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SUMMARY:

This thesis concerns itself with the dynamic response of a slender network arch bridge by
means of a numerical model. The numerical model is generated using a Python code
written by Ph.D. Candidate Anna Ostrycharczyk. The code was modified by the authors
to include pedestrian loading. Based on a modal analysis of the bridge, the first ten
natural frequencies and corresponding mode shapes were extracted, and attempts at
exciting each mode by simulating pedestrian loading were carried out.

The acceleration of the bridge deck was the main variable of study, as this is what
pedestrians feel and react to while walking across the bridge. The accelerations achieved
through numerical analyses have been compared to the suggested values in design
guidelines, both to check if the design guidelines have valid methods for calculating
accelerations and to check if the bridge in study fulfils the guideline criteria.

For single pedestrian analyses the dynamic response matched the design guidelines'
predicted response fairly well, and were within the presented criteria. Simulating groups
of pedestrians yielded extremely high acceleration responses. They were considered
worst case, but not very realistic. Other load cases such as running were also simulated.

The specific acceleration values retrieved in this thesis are not useful, because the
dimensions of the bridge in study are still subject to change. However, three modes were
found critical for the bridge. One mode was concerned with the lateral responses of the
arches and the two others with the lateral and vertical responses of the deck. It is fair to
assume that similar modes will dominate the response of any slender network arch
bridge. These mode shapes should be studied carefully and will be governing in the
placement of any external dampers.
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The methods for calculating vertical accelerations in the guidelines are often too simple.
This should be addressed as more slender footbridges with unique designs are being
built every year. The way horizontal accelerations are covered is also deficient. The
guidelines propose methods dependent on frequency ranges, disregarding the fact that
higher harmonics of the walking frequency might excite the bridge. Horizontal resonance
was achieved in this study, despite the fact that most guidelines deemed it unnecessary
to check.

The numerical method used in this thesis shows promise, but needs to be developed
further, especially for simulating groups of people. The material damping implemented in
the numerical model proved the importance of damping, especially at resonance.
Through further work a method may be obtained to calculate the dynamic response of a
footbridge for a given amount of damping. This way the minimum amount of damping
necessary to satisfy the comfort criteria stated in design guidelines can be found.
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SAMMENDRAG:

Denne avhandlingen omhandler dynamisk respons av en slank nettverksbuebro i tre, beregnet ved
hjelp av en numerisk modell. Den numeriske modellen er generert ved bruk av en Python kode
skrevet av Ph.D. Kandidat Anna Ostrycharczyk. Koden ble omskrevet av forfatterne til & inkludere
fotgjengerlaster. Gjennom en modal analyse av brua ble de farste ti egenfrekvensene og tilhgrende
egenmodene funnet, og forsgk pa a trigge modene ved & simulere fotgjengerlaster ble utfart.

Akselerasjonen av brudekket var den viktigste variabelen, da dette er hva fotgjengere faler og
reagerer pa nar de gar over brua. Akselerasjonene ble funnet giennom numeriske analyser og
sammenlignet med beregnede akselerasjonsgrenser gitt i standarder og hdndbgker. Dette ble gjort
bade for & undersgke om metodene presentert i standardene er gyldige, og for & sjekke om den
studerte nettverksbuebrua oppfyller kriteriene satt i standardene.

Analysene med én enkelt fotgjenger ga resultater som samsvarte godt med standardene, og var
innenfor kriteriene. Analysene med en gruppe fotgjengere ga imidlertid ekstreme akselerasjoner.
Disse akselerasjonsverdiene kan regnes som det verst tenkelige tilfellet, men de er antageligvis ikke
realistiske. Andre lasttilfeller med én lgpende fotgjenger ble ogsa simulert.

Akselerasjonsverdiene funnet i dette studiet er ikke direkte brukbare fordi bruas dimensjoner ikke er
fastsatt. Imidlertid ble tre kritiske vibrasjonsmoder funnet for brua - en sideveis utbgyning av buene,
og to for utbgyning av dekket i henholdsvis sideveis og vertikal retning. Det er rimelig & anta at
samme moder vil dominere responsen til lignende slanke nettverksbuebruer. Disse
vibrasjonsmodene burde vies ekstra oppmerksomhet, og vil veere dimensjonerende for plasseringen
av eventuelle eksterne dempere.
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Metodene for & beregne vertikale akselerasjoner i standarder og handbgker er ofte for enkle, og bedre
metoder bar utvikles da flere slanke bruer med unikt design bygges hvert ar. Maten horisontale
akselerasjoner blir dekket er ogsd mangelfull. Standardene foreslar metoder avhengig av
frekvensomrader, uten & ta hensyn til at hayere harmoniske komponenter av gangfrekvensen kan
bidra til resonans. Horisontal resonans av brua ble oppnadd i dette studiet, til tross for at det i fglge
standarder ville veert ungdvendig & utfare en kontroll av de horisontale akselerasjonene.

Den numeriske metoden som brukes i denne avhandlingen har potensiale, men ma utvikles videre,
spesielt for & simulere grupper med fotgjengere. Materialdempingen i den numeriske modellen viste
viktigheten av demping, spesielt ved resonans. Gjennom videre arbeid kan en fremgangsmate utvikles
for & vurdere den dynamiske responsen til en bru for en gitt mengde demping. Dermed kan man
bestemme den minste dempingsmengden som trengs for & tilfredsstille kriteriene satt i standardene.
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1 Introduction

1.1 Background

With technology improving and advancing every year, the construction of bridges has
tended towards more daring constructions; lightweight and flexible, slender-looking
and innovative designs. The development of building materials that can withstand
higher stresses has opened up for smaller cross sections and greater spans, which may
be visually pleasing. However, smaller cross sections lead to decreased bending and
axial stiffness, which, combined with longer spans decrease the natural frequencies of
the bridges. When a bridges natural frequencies coincide with the walking or running
frequencies of the pedestrians crossing the bridge, resonance becomes a possibility.

Various incidents regarding out-of-control dynamics on footbridges have been recorded
through history. A famous example is the Angers bridge in France, which collapsed in
1850 while a battalion was marching across it, killing 200 men [1]. In modern day the
problem is more common, and vibrations can occur at events containing less people
and activity than a marching battalion. Two incidents especially spurred a lot of atten-
tion towards the subject; both the Millennium bridge in London and Pont-de-Solférino
in Paris (depicted in Figure 1.1) experienced excessive lateral vibrations during opening
day, and needed to close down for structural renovation thereafter.

Figure 1.1: Pont de Solférino, which is now known as Passerelle Léopold-Sédar-Senghor.
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1.2 Objective

This project investigates the dynamic responses due to pedestrian loading on a slen-
der timber footbridge by means of a numerical model. The bridge is currently in the
design phase at NTNU, and has been subject to a wide array of work over the past few
years. Two masters students built a small scale version of the bridge for their master
in 2013 (see Figure 2.1). At this time several master students are writing about various
aspects of the bridge. Our goal is two-parted; can numerical models be used to simu-
late pedestrian-induced resonance? How well will a numerical model coincide with the
regulations set forth by the design guidelines?

1.3 Method

This thesis can be divided into two main parts, the modelling of the bridge and loads in
Abaqus, and the comparison of the results to the design guidelines. The former part is
the bulk of the thesis.

The modelling is based on a Python script written by Ph.D. Candidate Anna Ostrychar-
czyk. During the work on this thesis the script has been modified to include pedestrian
loads, including any other variables pertinent to this. The model was also used to calcu-
late the natural frequencies of the bridge. The various model parameters such as mesh
size, step size and numerical damping were determined through preliminary parameter
studies.

Attempts to induce resonance were made to look at the worst case scenario and ob-
tain the corresponding dynamic responses. To limit the work, the first ten modes of
vibration were selected to study, which is a fair guess keeping in mind that the higher
modes are less likely to be excited. Accelerations and displacements were the chosen
variables to extract from each analysis. They were evaluated and converted to the fre-
quency domain through a discrete Fourier transform (DFT) to help determine whether
or not resonance had occurred.

By running different analyses the hope was to unveil the critical modes, which is im-
portant for the further work on the bridge. Perhaps dampers are required. The script
has been written as generally as possible, with the notion in mind that someone may
continue developing it.

1.4 Limitation

¢ At the time of writing, the dimensions of any bridge that might be built are still
unknown. Therefore the results presented in this thesis are not very useful them-
selves, but the method is still valid and tailoring the work to a new set of dimen-
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sions is fairly painless and will yield useful information.

* No partial factors were attributed the loads. No combinations ofloads were tested
(for example wind or snow).

¢ Alimited number of guidelines were compared; Eurocode, ISO, Handbook N400,
british standards and a technical guide by Sétra.

¢ Only the ten first eigenmodes of the bridge were considered.

¢ All materials were given the same amount of damping to give a uniform damping
throughout the entire structure. In reality the damping ratio for wood is a factor
of ten greater than that for steel.

¢ The Fourier coefficients used to calculate the pedestrian loading are given for a
specific frequency range and activity. Only the latter has been taken into account
in this thesis and coefficients have been used independent of the pedestrians pac-
ing rate.

1.5 Thesis Outline

Chapter 2 describes the history and development of network arch bridges, and aims to
present the concept from a structural point of view.

Chapter 3 consists of theory relevant to the work done for this thesis. Structural dy-
namics and modal dynamics are touched briefly. The bulk of the chapter presents the
theory around pedestrian induced loading, and how this is described mathematically.
The latter part is concerned with dynamics in finite element analysis, especially numer-
ical damping.

Chapter 4 is a literature review. Here the different guidelines dealing with vibration in
structures are presented with their methods for calculating limit accelerations.

Chapter 5 revolves around the numerical model. Here the choices of parameters within
the model are justified. An attempt at determining the amount of damping in the model
is described, and also the choice of load modelling.

Chapter 6 presents the results from the analyses. The results include accelerations,
displacements and discrete Fourier transforms. Each of the ten natural modes are pre-
sented chronologically for single-person analysis, followed by analyses covering arch
movement, groups of people, running pedestrians and the effects of damping.

Chapter 7 is a discussion chapter, comparing the different results with each other and
with the design guidelines.

Chapter 8 presents the conclusions made by the authors, based on the previous chap-
ters.
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Chapter 9 proposes further work.

In the appendices the following additional information can be found:

e Appendix A - MATLAB scripts used in the thesis

e Appendix B - Explanation of Python coding

¢ Appendix C - A complete list of performed Abaqus analyses

e Appendix D - Hand calculations of accelerations according to design guidelines
¢ Appendix E - A guide to running the Python script

¢ Appendix F - Complete Python code (digital)



2 Network Arch Bridges

2.1 Case Study

Figure 2.1: Small scale model of bridge located at NTNU Department of Structural Engi-
neering laboratory.

The basis for this thesis is the bridge in Figure 2.1, which is a small scale model of a
bridge that will hopefully be built in Orkanger some time in the future. The bridge is a
network arch bridge in timber, which is a relatively new concept in bridge design.

2.2 Concept

Network arches can be defined as those with inclined hangers with multiple intercep-
tions [2]. The inclined hangers make the network arch bridge act like a truss, with only
axial compressive and tensile forces. Bending moments and shear forces are small
in network arches. Because the arch and ties are mainly subject to axial forces, their
cross sections can be quite small. This has made the design and construction of more
slender-looking bridges possible.

Inclined hangers have been in use for almost a century, but network arches were devel-
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oped in the sixties. It appears that the Swedish engineer Octavius E Nielsen pioneered
the concept by using V-shaped hangers nearly a hundred years ago, while Norwegian
engineer Per Tveit developed the concept further in the fifties by inclining the hangers
in the transverse direction as well. Inclined hangers dramatically lowers the moment in
the arch, and makes the bridge much stiffer. Compared to an arch with vertical hangers
where loads on the bridge deck transfer as point loads to the arch, creating moment, the
inclined hangers greatly reduce the moment-arm of the force, reducing the moment by
transforming it into compressive forces in the arch. By using a network hanger design
the moment action in the arch may be reduced by 75% [3].

Figure 2.2: Bolstadstraumen Bru - A network arch bridge in Sognefjord.
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2.3 Stability of Arch
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Figure 2.3: Transversely inclined hangers resemble that of a spoked bicycle wheel.

For arch bridges in general, if the arches are too slender, some form of sideway sup-
port is necessary to increase the stability. One way of doing this is clamping the arches
at the supports, but as the span increases, the effect of clamping decreases and other
solutions must be employed. Perhaps the most obvious one is a truss system connect-
ing the arches, which can be seen in Figure 2.2. Another option is the use of inclined
hangers out of plane.

Consider an arch bridge in which each hanger consists of a pair of parallell hangers. If
the paired hangers are fastened to the deck at two separate points in the lateral direc-
tion, the hangers will resemble that of a spoked bicycle wheel (see Figure 2.3). This will
have a positive effect on the out-of-plane buckling of the arches, which are the primary
modes of buckling (see Figure 2.4).

Figure 2.4: The two primary buckling modes for an arch [3].

The advantages of parallel hangers are demonstrated in Figure 2.5. By using one vertical
hanger, the arch might rotate about the fastening points of the hangers. By using pairs
ofinclined hangers, any such rotation would imply an elongation of one of the hangers,
inducing forces that resist lateral movement of the arch. The strain in the hangers due
to any lateral movement is dependent on the curvature of the arch (or specifically, the
distance between the arch and the deck, R). By introducing the geometric ratio r = a/R
and assuming small angles a, where a, R and «a are as shown in Figure 2.5, the strain in
the tension hanger becomes:
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From this Equation it can be seen that for increasing R, r will decrease and if a < R the
strain € will also decrease. The strains are thus higher near the supports, meaning this
is where the stability is greatest, and the sideways stability varies along the span[4].

Timber arch

Hanger [~

Timber arch

p

Hanger

Figure 2.5: Lateral stiffness from spoked wheel configuration [4].



3 Theory

This chapter gives a brief summary of the theory and previous research relevant to the
work done for this thesis.

3.1 Structural Dynamics

Structural dynamics are usually concerned with the vibration of structural members in-
duced by forces that vary with time, resulting in time varying responses of the structure,
such as displacements, velocities and accelerations. All structures have specific natural
frequencies, see Subsection 3.1.3 for a thorough explanation. If the structure is sub-
ject to a dynamic load with the same frequency as one of the natural frequencies, reso-
nance may occur creating large response amplitudes relative to the static response. In
general, resonant responses should be avoided if possible since they can lead to fatigue
and structural collapse. If the natural frequencies of the structure are so that resonance
isinevitable, the goal should be to ensure small response amplitudes even at resonance.
This is especially the case with slender bridges, where the serviceability might be threat-
ened by resonance, even though the structural integrity is not. To consider the inherent
dynamic properties of a structure one needs to know the different aspects of vibrations,
which will be presented in the next couple of sections.

3.1.1 Single-Degree of Freedom Systems

The simplest model of a vibrating mechanism is that of a single degree of freedom [5].

t
0
m e 1 o PO
(@) 0 - fdi __________________ E

Figure 3.1: Schematic drawing of a single degree of freedom system, containing a mass,
a linear spring and a viscous damper [5].

The system in Figure 3.1 consists of a mass, m, a viscous damper (dashpot) ¢, and a
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linear spring k. The system is subject to an applied force P(z), and the motion of the
system is described by a single degree of freedom, u = u(?), being translation in the
horizontal direction.

Free oscillations

When there is no externally applied load (P(t) = 0), the system will experience free vi-
bration. The forces acting on the body then are:

fi=mii Inertiaforce
fa=cu Damping force (3.1)
fs=ku  Elastic spring force

The equation of motion for the system is represented by the following 2" order differ-
ential equation:

mil+cu+ku=0 (3.2)

The natural circular frequency [rad/s] of the system is given as

k
wnz\/E:Zan (3.3)

Where f;, is the natural frequency in Hertz. The damped natural frequency is relevant
when the system contains damping (c # 0):

wg=wn\/1-{2 (3.4

With damping present, the response will decay exponentially and approach zero. In the
equation above ( is the damping ratio, which is the ratio between the damping, ¢, and
the critical damping, ¢, = 2mw,, [6]:

(== 3.5)

Cer

The obtained response depends highly on the magnitude of the damping ratio as can
be seen in Figure 3.2. If { < 1 the system is underdamped, and the response becomes
oscillatory. With ¢ = 1 the system is critically damped, and this gives the fastest expo-
nentially decaying response. The last alternative is when ¢ > 1 and the system becomes
overdamped, which also leads to an exponential decay in response.
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Figure 3.2: Free vibration of undamped, critically damped and overdamped systems.

Forced oscillations

If an external force is applied, the equation of motion becomes:

mii+cu+ku=P(t) (3.6)

The frequency ratio is given as the ratio between the frequency of the applied load and
the natural frequency of the system:

p=— 3.7)

Figure 3.3 shows the Dynamic Magnification Factor (DMF) against the frequency ratio
B for a forced single degree of freedom system. DMF is the ratio between the dynamic
response amplitude and the corresponding static amplitude that would be obtained
with a static load (w = 0). Large response amplitudes are observed when  — 1, which
is when an external load is applied with a frequency equal to the systems natural fre-
quency. This phenomenon is called resonance, and is why the natural frequencies are
also referred to as resonant frequencies. Continued forcing at a resonance frequency
could lead to unstable excitation, increasing unconditionally if the damping is not suf-
ficient [6].
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Figure 3.3: A plot of Dynamic Magnification Factor versus frequency ratio, clearly show-
ing the resonance phenomenon.

3.1.2 Multiple Degree of Freedom Systems

(1) 1, (1)
1

Figure 3.4: Schematic drawing of a two degree of freedom system [5].

In reality, structures are rarely simple enough to be modelled as single degree of free-
dom systems. Instead, one must employ multiple degrees of freedom (MDOF) and the
different motions of the system become more complex with 7 coupled equations of mo-
tion, n being the number of degrees of freedom. Through modal techniques, discussed
later in this chapter, the equations can be uncoupled and the study of the system can be
considered as studying a set of n simple oscillators, each one describing a characteristic
vibration of the system [7]. First a closer look into establishing MDOF systems, starting
with an example of a two degree of freedom system shown in Figure 3.4. By establish-
ing a free body diagram for the two masses all forces acting upon the two masses can
be accounted for:
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fir=mqii

I i } Inertial forces
i2 = Mol

Jar =iy

Fan = C (11 — 1) } Damping forces (3.8)

fsi=kiu

Spring forces
fs2 =ko(uz —uy) } pring

These equations can be rewritten in matrix form as such:

{af-

which often is written more compactly in this fashion:

m 0 (a+c2) —c
0 my —C2 C2

t N (k1 +k1) -k
llz —k2 k2

w| _ [P(D)
{uz}_{Pz(f)} 5:9)

[M{ii} + [Cl{a} + K] {u} = {P(t)} (3.10)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, P(¢)
is the vector of forcing functions and u is the displacement vector. With larger systems
the most common way to solve equations like Equation 3.9 is by use of the finite ele-
ment method, in which a real structure with infinitely many DOFs is discretized into
a finite number of elements which are interconnected at a limited number of points
(nodes) and which have a finite number of DOFs at these nodes. Next the mass, damp-
ing and stiffness matrices have to be established together with the force vector to get
the equation of motion. Having discretized the degrees of freedom in space with a fi-
nite amount of elements the equation of motion now has to be solved to approximate
how the responses vary with time. Several methods exist for solving this second order
differential equation. Modal decomposition and implicit direct integration methods
are two of them. They are discussed separately in subsections below, but first, some
brief theory about natural frequencies and mode shapes.

3.1.3 Natural Frequencies and Mode Shapes

The natural frequencies of a structure are the frequencies at which the structure tends
to vibrate in the absence of externally driving forces or damping forces. The vibration
mode shapes are the characteristic deformed shapes of the structure when vibrating at
these frequencies. As en example the three first natural frequencies and corresponding
mode shapes of a simply supported beam are shown in Figure 3.5.
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Figure 3.5: The first three mode shapes of a simply supported beam.

When studying the dynamic response of a bridge, its modes of vibration are paramount.
As mentioned before, if a periodic load is applied with frequency equal to one of the
natural frequencies of the bridge, and located at the maximum of the predominant
mode shape, resonance can occur unless the structure is heavily damped. The different
eigenfrequencies or natural frequencies and corresponding eigenmodes can be found
by modal analysis. First the natural frequencies of the system are calculated from the
following equation:

(K] — 5 [M])[@] = [D(w,)][®] =0 3.1

where [D](w) is the dynamic stiffness matrix and [®] is the eigenvector of the system,
containing its eigenmodes. To satisfy this equation the product eigenvector times dy-
namic stiffness matrix must vanish. Since a zero eigenvector is a trivial solution, and
therefore not interesting, the equation is solved by stating that the determinant of the
the dynamic stiffness matrix must be zero [8]. There is one solution for each degree of
freedom in the system. Next the different eigenmodes are found by calculating the dy-
namic stiffness matrix with the obtained natural frequencies and solving for the eigen-
vector. Since D(w,) is now singular one of the entries in the eigenvector has to be set
equal to unity to determine the other entries. The magnitude of the entries in the mode
shape vectors are therefore only relative.
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3.1.4 Modal Decomposition

One way to solve the equations of motion for multiple degree of freedom systems is
by modal decomposition [9]. The mode shapes obtained from a modal analysis are
then used to decouple the set of differential equations into a set of linearly indepen-
dent differential equations of single degree of freedom oscillators. This is done by first
acknowledging that since any N-dimensional vector can be expressed as a combination
of N orthogonal N-dimensional vectors [10], the total displacement vector u(#) can be
presented as a linear combination of the mode shape vectors, ¢,,. The coefficients of
that combination vary with time and are the generalised displacements Y;(¢),i =1,...,n:

)} =p1 1 (0) + P2 Yo (1) + ... + P Yy (£) = [PUHY(2)} (3.12)

The modal mass, damping and stiffness matrices are obtained by inserting Equation
3.12 into 3.10 and pre-multiplying by the transpose of the mode shape matrix:

(@] T [M][®@]{Y} + [@]T[C][@]{Y} + [®] T [KI[®]{Y} = [@] T {P(1)}
(3.13)
[M*1{Y}+[C*[{ Y }+[K*[{ Y }={P*(1)}

Due to the orthogonality of the mode shape matrix with respect to both the mass and
stiffness matrices of the system all modal matrices (marked with *) are diagonal [10]. n
modal equations are then obtained on the form:

Py (1)

V() + 2 nwn Yo () + 02 Yy (2) = Ve
n

(3.14)

Here V,,(1), Y, (¢) and Y;,(¢) are modal (or generalised) acceleration, velocity and dis-
placement, {, and w,, are the damping ratio and natural circular frequency for the n'"
mode of vibration, while P;, () and M, are the modal force and mass for the same mode.
By knowing the external forces, often modelled as a Fourier series, the modal displace-
ments Y;(t) can be determined by solving Equation 3.14 as an ordinary second order
differential equation. Finally, the physical displacements can be calculated using rela-
tion 3.12. The particular solutions for the modal displacements highly depend on the
modal forces P*(¢) as the solutions take the same form. I.e., if the loading is sinusoidal
the particular solution will be sinusoidal. Therefore it is important to identify the shape
of the forcing, in this case due to pedestrians, and find a proper and easy way to model
it. This will be investigated further in Section 3.3.

Quite often with structures like footbridges there is one dominant mode, and in these
cases the problem can be simplified and solved fairly accurately by solving only one
single degree of freedom system. The procedure is then to use the modal equation for
that specific mode (see Equation 3.14) to obtain the modal responses, and inserting into
Equation 3.12, then only containing one term on the right side. This is commonly im-
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plemented when checking vibration in footbridges. To obtain reliable estimates of the
response using modal dynamics it is very important to determine the dynamic prop-
erties, such as mass, damping and stiffness accurately on modal form. The stiffness
and mass are easily calculated in finite element programs when correct material prop-
erties are given. The damping is more difficult to determine both because the amount
of damping in the structure is difficult to predict in advance and because damping is
mathematically difficult to describe correctly. There are several different damping mod-
els, and it’s not always obvious which one to use. Nonetheless, damping represents en-
ergy dissipation and is very beneficial because it reduces the response, especially to a
dynamic force causing resonance, so it is important to model it as accurate as possible
[11]. More about damping and how to model it in Section 3.4.

3.1.5 Implicit Direct Integration Methods

The second methods elaborated upon for solving the equation of motion for multiple
degree of freedom systems are implicit direct integration methods. These methods sub-
divide the time interval into ng, equal time increments At = T/ngep, and the inte-
gration scheme considered establishes an approximate solution by satisfying the dy-
namic equilibrium equation at the discrete times: t = At, 2At, 3At, ..., t; = BAL, thy =
(n+1)At, ..., T, as illustrated in Figure 3.6. It is assumed that displacements and ve-
locities are known at some time ¢ = 0, {D(¢ = 0)} = {Dy} and {D(z = 0)} = {D¢}, and that
we want to determine the response history from time ¢ = 0 to time ¢ = T. With implicit
direct integration methods the displacement at step n+1 is obtained indirectly (implic-
itly) from the equilibrium conditions at time #,+;. Thus equation solving is required at
every time step [12].

=
e
=
5
E
H Pl
'g_ \ Approximate
2
Time ¢
0 A 2Ar 3Af A T=n, A
A A

Figure 3.6: Implicit direct integration methods [12].

There are many variations of this method, depending on the assumptions used to in-
tegrate the accelerations in order to determine the velocities and displacements at the
end of each time step. For instance, one can assume constant average acceleration or
linear acceleration during one time step, as shown in Figure 3.7:
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(1) u(f) u(f)
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(a) Constant Acceleration.

(1) u(f)

(b) Linear Acceleration.

Figure 3.7: Shape of displacement-time and velocity-time functions based on assumed
variation of acceleration-time function within one time step [12].

The constant average and linear acceleration methods are both special cases of the
Newmark method, which is based on the following approximations:

Upt1 = Up + At[yiipe1 + Q= y) iyl (3.15)
. AP "
Up+1 = Up + Atly + T[zﬁun+1 + (1 -2p)iiy] (3.16)
Forwhich y=3,p=1 = Constant average acceleration method
y= %, = (—13 = Linear acceleration method

The parameters y and f govern the variation of acceleration over a time step, the sta-
bility of the integration scheme, the amount of numerical damping and the accuracy
of the method. By solving Equation 3.16 for ii,,+; and inserting into Equation 3.15 the
following expressions are obtained for the acceleration and velocity at time n+1:

1 1
e = W(unﬂ—un—Atlln)—(ﬁ—l)ﬁn 3.17)
unﬂzﬁ(unﬂ—u,,)—(%—l) u,,—m(%—l)un 3.18)
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The resulting Newmark approximations for acceleration and velocity can be substituted
into the equation of motion:

Miipt1 + Clipe1 + ktips1 = Py 3.19)

For which we obtain:

m Yc
Y ik
AN

+

Up+1=Ppi1+m

1 1 1 ..
Wun+ﬁun+ ﬁ_l Up

%—1)%

y y (3.20)
c Eun+(ﬁ—l)un+mﬁ

For an MDOF system, with {D} being the vector containing the degrees of freedom, the
Newmark relations become:

{D}p1 = D}y + At [yDpsr + A —7){D} ] 3.21)

. 1 .. ..
{D}n+1 = (D} + AL{D}, + EAIZ [28{Dp41 + (1 -2B){D} ] 3.22)

By solving the latter equation for {D},,+1, we obtain

.. 1 . 1 ..
Dins1 = BAE ((D}ns1 — (D}, — AHDY, ) — (ﬁ - 1) {D}y, (3.23)
. _ Y _ _ Z _ . _ l_ ..
{Dip1 = BAL ({D}n41 — {D}p) (ﬁ 1) {D}, — At (2[3 1) {D}y, 3.24)

These equations are substituted into the equation of motion 3.10 written at time step
n+ 1, and then solved for {D},,,1. The result is

eff _ pext 1 L a i_ i
(K™ 1{D} 41 = R+ Ml { ——— D}, + {D}n + 25 1]{D},

BAL? BAE
(3.25)
v B i AN I
+[C]{ﬁAt{D}n+ (beta 1){D}n+At(2ﬁ 1){D}n}
Where
(Keff] = M] + —1—[C] + [K] (3.26)

BAL2 BAL

Equation 3.26 can then be solved for {D},; at every time step. The Newmark family
of methods is unconditionally stable in linear problems, meaning the solution never
blows up, and is probably the most widely used implicit method [13].
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3.2 Pedestrian Induced Vibrations

While walking, humans exert a time-varying dynamic force that has components in
three directions; the vertical, horizontal-longitudinal and horizontal-lateral. These forces
can cause structures to vibrate and therefore single pedestrian walking has been stud-
ied for some time. The vertical component has been studied the most because it has
the largest amplitude, but with increasingly slender structures it has been established
that also the horizontal components can have a significant impact, which has caused
a slight shift in focus over the last decades. The effects of several pedestrians have also
been investigated and models to predict the response due to groups of people have
been proposed. Other types of human-induced forces like jumping and running may
also be important and literature on the matter does exist.

Bachmann and Ammann stated that the shape of the dynamic load-time curve due to a
single pedestrian depends on multiple factors such as pacing rate, forward speed, step-
ping particularities, the persons weight and sex, the type of footwear and the surface
conditions. These affect the amplitude, the position of the peaks, the duration of each
load cycle and the period between load cycles [14]. One of the most important vari-
ables in pedestrian loading is the frequency of the dynamic force, equal to the walking
frequency or pacing rate . It is given as number of paces per second. Matsumoto et
al. investigated a sample of 505 pedestrians, and concluded that the step frequency
followed a normal distribution with a mean of 1.99 pace/s and a standard deviation of
0.173 paces/s, see Figure 3.8 [15][16] .

Total: 505 persons

100 Mean: 1.99 pace/s

Standard deviation:
0.173 pace/s
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Figure 3.8: Normal distribution of pacing frequencies for normal walking [15].

Studies by Kerr and Bishop have produced matching results [17]. Bachmann et al. con-
firmed this and also provided frequency ranges for several other different human activ-
ities; 1.6 - 2.4 Hz for walking, 2.0 - 3.5 Hz for running, 1.8 - 3.4 Hz for jumping, 1.5 - 3.0
Hz for bouncing and 0.4 - 0.7 Hz for horizontal body swaying while staying stationary
[18].
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The forward speed or velocity (v;) of a pedestrian is related to the pacing rate through
the stride length (/5). As one would expect people walking with the same velocity can
have very different stride lengths and pacing rates. Through experiments average values
for pacing rate and forward speed were found and are given in Table 3.1 [14].

fs [Hz] | vs [m/s] | 15 [m]
Slow walk ~1.7 1.1 0.60
Normal walk ~2.0 1.5 0.75
Fast walk ~2.3 2.2 1.00
Slow running (jogging) ~2.5 3.3 1.30
Fast running (sprinting) | >3.2 5.5 1.75

Table 3.1: Correlation of pacing rate, forward speed and stride length for walking and
running according to Bachmann and Amman.
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Figure 3.9: Load-time function with different pacing rates [19].

Figure 3.9 shows typical load-time functions for different pacing rates and activities.
Notice that the shape of the curve for walking looks like a saddle (it is bimodal), which is
due to the inverted pendulum movement of the centre of gravity. The centre of gravity
will accelerate slightly upwards, which induces a second inertia reaction force. The
two peaks are at the "foot-flat" (FF) and the "heel-off" (HO) stage of the walking pace
[20] (the terms are explained in Figure 3.10).
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Figure 3.10: Load-time function with the human gait cycle [20].

3.2.1 Groups of Pedestrians

When several pedestrians are present on a bridge, a distinction is usually made between
"groups" and "crowds" - the difference being that in the former the people involved
are more or less synchronized, whereas in the latter there is no synchronization be-
tween the individuals. Several studies have been performed to figure out how crowd
behaviour can affect a structure. When considering slender and/or lightweight struc-
tures, it is important to not only consider the forces exerted by the pedestrians upon the
structure, but also the dynamic interaction between human and structure. Firstly, the
natural frequencies and damping of a bridge is altered when pedestrians are present,
and secondly the frequency of the pedestrian loading usually synchronizes with the
bridge’s natural frequency to some degree. Another synchronization aspect is the fact
that people tend to subconsciously synchronize with each other, not only the bridge’s
perceived motion. This is partly due to the fact that motion becomes restricted due to
the reduction of available space [21].

Figure 3.11: Millennium bridge in London experienced severe excitations during open-
ing day in 2000.
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Pedestrians tend to synchronize with the bridge’s motion when it becomes perceptible.
People are most sensitive to lateral motion, and are more prone to synchronize with this
motion. This subconscious behaviour is an attempt to maintain body balance. The at-
tempt to synchronize leads to a wider leg stance and a greater motion of the upper torso
leading to a greater exerted force. This amplifies the dynamic response, and the only
way to stop it is to reduce the number of pedestrians on the bridge, or to disrupt their
movement. The frequency of lateral movement is half that of the vertical, i.e. around 1
Hz. Pedestrian-structure synchronization is also known as "lock-in" [22]. This happens
after the structure has reached a certain threshold of acceleration [21]. Interestingly,
when it comes to vertical vibrations, the pedestrians inability to synchronize their pace
with the vertical movement causes the vibration to diminish, meaning they may act as
dampers on the system in the vertical direction [22].

After investigating the incidents at the Millenium Bridge (see Figure 3.11) and Solférino
bridge, where large groups of people caused severe lateral motion, it was concluded
that there exists a transition point where a small increase in the number of people on
the bridge leads to a large increase in the bridge’s lateral response. With the notion of
people acting as negative dampers (i.e. amplifiers), first introduced by Dallard et al.,
one can calculate a critical number of pedestrians which marks the transition between
stability and instability [21]. Unfortunately there is not much research available on this
topic and most of what is available antedates the incidents at the Solférino Bridge and
the Millenium Bridge. The latest documented critical number is resighted in a Technical
guide from the Technical Department of Transport, Roads and Bridges Engineering and
Road Safety (Sétra) in France. The formula for critical number of pedestrians based on
the Millenium bridge is stated as such:

= 8 (3.27)
K

In which f; is the first lateral natural frequency,  is the modal damping ratio, m, is the
generalised mass in the mode (modal mass) and K is a proportionality factor (in Ns/m)
that must be determined for the structure at hand [7]. The difficulties with such a for-
mula are obvious; not only does K need to be determined for all individual structures, it
is established by measuring accelerations under conditions of steady state crowd load-
ing - after the bridge has erected. Additionally, the formula can only be used as a rough
estimate to the maximum allowable number of people [23].

Perhaps the simplest way of modelling groups of people crossing a bridge is with Mat-
sumoto et al.’s model [16], although it is derived for bridges vibrating only in the vertical
direction. In this model the response from a single pedestrian is simply multiplied with
VN, where N is the number of pedestrians present on the footbridge at a given time.
Assuming that the pedestrians that enter the bridge per second follow a Poisson dis-
tribution and that they all walk with the same frequency but with random phases, the
model implies that all pedestrian movement is uncorrelated, rendering it useless for
any modelling of synchronized behaviour.
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3.2.2 Comfort Criteria

Slender footbridges tend to have low natural frequencies in the range of pedestrian
walking frequencies, meaning resonance is probable. It is the comfort of the pedes-
trians on the bridge that poses a problem, and generally not the structural integrity.
The loads from a group of pedestrians are simply not large enough to compromise the
structure. How much care the designer should pay to the pedestrians comfort needs to
be decided in advance. One way to determine this is to classify the bridge or structure
into traffic classes, based on how many people are expected to use the bridge. Criteria
for comfort are most commonly represented as a limit acceleration for the footbridge
[24]. Peak-acceleration is not necessarily representative for the dynamic response of the
bridge, so instead root mean square acceleration is preferable. The RMS-acceleration
is the square root of the mean value of the square acceleration[25]:

RMS — acceleration = (3.28)

Where ¥(#) is the acceleration time history, and #; and #, define the beginning and end
of the time interval considered. The choice of RMS-accelerations as the vibration per-
ception descriptor was based mainly on the fact that it was easy to measure with both
digital and analog methods. Suggested values for the limit acceleration are usually given
in standards and design codes, either as tabulated values or as a mathematical formula.
Because the perception of motion and tolerance is individual for each person, the lim-
its are usually within a certain bandwidth of values. The appearance of the bridge itself
is also important to the pedestrians perception of vibration. If a bridge looks slender
and rickety, pedestrians will be mentally prepared for some vibration, which might not
be the case for a bridge that appears sturdy. This is demonstrated in the figure below,
where the pedestrians perception of vibration of the sturdy Wachtelsteg Footbridge in
Pforzheim, Germany was compared to the lighter-looking Kochenhofsteg Footbridge in
Stuttgart, also Germany.
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Figure 3.12: Perception of vibration for a slender-looking bridge (left) versus a sturdy-
looking bridge (right).

The two bridges have very similar dynamic properties, but still the percentage of pedes-
trians feeling disturbed by the vibrations is 4 times as great on the more sturdy looking
bridge. This supports the theory that several aspects, given below, influence the assess-
ment of footbridge vibration and whether or not they are characterized as uncomfort-
able or not [24]:

Number of people walking on bridge

¢ Frequency of use

Height above ground

Position of human body (sitting, standing, walking)

¢ Harmonic or transient excitation characteristics (vibration frequency)
¢ Exposure time

¢ Transparency of the deck pavement and the railing

* Expectancy of vibration due to appearance
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3.2.3 Dynamic Response due to Pedestrian Loading

It can be useful to plot the acceleration response due to a pedestrian loading against
time to determine whether or not resonance has occurred. The two possible response
scenarios are depicted in Figure 3.13. The resonant response (Figure 3.13(a)) occurs
when the frequency of the loading, or one of the higher harmonics of the fundamental
frequency, is similar to the natural frequency of the structure (more on higher harmon-
icsin section 3.3.1). In this scenario the acceleration of the structure gradually builds up
until it reaches a steady state level. In the theoretical case where no damping is present,
the build-up would continue infinitely. At steady state the structure is resonating with
the excitation, hence the term resonance. Walking activities may induce resonance to
some degree, as long as the walking frequency is within the range of natural frequencies
of the structure. If the structures natural frequencies don’'t match the walking frequen-
cies, the response in Figure 3.13(b) is typical. This is known as a transient response, in
which case the structure responds to the forcing as if it is a series of impulses, with the
vibration caused by one footstep dying away before the next footstep. A combination
of the two responses is most likely [26].

il
111

(a) Resonant response.

Acceleration

Acceleration

(b) Transient response.

Figure 3.13: Response envelopes to dynamic loading [26].

3.3 Mathematical Modelling of Pedestrian Loading

Establishing an analytical force model due to human movement is a complicated task.
There are many variables involved, and even a person walking twice at the same speed
will have variations from time to time. For example, increasing walking velocity will lead
to increasing step length and peak force magnitude [27]. Additionally, when increasing
the walking speed, the variability in vertical and lateral successive steps increases [28].
Both the number of pedestrians and their degree of synchronisation will influence the
forcing, making it complicated to generalise. Lastly, research indicates that the forces



26 CHAPTER 3. THEORY

exerted by pedestrians are dependent on whether or not the motion of the structure
is perceptible [11]. All these factors add up and cause great uncertainty and therefore
instead of one universal load model, several different ones exist.

There are also differences between walking and running which must be accounted for.
While walking there is a period of time when both feet are in contact with the ground,
whereas with running there is a period of time when both feet are off the ground, lead-
ing to zero force recorded (see Figure 3.14) [11] . However, it is worth mentioning that
the loading due to a pedestrian running is often neglected, simply because the time
it takes a person to run over the structure at study is too short for the resonance phe-
nomenon to settle, and also so short that it only annoys any other pedestrians for a
short time. In special cases, such as a marathon run, more attention should be paid to
the loads induced by running masses [7].

successive minning footsteps

Figure 3.14: Patterns of walking and running (Galbraith and Barton [11]).

The two ways to apply dynamic forces to a numerical model are with either time- or
frequency domain models. The former is by far the most widely used, and will be the
chosen model for this thesis. Furthermore, for dynamic forces due to pedestrian load-
ing the time-domain models are divided into probabilistic and deterministic models.
Both models are based on the assumption that both feet produce the same force and
that the force is periodic. Only deterministic models will be investigated further and
used in the different analyses in this thesis.

The most common load models, and the ones that have been used in the numerical
model of the footbridge, are based on a Fourier series with a varying number of terms
included. A Fourier series can represent any force as long as it is periodic, and by in-
cluding a finite number of terms an approximation of the periodic force is obtained.
Such series are on the form [18]:
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n
Fy(t) = Gag+ Y., Gaysin (2mi f, £ — ;) (3.29)
i=1

G = Persons weight [N]

o; = Fourier’s coefficient of the i th harmonic, i.e. dynamic load factor (DLF)
fp = Pacingrate [Hz]
¢; = Phase shift of the i”” harmonic

i = Order number of the harmonic
n = Total number of contributing harmonics

Fourier series are used for all three force components and the Fourier’s coefficients (dy-
namic load factors) are what separate the force components and different load models
from each other. The DLFs are determined empirically, and are dependent on both
the walking frequency and activity. Table 3.2 gives an overview of DLFs established by
different authors. a( in Equation 3.29 represents the static component due to gravity
and is always equal to 1 for vertical loads and 0 for horizontal loads. It is therefore not
mentioned in the table.
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Author(s)

DLFs for considered
harmonics

Comment

Type of activity and its
direction

Blanchard et al. [29]
Bachmann

& Ammann [14]

Schulze (after Bachmann

& Ammann [14]

Rainer et al. [30]

Bachmann et al. [18]

Kerr [31]

Young [32]

Bachmann et al. [18]

Yao et al. [33]

ay =0.257

a;=04-0.5
az2=a3=0.1

a1 =037, a2 =0.10, a3 =
0.12
a4 =0.04, a5 =0.08

a1 =0.039, a2 =0.01, a3 =
0.043
ay=0.04, a5 =0.08

ay1/2 =0.037, a1 =0.204
a3/p =0.026, ap = 0.083
as5/2 =0.024

ay, a2, a3z and ay

ay = 0.4/05, ax = a3z =
0.1/-

a1 =a3=0.1

ay2 =01, a1 =02, ap =
0.1
a1=1.6,a2=0.7,a3=0.2

a1, a2 =0.07, a3 = 0.06

a1 =0.37(f - 0.95)<0.5
az =0.054 +0.0044 f
a3 =0.026 +0.0050 f
a4 =0.010 +0.0051 f

a1=1.8/1.7, ap = 1.3/1.1
a3=0.7/0.5

a1=1.9/1.8, ap =1.6/1.3
az=1.1/1.8

a; = 0.17/0.38, ap =
0.10/0.12
a3 =0.04/0.02

a1 =0.5

a1 =0.7, a2 =0.25

DLF is lesser for frequen-
cies from 4 to 5 Hz

20Hz-24Hz
At approximately 2.0 Hz

At2.0Hz

At2.0Hz

At2.0Hz

DLFs are frequency de-
pendent (Figure 10)

At2.0/2.4Hz

At2.0Hz
At2.0Hz

At2.0-3.0Hz

ay is frequency depen-
dent (figure 11)

These are mean values
for DLFs

Normal jump at 2.0/3.0
Hz

High jump at 2.0/3.0 Hz

At1.6/2.4Hz

At 0.6 Hz

Free bouncing on a flexi-
ble platform with natural
frequency of 2.0 Hz

Walking - vertical
Walking - vertical
Walking - vertical

Walking - vertical

Walking - lateral

Walking - longitudinal

Walking, running, jump-
ing - vertical

Walking - vertical

Walking - lateral
Walking - longitudinal

Running - vertical

Walking - vertical

Walking - vertical

Jumping - vertical

Jumping - vertical

Bouncing - vertical

Body swaying while

standing - lateral

Bouncing - vertical

Table 3.2: DLFs for single person force models by different authors.
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3.3.1 Higher Harmonics

Pedestrians walking at a frequency, f,, will cause vertical and longitudinal forces con-
sisting of that fundamental frequency and also n™ harmonics of that frequency, mean-
ing terms with frequency 2f), 3 f,, etc. The load models take this into account by in-
cluding several terms in the Fourier series:

F = asin(2nf,t) + apsin (2n2f, 1) + azsin (213 f, 1) + ... (3.30)

The consequence of this is that a pedestrian can cause resonance at a natural frequency
not only by walking at a pacing rate equal to that resonance frequency, but also if one
of the n harmonics of the pacing rate is equal to the resonance frequency. Modes with
natural frequencies outside the range of walking frequencies (1.6 - 2.4 Hz) are thus not
automatically safe from excitation. This is why many design guidelines suggest that
calculation of the vertical accelerations may be omitted only if the natural frequencies
are higher than 5 Hz. More about this in Chapter 4.

In contrast to the vertical and longitudinal, the fundamental frequency of the lateral
forces due to a pedestrian walking is equal to half the pacing rate due to the left and right
foot causing forces in opposite directions [11]. A pedestrian walking at a frequency, fp,
will thus cause lateral forces on the form:

f;

F = a;sin (Zrc% t|+ aysin (ZnZ?p t) + a3sin (2713% t) +... (3.31)

It is important to be aware of this difference in harmonics between vertical and lateral
force components when trying to cause resonance in a structure.

3.4 Damping

Damping of vibrating structures happens through energy dissipation. All structures
dissipate some amount of energy and therefore have some damping, but the amount
is highly dependent on the specific structure, the materials used, etc. The capability
to dissipate energy is very beneficial because it reduces the structural response due to
dynamic forcing, especially near resonance. Since the resonance response most often
governs the serviceability of a footbridge it is very important to model damping as ac-
curately as possible [11].

The total damping is very structure-specific due to the fact that several dissipation
mechanisms can contribute, all of which are very hard to assess individually. They are
also hard to model mathematically and therefore several damping models exist. The
viscous damping model is most widely used due to its simplicity, despite the fact that
it does not describe the real behaviour of the structure [34]. The most common way
to express this damping model is in terms of the viscous damping ratio {,, defined for
each mode n. The best way to get an idea of how much damping there will be is through
testing, where the investigated mode is excited near resonance [35].
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3.4.1 Pedestrians as Dampers

Pedestrians are interesting in regards to damping, because they can act as both dampers
and negative dampers (amplifiers). A pedestrian in itself has certain damping proper-
ties that can be divided into two categories. Firstly, energy is dissipated within the body
itself, through joints, limbs, muscles and tendons. Secondly energy is dissipated me-
chanically due to human action. It has been argued that for small accelerations in a
system with a pedestrian, the acceleration of the human mass centre will be somewhat
smaller [36]. This implies that the human body actively counteracts the inertia forces
from the structure, meaning it acts as an active damper system [20]. Zheng & Brown-
john [37] observed that a person standing on a vibrating plank contained a damping
ratio of 39%, which is significant. The damping effect from several pedestrians can be-
come quite substantial, depending on the mass ratio between pedestrian and structure
[20].

Alternatively, pedestrians may act as negative dampers. If the external force from the
pedestrian is in phase with the inertia force from the structure, it may be interpreted
as added structural mass, which is the case when the pedestrians synchronize with the
movements in the bridge. This tends to happen for larger groups of people. Newland
[36] concludes that bridge vibration becomes unstable under pedestrian loading when
the mass of people m per unit length is too great a proportion of the bridge mass M per
unit length. A permissible ratio m/M depends on the amount of damping present in
the modes that are likely to be excited by the pacing rate of pedestrians.

3.4.2 Damping in Abaqus

[38] Abaqus has four categories of damping sources; material and element damping,
global damping, modal damping and damping associated with time integration, known
as numerical integration. These damping sources are optional to include and can be
combined. All these types of damping can be applied in a combination of two forms:

¢ Velocity proportional viscous damping

» Displacement proportional structural damping

For mode-based dynamics composite damping is also an option. Viscous damping is
implemented using the Rayleigh damping factors @ and . The damping matrix (either
element matrix or global matrix based on the category of damping) is then given as a
linear combination of the mass and stiffness matrices:

[c]l=a[m]+B[k] (3.32)

Structural damping represents damping as complex stiffness. By defining the structural
damping factor s you get the structural damping matrix:
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[ks]=s[k] (3.33)

When in the time domain, the solution can not include imaginary values, and therefore
structural damping in the time-domain is applied as an equivalent viscous damping.

Material and element damping:

Damping can be specified as a part of the material model or as elements such as dash-
pots and springs. All have the option of both viscous and structural damping coeffi-
cients. As indicated by Equation 3.32 you specify an a-factor for mass proportional
damping and a -factor for stiffness proportional damping.

For a given mode n the fraction of critical damping {, is given as

a Po,
=—+— 3.34
Cn 20, " 2 (3.34)

From Equation 3.34 it is apparent that a« damps the lower frequencies and S the higher
ones. Material damping gives damping proportional to the mass and stiffness matrices
of an element [39], so the frequencies in Equation 3.34 are those of each individual el-
ement, not the natural frequencies of the entire structure. Only if the same coefficients
are used for all relevant materials in the Abaqus model can the coefficients be factored
out of the global matrices and then give the relation stated in Equation 3.34 for the
natural frequencies of the entire structure as well. If different Rayleigh coefficients are
implemented in different materials the damping ratio for a given mode will depend on
the relative influence of the different materials when deforming into the corresponding
mode shape. The consequence being that the damping ratio of each structural mode
can not be calculated using Equation 3.34

Global damping and modal damping:

Both viscous Rayleigh damping and structural damping can be applied to the global
matrices, thus giving global damping. Unfortunately, this can only be implemented
in linear perturbation analyses, all of which do not operate in the time domain. The
same is true for modal damping, in which viscous and structural damping factors can
be applied to specific modes or frequency ranges.

Damping associated with time integration:

The latter damping category, algorithmic/numerical damping (also numerical dissipa-
tion), is merely amplitude decay which is generally associated with time integration
schemes in which the time increment size is finite. The amount of numerical damping
is highly dependent on the integration scheme, the time step and the natural frequen-
cies of the structure. It is implemented in Abaqus through the a-method proposed by
Hilber, Hughes and Taylor. This method can be regarded as a generalization of the New-
mark methods elaborated upon on page 17. It is based on the Newmark difference re-
lations [40], Equation 3.23 and 3.24, and the modified equation of motion becomes:
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IMI{D} 41 + (1 + @) [CI{D} 41 — a[CH{D}, + (1 + @) [KI{D} 41 — a[KI{D},, = {RE"} (3.35)

Where {R&"} is {R*"} evaluated at time (1 + @) tp+1 — @ty = ty+1 + @At If @ =0, the equa-
tion reduces to the equation used in Newmark methods. Algorithmic damping is intro-
duced by using a < 0 [40].

If the direct time integrator operator is only conditionally stable, it can lead to imprac-
tically small time steps, and thus increase CPU-time drastically. Unconditional stability
(meaning that the solution never blows up) is therefore of great value. To introduce nu-
merical damping yet retain unconditional stability, it is recommended that —% sa=<0,
with y = %(1 —2a)and B = i(l —a)?. Although both the Newmark method and the a-
method damp out higher frequency modes, the a-method introduces less damping in
the lower modes, which tends to increase the accuracy. When «a is chosen to be -3,
it provides the maximum numerical damping, which gives a damping ratio at about
6% when the time increment is 40% of the time period of oscillation of the mode be-
ing studied [13]. The default value for a in Abaqus is -0.05 for transient fidelity, which
is meant to give "slight numerical damping" [13]. Typical dynamic applications fall
into three categories in which transient fidelity is one of them. Transient fidelity ap-
plications, such as an analysis of satellite systems, require minimal energy dissipation.
In these applications small time increments are taken to accurately resolve the vibra-
tional response of the structure, and numerical energy dissipation is kept at a mini-
mum. These stringent requirements tend to degrade convergence behavior for simula-
tions involving contact or nonlinearities [13].



4 Design Guidelines

This chapter presents methods for calculating limit accelerations according to four dif-
ferent guidelines; the first one is Eurocode 5-2, which proposes methods for calcula-
tion, but without presenting a maximum limit (although a limit is stated in Eurocode 0,
presented in the following section). The second and third are British Standards, and the
fourth is a guideline written by the Norwegian Public Roads Administration. In addition
to this the sections concerning limit accelerations in ISO-10137 and Sétra are reviewed.
Hand calculations based on the guidelines are presented in Appendix D, which are used
to compare the results presented in Chapter 6.

4.1 Comfort Criteria in Design Guidelines and Literature

ISO 2631-1, Mechanical Vibration and Shock - Evaluation of Human Exposure to Whole-
Body Vibrations has included the following values for likely reactions to various magni-
tudes of acceleration in Part 1, Appendix C[41]:

Less than 0.315 m/s? not uncomfortable
0.315m/s? to 0.63 m/s?:  alittle uncomfortable
0.5m/s? to 1 m/s?: fairly uncomfortable

0.8 m/s? to 1.6 m/s: uncomfortable

1.25 m/s? to 2.5 m/s?: very uncomfortable
Greater than 2 m/s?: extremely uncomfortable

Obviously such classifications are subjective, which is why limits like that often are
given as ranges of accelerations. The same vibrations may be perceived differently from
one individual to the next, and even if the perception is the same they might have dif-
ferent thresholds for what they find comfortable. In addition to this, there is a differ-
ence between the actual vibrations of the structure and the vibrations perceived by the
pedestrian. For instance, the duration for which the pedestrian is exposed to vibration
affects what the pedestrian feels [7].

33
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Figure 4.1: Vertical critical accelerations as a function of natural frequency according to
various guidelines.

Figure 4.1 shows the vertical limit accelerations given in four of the guidelines men-
tioned below. Although the methods diverge at the lower and higher frequencies, there
seems to be consensus at walking frequency (around 2 Hz), where the limit accerela-
tions are in the range of 0.5 — 0.7 m/s?.

4.1.1 Eurocode

Eurocode states that control of peak accelerations needs to be performed if the natural
frequency of the bridge is below 5 Hz for vertical vibrations or less than 2.5 Hz for lateral
and torsional vibrations, which may be the case for slender footbridges. According to
Eurocode, the maximum allowed accelerations in vertical and horizontal direction are
as presented in Table 4.1 [42]:

Direction of vibrations Maximum accelerations [m/s?]
Vertical 0.7
Horizontal (normal use) 0.2
Horizontal (crowd conditions) 0.4

Table 4.1: Limit accelerations according to Eurocode 0, Annex A2.4.3.2.

A method for calculating theoretical accelerations can be found in the Eurocode 5-2,
Annex B - Vibrations caused by pedestrians [43]:

For one person crossing the bridge, the vertical acceleration a,e;;,1 inm/ s? of the bridge
should be taken as:
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200
W for fyerr<2,5Hz

Ayert,1 = 100 4.1)
W for2,5< fyersr <5 Hz

Ahor,1 = M for0.5Hz < fj,, <2.5Hz (4.2)

where:

M is the total mass of the bridge in kg, given M = m.Z;

£ is the span of the bridge;

m is the mass per unit length (self-weight) of the bridge in kg/m;

¢ is the damping ratio;

fvert is the fundamental natural frequency for vertical deformation of the bridge.
fror  is the fundamental natural frequency for horisontal deformation of the bridge.

For several persons crossing the bridge, the vertical and horizontal accelerations, ayers,n
and ay,,, , in m/s? of the bridge should be calculated as:

Ayert,n = 0,23Aperr1 Nkyers 4.3)
Anor,n = 0,18ap0r1 Nkpor 4.4
where:
n is the number of pedestrians;
kyer:/knor are coefficients dependent on the bridge’s natural frequency, according
to Figure 4.2;
Apert is the vertical acceleration for one person crossing the bridge determined

The number of pedestrians, n, should be taken as:

n=13 for a distinct group of pedestrians;
n=0.6A fora continuous stream of pedestrians

where A is the area of the bridge deck in m?.

If running persons are taken into account, the vertical acceleration a,e,;,; in m/ s% of
the bridge caused by one single person running over the bridge should be taken as:

600
auert,l = W fOr 25Hz< fyerl‘ < 3,5 Hz (45)
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Figure 4.2: Relationship between the fundamental natural frequencies and the coelffi-
cients kyert and ky o, according to EC 5-2.

4.1.2 British Annex to Eurocode

[44] In the British annex to Eurocode 1, referred to as BS-NA in the following chap-
ters, there are proposed methods for calculating the vertical acceleration in the deck
of bridge’s for single pedestrians and groups of pedestrians. The method is based on
modelling the pedestrian loading as a Fourier series and applying the load to the rele-
vant areas of the deck with the direction of the force varied to match the direction of the
vertical displacements of the mode for which responses are being calculated. However,
any calculated maximum vertical acceleration should be less than the design accelera-
tion limit given by:

limir = 1.0k1 kaksks m/s? (4.6)

and 0.5 m/s? < aj; iy < 2,0 m/s?
Where:

k1, ky, ks are the response modifiers taken from Table 4.2, 4.3 and 4.4:

k, = site usage factor

ko = route redundancy factor

ks = height of structure factor

k4 is an exposure factor which is to be taken as 1,0 unless determined otherwise for the

individual project.
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Table NA.9
Bridge function k
Primary route for hospitals or other high sensitivity routes 0,6
Primary route for school 0,8
Primary routes for sports stadia or other high usage routes 0,8
Major urban centres 1,0
Suburban crossings 1,3
Rural environments 1,6

Table 4.2: Recommended values for the site usage factor k.

Table NA.10
Route redundancy ko
Sole means of access 0,7
Primary route 1,0
Alternative routes readily available 1,3

Table 4.3: Recommended values for the route redundancy factor k.

Table NA.11
Bridge height ks
Greater than 8 m 0,7
4mto8m 1,0
Less than 4 m 1,1

Table 4.4: Recommended values for the structure height factor ks.

Values of k;, k, and k3 other than those given in tables 4.2 to 4.4 may be determined
for the individual project using Figure NA.10 (not included) as guide [44]. ks may be
assigned a value of between 0,8 and 1,2 to reflect other conditions that may affect the
users’ perception towards vibration. These may include consideration of parapet de-
sign (such as height, solidity or opacity), quality of the walking surface (such as solidity
and opacity) and provision of other comfort-enhancing features. The value to be taken
should be determined for the individual project.

The avoidance of unstable lateral responses due to crowd loading

Structures should be designed to avoid unintended lateral responses. If there are no
significant lateral modes with frequencies below 1.5 Hz it may be assumed that unsta-
ble lateral responses will not occur. For all other situations, it should be demonstrated
that unstable lateral responses due to crowd loading will not occur, using the following
method:

For all deck modes of vibration having a significant lateral horizontal component and
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a frequency below 1,5 Hz, compare the pedestrian mass damping parameter, D, and

the mode frequency with the stability boundary defined in Figure 4.3. If the pedes-
sponses may be expected. Values above the line should be stable. The pedestrian mass

trian mass damping parameter falls below the indicated boundary divergent lateral re-
damping parameter D is given by:

4.7)

mbridge(
Mpedestrian

D=

in which

is the mass per unit length of the bridge

Mpridge

is the mass per unit length of pedestrians for the relevant crowd density

obtained from NA.

Mpedestrian

44.2 assuming that each pedestrian weighs 70 kg

2.

0/(2n)

logarithmic decrement of decay of vibration between successive peaks

is the structural damping when expressed as a damping ratio, {
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Figure 4.3
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4.1.3 BS 5400

[45] BS 5400 is a British Standard code of practice for the design and construction of
steel, concrete and composite bridges. Part 2 - Appendix B - Vibration serviceability
requirements for foot and cycle track bridges states that the limit acceleration should
be taken as

alim =0.5v/f, 4.8)

If the natural frequency of the bridge in vertical direction is less than 5 Hz. For single
span, or two-or-three span continuous, symmetric superstructures, of constant cross
section and supported on bearings that may be idealised as simple supports, a simpli-
fied method is proposed. The maximum vertical acceleration in m/s? should then be
taken as:

a=4nflysky (4.9)

Where

fv is the fundamental natural frequency (in Hz)
ys isthe static deflection (in m)

k  isthe configuration factor

v is the dynamic response factor

For values of f, greater than 4 Hz the calculated maximum acceleration may be reduced
by an amount varying linearly from zero reduction at 4 Hz to 70% reduction at 5 Hz.

4.1.4 Handbook N400

[46] The Norwegian Public Roads Administration has issued the Handbook N400 for
bridge design, which is the most commonly used guideline for bridges in Norway. It
states that footbridges should be designed so that the reference acceleration will satisfy
the following:

a, <0.25 27782 (4.10)
The reference acceleration is calculated as such:
a, =47 fZWKyr (4.11)

In which
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is the bridge’s first natural frequency [Hz] for vertical vibrations

is the static deflection for a concentrated force of 700 N

is a factor dependent on number of spans and span to width ratio

is a dynamic factor dependent on the span length and damping ratio, ¢,
and should be taken from Figure 4.4

is a correctional factor for the reference acceleration; a function of f;, [Hz]:

S x=T

-
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Figure 4.4: Dynamic factor, v, as a function of span length and damping ratio, (.

The handbook states that a control must be performed if the fundamental horizontal
frequency of the bridge is in the range 0.5 Hz < f},, < 1.3 Hz. The control is performed
by calculating a critical number of pedestrians on the bridge, which is compared to the
expected number of pedestrians on the bridge:

_ 81l fhor M

Ny, T

(4.13)

In which

N;  isthe amount of pedestrians that will cause unacceptable horizontal vibrations
¢ is the damping ratio

fror is the fundamental horizontal frequency of the bridge

M is the modal mass of bridge

k is a factor of 300 Ns/m
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4.1.5 1S010137

[47] ISO 10137 is a guideline for serviceability of buildings and walkways. In annex C.2.1
- Walkways the standard proposes the following scenarios to consider the dynamic re-
sponse of a footbridge:

* One person walking across the walkway and another (the receiver) standing at
mid-span

¢ An average pedestrian flow based on a daily occurrence rate, e.g. a group size of
8to 15 people, depending on the length and width of the walkway

* The presence of streams of pedestrians (significantly more than 15 persons)

¢ QOccasional festive or choreographic events (when relevant)

Further, it states that the level of vibrations in the vertical direction for walkways over
roads or waterways should not exceed those obtained by a multiplying factor of 60 to
the relevant basecurve (Figure 4.5), except where one or more persons standing still
on the walkway have to be accounted for (such as in the first scenario), in which case
a multiplying factor of 30 should be applicable. With regards to horizontal vibrations,
they should not exceed that of 60 times the base curve.

Finally, an average time interval of 1 s is recommended for calculating the RMS-acceleration.
This proposed time interval is also stated in ISO-2631-1 [41].

0,05

0,01

0,005

0,001
1 4 5 8 10 50 80100 f

Figure 4.5: Building vibration base curve for acceleration (foot-to-head vibration direc-
tion). RMS-Acceleration along y-axis, frequency along the x-axis.
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4.1.6 Sétra

[7] This technical guide from 2006 with title - Assessment of vibrational behaviour of
footbridges under pedestrian loading suggests that footbridge vibrations should be as-
sessed by going through four stages:

Stage 1: Determination of footbridge class

The owner of the bridge needs to determine the class of the bridge based on the level
of traffic expected. The classes range from Class I, high pedestrian activity with dense
crowds expected, to class IV, seldom used footbridges connecting sparsely populated
areas.

Stage 2: Choice of comfort level by the Owner

A comfort level has to be chosen, based on the perceptibility of the accelerations un-
dergone by the structure:

Maximum comfort: The accelerations are practically imperceptible. This comfort level
should be chosen in cases where particularly sensitive users such as schoolchildren, el-
derly or disabled people are expected.

Mean/Average comfort: The accelerations are merely perceptible

Minimum comfort: Under loading configurations that seldom occur, accelerations un-
dergone by the structure are perceived by the users, but do not become intolerable.

Acceleration ranges

Range 1
Range 2

Range 3
Range 4

@
Acceleration ranges 0 0.1 0.15 0.3 0.8
Range 1 Mak

Range 2

Min

Range 3

Range 4

(b)

Figure 4.6: Acceleration ranges (m/s®) for vertical (a) and horizontal (b) vibrations.

The obtained comfort level is assessed by calculating the accelerations undergone by
the structure using different dynamic load cases. Given that the comfort level becomes
asubjective measure, Sétra suggests looking at ranges of accelerations instead of thresh-
olds. In Figure 4.6 four suggested ranges for both vertical (a) and horizontal vibrations
(b) are shown. The first three ranges correspond to the respective comfort levels de-
scribed previously while the fourth range corresponds to uncomfortable accelerations
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that are not acceptable. To avoid "lock-in" effect, which causes severe lateral motions,
the horizontal acceleration limit is set to 0.10 m/s?, indicated by the orange line/area.

Stage 3: Determination of frequencies and of the need to perform dynamic load case
calculations or not

For Class I to III bridges the natural vibration frequencies of the structure have to be
decided. In cases where the risk of resonance is considered negligible the comfort level
can then automatically be considered as sufficient. Class IV structures automatically
satisfy the criteria. The vibration frequencies should be decided for all 3 directions
(vertical, lateral horizontal and longitudinal horizontal) and for 2 mass assumptions:
empty footbridge and loaded footbridge with one 700 N pedestrian per square meter.
By finding the ranges where the frequencies are situated the risk of resonance can be
assessed.

There are four different frequency ranges in both vertical and horizontal directions. The
ranges have a decreasing risk of resonance, with Range 1 being maximum risk of reso-
nance and range 4 negligible risk of resonance. In Figure 4.7 the frequency ranges are
shown for vertical and longitudinal vibrations in (a) and for lateral vibrations in (b).

Frequency] 0 1 1.7 2.1 2.6 5
Range 1
Range 2

Range 3 ' ‘

Range 4

Frequency

Range 1
Range 2

Range 3

Range 4 |

(b)

Figure 4.7: Frequency ranges (Hz) for vertical and longitudinal vibrations (a) and for
lateral vibrations (b).

Based on the footbridge class and the ranges where the natural frequencies are situated
calculations for all, or part of, 3 load cases have to be carried out:

Case 1: Sparse and dense crowd
Case 2: Very dense crowd
Case 3: Complement for an evenly distributed crowds (2”9 harmonic effect)

Figure 4.8 defines the necessary calculations to be performed based on class and fre-
quency range.
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Load cases to select for acceleration checks

Natural frequency range

Traffic | Class

1 2 3
Sparse | III Nil Nil
Casel
Dense | II Case 1 Case 3
Very |1 Case 2 Case 2 Case 3
dense

Figure 4.8: Load cases based on class and frequency range.

Stage 4: If necessary: Calculation with dynamic load cases

If the conclusion after the three previous stages is that calculations are needed the load
case from stage 3 has to be used to calculate the response of the structure. The response
should be checked against both the comfort level criteria from stage 2 and traditional
Service Limit State and Ultimate Limit State checks.

Based on the load case and the class, Setra defines the load per m? in all three direc-
tions. The loads are to be applied to the whole deck of the footbridge, and the sign of
the vibration amplitude must, at any point, be selected to produce the maximum ef-
fect. This implies that the direction of application of the load must be the same as the
direction of the mode shape and must be inverted every time the mode shape direc-
tion changes. The forcing depends on the density of the crowd which depends on the
load case, the walking frequency, the area of the deck, the damping ratio ¢, and a minus
factor ¥ between 0 and 1, taking into account the structure’s natural frequency and
the fact that risk of resonance becomes less likely when getting further away from the
walking frequency.

Comment on Case 3: It takes into account the effect of the 2"® harmonic of the crowd,
meaning the stresses caused by pedestrian walking, located at double the frequency of the
1% harmonic.

Stage 5: Modification of the project or of the footbridge If the calculations in stage
4 do not satisfy either the comfort level or the SLS or ULS checks, the project has to
be re-started if it’s a new footbridge or steps have to be taken if it concerns an already
existing footbridge. Steps that can be taken are for example adding mass to reduce the
accelerations or adding dampers.
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4.2 Damping According to Guidelines

Table 4.5 presents the damping ratio for steel and timber given in different guidelines.
Note that the damping ratio specified in Eurocode 5 (National Annex, part 7.3.1) is 1.0%
if no mechanical joints are present and 1.5% if mechanical joints are present [43]. Sétra
mentions that it is particularly important not to overestimate the damping, in order to
avoid under-dimensioning. JRC (Joint Research Centre) published a report during the
development of Eurocode 3 in 2009 [48] with the damping ratios shown in the second
column. While CEB information bulletin No. 209 presented critical damping ratios for
timber and steel, which are also restated here. CEB (Euro-International Committee for
Concrete) has since merged with FIP (International Federation for Prestressing) to form
FIB (The International Federation for Structural Concrete).

JRC CEB/FIB EC ISO Sétra
Material Min. { | Avg.( Min. ¢ Avg. ( 4 14 4
Steel 0.2% 0.4% 0.2% 0.4% 0.5% 0.5% 0.4%
Timber 1.0% 1.5% 1.5% 3.0% 1.0% / | - 1%
1.5%

Table 4.5: Damping ratio for different materials for serviceability conditions according
to Joint Research Centre [48], the International Federation for Structural Concrete, Euro-
pean Commission, ISO 10137 [47], Eurocode 8, part 2 [49] and Sétra [7].
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5 Numerical Model in Abaqus

The goal of this project was to find a consistent method to determine the dynamic re-
sponse of slender foobridges due to pedestrian loading. To do this, a basis model was
necessary. The basis model is based on a planned network arch bridge that will be built
in Orkanger. The dimensions of the model are based on the tentative dimensions of
this bridge. While the outer dimensions of the bridge are fairly certain the dimensions
of the different profiles are not final. The dimensions used in further analyses are given
in Table 5.1. This chapter describes the basis model that can be used with Abaqus to
run several analyses with different pedestrian load configurations.

5.1 Basis Model

Figure 5.1: Default bridge generated by Python script.

A numerical model that can be used to perform simulations within a reasonable time
interval and still exhibit good accuracy was desired. Ph.D. Candidate Anna Ostrychar-
czyk has written a Python script compatible with Abaqus 6.13 that requests 20 input
variables through a parameter selector (See Original Input Variables in Table 5.2), and
generates a bridge in Abaqus with the wanted dimensions. An example of such a bridge
can be seen in Figure 5.1. The default values in Table 5.2 are based on the tentative
dimensions of the bridge stated in Table 5.1.

47



48 CHAPTER 5. NUMERICAL MODEL IN ABAQUS

Length 60.0 m
Height 9.0m
Width 5.0m
Number of hangers 14
Hanger angle 359
Deck thickness 500 mm
Asphalt thickness 70 mm
Arc profile (rectangular) 800 mm x 500 mm
Transverse beam profile (hollow circular) | r =300 mm, t =50 mm
Hangers (circular) r=20 mm
Tie profile r=100 mm

Table 5.1: Tentative dimensions of bridge.

A preliminary parameter study was conducted to establish a basis model from Anna’s
original script. During this study different mesh sizes and time increments were tried
out to optimize accuracy vs. total run time. The study resulted in the default values for
mesh sizes and time increment given in Table 5.2. Quite a lot of effort also went into
determining which damping model to use to get a fair amount of damping represented
in the numerical model. More about this in Section 5.3. Firstly, an overview of the
different aspects of the basis model, created by running the script with default values.

Parts, Properties and Meshing

The deck and pavements are modelled as shells while the crossbeams, hangers, ties
and arches are all wires. The seed sizes used to mesh the different parts depend on the
‘'mesh size’ input variables shown in Table 5.2. Four-noded rectangular shell elements
with reduced integration (S4R) are assigned to both the deck and the pavements while
quadratic 3D beam elements (B32) are assigned to hangers, and linear 3D beam ele-
ments (B31) to the crossbeams, arches and ties. The crossbeams, hangers and ties are
made out of elastic steel, while the arches, pavements and deck are timber. They too
are modelled elastically, but with different Young’s and shear moduli in different prin-
cipal directions due to the anisotropic properties of wood. An extra deck with asphalt
properties is also created the same way as the original deck. All material properties are
shown in Table 5.3 and 5.4. To introduce damping in the model, material damping was
implemented as viscous damping using Rayleigh coefficients. These coefficients are
only given in Table 5.4, even though they are assigned to all materials.
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Original Input Variables Default Value
Model name StudentBridge
Number of dim 3
Variant 1
Length [mm] 60 000
Elevation [mm)] 9000
Width (deck) [mm] 5000
Pavement width [mm)] 0
Hangers 3D spacing (one side) [mm] 400.00
Hangers angle (arc plane) [deg.] 35.
Number of hangers 14
Tie level 0
Deck mesh size 100
Hanger mesh size 100 000
Beam mesh size 100
Tie mesh size 100 000
Arc mesh size 100
Number of bolt on deck 10
Number of bolts on pavement 1
Number of eigenvalues 10
Prestress S11 0
Additional Input Variables
Rows of people 1
Position of row 1
Number of people per row 1
Walking across bridge or in place 0
Position of pedestrians walking in place 2
Walking frequency [Hz] 2.0
Load model 1
Stride length [mm] 750.0
Step width [mm] 200.0
Time increment 0.01
Modal 0

Table 5.2: Input variables in Python script.
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Name Density [t/mm?] Young’s modulus [N/ mm?] | Poisson’s ratio
Asphalt [50], [51] 2.24E-009 2000 0.3
Deck2dMaterial 8.8E-010 30000 0.3

HangerSteel 7.8E-009 209 000 0.3

Steel 7.8E-009 209 000 0.3
VirtualSteel 7.8E-009 209 0.3
WeakSteel 7.8E-009 150000 0.3

Table 5.3: Material properties used in Abaqus model.

Material Wood
Density 4.90E-10 t/mm?
Damping | a=0.092091, 3=0.000187
E 13000 N/mm?
E, 410 N/mm?
E3 410 N/mm?
Vi2 0.5
V13 0.6
Va3 0.6
Ga3 760 N/mm?
Gi3 760 N/mm?
Ga3 76 N/mm?

Table 5.4: Material properties for wood in the model.

Steps and Interactions

The final script generates two steps in addition to the always present initial step. The
former is a static step used to prescribe the gravity load on the structure, while the latter
step is an implicit dynamic step where the pedestrian loading is defined. If prestress is
to be added in the cables, this is modelled during an extra static step inserted at the
beginning of each analysis. Also, if input variable 'Modal’ is set to be 1, the implicit
dynamic step is replaced by a real and a complex frequency step that will calculate the
numerical natural frequencies, mode shapes and damping ratio of each mode. Since
the goal of the analysis is to resemble pedestrians crossing a footbridge, the total time
of the analysis is quite large, of magnitude 40 - 80 s. An explicit analysis would not be a
good option because it is limited by the critical time step which depends on the density,
stiffness and size of the smallest element and might therefore be very small. Implicit
dynamic analyses are unconditionally stable when linear and are therefore better suited
for simulations like these. Nonlinear geometry is included in all steps, which implies
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that the geometric stiffness matrix is generated and included.

To get accurate results and avoid numerical damping of the lower modes (more about
this in Section 5.3) the time step size At used during the dynamic implicit analysis step
should be in the range [12]:

— <At — (5.1

where T, is the period of the highest mode the user of the script wants accurately rep-
resented. Based on the frequencies and mode shapes of the bridge (more about this
in Section 5.2) the 10 first modes have been assumed to be the maximum number of
modes necessary to accurately describe the response of the bridge. The cut off period
is thus the period of mode 10: T, = 0.1514 s = 0.0051 s < At < 0.0151 s. Time step size
0.01 s is therefore chosen as default value for the dynamic step. The same is also chosen
for the static gravity step, although automatic incrementation could be used instead.

To model the welds that will connect the different parts of the bridge, connectors have
been defined in Abaqus. The connector type used is weld, which constrains all relative
components of motion. These connectors are used to connect hangers to arches, hang-
ers to beams, beams to decks, beams to ties and ties to arches. The only parts that were
not connected using connectors were the original deck and the asphalt deck, which
were tied together using constraints instead, allowing no relative motion between them.

Loads and Boundary Conditions

By default Anna’s script adds boundary conditions by constraining the ends of the orig-
inal deck and the arches against all translations as well as rotations around the longi-
tudinal and vertical axis. It also adds a gravity load. To model one or more pedestrians
walking/running across the bridge, forces simulating footsteps are applied along the
deck. This was written into the script in a way such that also the loading is generalized
and can be applied to a bridge with any dimensions. By adding more input variables
to the script the user can also change the number of pedestrians, their position on the
deck, the pacing rate, stride length, step width, which load model to be used, etc. All the
additional input variables that have been added to the script to model different pedes-
trian situations can be seen in Table 5.2.

The previously mentioned extra deck with asphalt properties, from now on referred to
as the "load deck", is created so that the forces from the pedestrians can be applied
there. This was done to ensure that none of the boundary conditions or connector as-
signments created in the original script were altered. The load deck is partitioned so
that sets are defined where the concentrated forces are to be applied. The pattern of the
partition depends on the input variables and two examples showing the applied forces
along different partition lines can be seen in Figure 5.2(a) and 5.2(b). The examples
show pedestrians walking along the middle and the edge of the load deck, respectively.
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Figure 5.2: Concentrated forces with three components applied at specific sets. The posi-
tion of the walking path can also be altered by changing the partition, as shown in (b).

The loads are applied as concentrated forces, with three components and specific am-
plitudes. Each force component due to each footstep has a corresponding amplitude
which is equal to zero during most of the analysis and only nonzero when that specific
footstep is applied. The shape and magnitude of the corresponding amplitude when it
is nonzero is calculated using the Fourier series in Equation 3.29 with DLFs from Table
3.2. The amplitudes are implemented in Abaqus using tabulated values. Which DLFs to
use can be changed by altering the value for 'Load Model’ in the parameter selector. The
load model proposed by Schulze is chosen as default and shown for one single footstep
with walking frequency 2.0 Hz in Figure 5.3(a) and 5.3(b). This was chosen both be-
cause his model is based on Bachmann and Ammanns research [14], and also because
the model looks similar to empirical load-time plots, such as the ones in Figure 3.9.

1500 300
— Vertical — Lateral
—Lateral —— Longitudinal
1000 : — Longitudinal|: 200
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£ € 0
0 % 100
-500 -200
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Time [s] Time [s]

(a) Schulze’s single pedestrian load model (b) Schulze’s single pedestrian load model -
only lateral and longitudinal components

Figure 5.3: Schulze’s single pedestrian load model for all three components.

While the longitudinal and lateral force components oscillate around 0 N the vertical
component oscillates around G = 700 N (see Figure 5.3(a)). The force not starting at
zero at the beginning of every footstep caused unphysical accelerations in the numer-
ical results. To get around this a Loading response and a Preswing (L and P in Figure
3.10) were included so that also the vertical forces always start and end up at zero. By
linearly increasing ("ramping") the static component of the Fourier series (DLF ap) from
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0 to 1 during a time period longer than the time step At the unphysical responses dis-
appeared. After studying the general load-time functions in Figure 3.9 the loading re-
sponse and preswing were defined equal to: L = % xTand P = % x T, T being the total
duration of one step equal to ﬁ, where f}, is the walking frequency. The result is the
load time function seen in Figure 5.4(a).
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(a) Final load model for walking, here (b) Final load model for running, here
shown with pacing rate 2.0 Hz shown with pacing rate 3.0 Hz

Figure 5.4: Load time functions implemented in Abaqus for walking and running, re-
spectively.

In reality the forces due to two consecutive footsteps will overlap as long as the pedes-
trian is walking and not running. For simplicity, this was neglected in this thesis. Thus,
the forces due to any right footstep start being applied only after the forces due to the
previous left footstep have reached zero, and the following left step starts when the right
step has reached zero, and so forth. For running pedestrians (implemented in the nu-
merical model if input variable 'Load Model’ is set equal to ’3’) there is a time between
each footstep where both feet are off the ground and therefore no forces are acting on
the deck. The duration of the time where the forcing is equal to zero was based on the
general load-time functions in Figure 3.9 and was set equal to 0.3 x pac+grate' where the
latter factor equals the total time between two consecutive footsteps. The resulting load
time function for running is shown in Figure 5.4(b). The walking speed of the pedes-
trians depend on the pedestrian configuration on the footbridge [11]. This has been
neglected and the model used for people walking in small groups is the only model im-
plemented in the script. This way the walking speed of all pedestrians is equal to v and
is given by the walking frequency f, and stride length [ as:

Us = fpls (5.2)

NB! For a more thorough explanation of how the analysis steps, boundary conditions and
loads have been created using Python, the reader can refer to Appendix B and Appendix
F.
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5.2 Natural Frequencies and Mode Shapes

The first 20 natural frequencies of the numerical model of the bridge and the accom-
panying mode shapes were found by running a modal analysis in Abaqus. In accor-
dance with Sétra (See Subsection 4.1.6), the modal analysis was performed both with-
out pedestrians and with a uniform pressure of 700 N/mm? equal to 1 person per square
meter. As seen in Table 5.6, the differences between the natural frequencies from the
two analyses are negligible. Hence, the values in column 2 were used in proceeding
analyses.

Mode Natural frequency with Natural frequency with
gravity [Hz] additional pressure load [Hz]
1 1.8838 1.8832
2 2.1405 2.1399
3 3.3217 3.3194
4 3.4370 3.4345
5 3.6216 3.6215
6 3.7528 3.7529
7 5.5485 5.5457
8 5.7278 5.7247
9 6.0945 6.0945
10 6.6034 6.6030
11 7.6070 7.6124
12 7.6414 7.6467
13 8.4343 8.4342
14 8.4352 8.4344
15 8.8650 8.8629
16 8.9017 8.8982
17 10.121 10.121
18 10.476 10.476
19 10.882 10.886
20 10.959 10.962

Table 5.5: Natural frequencies of Abaqus model.

In addition an analysis with refined deck and arc mesh (Seed 50 mm and 10 mm respec-
tively) was performed. Also here, only negligible differences in the natural frequencies
were observed, thereby confirming the accuracy of the model with 100 mm mesh. The
10 first mode shapes corresponding to the 10 first natural frequencies in column 2 in
Table 5.6 are shown in Figure 5.5 and 5.6. Note that there are no longitudinal natural
frequencies. This is because the deck was constrained against movement in the lon-
gitudinal direction at both ends. Based on the natural frequencies and the according
mode shapes one can anticipate where and at which frequencies the pedestrians will
have to walk to have the greatest chance of causing resonance.
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(a) Mode 1: Lateral movement of arches, 1 sag (b) Mode 1, deck only

(c) Mode 2: Lateral movement of arches, 1 sag (d) Mode 2, deck only

v,

(e) Mode 3: Lateral movement of arches, 2 sags (f) Mode 3, deck only

A
p

&

(8) Mode 4: Lateral movement of arches, 2 sags (h) Mode 4, deck only

(i) Mode 5: First lateral mode, 1 sag (§) Mode 5, deck only

Figure 5.5: First five mode shapes of the numerical model.
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(a) Mode 6: First vertical mode, 1 sag (b) Mode 6, deck only

(c) Mode 7: Lateral movement of arches, 3 sags (d) Mode 7, deck only

(e) Mode 8: Lateral movement of arches, 3 sags (f) Mode 8, deck only

(8) Mode 9: Second vertical mode, 2 sags (h) Mode 9, deck only

(i) Mode 10, first torsional mode (§) Mode 10, deck only

Figure 5.6: Last five mode shapes of the numerical model.
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5.3 Damping in Abaqus Model

5.3.1 Numerical Damping

Knowing that Abaqus by default adds some numerical damping by implementing the a-
HHT method (see Section 3.4.2), it was imperative that the amount of damping present
be worked out for the results to be useful. a = 0 was originally tried out, but this yielded
unphysical results because high frequency noise was not damped out.

&
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0.04 - (y=0.60, B = 0.3025)
a method
g (y=0.60,
0.02 - B = 0.3025,
a =-0.10) _
0.01 - Average acceleration
' (Newmark; y = +, B = 1)
0 1 1 ! 1 Ar
0 0.1 0.2 0.3 0.4 T
~<—— Lower modes Higher modes ——-

Figure 5.7: Algorithmic damping ratios {, provided by implicit integration methods,
where T is the period of the mode for which { , is depicted.

As seen in figure 5.7, the amount of damping for a given mode is only dependent on
the time step size, At, and T, the period of the mode in study. To get accurate results
and negligible numerical damping for the lower modes, a small value of % was desired.
Executing a simplified analysis helped determine the necessary size of the time step for
the implicit integration scheme.

(a) Cantilever beam (b) Deformed cantilever beam

Figure 5.8: Model of cantilever beam used to determine the amount of numerical damp-
ing at each mode.
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A simple cantilever beam (see Figure 5.8(a)) was used to determine the inherent numer-
ical damping in Abaqus for a given time step. The cantilever was subject to an initial
displacement at the free end (see Figure 5.8(b)). At the beginning of the next step this
displacement was "released" so that the following oscillatory displacement at the free
end could be examined and help quantize the damping of the cantilever. The quan-
tification was done through use of the logarithmic decrement §, defined as the natural
logarithm of the ratio between two peaks of the response at time ¢, and t,,+ T4, in which
T, is the response period [52]. For free damped vibrations the expression becomes:

—{wnty
5=ln(i):ln _pe N on b ont (5.3)
Uptl pe*(wn(trﬁTd) 1 _CZ

for { << 1. By altering the properties of the cantilever, its first natural frequency was
set equal to the natural frequency of each of the modes of the numerical model in turn.
Next the fraction of critical damping for the investigated mode was calculated using the
relation in Equation 5.3. This was done using a MATLAB script, which is included in
Appendix A.1. Two different approaches, both found in the attachment, were used to
estimate the logarithmic decrement: § was found by calculating the logarithmic decre-
ment between two consecutive peaks, and then averaging over all the peaks. 0, is the
logarithmic decrement from the first to the last peak. The critical damping factor was
calculated for both methods and compared to verify the calculations. To tailor the nat-
ural frequencies of the cantilever, the Young’s modulus was adjusted. It becomes clear
how by the following formula for the first natural frequency of a cantilever beam:

EI
w, =1,875% (5.4)
pAL*

Which, arranged to be solved for E, becomes:

2 4
wypAL
= ZnP22 (5.5)
1,87541
In which
o = 2.24E-9 ton/mm3
I = bi?
= 12

A = bhmm?

L = 6000 mm

h = 444,3mm

w, = natural frequency of the investigated mode

Table 5.6 presents the different Young’s moduli used to get the first natural frequency of
the cantilever equal to the ten first natural frequencies of the numerical model in turn.
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Mode | Frequency | Young’s modulus [MPa]
w1 1.8838 2000
w? 2.1405 2583
w3 3.3217 6220
[N 3.4370 6659
ws 3.6216 7393
we 3.7528 7939
w7 5.5485 17354
wg 5.7278 18493
Wy 6.0945 20937
w1o 6.6034 24580

Table 5.6: Eigenfrequencies of cantilever beam.

Shown in Figure 5.9(a) and 5.9(b) are the oscillations of the cantilever with two differ-
ent natural frequencies, where both analyses were executed with step size 0.01 s. The
increase in numerical damping due to increased frequency, thus decreased period T, is
evident.

Eigenfrequency: 1.8838 Eigenfrequency: 6.6034
— Displacement, U2 — Displacement, U2

__ 400 — Peak values g __ 400 — Peak values
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Figure 5.9: Plots showing the amount of numerical damping at mode 1 and mode 10,
respectively.

Figure 5.10 shows the numerical damping for the first ten modes and also mode 17 and
28, numbered as 11 and 12, for three different time step sizes A¢. The numerical damp-
ing increases with increasing step size, as expected from figure 5.7. There is almost no
difference in { 4y and (o, which implies a close to logarithmic decrease in peak am-
plitudes for the entire time interval. The greatest correlation between the two methods
of calculation appears when At is the smallest.

In accordance with what was calculated earlier on page 51 the time step size was chosen
as 0.01 s for the basis model to avoid significant numerical damping of the first ten
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Figure 5.10: Average and total damping of different modes and step sizes of cantilever
beam.

modes. Instead material damping was added to the system, as it is easier to control and
quantify.

5.3.2 Material Damping

As previously mentioned in Subsection 3.4.2 there are a few different ways to implement
damping in Abaqus [39]. Material damping was chosen for this numerical model and
implemented as Rayleigh damping. If the same material damping is added to all mate-
rials the fraction of critical damping, {;, for a given structural mode 7, can be expressed
in terms of the the Rayleigh coefficients ag and B as:

aR ﬁRwi
= 5.6
Cl 20; 2 (5.6)

in which w; is the natural frequency of mode i. Based on the inherent damping present
in wood alone [53], {; = 0.005 was wanted for the first ten modes. In reality the damping
ratio for the entire structure will be higher, partly due to friction between different parts,
so this is a conservative estimate. The two coefficients a and 8 were calculated as such:

-4 2
(j T2 w; wj

In this calculation two boundary values were chosen for the frequency range, namely

a

5.7
B (5.7
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the first and tenth natural frequency (w; = 2nrad x 1.8838Hz, and w;¢ = 27rad x6.6034Hz).
This resulted in @ = 0.09209 and 8 = 0.000187. The damping value (; is dependent on
each natural frequency, and with this approach any modes above the tenth mode have a
higher damping than ¢ = 0.005, and any of the modes in between have alower damping.
This is apparent by studying Figure 5.11(a) where the damping ratios should follow the
red line. The higher modes are expected to only cause numerical noise, and therefore
damping them out will render a more physical result.

As mentioned the damping coefficients where assigned to all the materials, since this is
the only way to ensure that the all the modes of the structure get the expected damp-
ing ratio. In reality, steel will have a damping of around 10% of the damping present
in wood, but this was neglected. To ensure the right amount of damping had been ob-
tained a complex eigenvalue extraction in Abaqus was performed.

Complex eigenvalue analysis in Abaqus

In Abaqus a frequency step can be followed by a complex frequency step. The Python
script will automatically generate a numerical model with these to analysis steps if the
input variable 'Modal’ is set equal to '1’. Running such an analysis will give both the
real part, @, and imaginary part, o, of the eigenvalues of the structure, and calculate the
damping ratios of all modes, based on the relation given in Equation 5.8. By doing so
it was investigated whether or not the material damping rendered the correct damping
for each mode [54].

I (5.8)
lw|

NB: Abaqus calculates the damping ratio by multiplying Equation 5.8 with a factor of 2.
This is incorrect and should be noted.
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Figure 5.11: Material damping in the Abaqus model compared to the mathematical
model.
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The damping ratios shown in Figure 5.11(b) were retrieved through a complex frequency
analysis. The expected damping ratios for each mode according to equation 5.6 are
also shown in red and good convergence can be observed. Figure 5.11(a) displays the
damping ratios of the structure when material damping is added only to the wood com-
ponents of the bridge. Most of the modes follow the same trend with a small reduction
in damping ratio, but some of the higher modes have a significantly lower damping ra-
tio. This is unwanted due to the numerical noise that can be caused by such higher
modes, and therefore the model with damping in all materials was chosen.

5.3.3 Discrete Fourier Transform of Dynamic Response

Chapter 6 presents the results from many different analyses with different pedestrian
configurations. With a complex structure it is not always easy to see which frequencies
are dominating the response. The relative contribution of each natural frequency and
its corresponding mode shape can be obtained by means of a discrete Fourier transform
on the response from the analyses. A Fourier transform decomposes a function of time
into the frequencies that make it up. The resulting function is a function of frequency,
whose absolute value represents the amount of that frequency present in the original
function. The FFT-algorithm in MATLAB has been used to perform the transform (see
Appendix A.2). The physical meaning of the Fourier transform is that it moves the re-
sponse from the time domain to the frequency domain. Thus, by taking the Fourier
transform of an acceleration response the accelerations in the frequency domain are
obtained.
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(a) Fourier transform of displacement response (b) Fourier transform of acceleration response

Figure 5.12: Fourier transforms of the responses due to pedestrian walking at 2.0319 Hz.

Figure 5.12(a) and 5.12(b) show the output from Fourier transforms of the displacement
and acceleration responses due to a pedestrian walking at 2.0319 Hz. Several frequency
peaks are present in both plots, and although the peaks occur at the same frequencies
the amplitudes are shifted towards the higher modes in the Fourier transform of the
acceleration response. The reason for this is simple: For a harmonic loading the re-
sponse will also be harmonic and the acceleration, equal to the second derivative of the
displacement will be given as shown in Equation 5.9:
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_d*u o,
a—ﬁ——wu (59)

When the displacement response consists of several frequencies, the acceleration will
consist of the same frequencies, but the amplitudes of the different harmonic terms will
have been multiplied by the square of the corresponding frequency, therefore higher
frequency harmonics will have higher amplitude in the acceleration response than in
the displacement response plots.

When presenting the different results in the following chapter, both Fourier transforms
are consistently included to be certain that all frequencies contributing to the response
are known.



64

CHAPTER 5. NUMERICAL MODEL IN ABAQUS



6 Results from Numerical Simulations

The following chapter presents the results from all analyses performed in Abaqus. The
aim was to cause resonance for each individual mode so that the responses could be
compared to the acceleration limits stated in the guidelines. To limit the amount of
work, only the first ten modes were studied. Since they contain the first vertical, lateral
and torsional mode of the bridge this range was expected to contain the dominating
modes. The first section covers all the single pedestrian analyses and the results are
ranged by mode number, starting with mode 1 and proceeding through to mode 10. In
each case the acceleration is plotted versus time, and discrete Fourier transforms of the
displacement and acceleration data are included. The acceleration responses will be
compared to the two possible response scenarios depicted in Figure 3.13 to evaluate if
responses are resonant. The Fourier transforms are also an indicator of the degree of
resonance achieved. At resonance the natural frequency is dominating the response
and the Fourier transform should then only contain one distinct peak. The response of
the arches due to single pedestrian loading has also been investigated.

The second part of this chapter includes the other load scenarios that were tested;
groups of people, continuous streams of people, a single pedestrian running and lastly
a single walking pedestrian with increased amount of material damping in the model.
The aim was still to cause resonant responses, and having found the dominating res-
onant frequencies through single pedestrian analyses only the frequencies thought to
give resonance were tested for the groups and streams of people.
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6.1 Single Walking Pedestrian

6.1.1 Response of the Deck

The largest response amplitude due to a harmonic load is obtained at resonance [55].
By making sure that either the fundamental frequency or the 2" or 3™ harmonic of the
walking frequency was equal to one of the natural frequencies resonance of the corre-
sponding mode was considered possible. The local mode shapes of the deck were also
taken into consideration when trying to excite the different modes, in that the position
of the pedestrian was in accordance with the actual mode. For example, a torsional
mode is more likely excited when the pedestrian is walking along the edge of the deck,
as opposed to the center line.

The final script contains an input variable that determines whether the pedestrians
walk across the bridge or just walk in place at a position determined by a second in-
put variable. Although a pedestrian walking across is more likely, a pedestrian stepping
in place causes greater responses and was therefore included. In reality a combina-
tion of the two might occur. All frequencies have been tested with both scenarios. The
following section shows the analysis results from simulations with single pedestrians
walking at different pacing rates, with the goal to cause resonance at the ten first natu-
ral frequencies of the bridge.

NB! Whenever the pedestrian is walking in place, the response values were extracted at the
location where the pedestrian was located since this was where the maximum response
amplitude occured.



6.1. SINGLE WALKING PEDESTRIAN
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Mode 1: f| =1.8838 Hz

Figure 6.1: Mode 1, deck only.

By only presenting the mode shape of the deck and increasing the deformation scale
factor in Abaqus, it is observed that the deck deforms in a torsional fashion for mode 1,
3,7 and 10 (see Figure 6.1). Attempts were made to excite all these modes by modelling
a pedestrian walking either along or in place at the left side of the bridge. This way
the forcing is applied according to the mode shapes, which should cause the largest
response amplitude.

A pedestrian walking at a pacing rate equal to the first natural frequency, 1.8838 Hz, was
modelled to try to excite the first mode of the structure. As shown in Figure 6.2(a) and
6.2(b), the peak vertical accelerations reach values of about 60 mm/ s? and 70 mm/s2,
respectively. The plots of the vertical displacement and acceleration in the frequency
domain (see Figure 6.2(d)) show that the response is made up of mainly one frequency.
But the peak is in the range of the natural frequency of the sixth mode, not the first.
Thus, the 20d harmonic of the walking frequency (3.7676 Hz) dominates, and it is not
the torsional mode of the deck that has been excited. The conclusion is therefore that
resonance for the first mode has not occurred. Instead mode six was excited, and by
looking at Figure 6.2(b), it appears that larger responses could be obtained if the fre-
quency was tuned to match the natural frequency of the sixth mode. With the gradual
increase in response combined with smaller transients due to each footstep (the peaks
identified every 0.5 s) the response looks like a combination of the resonant and tran-
sient response curves depicted in Figure 3.13. In addition, the decrease in peak accel-
erations after about 10 seconds indicates that the steady state solution has not reached
its maximum. A damped system subject to resonance caused by a harmonic load will
have a response like the one shown in Figure 3.13(a). The solution will asymptotically
reach the steady state solution, which is not the case here. This implies that the maxi-
mum acceleration response due to a harmonic load was not obtained. Interestingly, the
arches are resonating at the natural frequency of mode 1 (see Figure 6.23(d)), and this
will be addressed later in this chapter.
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Figure 6.2: Dynamic responses, extracted at the left edge at the middle of the deck, due to
a single pedestrian walking at 1.8838 Hz.
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Mode 2: f, =2.1405 Hz

Figure 6.3: Mode 2, deck only.

The second mode has a natural frequency of 2.1405 Hz, and is mainly a lateral mode
of the arches. Although the deck does have a vertical sag, this deflection is extremely
small compared to the arches. The natural frequency is well within the range of walking
frequencies, so analyses with one person walking across the center line of the bridge,
and with one person walking in place at the middle of the bridge at frequency 2.1405 Hz
were conducted. The results in Figure 6.4(a) and 6.4(b) show little of interest as no signs
of resonance are apparent in the deck. A transient response is observed with the accel-
erations due to the impact of each step damping out quickly. Figure 6.4(c) and 6.4(d) re-
veal that several frequencies are contributing to the response, which is typical for tran-
sient responses identified by peaks with decreasing amplitude. All this confirms that
the deck will not resonate while pedestrians are walking at frequencies around 2.1405
Hz. Once again the arches seem to approach resonance (see Figure 6.24(d)).
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Figure 6.4: Dynamic responses, extracted at the middle of the deck, due to a single pedes-
trian walking at 2.1405 Hz.
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Mode 3: f3 =3.3217 Hz

Figure 6.5: Mode 3, deck only.

The third natural frequency, 3.3217 Hz, with its corresponding torsional mode shape
for the deck, is not within the range of walking frequencies (1.6 - 2.4 Hz). Therefore
an attempt to cause resonance with the 2"¢ harmonic of the pacing rate was made. A
pedestrian walking along the left side with frequency 1.6609 Hz and walking in place at
the left edge at % of the length of the bridge yielded the results shown in Figure 6.6. An
envelope response is observed in Figure 6.6(a), which implies that the response consists
of several frequencies. This is confirmed by the plot of the displacement and accelera-
tion in the frequency domain (see figure 6.6(c) and 6.6(b)) showing peaks at several n'"
harmonics in addition to the fundamental frequency. A transient response is also seen
in both (a) and (b) confirming that the deck will not resonate with the the mode shape
of mode 3 due to a single walking pedestrian.
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Figure 6.6: Dynamic responses, extracted at the left edge at 3/4 of the length of the deck,
due to a single pedestrian walking at 1.6609 Hz.
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Mode 4: f, =3.4370 Hz

Figure 6.7: Mode 4, deck only.

The local mode shape of the fourth mode is a vertical one with two sags and a natural
frequency of 3.4370 Hz. Like with the first three modes, the mode shape of the deck is
almost negligible compared to the corresponding mode shape of the arches, and the
arches will probably be excited long before the deck. Nevertheless, analyses with one
single pedestrian with walking frequency 1.7185 Hz were performed to try to cause res-
onance with the 2™ harmonic (3.4370 Hz). The results are shown in Figure 6.8 and the
resemblance to the results for mode 3 (see Figure 6.6 on previous page) is obvious for
both the acceleration in the time and frequency domain. The conclusion is therefore
the same: A single walking pedestrian will not be able to cause resonant responses in
the deck for mode 4.

Some extra attention should be given to the distinct acceleration peaks in Figure 6.8(a).
These occur exactly when the pedestrian reaches the middle of the bridge and are damped
out immediately. Although they may be due to high frequency noise and therefore un-
physical, they are unimportant and are smoothed out in the calculated RMS-accelerations
when a sufficiently big time interval is used.
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Figure 6.8: Dynamic responses, extracted at the middle at 3/4 of the length of the deck,
due to a single pedestrian walking at 1.7185 Hz.
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Mode 5: f5 = 3.6216 Hz

Figure 6.9: Mode 5, deck only.

The only lateral mode within the first ten modes of the bridge is mode 5, with a fre-
quency of 3.6216 Hz. As mentioned in Section 3.3.1, the fundamental frequency of the
lateral forcing is half that of the vertical and longitudinal forcing because the left and
right foot cause forces in opposite directions, laterally. The consequence of this is that
resonance can be caused with n'* harmonics of two different frequencies within the
range of walking frequencies.

31’d 4th

Attempts were made to cause resonance with the 3'“ and 4™ harmonic of the forcing
from a single pedestrian walking at 2.4144 Hz and 1.8108 Hz, respectively. The former
results are shown first in Figure 6.10. Notice that the y-axis does not have the same di-
mensions in Figure (a) and (b). The magnitude of the acceleration is extremely small
in both cases and the transient response is dominating. The plots of the Fourier trans-
forms in Figure 6.10(c) 6.10(d) display two distinct peaks at about 2.72 Hz and 4.53 Hz.
These frequencies correspond to the third and fifth harmonic of the fundamental lat-
eral frequency, but do not match any of the natural frequencies of the bridge. Thus, a
pedestrian walking at 1.8108 Hz will not cause resonant behaviour of the deck.
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Figure 6.10: Dynamic responses, extracted at the middle of the deck, due to a single
pedestrian walking at 1.8108 Hz.
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The results from the analyses with walking frequency 2.4144 Hz are shown in Figure
6.11 and this time the resonant behaviour is obvious. The discrete Fourier transforms
(see Figure 6.11(c) and 6.11(d)) display a single peak at around 3.62 Hz, exactly the fifth
natural frequency of the structure. Unlike the previous results there are no other fre-
quencies represented in the Foruier transform, and that is why the curves in Figure
6.11(a) and 6.11(b) are so smooth. The analysis with the pedestrian walking across the
bridge (a) almost reaches the same magnitude of acceleration as the analysis with a
pedestrian stepping in place (b), but the vibrations start damping out when the pedes-
trian approaches the end of the bridge. The initial envelope curve that asymptotically
reaches the steady state solution is characteristic for damped resonant response [26]
and can be observed in Figure 6.11(b).

Note that these results are obtained using Schulze’s load model (see Figure 5.4(a)). With
a different load model different DLFs follow, yielding different results. For example,
if the analyses were conducted with Bachmann’s load model instead (which has been
written into the script and can be implemented in Abaqus setting 'Load Model’ equal to
’2’), the responses would have been greater because the DLFs have greater magnitude
which in turn leads to forces with greater magnitude.
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Mode 6: f; =3.7528 Hz

Figure 6.12: Mode 6, deck only.

Mode 6, the first vertical mode of the structure, has a natural frequency of 3.7528 Hz,
well outside the range of walking frequencies. A runner might run at this frequency,
and this will be addressed later. By modelling a pedestrian walking at 1.8764 Hz it has
been tested and confirmed for mode 6 that the 2°¢ harmonic of a walking frequency can
cause resonant responses. Figure 6.13(b) shows the accelerations at the middle of the
deck due to a pedestrian walking in place. A clear damped resonant response can be
observed with an initial, almost linear increase until the solution settles on the steady
state solution. Figure 6.13(c) and 6.13(d) show the displacement and acceleration in
the frequency domain obtained through a Fourier transform. Although the pedestrian
walks at 1.8764 Hz the only frequency represented in the response is the 2”4 harmonic
(3.7528 Hz) equal to the sixth natural mode of the bridge. This makes it clear that pedes-
trians will be able to make the bridge resonate.

A Small transient response can still be observed in the results, but the differences be-
tween the peaks are small compared to the response amplitude. There is also a small
decrease in maximum amplitude as the steady state settles in Figure 6.13(b). Compared
to the results for mode 1 in Figure 6.2(b), where also the sixth mode was excited, the re-
sponse amplitudes are higher and the decrease from initial transient phase to steady
state is much smaller. This was as expected.
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Figure 6.13: Dynamic responses, extracted at the middle of the deck, due to a single
pedestrian walking at 1.8764 Hz.
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Mode 7: f; =5.5485 Hz

Figure 6.14: Mode 7, deck only.

Mode 7 looks quite similar to mode 1 (1.8838 Hz), both of them being torsional modes
local to the deck. An attempt was made to excite the seventh mode by means of the
3" harmonic of the walking frequency (1.8496 Hz) with a person walking along the left
edge. The results seen in Figure 6.15 are extremely similar to the results obtained when
trying to excite the first mode (see Figure 6.2) and therefore the same conclusion has
been drawn; again the sixth mode has been excited instead, through the 21d harmonic
of the walking frequency, and a single pedestrian has not been able to cause resonance
of a local torsional deck mode. It is worth noticing that the frequencies used in the
attempts to cause resonance at mode 1 (1.8838 Hz) and 7 (1.8496 Hz) are on either side
of 1.8764 Hz, the natural frequency of mode 6. They form a range of frequencies all
exciting this mode.
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Figure 6.15: Dynamic responses, extracted at the left edge at the middle of the deck, due
to single pedestrian walking at 1.8496 Hz.
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Mode 8: f3 =5.7278 Hz

Figure 6.16: Mode 8, deck only.

Mode 8, with a natural frequency of 5.7278 Hz, is yet another mode dominated by the
arches, and their response has been investigated separately. The local mode shape of
the deck is characterized as a vertical mode with three sags, and the pedestrian walking
in place was therefore placed at the middle of the deck. The results in Figure 6.17 show
modest acceleration values due to the pacing rate of 1.9094 Hz, used in the attempt to
excite the structure through the 3" harmonic. The responses due to each footstep are
dying out quickly, shown by the distinct peaks in Figure 6.17(b) and the initial resonant
response is small. It can be seen from the Fourier transforms that the 3" harmonic
of the walking frequency is not present in the responses. Instead the 2" harmonic
dominates by exciting, once again, the sixth mode.
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Figure 6.17: Dynamic responses, extracted at the middle of the deck, due to a single
pedestrian walking at 1.9094 Hz.
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Mode 9: fy = 6.0945 Hz

Figure 6.18: Mode 9, deck only.

Analyses with a single pedestrian walking at 2.0319 Hz were executed to try to excite the
ninth mode by means of the 3" harmonic of the walking frequency (see Figure 6.19).
The mode is the second global vertical mode, consisting of two sags, and therefore the
pedestrian walking in place was placed at ?‘1 of the length of the bridge. The accelera-
tions were also extracted there, which is why the distinct acceleration peaks in Figure
6.19(a) are after 30 s, when the pedestrian passes the extraction point.

Although the plots of the displacement and acceleration in the frequency domain (Fig-
ure 6.19(c) and 6.19(d)) show that the 3'4 harmonic is the dominating frequency in the
responses, resonance is not apparent. A short initial resonant response can be seen dur-
ing the first 5 seconds, but there is an equally large transient response due to the impact
of each footstep being damped out. The response amplitudes are also small compared
to previous results where resonance was obtained.
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Figure 6.19: Dynamic responses, extracted at the middle at 3/4 of the length of the deck,
due to a single pedestrian walking at 2.0319 Hz.



88 CHAPTER 6. RESULTS FROM NUMERICAL SIMULATIONS

Mode 10: f;) =6.6034 Hz

Figure 6.20: Mode 10, deck only.

Mode 10, the final investigated mode, displays the first global torsional mode shape.
A single pedestrian walking at 2.22012 Hz was simulated to try to excite the structure
through the 3™ harmonic. The results are shown in Figure 6.21. For the first time the
accelerations at two different locations are shown because they are distinctly different.
As expected for torsional motion of the deck, the vertical accelerations at the edges are
much greater than the vertical acceleration at the middle, which, for a purely torsional
mode, should be zero. This indicates that the deck was excited into a torsional mode
shape.

Figure 6.21(c) and 6.21(d), showing the displacement and acceleration at the left edge
of the deck in the frequency domain, confirm that the the footbridge has been excited at
frequency 6.6034 Hz. However, other frequencies equal to the fundamental frequency,
the 2", and the 5™ harmonic are also present. As with the attempt to excite mode 9
(results in Figure 6.19), an initial resonant response is present but the transient response
is dominating. An even better correlation between the third harmonic of the walking
frequency and the natural frequency of mode 10 is expected to give somewhat greater
responses, but resonance is deemed unlikely.



6.1. SINGLE WALKING PEDESTRIAN 89

T T T T T T T
— Acceleration at the left
40 F — Acceleration at the middle| |

[\)
(e
T

Acceleration [mmzls]
o

o)
o
T
1

0 5 10 15 20 25 30 35
Time [s]

(a) Vertical accelerations due to pedestrian crossing the bridge along the left edge

T T T T T T T
60 —— Acceleration at the left
40 —— Acceleration at the middle| |

20
0

Acceleration [mmzls]

o)
o
T
1

0 5 10 15 20 25 30 35
Time [s]

(b) Vertical accelerations due to pedestrian walking in place at the left edge at the middle of the
bridge

0.012 T T T T T 15
0.01
0.008 ] ol
20.006 r g
0.004 - 1 5F
0.002 - L J
Ol"/ JL.AA 0 lAJdi lLll Lha 1111

0 5 10 15 20 25 30 0 S 10 15 20 25 30

Frequency (Hz) Frequency (Hz)
(c) Vertical displacement at left edge in the (d) Vertical acceleration at left edge in the ||fre-
[frequency domain quency domain

Figure 6.21: Dynamic responses, extracted at the left edge at the middle of the deck, due
to a single pedestrian walking at 2.2012 Hz.
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6.1.2 Response of the Arches

Many of the bridge’s mode shapes are mainly deflections of the arches. Because any
visible movement of the structure can contribute to the sense of discomfort for present
pedestrians, this part of the chapter is dedicated to investigating how the arches will
respond to loading on the deck from a single pedestrian. Only the results from the
analyses with a single pedestrian walking in place with pacing rate equal to the two
first natural frequencies are included here, because these analyses yielded the greatest
responses of the arches. Lateral acceleration and displacement values are extracted at
the top of the arches, where the responses are assumed to be of greatest magnitude
based on the mode shapes of the first and second mode, shown in Figure 6.22.

(a) Mode 1. (b) Mode 2.

Figure 6.22: Modes 1 and 2 of the bridge reveal lateral movement of arches.

By comparing the results in Figure 6.23 and 6.24 it is clear that resonance has occurred
in both cases. This can be seen both by studying the shape of the displacement and ac-
celeration curves, figures (a) and (b) in both cases and also by noticing that the Fourier
transforms, figures (c) and (d), each contain only one distinct peak. The difference in
response amplitudes is very significant with both the displacement and acceleration re-
sponse being a factor of about 5 times higher for the analysis exciting the first mode. A
small transient response can also be observed in Figure 6.24(a) and 6.24(b), confirming
that the the resonant response is stronger in the former analysis. Although not shown
here, the similar responses for the other single pedestrian analyses were also much
lower than the response obtained with walking frequency 1.8838 Hz. Even though the
steady state solution has not quite reached its asymptotic value, the slope of the enve-
lope curve is approaching zero and it is believed that the increase in amplitude response
will be negligible.
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Figure 6.23: Dynamic responses, extracted at arch top, due to pedestrian walking in place
at the left edge at the middle with pacing rate 1.8838 Hz.
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Figure 6.24: Dynamic responses, extracted at arch top, due top pedestrian walking in
place at the middle with pacing rate 2.1405 Hz.
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6.2 Groups of People

The response of the footbridge due to groups of people walking is also of interest. Based
on the results from the analyses with a single pedestrian on the bridge, a couple of
modes were characterized as dominating for the response of the deck. These modes are
mode 5 (lateral mode) and mode 6 (vertical mode). Attempts were made to excite these
modes with groups of people through the 2°4 harmonic of the walking frequency. In ad-
dition, mode 10 was tried excited with a group of people since it was the only torsional
mode that was successfully excited during previous analyses, even though resonance
was not observed. Lastly, mode 2 was also tested to confirm that resonance would not
occur at that mode for a group of people either.

According to Eurocode 5 a distinct group of pedestrians equals 13 people [43]. Three
rows of people where chosen as default by the authors and since the Python script is
written to apply the same number of people to all rows, 4 pedestrians were modelled
to walk in each row, giving a total of 12 pedestrians. They are perfectly synchronized,
which may be considered a worst case scenario.
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Firstly, analyses with a group walking both across and in place at the middle at 2.1405
Hz, equal to the natural frequency of mode 2, were carried out. The results are shown
in Figure 6.25 and back up the results from the same analyses with only one person,
showing that resonance in the deck will not occur at this frequency. The peak accelera-
tions are only of magnitude 100 mm/s?, which is about the same as what was obtained
with only one person exciting the sixth mode of the footbridge. The plots of the ver-
tical displacement and acceleration in the frequency domain (see Figure 6.25(c) and
6.25(d)) show several peaks at n' harmonics of the walking frequency. This is typical
for non-resonant transient behaviour.
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Figure 6.25: Dynamic responses, extracted at the middle of the deck, due to a group of
pedestrians walking at 2.1405 Hz.
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With 12 people walking in phase at 2.4144 Hz the lateral peak accelerations exceed 200
mm/s? as shown in Figure 6.26(a) and 6.26(b). By comparing the latter figure to the
typical resonant response curve (Figure 3.13(a) it is obvious that the response is res-
onant, as was the case with a single pedestrian walking at the same frequency. The
Fourier transforms in Figure 6.26(c) and 6.26(d) confirm this by showing that only one
frequency dominates the response.
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Figure 6.26: Dynamic responses, extracted at the middle of the deck, due to a group of
pedestrians walking at 2.4144 Hz.
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By modelling the same group of people walking at 1.8764 Hz, equal to half of the natu-
ral frequency of mode 6, great response amplitudes were obtained. Peak accelerations
of 1000 mm/s? are observed in Figure 6.27(a) and 6.27(b) and it is clear from this that
resonance has occurred. A small decrease in the acceleration peaks can be seen from
6.27(b), which implies that a somewhat higher response would have been obtained if
the second harmonic of the walking frequency was tweaked a little to match the reso-
nant frequency even better. This has not been pursued since it is time consuming, and
the change in response is expected to be small.
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Figure 6.27: Dynamic responses, extracted at the middle of the deck, due to a group of
pedestrians walking at 1.8764 Hz.
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As mentioned at the beginning of this section, attempts were also made to cause reso-
nance by exciting mode 10 through the 3" harmonic of the walking frequency. A single
row of 12 people were therefore modelled to walk along the left edge of the bridge at
2.2012 Hz, and the results from these analyses are shown in Figure 6.28. In figure (a)
and (b) both the acceleration at the left edge and at the middle are shown in the same
plots. As with the results obtained with only one pedestrian walking at 2.2012 Hz, the
vertical accelerations are much greater along the edges than in the middle, which is ex-
pected when a torsional mode is successfully excited. The response is fairly large, but
resonance is not obtained, which is confirmed by both the large transient responses
in Figure 6.28(a) and 6.28(b) and by the presence of many smaller peaks in the Fourier
transforms in Figure 6.28(c) and 6.28(d).
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Figure 6.28: Dynamic responses, extracted at the left edge at the middle of the deck, due
to a row of pedestrians walking at 2.2012 Hz.
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Eurocode 5 states that the accelerations due a continuous stream of people walking over
the bridge should also be calculated using a given formula shown in Appendix D [43].
To be able to evaluate the calculated acceleration value, two analyses with streams of
people were executed. The results in Figure 6.29(a) are from an analysis with one con-
tinuous row of people walking across the middle of the bridge at 1.8764 Hz. With a stride
length of 750 mm this gives room for 40 people on the bridge at any given time. Figure
6.29(b) shows a similar analysis, but with 5 rows, with 36 pedestrians per row, giving a
total of 180 pedestrians on the bridge. This number was chosen to match the number
of people in the formula used in EC 5-2 (see Subsection 4.1.1 or Appendix A). Both anal-
yses were modelled as if the people were walking in place, a stride length apart. This is
the equivalent of a continuous stream of people crossing the bridge, the only difference
being that the people do not walk on to the bridge during the start of the analyses, they
are already spread out along the entire length of the bridge when the simulation begins.
Simulating it this way ensures that the steady state solution due to the final amount of
people is obtained quicker.

The exact same behaviour is observed in both Figure 6.29(a) and 6.29(b), only differ-
ence being the magnitude of the accelerations, which is greater in the latter results, as
expected. The same results were also obtained with 1 and 12 people instead, see Fig-
ure 6.13(a) and 6.27(a), so the same conclusion can be drawn; resonance with the sixth
natural frequency occurs when pedestrians are walking at 1.8764 Hz. The results from
the analysis with increasing amount of pedestrians could be used to investigate how
the response increases with an increasing amount of pedestrians. However, since the
analysis with 12, 40 and 180 people are very conservative by assuming that all people
walk in phase over the deck, the ratio would not be very realistic and it has therefore not
been done.
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Figure 6.29: Dynamic responses, extracted at the middle of the deck, due to continuous
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6.3 Running

When a pedestrian runs the vertical force he or she exerts increases drastically com-
pared to normal walking, by a factor of more than two. The way runners affect the
structural response of slender structures should therefore be considered separately. The
frequency range for jogging and running has been proposed to be 2.0 - 3.5 Hz by Bach-
mann et al. [18]. All natural frequencies within this range should be tested. For the
subject footbridge mode 6, the dominating vertical mode, lies just outside this range,
but has been tested regardless. The horizontal forces due to running are not mentioned
in any found literature, but are assumed similar to those of horizontal walking frequen-
cies, and have therefore been neglected in the analyses with runners. This means that
horizontal natural frequencies are of little interest overall when running is considered,
so no attempts have been made to excite mode 5, the lateral mode of the bridge. Some
of the frequencies in the range of the second running harmonic (4 - 7 Hz) have also
been tested to obtain a foundation for comparing different results. It only takes a run-
ner about 10 seconds to cross the bridge, depending on stride length and pacing fre-
quency. The stride lengths chosen for the different analyses were based on Table 3.1 -
Pedestrians jogging at frequencies between 2.0 and 3.0 Hz were given a stride length of
1.30 m, while 1.75 m was used for pacing rates higher than 3.0 Hz. Running pedestri-
ans will usually not be disturbed by the acceleration response of the structure because
of the short duration the runner is on the bridge. However, other pedestrians on the
bridge could experience discomfort. All analyses with running pedestrians lasted for 20
s to investigate the structural response also after the runner was off the bridge.
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Figure 6.30: Dynamic responses, extracted at the middle of the deck, due to a running
pedestrian attempting to excite mode 3, 4 and 6, respectively.
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Figure 6.31: Dynamic responses, extracted at the middle of the deck, due to a running
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Figure 6.32: Dynamic responses, extracted at the middle of the deck, due to a running
pedestrian attempting to excite mode 9 and 10, respectively.



108 CHAPTER 6. RESULTS FROM NUMERICAL SIMULATIONS

The results in Figure 6.30, 6.31 and 6.30, showing the vertical accelerations due to pedes-
trians running at different frequencies, are in accordance with what was expected based
on the analysis with walking pedestrians. Mode 6, the vertical mode, is the dominating
mode of the structure. As seen in Figure 6.30(e) the acceleration amplitudes caused
by exciting the sixth mode are 3.5 - 10 times greater than the acceleration amplitudes
from any of the other analysis. It is also the only analysis result where there is almost no
transient response. The corresponding Fourier transform shown in 6.30(f) reveals only
one peak and hereby confirms that resonance has occurred by modelling a pedestrian
running at 3.7528 Hz. This frequency is outside the normal range of running stated by
Bachmann et al., but not more than that it could be achieved by a very fast runner, so it
was been included.

Other interesting results are shown in Figure 6.32(c), where mode 10 has been excited
by means of the 2" harmonic of the running frequency (3.3018 Hz). Both the differ-
ence in acceleration between the left edge and the middle, and the Fourier transform
of the acceleration in Figure 6.32(d) confirm that the deck has a torsional motion dom-
inated by a frequency close to the natural frequency of mode 10. However, a transient
response, identified by the great decrease in peak amplitude between every footstep,
is dominating the motion, and as with the walking analyses resonance with the tenth
natural frequency was not obtained. At first glance it looks like mode 3 has also been
excited, see Figure 6.30(a). But by taking a closer look at the corresponding Fourier
transform in Figure 6.30(b) it can be seen that it is the 2°¢ harmonic, a frequency in the
range of the tenth natural frequency, that is dominating instead. Thus, neither mode 3
nor 7, the two local torsional modes, have been excited by running pedestrians.
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6.4 Damping

When the loading is harmonic, which often is the case as all periodic loads can be rep-
resented using a Fourier series, the spring and inertia forces for a SDOF are given as
shown in Eq. 6.1:

fi=mii=-w?*mu=-p*w’mu
(6.1)

fi=ku=w>mu

wheref is the frequency ratio. When resonance occurs f§ = 1, the stiffness and inertia
forces cancel each other out and the damping forces have to equal the external forces.
The amount of damping therefore becomes paramount for the resonant behaviour of a
structure. To confirm this, analyses with increased amount of material damping were
conducted. According to Eurocode 1-4 [56], a structural damping of 1.9% can be ex-
pected. For simplicity, the analyses with increased damping were executed with 2%
damping for mode 1 and 10, exactly four times as much as for all previous analyses.
This implied multiplying the Rayleigh coefficients by a factor of 4, giving a = 0.368364
and = 0.000750. Remember that damping for each mode is calculated using Equation
5.6.

Walking in place

Figure 6.33 shows results from analyses with single pedestrians walking in place at the
middle of the deck, trying to excite mode 2, 5 and 6, respectively. The effect of increased
damping can be observed by comparing the red and blue curves in each of the figures.
As expected the effect is most obvious in Figure 6.33(c) and 6.33(b), the cases were reso-
nance has occurred. With increased damping the steady state solution is obtained after
only 5 seconds, whereas this takes up to 35 seconds in the cases with minimal damping.

Walking across

Results from analyses with a single pedestrian walking across the bridge are shown in
Figure 6.34. Once again the walking frequency in the different analyses was such that
mode 2, 5 and 6 were excited, respectively. As in Figure 6.33 the amount of damping has
more impact on the response at resonance, seen by comparing the relative difference
between the blue and red curves in Figure 6.34(c) and 6.34(b) against Figure 6.34(a).
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Figure 6.33: Dynamic responses, extracted at the middle of the deck, due to a single
pedestrian, with two different amounts of material damping implemented.
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Figure 6.34: Dynamic responses, extracted at the middle of the deck, due to a single
pedestrian, with two different amounts of material damping implemented.



112 CHAPTER 6. RESULTS FROM NUMERICAL SIMULATIONS



7 Discussion of Results

In this chapter the results from Chapter 6 are evaluated and compared, both against
each other and against the acceleration values suggested in the different design guide-
lines mentioned in Chapter 4. The calculations of the suggested acceleration values are
given in Appendix D. The peak accelerations given in the various tables hereunder are
the maximum absolute value of the accelerations obtained during the different analy-
ses. This implies that the distinct acceleration peaks that might not be physical are still
included, and that the peak acceleration values therefore are of less interest. A more
sound measure of acceleration is therefore the root mean square acceleration (arms),
mentioned in Subsection 3.2.2. The time interval over which to integrate the accelera-
tions has been chosen as T = 1 s, which is the recommended value in both ISO 10137
and ISO 2631-1 [47], [41]. The starting point of the time interval, #;, is set equal to the
time when the peak acceleration is obtained. The RMS-algorithm in MATLAB was used
to calculate the root mean square accelerations, as shown in Appendix A.3.

7.1 Single Walking Pedestrian

7.1.1 Response of the Deck

NB! The acceleration for mode 5 is in lateral direction, whereas all the other accelerations
are in vertical direction. This is simply because mode 5 is the only lateral mode. All other
modes are vertical and torsional.

Attempts were made to excite the ten first modes of the bridge one at the time, through
either the fundamental frequency or the 2" or 3™ harmonic of the walking frequency,
depending on the corresponding natural frequency. The criteria was that the walking
frequency had to be in the range of 1.6 - 2.4 Hz, established by Bachmann & Ammann
[14]. One small exception was made here by modelling a pedestrian with walking fre-
quency 2.4144 Hz to try to cause resonance with the fifth natural frequency. Peak ac-
celerations and RMS-accelerations for the different analyses are shown in Table 7.1 to-
gether with the walking frequency of the pedestrian.

By studying the figures in Section 6.1 and taking into account both the shape of the
curves, the magnitude of the accelerations, the actual mode and the Fourier trans-
forms, responses approaching resonance can be observed for mode 1, mode 5 (second
attempt), mode 6 and mode 7. For mode 1 and 7 it can be seen from the Fourier trans-
forms, showing the responses in the frequency domain, that the dominating frequency

113
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Walking across Walking in place
Modenr. | f, [Hz]
apeak (mm/s?] arms [mm/ s2] Apeak [mm/s?] arms [mm/ 2]
1 1.8838 75.66 40.68 86.18 45.27
2 2.1405 41.68 9.54 46.60 11.29
3 1.6609 41.68 16.53 25.41 12.18
4 1.7185 23.48 7.02 32.16 6.12
5 1.8108 0.83 0.37 5.61 2.31
5 2.4144 19.97 14.11 22.89 15.37
6 1.8764 91.02 59.11 108.60 63.09
7 1.8496 70.38 42.09 100.85 44.59
8 1.9094 36.61 17.32 63.48 27.42
9 2.0319 49.47 22.70 57.82 25.98
10 2.2012 47.14 18.22 57.59 24.46

Table 7.1: Peak and RMS-accelerations from all analyses with a single walking pedes-
trian.

is the sixth natural frequency, not the natural frequency of mode 1 and 7. In both cases
the 2" harmonic of the walking frequency has thus dominated the response instead of
the 15t and 3", respectively. The results for mode 1 and 7 can therefore be directly com-
pared to the results for mode 6 in Table 7.1, where it is seen that the results for mode 6
have greater responses and are therefore the only results discussed any further in this
chapter. Note that the RMS-accelerations are almost equal for the analyses with the
pedestrian walking across the bridge and the pedestrian walking in place at the middle.
This implies that the position of the pedestrian along the deck is not crucial as long as
he or she is closer to the middle than to the supports.

The analyses with walking frequency 2.4144 Hz, exciting the fifth mode, show the clear-
est resonance response with the amplitude of the response reaching its maximum at
steady state. The given accelerations are small compared to the results from mode 6
because these are lateral acceleration values. However, lateral accelerations cause dis-
comfort for pedestrians at a much lower magnitude, as illustrated through the different
comfort criteria, and they are therefore not directly comparable to the vertical accelera-
tions. Both the peak and RMS-accelerations are almost the same for both analyses and
it can be seen from Figure 6.11(a) that the peak is reached after about 24 s, which is long
after the pedestrian has passed the middle of the bridge, once again implying that the
position of the pedestrian along the length of the deck is not that important.

The final modes of interest are mode 9 and 10. By simulating a single pedestrian walk-
ing at 2.0319 Hz and 2.2012 Hz it can be seen from the Fourier transforms of the re-
spective accelerations (Figure 6.19(d) and 6.21(d)) that the 3" harmonics of the walking
frequency, equal to the natural frequencies of the two modes, are the dominating fre-
quencies in the responses. Resonance however, has not occurred, which can be seen by
studying Figure 6.19(b) and 6.21(b) and noticing the transient responses and the small
response amplitudes. It seems that resonance at the higher frequencies can not occur,
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even if the correct frequencies are present in the forcing. This backs up the general as-
sumption that footbridge response is dominated by only a few critical modes [11], in
this case mode 5 and 6 for the deck. The lateral responses of the arches however are
dominated by other modes, and this is investigated in the following section.

7.1.2 Response of the Arches

Although a person walking at 1.8838 Hz (the natural frequency of the first mode) was
not able to excite the deck into the corresponding torsional mode shape, the activity did
cause resonance in the arches. Large acceleration amplitudes with a peak acceleration
of almost 100 mm/s? can be seen in Figure 6.23(b). However, with the arches, unlike
the deck, it is not the accelerations that will be perceived by the pedestrian, but the dis-
placement. This is because the pedestrian are not in physical contact with the arches,
so the acceleration is not felt, but the displacement can be seen. The sight of arches
swaying with large displacement amplitudes can cause discomfort and should there-
fore be avoided. However, the largest displacement amplitude obtained for the arches
was about 0.75 mm, which is not perceivable. It should be noted that the results in Fig-
ure 6.23(a) and 6.24(a) have not reached steady state yet, and simulations over bigger
time periods should have been performed. Still, the slope of the envelope curve is ap-
proaching zero, implying that the steady state solution would’'ve been obtained soon
after and that any additional increase in amplitude response would be negligible. The
conclusion is that the arches won't pose a problem.

7.2 Groups of People

2]

Walking across Walking in place
Modenr. | f, [Hz] N
apeak [Mm/s?] | apms (Mm/s?] | apeax [mm/s?] | apms [mm/s
2 2.1405 12 138.41 58.08 211.66 89.31
5 2.4144 12 240.17 169.68 266.07 185.93
6 1.8764 12 1023.99 712.87 1118.92 752.25
10 2.2012 12 343.60 177.46 369.24 152.12
6 1.8764 40 - - 2448.68 1708.6
6 1.8764 | 180 - - 12010.0 8377.10

Table 7.2: Peak and RMS-accelerations from all group analyses.

In Table 7.2 characteristic acceleration values for the different group analyses with num-
ber of people, N, and walking frequency, f,, are shown together with the mode that was
attempted to excite. Based on the results in Figure 6.26(b) and 6.27(b) and the RMS-
accelerations, it is apparent that resonance occurred in the analysis with 12 people for
mode 5 and 6 and so the maximum dynamic response was obtained. The accelerations
for mode 5 are lateral, and were greater in magnitude than the vertical accelerations
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for mode 2 and 10. This is impressive considering how small the lateral force compo-
nents are compared to the vertical. From the Fourier transform of the accelerations
from the analysis with walking frequency 2.1405 Hz (see Figure 6.25(d)), it is obvious
that neither the right mode has been excited nor has resonance occurred. The attempt
to excite mode 10 was once again partially successful. The dominating frequency in the
Fourier transform seems to be the correct frequency, namely 6.6034 Hz, but a transient
response is dominating, indicating that resonance is not the case.

The two latter analyses in Table 7.2 simulate 1 and 5 streams of people crossing the
bridge, respectively. They were given a walking frequency equal to half the natural fre-
quency of the sixth mode, the global vertical mode. This was done to compare the ob-
tained accelerations to estimated values of acceleration given in the different guide-
lines due to groups of people. Analyses with streams of people causing resonance in
the lateral direction were not conducted because the horizontal natural frequency of
the bridge was outside the ranges given in the guidelines (see Section 7.5).

By comparing the analyses with different amounts of people (1, 12, 40 and 180 people)
and pacing rate 1.8764 Hz, an almost linear relation can be observed between number
of people and RMS-acceleration. Easily seen by calculating the ratio between agys and
N, a linear relation would render a constant ratio. This is extremely conservative and
suggests that the simulation is less valid for several pedestrians. In reality people will
never walk perfectly in phase, as has been modelled here, and accelerations are there-
fore expected to be much lower in reality.

7.3 Running

2]

Modenr. | f, [Hz] | apeax Imm/s?] | agms [mm/s®] | agms 10 s after walking off [mm/s
3 3.3217 100.66 49.71 1.84
4 3.4370 64.57 28.30 3.43
6 3.7528 356.85 229.46 77.30
7 2.7743 101.53 50.30 5.18
8 2.8641 67.15 22.74 0.70
9 3.0479 101.84 18.17 0.68
10 3.3018 119.72 65.42 4.03

Table 7.3: Vertical peak and RMS-accelerations from all analyses with running pedestri-
ans.

From the analyses with a single running pedestrian, three characteristic acceleration
values were extracted. In addition to the peak acceleration the RMS-acceleration was
calculated both at the peak and 10 s after the pedestrian had left the bridge. The lat-
ter RMS-values were to examine whether the dynamic response induced by the runner
could have any effect on pedestrians still on the bridge. As seen in Table 7.3, the great-
est accelerations are obtained when mode 6 is excited. Mode 6 also has the only Fourier
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transform with only one peak, indicating resonance. The accelerations for this mode
are quite large, keeping in mind that they are induced by a single person. It should also
be noted that the steady state solution did not have time to settle, and that the peak ac-
celeration kept increasing until the runner ran of the bridge at around 10 seconds. The
reoccurring round shapes in the acceleration response are due to decrease in accelera-
tion when there is no force on the deck since both feet are off the ground.

Mode 3, 7 and 10 were the torsional modes with natural frequency in the range of ei-
ther the fundamental running frequency or the 2"4 harmonic of the running frequency.
Even though none of the torsional mode-plots display the smooth resonance curve, ac-
celerations extracted at the edges and middle of deck reveal that some torsional motion
of the deck is present for the analysis attempting to excite mode 3 and 10. This is ob-
servable in Figure 6.30(a) and 6.32(c), where the vertical acceleration at the middle of
the deck is of noticeably smaller in magnitude than the vertical accelerations retrieved
at the edge. The corresponding plots of the accelerations in the frequency domain (See
Figure 6.30(b) and 6.32(c)) show that the natural frequency of mode 10 is present in both
acceleration responses. The former also contains the fundamental running frequency
in addition to the 3™ harmonic, implying that the response is a combination of several
mode shapes. The attempt to excite mode 7 was unsuccessful with the accelerations
at the middle being equal to the accelerations at the edges. Also, the Fourier trans-
form (see Figure 6.31(b)) was dominated by the third harmonic, implying that a high
frequency mode was somehow excited. The conclusion from this is that mode 10, the
global torsional mode, is the first torsional mode that was successfully excited. How-
ever, as addressed in the previous section about single walking pedestrian analyses, it
seems impossible to obtain resonance with frequencies higher than the sixth natural
frequency of the structure.

Modes 4 and 8 are local vertical modes, which explain the low accelerations. The de-
formation of the deck is simply too small, making it impossible to cause the deck to
resonate with these mode shapes, because higher harmonics of the forcing function
will excite other modes instead.

7.4 Damping

Table 7.4 presents the peak and RMS-accelerations from analyses attempting to excite
mode 2, 5 and 6 with normal and high damping (0.5% and 2%). As explained in Section
6.4, the increased damping should have a significantly greater effect on the response in
the analyses where resonance occurs, which is the case for mode 5 and 6. The results
from mode 2 are included to demonstrate just this. As shown in Table 7.4 the increase in
damping leads to a 8.4% decrease in RMS-acceleration for the walking in place scenario
when trying to excite mode 2, as opposed to 65.4% and 63.4% for the same analysis
exciting mode 5 and 6.

In addition to confirming that resonance really has occurred for the analysis with walk-
ing frequency 1.8764 Hz and 2.4144 Hz, these results show the importance of damping
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Walking across Walking in place
Modenr. | f, [Hz] | { [%]
Apeak (mm/s?] arms [mm/ s2] Apeak (mm/s?] arms [(mm/ 2]

2 2.1405 | 0.5 41.68 9.54 46.60 11.29

2 2.1405 2.0 37.72 8.29 42.47 10.34
Percentage deviance [%] 9.5 13.1 8.9 8.4

5 24144 | 05 19.97 14.11 22.89 15.37

5 24144 | 20 7.73 4.99 8.26 5.32
Percentage deviance [%] 61.3 64.6 63.9 65.4

6 1.8764 | 0.5 91.02 59.11 108.60 63.09

6 1.8764 | 2.0 42.30 21.89 51.02 23.10
Percentage deviance [%] 53.5 63.0 53.0 63.4

Table 7.4: Peak and RMS-accelerations from all analyses executed with different
amounts of damping.

when resonance is possible due to low natural frequencies. Although not pursued here,
analyses with different amounts of damping could be conducted to determine the min-
imum amount of damping necessary to satisfy the comfort criteria.

7.5 Comparison to Design Guidelines

The last section of this chapter investigates how the numerical results hold up to the
regulations stated in the design guidelines. All the calculations for the different guide-
lines are shown in Appendix D.

Vertical vibrations

Table 7.5 shows the highest vertical RMS-accelerations obtained with the different load-
ing scenarios, and compares these to the acceleration values calculated with the pro-
posed method in each guideline. The bottom row features the maximum limit ac-
celeration of each guideline, which would be the determining criteria if one used the
guidelines as basis for a dynamic study. Note that only Eurocode distinguishes between
different activities and different numbers of pedestrians on the bridge. HB-N400 and
BS5400 propose only one single way of calculating the probable acceleration in a bridge,
regardless of the activity or pedestrian density.

Two guidelines, BS-NA and Sétra, propose a range of permitted accelerations rather
than specific values. After hand calculations the criteria in BS-NA ranges from 0.5 -
1.747 m/s?, whereas Sétra states the rather liberal range of 0.5 - 2.5 m/s?, depending on
the bridges comfort class. Both Sétra and BS-NA present a rather arduous method for
calculating the accelerations in the deck (see Subsection 4.1.6 and 4.1.2), so they have
not been included here.
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By comparing the accelerations calculated with the guideline methods with the accel-
erations in the numerical model it is seen that the correlation varies. Eurocode gives a
reasonable value for the acceleration induced by a single pedestrian, whereas the other
guidelines have much higher values (which makes sense because their values need to
cover all activities). For running Eurocode gives a very conservative estimate, more than
twice as high as the numerical result. However, the value in Eurocode is probably based
on the assumption that the steady state solution is reached, which was not the case in
the running analysis giving the greatest accelerations (Figure 6.30(e)). Had the bridge
been longer, giving steady state response time to settle, it is believed that the Eurocode
would have given a better correlation. The accelerations for a group of people is much
higher than all calculated values, and the stream of people analysis yields accelerations
completely out of bounds for all guidelines. This confirms yet again that the analyses
with groups and streams of people are very conservative and not very realistic.

Activity Numerical | Eurocode5 | Handbook | BS 5400
model N400

Walking 0.063 0.080 0.175 0.175

Running 0.229 0.480 0.175 0.175

Group of people | 0.752 0.120 0.175 0.175

Stream of people | 8.377 1.656 0.175 0.175

CRITERIA - 0.700 0.698 0.969

Table 7.5: Numerical acceleration values compared to guidelines.

The numerical results are mainly within the limits of the different criteria. The first
three activities are within the limits set forth by BS 5400, and are just barely outside the
limits for HB-N400 and EC5. The ranges in Sétra and BS-NA are dependent on many
factors such as frequency of use and surroundings, so it’s hard to say whether or not the
numerical RMS-accelerations are all within their ranges. They would be within if the
whole range was included.

Horizontal vibrations

Sétra and Eurocode are the only guidelines that provide a limit to horizontal accelera-
tions independent of mode frequencies. The design guidelines with horizontal limits
dependent of frequency all state that lateral vibrations will not be a problem due to the
relatively high natural frequency of the first lateral mode (3.6216 Hz). Sétra limits the
acceleration to 0.10 m/s? to avoid lock-in effect, whereas Eurocode limits the horizon-
tal acceleration to 0.2 m/s? for normal use and 0.4 m/s? for exceptional conditions. As
seen in Table 7.6, the numerical model is well within the limit accelerations for a single
person. With a group of people the limit acceleration is exceeded according to Sétra.
However it’s still within the average comfort level defined in Figure 4.6(b) (described as
"merely perceptible"), which is in the range 0.15 - 0.3 m/s? [7]). According to Eurocode,
the numerical model is within limit acceleration. It should also be remembered that
the group analyses with the numerical model includes twelve people walking entirely
in sync, which is a worst case scenario. The true accelerations in the bridge with twelve
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people crossing it would almost certainly be lower. Note that the running analyses were
performed without the lateral force component because it is assumed equal to that of

walking, see 6.3.

Activity Numerical model | Setra (criteria) | Eurocode 0 (criteria)
Walking 0.015 0.10 0.2
Group of people | 0.186 0.10 0.2

Table 7.6: Numerical horizontal acceleration values compared to Sétra and Eurocode.



8 Conclusion

Single pedestrian analyses

After studying the results a few important modes stand out, namely mode 1 (first lat-
eral response of the arches), mode 5 (first lateral) and mode 6 (first vertical). Resonant
responses of the deck were only achieved by exciting mode 5 and 6, giving lateral and
vertical resonance, respectively. None of the torsional modes were excited to resonance.
The arches did in fact resonate with the natural frequency of mode 1, but their acceler-
ation will not be felt by the pedestrians. Instead, the sight of them moving might cause
discomfort, but their displacement amplitudes were less than 1 mm, which was con-
sidered negligible.

The results from the single pedestrian analyses seem reasonable and promising. It is
normal for footbridges to have a few modes dominate the response of the structure [11].
The arches are dominated by the first mode, while the deck is dominated by the first
global lateral and vertical modes, number 5 and 6, respectively. The response curves
due to running are not as smooth as the ones due to walking because the response is
damped out a little every time both feet are off the ground. Still, resonance was obtained
at one mode, namely mode 6. This shows that with regards to the dynamic behaviour
of the structure, there is little difference between running and walking - the dominating
mode is excited either way. Being able to simulate resonance like this is an indicator
that the method used for applying forces is valid.

Group analyses

The results from analyses with single pedestrian walking and groups of pedestrians (12
people) walking at the same frequency were almost identical, with only the amplitude
of the response being greater in the latter analyses. The obtained results from the group
analyses are very conservative since all the pedestrians were modelled to walk in phase
at the same frequency. This is very unlikely for smaller groups of people and will only
happen when lock-in occurs, at which point pedestrians will stop due to discomfort
created by the induced vibrations.

Guideline deficiencies

The maximum acceleration response from the single walking pedestrian analyses match
the predictions of the acceleration in Eurocode 5-2 well. The other guidelines investi-
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gated have poorer predictions, which is expected since they neither take into account
the number of pedestrians nor their activity. The RMS-accelerations obtained in the
running analyses differ from the values given by Eurocode, the results being lower by a
factor of about 2. This is because the steady state response is not reached in the critical
running analysis because the time it takes a runner to cross the bridge is too short. The
running results match the other guidelines better, but again, these are independent of
number of people and activity, so their accuracy is doubted. The group analysis results
have no correlation with the predicted acceleration values in the design guidelines and
the obtained RMS-accelerations in both lateral and vertical direction exceeded the ac-
celeration limits stated in the Eurocode and Handbook N400.

The formulas stated in the Eurocode are very simplified and don't take into account
the length of the bridge at hand. The duration of the pedestrian loading is dependent
on the length, and steady state resonance is more likely if the forcing is applied for a
longer time. The method implies that a long, slender footbridge would expect the same
accelerations as a short, less slender bridge so long as the mass and damping are the
same, which is a brute assumption. The way horizontal accelerations are covered in the
guidelines is also deficient. The guidelines propose methods within small frequency
ranges, meaning that no control check needs to be performed if the relevant horizontal
frequency of the bridge is outside that range. This disregards the fact that higher har-
monics of a walking frequency might excite the bridge, which was the case here with
the lateral mode.

Damping model

The amount of structural damping was proven important for the resonant response of
the structure. By increasing the structural damping by a factor of 4, the RMS-accelerations
in the single pedestrian analyses experiencing resonance were decreased by an average
of 61.0%. There is some uncertainty concerning the validity of the damping model. All
materials are given the same Rayleigh coefficients so that the entire structure has the
same amount of damping, and this way the damping of each mode is very predictable.
In reality it is not that simple. If different coefficients are given to different materials the
damping ratio of a mode will depend on the relative influence of the different materials,
leading to damping ratios that aren't as easily determined. Some higher modes might
then get unfavourably low damping ratios, possibly causing numerical noise. This has
not been investigated any further in this thesis. At resonance only the natural frequency
is present in the response, which is confirmed by the distinct singular peaks present
in the Fourier transform plots. This lead the authors to believe that the resonant re-
sponses, which are dimensioning for slender footbridges, would be unaffected by the
higher modes. By establishing which modes are critical, it can then be determined how
much damping is necessary in these modes to fulfill the comfort criteria.
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Final thoughts

The method introduced used in this thesis for calculating the dynamic response of a
slender footbridge due to pedestrian loading shows potential. For simulations of single
pedestrians the obtained responses are reasonable, and it is reasonable to assume that
the mode shapes excited in the numerical model are likely to be excited in reality as
well. There is much uncertainty regarding the influence of several pedestrians and how
they will interact with each other and the structure. One of the difficulties is that pedes-
trians can act as both dampers and amplifiers (negative dampers). The way it is done in
this thesis is highly conservative, and should be modified by somehow decreasing the
degree of synchronization.

The current available methods concerning pedestrian loading seem to be either too
simple or too complicated. Some of the design guidelines have very general formulas
(Eurocode and Handbook N400), and others, such as Sétra and British Standard have
rigorous mathematical approaches similar to the method used in this thesis, which may
be too much work for a simple footbridge. The numerical model created for this thesis is
believed to have predicted the dynamic response reasonably well. Further development
of the script and generalizing it even further (introducing several bridge-structures, var-
ious damping models, choices of materials, etc.) may be a valid, new approach for con-
sidering the dynamic response of a bridge before it is built. Perhaps a new guideline
specifically for slender footbridges needs to be written, and if so, perhaps a numerical
study like this can be helpful, either to establish new tabulated limits, or to develop
empirical formulas.
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9 Further Work

The procedure used in this thesis to calculate the responses due to pedestrian load-
ing shows potential by simulating resonance correctly and also predicting reasonable
critical modes. This final chapter gives some pointers on how the procedure might be
improved.

¢ An improved approach for calculating the dynamic response due to groups of
people is necessary. One option is to implement the methods stated in Sétra and
BS-NA. They both suggest applying a distributed load to the entire deck where
the direction of the load is always according to the direction of the vertical dis-
placements of the mode for which responses are being calculated [7], [44].

¢ Other damping categories should be tested and the alternatives are then to ei-
ther implement and learn to control structural damping or to perform analyses
through modal superposition procedures instead where global and modal damp-
ing are possible to implement.

* Modal dynamics is also an interesting alternative approach. With such linear per-
turbation methods there is no time period and hence the responses are presented
in the frequency domain [13]. Modal superposition is only applicable for linear
problems, and are in general best suited when the structural response is well cap-
tured by a a small number of modes, which is proven to be the case for the foot-
bridge in study.

¢ An experienced programmer might be able to rewrite parts of the script, making
it more compact and efficient.

* A parameter study on the damping coefficients of asphalt should be performed,
as it is expected to increase the total damping [57].
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A Appendix A - MATLAB Codes

The .txt-files in the different MATLAB scripts are obtained by reporting history outputs

from Abaqus.

A.1 Logarithmic Decay

This script was used to determine the numerical damping of the model based on the

cantilever beam. The script reads the time and displacements (reported to

‘numdamp<modenumber>Ts<timestep>.txt’ in Abaqus) from all ten beams and arranges
them in two matrices, (tmatrix and umatrix). This is done for all three step sizes; 0.01,
0.02 and 0.05. The plot subsequently calculates the logarithmic decay for each of the

ten cases, for each step size, and displays the values in a plot.

clear all
clc

set (0, 'DefaultAxesFontName', 'Times New Roman')
set (0, 'defaultlinelinewidth',1.3)
set (gca, 'fontsize', 18)

o°
o°

format long

w D=[12345¢67289 10 11 12];
n S%$STEPSIZE 0.01
12 Inputl=textread
13 Input2=textread
14 Input3=textread

15 Inputd=textread('numdampd.txt','', '"headerlines', 3);

('numdampl.txt','', 'headerlines',3);
(
(
(
16 InputS5=textread('numdamp5.txt','"', "headerlines',3);
(
(
(
(

'numdamp2.txt','"', "headerlines', 3);

'numdamp3.txt','', 'headerlines', 3);

17 Input6=textread('numdamp6.txt',"'"', "headerlines', 3);
18 Input7=textread('numdamp7.txt',"'"', "headerlines', 3);
19 Input8=textread('numdamp8.txt','"', '"headerlines',3);
20 Input9=textread

~

'numdamp9.txt','"', "headerlines', 3);

21 InputlO=textread('numdamplO.txt','', "headerlines', 3);
22 Inputll=textread('numdampl7.txt','', 'headerlines', 3);
23 Inputl2=textread('numdamp28.txt','', '"headerlines', 3);

25 Ll=length (Inputl)
26 L2=length (Input2)
27 L3=length (Input3);
28 L4=length (Inputd) ;
)
)

’

’

’

29 L5=length (Inputb
30 L6=length (Input6

’
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31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
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L7=length (Input7);
L8=length (Input8);
L9=length (Input?9) ;
L10=length (Inputl0) ;
Lll=length (Inputll);
Ll2=length(Inputl2);

Lengths=[L1,L2,L3,L4,L5,1.6,L7,L8,1.9,L10,L11,L12];
umatrix=zeros (max (Lengths), 12);
tmatrix=zeros (max (Lengths),12);

tmatrix (1l:
tmatrix (1l:
tmatrix (l:
tmatrix (1l:
tmatrix(1l:
tmatrix (1l:
tmatrix (1l:
tmatrix (1l:
tmatrix (1l:
tmatrix (1l:
tmatrix (1l:
tmatrix(1l:

Ll,1)=Inputl(:,1);
L2,2)=Input2(:,1);
L3,3)=Input3(:,1);
L4,4)=Inputd(:,1);
L5,5)=Inputb(:,1);
L6,6)=Input6(:,1);
L7,7)=Input7(:,1);
L8,8)=Input8(:,1);
L9,9)=Input9(:,1);
L10,10)=InputlO(:,1);
L11,11)=Inputll(:,1);
L12,12)=Inputl2(:,1);

umatrix (1l:
umatrix (1l:
umatrix (1l:
umatrix (1l:
umatrix (1l:
umatrix (1l:
umatrix (1l:
umatrix (1l:
umatrix (1l:
umatrix (1l:
umatrix (1l:
umatrix (1l:

L1l,1)=Inputl(:
L2,2)=Input2(:
L3,3)=Input3(:
L4,4)=Inputd (:
L5,5)=Inputb(:
L6,6)=Input6(:
L7,7)=Input?(:
L8,8)=Input8(:,2);

L9, 9)=Input9(:,2);

L10,10)=InputlO(:,2);
L11,11)=Inputll(:,2);
L12,12)=Inputl2(:,2);

12)i
12)i
1 2)i
12)i
1 2)
1 2);
1 2)

avgdamp = zeros (12,1);

totdamp = zeros(12,1);

$STEPSIZE 0.02
Inputl2=textread('numdamplTs02.txt"',"'"', 'headerlines', 3);
Input22=textread('numdamp2Ts02.txt"','"', '"headerlines', 3);
Input32=textread('numdamp3Ts02.txt"','"', 'headerlines', 3);
Input42=textread('numdamp4Ts02.txt"','"', '"headerlines', 3);
Input52=textread('numdamp5Ts02.txt"',"'"', '"headerlines', 3);
Input62=textread('numdamp6Ts02.txt"',"'"', 'headerlines', 3);
Input72=textread('numdamp7Ts02.txt','"', "headerlines', 3);
Input82=textread('numdamp8Ts02.txt"',"'"', 'headerlines', 3);
Input92=textread ('numdamp9Ts02.txt"','"', 'headerlines', 3);

InputlO2=textread('numdampl0Ts02.txt"','"', "headerlines', 3);
Inputll2=textread('numdampl7Ts02.txt','"', '"headerlines', 3);
Inputl22=textread('numdamp28Ts02.txt"',"'"', '"headerlines', 3);

Ll2=length (Inputl2
L22=length (Input22
L32=length (Input32
L42=length (Input42
L52=length (Input52

’

).
)
)i
).
)

’

’
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90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

L62=1length (Input62) ;
L72=length (Input72);
L82=length (Input82)

L92=length (Input92);

L102=length (Inputl02);
L1l12=length (Inputll?2);
L122=length (Inputl22);

’

Lengths2=[L12,L22,132,L42,152,L62,L72,L82,L92,L102,L112,L122];
umatrix2=zeros (max (Lengths2),12);
tmatrix2=zeros (max (Lengths2),12);

tmatrix2(1:L12,1)=Inputl2(:,1);
tmatrix2(1:L22,2)=Input22(:,1);
tmatrix2 (1:L32,3)=Input32(:,1);
tmatrix2(1:L42,4)=Inputd2(:,1);
tmatrix2 (1:L52,5)=Inputb52(:,1);
tmatrix2 (1:L62,6)=Input62(:,1);
tmatrix2 (1:L72,7)=Input72(:,1);
tmatrix2 (1:L82,8)=Input82(:,1);
tmatrix2(1:L92,9)=Input92(:,1);
tmatrix2 (1:L102,10)=Inputl02(:,1);
tmatrix2(1:L112,11)=Inputll2(:,1);
tmatrix2(1:L122,12)=Inputl22(:,1);
umatrix2 (1:L12,1)=Inputl2(:,2);
umatrix2 (1:L22,2)=Input22(:,2);
umatrix2 (1:L32,3)=Input32(:,2);
umatrix2 (1:L42,4)=Inputd2(:,2);
umatrix2 (1:L52,5)=Inputb52(:,2);
umatrix2 (1:L62,6)=Input62(:,2);
umatrix2 (1:L72,7)=Input72(:,2);
umatrix2 (1:L82,8)=Input82(:,2);
umatrix2 (1:L92,9)=Input92(:,2);
umatrix2 (1:L102,10)=Inputl02(:,2);
umatrix2 (1:L112,11)=Inputll2(:,2);
umatrix2 (1:L122,12)=Inputl22(:,2);

avgdamp2 = zeros (12,1);
totdamp2 = zeros(12,1);

$STEPSIZE 0.05
Inputl5=textread
Input25=textread

('numdamplTs05.txt',"'"', '"headerlines', 3);
('numdamp2Ts05.txt',"'"', '"headerlines', 3);
Input35=textread('numdamp3Ts05.txt"', "', '"headerlines', 3);
Input45=textread('numdamp4Ts05.txt"',"'"', '"headerlines', 3);
Input55=textread('numdamp5Ts05.txt"',"'", '"headerlines', 3);
Input65=textread('numdamp6Ts05.txt',"'"', "headerlines', 3);
Input75=textread('numdamp7Ts05.txt"',"'"', 'headerlines', 3);
Input85=textread('numdamp8Ts05.txt"','", 'headerlines', 3);
Input95=textread('numdamp9Ts05.txt"','"', 'headerlines', 3);
InputlO5=textread('numdampl0Ts05.txt"','"', "headerlines', 3);
InputllS5=textread('numdampl7Ts05.txt"',"'"', "headerlines', 3);
Inputl25=textread('numdamp28Ts05.txt"',"'"', '"headerlines', 3);

1

Ll15=length (Inputlb);
L25=length (Input2h);
)
)

’

L35=length (Input35
L45=length (Input45

’
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149 L55=length (Inputbb);
150 L65=length (Inputéb);
151 L75=length (Input75)
152 L85=length (Input85);

153 L95=length (Input95);

154 L105=length (Inputl05);

155 L115=length (Inputllh);

156 L125=length (Inputl25);

157

158 Lengths5=[L15,L25,L35,L45,L55,L65,L75,L85,L95,1L105,L115,L125];
159 umatrix5=zeros (max (Lengths5),12);

160 tmatrix5=zeros (max (Lengths5),12);

161

’

171 tmatrix5(1:L105,10)=Inputl05

162 tmatrix5(1:L15,1)=Inputl5(:,1);
163 tmatrix5(1:L25,2)=Input25(:,1);
164 tmatrix5(1:L35,3)=Input35(:,1);
165 tmatrix5(1:L45,4)=Input4d5(:,1);
166 tmatrix5(1:L55,5)=Input55(:,1);
167 tmatrix5(1:L65,6)=Input65(:,1);
168 tmatrix5(1:L75,7)=Input75(:,1);
169 tmatrix5(1:L85,8)=Input85(:,1);
170 tmatrix5(1:1L95,9)=Input95(:, 1);
(:
172 tmatrix5(1:L115,11)=Inputll5(: 1),
173 tmatrix5(1:L125,12)=Inputl25(:,1);
174
175 umatrix5(1:L15,1)=Inputl5(:,2);
176 umatrix5(1:L25,2)=Input25(:,2);
177 umatrix5(1:L35,3)=Input35(:,2);
178 umatrix5(1:L45,4)=Input4d5(:,2);
179 umatrix5(1:L55,5)=Input55(:,2);
180 umatrix5(1:L65,6)=Input65(:,2);
181 umatrix5(1:L75,7)=Input75(:,2);
182 umatrix5(1:L85,8)=Input85(:,2);
183 umatrix5(1:L95,9)=Input95(:,2);
184 umatrix5(1:L105,10)=Inputl05(:,2);
185 umatrix5(1:L115,11)=Inputll5(: 2);
186 umatrix5(1:L125,12)=Inputl25(:,2);
187
188 avgdampb5 = zeros(1l2,1);
189 totdamp5 = zeros(12,1);
190
191 %%
192 $STEPSIZE 0.01
193 for k = 1:12
194 3=0;
195 clear umaks
196 clear tmaks
197 for 1 =1:(Lengths (k)-2)
198 if umatrix (i+l,k)>0 && umatrix (i+1,k)>umatrix (i, k) &&
umatrix (i+1, k) >umatrix (i+2, k)
199 Jj=3+1;
200 tmaks (j)=tmatrix (i+1l,k);
201 umaks (j)=umatrix (i+1,k);
202 end
203 end
204
205 $umaks

206 %73
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207 A=zeros (1, length (umaks)-1);

208 At=zeros (1, length (umaks)-1);

209 for i=1l:length (umaks)-1

210 A(i)=log (umaks (i) /umaks (i+1));

211 At (1) =tmaks (i+1)-tmaks (1) ;

212 end

213

214 %$Average logarithmic decrement and period

215 Aavg=sum (A (:))/length(a);

216

217 %$Total logarithmic decrement calculated using first and last maxima
218 Atot=1/ (length (umaks) ) *log (umaks (1) /umaks (length (umaks))) ;
219

220 avgdamp (k,1) = 100xaavg/ (2*xpi)

221 totdamp (k,1) = 100*xAatot/ (2xpi)

222

223 end

224
225 $STEPSIZE 0.02
26 for k = 1:12

227 3=0;

228 clear umaks

229 clear tmaks

230 for 1 =1:(Lengths2(k)-2)

231 if umatrix2 (i+1l,k)>0 && umatrix2 (i+1,k)>umatrix2 (i, k) &&
umatrix2 (i+1, k) >umatrix2 (i+2, k)

232 Jj=3+1;

233 tmaks2 (j)=tmatrix2 (i+1l,k);

234 umaks2 (j)=umatrix2 (i+1,k);

235 end

236 end

237

238 Fumaks

239 %7

240 A2=zeros (1, length (umaks2)-1);

241 At2=zeros (1, length (umaks2)-1);

242 for i=1l:length (umaks2)-1

243 A2 (1)=log (umaks2 (i) /umaks2 (i+1));

244 At2 (1) =tmaks2 (i+1)-tmaks2 (i) ;

245 end

246

247 %$Average logarithmic decrement and period

248 Aavg2=sum (A2 (:))/length (A2);

249

250 %$Total logarithmic decrement calculated using first and last maxima

251 Atot2=1/ (length (umaks2)) *log (umaks2 (1) /umaks?2 (length (umaks2)));

252

253 avgdamp2 (k,1) = 100xaavg2/ (2xpi)

254 totdamp2 (k,1) = 100*xAtot2/ (2+pi)

255

256 end

259 $STEPSIZE 0.05
260 for k = 1:12

261 3=0;
262 clear umaks
263 clear tmaks

264 for i =1:(Lengthsb5 (k)-2)
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if umatrix5(i+l,k)>0 && umatrix5(i+1,k)>umatrix5 (i, k) &&
umatrix5(i+1, k)>umatrix5(i+2, k)
J=3+1;
tmaks5 (j)=tmatrix5 (i+l,k);
umaks5 (j)=umatrix5 (i+l,k);
end
end
Sumaks
%]
AS5=zeros (1, length (umaks5)-1);
At5=zeros (1, length (umaks5)-1);
for i=1:length (umaks5)-1
A5 (1)=log (umaks5 (i) /umaks5 (i+1));
At5(i)=tmaks5 (i+1) -tmaks5(i);
end
%$Average logarithmic decrement and period
Aavg5S5=sum (A5 (:))/length (a5);
%$Total logarithmic decrement calculated using first and last maxima
Atot5=1/ (length (umaks5) ) xlog (umaks5 (1) /umaks5 (length (umaks5)));
avgdamp5 (k, 1) = 100*xAavg5/ (2*xpi)
totdamp5 (k,1) = 100xAtot5/ (2xpi)
end
$PLOTS
plot (D, avgdamp, '-ro")
hold on
plot (D, totdamp, '-bo")
hold on
plot (D, avgdamp2, '-r"")
hold on
plot (D, totdamp2, '-b"")
hold on
plot (D, avgdamp5, '-rx")
hold on
plot (D, totdamp5, '-bx")
grid on

xlabel ('Mode Number')

ylabel ('Damping Ratio, \zeta [%]'")
l=legend('\zeta_{avg,0.01}','\zeta_{tot,0.01}', '"\zeta_{avg,0.02}",
'\zeta_{tot,0.02}"', "\zeta_{avg,0.05}"', "\zeta_{tot,0.05}"', '"location', "noqy
set (1, 'FontSize', 14)
axis ([0 13 -0.1 2])

A.2 Fast Fourier Transform

This script reads the acceleration and time and performs a discrete Fourier transform.
The plots are presented throughout Chapter 6. The accelerations are reported in Abaqus
as "Voll4Hz<frequency>.txt".

thwest');
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1 clear all
close all
clc

2

3

4

5 set (0, 'DefaultAxesFontName', 'Times New Roman')
6 set (0, 'defaultlinelinewidth',1.3)

7 set (0, 'DefaultAxesFontSize', 18)

8

9

Input=textread('Voll4Hz18764.txt',"'"', "headerlines',3);
10 t=Input(:,1);
n u=Input(:,2);

12 Fs=100;
13 X=t;
4 y=u;

15y = detrend(y,0);

16 L=length(y)

17 NFFT = 2”nextpow2 (L) % Next power of 2 from length of y
8 Y = fft(y,NFFT)/L;

v f = Fs/2+linspace(0,1,NFFT/2+1);

21 % Plot single-sided amplitude spectrum.
22 width=370;

2 FigHandle = figure('Position', [100, 100, width, 3001);
25 plot (f,2xabs (Y (1:NFFT/2+1)))

26 grid on

27 x1im ([0, 307])

28 %title('Single-Sided Amplitude Spectrum of y(t)')

29 xlabel ('Frequency (Hz)')

30 ylabel ("|Y(f)]")

A.3 Root Mean Square

This script calculates the root mean square acceleration for the response plots (see
3.2.2).

1 close all
clear all

set (0, 'DefaultAxesFontName', 'Times New Roman')
set (0, 'defaultlinelinewidth',1.3)
set (0, 'DefaultAxesFontSize', 18)

format long g

Input=textread('VolllHz21405.txt"',"'"', "headerlines', 3);

100 t=Input(:,1)-1; %Minus 1 because the time start at 1 due to the
gravity step, for which we do not have outputvalues for
acceleration since it is a static step

n aleft=Input(:,2);

12 amid=Input (:,3);

13 aright=Input(:,4);

© ® N o o s W N

15 amax=zeros(3,2);
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[amax (1,1),amax (1,2) ]=max (abs (aleft));
[amax (2,1),amax (2, 2) ]=max (abs (amid)) ;
[amax (3, 1) ,amax (3,2) ]=max (abs (aright));

amax
[apeak, i]=max (amax (:,1));

if i==

pos=1

arms=rms (aleft (amax (1, 2) :amax (1,2)+100)); % +100 because the

timestep

%is 0.01 s, so 100 entries later equals one second later

arms2=rms (aleft (length(aleft)-100:1length(aleft))); %Only used to

%$calculate rms for the last second for running analyses
elseif i==

pos=2

arms=rms (amid (amax (1,2) :amax (1,2)+100));

arms2=rms (amid(length (amid) -100:length (amid))); %Only used to

% calculate rms for the last second for running analyses
elseif i==

pos=3

arms=rms (aright (amax (1,2) :amax (1, 2)+100));

arms2=rms (aright (length (aright)-100:1length(aright))); %Only
used to

% calculate rms for the last second for running analyses
end
arms
arms2




B AppendixB

B.1 Python Coding Explained

This appendix aims to describe the parts of the Python code that have been written or
rewritten by the authors to perform the analyses discussed in this thesis. Descriptions
of what each code section does are included hereunder, while in Appendix F, which
contains the entire script (digitally), more in-depth comments are given, explaining
how the coding actually works, as a guide for whoever might want to continue devel-
oping the script, or just understand it. There are quite a few smaller changes that have

been made, such as extra keywords for new parameters, etc.

These changes are not in-

cluded in this part. However, absolutely everything that has been changed is marked in
the code by writing #KVDP!! and an additional comment after the changed line. For
both appendices, knowledge of the Python language is recommended.

Part 1 - The load deck

Defining the load deck

Here, the load deck part is defined, with the same dimensions as the deck of the bridge.
The load deck was created so that geometric sets could easily be created where the
forces were to be applied. In this function four points are defined, which define the

perimeter of the load deck.

Segment can be found in line 94-122 in the script.

class Loaddeck:

1

2 def __init__ (self, length, width):
3 self.length = length

4 self.width = width

self.pl = np.array((-length/float(2), 0)
self.p2 np.array((self.pl[0] + length,

6
7 self.pl[1l] ),
8
9

self.p3 np.array((self.pl[0] + length,
self.width ),

self.p4 np.array ((-length/float (2),

self.divPoints [1

self.sketch None

self.part None

self.instance

None

self.width),

, dtype=float)
dtype=float)

dtype=float)
dtype=float)
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Defining new material and adding material damping

The material that is going to be assigned to the load deck is defined in the shown para-
graph, with material damping added. Material damping is added to all materials, but
only the asphalt material is seen here.

Segment can be found in line 580-590 in the script.

def createProfiles(self):

1

2 asp = self.bridgeModel.Material (name="'Asphalt')

3 asp.Elastic(table=((2000, 0.3),), type=ISOTROPIC)

4 asp.Density (table=((2.24E-9,),))

5 asp.Damping (alpha=0.092091, beta=0.000187)
Creating the load deck

Function ceateLoadDeck() creates the load deck with the same dimensions as the bridge
deck, and is presented here in parts. This first segment creates the deck and assigns a
section and material orientation to it. The load deck has the properties of an asphalt
layer, so it serves a physical function. It is later in the script tied to the bridge deck.

Segment can be found in line 1586-1635 in the script.

def createloadDeck (self) :

1
2
3 self.loaddeck = Loaddeck (self.length, self.width - 2xself.
4 hangersZspacing - 2 x self.bufferWidth)

5 self.loaddeck.sketch = self.bridgeModel.ConstrainedSketch (
6 name="'LoadDeck', sheetSize = self.sheetSize)

7

8

9

self.loaddeck.sketch.Line (self.loaddeck.pl,self.loaddeck.p2)
self.loaddeck.sketch.Line (self.loaddeck.p2,self.loaddeck.p3)
10 self.loaddeck.sketch.Line (self.loaddeck.p3,self.loaddeck.p4)
11 self.loaddeck.sketch.Line (self.loaddeck.p4,self.loaddeck.pl)

13 self.loaddeck.part = ...
self.bridgeModel.Part (dimensionality=THREE_D,
14 name="'LoadDeck', type=DEFORMABLE_BODY)
15
16 self.loaddeck.part.BaseShell (sketch=self.loaddeck.sketch)
17
18 dSet = self.loaddeck.part.Set (name="'LoadDeck_Set',
19 faces=(self.loaddeck.part.faces))
20
21 self.loaddeck.part.SectionAssignment (region=dSet,
22 sectionName="'lLoadDeck_Section', offset=0.0,
23 offsetType=MIDDLE_SURFACE)
24
25 self.loaddeck.part.MaterialOrientation (
26 region=self.loaddeck.part.sets['LoadDeck_Set'],
27 orientationType=GLOBAL, axis=AXIS_1,
28 additionalRotationType=ROTATION_NONE, localCsys=None,

fieldName="'")
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Partitioning the load deck

In the following segment a sketch containing vertical and horizontal lines is created.
The sketch will be used to partition the load deck. Later on, sets will be created at the
vertices of the partition, and this way forces can be applied where wanted. The partition
is dependent on where the loads are selected to be applied in the parameter selector; at
the left edge, in the middle or at the right edge, hence the if-sentence at the beginning.
Additionally, the partitioning depends on the stride length and step width of the pedes-
trians. Both can be selected in the parameter selector that appears when running the
script. At the end of this segment a instance of the load deck is created and rotated in
Assembly so that it becomes horizontal and lines up perfectly with the other instances.

Segment can be found in line 1640-1717 in the script.

skLD = self.bridgeModel.ConstrainedSketch (

1

2 name='LoadDeck_Partition', sheetSize = self.sheetSize)

3

4 if (self.numOfRow==1) :

5 if (self.rowposition==1):

6 a=0.

7 b=1.

8

9 elif (self.rowposition==2):

10 a=1/2.

1 b=0.

12

13 elif (self.rowposition==3):

14 a=1.

15 b=-1.

16

17 skLD.Line ((self.loaddeck.pl[0] ,self.loaddeck.pl[1l] +
18 axself.loaddeck.width - self.stepwidth/2. +

19 b* (self.stepwidth/2.+ 500.)), (self.loaddeck.p2[0],

20 self.loaddeck.p2[1l] + axself.loaddeck.width -

21 self.stepwidth/2. + bx(self.stepwidth/2.+ 500.)))

22

23 skILD.Line((self.loaddeck.pl[0] ,self.loaddeck.pl[1l] +
24 axself.loaddeck.width + self.stepwidth/2. +

25 bx (self.stepwidth/2.+ 500.)), (self.loaddeck.p2[0],

26 self.loaddeck.p2[1l] + axself.loaddeck.width +

27 self.stepwidth/2. + bx(self.stepwidth/2.+ 500.)))

28

29 else:

30 for i in range(l,self.numOfRow + 1):

31 skLD.Line((self.loaddeck.pl[0] ,self.loaddeck.pl[1l] +
32 ixself.loaddeck.width/ (float (self.numOfRow +1)) -
33 self.stepwidth/2.), (self.loaddeck.p2[0],

34 self.loaddeck.p2[1] + ixself.loaddeck.width/ (

35 float (self.numOfRow +1)) - self.stepwidth/2.))

36

37 skLD.Line ((self.loaddeck.pl[0] ,self.loaddeck.pl[1l] +
38 i*self.loaddeck.width/ (float (self.numOfRow +1)) +
39 self.stepwidth/2.), (self.loaddeck.p2[0],

40 self.loaddeck.p2[1l] + ixself.loaddeck.width/ (

2 float (self.numOfRow +1)) + self.stepwidth/2.))
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for i in range(l, int(self.length/self.stridelength + 1)):
skILD.Line((self.loaddeck.pl[0] +ixself.stridelength,
self.loaddeck.pl[1]), (self.loaddeck.pd4[0] +
ixself.stridelength ,self.loaddeck.p4([1l]))

self.loaddeck.part.PartitionFaceBySketch (
faces=self.loaddeck.part.faces, sketch=skLD)

self.loaddeck.instance = .
self.bridgeModel.rootAssembly.Instance (
name="'LoadDeck', part=self.loaddeck.part)

self.loaddeck.instance.rotateAboutAxis (axisPoint=(0, 0, 0),
axisDirection=(1,0,0),angle=90)

self.loaddeck.instance.translate ((0, O,
self.hangersZspacing +
self.bufferWidth))
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Creating sets on the load deck

The segment below creates the sets at which the concentrated forces representing foot-
steps will be applied. If the pedestrian is walking across the bridge, the right and left
footsteps are one stridelength apart in the longitudinal direction, and one stepwidth
apart in the lateral direction. If the pedestrian is walking in place, the left and right foot-
steps are adjacent, one stepwidth apart. The sets are created as 'RightStep{0}_{1}’ and
"LeftStep{0}_{1}’ in the for-loops, where both {0} and {1} are counters with added value
for each cycle. The number replacing 0 represents the row number, counting from the
row farthest to the left, while the number replacing 1 represents which footstep it is.
‘RightStep{3}_{18}’ thus means right footstep number 18 in row number 3. The num-
ber of rows depends on how many rows of pedestrians have been specified by the user
through the parameter selector.

Segment can be found in line 1725-1772 in the script.

1 if (self.numOfRow==1) :

2 for i in range(l, int(self.length/self.stridelength), 2):
3 LoadSetLeft = (self.loaddeck.pl[0]+

4 (i+1) *self.stridelength , 0, self.loaddeck.pl[l] +
5 axself.loaddeck.width - self.stepwidth/2. +

6 bx (self.stepwidth/2.+ 500.) + self.hangersZspacing +
7 self.bufferWidth)

8

9 self.bridgeModel.rootAssembly.Set (

10 name='LeftStepl_ {0}'.format ((i+2)/2),vertices=(

11 self.loaddeck.instance.vertices.findAt (

12 (LoadSetLeft,))))

13

14 if self.walkInPlace == False:

15 LoadSetRight = (self.loaddeck.pl[0] +

16 ixself.stridelength , 0, self.loaddeck.pl[1l] +
17 axself.loaddeck.width + self.stepwidth/2. +

18 bx (self.stepwidth/2.+ 500.) +

19 self.hangersZspacing + self.bufferWidth)

20

21 elif self.walkInPlace == True:

22 LoadSetRight = (self.loaddeck.pl[0] +

23 (i+l) *self.stridelength , 0, self.loaddeck.pl[1]
24 + axself.loaddeck.width + self.stepwidth/2. +
25 bx (self.stepwidth/2.+ 500.) +

26 self.hangersZspacing + self.bufferWidth)

27

28 self.bridgeModel.rootAssembly.Set (

29 name='RightStepl_ {0}'.format ((i+2)/2),vertices=(
30 self.loaddeck.instance.vertices.findAt (

31 (LoadSetRight,))))

32

33 else:

34 for j in range(l,self.numOfRow + 1):

35 for i in range(l, int(self.length/self.stridelength), 2):
36 LoadSetLeft = (self.loaddeck.pl[0] +

37 (i+1) #self.stridelength , 0, self.loaddeck.pl[l] +
38 jxself.loaddeck.width/ (float (self.numOfRow +1)) -

39 self.stepwidth/2. + self.hangersZspacing +
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self.bufferWidth)

self.bridgeModel.rootAssembly. Set (

name='"LeftStep{0}_{1}"'.format (j, (i+2)/2), vertices=(
self.loaddeck.instance.vertices.findAt (
(LoadSetLeft,))))
if self.walkInPlace == False:

LoadSetRight = (self.loaddeck.pl[0] +

ixself.stridelength , 0, self.loaddeck.pl[l] +
jxself.loaddeck.width/ (float (self.numOfRow +1))
+ self.stepwidth/2. + self.hangersZspacing +
self.bufferWidth)

elif self.walkInPlace ==True:
LoadSetRight = (self.loaddeck.pl[0] +
(i+l) *self.stridelength , 0, self.loaddeck.pl[1]
+ Jjxself.loaddeck.width/ (float (self.numOfRow +1)
+ self.stepwidth/2. + self.hangersZspacing +
self.bufferWidth)

self.bridgeModel.rootAssembly. Set (
name='RightStep{0}_{1}'.format (j, (i+2)/2),vertices=(
self.loaddeck.instance.vertices.findAt (
(LoadSetRight,))))
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Meshing the load deck

The function mesh() hereunder seeds and meshes all the different instances (only the
part of the function meshing the load deck is included here). The load deck is assigned
element type S4R and is given a global seed size equal to variable meshSizeLD. This
variable is later in the script set to be equal to input variable meshSizeD.

Segment can be found in line 3025-3060 in the script.

def mesh(self, meshSizeD, meshSizelD, meshSizeH, meshSizeB,
meshSizeT,

2 meshSizeA) :

3 self.logMesh (meshSizeD, meshSizelD, meshSizeH, meshSizeB,

4 meshSizeT, meshSizel)

print "meshing..\n"

for key in self.bridgeModel.rootAssembly.instances.keys():

inst = self.bridgeModel.rootAssembly.instances[key]
10
1 if inst.name == 'LoadDeck':
12 if self.numOfDim ==
13
14 elemTypel = mesh.ElemType (elemCode=S4R,
15 elemLibrary=STANDARD)
16 f = inst.faces
17 faces = f.getSequenceFromMask (mask=('[#1 ]"', ), )
18 pickedRegions =(faces, )
19
20 self.bridgeModel.rootAssembly.seedPartInstance (
21 regions=(inst,), size=meshSizelD)
22 self.bridgeModel.rootAssembly.generateMesh (

23 regions=(inst,))
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Part 2 - Defining analysis steps and outputs

Modal and complex frequency analyses

The function defineStepsAndBC() governs the next 7 segments. In addition to creat-
ing analysis steps and defining boundary conditions it defines the concentrated forces
with their corresponding amplitudes and ties the deck and load deck together. The first
segment below defines both a frequency step and a complex frequency step after the
gravity step. This is only done if the input variable "Modal" is changed from default
value 0’ to '1’ in the parameter selector. If the frequency steps are included no other
analysis steps are defined after that. This option can be used to obtain the natural fre-
quencies of the structure, the corresponding modes and the damping ratios for each
mode.

Segment can be found in line 4316-4334 in the script.

def defineStepsAndBC (self):

1

2

3 #(...)

4

5 if self.modal == True:

6 st = self.bridgeModel.FrequencyStep (name="'Modal',
7 previous='Gravity',normalization=MASS,

8 numEigen = self.numEigen)

9

10 name = st.fieldOutputRequestStates.keys () [0]
1 st.fieldOutputRequestStates.changeKey (

12 fromName=name, toName="'FieldOutputStepModal'
13

14 st = self.bridgeModel.ComplexFrequencyStep (
15 name="'ComplexFrequency', previous='Modal',
16 numEigen = self.numEigen)

17

18 name = st.fieldOutputRequestStates.keys () [0]
19 st.fieldOutputRequestStates.changeKey (

20 fromName=name, toName="'FieldOutputComplexFrequency")




B.1. PYTHON CODING EXPLAINED 147

Creating analysis step for pedestrian loading and defining additional sets for extract-
ing output variables

If the input variable "Modal" is kept unchanged, an implicit dynamic step is created, as
seen in the section below. The total time period of the analysis step is dependent on
the walking frequency, the length of the bridge and the number of people crossing the
bridge.

This section also defines 11 specific sets on the footbridge where acceleration (A1, A2,
A3) and displacement values (U1, U2, U3) are extracted by defining history outputs at
those points. These 11 sets are at the tops of the two arches, and at the left edge, middle
and right edge at 1/4, 1/2 and 3/4 of the length of the bridge. The procedure for defining
the sets and extracting the history output is identical for all 11 points, and therefore only
one example has been included in the segment below.

Segment can be found in line 4350-4550 in the script.

if self.modal == False:

1
2
3 self.bridgeModel.ImplicitDynamicsStep (nlgeom=0N,
4 initialInc=self.timestep, maxInc=self.timestep,
5 minInc=1.E-10, maxNumInc=10000, name='Pedestrians',
6 previous='Gravity',

7 timePeriod=(self.length/self.stridelength)+1/self.freq +
8 (self.numOfPeople-1)x2./self.freq)

9

10 MidPointArch = (self.loaddeck.pl[0] +self.length/2.,

11 self.elevation, self.loaddeck.pl[1l]

12 self.bridgeModel.rootAssembly.Set (

13 name='TopArc',vertices=(self.arc.instance.vertices.findAt (
14 (MidPointArch,))))

15

16 ( )

17

18 regionTop=self.bridgeModel.rootAssembly.sets['TopArc']

19 self.bridgeModel.HistoryOutputRequest (

20 name='"HistoryOutputArch', createStepName='Pedestrians',

21 variables=('Al','A2','A3"','UL',"U2",'U3",'V1"','V2"','V3"),
22 frequency=1, region=regionTop, sectionPoints=DEFAULT,

rebar=EXCLUDE)
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Part 3 - Pedestrian Loading

Defining Fourier series

The Fourier series used to describe the three different force components are defined in
the following. The dynamic load factors (alpha-values) used in the Fourier series de-
pend on the load model, which is chosen in the parameter selector. At the end of this
section there is a small if-sentence, which linearly ramps the static part of the verti-
cal force amplitude up at the beginning and back down at the end, so that the force is
applied gradually, as opposed to suddenly.

Segment can be found in line 5426-5616 in the script.

t=np.linspace(0,1./self.freq,100)

1

2 fvert=np.linspace(0,0,100)

3 fstatic=np.linspace(1l,1,100)
4 flat=np.linspace(0,0,100)

5 flong=np.linspace(0,0,100)

6

7 if self.loadmodel==1:

8 alphalvert=0.37

9 alpha2vert=0.10

10 alpha3vert=0.12

1 alphadvert=0.04

12 alphabvert=0.08

13

14 alphallat=0.039

15 alpha2lat=0.010

16 alpha3lat=0.043

17 alphad4lat=0.012

18 alpha5lat=0.015

19

20 alphal_2long=0.037

21 alphallong=0.204

22 alpha3_2long=0.026

23 alpha2long=0.083

24 alphab_2long=0.024

25

26 elif (self.loadmodel==2 and self.freg=2.2):
27 alphalvert=0.4

28 alpha2vert=0.1

29 alpha3vert=0.1

30 alphadvert=0.0

31 alphabvert=0.0

32

33 #(...)

34

35 amp=0

36

37 for i in range(0,100):

38

39 fvert[i]=alphalvert*math.sin (2«math.pi*xself.freqgq*t[i])
40 + alpha2vertsmath.sin (2+x2+«math.pixself.fregxt[i])
121 + alpha3vertsmath.sin (2+x3*math.pixself.freqgxt[i])

42 + alphadvertsmath.sin (2+x4+math.pixself.fregxt([i])
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+ alphabvertsmath.sin (2+x5+«math.pixself.freqgxt[i])

flat[i]=alphallatsmath.sin(2+«math.pi*self.freq/2.xt[1])
+ alpha2lat*math.sin (2+2+xmath.pixself.freq/2.+t[1])

+ alpha3lat*math.sin(2x3*math.pi*self.freq/2.+t[i])
+ alphadlat+math.sin(2+4xmath.pixself.freq/2.+t[1])
+ alphaSlat+math.sin (2+5+«math.pixself.freq/2.*t[1])

flong[i]l=alphal_2long*math.sin (2x1/2+math.pi*xself.freqg*t[i])
+ alphallong*math.sin (2+x1l+math.pixself.freqgxt[i])

+ alpha3_2long*math.sin (2+3/2+math.pi*self.fregxt[i])

+ alpha2long*math.sin (2+*2+«math.pixself.freqgxt[i])

+ alpha5_2long*math.sin (2x5/2+math.pi*self.fregxt[i])

if 1<20:
fstatic[i]=amp
amp=amp+1/20.

elif i>89:
amp=amp-1/10.
fstatic[i]=amp

elif self.loadmodel ==
if 1<20:
fstatic[i]=amp
amp=amp+1/20.

elif i=70:
fvert[1]=0
fstatic[1]=0
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Creating load amplitudes

Amplitudes for each force component for every single footstep are created in the fol-
lowing segment. Only the amplitudes for the vertical and lateral components due to
the right footsteps are included here because the procedure is identical for all ampli-
tudes, so including all of them here was deemed redundant. The rest of the code can be
found in Appendix F.

All amplitudes are defined for the entire time period of the Pedestrian analysis step. An
amplitude is equal to 0 as long as the footstep it represents is not supposed to be active,
and equal to the Fourier series during the time the footstep is supposed to be applied to
the deck. All forces are equal to a constant G times the corresponding amplitude, and
this way all forces are present during the entire analysis step, but only nonzero at the
right time.

Next two Segment can be found in line 5641-5966 in the script.

1 for 1 in range(l, int(self.length/self.stridelength + ...
2xself.numOfPeople - 2), 2):

2

3 self.bridgeModel.TabularAmplitude (

4 name='AmplitudeRightVert_ {0}'.format ((i+1l)/2), timeSpan=STEP,

5

6 smooth=SOLVER_DEFAULT, data=(((i-1)x1/self.freqg+t[0], fvert[0] + ...
fstatic[0]), ((i-1)*1/self.freq +t[1l] , fvert[l] + ...
fstatic[1l]), ((i-1)=*1/self.freq + t[2], fvert[2] +
fstatic[2]), ((i-1)*1/self.freq +t[3] ,fvert[3] + fstatic[3]),

7

8

9 H#(...)

10

11

12 ((i-1)*1/self.freq +t[97] , fvert[97] + fstatic[97]),

((1-1)*1/self.freq + t[98], fvert[98] + fstatic[98]),
((1i-1)*1/self.freq +t[99] ,fvert[99] + fstatic[99])))

Note that the static load component is excluded from the lateral and longitudinal am-
plitudes:

self.bridgeModel.TabularAmplitude (
name='AmplitudeRightLat_{0}'.format ((i+1l)/2), timeSpan=STEP,

T

smooth=SOLVER_DEFAULT, data=(((i-1)*1/self.freq+t[0], flatl[0]),
((1-1)*1/self.freq +t[1] , flat[l]), ((i-1)x1/self.freqg +
t[2], flat[2]), ((i-1)x1/self.freq +t[3] ,flatl[3]),

#(...)

© ® N o «a

0 ((i-1)*1/self.freq +t[97] , flat[97]), ((i-1)*1/self.freq + t[98],
flat[98]), ((i-1)x1/self.freq +t[99] ,£flat[99])))
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Defining the concentrated forces

The following two segments define the concentrated forces in all three directions at the
correct locations with the corresponding amplitudes defined above. The former seg-
ment will create loads along the entire row(s), thereby modelling pedestrians walking
across the bridge. The latter section will create loads at a specific number of points
equal to the number of pedestrians, and models pedestrians walking in place. Only one
of the segments will be executed depending on the value given to input variable "Walk
across bridge or in place’.

The if-loop at the beginning defines the "positionnumber" which is used in the for-
loop to place the pedestrians at either 1/4,1/2 or 3/4 of the length of the bridge if they
are stepping in place. This is because the different modes have their maximum at dif-
ferent places, and the greatest dynamic response is obtained if the pedestrians excite
the different modes at their maximum.

Segment can be found in line 5967-6027 in the script.

1

2 1if self.walkInPlace == True:

3 if self.walkInPlacePos ==

4 positionnumber =1/2.

5 elif self.walkInPlacePos == 2:
6 positionnumber=1

7 elif self.walkInPlacePos ==

8 positionnumber=3/2.

9

1o for i in range(l, int(self.length/self.stridelength +
1 2+«self.numOfPeople - 2), 2):

B #(...)

15 for k in range(l,self.numOfRow + 1):

16 for j in range(l,i+2,2):
17 if (self.walkInPlace == False and (abs((i-j)/2 + 1) =<
18 self.numOfPeople) and

j<int (self.length/self.stridelength)):

20 regionRight=self.bridgeModel.rootAssembly.

21 sets['RightStep{0}_{1}'.format (k, (J+1)/2)1]

22

23 regionLeft=self.bridgeModel.rootAssembly.

24 sets['LeftStep{0}_{1}'.format (k, (3+1)/2)1]

25

26 self.bridgeModel.ConcentratedForce (

27 name="'LoadRightStepVert{0}_{1}_{2}'.format (

28 k, (1+1)/2, (3+1)/2), createStepName='Pedestrians',
29 region=regionRight, c£f2=-700, amplitude=

30 'AmplitudeRightVert_{0}'.format ((i+1)/2),

31 distributionType=UNIFORM, field='"', localCsys=None)
32

33 self.bridgeModel.ConcentratedForce (

34 name="'LoadLeftStepVert{0}_{1}_{2}'.format (

35 k, (1+1)/2, (3+1)/2),

36 createStepName="'Pedestrians',
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region=regionleft, cf2=-700,
amplitude="AmplitudeLeftVert_{0}"'.format (
(i+1)/2), distributionType=UNIFORM,
field="'", localCsys=None)

if self.loadmodel < 3:
self.bridgeModel.ConcentratedForce (
name='LoadRightStepLat{0}_{1}_{2}"'.
format (k, (i+1)/2, (3+1)/2),
createStepName='Pedestrians',
region=regionRight, cf3=700,
amplitude='AmplitudeRightLat_{0}".
format ((i+1)/2),
distributionType=UNIFORM, field='",
localCsys=None)

self.bridgeModel.ConcentratedForce (
name="'LoadLeftStepLat{0}_{1}_{2}".
format (k, (i+1)/2, (3+1)/2),
createStepName='Pedestrians',
region=regionLeft, c£f3=700,
amplitude='AmplitudeLeftLat_{0}"'.
format ( (1i+1)/2),
distributionType=UNIFORM, field='",
localCsys=None)

self.bridgeModel.ConcentratedForce (
name="'LoadRightLong{0}_{1}_{2}"'.
format (k, (1+1) /2, (3+1)/2),
createStepName='Pedestrians',
region=regionRight, c£3=700,
amplitude='AmplitudeRightLong_{0}"'.
format ( (i+1)/2),
distributionType=UNIFORM, field='",
localCsys=None)

self.bridgeModel.ConcentratedForce (
name='LoadLeftStepLong{0}_{1}_{2}"'.
format (k, (i+1)/2, (3+1)/2),
createStepName='Pedestrians',
region=regionlLeft, cf3=700,
amplitude='AmplitudeLeftLong_ {0}"'.
format ((i+1)/2),
distributionType=UNIFORM, field='",
localCsys=None)
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Segment can be found in line 6030-6080 in the script.

for j in range(1l,int (self.length/self.stridelength +

2xself.numOfPeople),2):

(self.walkInPlace == True and -self.numOfPeople
< (j-positionnumber*int (self.length/ (2+«self.stridelength)))
< (self.numOfPeople-1)):

regionRight=self.bridgeModel.rootAssembly.
sets['RightStep{0}_{1}'.format (k, (j+1)/2)]
regionLeft=self.bridgeModel.rootAssembly.
sets['LeftStep{0}_{1}'.format (k, (j+1)/2)]

self.bridgeModel.ConcentratedForce (
name='LoadRightStepVert{0}_{1}_{2}'.format (
k, (1+1)/2, (3+1)/2),
createStepName='Pedestrians',
region=regionRight, cf2=-700,
amplitude='AmplitudeRightVert_{0}'.format (
(i+1) /2), distributionType=UNIFORM,
field='"', localCsys=None)

self.bridgeModel.ConcentratedForce (
name='"LoadLeftStepVert{0}_{1}_{2}'.format (
k, (i+1)/2, (3+1)/2),
createStepName='Pedestrians',
region=regionlLeft, cf2=-700,
amplitude='AmplitudeLeftVert {0}'.format (
(i+1) /2), distributionType=UNIFORM,
field='", localCsys=None)

if self.loadmodel < 3:
self.bridgeModel.ConcentratedForce (
name="'LoadRightStepLat{0}_{1}_{2}".
format (k, (i+1)/2, (3+1)/2),
createStepName="'Pedestrians',
region=regionRight, c£3=700,
amplitude='AmplitudeRightLat_{0}".
format ((i+1)/2),
distributionType=UNIFORM, field='",
localCsys=None)

self.bridgeModel.ConcentratedForce (
name="LoadLeftStepLat{0}_{1}_{2}".
format (k, (i+1)/2, (3+1)/2),
createStepName="'Pedestrians',
region=regionLeft, cf3=700,
amplitude='AmplitudeLeftLat_{0}"'.
format ((i+1)/2),
distributionType=UNIFORM, field='",
localCsys=None)

self.bridgeModel.ConcentratedForce (
name="'LoadRightStepLong{0}_{1}_{2}"'.
format (k, (1+1) /2, (3+1)/2),
createStepName="'Pedestrians',
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57 region=regionRight, c£3=700,

58 amplitude='AmplitudeRightLong_{0}".
59 format ((i+1)/2),

60 distributionType=UNIFORM, field='",
61 localCsys=None)

62

63 self.bridgeModel.ConcentratedForce (
64 name="'LoadLeftStepLong{0}_{1}_{2}".
65 format (k, (i+1) /2, (3+1)/2),

66 createStepName="'Pedestrians',

67 region=regionLeft, cf3=700,

68 amplitude='AmplitudeRightLong_ {0}'.
69 format ((i+1)/2),

70 distributionType=UNIFORM, field='",

71 localCsys=None)
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Tieing the deck and load deck
The short paragraph below defines surfaces on both the deck and load deck and ties

these two together, allowing no relative motion between them.

Segment can be found in line 6093-6117 in the script.

if self.numOfDim ==

faces = self.deck.instance.sets['Deck_Set'].faces

regiondeck = self.bridgeModel.rootAssembly.Surface (
side2Faces=faces, name='Deck_surf_1")

loadfaces=self.loaddeck.instance.sets['LoadDeck_Set'].faces

regionloaddeck = self.bridgeModel.rootAssembly.Surface (
sidelFaces=loadfaces, name='LoadDeck_surf_1")

self.bridgeModel.Tie (adjust=0ON, master=regiondeck,
name='TieLoadDeckToDeck', positionToleranceMethod=COMPUTED,
slave=regionloaddeck, thickness=0N, tieRotations=0ON)
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Defining input variables

In this final segment the input variables are defined together with their default values
that will be shown in the parameter selector.

Segment can be found in line 6823-6968 in the script.

1 class UserIn:

2 def __init_ (self):

3 userInputs=getInputs (

4 fields=(('Model name', 'StudentBridge'),

5 ('Number of dim','3'"),
6 ('Variant:','1"),

7 ('Length (mm)', '60000.0"),

8 ('Elevation (mm)', '9000.0"),

9 ('Width [deck] (mm)', '5000.0'"),

10 ('Pavement width (mm)', '0"),

11 ('"Rows of people','l"),

12 ('Position of row','2"),

13 ('Number of people per row','l'"),

14 ('Walk across bridge or in place','0'"),

15 ('Position of pedestrians walking in place','2'),
16 ('Walking frequency (Hz)','2.0"),

17 ('Stride length (mm)','750"),

18 ('Step width','200"),

19 ('Hangers 3d spacing [one side] (mm)', '400.0'),
20 ('Hangers angle [arc plane] (deg.)', '35."),
21 ('"Num. of hangers', '14'),

22 ('Tie level', '0"),

23 ('Deck mesh size','100"),

24 ('Hanger mesh size', '100000"'),

25 ('Beam mesh size','100"),

26 ('Tie mesh size','100000"),

27 ('"Arc mesh size','100"),

28 ('Timestep','0.01"),

29 ('Load Model','1"),

30 ('Number of bolts on deck','10"),

31 ('Number of bolts on pavement',6'l'),

32 ('Modal','0"),

33 ('Number of eig. values','10'"),

34 ('Prestress sl11','0"),

35 ),

36

37 dialogTitle='Provide the data',

38 label="'Please define features for this bridge model\n' +
39 '"\nVariants:\n' +

40 'l —- equal points on deck\n' +

41 '2 —— equal points on arc')

42

43 1f userInputs[0] == None:

4 raise MyError ('Incorrect input. End of script')
45

16 self.name = userInputs[0]

47 self.numOfDim = int (userInputs[l])
48 self.variant = int (userInputs[2])

149 self.length = float (userInputs[3])

50 self.elevation = float (userInputs[4])
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51 self.width = float (userInputs[5])

52 self.pavementWidth = float (userInputs[6]
53 self.numOfRow = int (userInputs[7])

54 self.rowposition = int (userInputs[8])

55 self.numOfPeople = int (userInputs[9])

56 self.walkInPlace = int (userInputs[10]

57 self.walkInPlacePos = int (userInputs[1l1l]
58 self.freq = float (userInputs[1l2])

59 self.stridelength = float (userInputs[13])
60 self.stepwidth = float (userInputs[14]

61 self.hangersZspacing = float (userInputs[15])
62 self.xyAngle = np.radians (float (userInputs[16]))
63 self.numOfHangers = int (userInputs[17]

64 self.tielLevel = float (userInputs([18])

65 self.meshSizeD = float (userInputs[19]

66 self.meshSizelD = float (userInputs[19]

67 self.meshSizeH = float (userInputs[20]

68 self.meshSizeB = float (userInputs[21]

69 self.meshSizeT = float (userInputs[22])

70 self.meshSizeA = float (userInputs[23]

7 self.timestep = float (userInputs([24])

72 self.loadmodel = int (userInputs([25])

73 self.numOfBolts = int (userInputs([26])

74 self.numOfBoltsP = int (userInputs[27]

75 self.modal = int (userInputs[28])

76 self.numEigen = int (userInputs[29])

77 self.sll = int (userInputs[30])
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C Appendix C

C.1 Complete List of Performed Abaqus Analyses

This appendix gives an overview over all the different analyses that were executed in
Abaqus. They are arranged after which mode they attempted to excite.

Range of walking frequencies: 1.6 - 2.4 Hz
Range of jogging and running frequencies: 2.0 - 3.5 Hz

With two exceptions all pedestrians have been modelled with walking frequencies within
the two ranges stated above. To attempt to excite modes with natural frequencies out-
side these ranges the walking frequencies were decided such that the 2" or 3" har-
monic of the walking frequency was equal to the natural frequency in focus.

Explanation of terms used in analyses:

Group: 12 pedestrians arranged in three rows with 4 people in each row.

Strip: 12 pedestrians arranged in one row,

Stream1: 40 pedestrians arranged in one row

Streamb5: 180 pedestrians evenly arranged over 5 rows (36 per row)

HiDamp: { = 2.0 % damping instead of 0.5 % for mode 1 and 10. Implemented as mate-
rial damping using Rayleigh coefficients

The pedestrians walking in groups, strips and streams are all perfectly synchronized
and are one step length apart.
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Mode 1 - Torsional - 1 sag

APPENDIX C. APPENDIX C

Figure C.1: Mode 1

Frequency [Hz]

1.8838

Load cases

One pedestrian walking across the bridge along
the left edge

One pedestrian walking in place at the middle of
the bridge at the left edge

This natural frequency is below the range of running frequencies and analyses with a

running pedestrian have therefore not been performed at this frequency.
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Mode 2 - Vertical - 1 sag

Figure C.2: Mode 2

Frequency [Hz]
2.1405
One pedestrian walking across along the middle
One pedestrian walking in place at the middle
Group walking across along the middle
Group walking in place at the middle
One pedestrian walking across along the middle (HiDamp)

Load cases

This natural frequency is below the range of running frequencies and analyses with a
running pedestrian have therefore not been performed at this frequency.
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Mode 3 - Torsional/Lateral - 2/1 sags

APPENDIX C. APPENDIX C

Figure C.3: Mode 3

Frequency [Hz]

1.6609

3.3218

Load cases

One pedestrian walking across
along the left edge

One pedestrian running across
along the left edge

One pedestrian walking in place at
3 of the length at the left edge

The natural frequency of mode 3 is 3.3218 Hz. Half of that value (1.6609 Hz) is within
walking range, and the actual value is within running range.




C.1. COMPLETE LIST OF PERFORMED ABAQUS ANALYSES 163

Mode 4 - Vertical - 2 sags

Figure C.4: Mode 4

Frequency [Hz]
1.7185 3.4370
Load cases One pedestrian walking across | One pedestrian running across
along the middle along the middle
One pedestrian walking in place at
3 of the length at the middle

The natural frequency of mode 4 is 3.3470 Hz. Half of that value (1.7185 Hz) is within
walking range, and the actual value is within running range.
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Mode 5 - Lateral - 1 sag

APPENDIX C. APPENDIX C

Figure C.5: Mode 5

Frequency [Hz]

1.8108

24144

Load cases

One pedestrian walking across
along the middle

One pedestrian walking across
along the middle

One pedestrian walking in place at
the middle

One pedestrian walking in place at
the middle

Group walking across along the
middle

Group walking in place at the mid-
dle

One pedestrian walking across
along the middle (HiDamp)

One pedestrian walking in place at
the middle (HiDamp)

The natural frequency of mode 5 is 3.6216 Hz. Half of that value (1.8108 Hz) is within
walking range. Two thirds of the natural frequency (2.4144 Hz) is just outside the walk-
ing range but has been included as well. Two thirds of the natural frequency can be
used to cause resonance through the 3" harmonic since the frequency of the lateral
force component is equal to half the walking frequency. The results from the analyses
with 1.8108 Hz were so poor that analyses with groups of people were not performed at
this frequency. Since this is a lateral mode and the lateral components due to running
are not mentioned in any literature lateral vibrations due to running are assumed to be
negligible. Therefore running analyses were not performed with any of the frequencies
relating to mode 5.
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Mode 6 - Vertical - 1 sag

Figure C.6: Mode 6

e 4

Frequency [Hz]

1.8764

3.7528

Load cases

One pedestrian walking across along
the middle

One pedestrian running across
along the middle

One pedestrian walking in place at the
middle

Group walking across along the mid-
dle

Group walking in place at the middle

One pedestrian walking across along
the middle (HiDamp)

One pedestrian walking in place at the
middle (HiDamp)

One continuous stream of pedestri-
ans walking across along the middle

Five continuous streams of pedestri-
ans walking across along the middle

The natural frequency of mode 6 is 3.7528 Hz, which is outside the running range. How-
ever, a pedestrian running at this frequency is possible and was therefore modelled as
well. Half that value (1.8764 Hz) is within walking range. This mode was found to dom-
inate the vertical response of the footbridge. Therefore also streams of people were
modelled at this pacing rate to obtain maximum dynamic responses.
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Mode 7 - Torsional - 1 sag

Figure C.7: Mode 7

Frequency [Hz]
1.8495 2.7743
One pedestrian walking across | One pedestrian running across
Load cases
along the left edge along the left edge

One pedestrian walking in place at
the middle of the bridge at the left
edge

The natural frequency of mode 7 is 5.5488 Hz, which is outside the range of both walking
and running. A third of that value (1.8495 Hz) is within walking range, and half of the
value (2.7744) is within jogging range.
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Mode 8 - Vertical - 3 sags

Figure C.8: Mode 8

Frequency [Hz]
1.9094 2.8641
Load cases One pedestrian walking across | One pedestrian running across
along the middle along the middle
One pedestrian walking in place at
the middle of the bridge

The natural frequency of mode 8 is 5.7281 Hz, which is outside both walking and run-
ning frequency range. A third of that value (1.9094 Hz) is within walking range, and half
of that value (2.8641 Hz) is within jogging range.
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Mode 9 - Vertical - 2 sags

Figure C.9: Mode 9

Frequency [Hz]
2.0319 3.0479
One pedestrian walking across | One pedestrian running across
Load cases along the middle along the middle
One pedestrian walking in place at
3 of the length at the middle

The natural frequency of mode 9 is 6.0957 Hz. A third of that value (2.0319) is within
walking range, and half of that value (3.0479 Hz) is within running range.
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Mode 10 - Torsional - 1 sag

Figure C.10: Mode 10

Frequency [Hz]
2.2012 3.3018
One pedestrian walking across | One pedestrian running across
Load cases
along the left edge along the left edge

One pedestrian walking in place at
the middle of the bridge at the left
edge

Strip of pedestrians walking across
along the left edge

Strip of pedestrians walking in
place at the middle of the deck
along the left edge

The natural frequency of mode 10 is 6.6035 Hz. A third of this value (2.2012 Hz) is within
walking range, and half of that value (3.3018 Hz) is within running range.

Additional analyses

A modal analysis of the bridge with both a frequency and a complex frequency step was
performed to obtain the numerical natural frequencies, the corresponding modes and
the damping ratios of each mode

In addition an analysis with only one static pedestrian placed at the middle was per-
formed. This was used to find both the mass of the structure through the reaction forces

and and the static deflection due to one pedestrian.
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D Appendix D - Hand calculations ac-
cording to design guidelines

The following Appendix shows hand calculations of suggested acceleration values and
acceleration limits according to the different design guidelines mentioned in 4. First
some characteristic values of the bridge are determined.

Mass of the bridge

The mass of the bridge was calculated by summing all the reaction forces in the ver-
tical direction and dividing by the acceleration of gravity, g. The reaction forces were
obtained from Abaqus as History Output variables (RF2), and the mass was calculated
as:

SRF2 2411x10°N
g  9.8Im/s?

Mpriage = =245769.6 kg = 246 Tons (D.1)

Damping ratio of the bridge

The chosen value for { is 0.5%, which is set to be the damping ratios for mode 1 and 10.
All modes in between have a lower damping ratio and all higher modes have a higher
damping ratio.

Fundamental frequency of the bridge

The first vertical mode of vibration is mode 6 (Figure C.6).
foer: =3.7529 Hz
The first horizontal mode of vibration is mode 5 (Figure C.5).

fior =3.6216 Hz
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D.1 Eurocode

The formulas in this first section are from Annex B in Eurocode 5, part 2 - Vibrations
caused by pedestrians.

Vertical acceleration for one pedestrian crossing the bridge

100 100

— = =0.08 m/s? (D.2)
M{ ~ 245769.6 kg x 0.005

Apert,1 =

Vertical acceleration for a group of pedestrians crossing the bridge (n = 13)

kyert=0.5

Avert,n =0.23apers1 X B X kyery =0.23x0.08 x 13 x0.5=10.1196 m/s? (D.3)

Vertical acceleration for a stream of pedestrians crossing the bridge (n = 0.6A)

A=60x5=300m?
kyert=0.5

Avert,n = 0.23Apers1 X 1 X kyery =0.23 x 0.08 x 0.6 x 300 x 0.5 = 1.656 m/s? (D.4)

Vertical acceleration for a single pedestrian running across the bridge

600 600

- _—0.48m/s? (D.5)
M{ 245769.6 x 0.005

Ayert,1 =

No horizontal accelerations were calculated since the fundamental horizontal frequency
is outside the limits stated in EC5 (0.5 Hz < fj,,, < 2.5 Hz).
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D.2 British Annex to Eurocode

Maximum vertical acceleration according to UK National Annex to Eurocode 1. Ac-
tions on structures. Traffic loads on bridges

Alimit = l.Okl k2k3k4 IT[]/S2 (D.6)
and 0.5 m/s? < a;jpmi; < 2.0 m/s?
Where:
k1, ky, ks are the response modifiers taken from Tables 4.2, 4.3 and 4.3 in which:

k, = site usage factor

k> = route redundancy factor

ks = height of structure factor

k4 is an exposure factor which is to be taken as 1,0 unless determined otherwise for the
individual project.

The factors need to be carefully considered, so here are the lower and upper bounds
presented:

06=< k <16
07 ky, <13

ks =07
08< k4 =12

Which yields the following boundaries:

Alimitupper =1.0x 1.6x 1.3x 0.7 x 1.2 = 1.747 m/s* (D.7)

Alimitlower =1.0x 0.6 x 0.7 x 0.7 x 0.8 = 0.235 m/s* (D.8)

The lower bound is outside the domain stated above, which means that for this partic-
ular bridge the following is true according to british standards:

and 0.5 m/s? < ay; ;i < 1.747 m/s?

Lateral lock-in stability boundaries

As can be seen in Figure 4.3, the bridge is considered stable against lateral responses
due to crowd loading if the fundamental horizontal frequency is above 1.8 Hz, which is
the case. Therefore no horizontal accelerations were calculated.
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D.3 BS 5400

Maximum vertical acceleration

Ayers < 0.51/ frert = 0.5 x V/3.7529 = 0.969 m/s> (D.9)

BS 5400 proposes a simplified method for calculating the vertical acceleration in the
bridge, which happens to be the same as the one in Handbok N400. Calculations are
therefore superfluous.
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D.4 Handbook N400

Pedestrian bridges are to be designed so that the vertical acceleration, a,.,;, meets the
following requirement:

Apers < 0.25 f27762 = 0,25 x 3.7529%7752 = 0698 m /s> (D.10)

The acceleration of the bridge can be calculated as

Ayert = 4T 2, WKyr (D.11)

Where W; is the static deflection from a concentrated force equal to 700 N, K is a factor
dependent on the number of spans and the ratio between the different spans, vy is a
dynamic factor dependent on the span length and damping ratio and r is a correctional
factor for the calculated acceleration, a function of the frequency. In this case, W was
obtained from an analysis performed in Abaqus with one static pedestrian standing on
the bridge, midspan.

foer: = 3.7529Hz
W, = 0.021 mm
K = 1 (Always 1 for one span)
¥ = 15 (see Figure 4.4)
r = 1 (seeSubsection)
Apery = AT x 3.7529% x 0.021 x 103 x 1 x 15 x 1 = 0.175 m/s> (D.12)

No horizontal accelerations were calculated since the fundamental horizontal frequency
is outside the limits stated in HB400 (0.5 Hz < fj,,, < 1.3 Hz).
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E Appendix E - Running the script

This is a short guide on how to use the attached Python script to generate a Abaqus
model. Most of this text is written by Anna Ostrycharczyk, and the authors have just
added their changes. To run a script in Abaqus, click "File", then "Run script...". When
running the script, the user is met with the parameter selector shown in Figure E.1. The
parameters that have been added to the original script are marked with a red box.

The Python script, StudentBridgeVol14.py, allows the user to create a network arch bridge
in Abaqus. The aim of the script is to build a bridge model with user-defined geometry
and loading. There are a few different bridge layouts (described in the Python script)
based on different hanger configurations. All possible layouts are described below.

In addition to creating the geometry, the script also prescribes basic features for physi-
cal elements in Abaqus model. Those features are defined by script author (considered
to be most favourable) and can be changed in the Abaqus environment after the ge-
ometry of model is generated, or before — in the Python script. Changing and editing
the script must be done with care. Incorrect changes in the script might result in mis-
takes during the generation of the model in the Abaqus environment. If user decides to
change the script, there are comments that begin with ##PARAM above the parts of the
script where the most basic parameters can be found. There are also comments that
begin with ##AA which are comments by Anna, or ##KVDP!! which are comments by
the authors. The comments are ignored when running the script.
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Please define features for this bridge model

Variants:
1 -- equal points on deck
2 -- equal points on arc

Model name
MNumber of dim
Variant:

Length (mm)
Elevation (mm)
Width [deck] {mm)

Pavement width (mm)

| StudentBridge

3

[

| 60000.0

|9000.0

| 5000.0

Rows of people
Position of row
MNumber of people per row

Walk across bridge or in place

Position of pedestrians walking in place

Walking frequency (Hz)
Stride length (rmm)

Step width

Hangers 3d spacing [one side] (mm)
Hangers angle [arc plane] (deg.)
Mum. of hangers

Tie level

Deck mesh size

Hanger mesh size

Bearn mesh size

Tie mesh size

Arc mesh size

400.0

|35.

14

0

100

100000

100

| 10000

Tirmestep

Load Model

Mumber of bolts on deck

Mumber of bolts on pavemnent

Modal

MNumber of eig. values

Prestress 511

Figure E.1: Parameters to be selected for running an analysis
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To generate the Abaqus model of the bridge, the user needs to run the script and com-
plete the table with various data. The explanation below will helpto generate your own
bridge with correct input data.

1. MODEL NAME
— default name is StudentBridge; it is suggested to change it whenever a new model is
built to avoid overwriting models due to the same name.

2. NUMBER OF DIM

- number of dimensions that can be used are:
3 = standard model 3D (3D elements in 3D space)

2 > standard model 2D (2D elements in plane)
0o = 3D model of one arch with hangers joined to the ground by BC
(3D elements in 3D space)

3. VARIANT
- variant of points distribution on the arch/deck; there are two basic layouts of hanger
configuration: hangers equally distributed on the deck level, or on the arch

1 > in-plane inclined hangers equally distributed on the deck level
2 > in-plane inclined hangers equally distributed on the arch
111 = in-plane inclined hangers in ‘thombic’ configuration; points equally distributed

on the deck level; additional configuration (don’t need to be use)

11 = vertical hangers equally distributed on the deck level
22 = vertical hangers equally distributed on the arch
4. LENGTH

- length of the bridge (Iength of the deck; distance between support points of the arch)
5. ELEVATION - arch elevation

6. DECKWIDTH - deck width

7. PAVEMENT WIDTH - pavement is located outside the arches

8. ROWS OF PEOPLE
- number of rows of people. There is no limit to the amount of rows. For this thesis a
maximum of 5 rows has been used.

9. POSITION OF ROW

- determines where on the bridge the row of pedestrian(s) is placed. This only works
for one row of people. When there is more than one row they are automatically created
such that the spacing between the different rows is equal to the spacing between the
outer rows and the deck edge.

1 > row is created along the left edge of the deck.
2 = row is created along the middle (default choice).
3 = row is created along the right end.

This is useful for exciting torsional modes of vibration.
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10 NUMBER OF PEOPLE PER ROW

11 WALK ACROSS BRIDGE OR IN PLACE
- decides whether or not the loads are moving longitudinally through space.

0o = Pedestrians walking across the bridge, loads created such that they
move from one end of the bridge to the other (default choice).
1 > Pedestrians walking in place at a location to be decided by the next

parameter. The loads are placed at the same location for the
entire duration of the analysis and expanding outwards from
specified location with a spacing equal to the step width

if several pedestrians are to be modelled

This parameter needs to be set equal to 1 if the loads are supposed to model jumping.
The difference between stepping and jumping is selected later, in "Load model".

12. POSITION OF PEDESTRIANS WALKING IN PLACE
-determines were the pedestrian(s) are placed in the longitudinal direction of the bridge
deck, only valid if they are walking in place.

1 = Loads are applied at 1 of the length of the deck

2 > Loads are applied at 1 of the length of deck (default choice)

5

3 = Loads are applied at 3 of the length of the deck

In Figure E.2 the three force components due to a pedestrian walking in place can be
seen at 431 of the length of the bridge at the left edge.

Figure E.2: The figure illustrates where loads are placed when option 3 is selected. Note
that row placement is option 1 (point 9).

13 WALKING FREQUENCY (Hz) - 2.0 Hz is the default choice

14 STRIDE LENGTH (mm)

-For walking, the stride length is recommended by the authors to be set to 750, which is
the default choice
-For running, the stride length is recommended by the authors to be set to 1750
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-For jogging, the stride length is recommended by the authors to be set to 1300

15 STEP WIDTH (mm) - Horizontal distance between left and right footstep. 200 is the
default choice

16. HANGERS 3D SPACING [one side]
- horizontal distance created by projection of the arch centreline and hanger joining
point on the deck level; creation of out-of-plane hanger inclination

17. HANGERS ANGLE
- in variant 1: angle between arch radius and hanger joined on the deck level
- in variant 2: angle between arch radius and hanger joined on the arch level

18. NUMBER OF HANGERS

- in variant 1: define number of points on the deck; model will be built with doubled
number of hangers

- in variant 2: define number of points on the arch; model will be built with this number
of hangers

19. TIE LEVEL
- tie can be joined to the arch on any level; basic solution is tie joining ends of arch on
the deck level (value 0)

20. DECK MESH SIZE - deck mesh size

21. HANGER MESH SIZE - it is desirable to have mesh size bigger than hanger length
to obtain one mesh element for each hanger

22. BEAM MESH SIZE - refers to transverse beams

23. TIE MESH SIZE - rule like for hangers apply

24. ARCH MESH SIZE - arch mesh size

25. TIMESTEP - The step time to be used in the dynamic implicit step.

26. LOAD MODEL - determines the shape and amplitude of the force curves.

1 > Schulze’s load model. The default choice
2 = Bachmann & Amman’s load model
3 = Load model for running (if parameter 11 is set to '0’) or jumping

(if parameter 11 is set to '1’)

27. NUMBER OF BOLTS ON DECK
- number of points, where deck-transverse beam connector is created

28. NUMBER OF BOLTS ON PAVEMENT
- number of points, where pavement-transverse beam connector is created
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29. MODAL - a Modal analysis is optional, and can be selected here.

0
1

=> No modal analysis is performed. This is the default choice.
=> Real and complex frequency analyses are performed instead of a
dynamic analysis.

30. NUMBER OF EIGENVALUES
- number of requested eigenvalues in mode analysis

30. PRESTRESS S11
- value of hanger prestress force

Useful information about the script

Units used in the script: mm, N, t (ton), s, MPa

Out-of-plane hanger inclination is defined by distance between hangers joint on
the deck level and propagation of the centreline of the arch on the deck plane
(HANGERS 3D SPACING)

In-plane hanger inclination is defined by rotation of arch radius around the point
on the arch or on the deck

When out-of-plane inclination is equal zero, script still creates double hangers
with the same connecting (to the deck or arch) points; while comparing results
for network and spoked arches, the same amount of hangers is required

Arch is always built on side of the deck; for out-of-plane inclination of hangers, in
case when distance between hangers joints on the deck level is wider than arch
width projection, this distance determines the position of the arch; in case when
out-of-plane inclination of hangers is in projection of arch width, edge of the arch
is located on the edge of the deck

Deck-transverse beam connector length is equal: half of deck thickness + radius
of transverse beam; it is created during first build-up process in Abaqus and re-
main constant, even when changes of deck thickness are applied into Abaqus
model (!)

E.1 Additional tipT in Abaqus CAE

Suppressing irrelevant outputs

A useful tip is to suppress the default field and history output created by Abaqus as
shown below in Figure E.3 and only keep the history outputs created intentionally by
the script. This drastically reduces the file size (from about 5-10 GB to 30 MB).
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e
3r

= Ele Model Viewport View Step OQutput

FECLEEE

Model | Results
£ Model Database v
S48 Models (2)
# Model-1
= StudentBridge
5l Parts (33)
@ [P2 Materials (10)
& Calibrations
® ﬁE Sections (11)
- Profiles (7)
7 43 Assembly
+ ol Steps (3)
= B2 Field Qutput Requests (1)
@ X FieldOutput
= Bt History Output Requests (12)
X H-Output-1
B HistoryOutputhrch
i HistoryOutputLeftMidLeftDeck
# HistoryOutputLeftMidPointDeck
B HistaryOutputl eftMidRightDeck
B HistoryOutputMidLeftDeck
[# HistoryOutputMidPointDeck
[ HistaryOutputMidRightDeck
# HistaryOutputRightMidLeftDeck
[# HistoryOutputRightMidPointDeck
B HistaryOutputRightMidRightDeck
B HistaryOutputSecondArch
ﬁ Time Points

Figure E.3: Suppresing FieldOutput and H-Output-1 greatly reduces the size of the re-
sulting .odb file

Reporting data

Figure E.4 shows the possible locations from which to extract output variables. In this
case output variable A2 (acceleration in vertical direction) is displayed. There is one set
for each arch top, loacated at midspan, and there are three sets across the width of the
bridge (MIDLEFTDECK, MIDPOINTDECK, MIDRIGHTDECK), which can be extracted
at three different locations along the length of the bridge (RIGHT, MID, LEFT), render-
ing (RIGHTMIPLEFTDECK, RIGHTMIDPOINTDECK, etc.).

Retrieving the complex eigenfrequencies

When performing a complex modal analysis, the complex eigenfrequencies are found
tabulated at the bottom of the .dat file.
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Output Variables

Spatial acceleration: A1 Pl:
: A1 P
: ATPI:
: ATPI:

Spatial acceleration
Spatial acceleration
Spatial acceleration
Spatial acceleratio
Spatial accelera
Spatial acceleratio
ial acceleration
Spatial acceleration

Spatial acceleratic

Spatial acceleration:

Spatial accelera
Spatial acceleratio

Spatial acceleration:

Spatial acceleration

Spatial acceleration

AT Dl

P AL

: DECK Node 182 in NSET LEFTMIDLEFTDECK

: DECK Node 264 in NSET LEFTMIDRIGHTDE
: A3PL:
Spatial acceleration: A3 Pl: ARC_SECOND Mode 16 in NSET TOPSECOMNDARC

DECK Node 173 in M5ET MIDRIGHTDECK
DECK Node 182 in NSET LEFTMIDLEFTDECK
DECK Node 195 in NSET LEFTMIDPOINTDECK
DECK Node 264 in MSET LEFTMIDRIGHTDECK
'C Node 16 in NSET TOPARC
SECOND Mode 16 in NSET TOPSECONDARC

n NSET MIDRIGHTDE
5in NSET LEFTMIDPOINTDE

ARC Mode 16 in NSET TOPARC

Save As...

Figure E.4: All possible locations to extract output variable A2.
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This appendix is on digital form on a USB-stick given to supervisor Kjell Arne Malo
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