prob-
lems represented by the test rig. In other drilling configurations, the models used
for parameter estimation and incident isolation may need to be adjusted. Exam-
ples include drilling operation that uses a hole-opener or an under-reamer inside
the bottom hole assembly. Such tools have side ports and this would need to be
accounted for in the model. The state of cutter arms (extended or retracted) might
also need be included in the model and, if a downhole motor is used, the associated
bottom leakage at the motor shaft should be included.

3.10 Conclusion

This paper has developed change detection methods for washout detection and lo-
calization in oil and gas drilling, and tested the methods on data from a managed
pressure drilling test facility. Using estimated friction coefficients in pipe segments
as indicators for change, the combination of an adaptive observer to estimate fric-
tion parameters and stochastic change detection provides a setup that is able to
detect and locate a washout with convincing performance. The parameters were de-
termined to be t-distributed, and generalized likelihood ratio tests were derived for
this particular distribution. Different diagnostic algorithms were tested, showing
that a multivariate test with unknown change direction and unknown magnitude
gave the most accurate detection and isolation as judged from experimental data.
The methods presented in this paper are believed to be generic but application to
other drilling conditions and problems would require that the model used for pa-
rameter estimation and the incident isolation approach are adopted to the specific
conditions of the operation.
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3.A Appendix

3.A Appendix

3.A.1 GLRT for unknown change in mean of a multivariate
t-distribution

Given a sequence of N IID observations of a vector z(j), j = k−N + 1, ..., k.
Determine whether z most likely belongs to p(z;H0) or to p(z;H1), where

H0 : p(z(j)) ∼ t(µ0, S, ν), j = k−N+1, ..., k, (3.28)

H1 : p(z(j)) ∼ t(µ1, S, ν), j = k−N+1, ..., k, (3.29)

where µ0 is a known vector, µ1 is unknown, S and ν are known parameters of the
multivariate t-distribution (3.11). The generalized likelihood ratio decision function
(Basseville and Nikiforov, 1993) is given by

g(k) = max
k−N+1≤j≤k

ln
supµ1

∏k
i=j f(z(i);µ1, S, ν)∏k

i=j f(z(i);µ0, S, ν)

= max
k−N+1≤j≤k

sup
µ1

Gk
j (µ1),

(3.30)

detecting a change in mean vector µ from µ0 to µ1, with S and ν constant. Using
that

f(z(i);µ1, S, ν)

f(z(i);µ0, S, ν)
=

[
1 + 1

ν
(z(i)−µ1)>S−1(z(i)−µ1)

]− p+ν
2[

1 + 1
ν
(z(i)−µ0)>S−1(z(i)−µ0)

]− p+ν
2

for the multivariate t-distribution with S and ν constant, Gk
j (µ1) is given by

Gk
j (µ1) =

k∑
i=j

ln
f(z(i);µ1, S, ν)

f(z(i);µ0, S, ν)

=
p+ν

2

k∑
i=j

[
− ln

(
1 +

1

ν
(z(i)−µ1)>S−1(z(i)−µ1)

)
+ ln

(
1 +

1

ν
(z(i)−µ0)>S−1(z(i)−µ0)

)]
.

The supremum is found by equating
∂Gkj (µ1)

∂µ1
to zero, yielding

k∑
i=j

∂

∂µ1

ln

(
1 +

1

ν
(z(i)−µ1)>S−1(z(i)−µ1)

)
= 0

=⇒
k∑
i=j

−2S−1(z(i)− µ1)

ν + (z(i)−µ1)>S−1(z(i)−µ1)
= 0.
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Hence is the maximum likelihood estimate (MLE) of the mean µ1 given by

µ̂1 =
1

k−j+1

k∑
i=j

z(i), (3.31)

and the GLRT decision function

g(k) = max
k−N+1≤j≤k

p+ν

2

k∑
i=j

[
− ln

(
1 +

1

ν
(z(i)−µ̂1)>S−1(z(i)−µ̂1)

)
+ ln

(
1 +

1

ν
(z(i)−µ0)>S−1(z(i)−µ0)

)]
. (3.32)

3.A.2 Change in mean with known direction but unknown magnitude

If the direction of change is known, the mean after change is represented by µ1 =
µ0 + wΥ, where Υ is the unit direction vector and w is the unknown magnitude.
Now the GLRT decision function will be slightly different, using that

∂

∂w
(z(i)− µ0 − wΥ)>S−1(z(i)− µ0 − wΥ)

= 2wΥ>S−1Υ− 2Υ>S−1(z(i)− µ0) (3.33)

∂Gk
j (w)

∂w
= 0 =⇒

k∑
i=j

[
wΥ>S−1Υ−Υ>S−1(z(i)− µ0)

]
= 0. (3.34)

The MLE of change magnitude is given by

ŵ(k, j) =
Υ>S−1(Z̄k

j − µ0)

Υ>S−1Υ
, (3.35)

where

Z̄k
j =

1

k−j+1

k∑
i=j

z(i). (3.36)

Using (3.32) with µ̂1 = µ0 + ŵΥ, and ŵ from (3.35), the GLRT test statistic will
hence be

g(k) = max
k−N+1≤j≤k

p+ν

2

k∑
i=j

[
− ln

(
1 +

1

ν
(z(i)−µ0−ŵΥ)>S−1(z(i)−µ0−ŵΥ)

)
+ ln

(
1 +

1

ν
(z(i)−µ0)>S−1(z(i)−µ0)

)]
. (3.37)
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Chapter 4

Fault diagnosis of downhole drilling incidents using
adaptive observers and statistical change detection

The work in this chapter was published in Willersrud et al. (2015d), which are using
some of the methods published in Willersrud et al. (2015c), as well as being partly
based on preliminary results in Willersrud et al. (2013b).

Summary

Downhole abnormal incidents during oil and gas drilling cause costly
delays, and may also potentially lead to dangerous scenarios. Differ-
ent incidents will cause changes to different parts of the physics of the
process. Estimating the changes in physical parameters, and correlat-
ing these with changes expected from various defects, can be used to
diagnose faults while in development. This paper shows how estimated
friction parameters and flow rates can be used to detect and isolate the
type of incident, as well as isolating the position of a defect. Estimates
are shown to be subjected to non-Gaussian, t-distributed noise, and a
dedicated multivariate statistical change detection approach is used that
detects and isolates faults by detecting simultaneous changes in esti-
mated parameters and flow rates. The properties of the multivariate
diagnosis method are analyzed, and it is shown how detection and false
alarm probabilities are assessed and optimized using data-based learning
to obtain thresholds for hypothesis testing. Data from a 1400 m horizon-
tal flow loop is used to test the method, and successful diagnosis of the
incidents drillstring washout (pipe leakage), lost circulation, gas influx,
and drill bit nozzle plugging are demonstrated.

4.1 Introduction

Drilling for oil and gas is a high-cost operation, especially for offshore wells.
Here large drilling vessels are used, or the oil and gas platform is designed with
drilling capabilities. An unwanted cost driver is non-productive time (NPT), which
typically is between 20-25 % of the total drilling time (Godhavn, 2010). One of
the major contributors to non-productive time is unforeseen incidents happening
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Figure 4.1: Drilling process with possible downhole incidents shown in red, including lost circu-
lation, drillstring washout, formation fluid influx, bit nozzle plugging, and pack-off.
Actuators shown in green, measurements in blue.

with the equipment on the rig, or downhole in the well. Early detection and iso-
lation of an incident is of great importance (Godhavn, 2010), since early detection
and mitigation can reduce the impact of an incident. Downhole incidents may in
particular be challenging to detect, and to distinguish one type of incident from
another may be even more difficult. Detecting and isolating the type and position
of downhole incidents as soon as possible is the subject of this paper. A key issue is
to avoid false alarms as these in themselves could cause unplanned stops in drilling
operation while investigations are carried out to confirm an event.

A schematic of the possible downhole incidents in a drilling system is shown
in Fig. 4.1. The main components of the system are the drillstring rotating the
drill bit, with circulating drilling fluid pumped down inside the drillstring that
transports crushed formation cuttings out of the annulus. The following incidents
are of specific concern and are studied in this paper:

• An influx of formation fluid (gas, water, oil), also called a kick, is probably
the most critical downhole incident. This is caused by a lower pressure in the
well than in the formation. A gas kick will reduce the hydrostatic pressure,
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thus further worsening the situation, and possibly leading to a dangerous full
blowout. Detection of kicks is one of the most studied detection scenarios
in drilling, see Hargreaves et al. (2001); Santos et al. (2007); Gravdal et al.
(2010a); Hauge et al. (2013), and the importance of early detection is evident.

• Loss of drilling fluid to the formation is referred to as lost circulation. This
is caused by either a very high permeability formation, or by a fractured
formation (Bourgoyne Jr. et al., 1986). If large amounts of fluid is lost to
the formation there may be problems maintaining a full fluid column in the
annulus, which again may lead to an influx.

• A pack-off is a build-up of formation solids around the drillstring, partially or
fully blocking the flow of drilling fluid. The result is typically stuck drillpipe
and risk of formation fractures (Dalton et al., 2003).

• Drillstring washout is a hole in the drillstring caused by wear, which may
cause leakage to the annulus. Such weakness can result in a complete twist-
off of the pipe, resulting in extra three to twelve days of drilling (Macdonald
and Bjune, 2007). A washout is difficult to detect at an early stage because
changes in pressure and flow rate are tiny when the leakage is small.

• Small crushed formation particles may restrict one or several of the drill bit
nozzles, which is called a drill bit nozzle plugging. Status monitoring of the
drill bit is important to reduce downtime, where service and replacement of
the bit is better planned with increased monitoring.

Different models and methods have been applied for detecting and isolating dif-
ferent kinds of incidents. Simple hydraulics models and observers were used by
Gravdal et al. (2010a); Hauge et al. (2013), a high fidelity model was fitted to data
in Cayeux et al. (2012a,b), and Skalle et al. (2013) applied a knowledge-modeling
method. Due to measurement noise, a statistical cumulative sum (CUSUM) algo-
rithm was tested on flow measurements in Hargreaves et al. (2001), and in Gulsrud
et al. (2009), skewness of the statistical distribution was used to detect poor hole
cleaning. Estimation and diagnosis has been demonstrated in process context in
Nagy-Kiss and Schutz (2013) for a waste-water treatment plant where a bank of
parallel linear observers were used for direct fault detection and isolation in a nonlin-
ear plant, considering uncertainty but not stochastic elements. In our application,
with a high sampling rate, the computational burden of this approach would be
heavy when a high number of parallel observers were needed to adequately repre-
sent the nonlinearities of the system and different cases of parameter changes due
to incidents listed above.

This paper employs a computationally simple mathematical model of the pro-
cess in a nonlinear adaptive observer (Willersrud and Imsland, 2013) to estimate
friction parameters and fluid flow rates. The estimates were found to follow a t-
distribution and a dedicated generalized likelihood ratio test (GLRT) was developed

79



Chapter 4 Diagnosis of downhole drilling incidents

for this particular distribution in Willersrud et al. (2015c). This paper makes use of
the adaptive observer in Willersrud and Imsland (2013) and the GLRT algorithm
for the t-distribution from Willersrud et al. (2015c), to provide a multivariate test
statistic in order to distinguish between the various types of downhole incidents
that could happen. The purpose of this paper is to determine which of the pos-
sible incidents have happened, to where in the well the issue can be localized and
which magnitude the incident has, hence which severity it has. The paper inves-
tigates the particular signatures of the different incidents in the test statistics and
it develops rigorous methods to obtain both isolation and localization with desired
probabilities of detection and false alarm. This result is achieved after a detailed
analysis of properties of the vector comprising the test statistic and simultaneous
analysis of estimated flow rates and friction parameters in the downhole process.
The contribution of this paper is to find a vector-based evaluation method for the
test statistic such that all of the types of incidents listed above can be diagnosed
with convincing diagnostic properties. The paper demonstrates the efficacy of the
method on data from a medium-scale horizontal flow loop designed and tested by
Statoil, and compares the performance of the t-distribution and vector-based eval-
uation methodology with that of a standard Gaussian detection approach from
Willersrud et al. (2013b) and shows the new method to be clearly superior.

The paper is organized as follows. Details about the test rig are first presented,
and an overview of the fault diagnosis methodology is given. The hydraulic model
is then detailed in Sec. 4.4, and changes to the different states and parameters in
the model due to different incidents are discussed. Then, the adaptive observer is
introduced, and a multivariate change detection algorithm is suggested. Tests with
flow-loop induced faults data are finally presented, and the paper is completed with
a discussion and conclusions.

4.2 Flow-loop test setup

The experimental rig is a water-based horizontal flow loop of 1400 meters, designed
to emulate and test different contingencies, including gas influx, lost circulation, bit
nozzle plugging, and drillstring washout. The test setup is designed by Statoil, and
is located at the International Research Institute of Stavanger (IRIS), in Stavanger,
Norway. The experimental test rig was designed to capture the main fluid dynamics
in a real drilling rig using managed pressure drilling as closely as possible. In this
configuration, the annulus is sealed off, and a choke is used to control the back-
pressure. The schematics in Fig. 4.1 illustrates the process and incidents that can
be imitated in the test rig.

A conventional piston pump is used to circulate the drilling fluid, and circular
steel pipes of 124 mm and 155 mm inner diameter are used for the drillstring
and annulus respectively, giving typical values of volume and bulk modulus. The
back-pressure pump is omitted in the installation. Instrumentation is also typical
for a real process. Pressure sensors downstream the pump (standpipe pressure),
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4.2 Flow-loop test setup

Figure 4.2: Experimental flow loop with choke manifold to the left, gas influx and washout emu-
lation in the middle, and bit and loss emulation to the right.

choke pressure, and pump flow are commonly available in a real rig. Downhole
measurements along the drillstring and over the drill bit may be available with
wired drill pipe technology (Godhavn, 2010; Veeningen et al., 2012).

However, some aspects of a real drilling process will not be captured in the test
rig, where one of the more noticeable differences is caused by the loop being close
to horizontal. In an inclined well with up to thousands of meters height difference
between top and bottom, the volume of a gas influx will increase as it is approach-
ing the surface, due to decreasing pressure. The result is a decreasing pressure in
the bottom of the well. This effect will be much less noticeable when the hydro-
static pressure differences in the well are small, which is the case with the test rig.
However, note that this effect is only occurring during multi-phase flow, which is
the case during an influx. Other aspects are the lack of crushed formation particles
in the annulus, annular effects and effects due to drillstring rotation. Neverthe-
less, flow rates and volumes, as well as a high-pressure environment, will give flow
dynamics similar to real drilling.

Figure 4.3: Flow-loop profile showing location of incident emulation at different positions in be-
tween pressure sensors.
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Chapter 4 Diagnosis of downhole drilling incidents

Key parts of the process that are emulated are: drill bit; choke manifold; gas
influx; drillstring washout; lost circulation. These are illustrated in Fig. 4.2. Gas
influx is emulated by nitrogen injection in the middle of the annulus. At the
same location, a valve can be opened, rerouting the flow from the drillstring to
the annulus to emulate a drillstring washout. In the end of the drillstring, three
adjustable valves emulate the bit nozzles with the possibility of partial plugging.
The loop profile is shown in Fig. 4.3, illustrating that the loop does have height
differences and therefore a hydrostatic pressure that varies along the line, albeit not
as much as in real drilling. Location of the different incidents and pressure sensors
are also shown in the figure.

4.3 Fault diagnosis methodology

This section presents the fault diagnosis method proposed for this problem. Fault
diagnosis (Isermann and Ballé, 1997) consists of

• Fault detection: detect that an abnormal situation has occurred.

• Fault isolation: determine the type and location of the fault.

• Fault estimation: estimate the fault magnitude.

Fault diagnosis methods can be divided into model-based methods using math-
ematical models of the system (Chen and Patton, 1999; Blanke et al., 2006; Ding,
2008), and data-driven methods that only are dependent on measurements, which
can be beneficial for large systems (Yoon and MacGregor, 2001; Yin et al., 2012;
Ding, 2014). Data-driven methods for multivariate statistical fault diagnosis are
presented and discussed in Yoon and MacGregor (2001); Yin et al. (2012); Yu
(2012). This paper presents a model-based multivariate statistical fault diagnosis
method to detect and isolate the possible incidents. Tests are done on data from
the test rig.

Generally, model-based fault diagnosis is based on detecting observable changes
that occur due to faults in the system. These changes can appear in residuals,
signals that are zero under normal conditions but differ from zero in the presence
of faults, or in estimated parameters of the system. One approach to estimate
parameters is to use adaptive observers, which estimate states and slowly varying
unknown parameters. When the adaptive observer is designed to tolerate unknown
input, both abrupt and incipient faults can be captured (Frank and Ding, 1997).

In this paper, fault diagnosis is done by detecting changes, compared to normal
operating conditions, of estimated friction parameters and change in flow rates.
These estimates will have a random component due to measurements noise propa-
gating though the adaptive observer. Since the magnitude of the different incidents
can vary from zero to an unknown magnitude, and the random component is sig-
nificant, the generalized likelihood ratio test (GLRT) can be applied to detect the
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4.3 Fault diagnosis methodology

Figure 4.4: Fault detection and isolation based on parameter and state estimation, and statistical
change detection.

change (Blanke et al., 2006; Basseville and Nikiforov, 1993; Kay, 1998). The detec-
tion problem is to detect a change in a signal x from the null hypothesis H0 to the
alternative hypothesis H1, and can be formalized as

H0 : x ∼ D(Π0;H0), (4.1a)

H1 : x ∼ D(Π1;H1), (4.1b)

where D(Πi;Hi) is the probability distribution of x with statistical parameters Πi

specified at Hi.

The paper focuses on investigation of a methodology to isolate the type of fault
that has occurred, to locate where in the well the fault is present and to estimate
the magnitude of the incident, i.e., help to assess the severity of the incident. The
fault diagnosis methodology is presented graphically in Fig. 4.4. As indicated in the
figure, details about design of the adaptive observers are available in Willersrud and
Imsland (2013) and derivation of the GLRT detector for a t-distribution is available
in Willersrud et al. (2015c).

Detecting that a fault is occurring, and determining the type of fault f ∈ F ,
is based on estimated states and parameters in the adaptive observer for fault
detection and isolation, using available measurements y. The location of the fault
is found by the help of the adaptive observer for fault localization. Due to noise in
the estimated signals, changes are detected using a multivariate statistical change
detection algorithm. A univariate test on each estimated parameter would be a
possibility, as was done in Willersrud et al. (2013b), but this paper shows that it is
possible to achieve much better detection properties using a multivariate method
where all parameters are considered jointly (Willersrud et al., 2015c). An alarm is
set if the test statistics exceeds a certain threshold. Isolation is done by determining
the change direction of the estimated parameters and states, where different faults
will give different directions. This approach is similar to Yoon and MacGregor
(2001), where isolation was based on vectors in a data-driven principal component
analysis (PCA) framework.
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Chapter 4 Diagnosis of downhole drilling incidents

4.4 Simplified single-phase hydraulics model

The flow loop was rigged for managed pressure drilling (MPD), and therefore is
a model designed for MPD used. Referring to Fig. 4.1, the model can easily be
changed to conventional drilling by removing the choke and back-pressure pump.

The process model (Kaasa et al., 2012) is a simplified hydraulics single-phase
model with two control volumes connected with a momentum balance at the drilling
bit. This model has been verified by offshore MPD commissioning tests, and is
suitable for control and detection purposes where unknown parameters can be es-
timated. Slowly varying effects due to temperature are not included in the model,
but can be added to calibrate the physical parameters. The height difference be-
tween a real drilling rig and the test rig will only affect the hydrostatic pressure
during normal operation with single-phase flow, which will not affect the dynamics
noticeably. The model is represented by the ordinary differential equations

dpp
dt

=
βd
Vd

(qp − qbit), (4.2a)

dpc
dt

=
βa
Va

(qbit + qbpp −Qc(θ, pc, uc)) , (4.2b)

dqbit

dt
=

1

M
(pp−pc−F (θ, qbit)−(ρa−ρd)ghTVD) , (4.2c)

where pp is the pressure downstream the rig pump, pc pressure upstream the choke,
qp the volumetric pump flow, qbit the flow through the bit, Qc the flow through
the choke, and qbpp the back-pressure flow rate. In each control volume j ∈ {d, a},
d for drillstring and a for annulus, βj is bulk modulus, Vj is volume, ρj is fluid
density, and Lj is the length. The vertical depth of the well is denoted hTVD, and
g is the acceleration of gravity. The integrated density per cross section M is given
by M = Md + Ma where Mj =

∫ Lj
0
ρj(x)/Aj(x)dx. The total friction F (θ, q) is

dependent on the unknown parameter vector θ of slowly varying parameters which
will be estimated. Friction is represented by

F (θ, q) = θdfd(q) + θbfb(q) + θafa(q), (4.2d)

where fd(q), fb(q), fa(q) are the flow characteristics in the drillstring, over the bit,
and in the annulus, respectively, and θd, θb, θa are unknown parameters. These pa-
rameters are lumped parameters of well geometry, density and viscosity, where the
two latter again are functions of pressure and temperature. For normal operation
these parameters can be assumed constant. The choke is modeled by

Qc(θ, pc, uc) = θcqc(pc, uc) = θc sgn(pc − pc,0)gc(uc)
√
|pc − pc,0|, (4.2e)

where pc,0 is the pressure downstream the choke, gc(uc) is the choke characteristics
as a function of choke opening uc ∈ [0, 100], and θc is a choke uncertainty parameter.
Let pd and pa,1 be the pressure measurements upstream and downstream the bit,
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4.4 Simplified single-phase hydraulics model

Figure 4.5: Friction characteristics in drillstring, drill bit, and annulus.

respectively. Then the relationship between friction and pressure in the drillstring,
over the bit, and in the annulus is, respectively,

pd = pp − θdfd(q) +Gd, (4.2f)

pa,1 = pd − θbfb(q), (4.2g)

pa,1 = pc + θafa(q) +Ga, (4.2h)

where Gd = ρdghTVD and Ga = ρaghTVD. In addition, if measurements pa,i are
available throughout the annulus, the relationship between pressure and friction is

pa,i = pa,i+1 + θa,ifa(q) +Ga,i, i ∈ {1, . . . , Na} (4.2i)

where θa,i is the friction parameter for the annular segment between measurement

pa,i at depth ha,i and pa,i+1 at ha,i+1, withGa,i = ρag(ha,i−ha,i+1) and θa =
∑Na

i=1 θa,i.
The vector of unknown parameters is thus

θ =
[
θc, θd, θb, θa, θa,1, . . . , θa,Na

]>
. (4.2j)

Data from a flow-loop test with different flow rates is used to empirically deter-
mine the friction characteristics in the drillstring, over the bit, and in the annulus.
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Chapter 4 Diagnosis of downhole drilling incidents

In Fig. 4.5 friction losses for flow rates in the range of 270 L/min to 1500 L/min
are plotted, showing a good fit to a quadratic relationship, i.e.,

fd(q) = q2, fa(q) = q2, fb(q) = q2, (4.2k)

which is typical for turbulent flow, as well as for describing pressure drop over the
bit (Bourgoyne Jr. et al., 1986).

4.5 Classification of incidents based on changes to variables

The different downhole drilling contingencies studied in this paper are lost circu-
lation, which is loss of fluid to the formation, influx of gas from the formation,
drillstring washout causing leakage from the drillstring to the annulus somewhere
in the well, drill bit nozzle plugging, and pack-off of formation cuttings around the
drillstring, restricting flow.

These different incidents will affect friction and flow rates throughout the well
differently, and is used in the fault diagnosis method. Changes in mean of the
estimated parameters θ̂d, θ̂b, and θ̂a, as well as change in estimated flow rate in and
out of the well,

∆q̂ := q̂c − q̂p, (4.3)

are used to differentiate between the different incidents.

4.5.1 Lost circulation

Loss of fluid to the formation somewhere in the annulus will result in less flow
downstream the point of loss. This will again reduce the friction in the segments
with less flow, as well as the total annulus friction. Since the friction in the annulus
is estimated by θ̂afa(q̂bit), a reduction in annular flow rate will result in a reduction
in the estimated friction parameter. This is due to the fact that the annular flow
rate is not estimated, but assumed equal tothe bit flow rate. These effects are
illustrated in Fig. 4.6a, showing less flow in the annulus, causing less friction and a
negative change of ∆q̂.

4.5.2 Drillstring washout

Drillstring washout is leakage from the drillstring to the annulus due to small holes
and cracks in the drillstring. If a washout happens, the lower parts of the drillstring
and annulus will have reduced flow, which may result in decreased well pressure
and hole cleaning capabilities. The effect on the friction parameters are shown in
Fig. 4.6b, where friction in the lower parts of the well is reduced. At the section
of the washout, the pressure in the end of the section will be constant due to
unchanged flow, but the pressure in the beginning of the section will decrease due
to reduced friction in the section. The net effect is an increase in pressure drop at
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4.5 Classification of incidents based on changes to variables

(a) Lost circulation. (b) Drillstring washout.

(c) Fluid influx. (d) Bit nozzle plugging.

(e) Pack-off.

Figure 4.6: Changes to flow and parameters due to different incidents. Blue denotes normal flow,
light blue is less flow and/or friction, dark blue is increased flow and/or friction.
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Chapter 4 Diagnosis of downhole drilling incidents

the washout. The case of drillstring washout was thoroughly studied in Willersrud
et al. (2015c).

4.5.3 Gas influx

An influx of formation gas into the well is an incident caused by pressure in the
well being lower than the formation pressure. Pressure dynamics will change with
gas in the well, requiring a more advanced hydraulic model than (4.2). As the gas
percolates up the well its volume will increase due to a smaller hydrostatic head.
This will give a smaller pressure drop and thus a smaller estimated friction if the
change in density of mixed gas and liquid is not accounted for. However, due to
reduced holdup for the liquid in the annulus, its velocity will increase, increasing
wall friction. These two effects will either increase or decrease the pressure drop
over the annulus, depending on the magnitude of circulating flow rate and well
inclination. The multi-phase flow is often classified as either gravity dominated or
friction dominated. For vertical multi-phase flow of gas and liquid, typically 90-99
% of the pressure loss is caused by reduced hydrostatic head (Hasan and Kabir,
1988), i.e., gravity dominated flow.

An influx is thus associated with a decrease in ∆q̂, and change in θ̂a, with positive
change for friction dominated flow and negative for gravity dominated flow. In the
particular case of the flow loop the inclination is quite small, hence is it assumed
friction dominated flow in the annulus.

4.5.4 Pack-off

In addition to controlling pressure in the well, the drilling fluid is used to transport
crushed formation particles (cuttings) or parts of the wellbore out of the well.
If the drilling fluid fails to transport this mass, the wellbore can be (partially)
plugged around the drillstring, called a pack-off. This will be observed in the friction
parameters as an increase in θ̂a, while the rest of the friction parameters and flow
rates are unchanged. Pack-off is not emulated in the flow loop, but included here
to demonstrate that other incidents are not incorrectly isolated as a pack-off.

4.5.5 Bit nozzle plugging

The drill bit has several nozzles which may be plugged during drilling. Small
particles from the cuttings may restrict the flow through one or several of the
nozzles, which will be seen as an increased pressure drop over the bit, and thus an
increase in the pump pressure. Since the formation is not exposed to this pressure
increase, the incident is not as severe as a pack-off (Cayeux et al., 2012a). If pressure
sensors are available on both sides of the bit, changes to the pressure drop can be
used to indicate a nozzle plugging. However, changes to the corresponding friction
parameter may be a result of other incidents happening. A salient feature of the
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4.5 Classification of incidents based on changes to variables

method proposed here is that changes to the whole drilling process are considered
simultaneously.

4.5.6 Overview of changes due to incidents

The effects on friction parameters and flow rates described in the previous subsec-
tions are summarized in Tab. 4.1, showing no overlap in the signatures that different
incidents have in the estimated parameter and state vector. A vector-based method
can thus be applied to isolate the type of incident, using change directions based
on this table. Depending on whether the pressure drop during a gas influx is grav-
ity dominated or friction dominated, θ̂a will either decrease or increase during the
influx. It is assumed that the pressure drop is friction dominated since the flow
loop is close to horizontal, giving a positive change in θ̂a in Tab. 4.1 for gas influx.

Table 4.1: Change of estimates in different cases of faults. Legend: increasing (+); decreasing
(−); unchanged (0).

θ̂d θ̂b θ̂a ∆q̂

Lost circulation 0 0 − −
Drillstring washout − − − 0
Gas influx 0 0 + +
Bit nozzle plugging 0 + 0 0
Pack-off 0 0 + 0

To isolate the position of the different incidents, changes to friction parameters
θ̂a,1, . . . , θ̂a,Na are used. The position of the incident will affect the parameters
differently, hence making isolation possible.

The estimated parameter vector ΘD is used for detection and isolation of incident
type, and ΘI for isolation of position. With Na = 4, the vectors are

ΘD :=


θ̂d
θ̂b
θ̂a
∆q̂

 , ΘI :=


θ̂a,1
θ̂a,2
θ̂a,3
θ̂a,4

 . (4.4)

Two separate vectors are used since in general, it may not be possible or desirable to
estimate ΘD and ΘI in the same observer. Furthermore, the magnitude of change
due to an incident may differ between the two vectors. In this specific case, ΘI

represents only a part of the process and will give smaller changes during incidents
compared to ΘD. Scaling would then be a challenge, as well as deteriorating detec-
tion and isolation properties, since a trade-off between false alarm and detection
rate between ΘD and ΘI would have to be considered.
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4.6 Parameter estimation using adaptive observers

Two different observers are designed to estimate parameters in the drillstring pro-
cess. These were illustrated in Fig. 4.4. One observer is used to obtain estimates
of incident type (ΘD), which is used to detect and isolate the type of incident that
has occurred; another is used to obtain estimated parameters, ΘI , which are used
for incident localization. For the drilling case with distributed pressure sensors in
the annulus, the difference between the observers will be that the detection and
isolation observer estimates θ̂a for the whole annulus, whereas θ̂a,i, i ∈ {1, . . . , Na}
is estimated in the localization observer. When using (4.2) as system model it is
possible to estimate all these parameters simultaneously, and hence for simplicity
of presentation they are presented in one observer in the current section.

The model (4.2) has nonlinearities in friction (4.2d) and the choke equation (4.2e).
In order to estimate states and parameters, a nonlinear adaptive observer is applied.
The observer was derived in Willersrud and Imsland (2013), and successfully applied
on the washout case in Willersrud et al. (2015c). The model (4.2) can be written
on the nonlinear adaptive observer form,

ẋ = α(x, u) + β(x, u)θ, (4.5a)

z = η(x, z) + λ(x, u)θ, (4.5b)

where x(t) ∈ RNx are the states, z(t) ∈ RNz are the additional measurements, u(t) ∈
RNu are the inputs, θ ∈ RNθ are unknown parameters, and α(x, u) ∈ RNx , β(x, u) ∈
RNx×Nθ , η(x, z) ∈ RNz and λ(x, u) ∈ RNu×Nθ are locally Lipschitz functions. It is
assumed that (4.5b) is an explicit equation of z, and that x is measured.

The system (4.2) can be written on the form (4.5) using

x =
[
pp, pc, qbit

]>
, u =

[
qp, qbpp, uc

]>
, (4.6a)

z =
[
qc, pd, pa,1, pa,1, pa,1, pa,2, . . . , pa,Na

]>
, (4.6b)

θ =
[
θc, θd, θb, θa, θa,1, . . . , θa,Na

]>
, (4.6c)

α(x, u) =

 βd
Vd

(u1 − x3)
βa
Va

(x3 + u2)
1
M

(x1−x2−(ρa − ρd)ghTVD)

 , (4.6d)

β(x, u) =

 0 0 0 0 0

−βa
Va
qc(x2, u3) 0 0 0 · · · 0

−fd(x3)
M

−fb(x3)
M

−fa(x3)
M

0 0

 , (4.6e)

η(x, z) =
[
0, x1 +Gd, z2, x2 +Ga, z6 +Ga,1, . . . , x2 +Ga,Na

]>
, (4.6f)

λ(x, u) = diag {qc(x1, u3), −fd(x3), −fb(x3), fa(x3), . . . , fa(x3)} . (4.6g)
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Theorem 4.1 (Willersrud and Imsland (2013)). Given an observer on the form

˙̂x = α(x, u) + β(x, u)θ̂ −Kx(x̂− x), (4.7a)

˙̂
θ = −Γβ>(x, u)(x̂− x)− Λλ>(x, u)(ẑ − z), (4.7b)

ẑ = η(x, z) + λ(x, u)θ̂, (4.7c)

where Kx,Λ,Γ > 0 are tuning matrices, and with θ̇ = 0. Let ex = x̂ − x and

eθ = θ̂ − θ be variables for the error dynamics, where e =
[
e>x , e>θ

]>
= 0 is an

equilibrium point. Then e = 0 is globally exponentially stable if

Γ−1Λλ>(·)λ(·)− β>(·)K>Kβ(·) > kINθ , (4.8)

for some constant k > 0, where INθ ∈ RNθ×Nθ is the identity matrix.

See Willersrud and Imsland (2013) for proof of Thm. 4.1. Requirement (4.8)
with λ(·), β(·) given in (4.6) will be met if there is flow through the system, i.e., for
a non-zero and bounded x3 = qbit, and bounded x1 = pp.

4.7 Multivariate statistical change detection and fault

isolation

Detecting changes to the different estimated parameters and flow rates in ΘD and
ΘI are done using a generalized likelihood ratio test, described in this section. The
diagnosis problem is a set of stepwise problems: First detect that there is a change
from normal and isolate which incident is causing this change, then isolate the
incident to a particular section of the drillstring and estimate its magnitude. See
also Fig. 4.4.

Problem 4.1 (Incident detection). Given a sampled time sequence of vectors of
estimated parameters ΘD(k), with change from known condition ΘD,0(k) to un-
known ΘD,1(k) defined as ∆ΘD(k) := ΘD,1(k) − ΘD,0(k). Define the index set
NN := {i ∈ N : 1 ≤ i ≤ N} and let iD ∈ NNf be the possible fault indices. Let a fault
signature matrix be D, a unit magnitude fault vector be fiD = [0, . . . , 0, 1, 0, . . . , 0]>,
element iD of which is non-zero when fault iD is present, and υ(k) be an unknown
magnitude of change. Further, let the random vector w(k) have independent and
identically distributed samples with probability density f(w), then distinguish be-
tween two hypotheses

H0 : ∆ΘD(k) = 0 + w(k), no fault present, (4.9a)

HD
1 : ∆ΘD(k) = DfiDυ(k) + w(k), fault present. (4.9b)

Problem 4.2 (Isolate type of incident). Given HD
1 has been accepted, determine

that a particular fault i∗D is present of the possible faults iD ∈ NNf , by determining
the best fit of (4.9b) for the different fault types.
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Problem 4.3 (Isolate position of incident). Given that i∗D has been isolated. Let
G(i∗D) be a known matrix associated with the isolated fault type i∗D, ∆ΘI(k) be a
vector of change in estimated parameters, jI ∈ NNg be the possible fault positions,
fjI be a fault position vector with element jI equal to 1 for a fault in position j and
0 otherwise, and υ(k) be the unknown magnitude of the change.

(A): Determine if localization of a fault is possible by distinguishing between two
hypotheses

H0 : ∆ΘI(k) = 0 + w(k), localization not possible, (4.10a)

HI
1 : ∆ΘI(k) = G(i∗D)fjIυ(k) + w(k), localization possible. (4.10b)

(B): If hypothesis HI
1 is accepted, determine the most likely position j∗I of the

positions jI ∈ NNg along the pipe that explains the estimates (4.10b).

4.7.1 Generalized likelihood ratio test

The GLRT decision function uses the likelihood ratio of the probability density
function at the two hypotheses of H0 and H1, and can be written as

g(k) = max
k−N+1≤j≤k−Ñ

ln

∏k
i=j f(Θ(i);H1)∏k
i=j f(Θ(i);H0)

. (4.11)

using a data window N to reduce computational cost, and 0 ≤ Ñ < N (Willsky
and Jones, 1976; Lai, 1995). Distinguishing between the two hypotheses is done by
using a threshold h of the decision function g(k),

accept H0 : g(k) ≤ h,

accept H1 : g(k) > h.
(4.12)

4.7.2 Probability distribution of estimated flow and friction parameters

The estimated parameters θ̂ from the adaptive observer (4.7) were found to be mul-
tivariate t-distributed in Willersrud et al. (2015c), after the estimated parameters
were white-filtered. The t-distribution is a generalization of the Gaussian distribu-
tion, with larger probability tails. This means that there is a higher probability of
outliers compared to a Gaussian distribution. The p-variate t-distribution with cen-
ter µ, correlation matrix S and ν > 0 degrees of freedom has the joint probability
density function

f(x;µ, S, ν) =
Γ((p+ν)/2)

Γ(ν/2)(πν)p/2|S|1/2

[
1+

1

ν
(x−µ)>S−1(x−µ)

]− p+ν
2

, (4.13)

where Γ(z) is the Gamma function. The parameter µ is the mean of x when ν > 1
(Kotz and Nadarajah, 2004).
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4.7.3 GLRT with multivariate t-distribution

If the mean µ is changing from µ0 to µ1, whereas the statistical parameters S and
ν are constant, the GLRT decision function g(k) ∈ R for the t-distribution (4.13)
of vector variable Θ(k) was found in (Willersrud et al., 2015c) to be given by

g(k) = max
k−N+1≤j≤k−Ñ

p+ν

2

k∑
i=j

[
− ln

(
1 +

1

ν
(Θ(i)−µ̂1)>S−1(Θ(i)−µ̂1)

)
+ ln

(
1 +

1

ν
(Θ(i)−µ0)>S−1(Θ(i)−µ0)

)]
, (4.14)

with maximum likelihood estimate of the mean after change given by

µ̂1 =
1

k−j+1

k∑
i=j

Θ(i). (4.15)

4.7.4 Isolate type of incident

The problem of isolating type of incident defined in Problem 4.2 is to find i∗D of the
possible fault types. Let D be the fault signature matrix with unit column vectors
Di defined by

Di :=
KDΥD,i

‖KDΥD,i‖
, (4.16)

where the column vector ΥD,i of ΥD is the change direction of incident iD, and KD

are the relative change magnitudes used to scale changes to have approximately
similar effects on magnitude υ. Based on Tab. 4.1, the possible change directions
ΥD for ΘD are

ΥD =


0 −1 0 0 0
0 −1 0 1 0
−1 −1 1 0 1
−1 0 1 0 0

 , (4.17)

corresponding to the fault types lost circulation (iD = 1), drillstring washout (iD =
2), gas influx (iD = 3), bit nozzle plugging (iD = 4), and pack-off (iD = 5),
respectively.

Determining correct magnitudes KD can be difficult without prior data of the
incidents. Nevertheless, knowledge of certain range of values is maybe possible
based on physical considerations. It is assumed that the relative change between
friction parameters θd, θb and θd is approximately equal. Furthermore, using (4.2k)
with known friction and flow rate, relative change between the friction parameters
θd, θb, θd, and change of flow rate ∆q is approximately 1/1000, giving the diagonal
matrix of relative change

KD = diag{1, 1, 1, 1/1000}. (4.18)
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The type of fault i∗D is isolated using a maximum least square solution of mag-
nitude υ given by (4.9b) for each column vector Di in D, where the mean is
E(∆ΘD) = (µ̂D1 − µD0 ), giving

i∗D = arg max
i

D>i (µ̂D1 − µD0 )

D>i Di

. (4.19)

4.7.5 Isolating position of incident

The position of the incident refers to the position between two pressure measure-
ments in the annulus, where jI indicates an incident between pressure sensor pa,j
and pa,j+1. The different type of incidents iD ∈ NNf will affect the estimated pa-
rameters ΘI used for isolation differently. As stated in Problem 4.3, it is thus
necessary to first determine the type of incident i∗D and then isolate the position
j∗I . Let G(iD) be the localization matrix associated with fault type iD, with unit
column vectors Gj(iD) defined as

Gj(iD) :=
KIΥI,j(iD)

‖KIΥI,j(iD)‖
, (4.20)

where ΥI,j(iD) is the j-th column vector of the localization change direction matrix
ΥI(iD) associated with fault type iD, and KI is a diagonal matrix of relative change
magnitudes.

Similarly to (4.19), the position j∗I of the fault is isolated finding the maximum
least square solution to (4.10b), giving

j∗I = arg max
j

G>j (i∗D)(µ̂I1 − µI0)

Gj(i∗D)>Gj(i∗D)
. (4.21)

It is assumed that the magnitude of change of each estimated parameter is equal
for a given incident, giving KI = I, where I is the identity matrix. For the case of
lost circulation (iD = 1), drillstring washout (iD = 2), and pack-off (iD = 5), the
change direction matrices are, respectively, given by

ΥI(1) =


−1 0 0 0
−1 −1 0 0
−1 −1 −1 0
−1 −1 −1 −1

 , ΥI(2) =


1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 0 1

 , (4.22a)

ΥI(5) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (4.22b)

where vectors are determined based on discussions in Sec. 4.5. Isolation of gas
influx (iD = 3) is not well suited for the current model, and is hence not included.
Bit nozzle plugging (iD = 4) does not need additional isolation.

94



4.8 Diagnosis of downhole incidents in flow-loop data

4.7.6 Determining thresholds

Thresholds can be found based on specified probability of false alarms PFA (Kay,
1998), by determining the distribution of the GLRT test statistic g(k) for data under
H0, see, e.g., Galeazzi et al. (2013); Hansen and Blanke (2014). In Willersrud et al.
(2015c) the GLRT test statistic (4.14) was found to have a good fit to the Weibull
distribution. The Weibull distribution has the cumulative distribution function
F (x;α, β) and probability density function f(x;α, β) given by

F (x;α, β) = 1− e−(x/α)β , x ≥ 0, (4.23a)

f(x;α, β) =
β

α

(x
α

)β−1

e−(x/α)β , x ≥ 0, (4.23b)

where α > 0 is the scale and β > 0 the shape parameter.
Let PFA be the probability of false alarm under H0. Then the inverse cumulative

distribution function gives a threshold h with given probability PFA,

h = Q(1− PFA;H0, α0, β0) = β0 (− ln(PFA))1/α0 . (4.24)

The probability of detecting a fault under the alternative hypothesis H1 with
probability PD for a given threshold h is

PD = 1− F (h;H1, α1, β1) = e−(x/α1)β1 . (4.25)

Knowledge of data under H1 is needed to find α1, β1, and thus PD.

4.8 Diagnosis of downhole incidents in flow-loop data

The suggested incident diagnosis method, illustrated in Fig. 4.4, is tested on data
from five different cases from the test rig: drillstring washout; lost circulation;
two cases of gas influx; and bit nozzle plugging. Data is sampled at 10 Hz and
white-filtered using a third order filter. The computational burden of updating the
observer (4.7) is well within real-time capability.

Estimation of pump and choke pressure, as well as pump and choke flow rate, is
shown for all test cases in Fig. 4.7. Since pressures and choke flow rate are measured,
these estimates closely follow the process as expected. Since measured bit flow is
assumed equal to pump flow, estimated bit flow closely follows the pump flow. The
estimated parameters in (4.2) are plotted in Fig. 4.8, which will determine ΘD and
ΘI given by (4.4). Measurements indicating the time of the emulated incidents
are plotted in Fig. 4.9. Valve position for bit nozzle plugging emulation was not
measured and is not shown. This information is shown for reference only, the
emulated incidents are not known to the diagnosis algorithm.

The plots in Figs. 4.7, 4.8 and 4.9 show a concatenation of the five different data
sets logged at the test rig. Logging was not continuously available and incidents
were not always injected in chronological order. Although the different cases were
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Chapter 4 Diagnosis of downhole drilling incidents

Figure 4.7: State estimation of pressure and flow during washout, loss, gas influx, and bit nozzle
plugging. The different cases are separated with alternating grey and white back-
grounds.

Figure 4.8: Parameter estimation during washout, loss, gas influx, and bit nozzle plugging. The
different cases are separated with alternating grey and white backgrounds.
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4.8 Diagnosis of downhole incidents in flow-loop data

Figure 4.9: Actual incidents: drillstring washout, lost circulation, and gas influx. Bit nozzle
plugging not measured. Information not available for diagnosis method. The different
cases are separated with alternating grey and white backgrounds.

run on the same experimental rig, physical conditions differ between the exper-
iments and there are therefore differences in the state and parameter estimates
between the individual cases. From Fig. 4.8 that shows parameter estimation, it
is apparent that the distribution of test statistics under H0 differ from one exper-
iment to another. In a real drilling process, the estimates would only have small
variations during normal operation, and a H0 calibration could be made from data.

With differences between data sets, different values for the parameters in the
t-distribution, i.e., µ0, S and ν, need to be estimated. The t-distribution parame-
ters under H0 are estimated using the Expected-Conditional Maximization Either
(ECME) algorithm (Liu and Rubin, 1995), using data from test conditions without
any incidents. For all data sets ν > 1, meaning that µ is the vector of mean values
of parameters. Simultaneous adaptation and change detection could be used to
track slowly varying process properties.

A related approach was presented in Blanke and Hansen (2013) where adaptation
of model parameters was halted when a H1 condition was detected, and detection
was based on a combination of change in parameters and change in the output
estimation error between observer estimated output and measured output.

Threshold values listed in Tab. 4.2 are calculated using (4.24) with the following
probabilities of false alarm

PFA,D = 10−6, PFA,I = 10−4, (4.26)

during detection and type isolation, and localization, respectively.

The chosen GLRT window lengths given in number of samples are

ND = 150, NI = 400, (4.27)
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Figure 4.10: Weibull probability plot of decision function g(k; ΘD) under H0, and H1 with loss of
300 L/min (at 29 min in Fig. 4.9), for window lengths ND = 150 (solid) and ND = 30
(dashed). Thresholds h shown as vertical lines. PFA and PD are 1−Probability shown
on the ordinate axis of the plot.

where a shorter window for detection and type isolation is used to give a fast
detection, while localization is based on ΘI with less changes in the estimated
parameters, necessitating a longer window. The necessity for a sufficiently long
window size is shown in Fig. 4.10, showing g(k; ΘD) fitted to Weibull-distributions
for the lost circulation case under H0 with no loss, and H1 with lost circulation of
300 L/min shown at 29 min in Fig. 4.9. Two cases are plotted, namely the chosen
window size of ND = 150 plotted with solid lines, and a shorter window ND = 30
plotted with dashed lines. Also plotted are the thresholds that give the same false
alarm probability for the two window sizes. As Fig. 4.10 shows, in order to obtain
high detection probability (PD) and a satisfactorily low false alarm rate (PFA),
H0-data needs essentially to be below (to the left) of the threshold, and H1-data
essentially to be above. This is the case for ND = 150, which is used in our analysis,
but not for a five times shorter window, ND = 30. The window intervals we use in
the analysis, see (4.27), are quite short (ND = 150 is equivalent to a 15 s window
and NI = 400 is equivalent to 40 s), so the window size could easily be chosen much
longer in a real drilling situation, albeit at the expense of slower detection.

This discussion illustrates the necessity of investigating the distribution of test
statistics under both H0 and H1 in order to choose threshold and window size for
a test, and the probability plot approach shown here provides a straightforward
and easily applicable methodology. It is a prerequisite that H0 and at least a few
H1 data are available. If only H0 data are available, the minimum value of a fault
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4.8 Diagnosis of downhole incidents in flow-loop data

Table 4.2: Threshold values for different cases.

Incident case hdet hisol

Lost circulation (fD,1) 30.8 27.9
Drillstring washout (fD,2) 64.0 82.4
Gas influx A (fD,3) 56.3 N/A
Gas influx B (fD,3) 48.4 N/A
Bit nozzle plugging (fD,4) 57.6 N/A

that can be detected, with a given probability of detection, will be a function of
threshold and window length.

With PFA and N specified in (4.26) and (4.27), expected false alarm rates are
0.00024 per hour (2 per year) for detection and type isolation, and 0.009 per hour for
localization. Since localization is made subject to prior detection, the localization
false alarm does not have as high priority as that of detection. In addition, with a
longer window size or a requirement that consecutive hypothesis evaluations confirm
a detection, false alarm rates could be further reduced.

4.8.1 Drillstring washout

The first incident studied is a drillstring washout. This case was studied in Willer-
srud et al. (2015c), but extended in this paper to also include isolation of incident
type. Detection and isolation is shown in Fig. 4.11 where the washout is correctly
detected and isolated. The true position of the washout is at position 3, which is
in the middle of the drillstring. See Fig. 4.3. The position is correctly located after
2 minutes, seen in Fig. 4.12, with the alarm disappearing shortly in the beginning
where leakage is fairly small. A multivariate Gaussian test on non-whitened esti-
mates, see, e.g., Basseville and Nikiforov (1993); Blanke et al. (2006) is also shown
in the figure.

Using the multivariate t-distribution, the probability of missed detection PM :=
1 − PD for g(k; ΘD) between 2 and 3 minutes is 2.6 × 10−4, using PD in (4.25)
and PFA specified in (4.26). For localization with g(k; ΘI), PM = 0.106. If the
multivariate Gaussian distribution is used these values are 1.6 × 10−3 and 0.80,
respectively, which is considerably higher. The t-distribution is hence providing
better detection properties, where isolation in particular would be challenging using
a multivariate Gaussian distribution in the GLRT decision function (4.11). This can
also can be seen in Fig. 4.12, where g(k; ΘI) is lower using the Gaussian probability
density function. The g(k) value of the Gaussian distribution is scaled to have
equal threshold h as the t-distribution.
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Figure 4.11: Detection and isolation of drillstring washout. GLRT plotted for t-distribution and
Gaussian distribution. Gaussian GLRT scaled to have same threshold h as the t-
distribution. Actual incident shown in grey.

Figure 4.12: Localization of drillstring washout position. GLRT plotted for t and Gaussian dis-
tribution (scaled). Actual position shown in grey.
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Figure 4.13: Detection and isolation of lost circulation. GLRT plotted for t and Gaussian distri-
bution (scaled). Actual incident shown in grey.

4.8.2 Lost circulation

The next incident is loss of drilling fluid, happening just downstream the bit, which
is position 1 in the annulus. The data contains three losses at different magnitudes
of approximately 1000 L/m, 500 L/m and 300 L/min. See the actual loss qloss

plotted in Fig. 4.9. All of these losses are correctly detected and isolated, as seen
in Fig. 4.13. Isolation of the position is also correctly found, as seen in Fig. 4.14.
Also here the t-distribution gives better detection and isolation properties.

4.8.3 Gas influx

With gas in the system, some aspects of the model are no longer valid. In the
model it is assumed incompressible single-phase flow with constant density in the
annulus, whereas during a gas influx the flow will be two-phase and compressible
with varying density. For such a case it is expected that a fit-for-purpose multi-
phase model will describe the fluid dynamics better. Nevertheless, detection in the
current framework is still tested, since it is important to have a diagnosis framework
that correctly isolates the type of incident.

Detection and isolation of a gas influx is successfully detected in influx case
A, shown in Fig. 4.15. Afterwards, there is gas present in the system which is
not modeled, and thus causing a slightly increasing value of g(k; ΘD) after the
first influx. However, this change is less that the threshold h given in Tab. 4.2.
Diagnosis in influx case B is shown in Fig. 4.16, which has three instances of gas
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Figure 4.14: Localization of lost circulation position. GLRT plotted for t and Gaussian distribu-
tion (scaled). Actual position shown in grey.

influxes, one small, one large over a small time period, and one large continuous
influx, see Fig. 4.9 between 60 and 75 minutes. The small influx is successfully
detected and isolated, although not at all time instances. The larger ones are
also correctly diagnosed. After the first large influx, around the 5 minutes time
stamp in Fig. 4.16, there are some false alarms of pack-off and lost circulation.
Since the actual incidents plotted is injection of gas, there is still gas in the system
after injection. Transportation of gas is not modeled, and will affect friction and
hydrostatic pressure as discussed in Sec. 4.5.3. Note that when a gas influx is
detected in a real drilling operation, the well is typically shut in and normal drilling
is stopped in order to remove the influx.

4.8.4 Bit nozzle plugging

The last case studied is a plugging of the drill bit nozzles. In this case only changes
in the estimated bit parameter θ̂b is expected. By using a multivariate method,
changes to all signals in ΘD can be tested, determining that in fact the bit parameter
is the only one changing. Detection and isolation is shown in Fig. 4.17, where all
pluggings are detected, with two large pluggings and two small. Studying θ̂b from
75 to 88 minutes in Fig. 4.8, the major pluggings will be possible to detect without a
statistical method, whereas the smaller ones may be difficult to separate from noise
and process disturbances. However, as argued, changes to all parameters should
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Figure 4.15: Detection and isolation of gas influx case A. GLRT plotted for t and Gaussian dis-
tribution (scaled). Actual incident shown in grey.

Figure 4.16: Detection and isolation of gas influx case B. GLRT plotted for t and Gaussian dis-
tribution (scaled). Actual incident shown in grey.
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Figure 4.17: Detection and isolation of bit nozzle plugging. GLRT plotted for t and Gaussian
distribution (scaled). Actual incident shown in grey.

be considered in order to correctly isolate the type of incident, which is best solved
with a multivariate statistical method.

4.8.5 Estimation of incident magnitude

In addition to indicating that an incident is present and finding out where it is, it can
be valuable for the operator to get information about the magnitude of the incident.
Especially important to know is the magnitude of loss or influx. Estimation of
fluid loss to the formation is shown in Fig. 4.18, which for an incompressible fluid
is the difference in flow rate in and out of the well. This plot shows that the
loss magnitude is correctly estimated, and together with detection and isolation,
information about the loss is well diagnosed. Gas influx is more challenging for the
current model, since gas is not modeled. Drillstring washout and bit nozzle plugging
magnitude is not directly measured, and cannot be verified. Nevertheless, bit nozzle
plugging magnitude is possible to estimate based on changes to θ̂b. Magnitude of
drillstring washout flow was calculated in Willersrud et al. (2015c), although the
value of washout flow could not be verified from data due to lack of washout flow
measurement.

104



4.9 Discussion

Figure 4.18: Estimation (−∆q̂) and measurement (qloss) of lost circulation. Measurement not
known to estimation algorithm.

4.9 Discussion

The need for statistical change detection was evident from the parameter estimates
shown in Fig. 4.8, where most of the incidents would be rather difficult to detect
directly from the estimates. An exception was two of the four nozzle pluggings,
where the estimated bit parameter θ̂b had a large change. However, to ensure
that the incident was indeed a bit nozzle plugging, the whole process had to be
considered, i.e., a multivariate detection algorithm was needed.

Comparing drillstring washout and lost circulation in the schematic overview
in Fig. 4.6, and in Tab. 4.1, shows that the two incidents have equal effect on
the annulus parameter θ̂a. The same applies for gas influx if the pressure drop is
gravity dominated. Separation of the incidents requires one to consider changes to
all signals in ΘD.

The proposed methodology successfully detected and isolated the different cases
of drillstring washout, lost circulation, gas influx, and bit nozzle plugging. This
represents a significant improvement over the results reported in (Willersrud et al.,
2013b), where isolation was uncertain. Reasons were that in (Willersrud et al.,
2013b), changes to each parameter was considered separately, and that a Gaussian-
based detector was used on the non-whitened estimates.

The method was validated using data from the flow loop, representing key parts of
the drilling process. During specific drilling operations where tools such as a hole-
opener or under-reamer are used, side ports in the bottom hole assembly would
slightly modify the flow path. This would have to be accounted for in the process
model.

Isolation of the position was based on changes to estimated friction in the annulus,
using distributed pressure measurements. With an increased number of measure-
ments, the distance between them decreases, and frictional pressure drop decreases.
It is therefore even more difficult to detect changes, making a statistical change de-
tection algorithm necessary if changes to estimated parameters should be detected.
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For the drillstring washout case, the position was correctly isolated, except for a few
minutes in the beginning with low washout rates. In the lost circulation case, the
position was correctly isolated for all three losses, also for the smaller loss. Isolation
for the gas influx case was not considered. As discussed in Sec. 4.5.3, changes to
pressure drop with a multi-phase flow is dependent on well geometry, where the
friction drop could either be gravity dominated or friction dominated. Changes in
ΘI is thus dependent on the geometry, and where in the well the gas is located.
This motivates the need for a fit-for-purpose model in order to isolate the position
of the gas influx. Nevertheless, the main concern in drilling with respect to gas
influx is to detect that it is happening, which the method successfully does.

It was shown in Willersrud et al. (2015c) that the white-filtered estimates are
t-distributed. Using the dedicated t-distribution change detector gave superior
results over the Gaussian detector for all cases except the bit nozzle plugging.
This superiority is especially important for the isolation, where small changes in
parameters were experienced.

4.10 Conclusion

Fault diagnosis of downhole incidents during oil and gas drilling was successfully
done in this paper by estimating friction parameters and flow rates. Changes to
estimates were detected by a multivariate generalized likelihood ratio test, consid-
ering a set of estimated well parameters and flow rates simultaneously. Isolation of
incident type and position was achieved by determining the direction of change of
the estimated parameters. Data from a medium-scale horizontal flow loop of 1400
m was used to test the fault diagnosis method. Parameter and state estimates from
data were found to have a non-Gaussian, t-distributed noise component, and this
was utilized in the dedicated multivariate statistical change detection algorithm,
developed specifically for this distribution. Thresholds were determined based on
specified probabilities of false alarms. Diagnosis of drillstring washout, lost cir-
culation, gas influx, and bit nozzle plugging were tested. All of these cases were
successfully detected and isolated during the occurrence of the incident. A multi-
phase flow model should be considered if isolation of gas influx position is required,
whereas the position was correctly isolated for drillstring washout, fluid loss, and
bit nozzle plugging.
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Chapter 5

Early pack-off diagnosis in drilling using an adaptive
observer and statistical change detection

The work in this chapter was published in Willersrud et al. (2015a), and is based
on Willersrud et al. (2015c,d).

Summary

Pack-off is a partially or complete blocking of the circulation flow in
oil and gas drilling, which can lead to costly delays. Early detection and
localization of a pack-off is crucial in order to take necessary actions
avoiding downtime. This incident will affect physical friction parame-
ters in the well. A model-based adaptive observer is used to estimate
these friction parameters as well as flow rates. Detecting changes to
these estimates can then be used for pack-off diagnosis, which due to
measurement noise is done using statistical change detection. Isolation
of incident type and location is done using a multivariate generalized
likelihood ratio test, determining the change direction of the estimated
mean values. The method is tested on simulated data from the com-
mercial high-fidelity multi-phase simulator OLGA, where three different
pack-offs at different locations and with different magnitudes are suc-
cessfully detected at an early stage and with low false alarms.

5.1 Introduction

The basic concept of oil and gas drilling is to use a rotating drillstring with a
drill bit, crushing the formation and circulating out this mass through the annulus
surrounding the drillstring, as shown in Fig. 5.1. If the formed cuttings are not
properly transported out of the well, or if parts of the wellbore collapses due to an
unstable formation, the well can start to pack off, reducing circulation capabilities.
If no action is taken the drillstring can become stuck, which will result in expensive
delays. Early diagnosis of a pack-off is thus instrumental in maintaining proper
hole cleaning, avoiding expensive non-productive time.

Advances in drilling methods and technology, such as managed pressure drilling
(MPD), bring along improved instrumentation. One such improvement is wired
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Figure 5.1: Drilling process with a forming pack-off. Measurements in blue, actuators in green.

pipe with pressure (and temperature) measurements along the drillstring, giving
real-time data of the wellbore (Godhavn, 2010). This technology has been suggested
as a tool for pack-off detection and localization in Long and Veeningen (2011).
However, how these measurements should be used in an automatic diagnosis system
is left open. In Aldred et al. (1998) and Cayeux et al. (2012b), a pack-off is detected
by monitoring the estimated total friction in the well. In Skalle et al. (2013), pack-
offs and other incidents are diagnosed using a knowledge-modeling method.

A challenge with all measurement technology is noise. In this paper the goal is
to detect small forming pack-offs at an early stage using simple models and fast
detection methods, as well as isolating the position, and estimating the magnitude
of the incident. This is achieved by applying a multivariate statistical change
detection framework on estimated friction parameters and flow rates, giving early
diagnosis even with small changes in the estimates.

This paper continues on earlier work on fault diagnosis of downhole incidents
in drilling such as gas influx from the reservoir, lost circulation of drilling fluid to
the reservoir, drillstring washout (leakage from drillstring to annulus), and plugging
of the drill bit nozzles, published in Willersrud et al. (2015c,d). There, methods
are derived and tested on data from a medium-scale test rig. This paper extends
these results by studying how pack-offs, not included in the test rig data, can be
diagnosed in simulated data from a full-scale vertical wellbore, using the commercial
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high-fidelity multi-phase simulator OLGA (Bendiksen et al., 1991).

The paper is organized as follows: In Sec. 5.2 the model and observer is pre-
sented, used to estimate friction parameters and flow rates. Multivariate statistical
change detection, and change direction for fault diagnosis are presented in Sec. 5.3.
Simulations of three different pack-offs are presented in Sec. 5.4, and fault diagnosis
of the simulated data is done in Sec. 5.5. The paper is ended with a conclusion.

5.2 Modeling and estimation

The model-based adaptive observer (Willersrud and Imsland, 2013) is presented in
this section, which is used to estimate friction parameters and flow rates. First the
model itself is presented, then a brief overview of the observer is shown.

5.2.1 Simplified hydraulics model

The model is a simplified hydraulics model (Kaasa et al., 2012) for managed pressure
drilling, given by

dpp
dt

=
βd
Vd

(qp − qb), (5.1a)

dpc
dt

=
βa
Va

(
qb + qbpp − gc(uc)

√
|pc − pc,0|

)
, (5.1b)

dqb
dt

=
1

M
(pp−pc−F (θ, q)−(ρa−ρd)ghTVD) , (5.1c)

where pp is the pump pressure, pc choke pressure, qb is the drill bit flow, qp the
pump flow, and qbpp the back-pressure pump flow, see Fig. 5.1. Subscript ‘d’ de-
notes drillstring and ‘a’ annulus for known volume V , bulk modulus β, and density
ρ. Parameter M is the integrated density per cross section from pump to choke.
Gravitational acceleration is g and hTVD is the depth of the well. The choke flow
is modeled as qc = gc(uc)

√
|pc − pc,0|, where gc(uc) is the choke characteristics as

a function of choke opening uc ∈ [0, 100], and pc,0 is the pressure downstream the
choke. The total friction is given by

F (θ, q) = θdfd(qb) + θbfb(qb) + θafa(qb), (5.1d)

where fd, fb and fa are friction terms and θd, θb, and θa are unknown parameters
nominally equal to one, expressing the change in friction in the drillstring, bit, and
annulus due to a pack-off. Changes to the parameters due to changed friction is
assumed much slower than changes in pressure and flow rates due to operational
changes.

The relationship between the pressure measurements, friction, and hydrostatic
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pressure is given by

pd = pp − θdfd(qb) + ρdghTVD, (5.1e)

pa,1 = pd − θbfb(qb), (5.1f)

pa,1 = pc + θafa(qb) + ρaghTVD, (5.1g)

where pd is the pressure at the bottom of the drillstring, and pa,1 the pressure at the
bottom of the annulus. If distributed pressure measurements pa,i along the annulus
are available, the additional equations give pressure relationships

pa,i = pa,i+1 + θa,ifa,i(qb) + ρag(ha,i − ha,i+1), i ∈ {1, . . . , Na}, (5.1h)

where θa,ifa,i(qb) is the friction of the annular segment between pa,i at depth ha,i
and pa,i+1 at ha,i+1. Note that fa = ΣNa

i=1fa,i. The vector of unknown parameters is
thus

θ =
[
θd, θb, θa, θa,1, . . . , θa,Na

]>
. (5.1i)

For typical drilling flow rates, the flow is most commonly turbulent and the
friction can be modeled as

fj(q) = kj,2q
2 + kj,1. (5.2)

where j ∈ {d, b, a, a1, a2, a3, a4}, and where kj,1 and kj,2 are constant parameters
which can be found using regression of historical pressure and flow rate data.

5.2.2 Adaptive observer

The states and parameters in (5.1) are estimated using the adaptive observer in

Willersrud and Imsland (2013) with vector of measured states x =
[
pp, pc, qb

]>
,

additional measurements z =
[
qc, pd, pa,1, pa,2, pa,3, pa,4

]>
, inputs

u =
[
qp, qbpp, uc

]>
, and unknown parameters given by (5.1i). It is assumed that

bit flow equals pump flow, i.e., qb = qp, thus ignoring fast drillstring dynamics. The
observer is given by

˙̂x = α(x, u) + β(x)θ̂ −Kx(x̂− x), (5.3a)

˙̂
θ = −Γβ>(x)(x̂− x)− Λλ>(x)(ẑ − z), (5.3b)

ẑ = η(x, z, u) + λ(x)θ̂, (5.3c)

where Kx,Λ,Γ > 0 are tuning matrices, and with θ̇ = 0. The observer matrices for
system (5.1) are given by

α(x, u) =

 βd
Vd

(u1 − x3)
βa
Va

(x3 + u2)
1
M

(x1−x2−(ρa − ρd)ghTVD)

 , (5.4a)

β(x) =
1

M

 0 0 0 0 0
0 0 0 0 . . . 0

−fd(x3) −fb(x3) −fa(x3) 0 0

 , (5.4b)
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λ(x) = {−fd(x3), −fb(x3), fa(x3), fa,1(x3), . . . , fa,4(x3)}, (5.4c)

η(x, z, u) =
[
−βa
Va
gc(uc)

√
|x2 − pc,0|, x1 + ρdghTVD, z2, x2 + ρaghTVD,

z4 + ρag(ha,1 − ha,2), . . . , x2 + ρagha,Na
]>
.

(5.4d)

5.3 Fault diagnosis

The fault diagnosis method from Willersrud et al. (2015c,d) is presented in this
section. Changes to the estimated parameters are detected using multiviariate sta-
tistical change detection, and fault isolation is achieved by determining the change
direction of the mean of the estimates. The section ends with an overview of the
method.

5.3.1 Statistical change detection

Fault diagnosis is done by detecting changes to estimated states and parameters.
This can either be done by detecting changes to each signal independently, or by
using a multivariate detection method considering a set of signals jointly. Change
detection of data from a medium-scaled drilling test setup, using the same model
as in this paper, showed superior results using a multivariate method in Willersrud
et al. (2015c). Since the parameter values after change is unknown, a multivariate
generalized likelihood ratio test (GLRT) is applied to detect and localize a pack-off.

The detection problem is to detect a change in a signal x(k) ∈ RNx of sample
size N with probability density function f(x; Π) and statistical parameters Π, by
the two hypotheses H0 (fault-free) and H1 (fault). This can be done by using a
log-likelihood decision function (Kay, 1998),

g(k) = ln
f(X; Π1)

f(X; Π0)
, (5.5)

where X = [x(0), . . . , x(N)], an where Π0 are the statistical parameters at H0,
and Π1 at H1.

The two hypotheses are distinguished by using a threshold h of g(k),

accept H0 : g(k) ≤ h,

accept H1 : g(k) > h.
(5.6)

Consider a vector signal with Gaussian noise x(k) ∼ N (µ, S), with constant
covariance matrix S and change in mean µ from µ0 at H0 to unknown µ1 at H1.
Furthermore, let the noise of signals x(k) be independent and identically distributed
(IID). Then the decision function (5.5) can be written as

g(k) =
k∑

i=k−N+1

(µ̂1 − µ0)>S−1

(
x(i)− 1

2
(µ̂1 + µ0)

)
, (5.7)
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(see, e.g., Basseville and Nikiforov (1993); Blanke et al. (2006)), where

µ̂1 =
1

N

k∑
i=k−N+1

x(i) (5.8)

is the maximum likelihood estimate of the mean after change. A moving window
M < N of the data is used to detect changes within the window.

5.3.2 Fault isolation and estimation

Changes to different parameters due to different incident types is discussed in
Willersrud et al. (2015d) including lost circulation, drillstring washout, gas influx,
bit nozzle plugging, and pack-off. To test isolation of a pack-off, tests for all these
different scenarios are included. Let ∆q̂ := q̂c − q̂p be the change in estimated flow
out and in of the well. Changes to estimated parameters and flow rates due to
different incidents are listed in Tab. 5.1. Note that even though only θ̂a is changing
during a pack-off, all the listed estimated signals need to be checked in order to
isolate the pack-off.

Table 5.1: Change of estimates for different incidents with increasing (+), decreasing (−), and
unchanged (0) estimates.

θ̂d θ̂b θ̂a ∆q̂

Lost circulation 0 0 − −
Drillstring washout − − − 0
Gas influx 0 0 + +
Bit nozzle plugging 0 + 0 0
Pack-off 0 0 + 0

The change directions for the different incident types can be written as column
vectors of

ΥD =


0 −1 0 0 0
0 −1 0 1 0
−1 −1 1 0 1
−1 0 1 0 0

 , (5.9)

where each column represents the scaled change direction of

ΘD :=
[
θ̂d, θ̂b, θ̂a, ∆q̂

]>
, (5.10)

for each of the incidents lost circulation, drillstring washout, gas influx, bit nozzle
plugging, and pack-off, respectively. Let µD0 be the mean of the nominal ΘD, and
µ̂D1 the estimate (5.8) of ΘD after a change. Defining Di := ΥD,i/||ΥD,i||, the fault
can be isolated (Willersrud et al., 2015d), finding

i∗D = arg max
i

D>i (µ̂D1 − µD0 )

D>i Di

(5.11)
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of the possible fault indices iD ∈ NNf := {i ∈ N : 1 ≤ i ≤ Nf}, where in this paper,
Nf = 5. Similarly, (5.11) can be used to find the position of the fault, once the
type is isolated. For a pack-off, possible change directions are the column vectors
of

ΥI =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.12)

for the estimated annulus parameters

ΘI :=
[
θ̂a,1, θ̂a,2, θ̂a,3, θ̂a,4

]>
, (5.13)

since a pack-off will be seen as an increase in friction between two pressure sensors
pa,i and pa,i+1, thus increasing θ̂a,i.

5.3.3 Overview of fault diagnosis method

The fault diagnosis method used in this paper and presented in this section consists
of estimating states and parameters, detecting changes to them, and determining in
which direction they are changing. The steps in the method are shown in Fig. 5.2
and can be summarized as follows:

1. Friction parameters and flow rates are estimated using the adaptive observer
(5.3).

2. Changes to the subset of estimated states and parameters ΘD given by (5.10)
is detected using the GLRT decision function (5.7).

3. The type of fault is isolated using (5.11), with possible change directions of
ΘD as columns in (5.9).

4. The position is located with (5.11), with possible change directions of ΘI as
column vectors in (5.12).

Figure 5.2: Fault diagnosis overview.
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5.4 Pack-off simulation in OLGA

OLGA is a high-fidelity dynamic multiphase flow simulator, which is used to simu-
late a series of pack-offs in a vertical wellbore of 2530 meters. The well is modeled
as an annulus with typical radii, including the so-called bottom hole assembly with
narrower flow paths, as well as several restrictions representing joints of the drill-
string. Water is used as drilling fluid, with a circulation rate of 1000 L/min, a
typical flow rate for drilling operation. The model includes an MPD choke, while
the back-pressure pump is omitted. A vertical well is chosen for simplicity, but
a deviated well would give the same results. The friction coefficients kj,1, kj,2 for
fj(qb), j ∈ {d, b, a, a1, a2, a3, a4} are found using regression of the pressure drop
adjusted for hydrostatic pressure during a test where the flow rate is varied in the
range 300-1100 L/min.

Pack-offs are local build ups of solids in the annulus, partly or fully blocking
the flow. This behavior is similar to a choke restriction, and pack-offs are therefore
simulated in OLGA using chokes at three different positions in the well. The chokes
are gradually opened and then closed with varying magnitude between each one.
There are four pressure sensors in the annulus representing a wired drill pipe, in
addition to a sensor measuring the choke pressure at the top, see Fig. 5.1. The

sensors are located at depth ha =
[
2530, 1980, 1230, 330

]>
. The first pack-off

choke (upo,1) is located between sensor pa,1 and pa,2, the second (upo,2) between pa,2
and pa,3, and the third (upo,3) between pa,3 and pa,4. A cause of forming pack-offs is
insufficient circulation. Therefore is the flow-rate increased to 1100 L/min after the
second pack-off, which would be a probable action taken by the drilling operator if
a pack-off was detected. Here, this is done to test the diagnosis method for varying
pressure and flow rates.

Gaussian distributed white noise is added to all measurements, with standard
deviation σ = 0.001µ0 of each measurement, where µ0 is the mean at the fault-free
case H0, although a larger variance of the signals could easily been used. This fault
free case is a time interval known to be without any incidents. In a real case, this
would typically be during drilling with constant pressures and flow rates, where
the operator has full overview of the situation. In the simulation this interval is
between 5 and 40 minutes drilling time.

States and parameters are estimated using the adaptive observer (5.3) with tun-
ing matrices Kx = diag(1, 1, 1) and Γ = Λ = 5 × 10−5 × diag(1, 1, 1, 1, 1, 1, 1).
Simulations and state estimation are shown in Fig. 5.3, illustrating measured and
estimated pump pressure, choke pressure, pump flow and bit flow. The bottom
panel shows openings of the three different valves. This affects the pump pressure,
since the total friction in the well increases. All three pack-offs are visible in pp, but
may be difficult to distinguish from changes due to varying operating conditions.

The resulting parameter estimation is plotted in Fig. 5.4, showing parameters
used in ΘD for incident type isolation in the upper panel, and ΘI used for local-
ization in the lower. In the upper panel, only θ̂a is changing due to a pack-off, in
accordance with Tab. 5.1 and (5.9). Furthermore, the need for statistical change
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Figure 5.3: Pressure and flow estimation, and valve openings simulating pack-offs.

detection is apparent, since changes are small. In the lower panel, pack-offs at
different positions are affecting the estimated annular parameters differently, which
is used in incident localization. Note that also here, statistical change detection is
needed, in particular to detect changes in θ̂a,3.

5.5 Pack-off diagnosis

Fault diagnosis of pack-offs in simulated OLGA data, shown in Figs. 5.3 and 5.4,
is done according to the steps presented in Sec. 5.3.3. Diagnosis results are shown
and discussed in this section.

5.5.1 Threshold

Theoretical thresholds for the GLRT (5.5) is given in Kay (1998), where as N →∞,
the test statistic has the asymptotic probability density function (PDF) χ2

r under
H0 and χ2

r(λ) under H1, where r is the number of statistical parameters that are
changing and λ is a non-central parameter. This asymptotic distribution can be
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Figure 5.4: Estimation of friction parameters.

used to derive a threshold h as a function of the probability of false alarms PFA.
However, this property holds asymptotically, whereas in this case a limited window
M is used. Furthermore, the asymptotic PDF of the GLRT assumes IID data. The
estimated parameters and flow rates from observer (5.3) are clearly not IID, since
the observer acts as a filter of current and previous measurements. Such discrepancy
between the asymptotic IID result and a real distribution was also shown to exist
in position mooring diagnosis in Blanke et al. (2012).

A Weibull probability plot of g(k) for ΘD at H0 is shown in Fig. 5.5 together
with a χ2

r-distribution with r = 4 (change in mean of ΘD ∈ R4), and a fitted
Weibull distribution. This plot shows that the test statistic better fits a Weibull
distribution, which therefore will be used to determine thresholds. Fitting GLRT
statistics to distrubutions other than the χ2-distribution, such as the Weibull and
lognormal distributions, was done in Galeazzi et al. (2013) and Hansen and Blanke
(2014).

Table 5.2: Threshold values.

Threshold Weibull χ2
4

hD 46.6 33.4
hI 83.7 33.4

Let Q(x;α, β) be the inverse cumulative distribution of the Weibull distribution
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Figure 5.5: Weibull probability plot of g(k; ΘD) at H0 for Weibull and χ2
4-distribution.

with statistical parameters α, β. Then the threshold for a desired PFA is given by

h = Q(1− PFA;H0, α0, β0) = β0 (− ln(PFA))1/α0 , (5.14)

where α0 and β0 are the statistical parameters fitted to g(k) of data ΘD and ΘI

under H0. The thresholds for g(k; ΘD) and g(k; ΘI) with PFA = 10−6 are given in
Tab. 5.2 for the real (Weibull) and theoretical (χ2) case.

5.5.2 Pack-off detection and isolation

The fault diagnosis method is applied on the estimated parameters and states.
Fault type isolation is shown in Fig. 5.6, where the upper panel shows the value of
g(k) of ΘD using a window length M = 100, the lower panel shows incident type
isolation. In addition, there is a requirement of 100 consecutive samples (10 s) of
g(k) above threshold before an alarm is set. This figure clearly shows that all three
pack-offs are correctly detected and isolated, with some brief false alarms during
change of flow rate, which can be ignored since this change is known. It is assumed
that the estimated parameters and states are IID, while they actually are slightly
correlated with previous samples. However, assuming IID signals and using (5.7)
is shown here to give sufficient detection. If no statistical change detection method
was used, and a threshold of the unfiltered θ̂a was to be applied directly, detection
would be uncertain, and selecting a proper threshold for θ̂a,3 seen in Fig. 5.4 would
be difficult if not impossible.

Position localization is shown in Fig. 5.7, showing g(k) for change detection of
ΘI in the upper panel and localization in the lower. Also here, the fault diagnosis
method successfully manages to detect the change in parameters and localize the
position of the pack-off. It would be possible to estimate the location of the pack-off
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Figure 5.6: Pack-off detection and isolation. Actual pack-offs are shown in grey.

with some uncertainty, but that would require high accuracy modeling of the well
geometry. The method in this paper focuses on simple modeling, with position
localization limited a segment between two pressure sensors.

Pack-offs are typically building up quite slowly in a real scenario. However, due
to limiting simulation times, the simulated pack-offs are occurring quite fast. The
strength of the diagnosis method is that both abrupt (fast) and incipient (slowly
varying) incidents can be diagnosed.

5.5.3 Pack-off magnitude estimation

The frictional pressure drop due to a pack-off is possible to estimate once the fault
is detected and isolated. A pack-off will increase the friction in the annulus with
the amount Fpo. The total estimated annulus friction is given by F̂a = F̂po +

F̂a,0 = (θ̂a − µa,0)q̂2
b + µa,0q̂

2
b , where F̂a,0 is the annulus friction without pack-offs

and µa,0 = E(θ̂a;H0) is the mean of the annulus parameter at H0. The pack-off
friction magnitude can thus be estimated as

F̂po = (θ̂a − µa,0)q̂2
b . (5.15)

The low-pass filtered estimated pack-off magnitudes are shown in blue in Fig. 5.8,
with actual pressure drop from OLGA simulations without noise shown in red.
The plots show accurate magnitude estimation of all three pack-offs. By combining
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Figure 5.7: Pack-off localization. Actual location shown in grey.

Figure 5.8: Pack-off magnitude estimation.
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parameter estimation with a change detection method, fault diagnosis is hence
possible, as well as fault magnitude estimation. This is one of the strengths of
using estimation of physical parameters, or lumped physical parameters, as a basis
for fault diagnosis.

5.6 Conclusion

Pack-off in drilling is a severe event which can lead to costly downtime. Simulations
in OLGA are used to test a fault diagnosis method for pack-off detection, isolation,
localization, and magnitude estimation. Three pack-offs at different positions and
sizes are successfully diagnosed with early detection and low false alarm rates, even
with noticeable noise in the measurements. A multivariate generalized likelihood
ratio test is applied to detect changes in a set of estimated friction parameters and
flow rates affected by noise. By determining the direction of change of a subset of the
signals, the type of fault and location is correctly isolated as pack-offs at different
positions, and at an early stage with specified probability of false alarms. Once
the pack-off is diagnosed, its magnitude is correctly estimated from the estimated
friction parameters.
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Chapter 6

Fault detection and isolation in drilling using
analytical redundancy relations

The work in this chapter was published in Willersrud et al. (2015b).

Summary

Early diagnosis of incidents that could delay or endanger a drilling
operation for oil or gas is essential to limit field development costs.
Warnings about downhole incidents should come early enough to allow
intervention before it develops to a threat, but this is difficult, since false
alarms must be avoided. This paper employs model-based diagnosis using
analytical redundancy relations to obtain residuals which are affected
differently by the different incidents. Residuals are found to be non-
Gaussian - they follow a multivariate t-distribution - hence, a dedicated
generalized likelihood ratio test is applied for change detection. Data
from a 1400 meter horizontal flow loop test facility is used to assess the
diagnosis method. Diagnosis properties of the method are investigated
assuming either with available downhole pressure sensors through wired
drill pipe or with only topside measurements available. In the latter
case, isolation capability is shown to be reduced to group-wise isolation,
but the method would still detect all serious events with the prescribed
false alarm probability.

6.1 Introduction

Drilling for oil and gas is a high-cost operation with risk of delays, and possibly
safety and environmental impacts, if an abnormal incident is occurring. A drillstring
is rotated with a drill bit at the bottom, crushing the formation. A circulated
drilling fluid then transports the formation cuttings back to the surface through the
annulus surrounding the drillstring, see Fig. 6.1. Pressure in the well is controlled
by the hydrostatic and friction pressure drop of the drilling fluid, as well as a
possible topside back-pressure. For some wells, the pressure window of operation
between the pressure of the formation fluid and the formation fracture pressure is
quite narrow. Incidents happening can make it difficult to maintain this operational
window, and may lead to costly delays in progress.
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Monitoring of the drilling process has traditionally been done manually by drilling
operators. With new sensor technology, giving an increased number of measure-
ments available, manual monitoring may be overwhelming and tiresome for opera-
tors, whose main task is to drill deeper into the formation, maintaining operating
requirements. An automatic diagnosis algorithm can be used to interpret the sig-
nals and alarming the operators at an earlier stage if something abnormal is about
to develop. Abnormal downhole incidents include influx of fluids from the forma-
tion, or lost circulation of drilling fluid to the formation, plugging of the drill bit,
pack-off of formation solids around the drillstring, and leakage from the drillstring
to the annulus caused by wear and tear, called drillstring washout. Sensors may
stop working, or have a slowly varying bias drift giving incorrect readings, and
actuators may stop or be partially defective. If the drilling technology managed
pressure drilling (MPD) is applied, the installed choke may be plugged.

Detection of influxes was studied in Gravdal et al. (2010a); Hauge et al. (2013).
Detection of other incidents was studied in (Cayeux et al., 2012b) using a high-
fidelity model, and a knowledge-based method was used in (Skalle et al., 2013). Lost
circulation, formation fluid influx, and drillstring washout have many similarities
to the problem of leak diagnosis in open water channels, see, e.g., Bedjaoui and
Weyer (2011).

Model-based fault diagnosis methods can often be divided into methods detecting
changes in estimated parameters or states, or using residuals which are zero in the
fault-free case and non-zero during a fault Zhang and Jiang (2008). Diagnosis based
on parameter estimation in drilling was the topic in Willersrud et al. (2015c,d),
while this paper presents a fault detection and isolation (FDI) method based on
residuals generated using analytical redundancy relations (ARR), see, e.g., Chow
and Willsky (1984); Staroswiecki and Comtet-Varga (2001); Blanke et al. (2006).
Model-based fault diagnosis of sensors in aircrafts using an extended Kalman filter
was studied in Van Eykeren and Chu (2014), and in Odendaal and Jones (2014)
diagnosis of actuator faults was done using analytical redundancy relations and a
cumulative sum (CUSUM) method, while Knüppel et al. (2014) applied ARR for
an electrical distribution system.

Analytical redundancy relations offer an alternative to parameter and/or state
estimation, where a structured method is used to generate residuals based on the
model equations. This avoids the need for a stable adaptive observer. In addition,
the ARR residual generation framework offers possibilities to detect and isolate
actuator and measurements faults such as bias drift, differentiating them from
process faults in a systematic manner.

Measurement noise will affect the residuals, and with small changes in the resid-
uals due to faults, a statistical change detection algorithm is necessary. To increase
detection and isolation capabilities it was demonstrated in (Willersrud et al., 2015c)
that a multivariate change detection algorithm using a generalized likelihood ratio
test (GLRT) was superior to univariate change detection of estimated parameters.
Statistical evaluation of residual signals for fault detection and isolation was studied
in Basseville (1988); Gertler and Yin (1996); Peng et al. (1997); Heyns et al. (2012),
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while the use of directional residuals was studied in (Gertler and Monajemy, 1995;
Yin, 1998; Venkatasubramanian et al., 2003c).

In this paper actuator faults, sensors faults, and downhole drilling incidents are
detected and isolated using a model-based fault diagnosis method. The different
incidents are illustrated in Fig. 6.1, highlighted in red. Residuals are generated
using analytical redundancy relations, which due to use of sensor measurements are
affected by noise. Therefore, statistical change detection is applied using GLRT,
detecting changes in the vector residual. This method will increase detectability
of small changes to the process due to an incident, decreasing the false alarm rate.
The different incidents will affect the residuals differently, making isolation possible
by determining the residual change direction.

The method is tested on a series of data sets from a medium-scale flow loop test
carried out in Stavanger, Norway. The flow loop is a horizontal loop of 1400 meters,
using water as drilling fluid. The paper describes two scenarios of fault detection
and isolation possibilities. In the first scenario, downhole pressure measurements
are available assuming the use of wired drill pipe technology, see, e.g., Jellison et al.
(2003); Pixton et al. (2014). The second scenario describes what can and cannot be
detected and isolated with only topside sensors available, a case still most common
in the industry.

The paper is organized into ten sections. After the introduction, details about the
flow-loop test setup is described in Sec. 6.2. Model-based fault diagnosis is briefly
introduced in Sec. 6.3, and the system model is presented in Sec. 6.4. Analytical
redundancy relations are derived in Sec. 6.5, and methods for change detection and
incident isolation are suggested in Sec. 6.6. Results of incident detection and isola-
tion using downhole sensors are shown in Sec. 6.7, and without downhole sensors
in Sec. 6.8. A discussion and a conclusion finalize the paper.

6.2 Flow loop for testing of incidents in drilling

Data from a medium-scale horizontal flow loop is used to test fault diagnosis of
downhole incidents, actuator fault, and sensor bias drift. The flow loop shown in
Fig. 6.2 is a 1400 meter test rig located in Stavanger, Norway, circulating water in
circular pipes with typical drilling diameters. During the tests the flow loop was
rigged for managed pressure drilling (MPD). This is a drilling method where the
annulus is sealed off with a choke as illustrated in Fig. 6.1. Doing so, the downhole
pressure is controlled by the choke back-pressure, which is affected by hydrostatic
pressure due to density, and friction due to fluid flow. The model used in the
diagnosis is thus adapted to MPD, which could be applied to conventional drilling
by omitting the choke. The test setup was rigged to test the incidents bit nozzle
plugging, drillstring washout, lost circulation, gas influx and choke plugging. Pack-
off was not tested. No tests were done for bias drift, and this is therefore tested
by artificially adding a noise-free signal to specific measurements, ramping up from
zero to a constant bias.
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Figure 6.1: Managed pressure drilling process with possible downhole incidents shown in red,
including lost circulation, drillstring washout, formation fluid influx, and bit nozzle
plugging. Topside sensors shown in green, downhole sensors in magenta, and the
actuator in orange.
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There are some obvious differences between the test setup and real drilling. One
discrepancy is the lack of difference in height between the bit at the bottom of the
well and the choke at the top. This will result in different hydrostatic pressure,
where during an influx the height difference will affect the now multi-phase flow.
However, for normal drilling conditions, this issue only adds a constant hydrostatic
pressure. Other characteristics that differ are the lack of transported solids due
to drilling ahead, as well as lack of annular effects since circular pipes are used in
the test setup. Nevertheless, for testing drilling incidents the flow loop produces
realistic scenarios, only preceded by a full-scale test rig or actual drilling with logged
incidents.

Figure 6.2: Stand pipe with pressure measurement pp (left) and chokes with pressure measurement
pc (right).

6.3 Model-based fault detection and isolation

Fault diagnosis methods may be divided into model-based and data-based tech-
niques Zhang and Jiang (2008). Model-based methods are typically used if mathe-
matical models of the process and faults are available, whereas data-driven methods
use historical data of complex systems to determine occurring faults, see, e.g., Svärd
et al. (2014). Although complex, the drilling process is limited in size and can be di-
vided into two subsystems separated by the drill bit. With a quite simple hydraulics
model available, this paper uses a model-based diagnosis method, namely analyt-
ical redundancy relations to generate residuals, together with statistical change
detection to detect changes to the residuals.

Model-based fault detection and isolation (FDI) is defined in Isermann and Ballé
(1997) as

• Fault detection: Determination of the presence of a fault in the system.

• Fault isolation: Determination of the kind and location of the fault.
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The FDI procedure can be divided into function blocks. A residual generator which
provides signals that ideally deviate from zero only if a fault happens, and a decision
system giving a hypothesis about which parts of the system are faulty Blanke et al.
(2006), see Fig. 6.3.

Residuals in a model-based fault detection and isolation method can be gen-
erated using state estimation, parameter estimation, joint state and parameter
estimation, or analytical redundancy relations, see, e.g., Patton and Chen (1997);
Gertler (1997). Joint state and parameter estimation is achieved using an adaptive
observer, or extending the state vector in a Kalman filter by relevant parameters.
Adaptive observers for state and parameter estimation was the topic in Willer-
srud et al. (2015c,d). This paper focuses on using analytical redundancy relations.
Benefits and drawbacks of the two methods are compared in Tab. 6.1, which is a
shortened version of Tab. 14.1 in Isermann (2006).

Figure 6.3: Fault detection and isolation using analytical redundancy relations to generate resid-
uals r as a function of measured inputs u and outputs y. Changes in mean ∆µ(r) are
detected using statistical change detection, and incident type isolation is determined
using change direction of the mean.

6.4 System representation

The model of the drilling process including system dynamics, algebraic equations,
inputs, and measurements are presented in this section. Consider the system

ẋ = f(x, u, θ), (6.1a)

y = h(x, u, θ), (6.1b)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input vector, and θ ∈ Rnθ is a
constant parameter vector. Each equation ẋi = fi(x, u, θ), yi = hi(x, u, θ), and ui
in (6.1) will represent a constraint

ci ∈ C (6.2)

in the constraint set C, used in generating the analytic redundancy relations, as
well as analyzing the relationship between the ARR and the faults.

The analytic redundancy relations are easily generated from simple model equa-
tions. In general, simple models give faster and easier real-time diagnostic classifiers
Venkatasubramanian et al. (2003c), while unmodeled dynamics can be treated as
model uncertainty. Motivated by this, the dynamics in the well is modeled with
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Table 6.1: Comparison of combined state and parameter estimation with analytical redundancy
relations for fault diagnosis, with the preferred method highlighted. Adapted from
Isermann (2006).

Characteristics Combined state and pa-
rameter estimation

Analytical redundancy
relations

Fast detection Relatively fast, dependent on
tuning

Fast

Detecting and isolating
sensor and actuator bias

Dependent on model and
setup

Inherent

Estimation of fault magni-
tude

Possible, but dependent on
model and setup

Requires additional estima-
tion

Propagation of measure-
ment noise

Dependent on tuning Needs to be handled if mea-
surement differentiation is re-
quired

Design of method Dependent on model, may re-
quire expert knowledge to de-
rive observer

Straightforward if tools are
available

Model parameters Unknown, time-varying Known, constant

Excitation requirements Possibly No

a modification of the simplified model from Kaasa et al. (2012) for the drilling
hydraulics,

(c1) :
dpc
dt

=
βa
Va

(qp − qc) (6.3a)

(c2) :
dqp
dt

=
1

M
((ρa − ρd)gh+ pc − pp + θdq

2
p + θbq

2
p + θaq

2
p) (6.3b)

where pp is the pressure at the pump, pc the pressure upstream the choke, qp the
pump flow and qc flow through the choke, see Fig. 6.1. The pressure drop p∆c over
the choke is measured by a dedicated pressure difference sensor. The parameters
βa and Va represent the bulk modulus and volume of the annulus, respectively, and
M is the integrated density of the total liquid in the drillstring and the annulus
per cross section area. The density of the fluid in the annulus is ρa, and ρd in
the drillstring, g is the gravitational acceleration, and h is the depth of the well.
The pressure dynamics in the drillstring is ignored, assuming in (6.3) that the flow
qp from the rig pump equals the flow through the bit. This pressure dynamics
is typically orders of magnitude faster than the occurring incidents, making the
assumption valid.

The friction through the system is modeled using a turbulent friction relationship
θiq

2
b for the drillstring, bit, and annulus, respectively with i ∈ {d, b, a}. As shown

in Willersrud et al. (2015d), this relationship matches the flow loop data well. For
laminar flow, a linear relationship can be applied. The friction coefficients θi can be
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Chapter 6 Fault detection and isolation using ARR

found offline using some form of parameter identification, while all other parameters
are assumed constant and known.

The algebraic equations of friction and choke flow are given by

(c3) : pd = pp − θdq2
p + ρdgh, (6.3c)

(c4) : pa = pd − θbq2
p, (6.3d)

(c5) : pa = pc + θaq
2
p + ρagh, (6.3e)

(c6) : qc = gc(uc)
√
p∆c, (6.3f)

where pa is the pressure in the annulus, downstream the bit. This pressure is
commonly named the bottomhole pressure. The pressure upstream the bit is denoted
pd. The choke opening input constraint is

(c7) : u = uc, (6.3g)

and the measurements are

(c8 − c14) : y =
[
pp, pd, pa, pc, p∆c, qp, qc

]>
. (6.3h)

Note that both states pc and qp in (6.3) are measured, as well as the downhole
pressures pa and pd. In the following sections these downhole sensors are first
assumed available. Analysis and discussion of the case without the downhole sensors
follows subsequently.

6.5 Analytical redundancy relations

Analytical redundancy relations (ARR) are functions of the system inputs and out-
puts and their derivatives, and can be used to derive nonlinear residuals (Staroswiecki
and Comtet-Varga, 2001). Analytical redundancy in fault diagnosis can be used
to check for inconsistencies between the actual system and the system model, and
residuals can be used for fault detection and isolation Venkatasubramanian et al.
(2003c). The residuals should be (close to) zero during the fault free case, and
significantly non-zero during a fault. Detection of change from zero to non-zero of
the residuals can then be used for fault detection and isolation.

The residuals designed based on system (6.1) can be written as

r(ȳ(q), ū(q), θ) = 0, (6.4)

where ȳ(q) and ū(q) are vectors of y and u and their time derivatives up to order q,
respectively, see, e.g., (Staroswiecki and Comtet-Varga, 2001; Blanke et al., 2006;
Trave-Massuyes et al., 2006; Sundström et al., 2014). In case of measurement noise,
the residuals (6.4) are not identically zero in the fault-free case. Thus, a fault is
detected using hypothesis testing by differentiating between the null hypothesis H0,
and the alternative hypothesis H1,

H0 : r(ȳ(q), ū(q), θ) = w, (6.5)

H1 : r(ȳ(q), ū(q), θ) = A+ w, (6.6)
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6.5 Analytical redundancy relations

where w is white noise with probability distribution f(x; Π) with statistical pa-
rameters Π, and where A 6= 0 is representing the effect of the fault. Computing
ARR is done by eliminating the state in the system equations. Different tools and
methods available for generating ARR and minimal structurally overdetermined
sets (Trave-Massuyes et al., 2006; Blanke et al., 2006; Krysander et al., 2008) for
residuals are compared in Armengol et al. (2009). The MATLAB toolbox SaTool
Blanke and Lorentzen (2006) comprises algorithms to find complete matchings be-
tween the constraints and the unknown system variables, and is used to generate
the residuals in this paper.

6.5.1 ARR for the drilling model

From the system constraints defined in (6.3), the Matlab tool SaTool is used to find
the following residuals,

r1 =
d

dt
y4 −

βa
Va

(y6 − y7), (6.7a)

r2 =
d

dt
y6 +

1

M

(
(ρa − ρd)gh− y1 + y4 + θay

2
6 + θby

2
6 + θdy

2
6

)
, (6.7b)

r3 = θdy
2
6 − ρdgh− y1 + y2, (6.7c)

r4 = θby
2
6 − y2 + y3, (6.7d)

r5 = θay
2
6 + ρagh− y3 + y4, (6.7e)

r6 = y7 − gc(uc)
√
y5, (6.7f)

which will be used for fault detection and isolation.

Differentiating a signal with noise leads to obvious challenges. A common pro-
cedure to reduce noise is to low-pass filter the signal, in this case the residuals.
However, if the residuals are low-pass filtered the result will be slower detection.
Furthermore, since both of y6(t) and dy6/dt appear in r2, the derivative of the signal
is not needed for detectability nor isolability and the presence of y6(t) ensures that
a change in y6 is strongly detectable. With respect to dy4/dt, y4(t) itself appear in
r2 and r5, which assures strong detectability and isolability. Therefore, the deriva-
tives of y4(t) and y6(t) in (6.7) are not needed and they are omitted in the further
analysis and application. This is equivalent to considering the algebraic version of
constraints c1 and c2 in (6.3), that follow with dy4/dt ≡ 0 and dy6/dt ≡ 0. Rapid
changes do not take place in the normal drilling operation, and the derivatives
would be within the noise floor. If, nevertheless, dy6/dt should change rapidly, r2

might give a short deviation from zero but [r1, r3, r4, r5]T ' 0, so a H1 hypothesis
would be rejected. If dy4/dt should change rapidly, r2 would deviate for a short
while, but since none of the other residuals would deviate from zero, a false H1

alarm would be rejected, also in this case.
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Chapter 6 Fault detection and isolation using ARR

6.5.2 Relations between faults in analytic and structural domains

In the structural domain, we consider violations of normal behaviors and analyze
the ability to detect whether a violation has happened. Isolation in this domain
means to determine which constraint has been violated. When translating to the
analytic domain, residuals (6.7) are expressed as functions of measured signals y,
of input u, and of process parameters in θ, ρ, Va, etc.

6.5.3 ARR and constraint dependency

The matching between residuals (6.7) and constraints (6.3) was found using the
ranking algorithm implemented in SaTool (Blanke and Lorentzen, 2006). Subse-
quent calculation of the analytical redundancy relations is achieved by expressing
that ck = 0 is an ARR when ck is an unmatched constraint, i.e., redundant in the
calculation of the unknown variables but valid and useful as a test quantity. With
ck being a function of the variables in the system and with all unknown variables
being calculable as prescribed by the complete matching, a backtracking along the
path found by the matching will lead to ck being a function expressed solely by
known variables. The calculation of ck will be a function also of the constraints ci
along the paths of the backtracking.

As a next step, the ARR ci = 0 is replaced by the test quantity rj = ci where rj
is a residual. The resulting dependencies between the constraints and the residuals
are listed in Tab. 6.2. An ‘X’ in the table at position (j, i) means that a constraint
ci is used in the calculation of residual rj. A violation of ci will therefore influence
rj such that the function rj(t) will be nonzero for some or all t after ci(t) 6= 0 has
happened. This is referred to as detectability. Isolability means that it is possible
to determine which particular constraint was violated. Precise definitions can be
found in Blanke et al. (2006).

Table 6.2: Dependency matrix between residuals and constraints.

Residual c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

r1 X X X X
r2 X X X X
r3 X X X X
r4 X X X X
r5 X X X X
r6 X X X X

Tab. 6.3 shows structural detectability and isolability of each constraint using the
residuals r. Structural detectability, denoted d, follows if the corresponding column
i in Tab. 6.2 is non-zero, i.e., comprises an ‘X’. Structural isolability, denoted i,
requires that the signature in column i in Tab. 6.2 differs from the signature of
all other columns. Constraints c6, c7 and c14 are only detectable, denoted ‘d’ in
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6.5 Analytical redundancy relations

Tab. 6.3. This means that it is not possible to distinguish between a violation
of these three constraints or, in other words, that it is not possible to distinguish
between faults in sensors qc, p∆c and choke opening uc. This can be also seen in the
constraint dependency table shown in Tab. 6.2, giving the same matching for r6

with c6, c7 and c12. Fortunately, all these sensors are topside and easily available. If
a low reliability is experienced in these sensors, redundant sensors could be installed
to enhance isolability. Pressure sensors in particular are quite small and easy to
install.

Table 6.3: Detectability and isolability of constraints.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

i i i i i d d i i i i d i i

Localization of the position of an incident, which was done in Willersrud et al.
(2015d) based on parameter and state estimation, would also be possible using
ARR by including additional measurements in the annulus and extending the model
(6.3) to include friction parameters representing friction between the measurements.
However, this will lead to quite many constraints and residuals. To narrow down
the scope of this paper, localization is omitted in the fault diagnosis, focusing on
incident detection and type isolation.

6.5.4 Fault isolation with analytical redundancy relations

The faults are not modeled explicitly in (6.3). This has been done for mechanical
systems in, e.g., Svärd et al. (2013), where faults in an automotive engine were
modeled explicitly. This would result in a mapping between the faults and the
residuals. In this paper, this relationship is implicit, and a physical change to the
process will affect the residuals as indicated in Tab. 6.2 as a match between residual
rj and constraint ci.

The challenge with explicit modeling of the faults lies both in the nature of some
of the faults and the difficulty of modeling any possible incident or fault. The
methodology of Svärd et al. (2013) is aimed at isolating only the specific fault
included in the model. The generic approach used here will be sensitive to any
deviation from the normal behavior that was described by (6.3).

A drillstring washout, a loss of circulating drilling fluid, or an influx will change
the flow in parts of the process. However, the position of the fault is unknown, and
therefore difficult to implement in the model. The different faults and sensor bias
drifts are listed in Tab. 6.4. An ‘s’ in Tab. 6.4 denotes strong detectability of the
corresponding fault (as opposite to weak detectability), meaning that the affected
residual reaches a non-zero steady state, see, e.g., Blanke et al. (2006).

The incidents are defined as:
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• A drillstring washout (fwo) is a leakage from the drillstring to the annulus,
and will reduce flow in the lower parts of the system. This will be seen as a
reduced friction loss in the drillstring, over the bit, and in the annulus.

• Lost circulation (fls) of drilling fluid to the reservoir will reduce friction in
the annulus.

• An influx (fin) of reservoir fluids will have an opposite effect as lost circulation
giving larger flow out of the well than in, and an increased friction in the
annulus.

• A plugging of the drill bit nozzles (fbp) will cause an increased pressure drop
over the drill bit. This will then give a higher back-pressure at the bit, giving
increasing values of pump pressure and upstream bit pressure.

• A pack-off (fpo) is a partial or fully plugging of of solids around the drillstring
in the annulus, giving increased pressure drop in this section. It will therefore
behave similar as a bit nozzle plugging, but with an increased friction drop
in the annulus rather than over the bit.

• A choke plugging (fcp) is a partially or fully blocking of the MPD choke,
caused by formation solids. This will change the characteristics of the choke.

• Bias drifts in pressure sensors pp, pc, pd and pa are denoted as ∆pi for sensor
pi for a positive drift.

All the sensor faults and process incidents are possible to isolate, as seen in
Tab. 6.4, except from a negative bias drift in choke pressure (−∆pc) and a pack-off
(fpo) which have the same signature. Note that the method does not necessarily
handle isolation of simultaneous incidents. However, for drilling this is not con-
sidered a limitation, since each of the incidents are quite severe. If an incident is
detected and isolated, drilling should be suspended and appropriate actions should
be taken immediately to reduce possible consequences.

Table 6.4: Fault dependency table with downhole measurements. Strong detectability is denoted
‘s’.

Residual ∆pp ∆pc ∆pd ∆pa fwo fls fin fbp fpo fcp

r1 − +
r2 − + + + + − −
r3 − + +
r4 − + + −
r5 + − + + − −
r6 −

s s s s s s s s s s
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6.5.5 Analytical redundancy relations with only topside measurements

Analysis up until now assumed available downhole pressure sensors through a wired
drill pipe. However, this is a novel technology without a large user base in operating
drilling rigs. More commonly, only a single downhole pressure sensor is available,
with high latency, low bandwidth transmission and with a relatively high rate of
downtime. In many cases no downhole measurement is available at all. It is hence
interesting to investigate what can be done using only topside measurements, in
other words, not using pd and pa in the measurement vector (6.3h).

Conducting the same analysis as before, but removing pd and pa from (6.3), the
alternative residuals r̃ are

r̃1 =
d

dt
ỹ2 −

βa
Va

(ỹ4 − ỹ5), (6.8a)

r̃2 =
d

dt
ỹ4 +

1

M

(
(ρa − ρd)gh− ỹ1 + ỹ2 + θf ỹ

2
4

)
, (6.8b)

r̃3 = ỹ2 − ỹ1 + θf ỹ
2
4, (6.8c)

r̃4 = ỹ5 − gc(uc)
√
ỹ3, (6.8d)

the topside measurements are

ỹ =
[
pp, pc, p∆c, qp, qc

]>
, (6.9)

and
θf = θd + θb + θa (6.10)

is the friction coefficient of the total friction from pump to choke, represented by
the parameter θf . Since no downhole measurements are available, θd, θb and θa are
not possible to identify individually.

Table 6.5: Fault dependency table with no downhole measurements. Strong detectability is de-
noted ‘s’.

∆pp ∆pc fwo fls fin fbp fpo fcp

r̃1 − +
r̃2 − + + + + − −
r̃3 − + + + + − −
r̃4 −

s s s s s s s s

With a possibility of both positive and negative drift of the pressure sensors, it
is not possible to separate washout (fwo), bit nozzle plugging (fbp) and pack-off
(fpo) from bias drift, as seen in Tab. 6.5, although subgroups of sensor faults and
physical incidents can be isolated. This is as expected, since drillstring washout,
bit nozzle plugging and pack-off only change the pressure drop seen from pump to
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choke, without changing flow rate. Without downhole measurements, it is difficult
to separate these from bias drift. However, since the measurements are located
topside, they are more easily accessible than downhole measurements. One could
install redundant pressure sensors making it easy to isolate a sensor with bias drift
and exclude it from the diagnostic algorithm. Drillstring washout could then be
isolated from either a bit nozzle plugging or a pack-off.

6.6 Multivariate change detection and change direction for

FDI

Detecting changes to the residuals are done by using a multivariate generalized like-
lihood ratio test (GLRT). By using a multivariate scheme, changes to all residuals
are considered jointly. For diagnosis based on change detection in Willersrud et al.
(2015c), this approach was found to be superior compared with using independent
univariate tests on each signal.

It is common to assume that the noise is Gaussian distributed. However, noting
that the residuals are sums of pressure measurements, and squares of flow measure-
ments, residuals are not likely to be Gaussian. The distribution is checked using a
Kolmogorov-Smirnov test for the Gaussian, Student t, Laplace, and Cauchy distri-
butions in Tab. 6.6, showing a high p-value for all residuals with the t-distribution,
which furthermore is the only distribution with all p-values above 0.05, a typical
statistical threshold. To save space, only the p-values for the lost circulation case is
shown, but the t-distribution is well suited for all cases. Non-Gaussian distributions
on estimated parameters and residuals are studied in Willersrud et al. (2015c,d);
Hansen and Blanke (2012, 2014).

Table 6.6: Kolmogorov-Smirnov test of the residuals r for the lost circulation case at H0, with
p-values above 0.05 highlighted.

Residual Gaussian Student t Laplace Cauchy

r1 0.064 0.79 0.059 1.0× 10−6

r2 0.034 0.70 0.010 1.5× 10−7

r3 2.8× 10−9 0.76 0.75 5.6× 10−3

r4 < 10−12 0.87 0.053 0.048
r5 0.0031 0.99 0.0011 4.6× 10−7

r6 0.0082 0.19 3.2× 10−7 4.2× 10−10

The detection problem of change in a signal x is to distinguish between the null
hypothesis H0 and the alternative hypothesis H1, which can be presented as

H0 : x ∼ D(Π0;H0), (6.11a)

H1 : x ∼ D(Π1;H1), (6.11b)
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6.6 Multivariate change detection and change direction for FDI

where x has the probability distribution D(Πi;Hi) with statistical parameters Πi

under hypothesis Hi.

6.6.1 Generalized likelihood ratio

The window limited generalized likelihood ratio of signal x(k) with noise distributed
by probability density function f(x; Π), and with statistical parameters Π, is given
by

g(k) = max
k−N+1≤j≤k−Ñ

ln

∏k
i=j f(x(i); Π1)∏k
i=j f(x(i); Π0)

, (6.12)

where Π0 denotes statistical parameters during the H0 hypothesis, and Π1 during
the H1 hypothesis. The window is given by 0 ≤ Ñ ≤ N , and is used to reduce
computational cost (Willsky and Jones, 1976).

The p-variate t-distribution of a vector signal x with mean µ, correlation S, and
degrees of freedom ν is

f(x;µ, S, ν) =
Γ((p+ν)/2)

Γ(ν/2)(πν)p/2|S|1/2

[
1+

1

ν
(x−µ)>S−1(x−µ)

]− p+ν
2

, (6.13)

where Γ(z) is the Gamma function. Note that µ is the mean of x when ν > 1 (Kotz
and Nadarajah, 2004). The corresponding GLRT statistic was derived in Willersrud
et al. (2015c) for a change in mean µ from µ0 to µ1 with S and ν constant, and
was shown to be

g(k) = max
k−N+1≤j≤k−Ñ

p+ν

2

k∑
i=j

[
− ln

(
1 +

1

ν
(x(i)−µ̂1)>S−1(x(i)−µ̂1)

)
+ ln

(
1 +

1

ν
(x(i)−µ0)>S−1(x(i)−µ0)

)]
, (6.14)

where µ̂1 is the maximum likelihood ratio of the mean after change,

µ̂1 =
1

k−j+1

k∑
i=j

x(i). (6.15)

6.6.2 Fault isolation by determining change direction of the residuals

The GLRT statistic (6.14) is scalar, and an estimate of the magnitude of change is
provided by (6.15). To determine the type of fault, the direction of change can be
considered, which was done for parameter estimation in Willersrud et al. (2015c)
and Willersrud et al. (2015d), and is similar to Yin (1998) where the direction of
change of residuals was considered.
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Problem 6.1 (Fault detection). Given a sampled time sequence of vectors of resid-
uals r(k), with change from known condition r0(k) to unknown r1(k). Define the
index set NN := {i ∈ N : 1 ≤ i ≤ N} and let if ∈ NNf be the possible fault indices.
Let a fault signature matrix be D, with column vector Di corresponding to fault
index if . Then distinguish between two hypotheses

H0 : r(k) = 0 + w(k), no fault present, (6.16a)

H1 : r(k) = Diυ(k) + w(k), a fault is present. (6.16b)

Problem 6.2 (Fault isolation). Given that H1 has been accepted, determine that
a particular fault i∗f is present of the possible faults if ∈ NNf , by determining the
best fit of (6.16b) for the different fault types.

The matrix D is constructed based on Tab. 6.4, where each fault type in the
table corresponds to one column vector Di. An element with ‘−’ in the table gives
a value of −1 in D, ‘+’ gives a value of 1, and 0 is used otherwise. Negative bias
drift is isolated using changed signs for the corresponding positive drift.

The fault type i∗f is isolated using a projection of the change in mean µ̂1 − µ0

of the residual r onto the different column vectors Di corresponding to different
faults, finding the largest projection,

i∗f = arg max
i

D>i (µ̂1 − µ0)

D>i Di

. (6.17)

6.6.3 Deciding on threshold value for the GLRT statistic

By finding the distribution of the test statistic g(k) at H0, a threshold value h can
be chosen with a desired probability of false alarm PFA. If test statistic data is
available at H1, the probability PD of detecting a fault may also be found. An
asymptotic distribution may be estimated from data. A Weibull distribution was
fitted to the the test statistic of the residuals in Hansen and Blanke (2012) and
estimated parameters in Willersrud et al. (2015c,d). A lognormal distribution is
used in Galeazzi et al. (2013).

The test statistic data of r for the influx case at H0 is plotted in Fig. 6.4, showing
a good fit of the tail to the Weibull distribution. The lognormal distribution gives
a good fit overall, but not of the last 10 % of the tail, which is the part of the dis-
tribution that is most important for threshold selection. The Weibull distribution
is applied for all cases to determine the threshold h of g(k).

The Weibull distribution has the probability density function f(x;α, β) and cu-
mulative distribution F (x;α, β) given by

f(x;α, β) =
β

α

(x
α

)β−1

e−(x/α)β , x ≥ 0, (6.18)

F (x;α, β) = 1− e−(x/α)β , x ≥ 0, (6.19)
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6.7 FDI of flow loop data using downhole measurements

Figure 6.4: Weibull probability plot of g(k) at H0 for the influx case. Test statistic data fitted to
Weibull distribution (red solid line) and lognormal distribution (green dashed dotted
line). The threshold h is calculated from a fitted Weibull distribution with PFA =
10−6, plotted as a vertical black dashed line.

where α > 0 is the scale parameter and β > 0 is the shape parameter. The inverse
cumulative distribution can be used to determine the threshold h as a function
of the probability of false alarms PFA, even if the residuals are not independent
and identically distributed Galeazzi et al. (2013); Blanke et al. (2012); Fang et al.
(2015). The threshold is then given by

h = Q(1− PFA;H0, α0, β0) = β0 (− ln(PFA))1/α0 , (6.20)

where α0 and β0 are the parameters of the Weibull distribution fitted to g(k) under
H0. If H1 data is available, the probability of detecting a fault PD is given as a
function of the threshold h,

PD = 1− F (h;H1, α1, β1) = e−(x/α1)β1 , (6.21)

where α1 and β1 are the statistical parameters of the test statistic at H1.

6.7 FDI of flow loop data using downhole measurements

Fault detection and isolation of different incidents in data from the flow loop tests
is done using the methods described in Secs. 6.5 and 6.6. This section presents
fault detection and isolation where downhole measurements are available. The
cases studied are lost circulation, gas influx, bit nozzle plugging, choke plugging,
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and a positive bias drift in the downhole sensor pa. The measured pressure and
flow rates are plotted in Fig. 6.5, which are sampled at 10 Hz. The plot shows a
concatenation of different test cases recorded over a time period of several weeks,
and are not necessarily plotted in chronological order. In the test setup some of the
incidents are also measured, used only as ground truth about the time interval and
magnitude of the incident, and shown in Fig. 6.6. Note that bit nozzle plugging and
choke plugging occurring during the interval 40 to 60 minutes are not measured.

Figure 6.5: Topside pressure measurements (top), downhole pressure measurements (middle), and
flow measurements (bottom) of the five cases of lost circulation, gas influx, bit nozzle
plugging, choke plugging, and positive bias drift in sensor pa. The different cases are
separated with alternating grey and white backgrounds. There is significant noise in
the data.

The residuals r given by (6.7) are plotted in Fig. 6.7 for all five cases of incidents.
The physical parameters of the flow loop are found using available information
about the drilling process and are listed Tab. 6.7. The friction parameters θa,
θb and θd in (6.7) are found using an off-line parameter estimation method. The
parameters are assumed constant or varying much slower than the dynamics in the
process, and thus kept constant in r. In this case the parameters are found using
the adaptive observer in Willersrud and Imsland (2013) of data H0 known to be
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6.7 FDI of flow loop data using downhole measurements

Figure 6.6: Downhole incidents of lost circulation and gas influx in the first 40 minutes of data.
Bit nozzle plugging and choke plugging from 40 to 60 minutes are not measured.
Artificially added bias drift in pa starts at 110 minutes. None of this information is
available to the diagnosis method.

fault free. Since the flow-loop setup was used extensively for a various number of
tests, many not included in this paper, there are some differences between the cases,
giving slightly different friction parameters, representing natural variation during
operation.

Table 6.7: Physical flow loop parameters.

βa 2.2× 109 Pa Effective bulk modulus
ρd, ρa 1000 kg/m3 Drilling fluid density
Ma 3.74× 107 Pa s2/m3 Integrated density per cross section
Va 13.2 m3 Volume of fluid in annulus
h 2.14 m Depth of well at bit

Ld, La 700 m Length of drillstring/annulus

From Fig. 6.7 it is apparent that different faults affect the residuals in some
manner, giving non-zero values. However, due to measurement noise, these changes
are very difficult to detect reliably without some change detection method. The
methods in Sec. 6.6 are used for fault detection and isolation in the different cases
described in the following subsections. For all cases a window length of

N = 200 (6.22)

samples is used, corresponding to 20 seconds and is considered sufficiently long. A
too short window length decreases the detection rate, whereas an increasing window
length increases the computational cost. Choosing a sufficiently long window length
was discussed in Willersrud et al. (2015d). A probability of false alarm

PFA = 10−6 (6.23)
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Figure 6.7: Residuals r1 - r6 for lost circulation, gas influx, bit nozzle plugging, choke plugging,
and positive bias drift in sensor pa, using downhole measurements.
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is used to determine thresholds, which corresponds to an expected false alarm rate
of 0.00018 per hour (under 2 per year). Due to process disturbances, there has been
used an additional requirement that an alarm is set off only if 200 samples (20 s)
of g(k) is above the threshold. The spikes in residuals r2 and r3 happening at 64
minutes are caused by a 2 second temporal artifact in pp.

6.7.1 Lost circulation

The first case studied is lost circulation of drilling fluid to the reservoir, which is
labeled as fault fls in Tab. 6.4. From this table, loss of drilling fluid is detected
and isolated if g(k) is above the threshold, and that the mean of r is changing in a
negative direction for r1, and positive direction for r2 and r5. Three different loss
rates are tested with different magnitude, plotted in red in Fig. 6.6. The first loss
is at over 1000 L/min, which is a complete loss of drilling fluid. The last one is
around 250 L/min, or 25 % of circulation rate. All three loss rates are quite large,
and as expected, detection and isolation are quite manageable. Fault detection is
shown in the upper panel of Fig. 6.8, showing a value of g(k) above threshold for all
three losses. The actual loss intervals are shown in grey in the lower panel, where
fault isolation is correctly achieved using change direction of r, shown in blue.

Figure 6.8: Detection and isolation of lost circulation. Actual loss shown in grey.
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6.7.2 Gas influx

Gas influx is a complex case to correctly diagnose. When gas enters the annulus, the
dynamics changes drastically from single-phase to multi-phase flow. Limitations of
the model (6.3) during an influx is discussed in Willersrud et al. (2015d), where
the model is not well suited to determine information about the gas influx once it
has entered the annulus. However, detecting and isolating the initial occurrence
of an influx is still possible, by determining change in the total annular friction
and change in the flow rate difference in and out of the well. The procedure once
an influx is detected is to shut in the well, which is done by closing the blow-
out preventer (BOP) around the drillstring, blocking annular flow. It is therefore
still possible to use the method described in this paper. Two influxes of gas in
the annulus are plotted in blue in Fig. 6.6. Corresponding detection is shown in
Fig. 6.9. Both influxes are correctly detected and isolated. However, after the first
influx, the gas is transported through the annulus, giving different dynamics and
friction. This gives some incorrectly isolated incidents, while most are correctly
isolated as gas in the system. Nevertheless, as discussed above, once the first influx
is detected and isolated the drilling crew will most probably decide to shut in the
well and remove the gas in the system by circulating a heavier drilling fluid.

Figure 6.9: Detection and isolation of two influxes of gas into the well. Note that there is gas in
the well also after injection. Some of it is correctly isolated as gas, some incorrectly
as a bit nozzle plugging.
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6.7.3 Plugging of drill bit nozzles

Plugging of the drill bit nozzles is not as severe as formation fluid influx and lost
circulation, since the pressure in the well is not affected. Nevertheless, monitoring
of the bit status is important in order to maintain drilling. A partial blocking of
the nozzles will be seen as a higher pressure in the drillstring, which the operator
has great benefits of determining the cause of. A full blocking of the nozzles will
stop circulation of drilling fluid, halting progress.

Four pluggings of the bit nozzles are successfully detected and isolated in Fig. 6.10,
two small and two large. Detecting a bit nozzle plugging may be possible by directly
measuring the pressure drop over the bit, pd− pa. However, this pressure drop is a
function of flow. In addition, changes to pressure measurements may be caused by
other incidents. Thus is a complete diagnosis method favorable for distinguishing
nozzle plugging from other incidents.

Figure 6.10: Detection and isolation of a plugging of the drill bit nozzles.

6.7.4 Plugging of MPD choke

If the choke in a managed pressure drilling operation becomes partially plugged,
control of the back-pressure may be difficult. This pressure will directly affect the
downhole pressure, which should be controlled within a pressure window. If the
pressure is too low the well can start to produce, causing influxes, while a too high
pressure may cause damage to the formation, which may result in lost circulation
due to cracks in the formation.
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Figure 6.11: Detection and isolation of a plugging of the MPD choke.

Detection and isolation of a partial plugging of the MPD choke is shown in
Fig. 6.11. The partial plugging is simulated in the flow loop as partially closing a
dedicated valve upstream the choke. The plugging occurs in the very beginning of
the recorded data set, and is correctly detected and isolated.

6.7.5 Bias drift in bottomhole pressure sensor pa

The four previous cases describe incidents which are physical changes in the process
due to some induced physical incidents. Detection and isolation is based on resid-
uals which again are functions of measurements of process variables and actuators.
For such a method to be successful, the measurements must be reliable. In real life,
uncertainty in measurements, such as bias drift, affects the diagnosis method. It is
therefore important to also detect and isolate such effects.

In this case a positive drift in the downhole pressure sensor pa is tested. The
bias drift is artificially added to the pressure signal as a ramp function from 0 to
3 bar, starting at around 110 minutes in Fig. 6.6. This is occurring simultaneously
as the choke opening is ramped up, giving a significant increase in choke pressure
pc, and thus also in pd, pa and pp, shown in Fig. 6.5. Diagnosis of the bias drift
is shown in Fig. 6.12, with an early detection of the drift where the bias is quite
small. Determining that a bias drift is occurring from the measurements directly
would be difficult for an operator, while it is successfully detected and isolated with
the methodology in this paper.
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Figure 6.12: Detection and isolation of a positive bias drift in pressure sensor pa.

6.8 FDI of flow loop data with only topside measurements

All cases in the previous section utilized downhole pressure sensors available when
wired drill pipe technology is at hand. However, in most drilling rigs only a few
downhole sensors are available, if any. This section investigates to what extent
analytical redundancy relations are capable of fault detection and especially fault
isolation with only topside sensors available. Two cases are studied: drillstring
washout, and a negative bias drift in the choke pressure sensor pc.

6.8.1 Drillstring washout without downhole measurements

Without downhole sensors, it is difficult to distinguish between a negative drift in pp,
a positive drift in pc, and drillstring washout (fwo), as shown in Tab. 6.5. However,
detecting that something has happened, and narrowing down the possibility to
these three different scenarios, is still of great value for the drilling crew.

Topside pressure and flow measurements are plotted in Fig. 6.13, where the
washout case consists of the first 19 minutes. In Fig. 6.14, the actual washout is
measured as pressure drop over a valve, where there is no washout if the pressure
drop is zero. The corresponding effects on the residuals are shown in Fig. 6.15,
showing an increase in r̃2 and r̃3 during the washout. Also here, a statistical change
detection algorithm is necessary to get sufficient detection with a low false alarm
rate. The GLRT statistic is plotted in Fig. 6.16, showing detection of the incident,
with isolation narrowed down to either positive bias in pc, negative bias in pp or a
drillstring washout, which is the actual case.
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Figure 6.13: Pressure measurements (top) and flow measurements (bottom) of drillstring washout
(grey background) and a negative bias drift in sensor pc without downhole measure-
ments.

Figure 6.14: Drillstring washout (grey background), and artificially added negative bias drift in pc
starting at 69 minutes. None of this information is available to the diagnosis method.
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Figure 6.15: Residuals r̃1 - r̃4 for drillstring washout and negative bias drift in pc, without down-
hole measurements.

Figure 6.16: Detection and isolation of a washout without downhole measurements. The incident
is isolated to be either a positive bias drift in pc, a negative drift in pp, or a drillstring
washout.
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6.8.2 Negative bias drift in choke pressure sensor without downhole
measurements

Detection and isolation of a negative bias drift in the choke pressure sensor pc is
shown in Fig. 6.17, where no downhole measurements are available. The drift is
ramped up from 0 to 3 bar quite slowly. For bias drift under around 1 bar (before
60 minutes), the value of g(k) is below the threshold value, while for increasing
drifting values the bias is isolated to the correct subgroup of incidents.

Figure 6.17: Detection and isolation of a negative bias drift in pressure sensor pc without downhole
measurements. The sensor fault is isolated as either a positive bias drift in pp, a bit
nozzle plugging, a pack-off, or the actual negative bias drift in pc.

6.9 Discussion

Two different diagnosis scenarios using flow-loop data were tested, assuming in the
first scenario that downhole pressure sensors were available, while in the second
only topside sensors were used. Using downhole pressure sensors, all incidents are
detectable and isolable using analytical redundancy relations, except separating
a pack-off from a negative drift in the measured choke pressure. Detection and
isolation was successfully achieved at an early stage, with temporal false alarms
only for the gas influx incident.

When using only topside measurements, the number of residuals were reduced
from six to four, with the effect of greatly reducing isolation capabilities. As can be
seen in Tab. 6.5, there are several overlaps between the different cases, especially if
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both negative and positive bias drift of the pressure sensors are considered. How-
ever, there is still important information in the existing isolation. A possibility to
separate a drillstring washout from either a bit nozzle plugging or a pack-off is of
great value for the drilling personnel.

The model used to generate the residuals is limited to hydraulic relationships
between pressures and flow rates. In a real drilling rig system, there is also infor-
mation about drillstring torque and the weight of the drillstring and bottomhole
assembly, called weight on bit, as well as the rate of penetration. This information
can be included as constraints in (6.3), giving increased detection and isolation
capabilities. An influx can be a result of drilling into a gas pocket, called a drilling
break, increasing the rate of penetration drastically. A pack-off will not only increase
fluid friction, but also increase the rotational friction of the drillstring. This would
be seen as an increase in the torque measured topside. The diagnosis framework
described in this paper could easily be extended with these features, illustrating its
flexibility for extending the detection and isolation capabilities.

Diagnosis of downhole incidents is also possible using adaptive observers, which
was done in Willersrud et al. (2015c,d). Tab. 6.1 made a comparison between the
methods, where one method was favorable for some properties, while the other
method was best suited for others. Adaptive observers make it possible to estimate
the fault magnitude, at least in some cases. This is not directly possible using
analytical redundancy relations. ARR, however, make it possible to distinguish
between sensor faults and actuator faults from physical incidents, a property not
directly possible using adaptive observers. A complete diagnosis system may thus
implement both methods, possibly combining them for improved diagnosis.

6.10 Conclusion

Analytical redundancy relations were used to generate residuals based on a simple
hydraulics drilling model. Despite significant measurement noise, statistical change
detection of the residuals was achieved with early detection and low false alarm
rates using a multivariate generalized likelihood ratio test. Data from a medium-
scale horizontal flow-loop rig of 1400 meters was used to test incident diagnosis
capabilities. Successful detection and isolation was achieved with the specified
low false alarm rates for all of the incidents: drillstring washout; fluid loss; gas
influx; bit nozzle plugging; choke plugging; as well as bias drift of the pressure
sensors. The method was first tested using downhole pressure sensors, showing
successful isolation of all of the different incidents. Then, using only cheaper and
readily available topside measurements, the different incidents were shown to be
successfully detected and isolated into subgroups of possible incidents.
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Chapter 7

Concluding remarks

Diagnosis of downhole incidents in oil and gas drilling was studied in this thesis,
including diagnosis of reservoir fluids influx, lost circulation of drilling fluid to the
formation, pack-off of formation solids around the drillstring, plugging of the drill
bit nozzles, washout of the drillstring, as well as plugging of chokes if managed pres-
sure drilling is applied. A model-based fault diagnosis approach has been applied,
where a simple hydraulics model was used to describe the relationship between
pressure, friction and flow rates in the system. Due to noticeable measurement
noise in the test data, a statistical change detection approach for fault diagnosis
was shown to be necessary for sufficiently low false alarms and high detection rate.
Discrepancies between the process and the model in the form of residuals were
determined based on changes in estimated parameters using adaptive observers, or
by using analytical redundancy relations (ARR). Benefits and limitations of using
the two methods for fault diagnosis were compared, where ARR inherently include
diagnosis possibilities for sensor and actuator faults, whereas adaptive observers
facilitates fault magnitude estimation.

The distribution of the noise of the residuals were determined, and changes were
detected using the statistical change detection method of the generalized likelihood
ratio test (GLRT). Both univariate and multivariate change detection methods
were tested, where a multivariate method was found to give much better diagnosis
results in Chapter 3, and was therefore chosen as the preferred method in Chapters
4-6. A multivariate method may, however, be limited by computational complexity
for high dimensions of the considered signal vector. The different drilling incidents
were isolated from each other in the multivariate methods using the direction of
change of the mean of the residuals. The position of the incident was found in
a similar manner, isolating the position to be in between two downhole pressure
sensors. By determining the statistical distribution of the GLRT statistic under the
null hypothesis, the threshold value for change detection was given as a function
of probability of false alarm. Where data of the fault was available, the detection
probability could also be determined.

The methods were thoroughly tested on data from a medium-scale horizontal flow
loop of 1400 m, with realistic pressure and flow rate operating conditions, with very
convincing diagnosis results. The high-fidelity simulator OLGA was also applied,
where pack-off diagnosis was successfully achieved in Chapter 5. The developed
methods could easily be adapted to a real drilling case, integrating the diagnosis
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algorithms in the drilling control and monitoring system, although additional tests
and adaptions to a real rig would be required. There is limited existing diagnosis
tools for drilling on the marked today, and the solutions which do exist are typ-
ically based on very simple methods. There is great potential of increasing the
efficiency and reliability of these methods, which should be easy to use, implement
and maintain, while the theory behind may be more complex. This thesis presents
several solutions to the research objective of developing efficient diagnosis methods
for oil and gas drilling, which are easy to use and require little tuning, and can be
implemented in a real diagnosis system.

Comparison between using adaptive observers and analytical
redundancy relations for fault diagnosis

The objective of the thesis has been to investigate diagnosis possibilities of incidents
occurring in drilling with the available sensors at hand. Two main methods for
generating the residuals were presented. In the first approach adaptive observers
were used, estimating friction parameters and flow rates, which was the topic of
Chapters 2-5. Then analytical redundancy relations were studied as an alternative
in Chapter 6. Comparison between the methods were given in Sec. 1.4.1 in Chapter
1 as well as in Sec. 6.4 in Chapter 6. The main differences in terms of results
were that the adaptive observers could handle unknown system parameters and
provided inherent estimation of physical magnitudes, whereas ARR provided a
systematic method for generating residuals, while requiring known or estimated
system parameters. The resulting diagnostic property for the adaptive observers
gave a possibility to estimate the fault magnitudes, at least some of them, which
was the topic in Chapters 4 and 5. This was not directly applicable using ARR.
However, these residuals are shown in Chapter 6 to have isolation properties for
sensor bias and actuator faults, in addition to downhole incidents. Chapter 6
also showed possibilities and limitations for fault detection and isolation without
available downhole sensors, where all incidents were detected, albeit with decreased
isolation capabilities. This is an important result for the industry since most wells
are drilled with limited downhole measurements.

Another difference between the methods is that parameter estimation in general
reacts slower to abrupt changes, where the detection rate is dependent on observer
tuning that should be chosen carefully. Residuals generated from analytical re-
dundancy relations can, however, react quite fast, but may be more affected by
measurement noise. Nevertheless, these differences in detection rate were not no-
ticeable in the results presented in this thesis. By combining the residual generation
methods with statistical change detection, the problem with noise was successfully
handled.

The conclusion from this comparison is that both adaptive observers and ARR
work satisfactory in diagnosing downhole incidents, where both methods have some
properties not applicable to the other. A complete diagnosis system may thus imple-
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ment both methods, and possibly combine them for increased diagnosis properties.

Noise distribution of the residuals and threshold selection

The ARR residuals, and estimated friction parameters and flow rates in the flow-
loop data were found to best fit the t-distribution in Chapters 3, 4 and 6, after
the residuals were white filtered. This is a continuous probability distribution with
heavier tails compared with the Gaussian distribution. Detection capabilities as-
suming the t-distribution was compared with assuming the Gaussian distribution
in Chapter 4, achieving a higher detection rate of the generalized likelihood ra-
tio test using the t-distribution. Combining this distribution with univariate and
multivariate GLRT change detection methods required derivation of the decision
function in Chapter 3, which is novel work based on similar known results for the
Gaussian case.

The Gaussian distribution is often chosen due to simplicity and availability of
developed methods. However, in this thesis it was shown that a more thorough anal-
ysis of the noise distribution gave better and more reliable results. Estimated states
and parameters, as well as generated ARR residuals, may be nonlinear functions of
the measurements, which will easily become non-Gaussian, possibly non-IID, even
if the measurements are normally distributed IID signals.

Due to measurement noise and modeling error, a threshold on the decision func-
tion was required. Often, the thresholds are obtained by using trial and error,
which was done in Chapter 2. However, by using test statistic data under the null
hypothesis H0, the thresholds were defined as functions of the probability of false
alarm. In Chapters 3-6, the Weibull distribution was found be be a good fit for
the right-tail of the test statistic. Where data under the alternative hypothesis H1

also was available (data with faults), it was possible to determine the probability
of detecting an incident. This approach of obtaining thresholds greatly simplifies
the diagnosis method, increasing robustness and requiring much less tuning.

Possible future research directions for drilling diagnosis

The methods proposed in this thesis were tested on data from a medium-scale
drilling test facility and in a high-fidelity simulator. The next research step could
be to test the methods on real drilling data where downhole incidents are occur-
ring. However, this requires close collaboration with the industry, since confidential
drilling data must be made available. In addition, data where actual drilling inci-
dents are occurring may prove difficult and time consuming to acquire.

The main idea in change-detection algorithms is to detect a change from a known
fault-free case to an, in some cases, unknown fault scenario. The challenge for such
methods to be implemented in a industry drilling system is the requirement of
determining that the system is in the fault-free case, as well as producing good
estimates for the null hypothesis. In a first implementation version this will have
to be determined by the expert user, e.g., the drilling operators and engineers.
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For future implementations, this could be done in a more automated matter where
the system updates the null hypothesis estimates regularly after predetermined
scheduled changes to the process.

The use of adaptive observers and analytical redundancy relations are thoroughly
tested in this thesis for drilling incident diagnosis. The methods are compared,
each with a set of benefits and limitations. For even increased diagnosis properties,
the methods may be combined in one model-based diagnosis method. Promising
preliminary results of this combination are published in Blanke and Hansen (2013),
which could be applied to the diagnosis framework presented in this thesis.
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Isermann, R. and Ballé, P. (1997). Trends in the application of model-based fault detec-
tion and diagnosis of technical processes. Control Engineering Practice, 5(5):709–719.

Jablonowski, C. and Podio, A. (2011). The Impact of Rotating Control Devices on
the Incidence of Blowouts: A Case Study for Onshore Texas, USA. SPE Drilling &
Completion, 26(3):364–370.

Jardine, S. I., White, D. B., and Billingham, J. (1994). Computer-Aided Real-Time Kick
Analysis and Control. SPE Drilling & Completion, 9(3):199–204.

Jellison, M. J., Prideco, G., Hall, D. R., Howard, D. C., Tracy, H., Long, R. C., National,
D. O. E., Technology, E., Chandler, R. B., and Pixton, D. S. (2003). Telemetry
Drill Pipe: Enabling Technology for the Downhole Internet. In SPE/IADC Drilling
Conference, pages 1–10, Amsterdam, The Netherlands.

Jiang, B., Staroswiecki, M., and Cocquempot, V. (2004). Fault diagnosis based on adap-
tive observer for a class of non-linear systems with unknown parameters. International
Journal of Control, 77(4):367–383.

Johnson, A., Leuchtenberg, C., Petrie, S., and Cunningham, D. (2014). Advancing Deep-
water Kick Detection. In IADC/SPE Drilling Conference and Exhibition, SPE 167990,
pages 1–10, Fort Worth, Texas.

Johnson, E., Land, J., Lee, M., and Robertson, R. (2013). Landing the Big One – The
Art of Fishing. Oilfield Review, 24(4):26–35.

Kaasa, G.-O., Stamnes, Ø. N., Aamo, O. M., and Imsland, L. (2012). Simplified Hy-
draulics Model Used for Intelligent Estimation of Downhole Pressure for a Managed-
Pressure-Drilling Control System. SPE Drilling & Completion, 27(1):127–138.

Kay, S. M. (1998). Fundamentals of Statistical Signal Processing: Detection Theory.
Prentice Hall, Upper Saddle River, NJ.

Khalil, H. K. (2002). Nonlinear Systems. Prentice Hall, Upper Saddle River, NJ, 3rd
edition.
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Svärd, C., Nyberg, M., Frisk, E., and Krysander, M. (2014). Data-driven and adap-
tive statistical residual evaluation for fault detection with an automotive application.
Mechanical Systems and Signal Processing, 45(1):170–192.

Swanson, B., Gardner, A., Brown, N., and Murray, P. (1997). Slimhole Early Kick
Detection by Real-Time Drilling Analysis. SPE Drilling & Completion, 12(1):27–32.

Trave-Massuyes, L., Escobet, T., and Olive, X. (2006). Diagnosability Analysis Based
on Component-Supported Analytical Redundancy Relations. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans, 36(6):1146–1160.

163



Bibliography

Van Eykeren, L. and Chu, Q. (2014). Sensor fault detection and isolation for aircraft
control systems by kinematic relations. Control Engineering Practice, 31(2014):200–
210.

Veeningen, D., Palmer, J., Steinicke, G., Saenz, J., and Hansen, T. (2012). From Field
Test to Successful Integration of Broadband Drillstring System for Offshore Extended
Reach Wells. In SPE/IADC Drilling Conference and Exhibition, SPE 151386, San
Diego, CA.

Venkatasubramanian, V., Rengaswamy, R., and Kavuri, S. N. (2003a). A review of
process fault detection and diagnosis Part II: Qualitative models and search strategies.
Computers & Chemical Engineering, 27(3):313–326.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., and Yin, K. (2003b). A re-
view of process fault detection and diagnosis Part III: Process history based methods.
Computers & Chemical Engineering, 27(3):327–346.

Venkatasubramanian, V., Rengaswamy, R., Yin, K., and Kavuri, S. N. (2003c). A review
of process fault detection and diagnosis Part I: Quantitative model-based methods.
Computers & Chemical Engineering, 27(3):293–311.

Vestavik, O. M., Aas, B., and Podio, A. L. (1990). Downhole Gas Detection Method in
Drilling Fluids. In IADC/SPE Drilling Conference, SPE 19971, Houston, TX.

Willersrud, A., Blanke, M., and Imsland, L. (2015a). Early pack-off diagnosis in drilling
using an adaptive observer and statistical change detection. In Proc. IFAC Workshop
on Automatic Control in Offshore Oil and Gas Production, Florianopolis, Brazil.

Willersrud, A., Blanke, M., and Imsland, L. (2015b). Incident detection and isolation in
drilling using analytical redundancy relations. Control Engineering Practice, 41:1–12.

Willersrud, A., Blanke, M., Imsland, L., and Pavlov, A. (2015c). Drillstring Washout
Diagnosis using Friction Estimation and Statistical Change Detection. IEEE Transac-
tions on Control Systems Technology, PP(99).

Willersrud, A., Blanke, M., Imsland, L., and Pavlov, A. (2015d). Fault diagnosis of
downhole drilling incidents using adaptive observers and statistical change detection.
Journal of Process Control, 30:90–103.

Willersrud, A. and Imsland, L. (2013). Fault Diagnosis in Managed Pressure Drilling
Using Nonlinear Adaptive Observers. In Proc. European Control Conference, pages
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