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Abstract

In this Master’s thesis, a user material subroutine for polymers is imple-
mented in the FEA-program, Abaqus. The first part of the thesis provides
an overview of large deformation mechanics and the Arruda-Boyce con-
stitutive law for polymers. This is a strain-rate dependent viscoplastic
material model that includes strain softening and hardening. The main
principles behind user material subroutines for Abaqus were presented,
and an explicit approach was chosen due to simplicity. Several challenges
regarding the implementation have been analyzed and solutions have
been proposed. One particular problem was the calculation of Hencky
strain where the traditional Padé approximation did not suffice.

This thesis also explains how to use the user material subroutine
in an FEA, as well as explaining weaknesses and how to avoid pitfalls.
The implemented model was thoroughly tested, with several strain rates
and loading conditions. The material parameters in the model were also
examined and discussed.

An analysis of void growth in polycarbonate was done using the
implemented model. An unknown error in the user material constrained
the analysis to very small deformations. However, the analysis showed
that polymers experience void growth, but not as excessive as metals.
The reason for this is probably the strain hardening effect imposed by
the polymer chains.

It was concluded that several types of polymers may be modeled by
the user material subroutine, but that it has to be further developed in
order to account for complex geometries with large deformations. This
thesis aims to offer all NTNU students useful tips on how to develop
user material subroutines for polymers in Abaqus, and thus make a small
contribution to the research of polymer behavior.





Sammendrag

Denne masteroppgaven omhandler implementering av Arruda-Boyce ma-
terialmodellen for polymerer i Abaqus. Første del av oppgaven gir en
oversikt over hvordan man håndterer store deformasjoner, og teorien
bak den valgte konstitutive loven. Arruda-Boyce-modellen er avhengig
av tøyningsrate, og inkluderer egenskaper som tøyningsmykgjøring og
herding. Det ble gjort rede for de to hovedprisnippene bak brukermate-
rialmodeller i Abaqus, og valget falt på en eksplisitt tilnærming. Flere
utfordringer vedrørende implementering er analysert, og da spesielt be-
regningen av Henckytøyning, der det viste seg at en Padétilnærming ikke
var tilstrekkelig.

Denne avhandlingen fungerer også som en bruksanvisning for bruker-
definerte materialmodeller i Abaqus, i tillegg til å forklare svakheter og
å gi tips for å unngå fallgruver. Modellen ble grundig testet med flere
tøyningshastigheter og lasteforhold. Alle materialparameterne er også
undersøkt og diskutert.

En analyse av hulromvekst i polykarbonat ble utført ved hjelp av den
implementerte materialmodellen, men en ukjent feil begrenset simulerin-
gene til svært små deformasjoner. Analysen viste at polymerer opplever
hulromvekst, men ikke i like stor grad som man finner i metaller. Dette
skyldes antageligvis herdingen, som forårsakes av polymerkjedene ved
høye tøyningsverdier.

Denne oppgaven viser at materialmodellen kan brukes til å modellere
flere forskjellige polymerer, men at den også må videreutvikles for å ta
høyde for kompleks geometri og store deformasjoner. Oppgaven har som
mål å tilby alle NTNU-studenter nyttige tips om hvordan man utvikler
og anvender brukermaterialmodeller for polymerer i Abaqus.





Preface

This Master’s thesis is written as a part of the Master’s program at
department of Mechanical Engineering at NTNU in the Spring of 2014.
The thesis involves Implementation of the Arruda-Boyce material model
in Abaqus, and finite element analysis on polymers.

I would like to express my appreciation towards supervisor Professor
Zhiliang Zhang for his consistent help and valuable discussions. Also,
big thanks to my fellow student Kasper Sandal and his problem solving
capabilities. Special thanks to the ones closest to me. My parents and my
brother because they are always there to back me up, and my girlfriend
for all her encouragement and support.





Contents

List of Figures ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Ductile Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Large Deformation Mechanics . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Deformation Gradient . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Finding U, V and R . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Arruda Boyce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Linear Elastic Spring . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Rubber Elasticity, "Langevin Spring" . . . . . . . . . . . . . . 10
2.2.4 Viscoplastic Element . . . . . . . . . . . . . . . . . . . . . . . 10

3 Implementation 13
3.1 User Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 VUMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Implementation of Arruda Boyce - Introduction . . . . . . . . . . . . 14
3.4 Layout of the VUMAT for Arruda-Boyce . . . . . . . . . . . . . . . 15

3.4.1 Midpoint Integration Scheme . . . . . . . . . . . . . . . . . . 15
3.4.2 Flow Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.3 Elastic Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.4 Backstress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.5 Material Parameters in the Material Subroutine . . . . . . . 20
3.4.6 Error and Sub Increments . . . . . . . . . . . . . . . . . . . . 21
3.4.7 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.8 Updating the Stress . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Some Mathematical Theory and Numerical Approximations . . . . . 23
3.5.1 Hencky Strain - Padé Approximation . . . . . . . . . . . . . . 23

vii



3.5.2 Exact Hencky strain . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.3 Inverse Langevin . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Explicit and Implicit . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Using Abaqus and the User Subroutine . . . . . . . . . . . . . . . . . 27
3.8 Limitations with the User Material Subroutine . . . . . . . . . . . . 30

4 Single Element Parameter Study 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Uniaxial Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Material Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Elastic Stress Response . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Backstress/Langevin Spring . . . . . . . . . . . . . . . . . . . 39
4.3.3 Viscoplastic Element . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Strain Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Different Load Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Tension and Compression . . . . . . . . . . . . . . . . . . . . 48
4.5.2 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Polymethylmethacrylate - PMMA . . . . . . . . . . . . . . . . . . . 51

5 Cell Model and Void Growth 53
5.1 Cell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Cell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 Strain Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.4 Void Analysis Results . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusion and Suggestions for Further Work 65

References 67

Appendices
A Perturbation Method 69

B The User Material Subroutine - VUMAT 71

C Explanation to Subroutines Used in VUMAT 81

D Strain Triaxiality 83



List of Figures

1.1 Illustration of polymer behaviour . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Ductile fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Illustration of the different elements in the Arruda-Boyce model . . . . 8

3.1 Block diagram of the VUMAT . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Block diagram of the midpoint scheme . . . . . . . . . . . . . . . . . . . 17
3.3 Block diagram of the flow rule . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Block diagram of the elastic stress . . . . . . . . . . . . . . . . . . . . . 19
3.5 Block diagram of the backstress . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Block diagram of the error check routine . . . . . . . . . . . . . . . . . . 21
3.7 Block diagram of the iteration . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 The accuracy of the Padé approximation . . . . . . . . . . . . . . . . . . 25
3.9 The padé approximation fails at very high strain values . . . . . . . . . 26
3.10 How to start the analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.11 Successfull analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 The geometry of the test specimen used in this chapter, and an illustration
of how the specimen deforms. . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 An axisymmetric single element, with y symmetry. . . . . . . . . . . . . 32
4.3 Dimensions of the single element, displacement control. It is imposed a

displacement Ey in the y-direction. . . . . . . . . . . . . . . . . . . . . . 32
4.4 Stress-strain curve from an uniaxial test of Polycarbonate: Sections of

interest: 1: elastic section, 2: yield point, 3: strain softening, 4: strain
hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 A physical view on how the polymer chains affect the material response. 35
4.6 A simple tension test of polycarbonate using axisymmetric elements and

the VUMAT user subroutine. . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Youngs modulus effect on the elastic section and the yield point. . . . . 37
4.8 How changing the Youngs modulus E, affects the material . . . . . . . . 38
4.9 Poissons ratio: close up at the elastic section with the yield point . . . . 38
4.10 The effect of setting T b = 0 in the user material subroutine. . . . . . . . 39

ix



4.11 How changing the Rubber modulus, Cr, affects the material. . . . . . . 40
4.12 How the limited chain parameter N , affects the material . . . . . . . . . 41
4.13 How the pre-exponential factor γ̇0, affects the material . . . . . . . . . . 42
4.14 How the Zero level activation energy A, affects the material . . . . . . . 42
4.15 Illustration of how the preferred shear stress state ratio, sss

s0
, affects the

material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.16 Illustration of how the softening slope h affects the material . . . . . . . 44
4.17 Illustration that shows the viscosity effects of the material . . . . . . . . 45
4.18 Close up at the yield point showing that it depends on the displacement

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.19 Evolution of the yield stress at different displacement rates . . . . . . . 46
4.20 Evolution of the yield stress at different values for γ̇0 . . . . . . . . . . . 47
4.21 Strain history of the specimen. . . . . . . . . . . . . . . . . . . . . . . . 48
4.22 Stress and strain history of polycarbonate at 1mm/s. . . . . . . . . . . 49
4.23 Stress-strain history of polycarbonate at 1mm/s. . . . . . . . . . . . . . 50
4.24 Stress and strain history of the specimen. . . . . . . . . . . . . . . . . . 50
4.25 Close up of the yield point at the stress-strain curve of a uniaxial test of

Plexiglas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.26 Stress-strain curve of Plexiglas at large deformations . . . . . . . . . . . 52

5.1 The material can be approximated by a series of Hexagon prisms . . . . 53
5.2 Approximating the hexagon prism with a cylinder for symmetric reasons. 54
5.3 Using axisymmetry, the cell model can be greatly simplified . . . . . . . 54
5.4 Displacement on the cell model . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Dimensions of the cell model . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 Undeformed cell model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.7 Deformed cell model with no imposed strain ratio. The force traction of

the edge of the cylinder is zero. The color plot shows the most stressed
areas using Mises stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.8 Deformed cell model with strain ratio: m = −15% . . . . . . . . . . . . 58
5.9 Deformed cell model with strain ratio: m = 0% . . . . . . . . . . . . . . 58
5.10 Deformed cell model with strain ratio: m = 10% . . . . . . . . . . . . . 59
5.11 Calculating the current void volume fraction using small rectangles and

the cylindrical shell method. . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.12 It is clear that higher values of m means more rapid rise in the void

volume fraction f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.13 The stress in the y-direction (S22) is plotted against the stress in the

r-direction (S11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.14 A purely elastic plastic material has slightly more void growth than

polycarbonate in an uniaxial test . . . . . . . . . . . . . . . . . . . . . . 62
5.15 A purely elastic plastic material has significantly higher void growth than

polycarbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



5.16 Stress distribution and void shape of the Mises material at 20% strain
and m = 10% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

D.1 Stress in the y-direction vs strain in the y-direction at the given strain
ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

D.2 This figure illustrates the Mises stress vs strain in the y-direction . . . . 84
D.3 This figure illustrates the stress in the radial direction vs strain in the

y-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
D.4 This figure illustrates the strain at the given displacement rates . . . . . 85
D.5 This figure illustrates the stress ratio at the given displacement rates . . 85





Chapter1Introduction

1.1 Motivation

The use of polymers in engineering application has grown considerably over the last
few decades. It is important to find good methodologies of analysis in order to find
the materials capabilities to withstand complex loads. Most polymers are ductile
at room temperature and will fracture somewhat in the same manner as ductile
metals. These stages are: nucleation, void growth and coalescence. The difference in
ductile fracture between metals and polymers is the matrix material surrounding the
impurities and voids.

In order to study how different geometries on the micro scale affect the material
properties, a material model for the pure material must be developed. Several models
for characterizing polymers have been proposed, and include the Arruda-Boyce Model,
Bergstrom Boyce Model, Three Network Model and several others. None of these
material models for polymers are yet built in to Abaqus (v6.12), which makes it hard
to study the behavior of polymers. In order to analyse such materials, it is custom
to utilize a user defined material subroutine. These subroutines are commercially
available, but quite expensive.

The purpose of this paper is to present the Arruda-Boyce model and to show
how to implement it as a user material subroutine for the commercial FEA-software
Abaqus. The user material is also verified by doing some simple finite element
analysis using different loading conditions and material properties. The paper will
also show how to do simulations using the user material subroutines.

1.2 Polymers

The definition of polymers is a combination of two or more compounds called mers.
The number of mers in a given molecule is called the degree of polymerization, and is
for engineering polymers typically in the order of several thousands. These molecules
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2 1. INTRODUCTION

are called polymer chains. Because of the molecular structure, polymers experience
rate dependent viscoplastic deformation. In an undeformed polymer specimen, two
neighboring polymer chains or different segments of a polymer chain folded back upon
itself, encounter weak attractive Van Der Waals forces between the chain segments.

When a polymer specimen is deformed, these forces will try to prevent the
separation of the polymer chains. The elastic resistance in polymers, or Youngs
modulus, is generally several orders of magnitude lower than the elastic resistance
of metals or ceramics. This is because the weak forces between the polymer chains
are significantly weaker than primary bonds. When deforming a polymer specimen,
the molecule chains will stretch and change orientation. At lower strain rates, the
molecules have enough time to move, and the material becomes relatively easy to
deform. However, at high strain rates, the molecules will experience excessive friction
between both themselves and the neighboring molecules. Thus, highest stress is
required to deform the material.

Figure 1.1: Illustration of the polymer deformation. The material yields when the
polymer chains start to align, and the stress will increase significantly when most of
the molecules are aligned.

When most of the polymer chains are stretched, the strength of the polymer rises
significantly. This is because the polymer chains then are aligned and the reason for
the resistance in the material is the primary bonds in the polymer chains. These
forces are much higher than the weak Van Der Waals forces. The effect of the weak
and strong forces is illustrated in figure 1.1
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1.3 Ductile Fracture

All materials contain impurities such as particles or inclusions. In ductile materials
these impurities are highly significant in the deformation process. The ductile fracture
process involves three stages: void nucleation, void growth and coalescence. These
stages are illustrated in figure 1.2. When a ductile material undergoes deformation,
the matrix surrounding the impurities will debond, and the sphere that is created is
then called a void. This process is the void nucleation. The mechanism depends on
both the material properties of the surrounding matrix and the material properties
of the particle. The next stage in the ductile fracture process is void growth, and
studies show that the void growth is highly dependent on the hydrostatic stress in
the material and in the initial shape of the void.

Figure 1.2: The illustration of the different mechanisms involved in ductile fracture.
a: Impurities or inclusions in the material matrix. b: Void nucleation. c: Void growth.
d: Strain localization between voids. e: Necking between voids and coalescence. f:
Fracture. (Picture taken from "Fracture Mechanics, Fundamentals and Applications",
T.L. Anderson[4])

In 1975, A.L Gurson [7] developed an analytical micro mechanical model for
ductile void growth. It is by now understood that, deformation in combination with
high hydrostatic pressure leads to a significant void growth in a ductile metal, and
the Gurson model can, with high accuracy, predict the void growth. Voids reaching a
critical size will experience necking between themselves and neighboring voids. This
is when the original Gurson model breaks down, and the strength of the material
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drops significantly. This stage in the ductile fracture mechanism, is called void
coalescence, and is the last stage before fracture. In 2000, Z.L. Zhang, C. Thaulow,
and J, Ødegård [15] completed the Gurson model to account for void coalescence by
including the Thomason-criteria.

In the recent years, there has been given a significant attention to the fracture
mechanics of ductile polymers, and several attempts have been made on developing
a "Gurson model for polymers". In order to accomplish this, it is important to
understand the nucleation process, void growth and coalescence of polymers. The
main goal of this paper has been to develop the material model for the surrounding
polymer matrix. However, when the material model was completed, some simple
finite element analyses have been done on a cell model containing an initial void.
Only the void growth has been studied.



Chapter2Theory
2.1 Large Deformation Mechanics

2.1.1 Deformation Gradient

The mechanics of fully three-dimensional large strain deformation involve the use
of the deformation gradient tensor, F . The Deformation gradient is a fundamental
measure of large deformations in continuum mechanics. When an object moves from
initial position to a deformed position, two parameters can change. The position
might change and the object may be deformed. Consider an infinitesimal line segment
dX. The initial position of the line segment is called X, and after the deformation
the same line segment is called dx at the new position x. The deformation gradient
describes the transition between dX to dx such that:

dx = F · dX (2.1)

Thus, the definition of F is given by:

F = dx

dX
(2.2)

or in Cartesian coordinates:

Fij = δxi
δXj

=


δx1
δX1

δx1
δX2

δx1
δX3

δx2
δX1

δx2
δX2

δx2
δX3

δx3
δX1

δx3
δX2

δx3
δX3

 (2.3)

In strain-based constitutive laws, you can separate the strain increments in both
elastic strain and inelastic strain like the following: dε = dε+ dεi. The same goes for
the deformation gradient, but in a different way.

Ftotal = Felastic · Finelastic (2.4)

Equation 2.4 is based on the simple assumption, that for each increment, the first
part of the deformation is purely inelastic, and the last part is purely elastic. Note

5



6 2. THEORY

that even for isotropic materials, F does not have to be symmetric. In several cases,
we need to decompose the deformation gradient F into the rotation tensor R in
combination with the right stretch tensor U , or the left stretch tensor V . This is
called polar decomposition.

F = RU = V R (2.5)

The rotation tensor from equation 2.5 is proper orthogonal, i.e RTR = det(R) = I.
Where I is the identity tensor. R is a measure of the local rotation of X. The initial
line segment is either first stretched by U and then rotated by R, or it is first rotated
by R and then stretched by V . The Rotation tensor R is the same for each case,
but the right and left stretch tensors V and U are different. In chapter 2.1.2 it is
explained how to find R and U . Equation 2.6 shows the decomposition of the total
deformation gradient, F , in the Arruda-Boyce theory.

F = F eF i (2.6)

F e is the elastic deformation gradient and F i is the inelastic deformation gradient,
given by the relaxed configuration obtained by an elastic unloading to a stress-free
state. The "rate of deformation gradient change", Ḟ , is given by the velocity gradient,
L, defined in equation 2.7.

Ḟ = (ḞF−1)F = LF thus L = ḞF−1 (2.7)

L is decomposed into:
L = D +W (2.8)

where D is the rate of deformation, andW is the spin tensor. The elastic deformation
gradient is restricted to being only the result of stretching. L can then be decomposed
into:

L = Le + F eLiF e−1 (2.9)

where
Li = Ḟ iF i

−1 = Di +W i (2.10)

Di is the plastic rate of deformation and W i is the plastic spin tensor. A standard
assumption for isotropic materials is that W i = 0 [8]. Thus, for an isotropic material:

Ḟ i = DiF i (2.11)

The constitutive relationship used to find Di is the heart of the Aruda-Boyce Theory,
and is described in chapter 2.2.4.

2.1.2 Finding U, V and R

In order to find U, V and R it is necessary to calculate some eigenvalues. Calculations
of eigenvalues are relatively easy for a symmetric matrix. It is custom to first obtain
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a symmetric matrix that contains all the information from the deformation gradient.
The Cauchy-Green tensor given in equation 2.12 is by definition a symmetric matrix.

C = U · U = FTF (2.12)

This also imposes that:
U =

√
C (2.13)

Thus, we need to find the matrix square root of C. In order to do this, Cauchy-Green
tensor has to be rotated until it only contains the principal values. The square root
can then be found using the relationship in equation 2.14

√
C ′ =


√
c′11 0 0
0

√
c′22 0

0 0
√
c′33

 where C ′ =


c′11 0 0
0 c′22 0
0 0 c′33

 (2.14)

for a matrix C ′ that only has values on the diagonal. Since C is a symmetric,
positive finite tensor, it has a set of positive eigenvalues. Obtain the eigenvalues
and the eigenvectors and make the eigenmatrix C ′ and the directionmatrix Q. The
relationship is given by:

C = QTC ′Q (2.15)

where C ′ has the eigenvalues in the diagonal and zeros elsewhere. Q has the three
eigenvectors in each column.

C ′ =


eig1 0 0

0 eig2 0
0 0 eig3

 and Q =


...

...
...

N1 N2 N3
...

...
...

 (2.16)

We can now find U :
U =

√
C = QT

√
C ′Q (2.17)

and the rotation tensor is given by:

R = FU−1 (2.18)

When R is found, V can easily be extracted from the deformation gradient:

V = FR−1 (2.19)

2.2 Arruda Boyce

2.2.1 Overview

The Arruda-Boyce model [5] is a hyperelastic and viscoplastic constitutive model
that is used to describe the mechanical properties of rubber and polymers. The
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model highly differs from constitutive models for metals on the fact that it does not
have a clearly defined transition point between elastic and inelastic response. The
yield point can change for different strain rates. The rheological model is described
in figure 2.1. The Arruda-Boyce constitutive law is made from three elements:

Figure 2.1: Illustration of the different elements in the Arruda-Boyce model

– A Linear elastic spring, in series with the two other elements in the inelastic
network. This gives the initial linear elastic strain response.

– A viscoplastic element (Dampening). This gives rate dependence in all the
loading stages.

– Rubber elasticity based on the eight chain model called the Langevin Spring.
This element deals with hardening.

The Arruda-Boyce Model differs highly from most metallic models because the main
variable used is the deformation gradient, F , rather than the strain increment, dε.
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2.2.2 Linear Elastic Spring

The linear elastic spring characterizes the initial response as elastic using Hooks
law to calculate the elastic strain. The stress in the linear elastic spring is the total
stress. Since the material might experience excessive deformation, large strain theory
and finite hyperelasticity is applied. The common Hooks stress-strain relation for
isotropic infinitesimal deformation is described in eq 2.20

σ = L (ε) (2.20)

L is the fourth order elasticity tensor defined in equation 2.21.

Lijkl = Λδijδkl +G(δikδjl + δilδjk) (2.21)

With two elastic material constants, Λ and G, named after Gabriel Lamé:

Λ = Eν

(1 + ν)(1− 2ν) (2.22)

and
G = E

2(1 + ν) (2.23)

Where E is Youngs modulus and ν is Poissons ratio. For an isotropic material,
considering symmetry in the stress tensor and the absence of initial stresses and
strains [10] , Hooks law is defined as

σij = Λεkkδij + 2Gεij ⇔ σ = Λtr(ε)I + 2Gε (2.24)

Polymers experience large deformations, and ince ε is a measure for infinitesimal
strain, it has to be replaced with the Hencky strain tensor, (a logarithmic strain
tensor). The Cauchy stress tensor, σ, has to be replaced with the Kirchoff stress
tensor τ . The new modified Hooks law for large deformations is then defined as:

τij = Λhkkδij + 2Ghij ⇔ τ = Λtr(h)I + 2Gh (2.25)

The Hencky strain[14], h, can be calculated using equation 2.26

h = 1
2 ln(B) = ln(

√
B) (2.26)

Where B = FFT is the Cauchy-Green tensor. The relationship between the Kirchoff
stress tensor and the Cauchy stress tensor is given by: τ = Jσ, where J = det[F ].
The general equation for Cauchy stress with large deformations for a purely elastic
material is given by equation 2.27

σ = 1
J

[Λtr(h)I + 2Gh] (2.27)
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Since the Arruda-boyce material is experiencing plastic deformation, only the elastic
deformation gradient, F e, is used in the calculation of the Cauchy elastic stress tensor
T e.

T e = 1
det[F e] [Λtr(ln(

√
Be))I + 2Gln(

√
Be)] (2.28)

Where Be is the elastic Cauchy-Green tensor, and F e is the elastic deformation
gradient. See chapter 2.1.1 for more information.
Note: evaluating the Hencky strain requires the matrix logarithm in combination with
the square root of a matrix or the decomposition of the elastic deformation gradient
F e = V eRe. None of these operations are easy, and will be explored in chapter 3.5.1
and 3.5.2

2.2.3 Rubber Elasticity, "Langevin Spring"

The nonlinear rubber elastic spring element deals with an anisotropic resistance to
chain alignment. In this Master’s thesis, the rubber elasticity spring, or Langevin
spring, is based on the eight chain model of rubber elasticity [5].

The stress in the Langevin spring, T b depends on the inelastic deformation, and
is given by equation 2.29. The b stands for backstress.

T b = 1
3Cr
√
NL −1

[Λpchain√
N

]Λpi
2 − 1

3I1

Λpchain
(2.29)

Cr is the rubber modulus term, a material constant which is a combination of chains
per volume, n, the Boltzmann constant, κ and the absolute temperature, θ. Cr is
defined in equation 2.30

Cr = nκθ (2.30)

N is a statistical parameter related to the limiting value of chain stretch. L −1 is the
inverse Langevin function, see chapter 3.5.3. Λpi are the principal applied stretches
given by the eigenvalues of the inelastic stretch tensor V i. (see chapter 2.1.1)

I1 = Λp1
2 + Λp2

2 + Λp3
2 (2.31)

Λpchain is the stretch on any individual chain in the network given by equation 2.32

Λpchain =

√
trace(F iF iT )

3 (2.32)

2.2.4 Viscoplastic Element

When the linear elastic stress T e (chapter 2.2.2) and the backstress T b (chapter
2.2.3) are obtained, it is possible to calculate the rate of shape change in the relaxed
configuration, Di. The viscoplastic stress, T vp is given by the tensorial difference
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between the total stress T e and the convected back stress on the nonlinear spring
element.

T vp = T e − 1
Je
F eT bF eT (2.33)

T vp is the plastic driving stress state, which continues to activate plastic flow. Only
the deviatoric part of T vp leads to plastic deformation, and it is defined as:

T vpdev = T vp − 1
3 tr[T

vp] (2.34)

The effective equivalent shear strength, τ , is defined as

τ =
√
T vpdev : T vpdev

2 (2.35)

The flow rule in the Arruda-Boyce theory is defined as

Di = γ̇pN (2.36)

N is a normalized tensor aligned with the deviatoric driving stress state. See equation
2.37

N = T vpdev√
2τ

(2.37)

And γ̇p is the plastic shear strain rate given by equation 2.38

γ̇p = γ̇0exp
[
− As

κθ

(
1−

(τ
s

) 5
6
)]

(2.38)

where γ̇0 and A is material constants. θ is the absolute temperature and κ the
Boltzmann constant. Strain softening is modeled by taking the "athermal shear
stress" s to evolve to a "preferred" state, sss. The rate of s is described in the next
equation.

ṡ = h
(

1− s

sss

)
γ̇p (2.39)

Where h is the softening slope, a material constant.





Chapter3Implementation

3.1 User Subroutines

In Abaqus, a number of material models are already built in, and it keeps increasing
its library every year, traditionally with a main focus on metals. Every model
embedded in the Abaqus material library has to be highly stable, fast and accurate.
Material models for polymers with large strain deformation and viscoplastic effects
are not yet included in the library, thus they have to be implemented manually.
Abaqus supports both explicit and implicit user material models: VUMAT and
UMAT. It is always recommended to write an explicit algorithm (VUMAT) before
trying to make an implicit algorithm (UMAT). This is because VUMAT does not
require the calculation of the consistent tangent stiffness matrix (see appendix A).

3.2 VUMAT

Every VUMAT subroutine has to begin and end as shown [3]:

subroutine vumat (
C Read only ( unmodi f i ab l e ) v a r i a b l e s −

1 nblock , ndir , nshr , nstatev , n f i e l dv , nprops , lannea l ,
2 stepTime , totalTime , dt , cmname , coordMp , charLength ,
3 props , dens i ty , s t r a i n Inc , r e lSp in Inc ,
4 tempOld , stretchOld , defgradOld , f i e l dOld ,
5 s t re s sOld , stateOld , enerInternOld , ener Ine lasOld ,
6 tempNew , stretchNew , defgradNew , f ie ldNew ,

C Write on ly ( m o d i f i a b l e ) v a r i a b l e s −
7 stressNew , stateNew , enerInternNew , enerInelasNew )

C
i n c lude ’ vaba_param . inc ’

C
dimension props ( nprops ) , dens i ty ( nblock ) , coordMp( nblock , ∗ ) ,

13
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1 charLength ( nblock ) , s t r a i n I n c ( nblock , nd i r+nshr ) ,
2 r e l Sp i n In c ( nblock , nshr ) , tempOld ( nblock ) ,
3 s t re tchOld ( nblock , nd i r+nshr ) ,
4 defgradOld ( nblock , nd i r+nshr+nshr ) ,
5 f i e l dO ld ( nblock , n f i e l d v ) , s t r e s sO ld ( nblock , nd i r+nshr ) ,
6 stateOld ( nblock , ns tatev ) , enerInternOld ( nblock ) ,
7 ene r Ine la sOld ( nblock ) , tempNew( nblock ) ,
8 stretchNew ( nblock , nd i r+nshr ) ,
8 defgradNew ( nblock , nd i r+nshr+nshr ) ,
9 f ie ldNew ( nblock , n f i e l d v ) ,
1 stressNew ( nblock , nd i r+nshr ) , stateNew ( nblock , ns tatev ) ,
2 enerInternNew ( nblock ) , enerInelasNew ( nblock ) ,

C
character ∗80 cmname

C
do 100 km = 1 , nblock

user coding

100 continue
return
end

VUMAT, is a Fortran subroutine which implies that every variable used needs to be
given a type and a dimension. Since VUMAT is an explicit user material, it contains
a do loop, which calculates the stress in every integration point in the model. This
means that for every time VUMAT is executed, the stress is updated for the whole
model. All variables that are passed in for information are defined at the VUMAT
by default. The meaning of each variable can be found in the documentation for user
material subroutines[3].

All user coding has to be done where it says: "user coding". It is crucial that the
VUMAT is built exactly this way, or the VUMAT will not work correctly. Exceptions
are user defined subroutines (inside VUMAT) such as: transpose of a matrix, inverse
of a matrix or calculations of eigenvalues. These small subroutines can be written
at the end of the VUMAT code. This saves a lot of space in the VUMAT, because
operations that are needed several times can then be called in the user coding.

3.3 Implementation of Arruda Boyce - Introduction

The principle with the explicit user material subroutine VUMAT is quite simple.
Abaqus provides an initial strain state and a strain increment. VUMAT is a user
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defined explicit constitutive law that updates the stress to the correct value. For
a simple theory like purely elastic, the VUMAT code can be written in about 10
lines. This Arruda-Boyce VUMAT however, is a code at roughly 1000 lines. Since
the Arruda-Boyce Theory involves large deformations, deformation gradients are
used instead of strain increments.

3.4 Layout of the VUMAT for Arruda-Boyce

The only information needed at the start of the increment, is the total deformation
gradient, Ft, the inelastic deformation gradient, F it, and the softening factor st.
The only other information that is known about the increment is the time step, dt,
and the deformation gradient at the end of the increment, Ft+dt. VUMAT is used
to update the stress state at the end of the increment, Tt+dt. It is also necessary
to store the updated inelastic deformation gradient F et+dt and the updated strain
softening parameter st+dt. These will be used at the start of the next increment. See
equation 3.1

(Ft, Ft+dt, F it, st, dt) ⇒ (Tt+dt, F it+dt, st+dt) (3.1)

The elastic strain increment is not stored because it can easily be extracted from the
total deformation gradient and the inelastic deformation gradient. F e = FF i

−1. The
stress at the end of the increment, Tt+dt, is based on the elastic deformation gradient
at the end of the increment, F et+dt. Finding F et+dt is not an easy task, because the
rate of F e is not known. In order to find F et+dt, it is necessary to first find the rate
of the inelastic deformation gradient, Ḟ i, calculate the inelastic deformation gradient
at the end of the increment, F it+dt, and use that information to extract F et+dt from
Ft+dt. Ḟ i is found using the flow rule (chapter: 3.4.2).

The integration method used in this VUMAT is the midpoint Runge-Kutta
method described in chapter: 3.4.1. The accuracy of the midpoint scheme is checked
every time. If the accuracy is not sufficient, the increment must be divided into several
smaller sub increments. The accuracy of the sub incrementation is continuously
tested, and if the error gets too big, the sub incrementation process starts over
again with even smaller increments. The outline of the VUMAT user subroutine is
described in figure 3.1.

3.4.1 Midpoint Integration Scheme

This midpoint Runge Kutta scheme[9] is approximately a second order accuracy
scheme. It provides an approximation for the inelastic deformation gradient and
the softening parameter at the end of the increment. The midpoint scheme should
generally give a more accurate result than a simple forward Euler scheme[8], which
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Figure 3.1: Block diagram of the VUMAT

is a first order scheme. The principle of the Midpoint scheme for the Arruda-Boyce
theory is explained in the equations 3.2 to 3.7.

(Ḟ it, ṡt) = f(F et, F it, st) (3.2)

F it+ dt
2

= F it + dt

2 Ḟ
i
t (3.3)

st+ dt
2

= st + dt

2 ṡt (3.4)

(Ḟ it+ dt
2
, ṡt+ dt

2
) = f(F et+ dt

2
, F it+ dt

2
, st+ dt

2
) (3.5)

F it+dt = F it + dtḞ it+ dt
2

(3.6)
st+dt = st + dtṡt+ dt

2
(3.7)

In order to get the elastic deformation gradient at the midpoint, it is necessary to
find the total deformation gradient at the midpoint. This is done by taking the
average of the deformation gradient at the start of the increment and at the end of
the increment. See eq 3.8.

Ft+ dt
2

= Ft + Ft+dt
2 (3.8)

The flow rule is utilized two times for each run of the midpoint scheme. This is
because it needs the inelastic deformation rate and the strain softening parameter
rate at the start and in the middle. Consequently, this makes the midpoint scheme
twice as computationally expensive as a Forward Euler scheme. The outline of the
Midpoint scheme is explained in figure 3.2
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Figure 3.2: Block diagram of the midpoint scheme

3.4.2 Flow Rule

(Ḟ it, ṡt) = f(F et, F it, st) (3.9)

The flow rule is the most complicated operation in this subroutine and includes
roughly all of the Arruda-Boyce theory. The equations used in the Flow Rule are
described in chapter: 2.2.3, 2.2.2 and 2.2.4. When Di

t is found from equation 2.36,
Ḟ i is calculated using equation 3.10.

Ḟ i = DiF i (3.10)

At the same time, it is necessary to find ṡ using equation 2.39. The flow rule in
combination with an integration scheme, provides an approximation for the updated
elastic deformation gradient. The simplest form is the forward Euler method. An
approximation for F it+dt and st+dt is given using equation: 3.11 and 3.12.

F it+dt = F it + dtḞ it (3.11)
st+dt = st + dtṡt (3.12)
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Figure 3.3: Block diagram of the flow rule

Since the flow rule contains some numerical approximations, it can produce some
errors. But the main source of convergence errors in the VUMAT comes from the
integration scheme. The flow rule is illustrated with a flowchart in figure 3.3. Notice
that a decision has to be made on whether τ is equal to zero. If τ is equal to zero,
the material response is purely elastic and the calculation of the direction vector
N (see eq: 2.37) produces a singularity problem. The solution to this problem is
simple: τ = 0 ⇒ N = 03x3. "When there is no plastic deformation, the direction
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of the plastic deformation does not exist". The calculation of elastic stress and the
backstress is embedded in the flow rule and will be further explored in chapter 3.4.3
and 3.4.4.

3.4.3 Elastic Stress

Calculation of the elastic stress or the total stress is done using only the elastic
deformation gradient. The tricky part of the calculation is to extract the Hencky
strain, h, from the deformation gradient. In other implementations of the Arruda-
Boyce theory, this is normally done using a second order Padé approximation ([9],[6]).
It is fast and accurate for deformations up to 100% strain. However, for more
excessive deformations, the Padé approximation breaks down, and a better method
must be used. Proposed in this thesis is an exact calculation of the Hencky strain
using eigenvalues and eigenvectors of the elastic Cauchy-Green tensor Be. It turns
out that the extra computational power needed, does not effect the efficiency of the
VUMAT. The method is explored in chapter 3.5.2. When the Hencky strain, h, is
found, the calculation of the stress is done using Hooks law for large deformation. A
flow chart explaining the calculation is illustrated in figure 3.4.

Figure 3.4: Block diagram of the elastic stress

Where the equation for T eij is given by eq: 2.28.

3.4.4 Backstress

The calculation of the backstress is based on the eight chain theory and the Langevin
spring[5]. The equations used in this routine are explained in chapter 2.2.3. Similar
to the calculation of the elastic stress, it is also required to calculate the eigenvalues
of Bi. Moreover, the elastic deformation gradient is also used because the backstress
is taken to be coaxial with the elastic deformation. A flow chart explaining the
calculation is given in figure 3.5.

Where the equation for calculating T b is given by eq 2.29
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Figure 3.5: Block diagram of the backstress

3.4.5 Material Parameters in the Material Subroutine

The material properties needed in the user material subroutine are defined in the
next table:

E Youngs Modulus
ν Poissons ratio
γ̇0 Pre-exponential factor
h Softening slope
sss

s0
Preferred shear stress state ratio

A Zero stress level activation energy
n Number of chains per unit volume
N Limiting chain stretch parameter
θ Absolute temperature

Many of the material parameters are combined as shown in the following table:

Combination of constants Values Description
G E

2(1+ν) Elastic shear modulus
Λ Eν

(1+ν)(1−ν) Cross modulus
Cr nκθ Rubber modulus term
s0 0.077 G

1−ν Initial athermal shear strength
sss

sss

s0
∗ s0 Preferred shear stress state

Flowconst A
θκ *For simplicity

To save computational power and simplify the user material subroutine, all
parameters and combination of parameters needed for the calculations are combined
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in an 1x8 vector mprop.

mprop = [G,Λ, Cr, N, γ̇0, h, sss, f lowconst] (3.13)

3.4.6 Error and Sub Increments

Since the correct analytical solution to the problem is not known, it can not be used
to check the accuracy of the midpoint integration scheme. The method used in this
VUMAT is to see if the time step is small enough to give a good approximation.
This is done by calculating the "weighted difference" between the midpoint scheme
and a simple forward Euler scheme:

(Ḟ it, ṡt) = f(F et, F it, st) (3.14)
F it+dt,Euler = F it + dtḞ it (3.15)

(3.16)

The difference between F it+dt and F it+dt,Euler scales with dt2 [9]

Error = F it+dt − F it+dt,Euler ≈ 02dt
2 (3.17)

Figure 3.6: Block diagram of the error check routine

The difference between the midpoint integration solution and the initial deforma-
tion gradient, or step length scales with dt

Step = F it+dt − F it ≈ 01dt (3.18)

The weighted error ε can then be be calculated using equation 3.19

ε = Error

Step
= ||F

i
t+dt − F it+dt,Euler||2
||F it+dt − F it||2

= αdt (3.19)

where || ∗ ||2 is the Frobenius norm. α = ε
dt is a constant that is used in order to

find a suitable sub time step.
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3.4.7 Iteration

When the error ε has been found, it is possible to propose a new time step. In order
to keep the solution stable, it is preferable to keep ε less than a prescribed constant c.
This VUMAT has used c = 0.01. The new time step dtnew is proposed in equation
3.23 using the original time step, dt, the accuracy constant, c, and the weighted error,
ε.

εnew < c (3.20)
α ∗ dtnew < c (3.21)

dtnew < dt ∗ c
ε

(3.22)

dtnew = b ∗ dtc
ε

(3.23)

b can be chosen to have any value in the domain: 0 < b < 1. The default value in
the user material is: b = 0.95, in order to make sure that the new time step is lower
than dt ∗ kε . When the new time step is calculated, the number of iterations is given
by equation 3.24

iter = ceil( dt

dtnew
) (3.24)

Where ceil(∗) means rounding up to the next integer. This means that the new time
step has to be slightly changed in order to reach dt after iter iterations. dtnew = dt

iter .
The deformation gradients F e and F i have to be updated at the start of each sub
increment. In the first sub increment, they get the same value as the deformation
gradients at the start of the main increment. The updated deformation gradients
after each sub increment are kept, and used as the start of the next sub increment.
The same goes for the softening parameter s. The exception is the total deformation
gradient at the end of each sub increment. It is always calculated using the total
deformation gradients in the main increment, the number of iterations, iter, and the
iteration counter k. This is more easily explained in figure 3.7.
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Figure 3.7: Block diagram of the iteration

3.4.8 Updating the Stress

When the approximation for F it+dt is acceptable, the stress can be calculated:

F et+dt = Ft+dtF
i
t+dt

−1 (3.25)
Tt+dt = T et+dt = f(F et+dt) (3.26)

Moreover, the stress has to be rotated using the rotation tensor, R, shown in 2.1.2.
The rotation is given by equation 3.27. Since this is a VUMAT and not a UMAT,
the stretch tensor, U , is available at the start of the increment, and R can easily be
calculated by: R = FU−1. Then, F it+dt and st+dt are stored in the state variables.

Trotated = RTRT (3.27)

3.5 Some Mathematical Theory and Numerical
Approximations

Since user subroutines for Abaqus have to be written in Fortran, routines for common
tasks like an eigenvalue problems or matrix logarithm have to be developed.

3.5.1 Hencky Strain - Padé Approximation

Evaluating the Hencky strain is necessary to find the elastic stress T e. The most
fundamental definition of the Hencky strain is given by h = ln(V e), but because of
the relationship, F e = V eRe, it is possible to avoid the polar decomposition. See
equation 3.28

Be = F eF eT = V eRe(V eRe)T = V e(ReReT )V eT = V eV eT = V e2 (3.28)
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Consequently:

V e =
√
Be (3.29)

ln(V e) = ln(
√
Be) (3.30)

ln(V e) = 1
2 ln(Be) (3.31)

In this paper, the Hencky strain is always calculated using the elastic Cauchy-Green
tensor Be. Calculation of the matrix logarithm analytically will always require the
eigenvalues and eigenvectors. Since that calculation is not built in to the Fortran
environment, they are often avoided for simplicity and to keep computational costs
down. Traditionally, this is done by using a higher order Padé approximation
([9],[8],[10]). The Padé approximation is explained in equation 3.32 and equation
3.33.

ε = ln(
√
B) = 1

2 ln(B) = Padé(B) (3.32)

The approximation is given by:

Padé(X) = 3(X + I)(X − I) · (2X2 + 8X + 2I)−1 (3.33)

Where X is a 3x3 matrix and I is the 3x3 identity matrix. A stress strain curve
is shown in figure 3.8 where the padè approximation is compared to an analytical
solution of the Hencky strain (chapter 3.5.2). The two curves are approximately
identical for strains even up to 100%. This Padè approximation is very accurate for
small deviations from the identity matrix.

3.5.2 Exact Hencky strain

The Padé approximation works fine for deformations up to 100% strain. However,
when trying to analyze a cell model with a spherical void, the analysis crashed, and
the error messages given from Abaqus were either "massive distortion" or "floating
point error". The problem seemed to come from strange behavior in the linear elastic
spring. Much effort in this master thesis has been on finding a solution for this
problem. It turned out that some elements in the cell model did experience extremely
large deformations, and the Padè approximation did not give a correct value for the
Hencky strain. It was then decided to try calculating the Hencky strain analytically.
If Be is a diagonalizable matrix, the logarithm and the square root of Be can be
calculated equation 3.34.

h = Q


0.5
√
eig(Bi)1 0 0
0 0.5

√
eig(Bi)2 0

0 0 0.5
√
eig(Bi)3

Q−1 (3.34)

Where eig(Be)k are the eigenvalues of Be and Q is the eigenvector matrix of Be. Se
chapter: 2.1.2 for more information regarding the eigenvectors. The routine used
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Figure 3.8: The accuracy of the Padé approximation

to calculate the eigenvalues and eigenvectors is taken from Joachim Kopp 2008 [12]
and [11]. Equation 3.34 requires that the sum of dimensions of its eigenspace must
be equal to 3. This might not always be the case, but it is still a more accurate
calculation of the Hencky strain than the Padé approximation. Notice that the simple
relationship 0.5 ∗ ln(X) = log(

√
X) is used to avoid taking the square root. The

effect of calculating the Hencky strain in this manner is illustrated in figure 3.9.

Calculating the Hencky strain using this method has proven to give better results
at very high strains, and the extra computational time needed compared to the Padé
approximation is actually negligible. This could be due to the subroutine, optimized
for 3x3 matrices, used for calculating the eigenvalues. However, after even more
extreme strain values, this method also fails and the slope of the stress-strain curve
becomes negative. It might be that Bi is not always a diagonalizable matrix.

3.5.3 Inverse Langevin

Another approximation that is used in Arruda-Boyce is the inverse Langevin function.
The Langevin function is quite simple: L (x) = coth(x)− 1

x , but the inverse L −1(x)
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Figure 3.9: The padé approximation fails at very high strain values

must be approximated and is given by equation 3.35.

L −1(x) = x
a+ bx2

1− x2 (3.35)

where
a = 2.99248834685337 (3.36)

and
b = −1.14365108190676 (3.37)

3.6 Explicit and Implicit

It is custom to write an explicit subroutine before trying to make an implicit, simply
because the implicit subroutine is more complex. In an implicit user material
subroutine, each node in the model depends on the neighboring nodes. In an explicit
user material subroutine, each node is independent. In principle, the only extra
computations needed when making an implicit user material is the calculation of the
consistent tangent stiffness matrix: δ∆σ

δ∆ε . Because of the complexity of the Arruda-
Boyce Model, an analytical solution is not an option. If the stress is calculated
correctly, it is always possible to calculate the consistent tangent stiffness matrix
using a perturbation method. This method is explored in appendix A.
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3.7 Using Abaqus and the User Subroutine

In order to run an Abaqus analysis with a user material subroutine, a functional
combination of Abaqus, Intel Fortran and Microsoft Visual studio has to be installed
on the computer. Running the analysis from within the Abaqus interface has proven
to be troublesome. The procedure used during this master project is the following
section:

Make the model in the Abaqus interface, and define a random material. Be sure
to specify some kind of density, or else a dynamic explicit analysis will not run.
Choose "dynamic explicit" in the step module. When the model is finished with an
appropriate mesh, create a job and check that the analysis is successful with the
simple material definition. If it is successful, make an input file. Put the input file,
for example, "model.inp", and the user subroutine file, "ABoyce.for", in the same
folder. The input file has to be modified manually in order for the user material to
work. Open the input file with Microsoft visual studio or a simple text editor. Scroll
down to the "ASSEMBLY" header, and change the material definition to:

mate r i a l=ABoyce

Where "ABoyce" is the name of the user material subroutine. Then scroll down to
the "MATERIALS" header and change the whole section to the following:

∗∗ MATERIALS
∗∗
∗ Materia l , name=ABoyce
∗ Densi ty
1 .2 e−9,
∗User Materia l , cons tan t s=1
1 . ,
∗DEPVAR
6
∗∗

The density of the material has to be specified in the input file. The reason for
the apparently low density is that the "ABoyce" subroutine uses mm and not m as
standard length dimension (In order to get stress in MPa). This means that the
material definition states that ρ = 1.2∗10−9kg/m3 = 1.2kg/mm3. "DEPVAR" needs
to have the value 6 or greater, because 5 of the inelastic deformation gradient elements
have to be stored, in addition to the strain softening parameter. By standard, Abaqus
divides the step into 20 intervals, such that only 20 (x,y) values are available for
plotting. In order to get more intervals, go to the "OUTPUT" header in the input
file and change the line:
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"Output , ␣ va r i ab l e=p r e s e l e c t "

into

"Output , ␣number␣ i n t e r v a l =100 ,␣ va r i ab l e=p r e s e l e c t "

This will increase the number of intervals to 100. Save the input file.

Normally, running a finite element analysis with the Abaqus engine is done using
the "Abaqus command" environment, but then user materials are not supported. In
order to use the user material, Open "Fortran Build Environment for applications
running on Intel(R) 64". Make sure to be in the same directory as the input file and
the user subroutine. (Use simple commands such as "dir" and "cd"). When in the
right directory, type the following:

" abaqus␣double ␣ job=Model␣ user=Aboyce␣ i n t "

see figure 3.10 for more information. The different terms are explained as:

Figure 3.10: How to start the analysis

– "abaqus double" -> start the Abaqus solver with double precision
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– "job=Model" -> specify the input file. In this case the "Model.inp" file.

– "user=Aboyce" -> specify the user subroutine. In this case the "ABoyce.for"
file.

– "int" -> Interactive modus. Monitor the analysis and get eventual error
messages.

Press enter to start the analysis.

When the analysis is finished, the results are stored in the odb-file: "Model.odb".
Open this file in Abaqus and view the results. See figure 3.11 for more information.
For models with high numbers of elements, it is possible to speed up the analysis

Figure 3.11: Successfull analysis

using multiple processors or CPU-cores. The workstation used in this master project
had 8 cores, which allowed the use of 7 cores for the analysis. Notice that the model
has to contain at least n elements in order to use n CPU-cores. Using multiple cores
is done by changing the command given in the Fortran terminal into:

abaqus double job=Model cpus=7 user=Aboyce i n t

This will speed up the analysis by a factor of approximately 7.
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3.8 Limitations with the User Material Subroutine

Every analysis of a single element has proven successful using the user material
subroutine. However, when analyzing more complex geometries, such as a cell
model with a void, the user material subroutine tends to fail at fairly small global
deformations. Much of the time spent implementing the Arruda-Boyce theory has
been focused on making the user subroutine stable for different geometries. Normal
error messages are "excessive distortion in element" and "Floating point error". The
first error message can occur even when using the material models built in to Abaqus.
When the second error message appears however, its root comes almost always
exclusively from the user material subroutine. It means that some variables are
not properly defined. Common reasons for this could be dividing by zero or that a
variable goes towards infinity for some reason. When analyzing voids in chapter 5,
the analysis constantly crashed. The source of this error is still not fully understood,
but it seems that problem rises in elements with extremely large deformations, and
that the sub incrementation is not working correctly, i.e. smaller time steps do not
increase the accuracy of the analysis. This can perhaps be solved using a better
iterative integration method.



Chapter4Single Element Parameter Study

4.1 Introduction

In order to study the Arruda-Boyce model implemented in the VUMAT user material,
a simple tension test of a cylinder specimen has been considered. The cylinder has a
radius of 15mm and a height of 30mm. The cylinder is tested for uniaxial load with
displacement control as described in figure 4.1

Figure 4.1: The geometry of the test specimen used in this chapter, and an illustration
of how the specimen deforms.

For simplicity and due to geometry, the cylinder can be modeled as a single
axisymmetric element. It is always recommended to test the user material using a
single element before analyzing a more complex problem. The element is described
in figure 4.2 and 4.3.

31
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Figure 4.2: An axisymmetric single element, with y symmetry.

Figure 4.3: Dimensions of the single element, displacement control. It is imposed a
displacement Ey in the y-direction.

The single axisymmetric element has dimensions: H = R = 15mm and is imposed
a displacement Ey. Since the Arruda-Boyce material is a viscoplastic material, it is
of course strain rate dependent, and analysis with constant deformation ratios are
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preferred. The element is always deformed with displacement control using a linear
ramp function. and the rate is given by equation 4.1

u̇ = utot
dt

(4.1)

where utot is the total displacement, and dt is the total time step for the increment.
Analysis of the single element is divided into 3 sections. In the first section, the
viscosity effects of the material model will be explored. In the second section, the
material properties will be studied. In the last section, different loading conditions
will be explored.

4.2 Uniaxial Test Setup

The axisymmetric element is tested with several variations in the material properties,
several displacement rates and different types of loading conditions. For every
simulation of the single element in this thesis, the magnitude of the displacement
rate is constant: 1mm/s. The only exception is the strain rate study. The maximum
displacement is never over 30mm. For most studies, the total time is then given
by 30mm

1mm/s = 30s. Figure 4.4 shows a simple stress-strain curve using the values for
polycarbonate, and three sections and a point of interest have been marked.
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Figure 4.4: Stress-strain curve from an uniaxial test of Polycarbonate: Sections of
interest: 1: elastic section, 2: yield point, 3: strain softening, 4: strain hardening

The first section(1), is the elastic stress section. All deformation that takes
place in this area is reversible. This means that the total deformation gradient
F will be equal to the elastic deformation gradient F e. The slope of this curve
should therefore be highly dependent on the parameters controlling the elastic stress
response (chapter 4.3.1). The second section(2) of interest is not really a section, but
a point. This is the transition point between the elastic section and the elastic-plastic
section, the yield point(3). Much of the deformation that occurs after this point is
irreversible. After the yield point, the third section begins and the slope of the curve
becomes negative. This phenomenon is called strain softening. The more deformed
the specimen gets, the weaker it gets. A material that only experiences strain
softening after yield will experience excessive necking in a tension test. However,
after some more deformation, the slope of the curve gets positive again, and the
material undergoes strain hardening(4). This combination of strain softening and
strain hardening has an interesting effect on how a uniaxial test specimen behaves.
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Figure 4.5: A physical view on how the polymer chains affect the material response.

Consider a cylinder with constant cross section. First it will show slight signs of
necking, but then the strained part becomes stronger than the surrounding material
and the necking "spreads" throughout the specimen. When the whole specimen
has reduced its cross section, it will continue its deformation evenly in the whole
specimen. This effect is shown in figure 4.5, where it is related to the stress strain
curve. In order to show that the Arruda-Boyce material behaves in this way, a simple
uniaxial test specimen was stretched with displacement control. This was done using
a dynamic explicit finite element analysis with the user material subroutine developed
in this master project. A screen shot collage from the FEA is displayed in figure 4.6



36 4. SINGLE ELEMENT PARAMETER STUDY

Figure 4.6: A simple tension test of polycarbonate using axisymmetric elements and
the VUMAT user subroutine.

4.3 Material Parameters

The idea behind this study is to show that the Arruda-Boyce subroutine can be used
to model several types of polymers by changing the material properties. It is also
important to understand the meaning of each material parameter and what it does
to the material response. One of the most widely used polymers is polycarbonate,
and is used as the "benchmark material" in this study. The material parameters for
polycarbonate are given in the following table[5]:

Polycarbonate Values Description
ρ 1.12[g/cm3] Material density
E 2300[MPa] Youngs Modulus
ν 0.33 Poissons ratio
γ̇0 2 ∗ 1015 Pre-exponential factor
h 500[MPa] Softening slope
sss

s0
0.78 shear stress state ratio

A 3.31 ∗ 10−27 Zero stress level activation energy
Cr 18.0[MPa] Rubber modulus
N 2.78 Limeting chain stretch parameter
θ 273 + 22.5[K] Absolute temperature
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Notice that the temperature of the material in this study is always 22.5[C]. Even
if it is not explicitly studied, it is still easy to see how the temperature affects the
material response. The rubber modulus in chapter 4.3.2, is given by Cr = nκθ,
and the zero stress level activation energy in chapter 4.3.3, A, is always divided by
the absolute temperature when used: A

θ . This means that, for example, rising the
absolute temperature with 10% has the same effects as increasing Cr with 10% and
decreasing A with (100− 100

10 )% ≈ 9.1%.

4.3.1 Elastic Stress Response

The elastic stress response is governed by the Youngs modulus E and the poissons
ratio ν. Youngs modulus is normally the slope of the elastic section in the material,
but in the Arruda Boyce theory, E has even more effect on the material. In figure
4.7 it is easy to see that increasing E means increasing the slope of the elastic region.
Moreover, it also increases both the strain and stress values at the yield point. In

Figure 4.7: Youngs modulus effect on the elastic section and the yield point.

addition, E also increases the slope of the strain hardening section quite drastically.
See figure 4.8.
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Figure 4.8: How changing the Youngs modulus E, affects the material

Even though the values for ν is around 0.33 for most polymers, it is interesting to
see how the value affects the material response. Higher Poissons ratio leads generally
to a more drastic change in cross section. From figure 4.9 it is clear that the slope
of the elastic section remains constant with different values for Poissons ratio. The
yield point occurs earlier for increased Poissons ratio. The reason for a Poisson value

Figure 4.9: Poissons ratio: close up at the elastic section with the yield point
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dependent yield point is that the initial strain softening is highly dependent on ν.

s0(E, ν) = 0.077G(E, ν)
1− ν (4.2)

The strain softening parameter is used in equation 2.38 along with the zero strain
level activation energy constant A, which controls the yield. It is clear that changing
the strain softening parameter, can give somewhat the same result as changing A.
This is further explored in chapter 4.3.3.

4.3.2 Backstress/Langevin Spring

The Langevin spring is characterized by the rubber modulus term: Cr = nκθ, and
the limiting chain stretch parameter: N . The stress in the Langevin spring denotes
the difference between the stress in the viscoplastic dampening element and the
elastic stress: T vp = T e − T b. Since T vp is the plastic driving stress, more backstress
leads to less plastic deformation. The backstress does not affect elastic section or the
yield point, in fact, it only becomes active after the material has reached yield. The
backstress has no effect on the yield point, as can be observed from figure 4.10.

Figure 4.10: The effect of setting T b = 0 in the user material subroutine.
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The Cr parameter has somewhat the same meaning for the stress response as
Youngs modulus has for the linear elastic spring, and is connected to the number
of polymer chains per volume. A higher rubber modulus leads to a stiffer Langevin
spring. Figure 4.11 shows what happens if the value of the rubber modulus is changed.

Figure 4.11: How changing the Rubber modulus, Cr, affects the material.

The chain density can, for semi-crystalline polymers, be determined from the
degree of cross linking between chains per unit volume. The limited chain stretch
parameter

√
N is the square root of the number of statistical rigid links per chain

N . However, for amorphous materials such as polycarbonate, the cross linking does
not exist. N is then a measure of the polymer chain lengths. From figure 4.12 it can
be observed that shorter polymer chains lead to an earlier and more rapid strain
hardening section.
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Figure 4.12: How the limited chain parameter N , affects the material

4.3.3 Viscoplastic Element

The viscoplastic element controls both yield and strain softening. It is therefore
convenient to devide this section in two subsections.

Viscoplastic Yield

The yield is characterized by two parameters. γ̇0, the pre-exponential factor in the
flow rule, and the zero stress level activation energy: A. From figure 4.13 it can
be observed that changing the value for γ̇0 has the same effect as changing the
displacement rate or the strain rate. Increasing γ̇0 simulates lower displacement rates.
The effect of the zero stress level energy, A, that is illustrated in figure 4.14 will, like
γ̇0, change the yield point. Higher zero stress level activation energy increases the
yield point. As the header for this chapter suggests, these material properties only
affect the yield point. When the material experiences excessive strain, the effect is
not recognizable.
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Figure 4.13: How the pre-exponential factor γ̇0, affects the material

Figure 4.14: How the Zero level activation energy A, affects the material

Strain Softening

Strain softening is controlled by the athermal shear strength st. The initial athermal
shear strength is given by equation 4.3

st=0 = s0 = 0.077 G

1− ν (4.3)



4.3. MATERIAL PARAMETERS 43

During the test, st goes towards sss which is generally lower than s0. This leads
to strain softening. The parameters studied in this section are the preferred shear
strength fraction sss

s0
and the softening slope h. Lowering the fraction consequently

means lowering sss, since s0 is always defined by 4.3. From figure 4.15 it can be
observed that a lower fraction means more strain softening.

Figure 4.15: Illustration of how the preferred shear stress state ratio, sss

s0
, affects the

material

The softening slope h is used in equation 2.39. It is proportional to the rate of
the athermal shear strength. A higher softening slope means that the athermal shear
strength will reach its preferred state faster. Thus, it leads to more radical strain
softening. The effect can be observed in figure 4.16
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Figure 4.16: Illustration of how the softening slope h affects the material

4.4 Strain Rate

Since the Arruda-Boyce model is a viscoplastic material model, it is important to
show how the strain rate affects the result. The same single element used in this
chapter is uniaxially tested using displacement control. For simplicity, and because of
the limitations of an explicit analysis, the rate of the displacement is constant. This
means that the strain rate will vary slightly due to the change in the cross section
area. In figure 4.17 the stress-strain curves from the uniaxial tests with displacement
rates, ranging from 0.01mm/s to 600mm/s, are illustrated. It can be seen that the
strain rate mostly affects the yield point, and the difference between the curves gets
smaller when the total strain rises. This is because the stress contribution from
the viscoplastic dampening elements gets lower as the strain increases. The most
interesting change in the stress strain-curve when analyzing different displacement
rates, is the change in the yield point. In figure 4.18 it can be observed that the elastic
stiffness is unaffected by the strain rate. However, increasing the displacement rate
also increases the elastic zone domain. In figure 4.19, the development of the yield
stress is plotted against the displacement rate. It shows a logarithmic relationship
between displacement rate and yield point stress.
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Figure 4.17: Illustration that shows the viscosity effects of the material

Figure 4.18: Close up at the yield point showing that it depends on the displacement
rate.
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Figure 4.19: Evolution of the yield stress at different displacement rates
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The computational time used in an explicit analysis is highly dependent on the
strain rate/displacement rate. Analyzing the single element with 600mm/s took only
a couple of seconds. Analyzing the single element with 0.01mm/s however, tok 25
hours. This is because Abaqus does not take the strain rate into consideration when
deciding the magnitude of the time increment. The time required to analyze complex
problems with slow deformation can easily be in the magnitude of several days.

It is always recommended to let Abaqus decide the time increment used because of
stability reasons. The time increments are based on the materials density, and elastic
response. Higher density means longer time increments and thus, a shorter analysis
time. Changing the density is not recommended, especially for highly dynamic tests.
It is also possible to tweak the time increment by changing the elastic stiffness in the
first increment of the analysis. A lower stiffness will give a longer time increment.
However, this can change the stability of the analysis. In the light of the strain rate
study, and the material parameter study, another method for increasing efficiency
proves successful.

Recall figure 4.13 where several pre-exponential factors where analyzed. The
behavior looks very much like analyzing different displacement rates (figure 4.17).
As for different displacement rates, the yield stress was also plotted with the pre-
exponential factor γ̇0 in figure 4.20. The slopes of the curves in figure 4.20 and 4.19

Figure 4.20: Evolution of the yield stress at different values for γ̇0

have about the same magnitude ( slope1
slope2

= −0.988). In other words: reducing the
displacement rate with a factor of 103, is roughly equivalent to multiplying the pre
exponential factor with 103. This proves to be a more efficient way of analyzing
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problems with slower displacement rates.

4.5 Different Load Cases

4.5.1 Tension and Compression

In this uniaxial test, the specimen was first imposed a displacement of 30m with a
displacement rate of 1mms . Then, immediately after, it was compressed back to its
initial length with −1mms . The strain history is illustrated in figure 4.21, and the
stress-strain curve is shown in figure 4.22.

Figure 4.21: Strain history of the specimen.

Notice that the strain is not proportional to time. This is because a constant
displacement rate has been chosen in this study, and not a constant strain rate. For
small deformations the difference is negligible. At most, the element experienced
115% strain. From figure 4.22, it can be observed that the material experienced elastic
deformation at the start of the test. Immediately after the displacement changed
direction, it experienced some elastic deformation again before the deformation
became plastic. When the element is fully relaxed, it will have a permanent strain of
roughly 40%. I.e. if the specimen had been unloaded when it reached 115% strain,
the relaxed specimen would then be 40% longer than the original specimen. In
order to reach the initial length, the element must be compressed with a pressure of
20MPa.
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Figure 4.22: Stress and strain history of polycarbonate at 1mm/s.

4.5.2 Hysteresis

In this uniaxial test, a specimen was imposed a strain of 47% with displacement rate
1mm/s. Then it was immediately compressed to a strain state of −47% at −1mm/s.
Afterwards it was imposed with a displacement to get it back to original length.
Figure 4.23 shows the strain history of the specimen. As a reference, a purely elastic
material would reach its initial state after the strain history given in figure 4.23.

The strain softening is modeled by letting the strain softening parameter start
at an initial value s0, and then, after some deformation, reach sss. The model is
defined in such a way that every form of inelastic deformation will contribute to
a change in s towards sss(see equation 2.39 and 2.38). After the elastic response
at the start of the uniaxial test, the material experiences strain softening. At the
highest stress state, roughly 85MPa, the strain softening parameter has reached
its preferred state. Because of equation 2.39, it is impossible to change the strain
softening parameter when it has reached its preferred state. This is why no strain
softening can be observed during the unloading and the compression.
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Figure 4.23: Stress-strain history of polycarbonate at 1mm/s.

Figure 4.24: Stress and strain history of the specimen.
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4.6 Polymethylmethacrylate - PMMA

In order to demonstrate the diversity of the Arruda-Boyce model, it is important to
show that it can model other materials than polycarbonate. Polymethylmethacrylate,
or PMMA, is a transparent, lightweight and shatter resistant thermoplastic. A
more common name is Plexiglas. The material can be modeled in Abaqus using
the Arruda-Boyce user material subroutine. It is a much tougher material then
polycarbonate with 50% increase in Youngs modulus and very little strain softening.
In the next table, the material parameters needed to model Plexiglas are presented.

Polymethylmethacrylate Values Description
ρ 1.18[g/cm3] Material density
E 3205[MPa] Youngs modulus
ν 0.33 Poissons ratio
γ̇0 2.8 ∗ 107 Pre-exponential factor
h 315[MPa] Softening slope
sss

s0
0.87 Shear stress state ratio

A 1.39 ∗ 10−18 Zero stress level activation energy
Cr 8.0[MPa] Rubber modulus
N 2.1 Limiting chain stretch parameter
θ 273 + 22.5[K] Absolute temperature

An uniaxial test was executed on the single element with PMMA material properties.
The results are shown in figure 4.25 and 4.26 When comparing this material to
polycarbonate, it is expected a stiffer elastic response due to the increase in Youngs
modulus. Due to a higher preferred shear stress state ratio and a lower strain slope,
there is very little strain softening. The limited chain stretch parameter is smaller,
which leads to a more rapid rise of the stress during strain hardening. The results
show that the material behaves as expected.
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Figure 4.25: Close up of the yield point at the stress-strain curve of a uniaxial test
of Plexiglas

Figure 4.26: Stress-strain curve of Plexiglas at large deformations



Chapter5Cell Model and Void Growth

5.1 Cell Model

5.1.1 Introduction

Most polymers are ductile at room temperature, and the fraction of polymers seems
to follow the same stages as for ductile metals. The first stage is void nucleation,
where an inclusion or a particle debonds from the material matrix and creates a void.
The second stage is void growth, where a combination of loading and hydrostatic
stress leads to increased void volume fraction. The last stage is void coalescence,
where the material between voids experiences excessive strain and necking effects
before the material fractures. In this thesis, only void growth will be studied. It is
assumed that the void nucleation already took place, and that the material has an
initial void volume fraction of 1%.

5.1.2 Cell Model

A material can be approximated as a collection of hexagon prisms. After the
nucleation, the particle in the matrix has no more effect, and we consider it as a void.

Figure 5.1: The material can be approximated by a series of Hexagon prisms

53
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Assuming that each hexagon prism in the matrix contains a void, the prisms
are approximated as cylinders containing voids due to symmetrical benefits. The

Figure 5.2: Approximating the hexagon prism with a cylinder for symmetric reasons.

cylinders can easily be modeled using the triaxiality function in Abaqus. The final
model becomes a rectangle with a cut out quarter circle in the bottom left corner.

Figure 5.3: Using axisymmetry, the cell model can be greatly simplified

5.1.3 Strain Ratio

Because of the limitations of an explicit analysis, it is not easy to keep a constant
stress triaxiality. In 2013, S. A. Reffas, M. Elmeguenni and M. Benguediab did some
analysis on void growth in polymers[13]. They used a fairly simple material without
strain softening or viscoplastic properties, in addition to power law hardening. The
Arruda-Boyce model for polymers is more complex, and thus more challenging to
implement in a user material subroutine. Unfortunately, the user subroutine written
during this master project is an explicit method, and can only be used in an explicit
analysis.
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The traditional way of studying void growth, is with a constant stress traixiality.
For an implicit analysis with strain softening, this can either be done using the
Riks method, or a combination of springs and MPCs(multi point constraints) user
subroutines. Since either Riks method[2] or MPC[3] user subroutines are available
for an explicit analysis, a different approach was needed. An effort has been made to
approximate the same conditions used in the paper from S. A. Reffas, M. Elmeguenni
and M. Benguediab [13], using a constant displacement ratio. The stress triaxiality
is defined as

β = Σh
Σe

= |Σr − Σy|
1
3 (Σr − 2Σy)

= 1
3

1 + 2α
|1− α| (5.1)

Where Σh is the hydrostatic stress, Σe is the equivalent mises stress and α = Σr

Σy
is

the stress ratio.

The displacement ratio used in this thesis is given by equation 5.2

m = uy
ur

(5.2)

The different strains are explained in figure 5.4, where the side of the element is
constrained to remain vertical, and the top is constrained to remain horizontal.

Figure 5.4: Displacement on the cell model

In order to show how the different displacement ratios affect the material, 3
different ratios have been analyzed using the initial void volume fraction: f0 = 1%.
The results are compared with an uniaxial test where the side of the element can
move freely. The cell has the dimensions given in figure 5.5, where R = H = 15mm
and ry = rx = 1.7438668mm which leads to the initial void volume fraction being
1%.
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Figure 5.5: Dimensions of the cell model

441 elements, of type CAX4R, were used in a structured mesh, with bias towards
the void. The undeformed cell model is illustrated in figure 5.6. The three different
strain ratios are m = −15%, m = 0 and m = 10%.

Figure 5.6: Undeformed cell model

Unfortunately, the user material subroutine has a tendency to crash even at
moderate global displacements when analyzing a void problem, especially when there
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are forces in both r direction and y direction. Only the uniaxial analysis could
withstand up to 50% strain.

5.1.4 Void Analysis Results

The deformation of the cell model with no imposed strain on the side is illustrated in
figure 5.7. For the imposed strain ratios, only results for εy up to approximately 10%

Figure 5.7: Deformed cell model with no imposed strain ratio. The force traction of
the edge of the cylinder is zero. The color plot shows the most stressed areas using
Mises stress.

are available. Since polymers can withstand much higher strains than metals, this
means that no coalescence effects could be observed from the analysis. The deformed
shapes at maximum strain before the crash are shown in figure 5.8, 5.9 and 5.10 The
color gradient in the figures illustrates the distribution of the Mises stress in the cell
model, where red is high and blue is low. The void volume fractions were calculated
using Matlab by finding the current area in the quarter circle and calculating the
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Figure 5.8: Deformed cell model with strain ratio: m = −15%

Figure 5.9: Deformed cell model with strain ratio: m = 0%

current void volume. Then, the fraction was found by dividing the current void
volume by the current total cylinder volume. The area in the quarter circle was
calculated using the sum of small triangles and integrating using the cylindrical shell
method(see figure 5.11). The development of the void volume fraction is given in
figure 5.12. It is important to emphasize that the total cell growth is taken into
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Figure 5.10: Deformed cell model with strain ratio: m = 10%

Figure 5.11: Calculating the current void volume fraction using small rectangles and
the cylindrical shell method.

consideration when calculating void volume fraction. The "free side" analysis shows
that the void growth is very small when there is no stress triaxiality or no imposed
strain in the radial direction. In the three other analysis, the cell model is either
constrained in the radial direction, or imposed with a positive or negative strain in
the r-direction. All of these scenarios produce a positive hydrostatic stress(see figure
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Figure 5.12: It is clear that higher values of m means more rapid rise in the void
volume fraction f

5.13). Each of these analysis showed some kind of void growth.

It is important to show how this analysis differs from traditional cell model
studies with constant stress triaxiality [13], [1], which is equivalent to a constant
stress ratio(see equation 5.1). In figure 5.13 a stress-stress curve is represented by
showing how the ratio between the radial stress and the y-stress develops. For a
constant stress rate, these curves would have been linear. The curves seem to be
linear for smaller strains, but when the deformation gets bigger and out of the elastic
domain, the stress ratio α = Σy

Σr
grows rapidly. Since the material model breaks down

at high deformations around the void, no coalescence effect could be seen. However,
these results suggest that the rate of the void growth depends on the strain ratio.

In order to see how the Arruda-Boyce material definition affects the void growth,
an elastic-plastic material(pure Mises), was tested with the same strain conditions
as the polycarbonate material. The Mises material had the same density, elastic
response and Poissons ratio as polycarbonate. The material yield stress was constant
at 72[MPa], which gives the material the same yield point as polycarbonate at
1mm/s displacement rate. First, it is interesting to show how the material affects
the void growth with no hydrostatic stress. In figure 5.14 it can be concluded that
overall, when there is no hydrostatic stress, the Arruda-Boyce material shows less
void growth than a Mises material. The exception is between strain values of 5% and
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Figure 5.13: The stress in the y-direction (S22) is plotted against the stress in the
r-direction (S11)

14%. This can be explained by the strain softening in the Arruda-Boyce material.
The difference in void growth between this material and polycarbonate modeled by
the Arruda-Boyce model is illustrated in figure 5.15. The Mises material shows good
signs of coalescence even at moderate strains. Even at 10% strain, the void had
grown considerably in the horizontal direction. In figure 5.16, it can be observed that
the stress concentrates at the same hight as the void and that the void has grown
considerably in the radial direction. This is good visual signs of void coalescence.
Since the user material subroutine crashed at low strains, such signs could not be
observed for polycarbonate.
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Figure 5.14: A purely elastic plastic material has slightly more void growth than
polycarbonate in an uniaxial test
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Figure 5.15: A purely elastic plastic material has significantly higher void growth
than polycarbonate

Figure 5.16: Stress distribution and void shape of the Mises material at 20% strain
and m = 10%





Chapter6Conclusion and Suggestions for
Further Work

The main goal of this master thesis was to implement the Arruda-Boyce model for
polymers as a user material subroutine for Abaqus. After some literature study
regarding explicit and implicit user material subroutines, the choice landed on
VUMAT, which is an explicit approach. There was no time left to advance it further
into an implicit material model(UMAT), but the methods were studied and the main
theory needed is given in appendix A. The VUMAT was developed and tested with
several material parameters and loading conditions using a single element. It was
also illustrated that the user material did work for more complex geometries with
several elements, although somewhat limited. The studies showed that it is possible
to simulate void growth with the user material, and that the void growth of polymers
depends on the hydrostatic stress or strain.

In the development of the explicit user material, some problems regarding the
calculation of the Hencky strain were encountered. Normally, when implementing
the Arruda-Boyce material model, a Padé approximation is used in the calculation
of the Hencky strain. This second order approximation proved to fail at strains
larger than 100%. Another method proposed in this thesis was using the calculation
of eigenvalues and eigenvectors, which proved not to affect the simulation time.
However, this method also failed at very large deformations, and could be the reason
for the early failure in the void growth analysis.

Even though the explicit user subroutine was tested with a single axisymmetric
element with several load cases at extreme deformations, Abaqus had difficulties using
the model at more complex geometries with multiple elements. A direct extension of
this work should be to make the user subroutine work on more complex problem like
for example a void growth problem with large deformations.

It should be fairly easy to extend the user material to account for 3D-problems.
This could be done simply by changing how the subroutine receives variables from
Abaqus and how it updates the values in the end as all calculations made in the
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subroutine assume a 3D behavior of the material.

Because of the complexity of the Arruda-Boyce model, an analytical solution to
the consistent tangent modulus matrix is not easily found. If the explicit user material
is extended to include large deformations with more complex mesh conditions, it
should be theoretically possible to make an implicit user material subroutine(UMAT).
This could be performed using the perturbation method for calculating the consistent
tangent modulus matrix.

Furthermore, when a fully functional material model is made, either explicit
or implicit, it would be interesting to see if an Arruda-Boyce material experiences
further void growth and coalescence in the same manner as metals.
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AppendixAPerturbation Method

In order to make an implicit user subroutine, the consistent tangent modulus has
to be obtained. Obtaining an exact tangent stiffness matrix for the Arruda-Boyce
model is a complicated task. The strategy described in this chapter is a numerical
calculation of an approximated tangent stiffness matrix [8]. For a 2D analysis, such
as plane strain or axisymmetric, Abaqus requires a 4x4 Jacobian matrix. For a 3D
analysis however, it requires a 6x6 Jacobian matrix. For an isotropic material, each
individual element in the Jacobian matrix is given by equation A.1.

d∆σ

d∆ε
= d∆σi
d∆εj

= (d∆σi
d∆εj

)T (A.1)

The definition of the Jacobi matrix given in equation A.1 defines the change in σi at
the end of the time increment caused by an infinitesimal perturbation of εj . For a
"hypoelastic material", change of stress can be calculated as a function of the change
in strain: ∆σ = ∆σ(∆ε). The perturbation method is an analytical approximation
based on the elementary definition of the differential.

d∆σ

d∆ε
∼=
δ∆σ

δ∆ε
= ∆σ(∆ε + δε)−∆σ(∆ε)

δ
(A.2)

Where δ is the perturbation, ∆ε is the strain increment from time t to t+ dt. δε is a
tensor near zero with two small perturbations of size δ in the components δεij and
δεji. The remaining entries of δε are equal to zero. Since the Arruda-Boyce theory
is not an hypoelastic constitutive law, the stress increment function ∆σ = ∆σ(∆ε)
is not known. Instead, the total stress function is known: σt+dt = σ(F et, F it, Ft+dt).
The approach that can be used for the Arruda-Boyce model is a perturbation of the
total deformation gradient.

A perturbation in the deformation gradient can be expressed by first acquiring
the total strain tensor at the end of the increment. This is done by calculating the
Hencky strain, εt+dt, from the total deformation gradient Ft+dt. This can be done
using equation A.3

εt+dt = log[Vt+dt] (A.3)
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Where V is the left stretch tensor acquired from the deformation gradient F . When
the total strain is found, add the perturbation and make a new total perturbated
strain tensor

ε̃t+dt = εt+dt + δε (A.4)

Reassemble the perturbated strain tensor into a perturbated deformation gradient
using equation 2.2.3

F̃t+dt = exp[ε̃t+dt]R (A.5)

Where R is the rotation tensor found in the calculation of the left stretch tensor.
The approach for calculating the Jacobian matrix is then shown in equation A.6.

δ∆σ

δ∆ε
= σ̃(F et, F it, F̃t+dt)− σ(F et, F it, Ft+dt)

δ
(A.6)

For a plane strain analysis or an axisymmetric analysis, this process has to be
repeated 4 times.

– Pertubation in ε11.

– Pertubation in ε22.

– Pertubation in ε33.

– Pertubation in ε12 and ε21.

This calculation comes on top of the already calculated stress σ(F et, F it, Ft+dt), and
will increase the computational power required by a factor of 5. For a 3D analysis,
the process has to run 6 times.



AppendixBThe User Material Subroutine -
VUMAT

Aboyce.for
subroutine vumat (

C Read only ( unmodi f iab le ) v a r i a b l e s −
1 nblock , ndir , nshr , nstatev , n f i e l dv , nprops , lannea l ,
2 stepTime , totalTime , dt , cmname , coordMp , charLength ,
3 props , dens i ty , s t r a i n In c , r e lSp in Inc ,
4 tempOld , stretchOld , defgradOld , f i e l dOld ,
5 s t re s sOld , stateOld , enerInternOld , ener Ine lasOld ,
6 tempNew , stretchNew , defgradNew , f ie ldNew ,

C Write only ( mod i f i ab l e ) v a r i a b l e s −
7 stressNew , stateNew , enerInternNew , enerInelasNew )

C
include ’VABA_PARAM. INC ’

C
dimension props ( nprops ) , dens i ty ( nblock ) , coordMp( nblock , ∗ ) ,

1 charLength ( nblock ) , s t r a i n I n c ( nblock , nd i r+nshr ) ,
2 r e l Sp i n In c ( nblock , nshr ) , tempOld ( nblock ) ,
3 s t re tchOld ( nblock , nd i r+nshr ) ,
4 defgradOld ( nblock , nd i r+nshr+nshr ) ,
5 f i e l dO ld ( nblock , n f i e l d v ) , s t r e s sO ld ( nblock , nd i r+nshr ) ,
6 stateOld ( nblock , ns tatev ) , ener InternOld ( nblock ) ,
7 ene r Ine la sOld ( nblock ) , tempNew( nblock ) ,
8 stretchNew ( nblock , nd i r+nshr ) ,
8 defgradNew ( nblock , nd i r+nshr+nshr ) ,
9 f ie ldNew ( nblock , n f i e l d v ) ,
1 stressNew ( nblock , nd i r+nshr ) , stateNew ( nblock , ns tatev ) ,
2 enerInternNew ( nblock ) , enerInelasNew ( nblock )

character ∗80 cmname

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C Some exp lanat ion
C Var iab l e s
C Deformation grad i en t [F ]
C St r e s s t en so r [T]
C s t r a i n s o f t e n i n g parameter [ s ]
C Stre tch Tensor [U]
C Rotation Tensor [R]
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C Type o f v a r i a b l e s ( s ub s c r i p t ) :
C D means d e r i v a t i v e with r e sp e c t to time
C e means e l a s t i c
C i means i n e l a s t i c
C n means time = t ( s t a r t o f increment )
C nn means time = t+dt (end o f increment )
C _ave means time = t+dt /2 ( middle o f increment )
C Examples :
C Fin : I n e l a s t i c deformation grad i en t at s t a r t o f increment
C Tnn : S t r e s s at end o f increment
C s_ave : St ra in s o f t e n i n g parameter at middle o f increment
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C DEFINING VARIABLES
c Arruda Boyce Theory :
c Var i ab l e s taken from abaqus and s t a t e v a r i a b l e s :

Double precision ,Dimension ( 3 , 3 ) : : Fn , Fin ,U, Fnn
Double precision : : sn

c Var i ab l e s g iven to abaqus and s t a t e v a r i a b l e s :
Double precision ,Dimension ( 3 , 3 ) : : Finn ,Tnn
Double precision : : snn

c Var i ab l e s used in the c a l c u l a t i o n
Double Precision , dimension ( 3 , 3 ) : : Fnn2 , Fen2 , Fin2 , Finn2 , Fenn2 , Fn2
Double precision ,Dimension ( 3 , 3 ) : : R, Fen , Fenn ,F_ave , Fe_ave
Double precision ,Dimension ( 3 , 3 ) : : Fi_ave , DFi_ave , DFin , DFin2
Double precision : : s_ave , Ds_ave
Double Precision : : Dsn , sn2 , snn2 , Dsn2
integer : : i , j

c The mate r i a l cons tant s
double precision : : E, nu , gammadot0 ,A, h , s f r a c , Cr ,N,G
double precision : : boltz , abstemp , s s s , f lowconst , s0 , Lambda

c lumping mate r i a l cons tant s toge the r in a vec to r :
Double precision ,Dimension (8 ) : : mprop

c I t e r a t i o n :
c v a r i a b l e s de f ined f o r the i t e r a t i o n proce s s :

Double precision : : kk , b , c
integer : : MaxIter

c v a r i a b l e s used in the i t e r a t i o n proce s s
Double Precision , dimension ( 3 , 3 ) : : FFE,Tb,Tvp
Double Precision : : eps , temp1 , temp2 , MinItStep , d i f f
Double precision : : dt_new , dt_sugg , dt_temp
integer : : k , i t e r , k2 , i t e r 2

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗∗ Def in ing mate r i a l and i t e r a t i o n parameter ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

C Def in ing a l l mate r i a l mate r i a l p r op e r t i e s :
E = 2300 ! MPa
nu = 0 . 33 !
gammadot0 = 2 . 0e15 !
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A = 3 . 31e−18 ! mm^3
h = 500 ! MPa
s f r a c = 0 . 78 !
Cr = 18 . 0 ! MPa
N = 2 . 78 !

bo l t z = 1 . 3806503e−20 !
abstemp = 273+22 . 5 ! K

G = E/(2∗(1+nu ) ) ! MPa
s0 = 0 . 11∗G ! MPa
s s s = s f r a c ∗ s0 ! MPa
f l owcons t = A/( abstemp∗ bo l t z ) ! (ms^2) kg
Lambda = (E∗nu)/((1+nu)∗(1−2∗nu ) ) ! MPa

C Lumping r e l e van t mate r i a l p r op e r t i e s in a vec to r mprop
mprop (1 ) = G
mprop (2 ) = Lambda
mprop (3 ) = Cr
mprop (4 ) = N
mprop (5 ) = gammadot0
mprop (6 ) = h
mprop (7 ) = s s s
mprop (8 ) = f l owcons t

C I t e r a t i o n
kk = 0 . 1 ! sma l l e r kk −> more i t e r a t i o n s −> more accurate
b = 0 . 95 ! s a f t e y f a c t o r
c = 0 . 5 ! s a f e t y f a c t o r
MaxIter = 10000 !Max i t e r a t i o n s
MinItStep = 1e−10 ! avoid dev id ing by zero
d i f f = 1e−10 ! s ize o f increment

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c Abaqus vumat : do f o r a l l e lements
do 100 km = 1 , nblock

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ I n i t i a l i z i n g v a r i a b l e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

sn = 0
snn = 0
s_ave = 0
Ds_ave = 0
Dsn = 0
sn2 = 0
snn2 = 0
Dsn2 = 0
eps = 0
temp1 = 0
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temp2 = 0
dt_new = 0
dt_sugg = 0
dt_temp = 0

do i = 1 ,3
do j = 1 ,3

Fn( i , j ) = 0
F_ave ( i , j ) = 0
Fnn( i , j ) = 0
U( i , j ) = 0
Tnn( i , j ) = 0
Fin ( i , j ) = 0
Fi_ave ( i , j ) = 0
Finn ( i , j ) = 0
Fen ( i , j ) = 0
Fe_ave ( i , j ) = 0
Fenn ( i , j ) = 0
DFin ( i , j ) = 0
DFi_ave ( i , j ) = 0
FFE = 0
Fn2( i , j ) = 0
Fnn2( i , j ) = 0
Fin2 ( i , j ) = 0
Finn2 ( i , j ) = 0
Fen2 ( i , j ) = 0
Fenn2 ( i , j ) = 0
DFin2 ( i , j ) = 0

end do
end do

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Gett ing v a r i a b l e s from abaqus ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

c get Fn from de fg rado ld
Fn(1 , 1 ) = de fg rado ld (km, 1 )
Fn(2 , 2 ) = de fg rado ld (km, 2 )
Fn(3 , 3 ) = de fg rado ld (km, 3 )
Fn(1 , 2 ) = de fg rado ld (km, 4 )
Fn(2 , 1 ) = de fg rado ld (km, 5 )

c get Fnn from defgradnew
Fnn(1 , 1 ) = defgradnew (km, 1 )
Fnn (2 , 2 ) = defgradnew (km, 2 )
Fnn (3 , 3 ) = defgradnew (km, 3 )
Fnn (1 , 2 ) = defgradnew (km, 4 )
Fnn (2 , 1 ) = defgradnew (km, 5 )

c get the s t r e t c h t enso r U from stretchnew
c Not needed un t i l a f t e r the i t e r a t i o n .

U(1 ,1 ) = stretchnew (km, 1 )
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U(2 ,2 ) = stretchnew (km, 2 )
U(3 , 3 ) = stretchnew (km, 3 )
U(1 , 2 ) = stretchnew (km, 4 )
U(2 , 1 ) = U(1 ,2 )

c get Fin from statev , Statev = Fin − I
do i = 1 ,3

Fin ( i , i ) = 1 . 0 + StateOld (km, i )
end do
Fin (1 , 2 ) = StateOld (km, 4 )
Fin (2 , 1 ) = StateOld (km, 5 )

c Get St ra in s o f t e n i n g parameter from s ta t ev : Statev = snn − 1
sn = s0 + StateOld (km, 6 )

c c a l c u l a t e the i n e l a s t i c deformation grad i en t at s t a r t o f increment
c a l l MatProdInv (Fn , Fin , Fen )

c Get the r o t a t i on t enso r R
c a l l MatProdInv (Fnn ,U,R)

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Main Ca l cu l a t i on s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

c Check i f t h i s i s the f i r s t increment
i f ( s tept ime . eq . 0) then

Finn = Fin
snn = sn
c a l l MatProdInv (Fnn , Finn , Fenn )
c a l l E l a s t i c S t r e s s (10∗mprop , Fenn ,Tnn)

goto 12
end i f

c We are not in the f i r s t increment −> Vi s c op l a s t i c re sponse
c a l l FlowRule (mprop , Fen ,

1 Fin , DFin , sn , Dsn ,Tb,Tvp)
Fi_ave = Fin + 0 . 5∗DT∗DFin
s_ave = sn + 0 . 5∗DT∗Dsn
F_ave = 0 . 5∗(Fnn + Fn)

c a l l MatProdInv (F_ave , Fi_ave , Fe_ave )
c a l l FlowRule (mprop , Fe_ave ,

1 Fi_ave , DFi_ave , s_ave , Ds_ave ,Tb,Tvp)
Finn = Fin + DT ∗ DFi_ave ! Finn us ing Midpoint scheeme .
snn = sn + DT ∗ Ds_ave

C uncomment " goto ␣10 " to accept the c a l c u l a t i o n s from Midpoint
C and sk ip the " accuracy ␣ check␣and␣ i t e r a t i o n ␣scheme " .

C goto 10

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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CCCCCCCCCC ACCURACY CHECK AND ITERATION CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

FFE = Fin + dt∗DFin ! Finn us ing Forward Euler (1 . order )
c a l l MatNorm(FFE−Finn , temp1 )
c a l l MatNorm(Finn−Fin , temp2 )
i f ( temp2 . l t . d i f f ) goto 10

eps = temp1/temp2
i f ( eps . ne . eps ) then

print ∗ , " ␣ "
print ∗ , " e p s i l o n ␣=␣NaN"
print ∗ , " Finn␣ i s ␣not␣ de f ined ␣ c o r r e c t l y "
print ∗ , " p o s s i b l e ␣ cause : ␣Flow␣Rule␣blows␣up "
pause

end i f
i f ( eps . gt . kk ) then ! Error i s too big !

dt_new = b∗DT∗(kk/ eps )
dt_temp = min( dt_new , c∗DT)
i t e r = c e i l i n g (DT/dt_temp)
dt_sugg = DT/ i t e r

c Same theory but with lower t imestep
20 i f ( i t e r . gt . MaxIter ) goto 10

Fn2 = Fn
Fen2 = Fen
Fin2 = Fin
sn2 = sn

do k = 1 , i t e r
k2 = k
i t e r 2 = i t e r
Fnn2 = Fn + ( k2/ i t e r 2 )∗ (Fnn−Fn)
F_ave = 0 . 5 ∗ (Fnn2 + Fn2)

c a l l FlowRule (mprop , Fen2 ,
1 Fin2 , DFin2 , sn2 , Dsn2 ,Tb,Tvp)

Fi_ave = Fin2 + 0 . 5∗dt_sugg ∗ Dfin2
s_ave = sn2 + 0 . 5∗dt_sugg ∗ Dsn2

c a l l MatProdInv (F_ave , Fi_ave , Fe_ave )
c a l l FlowRule (mprop , Fe_ave ,

1 Fi_ave , DFi_ave , s_ave , Ds_ave ,Tb,Tvp)
Finn2 = Fin2 + dt_sugg ∗ DFi_ave
snn2 = sn2 + dt_sugg ∗ Ds_ave

c a l l MatProdInv (Fnn2 , Finn2 , Fenn2 )
! Checking Error again :
FFE = Fin2 + dt_sugg∗DFin2

c a l l MatNorm(FFE−Finn2 , temp1 )
c a l l MatNorm(Finn2−Fin2 , temp2 )
i f ( temp2 . l t . MinItStep ) goto 30

eps = temp1/temp2
i f ( eps . gt . kk ) then

dt_new = b∗dt_sugg ∗( kk/ eps )
dt_temp = min( dt_new , c∗dt_sugg )
i t e r = c e i l i n g (DT/dt_temp)
dt_sugg = DT/ i t e r
goto 20
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end i f
30 Fn2 = Fnn2

Fen2 = Fenn2
Fin2 = Finn2
sn2 = snn2

end do
Fenn = Fenn2
Finn = Finn2
snn = snn2

end i f

CCCCCCCCCC END ACCURACY CHECK AND ITERATION CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

! c a l c u l a t e Fenn us ing Fnn and Finn , and c a l c u l a t e the s t r e s s Tnn
10 c a l l MatProdInv (Fnn , Finn , Fenn )

c a l l E l a s t i c S t r e s s (mprop , Fenn ,Tnn)

c Rotate the s t r e s s t en so r :
12 c a l l TMatProd3(R,Tnn ,R,Tnn)

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗ Main Ca l cu l a t i on s Fin i shed −> Stor ing v a r i a b l e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

c Updating the s t r e s s
s t r e s snew (km, 1 ) = Tnn(1 , 1 )
s t r e s snew (km, 2 ) = Tnn(2 , 2 )
s t r e s snew (km, 3 ) = Tnn(3 , 3 )
s t r e s snew (km, 4 ) = Tnn(1 , 2 )

c s t o r e s t a t e v a r i a b l e s
do i = 1 ,3

Statenew (km, i ) = Finn ( i , i ) − 1 . 0
end do
Statenew (km, 4 ) = Finn (1 , 2 )
Statenew (km, 5 ) = Finn (2 , 1 )
StateNew (km, 6 ) = snn − s0

100 continue

return
end

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Arruda Boyce Theory − subrout ine s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CC FLOWRULE AND VISCOPLASTIC DAMPENING
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Subroutine FlowRule (mprop , Fe , Fi , DFi , s , sdot ,Tb,Tvp)
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implicit none
Double precision : : Tr_Tvp , tau , gammadotp
Double precision : : Tr_Dev_Tvp2 , s , sdot , temp , const
Double precision : : gammadot0 , h , f lowconst , s0 , s s s
Double precision ,Dimension ( 3 , 3 ) : :F, Fe , Fi , DFi , Te
Double precision ,Dimension ( 3 , 3 ) : :B,Be , Bi ,Tb
Double precision ,Dimension ( 3 , 3 ) : :Tvp , Dev_Tvp , dev_Tvp2
Double precision ,Dimension ( 3 , 3 ) : : Ident i ty , Nij ,D,R
Double precision ,Dimension (8 ) : :mprop
integer : : k , l

c mate r i a l parameters
gammadot0 = mprop (5 )
h = mprop (6 )
s s s = mprop (7 )
f l owcons t = mprop (8 )

c Preparat ions
Tr_Tvp = 0 . 0
temp = 0 . 0
tau = 0 . 0
do k = 1 ,3

do l = 1 ,3
D(k , l ) = 0 . 0
Id en t i t y (k , l ) = 0 . 0
Te(k , l ) = 0 . 0
Tvp(k , l ) = 0 . 0
dev_Tvp(k , l ) = 0 . 0
Ni j (k , l ) = 0 . 0

end do
end do

C Main c a l c u l a t i o n s
c a l l MatIdent ( I d en t i t y )
c a l l E l a s t i c S t r e s s (mprop , Fe , Te)
c a l l FeBackStressFeT (mprop , Fe , Fi ,Tb)

Tvp = Te − Tb
c a l l MatTrace (Tvp , Tr_Tvp)

dev_Tvp = Tvp − (Tr_Tvp/3)∗ Id en t i t y
do k = 1 ,3

do l = 1 ,3
temp = temp + dev_tvp (k , l )∗∗2 . 0

end do
end do
tau = s q r t (0 . 5)∗ sq r t ( temp)

i f ( tau . gt . 0) then !We have p l a s t i c deformation
Ni j=( s q r t (0 . 5)/ tau )∗ dev_Tvp

end i f
gammadotp=gammadot0∗

1 exp(−( f l owcons t ∗ s )∗(1 −(( tau/ s )∗∗(5 . 0/6 . 0 ) ) ) )
D = gammadotp∗Ni j

c a l l MatProd (D, Fi , DFi )
sdot = h∗(1−( s / s s s ) )∗ gammadotp

return
end subroutine FlowRule
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CC CALCULATE THE BACKSTRESS
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Subroutine FeBackStressFeT (mprop , Fe , Fi ,Tb)
implicit none

Double precision : :Tr_Bi , Lambdapch , Cr , N, temp , IL , I , IV
Double precision ,Dimension ( 3 , 3 ) : :Fe , Fi , Fe_Tb_FeT , Bi
Double precision ,Dimension (8 ) : :mprop
Double precision , dimension ( 3 , 3 ) : :Q,BB,Tb,C,C_hat ,U,V,R
Double precision , dimension (3 ) : :EigV , EigC
Double precision : : th i rd , detFe
integer : : k , l

c mate r i a l parameters
Cr = mprop (3 )
N = mprop (4 )

c Preparat ions
Lambdapch = 0 . 0
temp = 0 . 0
IL = 0 . 0
do k = 1 ,3

EigV(k ) = 0 . 0
do l = 1 ,3

BB(k , l ) = 0 . 0
Bi (k , l ) = 0 . 0
Q(k , l ) = 0 . 0
Fe_Tb_FeT(k , l ) = 0 . 0

end do
end do

C Main Ca l cu l a t i on s
c a l l MatDet (Fe , detFe )
c a l l MatIdent (C_hat )
c a l l TMatProd( Fi , Fi ,C)
c a l l DSYEVJ3(C,Q, eigC )
do k = 1 ,3

c_hat (k , k ) = s q r t ( eigC (k ) )
end do
c a l l TMatProd3(Q, c_hat ,Q,U)
c a l l MatProdInv ( Fi ,U,R)
c a l l MatProdInv ( Fi ,R,V)
Q = 0 . 0
c a l l DSYEVJ3(C,Q, EigV)

IV = EigV (1) + EigV (2) + EigV (3)
Lambdapch=s q r t ( IV/3 . 0)
temp=Lambdapch/ sq r t (N)
c a l l InvLang (Temp, IL )

do k=1 ,3
BB(k , k )=(Cr/3 . 0)∗ sq r t (N)∗ IL ∗(EigV(k)−IV/3 . 0)/Lambdapch

end do
c a l l MatProdT3(Fe ,BB, Fe , Fe_Tb_FeT)
Tb = (1 . 0/detFe )∗Fe_Tb_FeT
return
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end subroutine FeBackStressFeT

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CC CALCULATE THE ELASTIC STRESS RESPONSE
CC This subroutine uses the mate r i a l p r op e r t i e s and the e l a s t i c
CC deformation grad i en t to c a l c u l a t e the e l a s t i c s t r e s s
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Subroutine E l a s t i c S t r e s s (mprop , Fe , Te)
include ’VABA_PARAM. INC ’

Double precision : : DetFe ,G, Lambda , Tr_ln sqr tBe
Double precision ,Dimension ( 3 , 3 ) : :Te , Fe , Be , lnsqr tBe
Double precision ,Dimension ( 3 , 3 ) : : temp
Double precision ,Dimension (8 ) : :mprop
integer : : i , j

c Mater ia l p r op e r t i e s :
G = mprop (1 )
Lambda = mprop (2 )

c p r epa ra t i on s :
DetFe = 0 . 0
do i = 1 ,3

do j = 1 ,3
Te( i , j ) = 0 . 0
temp( i , j ) = 0 . 0
Be( i , j ) = 0 . 0
lnsqrtBe ( i , j ) = 0 . 0

end do
end do

c Main c a l c u l a t i o n s
c a l l MatDet (Fe , DetFe )
c a l l MatProdT(Fe , Fe , Be)
c a l l TMatProd(Fe , Fe )
! Using Pade approximation or a n a l y t i c a l s o l u t i o n
! to f i nd : henky s t r a i n = ln ( s q r t (Be ) )
! c a l l PadeApprox (Be , lnsqr tBe )
c a l l PadeExact (Be , lnsqr tBe )
t r_ln sqr tBe = ln sqr tBe (1 ,1)+ lnsqrtBe (2 ,2)+ lnsqr tBe (3 , 3 )
do i = 1 ,3

do j = 1 ,3
Te( i , j ) = 2∗G∗ lnsqrtBe ( i , j )
i f ( i . eq . j ) then

Te( i , j ) = Te( i , j ) + Lambda∗ t r_ln sqr tBe
end i f

end do
end do
temp = Te
Te = (1 . 0/DetFe )∗Temp
return

end subroutine E l a s t i c S t r e s s



AppendixCExplanation to Subroutines Used
in VUMAT

– PadeApprox(Mat,lnsqrtMat): Calculates the logarithm and square root of a
matrix, lnsqrtMat using Mat (Padé approach)

– PadeExact(Mat,lnsqrtMat): Calculates the logarithm and square root of a
matrix, lnsqrtMat using Mat. (Analytical approach)

– InvLang(x,L): Calculates the inverse langvin, L, using x

– MatProdInv3(A,B,C,D): Calculates D = ABC−1

– TMatProd3(A,B,C,D): Calculates D = ATBC

– MatProdT3(A,B,C,D): Calculates D = ABCT

– MatProdInv(A,B,C): Calculates C = AB−1

– TMatProd(A,B,C): Calculates C = ATB

– MatProdT(A,B,C): Calculates C = ABT

– MatInv(A,B): Calculates: B = A−1

– MatTrans(A,B): Calculates: B = AT

– MatDet(A,B): Calculates B = det[A]

– MatProd(A,B,C): Calculates C = AB

– MatIdent(I): Defines I as the 3x3 identity matrix

– MatTrace(A,b): Calculates b = trace(A)

– MatNorm(A,b): Calculates b = ||A||2

– DSYEVJ3(A, Q, W): Calculates the eigenvalues,W , and the eigenvector matrix,
Q, from the matrix A.

81





AppendixDStrain Triaxiality

An analysis regarding strain triaxiality was made during the Master’s project. The
strain triaxiality is simulated using a constant displacement ratio m. The following
figures are presented in the appendix in case future students need them for reference.

Figure D.1: Stress in the y-direction vs strain in the y-direction at the given strain
ratios
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Figure D.2: This figure illustrates the Mises stress vs strain in the y-direction

Figure D.3: This figure illustrates the stress in the radial direction vs strain in the
y-direction
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Figure D.4: This figure illustrates the strain at the given displacement rates

Figure D.5: This figure illustrates the stress ratio at the given displacement rates
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