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Abstract—An optimization of an analytical problem with nine
variables is executed to find the optimal Permanent Magnet(PM)
generator for a tidal turbine. A gradient based solver is used to
find the minimum cost of active materials for the given design
specifications. The MATLAB function fmincon is used, and the
possible minimization algorithms available for this function are
compared. As these solvers are only able to find a local minimum,
a search is performed trying to find other minimas, both using a
MultiStart procedure and using a Genetic Algorithm (GA). Losses
are calculated for windings, stator laminations and rotor magnets
and solid steel, and a constraint is put on efficiency. The cost effect
of varying this constraint is investigated. Optimizations are done
with both weight and material cost as objective function, and the
different resulting designs are presented.

I. INTRODUCTION

A. Problem formulation

The goal of this paper is to find the best possible electromag-
netic design for a generator in a tidal turbine. The tidal industry
is in a phase of development, and developers are struggling
to find economically viable solutions, hence it is important
that each component of the system is as cost-effective as
possible. Based on a study of existing and developing tidal
technology [1], a set of specifications and constraints have
been chosen. The generator is designed for a central shaft
turbine with a one-stage gear. A one-stage gear is a trade-
off between cost and weight on one side, and reliability and
efficiency on the other. The design specifications are listed in
Table I. The generator will be a surface mounted PM machine
with concentrated windings. The number of poles and slots are
restricted to 22·nbase and 24·nbase, respectively, where nbase
is the number of base windings. The chosen combination of
poles and slots will result in a machine with low cogging
torque and a simple assembly. Other slot pole combinations
might prove to be more purposeful. This will be investigated
later. Because of the winding layout, subharmonic fields are
present, causing losses in the rotor magnets and rotor yoke,
which is to be built with solid magnetic steel due to cost and

TABLE I
DESIGN SPECIFICATIONS

Turbine power 1,5 MW
Mechanical speed 80 rpm
Air gap length 6 mm
Number of phases 3
Line to line voltage 3,3 kV

material savings. The generator will be air filled and cooled
by the water flowing around it.
The objective function is an estimate of the price of active
materials. The effect of choosing another objective function;
weight, is also illustrated. Optimizations of electrical machines
are often done for the rotor given a specific stator, or vice
versa. Even better results can be achieved if both rotor and
stator geometry are allowed to vary. As many as possible of the
design parameters are chosen to be variables. If magnetic flux
densities in different parts of the machine were set as input
parameters, and dimensions set according to this, it would
threaten the optimality of the solution, because the chosen
flux density might not prove to be optimal at all.
Optimization variables are listed in Table II, and visualized in
Figure 1. αm is defined as wm/τp, and hwind and wwind are
winding height and width. Design details like pole shoes, slot
wedges and magnet shape are left out of the scope. Constraints
are set for different parameters listed in III based on typical
requirements for the tidal power industry. These constraints
are not necessarily final, but based on practicalities and ex-
pectations from the tidal power industry. The possible savings
made by relaxing some of these constraints are investigated.
The optimization is performed with the MATLAB optimiza-
tion toolbox, using the built-in minimization function fmin-
con. This is a nonlinear solver that can solve unconstrained,
linearly constrained and nonlinearly constrained problems.
The optimization technique is deterministic and employs the
gradient or the Hessian of the objective function to establish a
search direction. Common for this type of method is that the
found solution might be a local minimum, and not a global
one. The selected starting point of the search will influence
which minimum you end up with. A multistart procedure is

TABLE II
OPTIMIZATION VARIABLES

Variables lower upper
Douter Outer diameter m 0 3.5
ds,yoke Stator yoke thickness mm 5 inf
dslot Slot depth mm 6 inf
wslot Slot width mm 4.4 inf
lm Magnet length mm 2 100
αm Magnet width/pole pitch 0.01 0.99
dr,yoke Rotor yoke thickness mm 5 inf
J Current density A/mm2 0 4
nbase Number of base windings 1 13



Fig. 1. Geometric variables. Parameter information is listed in Table II

performed to check for multiple minimas, and a GA is used to
compare the results and verify that the result is, in fact, a global
minimum. Gradient based solvers are unable to solve problems
with integer number variables. This is a serious limitation
when optimizing electrical machines, since the number of slots
and poles must always be integer. The choice of interior vs.
surface mounted PMs and the choice of rotor and stator yoke
material are other parameters of interest that could be included
as integer variables. In this work, an outer loop is created to
optimize the number of base windings.

B. Previous work

For many years, much focus has been put on optimization
of electrical machines and on PM machines in particular [2]–
[4]. [5] presents an overview of different optimization methods
used for design of electrical machines.
Optimization methods can mainly be categorized as either
gradient based or direct optimization or a combination of
both, although there are examples of other methods too. Direct
optimization only needs the numerical value of the objective
function, while gradient-based optimizations require a gradient
to find a search direction and determine how far to move in
that direction. The last is a fast and efficient way to find a
local solution, but is unable to search for multiple minimas,
and therefore risks finding a local, and not a global minimum.
It also requires a smooth objective function, and cannot have
integer number variables. Evolutionary Algorithms, including
GAs, are examples of direct optimization techniques that are
able to find the area of the global minimum. GA have been
widely used in optimization of electrical machine design [3],
[6], [7], however, other evolutionary algorithms, like Immune
Algorithms, Evolution Strategy, Differential Evolution [8], [9]
and Particle Swarm Optimization [10] also show good results.
In many cases, a hybrid solution is employed, where an
Evolutionary Algorithm is used to find the area of the global

Fig. 2. No-load magnetic circuit

Fig. 3. Section of armature reaction circuit

minimum, and a local search algorithm is used to find the
precise location of the minimum [4], [11], [12]. This reduces
the number of evaluations drastically.
It has been argued that a global optimization technique is
necessary for machine design optimization, because of the
existence of many local minimas. Despite this, many authors
have used different nonlinear programming algorithms in this
area. In [13], [14] Sequential Quadratic Programming (SQP)
methods are used to optimize synchronous reluctance motors.
Published papers on optimization of electrical machines rarely
provide advices on details regarding the optimization pro-
cedure, like setting bounds and choice of algorithm within
deterministic nonlinear methods. This paper will show how
the elecrtical machine design is optimized and also give some
specific guidance to the reader.

II. THE MACHINE MODEL

A. The electromagnetic model

The electromagnetic model is based on a lumped parameter
network shown in Figure 2 [15]. Rs and Rr are stator and
rotor yoke reluctance. Both are set to zero because of the high
relative permeability of iron. Rg is the air gap reluctance,
Rml is the magnet to magnet leakage reluctance, Rmr is
the magnet to rotor yoke leakage reluctance, Rpm is magnet
reluctance and φpm is remanent flux of the permanent magnet.
The physical air gap is multiplied with a Carter coefficient to
account for the variation of flux density in the air gap caused
by slotting. No-load magnetic flux densities are estimated
for torque prediction and for iron-loss prediction. In order to
investigate the effect of the different harmonics produced by
the stator on the rotor, the magnetic circuit shown in Figure 3
is used to find the electric loading and magneto-motive force
in loaded condition. Rgap is the reluctance of the magnet and
the air gap combined, N is the number of turns per coil, IA
and IB are the currents of phase A and B, respectively and φ1
and and φ2 are the mesh fluxes in the first and second loop.



The figure shows only 4-5 loops in a mesh network. With the
given slot and pole combination the total number of loops is
24. For any number of nbase, the flux pattern is symmetrical
about 24 slots. For the second loop, the mesh equation

(φ2−φ1)Rgap+φ2Rs−NIA+(φ2−φ3)Rgap+φ2Rr = 0 (1)

is true. The flux passing through the tooth between the two
first loops is φ1 − φ2. The harmonic content of the electric
loading is employed in the calculation of rotor loss.
Magnetic saturation is not included in the model. However,
the magnetic flux density is constrained in stator teeth, stator
back yoke and rotor back yoke, the values can be seen in Table
III. The magnetic flux density is calculated for flux produced
by magnets alone and flux produced by stator currents alone,
and a constraint is put on each case. The two values should
not be added, because the flux will have a phase shift of π/2
when current is placed in the q-axis.
Produced torque is found with the following equation,

T =
3

2
pφg

Q

6
kw ÎsL (2)

where p is the pole pair number, φg is the air gap flux per
pole at no-load, Q is the number of slots, kw is the winding
factor, Îs is the amplitude of the slot current and L is the
active length.

B. The electric model

The slot is modelled as shown in 1 with a slot wedge at the
slot opening. The winding is fitted with a slot insulation layer
of constant thickness, and the fill factor of the coil inside this
is set to a fixed value. The number of turns is automatically
chosen to obtain a voltage rating of approximately 3.3 kV. Slot
inductance, air gap inductance and end winding inductance
are calculated according to [15], and resistance calculations
include end winding resistance. For the sake of simplicity, it
is assumed that the current is placed in the q-axis, ensuring
maximum torque per ampere. Later work could include power
factor angle as a variable, and cost of the converter can be
included in the objective function.

C. The mechanical model

Mechanical structures are not included in the model, with
exception of the outer housing wall, the thickness of which is
set to 5 cm regardless of diameter and length. The cost and
weight of this are included in the objective functions. One
mechanical constraint is included in the model, namely the
maximum shear stress of the rotor shaft. The rotor yoke can,
for small diameter machines, act as the shaft, and the shaft
stress is to be kept below 30 MPa in a case where the outer
diameter of the rotor yoke equals the shaft diameter.

T =
JT
r
τ (3)

where T is torque, τ is maximum shear stress, r is the radius
and JT = πr4/2 is the torsion constant for a circular cross-
section.

D. Losses

Losses are found for windings, stator laminations, rotor
yoke and magnets.
Copper loss is found for both the active section and the end
windings. As the exact dimensions of the winding wire is
not known, the AC losses are not calculated, but estimated
as 1.2 times the DC losses. Copper losses are calculated for a
temperature of 90 ◦C. For further improvement of the model,
copper temperatures can be calculated with a thermal model,
and this temperature can be used to find real copper resistance.
Iron losses are estimated with the equation below, combining
hysteresis loss, ph and eddy current loss, pe with a given
magnetic flux density B and angular frequency ω:

piron = ph + pe = khB
βω + keB

2ω2 (4)

kh, ke and β are hysteresis and eddy current coefficients, with
values found in [16].The expression is valid for sinusoidal
flux density. Only the no-load flux density is used in iron-loss
calculations.
Magnet losses and eddy current losses induced in the solid ro-
tor yoke are calculated by the method found in [17], [18]. This
method efficiently takes all harmonics produced by the stator
into account, which is of particular importance in machines
with single layer concentrated windings, where especially the
low order harmonics can cause large rotor losses.
Friction losses are not included in the model. It is assumed
that these will be of approximately the same magnitude
independent of the geometric dimensions. Consequently, the
calculated efficiency will be slightly higher than the actual
efficiency of the generator.

III. OPTIMIZATION MODEL

A. MATLAB optimization algorithms

Constrained minimization is the task of finding the set n of
variables X=(x1, ... xn) that result in the lowest possible scalar
value f(X) subject to a set of m constraints, Gk(X) ≤ 0, k=1,
...m. The feasible region is the set of X where all constraints
Gk(X) ≤ 0 are satisfied.
The minimization function fmincon can employ four different
algorithms; Trust region reflective, interior point, active set and
SQP [19]. The Trust region reflective algorithm cannot be used
for problems with nonlinear constraints. The interior point
algorithm uses a Barrier Function to stay within the feasible
region. For each iteration, either a Newton step, where the
Karush Kuhn Tucker equations are solved via linear approxi-
mation, or a Conjugate gradient method, based on the steepest
descent, is used to obtain the search direction and step length.
Both the active set algorithm and the SQP algorithm use
Sequential Quadratic Programming as a minimization strategy.
Here, Newton’s method is mimicked by approximating the
Hessian of the Lagrangian function using a quasi-Newton
updating method. The active set algorithm in addition uses
an estimate of which constraints are active at each iteration to
reduce the complexity of the problem.



B. Bounds

When setting bounds on variables, you would like to restrain
your design space as little as possible, in order to capture all
possible design combinations. However, restraining the design
space simplifies the optimization procedure and can reduce
time consumption. What is particularly important is to not
allow for "unphysical" behavior of the model. Take as an
example the slot width. If the lower bound on slot width is 0,
then for the lowest allowable values, the winding width will
actually become negative. This leads to negative current and
negative torque, negative active length and negative cost. Of
course it is possible to set constraints keeping winding width
and winding height positive, but once the solver moves in
this area of the design space, it can be difficult to find the
direction towards the feasible area, and the optimization fails
to find a feasible solution. To avoid this problem, the lower
bounds on slot depth and slot width are set according to main
wall insulation thickness and slot wedge thickness.
The variable’s bounds are listed in Table II. The upper bound
on the outer diameter is chosen because a machine with a
bigger diameter must be split into sections, both for production
convenience and transportation limitations. A bigger diameter
would increase the cost of production and assembly.
The intention of the upper bound on current density is to
prevent overheating, and the value is based on recommen-
dations given in [20]. For further improvement of the model,
a thermal calculation can be added, and constraints put on
machine temperatures. The lower bound on stator and rotor
yoke thickness and magnet thickness will ensure a certain
mechanical stability.

C. Constraints

Constraints are set on various parameters in order to prevent
a machine design that cannot be made in practice, or that will
lead to unnecessary costs in other parts of the tidal energy
system. The upper limit on frequency is set to keep converter
costs down. A constraint is put on tooth width for mechanical
strength, and on active length for both transportation reasons
and thermal expansion. The power factor is constrained to
be above 0.85 based on expectations from the tidal energy
industry. Another constraint to ensure sufficient cooling is put
on current loading. Finally, magnetic flux density in stator and
rotor yoke and stator teeth are kept low enough to prevent
saturation.

D. Objective function

Two different objective functions are investigated; weight
of active materials and cost of active materials, f(X)(both
including housing):

f(X) =Ms,yClam +McondCcond

+(Mr,y +Mhouse)Csteel +MpmCpm (5)

where Ms,y ,Mcond, Mr,y , Mhouse and Mpm are weights of
stator yoke, conductors, rotor yoke, housing and permanent
magnets, respectively, and Clam, Ccond, Csteel and Cpm are

Fig. 4. Flowchart of integer number grid search

cost per kilogram of laminations, conductors, steel and perma-
nent magnets. Costs are set based on former experience, and
are not exact, as they will vary with dimensions, machining,
supplier et cetera. However, the cost parameters include, as
far as possible, the costs related to production. For magnets,
coating and machining is included, for laminations, stamping
and stacking is included, and for winding wires, insulation is
included.

E. Integer variables

As explained, the gradient based solver is unable to use
integer variables as input. Because the number of base wind-
ings must be an integer number, and there are only a limited
number of possibilities due to the limitation in electrical
frequency, a basic grid-search is performed, investigating the
optimum at each possible base winding number. The procedure
is illustrated in Figure 4. The variable nbase maximum is set
to 13, because of the frequency constraint.

TABLE III
CONSTRAINTS

Parameter
Efficiency ≥ 0.96
Power factor ≥ 0.85
Current loading ≤ 35 kA/m
Frequency ≤ 200 Hz
Tooth width ≥ 5 mm
Distance between magnets ≥ 1 mm
wwind ≥ 1 mm
hwind ≥ 1 mm
Mechanical stress ≤ 30 MPa
Inner diameter ≥ 0 m
Tooth flux density ≤ 1.5 T
Stator yoke flux density ≤ 1.1 T
Rotor yoke flux density ≤ 0.9 T
Length ≤ 4 m

TABLE IV
FMINCON ALGORITHMS

Algorithm Objective value Solution time Iterations
interior point 92 547 EUR 111 s 71
sqp 91 672 EUR 122 s 65
active set 91 947 EUR 105 s 69



IV. RESULTS

A. Appropriate algorithm

Firstly, the different algorithms available for using the
fmincon solver in MATLAB are investigated, trying to es-
tablish which is best suited for this problem. The trust region
reflective algorithm cannot be used in problems with nonlinear
constraints, and therefore cannot be used. Recommendations
given by the software states that the interior point algorithm
should be used first, and to obtain more speed, the sqp can
be tried, and thereafter active set. The problem was run for
all three algorithms with nbase set to 7 and the bounds shown
in Table II, and only the interior point algorithm was able
to present a result. By investigating the bounds settings, it
was clear that the lower bound on current density set to
zero was the cause of the malfunction. By increasing this to
a positive value, all algorithms provided approximately the
same optimal result. Table IV shows the resulting objective
value, solution time and number of iterations used for each
algorithm. All algorithms have comparable solution times,
and the sqp algorithm finds the best solution, 0.9 % lower
than the interior point result. When searching for multiple
minimas using MultiStart, described further below, the active
set algorithm could not provide a result. Based on these
findings, both the interior point and the sqp algorithm can
be recommended for electical machine design optimization.

B. Two different objective functions

Going forward with the chosen algorithm, two optimization
processes are performed, with two different objective func-
tions; weight and cost. The results are listed in Table V. The
machines are similar, both in size, shape and cost. The cost
optimized machine is only 0.5 % cheaper and 0.9 % heavier
than the weight optimized machine. A reason for the small
difference is the very tight constraint on efficiency, which gives
a narrow design space of feasible solutions.
The solution is constrained by the following parameters:
Maximum outer diameter, minimum power factor, minimum
efficiency and maximum flux density in the rotor yoke. The
solution will improve if either of these constraints are relaxed,
and deteriorate or become infeasible if they are restricted.
Table VI shows a similar case, but with the constraint on
efficiency removed. For this, less constrained model, the differ-
ence between the two objective functions becomes clear. The
cost optimized machine is 31 % cheaper and 21 % heavier than
the weight optimized machine. Note especially the difference
in PM weight, which has by far the highest cost per kilogram.
In many cases of machine optimization, weight is minimized,
while cost is the real target. A reason why weight is chosen is
that the price of materials is not easily accessible, and depends
on many factors, but even a good guess may result in a better
design, if low cost is your true target.

C. Global minimum

As the gradient based optimization is not capable of finding
the global minimum, a search is done to investigate the pres-

TABLE V
OPTIMIZED MACHINE PARAMETERS

Weight optimized Cost optimized
machine machine

Cost 92 121 EUR 91 782 EUR
Weigth 11 353 kg 11 370 kg

Variables
Douter 3.5 m 3.5 m
ds,yoke 26 mm 26 mm
dslot 59 mm 58 mm
wslot 20 mm 19 mm
lm 6 mm 6 mm
αm 0.965 0.962
dr,yoke 32 mm 32 mm
J 3.22 A/mm2 3.38 A/mm2

nbase 7 7

Machine parameters
Length 815 mm 819 mm
Efficiency 96 % 96 %
Power factor 0.85 0.85
Current loading 26 315 A/m 26 083 A/m
Copper weight 743 kg 705 kg
Magnet weight 362 kg 359 kg
Iron weight 6 433 kg 6 470 kg

TABLE VI
OPTIMAL LOW EFFICIENCY MACHINE

Cost optimized Weight optimized
machine machine

Cost 97 011 EUR 66 578 EUR
Weigth 5 461 kg 6 615 kg

Variables
Douter 3.5 m 3.5 m
ds,yoke 11 mm 12 mm
dslot 37 mm 51 mm
wslot 22 mm 17 mm
lm 24 mm 8 mm
αm 0.886 0.914
dr,yoke 20 mm 15 mm
J 4 A/mm2 4 A/mm2

nbase 11 11

Machine parameters
Length 478 mm 613 mm
Efficiency 91.8 % 94.6 %
Power factor 0.97 0.85
Current loading 35 000 A/m 35 000 A/m
Copper weight 479 kg 591 kg
Magnet weight 809 kg 353 kg
Iron weight 1 884 kg 2 805 kg

ence of other minimas within the feasible region. A MultiStart
run with nbase fixed at 7, starting the search from 10 different
initial points was performed. Unless all startpoints are man-
ually specified, MultiStart randomly chooses starting points
based on the variable bounds. For unbounded variables the
staring point values become very high, and the minimization
algorithm is unable to find a solution. The following variables
are given new bounds; ds,yoke Upper Bound (UB) 30 cm,
dslot UB 30 cm, wslot UB 50 cm, αm Lower Bound (LB) 0.5,
dr,yoke UB 30 cm. No results were obtained with the active set
algorithm. The interior point algorithm found two minimas,
while the sqp algorithm found 6 minimas, the best one very
similar to the machine geometry presented in Table V, column



Fig. 5. Efficiency versus cost

3. The best cost found was 91 656 EUR. The five best soltions
have similar geometries, and costs varying by 6 %. The last
minimum has a cost 3.7 times the best cost. This shows that
several minimas exist within the feasible region, and that the
choice of starting point is of crucial importance.
Another try was made to find alternative minimas, with the
use of a GA optimization, also done in Matlab. With the
bounds presented in Table II, the solver was unable to even
find a feasible solution. By setting the same bounds as for
the MultiStart the GA found a machine design with a cost of
93 226 EUR, and variables in close range of the gradient based
optimized machine. The solution time is considerably longer.
With the global searches performed here, it is assumed that
the found solution is, indeed, the global minimum, although
it is in theory possible that a better minimum exists.

D. Efficiency constraint

It is of interest to investigate the effect on cost that the
constraint on efficiency has. A new optimization process is
performed, and the result is shown in Table VI. With the
given constraints, the cost optimal machine has an efficiency of
94.6 % and the cost is down by 27 %. The dramatic decrease of
cost should make the designer consider reducing the efficiency
of the machine. This must be weighed against the cost of
lost energy production for the tidal turbine. The pareto curve
drawn in Figure 5 further illustrates this interaction, showing
efficiency as a function of cost.
In this case, the active constraints are on power factor, current
loading, current density, flux density in stator and rotor yoke
and maximum outer diameter. With the thermal constraints on
both current density and current loading active, there is a risk
of high temperatures in the machine. A thermal model should
be made to check the feasibility of the design.

E. Other constraints

A sensitivity analysis is of interest for the machine designer,
and can help setting sensible constraints. The active constraints
in the optimal point, in addition to efficiency, are maximum
outer diameter, minimum power factor and maximum flux
density in the rotor yoke. An increase in outer diameter will
result in a segmented design, where machine structures are
manufactured in several pieces and assembled on site. This is
costly, but it can be worth investigating the potential savings
in material cost. Removing the upper bound on outer diameter

Fig. 6. Cost versus power factor

Fig. 7. Flux density distribution in machine

results in an optimal design, when optimizing for cost, with a
material cost of 66 292 EUR, 72 % of the original cost, and
an outer diameter of 8.59 m. In the case of tidal turbines, the
hydrodynamics of the turbine will not allow for such a big
diameter, so this is not a practical solution in this particular
case.
The power factor of the machine decides the MVA rating of
the electrical system, and therefore the cost of other parts,
like the power converter. It is desirable to keep it as high as
possible, but this leads to higher machine cost. An optimum
exists for the total system, and to find this it is of interest
to see the correlation. Figure 6 illustrates how machine cost
varies with the constraint on power factor. The minimum cost
is achieved when the power factor is 0.69.

F. FEA verification

A FEA model is built to verify the analytical calculations.
The geometry presented in table V, column 3, is used, and the
resulting magnetic flux density field is shown in figure 7. Cal-
culated performance using the analytical tool and the FEA tool
are listed in VII. The results show a satisfactory match between
analytical results and FEA results. The biggest difference is in
the inductance calculation, implying that the real power factor
will likely be somewhat lower than the analytically calculated
one. A revision of the inductance calculation would improve
the model. It is worth noting that the total harmonic distortion
of the induced voltage is approximately 9 %, which is fairly
high. A smaller ratio of magnet width to pole pitch would
reduce this.



TABLE VII
COMPARISON OF ANALYTICAL AND FEA RESULTS

Parameter Analytical FEA ratio
Induced voltage, 1. harm. 1 755 V 1 729 V 0.986
Electromagnetic torque 179.05 kNm 171.99 kNm 0.961
No-load tooth flux 24.0 mWb 26.3mWb 1.096
Phase inductance 5.70 mH 6.72 mH 1.18
No-load iron loss 12 990 W 13 421 W 1.033

V. CONCLUSION

It is shown that gradient based optimization techniques can
be applied to PM machine design, but the starting point is
important to find the global minimum. An optimal generator
for a tidal turbine with a central shaft and a one stage gear is
presented. When using solvers available from the MATLAB
library, it can be recommended to choose the interior point
or the sqp algorithm within the fmincon solver for robust and
fast optimization. While gradient based solvers are only able to
find local minimas, one can search for multiple minimas using
the MultiStart function, or even a GA. A major drawback of
gradient based search strategies is the inability to use integer
variables. For few integer variables, say one or two, and narrow
variable space, it is possible to create a basic grid search to
account for this. For a higher number of integer variables, it
is recommended to use a stochastic method.
The solver was able to find a feasible solution with a high
efficiency within a very small feasible area. A genetic algo-
rithm search with the same bounds was unable to find this,
and bounds had to be narrowed down, even with one variable
fixed, in order to find a solution.The choice of objective value
is very important for the optimization model, although, in this
case, with the small region of feasibility, a machine optimized
for cost and weight gave very similar results.
The effect of changing bounds and constraints was illustrated,
and curves were drawn to show how efficiency and power
factor constraints affect machine cost. It is illustrated how the
optimization tool can be used by the designer to make good
choices for the design of the whole system.
Further improvement of the work could include a thermal
model, where constraints are put on magnet and winding
temperature instead of current density and current loading.
A development of the cost function could include the cost
of energy loss, cost of the power converter and cost of the
mechanical structure.
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