

Using Dividing Wall Columns (DWC) in LNG Production

deviding wall column, double dividing wall column, prefractionator arrangement, Petlyuk column, NGL recovery, distillation

Roohollah Ashrafian

Natural Gas Technology Submission date: June 2014 Supervisor: Even Solbraa, EPT Co-supervisor: Efstathios Skouras-Iliopoulos, Statoil Knut Arild Maråk, Statoil

Norwegian University of Science and Technology Department of Energy and Process Engineering

Roohollah Ashrafian

Using Dividing Wall Columns (DWC) in LNG Production

Supervisor: Even Solbraa

Research Advisors: Efstathios Skouras-Iliopoulos and Knut Arild Maråk

Trondheim, June 2014

D NTNU Innovation and Creativity

Master Thesis

NTNU Norwegian University of Science and Technology Faculty of Engineering Science and Technology Department of Energy and Process Engineering

Preface

This study was carried out within the supervision of Even Solbraa and technically supported by Statoil center in Research, development and Innovation (RDI) in Rotvoll-Trondheim office.

My main word of thank goes to my supervisor Even Solbraa. I would like to thank him for giving me many detailed instructions on my thesis.

I would also like to thank Ivar Haloversen who gave me a lot of information about DWC design and shared generously his great experiences.

And finally I would like to thank professor Olav Boland and all the department personnel who provide me the relevant environment for working academically during this master program.

This section would not be complete without thanking all beloved persons in my life who have been always a great motive to proceed.

Abstract

The Dividing Wall Columns (DWC) distillation has attracted growing interest for fractionation of multicomponent mixture due to reduction of energy consumption, auxiliary equipment and space within fractionation process. Recent developments of the process show considerable energy saving, up to 30%-40%, compared to conventional fractionation schemes. The objective of this thesis is to introduce DWC configurations, governing equations and applications in LNG and gas processing as well as explanation of different methods and processes for industrial production of LNG and LPG. In addition, a consistent and fair comparison between conventional fractionation schemes and two types of DWC i.e. Kaibel and multi-partitioned (Sergant DWC) with respect to energy consumption and other parameters have been conducted. The evaluation was done using Aspen HYSYS simulation program version 7.3 for a typical natural gas feed specification. The study indicates beneficial DWC utilization in terms of energy consumption, auxiliary equipment and duties of condensers and reboilers. Simulation results show energy consumption in LPG extraction process using "Kaibel" DWC about 31% less than conventional fractionation scheme while "multi-partitioned" configuration of DWC is even better and it can save energy up to 37%.

Norwegian University of Science and Technology Department of Energy and Process Engineering

EPT-M-2013

MASTER THESIS

for

Stud.techn. Roohollah Ashrafian

Spring 2013

"Using Dividing Wall Columns (DWC) in LNG production"

Bruk av Dividing Wall Columns (DWC) i LNG-produksjon.

Background and objective

Dividing Wall Columns (DWC) has gained an increased interest in both the academia and the process industry due to their ability to separate a multicomponent mixture into pure fractions in one single column. For example, the separation of a three-component mixture into its pure fractions in conventional fractionation schemes requires a sequential system with two distillation columns. With a DWC this task can be solved in only one shell by introducing a vertical wall in the middle part of the column.

In addition to space and capital cost savings, large potential energy savings, up to 30%-40%, compared to conventional fractionation schemes are also reported in the literature. Moreover, auxiliary equipment such as reboilers, condensers, reflux pumps, column internals, etc., can be saved.

In LNG production, several distillation columns are used to fractionate the NGL from the scrub column. These fractions are used as make-up for the refrigeration system and also to produce stabilized products such as LPG and condensate. Very few publications exist on the use of DWC for this fractionation.

The following tasks are to be considered:

- 1. Literature review: Industrial use of DWC and applications in gas processing and LNG.
- 2. Development of a simulation model for DWC in HYSYS with a focus on applications on natural gas processing
- 3. Process simulations in HYSYS for different fractionation schemes in DWC.
- 4. Overall comparison of important parameters (energy requirements, auxiliary equipment, condenser duties, etc) in DWC-schemes with conventional fractionation schemes.

Table of Contents

Pr	eface	e	
A	ostra	ct	
N	omer	nclature	
1	Iı	ntroduc	tion
	1.1	Ain	n of the study10
2	Iı	ndustria	al Background
	2.1	LN	G Production
	2	.1.1	Cascade refrigeration Process
	2	.1.2	Mixed Refrigerant Process
	2	.1.3	Precooled Mixed Refrigerant Process
	2	.1.4	Future Developments
	2.2	LPO	G extraction and its business case for an LNG plant
	2	.2.1	Turbo-expander LPG recovery
	2	.2.2	Integrated LPG Extraction and LNG Process
	2.3	DW	C Background and Industrial Applications
3	Т	heory a	and Literature Review
	3.1	Mu	lti-component distillation
	3	.1.1	Column Arrangements
	3.2	Div	ided Wall Column (DWC)
	3	.2.1	DWC Configuration for three component separation
	3	.2.2	DWC Configuration for four component separation
	3	.2.3	Other configurations
	3.3	VL	E Equilibrium
	3.4	Flas	sh Calculations
	3.5	DW	C Design Procedures
	3	.5.1	Heuristic Rules for DWC Design
	3	.5.2	Minimum number of stages (Fenske Equation)
	3	.5.3	Minimum Reflux Ratio (Underwood Equation)45
	3	.5.4	Feed Location
	3	.5.5	V _{min} Diagram Method
4	Ν	lethod	blogy and Results

	4.1	1	Con	ventional Fractionation model development (Base Case)	48
		4.1.	1	Column Performance Parameters	48
		4.1.	2	Simulation Results for Conventional method:	52
	4.2	2	Den	nethanizer and Kaibel DWC	53
		4.2.	1	C3 Withdrawal tray location	55
		4.2.	2	LPG Withdrawal tray location	55
		4.2.	3	Liquid flow rate ratio at both sides of Kaibel DWC	56
		4.2.	4	C2 flow rate	56
		4.2.	5	C3 flow rate	57
		4.2.	6	LPG flow rate	57
		4.2.	7	Final Result for Kaibel Model	58
	4.3	3	Mul	ti-partitioned DWC (Sargent arrangement)	59
		4.3.	1	C3 product withdrawing tray	61
		4.3.	2	LPG product withdrawing tray	61
		4.3.	3	Liquid flow rate ratio at both sides of Sergent DWC	61
		4.3.	4	Vapor flow rate ratio at both side of Sergent DWC	62
		4.3.	5	Final Result For Multi-partitioned (Sergent) DWC Model	63
5		Con	clus	ion and Fyrther Study	64
6		Ref	erenc	ces:	65
7		App	oendi	ces	67
	7.1	1	Mai	n Workbook Profile Report for NGL Fractionation Model (Base case)	68
	7.2	2	DC	l column Profile Report for NGL Fractionation Model (Base case)	74
	7.3	3	DC2	2 column Profile Report for NGL Fractionation Model (Base case)	76
	7.4	4	DC3	3 column Profile Report for NGL Fractionation Model (Base case)	78
	7.5	5	Mai	n Workbook Profile Report for Kaibel DWC Model	80
	7.6	5	DC	1 Column Profile Report for Kaibel DWC Model	82
	7.7	7	DW	C Column Profile Report for Kaibel DWC Model	84
	7.8	8	Mai	n Workbook Profile Report for Multi-Partitioned DWC Model	91
	7.9	9	DW	C Column Profile Report for Multi-Partitioned DWC Model	.92

Nomenclature

Abbreviations

11001 c (lations	
APCI	Air Products & Chemicals Inc.
CDWC	Conventional Divided Wall Columns
DMR	Dual Mixed Refrigerant
DWC	Divided Wall Columns
FLNG	Floating Liquefied Natural Gas
HHV	High Heat Value
J-T	Joule Thomson
LNG	Liquefied Natural Gas
LPG	Liquefied Petroleum Gas
MCHE	Main Cryogenic Heat Exchanger
NG	Natural Gas
PRICO	Single Mixed Refrigerant Process
RVP	Reid Vapor Pressure

Latin letters

b	Flow Rates at Bottom of the Column
d	Flow Rates at Distillate
Н	Specific Enthalpy Vapor Phase
h	Specific Enthalpy Liquid Phase
F	Feed Flow
Κ	Vapor-Liquid Equilibrium Constant
L	Liquid Flow
Ν	Number of Stages
Р	Total System Pressure
q	heat flow into, or removal from, the stage
Š	Side Stream
V	Vapor Flow
Х	Mole Fraction of Component "i" in the Liquid Streams

Greek letters

α	Average Relative Volatility
φ	Vapor Fugacity Coefficient
У	Mole Fraction of Component I In Vapor
f	Standard State Fugacity of the Pure Liquid
γ	Liquid Phase Activity Coefficients

Subscripts

1 Introduction

Process industries like refineries, petrochemical and chemical plants have a great contribution in energy consumption as fuel. A great proportion of this energy is involved in separation and purification processes among which distillation is the most widely used one. Energy consumption through distillation becomes so important because almost 3% of the total energy consumption of the world is consumed in distillation towers. In addition high energy demands and prices justify working on developing methods and process equipment which are more energy efficient [1].

Divided Wall Columns (DWC), with less energy consumption and capital expenditure are good alternatives for processes using conventional distillation columns. Briefly speaking, the following benefits could be achieved by using DWCs instead of conventional columns wherever applicable [2]:

- Energy saving
- Capital cost saving by reducing quantity of equipment (a train of columns replaced by one, less reboiler and condenser)
- Less plot area and shorter piping and electrical lines which make it relevant for offshore applications
- Less flare load and as a result smaller flare system

1.1 Aim of the study

In this study the following objectives are considered to be addressed:

- 1. A comprehensive literature review covering industrial use of DWC and its application in gas processing and LNG.
- 2. Development of a simulation model for DWC in HYSYS with a focus on applications on natural gas processing
- 3. Process simulations in HYSYS for different fractionation schemes in DWC.
- 4. Overall comparison of important parameters (energy requirements, auxiliary equipment, condenser duties, etc) in DWC-schemes with conventional fractionation schemes.

To achieve the above objectives, different LNG processes within the industry have been reviewed through sections 2.1.1 to 2.1.3. Then LPG production processes as the main concern of this study have been reviewed through section 2.2 and the energy efficiency concerns in this regard have been discussed. The integrated LPG production as potential application of DWC in a typical LNG plant has been addressed in this section too. In section 2.3 a complete literature review has been presented addressing the track of industrial application of DWC and through section 3, different configurations of the DWC are presented first. Then design parameters for distillation columns in general and for DWCs in specific are discussed to set stage for understanding the design modeling in the next sections.

In section 4, The HYSYS model for three different cases by considering the design parameters addressed in section 3 have been discussed and the obtained results are presented. In this section two different DWC configurations have been simulated. For each case, the design parameters have been optimized with respect to energy consumption and the overall energy usage of them have been compared with the base case which is the conventional fractionation sequence. The overall roadmap and a brief form of this study is presented schematically through Figure 1-1.

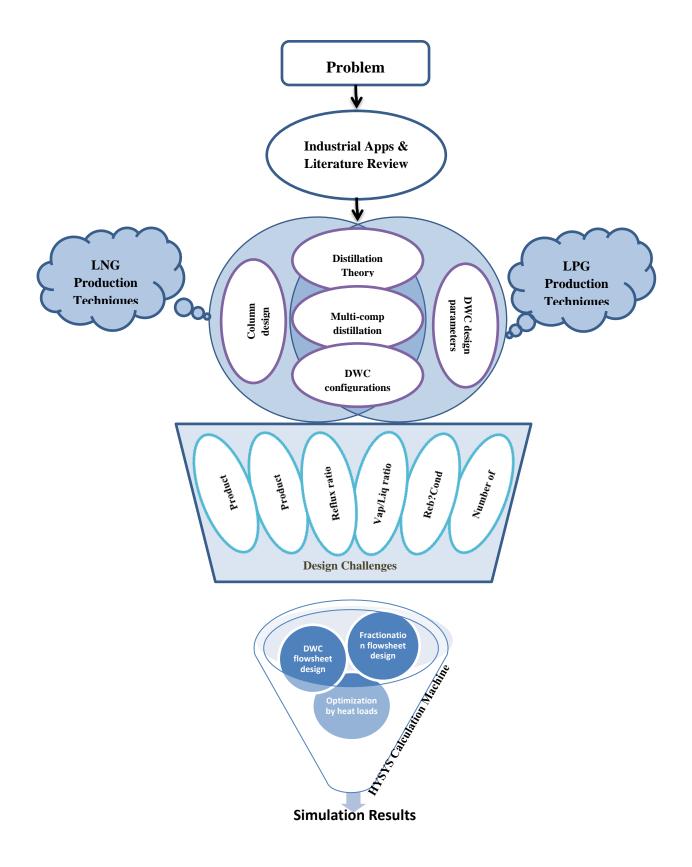


Figure 1-1: The overall methodology and roadmap in this study

2 Industrial Background

In this section different methods and processes for industrial production of LNG and LPG are discussed and the cases for development of DWC as a new method for application in these industries are addressed.

2.1 LNG Production

The reduced volume of Liquefied Natural Gas makes it a great alterative for transporting natural gas resources to the market. There are typically two types of main LNG liquefaction plants:

- 1. Base load plants: that are large scale liquefaction facilities
- 2. Peak-shaving plants: smaller scale facilities which are operating at some parts of the year to compensate for the peak loads.

The design objective of base load facilities is the thermodynamic efficiency of the plant while the minimum capital expenditures are the main design driver for peak-shaving plants.

To liquefy natural gas and converting it to LNG; cryogenic temperatures are required. To achieve these temperatures three main liquefaction processes are common in the industry [3, 4]:

- Cascade Refrigeration Process
- Mixed refrigerant Process
- Precooled Mixed Refrigerant Process.

These three main processes are briefly described in the next subsections.

2.1.1 Cascade refrigeration Process

This process which is currently in place by several plants worldwide is basically involves three refrigeration systems through each of them there exist two or three levels of evaporation pressure using multistage compressors. As a result the natural gas liquefies through eight or nine

temperature levels by using three different refrigerants which are propane, ethylene and methane. Figure 2-1 shows a simple schematic of the cascade process. First, the feed goes through pretreatment processes then feed gas is cooled to a temperature of around -32° C through a propane refrigeration cycle. In this cycle, the propane refrigerant is condensed at high pressure, using either air or water cooling. The J-T expansion valve then completely vaporizes the refrigerant to cool down gas as well as the methane refrigerant. In addition this cycle is responsible to condense partially the ethylene refrigerant used in the subsequent refrigeration level. The propane vapor then recompressed back to complete the cycle.

In the ethylene cycle, similar mechanism takes place to cool down the temperature of the gas to -96° C. It should be noted that this cycle is responsible to condense methane refrigerant after precooling within the propane cycle. Finally, the high-pressure methane refrigerant in the third cycle followed by the throttling expansion through a J-T valve liquefies the gas to a temperature down to -163° C.

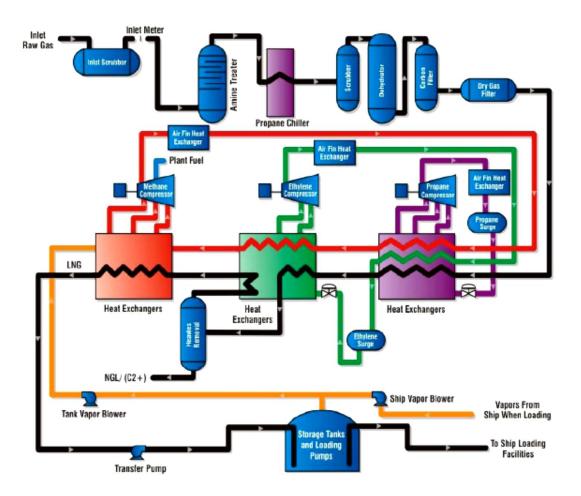


Figure 2-1: Cascade Refrigeration Process

Cascade process has the following advantages:

- It is simple from operational point of view.
- Better control over pure-component refrigerants.

However, this process has also some disadvantages compared to precooled mixed-refrigerant processes [3-5]:

- Lower thermodynamic efficiencies
- Higher compression power and more fuel gas consumption rates
- Complicate compressor and driver selection and maintenance requirements due to unequal distribution of horsepower loads among the three refrigeration cycles

2.1.2 Mixed Refrigerant Process

Instead of using three different refrigerant cycles, this process simply uses a single mixed refrigerant mainly composed of nitrogen, methane, ethane, propane, butane and pentane. In this process natural gas is cooled through a gliding temperature. The whole process design aims to match the boiling curve of the refrigerant with the cooling curve of the natural gas.

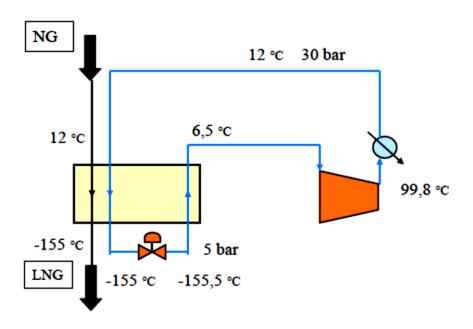


Figure 2-2: Single Mixed Refrigerant Process (PRICO)

Figure 2-2 shows a typical schematic of Prico process as one of the most common simple mixed refrigerant plants. It could be seen that very close temperature approaches are achievable within the cold box of this process. Figure 2-3 shows the T-Q diagram for the above typical Prico process.

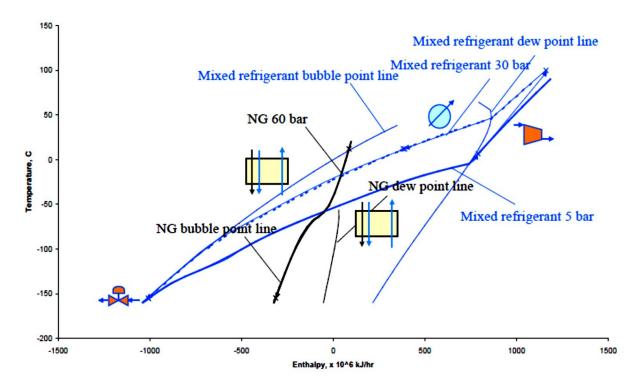


Figure 2-3: Temperature-Enthalpy diagram of Prico process

2.1.3 Precooled Mixed Refrigerant Process

Propane precooled mixed refrigerant process (C3MR) is the most widely used LNG production process which is licensed by Air Products & Chemicals Inc (APCI). C3MR is actually a combination of the cascade and mixed refrigerant processes through which the natural gas feed is precooled by a multi stage pure propane cycle first down to -30°C. This precooling leads to condensing heavier hydrocarbons including LPG components which are separated by scrub column and sent to the fractionation trains. After precooling, the gas liquefies within the Main Cryogenic Heat Exchanger (MCHE) which is a special large spiral wound heat exchanger. The MCHE uses a mixed refrigerant system.

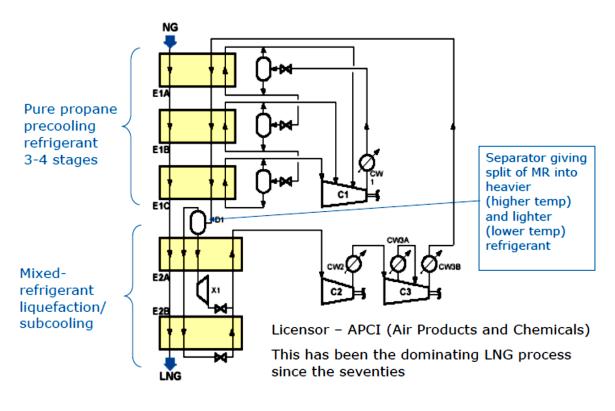


Figure 2-4: C3MR Process

In C3MR process, the C3 cycle load should be high enough to support cooling of both feed gas as well as MR. As a result, this process is limited for production rates up to 5 MTPA. To increase the production capacity, a Nitrogen Brayton cycle could be added to the end of C3MR to form the three cycle process of AP-XTM with a capacity of almost 8 MTPA. Figure 2-5 illustrates a schematic block diagram for this process [6].

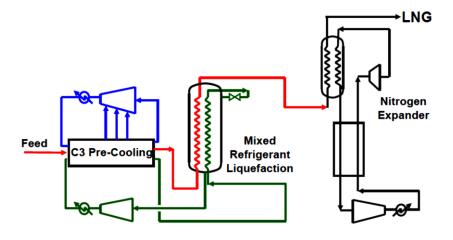


Figure 2-5: The AP-XTM Process

Shell has introduced another process which is called Dual Mixed Refrigerant (DMR). This process has two refrigeration cycles which have their own refrigerants. The first cycle is for precooling through two parallel heat exchangers and the second cycle is for the liquefaction process. The block diagram of this process is shown through Figure 2-6.

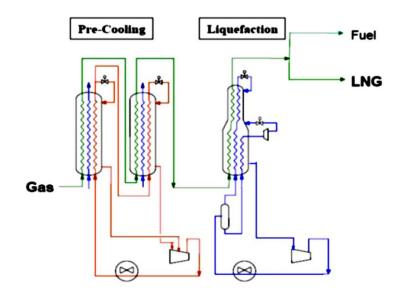


Figure 2-6: Shell DMR Process

This process mainly differs from C3MR in its precooling section through which better power control over compression loads and higher efficiency compression operation would be possible. In addition, the temperature of the precooling portion of the process could be lowered because the critical point constraint imposed by pure propane in C3MR doesn't exist [4, 7].

Although there are several other processes this report is limited to the above processes to get the concept of whole LNG liquefaction process and having a better sense of common equipment used in these processes. Within the next section the need for offshore LNG production and the process alternatives for it are discussed.

2.1.4 Future Developments

Almost one-third of the gas reserves in the world are located offshore which requires to be brought onshore for further processing into LNG product. Traditional onshore LNG plants usually require a platform based process facility to dehydrate condition and compress feed gas according to long distance pipeline specifications. Then a large scale onshore LNG plant with a special harbor for accommodating special LNG vessels was needed. As it could be perceived the whole scheme requires huge amount of capital expenditures. To become agile in responding to the market demand, the concept of Floating LNG (FLNG) emerges recently. The following advantages of this concept make it worth to analyze more:

- Less capital costs by eliminating the need for platform, pipeline and harbor
- Less environmental impact
- Mobility to new locations in the case of depleted reservoir

To select the relevant liquefaction process for FLNGs several factors should be taken into consideration. Main constraints for these facilities include deck space limitations and the challenge of marine movements. So, FLNGs require simpler processes comparing to onshore land-based LNG plants. Considering all of these factors two main criteria are key players in selecting relevant process for FLNGs:

- Compactness and;
- Efficiency

Considering compactness requirement, simple MR processes like Prico is relevant while considering efficiency leading to DMR process. In their paper Lee and Long proposed cycles basically with combination of MR and DMR process. In their proposals a single MR separates into heavy liquid and light vapor (HK,LK) by a separator. Then these two refrigerants have their own refrigeration role separately within the heat exchanger. They proposed process is depicted through Figure 2-7 [4, 6, 7].

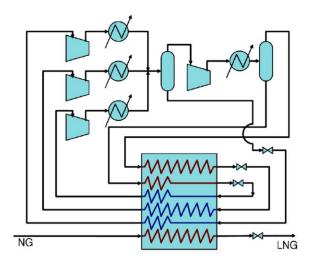


Figure 2-7: The proposed process for FLNG

2.2 LPG extraction and its business case for an LNG plant

There are several reasons that justify the LPG extraction in a typical LNG plant. The followings are the most important reasons for design and implementing such a plant [8]:

- To adjust the heating value of the LNG product specifications
- To remove heavier components which might freeze during the liquefaction process
- To produce valuable LPG products for sale as a separate product
- To supply the main liquefaction process with refrigerant make-ups

The produced LNG needs to be complied with the heating value specifications. This means that for lower HHV specifications deep LPG component (ethane, propane and butane) extraction is required while for higher HHV specifications, lighter LPG component extraction is required. The other alternative to reduce HHV is adding nitrogen to the produced LNG. The investigations done by McCartney have shown that LPG extraction in the LNG production line will increase the total compression power requirements. However because of the LPG products the production rate would be increased, the LPG extraction technology plays a vital role to make it economically viable at least from energy consumption point of view. [9]

There are different process alternatives to extract LPG components among which two major schemes are common in LNG plants. The first scheme is based on a turbo-expander process which is implemented upstream of the main LNG liquefaction process [8]. The second extraction scheme is integrated with natural gas liquefaction by using a so called scrub column. Figure 2-8 shows a block diagram for these two different LPG extraction schemes in a typical LNG plant. A brief description of these two process alternatives are discussed in the next sections and the advantages of integrated approach are also mentioned.

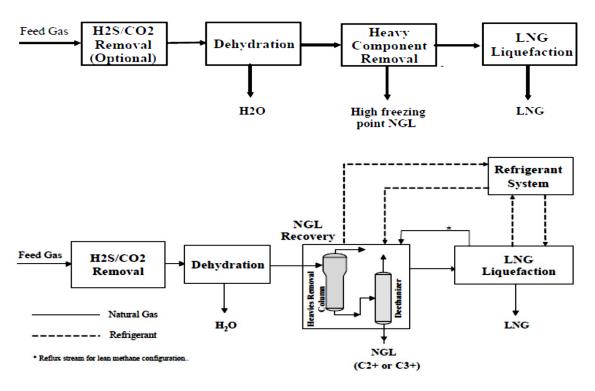


Figure 2-8: LPG recovery schemes in a typical LNG plant

2.2.1 Turbo-expander LPG recovery

To achieve higher recoveries of ethane and propane components, lower cryogenic separation temperatures are required than that achievable by using propane refrigeration cycles. In order to get to these low temperatures, a combined process of expansion and cooling could be used. The following three methods can be deployed to achieve this goal:

- J-T expansion
- Turbo-expander
- Mechanical refrigeration

Among these options turbo-expander process has the most usage among the gas processing facilities. The extent of ethane recovery is related to the following factors which should be taken into consideration:

- The amount of existing inert gases in the feed
- The HHV specification for the residual gas

As it could be guessed, in the case of some existing inert gases in the feed, less deep extraction of ethane is required to compensate for increasing the HHV of the sales gas. Turbo-expander process offers higher efficiencies by using isentropic expansion across turbine compared to J-T process.

Generally, the feed gas goes through the turbo-expander and uses the gas pressure for refrigeration. Turbo-expansion of gas will lead to recovery of some useful work which could be used to run the compression system for recompressing the residual gas. The isentropic nature of expansion across a typical turbo-expander leads to less refrigeration temperatures compared to a J-T valve expansion. A flow diagram for a turbo-expander plant is shown through Figure 2-9. It could be seen that the feed and dried gas is chilled by the residual gas. Sometimes mechanical refrigeration is provided to complement the gas cooling process. Then the chilled gas is fed to the cold separator where hydrocarbon liquids are separated and isenthalpically expanded by a J-T valve and then fed back into the middle of the demethanizer. The vapor phase coming out of the cold separator goes through the expander and isentropically expanded. Then it flows to the top portion of the demethanizer. As mentioned above, isentropic expansion will lead to lower temperatures compared to isenthalpic expansion. Hence, the vapor which expanded by expander goes to the top of the demethanizer.

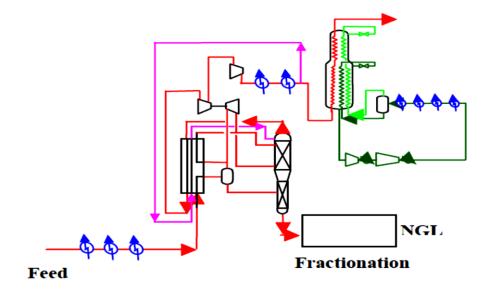


Figure 2-9: Upstream turbo-expander LPG extraction

In addition to being a recovery limit, the need for running this plant at critical conditions imposes instability problems from operational point of view. The ethane recovery for this configuration is limited up to 80%. To increase recovery, low temperatures must be achieved by overcoming to the above limitations. The following modifications have been made to conventional turbo-expander plants to achieve this goal:

- Residue Recycle: through which a portion of the residue gas after recompression to pipeline pressure goes through feed heat exchanger. Then after full condensation recycled back to the demethanizer tower providing more refrigeration. As a result higher Ethane recovery would be achieved.
- Gas Subcooled Process: through which a portion of the gas from the cold separator sent to the overhead exchanger and fully condensed with the overhead stream. Then this stream is flashed and recycled to the top of the demethanizer as the reflux.

In both of these modifications the amount of Ethane recovery enhancement is dependent on the amount of reflux. Figure 2-10 and Figure 2-11 show the expander plant with these two modifications schematically [3, 10].

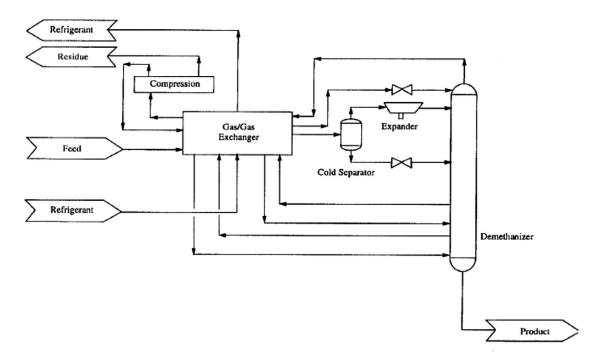


Figure 2-10: Turbo-expander with Residue Recycle

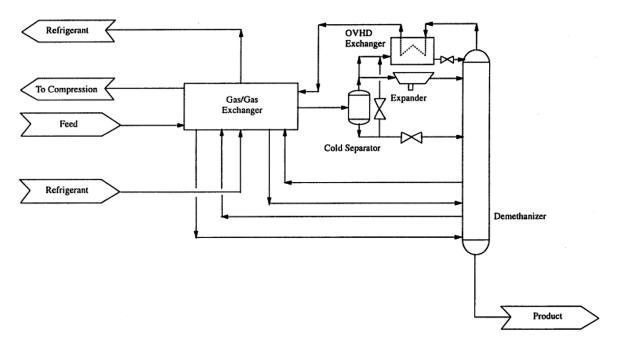


Figure 2-11: Turbo expander with Gas Subcooled Process

2.2.2 Integrated LPG Extraction and LNG Process

Changing world markets toward NGL as well as increasing demand for LNG as an emerging source of energy synergistically increase the motivation towards integrated process approach. Furthermore, almost all natural gas components have higher condensation temperatures compared to methane. So, from technical point of view they could be liquefied within the main LNG liquefaction process. This is a basic overview of integrated scrub column process which is operable at feed pressure of the main LNG liquefaction plant. The main characterization of this process is its capability to retain high pressure for efficient LNG liquefaction process. Figure 2-12 shows schematically the integrated LPG extraction processes [11, 12].

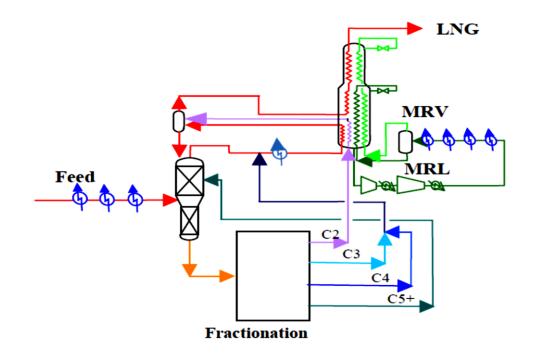


Figure 2-12: Integrated LPG extraction process in an LNG plant

Increasing the LPG extraction by scrub column has some operational difficulties that need to be overcome. First, the scrub column temperature should be reduced to achieve higher LPG extraction. This is achievable by increasing reflux and eliminating reboiler of the scrub column which sends a lot of methane to the downstream fractionation train. So, additional demethanizer is required in the fractionation train as shown through Figure 2-13 [9].

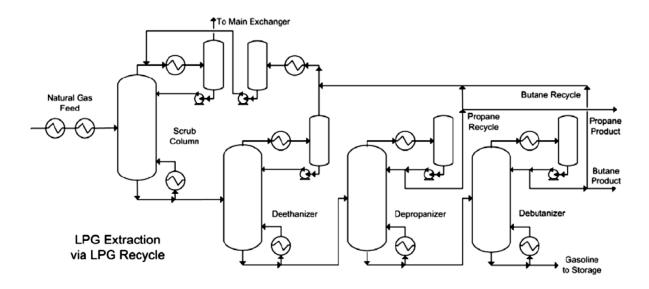


Figure 2-13: LPG Recycle Process

Increasing LPG extraction by lowering column temperature is limited to the critical conditions of the overhead mixtures. Furthermore, increased extraction of propane and butane makes the overhead mixture leaner. As a result, the critical pressure reduced and the scrub column should operate at lower pressure which leads to less efficient liquefaction. To cope with this problem an ethane stream is recycled back to the scrub column resulting in retaining higher critical pressures up to 55 bar. If further extraction is required a recycle of $C5^+$ could also be fed into the column. By deploying these techniques a recovery of 95% of the LPG components can be achieved.

The integrated process approach gets more consideration in the industry. Elliot D. et al has discussed the following advantages for this process[8, 12]:

- Less combined capital and operating costs by avoiding duplication of refrigeration duties and equipment as well as common utility usage
- Higher thermodynamic efficiency leading to reduce specific power consumption
- The opportunity to improving the overall project economy by early production of NGL recovery before commissioning of LNG plant
- Operational flexibility in switching between ethane recovery and ethane rejection modes
- Higher recovery of LPG and aromatic components

2.3 DWC Background and Industrial Applications

The fully thermally coupled systems of distillation columns are among interested process industry issues from several years ago. DWC idea was first presented through a patent by Wright (1949) considering the thermal coupling concept. Then, Petyluk et al. (1965) developed it for separation of ternary mixtures and Petlyuk column introduced. Afterwards, high energy prices as well as the global interest to reduce both capital and operating costs derived many researches to evolve the concept of fully thermally coupled distillation systems from energy saving point of view[13].

The following stories about the industrial application and development of DWCs has been quoted by Premkumar (2008).

- It is announced by Kaibel G. (1988) and European Chemical News (ECN, 1995) that DWC was used first by BASF AG at 1985 and it had successfully installed and operated more than 30 such columns.
- As per M.W. Kellog Limited press release, 11 September 1998, M.W. Kellog Limited in association with BP (later known as BP Amoco), successfully installed a divided wall column at BP's Coryton refinery, UK
- A divided wall column have been developed by Sumitomo Heavy Industries Co. together with Kyowa Yuka, as per Parkinson G. (1998)
- The world's largest divided wall tray column constructed by Linde AG for Sasol at 1999, with 107 m height and 5m in diameter

DWCs could be applied in a wide range of applications. They are suitable for separation of mixtures three or multi component mixtures. Figure 2-14 shows the increasing trend in DWC applications in the chemical industry.

Figure 2-14: Number of reported industrial DWCs over years [14]

Initial application of DWCs were restricted to final distillations through which the medium boiling component was the main component and should be separated from low fractions of light and heavy components. Over the years its applications elaborated in such a fast pace that DWCs were used to produce highest purity grades. These applications are as hydrocarbons, alcohols, aldehydes, ketones, acetals, amines, etc. In addition, DWCs could be used in azeotropic, extractive and reactive distillation.

The range of products is wide. It covers hydrocarbons, alcohols, aldehydes, ketones, acetals, amines and others. Obviously there are no restrictions with respect to the type of chemicals. The industrial applications of DWC were reviewed by Yildirim et al. Most of the applications (116 out of 125) are for ternary separations. Based on this article, there are few applications of DWCs for more than three component mixtures which were conducted by BASF SE and UOP. Table 2-1 and Table 2-2 list a number of industrial applications of DWCs for ternary and multi component systems respectively.

Company	System	Constructor and year	Features
BASF SE, diverse sites	Mostly undisclosed	Majority of the columns are built	More than 70 DWCs
		by Montz GmbH	 Diameter 0,6–4 m
		First commercial DWC in 1985	 Operating pressure 2 mbar to 10 ba
Sasol	Separation of hydrocarbons from	Linde AG	 World largest DWC
Johannesburg, South Africa	Fischer–Tropsch synthesis unit	In 1999	 Height 107 m
			 Diameter 5 m
			 Tray column
Veba Oel Ag,	Separation of benzene from	Uhde	 170,000 mt/year feed capacity
Münchs münster, Germany	pyrolysis gasoline	In 1999	
Saudi Chevron Petrochemical	Undisclosed	Uhde	 140,000 mt/year feed capacity
Al Jubail, Saudi Arabia		In 2000	
ExxonMobil	Benzene-toluene-xylene	ExxonMobil	 No data available
Rotterdam, Netherland	fractionation	Was planned for 2008	
Undisclosed	Undisclosed	Sumitomo Heavy Industries and	Six DWCs
		Kyowa Yuka	 No data available
Undisclosed	Separation of C7 + aromatics	UOP	Five DWCs
	from		 Trap tray
	C7 + olefin/paraffin		
Undisclosed	Undisclosed reactive system	UOP	 Split shell column with two walls
	consisting of two reactive		-
	components and an inert		
	component		
Undisclosed	Undisclosed	Sulzer Chemtech Ltd.	• 20 DWCs
			 No data available
Undisclosed	Undisclosed	Koch Glitsch	• 10 DWCs
			 No data available

Table 2-1: Industrial application of DWCs for ternary systems

Table 2-2: DWC application for more than three component mixtures

Company	System	Constructor and year	Features
BASF SE	Recovery of four-component mixtures of fine chemical intermediates	BASF SE/Montz GmbH since 2002	 Single wall Height 34 m Diameter 3.6 m Column works under deep vacuum
Undisclosed customer in the Far East	Integration of a product separator and an HPNA stripper	Designed by UOP	• 5 product streams

This history track shows an increasing interest in using DWCs in process industries [13-15].

3 Theory and Literature Review

Having good understanding of the basic principles of distillation would be helpful to optimum application of it through industrial functions. In this section multicomponent distillation and divided wall column (DWC) arrangements are introduced first. Then basic distillation theory and the governing equations are addressed and design procedures are described.

3.1 Multi-component distillation

Industrial application of distillation usually involves multi-component mixtures which need to be separated into salable products. So, distillation theory also needs to be analyzed for multi-component systems. The design of a distillation column for a multicomponent process is much more complex than a binary system through which fixing one component will lead to fixed composition of the other. In this kind of distillation top and bottom products could not be specified independent of each other. So, top and bottom products are separated by putting some limits of two key components between which we intend the separation to occur. The component that is intended to be out of the bottom product is called light key and the one that is intended to be out of top product is called heavy key component. [16]

One feature of multicomponent distillation is that it needs more than two distillation columns to achieve the separation. The general rule is that lighter components than the product should be removed first. Then in the second column, the product will be separated from the heavier components. As a rule, if the feed has N components and complete separation of each component needed, then N-1 column would be required to achieve this separation.[16]

As the number of components increases, number of possible column arrangements increase dramatically. It is obvious that the best alternative is the best economically viable option during its lifecycle. However, the designer could use heuristic rules to select optimum arrangement:

3.1.1 Column Arrangements

Different column arrangements have been developed to reduce both energy and cost demands of conventional distillation. In this section both simple and complex arrangements are described in a brief way. Figure 3-1 shows schematically these various configurations

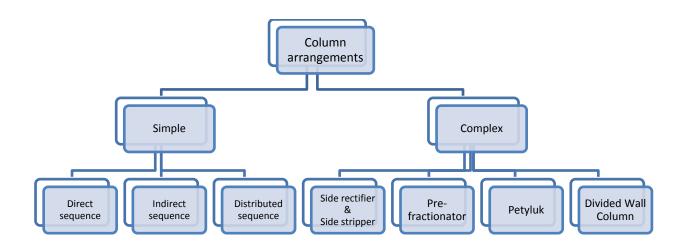


Figure 3-1: Different column arrangements for distillation process

In multicomponent distillation, at least two distillation columns are required to achieve a pure product specification. Common simple conventional configurations with well-known industry records are as follows:

- **Direct Sequence:** In this arrangement the light components are separated first. Through the next columns the heavier components are then separated.
- **Indirect Sequence:** In this arrangement the sequence of separation is against the above one.
- **Distributed Sequence:** Through this arrangement combined splits of light and heavy components go through consecutive columns.

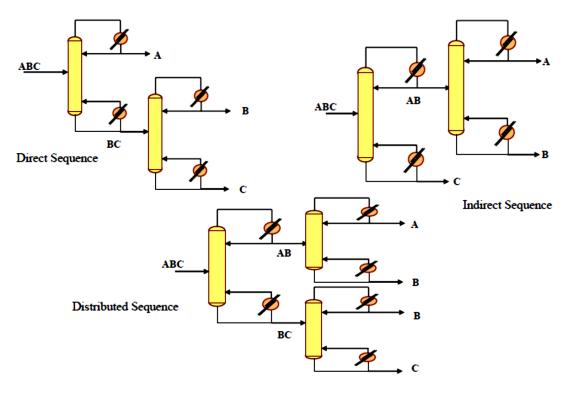


Figure 3-2: Simple column configuration[13]

Different simple column configurations are depicted in Figure 3-2 for a typical 3-component separation process. Simple configurations have some thermal inefficiency. Schultz et al has investigated this inefficiency in his article.

Concentration profile for component B in the first column of direct sequence configuration is shown through Figure 3-3. It could be seen that B reaches into its highest purity in some tray near the bottom. Then because it is not separated within first column it starts to dilution because of increase in concentration of component C. The process of dilution and remixing with C makes this column configuration less efficient from energy point of view[2, 13].

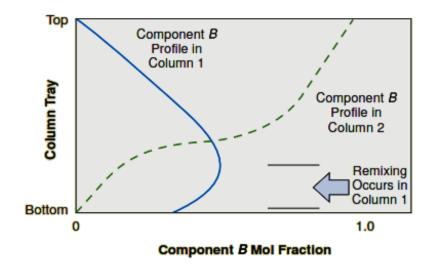


Figure 3-3: Remixing of component B in conventional direct sequence[2]

Other column arrangements are categorized as complex columns. They are normally referred to thermally coupled arrangements through which two-way vapor-liquid flows between different columns of the simple column configurations are set. These configurations eliminates the need for condenser and (or) reboiler in conventional simple arrangements thereby saving energy demands of the whole process. Common complex configurations are as follows:

- Side Rectifier and Side Stripper: In these configurations one liquid side stream is withdrawn from above/below feed tray. The purity of the desired product could be increased by either stripping out lighters in side stripper or rectifying heavies in a side rectifier. These columns are also called as Partially Thermally Coupled Distillation Systems.
- **Pre-fractionator arrangement:** This configuration divides the feed in the prefractionator into two feeds for the main column. It is like the distributed sequence that is depicted in Figure 3-2. However, using partial condenser in the first column leads to some partial thermal coupling in pre-fractionator.
- **Petlyuk column:** This arrangement is similar to the pre-fractionator. However it does not have reboiler and condenser as the vapor and liquid loads are shared with the second column. As a result, Petyluk column has two columns with one reboiler and one condenser for separating a feed into three products.

• **Divided Wall Column:** All the concepts in Petyluk column extends into one column which is divided wall column.

Figure 3-4 shows schematically different complex configurations for a typical three component separation process..

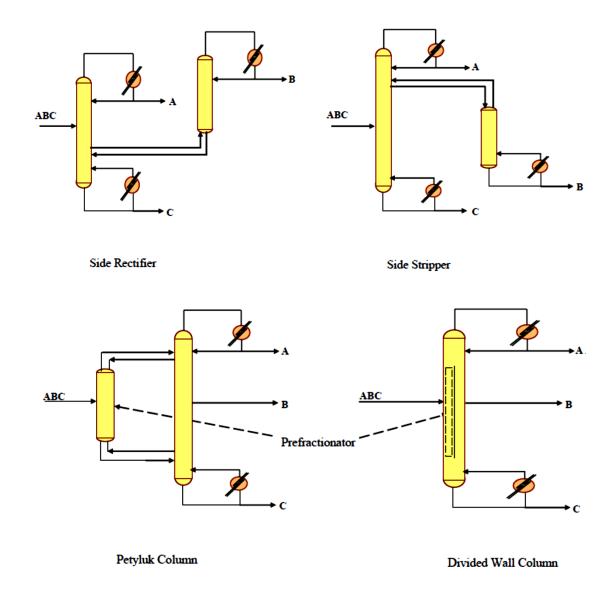


Figure 3-4: Complex column configuration[13]

3.2 Divided Wall Column (DWC)

In Petlyuk and Divided Wall Column configurations there is a sharp split between A and C in the pre-fractionator column and B are distributed between overhead and bottom of the column. As a result the fraction of B that could be separated in the pre-fractionator could be set by design process by which up to 30% of energy savings could be achieved. The main reason for such energy efficiency is due to remixing avoidance of internal streams which is described in 3.1.1. [2, 13, 14, 17].

3.2.1 DWC Configuration for three component separation

Yildrim et al, has categorized three component DWCs into two different groups. The first type which are called Conventional Divided Wall Columns (CDWC), are originally the first DWC which patented by Wright. In this category, the dividing wall, feed and side streams are almost located in the middle of the column. Figure 3-5 (a) shows a typical basic CDWC. Figure 3-5 (b) and (c) show other CDWCs through which dividing wall is installed in the bottom or overhead section of the shell respectively and are patented by Monro [14].

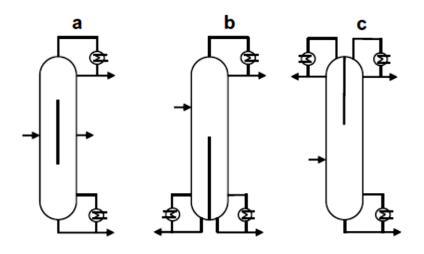


Figure 3-5: Basic types of DWCs

In second category, dividing wall could be moved from the middle of the shell towards the wall. It also could have diagonal shapes as shown through Figure 3-6 (a), (b) and (c).

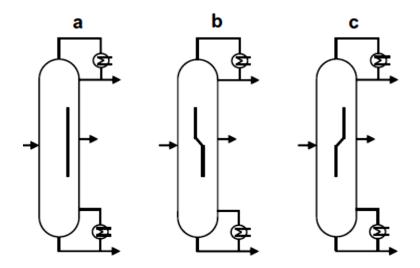


Figure 3-6: Shape and position of the dividing wall

3.2.2 DWC Configuration for four component separation

DWC could also be applied for separating more than three components. Basic DWC that are designed for separating four component mixtures are shown through Figure 3-7. Figure (a) schematically shows Kaibel column through which the separation takes place with a single dividing wall. This configuration is simpler but thermally inefficient. Figure (b) shows Sergent arrangement which is more thermally efficient by column by using three dividing walls. However there is no report addressing its industrial application.

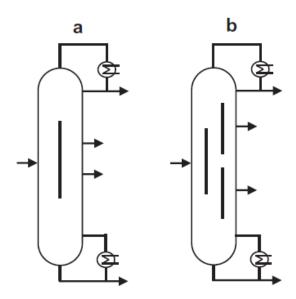


Figure 3-7: DWC for separating four component mixtures

3.2.3 Other configurations

Other configurations especially for four component separation could be possible. Agrawal arrangement and its top view are depicted through Figure 3-8 (a) and (b) while top view of triangular wall structures is depicted through Figure 3-8 (c).

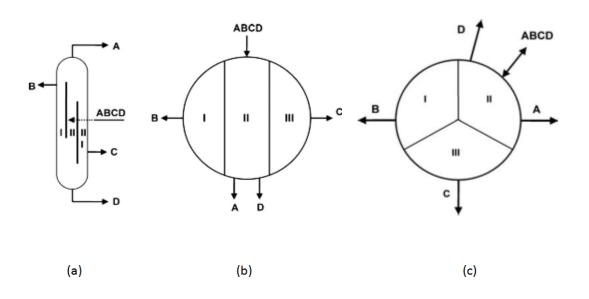


Figure 3-8: Agrawal arrangement (a,b) and triangular wall structure (c)

3.3 VLE Equilibrium

Through the following sections basic thermodynamic equations and design parameters for both conventional and DWC columns are addressed. This section is the basis for all the calculations that are required for design purposes. However the level of detail and rigorousness of the formulas are restricted to the scope of this study.

For each individual component of the mixture thermodynamic vapor-liquid equilibrium is defined as the following equation through which f represent component fugacity.

$$f_i^V = f_i^L \tag{3-1}$$

Fugacity could be perceived as escaping tendency and could be expressed as a coefficient of pressure as shown through Equations 3-1 and 3-2 [18].

$$f_i^V = y_i \phi_i^V P \tag{3-2}$$

And for liquid phase:

$$f_i^L = x_i \phi_i^L P \text{ or } f_i^L = x_i \gamma_i f_i^0$$
 3-3

Where P=total system pressure ϕ_i =vapor fugacity coefficient yi=mole fraction of component I in vapor f_i^0 =standard state fugacity of the pure liquid γ_i =liquid phase activity coefficients

Combining Equations 3-2 and 3-3 into equation 3-1 and then rearranging the formula leads to the following equation which is the basis for all vapor-liquid equilibrium calculations.

$$K_i = \frac{y_i}{x_i} = \frac{\gamma_i f_i^0}{\phi_i^L P}$$
 3-4

The ratio of K-values of two components measures their relative volatility:

$$\alpha_{ij} = \frac{y_i/x_i}{y_j/x_j} = \frac{K_i}{K_j}$$
3-5

Large relative volatilities show larger differences in boiling points and better separation.

A distillation column could be perceived as a series of vapor-liquid equilibrium stages. The concept of equilibrium stage is graphically shown through Figure 3-9 [19].

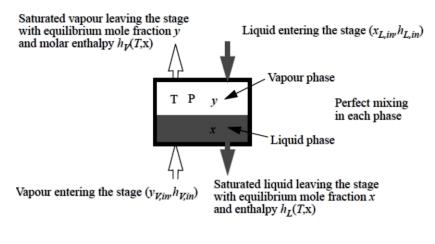


Figure 3-9: Equilibrium stage concept[19]

The following steps show a general step by step approach to design a distillation column:

- 1. By specifying the product specification determine the extent of required separation
- 2. Select the operating conditions and operating pressure
- 3. Determine which contacting mechanism is going to be used
- 4. Select the number of equilibrium stages and the amount of reflux
- 5. Do the sizing of the column and determine the real number of stages
- 6. Design all the required internals for the column
- 7. Complete the mechanical design and fittings for the column internals

In the process of distillation, material and energy balance could be set over each equilibrium stage.

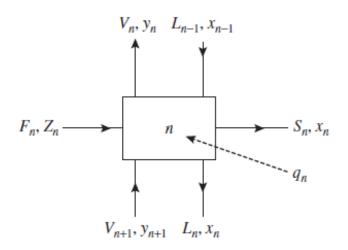


Figure 3-10: Equilibrium stage- Material & Energy balance [16]

$$V_{n+1}y_{n+1} + L_{n-1}x_{n-1} + F_nZ_n = V_ny_n + L_nx_n + S_nx_n$$
 3-6

$$V_{n+1}H_{n+1} + L_{n-1}h_{n-1} + Fh_f + q_n = V_nH_n + L_nh_n + S_nh_n$$
 3-7

Where:

 V_n = vapor flow from the stage V_{n+1} = vapor flow into the stage from the stage below L_n = liquid flow from the stage L_{n-1} = liquid flow into the stage from the stage above F_n = any feed flow into the stage S_n = any side stream from the stage q_n = heat flow into, or removal from, the stage n = any stage, numbered from the top of the column z = mole fraction of component i in the feed stream x = mole fraction of component i in the liquid streams y = mol fraction component i in the vapor streams H = specific enthalpy vapor phase h = specific enthalpy liquid phase h_f = specific enthalpy feed (vapor + liquid)

Another equation that is helpful to specify the design of a distillation process is the summation equation:

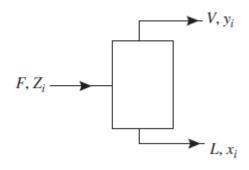
$$\sum x_{i,n} = \sum y_{i,n} = 1 \tag{3-8}$$

The four equations 3-43-5, 3-6, 3-7 and 3-8 form the basis for solving the design problem for each stage as well as condenser and reboiler in a distillation column.

Bubble point and dew point calculations are important for estimating the temperature of the condenser and reboiler. So, by definition these temperatures could be obtained by iteration through application of the following equations:

Bubble point:
$$\sum y_i = \sum k_i x_i = 1$$
 3-9

Dew point:
$$\sum x_i = \sum \frac{y_i}{k_i}$$
 3-10


3.4 Flash Calculations

In a typical flash process, a feed containing vapor and liquid phases would be allowed to be separated. The purpose of this kind of calculation is to evaluate the composition of each individual phase. In a distillation column the following items are main applications of flash calculations:

• To determine the condition of the feed

• To determine the flow of vapor from reboiler or condenser

Figure 3-11 shows graphically a typical flash process. The material and energy balance for this process will lead to equations 3-11 and 3-12 [16].

$$Fz_i = Vy_i + Lx_i \tag{3-11}$$

$$Fh_f = VH + Lh 3-12$$

Using equilibrium constant equations will make the above equations in a more useful form of equations

$$L = \sum_{i} \frac{Fz_i}{\left[\frac{VK_i}{L} + 1\right]}$$
 3-13

$$L = \sum_{i} \frac{Fz_i}{\left[\frac{L}{VK_i + 1}\right]}$$
 3-14

For designing a distillation column some variables need to be specified. The first variable is feed rate which is usually fixed by preliminary design. The other variable which is fixed by early design is column pressure. Generally distillation is happening better at lower pressures because at low pressures relative volatility is higher. However, there should be always a compromise to set column pressure high enough to save energy consumption in reboiler and condenser. Then, number of stages above and below the feed should be specified. At this stage specifying two other independent variables will define the column completely. For example by specifying reflux ratio and boil-up ratio or reflux ratio and distillate rate then there would be a fixed distillate and bottom composition for given column feed. Specifying these pairs could be continued to composition of two key components in distillate or bottom and then getting to a required reflux rate, boil-up rate or flow rate. That would be the same way for recovery or purity of a component in the products[16].

There are several graphical and simple methods for designing distillation columns for binary systems among which Lewis-Sorel and McCabe-Thiele methods could be named. In the following section the design for DWC by using multicomponent distillation design techniques are discussed in more detailed.

3.5 DWC Design Procedures

For designing a DWC, number of degree of freedom is larger than its conventional counterparts. Assuming a three component mixture which is going to be separated by conventional two column sequence, one could notice that every column could be designed independent of the other. It avoids DWC design methods to be straightforward as conventional ones and might be the reason for more conservative acceptance within the industry. The followings are design parameters for a typical three component separation by a Kaibel DWC and are shown schematically through Figure 3-12 [20]:

- Number of stages in 6 different stages
- Liquid split ratio
- Vapor split ratio
- Reflux ratio
- Heat load of the reboiler
- Side-product flow rate

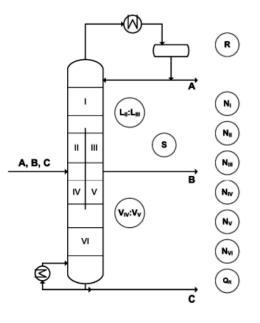


Figure 3-12: Design parameters for a 3-component separation by DWC

The design procedure for DWC is similar to conventional columns at initial steps. It requires defining the column arrangement and determining the operating pressure as well as selecting a thermodynamic VLE model. The next steps for designing DWCs imply more complexity which has been tried to be addressed within the next subsections of this chapter [20].

3.5.1 Heuristic Rules for DWC Design

Like designing conventional columns there are some heuristic rules applicable for designing of DWCs which could be used as initial estimates for simulations:

- Design a conventional column system as a base case (i.e. a three-column system)
- The total number of stages for DWC could be calculated as 80% of the total stages for conventional system.

- The dividing wall could be placed at the middle third of the column (i.e. 33-66% H)
- The internal flow rates within the DWC could be established as 70% of the total duties of condenser or reboiler in conventional sequence.
- Equal vapor and liquid splits could be used as initial estimates.

It is clear that these rules are just to help initial convergence of the DWC model and a lot of adjustment and optimization might be required to achieve optimum design [17].

In the next section, some shortcut methods are described to calculate stage and reflux requirements of multicomponent distillations. These methods are mostly applicable for hydrocarbon applications through oil and gas industry and are based on the constant relative volatility assumption. These methods could also be used for DWC design calculations.

3.5.2 Minimum number of stages (Fenske Equation)

Fenske equation is used to calculate the minimum number of stages needed at total reflux. This equation is as follows:

$$\left[\frac{x_i}{x_r}\right]_d = \alpha_i^{N_{min}} \left[\frac{x_i}{x_r}\right]_b$$
 3-15

Where x_i/x_r is the ratio of each component i concentration to the concentration of a reference one r, and the suffixes d and b refers to the distillate and the bottoms, N_{min} is the minimum number of stages needed at total reflux conditions. α_i is the average relative volatility of the component i compared to the reference component r.

As the separation in multicomponent distillation is specified by key components 3-15 could be rearranged as:

$$N_{min} = \frac{\log \left[\frac{x_{LK}}{x_{HK}}\right]_d \left[\frac{x_{HK}}{x_{LK}}\right]_b}{\log \alpha_{LK}}$$
 3-16

Where α_{LK} is the average relative volatility of light key to the heavy key component and x_{LK} and x_{HK} are light and heavy key component concentrations. The relative volatility is calculated by geometric mean value of volatility at top and bottom temperatures. To have these temperatures an initial estimate of the composition is needed which makes Fenske equation a trial and error way of calculating minimum number of stages. The following formula developed by Winn to estimate the number of stages at total reflux condition [16]:

$$\frac{d_i}{b_i} = \alpha_i^{N_{min}} \left[\frac{d_r}{b_r} \right]_b$$
$$d_i + b_i = f_i$$
3-17

Where d and b denoted to flow rates at distillate and bottom of the column.

3.5.3 Minimum Reflux Ratio (Underwood Equation)

The Underwood equation is used to calculate the minimum reflux ratio for multicomponent distillation. This equation is as follows:

$$\sum \frac{\alpha_i x_{i,d}}{\alpha_i - \theta} = R_{min} + 1 \tag{3-18}$$

Where $x_{i,d}$ is the concentration of component i in the distillate at the reflux ratio and θ is the root of the following equation:

$$\sum \frac{\alpha_i x_{i,f}}{\alpha_i - \theta} = 1 - q \tag{3-19}$$

Where $x_{i,f}$ is the concentration of component i in the feed and q is the feed condition defined in the McCabe-Thiele method.

$$q = \frac{\text{heat to vaporize 1 mol of feed}}{\text{molar latent heat of feed}}$$
3-20

Like Fenske equation, geometric average of relative volatilities at temperatures of top and bottom of the column is used. To do that an estimate of the top and bottom compositions is required for which Fenske equation could be used. A better estimate is to replace the number of stages in equation 3-17 by $N_{min}/0.6$ which is a more realistic number of stages [16].

3.5.4 Feed Location

There is an empirical equation developed by Kirkbride to determine the feed location:

$$log\left[\frac{N_r}{N_s}\right] = 0.206 log\left[\left(\frac{B}{D}\right)\left(\frac{x_{f,HK}}{x_{f,LK}}\right)\left(\frac{x_{b,LK}}{x_{d,HK}}\right)^2\right]$$
 3-21

where N_r is the number of stages above the feed, N_s is the number of stages below the feed, $x_{f,HK}$ and $x_{f,LK}$ are concentrations of the heavy and light keys in the feed, $x_{d,HK}$ and $x_{b,LK}$ are concentrations of the heavy and light keys in the distillate and bottom products.

3.5.5 V_{min} Diagram Method

This method is a simple graphical method presented by Halvorsen and Skogstad and graphically shows the minimum energy by vapor flow. This method is founded on Underwoods equation and assumes constant molar flow, infinite number of stages, constant relative volatilities. The V_{min} could be calculated by using underwood equation with the following input parameters:

- Feed composition
- Feed quality expressed by liquid fraction

- K-values and,
- Product purities

As stated above this method assumes infinite number of stages and this could be achieved roughly by establishing the number of stages for simulation equal to $4N_{min}$ which N_{min} could be calculated by Fenske equation as presented through Equations 3-153-16. This method could describe the transfer of liquid and vapor through each part of the DWC. The main basis for this method is that the minimum vapor flow that is needed to separate a mixture of n components into its n pure products corresponds to the same flow required to separate the most difficult split. This basis is shown as the highest peak in the diagram associated with the method (V_{min} diagram).

The V_{min} diagram shows the vapor flow rate above the feed (V/F) versus the net flow of the top product (D/F) per unit of feed. Figure 3-13 is a typical V_{min} diagram for a ternary system ABC. It shows how feed components are distributed to the top and bottom products in a simple distillation column without side streams and with infinite stage[17, 19].

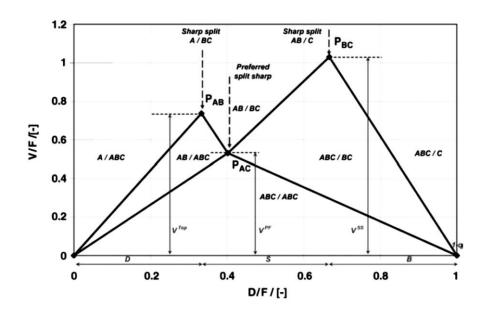


Figure 3-13: V_{min} diagram of a ternary system

4 Methodology and Results

In this section the method for simulating both conventional fractionation and DWC are developed for a typical industrial application for NGL recovery and LPG production.

4.1 Conventional Fractionation model development (Base Case)

As described in section 2.2.2, integrated LPG extraction is one of the modt widely used techniques in LNG plants. The bottom product from the scrub column in the integrated NGL recovery scheme goes into fractionation stages to achieve further separation. This NGL is fractionated by heating and passing through a series of distillation towers (fractionators) which separation takes place mainly with differing boiling points of the various NGL components [21]. As discussed through section 2.2.2 and depicted through Figure 2-13, a demethanizer is required to remove all the methane coming through the scrub column bottom.

4.1.1 Column Performance Parameters

To analyze the performance of a distillation column the following variables are considered [22]:

- Component fractions and recoveries
- Product temperature
- Condenser and reboiler duties

The rates of overhead and bottom products determines the light and heavy key components for each distillation stage in the train [22]

It should be noted that changing the reflux ratio would change the composition of those products that are near the key components. It means that both much heavier and lighter components than key components would be less sensitive to reflux ratio changes. The split location might be changed by changing the distillate rate. This would be happened by changing of light and heavy key components. It is obvious that the condenser and reboiler heat duties will change significantly by varying reflux ratio due to heat load variation. The temperature of the product is also insensitive to changing reflux ratio by keeping the product rate constant. So, the composition of light and heavy key components could be fine-tuned by changing reflux ratio

without affecting the product temperature in a great way. Generally speaking, product rates have more effects on the column performance than reflux ratio [22].

The depropanizer has three different products. The top product is mainly propane which could be used both for sale and refrigerant make-up. The second product is LPG which is mainly propane and butane and could be extracted as a side draw stream from the depropanizer column. The third product is condensates which is mainly C_5^+ components and is regarded as natural gasoline. The specifications that are used to simulate depropanizer are presented in Table 4-1. Depropanizer is called DC3 here in this report.

Table 4-1: DC3 product specifications

Specification	Value
C3 mole fraction @ top product	0.95
Max C5+ mole fraction @ LPG product	0.02
RVP @ Condensate product (bar)	0.68
Operating pressure (bar)	11
Number of trays	40

To simulate this column, it is decided to set up the column with its top and bottom specifications first. Then the composition of propane, iso-butane and n-butane were investigated through all the trays to find the best tray for drawing the LPG product with maximum amount of LPG components. The result of this investigation is presented through Table 4-2. Tray number 14 was chosen to draw LPG product from DC3 column.

The addition of side draw product to the column increase degree of freedom to 3 comparing to DC2 and DC1 columns which have 2 degrees of freedom. The following independent variables are selected to converge the column:

- Reflux ratio
- Propane (C3) mole fraction at distillate product
- LPG product rate

Condensate product also requires to be adjusted in its vapor pressure to be storable at atmospheric tanks and usable as a blending component in gasoline. As Reid vapor pressure (RVP) of the condensate increases, more hydrocarbons could be emitted into the environment.

So, its RVP is usually regulated by local environmental standards [23]. The mole fraction specification of C_5^+ in LPG product and bottom product RVP are adjusted simultaneously by changing both reflux ratio and LPG product molar rate. A spreadsheet logical unit operation was used to monitor the C_5^+ mole fraction while changing variables. Figure 4-1 shows the flow datasheet for simulating conventional method of NGL recovery and LPG extraction.

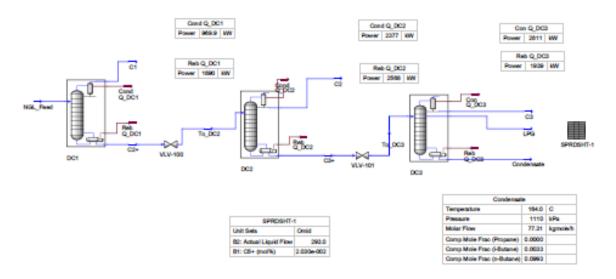


Figure 4-1: Conventional fractionation model using HYSYS for NGL recovery

		Liquid	Phase		Vapor Phase			
	С3	iC4	nC4	Sum	С3	iC4	nC4	Sum
T1	0,907062	0,090281	0,000813	0,998155	0,950013	0,044129	0,000301	0,994442
T2	0,846519	0,150821	0,001716	0,999056	0,919441	0,076979	0,000665	0,997085
Т3	0,773230	0,222869	0,003181	0,999281	0,876683	0,119724	0,001304	0,997712
T4	0,694595	0,299399	0,005352	0,999347	0,825379	0,170143	0,002332	0,997854
T5	0,619436	0,371629	0,008311	0,999376	0,770783	0,223255	0,003846	0,997884
Т6	0,554696	0,432615	0,012083	0,999395	0,718931	0,273060	0,005900	0,997891
T7	0,503466	0,479253	0,016690	0,999409	0,674450	0,314931	0,008514	0,997894
Т8	0,465398	0,511833	0,022188	0,999419	0,639333	0,346861	0,011704	0,997898
Т9	0,438277	0,532462	0,028688	0,999427	0,613281	0,369111	0,015509	0,997900
T10	0,419396	0,543680	0,036356	0,999433	0,594757	0,383138	0,020008	0,997903
T11	0,406323	0,547713	0,045401	0,999437	0,581910	0,390681	0,025313	0,997904
T12	0,397144	0,546237	0,056059	0,999440	0,573075	0,393261	0,031568	0,997905
T13	0,390463	0,540397	0,068582	0,999442	0,566946	0,392025	0,038934	0,997905
T14	0,385306	0,530920	0,083218	0,999444	0,562568	0,387756	0,047580	0,997904
T15	0,381007	0,518244	0,100193	0,999445	0,559277	0,380952	0,057673	0,997903
T16	0,377123	0,502639	0,119682	0,999445	0,556619	0,371918	0,069363	0,997901
T17	0,373367	0,484293	0,141781	0,999442	0,554293	0,360842	0,082763	0,997898
T18	0,369560	0,463397	0,166475	0,999432	0,552101	0,347862	0,097929	0,997892
T19	0,365604	0,440193	0,193611	0,999407	0,549920	0,333121	0,114841	0,997882
T20	0,361459	0,415008	0,222877	0,999345	0,547681	0,316796	0,133384	0,997860
T21	0,357129	0,388268	0,253797	0,999193	0,545351	0,299128	0,153334	0,997813
T22	0,352637	0,360472	0,285724	0,998834	0,542927	0,280421	0,174356	0,997704
T23	0,348004	0,332140	0,317837	0,997981	0,540429	0,261026	0,195998	0,997453
T24	0,343176	0,303699	0,349040	0,995916	0,537887	0,241296	0,217681	0,996865
T25	0,337834	0,275215	0,377519	0,990568	0,535357	0,221495	0,238597	0,995449
T26	0,330222	0,245139	0,398148	0,973509	0,533095	0,201508	0,257201	0,991804
T27	0,306180	0,200148	0,379366	0,885694	0,534134	0,179007	0,267256	0,980396
T28	0,285368	0,210130	0,390133	0,885631	0,506977	0,192281	0,281774	0,981032
T29	0,259851	0,222226	0,403238	0,885316	0,471737	0,208947	0,299988	0,980672
T30	0,230291	0,236145	0,418472	0,884908	0,428593	0,229090	0,322127	0,979810
T31	0,198008	0,251196	0,435295	0,884499	0,378639	0,252184	0,347842	0,978666
T32	0,164859	0,266350	0,452930	0,884140	0,324156	0,277021	0,376189	0,977366
T33	0,132861	0,280419	0,470576	0,883856	0,268366	0,301844	0,405805	0,976015
T34	0,103731	0,292267	0,487641	0,883639	0,214742	0,324671	0,435284	0,974697
T35	0,078580	0,300959	0,503913	0,883451	0,166194	0,343673	0,463603	0,973470
Т36	0,057827	0,305768	0,519607	0,883202	0,124529	0,357402	0,490408	0,972340
T37	0,041333	0,306059	0,535275	0,882667	0,090358	0,364779	0,516078	0,971215
T38	0,028604	0,301040	0,551514	0,881157	0,063350	0,364869	0,541556	0,969775
Т39	0,018985	0,289211	0,567886	0,876082	0,042613	0,356487	0,567871	0,966970
T40	0,011766	0,266215	0,577140	0,855122	0,027035	0,337444	0,594507	0,958986

Table 4-2: LPG component profiles over different trays

4.1.2 Simulation Results for Conventional method:

After all three distillation towers are converged to get to the required product specifications; the molar flows shown in Table 4-3 are obtained:

Stream Name	C1	C2	С3	LPG
Molar flow	182	135.9	157.8	293
Mole fraction	0.97	0.95	0.95	0.98
Component molar flow	176.54	129.1	149.9	287.1

Table 4-3: Product molar flow and specifications in conventional model

As the main concern of this study is energy consumption of the condensers and reboilers, the heat duties obtained from this simulation are shown through Table 4-4.

Table 4-4: Energy consumption for the conventional fractionation model (Base case)

Tower Name	T100	DC2	DC3	Total Duty (KW)
Condenser duty (KW)	969.6	2378	2812	6169.6
Reboiler duty (KW)	1891	2568	1940	6399

The Hysys produced reports for this simulation case are presented through Appendices 7.1 to 7.4.

4.2 Demethanizer and Kaibel DWC

In this section the whole fractionation process which described in section 4.1, is simulated by a combination of demethanizer and a Kaibel DWC with Aspen Hysys 7.3. Methane is separated from the feed at the first conventional column. Then the rest of the separation will take place in DWC arrangement as seen in Figure 4-2. As DWC is not a predefined unit operation in Hysys, it is tried to simulate it using conventional tower arrangement equivalent to DWC. Finally, our interested parameter which is the total energy consumption are optimized with respect to process variables and compared to the conventional method.

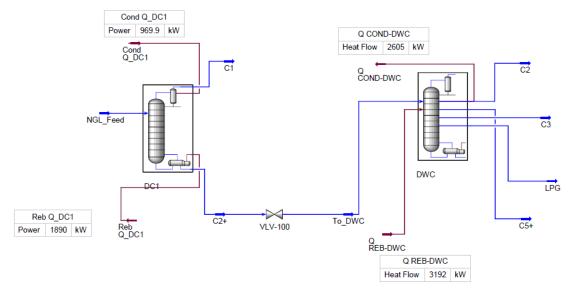


Figure 4-2: The combination of demethanizer and Kaibel DWC

Figure 4-3 shows the flowsheet for the arrangement of towers by which a Kaibel DWC is modeled in Hysys.

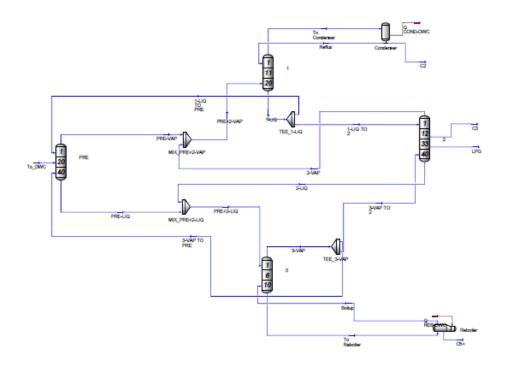


Figure 4-3: Sub flowsheet for Kaibel DWC in Hysys model

Table 4-5 shows the purity and the flow rate of products obtained by this method:

Stream Name	C1	C2	С3	LPG
Molar flow	182	133.7	170	290.4
Mole fraction	0.97	0.95	0.85	0.96
Component molar flow	176.5	127	144.5	278.8

As the main concern of this study is energy consumption of the condensers and reboilers, the heat duties obtained from this simulation are shown through Table 4-6.

Tower Name	DC1	DWC	Total
Condenser duty (KW)	969.6	3092	4061.6
Reboiler duty (KW)	1891	3764	5655

Table 4-6: Energy consumption for the Kaibel model

The following paragraphs are dealing with optimizing the energy consumption by changing variables like product withdrawal location and flow rate ratio in both sides of DWC.

4.2.1 C3 Withdrawal tray location

The energy consumption for reboiler and condenser of the combined demethanizer and Kaibel column are evaluated with respect to location of propane withdrawal as a product. The results are shown through Table 4-7.

Tray Number	8	9	10	11	12,13	14	15	16	17
DC1 Condenser duty	969.6	969.6	969.6	969.6	969.6	969.6	969.6	969.6	969.6
DC1 reboiler duty	1891	1891	1891	1891	1891	1891	1891	1891	1891
DWC condenser duty	3022	3014	3010	3007	3006	3008	3011	3016	3023
DWC reboiler duty	3690	3682	3677	3675	3674	3676	3679	3684	3691
Total Duty (KW)	9572.6	9556.6	9547.6	9542.6	9540.6	9544.6	9550.6	9560.6	9547.6

Table 4-7: Tray location for C3 withdrawal in terms of minimum energy consumption

4.2.2 LPG Withdrawal tray location

After locating the proper tray for withdrawal of propane the same task done for LPG tray location. As it could be seen through Table 4-8, tray number 33 is the optimum location for LPG extraction in terms of minimum energy consumption.

Table 4-8: Tray location for LPG withdrawal in terms of minimum energy consumption

Tray Number	29	30	31	32	33	34	35	36	37
DC1 Condenser duty	969.6	969.6	969.6	969.6	969.6	969.6	969.6	969.6	969.6
DC1 reboiler duty	1891	1891	1891	1891	1891	1891	1891	1891	1891
DWC condenser duty	3013	3004	2999	2997	2997	3000	3006	3017	3035
DWC reboiler duty	3684	3675	3670	3668	3667	3669	3674	3682	3697
Total Duty (KW)	9557.6	9539.6	9529.6	9525.6	9524.6	9529.6	9540.6	9559.6	9592.6

4.2.3 Liquid flow rate ratio at both sides of Kaibel DWC

The Kaibel DWC is optimized with respect to the ratio of the liquid flow rates at both sides of DWC. To do this optimization, all other parameters except liquid flow ratios are kept as constant. Then by varying this ratio the energy consumption evaluated. The results are shown through Table 4-9.

Liquid ratio	0.9	0.8	0.7	0.69	0.68	0.67
DC1 Condenser duty	969.6	969.6	969.6	969.6	969.6	969.6
DC1 reboiler duty	1891	1891	1891	1891	1891	1891
DWC condenser duty	3217	2821	2611	2605	2605	2609
DWC reboiler duty	3893	3480	3210	3198	3192	3192
Total Duty (KW)	9970.6	9161.6	8681.6	8663.6	8657.6	8661.6

Table 4-9: The effect of liquid flow ratio on the energy consumption of the Kaibel model

4.2.4 C2 flow rate

The flow rate of ethane in the product extracted from condenser is varied to check its effect on the energy consumption of the whole process.

C2 flow rate	130	129	128	127	126	125	124
DC1 Condenser duty	969.6	969.6	969.6	969.6	969.6	969.6	969.6
DC1 reboiler duty	1891	1891	1891	1891	1891	1891	1891
DWC condenser duty	2822	2617	2605	2605	2613	2626	2643
DWC reboiler duty	3470	3218	3198	3192	3195	3205	3219
Total Duty (KW)	9152.6	8695.6	8663.6	8657.6	8668.6	8691.6	8722.6

Table 4-10: Effect of C2 flow rate on energy consumption

As it could be seen through Table 4-10 at flow rate of 127 kmol/hr the minimum energy consumption is achieved.

4.2.5 C3 flow rate

The flow rate of propane product is varied to check its effect on the energy consumption of the whole process.

C3 flow rate	145	146	147	148
DC1 Condenser duty	969.6	969.6	969.6	969.6
DC1 reboiler duty	1891	1891	1891	1891
DWC condenser duty	2605	2651	2701	2753
DWC reboiler duty	3192	3248	3307	3370
Total Duty (KW)	8657.6	8759.6	8868.6	8983.6

Table 4-11: The effect of C3 flow rate on energy consumption

As it could be seen through Table 4-11 at flow rate of 145 kmol/hr the minimum energy consumption is achieved.

4.2.6 LPG flow rate

The flow rate of LPG product is varied to check its effect on the energy consumption of the whole process.

LPG flow rate	280	281	282	283	284	285
DC1 Condenser duty	969.6	969.6	969.6	969.6	969.6	969.6
DC1 reboiler duty	1891	1891	1891	1891	1891	1891
DWC condenser duty	2582	2586	2610	2636	2663	2690
DWC reboiler duty	3166	3168	3198	3229	3261	3295
Total Duty (KW)	8608.6	8614.6	8668.6	8725.6	8784.6	8845.6

Table 4-12: The effect of LPG flow rate on energy consumption

As it could be seen through Table 4-12 at flow rate of 280 kmol/hr the minimum energy consumption is achieved.

4.2.7 Final Result for Kaibel Model

By considering all the above optimization which is taken with respect to energy consumption, the following results shown in Table 4-13 for this case are obtained.

Stream Name	C1	C2	С3	LPG		
Molar flow	182	133.7	163.1	297.2		
Mole fraction	0.97	0.95	0.889	0.942		
Component molar flow	176.5 127		145	280		
Total Condenser dyty		3	552			
Total reboiler duty	5057					
Total Duty (KW)	8609					

Table 4-13: Final summary results for Kaibel DWC model

The results in the above table prove that the energy consumption of the combination of the demethanizer and Kaibel DWC uses less energy. The Total energy consumption in base case is 12559 KW while it goes down to 8609 kw in the Kaibel DWC method. The usage of this new arrangement shows clearly 31.4 % energy saving. The Hysys produced reports for this simulation case are presented through Appendices 7.57.7.

4.3 Multi-partitioned DWC (Sargent arrangement)

As described in section 3.2.2, the Sergent arrangement is considered as a more thermally coupled configuration for DWC designs. As there is no reported application of this arrangement through the available literature, the last part of the simulation study focuses on energy optimization for this configuration. Figure 4-4 shows a typical schematic for multi-partitioned DWC and the products from which we are going to extract.

This tower includes three walls which divide the whole tower into nine different separation units. The main goal for this kind of division is to increase the separation units and decrease the energy usage by deploying just one set of reboiler and condenser. This will happen through decreasing the remixing effect of components that are described through section 3.1.1.

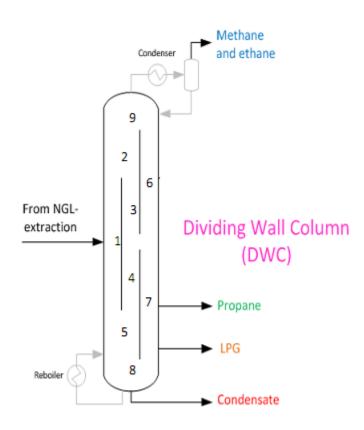


Figure 4-4: Multi-component DWC

As the whole process will be achievable with just one tower instead of three towers in the conventional case, there is also a potential to decrease the capital cost. This saving in capital cost could be analyzed in early study of a typical project to evaluate the best technology relevant for the prospect plant.

To simulate this tower each individual section was considered as a single tower then different sections thermally coupled by connecting their liquid and vapor streams. Figure 4-5 shows the arrangement corresponding to this type of DWC simulated using Aspen Hysys 7.3..

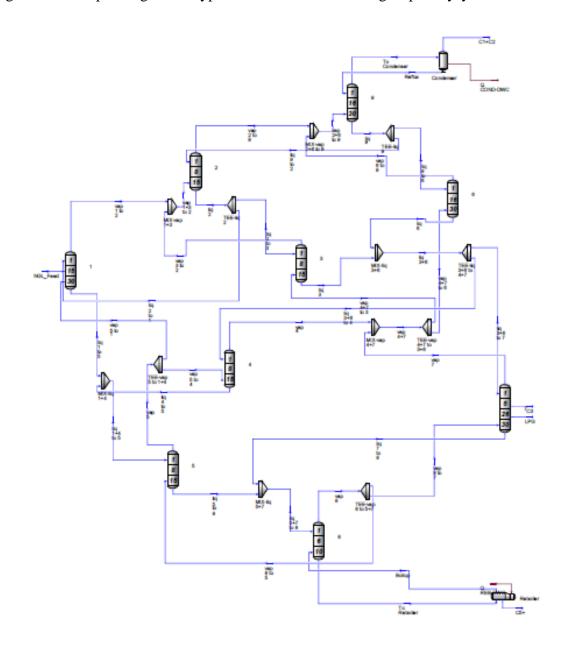


Figure 4-5: Multi-Partitioned DWC arrangement simulated in Aspen Hysys 7.3

In the following sections, important parameters like feed tray location, vapor to liquid flow ratio and the energy consumption are discussed and optimization with respect to minimum energy usage is done.

4.3.1 C3 product withdrawing tray

As the aim of this simulation is to optimize the LPG production in terms of energy consumption, the tray location was determined accordingly. As numbers in Table 4-14 show, the total energy consumption of the DWC is minimized at tray number 5. So this tray was taken to produce propane.

Table 4-14: C3 product withdrawing tray based on minimum energy consumption

Tray Number	no.3	no.4	no.5	0.6	no.7	no.8
Condenser Duty	3797	3793	3787	3789	3801	3821
Reboiler Duty	5526	5522	5516	5519	5531	5552
Total Duty	9323	9315	9303	9308	9332	9373

4.3.2 LPG product withdrawing tray

After evaluating the proper tray for withdrawing propane, the same evaluation was conducted for determining the proper tray to withdraw LPG. In this case, the energy consumption reduces down to tray number 26. From this tray on, the increase in energy consumption was observed. Table 4-15 shows the data depicting tray number 26 as the best one to withdraw LPG product.

Table 4-15: LPG product withdrawing tray based on minimum energy consumption

Tray Number	no.24	no.25	no.26	no.27	no.28	no.29
Condenser Duty	3794	3787	3784	3787	3797	3830
Reboiler Duty	5524	5516	5512	5512	5517	5538
Total Duty	9318	9303	9296	9299	9314	9368

4.3.3 Liquid flow rate ratio at both sides of Sergent DWC

All parameters except the liquid ratios kept constant to evaluate the effect of liquid ratio on energy consumption. The result of this analysis has been presented for different nodes through tables Table 4-16, Table 4-17 and Table 4-18. These nodes are called as Tee-LiQ2, Tee-LiQ9, Tee-LiQ3+6 To 4+7 in the flowsheet.

Liquid Ratio	0.5	0.6	0.7	0.75	0.8	0.9
Condenser Duty	4292	3886	3710	3674	3715	4235
Reboiler Duty	6024	5615	5438	5402	5445	5970
Total Duty	10316	9501	9148	9076	9160	10205

Table 4-16: Effect of liquid ratio on energy consumption (node Tee-LiQ2)

Table 4-17: Effect of liquid ratio on energy consumption (node Tee-LiQ9)

Liquid Ratio	0.5	0.6	0.65	0.7	0.75	0.8
Condenser Duty	3812	3712	3681	3677	3738	3892
Reboiler Duty	5540	5440	5409	5406	5468	5624
Total Duty	9352	9152	9090	9083	9206	9516

 Table 4-18: Effect of liquid ratio on energy consumption (node Tee-LiQ3+6 To 4+7)

Liquid Ratio	0.6	0.7	0.8
Condenser Duty	5135	3677	3324
Reboiler Duty	6872	5406	5054
Total Duty	12007	9083	8378

4.3.4 Vapor flow rate ratio at both side of Sergent DWC

Same analysis for vapor ratio was done. All parameters except the vapor ratios kept constant to evaluate its effect on energy consumption. The result of this analysis has been presented for different nodes through Table 4-19, Table 4-20, and Table 4-21. These nodes are called as "Tee-Vap 5 to 1+4", "Tee-Vap 8 to 5+7" and "Tee-Vap 4+7 to 3+6" in the flowsheet.

Table 4-19: Effect of vapor ratio on energy consumption (node Tee-Vap 8 to 5+7)

Vapor Ratio	0.7	0.8	0.85	0.9	0.95
Condenser Duty	3324	3216	3165	3118	3072
Reboiler Duty	5054	4944	4893	4844	4797
Total Duty	8378	8160	8058	7962	7869

Vapor Ratio	0.45	0.47	0.5
Condenser Duty	3072	3088	3171
Reboiler Duty	4797	4812	4891
Total Duty	7869	7900	8062

Table 4-20: Effect of vapor ratio on energy consumption (node Tee-Vap 5 to 1+4)

Table 4-21: Effect of vapor ratio on energy consumption (node Tee-Vap 4+7 to 3+6)

Vapor Ratio	0.1	0.2
Condenser Duty	3073	3072
Reboiler Duty	4799	4797
Total Duty	7872	7869

4.3.5 Final Result For Multi-partitioned (Sergent) DWC Model

By considering all the above optimization which is taken with respect to energy consumption, the following results shown in for this case are obtained.

Stream Name	C1+C2	С3	LPG		
Molar flow	305.3	150	315.7		
Mole fraction	1	0.89	0.973		
Component molar flow	305.3	133.5	307.17		
Total Condenser dyty		3072			
Total Reboiler duty	4797				
Total Duty (KW)	7869				

Table 4-22: Final summary results for multi-component DWC

The results in Table 4-22 shows the energy consumption of the multi-partitioned DWC uses less energy. The Total energy consumption in base case is 12559 KW while it goes down to 7869 in this kind of DWC design. The usage of this new arrangement shows clearly a 37.3 % energy saving which is even a better performance compared to Kaibel column. This result is in conformance with the literature predictions addressed in section 3.2.2 confirming the better thermally coupling of Sergent DWC with respect to Kaibel. The Hysys produced reports for this simulation case are presented through Appendices 7.17.87.9.

5 Conclusion and Fyrther Study

The defined tasks in the project description have been tracked to achieve the desired results. Literatures have been reviewed in order to present methods and theories about LNG production. The methods of fractionation of natural gas feed for extracting of NGL have been discussed too. More in detail divided wall column (DWC) distillation configurations and governing equations have been described.

As described in sections 4.2 and 4.3Figure 4-2 two types of DWC configuration model, Kaibel and multi-partitioned, are simulated by HYSYS process modelling software for LPG extraction in a typical LNG production plant. The simulation addresses and evaluates the energy consumption of the unit with alternative technology usage. The improvement potentials and energy savings have been presented by optimizing HYSYS models and the results obtained for DWC cases are compared to base case which is the conventional fractionation distillation sequence.

The benefit in terms of energy consumption with equal conditions in LPG extraction process depends on the total duty of distillation's condenser and reboiler. With equal conditions and LPG product specifications, the utilization of the Kaibel and multi-partitioned DWC distillation reduced the energy consumption by 31.4 % and 37.3 %, respectively. The results obtained by this study confirm in a well manner the energy savings which was predicted by the study proposal and literatures.

There are potentials works which need further academic and industrial works. The economic viability of employing this technology in practical industrial applications is dependent both on the capital and operational costs. The main focus of this study is to evaluate the operational savings due to changing the technology while the mechanical and constructability of such a design should also be reviewed very carefully to consider its capital costs. Then, a plant operator has enough decision making tools at hand to evaluate the life cycle cost of the technology to be used. So, CFD analysis of the mechanical design for DWC could be a potential work to go ahead more. In addition more mathematical and rigorous models could be applied to reinsure the validity of the results obtained in this study. Furthermore as discussed in section 2.1.4, the offshore application of DWCs for processing facilities and specially FLNG vessels could be evaluated.

6 References:

- 1. Masoumi, M. and S. Kadkhodaie, *Optimization of Energy Consumption in Sequential Distillation Column.*
- 2. Schultz, M.A., et al., *Reduce costs with dividing-wall columns*. Chemical engineering progress, 2002. **98**(5): p. 64-71.
- 3. GPSA, GPSA Engineeing Databook, 2004.
- 4. Jostein Pettersen, Even Solbraaa, and O. Boland, *Natural Gas Technology* TEP 4185 Compendium2012: NTNU Department of Process and Energy Engineering.
- 5. Micheal D. Tusiani, G.S., *LNG A Non-Technical Guide*2007: PennWell Corporation.
- 6. Lee, S., N.V.D. Long, and M. Lee, *Design and optimization of natural gas liquefaction and recovery processes for offshore floating liquefied natural gas plants.* Industrial & Engineering Chemistry Research, 2012. **51**(30): p. 10021-10030.
- 7. Eldemerdash, U., *Technology Review of Natural Gas Liquefaction Processes*. Journal of Applied Sciences, 2011.
- 8. Pettersen, J., *Natural gas liquifaction- TEP08 Gas processing and LNG lecture notes.* 2012.
- 9. Coyle, D., F. Felix, and C. Durr. Natural gas specification challenges in the LNG industry. in 15th International Conference and Exhibition on Liquefied Natural Gas, Barcelona, Spain. 2007.
- 10. Arthur J. Kidnay and W. Parrish, *Fundamentals of natural gas processing*2006: CRC Press.
- 11. Spilsbury, C., et al., Evolution of Liquefaction Technology for today's LNG business, 7 Journess Scientifiques et Techniques, November 2006. Oran, Algeria.
- 12. Elliot, D., et al. Benefits of integrating NGL extraction and LNG liquefaction technology. in 2005 AIChE Spring National Meeting, Conference Proceedings, 2005 AIChE Spring National Meeting, Conference Proceedings. 2005.
- 13. KUMAR, R.P., Retrofitting industrial, conventional column systems to petyluk/divided wall columns. 2008.
- Yildirim, Ö., A.A. Kiss, and E.Y. Kenig, *Dividing wall columns in chemical process industry: A review on current activities*. Separation and Purification Technology, 2011.
 80(3): p. 403-417.
- 15. Kaibel, B., et al., *Unfixed dividing wall technology for packed and tray distillation columns*. Distillation Absorption, 2006. **152**: p. 252e66.
- 16. Towler, G.P. and R.K. Sinnott, *Chemical Engineering Design: Principles, Practice, and Economics of Plant and Process Design*2013: Elsevier.

- 17. Kiss, A.A., *Advanced Distillation Technologies: Design, Control and Applications*2013, New York: Wiley. 1 online resource (415 s.).
- 18. Wilson, I.D., *Encyclopedia of separation science*2000: Academic Press.
- 19. Halvorsen, I.J., *Minimum energy requirements in complex distillation arrangements*, 2001, Norwegian University of Science and Technology.
- 20. Dejanović, I., L. Matijašević, and Ž. Olujić, *Dividing wall column—a breakthrough towards sustainable distilling*. Chemical Engineering and Processing: Process Intensification, 2010. **49**(6): p. 559-580.
- 21. Mokhatab, S. and W.A. Poe, *Handbook of natural gas transmission and processing*2012: Gulf Professional Pub.
- 22. Khouri, F.M., *Multistage Separation Process*2005: CRC Press.
- Khanmohammadi, A. and K. Mohammadbeigy, STUDYING OF THE EFFECTIVENESS PARAMETERS FOR CONDENSATE STABILIZATION. Petroleum & Coal, 2007. 49(1): p. 67-71.

7 Appendices

This section includes the report of the simulation models addressing material and energy balances and column profiles. The following reports are presented:

- Main Workbook Profile Report for NGL Fractionation Model (Base case)
- DC1 column Profile Report for NGL Fractionation Model (Base case)
- DC2 column Profile Report for NGL Fractionation Model (Base case)
- DC3 column Profile Report for NGL Fractionation Model (Base case)
- Main Workbook Profile Report for Kaibel DWC Model
- DC1 Column Profile Report for Kaibel DWC Model
- DWC Column Profile Report for Kaibel DWC Model

7.1 Main Workbook Profile Report for NGL Fractionation Model (Base case)

1				Case Name:	NGL FRAC. HSC			
2			AN UNIV OF MA	Unit Set:	NewUser			
3 4		USA			Date/Time: Tue Jun 24 13:02:57 2014			
5 6				Date/Time.	Tue Juli 24 13.02.37 20	J14		
0 7 8	W	orkbook:	Case (Mai	n)				
9 10				Material Stream	IS	Fluid Pk	g: All	
11	Name		NGL_Feed	C1	C2+	C2	C3+	
12	Vapour Fraction		0.2349	1.0000	0.0000	0.0000	0.0000	
13	Temperature	(C)	40.00 *	-82.97	90.28	-8.798e-002	110.7	
14	Pressure	(kPa)	3400 *	3390	3410	2788	2808	
15	Molar Flow	(kgmole/h)	846.0 *	182.0	664.0	135.9	528.1	
16 17	Mass Flow	(kg/h)	3.717e+004	2999	3.417e+004	4041	3.013e+004	
17 18	Liquid Volume Flow Heat Flow	(m3/h) (kW)	74.20 -2.819e+004	9.928	-2.319e+004	-3652	52.94 -1.935e+004	
18 19	Name	(KVV)	-2.819e+004 To DC3	-4080 C3 SC	-2.319e+004 C4+ SC	-3652 Distil1	-1.935e+004 Btm1	
20	Vapour Fraction		0.4900	0.0000	0.0000	1.0000	0.0000	
20	Temperature	(C)	70.17	27.45	92.53	-92.26	92.11	
22	Pressure	(C) (kPa)	1100 *	1090	1110	3390	3410	
23	Molar Flow	(kgmole/h)	528.1	271.7	360.3	180.9	665.1	
24	Mass Flow	(kg/h)	3.013e+004	1.187e+004	2.399e+004	2904	3.427e+004	
25	Liquid Volume Flow	(m3/h)	52.94	23.63	39.59	9.697	64.50	
26	Heat Flow	(kW)	-1.935e+004	-8983	-1.535e+004	-4064	-2.318e+004	
27	Name		Feed1	Distil2	Btm2	Feed2	Feed3	
28	Vapour Fraction		0.2349	0.0000	0.0000	0.1454	0.4834	
29	Temperature	(C)	40.00 *	-0.8895	109.4	82.77 *	68.90 *	
30	Pressure	(kPa)	3400 *	2790	2810	2800 *	1100 *	
31	Molar Flow	(kgmole/h)	846.0 *	130.1	533.9	664.0 *	632.0 *	
32	Mass Flow	(kg/h)	3.717e+004	3845	3.033e+004	3.417e+004	3.586e+004	
33	Liquid Volume Flow	(m3/h)	74.20	10.85	53.42	64.27	63.23	
34	Heat Flow	(KW)	-2.819e+004	-3488	-1.953e+004	-2.319e+004	-2.312e+004	
35	Name		To_DC2	C3	Condensate	LPG		
36	Vapour Fraction		0.1454	0.0000	0.0000	0.0000		
37	Temperature	(C)	82.77	30.61	164.0	63.20		
38	Pressure	(kPa)	2800 *	1083	1110	1092		
39	Molar Flow	(kgmole/h)	664.0	157.8	77.31	293.0		
40	Mass Flow	(kg/h)	3.417e+004	7037	7032	1.606e+004		
41	Liquid Volume Flow	(m3/h)	64.27	13.84	10.50	28.60		
42 43	Heat Flow	(kW)	-2.319e+004	-5286	-3761	-1.117e+004		
43 44								
44								
46								
48								
49								
50								
51								
52								
53								
54								
55								
47 48 49 50 51 52 53 54 55 55 56 57 58 59								
57								
58								
59								
60 61								
62 62	Asses Track						Dave 1 12	
63	Aspen Technology I Licensed to: NORWEGIAN		Aspen I	HYSYS Version 7.3 (2	25.0.0.7336)		Page 1 of 6 * Specified by user.	
	LICENSED ID. NORWEOIAN						opecilied by user.	

1			Case Name:	NGL FRAC.HSC		
2 3 4			Unit Set:	NewUser		
4 5			Date/Time:	Tue Jun 24 13:02:57 2	014	
6						
7 8	Workbook	: Case (Mai	n) (continue	ed)		
9	Compositions Rest Rest Rest					
10			Compositions		Fluid Pk	-
11 12	Name	NGL_Feed	C1	C2+	C2	C3+
12	Comp Mole Frac (Methane) Comp Mole Frac (Ethane)	0.2143 * 0.1608 *	0.9690	0.0075	0.0365	0.0000
14	Comp Mole Frac (Propane)	0.2679 *	0.0000	0.3414	0.0135	0.4257
15	Comp Mole Frac (i-Butane)	0.0857 *	0.0000	0.1092	0.0000	0.1373
16	Comp Mole Frac (n-Butane)	0.1822 *	0.0000	0.2321	0.0000	0.2919
17	Comp Mole Frac (i-Pentane)	0.0118 *	0.0000	0.0150	0.0000	0.0189
18	Comp Mole Frac (n-Pentane)	0.0129 *	0.0000	0.0164	0.0000	0.0206
19	Comp Mole Frac (n-Hexane)	0.0225 *	0.0000	0.0287	0.0000	0.0361
20	Comp Mole Frac (n-Heptanal)	***	***	***	***	***
21	Comp Mole Frac (n-Heptane)	0.0161 *	0.0000	0.0205	0.0000	0.0258
22	Comp Mole Frac (n-Octane)	0.0257 *	0.0000	0.0328	0.0000	0.0412
23 24	Comp Mole Frac (n-Nonane) Comp Mole Frac (n-Decane)	***	***	***	***	***
24	Comp Mole Frac (n-C11)	***	***	***	***	***
26	Comp Mole Frac (n-C12)	***	***	***	***	***
27	Comp Mole Frac (n-C13)	***	***	***	***	***
28	Comp Mole Frac (n-C14)	***	***	***	***	***
29	Comp Mole Frac (SbCl3)	***	***	***	***	***
30	Comp Mole Frac (n-C15)	***	***	***	***	***
31	Comp Mole Frac (n-C16)	***	***	***	***	***
32	Comp Mole Frac (n-C17)	***	***	***	***	***
33	Comp Mole Frac (n-C18)	***	***	***	***	***
34	Comp Mole Frac (Nitrogen)	***	***	***	***	***
35 36	Comp Mole Frac (CO2)	***	***	***	***	***
37	Comp Mole Frac (Carbon) Comp Mole Frac (H2S)	***	***	***	***	***
38	Comp Mole Frac (perF-NP)	***	***	***	***	***
39	Comp Mole Frac (1Mindene)	***	***	***	***	***
40						
41						
42						
43						
44						
45						
40						
47						
49						
50						
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61						
52						
53						
54						
55						
56						
57						
50						
60						
61						
62						
63	Aspen Technology Inc.	Aspen I	HYSYS Version 7.3 (2	25.0.0.7336)		Page 2 of 6
	Licensed to: NORWEGIAN UNIV OF					* Specified by user.

1			Case Name:	NGL FRAC.HSC		
2 3	aspentech Norwegi Burlington, USA	IAN UNIV OF MA	Unit Set:	NewUser		
3 4 5			Date/Time:	Tue Jun 24 13:02:57 20	014	
5 6						
7	Workbook:	Case (Mai	n) (continue	ed)		
8 9						
10			mpositions (cont		Fluid Pk	-
11 12	Name	To_DC3	C3_SC	C4+_SC	Distil1	Btm1
12	Comp Mole Frac (Methane) Comp Mole Frac (Ethane)	0.0000	0.0000	0.0000	0.9990	0.0010
14	Comp Mole Frac (Propane)	0.4257	0.9693	0.0100	0.0000	0.3408
15	Comp Mole Frac (i-Butane)	0.1373	0.0010	0.2372	0.0000	0.1090
16	Comp Mole Frac (n-Butane)	0.2919	0.0001	0.5057	0.0000	0.2317
17	Comp Mole Frac (i-Pentane)	0.0189	0.0000	0.0327	0.0000	0.0150
18	Comp Mole Frac (n-Pentane)	0.0206	0.0000	0.0358	0.0000	0.0164
19 20	Comp Mole Frac (n-Hexane)	0.0361	0.0000	0.0625	0.0000	0.0286
20	Comp Mole Frac (n-Heptanal) Comp Mole Frac (n-Heptane)	0.0258	0.0000	0.0448	0.0000	0.0205
22	Comp Mole Frac (n-Octane)	0.0412	0.0000	0.0714	0.0000	0.0327
23	Comp Mole Frac (n-Nonane)	***	***	***	***	***
24	Comp Mole Frac (n-Decane)	***	***	***	***	***
25	Comp Mole Frac (n-C11)	***	***	***	***	***
26	Comp Mole Frac (n-C12)	***	***	***	***	***
27 28	Comp Mole Frac (n-C13) Comp Mole Frac (n-C14)	***	***	***	***	***
29	Comp Mole Frac (N-C14) Comp Mole Frac (SbCl3)	***	***	***	***	***
30	Comp Mole Frac (n-C15)	***	***	***	***	***
31	Comp Mole Frac (n-C16)	***	***	***	***	***
32	Comp Mole Frac (n-C17)	***	***	***	***	***
33	Comp Mole Frac (n-C18)	***	***	***	***	***
34	Comp Mole Frac (Nitrogen)	***	***	***	***	***
35 36	Comp Mole Frac (CO2)	***	***	***	***	***
37	Comp Mole Frac (Carbon) Comp Mole Frac (H2S)	***	***	***	***	***
38	Comp Mole Frac (perF-NP)	***	***	***	***	***
39	Comp Mole Frac (1MIndene)	***	***	***	***	***
40						
41						
42 43						
43						
45						
46						
47						
48						
49						
50						
52						
53						
54						
55						
56						
57						
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61						
60						
61						
62						
63	Aspen Technology Inc.	Aspen H	YSYS Version 7.3 (25.0.0.7336)		Page 3 of 6
	Licensed to: NORWEGIAN UNIV OF					* Specified by user.

Internet Feed1 Distit/2 Bin/2 Feed2 Feed3 12 Corp Mole Frac (Methane) 0.2143 0.0331 0.0000 0.0075 0.000 12 Corp Mole Frac (Ethane) 0.0507 0.0010 0.4243 0.03414 0.424 13 Corp Mole Frac (Ethane) 0.0567 0.0000 0.4243 0.03414 0.424 14 Corp Mole Frac (Helane) 0.0128 0.0000 0.1835 0.0192 0.022 15 Corp Mole Frac (Helane) 0.0129 0.0000 0.0187 0.0124 0.000 16 Corp Mole Frac (Helane) 0.0129 0.0000 0.0237 0.0226 0.000 10 Corp Mole Frac (Helane) 0.0129 0.0000 0.0357 0.0226 0.022 10 Corp Mole Frac (Helane) 0.0129 0.0000 0.0484 0.0226 0.022 10 Corp Mole Frac (Helane) 0.0257 0.0000 0.0485 0.0226 0.022 10 Corp Mole Frac (Helane) 0.001	1			Case Name:	NGL FRAC.HSC				
Image: Second Control Date/Time: Tac Jun 24 13/02:57 2014 Image: Second Control Plate Page: Second Control Plate Page: Second Control Image: Second Control Plate Page: Second Control Plate Page: Second Control Plate Page: Second Control Image: Second Control Plate Page: Second Control Plate Page: Second Control Plate Page: Second Control Image: Second Control Plate Page: Second Control Plate Page: Second Control Plate Page: Second Control Plate Page: Second Control Image: Second Control Plate Page: Second Control Plate Page: Second Control Plate Page: Second Control Plate Page: Second Control Image: Second Control Plate Page: Second Control Plate Page: Second Control Plate Page: Second Control Plate Page: Second Control Image: Second Control Compositions (continued) Plate Page: Second Control Plate Page: Second Control Second Control Image: Second Control Control Control Second Control Second Control Second Control Image: Second Control Control Control Second Control Second Control Second Control Image: Second Control	3			Unit Set:	NewUser				
Compositions Compositions Fuel Proj. 10 Compositions Fuel Fuel 12 Comp Mole Frac, (Mahane) Fuel 0.2143 0.0000 Fuel 0.0000 12 Comp Mole Frac, (Mahane) 0.2143 0.0000 0.0000 0.0005 Fuel 0.001 12 Comp Mole Frac, (Mahane) 0.02057 0.0000 0.02057 0.0201 0.0183 0.0414 0.0414 0.0414 0.0414 0.0414 0.0414 0.0414 0.0414 0.0414 0.0414 0.0414 0.0414 0.0414 0.0414 0.0414	4			Date/Time:	Tue Jun 24 13:02:57 20)14			
Image: Second									
0 Compositions (continued) Flad Pag. 11 Name Feed1 Data/ Ban2 Feed2 Feed3 12 Comp Med Frac (Hellane) 0.1682 0.0801 0.0000 0.1953 0.000 13 Comp Med Frac (Pagner) 0.267* 0.0010 0.4243 0.2414 0.422 14 Comp Med Frac (Hentane) 0.0887 0.0000 0.1888 0.1092 0.022 15 Comp Med Frac (Hentane) 0.0122 0.0000 0.0187 0.0101 0.0101 0.0101 0.0102 0.0000 0.0224 0.022		Workbook:	Case (Mai	n) (continue	ed)				
Name Peed1 Distiz Bmc Peed2 Feed3 12 Comp Made Frax (Behane) 0.1636 0.0001 0.0002 0.0103 0.0001 13 Comp Made Frax (Behane) 0.0857 0.0010 0.4243 0.0414 0.4243 14 Comp Made Frax (Behane) 0.0857 0.0000 0.1958 0.092 0.022 15 Comp Made Frax (Fentane) 0.0122 0.0000 0.0367 0.0267 0.022 16 Comp Made Frax (Fentane) 0.0122 0.0000 0.0377 0.0267 0.022 16 Comp Made Frax (Heatane) 0.0122 0.0000 0.0377 0.0267 0.020 20 Comp Made Frax (Heatane) 0.0227 0.0000 0.0338 0.022 21 Comp Made Frax (Heatane) 0.0257 0.000 0.0339 0.022 22 Comp Made Frax (Hoane) """"""""""""""""""""""""""""""""""""	9		Co	ompositions (cont	inued)	Fluid Pk	Fluid Pkg: All		
10 Comp Mole Frac (Pmane) 0.1602* 0.9698 0.0100 0.1633* 0.0110 16 Comp Mole Frac (Plattane) 0.0857* 0.0000 0.1388 0.1922* 0.23 16 Comp Mole Frac (Plattane) 0.0122* 0.0000 0.1388 0.1922* 0.22 10 Comp Mole Frac (Plattane) 0.0123* 0.0000 0.0244 0.021 10 Comp Mole Frac (Plattane) 0.0123* 0.0000 0.0204 0.0164* 0.02 10 Comp Mole Frac (Plattane) 0.0225* 0.0000 0.0236* 0.02 20 Comp Mole Frac (Plattane) 0.0161* 0.0000 0.0226 0.0200* 0.02 21 Comp Mole Frac (Plattane) 0.0161* 0.0000 0.0448 0.0328* 0.04 22 Comp Mole Frac (Plattane) 0.0257* 0.0000 0.0448 0.0328* 0.04 20 Comp Mole Frac (Plattane) 0.0161* 0.0000 0.0448 0.0328* 0.04 20 Comp Mole Frac (Plattane)	H	Name	Feed1	Distil2	Btm2	Feed2	Feed3		
Id Comp Mole Frac (Popane) 0.275* 0.0010 0.4243 0.3144 0.44 IS Comp Mole Frac (I-Butane) 0.0857* 0.0000 0.1838 0.1922* 0.03 IS Comp Mole Frac (I-Petane) 0.0112* 0.0000 0.0247 0.221* 0.22 IS Comp Mole Frac (I-Petane) 0.0122* 0.0000 0.0357 0.02 IS Comp Mole Frac (I-Petane) 0.0122* 0.0000 0.0357* 0.02 IS Comp Mole Frac (I-Petane) 0.0125* 0.0000 0.0256* 0.02 IS Comp Mole Frac (I-Petane) 0.0151* 0.0000 0.0235* 0.02 IS Comp Mole Frac (I-Neptane) 0.015* 0.0000 0.0235* 0.02 IS Comp Mole Frac (I-Neptane) 0.025* 0.0000 0.0235* 0.02 IS Comp Mole Frac (I-Neptane) 0.025* 0.0000 0.0235* 0.02 IS Comp Mole Frac (I-Neptane) 0.025* 0.0000 0.023* 0.02		Comp Mole Frac (Methane)	0.2143 *	0.0381	0.0000	0.0075 *	0.0000 *		
IS Comp Mole Frac (#Jentane) 0.067* 0.0000 0.1338 0.192* 0.13 IS Comp Mole Frac (#Jentane) 0.0110* 0.0000 0.2347 0.2321* 0.23 IS Comp Mole Frac (#Jentane) 0.0122* 0.0000 0.0116* 0.0116 0.0201 IS Comp Mole Frac (#Jentane) 0.0122* 0.0000 0.0357 0.022* 0.0000 0.0357 0.022* 0.0000 0.0357 0.022* 0.0000 0.0256 0.0005* 0.022 0.0000 0.0226 0.0000 0.022* 0.0000 0.022* 0.0000 0.022* 0.0000 0.022* 0.0000 0.022* 0.000 0.022* 0.000 0.022* 0.000 0.022* 0.000 0.022* 0.000 0.022* 0.000 0.022* 0.000 0.022* 0.000 0.022* 0.000 0.022* 0.000 0.022* 0.000 0.02* 0.000 0.02* 0.000 0.02* 0.000 0.02* 0.000 0.02* 0.000 0.02*<							0.0127 *		
IC Comp Mote Frac (n-Batane) 0.182 ' 0.0000 0.2887 0.232 ' 0.20 IC Comp Mote Frac (n-Pentane) 0.0119 ' 0.0000 0.0224 0.0164 ' 0.02 IC Comp Mote Frac (n-Pentane) 0.0122 ' 0.0000 0.0224 ' 0.0164 ' 0.02 IC Comp Mote Frac (n-Hegtane) 0.0161 ' 0.0000 0.0256 ' 0.02 IC Comp Mote Frac (n-Hegtane) 0.0161 ' 0.0000 0.0285 ' 0.02 IC Comp Mote Frac (n-Nonne) ***' ***' ***' ***' IC Comp Mote Frac (n-Cane) ***' ***' ***' ***' IC Comp Mote Frac (n-C1) ***' ***' ***' ***' ***' IC Comp Mote Frac (n-C1) ***' *							0.4225 *		
17 Comp Mole Frac (n-Pentane) 0.018* 0.0000 0.0294 0.0164* 0.02 18 Comp Mole Frac (n-Hegana) *** *** 0.02 0.0000 0.0257 0.027* 0.00 20 Comp Mole Frac (n-Hegana) *** *** *** *** *** *** 0.0225 0.0000 0.0256 0.0257* 0.020 0.0255 0.0205* 0.020 0.0255 0.0205* 0.020 0.0255 0.0205* 0.020 0.0255 0.0205* 0.020 0.0255 0.0205* 0.020 0.0255 0.0205* 0.020 0.0255 0.0205* 0.020 0.0255 0.0205* 0.020 0.0255 0.020 0.020 0.048 0.0328* 0.04 0.051 0.020 0.0255 0.020 0.020 0.048 0.0255 0.020 0.020 0.020 0.020 0.048 0.048* 0.042 0.048 0.042 0.041 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020							0.1356 * 0.2883 *		
10 Comp Mole Frac (n-Hexane) 0.0129 * 0.0000 0.0264 0.0164 * 0.02 11 Comp Mole Frac (n-Heptane) 0.0161 * 0.0000 0.0265 * 0.02 21 Comp Mole Frac (n-Heptane) 0.0161 * 0.0000 0.0265 * 0.02 22 Comp Mole Frac (n-Heptane) 0.0167 * 0.0000 0.0266 * 0.02 22 Comp Mole Frac (n-Heptane) 0.0257 * 0.000 0.0468 * 0.0257 * 0.000 23 Comp Mole Frac (n-Heptane) 0.0257 * 0.000 0.0468 * 0.0257 * 0.000 24 Comp Mole Frac (n-Chane) ****	-						0.2883		
10 Comp Mole Frac (n-Hepara) 0.0225 * 0.0000 0.0357 0.0267 * 0.03 21 Comp Mole Frac (n-Hepara) 0.0161 * 0.0000 0.0266 0.0226 * 0.02 22 Comp Mole Frac (n-Octane) 0.0257 * 0.0000 0.0408 0.0226 * 0.04 22 Comp Mole Frac (n-Octane) *** *** *** *** *** 0.04 22 Comp Mole Frac (n-Octane) *** *** *** *** *** 0.04 23 Comp Mole Frac (n-Octane) *** <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0204 *</td>							0.0204 *		
D comp Mole Frac (n-Heptane) 0.0161 * 0.0000 0.0256 0.0205 * 0.02 2 Comp Mole Frac (n-Nonane) 0.0257 * 0.0000 0.0408 0.0328 * 0.04 2 Comp Mole Frac (n-Nonane) *** *** *** *** *** 2 Comp Mole Frac (n-Clame) *** *** *** *** *** 2 Comp Mole Frac (n-Cla) *** *** *** *** *** *** 2 Comp Mole Frac (n-Cla) ***							0.0356 *		
12 Comp Mole Frac (n-Nonane) 0.0257* 0.0000 0.0408 0.0328* 0.04 20 Comp Mole Frac (n-Nonane) ***							***		
12 Comp Mole Frac (n-Decane) *** *** *** *** 22 Comp Mole Frac (n-C12) *** *** *** *** 23 Comp Mole Frac (n-C12) *** *** *** *** 23 Comp Mole Frac (n-C12) *** *** *** *** 24 Comp Mole Frac (n-C12) *** *** *** *** 25 Comp Mole Frac (n-C14) *** *** *** *** 26 Comp Mole Frac (n-C15) *** *** *** *** 20 Comp Mole Frac (n-C16) *** *** *** *** 21 Comp Mole Frac (n-C16) *** *** *** *** 21 Comp Mole Frac (n-C18) *** *** *** *** 22 Comp Mole Frac (n-C18) *** *** *** *** 22 Comp Mole Frac (n-C18) *** *** *** *** 32 Comp Mole Frac (n-C18) ***<	21		0.0161 *	0.0000	0.0256	0.0205 *	0.0255 *		
24 Comp Mole Frac (n-C11) *** *** *** *** 25 Comp Mole Frac (n-C12) *** *** *** *** 27 Comp Mole Frac (n-C13) *** *** *** *** 28 Comp Mole Frac (n-C13) *** *** *** *** 20 Comp Mole Frac (n-C13) *** *** *** *** 20 Comp Mole Frac (n-C14) *** *** *** *** 20 Comp Mole Frac (n-C15) *** *** *** *** 21 Comp Mole Frac (n-C15) *** *** *** *** *** 21 Comp Mole Frac (n-C17) ***		Comp Mole Frac (n-Octane)					0.0407 *		
25 Comp Mole Frac (n-C12) *** *** *** *** 26 Comp Mole Frac (n-C12) *** *** *** *** 27 Comp Mole Frac (n-C13) *** *** *** *** 28 Comp Mole Frac (n-C14) *** *** *** *** 28 Comp Mole Frac (n-C15) *** *** *** *** 20 Comp Mole Frac (n-C16) *** *** *** *** 20 Comp Mole Frac (n-C16) *** *** *** *** 20 Comp Mole Frac (n-C18) *** *** *** *** 20 Comp Mole Frac (n-C18) *** *** *** *** 31 Comp Mole Frac (n-C18) *** *** *** *** *** 31 Comp Mole Frac (n-C18) *** *** *** *** *** 32 Comp Mole Frac (n-C19) *** *** *** *** *** 32 Comp Mole Frac (n-C19) *** *** *** *** ***	-						***		
25 Comp Mole Frac (n-C12) *** *** *** *** 27 Comp Mole Frac (n-C13) *** *** *** *** 28 Comp Mole Frac (n-C13) *** *** *** *** 29 Comp Mole Frac (n-C15) *** *** *** *** 30 Comp Mole Frac (n-C17) *** *** *** *** 31 Comp Mole Frac (n-C17) *** *** *** *** 31 Comp Mole Frac (n-C17) *** *** *** *** 32 Comp Mole Frac (n-C17) *** *** *** *** 32 Comp Mole Frac (non) *** *** *** *** 33 Comp Mole Frac (Non) *** *** *** *** 33 Comp Mole Frac (non) *** *** *** *** 34 Comp Mole Frac (non) *** *** *** *** 35 Comp Mole Frac (non) *** *** *** *** 36 Comp Mole Frac (non) ***							***		
27 Comp Mole Frac (n-C13) *** *** *** *** 28 Comp Mole Frac (n-C13) *** *** *** *** 20 Comp Mole Frac (n-C15) *** *** *** *** 30 Comp Mole Frac (n-C15) *** *** *** *** 31 Comp Mole Frac (n-C16) *** *** *** *** 31 Comp Mole Frac (n-C16) *** *** *** *** 32 Comp Mole Frac (n-C17) *** *** *** *** *** 32 Comp Mole Frac (n-C18) ***							***		
28 Comp Mole Frac (n-C14) *** **							***		
28 Comp Mote Frac (SbCl3) *** **							***		
30 Comp Mole Frac (n-C15) *** **	-						***		
31 Comp Mole Frac (n-C16) *** *** *** *** 32 Comp Mole Frac (n-C17) *** *** *** *** 33 Comp Mole Frac (n-C18) *** *** *** *** 34 Comp Mole Frac (n-C18) *** *** *** *** 35 Comp Mole Frac (N-C18) *** *** *** *** 35 Comp Mole Frac (C22) *** *** *** *** 36 Comp Mole Frac (Carbon) *** *** *** *** 37 Comp Mole Frac (Carbon) *** *** *** *** 38 Comp Mole Frac (Carbon) *** *** *** *** 39 Comp Mole Frac (Carbon) *** *** *** *** 39 Comp Mole Frac (IMindene) *** *** *** *** 41 42 *** *** *** *** *** 42 ** *** *** *** *** *** 50 ** ***	-		***	***	***	***	***		
32 Comp Mole Frac (n-C17) *** *** *** 33 Comp Mole Frac (n-C18) *** *** *** 34 Comp Mole Frac (n-C18) *** *** *** 35 Comp Mole Frac (n-C19) *** *** *** 36 Comp Mole Frac (C20) *** *** *** *** 36 Comp Mole Frac (C20) *** *** *** *** 37 Comp Mole Frac (C20) *** *** *** *** 37 Comp Mole Frac (C20) *** *** *** *** 38 Comp Mole Frac (C20) *** *** *** *** 37 Comp Mole Frac (C420) *** *** *** *** 38 Comp Mole Frac (C420) *** *** *** *** 39 Comp Mole Frac (Mindene) *** *** *** *** 40 *** *** *** *** *** *** 41 ** *** *** *** *** *** *** <td></td> <td></td> <td>***</td> <td>***</td> <td>***</td> <td>***</td> <td>***</td>			***	***	***	***	***		
34 Comp Mole Frac (Nitrogen) *** <td< td=""><td>32</td><td></td><td>***</td><td>***</td><td>***</td><td>***</td><td>***</td></td<>	32		***	***	***	***	***		
35 Comp Mole Frac (CO2) ***<	33		***	***	***	***	***		
38 Comp Mole Frac (Carbon) ***** **** **** <	34	Comp Mole Frac (Nitrogen)	***	***	***	***	***		
37 Comp Mole Frac (H2S) ***<		Comp Mole Frac (CO2)					***		
38 Comp Mole Frac (perF-NP) *** *** *** *** 39 Comp Mole Frac (1Mindene) *** *** *** *** 40 *** *** *** *** *** 41 *** *** *** *** *** 42 *** *** *** *** *** 43 *** *** *** *** *** 44 *** *** *** *** *** 45 *** *** *** *** *** 46 *** *** *** *** *** 47 *** *** *** *** *** 48 *** *** *** *** *** 50 *** *** *** *** *** 51 *** *** *** *** *** 52 *** *** *** *** *** 53 *** *** **** **** ***							***		
39 Comp Mole Frac (1MIndene) *** *** *** 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61							***		
40 -							***		
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50 51	\mathbf{H}	Comp Mole Frac (TMindene)							
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50 51	40								
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50 50 51 52 53 54 55 56 57 58 59 50 50 51 52 53 54 55 56 57 58 59 50 51									
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61									
48 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61									
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61									
	47								
	48								
	49								
	50								
	52								
	53								
	54								
	55								
	56								
	57								
	58								
	59								
	60								
62									
		Aspen Technology Inc	Acnon	HVSVS Varcion 7.2 (25.0.0.7336)		Page 4 of 6		
			Aspell r	1010 101011.3 (23.0.0.1330)		* Specified by user.		

1					Case Name:	NGL FRAC.HSC				
2	aspentech	NORWEGI, Burlington,	AN UNIV OF MA		Unit Set:	NewUser				
4 5	aspenteen	USA			Date/Time:	Tue Jun 24 13:02:57 20	014			
6										
7 8	Work	book:	Case (M	ain)	(continue	ed)				
9				Com	positions (conti		Fluid Pkg	1:	All	
10 11	Name		To DC2		3	Condensate	LPG		-	
12	Comp Mole Frac (Methane)		0.007		0.0000	0.0000	2.0	0.0000		
13	Comp Mole Frac (Ethane)		0.196		0.0073	0.0000		0.0005		
14	Comp Mole Frac (Propane)		0.341	4	0.9500	0.0000		0.2557		
15	Comp Mole Frac (i-Butane)		0.109		0.0388	0.0033		0.2257		
16	Comp Mole Frac (n-Butane)		0.232		0.0039	0.0993		0.4977		
17	Comp Mole Frac (i-Pentane)		0.015	0	0.0000	0.0837		0.0120		
18	Comp Mole Frac (n-Pentane)		0.016		0.0000	0.1094		0.0083		
19	Comp Mole Frac (n-Hexane)		0.028	7	0.0000	0.2463		0.0000		
20	Comp Mole Frac (n-Heptanal)		*	**	***	***		***		
21	Comp Mole Frac (n-Heptane)		0.020	15	0.0000	0.1765		0.0000		
22	Comp Mole Frac (n-Octane)		0.032		0.0000	0.2815		0.0000		
23	Comp Mole Frac (n-Nonane)			**	***	***		***		
24	Comp Mole Frac (n-Decane)		*	**	***	***		***		
25	Comp Mole Frac (n-C11)		*	**	***	***		***		
26	Comp Mole Frac (n-C12)		*	**	***	***		***		
27	Comp Mole Frac (n-C13)		*	**	***	***		***		
28	Comp Mole Frac (n-C14)		*	**	***	***		***		
29	Comp Mole Frac (SbCl3)		*	**	***	***		***		
30			*	**	***	***		***		
31	Comp Mole Frac (n-C15)			**	***	***		***		
\mathbf{H}	Comp Mole Frac (n-C16)			**	***	***		***		
32 33	Comp Mole Frac (n-C17)			**	***	***		***		
-	Comp Mole Frac (n-C18)			**	***	***		***		
34	Comp Mole Frac (Nitrogen)			**	***	***		***		
35	Comp Mole Frac (CO2)			**	***	***		***		
36	Comp Mole Frac (Carbon)			**	***	***		***		
37	Comp Mole Frac (H2S)			**	***	***		***		
38	Comp Mole Frac (perF-NP)									
39	Comp Mole Frac (1MIndene)		*	**	***	***		***		
40					Energy Stream	s		Fluid Pkg	j :	All
41	Manag		D-1-0-004	_			Dub o F			
42	Name		Reb Q_DC1		ond Q_DC1	Cond Q_DC2	Reb Q_E		Q DC3r	
43	Heat Flow	(kW)	189		969.9	2377		2568		2362
44	Name		Q DC3c		C_SC1	Qr_SC1	Qc_SC2		Qr_SC2	
45	Heat Flow	(kW)	357		288.5	1238		1456		1626
46	Name		Con Q_DC3		eb Q_DC3					
47	Heat Flow	(kW)	281	1	1939					
48					Unit Ops					
49										
50	Operation Name	Oper	ration Type		Feeds	Products		Ignored	Calc	Level
51				NGL_		C2+				
52	DC1	Distillation		Reb C	2_DC1	C1		No		2500 *
53						Cond Q_DC1				
54			ļ	To_D		C3+				
55	DC2	Distillation	ļ	Reb C	DC2	C2		No		2500 *
56						Cond Q_DC2				
57			ļ	To_D(C3	Condensate				
58	DC3 Distillatio		ļ	Reb C	2_DC3	C3	No			2500 *
59	Distillatio					LPG		NU		2000
60						Con Q_DC3				
61	VLV-100	Valve		C2+		To_DC2		No		500.0 *
62	VLV-101	Valve		C3+		To_DC3		No		500.0 *
63	Aspen Technology Inc.		Aspe	en HYS	SYS Version 7.3 (2				Pac	e 5 of 6
	Liconsod to: NORWEGIAN LINIV C								* Specified	

Licensed to: NORWEGIAN UNIV OF

1			Case Name: N	IGL FRAC.HSC		
2		NORWEGIAN UNIV OF Burlington, MA		IGE FRAC.HSC IewUser		
4	aspentech	USA				
2 3 4 5 6 7 8 9 10			Date/Time: T	ue Jun 24 13:02:57 2014		
7	Worl	kbook: Case (M	ain) (continued	I)		
8 9				-n		
10 11	o # 11	0 / T	Unit Ops (continued			
11 12	Operation Name	Operation Type	Feeds Feed3	Products C3_SC	Ignored	Calc Level
13	DC3_SC	Shortcut Column	Q DC3r	C4+_SC	No	500.0 *
14				Q DC3c		
15 16	DC1_SC	Shortcut Column	Feed1 Qr_SC1	Distil1 Btm1	No	500.0 *
17	5000			Qc_SC1		
18			Feed2	Distil2		
19 20	DC2_SC	Shortcut Column	Qr_SC2	Btm2	No	500.0 *
21	SPRDSHT-1	Spreadsheet		Qc_SC2	No	500.0 *
22						
23						
24						
26						
27						
29						
30						
31						
32						
34						
35						
36						
38						
39						
40						
42						
43						
44						
46						
47						
48						
49 50						
51						
52						
53 54						
55						
56						
57 58						
59						
60						
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54 55 56 57 58 59 60 61 62						
63	Aspen Technology Inc.	Asp	en HYSYS Version 7.3 (25	.0.0.7336)		Page 6 of 6
	Licensed to: NORWEGIAN UNIV				* (Specified by user.

7.2 DC1 column Profile Report for NGL Fractionation Model (Base case)

1			Case Name:	NGL FRAC.HSC		
3	Spentech Burlingtor	BIAN UNIV OF I, MA	Unit Set:	NewUser		
4 5			Date/Time:	Tue Jun 24 13:00:54 20)14	
6			4			
7 8	WOLKDOOK	: DC1 (COL	1)			
9 10			Material Stream	IS	g: All	
11	Name	Reflux	To Condenser	Boilup	To Reboiler	C1
12	Vapour Fraction	0.0000	1.0000	1.0000	0.0000	1.0000
13	Temperature (C)	-82.97	-57.37	90.28	72.76	-82.97
14	Pressure (kPa)	3390	3390	3410	3410	3390
15	Molar Flow (kgmole/h)	488.2	670.2	481.2	1145	182.0
16	Mass Flow (kg/h)	9111	1.211e+004	2.020e+004	5.437e+004	2999
17	Liquid Volume Flow (m3/h)	28.98	38.91	42.84	107.1	9.928
18	Heat Flow (kW)	-1.195e+004	-1.506e+004	-1.352e+004	-3.860e+004	-4080
19	Name	C2+	NGL_Feed-2			
20	Vapour Fraction	0.0000	0.2349			
21	Temperature (C)	90.28	40.00			
22	Pressure (kPa)	3410	3400			
23	Molar Flow (kgmole/h)	664.0	846.0			
24 25	Mass Flow (kg/h)	3.417e+004	3.717e+004			
25	Liquid Volume Flow (m3/h) Heat Flow (kW)	64.27 -2.319e+004	-2.819e+004			
27	neat riow (KVV)	-2.3190+004				
28			Compositions	i	Fluid Pk	g: All
29	Name	Reflux	To Condenser	Boilup	To Reboiler	C1
30	Comp Mole Frac (Methane)	0.8132	0.8555	0.0304	0.0171	0.9690
31	Comp Mole Frac (Ethane)	0.1868	0.1445	0.3700	0.2693	0.0310
32	Comp Mole Frac (Propane)	0.0000	0.0000	0.3617	0.3499	0.0000
33	Comp Mole Frac (i-Butane)	0.0000	0.0000	0.0760	0.0953	0.0000
34	Comp Mole Frac (n-Butane)	0.0000	0.0000	0.1392	0.1931	0.0000
35	Comp Mole Frac (i-Pentane)	0.0000	0.0000	0.0059	0.0112	0.0000
36	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.0058	0.0119	0.0000
37	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.0060	0.0191	0.0000
38	Comp Mole Frac (n-Heptanal)	***	***	***	***	***
39	Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.0026	0.0130	0.0000
40	Comp Mole Frac (n-Octane)	0.0000	0.0000	0.0026	0.0201	0.0000
41	Comp Mole Frac (n-Nonane)	***	***	***	***	***
42	Comp Mole Frac (n-Decane)	***	***	***	***	***
43 44	Comp Mole Frac (n-C11)	***	***	***	***	***
44	Comp Mole Frac (n-C12) Comp Mole Frac (n-C13)	***	***	***	***	***
46	Comp Mole Frac (n-C14)	***	***	***	***	***
47	Comp Mole Frac (SbCl3)	***	***	***	***	***
48	Comp Mole Frac (n-C15)	***	***	***	***	***
49	Comp Mole Frac (n-C16)	***	***	***	***	***
50	Comp Mole Frac (n-C17)	***	***	***	***	***
51	Comp Mole Frac (n-C18)	***	***	***	***	***
52	Comp Mole Frac (Nitrogen)	***	***	***	***	***
53	Comp Mole Frac (CO2)	***	***	***	***	***
54	Comp Mole Frac (Carbon)	***	***	***	***	***
55	Comp Mole Frac (H2S)	***	***	***	***	***
56	Comp Mole Frac (perF-NP)	***	***	***	***	***
57	Comp Mole Frac (1MIndene)	***	***	***	***	***
58 59 60 61 62 63	Aspen Technology Inc.	Asses 1	IYSYS Version 7.3 ()			Page 1 of 2

Licensed to: NORWEGIAN UNIV OF

1				Case Name:	NGL FRAC.HSC				
2 3	aspentech	NORWEG Burlington,	IAN UNIV OF	Unit Set:	NewUser				
4	aspentech	USA							
5				Date/Time:	Tue Jun 24 13:00:54	2014			
6 7	Work	book	DC1 (CO	L1) (continu	ed)				
8 9			•	, (,				
10				Compositions (con	tinued)		Fluid Pkg: All		
11	Name		C2+	NGL_Feed-2					
12 13	Comp Mole Frac (Methane)		0.007						
14	Comp Mole Frac (Ethane) Comp Mole Frac (Propane)		0.1963						
15	Comp Mole Frac (i-Butane)		0.1092						
16	Comp Mole Frac (n-Butane)		0.232						
17	Comp Mole Frac (i-Pentane)		0.0150						
18	Comp Mole Frac (n-Pentane)		0.0164						
19	Comp Mole Frac (n-Hexane)		0.028	7 0.0225					
20	Comp Mole Frac (n-Heptanal)		**	* ***					
21	Comp Mole Frac (n-Heptane)		0.020	5 0.0161					
22	Comp Mole Frac (n-Octane)		0.0328						
23	Comp Mole Frac (n-Nonane)		**						
24	Comp Mole Frac (n-Decane)		**						
25	Comp Mole Frac (n-C11)		**						
26	Comp Mole Frac (n-C12)		**						
27	Comp Mole Frac (n-C13)		**						
28	Comp Mole Frac (n-C14)		**						
29	Comp Mole Frac (SbCl3)		**						
30 31	Comp Mole Frac (n-C15)		**						
32	Comp Mole Frac (n-C16) Comp Mole Frac (n-C17)		**			_			
33	Comp Mole Frac (n-C18)		**			-			
34	Comp Mole Frac (Nitrogen)		**	* ***					
35	Comp Mole Frac (CO2)		**	* ***		_			
36	Comp Mole Frac (Carbon)		**	* ***					
37	Comp Mole Frac (H2S)		**	* ***					
38	Comp Mole Frac (perF-NP)		**	* ***					
39	Comp Mole Frac (1MIndene)		**	* ***					
40				Energy Stream	าร		Fluid Pkg:	All	
41 42	Name		Cond Q DC1	Reb Q DC1					
43	Heat Flow	(kW)	969.9			-			
44	Ticat How	((()))	000.						
45				Unit Ops					
46	Operation Name	Оре	eration Type	Feeds	Product	S	Ignored	Calc Level	
47 48	Conductor	Dest: LC		To Condenser	C1		Ne	500.0.1	
48 49	Condenser	Partial Co	nuenser	Cond Q_DC1	Cond Q DC1		No	500.0 *	
49 50				To Reboiler	Cond Q_DC1 C2+			 	
51	Reboiler	Reboiler	-	Reb Q DC1	Boilup		No	500.0 *	
52				Reflux	To Reboiler				
				Boilup	To Condenser		No	500.0 *	
54				NGL Feed-2				000.0	
55					1				
56									
57									
58									
59									
60									
61									
62									
63	Aspen Technology Inc.	_	Aspe	n HYSYS Version 7.3	(25.0.0.7336)			Page 2 of 2	
	Licensed to: NORWEGIAN UNIV O	F						* Specified by user.	

7.3 DC2 column Profile Report for NGL Fractionation Model (Base case)

1			Case Name:	Case Name: NGL FRAC.HSC					
2		GIAN UNIV OF n, MA	Unit Set:	NewUser					
4			Date/Time:	Tue Jun 24 13:01:45 2	014				
6									
7	Workbook	: DC2 (COL	2)						
8									
10			Material Stream	IS	Fluid Pk	g: All			
11	Name	Reflux	To Condenser	Boilup	To Reboiler	C3+			
12 13	Vapour Fraction	0.000.0	1.0000	1.0000	0.0000	0.0000			
14	Temperature (C) Pressure (kPa)	-8.748e-002 2788	5.847	110.7 2808	101.1 2808	110.7 2808			
15	Molar Flow (kgmole/h)	843.0	978.9	749.7	1278	528.1			
16	Mass Flow (kg/h)	2.508e+004	2.912e+004	3.812e+004	6.825e+004	3.013e+004			
17	Liquid Volume Flow (m3/h)	70.34	81.68	70.37	123.3	52.94			
18	Heat Flow (kW)	-2.266e+004	-2.394e+004	-2.317e+004	-4.509e+004	-1.935e+004			
19	Name	1	C2						
20	Vapour Fraction	0.1454	0.0000						
21 22	Temperature (C)	82.77	-8.748e-002						
22	Pressure (kPa) Molar Flow (kgmole/h)	2800	2788						
23	Molar Flow (kgmole/h) Mass Flow (kg/h)	3.417e+004	4041						
25	Liquid Volume Flow (m3/h)	64.27	11.34						
26	Heat Flow (kW)	-2.319e+004	-3652						
27			Compositions		Fluid Pk	q: All			
28						-			
29	Name	Reflux	To Condenser	Boilup	To Reboiler	C3+			
30 31	Comp Mole Frac (Methane)	0.0365	0.0365	0.0000	0.0000	0.0000			
32	Comp Mole Frac (Ethane) Comp Mole Frac (Propane)	0.9500	0.9500	0.0058	0.0044	0.0025			
33	Comp Mole Frac (i-Butane)	0.0000	0.0000	0.1281	0.1319	0.1373			
34	Comp Mole Frac (n-Butane)	0.0000	0.0000	0.2380	0.2602	0.2919			
35	Comp Mole Frac (i-Pentane)	0.0000	0.0000	0.0104	0.0139	0.0189			
36	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.0103	0.0145	0.0206			
37	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.0111	0.0214	0.0361			
38	Comp Mole Frac (n-Heptanal)	***	***	***	***	***			
39	Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.0050	0.0136	0.0258			
40	Comp Mole Frac (n-Octane)	0.0000	0.0000	0.0051	0.0200	0.0412			
41 42	Comp Mole Frac (n-Nonane) Comp Mole Frac (n-Decane)	***	***	***	***	***			
42	Comp Mole Frac (n-Decane) Comp Mole Frac (n-C11)	***	***	***	***	***			
44	Comp Mole Frac (n-C12)	***	***	***	***	***			
45	Comp Mole Frac (n-C13)	***	***	***	***	***			
46	Comp Mole Frac (n-C14)	***	***	***	***	***			
47	Comp Mole Frac (SbCl3)	***	***	***	***	***			
48	Comp Mole Frac (n-C15)	***	***	***	***	***			
49	Comp Mole Frac (n-C16)	***	***	***	***	***			
50	Comp Mole Frac (n-C17)	***	***	***	***	***			
51 52	Comp Mole Frac (n-C18) Comp Mole Frac (Nitrogen)	***	***	***	***	***			
53	Comp Mole Frac (Nurogen) Comp Mole Frac (CO2)	***	***	***	***	***			
54	Comp Mole Frac (Corbon)	***	***	***	***	***			
55	Comp Mole Frac (H2S)	***	***	***	***	***			
56	Comp Mole Frac (perF-NP)	***	***	***	***	***			
57	Comp Mole Frac (1MIndene)	***	***	***	***	***			
58 59 60 61 62									
63	Aspen Technology Inc.	Aspen	HYSYS Version 7.3 (2	25.0.0.7336)		Page 1 of 2			

63 Aspen Technology Inc. Licensed to: NORWEGIAN UNIV OF Aspen HYSYS Version 7.3 (25.0.0.7336)

Page 1 of 2 * Specified by user.

NORWEGIAN UNIV OF Burlington, MA USA

Case Name: NGL FRAC.HSC

Unit Set: NewUser

Date/Time:

Tue Jun 24 13:01:45 2014

1 2 3 4 5 6 7 8 Workbook: DC2 (COL2) (continued) 9 Compositions (continued) Fluid Pkg: All 10 11 Name C2 1 12 0.0365 0.0075 Comp Mole Frac (Methane) 13 Comp Mole Frac (Ethane) 0.1963 0.9500 14 Comp Mole Frac (Propane) 0.3414 0.0135 15 0.1092 0.0000 Comp Mole Frac (i-Butane) 16 Comp Mole Frac (n-Butane) 0.2321 0.0000 17 Comp Mole Frac (i-Pentane) 0.0150 0.0000 18 0.0164 0.0000 Comp Mole Frac (n-Pentane) 19 0.0287 0.0000 Comp Mole Frac (n-Hexane) 20 *** *** Comp Mole Frac (n-Heptanal) 21 0.0205 0.0000 Comp Mole Frac (n-Heptane) 22 Comp Mole Frac (n-Octane) 0.0328 0.0000 23 Comp Mole Frac (n-Nonane) *** *** *** *** 24 Comp Mole Frac (n-Decane) 25 Comp Mole Frac (n-C11) *** *** *** *** 26 Comp Mole Frac (n-C12) 27 *** *** Comp Mole Frac (n-C13) 28 *** *** Comp Mole Frac (n-C14) *** *** 29 Comp Mole Frac (SbCl3) *** *** 30 Comp Mole Frac (n-C15) 31 *** *** Comp Mole Frac (n-C16) *** 32 *** Comp Mole Frac (n-C17) 33 *** *** Comp Mole Frac (n-C18) 34 *** *** Comp Mole Frac (Nitrogen) *** *** 35 Comp Mole Frac (CO2) *** *** 36 Comp Mole Frac (Carbon) 37 Comp Mole Frac (H2S) *** *** 38 *** *** Comp Mole Frac (perF-NP) 39 Comp Mole Frac (1MIndene) *** *** 40 **Energy Streams** Fluid Pkg: All 41 42 Name Cond Q_DC2 Reb Q_DC2 43 Heat Flow (kW) 2377 2568 44 Unit Ops 45 Operation Type 46 Feeds Products Calc Level **Operation Name** Ignored 47 To Reboiler C3+ Reboiler 500.0 Reboiler No 48 Reb Q_DC2 Boilup 49 50 Reflux To Reboiler Main TS Tray Section Boilup To Condenser No 500.0 51 52 53 54 55 56 57 58 59 60 61 62 To Condenser C2 Condenser Total Condenser Cond Q_DC2 Reflux No 500.0 Cond Q_DC2 Aspen HYSYS Version 7.3 (25.0.0.7336) 63 Aspen Technology Inc Page 2 of 2

Licensed to: NORWEGIAN UNIV OF

7.4 DC3 column Profile Report for NGL Fractionation Model (Base case)

1	_		Case Name:	NGL FRAC.HSC					
2 3	Spentech Burlingto	GIAN UNIV OF n, MA	Unit Set:	NewUser					
4			Date/Time:	Tue Jun 24 13:02:25 20	014				
5 6			Dates Fille.	100 001121 10:02:20 20					
7 8	Workbook	: DC3 (COL	3)						
9 10		Fluid Pk	g: All						
11	Name	Reflux	To Condenser	Boilup	To Reboiler	Condensate			
12	Vapour Fraction	0.0000	1.0000	1.0000	0.0000	0.0000			
13	Temperature (C)	30.61	32.54	164.0	136.2	164.0			
14 15	Pressure (kPa)	1083	1083	1110	1110	1110			
15	Molar Flow (kgmole/h)	528.6	686.4	255.5	332.8	77.31			
17	Mass Flow (kg/h)	2.357e+004	3.061e+004	2.000e+004	2.703e+004	7032			
18	Liquid Volume Flow (m3/h)	46.36	60.20	31.12	41.62	10.50			
19	Heat Flow (kW) Name	-1.771e+004	-2.018e+004 C3	-9773	-1.547e+004	-3761			
20		To_DC3 0.4900	0.0000	LPG 0.0000					
20	Vapour Fraction (C)								
21	Temperature (C) Pressure (kPa)	70.17	30.61 1083	63.20 1092					
23			157.8	293.0					
23	Molar Flow (kgmole/h) Mass Flow (kg/h)	528.1 3.013e+004	7037	1.606e+004					
25	Liquid Volume Flow (m3/h)	52.94	13.84	28.60					
26	Heat Flow (kW)	-1.935e+004	-5286	-1.117e+004					
27	(KW)	-1.3556+004							
28			Compositions	Compositions Fluid Pkg:					
29	Name	Reflux	To Condenser	Boilup	To Reboiler	Condensate			
30	Comp Mole Frac (Methane)	0.0000	0.0000	0.0000	0.0000	0.0000			
31	Comp Mole Frac (Ethane)	0.0073	0.0073	0.0000	0.0000	0.0000			
32	Comp Mole Frac (Propane)	0.9500	0.9500	0.0000	0.0000	0.0000			
33	Comp Mole Frac (i-Butane)	0.0388	0.0388	0.0101	0.0085	0.0033			
34	Comp Mole Frac (n-Butane)	0.0039	0.0039	0.2609	0.2234	0.0993			
35	Comp Mole Frac (i-Pentane)	0.0000	0.0000	0.1419	0.1283	0.0837			
36	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.1684	0.1547	0.1094			
37	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.2250	0.2299	0.2463			
38	Comp Mole Frac (n-Heptanal)	***	***	***	***	***			
39	Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.0979	0.1162	0.1765			
40	Comp Mole Frac (n-Octane)	0.0000	0.0000	0.0959	0.1390	0.2815			
41	Comp Mole Frac (n-Nonane)	***	***	***	***	***			
42	Comp Mole Frac (n-Decane)	***	***	***	***	***			
43	Comp Mole Frac (n-C11)	***	***	***	***	***			
44	Comp Mole Frac (n-C12)	***	***	***	***	***			
45	Comp Mole Frac (n-C13)	***	***	***	***	***			
46	Comp Mole Frac (n-C14)	***	***	***	***	***			
47	Comp Mole Frac (SbCl3)	***	***	***	***	***			
48	Comp Mole Frac (n-C15)	***	***	***	***	***			
49	Comp Mole Frac (n-C16)	***	***	***	***	***			
50	Comp Mole Frac (n-C17)	***	***	***	***	***			
51	Comp Mole Frac (n-C18)	***	***	***	***	***			
52	Comp Mole Frac (Nitrogen)	***	***	***	***	***			
53	Comp Mole Frac (CO2)	***	***	***	***	***			
54	Comp Mole Frac (Carbon)	***	***	***	***	***			
55	Comp Mole Frac (H2S)	***	***	***	***	***			
56 57	Comp Mole Frac (perF-NP) Comp Mole Frac (1MIndene)	***	***	***	***	***			
58 59 60		1			1				
61 62	T			05.0.0.7000					
63	Aspen Technology Inc.	Aspen	HYSYS Version 7.3 (2	25.0.0.7336)		Page 1 of 2			

NORWEGIAN UNIV OF Burlington, MA USA

Case Name: NGL FRAC.HSC

Date/Time:

Unit Set: NewUser

Tue Jun 24 13:02:25 2014

6 7 8	Work	book	DC3 (CO)L3) (continue	d)			
9 10				Compo	sitions (cont	inued)		Fluid Pkg	: All
11	Name		To_DC3	C3		LPG			
12	Comp Mole Frac (Methane)		0.000	0	0.0000	0.0000			
13	Comp Mole Frac (Ethane)		0.002	5	0.0073	0.0005			
14	Comp Mole Frac (Propane)		0.425	7	0.9500	0.2557			
15	Comp Mole Frac (i-Butane)		0.137	3	0.0388	0.2257			
16	Comp Mole Frac (n-Butane)		0.291	9	0.0039	0.4977			
17	Comp Mole Frac (i-Pentane)		0.018	_	0.0000	0.0120			
18	Comp Mole Frac (n-Pentane)		0.020		0.0000	0.0083			
19	Comp Mole Frac (n-Hexane)		0.036	_	0.0000	0.0000			
20	Comp Mole Frac (n-Heptanal)		**	_	***	***			
21	Comp Mole Frac (n-Heptane)		0.025		0.0000	0.0000			
22	Comp Mole Frac (n-Octane)		0.041		0.0000	0.0000			
23	Comp Mole Frac (n-Nonane)		**	_	***	***			
24 25	Comp Mole Frac (n-Decane)		**		***	***			
25	Comp Mole Frac (n-C11)		**	_	***	***			
20	Comp Mole Frac (n-C12) Comp Mole Frac (n-C13)		**		***	***			
28	Comp Mole Frac (n-C13)		**		***	***			
29	Comp Mole Frac (SbCl3)		**	t x	***	***			
30	Comp Mole Frac (n-C15)		**	**	***	***			
31	Comp Mole Frac (n-C16)		**	**	***	***			
32	Comp Mole Frac (n-C17)		**	**	***	***			
33	Comp Mole Frac (n-C18)		**	*	***	***			
34	Comp Mole Frac (Nitrogen)		*1	**	***	***			
35	Comp Mole Frac (CO2)		**	**	***	***			
36	Comp Mole Frac (Carbon)		**	**	***	***			
37	Comp Mole Frac (H2S)		**	t x	***	***			
38	Comp Mole Frac (perF-NP)		**	**	***	***			
39	Comp Mole Frac (1MIndene)		*1	t x	***	***			
40				Energy Streams				Fluid Pkg	: All
41				_				- Thank They.	. ///
42	Name		Con Q_DC3		Q_DC3				
43	Heat Flow	(kW)	281	1	1939				
44 45					Unit Ops				
46	Operation Name	Оре	eration Type		Feeds	Products		Ignored	Calc Level
47	Reboiler	Reboiler		To Reboi	ler	Condensate		No	500.0 *
48	Repoliei	Rebuiler		Reb Q_D	C3	Boilup		NO	500.0
49			-	Reflux		To Reboiler			
50	Main TS	Tray Sect	ion	Boilup		To Condenser		No	500.0 *
51				To_DC3		LPG			
52			_	To Conde		C3			
53	Condenser	Total Con	denser	Con Q_D	C3	Reflux		No	500.0 *
54						Con Q_DC3			
55 56									
56									
57									
58 59									
60									
60 61									
62									
63	Aspen Technology Inc.		Acro		Version 7.3 (2	25.0.0.7336)			Page 2 of 2
35	Licensed to: NORWEGIAN LINIV C		Aspe			20.0.0.7000)			* Specified by user

Licensed to: NORWEGIAN UNIV OF

7.5 Main Workbook Profile Report for Kaibel DWC Model

1			Case Name:	DWC-Kaibel.HSC		
2	aspentech NORWEG	GIAN UNIV OF n, MA	Unit Set:	NewUser		
4			Date/Time:	Tue Jun 24 13:05:04 2	014	
5 6			Date/Time.	Tue Juli 24 13.03.04 2		
78	Workbook	: Case (Mai	n)			
9 10			Material Stream	IS	Fluid Pk	g: All
11	Name	NGL_Feed	C1	C2+	To_DWC	C2
12	Vapour Fraction	0.2349	1.0000	0.0000	0.1860	0.0000
13	Temperature (C)	40.00 *	-82.97	90.28	80.11	-3.997
14	Pressure (kPa)	3400 *	3390	3410	2610 *	2570
15	Molar Flow (kgmole/h)	846.0 *	182.0	664.0	664.0	133.7
16	Mass Flow (kg/h)	3.717e+004	2999	3.417e+004	3.417e+004	3974
17	Liquid Volume Flow (m3/h)	74.20	9.928	64.27	64.27	11.15
18	Heat Flow (kW)	-2.819e+004	-4080	-2.319e+004	-2.319e+004	-3609
19	Name	C5+	C3	LPG		
20	Vapour Fraction	0.0000	0.0000	0.0000		
21	Temperature (C)	225.8	73.40	109.4		
22	Pressure (kPa)	2640	2601	2623		
23	Molar Flow (kgmole/h)	70.00	163.1	297.2		
24	Mass Flow (kg/h)	6342	7404	1.645e+004		
25	Liquid Volume Flow (m3/h)	9.486	14.43	29.20		
26 27	Heat Flow (kW)	-3019	-5254	-1.072e+004		
28			Compositions	;	Fluid Pk	g: All
20	Name	NGL_Feed	C1	C2+	To DWC	C2
30	Comp Mole Frac (Methane)	0.2143 *	0.9690	0.0075	0.0075	0.0371
31	Comp Mole Frac (Ethane)	0.1608 *	0.0310	0.1963	0.1963	0.9500
32	Comp Mole Frac (Propane)	0.2679 *	0.0000	0.3414	0.3414	0.0129
33	Comp Mole Frac (i-Butane)	0.0857 *	0.0000	0.1092	0.1092	0.0000
34	Comp Mole Frac (n-Butane)	0.1822 *	0.0000	0.2321	0.2321	0.0000
35	Comp Mole Frac (i-Pentane)	0.0118 *	0.0000	0.0150	0.0150	0.0000
36	Comp Mole Frac (n-Pentane)	0.0129 *	0.0000	0.0164	0.0164	0.0000
37	Comp Mole Frac (n-Hexane)	0.0225 *	0.0000	0.0287	0.0287	0.0000
38	Comp Mole Frac (n-Heptanal)	***	***	***	***	***
39	Comp Mole Frac (n-Heptane)	0.0161 *	0.0000	0.0205	0.0205	0.0000
40	Comp Mole Frac (n-Octane)	0.0257 *	0.0000	0.0328	0.0328	0.0000
41	Comp Mole Frac (n-Nonane)	***	***	***	***	***
42	Comp Mole Frac (n-Decane)	***	***	***	***	***
43	Comp Mole Frac (n-C11)	***	***	***	***	***
44	Comp Mole Frac (n-C12)	***	***	***	***	***
45	Comp Mole Frac (n-C13)	***	***	***	***	***
46	Comp Mole Frac (n-C14)	***	***	***	***	***
47	Comp Mole Frac (SbCl3)	***	***	***	***	***
48	Comp Mole Frac (n-C15)	***	***	***	***	***
49	Comp Mole Frac (n-C16)	***	***	***	***	***
50	Comp Mole Frac (n-C17)	***	***	***	***	***
51	Comp Mole Frac (n-C18)	***	***	***	***	***
52	Comp Mole Frac (Nitrogen)	***	***	***	***	***
53	Comp Mole Frac (CO2)	***	***	***	***	***
54	Comp Mole Frac (Carbon)	***	***	***	***	***
55	Comp Mole Frac (H2S)	***	***	***	***	***
56	Comp Mole Frac (perF-NP)		***	***	***	***
57	Comp Mole Frac (1MIndene)	***	***	***	***	***
58 59 60 61						
62 63	Aspen Technology Inc	Aspend	HYSYS Version 7.2 (25.0.0.7336)		Page 1 of 2
00	Aspen Technology Inc.	Aspen	HYSYS Version 7.3 (2	23.0.0.7330)		Page 1 of 2

Licensed to: NORWEGIAN UNIV OF

(dlb)	
Caspentech	

1					Case Name:	DWC-Kaibel.HSC			
2	aspentech	NORWEG Burlington,	IAN UNIV OF MA		Unit Set:	NewUser			
4	aspentech	USA			Date/Time:	Tue Jun 24 13:05:04 20	14		
5 6					Dates Hinte.	10000112110.00.0120			
7	Work	book:	Case (M	ain)	(continue	ed)			
9				Comp	oositions (conti	inued)		Fluid Pkg:	All
10 11	Name		C5+	C		LPG			
12	Comp Mole Frac (Methane)		0.000		0.0000	0.0000			
13	Comp Mole Frac (Ethane)		0.000		0.0090	0.0064			
14	Comp Mole Frac (Propane)		0.001	15	0.8892	0.2686			
15	Comp Mole Frac (i-Butane)		0.019	91	0.0561	0.2087			
16	Comp Mole Frac (n-Butane)		0.122	23	0.0458	0.4647			
17	Comp Mole Frac (i-Pentane)		0.069	94	0.0000	0.0172			
18	Comp Mole Frac (n-Pentane)		0.091	19	0.0000	0.0150			
19	Comp Mole Frac (n-Hexane)		0.225		0.0000	0.0109			
20	Comp Mole Frac (n-Heptanal)			**	***	***			
21	Comp Mole Frac (n-Heptane)		0.176		0.0000	0.0043			
22	Comp Mole Frac (n-Octane)		0.293		0.0000	0.0040			
23	Comp Mole Frac (n-Nonane)		-	**	***	***			
24	Comp Mole Frac (n-Decane)			**	***	***			
25	Comp Mole Frac (n-C11)			**	***	***			
26	Comp Mole Frac (n-C12)			**	***	***			
27	Comp Mole Frac (n-C13)			**	***	***			
28	Comp Mole Frac (n-C14)			**	***	***			
29	Comp Mole Frac (SbCl3)			**	***	***			
30	Comp Mole Frac (n-C15)			**	***	***			
31	Comp Mole Frac (n-C16)			**	***	***			
32	Comp Mole Frac (n-C17)			**	***	***			
33 34	Comp Mole Frac (n-C18)			**	***	***			
35	Comp Mole Frac (Nitrogen)			**	***	***			
36	Comp Mole Frac (CO2)			**	***	***			
37	Comp Mole Frac (Carbon) Comp Mole Frac (H2S)			**	***	***			
38	Comp Mole Frac (perF-NP)			**	***	***			
39	Comp Mole Frac (1MIndene)		*	**	***	***			
40	Comp Mole Frac (Twindene)								
41					Energy Stream	S		Fluid Pkg:	All
42	Name		Reb Q_DC1	Co	ond Q_DC1	Q COND-DWC	Q REB-I	owc	
43	Heat Flow	(kW)			969.9	2605		3192	
44									
45					Unit Ops				
46	Operation Name	Ope	eration Type		Feeds	Products		Ignored	Calc Level
47				NGL_F	Feed	C2+			
48	DC1	Distillation	n [Reb Q	_DC1	C1		No	2500 *
49						Cond Q_DC1			
50	VLV-100	Valve		C2+		To_DWC		No	500.0 *
51				To_DV	VC	C2			
52				Q REB	3-DWC	C3			
53	DWC	Column S	ub-Flowsheet			LPG		No	2500 *
54						C5+			
55						Q COND-DWC			
56									
57									
58									
59									
60									
61									
62	Aspen Technology Inc		A		VO Vereier Z O /	E 0 0 7330			Degra 0 of 0
63	Aspen Technology Inc. Licensed to: NORWEGIAN UNIV C	F	Asp	en mys	SYS Version 7.3 (2	20.0.0.7336)			Page 2 of 2 * Specified by user.
	LIGHTON TO THE GIAN ON TO	•							opeoned by doct.

7.6 DC1 Column Profile Report for Kaibel DWC Model

1			Case Name:	DWC-Kaibel.HSC		
2 3 4	Spentech Burlington	IAN UNIV OF , MA	Unit Set:	NewUser		
4 5			Date/Time:	Tue Jun 24 13:05:47 20)14	
6 7 8	Workbook	: DC1 (COL	1)			
9 10			Material Stream	erial Streams Fluid Pkg:		
11	Name	Reflux	To Condenser	Boilup	To Reboiler	C1
12	Vapour Fraction	0.0000	1.0000	1.0000	0.0000	1.0000
13	Temperature (C)	-82.97	-57.37	90.28	72.76	-82.97
14	Pressure (kPa)	3390	3390	3410	3410	3390
15	Molar Flow (kgmole/h)	488.2	670.2	481.2	1145	182.0
16	Mass Flow (kg/h)	9111	1.211e+004	2.020e+004	5.437e+004	2999
17	Liquid Volume Flow (m3/h)	28.98	38.91	42.84	107.1	9.928
18	Heat Flow (kW)	-1.195e+004	-1.506e+004	-1.352e+004	-3.860e+004	-4080
19	Name	C2+	NGL_Feed-2			
20	Vapour Fraction	0.0000	0.2349			
21	Temperature (C)	90.28	40.00			
22	Pressure (kPa)	3410	3400			
23	Molar Flow (kgmole/h)	664.0	846.0			
24	Mass Flow (kg/h)	3.417e+004	3.717e+004			
25	Liquid Volume Flow (m3/h)	64.27	74.20			
26	Heat Flow (kW)	-2.319e+004	-2.819e+004			
27 28			Compositions	;	Fluid Pk	g: All
20 29	Name	Reflux	To Condenser	Boilup	To Reboiler	C1
30	Comp Mole Frac (Methane)	0.8132	0.8555	0.0304	0.0171	0.9690
31	Comp Mole Frac (Ethane)	0.1868	0.1445	0.3700	0.2693	0.0310
32	Comp Mole Frac (Propane)	0.0000	0.0000	0.3617	0.3499	0.0000
33	Comp Mole Frac (i-Butane)	0.0000	0.0000	0.0760	0.0953	0.0000
34	Comp Mole Frac (n-Butane)	0.0000	0.0000	0.1392	0.1931	0.0000
35	Comp Mole Frac (i-Pentane)	0.0000	0.0000	0.0059	0.0112	0.0000
36	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.0058	0.0119	0.0000
37	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.0060	0.0191	0.0000
38	Comp Mole Frac (n-Heptanal)	***	***	***	***	***
39	Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.0026	0.0130	0.0000
40	Comp Mole Frac (n-Octane)	0.0000	0.0000	0.0026	0.0201	0.0000
41 42	Comp Mole Frac (n-Nonane)	***	***	***	***	***
43	Comp Mole Frac (n-Decane) Comp Mole Frac (n-C11)	***	***	***	***	***
44	Comp Mole Frac (n-C12)	***	***	***	***	***
45	Comp Mole Frac (n-C13)	***	***	***	***	***
46	Comp Mole Frac (n-C14)	***	***	***	***	***
47	Comp Mole Frac (SbCl3)	***	***	***	***	***
48	Comp Mole Frac (n-C15)	***	***	***	***	***
49	Comp Mole Frac (n-C16)	***	***	***	***	***
50	Comp Mole Frac (n-C17)	***	***	***	***	***
51	Comp Mole Frac (n-C18)	***	***	***	***	***
52	Comp Mole Frac (Nitrogen)	***	***	***	***	***
53	Comp Mole Frac (CO2)	***	***	***	***	***
54	Comp Mole Frac (Carbon)	***	***	***	***	***
55	Comp Mole Frac (H2S)	***	***	***	***	***
56	Comp Mole Frac (perF-NP)	***	***	***	***	***
57	Comp Mole Frac (1MIndene)	***	***	***	***	***
58 59 60 61 62						
63	Aspen Technology Inc	Aspen H	IYSYS Version 7.3 (25.0.0.7336)		Page 1 of 2

Licensed to: NORWEGIAN UNIV OF

NORWEGIAN UNIV OF Burlington, MA USA Case Name: DWC-Kaibel.HSC

Unit Set: NewUser

Date/Time:

Tue Jun 24 13:05:47 2014

6 7	Work	book	DC1 (CC		1) (continue	d)			
8					1) (continue	ч,			
9 10				Co	ompositions (conti	nued)		Fluid Pkg:	All
11	Name		C2+		NGL_Feed-2				
12	Comp Mole Frac (Methane)		0.00	75	0.2143				
13	Comp Mole Frac (Ethane)		0.19	63	0.1608				
14	Comp Mole Frac (Propane)		0.34	14	0.2679				
15	Comp Mole Frac (i-Butane)		0.10	92	0.0857				
16	Comp Mole Frac (n-Butane)		0.23	21	0.1822				
17	Comp Mole Frac (i-Pentane)		0.01	50	0.0118				
18	Comp Mole Frac (n-Pentane)		0.01	64	0.0129				
19	Comp Mole Frac (n-Hexane)		0.02	87	0.0225				
20	Comp Mole Frac (n-Heptanal)		1	***	***				
21	Comp Mole Frac (n-Heptane)		0.02	05	0.0161				
22	Comp Mole Frac (n-Octane)		0.03	28	0.0257				
23	Comp Mole Frac (n-Nonane)		1	***	***				
24	Comp Mole Frac (n-Decane)		1	***	***				
25	Comp Mole Frac (n-C11)		1	***	***				
26	Comp Mole Frac (n-C12)		1	***	***				
27	Comp Mole Frac (n-C13)		1	***	***				
28	Comp Mole Frac (n-C14)		,	***	***				
29	Comp Mole Frac (SbCl3)		1	***	***				
30	Comp Mole Frac (n-C15)			***	***				
31	Comp Mole Frac (n-C16)		1	***	***				
32			1	***	***				
33	Comp Mole Frac (n-C18)		1	***	***				
34	Comp Mole Frac (Nitrogen)		1	***	***				
35	Comp Mole Frac (CO2)		1	***	***				
36	Comp Mole Frac (Carbon)		1	***	***				
37	Comp Mole Frac (H2S)		1	***	***				
38	Comp Mole Frac (perF-NP)		1	***	***				
39	Comp Mole Frac (1MIndene)		1	***	***				
40					Energy Streams			Fluid Pkg:	All
41	Nama		Card O DC1					Thaid Tiky.	~"
42 43	Name Heat Flow	(kW)	Cond Q_DC1 969	0	Reb Q_DC1 1890				
43	Heat Flow	(KVV)	303	1.9	1090				
44					Unit Ops				
46	Operation Name	Оре	eration Type		Feeds	F	Products	Ignored	Calc Level
47				Т	Condenser	C1			
48	Condenser	Partial Co	ndenser	C	ond Q_DC1	Reflux		No	500.0 *
49						Cond Q_E)C1		
50				Т	Reboiler	C2+			
51	Reboiler	Reboiler			eb Q_DC1	Boilup		No	500.0 *
52				R	eflux	To Reboil	er		
53	Main TS	Tray Sect	ion		pilup	To Conde		No	500.0 *
54					GL_Feed-2				
55					_	•			
56									
54 55 56 57 58 59 60 61									
58									
59									
60									
61									
62									
63	Aspen Technology Inc.		Asp	en I	HYSYS Version 7.3 (2	25.0.0.7336)			Page 2 of 2
<u> </u>	Licensed to: NORWEGIAN UNIV C		, (0)						* Specified by user.

Licensed to: NORWEGIAN UNIV OF

7.7 DWC Column Profile Report for Kaibel DWC Model

1	\sim			Case Name:	DWC-Kaibel.HSC		
2 3	aspentee	- Burlington,	IAN UNIV OF , MA	Unit Set:	NewUser		
4 5		USA		Date/Time:	Tue Jun 24 13:06:27 20)14	
6 7	W	lorkhook	DWC (COL	2)			
8		UIRDUCK.		-2)			
9 10				Material Stream	IS	Fluid Pk	g: All
11	Name		Reflux	To Condenser	Boilup	To Reboiler	C5+
12	Vapour Fraction		0.0000	1.0000	1.0000	0.0000	0.0000
13	Temperature	(C)	-3.997	2.415	225.8	205.0	225.8
14	Pressure Malas Flaur	(kPa)	2570	2570	2640	2640	2640
15 16	Molar Flow Mass Flow	(kgmole/h)	884.5 2.630e+004	1018 3.027e+004	668.2 5.605e+004	738.2 6.239e+004	70.00 6342
17	Liquid Volume Flow	(kg/h) (m3/h)	73.79	84.94	85.61	95.10	9.486
18	Heat Flow	(III3/II) (kW)	-2.388e+004	-2.489e+004	-2.525e+004	-3.146e+004	-3019
19	Name	((()))	To DWC	C2	PRE-VAP	PRE-LIQ	3-VAP
20	Vapour Fraction		0.1860	0.0000	1.0000	0.0000	1.0000
21	Temperature	(C)	80.11	-3.997	60.55	107.7	115.8
22	Pressure	(kPa)	2610	2570	2590	2630	2630
23	Molar Flow	(kgmole/h)	664.0	133.7	485.7	839.0	773.6
24	Mass Flow	(kg/h)	3.417e+004	3974	1.964e+004	4.749e+004	4.141e+004
25	Liquid Volume Flow	(m3/h)	64.27	11.15	42.34	83.71	74.69
26	Heat Flow	(kW)	-2.319e+004	-3609	-1.348e+004	-3.076e+004	-2.472e+004
27	Name		2-VAP	2-LIQ	1-LIQ	1-LIQ TO PRE	1-LIQ TO 2
28	Vapour Fraction		1.0000	0.0000	0.0000	0.0000	0.0000
29	Temperature	(C)	63.05	115.8	59.07	59.07	59.07
30	Pressure	(kPa)	2590	2630	2590	2590	2590
31	Molar Flow	(kgmole/h)	368.7	4.612	720.7	230.6	490.1
32	Mass Flow	(kg/h)	1.539e+004	268.8	3.106e+004	9938	2.112e+004
33 34	Liquid Volume Flow Heat Flow	(m3/h) (kW)	32.12 -1.037e+004	0.4672	63.30 -2.284e+004	20.26	43.04 -1.553e+004
35	Name	(KVV)	PRE+2-VAP	PRE+2-LIQ	3-VAP TO PRE	3-VAP TO 2	C3
36	Vapour Fraction		1.0000	0.0000	1.0000	1.0000	0.0000
37	Temperature	(C)	61.62	107.7	115.8	115.8	73.40
38	Pressure	(kPa)	2590	2630	2630	2630	2601
39	Molar Flow	(kgmole/h)	854.4	843.6	430.0	343.6	163.1
40	Mass Flow	(kg/h)	3.503e+004	4.776e+004	2.302e+004	1.839e+004	7404
41	Liquid Volume Flow	(m3/h)	74.45	84.18	41.52	33.17	14.43
42	Heat Flow	(kW)	-2.384e+004	-3.093e+004	-1.374e+004	-1.098e+004	-5254
43	Name		LPG				
44	Vapour Fraction		0.0000				
45 46	Temperature Pressure	(C)	109.4 2623				
46 47	Molar Flow	(kPa) (kgmole/h)	2623				
48	Mass Flow	(kg/h)	1.645e+004				
49	Liquid Volume Flow	(m3/h)	29.20				
50	Heat Flow	(kW)	-1.072e+004				
52							
53							
54							
55							
56							
57							
51 52 53 54 55 56 57 58 59 60 61 62							
09							
61							
62							
63	Aspen Technology	Inc.	Aspen I	HYSYS Version 7.3 (2	25.0.0.7336)		Page 1 of 7

Licensed to: NORWEGIAN UNIV OF

NORWEGIAN UNIV OF Burlington, MA

Case Name: DWC-Kaibel.HSC

Unit Set:

Date/Time:

NewUser

Tue Jun 24 13:06:27 2014

Workbook: DWC (COL2) (continued)

10		Fluid Pkg	g: All			
1	Name	Reflux	To Condenser	Boilup	To Reboiler	C5+
2	Comp Mole Frac (Methane)	0.0371	0.0371	0.0000	0.0000	0.000
3	Comp Mole Frac (Ethane)	0.9500	0.9500	0.0000	0.0000	0.000
4	Comp Mole Frac (Propane)	0.0129	0.0129	0.0032	0.0030	0.001
5	Comp Mole Frac (i-Butane)	0.0000	0.0000	0.0330	0.0316	0.0191
6	Comp Mole Frac (n-Butane)	0.0000	0.0000	0.1988	0.1916	0.122
7	Comp Mole Frac (i-Pentane)	0.0000	0.0000	0.0918	0.0897	0.0694
8	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.1171	0.1147	0.0919
9	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.2266	0.2265	0.2257
0	Comp Mole Frac (n-Heptanal)	***	***	***	***	**
1	Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.1412	0.1445	0.176
2	Comp Mole Frac (n-Octane)	0.0000	0.0000	0.1884	0.1984	0.2937
3	Comp Mole Frac (n-Nonane)	***	***	***	***	**
24	Comp Mole Frac (n-Decane)	***	***	***	***	***
25	Comp Mole Frac (n-C11)	***	***	***	***	***
26	Comp Mole Frac (n-C12)	***	***	***	***	**1
7	Comp Mole Frac (n-C13)	***	***	***	***	**
28	Comp Mole Frac (n-C14)	***	***	***	***	***
29	Comp Mole Frac (SbCl3)	***	***	***	***	***
80	Comp Mole Frac (n-C15)	***	***	***	***	**1
81	Comp Mole Frac (n-C16)	***	***	***	***	**1
32	Comp Mole Frac (n-C17)	***	***	***	***	***
33	Comp Mole Frac (n-C18)	***	***	***	***	**
34	Comp Mole Frac (Nitrogen)	***	***	***	***	**
85	Comp Mole Frac (CO2)	***	***	***	***	**1
86	Comp Mole Frac (Carbon)	***	***	***	***	**1
37	Comp Mole Frac (H2S)	***	***	***	***	***
38	Comp Mole Frac (perF-NP)	***	***	***	***	***
39	Comp Mole Frac (1MIndene)	***	***	***	***	**1
11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 11 12 13 14 15 16 17 18 19 10 11 11 12 13 14 15 16 17 18 19 10 11 11 12 11 12 11 12 11 11 11 11 11 11						
9						

\mathcal{L}	as	per	nte	ech

Case Name DWC-Kaibel.HSC

Unit Set: NewUser

Date/Time:

Tue Jun 24 13:06:27 2014

2 3 4 5 6 7 Workbook: DWC (COL2) (continued) 8 9 Compositions (continued) Fluid Pkg: All 10 11 To_DWC C2 PRE-VAP Name PRE-LIQ 3-VAP 12 0.0075 0.0371 0.0109 0.0000 0.0000 Comp Mole Frac (Methane) 13 Comp Mole Frac (Ethane) 0.1963 0.9500 0.3302 0.0143 0.0155 14 Comp Mole Frac (Propane) 0.3414 0.0129 0.5673 0.3416 0.3718 15 Comp Mole Frac (i-Butane) 0.1092 0.0000 0.0451 0.1616 0.1746 16 Comp Mole Frac (n-Butane) 0.2321 0.0000 0.0465 0.3690 0.3918 17 Comp Mole Frac (i-Pentane) 0.0150 0.0000 0.0000 0.0197 0.0153 18 Comp Mole Frac (n-Pentane) 0.0164 0.0000 0.0000 0.0198 0.0133 19 Comp Mole Frac (n-Hexane) 0.0287 0.0000 0.0000 0.0277 0.0098 20 *** *** *** *** *** Comp Mole Frac (n-Heptanal) 21 Comp Mole Frac (n-Heptane) 0.0205 0.0000 0.0000 0.0183 0.0040 22 Comp Mole Frac (n-Octane) 0.0328 0.0000 0.0000 0.0279 0.0039 23 *** *** *** *** *** Comp Mole Frac (n-Nonane) 24 *** *** *** *** *** Comp Mole Frac (n-Decane) 25 Comp Mole Frac (n-C11) *** *** *** *** *** *** *** *** *** *** 26 Comp Mole Frac (n-C12) 27 Comp Mole Frac (n-C13) *** *** *** *** *** *** *** *** *** *** 28 Comp Mole Frac (n-C14) 29 *** *** *** *** *** Comp Mole Frac (SbCl3) 30 *** *** *** *** *** Comp Mole Frac (n-C15) *** *** *** *** 31 *** Comp Mole Frac (n-C16) *** *** *** *** *** 32 Comp Mole Frac (n-C17) 33 Comp Mole Frac (n-C18) *** *** *** *** *** 34 *** *** *** *** *** Comp Mole Frac (Nitrogen) *** *** *** *** *** 35 Comp Mole Frac (CO2) 36 *** *** *** *** *** Comp Mole Frac (Carbon) 37 *** *** *** *** *** Comp Mole Frac (H2S) 38 *** *** *** *** *** Comp Mole Frac (perF-NP) *** *** *** *** *** 39 Comp Mole Frac (1MIndene) 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 Aspen HYSYS Version 7.3 (25.0.0.7336) 63 Aspen Technology Inc. Page 3 of 7

Licensed to: NORWEGIAN UNIV OF

NORWEGIAN UNIV OF Burlington, MA USA

Case Name: DWC-Kaibel HSC

Unit Set: NewUser

Tue Jun 24 13:06:27 2014

2 3 4 5 6 7 8 Date/Time: Workbook: DWC (COL2) (continued) 9 10 **Compositions (continued)** Fluid Pkg: 11 Name 2-VAP 2-LIQ 1-LIQ 1-LIQ TO PRE 1-LIQ TO 2 12 0.0000 0.0020 0.0015 0.0015 Comp Mole Frac (Methane) 0.0015 13 0.2087 0.0062 0.1531 0.1531 0.1531 Comp Mole Frac (Ethane) 14 Comp Mole Frac (Propane) 0.7451 0.2512 0.7611 0.7611 0.7611 15 0.0430 Comp Mole Frac (i-Butane) 0.0246 0.1733 0.0430 0.0430 16 Comp Mole Frac (n-Butane) 0.0197 0.4435 0.0414 0.0414 0.0414 17 Comp Mole Frac (i-Pentane) 0.0000 0.0255 0.0000 0.0000 0.0000 18 Comp Mole Frac (n-Pentane) 0.0000 0.0245 0.0000 0.0000 0.0000 19 0.0000 0.0000 Comp Mole Frac (n-Hexane) 0.0290 0.0000 0.0000 20 *** Comp Mole Frac (n-Heptanal) *** *** *** 21 0.0000 0.0186 0.0000 0 0000 0 0000 Comp Mole Frac (n-Heptane) 22 0.0000 0.0000 0.0000 Comp Mole Frac (n-Octane) 0.0280 0.0000 23 Comp Mole Frac (n-Nonane) *** *** *** *** 24 *** *** *** *** Comp Mole Frac (n-Decane) 25 Comp Mole Frac (n-C11) *** *** *** *** 26 *** *** *** *** Comp Mole Frac (n-C12) 27 *** *** *** *** Comp Mole Frac (n-C13) 28 *** *** Comp Mole Frac (n-C14) *** *** 29 *** *** *** *** Comp Mole Frac (SbCl3) 30 *** *** *** *** Comp Mole Frac (n-C15) 31 *** *** *** *** Comp Mole Frac (n-C16) 32 *** *** *** *** Comp Mole Frac (n-C17) 33 Comp Mole Frac (n-C18) *** *** *** *** 34 *** *** *** *** Comp Mole Frac (Nitrogen) 35 *** *** *** *** Comp Mole Frac (CO2) 36 *** *** *** *** Comp Mole Frac (Carbon) 37 *** *** *** *** Comp Mole Frac (H2S) 38 39 *** *** *** *** Comp Mole Frac (perF-NP) *** *** *** *** Comp Mole Frac (1MIndene) 40 41 42 43 44 45 46 47 49 50 51 52 53 54 55 56 57 58 60 61 62

Aspen Technology Inc. Licensed to: NORWEGIAN UNIV OF

63

Aspen HYSYS Version 7.3 (25.0.0.7336)

Page 4 of 7 Specified by user

All

U	aspente	ech

Workbook: DWC (COL2) (continued)

1			Case Name:	DWC-Kaibel.HSC		
2		IAN UNIV OF , MA	Unit Set:	NewUser		
4	aspentech ^{Burlington,} USA		Date/Time:	Tue Jun 24 13:06:27 20	 D14	
5 6			Date/Time.	Tue Juli 24 13.00.27 20		
7 8	Workbook:	DWC (COL	_2) (continu	ed)		
9		Co	ompositions (cont	inued)	Fluid Pk	q: All
10 11	Name	PRE+2-LIQ	3-VAP TO PRE	3-VAP TO 2	C3	
12	Comp Mole Frac (Methane)	PRE+2-VAP 0.0071	0.0000	0.0000	0.0000	0.0000
13	Comp Mole Frac (Ethane)	0.2777	0.0142	0.0155	0.0155	0.0090
14	Comp Mole Frac (Propane)	0.6440	0.3411	0.3718	0.3718	0.8892
15	Comp Mole Frac (i-Butane)	0.0362	0.1617	0.1746	0.1746	0.0561
16	Comp Mole Frac (n-Butane)	0.0349	0.3694	0.3918	0.3918	0.0458
17	Comp Mole Frac (i-Pentane)	0.0000	0.0197	0.0153	0.0153	0.0000
18	Comp Mole Frac (n-Pentane)	0.0000	0.0198	0.0133	0.0133	0.0000
19	Comp Mole Frac (n-Hexane)	0.0000	0.0278	0.0098	0.0098	0.0000
20	Comp Mole Frac (n-Heptanal)	***	***	***	***	***
21	Comp Mole Frac (n-Heptane)	0.0000	0.0183	0.0040	0.0040	0.0000
22	Comp Mole Frac (n-Octane)	0.0000	0.0279	0.0039	0.0039	0.0000
23	Comp Mole Frac (n-Nonane)	***	***	***	***	***
24	Comp Mole Frac (n-Decane)	***	***	***	***	***
25	Comp Mole Frac (n-C11)	***	***	***	***	***
26	Comp Mole Frac (n-C12)	***	***	***	***	***
27	Comp Mole Frac (n-C13)	***	***	***	***	***
28	Comp Mole Frac (n-C14)	***	***	***	***	***
29	Comp Mole Frac (SbCl3)	***	***	***	***	***
30	Comp Mole Frac (n-C15)	***	***	***	***	***
31	Comp Mole Frac (n-C16)	***	***	***	***	***
32	Comp Mole Frac (n-C17)	***	***	***	***	***
33 34	Comp Mole Frac (n-C18)	***	***	***	***	***
35	Comp Mole Frac (Nitrogen)	***	***	***	***	***
36	Comp Mole Frac (CO2) Comp Mole Frac (Carbon)	***	***	***	***	***
37	Comp Mole Frac (Caliboli)	***	***	***	***	***
38	Comp Mole Frac (h23) Comp Mole Frac (perF-NP)	***	***	***	***	***
39	Comp Mole Frac (1MIndene)	***	***	***	***	***
40	comp mole r lae (rimindene)					
41						
42						
43						
44						
45						
46						
47						
48						
49						
50						
51						
52						
53						
54						
55						
56						
57						
58						
59						
60						
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62						
62	Aspen Technology Inc.	Aspon	HYSYS Version 7.3 (2	25.0.0.7336)		Page 5 of 7
00	Licensed to: NORWEGIAN UNIV OF	Aspent		20.0.0.7000)		* Specified by user.
	ESCREDATE ONLY OF					opconica by user.

1				Case Nam	ne: DWC-	Kaibel.HSC		
2 3 4	aspentech	NORWEGI Burlington,	AN UNIV OF MA	Unit Set:	NewU	ser		
4	aspentech	USA		Date/Time	: Tue Ju	in 24 13:06:27 20'	14	
5 6								
7	Work	book:	DWC (C	OL2) (cont	tinued)			
8 9			•					
9 10				Compositions	(continued		Fluid Pk	g: All
11	Name		LPG					
12	Comp Mole Frac (Methane)		0.000					
13 14	Comp Mole Frac (Ethane)		0.006					
14	Comp Mole Frac (Propane) Comp Mole Frac (i-Butane)		0.268					
16	Comp Mole Frac (n-Butane)		0.464					
17	Comp Mole Frac (i-Pentane)		0.017					
18	Comp Mole Frac (n-Pentane)		0.015	0				
19	Comp Mole Frac (n-Hexane)		0.010					
20	Comp Mole Frac (n-Heptanal)			*				
21 22	Comp Mole Frac (n-Heptane)		0.004					
22	Comp Mole Frac (n-Octane)		0.004					
23 24	Comp Mole Frac (n-Nonane) Comp Mole Frac (n-Decane)			*				
25	Comp Mole Frac (n-C11)		*	1*				
26	Comp Mole Frac (n-C12)		*	*				
27	Comp Mole Frac (n-C13)		*	*				
28	Comp Mole Frac (n-C14)			*				
29	Comp Mole Frac (SbCl3)							
30	Comp Mole Frac (n-C15)		11 11					
31 32	Comp Mole Frac (n-C16) Comp Mole Frac (n-C17)			*				
33	Comp Mole Frac (n-C18)			1*				
34	Comp Mole Frac (Nitrogen)		*	DR				
35	Comp Mole Frac (CO2)		*	*				
36	Comp Mole Frac (Carbon)		*	*				
37	Comp Mole Frac (H2S)		*	*				
38	Comp Mole Frac (perF-NP)			**				
39	Comp Mole Frac (1MIndene)		*	*				
40 41				Energy St	treams		Fluid Pk	g: Al
42	Name		Q COND-DWC	Q REB-DWC				
43	Heat Flow	(kW)	260	5	3192			
44 45				Unit C)ps			
46	Operation Name	Ope	ration Type	Feeds		Products	Ignored	Calc Level
47				To Reboiler	C			
48	Reboiler	Reboiler		Q REB-DWC	B	bilup	No	500.0
49			-	1-LIQ TO PRE		RE-LIQ		
50	PRE	Tray Section	on	3-VAP TO PRE	PI	RE-VAP	No	500.0
51				To_DWC				
52 53	1	Tray Section	on	Reflux PRE+2-VAP		LIQ Condenser	No	500.0
53 54				1-LIQ TO 2		LIQ		
55		. -		3-VAP TO 2		VAP		_
56	2	Tray Section	on		C		No	500.0
57					LF	°G		
58	3	Tray Section	on	PRE+2-LIQ		Reboiler	No	500.0
59	-			Boilup		VAP		
60 61	Condensor	Total Ca	langer	To Condenser	C		NI-	500.0
	Condenser	Total Cond	Jenser	Q COND-DWC		eflux COND-DWC	No	500.0
62			I			0010-0110		1

Licensed to: NORWEGIAN UNIV OF

Workbook: DWC (COL2) (continued)

	/ / n
Unit Ops	(continued)

1				Case Name:	DWC-Kaibel.HSC			
2 3 4	aspentech	NORWEGIAN UNIV OF Burlington, MA		Unit Set:	NewUser			
4 5		USA		Date/Time: Tue Jun 24 13:06:27 2014				
6								
7 8	Work	kbook: DWC (C	OL2)	(continu	led)			
9 10			Unit	Ops (continu	ued)			
11	Operation Name	Operation Type		Feeds	Products	Ignored	Calc Level	
12 13	TEE_1-LIQ	Тее	1-LIQ		1-LIQ TO PRE 1-LIQ TO 2	No	500.0 *	
14	TEE_3-VAP	Тее	3-VAP		3-VAP TO PRE	No	500.0 *	
15 16			PRE-VA	P	3-VAP TO 2 PRE+2-VAP			
17	MIX_PRE+2-VAP	Mixer	2-VAP			No	500.0 *	
18 19	MIX_PRE+2-LIQ	Mixer	2-LIQ PRE-LIG	2	PRE+2-LIQ	No	500.0 *	
							·	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 46								
23								
24								
26								
27								
28								
30								
31								
33								
34								
35								
37								
38								
40								
41								
42								
44								
45								
48								
50								
51								
52 53								
54								
47 48 49 50 51 52 53 54 55 56 57 58 59 60								
57								
58								
59 60								
61								
62 63		٨			25.0.0.7226		Page 7 of 7	
03	Aspen Technology Inc.			S Version 7.3 (20.0.0.7000)		Page 7 of 7	

Aspen Technology Inc. Licensed to: NORWEGIAN UNIV OF

Page 7 of 7 * Specified by user.

7.8 Main Workbook Profile Report for Multi-Partitioned DWC Model

1				Case Name:	DWC-Sergant.hsc				
2			AN UNIV OF		-				
3 4	aspentech	Burlington, USA	MA	Unit Set:	NewUser				
5				Date/Time:	Date/Time: Tue Jun 24 13:07:58 2014				
6 7	Work	book	Case (Mai	n)					
8	VIOIR	DOOK.	Case (Iniai	""					
9 10				Material Stream	IS	Fluid Pk	g: All		
11	Name		NGL Feed	C5+	C3	LPG	C1+C2		
12	Vapour Fraction		0.3406	0.0000	0.0000	0.0000	1.0000		
13	Temperature	(C)	40.00 *	229.6	64.43	107.3	-34.74		
14	Pressure	(kPa)	2600 *	2640	2604	2626	2535		
15		(gmole/h)	846.0 *	75.00	150.0	315.7	305.3		
16	Mass Flow	(kg/h)	3.717e+004	6852	6517	1.716e+004	6638		
17	Liquid Volume Flow	(m3/h)	74.20	10.22	13.10	30.68	20.20		
18	Heat Flow	(kW)	-2.796e+004	-3229	-4730	-1.127e+004	-7012		
19 20				Compositions	i	Fluid Pk	g: All		
21	Name		NGL_Feed	C5+	C3	LPG	C1+C2		
22	Comp Mole Frac (Methane)		0.2143 *	0.0000	0.0000	0.0000	0.5939		
23	Comp Mole Frac (Ethane)		0.1608 *	0.0000	0.0783	0.0008	0.4061		
24	Comp Mole Frac (Propane)		0.2679 *	0.0010	0.8899	0.2950	0.0000		
25	Comp Mole Frac (i-Butane)		0.0857 *	0.0139	0.0159	0.2189	0.0000		
26	Comp Mole Frac (n-Butane)		0.1822 *	0.0913	0.0159	0.4591	0.0000		
27	Comp Mole Frac (i-Pentane)		0.0118 *	0.0747	0.0000	0.0139	0.0000		
28	Comp Mole Frac (n-Pentane)		0.0129 *	0.1030	0.0000	0.0101	0.0000		
29	Comp Mole Frac (n-Hexane)		0.0225 *	0.2452	0.0000	0.0021	0.0000		
30	Comp Mole Frac (n-Heptanal)								
31	Comp Mole Frac (n-Heptane)		0.0161 *	0.1810	0.0000	0.0002	0.0000		
32	Comp Mole Frac (n-Octane)		0.0257 *	0.2900	0.0000	0.0000	0.0000		
33 34	Comp Mole Frac (n-Nonane)		***	***	***	***	***		
35	Comp Mole Frac (n-Decane)		***	***	***	***	***		
36	Comp Mole Frac (n-C11) Comp Mole Frac (n-C12)		***	***	***	***	***		
37	Comp Mole Frac (n-C12)		***	***	***	***	***		
38	Comp Mole Frac (n-C14)		***	***	***	***	***		
39	Comp Mole Frac (SbCl3)		***	***	***	***	***		
40	Comp Mole Frac (n-C15)		***	***	***	***	***		
41	Comp Mole Frac (n-C16)		***	***	***	***	***		
42	Comp Mole Frac (n-C17)		***	***	***	***	***		
43	Comp Mole Frac (n-C18)		***	***	***	***	***		
44	Comp Mole Frac (Nitrogen)		***	***	***	***	***		
45	Comp Mole Frac (CO2)		***	***	***	***	***		
46	Comp Mole Frac (Carbon)		***	***	***	***	***		
47	Comp Mole Frac (H2S)		***	***	***	***	***		
48	Comp Mole Frac (perF-NP)		***	***	***	***	***		
49	Comp Mole Frac (1MIndene)		***	***	***	***	***		
50 51				Energy Stream	s	Fluid Pk	g: All		
52	Name		Q COND-DWC	Q REB-DWC					
53	Heat Flow	(kW)	3072	4797					
54				Unit Ops		1			
55									
56 57	Operation Name	Ope	ration Type	Feeds GL Ecod	Products	Ignored	Calc Level		
57 58				GL_Feed	C1+C2				
59	9 DWC Column Sub-Flowsheet		REB-DWC	C3 LPG	No	2500 *			
60				C5+		2500			
61					Q COND-DWC				
62						1			
63	Aspen Technology Inc.		Aspen	HYSYS Version 7.3 (2	25.0.0.7336)		Page 1 of 1		
	Aspen Technology Inc. Aspen HYSYS Version 7.3 (25.0.0.7336) Page 1 of 1 Licensed to: NORWEGIAN UNIV OF *Specified by user.								

7.9 DWC Column Profile Report for Multi-Partitioned DWC Model

1				Case Name:	DWC-Sergant.hsc		
2 3	aspentec	Burlington,	AN UNIV OF MA	Unit Set:	NewUser		
4 5		USA		Date/Time:	Tue Jun 24 13:08:37 20)14	
6							
7 8	We	orkbook:	DWC (DW	C SF)			
9 10				Material Stream	IS	Fluid Pk	g: All
11	Name		Reflux	To Condenser	Boilup	To Reboiler	C5+
12	Vapour Fraction		0.0000	1.0000	1.0000	0.0000	0.0000
13	Temperature	(C)	-34.74	-13.12	229.6	211.5	229.6
14	Pressure	(kPa)	2535	2535	2640	2640	2640
15	Molar Flow	(kgmole/h)	1042	1348	1073	1148	75.00
16	Mass Flow	(kg/h)	2.865e+004	3.529e+004	9.184e+004	9.869e+004	6852
17	Liquid Volume Flow	(m3/h)	82.17	102.4	139.4	149.7	10.22
18 19	Heat Flow	(kW)	-2.808e+004	-3.202e+004	-4.092e+004	-4.894e+004	-3229
20	Name Vapour Fraction		NGL_Feed 0.3406	vap 1 to 2 1.0000	vap 3 to 2 1.0000	vap 1+3 to 2 1.0000	liq 2 0.0000
20	Temperature	(C)	40.00	31.10	37.22	34.99	34.97
22	Pressure	(C) (kPa)	2600	2585	2585	2585	2585
23	Molar Flow	(kgmole/h)	846.0	314.2	701.8	1016	2303
24	Mass Flow	(kg/h)	3.717e+004	9151	2.412e+004	3.327e+004	9043
25	Liquid Volume Flow	(m3/h)	74.20	22.78	58.96	81.74	19.13
26	Heat Flow	(kW)	-2.796e+004	-7794	-1.813e+004	-2.592e+004	-6980
27	Name		liq 2 to 3	liq 2 to 1	liq 9	liq 9 to 6	liq 9 to 2
28	Vapour Fraction		0.0000	0.0000	0.0000	0.0000	0.0000
29	Temperature	(C)	34.97	34.97	9.004	9.004	9.004
30	Pressure	(kPa)	2585	2585	2570	2570	2570
31	Molar Flow	(kgmole/h)	162.9	54.31	940.4	658.3	282.1
32	Mass Flow	(kg/h)	6783	2261	3.207e+004	2.245e+004	9621
33	Liquid Volume Flow	(m3/h)	14.35	4.783	79.37	55.56	23.81
34	Heat Flow	(kW)	-5235	-1745	-2.720e+004	-1.904e+004	-8161
35	Name		vap 6 to 9	vap 2 to 9	vap 2+6 to 9	liq 6	liq 3
36	Vapour Fraction		1.0000	1.0000	0.9993	0.0000	0.0000
37	Temperature	(C)	9.083	23.16	21.49	18.67	31.27
38	Pressure	(kPa)	2570	2570	2570	2600	2600
39	Molar Flow	(kgmole/h)	164.9	1081	1246	680.0	207.5
40	Mass Flow	(kg/h)	4857	3.385e+004	3.871e+004	2.390e+004	7896
41	Liquid Volume Flow	(m3/h)	13.16	86.42	99.57	58.02	17.85
42	Heat Flow	(kW)	-4041	-2.710e+004	-3.114e+004	-1.979e+004	-6261
43 44	Name Vanour Fraction		liq 3+6 0.0036	liq 3+6 to 4 0.0036	liq 3+6 to 7 0.0036	vap 4 1.0000	vap 7 1.0000
44	Vapour Fraction Temperature	(C)	21.50	21.50	21.50	29.41	31.96
45	Pressure	(C) (kPa)	2600	21.50	21.50	29.41	2600
47	Molar Flow	(kgmole/h)	887.5	177.5	710.0	331.2	601.8
48	Mass Flow	(kg/h)	3.180e+004	6359	2.544e+004	1.090e+004	2.065e+004
49	Liquid Volume Flow	(m3/h)	75.86	15.17	60.69	26.95	51.12
50	Heat Flow	(kW)	-2.605e+004	-5210	-2.084e+004	-8445	-1.550e+004
51	Name		vap 4+7	vap 4+7 to 3	vap 4+7 to 6	liq 4 to 5	liq 1 to 5
52	Vapour Fraction		1.0000	1.0000	1.0000	0.0000	0.0000
53	Temperature	(C)	31.02	31.02	31.02	55.81	41.27
54	Pressure	(kPa)	2600	2600	2600	2615	2615
55	Molar Flow	(kgmole/h)	933.0	746.4	186.6	124.8	600.8
56	Mass Flow	(kg/h)	3.154e+004	2.523e+004	6309	5770	3.082e+004
57	Liquid Volume Flow	(m3/h)	78.07	62.46	15.61	11.38	57.42
58	Heat Flow	(kW)	-2.394e+004	-1.915e+004	-4788	-4225	-2.230e+004
59 60 61 62							

63 Aspen Technology Inc. Licensed to: NORWEGIAN UNIV OF

Aspen HYSYS Version 7.3 (25.0.0.7336)

aspentec	h

Image: Second of the	1				Coopellanes	DWC Sorgenthes		
Image: The second sec	2	(1)				-		
0 Late inter Declared a 130637 2014 Verkbook: DWC (DWC SF) (continued) Fuid Pkg All 0 Material Streams (continued) Fuid Pkg All 1 Name int 14 to 5 0000 11120400 1	3	aspentech		, MA				
Image: Construction of the second o	5				Date/Time:	Tue Jun 24 13:08:37 20)14	
0 Material Streams (continued) Fuid Pig: All 11 Name liq 1+4 to 5 vap 5 vap 5 to 1 vap 5 to 4 liq 5 to 8 12 Vapour Fraction 0.0000 1.0000 1.0000 0.0000 12 Temperator (c) 4.43.88 61.54 61.54 61.54 61.54 13 Make Frow (gmoth) 2.55.8 2.93.1 2.93.6 2.93.5 2.93.7 14 Make Frow (gmoth) 3.656e+004 1.988e+004 5.42.5 1.011-004 8.84e+004 12 Liquid Value Flow (M0) 2.0552e+004 -7.752 -3.92.6 1.7400 4.113e+004 12 Liquid Value Flow (M0) 2.0552e+004 -7.752 -3.92.6 9.92.7 1.0000 2.0004 2.0100 1.0000 2.0004 2.0100 2.0100 2.0100 2.0100 2.0100 2.0100 2.0100 2.0100 2.0100 2.0100 2.0100 2.0100 2.0100 2.0100 2.0100 2.0100	6 7	Workbook: DWC (DWC SE) (continued)						
Imme Imme <th< td=""><td></td><td></td><td></td><td></td><td> / (</td><td>,</td><td></td><td></td></th<>					/ (,		
ID Oppose In 1000 In 1000 In 1000 In 000 In 0000 In 0000 In 000		Material Streams (continued) Fluid Pkg:						g: All
13 Temperature (U) (3.88 0.154 0.154 0.154 0.015. 14 Pressure (kph) 2815 2815 2815 2815 2815 2815 2815 2815 2815 2815 2815 2815 2815 2815 2815 2815 2815 2815 2815 1217 15 Maar Flow (kph) 3.658+004 1.084+004 642.5 1.131+004 6.324+004 1.252 1.219 23.15 1.120 16 Heat Flow (kW) -2.052+004 -7.852 -352.6 -7.400 4.113e-001 10 Name (L) 1.105 1.117.5 1				· ·		vap 5 to 1		
In Pressure (hPa) 2015 2015 2015 2028 Mars Flow (hgmberh) 3.656+004 1.085+004 6.42.5 1.031+004 6.354+004 II Ligad Yobane Flow (m3h) 0.868+004 1.085+004 6.42.5 1.031+004 6.354+004 II Ligad Yobane Flow (m3h) 0.868+004 7.682 vap 8 vap 8 to 5 vap 8 to 7 Vapour Fraction 0.0000 0.0004 1.0000 1.0000 1.0000 Vapour Fraction 0.0000 0.0004 1.0000 1.0000 1.0000 Vapour Fraction (C) 11.6 11.0.4 11.7.5 11.7.5 11.7.6 Vapour Fraction (C) 1.05.6 11.0.4 6.872+004 3.080+004<	-							
15 Mass Flow (kgm/deft) 72.6 233.1 14.68 278.5 1127 16 Mass Flow (kgh) 3.658+004 10.854+004 542.5 10.318+004 6.354+604 1 Liquid Volume Flow (kN) -2.658+004 .7852 -332.6 -7460 -4.113e+004 10 Name lig 7.0.8 lig 547 to 8 wap 8 to 7 vap 8 to 7 20 Vapour Fraction (C) 0.0000 0.0004 10.0000 1.0000 10.0000 10.0000 1.0000 0.0000 2.00 1.837e+004 2.245e+004 -1.837e+004 2.245e+004 -1.837e+004 2.245e+004 -1.837e+004 1.827e+004 2.245e+004 -1.837e+004 2.245e+004 -1.837e+004								
Is Mass Flow (injt) 3.656+004 1.955+004 542.5 1.031+004 6.354+004 17 Ligad Volume Flow (init) 68.80 24.37 1.219 23.15 1.12.0 18 Heat Flow (itit) -2.652+004 kg 5+7.08 vap.8 vap.8 to 5 vap.8 to 7 vap.8 to 7<								
17 Liqui Volume Flow (m3h) 98.80 24.37 1.219 23.15 112.00 16 Heat Flow (kW) -2652e1004 -7852 -382.6 -7460 4.113e1004 20 Vapour Fraction 0.0000 0.0004 1.0000 1.0000 1.0000 21 Temperature (C) 115.6 110.4 117.5 117.5 22 Pressure (kFa) 20.30 22.83 22.83 26.30 26.30 23 Molar Flow (kgmoleh) 21.10 133.8 1.728 67.56 56.27 24 Hot Flow (kgmoleh) 12.04e+004 7.558e+004 6.872e+004 3.780e+004 3.093e+004 25 Hot Flow (kW) -7714 4.884e+004 4.081e+004 -2.245e+004 -1.837e+004 20 Hot Flow (kW) -7714 4.884e+004 4.081e+004 -2.245e+004 -1.837e+004 21 Name C1+C2 C3 LPG - - 20 Vapour Fraction 1.0000 0.0000 0.0000 - 21 Molar Flow (kgmoleh) 305.3 150.0 315.7 - 21 Molar Flow <								
Image Imp of to 8 Imp 67 to 8 Vap B Vap B to 5 Vap B to 7 20 Vapour Fraction 0.0000 0.0000 1.0000 1.0000 1.0000 1 Temperature (C) 115.6 110.4 117.5 117.5 117.5 22 Pressure (KPa) 2630	17	Liquid Volume Flow		68.80	24.37	1.219		
20 Vapour Fraction 1 0.0000 1 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 00000 10000 10000 00000 00000 10000 10000 10000 100000 10000 10000 <t< td=""><td>18</td><td>Heat Flow</td><td>(kW)</td><td>-2.653e+004</td><td>-7852</td><td>-392.6</td><td>-7460</td><td>-4.113e+004</td></t<>	18	Heat Flow	(kW)	-2.653e+004	-7852	-392.6	-7460	-4.113e+004
21 Temperature (C) 115.6 110.4 117.5 117.5 117.5 22 Pressure (R*a) 2630 2635 2604 2644 3039*004 2245*004 1337*0*004 20 2635 2704 2635 2704 2635 2704 270 230 2635 2644 263 265 275 275 275 275 276 276 276 276								
P2 Pressure (kPa) 2830 300 300 3000 3000 30000 30000 20000 2245e+004 -1.337e+004 -1.337e+004 -1.337e+004 -1.02 -1.127e+004 -1.127e+014 -1.127e+014 -1.127e+014			(0)					
21 Molar Flow (kgmole/h) 211.0 1338 1283 694.8 568.5 24 Mass Flow (kgh) 1.204+004 7.556+004 6.872+004 3.766+004 3.3028+004 21 Liquid Volume Flow (in3)h 21.00 1331 122.8 67.66 55.27 28 Heal Flow (iNV) -7.714 4.884e+004 4.081e+004 -2.245e+004 -1.837e+004 27 Name C1+C2 C3 LPG							i	
24 Mass Flow (tg/h) 1 204e+004 7.558e+004 6.872e+004 3.780e+004 3.093e+004 21 Liqud Volume Flow (m3h) 21.06 133.1 122.8 67.56 55.27 32 Heat Flow (tW) -7714 4.4884e+004 4.018te+004 -2.245te+004 -1.837e+004 28 Mare C1+C2 C3 LPG -								
25 Liquid Volume Flow (m3/h) 21:06 113:1 122.8 67:56 55:27 26 Heat Flow (W) -7714 4.884e+004 -4.081e+004 -2.245e+004 -1.837e+004 27 Name C1+C2 C3 LPG								
27 Name C1+C2 C3 LPG 28 Vapour Fraction 1.000 0.0000 0.0000 29 Temperature (C) -34.74 64.43 107.3 0.000 20 Pressure (kPa) .2535 2604 2626 0.000 31 Molar Flow (kgmoth) 305.3 150.0 315.7 0.000 32 Mass Flow (kgmoth) 6638 6517 1.716e-004 0.000 33 Liquid Volume Flow (m3h) 20.20 13.10 30.68 0.000 34 Heat Flow (kW) -7012 -4730 -1.127e+004 0.000 36 37 38 39	25	Liquid Volume Flow		21.06	133.1	122.8	67.56	55.27
28 Vapour Fraction 1,0000 0,0000 0,0000 27 Temperature (C) -34,74 64,43 107.3 30 Pressure (kPa) 2535 2004 2826	26	Heat Flow	(kW)	-7714	-4.884e+004	-4.081e+004	-2.245e+004	-1.837e+004
29 Temperature (C) -34.74 64.43 107.3 30 Pressure (kPa) 2535 2604 2626 31 Molar Flow (kgmoleh) 305.3 150.0 315.7 32 Mass Flow (kgh) 6638 6517 1.716e+004 33 Liquid Volume Flow (m3/h) 20.20 13.10 30.68 34 Heat Flow (kW) -7012 -4730 -1.127e+004 35 37 38 39 39 <				1				
30 Pressure (kPa) 2535 2604 2626			(0)					
31 Molar Flow (kgmole/th) 305.3 150.0 315.7								
32 Mass Flow (kgh) 0638 6517 1.716e+004								
33 Liquid Volume Flow (m3/h) 20.20 13.10 30.68 Image: Control of the control of								
36 1 1 1 1 36 37 38 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59 50 51	33	Liquid Volume Flow		20.20	13.10	30.68		
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 57 58 59 59 50 51		Heat Flow	(kW)	-7012	-4730	-1.127e+004		
	37 38 39 40 41 42 43 44 45							
63 Aspen Technology Inc. Aspen HYSYS Version 7.3 (25.0.0.7336) Page 2 of 12		Aspen Technology Inc Licensed to: NORWEGIAN UN						Page 2 of 12 * Specified by user.

Workbook: DWC (DWC SF) (continued)

1			Case Name:	DWC-Sergant.hsc		
2		IAN UNIV OF MA	Unit Set:	NewUser		
4	aspentech Burlington, USA					
5 6			Date/Time:	Tue Jun 24 13:08:37 20	J14	
7	Workbook		C SF) (conti	nued)		
8	Torribook			nacaj		
9			Compositions		Fluid Pk	g: All
10 11	Name	Reflux	To Condenser	Boilup	To Reboiler	C5+
12	Comp Mole Frac (Methane)	0.1846	0.2773	0.0000	0.0000	0.0000
13	Comp Mole Frac (Ethane)	0.8154	0.7227	0.0000	0.0000	0.0000
14	Comp Mole Frac (Propane)	0.0000	0.0000	0.0021	0.0020	0.0010
15	Comp Mole Frac (i-Butane)	0.0000	0.0000	0.0238	0.0232	0.0139
16	Comp Mole Frac (n-Butane)	0.0000	0.0000	0.1474	0.1437	0.0913
17 18	Comp Mole Frac (i-Pentane)	0.0000	0.0000	0.0993	0.0977	0.0747
10	Comp Mole Frac (n-Pentane) Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.1321 0.2511	0.1302	0.1030
20	Comp Mole Frac (n-Heptanal)	***	***	0.2511	0.2507	0.2452
21	Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.1496	0.1517	0.1810
22	Comp Mole Frac (n-Octane)	0.0000	0.0000	0.1946	0.2008	0.2900
23	Comp Mole Frac (n-Nonane)	***	***	***	***	***
24	Comp Mole Frac (n-Decane)	***	***	***	***	***
25	Comp Mole Frac (n-C11)	***	***	***	***	***
26	Comp Mole Frac (n-C12)	***	***	***	***	***
27 28	Comp Mole Frac (n-C13)	***	***	***	***	***
20	Comp Mole Frac (n-C14) Comp Mole Frac (SbCl3)	***	***	***	***	***
30	Comp Mole Frac (3003) Comp Mole Frac (n-C15)	***	***	***	***	***
31	Comp Mole Frac (n-C16)	***	***	***	***	***
32	Comp Mole Frac (n-C17)	***	***	***	***	***
33	Comp Mole Frac (n-C18)	***	***	***	***	***
34	Comp Mole Frac (Nitrogen)	***	***	***	***	***
35	Comp Mole Frac (CO2)	***	***	***	***	***
36	Comp Mole Frac (Carbon)	***	***	***	***	***
37 38	Comp Mole Frac (H2S) Comp Mole Frac (perF-NP)	***	***	***	***	***
39	Comp Mole Frac (per-NF) Comp Mole Frac (1MIndene)	***	***	***	***	***
40	Comp Mole Prac (mindene)					
41						
42						
43						
44						
45 46						
48						
49						
47 48 49 50 51 52 53 54 55 56 57						
51						
52						
53						
54						
55						
57						
58						
58 59						
60						
61						
62			JVCVC Version 7.2 (Bago 2 of 12

63 Aspen Technology Inc. Licensed to: NORWEGIAN UNIV OF

Aspen HYSYS Version 7.3 (25.0.0.7336)

Page 3 of 12 * Specified by user.

aspentech	
aspentech	

NORWEGIAN UNIV OF Burlington, MA USA Case Name: DWC-Sergant.hsc

Unit Set: NewUser

Date/Time: Tue Jun 24 13:08:37 2014

Workbook: DWC (DWC SF) (continued)

8						
9 10	Compositions (continued) Fluid Pkg:					g: All
11	Name	NGL Feed	vap 1 to 2	vap 3 to 2	vap 1+3 to 2	liq 2
12	Comp Mole Frac (Methane)	0.2143	0.4503	0.0653	0.1844	0.0355
13	Comp Mole Frac (Ethane)	0.1608	0.2487	0.6128	0.5002	0.3273
14	Comp Mole Frac (Propane)	0.2679	0.2186	0.2718	0.2554	0.4152
15	Comp Mole Frac (i-Butane)	0.0857	0.0298	0.0147	0.0194	0.0608
16	Comp Mole Frac (n-Butane)	0.1822	0.0525	0.0353	0.0406	0.1612
17	Comp Mole Frac (i-Pentane)	0.0118	0.0000	0.0000	0.0000	0.0001
18	Comp Mole Frac (n-Pentane)	0.0129	0.0000	0.0000	0.0000	0.0000
19	Comp Mole Frac (n-Hexane)	0.0225	0.0000	0.0000	0.0000	0.0000
20	Comp Mole Frac (n-Heptanal)	***	***	***	***	**
21	Comp Mole Frac (n-Heptane)	0.0161	0.0000	0.0000	0.0000	0.0000
22	Comp Mole Frac (n-Octane)	0.0257	0.0000	0.0000	0.0000	0.0000
23	Comp Mole Frac (n-Nonane)	***	***	***	***	***
24	Comp Mole Frac (n-Decane)	***	***	***	***	***
25	Comp Mole Frac (n-C11)	***	***	***	***	**1
26	Comp Mole Frac (n-C12)	***	***	***	***	***
27	Comp Mole Frac (n-C12)	***	***	***	***	***
28	Comp Mole Frac (n-C13)	***	***	***	***	***
20 29	· · · · · · · · · · · · · · · · · · ·	***	***	***	***	***
	Comp Mole Frac (SbCl3)	***	***	***	***	**
30 31	Comp Mole Frac (n-C15)	***	***	***	***	***
	Comp Mole Frac (n-C16)	***	***	***	***	**
32	Comp Mole Frac (n-C17)	***	***	***	***	**
33 34	Comp Mole Frac (n-C18)	***	***	***	***	**
_	Comp Mole Frac (Nitrogen)	***	***	***	***	***
35 26	Comp Mole Frac (CO2)	***	***	***	***	***
36	Comp Mole Frac (Carbon)	***	***	***	***	***
37	Comp Mole Frac (H2S)	***	***	***	***	***
38	Comp Mole Frac (perF-NP)	***	***	***	***	***
39	Comp Mole Frac (1MIndene)					
40 41						
41 42						
42						
43						
44						
43 44 45 46 47 48 49 50 51 52						
40						
47						
48						
49						
50						
51						
52 53						
53 54						
_						
55						
56						
57						
58						
55 56 57 58 59 50 51 52						
60						
61 L						
-						

63 Aspen Technology Inc. Licensed to: NORWEGIAN UNIV OF

Aspen HYSYS Version 7.3 (25.0.0.7336)

Page 4 of 12 * Specified by user.

asper	ntech

Workbook: DWC (DWC SF) (continued)

1			Case Name:	DWC-Sergant.hsc		
2		IAN UNIV OF MA	Unit Set:	NewUser		
3 4 5	aspentech ^{Burlington,} USA		Data (Tima)	Tue lue 24 42:00:27 20		
			Date/Time:	Tue Jun 24 13:08:37 20	J14	
6 7	Workbook	DWC (DW	C SE) (conti	(hourd)		
8	WOIKDOOK.			nueuj		
9		C	ompositions (cont	inued)	Fluid Pk	q: All
10						-
11 12	Name	liq 2 to 3	liq 2 to 1	liq 9	liq 9 to 6	liq 9 to 2
13	Comp Mole Frac (Methane) Comp Mole Frac (Ethane)	0.0355	0.0355	0.0385	0.0385	0.0385
14	Comp Mole Frac (Propane)	0.4152	0.3273	0.0358	0.0358	0.2856
15	Comp Mole Frac (i-Butane)	0.0608	0.0608	0.0104	0.0104	0.0104
16	Comp Mole Frac (n-Butane)	0.1612	0.1612	0.0098	0.0098	0.0098
17	Comp Mole Frac (i-Pentane)	0.0001	0.0001	0.0000	0.0000	0.0000
18	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.0000	0.0000	0.0000
19	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.0000	0.0000	0.0000
20	Comp Mole Frac (n-Heptanal)	***	***	***	***	***
21	Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.0000	0.0000	0.0000
22	Comp Mole Frac (n-Octane)	0.0000	0.0000	0.0000	0.0000	0.0000
23	Comp Mole Frac (n-Nonane)	***	***	***	***	***
24 25	Comp Mole Frac (n-Decane) Comp Mole Frac (n-C11)	***	***	***	***	***
26	Comp Mole Frac (n-C12)	***	***	***	***	***
27	Comp Mole Frac (n-C13)	***	***	***	***	***
28	Comp Mole Frac (n-C14)	***	***	***	***	***
29	Comp Mole Frac (SbCl3)	***	***	***	***	***
30	Comp Mole Frac (n-C15)	***	***	***	***	***
31	Comp Mole Frac (n-C16)	***	***	***	***	***
32	Comp Mole Frac (n-C17)	***	***	***	***	***
33	Comp Mole Frac (n-C18)	***	***	***	***	***
34	Comp Mole Frac (Nitrogen)	***	***	***	***	***
35	Comp Mole Frac (CO2)	***	***	***	***	***
36 37	Comp Mole Frac (Carbon)	***	***	***	***	***
38	Comp Mole Frac (H2S) Comp Mole Frac (perF-NP)	***	***	***	***	***
39	Comp Mole Frac (1MIndene)	***	***	***	***	***
40	comp mole r lue (liminaene)					
41						
42						
43						
44						
45						
46						
47						
48						
49						
51						
52						
47 48 49 50 51 52 53 54 55 56 57 58 59 60						
54						
55						
56						
57						
58						
59						
60						

63 Aspen Technology Inc. Licensed to: NORWEGIAN UNIV OF

61 62

Aspen HYSYS Version 7.3 (25.0.0.7336)

Page 5 of 12 * Specified by user.

<u> </u>	spen	tech

Workbook: DWC (DWC SF) (continued)

1			Case Name:	DWC-Sergant.hsc		
2	aspentech Norweg Burlington,	IAN UNIV OF MA	Unit Set:	NewUser		
4 5			Date/Time:	Tue Jun 24 13:08:37 20	014	
6			D dito, f line.			
7	Workbook	DWC (DW	C SF) (conti	nued)		
8 9		•	,,	,		
10		Co	ompositions (cont	inued)	Fluid Pk	g: All
11	Name	vap 6 to 9	vap 2 to 9	vap 2+6 to 9	liq 6	liq 3
12	Comp Mole Frac (Methane)	0.1639	0.1762	0.1746	0.0132	0.0124
13	Comp Mole Frac (Ethane)	0.7190	0.5756	0.5946	0.6326	0.4399
14 15	Comp Mole Frac (Propane) Comp Mole Frac (i-Butane)	0.1136	0.2311	0.2156	0.3334	0.5144 0.0133
16	Comp Mole Frac (I-Butane)	0.0020	0.0083	0.0078	0.0107	0.0200
17	Comp Mole Frac (i-Pentane)	0.0000	0.0000	0.0000	0.0000	0.0000
18	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.0000	0.0000	0.0000
19	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.0000	0.0000	0.0000
20	Comp Mole Frac (n-Heptanal)	***	***	***	***	***
21 22	Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.0000	0.0000	0.0000
22	Comp Mole Frac (n-Octane)	0.0000	0.0000	0.0000	0.0000	0.0000
23	Comp Mole Frac (n-Nonane) Comp Mole Frac (n-Decane)	***	***	***	***	***
25	Comp Mole Frac (n-C11)	***	***	***	***	***
26	Comp Mole Frac (n-C12)	***	***	***	***	***
27	Comp Mole Frac (n-C13)	***	***	***	***	***
28	Comp Mole Frac (n-C14)	***	***	***	***	***
29	Comp Mole Frac (SbCl3)	***	***	***	***	***
30 31	Comp Mole Frac (n-C15)	***	***	***	***	***
31	Comp Mole Frac (n-C16) Comp Mole Frac (n-C17)	***	***	***	***	***
33	Comp Mole Frac (n-C18)	***	***	***	***	***
34	Comp Mole Frac (Nitrogen)	***	***	***	***	***
35	Comp Mole Frac (CO2)	***	***	***	***	***
36	Comp Mole Frac (Carbon)	***	***	***	***	***
37	Comp Mole Frac (H2S)	***	***	***	***	***
38	Comp Mole Frac (perF-NP)	***	***	***	***	***
39 40	Comp Mole Frac (1MIndene)					
40						
42						
43						
44						
45						
46						
47						
49						
50						
51						
52						
53						
54						
56						
57						
58						
59						
<mark>60</mark>						
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62						
62 63	Aspen Technology Inc	Aspent	HYSYS Version 7.3 ()	25.0.0.7336)		Page 6 of 12

63 Aspen Technology Inc. Licensed to: NORWEGIAN UNIV OF Aspen HYSYS Version 7.3 (25.0.0.7336)

Page 6 of 12 * Specified by user.

C	aspe	n tech

Workbook: DWC (DWC SF) (continued)

1	_		Case Name:	DWC-Sergant.hsc		
2		IAN UNIV OF , MA	Unit Set:	NewUser		
4	aspentech ^{Burlington} , USA	,	Date/Time:	Tue Jun 24 13:08:37 20	014	
5 6			Date/Time.	Tue Juli 24 13.00.37 20		
7	Workbook	DWC (DW	C SF) (conti	nued)		
8		۱.	7 (,		
9 10		Co	mpositions (cont	inued)	Fluid Pk	g: All
11	Name	liq 3+6	liq 3+6 to 4	liq 3+6 to 7	vap 4	vap 7
12	Comp Mole Frac (Methane)	0.0130	0.0130	0.0130	0.1331	0.0153
13	Comp Mole Frac (Ethane)	0.5875	0.5875	0.5875	0.5405	0.6748
14	Comp Mole Frac (Propane)	0.3758	0.3758	0.3758	0.3184	0.3023
15	Comp Mole Frac (i-Butane)	0.0113	0.0113	0.0113	0.0046	0.0041
16	Comp Mole Frac (n-Butane)	0.0124	0.0124	0.0124	0.0035	0.0035
17 18	Comp Mole Frac (i-Pentane)	0.0000	0.0000	0.0000	0.0000	0.0000
18	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.0000	0.0000	0.0000
20	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.0000	0.0000	0.0000
20	Comp Mole Frac (n-Heptanal) Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.0000	0.0000	0.0000
22	Comp Mole Frac (n-heptane)	0.0000	0.0000	0.0000	0.0000	0.0000
23	Comp Mole Frac (n-Nonane)	***	***	***	***	***
24	Comp Mole Frac (n-Decane)	***	***	***	***	***
25	Comp Mole Frac (n-C11)	***	***	***	***	***
26	Comp Mole Frac (n-C12)	***	***	***	***	***
27	Comp Mole Frac (n-C13)	***	***	***	***	***
28	Comp Mole Frac (n-C14)	***	***	***	***	***
29	Comp Mole Frac (SbCl3)	***	***	***	***	***
30	Comp Mole Frac (n-C15)	***	***	***	***	***
31	Comp Mole Frac (n-C16)	***	***	***	***	***
32	Comp Mole Frac (n-C17)	***	***	***	***	***
33	Comp Mole Frac (n-C18)	***	***	***	***	***
34	Comp Mole Frac (Nitrogen)	***	***	***	***	***
35 36	Comp Mole Frac (CO2) Comp Mole Frac (Carbon)	***	***	***	***	***
37	Comp Mole Frac (Calibori)	***	***	***	***	***
38	Comp Mole Frac (perF-NP)	***	***	***	***	***
39	Comp Mole Frac (1MIndene)	***	***	***	***	***
40	•					
41						
42						
43						
44						
45						
46						
47						
48						
49						
51						
52						
53						
54						
55						
56						
57						
58						
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62						
60						
61						
63	Aspen Technology Inc.	Aspen H	YSYS Version 7.3 (2	25.0.0.7336)		Page 7 of 12

Licensed to: NORWEGIAN UNIV OF

U	aspe	ente	ech

Workbook: DWC (DWC SF) (continued)

1			Case Name:	DWC-Sergant.hsc		
2	aspentech Burlington, USA	Unit Set:	NewUser			
3 4 5			Date/Time:	Tue Jun 24 13:08:37 20	014	
5 6						
7	Workbook	DWC (DW	C SF) (conti	nued)		
8		•	,,	,		
9 10		Co	ompositions (cont	inued)	Fluid Pk	g: All
11	Name	vap 4+7	vap 4+7 to 3	vap 4+7 to 6	liq 4 to 5	liq 1 to 5
12	Comp Mole Frac (Methane)	0.0571	0.0571	0.0571	0.0290	0.0735
13	Comp Mole Frac (Ethane)	0.6271	0.6271	0.6271	0.1871	0.1345
14	Comp Mole Frac (Propane)	0.3080	0.3080	0.3080	0.4194	0.3085
15 16	Comp Mole Frac (i-Butane)	0.0043	0.0043	0.0043	0.1285	0.1120
17	Comp Mole Frac (n-Butane) Comp Mole Frac (i-Pentane)	0.0035	0.0035	0.0035	0.2149	0.2459 0.0167
18	Comp Mole Frac (n-Pentane)	0.0000	0.0000	0.0000	0.0062	0.0182
19	Comp Mole Frac (n-Hexane)	0.0000	0.0000	0.0000	0.0050	0.0318
20	Comp Mole Frac (n-Heptanal)	***	***	***	***	***
21	Comp Mole Frac (n-Heptane)	0.0000	0.0000	0.0000	0.0017	0.0227
22	Comp Mole Frac (n-Octane)	0.0000	0.0000	0.0000	0.0014	0.0362
23	Comp Mole Frac (n-Nonane)	***	***	***	***	***
24	Comp Mole Frac (n-Decane)	***	***	***	***	***
25 26	Comp Mole Frac (n-C11) Comp Mole Frac (n-C12)	***	***	***	***	***
27	Comp Mole Frac (n-C12)	***	***	***	***	***
28	Comp Mole Frac (n-C14)	***	***	***	***	***
29	Comp Mole Frac (SbCl3)	***	***	***	***	***
30	Comp Mole Frac (n-C15)	***	***	***	***	***
31	Comp Mole Frac (n-C16)	***	***	***	***	***
32	Comp Mole Frac (n-C17)	***	***	***	***	***
33	Comp Mole Frac (n-C18)	***	***	***	***	***
34 35	Comp Mole Frac (Nitrogen)	***	***	***	***	***
36	Comp Mole Frac (CO2) Comp Mole Frac (Carbon)	***	***	***	***	***
37	Comp Mole Frac (H2S)	***	***	***	***	***
38	Comp Mole Frac (perF-NP)	***	***	***	***	***
39	Comp Mole Frac (1MIndene)	***	***	***	***	***
40						
41						
42						
43 44						
45						
46						
47						
48						
49						
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62						
51						
52						
54						
55						
56						
57						
58						
59						
60						
62						
62	Aspen Technology Inc	Annen I	JVSVS Version 7.3 (0.0.7000		Page 8 of 12

63 Aspen Technology Inc. Licensed to: NORWEGIAN UNIV OF

Aspen HYSYS Version 7.3 (25.0.0.7336)

Page 8 of 12 * Specified by user.

aspentech

Workbook: DWC (DWC SF) (continued)

1			Case Name:	DWC-Sergant.hsc				
2	Aspentech Burlington,	Unit Set:						
4	aspentech ^{Burlington} , USA							
5			Date/Time:	Date/Time: Tue Jun 24 13:08:37 2014				
6 7	Workbook: DWC (DWC SF) (continued)							
8								
9	Compositions (continued) Eluid Plac							
10 11	Nama							
12	Name Comp Mole Frac (Methane)	liq 1+4 to 5 0.0659	vap 5 0.1630	vap 5 to 1 0.1630	vap 5 to 4 0.1630	liq 5 to 8 0.0000		
13	Comp Mole Frac (Ethane)	0.1435	0.3521	0.3521	0.3521	0.0020		
14	Comp Mole Frac (Propane)	0.3275	0.3270	0.3270	0.3270	0.3318		
15	Comp Mole Frac (i-Butane)	0.1148	0.0558	0.0558	0.0558	0.1734		
16	Comp Mole Frac (n-Butane)	0.2406	0.0925	0.0925	0.0925	0.3953		
17	Comp Mole Frac (i-Pentane)	0.0150	0.0031	0.0031	0.0031	0.0208		
18	Comp Mole Frac (n-Pentane)	0.0161	0.0028	0.0028	0.0028	0.0196		
19	Comp Mole Frac (n-Hexane)	0.0271	0.0022	0.0022	0.0022	0.0220		
20	Comp Mole Frac (n-Heptanal)	***	***	***	***	***		
21	Comp Mole Frac (n-Heptane)	0.0191	0.0008	0.0008	0.0008	0.0140		
22	Comp Mole Frac (n-Octane)	0.0302	0.0006	0.0006	0.0006	0.0211		
23	Comp Mole Frac (n-Nonane)	***	***	***	***	***		
24 25	Comp Mole Frac (n-Decane) Comp Mole Frac (n-C11)	***	***	***	***	***		
26	Comp Mole Frac (n-C12)	***	***	***	***	***		
27	Comp Mole Frac (n-C12)	***	***	***	***	***		
28	Comp Mole Frac (n-C14)	***	***	***	***	***		
29	Comp Mole Frac (SbCl3)	***	***	***	***	***		
30	Comp Mole Frac (n-C15)	***	***	***	***	***		
31	Comp Mole Frac (n-C16)	***	***	***	***	***		
32	Comp Mole Frac (n-C17)	***	***	***	***	***		
33	Comp Mole Frac (n-C18)	***	***	***	***	***		
34	Comp Mole Frac (Nitrogen)	***	***	***	***	***		
35	Comp Mole Frac (CO2)	***	***	***	***	***		
36	Comp Mole Frac (Carbon)	***	***	***	***	***		
37	Comp Mole Frac (H2S)	***	***	***	***	***		
38	Comp Mole Frac (perF-NP)	***	***	***	***	***		
39	Comp Mole Frac (1MIndene)	***	***	***	***	***		
40 41								
41								
42								
44								
45								
46								
47								
48								
49								
50								
51								
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61								
53								
54								
20								
57								
58								
59								
60								
61								

Aspen Technology Inc. Licensed to: NORWEGIAN UNIV OF

63

Aspen HYSYS Version 7.3 (25.0.0.7336)

Page 9 of 12 * Specified by user.

Ľ	asp	ent	ech

Workbook: DWC (DWC SF) (continued)

1			Case Name:	DWC-Sergant.hsc				
2 3	aspentech USA	IAN UNIV OF MA	Unit Set:	NewUser				
4 5			Date/Time:	Tue Jun 24 13:08:37 20)14			
5 6								
7	Workbook:	DWC (DW	C SF) (conti	nued)				
8 9								
10		Co	ompositions (cont	inued)	Fluid Pkg:			
11	Name	liq 7 to 8	liq 5+7 to 8	vap 8	vap 8 to 5	vap 8 to 7		
12 13	Comp Mole Frac (Methane)	0.0000	0.0000	0.0000	0.0000	0.0000		
14	Comp Mole Frac (Ethane) Comp Mole Frac (Propane)	0.0008	0.0018	0.0019	0.0019	0.0019		
15	Comp Mole Frac (i-Butane)	0.1860	0.1754	0.1850	0.1850	0.1850		
16	Comp Mole Frac (n-Butane)	0.4898	0.4102	0.4292	0.4292	0.4292		
17	Comp Mole Frac (i-Pentane)	0.0316	0.0225	0.0194	0.0194	0.0194		
18	Comp Mole Frac (n-Pentane)	0.0282	0.0209	0.0160	0.0160	0.0160		
19	Comp Mole Frac (n-Hexane)	0.0192	0.0215	0.0083	0.0083	0.0083		
20	Comp Mole Frac (n-Heptanal)	***	***	***	***	***		
21 22	Comp Mole Frac (n-Heptane)	0.0080	0.0130	0.0031	0.0031	0.0031		
22	Comp Mole Frac (n-Octane)	0.0077	0.0190	0.0029	0.0029	0.0029		
23 24	Comp Mole Frac (n-Nonane) Comp Mole Frac (n-Decane)	***	***	***	***	***		
25	Comp Mole Frac (n-C11)	***	***	***	***	***		
26	Comp Mole Frac (n-C12)	***	***	***	***	***		
27	Comp Mole Frac (n-C13)	***	***	***	***	***		
28	Comp Mole Frac (n-C14)	***	***	***	***	***		
29	Comp Mole Frac (SbCl3)	***	***	***	***	***		
30	Comp Mole Frac (n-C15)	***	***	***	***	***		
31	Comp Mole Frac (n-C16)	***	***	***	***	***		
32 33	Comp Mole Frac (n-C17)	***	***	***	***	***		
34	Comp Mole Frac (n-C18) Comp Mole Frac (Nitrogen)	***	***	***	***	***		
35	Comp Mole Frac (CO2)	***	***	***	***	***		
36	Comp Mole Frac (Carbon)	***	***	***	***	***		
37	Comp Mole Frac (H2S)	***	***	***	***	***		
38	Comp Mole Frac (perF-NP)	***	***	***	***	***		
39	Comp Mole Frac (1MIndene)	***	***	***	***	***		
40								
41								
42 43								
43								
45								
46								
47								
48								
49								
50								
52								
53								
54								
55								
56								
57								
58								
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61								
60								
61 62								
62 63	Aspen Technology Inc.	Appen	HYSYS Version 7.3 (2	25.0.0.7336)		Page 10 of 12		
_	Licensed to: NORWEGIAN UNIV OF	Aspenr		20.0.0.7000)		* Specified by user.		

Licensed to: NORWEGIAN UNIV OF

6	as	per	nte	ech

1

NORWEGIAN UNIV OF Burlington, MA USA

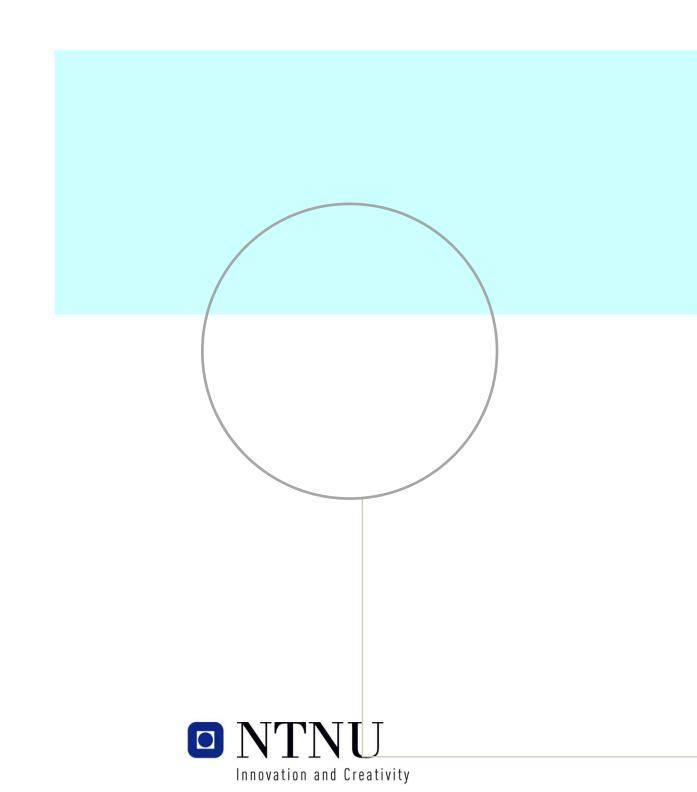
Case Name: DWC-Sergant.hsc

Unit Set: NewUser

Date/Time:

Tue Jun 24 13:08:37 2014

2 3 4 5 6 7 Workbook: DWC (DWC SF) (continued) 8 9 Compositions (continued) Fluid Pkg: All 10 11 C3 LPG Name C1+C2 12 0.5939 0.0000 0.0000 Comp Mole Frac (Methane) 13 Comp Mole Frac (Ethane) 0.4061 0.0783 8000.0 14 0.8899 Comp Mole Frac (Propane) 0.0000 0.2950 15 0.0159 Comp Mole Frac (i-Butane) 0.0000 0.2189 16 Comp Mole Frac (n-Butane) 0.0000 0.0159 0.4591 17 Comp Mole Frac (i-Pentane) 0.0000 0.0000 0.0139 18 Comp Mole Frac (n-Pentane) 0.0000 0.0000 0.0101 19 Comp Mole Frac (n-Hexane) 0.0000 0.0000 0.0021 20 *** *** *** Comp Mole Frac (n-Heptanal) 21 Comp Mole Frac (n-Heptane) 0.0000 0.0000 0.0002 22 Comp Mole Frac (n-Octane) 0.0000 0.0000 0.0000 23 *** *** *** Comp Mole Frac (n-Nonane) 24 *** *** *** Comp Mole Frac (n-Decane) 25 Comp Mole Frac (n-C11) *** *** *** *** *** 26 *** Comp Mole Frac (n-C12) 27 Comp Mole Frac (n-C13) *** *** *** *** *** *** 28 Comp Mole Frac (n-C14) 29 Comp Mole Frac (SbCl3) *** *** *** 30 *** *** *** Comp Mole Frac (n-C15) 31 *** *** *** Comp Mole Frac (n-C16) *** *** *** 32 Comp Mole Frac (n-C17) 33 Comp Mole Frac (n-C18) *** *** *** 34 *** *** *** Comp Mole Frac (Nitrogen) *** *** *** 35 Comp Mole Frac (CO2) 36 *** *** *** Comp Mole Frac (Carbon) *** *** 37 *** Comp Mole Frac (H2S) *** *** *** 38 Comp Mole Frac (perF-NP) *** *** 39 Comp Mole Frac (1MIndene) *** 40 Fluid Pkg: All Energy Streams 41 42 Q COND-DWC Q REB-DWC Name 43 3072 4797 Heat Flow (kW) 44 Unit Ops 45 46 Operation Name Operation Type Feeds Products Ignored Calc Level 47 To Reboiler C5+ Reboiler Reboiler No 500.0 * 48 Q REB-DWC Boilup 49 50 51 liq 2 to 1 liq 1 to 5 vap 1 to 2 500.0 1 Tray Section vap 5 to 1 No NGL_Feed 52 Reflux liq 9 9 500.0 Tray Section No 53 vap 2+6 to 9 To Condenser 54 55 liq 9 to 6 liq 6 6 Tray Section No 500.0 vap 4+7 to 6 vap 6 to 9 56 57 liq 5+7 to 8 To Reboiler 8 Tray Section No 500.0 * Boilup vap 8 58 liq 9 to 2 liq 2 2 500.0 Trav Section No 59 vap 1+3 to 2 vap 2 to 9 60 liq 1+4 to 5 liq 5 to 8 5 Tray Section No 500.0 61 vap 8 to 5 vap 5 62 500.0 * 3 Tray Section lia 2 to 3 lia 3 No 63 Aspen Technology Inc. Aspen HYSYS Version 7.3 (25.0.0.7336) Page 11 of 12


Licensed to: NORWEGIAN UNIV OF

1			Case Name:	DWC-Sergant.hsc					
2 3 4 5 6 7	aspentech	NORWEGIAN UNIV OF Burlington, MA	Unit Set:	Unit Set: NewUser					
4	Caspenteen	USA	Date/Time:	Tue Jun 24 13:08:37 2014					
6									
7 8	Workbook: DWC (DWC SF) (continued)								
8 9									
10			Unit Ops (continu	-					
11 12	Operation Name	Operation Type	Feeds	Products	Ignored	Calc Level			
13	3	Tray Section	vap 4+7 to 3 lig 3+6 to 4	vap 3 to 2 liq 4 to 5	No	500.0 *			
14	4	Tray Section	vap 5 to 4	vap 4	No	500.0 *			
15			liq 3+6 to 7	liq 7 to 8					
16	7	Tray Section	vap 8 to 7	vap 7	No	500.0 *			
17	,	Thay occuon		C3		000.0			
18				LPG					
19 20	Condensor	Portial Condenser	To Condenser	C1+C2	- No	E00.0 *			
20	Condenser	Partial Condenser	Q COND-DWC	Q COND-DWC	No	500.0 *			
22			vap 1 to 2	vap 1+3 to 2					
23	MIX-vap 1+3	Mixer	vap 3 to 2	Vap 110 to 2	No	500.0 *			
24			vap 2 to 9	vap 2+6 to 9					
25	MIX-vap 2+6 to 9	Mixer	vap 6 to 9		No	500.0 *			
26	MIX-liq 3+6	Mixer	liq 3	liq 3+6	No	500.0 *			
27		IMIXEI	liq 6		NU	500.0			
28	MIX-vap 4+7	Mixer	vap 4	vap 4+7	No	500.0 *			
29 30			vap 7						
30	MIX-liq 1+4	Mixer	liq 1 to 5 liq 4 to 5	liq 1+4 to 5	No	500.0 *			
32			liq 7 to 8	liq 5+7 to 8					
33	MIX-liq 5+7	Mixer	liq 5 to 8		No	500.0 *			
34	755 K 0	-	liq 2	liq 2 to 3		500.0.4			
35	TEE-liq 2	Тее		liq 2 to 1	No	500.0 *			
36	TEE-liq 9	Тее	liq 9	liq 9 to 6	No	500.0 *			
37				liq 9 to 2					
38	TEE-liq 3+6 to 4+7	Тее	liq 3+6	liq 3+6 to 4	No	500.0 *			
39 40				liq 3+6 to 7					
40	TEE-vap 4+7 to 3+6	Tee	vap 4+7	vap 4+7 to 3 vap 4+7 to 6	No	500.0 *			
42			vap 5	vap 5 to 1					
43	TEE-vap 5 to 1+4	Tee		vap 5 to 4	No	500.0 *			
44	TEE yop 8 to 5±7	Тее	vap 8	vap 8 to 5	No	500.0 *			
45	TEE-vap 8 to 5+7	100		vap 8 to 7	INU	500.0			
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62									
49									
50									
51									
52									
53									
55									
56									
57									
58									
59									
60									
61									
62 63	Asses Task to t		spen HYSYS Version 7.3 (2	5 0 0 7000		Page 12 of 12			
63	Aspen Technology Inc.	Δ	enon HVSVS Vareion 7 3 (2	500 (336)		Page 12 of 12			

Aspen HYSYS Version 7.3 (25.0.0.7336)

Page 12 of 12 * Specified by user.

63 Aspen Technology Inc. Licensed to: NORWEGIAN UNIV OF

