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ONLINE RECONSTRUCTION OF DRIFTING UNDERWATER ICE
TOPOGRAPHY: THE 2D CASE

Ulrik Jørgensen and Roger Skjetne

ABSTRACT

An online estimation design for a drifting two dimensional ice topography is presented. Under the assumption that
the topography can be accurately represented by a truncated Fourier series, and given a moving window of measurements
along the topography, an observer design is proposed to estimate the parameters of the model. The chosen method
ensures an online cutoff of higher wave numbers in the spectrum representing the topography such that sufficient data
compression is achieved for transmitting the model parameters through a limited hydroacoustic communication channel.
This allows online reconstruction of the underwater drifting ice topography at a remote operation center. The observer
is shown to be uniformly globally exponentially stable under a persistency of excitation condition. For comparison, a
design based on B-spline basis functions is also presented. The effectiveness of the estimation algorithm is verified on a
set of real ice draft measurements taken from the underside of an ice sheet off the coast of Greenland.

Key Words: Ice management, sea-ice monitoring, topography mapping, online estimation, decision support, remote
sensing.

I. INTRODUCTION

As ship technology and offshore operations are
improving, it now becomes possible to perform complex
marine operations in the far north with increased regular-
ity. Combining this with the forecast by the United States
Geological Survey [1] that approximately 30% of the
world’s undiscovered gas and 13% of the undiscovered oil
may be located in the Arctic, this has motivated exten-
sive research on related technological and operational
challenges. As an example, [2] reports an Arctic station-
keeping operation in heavy ice close to the north pole
in 2004, that successfully drilled and recovered deeply
buried sediments. Another example is [3], reporting a
dynamic positioning (DP) operation offshore Sakhalin
in 1999.

Aiming for new tools for situational awareness and
better estimates of the ice-hull loads on structures oper-
ating in ice, it is of interest to develop online monitoring
systems for the motion, thickness, and properties of the
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sea-ice. Both above-surface and subsurface monitoring
systems are relevant for these tasks. Above-surface ice
properties can generally be monitored by shipboard-,
aerial-, and satellite-based observations [4–6]. Focusing
on estimation of ice thickness, the capabilities of these
sensors to accurately measure the ice thickness or ice
topography are, as reported in [7,8], limited and may not
show necessary details over the desired operational area.
Above-surface observations are also sensitive to weather
conditions such as wind, snow, fog, and temperature, as
well as icing, erosion, and darkness [9]. However, these
systems have other advantages, such as a large opera-
tional range and higher capacities for communication
and navigation. Underwater observation, on the other
hand, has the advantages of a more stable working envi-
ronment and that ice features are more distinct when
seen from below [10]. The disadvantage is the general
lack of infrastructure for such systems, including a suffi-
cient level of autonomy and performance with regard to
communication, navigation, and long-term operations.

Ice topography observation can either be done by a
survey and post-processing of collected ice data [11,12]
or by online monitoring and estimation. Examples of
the first method is seen in [13], where the authors regen-
erate a 3D ice topography by post-processing upward
looking multi-beam echo sounder (MBES) data. The
data is collected by an autonomous underwater vehi-
cle (AUV) and the result allows the identification of ice
depths, cracks, and leads in the ice cover, as well as distin-
guishing between first- and multi-year ice. For online ice
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monitoring, [14] presents several stationary 2D upward
looking sonars (ULS) that monitor the ice properties
in real-time. In the case when the surface is static, the
simultaneous localization and mapping (SLAM) method
[15] is an alternative, and [16] has utilized this algorithm
for bathymetric seabed mapping. However, the combina-
tion of online monitoring and drifting 3D underwater ice
topography mapping, is an open and unsolved problem,
and thus the focus of this research.

Monitoring the underwater ice topography can be
arranged by either having a stationary sea bottom infras-
tructure, a mobile underwater sensor platform such as an
AUV, or a combination of these [17]. An AUV with an
upward looking MBES, as illustrated in Fig. 1, gives an
increased operations area compared to a stationary sys-
tem and increases its flexibility by moving freely under
the ice. Challenges, on the other hand, pertain to low
bandwidth underwater communication [18] and accurate
navigation [19,20]. Therefore, to satisfy a limited hydroa-
coustic communication channel, it becomes imperative
to filter and compress the large amount of data gath-
ered by the MBES and represent the ice topography by
sufficiently few parameters.

In our research we aim for a complete online 3D
underwater ice topography observation system that mon-
itors and estimates the spatially varying underwater draft
of the drifting sea-ice over an operational area. This
should be monitored with sufficient fidelity by one or
several underwater sensors, including an AUV with an
MBES, and communicated to a surface-based operations
center for online decision support. As a first step towards
this goal we limit our attention in this paper to the 2D
case, which is to design an observer for the dynamically
varying underwater sea-ice topography along a line inter-
val based only on measurements in a moving window
(emulating the AUV).

The results in this article are based on [22] where
the estimation problem was first introduced. In order
to strengthen the design theory, our contribution here

Fig. 1. AUV equipped with upward looking multi beam echo
sounder, scanning the underwater ice draft [21].

includes reformulating the estimation problem into an
observer-based setup by discretizing and spatially sam-
pling the monitored interval into n nodes. We derive
new important structural properties of the Fourier-based
model that will substantially simplify the observer design
and stability analysis. Correspondingly, we propose an
observer algorithm to efficiently estimate the unknown
topographic coefficients and the corresponding drafts at
the nodes based only on periodic measurements along
the monitored interval. Based on the overall setup and
structure of this estimator system, we gain insight into
stability, observability, and robustness properties of the
system which will lay the foundation for an extension to
the 3D case.

The proposed observer will be simulated on an
unclassified ice draft data series provided by the National
Snow and Ice Data Center [23]. The mission track,
named SCICEX-99 (SCience ICe EXercise [24]) and
shown in Fig. 2, was collected on April 2, 1999, off the
coast of Greenland during an under-ice mission by U.S.
Navy submarines equipped with narrow beam sonars.
The examined part is a 4km track with 1m spatial reso-
lution and preprocessed to remove depth errors, spatial
errors, and other errors.

Notation. UGES stands for Uniformly Globally
Exponentially Stable. Non-bold letters are scalars, low-
ercase bold letters are vectors, and uppercase bold let-
ters are matrices. The notation f (a, b; c, d) indicates that
a, b are fixed parameters, while c, d are variables of
the function. Total time derivatives of x(t) are denoted
ẋ, ẍ, x(3),… , x(n), while superscript denotes partial dif-
ferentiation such that: 𝛼b(a, b) ≜ 𝜕𝛼

𝜕b
, 𝛼b2 (a, b) ≜ 𝜕2𝛼

𝜕b2

and 𝛼bn (a, b) ≜ 𝜕n𝛼

𝜕bn
, etc. Estimated parameters/states are

denoted with a hat, i.e. ẑ is the estimate of z. Stack-
ing several vectors into one is denoted col(𝐱, 𝐲, 𝐳) ≜[
𝐱⊤, 𝐲⊤, 𝐳⊤

]⊤
. The Euclidean vector norm is |𝐱| ≜ √

𝐱⊤𝐱,
while the induced Euclidean matrix norm ||𝐀|| ≜
sup𝐱≠𝟎 |𝐀𝐱||𝐱| . A matrix 𝐀 ∈ R

n×n is called positive definite

(semidefinite) and denoted 𝐀 > 0(𝐀 ≥ 0) iff 𝐱⊤𝐀𝐱 >

0(𝐱⊤𝐀𝐱 ≥ 0) ∀ 𝐱 ∈ R
n∖{0}. If 𝐀 > 0, then its small-

est eigenvalue, denoted 𝜆min(𝐀), is strictly positive. The
special orthogonal group of order n is denoted by SO(n).

II. PROBLEM FORMULATION

2.1 Fourier-based topographic model

Consider a typical sinusoidal time signal, written

𝜙(t) = A cos(𝜔(t − 𝜏)), (1)

© 2015 The Authors Asian Journal of Control published by Chinese Automatic Control Society and Wiley Publishing Asia Pty Ltd



U. Jørgensen and R. Skjetne: Underwater Ice Topography Estimation 1511

Fig. 2. Geographical location of the SCICEX-99 data series. Courtesy: NSIDC [23].

where A is the amplitude, t and 𝜏 are the time and time
offset, and 𝜔 = 2𝜋∕T is the frequency with period T . A
spatial signal is defined in the same manner as

𝜙(s) = A cos(𝜅(s − 𝜉)), (2)

where A is the amplitude, s and 𝜉 are the spatial param-
eter and displacement offset, respectively, and 𝜅 = 2𝜋∕𝜆
is the wave-number with wavelength 𝜆. We see that (𝜅, 𝜆)
in the spatial domain is analogous to (𝜔,T) in the time
domain, which means that methods related to sampling,
approximation, and reconstruction of periodic time sig-
nals can also be used for signals in the spatial domain.

The ‘signal’ conveys information in either the time
domain or spatial domain; it will generically have a prop-
agation variable, a propagation offset, and a frequency
spectrum. We let s generically represent the propagation
variable, 𝜉 the propagation offset, and 𝜅 a ‘frequency’
component. This implies that the proposed methods of
this paper are also transferable to other types of signals.
However, limiting our attention to topography estima-
tion along a single spatial dimension, we model the drift-
ing ice topography as a “propagating wave” given by a
sum of sinusoidal basis functions,

𝜑(s) =
p∑

k=0

[
ak cos k𝜅0(s − 𝜉) + bk sin k𝜅0(s − 𝜉)

]
, (3)

where 𝜅0 = 2𝜋∕𝜆0 is the fundamental wave-number
and 𝜆0 is the fundamental wavelength. Eq. 3 is rec-
ognized for p = ∞ as an alternative form of the
Fourier series representation [25]. For p finite, let 𝐜 ≜[
a0, a1,… , ap, b1,… , bp

]⊤ = col(𝐚,𝐛) ∈ R
m be a constant

vector with m = 2p + 1 coefficients corresponding to the
respective wave-numbers. This yields

𝜑(s) = 𝐡(𝜅0, 𝜉, p; s)⊤𝐜, (4)

where

𝐡(𝜅0, 𝜉, p; s) ≜

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
cos(1 ⋅ 𝜅0(s − 𝜉))

⋮
cos(p ⋅ 𝜅0(s − 𝜉))
sin(1 ⋅ 𝜅0(s − 𝜉))

⋮
sin(p ⋅ 𝜅0(s − 𝜉))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

m. (5)

By discretizing the signal (4) along the spatial axis
into n nodes, located at displacements xi, i ∈  ≜
{1, 2,… , n}, separated 𝜆s = |xi+1 − xi| as shown in
Fig. 3, the draft of the topography at each node becomes
zi ≜ 𝐡(𝜅0, xi, p; s)⊤𝐜. For compact notation, we collect the
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Fig. 3. A sample ice-draft profile, with nodes spaced 𝜆s apart.
The yellow stems indicate currently available
measurements [21].

drafts zi, i ∈ , in a vector 𝐳 ≜ col(z1,… , zn) ∈ R
n such

that

𝐳 = 𝐇(s)⊤𝐜, 𝐇 ∶ R → R
m×n (6)

where 𝐇(s) ≜ [
𝐡(𝜅0, x1, p; s),… ,𝐡(𝜅0, xn, p; s)

]
. We note

that a time signal is now equivalently given by 𝜑(t) =
𝐡(𝜔0, 𝜏, p; t)⊤𝐜 and 𝐳 = 𝐇(t)⊤𝐜.

Over the interval of interest we have distributed
draft measurements yi, such that,

yi(t) = ci(t)zi(t), i ∈ , where (7)

ci(t) =
{

1, if Node i is measured at time t
0, if Node i is not measured at time t.

Define the draft measurement vector 𝐲 ≜ col(y1,… , yn)
∈ R

n and the matrix 𝐂(t) ≜ diag(c1(t),… , cn(t)) ∈ R
n×n

such that

𝐲 ≜ 𝐂(t)𝐳 = 𝐂(t)𝐇(s)⊤𝐜 = 𝐅(t, s)⊤𝐜, (8)

where 𝐅(t, s) ≜ 𝐇(s)𝐂(t). Since the number of currently
available measurements nm ≜ rank(𝐂(t)) ≤ n, the matrix
𝐅(t, s(t)) represents for each time instant the observed ice
topography, where 𝐂(t) selects the nodes currently mea-
sured. Relevant properties of the matrices 𝐇(s) and 𝐅(t, s)
are given in Lemma 1.

Lemma 1. If 𝐇 ∶ R → R
m×n is full row-rank, for instance

by ensuring that

𝜆s ≠ 2𝜋
k𝜅0

, ∀ k ∈ {1, 2,… , n − 1}, (9)

then the following properties hold, independently of s:

P1. Let s = 𝜎 − 𝜃. Then 𝐇(s) = 𝐑(𝜃)𝐇(𝜎) where 𝐑(𝜃) ∈
SO(m) is a rotation matrix with the property �̇� =
𝐑(𝜃)𝐒(�̇�) = 𝐒(�̇�)𝐑(𝜃) where 𝐒(�̇�) is skew-symmetric.

P2. The matrix norm ‖𝐇(s)‖ is constant and nonzero.
Moreover, let 𝐖 = 𝐖⊤ > 0 be a constant matrix.

Then 𝐇(s)𝐖𝐇(s)⊤ is invertible and uniformly posi-
tive definite ∀s ∈ R.

P3. If rank(𝐂(t)) ≥ m,∀t, then the properties P1–P2
hold also for 𝐅(t, s), independently of t and s.

Proof.

P1. By using trigonometric relations you can show that
𝐇(s) = 𝐑(𝜃)𝐇(𝜎), where

𝐑(𝜃) ≜
⎡⎢⎢⎣

1 𝟎⊤p 𝟎⊤p
𝟎p 𝐑cos(𝜃) 𝐑sin(𝜃)
𝟎p −𝐑sin(𝜃) 𝐑cos(𝜃)

⎤⎥⎥⎦ , (10)

and 𝟎p ∈ R
p is a zero-vector and

𝐑cos(𝜃) ≜ diag
(
cos(𝜅0𝜃), · · · , cos(p𝜅0𝜃)

)
(11)

𝐑sin(𝜃) ≜ diag
(
sin(𝜅0𝜃), · · · , sin(p𝜅0𝜃)

)
. (12)

Calculating the determinant gives det(𝐑(𝜃)) = Πp
i=1(

cos2(i𝜅0𝜃)+sin2(i𝜅0𝜃)
)
= 1 and since 𝐑(𝜃)𝐑(𝜃)⊤ =

𝐑(𝜃)⊤𝐑(𝜃) = 𝐈, this shows that 𝐑(𝜃) ∈ SO(m).
Moreover, differentiating 𝐑(𝜃) gives the skew-
symmetric matrix

𝐒(�̇�) ≜
⎡⎢⎢⎣

0 𝟎⊤p 𝟎⊤p
𝟎p 𝟎p×p −�̇� ⋅ 𝐒p,𝜅0

𝟎p �̇� ⋅ 𝐒p,𝜅0
𝟎p×p

⎤⎥⎥⎦ ∈ R
m×m, (13)

such that �̇� = 𝐑(𝜃)𝐒(�̇�), where we have that 𝐒p,𝜅0
=

diag(𝜅0, · · · , p𝜅0) ∈ R
p×p, and 𝟎p×p ∈ R

p×p is a
zero matrix. The commutative property 𝐑(𝜃)𝐒(�̇�) =
𝐒(�̇�)𝐑(𝜃) is straightforward to show by working out
the corresponding products.

P2. Using P1 above and s = −𝜃, we can rewrite
𝐇(s) such that 𝐇(s) = 𝐑(𝜃)𝐇(0), where 𝐇(0) =[
𝐡(x1; 0), · · · ,𝐡(xn; 0)

]
is constant. Consequently,

since 𝐑(𝜃) is a rotation matrix we get that ‖‖𝐇(s)⊤‖‖ =‖‖𝐇(0)⊤‖‖ = constant. Moreover, since 𝐇(0) has sev-
eral nonzero elements, the norm cannot be zero.
Since 𝐖 = 𝐖⊤ > 0, there exist by Cholesky factor-
ization a unique lower triangular matrix 𝐋 ∈ R

n×n

with positive diagonal entries such that 𝐖 = 𝐋𝐋⊤.
Then, by P2 of Lemma 1, we have that 𝐌(s) =
𝐇(s)𝐖𝐇(s)⊤ = 𝐑(𝜃)𝐊𝐊⊤𝐑(𝜃)⊤, where 𝐊 = 𝐇(0)𝐋 ∈
R

m×n is constant. Since 𝐇(0) has full row-rank,
the product 𝐊𝐊⊤ ∈ R

m×m is full rank with con-
stant norm ‖‖𝐊𝐊⊤‖‖ > 0. Moreover, since 𝐑(𝜃) is
a rotation matrix, we have that also 𝐌(s) is full
rank which implies that 𝐇(s)𝐖𝐇(s)⊤ is uniformly
positive definite.
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P3. We have 𝐅(t, s) = 𝐇(s)𝐂(t) where by assump-
tion 𝐇(s) is full row-rank, independently of s, and
rank(𝐂(t)) ≥ m for all t. Hence, 𝐅(t, s) can be
replaced with 𝐇(s) and the properties P1–P2 of
Lemma 1 are still valid.

2.1.1 Wave-number analysis

To identify the ice topography (4) with suffi-
cient precision at the same time as achieving neces-
sary data compression, we must carefully choose the
wave-numbers, that is, the numbers 𝜅0 and p. For this we
turn to the Nyquist sampling theorem [26] that states that
in order to reconstruct a time signal, this must be sam-
pled with a frequency 𝜔s minimum two times faster than
the highest considered frequency in the signal. Analo-
gously, this means that a spatial signal must be sampled
with a sampling wave-number 𝜅s minimum two times
higher than the highest considered wave-number in the
signal. In terms of wavelength, this corresponds to a sam-
pling distance 𝜆s less than half the length of the smallest
considered wavelength, that is

𝜆s =
2𝜋
𝜅s

≤ 1
2
𝜆c =

𝜋

𝜅c
, (14)

where 𝜆c is the smallest considered cut-off wavelength,
and 𝜅c is the corresponding cut-off wave-number. In (4)
and (5) we see that 𝜅p = p𝜅0 where 𝜅0 is the funda-
mental wave-number, found from a spectral analysis of a
representable ice topography data series.

Having identified 𝜅c and 𝜅0, we choose 𝜅p = p𝜅0 ≥
𝜅c which gives the lower bound for the integer p ≥ pmin =
𝜅c

𝜅0
. Then, in regard to sampling distance, we choose the

upper bound 𝜆s ≤ 𝜆s,max = 𝜋

p𝜅0
, which guarantees that

(14) is satisfied. Note that choosing 𝜅0, 𝜅c, and thereby
p and 𝜆s, will influence the capability to capture the
variation in the target ice topography (4) with sufficient
precision. Eventually this will be a trade-off between high
precision estimation and limitations in computation and
the communication channel.

As illustrated in the next example, this method of
fitting the topography signal to the truncated Fourier
series (3) is equivalent to data compression by zeroing
the wave-number components higher than 𝜅c in the Fast
Fourier Transform (FFT) of a signal before reconstruct-
ing it through the inverse transform. Through this setup
the aim is that the required data compression can be
achieved without having the luxury of the complete spa-
tial signal available for analysis (e.g. an FFT). This caters
then for estimating the low wave-number part of the
topography (𝜅 ≤ 𝜅c) over time with asymptotic con-

vergence of the estimation error. A further challenge is
to manage this with only a partial set of nodes/samples
available at each time instant through the measurements
window (7).

2.1.2 Example: wave-number analysis of SCICEX-99

To determine the wave-number response of the
SCICEX-99 dataset, a single sided amplitude spectrum
(SSAS) of the dataset has been calculated and shown
in Fig. 4. The calculated SSAS shows the energy for
each wave-number in the dataset, where the second peak
is identified as the fundamental wave-number 𝜅0 ≈
0.06rad/m [25]. Since almost no energy is associated with
wave-numbers larger than 𝜅c = 0.6rad/m, this is used as
the cut-off wave-number. This results in the lower bound
p ≥ pmin = 10. Choosing p = 12 gives some mar-
gin, resulting in the maximum sampling distance 𝜆s,max =
4.4m. Hence, sampling this dataset with 𝜆s = 1.6m is well
within the limit.

The least-square (LS) fit of this ice topography
dataset to the basis function (3) with p and 𝜅0 as selected
above, has been computed and plotted in Fig. 5. In addi-
tion, a reconstructed signal from the inverse FFT for the
entire dataset, where the wave-numbers corresponding to
𝜅 ≥ 𝜅c have been zeroed, is plotted and shown to lie
on top of the LS-fitted curve. The equivalence between
these two truncation methods is further substantiated

Fig. 4. SSAS of the SCICEX-99 dataset.

Fig. 5. A zoom-in on the SCICEX-99 ice topography dataset,
incl. the curves corresponding to a least-square fit to
the basis function (3) and the FFT truncated model
for 𝜅 ≥ 𝜅c.
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Fig. 6. SSAS of the basis function (3) LS-fitted to the
SCICEX-99 dataset with p and 𝜅0 as selected in
Example 2.1.2.

by Fig. 6, where an SSAS has been recomputed for the
LS-fitted curve (3) only, showing that all wave-number
components above 𝜅c have been eliminated.

2.2 Dynamic model for observer design

Referring to (4) and (6) as our model of the ice
topography, for s constant the topography becomes sta-
tionary, while if we allow s to be dynamic the topography
will become a moving surface.

For an ice field drifting with constant velocity v, the
position is s(t) = v(t − t0) + s0 where s0 is an unknown
initial offset. We assume the ice drift velocity v is known,
which implies an estimated displacement ŝ(t) ≜ v(t− t0)+
ŝ0, where ŝ0 is a chosen initial value. Consequently, the
displacement error

s̃(t) ≜ ŝ(t) − s(t) = ŝ0 − s0 ≜ s̃0, (15)

is constant, but unknown.
Using P1 of Lemma 1 we have from (15) that

𝐇(s)⊤ = 𝐇(ŝ)⊤𝐑(s̃)⊤. This gives 𝐳 = 𝐇(ŝ)⊤𝐑(s̃)⊤𝐜 =
𝐇(ŝ)⊤𝐝, where

𝐝 ≜ 𝐑(s̃)⊤𝐜 (16)

is the coefficient vector 𝐜 rotated by s̃ radians.
Since the true coefficients 𝐜 and 𝐑(s̃) are constant,

this means that also 𝐝 is constant. Moreover, setting 𝜎 =
0 and 𝜃 = −s in P1 of Lemma 1 and using 𝐑(−s) =
𝐑(s)⊤, then we get �̇� = −𝐒(v)𝐇(ŝ(t)). Consequently, the
underwater topographic ice model can be written

�̇� = 𝟎 𝐝(t0) = 𝐝0 (17a)

�̇� = 𝐇(ŝ(t))⊤𝐒(v)𝐝 𝐳(t0) = 𝐳0 (17b)

𝐲 = 𝐂(t)𝐳 = 𝐅(t, ŝ(t))⊤𝐝, (17c)

where 𝐝0 = 𝐑(ŝ0 − s0)⊤𝐜, 𝐳0 = 𝐇(s0)⊤𝐜 = 𝐇(ŝ0)⊤𝐝0,
and the coefficient vector 𝐝 is unknown and subject to
estimation.

Since the s-dynamics is hidden within the sinusoidal
functions of 𝐑(s), we cannot observe and reconstruct
s directly from 𝐲 or 𝐳. However, due to the reformula-
tion in (16) this is not important as long as an accurate
ice drift velocity estimate v̂ is provided. On the other
hand, the next lemma will, under a persistency of exci-
tation (PE) condition show that it is possible to observe
the coefficient vector 𝐝 from only a subset of the draft
measurements 𝐳 available at each time instant.

Lemma 2. Suppose there exist positive constants 𝛼0, 𝛼1,
and T0 such that

𝛼0𝐈 ≤ ∫
t+T0

t
𝐅(𝜏, s(𝜏))𝐅(𝜏, s(𝜏))⊤ d𝜏 ≤ 𝛼1𝐈, (18)

for all t ≥ 0. Then the subsystem (17a) with output (17c)
is uniformly completely observable (UCO) [27].

Proof. Since the transition matrix for (17a) is the identity
matrix, the PE integral (18) becomes equal to the observ-
ability Gramian for the subsystem (17a), (17c). UCO then
follows by its definition [27].

The right-hand inequality of (18) is always satisfied
since 𝐅(t, s) is absolutely continuous a.e. and bounded. In
the case where the number of currently measured nodes
is nm(t) = rank(𝐂(t)) ≥ m, then 𝐅(t, s)𝐅(t, s)⊤ is strictly
positive by Lemma 1, and the left-hand inequality of (18)
is trivially satisfied. However, the PE integral (18) allows
for a weaker condition, in that

𝐅(t, s)𝐅(t, s)⊤ =
n∑

i=1

ci(t)𝐡(𝜅0, xi, p; s)𝐡(𝜅0, xi, p; s)⊤

(19)

can be singular pointwise in time, but builds rank over
time. For the perfect model (3), it can be shown to be suf-
ficient to measure only one node, e.g. Node 1, to build
up full rank for the PE condition as long as the speed
v is nonzero. Higher speed or more measurements will
increase this observability rate and robustify it for real
world application.

2.3 Problem statement

We suppose that an underwater mobile sensor is
operated to repeatedly scan the draft at the nodes xi, i ∈, through the measurements window (7) with a nonzero
relative speed between the ice drift and the mobile sensor.
Let �̂� be the estimate of the topographic model (6). The
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objective is to design an ice topography estimator based
on the model (17) with time-varying measurement vector
(17c), that is, an asymptotically stable observer such that

lim
t→∞

|�̂�(t) − 𝐳(t)| = 𝟎. (20)

By construction and based on the Nyquist sampling
theorem, this will give a continuous approximation to the
topography of the drifting ice field in the specified oper-
ations area (interval) with a sufficiently limited online
communication demand of signal parameters.

III. TOPOGRAPHIC ESTIMATOR DESIGN

Given the formulation of the previous section, the
topography observer design is based on (17), excluding
(17b), resulting in the model

�̇� = 𝟎 𝐝(t0) = 𝐝0 (21a)

𝐲 = 𝐂(t)𝐳 = 𝐅(t, ŝ(t))⊤𝐝, (21b)

where we assume that 𝐅(t, ŝ(t)) satisfies the PE condition
(18).

3.1 Fourier-based observer design

Let �̂� ∈ R
m and �̂� ∈ R

n be estimates of 𝐝 and
𝐲, respectively. Various observer designs are now possi-
ble to estimate the coefficient vector (21a), for instance
some Bayesian filtering technique such as Kalman or par-
ticle filters. However, choosing a deterministic design for
simplicity, we use the estimated output vector

�̂� ≜ 𝐅(t, �̂�(t))⊤�̂�, (22)

as part of an injection term motivated by a gradient
algorithm [28] to minimize the cost function

J(t, �̂�,𝐝) = 1
2
(�̂�(t) − 𝐲(t))⊤ 𝐖 (�̂�(t) − 𝐲(t))

= 1
2

(
�̂� − 𝐝

)⊤

𝐅(t, ŝ(t))𝐖𝐅(t, ŝ(t))⊤
(
�̂� − 𝐝

)
,

(23)

where 𝐖 = 𝐖⊤ > 0. Accordingly, we propose the
coefficient observer

̇̂𝐝 = −𝐋dJ �̂�(t, �̂�,𝐝)⊤

= −𝐋d𝐅(t, ŝ(t))𝐖�̃�, �̂�(t0) = �̂�0,
(24)

where �̃� ≜ �̂� − 𝐲 is the output error and 𝐋d = 𝐋⊤

d
> 0 is a

gain matrix to tune the rate of adaptation of the individ-
ual coefficients in �̂�. A good choice of 𝐋d can be selected
if a representative amplitude spectrum of the area is

known in advance, as the most important wave numbers
to estimate are the wave numbers that have the largest
amplitude in the amplitude spectrum. The adaptation
gain matrix 𝐋d can then be chosen accordingly to empha-
size the corresponding coefficients. If no knowledge of
the operating area is known in advance, the coefficients of
the smallest wave numbers are generally most important.

From (17) and (24) we get the error dynamics

̇̃𝐝 = −𝐋d𝐅(t, ŝ(t))𝐖𝐅(t, ŝ(t))⊤𝐝, (25)

where 𝐝 ≜ �̂� − 𝐝.

Theorem 1. Suppose 𝐅(t, s) satisfies the PE condition of
Lemma 2. Then there exist strictly positive constants 𝛼

and 𝛽 such that the solutions of (25), for all 0 ≤ t0 ≤ t,
satisfy

|𝐝(t)| ≤ 𝛼|𝐝(t0)|e−𝛽(t−t0), (26)

that is, the equilibrium 𝐝 = 𝟎 is UGES.

Proof. There exist a lower triangular matrix 𝐍 > 0 such
that 𝐖 = 𝐍𝐍⊤. Hence, ̇̃𝐝 = −𝐋d𝐐(t)𝐐(t)⊤𝐝 where 𝐐(t) ≜
𝐅(t, ŝ(t))𝐍. We have ∀ t ≥ 0 that 𝐐(t)𝐐(t)⊤ ≥ 0 and, from
Lemma 1 (P2, P3), that ∃𝜇 > 0 such that ‖𝐐(t)‖ ≤ 𝜇. Set-
ting 𝐏 = 1

2
𝐋−1

d
and 𝐊(t) = 𝐋d𝐐(t), then all requirements

of [27, lemma 1 and lemma 2] are satisfied. This concludes
that (25) is UGES, which by definition implies (26).

As a result of Theorem 1, the observer error 𝐝(t),
and thus �̃�(t) ≜ �̂�(t) − 𝐳(t) = 𝐇(�̂�(t))⊤𝐝(t), will converge
exponentially to zero with convergence rate 𝛽, and the
goal (20) is obtained. Increasing 𝐋d or 𝐖 will increase
the convergence rate on the cost of a more aggressive and
noise-sensitive observer. Since T0 is the minimum time
it takes to achieve full rank in (18), an increased T0 will
reduce the convergence rate. T0 depends on the number
of parameters m, the fundamental wave-number 𝜅0, and
the relative speed between the ice topography and the
underwater sensor.

3.1.1 Robustness with respect to uncertainties

In the previous sections we have made the strong
assumption that the ice drift speed is constant and
known, and that there is no noise in the measurement.
However, since the error dynamics is UGES, we get for
free that it is also input-to-state stable (ISS), given a
global Lipschitz condition [29, lemma 4.6].

Suppose that v̂ is our estimate of the true drift speed
v such that s̃(t) = ṽ(t − t0) + s̃0 where ṽ ≜ v̂ − v. Then
𝐝(t) = 𝐑(s̃(t))⊤𝐜 is time-varying, but bounded with fixed
length equal to 𝐜.
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Moreover, assume that each measured positions
xi, i ∈  is affected by an error 𝛿x ∼  (

0, 𝜎2
x

)
. We then

get the draft

zi = 𝐡(𝜅0, xi + 𝛿x, p; s)⊤𝐜 (27)

= 𝐡(𝜅0, xi, p; s + 𝛿x)⊤𝐜, (28)

which gives

𝐳 = 𝐇(s + 𝛿x)⊤𝐜 = 𝐇(s)⊤𝐑(𝛿x)𝐜, (29)

where 𝐑(𝛿x)𝐜 ∼  (
𝐜, 𝜎2

c

)
is bounded with fixed length

equal to 𝐜 and 𝜎c = 𝐑(𝜎x)𝐜. For all measurements we have
that

𝐲 = 𝐂(t)𝐳 = 𝐂(t)𝐇(s)⊤𝐑(𝛿x)𝐜
+ 𝐂(t)𝐇(s)⊤𝐜 − 𝐂(t)𝐇(s)⊤𝐜,

(30)

which gives

𝐲 = 𝐅(t, ŝ)⊤𝐝 + 𝛎y, (31)

where 𝝂y = 𝐂(t)𝐇(s)⊤(𝐑(𝛿x) − 𝐈)𝐜 can be considered
bounded zero mean Gaussian white noise. Hence, (31)
can be considered a general measurement equation where
𝜈y is bounded measurement noise.

The observer error dynamics then become

̇̃𝐝 = −𝐋d𝐅(t, ŝ)𝐖𝐅(t, ŝ)⊤𝐝
+ 𝐒(ṽ)𝐝(t) + 𝐋d𝐅(t, ŝ)𝐖𝐅𝛎y(t)

(32)

where we used that �̇�(s̃) = 𝐑(s̃)𝐒(ṽ). As the “distur-
bances” 𝐝(t) and 𝝂y(t) enter additively through uniformly
bounded matrices, the system is ISS with respect to
these disturbances.

The observer also has a typical lowpass character-
istics with attenuation of high frequency measurement
noise. In addition, simulations show low sensitivity to
discrepancies in v̂, as further discussed in Section IV.

3.1.2 Simulation

To verify the convergence properties of the
Fourier-based estimator, a simulation has been done on
an ideal sinusoidally shaped topography (3). The time
evolution of the normalized cost function

J0(t) =
�̃�(t)⊤𝐖�̃�(t)

supt≥0 �̃�(t)⊤𝐖�̃�(t)
, (33)

is used to quantify the convergence rate of the node
estimates. To show that also the coefficient estimates
converge, we plot the time evolution of

Jd(t) =
𝐝(t)⊤𝐝(t)

supt≥0 𝐝(t)⊤𝐝(t)
. (34)

The topography is given by (3), with p = 10, 𝜅0 =
𝜋∕10 rad/m, v = 1.0 m/s, the p+1 elements in 𝐚 are evenly
distributed between −5.5 and −0.5, and 𝐛⊤ = [1, · · · , 1].
The sampling distance is 𝜆s = 0.8 m, the gains were set to
𝐋d = 0.1 ⋅ 𝐈 and 𝐖 = 𝐈, and the initial conditions were
ŝ0 = −2 m, s0 = 0 m, and �̂�(0) = 𝟎m.

For this simulation, the interval of measured nodes
according to (7), was set fixed within [1.5 m, 7.5 m],
enveloping a total of 8 nodes as indicated by the blue
stems in Fig. 7. This emulates a stationary sensor instead
of a mobile sensor, and illustrates the observability prop-
erty of the system with less measured nodes than coeffi-
cients to estimate.

Three different time instants of the simulation are
shown in Fig. 7, while the performance according to (33)
and (34) are shown in Fig. 8. The simulation verifies the
exponential convergence according to Theorem 1. Note

Fig. 7. Three time instants of the ideal topography. The blue
stems represent the non-moving draft measurements 𝐲.

Fig. 8. Time evolutions of estimation error according to (33)
and (34).
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especially in the second plot of Fig. 7, the rapid con-
vergence when the most significant part of the wave is
measured. Faster convergence will generally be attained if
the ice speed v is higher, since the system then experiences
a higher level of excitation.

3.2 B-spline-based observer design

To analyze the performance of the observer, we will
compare the Fourier-based design to an observer based
on B-splines. A B-spline model is chosen because of
important properties such as local support, smoothness,
continuity, positivity, and simple derivatives [30]. Espe-
cially the local support property distinguish the B-splines
from the Fourier basis.

According to [30] the B-spline 𝜙d+1
j of degree d and

order d + 1 with knots kj < · · · < kj+d+1 is defined
recursively as

𝜙d+1
j (x) ≜ x − kj

kj+d − kj
𝜙d

j (x) +
kj+d+1 − x

kj+d+1 − kj+1
𝜙d

j+1(x),

(35)

where the initial B-spline of order one is defined as

𝜙1
j (x) ≜

{
1, if x ∈ [kj, kj+1)
0, else.

(36)

We model the underwater ice topography as a linear
combination of the m = p+d B-spline basis functions 𝜙d

j
for j ∈ [−d, p − 1], that is

𝜎(𝜉; s,𝐝) =
p−1∑

j=−d

dj𝜙
d
j (s − 𝜉), (37)

where dj are the coefficients (or weights) of the
B-splines. Hence, the topography 𝜎(𝜉; s,𝐝) can be writ-
ten in vector form 𝜎(𝜉; s,𝐝) = 𝐡(𝜉; s)⊤𝐝, where 𝐝 ≜
col(d−d , · · · , dp−1) ∈ R

m and

𝐡(𝜉; s) ≜ col
(
𝜙d
−d(𝜉 − s), · · · , 𝜙d

p−1(𝜉 − s)
)
∈ R

m.

(38)

Discretizing (37) as in Section 2.1 yields the draft vector

𝐳 = 𝐇(s)⊤𝐝, 𝐇 ∶ R → R
m×n, (39)

where 𝐇(s) ≜ [
𝐡(x1; s), · · · ,𝐡(xn; s)

]
. Eq. 39 is in the same

form as (6) and the B-spline is therefore an equivalent
basis for the problem of ice topography estimation. As
a result, the same update law as in (25) can be used to
update the coefficient estimates �̂�.

3.2.1 Simulation

To verify the performance of the B-spline method, a
simulation has also been conducted on an ideal B-spline
shaped topography based on (37). The setup was the
same as in Section 3.1.2, with d = 3,m = 11, and
𝐝 = −col(𝟎3, 2, 1, 3, 1, 4, 𝟎3). The gains were chosen as
𝐋d = 20 ⋅ 𝐈 and 𝐖 = 𝐈, while ŝ0 = s0 = 20 m, and
�̂�(0) = 𝟎. The measurement region was again set fixed,
now at [12 me, 18 me] due to the local characteristics
of the B-splines. The Nk = m + d + 1 knots were dis-
tributed evenly between [-7.5 m, 27.5 m]. The result of the
simulation is seen in Fig. 9–10, demonstrating that the
estimation errors converge as expected.

Fig. 9. Three time instants of the B-spline topography. The
blue stems represent the fixed draft measurement
window 𝐲.

Fig. 10. Estimation errors according to (33) and (34).
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IV. CASE STUDY

For a real case study we consider the SCICEX-99
dataset presented in the introduction. Appropriate val-
ues for 𝜅0, 𝜅c, p, and 𝜆s were found in Section 2.1.2 to be
p = 12, 𝜅0 = 0.06 rad/m, 𝜅c = 0.6 rad/m, and 𝜆s = 1.6 m,
giving m = 2p + 1 = 25 coefficients to estimate. A mon-
itoring region was specified to the interval [0 m, 50 m],
with n = 31 measurement nodes distributed evenly along
it. The matrix 𝐋d was diagonal with m evenly distributed
diagonal elements from 1.00 to 0.04, prioritizing the most
important coefficients as explained in Section 3.1. Other
parameters were set as in Section 3.1.2.

For comparison, the B-spline method was also
tested, with, d = 3, p = 22,Nk = p + 2d + 1 knots
distributed evenly in [-7 m, 57 m], and 𝐋d = 20 ⋅ 𝐈. The
number of coefficients to estimate is m = d + p = 25.

To emulate an AUV with an upward-looking MBES
(see Fig. 1), we simply let the measurement window (7)
move along the horizontal axis with velocity vauv =
5.0 m/s from its initial region at [5 m, 15 m]. In a real
experiment, the velocity of the AUV would not be
perfectly constant. However, this is not critical to the
observer performance as long as a nonzero relative
velocity between the AUV and ice cover is attained
(since Lemma 2 then will be satisfied nonetheless). It is,
on the other hand, critical that the measurements from
the MBES is properly georeferenced to produce accu-
rate draft measurements. This data acquisition problem,
which is related to the capabilities of the mobile sen-
sor platform, is not within the scope of this paper. Note
also that since we emulate a mobile sensor moving in 3D
ocean space along a repetitive path into a 2D represen-
tation, we have implemented the measurement window
to re-enter in the left end of the monitoring region as
it leaves at the right end to obtain periodic scanning of
the interval.

As seen from Fig. 11–12, both methods capture the
variation in the topography with similar performance.
Since the proposed algorithms are based on truncated
models, they cannot perfectly identify the real topogra-
phy, and the draft estimates at the nodes, according to
the performance index (33), are shown in Fig. 12 to con-
verge to a small neighborhood around zero. Notice that
the local support property of the B-splines makes the
corresponding estimated topography go to zero outside
the monitoring region. The Fourier method, on the other
hand, is based on the assumption of a periodic signal,
with period 𝜆0 = 2𝜋∕𝜅0 ≈ 105 m, which means that the
topography identified within the monitoring region will
repeat itself outside the region.

Fig. 11. Three time instants of estimation on the SCICEX-99
dataset. The blue stems show the moving
measurement window 𝐲.

Fig. 12. Time evolutions of the performance index (33) with
v = 5.0 m/s and 2.0 m/s.

An important advantage of the Fourier-based
method is the robustness property explained in
Section 3.1.1. To illustrate this, we have simulated the
same case with the true ice drift velocity v set 50% higher
than the estimated velocity v̂ used in the observer. The
resulting response presented in Fig. 13, showing that
both estimates converge, illustrates the resilience of the
method to such deviation. However, even if not evident
from Fig. 13, it should be mentioned that longer duration
simulations have shown that the B-spline method will
eventually become unstable due to such discrepancies
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in the real and estimated ice drift velocities. A deeper
analysis of the B-spline method is therefore needed, but
not the scope of this paper.

To evaluate the filtering properties of the
Fourier-based observer, we consider the case of con-
stantly measuring only Node 1 with the estimated draft
of the same node as output. For each fixed ŝ, the observer
24) then becomes the single input single output (SISO)
linear system

̇̂𝐝 = −𝐋d �̂�(ŝ)𝐖�̂�(ŝ)⊤�̂� + 𝐋d𝐡(𝜅0, x1, p; ŝ)z1

ẑ1 = 𝐡(𝜅0, x1, p; ŝ)⊤�̂�,
(40)

where �̂�(ŝ) ≜ 𝐇(ŝ)𝐂 with 𝐂 = diag(1, 0,… , 0). The
frequency response from the measured input z1 to the
output ẑ1 of (40) is shown in Fig. 14, where the ensemble
of responses corresponds to one plot for each ŝ-value in
{0, 1, · · · , 105}m. This shows a bandwidth slightly vary-
ing between (6–10) rad/m with efficient noise attenuation
in z1 at higher frequencies.

A qualitative comparison between the Fourier and
the B-spline methods is summarized in Table I. The
“computational speed” and the “simulation time” is
the total run time with equivalent implementations of

Fig. 13. Draft error convergence according to (29) when the
true ice drift velocity is 50% higher than the applied
estimated velocity.

Fig. 14. Frequency responses of (40) for varying ŝ-values.

Table I. Qualitative assessment of Fourier-series and
B-splines.

B-spline Fourier

Accuracy Good Good
Estimator stability Not studied Excellent
Robust No Yes
Simulation time 4.4 s 2.3 s
Computational speed Good Better

the two methods on an HP Elitebook 8540w with
1.73 GHz CPU, using Matlab and Simulink. The values
give an impression of the computational burden; how-
ever, it is possible to optimize both methods further for
better performance.

With this case study, we conclude that the aim to
generate a sufficiently accurate estimate of the ice topog-
raphy, that can be communicated online to a remote
location and reconstructed, is achieved.

V. CONCLUSIONS

In this paper an estimation design for a drifting 2D
ice topography (in x-z plane) has been presented. Based
on the assumption that the topography can be accu-
rately represented by a truncated Fourier series, and given
a set of measurements distributed discretely along the
topography, a UGES and ISS observer was derived to
estimate the topography, and a simulation illustrated its
ideal performance. To quantify the performance of the
proposed estimation design, we also presented an alter-
native estimation method, based on B-spline functions.
The effectiveness of the estimation algorithms were sim-
ulated and compared on a real dataset of ice drafts taken
from the underside of an ice sheet off the shores of Green-
land. The results showed that both methods estimate the
topography with sufficient accuracy using a low enough
number of coefficients. The simulation indicated that the
Fourier method has slightly faster computational speed
and is more robust to uncertainties.

Through the presented problem formulation and
design, this estimation problem is prepared for possibly
more advanced estimator algorithms (for instance some
Bayesian filtering technique such as Kalman or particle
filters), for consideration of more efficient basis func-
tions, and for extension to the 3D topography estimation
case. It should be noted, though, that computational effi-
ciency is critical and may rule out more advanced filters,
especially in the 3D case. Finally, the aim is to test the
system using a real underwater robot.
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