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Abstract

Inertial particles transported in unsteady flows will not be able to follow the
fluid motion perfectly. We explore some of the effects caused by particle inertia.
The dissertation contains three parts. In the first part, we show that ellipsoidal
particles rotating in oscillating shear flows can exhibit chaotic rotation, and
we investigate how the rotation is affected by particle shape and inertia. The
second part outlines a set of numerical simulation tools developed to conduct
large scale computational studies of particle motion. This includes both a
new direct numerical simulation code and two synthetic turbulence generation
tools. In the third part, we use the numerical simulation tools to study particle
clustering, the tendency for particles to distribute inhomogeneously in space.
We discuss some of the characteristics and mechanisms of clustering in both
synthetic homogeneous isotropic turbulence and turbulent channel flows.
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Chapter 1

Introduction

Particles suspended in a fluid are transported by the flow, but as long as they
have finite inertia, they will not be able to follow the flow completely. The
characteristics and mechanisms of suspended particle transport with flow, is a
topic that has great relevance in many natural and industrial applications, and
it has been studied extensively over the last hundred years.

With particle, we mean a body suspended in the flow, whose motion can
be described without considering its dimensions. Such particles are often called
point-particles and for very small particles, to which we will limit our analysis,
this is a suitable approximation. We only consider dilute particle suspensions,
which means that the particles do not affect the fluid flow or interact with each
other.

Although the particles are assumed to have essentially zero volume, they
do have finite mass and therefore finite inertia. The significance of particle
inertia is often measured using the non-dimensional Stokes number, which is
the ratio of a particle time-scale to a fluid time-scale. For low Stokes numbers,
the particles are expected to follow the flow passively like fluid particles, while at
very high Stokes numbers the particles remain unaffected by all but the largest
fluid scales. In-between these two limits, when the particle and fluid time-scales
are comparable, interesting and sometimes surprising effects are found. We
will see how the particle Stokes number influences the rotation of an ellipsoidal
particle and the distribution of spherical particles.

The main topic of this dissertation is how particle inertia influences the
motion of particles in unsteady flows, and we look at several different examples
to highlight important aspects. The dissertation contains three parts. Part I is
concerned with the rotation of a single ellipsoidal particle in a simple unsteady
shear flow. Part II details the numerical methodology of direct numerical
simulation and synthetic turbulence used to produce the results in part III.
Part III deals with the motion and distribution of many spherical particles in
turbulent flows. The primary research results are presented in the articles in
chapters 3, 6, 9, 10 and 11, while the other chapters contain discussions of
related topics.

In part I we look at how prolate spheroidal particles rotate in oscillating
shear flows, at different oscillation frequencies. By considering such a simple
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flow, we are able to investigate the effects of Stokes number and particle shape
in great detail. Chapter 2 contains an introduction to the subject matter and a
brief discussion on the potential implications for particles suspended in turbulent
flows. In chapter 3, we show that this non-linear oscillation problem has the
potential to create chaos, and we investigate how and when ellipsoidal particles
can rotate chaotically.

We find that chaotic rotation is possible, as long as the particle Stokes
number is greater than the Stokes number for which the fixed shear particle
rotation transitions from slow to fast. Chaos emerges when inertial effects and
shape effects are comparable in size. Particles with a 3:1 aspect ratio are the
most chaotic.

The computational studies in part III, would not have been possible without
simulation tools designed to study turbulent flows. This involves two types of
simulation codes, one direct numerical simulation Navier-Stokes solver and one
synthetic turbulence generation tool, both of which were developed from scratch
and are presented in part II. In chapter 4 the spectral element methodology
used in the new direct numerical simulation code is presented in detail, while
convergence tests are shown in chapter 6. A desire to study homogeneous
isotropic turbulence, and the unavailability of such data, lead to the development
of the two different synthetic turbulence algorithms presented in chapter 5, one
Gaussian and one non-Gaussian. While we have not seen the non-Gaussian
methodology used elsewhere, we cannot be certain of its originality.

The decision to develop a new direct numerical simulation code was
motivated by two factors. The first was the inherent limitations of the
available code (used in chapter 9), with regards to computational and
parallelisation efficiency, numerical accuracy and geometric flexibility. The
second, and arguably the most important factor, was the invaluable learning
opportunity this development project represented. Much like it is important
for an experimentalist to understand the fundamentals of conducting advanced
experiments, it is imperative within computational science to fully understand
the theoretical aspects of solving the equations numerically. Arguably, the best
way to understand the various numerical methods used to find an approximate
solution to the Navier-Stokes equations, is to develop a Navier-Stokes solver
oneself.

To contrast the study of a complex (non-spherical) particle in a simple flow
in part I, we study simple (spherical) particles in complex flows in part III.
We investigate in detail how swarms of inertial spherical particles tend to form
inhomogeneous spatial distributions. In chapter 7, we give an introduction
to particle dynamics and provide some simple examples of particle clustering
and the effects of gravity, Brownian motion and finite particle radius. The
identification and description of particle clustering is explained in chapter 8,
where we introduce some new statistical tools that have not been previously
applied to particle clustering.

In chapter 10, we look into some of the mechanisms responsible for the
formation of particle clusters in synthetic homogeneous isotropic turbulence.
We look at two common clustering mechanisms: the vortex centrifuge effect
and “caustics”. The vortex centrifuge effect is responsible for the clustering
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observed at low Stokes number, and the particles avoid regions of high vorticity.
When the Stokes number is greater than unity, caustics emerge and create
strong intermittency in the particle velocity field. Although the clustering is
quite similar in the two types of synthetic turbulence, preferential sampling of
low vorticity regions is much more prominent in the non-Gaussian turbulence.
Synthetic simulations cannot accurately predict how particles preferentially
sample certain regions of the flow, without including convection.

We also study local particle clustering in turbulent channel flows, and the
large-scale accumulation of particles in the near-wall region, in chapters 9 and 11.
In chapter 9, we investigate how particle clustering and the wall-normal particle
drift are affected by gravity, in a vertical channel flow with shear Reynolds
number 395. We use Voronoï analysis to show that gravity decreases the
transport of particles towards the walls in a downward flow, while the opposite
is true in an upward flow. Local particle clustering in the centre of the channel,
is increased in the downward flow.

In chapter 11, we use the new spectral element direct numerical simulation
code to simulate the transport of particles in channel flows, at shear Reynolds
numbers 180 and 395. An increase in Reynolds number from 180 to 395 causes
a significant increase in the particle wall-normal drift velocity. In both cases the
drift is maximised for Stokes numbers, based on the wall time scale, around 20.
For medium to high Stokes numbers, when the wall-normal flux is strongest,
the mean wall-normal particle velocity is close to proportional to the fluid RMS
wall-normal velocity. We also look at local particle clustering in the channel
flow, and find significant preferential sampling of low vorticity regions, also in
the centre of the channel. At higher Stokes numbers, we also observe indications
of caustics formation.

References used in chapters 2, 4, 5, 7 and 8, are listed in the bibliography at
the end of the document. The rest of the chapters, containing the articles, are
self-contained.
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Part I

Ellipsoids in shear





Chapter 2

Ellipsoid in simple shear flow

When studying complex physical problems, it is often useful to isolate a
small portion of the problem that will be more amenable to in-depth analysis.
Applying this philosophy to particle suspended flows, leads us to a study of the
rotation of a single non-spherical particle in a simple shear flow. Because we
assume the particles are tiny, the flow around each particle can be approximated,
by neglecting the fluid acceleration, with the Stokes equations,

0 = −1

ρ
∇p+ ν∇2u, (2.1a)

∇ · u = 0, (2.1b)

for the velocity u and the pressure p. The density ρ and kinematic viscosity ν
are constants.

2.1 Ellipsoid in linear shear flow
The rotation of a small ellipsoidal particle moving in a viscous flow, is described
by Euler’s equations

Iω̇ + ω × (Iω) = M , (2.2)

where ω is the angular velocity in a rotating reference frame attached to the
particle, I is the moment of inertia matrix and M is the torque exerted by the
flow. For an ellipsoid, whose surface is described by

x2

a2
+

y2

b2
+

z2

c2
= 1, (2.3)

the moments of inertia are

I =
4

15
πρpabc diag(b

2 + c2, c2 + a2, a2 + b2), (2.4)

where ρp is the density of the particle.
The orientation of the ellipsoid relative to an inertial reference frame is

defined by the quaternion vector e, which satisfies eTe = 1. A vector q in the
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rotating reference frame can then be expressed in the inertial frame as q̃ = Qq,
where the rotation matrix Q = GET is constructed from the quaternions using

G =

⎡⎣ −e2 e1 e4 −e3
−e3 −e4 e1 e2
−e4 e3 −e2 e1

⎤⎦ , E =

⎡⎣ −e2 e1 −e4 e3
−e3 e4 e1 −e2
−e4 −e3 e2 e1

⎤⎦ . (2.5)

If the fluid velocity in the inertial frame is ũ = Kx̃, then the torques on the
particle are (Jeffery, 1922)

M1 =
16πρν

3(b2β + c2γ)

{
(b2 − c2)S23 + (b2 + c2)(Ω32 − ω1)

}
M2 =

16πρν

3(c2γ + a2α)

{
(c2 − a2)S13 + (c2 + a2)(Ω13 − ω2)

}
M3 =

16πρν

3(a2α+ b2β)

{
(a2 − b2)S12 + (a2 + b2)(Ω21 − ω3)

}
.

(2.6)

S and Ω are the symmetric and antisymmetric parts of the velocity gradient in
the particle frame ∇u = QKQT . The constants α, β and γ are computed with
the integrals

α =

∫ ∞

0

dλ

(a2 + λ)Δ
, β =

∫ ∞

0

dλ

(b2 + λ)Δ
, γ =

∫ ∞

0

dλ

(c2 + λ)Δ
, (2.7)

Δ =
√
(a2 + λ)(b2 + λ)(c2 + λ). (2.8)

Euler’s equations can be solved together with

ė =
1

2
GTω, (2.9)

and written as a system of first-order differential equations χ̇ = f(χ). Some
information can be obtained from the system without actually solving it. Taking
the divergence of f we get

∇ · f = −1

τ
= − 20ρν

ρpabc

(
1

b2β0 + c2γ0
+

1

c2γ0 + a2α0
+

1

a2α0 + b2β0

)
, (2.10)

from which we can say that the system is dissipative, and that volumes in phase
space contract as exp(−t/τ). Thus we can expect the solution to approach an
attractor in phase space, and that τ is a relevant time-scale for this process. We
will use this to define a modified Stokes number in chapter 3.

We only consider prolate spheroids, where b = c < a. This reduces some of
the complexity of the ellipsoid problem.

2.2 Constant shear
We consider a shear flow where ∂ũ/∂z = κ and all the other velocity gradients
are equal to zero. This is equivalent to setting

Kij = δi1δj3κ. (2.11)
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Figure 2.1: Trace of prolate spheroid tip as it drifts towards the flow-gradient
plane, for spheroid with a/b = 5 and St = 100 (left), and a/b = 5 and St = 1000
(right).

The Stokes number, a measure of particle inertia, is the ratio between a particle
time scale and a relevant fluid time scale, and we use the definition

St =
κ(2a)2

ν

ρp
ρ
. (2.12)

In this flow non-inertial prolate spheroids will move in closed Jeffery orbits
(Jeffery, 1922). This motion is reminiscent of the motion of a kayak paddle and
therefore often referred to as “kayaking”. When there is particle inertia, the
spheroids will no longer stay in the closed Jeffery orbits as the particle inertia
causes a drift towards the flow-gradient plane (Lundell and Carlsson, 2010). The
particle mass is pushed away from the vorticity axis, which is what causes the
particles to eventually align in the flow-gradient plane. When there is very little
particle inertia (low St), this process is slow and there is only a modest drift
from the Jeffery orbit each rotation. For strongly inertial particles (high St), the
particle is quickly forced to rotate in the flow-gradient plane. This is illustrated
in figure 2.1, where the trace of the spheroid tip is plotted for particles with two
different Stokes numbers.

While in the flow-gradient plane, prolate spheroids rotate with a non-
constant rate of rotation because the spheroid is not axisymmetric around the
rotation axis. A sphere in a similar shear flow will eventually rotate with a
constant rate of rotation, as will an oblate spheroid. The rotation around the
minor axis in the flow-gradient plane is stable for the prolate spheroid. It is also
possible for a prolate spheroid to rotate around its major axis, if it is aligned
with the ỹ-axis, but this rotation is unstable and a small perturbation will cause
the particle to start drifting towards the flow-gradient plane.
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2.3 Rotation in the flow-gradient plane
We propose that much can be learned about the dynamics of the rotating
spheroid by studying its rotation in the flow-gradient plane. By choosing an
initial condition in the flow-gradient plane, Euler’s equations simplify to one
second order ordinary differential equation for the particle orientation, as shown
in chapter 3. This new equation includes the two non-dimensional parameters

ε =
1− b2/a2

1 + b2/a2
, (2.13)

which is a shape parameter, and the modified Stokes number

S̃t =
St

80

1− ε

1 + ε

(
a3α+

1− ε

1 + ε
a3γ

)
, (2.14)

which is a measure of particle inertia. This gives us a two-dimensional parameter
space, which can be investigated to determine when inertial effects (as measured
by S̃t) are important, and when non-linear shape effects (as measured by ε) are
important. Details are given in chapter 3.

We extend our analysis to include time dependent shear, more specifically
oscillating shear. The flow is described by

Kij = δi1δj3κ cos(ft), (2.15)

where f is a non-dimensional frequency, or Strouhal number, for the oscillating
shear flow. It is important to remember that the equations describing the
particle rotation were derived under the assumption that the flow around the
particle could be accurately approximated by the steady Stokes equations.
Oscillating shear violates the assumption that the flow is steady. However,
as long as f is not significantly greater than unity, the time-derivative of the
fluid velocity will still be insignificant compared with the viscous terms. This
means we can still use the steady Stokes equations.

The use of an oscillating rate of shear means that the instantaneous Stokes
number S̃t| cos(ft)|, and therefore the relative importance of particle inertia, will
change during the oscillation period. How the particle rotates in the oscillating
shear flow, is studied in detail in chapter 3.

2.4 Relevance to turbulent flow
Generally, we are interested not only in how a single prolate spheroid rotates in
a simple shear flow, but also how millions of tiny prolate spheroids rotate in a
turbulent flow. The question is if we can learn something about the latter, by
studying the former. While the equations used to describe the rotation of each
single particle in a direct numerical simulation of a turbulent flow are the same
as those used for three-dimensional rotation of a single spheroid (Mortensen
et al., 2008), the immense complexity of the turbulent velocity field makes it a
very different kind of problem. Although it is difficult to relate specific results
from chapter 3 to turbulent flow, some general observations are made.
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Assuming a homogeneous isotropic turbulent flow, we can estimate an
approximate mean velocity gradient as λ = (ε/ν)1/2, where ε is the rate of
viscous dissipation and ν is the kinematic viscosity. Then a Stokes number S̃tλ,
based on λ (instead of κ), can provide valuable information about how important
particle inertia will be and if O(1) instantaneous Stokes numbers are likely.
As for the oscillating shear flow, the fluctuating velocity gradient in isotropic
turbulence will cause the effective Stokes number to also frequently take values
close to zero, which means that non-linear shape effects are always going to be
important. Small-scale intermittency will cause local velocity gradients much
greater than λ and probability density functions for the velocity gradients can be
used to construct a probability distribution for the instantaneous Stokes number.
This probability distribution can then be used to estimate the probability of
finding particle Stokes numbers greater than the transitional Stokes number
described in chapter 3, which will tell us how important inertial effects are.

Turbulent flows contain vortices of many different sizes, and therefore
velocity fluctuations over a wide range of scales. In chapter 3, we observe
that the particles are only responsive to oscillation frequencies within a certain
range. In turbulent flows, this leads to a filtering of small-scale frequencies.
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Article 1: Chaotic rotation of
inertial spheroids in
oscillating shear flow
Published in Physics of Fluids 25 (2013)
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Chaotic rotation of inertial spheroids in oscillating
shear flow

Christopher Nilsena) and Helge I. Andersson
Department of Energy and Process Engineering, Norwegian University of Science
and Technology, N-7491 Trondheim, Norway
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The rotation of prolate spheroidal particles is studied in the flow-gradient plane of
an oscillating creeping shear flow. Chaotic dynamics is observed for particles with
strong inertia, and spheroids with aspect ratio 3:1 are seen to be the most prone to
chaotic rotation. This makes the particles’ long-term behaviour unpredictable, and
also affects the particles’ average statistics, such as the rotation energy. Chaos is
only seen for Stokes numbers larger than a certain critical value, always greater than
the Stokes number for which the particle rotation period in a constant shear rate
transitions from long to short. This is because both inertial and nonlinear effects
need to be significant for chaos to emerge. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4789376]

I. INTRODUCTION

The study of how particles move in a fluid has been given considerable attention throughout the
last century, and it is of significance both in nature and in engineering applications. Most studies
on particle suspensions are concerned with spherical particles; however, the sphere is not a suitable
approximation to the shape of many types of particles. Non-spherical particles, the simplest of which
is the ellipsoid, can often behave very differently from their spherical counterparts.

Particles transported in the human respiratory system are sometimes described as ellipsoids,1, 2

and so are the elongated wood fibres used in paper production.3, 4 In the latter case the orientation
of each fibre is of particular interest, as it greatly affects the properties of the paper. Many types
of ice crystals in clouds can be described as different kinds of ellipsoids, and an understanding of
how these ice particles collide is important to describe the growth of crystals and the formation
of snow.5, 6 In other cases it is not the orientation itself that is important, rather how it affects the
rheology of the suspension. A study of the rotation of a single particle can be considered as the first
step towards a rheological description.7

Jeffery8 studied the motion of ellipsoidal particles in shear flow, and his results are frequently
used when studying suspensions of ellipsoids. He derived equations for the torques on a general
ellipsoid in a shearing Stokes flow. By neglecting both fluid and particle inertia, Jeffery was also
able to find a solution for the orbit of an axisymmetric ellipsoid (spheroid) in a simple shear flow. He
showed that the particle moved in a closed orbit, sometimes referred to as a Jeffery orbit, reminiscent
of the motion of a kayak paddle. Hinch and Leal9 studied the motion of non-axisymmetric ellipsoids,
and showed that small deviations from axial symmetry could cause large changes in rotation. Nearly
spherical ellipsoids were shown to behave similarly to general ellipsoids.

Further progress in the understanding of the effect of particle inertia was made by Lundell and
Carlsson,10 where the rotation of prolate spheroids of non-negligible inertia was studied by solving
the angular momentum equations for the particles in a linear creeping shear flow. The particle
inertia was seen to introduce a drift of the particle orientation towards the flow-gradient plane. Fluid
inertia has been observed to introduce a similar effect,11 and the effect of both fluid and particle

a)Electronic mail: christopher.nilsen@ntnu.no.

1070-6631/2013/25(1)/013303/12/$30.00 C©2013 American Institute of Physics25, 013303-1
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inertia was studied by Subramanian and Koch.12 A review of the early contributions to the study of
particle motions in viscous flow was written by Leal,13 and a large number of experimental14, 15 and
computational studies16–20 of suspended ellipsoids have been carried out.

The effect of an external field on the motion of dipolar particles was investigated by Almog and
Frankel.21 The introduction of an external force can sometimes lead to chaotic rotation, as observed
by Ramamohan et al.22 for a periodically forced slender body in a simple shear flow. Applications
of this phenomenon were discussed by Kumar, Kumar, and Ramamohan23 and a review was written
by Asokan et al.24

However, chaotic motion can also occur without the presence of an external force. Young et al.25

found a period-doubling transition to chaos for viscous drops in a shear flow with sinusoidal temporal
variation of vorticity. Yarin, Gottlieb, and Roisman26 showed that long triaxial ellipsoids can exhibit
chaotic rotation in simple shear flow, by studying non-inertial particles in creeping flow, while a
similar observation was made for inertial particles by Lundell.27 He observed chaotic rotation for
certain aspect ratio combinations and for a range of Stokes numbers.

Although the motion of prolate spheroids in a shear flow with constant rate of shear is well
documented, it is not clear how the spheroids will behave in a time-dependent shear flow. By
simulating the spheroids in an oscillating shear flow, we will be able to see how the spheroids
respond to different time scales in a simplified model. The effect of aspect ratio and inertia on the
rotation of prolate spheroids in time-dependent shear flow, will be investigated. We want to see if
prolate spheroids can exhibit chaotic rotation when subjected to an oscillating shear rate, and under
what conditions this behaviour is prominent. We will also try to explain why chaotic rotation might
occur, and what sort of implications these observations will have in real flows.

II. GOVERNING EQUATIONS

In a simple shear flow prolate spheroids with non-negligible inertia will tend to drift towards
the flow-gradient plane,10 ending up only rotating in this plane. In the present study we consider
spheroids initially in the flow-gradient plane, which means that the particle will remain in this plane
at all times. This greatly simplifies the dynamical system, maintaining at the same time the essential
aspects of the nonlinear rotation problem we want to investigate. The solution to this simplified
system will be the steady-state solution to the full three-dimensional problem.

We consider a prolate spheroid with semi-principal axes of length a and b, and aspect ratio
k = b/a, rotating in a linear creeping shear flow. The surface of the spheroid is described by the
equation

x2

a2
+ y2

b2
+ z2

b2
= 1.

The coordinates xyz are defined within a particle frame of reference, that is to say the coordinate
system is fixed on and rotates with the particle. The flow is defined in a second non-rotating reference
frame x′y′z′ as

u′ = (
κg(t)z′, 0, 0

)
,

where κg(t) is the rate of shear, with κ[s−1] a constant and g(t) a non-dimensional function of
non-dimensional time t.

The rotation of a spheroid is governed by Euler’s equations:

I · ω + ω × (I · ω) = M,

and the torques from the shear flow were derived by Jeffery8 as

M1 = 32πμ

3(β0+γ0) (�32 − ω1) ,

M2 = 16πμ

3(b2γ0+a2α0)
(
(b2 − a2)S13 + (b2 + a2)(�13 − ω2)

)
,

M3 = 16πμ

3(a2α0+b2β0)
(
(a2 − b2)S12 + (a2 + b2)(�21 − ω3)

)
,

16 Article 1: Chaotic rotation of inertial spheroids in oscillating shear flow
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where α0, β0, γ 0 are constants and S and � are the symmetric and antisymmetric parts of the
velocity gradient tensor ∇u in the particle frame. For initial conditions in the flow-gradient plane
this simplifies to the second-order ordinary differential equation

St

80

1 − ε

1 + ε

(
α0 + 1 − ε

1 + ε
γ0

)
φ̈ = ε

(
1

2
− cos2 φ

)
g(t) + 1

2
g(t) − φ̇, (1)

where

St = κ(2a)2

ν

ρp

ρ f
= Re

ρp

ρ f

is the non-dimensional Stokes number for Reynolds number Re. The parameter ε is a function of
the aspect ratio k of the prolate spheroid and is defined as

ε = 1 − k2

1 + k2
,

with ε = 0 for spherical particles and ε = 1 for infinitely thin spheroids. The dots denote differenti-
ation with respect to the non-dimensional time t, and φ is the angle between the x′ and x axes. The
time is made non-dimensional with the rate of shear constant κ . The densities of the particle and
fluid are ρp and ρ f respectively, and ν is the kinematic viscosity. The non-dimensional coefficients
α0 and γ 0 are given by

α0 =
∫ ∞

0

dψ

(1 + ψ)
{
(1 + ψ)

(
k2 + ψ

) (
k2 + ψ

)} 1
2

,

γ0 =
∫ ∞

0

dψ(
k2 + ψ

) {
(1 + ψ)

(
k2 + ψ

) (
k2 + ψ

)} 1
2

,

and both are equal to 2/3 for a spherical particle.
We will refer to the non-dimensional group in front of the angular acceleration φ̈ as the modified

Stokes number, S̃t, because it simplifies the equation, and also, as we will see, clarifies the results.
S̃t is finite for all values of ε between 0 and 1, and prescribing S̃t and ε separately does not cause
any inconsistencies.

We can write Eq. (1) as an autonomous system of first-order ordinary differential equations:

χ̇1 = χ2,

χ̇2 = {
ε
(

1
2 − cos2 χ1

)
g(χ3) + 1

2 g(χ3) − χ2
}
/S̃t,

χ̇3 = 1,

or in vector notation χ̇ = f (χ). The divergence of f is then ∇ · f = −1/S̃t, which means that
volumes in phase space (χ space) contract as exp(−t/S̃t). The system is dissipative and for all initial
conditions the solution will approach a limiting set of zero volume in phase space. This makes S̃t an
important time-scale for the dynamical system.

The equations have been solved numerically using the ordinary differential equation (ODE)
solver LSODE from the package ODEPACK,28, 29 using the non-stiff Adams methods. We want to be
able to accurately recognise chaotic particle rotation, and we use the Lyapunov exponents to do this.
For a chaotic system an initial separation δ0 between two trajectories in phase space will diverge
exponentially to δ(t). The rate of divergence is determined by the maximum Lyapunov exponent

λ = lim
t→∞

1

t − t0
ln

δ(t)

δo
.

We use a normalisation approach,30, 31 and average over a total of 1000 normalisations. Because
of the periodic time dependence of χ3, δ0 and δ(t) are measured in (χ1, χ2) = (φ, φ̇), and we
average over 10 different initial conditions evenly distributed in one χ3-period. An initial separation
δ0 = 10−6 is used, and we normalise when δ(t) reaches 10−5 or 10−7. All other statistical quantities
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are averaged over 1000 periods of g(t). The simulations are started from an initial condition on the
attractor, found by first simulating until t = 2000S̃t from a random initial condition.

III. CONSTANT SHEAR RATE

We begin by studying Eq. (1) with the simplest possible shear rate function g(t) = 1, which
gives us the equation

S̃t φ̈ = ε

(
1

2
− cos2 φ

)
+ 1

2
− φ̇. (2)

This allows us to illustrate some basic features of the physical system before we consider more
complex cases.

For spherical particles ε = 0 the equation simplifies to

S̃tφ̈ = 1

2
− φ̇,

with the solution

φ(t) = S̃t

(
φ̇(0) − 1

2

) (
1 − e−t/S̃t

)
+ 1

2
t + φ(0),

where S̃t = St/60 for spherical particles. The solution describes a temporal development starting
from the initial condition (φ(0), φ̇(0)) and approaching, after an initial exponential transient, a steady
rotation with angular velocity φ̇ = 1/2. This gives a rotation period of TH = 4π .

Non-inertial particles represent another analytically solvable degenerate case. We assume that
S̃t = 0 and get

φ̇ = ε

(
1

2
− cos2(φ)

)
+ 1

2
.

Integration then yields the solution

tan φ =
√

1 − ε2

1 + ε
tan

(
1

2

√
1 − ε2t

)
,

which describes a closed orbit rotation with period TJ = 4π/
√

1 − ε2. This is also the solution
found by Jeffery.8 For a spherical non-inertial particle a period of T = 4π is found, the same as
for the inertial particle. The rotation period is therefore unaffected by particle inertia for a spherical
particle.

In order to see the combined effect of particle inertia and shape, we have solved the system
numerically for a wide range of S̃t and ε. Figure 1(a) shows how the rotation period depends on the
Stokes number for three selected values of ε. The rotation period is equal to the non-inertial rotation
period TJ for low Stokes numbers and then drops to the rotation period of spherical particles TH

when St is sufficiently high. This suggests that the particles behave as if they are either non-inertial
or spherical, except in the transitional range of St.

The modified Stokes number S̃t is plotted against a normalised rotation period T̃ in
Figure 1(b), to be able to see more clearly how the rotation period changes. There is a transi-
tion to the low rotation period when S̃t is around 1, but the shape of the particle determines how
gradual the transition is, with a steeper gradient for more elongated particles.

Inertia clearly has a different effect on highly elongated particles than it does on almost spherical
particles. The second derivative of T̃ with respect to S̃t is plotted in Figure 2(a) together with
the interpolating function −4.0

√
1 − ε2. The favourable agreement this function shows with the

numerical data suggests that

T̃ = 1 − 2.0
√

1 − ε2 S̃t
2

(3)

is a good approximation for low values of S̃t. The considerable deviations for ε < 0.4 are caused by
the difficulties in estimating the second derivative when

√
1 − ε2 ≈ 1.
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FIG. 1. Effect of particle shape on rotation period in constant shear for ε = 0.7 (solid), 0.96 (dashed), and 0.99 (dot-
ted). (a) Rotation period T as a function of St and (b) normalised rotation period T̃ as function of S̃t. T̃ is defined as
T̃ = (T − (TJ + TH )/2)/((TJ − TH )/2).

The point where T̃ = 0 in Figure 1(b) corresponds with the point where T is equal to (TJ

+ TH)/2 in Figure 1(a). The corresponding Stokes number is St0.5 (following the definition of
Lundell and Carlsson10) and the modified Stokes number is S̃t0.5. Lundell and Carlsson10 suggested
that S̃t0.5 ≈ 0.8, while Figure 2(b), showing S̃t0.5 for different ε, indicates that S̃t0.5 is accurately
predicted as

S̃t0.5 = 0.7 + 0.3
(
1 − ε2)0.625

. (4)

This simple expression makes it easy to compute S̃t0.5, and thus also St0.5, for a given particle shape.
The width of the transitional range can be defined as S̃t0.05 − S̃t0.95, which is accurately estimated
as S̃t0.05 − S̃t0.95 = 4.12(1 − ε)0.375.

IV. OSCILLATING SHEAR RATE

We want to investigate the effects of an oscillating shear rate, and choose a shear rate function
g(t) = cos (ft), where f is a non-dimensional frequency for the oscillation and can be thought of as
an imposed Strouhal number. The Stokes number is defined, as in Sec. II, using κ , which in this
case is the maximum shear rate. A Stokes number based on the instantaneous shear rate would be
S̃t| cos( f t)|. The differential equation describing the system is then

S̃tφ̈ = ε

(
1

2
− cos2 φ

)
cos( f t) + 1

2
cos( f t) − φ̇. (5)
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FIG. 2. Effect of particle shape ε on (a) second-order derivative of T̃ for S̃t = 0 and (b) transition Stokes number S̃t0.5. Solid
lines (grey) are interpolation functions −4.0

√
1 − ε2 and (4).
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FIG. 3. Period-doubling route to chaos for ε between 0 and 1, and St = 400, f = 0.2. (a) Orbit diagram displaying local
maxima of φ̇ and (b) the corresponding maximum Lyapunov exponent.

This is a second-order ordinary differential equation with three parameters S̃t, ε, and f, that
we solve numerically for different parameter values, in order to see how they affect the solution.
In the derivation of the expressions for the torque components on the particle, it is assumed that
we have a steady flow, which the introduction of an oscillating shear rate would seem to violate.
However, as long as the Strouhal number of the imposed temporal variation (f) is not significantly
greater than unity, the transient and the nonlinear effects are of the same order of magnitude, and we
can safely use the expressions derived for stationary flows, provided that the Reynolds number is
sufficiently low.

The orbit diagram (Figure 3(a)) shows the period of the orbits by plotting all local maxima of φ̇

for a range of ε values. The dense regions are indicative of chaos, and we can see that chaos emerges
through a series of period-doubling bifurcations in ε. In this particular case we have St = 400 and
f = 0.2. In Figure 3(b) a corresponding plot of the maximum Lyapunov exponent λ is shown, and
confirms that the dense regions in Figure 3(a) are truly chaotic, with λ > 0 for f roughly between
0.6 and 0.8. We also see that λ approaches 0 in the period-doubling bifurcations, as expected.

This shows that chaotic rotation can occur for this system, and that the geometry of the spheroid,
described by ε, has an important effect on the dynamics of the particle rotation. Both the smoothness
of the λ graph in Figure 3(b), and its correspondence with the orbit diagram, are good indicators of
the sampling time being sufficient.

To illustrate what chaotic rotation means for the evolution of the phase space variables, we plot
φ̇ as a function of time, together with (φ̇, cos φ) phase portraits in Figure 4. Figures 4(a)–4(c) show
φ̇ between t = 1000 and t = 1200 for ε = 0.2, 0.5, and 0.75, respectively. Figures 4(d)–4(f) show
the (φ̇, cos φ) phase portrait for the same values of ε.

Several bifurcations have occurred between ε = 0.2 and 0.5, and it is clear in Figures 4(a)
and 4(b) that we go from a period-1 orbit to a more complex behaviour. The corresponding phase
portraits reveal significant differences, and although we no longer have a period-1 orbit for ε = 0.5,
the solution is clearly still periodic. In Figure 4(c), however, the particle rotation is no longer periodic,
as ε is within the chaotic range in Figure 3. Figure 4(f) illustrates this by displaying an attractor that
is exceedingly complex, but still very organised. This type of strange attractor is common in chaotic
systems.

We see that chaotic rotation is possible, and how the chaos presents itself in the phase space
variables. However, we have only so far studied a small part of the (S̃t, ε, f ) parameter space, and
a more complete investigation of this parameter space is necessary for a better understanding of the
dynamics of the spheroidal particle. It is also important to see how the chaotic rotation affects other
aspects of the particle dynamics.

A comprehensive study of the dynamics of the particle has been conducted for 2048 f-values
between 0 and 1.5, 179 S̃t-values between 0 and 10, and 17 ε-values between 0 and 0.995. This
amounts to a total of more than 6 × 106 different parameter combinations, and should allow us to
see more clearly how the different parameters affect the solution.
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FIG. 4. Complex particle dynamics for St = 400 and f = 0.2. Angular velocity as a function of time for (a) ε = 0.2, (b) 0.5,
and (c) 0.75, and (d–f) corresponding (φ̇, cos φ) phase portraits.

In Figure 5 the maximum Lyapunov exponent is plotted as a function of f for ε = 0.8 and
S̃t = 0.7 (a), 1.0 (b) and 3.0 (c). The average rotational kinetic energy 1

2 φ̇2 (d–f), and the correlation

factor between particle and fluid rotation rate ρ(φ̇, cos f t) = φ̇ cos f t/
√

φ̇2cos2 f t (g–i), are also
plotted in Figure 5.

For f larger than the value indicated by the dashed line, the particle simply rocks back and forth
around φ = 0, never crossing φ = π /2. It is clear that the particle dynamics for these values of f are
rather uneventful, consisting of non-chaotic low energy rocking around φ = 0. Below this frequency,
the particle dynamics are much more complex, and the differences between the three different S̃t are
more pronounced. The maximum Lyapunov exponent is only positive for S̃t = 3.0, in a range of f
between 0.0 and 0.2.

There are only subtle differences between S̃t = 0.7 and 1.0 for the energy and rotation cor-
relation, but the maximum Lyapunov exponent is significantly changed for S̃t = 1.0. For S̃t = 3.0
however, the change in λ also has effects on the other quantities. Not surprisingly, the particle
rotation is much less correlated with the fluid rotation when λ > 0. Interestingly, also the kinetic
energy drops significantly at the peaks in λ. This shows that the change in rotation caused by the
chaos has significant effects on the long-term statistical properties of the particle dynamics.

It is clear from Figure 5 that chaos is an effect associated with strong particle inertia, i.e., large
S̃t. This suggests that there is a critical S̃t (S̃tc), below which chaos cannot occur for a given ε,
regardless of the value of f. This critical modified Stokes number S̃tc is shown in Figure 6(a) for a
set of ε values. The points appear to fit quite neatly on the line

S̃tc = −0.1 + 0.85/ε2

for the included ε values. For ε < 0.3, no chaotic solution was found for S̃t ≤ 10, but that does not
mean that chaos is not possible given a sufficiently large S̃t. We can rescale S̃tc back to the standard
Stokes number and get Stc, shown in Figure 6(b). We cannot necessarily trust the interpolation
function to accurately extrapolate Stc to values lower than ε = 0.3, where no data is available.

Strong inertia is required for chaotic rotation of any particle shape, and especially if ε is close
to 0 or 1. However, there is a region from ε = 0.4 to ε = 0.92, in which chaos is possible for St as
low as 500. The lowest Stc is seen at Stc = 319 for ε = 0.8. Also plotted in Figure 6 are S̃t0.5 and
St0.5. We see that the critical Stokes number is always greater than the Stokes number for which the
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FIG. 5. Effect of f on ε = 0.8 spheroid. Maximum Lyapunov exponent λ for (a) S̃t = 0.7, (b) 1.0, and (c) 3.0, as well as

(d–f) rotational kinetic energy 1
2 φ̇2, and (g–i) particle-fluid rotation rate correlation factor ρ(φ̇, cos f t). The dashed vertical

lines (grey) are the f-values for which max (φ(t)) − min (φ(t)) < π .

transition in rotation period occurs. However, the two lines approach each other for increasing ε,
and almost overlap for ε > 0.9.

Chaos is only possible for certain shear oscillation frequencies, as illustrated in Figure 7(a). The
lowest and highest chaotic f values are plotted for every S̃t, and for ε = 0.4, 0.7, and 0.92. Increasing
ε expands the chaotic regime in the (S̃t, f ) plane, but chaos is nevertheless primarily found in a
range of f roughly between 0.0 and 0.2. For ε = 0.92 (and for larger values of ε) positive λ-values
are sometimes seen for even higher f-values, as observed in the upper right corner of Figure 7(a).
These positive λ-values present themselves as very narrow peaks for particular f-values, and do not
affect the notion that chaos is primarily found for f < 0.2.
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FIG. 6. (a) Critical modified Stokes number S̃tc below which chaos is not observed, plotted together with the function −0.1
+ 0.85/ε2 (solid grey line). (b) The critical Stokes number Stc is shown with the same interpolation function (solid grey line).
The dashed lines are S̃t0.5 and St0.5.
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FIG. 7. (a) Lowest and highest frequency f with λ > 0 for ε = 0.4, 0.7, and 0.92, for a given S̃t, and (b) normalised with the
rotation period T.

When rescaling f with the rotation time period T, at constant shear rate (Figure 7(b)), we see
that chaos is found when 2π /f � 2T. It is important to remember that T is not a relevant timescale
throughout the entire period of the oscillating shear function. As the rate of shear varies between 0
and κ , the relevant rotation period T (| cos( f t)|S̃t) will change accordingly. However, because the
rescaling used in Figure 7(b) gives domains of similar shapes for the different aspect ratios, T (S̃t)
seems to be a suitable time scale. Increased ε reduces the lowest f-value where chaos is possible
because the increased rotation period at S̃t = 0 means that the particle can be affected by a wider
range of time scales. Increased S̃t reduces the f-values for which chaos is found as increased inertia
makes the particles more sluggish.

The degree of chaos can be measured by the maximum Lyapunov exponent. To determine
which particle shape exhibits the strongest chaotic divergence, the maximum value of the maximum
Lyapunov exponent λmax is shown in Figure 8. This is the maximum obtainable value of λ for a
given ε. There is a peak in λmax at ε = 0.8 with a value of λmax = 0.053. This value is found for
S̃t = 3.9 and f = 0.194.

Following the definition of the Lyapunov exponent, a value of 0.053 indicates that the distance
between two trajectories on the attractor, with initial separation δ0 = 10−6, will have grown to
δ(t) = 0.1 after t ≈ 217. In Figure 9(a) we can see φ(t) for two trajectories on the attractor, with
initial separation equal to 10−6, diverge. There is noticeable separation from around t = 250, which
corresponds to 7.7 complete periods in the oscillating shear flow.

In Figure 9(b) the orientation of the two particles are viewed during a larger time span. The
chaotic divergence eventually leads to completely different orientations. The particle rotation is also
very persistent, with one of the particles rotating more than 40 complete rotations in one direction.
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FIG. 8. Maximum possible value of the maximum Lyapunov exponent for various ε.
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FIG. 9. Particle orientation angle for two particle trajectories with initial separation 10−6 and ε = 0.8, S̃t = 3.9, f = 0.194,
for (a) a short and (b) a long time window.

V. DISCUSSION AND CONCLUSION

We have shown that a prolate spheroid rotating in the flow-gradient plane of an oscillating
shear flow can exhibit complex chaotic rotation for strong particle inertia. Spheroids with ε = 0.8,
corresponding to a 3:1 aspect ratio, have the strongest chaotic divergence and also chaos for the
lowest Stokes numbers. Chaos only occurs for oscillation frequencies lower than half the rotation
frequency the particle would have in a constant shear rate. This is because the high inertia slows
down the particle when the shear rate is rapidly changing. Even though we have limited the study
to rotation in the flow-gradient plane, we believe that the results are relevant in more complicated
situations, where the particle undergoes three-dimensional rotation. Rotation in the flow-gradient
plane is the steady-state solution for an inertial prolate spheroid,10 and the dynamics observed in the
flow-gradient plane should give relevant information about how the particle behaves when rotating
around its minor axis.

Lundell27 found chaotic particle dynamics for triaxial ellipsoids for Stokes numbers below a
certain critical value, always less than St0.5. In the present work, chaos is only found for Stokes
numbers larger than a critical value, always greater than St0.5. It is apparent that the two types of
chaotic rotation are caused by different effects. Lundell’s chaos is caused by a three-dimensional
instability associated with the triaxial particle shape. This instability is suppressed by inertia because
inertia forces the particle towards the flow-gradient plane. For a spheroid already rotating in the
flow-gradient plane, an oscillating shear rate has been shown to cause chaos, provided that there is
sufficient inertia.

A possible explanation for the chaos seen at high Stokes numbers is that when S̃t is sufficiently
high, | cos( f t)|S̃t will move through the transitional range observed in Figure 1 in each oscillation
period. This means that both inertial and nonlinear effects will be important during parts of the
rotation cycle, which is what is believed to cause the chaos. This is illustrated in Figure 10 where we
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FIG. 10. Maximum Lyapunov exponent as function of f, for ε = 0.8 and S̃t = 0.5, with shear rate function g(t) = β + cos (ft)
and (a) β = 0.5, (b) β = 2.0, and (c) β = 3.5. Positive λ values are only found for β = 2.0 and at much higher f-values than
we have seen previously.
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see that adding a constant shear rate β can push the particle’s range of instantaneous Stokes numbers
into the transitional range to cause chaos. If the constant shear rate is sufficiently large the particle
will be inertia-driven during the entire rotation cycle, and there is no chaotic rotation.

Huang et al.20 demonstrated that Jeffery’s equations are valid approximations at Re = 0.5.
With a density ratio around 1000, we get a Stokes number around 500, making chaotic rotation
a real possibility for particles with ε between 0.4 and 0.92. In an oscillating shear flow such as
Stokes’ second problem (see, e.g., Schlichting and Gersten,32 page 129), strongly inertial particles
can at certain frequencies exhibit strong enough chaotic divergence to make the particle orientation
completely unpredictable after an order of 10 fluid oscillation periods. In addition to making it
impossible to predict the long term behaviour of the particle rotation, the chaos also affects the
rotation energy of the particle in such a way that small changes in the frequency can lead to dramatic
changes in the average energy of the particle. The chaotic behaviour of the particle may even affect
the rheological properties of a sufficiently dense particle-fluid mixture.24

Pure oscillating shear flows are not all that common in real applications, but several flows, such
as wakes and jets, exhibit periodicity, and thus some of the effects seen here might be observed in
such flows. In addition to this, the particle’s motion in an oscillating shear flow could also reveal
something about how particles are affected by the velocity fluctuations at different time scales
found in turbulent flows. Knowledge of how certain frequencies excite certain particles, could help
understand how particles rotate in a turbulent flow.

In a turbulent boundary layer or channel flow, a mean shear rate co-exists with a fluctuating
shear rate associated with the turbulence. The time scales of the turbulent motions extend over a wide
spectrum of scales; they also vary somewhat with the distance from the wall. The results obtained
in the present study may indicate whether or not chaotic rotation of prolate spheroids can occur in a
given turbulent flow. Moreover, if chaotic rotation is likely to occur, one might expect an anomalous
interaction between the spheroids and the turbulent flow.

The results presented here are based on the assumption of negligible fluid inertia, and it remains
to be seen how fluid inertia would affect the chaotic particle rotation. Computational or experimental
studies could be used to clarify the effect of fluid inertia, yet extensive parameter sweeps would be
time-consuming. Extending the present work to include three-dimensional rotation in an oscillating
shear flow, might also reveal interesting new effects. As we have seen briefly here, adding a constant
rate of shear dramatically changes the dynamics of the particle, and this could be investigated further.
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3 J. A. Olson, I. Frigaard, C. Chan, and J. P. Hämäläinen, “Modeling a turbulent fibre suspension flowing in a planar
contraction: The one-dimensional headbox,” Intl. J. Multiphase Flow 30, 51–66 (2004).
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Part II

Numerical turbulence





Chapter 4

Spectral element direct
numerical simulation

Direct numerical simulations (DNS) of turbulent flow have the potential to
provide valuable insight into the physics of turbulence. Spectral methods have
typically been favoured in these simulations, due to their superior efficiency. In a
newly developed DNS code, we use spectral element discretisation to allow more
complex geometries, while retaining the exponential convergence of spectral
methods. This chapter describes the numerical methods used in the DNS code.

Most of the information about spectral-element discretisation is from Deville
et al. (2002), Karniadakis and Sherwin (2005) and Rønquist (2012). References
to specific results or methods are given when applied.

Our purpose is to find an approximate solution for the velocity u and the
pressure p to the incompressible Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ f , (4.1)

with the incompressibility condition

∇ · u = 0, (4.2)

in the domain Ω. Both the density ρ and the kinematic viscosity ν are constant.
The vector f represents the body forces.

4.1 Time discretisation and splitting
We will not solve the Navier-Stokes equations directly as a coupled system,
but instead split the system into simpler equations we can solve efficiently.
Two different, but both commonly used, splitting schemes are implemented
in the DNS code. A splitting scheme with third-order accuracy is sought,
and it is important that this can be accomplished without very strict stability
requirements. As is often done in incompressible flow solvers, we use an implicit
method for the viscous terms and an explicit method for the convective terms.
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This avoids a strict stability constraint from the viscous scheme and a costly
non-linear solver for the convective scheme.

The first splitting scheme uses stiffly stable time integrators, and extra-
polation to approximate the convective terms. The scheme was developed by
Karniadakis et al. (1991) and it is applied to the continuous equations. When
the splitting scheme is applied, we get the semi-discrete system

û−∑Ji−1
q=0 αqu

n−q

Δt
= −

Je−1∑
q=0

βq [(u · ∇)u]
n−q

+ fn+1, (4.3a)

ˆ̂u− û

Δt
= −1

ρ
∇pn+1, (4.3b)

γ0u
n+1 − ˆ̂u

Δt
= ν∇2un+1. (4.3c)

Ji and Je are the orders of the implicit and explicit schemes, respectively,
and αq, βq and γ0 are the weights for the explicit and implicit stiffly stable
schemes (Karniadakis and Sherwin, 2005, page 264). Δt is the time step. It is
worth noting that the implicit stiffly stable schemes are in fact the backwards
differentiation formula (BDF) schemes, while the explicit schemes are obtained
using a BDF scheme combined with polynomial extrapolation.

By taking the divergence of equation (4.3b) and assuming that ∇· ˆ̂u = 0 we
get a Poisson equation for the pressure, i.e.

∇2pn+1 =
ρ

Δt
∇ · û. (4.4)

By rearranging equation (4.3c) we see that it takes the form of a Helmholtz
equation for each of the new velocity components(

∇2 − γ0
νΔt

)
un+1 = − 1

νΔt
(û−Δt∇pn+1). (4.5)

The solution method then consists of first finding û from equation (4.3a), then
solving the Poisson equation in (4.4) for the pressure and the three Helmholtz
equations in (4.5) for the three velocity components.

As the explicit schemes are used to integrate the convective operator,
an operator with purely imaginary eigenvalues (at least for the continuous
operator), the factor that determines the stability requirements is how much
of the imaginary axis is included in the stability diagram. While the stability
diagram of the third-order explicit stiffly stable scheme does contain a sizeable
portion of the imaginary axis, the standard fourth-order Runge-Kutta method
encompasses about three times as much of the imaginary axis in the stability
diagram. This means that in cases where the time step required for stability
is much smaller than the time step required for a sufficiently accurate solution,
significant performance gains can be accomplished by switching to a different
type of time discretisation. There are no stability requirements associated with
the implicit scheme applied to the viscous operator.

The second splitting scheme uses the same kind of pressure velocity splitting,
but with a semi-Lagrangian convection treatment (Maday et al., 1990; Xiu and



Time discretisation and splitting 31

Karniadakis, 2001; Xiu et al., 2005). This means that equations (4.4) and (4.5)
are still solved for the pressure and velocity, but we get a new equation for û.
Instead of using extrapolation for the convection we solve a pure convection
problem to obtain û. We use the combination of a BDF scheme for the viscous
Stokes operator and a Runge-Kutta scheme for the convection problem.

The velocity û is computed as

û =

Ji−1∑
q=0

αqũ
n−q +Δtfn+1, (4.6)

where ũn−q are obtained by solving the Ji convection problems

dũ

dt
= −(U(t) · ∇)ũ, ũ(tn−q) = un−q, tn−q ≤ t ≤ tn+1,

q = 0, . . . , Ji − 1. (4.7)

The convection velocity U(t) is the polynomial extrapolant of order Ji − 1 on
the interval tn+1−Ji ≤ t ≤ tn+1. The convection problems must be solved with
an integration method of order at least equal to Ji, in order to obtain a time
accuracy of order Ji for this semi-Lagrangian method. We use the standard
fourth-order Runge-Kutta method. The particular semi-Lagrangian scheme we
have just presented, was described by Maday et al. (1990), and derived using
operator-integration-factors.

If the time step required for stability is much smaller than the time step
required for accuracy, we can integrate the convection equation using a smaller
time step Δt/s. This is particularly useful if integrating the convection operator
is relatively cheap compared with the solution of the Poisson and Helmholtz
equations. When using s sub-steps, integration order Ji and a fourth-order
Runge-Kutta method, the convection step requires a total of 2sJi(Ji + 1)
convection operator evaluations, which can be very expensive for a higher order
scheme. It is, however, possible to reduce the number of convection operator
evaluations to 4sJi by exploiting the linearity of the convection equation
(Fischer). The optimal choice of splitting scheme, time step and number of
sub-steps will depend on the relative cost of evaluating the convection operator
and solving the Poisson and Helmholtz equations.

The reason this type of method is called a semi-Lagrangian method, is that
we discretise the Lagrangian derivative using the BDF scheme for a particle
trajectory arriving at the grid-point at time tn+1. This type of semi-Lagrangian
method is called an auxiliary semi-Lagrangian method because we solve an
auxiliary convection equation. Another type of semi-Lagrangian method, the
strong semi-Lagrangian method, uses interpolation to find the departure point
of the fluid particle arriving at the grid-point. We will use this type of method
in chapter 5.

In both of the splitting schemes we have presented, we end up with a Poisson
equation for the pressure, and Neumann pressure boundary conditions must
be estimated. It is quite common, especially in standard CFD codes, to use
n · ∇p = 0 as the pressure boundary condition on solid surfaces. Here n is the
outward surface normal vector. However, this boundary condition is only correct
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in inviscid flow, and the use of this boundary condition in viscous flow will cause
O(1) errors near the surface (Tomboulides et al., 1989; Karniadakis et al., 1991).
Instead, we will use a pressure boundary condition which is consistent with and
can be easily derived from the Navier-Stokes equations. The Neumann pressure
boundary condition is

n · ∇p = −ρ

⎡⎣∂u

∂t

n+1

+ ν

Jp−1∑
q=0

βq(∇× (∇× u))n−q − fn+1+

Je−1∑
q=0

βq[(u · ∇)u]n−q

]
· n, (4.8)

where Jp is the order of the boundary condition approximation. On a surface
with non-slip velocity boundary conditions this simplifies to

n · ∇p = −ρ

⎡⎣ν Jp−1∑
q=0

βq(∇× (∇× u))n−q − fn+1

⎤⎦ · n, (4.9)

which when f = 0 will be reduced to n · ∇p = 0 in inviscid flow.
The explicit pressure boundary condition has been shown (Leriche and

Labrosse, 2000) to be unconditionally stable for Jp = 1, 2, with only conditional
stability for Jp > 2. This is not, however, a significant problem in practice as the
time step required for accuracy is usually smaller than the stability constraint
(Leriche and Labrosse, 2000).

Before we move to the next part of the discretisation, it should be pointed out
that neither of the two splitting schemes presented here will find a velocity field
that is exactly divergence free, because we do not project the velocity field onto
the subspace of solenoidal vector functions. This means that the divergence-free
condition will be part of the convergence process.

4.2 The Poisson and Helmholtz equations
Having dealt with the splitting and temporal discretisation, we end up with one
Poisson equation and three Helmholtz equations that we need to solve. This
closely follows the procedure developed by Rønquist (1988, 2012).

We start by writing the Poisson equation for the pressure as

−∇2p = f(x) in Ω. (4.10)

This is the strong form of the Poisson equation. The weak form, which is the
form we will solve, is formulated by multiplying with a test function v and
integrating over the domain Ω. Using integration by parts, we obtain

(∇v,∇p) = (v, f) +

∫
∂Ω

v(∇p · n) dS , (4.11)

where
(∇v,∇p) =

∫
Ω

∇v · ∇p dx (4.12)
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is the weak form of the Laplacian of p,

(v, f) =

∫
Ω

vf dx (4.13)

is the inner product of v and f over Ω, and∫
∂Ω

v(∇p · n) dS (4.14)

enforces the Neumann boundary condition for ∇p on the surface of Ω.
Next we must define the function spaces. L2(Ω) is the space of all functions

that are square-integrable over Ω. H1(Ω) is the space of all functions, such that
the function and the first derivative are square-integrable over Ω. It is clear that
H1(Ω) ⊂ L2(Ω). We require that f ∈ L2(Ω) and choose the solution space as

X = H1(Ω) (4.15)

to arrive at the weak form: find p ∈ X such that

(∇v,∇p) = (v, f) +

∫
∂Ω

v(∇p · n) dS , ∀v ∈ X. (4.16)

Discretising equation (4.16) involves choosing a discrete solution space, a
basis, a test-function and quadrature to approximate the integrals; but first we
must define the domain Ω. We have so far stated that the equations are solved in
the domain Ω, without giving any details about this domain. As we are using a
spectral element framework, the domain consists of several smaller sub-domains
or elements. The domain Ω is the union of E deformed hexahedral sub-domains
Ωe, i.e.

Ω =

E⋃
e=1

Ωe, Fe : Ω̂ → Ωe, e = 1, . . . , E, (4.17)

where Fe is a geometry mapping that maps the reference domain Ω̂ = (−1, 1)×
(−1, 1)× (−1, 1) to Ωe. Associated with each geometry mapping Fe we have a
Jacobian

Je =

⎛⎜⎝
∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

⎞⎟⎠ (4.18)

and its inverse J−1, which relates the reference variables (ξ, η, ζ) to the physical
variables (x, y, z), and can be different at each point in space. J is defined as
the determinant of J ,

J = det(J). (4.19)

Derivatives are computed as

∂pe

∂x
=

∂p̂e

∂ξ

∂ξ

∂x
+

∂p̂e

∂η

∂η

∂x
+

∂p̂e

∂ζ

∂ζ

∂x
, (4.20a)

∂pe

∂y
=

∂p̂e

∂ξ

∂ξ

∂y
+

∂p̂e

∂η

∂η

∂y
+

∂p̂e

∂ζ

∂ζ

∂y
, (4.20b)
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∂pe

∂z
=

∂p̂e

∂ξ

∂ξ

∂z
+

∂p̂e

∂η

∂η

∂z
+

∂p̂e

∂ζ

∂ζ

∂z
, (4.20c)

where p̂e = p|Ωe ◦ Fe is the reference solution on the reference domain.
To discretise equation (4.16), we define the discrete solution space XE,N as

XE,N = {v ∈ X | v|Ωe
◦ Fe ∈ PN (Ω̂)}, (4.21)

where PN (Ω̂) is the space of all polynomial functions of degree ≤ N over the
reference domain Ω̂.

Next we define a basis for the discrete space as

∀v ∈ XE,N , v|Ωe
◦ Fe = v̂e,

v̂e(ξ, η, ζ) =

N∑
α=0

N∑
β=0

N∑
γ=0

veαβγ lα(ξ)lβ(η)lγ(ζ). (4.22)

This defines a nodal tensor-product basis in each element, where lα(ξ) is the
one-dimensional N -order Lagrangian interpolant through the nodes and veαβγ
denote the nodal values. When using high-order polynomial interpolation, the
nodes need to be chosen carefully to guarantee convergence, as using equidistant
points will lead to severe oscillations (Runge’s phenomenon). We use the N +1
Gauss-Lobatto-Legendre (GLL) nodes. Similarly, the solution can be expressed
as

p|Ωe
◦ Fe = p̂eN , p̂eN (ξ, η, ζ) =

N∑
α=0

N∑
β=0

N∑
γ=0

peαβγ lα(ξ)lβ(η)lγ(ζ). (4.23)

C0 continuity is enforced across element boundaries.
The geometry is approximated using the same basis as the solution,

xe
N (ξ, η, ζ) =

N∑
α=0

N∑
β=0

N∑
γ=0

xe
αβγ lα(ξ)lβ(η)lγ(ζ), (4.24)

and similarly for y and z.
What remains is the choice of test functions and quadrature. As test

functions we choose

v̂(ξ, η, ζ) = li(ξ)lj(η)lk(ζ), ∀i, j, k = 0, . . . , N, (4.25)

and we use GLL-quadrature,∫
Ωe

g dx ≈
N∑

α=0

N∑
β=0

N∑
γ=0

ραρβργgαβγJαβγ (4.26)

to approximate the integrals in the weak form.
Putting all this together, yields a system of linear equations

Ap = b, (4.27)
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for all the nodal pressure values peijk. Due to the exclusive use of Neumann
boundary conditions, this system is actually singular, and the matrix A has a
non-trivial null-space consisting of the one-vector 1. This is, however, the only
spurious pressure mode we have to deal with for the particular splitting schemes
we are using. How we deal with the null-space of A when we solve the system,
is discussed in chapter 4.4.

Having taken care of the Poisson equation for the pressure, three Helmholtz
equations for the three velocity components remain. The Helmholtz equation is
in its strong form written as

∇2u+ cu = f(x) in Ω, (4.28)

where c is a constant. Again we seek the weak form, but this time we are using
Dirichlet boundary conditions on ∂Ω. The solution space Y is then defined as

Y = H1
0 = {v ∈ H1 | v|∂Ω = 0}, (4.29)

which means that homogeneous Dirichlet boundary conditions are defined in the
function space. Non-homogeneous Dirichlet boundary conditions are obtained
by lifting the solution, which means expressing u as u0 + uD, where u0 satisfies
homogeneous Dirichlet boundary conditions and uD is a function in H1 which
satisfies the real non-homogeneous boundary conditions. The resulting weak
form of the Helmholtz equation is: find u ∈ Y such that

(∇w,∇u0) + c (w, u0) = (w, f)− (∇w,∇uD)− c (w, uD) , ∀w ∈ Y. (4.30)

The discretisation of equation (4.30) is almost identical to the discretisation
of equation (4.16), with the exception that the nodes on ∂Ω are set equal to
zero, and therefore that the resulting system

Bu = d, (4.31)

for the nodal values ue
ijk, is non-singular.

4.3 Convection operator, aliasing and spectral
vanishing viscosity

Whichever splitting scheme we choose to use, we have to approximate the
convection terms in the Navier-Stokes equations. The convection operator
(u · ∇)u can be written in several different forms: the conservative form

∇ · uu, (4.32)

the convective form
u · ∇u, (4.33)

the skew-symmetric form

1

2
(∇ · uu+ u · ∇u), (4.34)
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and the rotational form

1

2
∇ · uu− u× (∇× u). (4.35)

These continuous operators are all equivalent in incompressible flow, but the
discrete operators will be different. The choice of convection operator can have
a significant impact on the solution (Rønquist, 1996; Wilhelm and Kleiser, 2000),
and only the skew-symmetric form has purely imaginary eigenvalues (Rønquist,
1996). The computational cost of the convective forms will also differ in the
number of matrix-matrix products needed. Benchmark tests of three of the
different convection operators are shown in chapter 6.

We discretise the weak form of the convective operator

(v, (w · ∇)u) , (4.36)

where v is the test function and w is the convective velocity. When the
convective terms are linearised, as in the semi-Lagrangian splitting scheme, the
convective velocity w is not equal to u. No integration by parts is performed
on the convection terms.

A polynomial approximation of the non-linear convection operator, will cause
aliasing errors, in much the same way as for Fourier spectral approximations. In
both Fourier and polynomial spectral approximations, over-integration (super-
collocation) can be used to avoid aliasing. We use numerical quadrature of
a higher order than the polynomial approximation used for the solution, and
this requires interpolation. In under-resolved simulations, the aliasing errors
can cause stability problems and must be dealt with in some way. Using 3N/2
quadrature points to approximate the convective terms, effectively removes the
problem of aliasing and stabilises the simulation (Kirby and Karniadakis, 2003).

Another way to stabilise an unstable simulation is to use spectral
vanishing viscosity (SVV) (Kirby and Karniadakis, 2002). Spectral vanishing
viscosity involves adding a small portion of added viscosity only to the
highest wave-numbers. This dampens unphysical high-wavenumber oscillations,
without compromising the exponential convergence of the spectral element
approximation. We use the formulation presented by Xu and Pasquetti (2004),
which yields an exponentially accurate stabilised solution with no change to
computational cost per iteration of the iterative solver.

4.4 Solving symmetric positive definite systems

For each time step we have to solve four symmetric positive definite (SPD)
systems. We will discuss how such systems are solved, exemplified with the
system

Ax = b. (4.37)

The standard method of choice for SPD systems is the preconditioned conjugate
gradient (PCG) method (Hestenes and Stiefel, 1952), which is shown in
algorithm 1 for an error tolerance ε.
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Algorithm 1 Preconditioned conjugate gradient method

1: function conjugate_gradient(x0, b, ε)
2: r0 ← b−Ax0

3: z0 ← P−1r0
4: p0 ← z0

5: k ← 0
6: while rTk rk > ε2 do
7: αk ← rT

k zk

pT
k Apk

8: xk+1 ← xk + αkpk

9: rk+1 ← rk − αkApk

10: zk+1 ← P−1rk+1

11: βk ← zT
k+1rk+1

zT
k rk

12: pk+1 ← zk+1 + βkpk

13: k ← k + 1

14: return xk+1

Multiplication with the symmetric positive definite preconditioner matrix
P−1, accelerates the solver by reducing the condition number of the system.
For large systems, an efficient preconditioner is needed to be able to solve the
system in a reasonable number of iterations. Sometimes it is necessary to use a
sophisticated preconditioner, that is not necessarily constant between iterations.
This violates the assumptions behind the preconditioned conjugate gradient
method, and might seriously compromise the performance of the algorithm.
In such cases, it is better to use a different formulation of the method, the
flexible conjugate gradient method (Notay, 2000), which allows the use of a
variable preconditioner. Algorithm 2 shows the solution procedure for the
flexible conjugate gradient method. In this algorithm, multiplication by P−1

should be thought of as a general operator which approximates the action of
A−1, and not as a standard matrix-vector multiplication.

Algorithm 2 Flexible preconditioned conjugate gradient method

1: function flexible_conjugate_gradient(x0, b, ε)
2: r0 ← b−Ax0

3: k ← 0
4: while rTk rk > ε2 do
5: zk ← P−1rk

6: pk ← zk −∑k−1
j=k−mk

zT
k Apj

pT
j Apj

pj

7: xk+1 ← xk +
pT
k rk

pT
k Apk

pk

8: rk+1 ← rk − pT
k rk

pT
k Apk

Apk

9: k ← k + 1

10: return xk+1

11: m0 = 0; mk = max(1, mod (k,mmax + 1)), k > 0
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When solving the Poisson equation with Neumann boundary conditions,
we have to take special steps to address the null-space. The null-space of the
Poisson system matrix A consists of the all-ones vector 1, and to make sure that
the conjugate gradient method converges, we first project out the portion of the
right-hand-side vector b that lies in the null-space. Before line 2 in algorithm 1
or 2 we perform the projection

b ← b− bT1

1T1
1. (4.38)

We also have to include the projection

zk ← zk − zT
k 1

1T1
1 (4.39)

after each application of the preconditioner P−1 (after line 3 and 10 in algorithm
1 and line 5 in algorithm 2), as the preconditioning might add a component in
the null-space. With these minor modifications, we are able to find a solution
also to the singular Poisson system. A different, and perhaps more common,
method of dealing with the null-space, is to set a reference pressure at some
point in the domain. This is not generally an advisable approach because it
involves changing the system matrix A, changing the condition number of A
and possibly slowing down the convergence of the iterative method.

The systems we solve will typically be very large, and the conjugate gradient
method will take many iterations to converge. It is important to use any method
available to accelerate the convergence. Both the choice of initial guess x0 and
the choice of preconditioner P−1, can dramatically affect the convergence of the
iterative method, so we will consider both.

One of the simplest choices for the initial guess x0, is to use the solution
from the previous time step. Compared with using x0 = 0, this is a
considerable improvement. We can do even better than this by using polynomial
extrapolation of the Ji previous solutions, which we have to store anyway for
the time discretisation scheme. Grindberg and Karniadakis (2011) showed that
the use of polynomial extrapolation as the initial guess, is a very effective way of
reducing the number of iterations required for convergence. The computational
cost of the extrapolation is marginal, and we have adopted this method for both
the pressure and the velocity.

The choice of preconditioner is more complicated. For the Helmholtz velocity
equations, a diagonal (Jacobi) preconditioner can be used. In turbulent flows,
where νΔt is a very small number, the Helmholtz operator is close to diagonal
and the simple diagonal preconditioner can be used with great effect. A diagonal
preconditoner is not particularly efficient for the Poisson equation, although it
will help somewhat in highly deformed elements.

We use, instead, a multi-grid preconditioner for the Poisson equation. Details
of the implementation of a multi-grid based solver, in combination with a
spectral element discretisation, were discussed by Rønquist and Patera (1987)
and Rønquist (1988). We use one multi-grid V-cycle as a preconditioner. The
multi-grid V-cycle is explained in algorithm 3.
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Algorithm 3 Multi-grid V-cycle

1: function multi_grid(x0, b, l,m1,m2)
2: if l = 1 then
3: return A−1b
4: else
5: r = b−Ax0

6: for k = 0, . . . ,m1 − 1 do
7: xk+1 = S(xk, r)

8: r = b−Axk+1

9: z = multi_grid(0,Rrk+1, l − 1,m1,m2)
10: x0 = xk+1 +RTz
11: r = b−Ax0

12: for k = 0, . . . ,m2 − 1 do
13: xk+1 = S(xk, r)

14: return xk+1

In algorithm 3, R is the restriction operator that takes a residual on level l
and restricts it to the lower order space used on level l − 1. The prolongation
operator RT takes a vector and extends it to the higher order space on the
higher level. The smoother S(xk, r), k = 0, . . . ,m− 1 smooths xk by finding an
approximate solution to the system Ax = r, using m iterations of an iterative
method. In most cases, m1 = m2 is used.

Rønquist and Patera (1987) used Jacobi iteration as a smoother, while Røn-
quist (1988) showed that significant acceleration was possible with Chebyshev
iteration. We use a diagonally preconditioned conjugate gradient solver as the
smoother, with m1 = 0 and m2 > 0, as suggested by Canuto et al. (1998).

4.5 Particle tracking

The equation of motion for a small spherical particle, with position X and
velocity V , is discussed in chapter 7, while the numerical methods used to
integrate the equation are described here. Integrating the equation of motion,
involves two types of numerical approximations: first we must approximate
the fluid velocity or any function of the fluid velocity at the particle point
using interpolation, then we have to integrate the differential equations using
numerical integration. The specific form of the particle equation is not
important at this point, but will be discussed in chapter 7. Particle tracking of
fluid particles was discussed by Darmofal and Haimes (1996) and Coppola et al.
(2001), and the tracking of inertial point-particles involves many of the same
challenges.

We use Lagrangian interpolation of order P < N , to approximate the
fluid velocity at point X. P should typically not exceed ∼ 5 to limit the
computational cost and avoid oscillations associated with Runge’s phenomenon.
It is possible to use the high-order spectral element polynomial basis to
interpolate the velocity field, but this is prohibitively expensive for large values



40 Spectral element direct numerical simulation

of N , when there are many particles.
Having dealt with the interpolation, we are left with the problem of

integrating a system of six ordinary differential equations, ẏ = f(y, t). We
use the fourth order Runge-Kutta method and the time step Δτ . Because the
fourth order Runge-Kutta method requires the evaluation of the fluid velocity
at times τ , τ + Δτ/2 and τ + Δτ , we use the time step Δτ = 2Δt to avoid
temporal integration of the velocity field (except when the particle crosses a
boundary). Particle tracking in a spectral element solver has some unique
challenges (Coppola et al., 2001) associated with particles crossing element
boundaries. There are two main approaches to this. Either we integrate the
particle paths in the physical variables x, or we integrate the particle paths in
the reference variables ξ. In a general deformed element, each method has its
unique challenges.

Integration in the physical variables requires the solution of a non-linear
problem to find the fluid velocity in the particle coordinate. Because we know
the physical coordinates of the particle, but not the reference coordinates, we
first have to find which element houses the particle and secondly use iteration
to find the particle reference coordinates, to be able to integrate the velocity
field.

Algorithm 4 Integrate particle to element boundary

1: procedure integrate_to_boundary(y, t)
2: f1 ← f(y, t)
3: h ← time_to_boundary(y,f1)
4: for k = 1, . . . ,m do
5: f2 ← f(y + h

2f1, t+
h
2 )

6: h ← time_to_boundary(y,f2)
7: f3 ← f(y + h

2f2, t+
h
2 )

8: h ← time_to_boundary(y,f3)
9: f4 ← f(y + hf2, t+ h)

10: f5 ← 1
6 (f1 + 2f2 + 2f3 + f4)

11: h ← time_to_boundary(y,f5)

12: t ← t+ h
13: y ← y + hf5

We use integration in the reference coordinates. In spectral element
simulations, where a particle crossing an element boundary is a relatively rare
occurrence, this is the more efficient method. First we have to express the
system in terms of the reference velocities using the chain rule, e.g.

dξ

dt
=

∂ξ

∂x

dx

dt
+

∂ξ

∂y

dy

dt
+

∂ξ

∂z

dz

dt
, (4.40)

which takes care of the problem of integrating the particle inside an element.
When a particle crosses a boundary, we first have to integrate the particle to the
boundary using a time step δτ < Δτ , then we transform the particle velocity to
physical coordinates, find the particle reference coordinates in the new element



Simulations of turbulent flow 41

10−1 100 101 102

y+

0

5

10

15

20
u

0 50 100 150

y+

0

1

2

3

4

5

6

7

8

u
′2
,v

′2
,w

′2

Figure 4.1: Mean streamwise fluid velocity u (left, circles) compared with
reference simulation (solid line) (Moser et al., 1999), and normal Reynolds
stress tensor components (right) in streamwise (circles), wall-normal (squares)
and spanwise (triangles) direction, compared with reference simulation (solid,
dashed and dotted lines).

and find the new reference velocity. The remaining part of the time step, Δτ−δτ ,
is integrated in the new element.

Finding the time step δτ that brings the particle exactly to the element
boundary, is in general a non-linear problem. We solve this using a very simple
modified Runge-Kutta method shown in algorithm 4, by updating a linear
estimate of δτ between each Runge-Kutta sub-step.

4.6 Simulations of turbulent flow

Direct numerical simulations of turbulent flow are almost always under-resolved,
and in many cases vastly so, compared to the resolution used in typical
convergence tests. The convergence properties of the numerical methods are
therefore not the only important factor, it is just as important how the methods
perform when the resolution is very low.

In figure 4.1 we show the results of a low resolution (40×51×40) simulation
of a turbulent channel flow at friction Reynolds number 180, compared with a
well-resolved (128 × 129 × 128) reference simulation (Moser et al., 1999). Our
results agree well with the reference simulation, despite the low resolution. The
simulation would be unstable without spectral vanishing viscosity, and because
of the low resolution, one might choose to call this a large eddy simulation.
Nevertheless, it shows that it is possible to obtain accurate results with very low
spatial resolution, which emphasises the robustness of the chosen methodology.



42 Spectral element direct numerical simulation

4.7 Implementation
The simulation methodology described in the preceding sections has been im-
plemented in a direct numerical simulation code, written in the C programming
language (Kernighan and Ritchie, 1988). Due to the computational complexity
of direct numerical simulations, implementation and programming efficiency is
important. We use the BLAS library (Lawson et al., 1979) for all vector and
matrix operations.

The convection and Laplace operators, are the most computationally
demanding parts of the Navier-Stokes solver. These require the evaluation of
derivatives. The derivatives of the nodal values uijk (n × n × n) inside an
element, are evaluated by multiplying the unrolled n3 vector u with one of the
three differentiation matrices

Dx = (I ⊗ I ⊗ D̂), Dy = (I ⊗ D̂ ⊗ I), Dz = (D̂ ⊗ I ⊗ I). (4.41)

D̂ is the one-dimensional Lagrangian differentiation matrix, with

D̂ij = l′j(ξi). (4.42)

By exploiting the memory layout of u, these matrix-vector multiplications can
be evaluated as matrix-matrix multiplications (Deville et al., 2002, chapter 8)
of complexity O(n4), between the n × n matrix D̂ and u treated as either an
n×n2 matrix, n n×n matrices or an n2×n matrix. All geometry transformation
operations are evaluated in O(n3) and thus do not change the O(n4) leading
order complexity.

We have so far almost exclusively discussed operators that are local to
each element. In order to ensure C0 continuity on element boundaries, we use
the global operation known as direct stiffness summation. The direct stiffness
summation operator Σ′ takes the shared interface variables, adds them together,
and redistributes them to the original locations.

Efficient parallelisation of the code is essential, to be able to simulate
turbulent flow. We use domain decomposition and distribute the different
elements on different processors. The communication between them is
handled using the Message Passing Interface (MPI). There are only two
operators in the solver that require communication between the elements, direct
stiffness summation and the global dot product. Direct stiffness summation
is implemented using one MPI_Alltoallv, while the global dot product is
implemented using MPI_Allreduce.

Parallelisation of the particle solver is a different challenge. The particle
integration itself is “embarrassingly parallel” because there is no interaction
between the particles. However, information about the local fluid velocity is
required but not necessarily easily available. There are two ways of solving
this: either the particles have to be moved from one processor to the next when
the particles cross element boundaries, or information about the fluid velocity
has to be sent to the processor where the particle is located. We have chosen
the first approach, because the second is extremely inefficient due to the large
communication cost each time step. The methodology described in section 4.5
is easily parallelised by sending the particle to the correct processor, when the
particle crosses over to the next element.



Chapter 5

Synthetic turbulence

The idea behind synthetic turbulence, is to generate a velocity field which re-
sembles real turbulence, without actually solving the Navier-Stokes equations.
We will only consider synthetic incompressible homogeneous isotropic turbu-
lence. There are several different ways of generating a synthetic velocity field,
but it usually involves a random number generator in some way. Simulations
of synthetic turbulence are often referred to as kinetic simulations (Fung et al.,
1992; Thomson and Devenish, 2005; Osborne et al., 2006).

In order to make random noise look like turbulence, we choose some
conditions the velocity field must satisfy. These are: incompressibility,
a turbulence-like energy spectrum, a turbulence-like time evolution and
smoothness at the smallest scales. Within these constraints, there are a wide
range of possible velocity fields with very different statistical properties. We
consider two different types of synthetic turbulence, one Gaussian and one non-
Gaussian.

5.1 Gaussian synthetic turbulence
The energy spectrum E(k) is an integral part of the synthetic turbulence
methodology. A synthetic velocity field u(x, t), is generated on a periodic
box with uniform grid and n grid points in each direction. The velocity has
the Fourier transform û(k), and we compute the energy of û, with complex
conjugate û∗, at wavenumber k = |k| as

E(û; k) =
∑
|p|=k

û(p) · û∗(p). (5.1)

We use the energy spectrum

E(k) = Cε2/3k−5/3 exp(−Cη(ηk)
2), (5.2)

where ε is the rate of dissipation, η is the Kolmogorov length scale, and C and Cη

are constants. Using an energy spectrum without an energy containing range at
the lowest wavenumbers, and an exp(−k2) roll-off at the highest wavenumbers,
extends the k−5/3 scaling over a wider range of wavenumbers.
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Producing a Gaussian synthetic turbulence field starts by generating a three-
dimensional vector field of random Fourier modes ζ̂. The Fourier modes are
generated such that the real and imaginary parts of ζ̂ follow a standard normal
distribution,

(�(ζ̂),�(ζ̂)) ∼ N (0,1). (5.3)

In order to ensure that the inverse Fourier transform of ζ̂ is real, the necessary
conjugate symmetry is set as part of the random mode generation.

This gives us a random velocity field, but not one resembling turbulence.
The next step is to make the velocity field divergence free by the projection

ξ̂ = ζ̂ − k · ζ̂
k · kk, (5.4)

and enforce the desired energy spectrum by applying the correction

û = ξ̂

(
E(k)

E(ξ̂; k)

)1/2

. (5.5)

The result is the Fourier transform of a Gaussian synthetic turbulence field.
Transforming this to real space by using the inverse Fourier transform F−1,

u = F−1(û), (5.6)

gives the Gaussian synthetic turbulence field.
If we wanted to use this as an initial condition for a simulation, or in

any other application where the time evolution was unimportant, this would
conclude the process. Because we are interested in how the velocity field evolves
in time, we also need to give the velocity field a turbulence-like time dependence.
This can be done most easily by using the phase shift

û(k, t+Δt) = û(k, t) exp(iω(k)Δt), (5.7)

which evolves the Fourier modes a time Δt with the velocity ω(k). The phase
shift preserves the energy spectrum and the incompressibility of the velocity
field.

The time scales associated with large-scale sweeping of smaller scales are
Uk (Tennekes, 1975), where U is some large-scale sweeping velocity. There is
no such sweeping in the phase-shift mechanism that evolves the velocity field,
but it is reasonable to assume that a time scale similar to what is found in real
turbulence, will produce the most realistic results. We therefore use

ω(k) = CωUk, (5.8)

where Cω is a constant.

5.2 Non-Gaussian synthetic turbulence
While the simplicity of the Gaussian synthetic turbulence generation is
attractive, and the resulting velocity field shares many features with real
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isotropic turbulence, it is possible to create a more realistic velocity field by
taking the method a bit further. It is well established that many aspects of
turbulence are non-Gaussian, and it is possible to generate synthetic turbulence
that is more realistic than the Gaussian velocity field. Rosales and Meneveau
(2006, 2008) created a multi-scale Lagrangian map that they used to deform
a Gaussian velocity field, creating a non-Gaussian synthetic velocity field.
This approach was shown to be successful in generating initial conditions for
turbulence simulations, but the method is not easily extended to include time
evolution. The idea of using the velocity field to deform itself is something we
will use, however in a way which is simpler and arguably more physical.

We start with the Navier-Stokes equations. In chapter 4 we discussed the
solution of the incompressible Navier-Stokes equations, and how we can use
a splitting scheme to decouple the equations. An auxiliary semi-Lagrangian
splitting scheme was presented in chapter 4.1. In a strong semi-Lagrangian
scheme, we use interpolation to find the fluid-particle departure points, instead
of integrating a convection equation. The strong semi-Lagrangian splitting
scheme is unconditionally stable.

A first-order strong semi-Lagrangian method starts with the convection step

v = u(xd, t), (5.9a)

xd = x−Δtu

(
x− Δt

2
u(x, t), t

)
, (5.9b)

where xd is the departure point of the fluid particle arriving at x at time t+Δt.
This requires interpolation, and we use polynomial interpolation of order P .
The second step is the correction for incompressibility, which involves solving a
Poisson equation for the pressure,

w = v − Δt

ρ
∇p(t+Δt). (5.10)

The final step is the viscous correction, which gives the three Helmholtz
equations for the velocity components,

u(t+Δt) = w + νΔt∇2u(t+Δt). (5.11)

We design a synthetic turbulence method based on the semi-Lagrangian
splitting scheme, by retaining convection, the mechanism responsible for
creating non-Gaussian statistics. While doing so, we want to get rid of the
four elliptic equations in the splitting scheme. The first part of the synthetic
turbulence algorithm is the convection, which remains unchanged from the
splitting scheme,

v = u(xd, t), (5.12a)

xd = x−Δtu

(
x− Δt

2
u(x, t), t

)
. (5.12b)

Because the rest of the algorithm takes place in Fourier space, we then have
to transform the temporary velocity field v,

v̂ = F(v). (5.13)
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Figure 5.1: Isosurfaces of the vorticity magnitude |ω| in Gaussian (left) and
non-Gaussian (right) synthetic turbulence. The colour red indicates regions of
high vorticity, and blue low vorticity.

Incompressibility can then be enforced by using the projection

ŵ = v̂ − k · v̂
k · kk, (5.14)

which gives an incompressible velocity field without having to solve an elliptic
equation. The last step, the viscous correction, is where we deviate from the
Navier-Stokes equations. Instead of solving the Helmholtz equations, we simply
correct the energy spectrum of the velocity field using

û(t+Δt) = ŵ

(
E(k)

E(ŵ; k)

)1/2

, (5.15)

which is then transformed to real space to arrive at u(t+Δt).
We have then integrated the synthetic turbulence a time Δt using a

combination of real convection and an artificial viscous correction. The idea here
is that the mechanism causing dissipation is not that important, as long as there
is sufficient dissipation to ensure that the energy spectrum is correct. The energy
spectrum is the same as the one used for the Gaussian synthetic turbulence and
the simulation can be initialised from a Gaussian synthetic turbulence field.

Figure 5.1 shows, with results from chapter 10, a comparison between
the Gaussian and non-Gaussian turbulence methods presented in this chapter.
While there is very little structure in the Gaussian turbulence, in the non-
Gaussian turbulence we see regions of vorticity concentration and elongated
vortex structures. The differences are even more striking when watching the
turbulence in motion. In the non-Gaussian turbulence, vortices are convected
and deformed by the flow, as in real turbulence, while the vortices in the
Gaussian turbulence simply appear and disappear. The non-Gaussian algorithm
is able to generate very realistic turbulence, without having to solve any elliptic
equations. A more detailed comparison between the two types of synthetic
turbulence is found in chapter 10.
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A new spectral element direct numerical simulation code

Christopher Nilsen and Helge I. Andersson
Department of Energy and Process Engineering

The Norwegian University of Science and Technology, N-7491 Trondheim, Norway
e-mail: christopher.nilsen@ntnu.no

Summary A newly developed simulation code, to be used for direct numerical simulations of
turbulent flow, has been tested. The code is based on the spectral element method. Comparisons
with an exact solution for a three-dimensional transient vortex flow confirm third-order algebraic
convergence in time, and exponential convergence in space. Tests at Reynolds numbers up to 1000
reveal that the choice of discrete advection operator, between convective, conservative and skew-
symmetric, has important implications for the accuracy of the results.

Introduction
Direct numerical simulations (DNS) have been frequently used in turbulence research [7] ever

since Orszag and Patterson [8] first showed that a numerical simulation could give accurate

predictions of wind-tunnel turbulence. It is crucial for the credibility of such simulation results

that one has sufficient control over the numerical errors incurred. This, and the complexity of

many of these simulations, are some of the reasons why efficient spectral methods have been

popular in DNS.

Orszag and Patterson used Fourier spectral methods in all three coordinate directions, while

simulations of channel flows often employ Fourier expansions in the homogeneous directions

and Chebyshev polynomials in the non-homogeneous wall-normal direction. The first published

DNS of a more complex geometry [1] used spectral element discretisation [2, 5, 10], combining

the exponential convergence of global spectral methods with the ability to represent complex

geometries.

Accurate simulations of turbulent flow have the potential to provide new insight into important

flow phenomena, through their extensive amounts of details. However, immensely detailed sim-

ulation data are of little use if they cannot be trusted. Thus it is essential that the errors in the

simulation results are sufficiently low, and for this purpose high-order and spectral methods are

superior. Numerical methods with exponential convergence make it possible to drive the error

down to a level that is unattainable for lower order methods, without unfeasibly high resolu-

tion. The absence of turbulence models makes the discretisation the primary source of error in

a direct numerical simulation.

We want to develop a new DNS code based on the spectral element method. This will allow us

to perform highly accurate simulations of turbulent flow in complex geometries. We would also

like to be able to simulate inertial particles being advected by the flow, and a Lagrangian point-

particle methodology will be implemented as part of the code. The code must be parallelised

and able to run on a large number of processors, to enable us to simulate complex turbulent

flows.

The mathematical background of the methods used and some implementation details are dis-

cussed in the following sections, before we test the code with a series of benchmark simulations

in the results section. As the code is designed for turbulent simulations, we are particularly inter-

ested in how the dominance of advection affects the error in the simulation results, for different

forms of the discrete advection operator.
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Mathematical description
We want to solve the incompressible Navier-Stokes equations using a spectral element method,

based on the Galerkin formulation for Nel conforming deformed hexahedral elements.

We start with the weak form of the incompressible Navier-Stokes equations, i.e. we want to find

(u(t), p(t)) ∈ X × Y such that for t ∈ (0, T )(
v,

∂u

∂t

)
+ (v,u · ∇u) + ν (∇v,∇u)− 1

ρ
(∇ · v, p) = (v, f) , ∀v ∈ X ≡ H1

0 (Ω)
3, (1a)

(q,∇ · u) = 0, ∀q ∈ Y ≡ L2
0(Ω), (1b)

where the spaces are defined as

H1
0 (Ω) =

{
v ∈ H1(Ω) | v = 0 on ∂Ω

}
, (2)

L2
0(Ω) =

{
q ∈ L2(Ω)

∣∣∣∣∫
Ω

q dx = 0

}
. (3)

Non-zero Dirichlet boundary conditions are imposed by lifting the solution, and (q, v) denotes

the inner product

(q, v) =

∫
Ω

qv dΩ . (4)

The discrete spaces of velocity (XN ) and pressure (YN ) are subspaces of X and Y , formed

using polynomials of degree ≤ N . We use a nodal basis of high-order Lagrangian interpolants

through the Gauss-Lobatto-Legendre points.

To solve the discretised equations we use a high-order dual splitting scheme based on stiffly

stable time integrators, developed by Karniadakis, Israeli and Orszag [4]. We use an explicit

integrator of order Je for the advection terms, an implicit integrator of order Ji for the diffusion

terms and an explicit integrator of order Jp for the pressure boundary conditions. This gives the

semi-discrete system

ũ−∑Ji−1
q=0 αqu

n−q

Δt
= −

Je−1∑
q=0

βq [(u · ∇)u]n−q + f , (5a)

˜̃u− ũ

Δt
= −1

ρ
∇pn+1, (5b)

γ0u
n+1 − ˜̃u

Δt
= ν∇2un+1, (5c)

with Neumann pressure boundary conditions given by

n · ∇pn+1 = −ρ

[
∂u

∂t

n+1

+ ν

Jp−1∑
q=0

βq (∇× (∇× u))n−q − fn+1

+
Je−1∑
q=0

βq [(u · ∇)u]n−q
]
· n.

(6)
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The constants αq, βq and γ0 are the integration weights for the implicit and explicit stiffly stable

schemes [4].

We use Je = Jp = Ji = 3 to achieve third-order accuracy in time for both velocity and pressure.

Taking the divergence of equation (5b), assuming ∇ · ˜̃u = 0, gives a Poisson equation for the

pressure, while equation (5c) gives a Helmholtz equation for each velocity component. Both

the Poisson equation and the Helmholtz equations are solved using a preconditioned conjugate

gradient method.

The splitting scheme has been chosen because of its third-order accuracy, and because it does

not require that the inf-sup condition is satisfied [4]. The only spurious pressure mode is the

hydrostatic mode, and the method has been implemented with equal-order interpolation for ve-

locity and pressure. Using equal-order interpolation for velocity and pressure greatly simplifies

the implementation.

The advection operator can be written in several different ways, namely the convective form

u · ∇u, (7a)

the conservative form

∇ · uu, (7b)

and the skew-symmteric form
1

2
(u · ∇u+∇ · uu) . (7c)

For the continuous equations, these three forms are equivalent, but the three discrete opera-

tors are not. There is no clear evidence to suggest one form is always superior, but the skew-

symmetric form is the only one with purely imaginary eigenvalues [9]. However, it is also the

most computationally expensive.

The trajectories of inertial spherical particles dispersed in the flow are simulated using a one-

way coupled Lagrangian point-particle approach. The point-particle assumption implies that

the particles are assumed to be much smaller than the smallest fluid scales. We use a greatly

simplified version of the Maxey-Riley equation [6], where we assume that the particles are

truly much smaller than the smallest fluid scales, and that their density is much greater than the

fluid density. Assuming the particles are heavy allows us to neglect the added mass force, and

more importantly the Basset force, the inclusion of which greatly complicates the particle force

computation. The resulting equation is

m
dup

dt
= 3πνρD (u− up) +mg, (8)

where up is the particle velocity, D is the particle diameter and m is the particle mass. Addi-

tional terms and corrections could be implemented to relax the assumptions necessary for the

equation to hold.

The particle equation is integrated using an explicit third-order stiffly stable scheme. Fluid ve-

locities in the particle positions are computed with high-order polynomial interpolation, using

the same basis as the one used to discretise the Navier-Stokes equations. High-order polyno-

mial interpolation will be quite computationally expensive for a large number of particles, but

we avoid the additional error that would otherwise be caused by using low-order interpolation.
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Implementation
The solution method sketched out in the previous section has been implemented in a C pro-

gram, with MPI for distributed memory parallelism and OpenMP for shared memory paral-

lelism. The BLAS library has been extensively used for matrix and vector operations, and the

performance of the BLAS matrix-matrix multiplication routine DGEMM is crucial for the overall

performance of the code. An eigenvalue routine from the LAPACK library is used to find the

Gauss-Lobatto-Legendre points. Message passing communication during the simulation is lim-

ited to one MPI_Alltoallv for the direct stiffness summation, and one MPI_Allreduce
to implement the global norm needed in the conjugate gradient solver.

Benchmark
A challenge when testing Navier-Stokes solvers is finding suited test cases with exact analytical

solutions. Many analytical solutions are for degenerate cases where one or more of the terms

are equal to zero. Ethier and Steinman [3] presented a solution to the three-dimensional incom-

pressible Navier-Stokes equations without body forces, where the unsteady terms balance the

viscous terms, and the advective terms balance the pressure gradient. The solution is given in

equations 9a–9d, and is valid for any geometry and at any Reynolds number.

u = −a [eax sin(ay + dz) + eaz cos(ax+ dy)] e−d
2t, (9a)

v = −a [eay sin(az + dx) + eax cos(ay + dz)] e−d
2t, (9b)

w = −a [eaz sin(ax+ dy) + eay cos(az + dx)] e−d
2t, (9c)

p = −a2

2

[
e2ax + e2ay + e2az + 2 sin(ax+ dy) cos(az + dx)ea(y+z)

+ 2 sin(ay + dz) cos(ax+ dy)ea(z+x)

+ 2 sin(az + dx) cos(ay + dz)ea(x+y)
]
e−2d

2t

(9d)

This flow is a transient three-dimensional vortex flow well suited to test the accuracy in the

approximation of all the different terms in the Navier-Stokes equations. Because this solution is

valid at any Reynolds number, we can use it to study the error convergence both in advection-

dominated and diffusion-dominated flows.

Results
For our test simulations we have used a = π/4 and d = π/2 and compared with the exact

solution at t = 0.1. The solution is found on the cubic domain Ω = (−1, 1)× (−1, 1)× (−1, 1),
represented using eight hexahedral spectral elements of order N . Viscosity and density are

chosen such that the Reynolds number is Re = 1. Dirichlet boundary conditions for the velocity,

given by the exact solution, are prescribed on all boundaries.

We have conducted several tests with a number of different values for N and Δt and computed

the error measured in a normalised maximum norm. To study the effect of the choice of ad-

vection operator, the three different advection forms (equations 7a–7c) have been tested and

compared. We use Δt = 10−4 for the spatial convergence tests and N = 11 for the temporal

convergence tests. This ensures that temporal errors are negligible in the spatial convergence

tests and vice versa.

Figures 1 and 2 show the error in the velocity and pressure, respectively, for the convective,

conservative and skew-symmetric advection operators. There are mostly small differences be-

tween the three advection forms, but the convective form appears to give the smallest velocity
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Figure 1: Error in approximate solution uN computed for skew-symmetric advection operator (©), con-

servative advection operator (�) and convective advection operator (�), as a function of N (left) and Δt
(right).
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Figure 2: Error in approximate pressure pN for skew-symmetric (©), conservative (�) and convective

(�) advection operator, as a function of N (left) and Δt (right).
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Figure 3: Maximum divergence as a function of N (left) and Δt (right), for skew-symmetric (©), con-

servative (�) and convective (�) advection operator.
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Figure 4: Error in approximate solution uN for skew-symmetric advection operator (©), conservative

advection operator (�) and convective advection operator (�), as a function of N for Re = 10 (left) and

Re = 100 (right).
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Figure 5: Error in approximate pressure pN for skew-symmetric (©), conservative (�) and convective

(�) advection operator, as a function of N for Re = 10 (left) and Re = 100 (right).

error. The error in the pressure is largely unaffected by the choice of advection operator. In

figure 3 we see the maximum divergence of the velocity field, and how it is affected by N and

Δt. Because the splitting scheme does not project the velocity on the subspace of solenoidal

vector functions, the incompressibility is part of the convergence process. Choice of advection

operator has some effect on the divergence, and the convective form appears to perform slightly

better than the two others. For both error plots and the divergence plot, we observe exponential

convergence in space, and third-order algebraic convergence in time, like we expect.

In order to shed some light on the importance of the discrete form of the advection term in more

advection dominated flows, two extra sets of simulations with Re = 10 and Re = 100 have

been completed. The time step is chosen to be Δt = 10−5 for all values of N , to eliminate

temporal discretisation errors. The error in the approximate velocity is plotted in figure 4 for

both Reynolds numbers, and we observe that the difference between the three advection operator

forms increase with increasing Reynolds number. At Re = 100 there is roughly an order of

magnitude difference in the error, between the convective advection operator, which has the

smallest error, and the conservative operator, which has the largest error.

In figure 5 we observe that the pressure is less affected by the choice of advection operator, but

also here the differences are significant at Re = 100. Again, the convective advection operator

incurs the smallest errors. For the velocity divergence (figure 6), the convective advection oper-

ator is an order of magnitude better than the conservative operator, while the skew-symmetric

form lies somewhere in between.
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Figure 6: Maximum divergence as a function of N for Re = 10 (left) and Re = 100 (right), for skew-

symmetric (©), conservative (�) and convective (�) advection operator.
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Figure 7: Error in approximate x-velocity uN (left) and maximum divergence (right), for skew-symmetric

(©), conservative (�) and convective (�) advection operator, at Re = 1000.

A comparison of the three advection forms at an even higher Reynolds number of 1000 is

shown in figure 7, for Δt = 2 · 10−6. At this Reynolds number, aliasing errors dominate and

stable results are only obtained for N ≥ 9. For N = 9 and N = 10, the reduced aliasing error in

the skew-symmetric treatment, clearly makes it superior to the convective and the conservative

advection treatment. At the highest spatial resolution, N = 11, the convective form is once

again the one with the smallest error.

The skew-symmetric form is often the preferred choice due to its purely imaginary eigenval-

ues, although many of our tests indicate performance inferior to the convective form. This is

most likely caused by the application if inexact Dirichlet velocity boundary conditions [9], as

the skew-symmetric form requires a more exact representation of the boundary conditions. At

Reynolds number 1000, however, the increased aliasing error in the convective form dominates,

making the skew-symmetric form the preferred choice for N ≤ 10.

Conclusion
We have successfully implemented a Navier-Stokes solver based on the spectral element method

in a simulation code designed for direct numerical simulations of turbulent flow. Through sim-

ple, but relevant, benchmark tests, we have shown that we get exponential convergence in space

and third-order convergence in time.

Tests of the different discrete formulations of the advection operator have revealed that there

are mainly small differences in the errors in both pressure and velocity at a Reynolds number

of unity. At higher Reynolds numbers, however, the differences can be highly significant, and
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the convective form performs better than the conservative and skew-symmetric forms in most

of our tests. The results do not provide sufficient grounds for formulating general guidelines for

the choice of advection operator, but illustrate the implications of this choice for the accuracy

of the results.
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Part III

Particle clustering





Chapter 7

Particle dynamics and
examples of clustering

Particles moving in turbulent flow are often inhomogenously distributed,
forming areas with higher than average concentration. This tendency for the
particles to distribute inhomogeneously is referred to as clustering or preferential
concentration, and the prominence of this phenomenon will depend on the
particle type as well as the flow conditions. Particles with very low inertia
will typically follow the flow passively as tracers, while particles with very
high inertia will remain almost unaffected by the turbulence fluctuations. It is
between these two limits that we find the particles with the strongest tendency
to cluster.

Maxey and Riley (1983) derived an equation for the motion of a small
spherical particle in an unsteady non-uniform flow at low Reynolds number.
The equation, know as the Maxey-Riley equation, is

m
dV

dt
= mg +

m

ρp

[
−∇p+ μ∇2u

]
+ 6πμa

[
(u− V ) +

a2

6
∇2u

]
+

1

2

ρ

ρp
m

d

dt

[
(u− V ) +

a2

10
∇2u

]

+ 6πμa2
∫ t

0

d
dt

(
(u− V ) + a2

6 ∇2u
)

[πμρ−1(t− τ)]
1/2

dτ . (7.1)

V is the velocity of a particle with radius a, density ρp and mass m. The velocity
u and pressure p of the fluid, with viscosity μ and density ρ, are evaluated at
the particle location X.

Equation (7.1) is Newton’s second law of motion for a spherical point-particle
in a viscous flow with five types of forces on the right hand side. The first
force is the gravitational body force, where g is the acceleration of gravity
vector, while the rest of the terms are fluid forces. The four different kinds of
fluid forces, from left to right, are: pressure and shear stress from undisturbed
flow, steady state Stokes drag force, added mass force and Basset history force.
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Terms proportional to a2∇2u are Faxén laws correcting for the curvature of
the flow. These are usually neglected because of the particle’s small size. The
Basset history force is particularly challenging to compute because it requires
integration along the particle path from time t = 0.

In gas flows with suspended solid particles, it is quite common that ρ/ρp � 1,
in which case the equation of motion (neglecting the Faxén laws) is

m
dV

dt
= mg + 6πμa(u− V ). (7.2)

This is the version of the equation which is typically used in numerical
simulations, most often without the gravity term.

There are several possible extensions to equation (7.1). One is the inclusion
of lift forces. For a particle with finite radius, a velocity gradient will cause a
lift force, due to the pressure distribution developed on the particle (Saffman,
1965). In addition to this, the rotation of the particle will cause a Magnus force
on the particle (Rubinow and Keller, 1961). Both forces can be neglected, and
usually are neglected, when the particle radius is small.

7.1 Particle motion in rigid-body vortex
We will use a simple two-dimensional example to illustrate how particle inertia
and particle density affect the motion of the particle. In this example we will
include the Stokes drag force and the added mass force on the particle. The
equation governing the motion of the particle thus becomes

dV

dt
= β

Du

Dt
+

1

St
(u− V ). (7.3)

The particle inertia is measured by the Stokes number St, which in this case is

St =
1

τf

a2

9μ
(2ρp + ρ), (7.4)

where τf is a relevant fluid time-scale. The second parameter β = 3ρ/(ρ+ 2ρp)
measures the relative magnitude of the fluid and particle densities. Because this
example is just meant as a simple illustration, we choose to neglect gravity and
the Basset history force.

We shall now see what happens if we place the particle in a rigid-body vortex,
where the fluid velocity is

u = (−y, x) = Kx. (7.5)

The equations governing the motion of the particle are then

dV

dt
= −βX +

1

St
(KX − V ) (7.6a)

dX

dt
= V , (7.6b)
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Figure 7.1: Maximum real part of eigenvalues for β = 0.0, 0.5, 1.0, 2.0 and 3.0.

which can be written as[
V̇

Ẋ

]
=

[
− 1

StI
1
StK − βI

I 0

] [
V
X

]
= A

[
V
X

]
. (7.7)

The eigenvalues of A are

λ1234 = − 1

2St
(1±

√
1− 4βSt2 ± 4iSt), (7.8)

which can be used to predict if the particle will move out of the vortex. The
maximum real part of any of the eigenvalues, is plotted in figure 7.1 as a function
of St for five different values of β.

For β < 1 the maximum real part is positive, which means the particle will
move farther and farther away from the centre of the vortex, as time progresses.
For β > 1 the maximum real part is negative and the particle will instead move
towards the centre of the vortex. As β = 1 corresponds with ρp = ρ, this leads
to the expected conclusion that heavy particles are ejected from the vortex and
light particles are drawn into the vortex. In a flow with many particles this
means that an initially uniform distribution of particles will not remain so, as
the particles are pushed away from regions with certain flow properties. We get
particle clustering. Figure 7.1 also indicates that the tendency for particles to
move away from (or towards) certain parts of the flow, is strongest for Stokes
numbers around unity.

7.2 Clustering in a vortex array
Having shown how particles move in a simple rigid-body vortex, we will move
on to a slightly more complicated flow, a steady two-dimensional vortex array.
We consider the motion of particles in a flow with

u = sinx cos y, v = − cosx sin y. (7.9)
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Figure 7.2: Vorticity ω = ∂v/∂x−∂u/∂y = 2 sinx sin y (left) and −∇·(u·∇)u =
− cos 2x − cos 2y (right) in a vortex array flow. High values are coloured red
and low values (negative) are coloured blue.

This time we only consider heavy particles (β = 0), which means the particle
equation is

dV

dt
=

1

St
(u− V ), (7.10)

when gravity is neglected. We expect that these heavy particles will be thrown
out of the vortices in the vortex array.

If we assume that the Stokes number is small, we can find an approximate
expression for the particle velocity V as a perturbation expression in St. The
particle velocity is

V = u− St
Du

Dt
+O(St2). (7.11)

The divergence of this particle velocity is

∇ · V = −St∇ · ((u · ∇)u), (7.12)

which is non-zero for finite St. The particle velocity field is compressible even
if the fluid flow is incompressible.

Figure 7.2 shows both the vorticity and −∇ · ((u · ∇)u), in the vortex array
flow. Regions of negative divergence for the particle velocity field are associated
with accumulation of particles and found in-between the vortices. Regions of
positive divergence are found inside the vortices, indicating that the particles
are ejected from these regions.

7.3 Gravity and Brownian motion

Gravity is included in equation (7.1), but often neglected in simulations.
Another effect that is often neglected is Brownian motion. When the particle
is so small that the radius is not significantly greater than the length-scale



Gravity and Brownian motion 63

of molecular motion, the fluid cannot be treated as a continuum and Brownian
motion must be included. The importance of Brownian motion can be estimated
by the relative sizes of the particle radius and the fluid mean free path λ.

In homogeneous turbulence, we can characterise the significance of gravity
by comparing the gravitational settling velocity for ρ � ρp

vg =
2

9

ρp
μ
ga2, (7.13)

to a small-scale fluid velocity scale (νε)1/4. We get the non-dimensional ratio

vg
(νε)1/4

= St
( ν

ε3

)1/4

g, (7.14)

where the Stokes number St is based on the fluid time-scale (ν/ε)1/2. The
importance of the gravitational force will depend on the size of (ν/ε3)1/4g, and
when the dissipation is high, gravitational effects are small compared with the
effect of the turbulent motion.

In a channel flow we can do a similar exercise to find that the ratio of vg to
the friction velocity uτ , defined such that ρu2

τ is the wall stress, is

vg
uτ

= St
ν

u3
τ

g, (7.15)

when the Stokes number is defined using the fluid time-scale ν/u2
τ . The friction

Reynolds number for a channel with height 2h is uτh/ν.
For the simple equation of motion (equation (7.2)) without gravity to be a

valid approximation, four conditions need to be satisfied: the particle radius
must be much smaller than the fluid length-scale, the particle density much
greater than the fluid density, the gravitational settling velocity much smaller
than the fluid velocity scale, and the particle radius much greater than the
mean free path in the fluid. In the turbulent channel flow this translates to:
auτ/ν � 1, ρp � ρ, νg/u3

τ � 1 and a/λ � 1. In order to satisfy ρp � ρ,
we need to consider a gas flow. In an air flow at ambient temperature and
pressure we have ν ≈ 10−5 m2/s and λ ≈ 10−7 m. The particle radius then
has to satisfy 10−7 m � a � (10−5 m2/s)/uτ , and for gravity to be negligible
u3
τ � νg ≈ 10−4 m3/s3. We can make the effect of gravity arbitrarily small by

choosing a large value of uτ , but satisfying both is not possible. Gravity and
Brownian motion cannot both be negligible.

In homogeneous turbulence the requirements are: a � (ν3/ε)1/4, ρp � ρ,
(ν/ε3)1/4g � 1 and a/λ � 1. Inserting ν = 10−5 m2/s and λ = 10−7 m gives
conflicting requirements for ε, and thus the same conclusion that gravity and
Brownian motion cannot both be negligible.

We have in the preceding paragraphs argued that the assumptions typically
made, that we use in chapters 10 and 11, are impossible to strictly satisfy in
real flows. However, there are conditions when both effects are quite small
compared with the effect of turbulent convection. While gravity and Brownian
motion will modify the particle motion and spatial clustering of the particles,
the fluid mechanical mechanisms involved when particles are transported by
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fluid motion will be the same. By neglecting gravity and Brownian motion, we
can make the particle Stokes number the only independent particle parameter.
This makes it easier to understand how particle inertia causes clustering. We
investigate some of the effects of gravity in chapter 9.

7.4 Finite-radius effects
Even though the particles are assumed to be point-particles, it is not uncommon
to include finite-radius effects in particle-wall collision models and drag
correction terms. A finite-radius collision model and a drag correction model
are included in the simulation presented in chapter 9.

Although these modifications have the potential to make the approximation
more realistic, which is why they are included in chapter 9, they have the
unfortunate effect of making the particle radius an independent parameter.
This increases the dimensionality of the parameter space, and to be thorough
one should include a range of particle radii. Because we are not specifically
interested in the effect of particle size, we have not included any finite-radius
effects in the studies in chapters 10 and 11.



Chapter 8

Identifying and describing
particle clustering

In chapters 10 and 11, we use statistical methods based on kernel smoothing to
measure and describe particle clustering. This chapter describes the methods
used in chapters 10 and 11. Kernel smoothing methods are appealing, because
they provide smooth functional approximations. To our knowledge, these
methods have not been previously applied to study particle clustering.

8.1 Density estimation
In all forms of particle clustering, there will necessarily be more particles in some
regions of the flow than in others. Thus, the most straightforward approach to
describe particle clustering is to estimate the local particle number density.
The particle number density, which is the expected number of particles per unit
volume, can be normalised with the total number of particles to obtain the
particle probability density f .

If N particles are moving in a domain Ω, then the probability of finding the
position X of a randomly chosen particle in Q ⊂ Ω is

P (X ∈ Q) =

∫
Q

f dx , (8.1)

with f(x) a true probability distribution satisfying∫
Ω

f dx = 1. (8.2)

The particle number density is Nf . An estimate of f will tell us a lot about
how the particles are distributed.

Many studies of particle clustering in turbulent flow have used a histogram
(box-counting) approach to density estimation (Eaton and Fessler, 1994;
Picciotto et al., 2005), where the domain is divided into a number of boxes and
the particles in each box are counted. Another and more recent idea is the use
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of Voronoï diagrams to estimate the inverse of the particle density (Monchaux
et al., 2010). While Voronoï diagrams provide an unbiased estimate of 1/f , the
high level of noise makes it challenging to use as a density estimation method.
We will instead use kernel density estimation (Wand and Jones, 1995; Silverman,
1986), which gives a smooth functional approximation to the particle density
with convergence properties superior to histograms.

Because the method can be easily applied in both two-dimensional and three-
dimensional particle flow problems, we will present the general d-dimensional
formulation. We assume that we have N particles and that the centre coordinate
locations are given by Xi ∈ R

d, i = 1, . . . , N . The idea behind kernel density
estimation is that we estimate the local density as a sum of density kernel
functions located in the centre of each particle. The multivariate probability
density estimate f̂ at x ∈ R

d can then be expressed as

f̂(x;H) = N−1
N∑
i=1

|H|−1/2
K(H−1/2(x−Xi)), (8.3)

where H is a d × d bandwidth matrix and K(x) is a kernel function. As long
as K(x) is a proper probability density function, f(x;H) will be a proper
probability density function. The Gaussian kernel,

K(x) = (2π)−d/2 exp

(
−1

2
xTx

)
, (8.4)

is a common choice of kernel function, and the one we will use here. The
choice of kernel function does not have a great impact on the accuracy of the
approximation (Wand and Jones, 1995). However, the choice of bandwidth is
important.

The kernel density estimate can be thought of as the result of applying a
filter to a “raw” density estimate N−1

∑N
i=1 δ(x − Xi), where δ(x) is the d-

dimensional Dirac delta distribution.
Bandwidth selection is a complicated issue, and crucial to the accuracy

of the kernel density estimate. There are many different approaches to
bandwidth selection, some based on simple heuristic arguments, others based on
sophisticated optimisation techniques. We choose a diagonal bandwidth matrix
H = h2I, as this greatly simplifies the bandwidth selection process. Equation
8.3 is then simplified to

f̂(x;h) = N−1h−d
N∑
i=1

K((x−Xi)/h). (8.5)

By minimising the “asymptotic mean integrated squared error” it can be shown
that the optimal bandwidth scales with N as N−1/(d+4) (Wand and Jones,
1995). If we choose a bandwidth proportional to a characteristic length scale
and we use a fluid scale η as this length scale then, assuming there are
approximately (η/L)dN particles inside a region of size η, we can estimate the
optimal bandwidth h as

h = Cf

( η

L

) 4
d+4

N− 1
d+4 . (8.6)
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We can also estimate the derivatives of f as

∂rf̂

∂xα1 · · · ∂xαr

(x;h) = N−1h−r−d
N∑
i=1

∂rK

∂xα1 · · · ∂xαr

((x−Xi)/h), (8.7)

and as before we can estimate an optimal bandwidth as

h = C∂rf

( η

L

) 2r+4
d+2r+4

N− 1
d+2r+4 . (8.8)

In some cases we might be interested in the probability density in the location
of each particle. Kernel density estimation makes it easy to compute f̂(Xj ;h)
for j = 1, . . . , N . By realising we only need to include contributions of particles
closer than 5h (the Gaussian kernel is very close to zero outside this), we can
use an O(N logN) divide-and-conquer (Bentley, 1980) algorithm.

With the right choice of bandwidth, the kernel density estimate will converge
to the true probability density function when N → ∞. Due to the complex
shape of the probability distribution of particles in a turbulent flow, one cannot
expect to get good convergence to f for realistic values of N . Rather than
aiming for convergence to the true density, much can be learned about the
distribution of particles by choosing a fixed bandwidth and studying clustering
at that particular scale.

8.2 Measuring clustering
As it will be difficult to visually observe the magnitude of the clustering
tendency, it is convenient to use an objective statistical measure of clustering.
This type of dispersion index can be used to compare the relative levels of
clustering of different types of particles, or at different scales. For particles
whose spatial distribution is homogeneous, the number of particles inside a
chosen volume will follow a Poisson distribution. This fact was used to define a
“deviation from randomness” parameter (σ −√

μ)/μ (Eaton and Fessler, 1994)
which measures the deviation of the standard deviation σ from the Poisson
distribution value of √μ, when counting the number of particles in each box of
a regular box-counting grid.

While this clustering index seems sensible and it has been extensively used
in particle clustering studies (Fessler et al., 1994; Rouson and Eaton, 2001;
Picciotto et al., 2005; Aliseda and Lasheras, 2011), one could create several
other equally sensible indices based on the same premise (e.g. (σ2 − μ)/μ or
σ2/μ) with different results. The many different possible dispersion indices, all
behave differently with changing density.

We will therefore instead of using an index based on the variance, or any
other auxiliary quantity, simply use the density itself, to determine how much
the particles are clustered. Using an estimate f̂ of the probability density
function, we can say that if the particles are uniformly distributed in a domain
Ω with volume VΩ, then

VΩ(h
d〈f̂〉 − (2π)−d/2N−1) = hd, (8.9)
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Figure 8.1: Isosurfaces of particle density f̂ (left) and λ2 (right), identifying
particle clusters in a three-dimensional vortex array flow, with velocities u =
cosx sin y cos z, v = − sinx cos y cos z and w = 0. The figure was used in a
presentation at the 14th European Turbulence Conference.

where 〈f̂〉 denotes the density sampled on the particle locations. The degree of
particle clustering found can then be expressed using

[VΩ(h
d〈f̂〉 − (2π)−d/2N−1)]1/d − h, (8.10)

which directly measures how much more likely it is to find a particle within
a distance of approximately h of another particle, than if the particles were
uniformly distributed. Unlike most dispersion indices, this measure has a clear
and simple interpretation. The function is almost identical to Ripley’s L-
function (Ripley, 1976), a commonly used concept in spatial statistics, with
the main difference that we use a density estimate based on the Gaussian kernel
instead of the uniform kernel.

8.3 Cluster identification
We can define particle clusters as continuous regions of high particle density.
Using a kernel density estimate, particle clusters can then either be identified
as connected regions of f̂ larger than some threshold value or as a local maxima
using the derivatives of f̂ . As the former should not require further explanation,
we will briefly discuss the latter approach.

We can define a particle cluster as a local maximum of the probability density
f̂ in a plane. This can be expressed using the Hessian of f̂ , F̂ij = ∂2f̂/∂xi∂xj . A
local maximum in a plane requires two negative eigenvalues of F̂ , which means
the second largest eigenvalue λ2 must be negative. A particle cluster can then
be defined as a connected region of λ2(F̂ ) < 0, and it is possible to illustrate
clusters using iso-surfaces of λ2.

In figure 8.1, we show a simple example of how particle clusters can
be visualised, by plotting iso-surfaces of either f̂ or λ2. In this case, the
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two methods give very similar results, while more substantial differences are
expected in more complicated flows.

8.4 Particle statistics in channel flow
In channel flows, we are often interested in the mean one-dimensional particle
density in the wall-normal direction. Because of the strong density gradients
close to the walls, a coordinate transformation (Wand et al., 1991) can be used
to improve the convergence of the kernel density estimate. We can approximate
the one-dimensional wall-normal density f̂y as

f̂y(y) = N−1σ−1
N∑
i=1

g′λ(y)K((gλ(y)− gλ(Yi))/σ), (8.11)

with
gλ(x) =

{
xλ x < 1

2− (2− x)λ x > 1
. (8.12)

This approach can also be used to approximate the wall-normal particle velocity
as

〈V 〉y(y) =
∑N

i=1 Vig
′
λ(y)K((gλ(y)− gλ(Yi))/σ)∑N

i=1 g
′
λ(y)K((gλ(y)− gλ(Yi))/σ)

. (8.13)
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We use three-dimensional Voronoı̈ analysis and results from a direct numerical simu-
lation to study the preferential concentration of inertial particles in a vertical channel
flow at Reynolds number 395. By comparing results in upward and downward flows
with results from a channel flow without gravity, we are able to determine how gravity
affects the particle clustering. Gravity increases the drift of particles towards the walls
in an upward flow, while in the downward flow more particles are transported to the
centre of the channel. For particles with Stokes number 100, the mean wall-normal
particle velocity is positive in the entire core region. A significant increase in variance
of the Voronoı̈ probability distribution in the core region is observed in downward
flow for Stokes numbers 30 and 100, indicating stronger particle clustering than in
upward flow or flow without gravity. The increased clustering in the downward flow
is believed to be partly caused by the reversed wall-normal drift assisting in bringing
particles close together in the centre of the channel. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4830435]

I. INTRODUCTION

Small inertial particles suspended in a turbulent flow will form a velocity field which is not
divergence free, even if the flow is incompressible. Hence, initially uniformly distributed particles
will not remain so under the action of a turbulent velocity field. Instead they will tend to accumulate
in certain regions of the flow, leading to a strongly inhomogeneous spatial distribution. This be-
haviour was first discussed by Maxey and Corrsin1 and Maxey,2 who discovered that particle inertia
leads to accelerated settling due to preferential paths. This phenomenon is known as preferential
concentration,3–5 and has been studied extensively in both homogeneous isotropic turbulence and
wall-bounded shear flows.6, 7 It is also believed to explain the increased collision rates8 leading to
accelerated rain generation in clouds,9 and it is essential in the formation of aggregates.10 In dense
particle suspensions particle clustering is crucial in understanding the local rheological properties
of the mixture, as local differences in particle number density will lead to different suspension
viscosities.

In homogeneous isotropic turbulence, heavy particles are seen to accumulate in strain-dominated
regions, while light particles accumulate in rotation-dominated regions.4 In a turbulent channel flow,
in addition to the aforementioned effect of local preferential concentration, one observes a global
effect of particles migrating towards the walls and accumulating in the viscous sublayer.7 Often
in studies of particle-suspended turbulent channel flows, gravity is neglected. However, for heavy
particles the gravitational acceleration can have important effects in both horizontal and vertical
channel flows. In horizontal channel flows the primary effect is to accelerate settling towards the
bottom wall, while in vertical flows the first effect of gravity is to decorrelate the particle velocity
with the local fluid velocity. Marchioli, Picciotto, and Soldati11 and Uijttewaal and Oliemans12

studied the effect of gravity in channel and pipe flows and observed that the deposition of particles

a)Electronic mail: christopher.nilsen@ntnu.no

1070-6631/2013/25(11)/115108/12/$30.00 C©2013 AIP Publishing LLC25, 115108-1
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increased in an upward flow and decreased in a downward flow. A study of particle deposition in
vertical and horizontal duct flows was conducted by Zhang and Ahmadi.13

Even though particle clustering is easily observed simply by studying visualisations of the
particle positions, more sophisticated techniques are needed to quantify and measure specific features
of the clustering. Monchaux, Bourgoin, and Cartellier14 reviewed many of the different methods
available used to describe clustering. A fairly recent idea is the use of Voronoı̈ diagrams.15, 16

Voronoı̈ diagrams are convenient because they provide a specific volume (inverse particle number
density) in space without the need for prescribing a grid. Monchaux, Bourgoin, and Cartellier15

used two-dimensional Voronoı̈ analysis to study clustering in homogeneous isotropic turbulence.
They observed a lognormal distribution of Voronoı̈ areas and a self-similar cluster structure. Also
Tagawa et al.16 studied particle clustering in homogeneous turbulence, but used three-dimensional
Voronoı̈ diagrams and included both light and heavy particles. The probability density functions
of the Voronoı̈ volumes were fitted with gamma distributions, and it was shown that light particles
accumulated in high-enstrophy regions and heavy particles in low-enstrophy regions. Tagawa et al.17

used Voronoı̈ analysis to study clustering of deformable bubbles, while some of the possible biases
of Voronoı̈ concentration estimation were investigated by Monchaux.18

Voronoı̈ analysis of preferential concentration has mostly been used in studies of homogeneous
isotropic turbulence, but there are some recent studies that also consider shear flows. Garcı́a-Villalba,
Kidanemariam, and Uhlmann19 studied the spatial distribution of large particles in a vertical channel
flow and found an almost homogeneous distribution. Voronoı̈ analysis was also used by Håkansson
et al.20 to study particle streaks in a turbulent half-channel flow.

Our primary goal is to map out the most important statistical properties of the particles’ spatial
distribution in a vertical turbulent channel flow. We will do this by using data from a direct numerical
simulation of a turbulent channel flow with suspended inertial Lagrangian point-particles, and using
Voronoı̈ diagrams to compute the statistics of the spatial distribution. We will look at probability
density functions and lower-order moments of the specific particle volume obtained from the Voronoı̈
diagrams, for different particle types and flow directions. In particular, we will explore how the
particle distribution is affected by particle inertia and gravity.

We start by describing the simulation and post-processing methodology in Sec. II, before
discussing our main findings in Sec. III. Finally, we summarise and discuss the most interesting
results and their potential implications in Sec. IV.

II. METHODOLOGY

We solve the incompressible Navier-Stokes equations in a channel geometry with no-slip
boundary conditions at the walls and periodic boundary conditions in the streamwise and spanwise
directions. The shear Reynolds number is Reτ = uτ h/ν = 395, where uτ = √

τw/ρ is the friction
velocity, ν is the kinematic viscosity, ρ is the fluid density, h is the channel half-width, and τw is
the wall shear stress. The Reynolds number is significantly higher than what is normally used in
particle-suspended turbulent channel flow simulations, where 150 and 180 are the most common
values,21, 22 which will give us a wider inertial sublayer and a significantly larger core region. A
shear Reynolds number of 395 is the same as that used in the middle case of Abe, Kawamura, and
Matsuo23 and Abe, Antonia, and Kawamura,24 and corresponds to a centreline streamwise Taylor

microscale Reynolds number Reλ = (u+2)
1/2

λ+ = 51,24 where (∂u+/∂x+)2 = u+2/λ+2.
The simulation code25 uses a Fourier spectral approximation in the two periodic directions and

a second-order finite-difference approximation in the wall-normal direction to solve for the three-
dimensional velocity field u = (u, v, w). The domain size is 12h in the streamwise (x) direction,
2h in the wall-normal (y) direction, and 6h in the spanwise (z) direction. The grid resolution is
3843 and the wall-normal grid is stretched to increase resolution in the near-wall region, with
a grid size ranging from 0.19 to 3.5 wall units. A wall length unit is ν/uτ and is used to non-
dimensionalise lengths, denoted ( · )+. Non-dimensional velocities are also marked ( · )+ and are
scaled with uτ . Averages are made in time and the two homogeneous spatial directions (x and z) and
denoted (·).
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The simulation was initialised from a random velocity field with mean velocity profile min (y+,
2.5 log y+ + 5.0) in the streamwise direction, and run until a statistically steady-state had been
achieved. Into the steady turbulent velocity field the inertial particles were released, and the sim-
ulation was continued until t = 8, where t is made dimensionless with the time scale h/uτ . This
is equal to 3160 times the viscous time scale ν/u2

τ and 31.6 times the time scale of the slowest
particles (100ν/u2

τ ). The particles were released at random initial positions. Here and throughout the
paper random refers to “complete spatial randomness,” i.e., events drawn from a three-dimensional
homogeneous spatial Poisson process.

We consider the dilute limit, and the particle motion is governed by a simplified Basset-
Boussinesq-Oseen equation where we, in addition to assuming point-particles, also assume that the
particle density (ρp) is much greater than the fluid density (ρ). The equation then only includes the
Schiller-Naumann26 corrected Stokes drag force, and the gravity force, i.e.,

dup

dt
= CDRep

24τp

(
u − up

) + g, (1)

where

CD = 24

Rep

(
1 + 0.15Re0.687

p

)
, (2)

and Rep = �ua/ν is the Reynolds number of the particle based on the magnitude of the slip velocity,
�u = ‖u − up‖ and the particle radius a. The particle velocity is up and u is the fluid velocity in
the particle position. We define a Stokes number based on the particle time scale τ p as

St = τp

ν/u2
τ

= 2ρpa2u2
τ

9ρν2
. (3)

There is no feedback from the particles on the flow, and no interaction between the particles.
In our simulation we used the five Stokes numbers 1, 5, 15, 30, and 100, and gravitational force

+gi , 0, and −gi corresponding with downward, non-gravitational, and upward flows, respectively.
The non-dimensional particle radius is a+ = 0.075 for St = 1, 5 and a+ = 0.25 for St = 15, 30, 100.
We include Np = 500 000 of each particle type, and use an elastic wall collision model with particles
bouncing back when the distance from the centre of the particle to the closest wall is less than a.

Figure 1(a) shows the velocity profile compared with the linear velocity profile u+ = y+ and
the logarithmic law u+ = 2.5 log y+ + 5.1. In Figure 1(b) we see the deviation from the logarithmic
law, clearly revealing the inertial region of the channel. The velocity profile identifies y+ ∈ (0, 5) as
the viscous layer, (5, 30) as the buffer layer, (30, 170) as the inertial layer, and (170, 395) as the core
region.

Most previous computational studies on preferential concentration in wall-bounded flows are
mainly focused on the near-wall region, due to the low Reynolds numbers. By using a Reynolds
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FIG. 1. (a) Mean fluid streamwise velocity u+ compared with linear velocity profile y+, logarithmic law g(y+) = 2.5 log y+
+ 5.1, and results from Abe, Kawamura, and Matsuo23 (circles). (b) Deviation from logarithmic law g(y+).
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number of 395 we observe substantial inertial and core regions, which will allow us to pay more
attention to the particle motion away from the wall. Figure 1(a) also shows a comparison with the
results of Abe, Kawamura, and Matsuo,23 where we see good agreement.

To analyse the preferential concentration of particles we use Voronoı̈ diagrams, where the
whole domain is divided into subvolumes each consisting of all points being closer to one particular
particle than all other particles. This provides us with a specific particle volume, or an inverse particle
number density, for each particle, without having to specify a grid. The probability distribution of the
Voronoı̈ volumes can be used to measure particle clustering. We choose to close all Voronoı̈ volumes
on the boundaries of the domain, by using mirrored ghost-particles, to avoid having open Voronoı̈
cells at the boundaries. The statistical description of random particles in the channel (as detailed in
Sec. III) shows that any bias introduced at the boundaries is minimal. Voronoı̈ diagrams are presented
in more detail by Monchaux, Bourgoin, and Cartellier.15

The volume obtained from the Voronoı̈ analysis is normalised to obtain V = V Np/Vd , where V
is the volume of the Voronoı̈ cell, Np is the number of particles, and Vd is the total domain volume.
In order to measure preferential concentration we use the probability density function of the Voronoı̈

volumes, and in particular the variance σ 2 = (V − V)2 of this density function. A set of randomly
distributed particles are also included for comparison, and analysed in exactly the same manner as
the real particles.

All particle statistics reported as functions of the wall-normal coordinate y are computed on the
n = 100 nodes yi = (1 − cos ((i − 1)π /(n − 1)))h, i = 1, . . . , n, by taking the average of all particles
closest to a given node. Interpolation is used when values are needed in-between the nodes, such as
when average values are needed in the particle positions. Probability density functions are computed
for a subvolume by including all particles between a lower and an upper value of y.

III. RESULTS AND DISCUSSION

We expect the particles to drift towards the walls, a phenomenon that could make it impossible
to get a truly steady flow until all the particles are located in the viscous sublayer. Figure 2(a) shows
the mean Voronoı̈ volume at four different distances from the wall and for St = 100, the slowest of
the particles. We see that the particle distribution does not reach a steady state during the simulation,
but the strongest transient is over at t = 2. The viscous sublayer is the part of the flow that appears
to be the least steady.

In Figure 2(b) the normalised Voronoı̈ volume variance is plotted for the same four wall-normal
locations for St = 100. The variance of the Voronoı̈ cell volume is a measure of the degree of
preferential concentration15, 16 and if it is reasonably steady we can safely assume that the spatial
distribution of particles is established, despite any global fluxes that are still prevalent. With the
exception of the value in the viscous sublayer (y+ = 1) the plots indicate that the variance is steady
after approximately t = 2. Since there is still such a strong influx of particles into the viscous
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FIG. 2. (a) Mean Voronoı̈ volume and (b) normalised variance as a function of time at y+ = 1 (solid line), 20 (dashed line),
100 (dotted line), and 395 (dashed-dotted line).
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sublayer, it is not surprising that also the variance is constantly changing. However, it appears as if
most of the channel reaches a kind of statistically steady state. Based on the results of Figures 2(a)
and 2(b), we chose to compute statistics for t ∈ (2, 8), and all reported statistics use this time range
unless otherwise stated.

A notable feature of particle-laden channel flow, as illustrated in Figure 2, is the particles’
tendency to drift towards the walls. The strength of this particle drift depends on the Stokes number
and flow direction relative to the gravitational force.11 The mean Voronoı̈ volume is plotted across
the channel in upward, downward, and non-gravitational flows in Figure 3, for Stokes numbers 5,
15, 30, and 100. Randomly distributed particles are also included for comparison, and we observe a
perfectly straight line at V = 1. In all four cases we observe that there is a flux of particles towards
the walls, where we find the lowest mean Voronoı̈ volume. This is most pronounced for St = 15 and
St = 30, which is consistent with what has been reported previously.11 The region around y+ = 100,
in the middle of the inertial sublayer, is the most depleted.

The particle drift towards the walls in the near-wall region is often explained by
turbophoresis,27, 28 a mechanism causing particles to move towards regions of lower turbulence
intensity, an equivalent to thermophoresis, but forced by turbulence. It has been shown7 that turbu-
lent motions associated with sweeps are primarily responsible for bringing the particles close to the
wall. Differences observed between the three cases compared in each panel of Figure 3 indicate that
the particle drift is significantly affected by gravity. Gravity changes the drift of particles, such that
an increasing number of particles move towards the wall in an upward flow, while fewer particles
migrate towards the wall in a downward flow. This is seen as a more strongly depleted central region
in the upward flow, and a central region where particles accumulate in the downward flow.

The results at St = 100 are particularly striking, where in the centre of the channel in the
downward flow the average Voronoı̈ volume is lower than for the random distribution, implying that
there is a net flux of particles towards the centre of the channel. The region around y+ = 100 is more
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FIG. 3. Mean Voronoı̈ volume for (a) St = 5, (b) St = 15, (c) St = 30, and (d) St = 100, in downward flow (dashed line),
upward flow (dotted line), and flow without gravity (solid line), and compared with randomly distributed particles (grey line)
where V = 1.
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FIG. 4. Mean wall-normal particle velocity averaged from t = 0 until t = 2 for (a) St = 5, (b) St = 15, (c) St = 30, and
(d) St = 100, in downward flow (dashed line), upward flow (dotted line), and flow without gravity (solid line).

depleted in the downward flow, suggesting that many of the additional particles in the centre come
from this region.

An implication of the differences in particle density across the channel is that there must be
a non-zero mean wall-normal velocity in the particle phase. In Figure 4 the mean wall-normal
velocity averaged from t = 0 until t = 2 is shown for the same four Stokes numbers as in Figure 3.
This time window is chosen because it is the part of the simulation where most of the wall-normal
transport occurs. Mostly we see a negative wall-normal velocity, explaining the low values of the
mean Voronoı̈ volume close to the wall. This wall-normal velocity is highest for St = 15 and 30 and
at y+ around 100, which is consistent with what we observed in Figure 3.

In upward flow the wall-normal velocity is marginally more negative for St = 15 and 30, while
the difference is significantly larger for St = 100. In the downward flow the negative wall-normal
velocity is decreased and for St = 30 and 100 it changes sign in the core region. The crossover point
where v changes sign from negative to positive is y+ ∼= 300 for St = 30 and y+ ∼= 120 for St = 100.

An increase in centre region particle number density in downward flow was also observed
by Uijttewaal and Oliemans12 and Marchioli, Picciotto, and Soldati,11 and the latter’s plot of wall-
normal velocity reveals similar trends as those observed in Figure 4 for the downward flow. However,
Marchioli, Picciotto, and Soldati11 also showed a small increase in core region particle density in
upward flow, while we observe the opposite effect. A flux of particles towards the centre is consistent
with the idea of turbophoresis, where particles move towards regions of lower turbulence intensity,
but such a strong dependence on gravity is more difficult to explain. Uijttewaal and Oliemans12

provide no explanation for the increased number of particles in the centre of the channel, while
Marchioli, Picciotto, and Soldati11 try to relate this to the particle’s tendency to occupy regions of
high streamwise velocity, where they claim ejections are more likely. We do observe that particles
tend to occupy regions of high streamwise velocity (not shown), but fail to see how this will make
them more likely to be swept away from the wall by ejections, as ejections are associated with low
streamwise velocity.29 One possible explanation is that a particle falling in downward flow is more
likely to be swept away by a vortex that is translating with a velocity closer to that of the particle.
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FIG. 5. Probability density functions for the normalised Voronoı̈ volume in the four slices (a) y+ ∈ (0.5, 1.5), (b) y+ ∈ (19,
21), (c) y+ ∈ (95, 105), and (d) y+ ∈ (290, 310) for particles with St = 1 (circles), St = 5 (squares), and St = 30 (triangles)
compared with randomly seeded particles (grey line). All cases are without gravity.

Because the particle is moving faster than the fluid, and ∂u+/∂y > 0, the faster moving vortices
closer to the centre will have more time to sweep the particles than the slower ones closer to the
wall.

We have now looked at the global aspects of preferential concentration, in which particles drift
towards certain parts of the domain. Of equal importance is what we might call local preferential
concentration, the tendency for particles to cluster under the effect of the local turbulent flow field.
As a means of studying this phenomenon we use the probability density function (p.d.f.) for the
Voronoı̈ volume as first suggested by Monchaux, Bourgoin, and Cartellier.15 Because the mean value
changes across the channel we cannot use a single p.d.f. for the whole channel, but instead divide
the channel into several slices and compute a p.d.f. for each of them.

The p.d.f. for the Voronoı̈ volume normalised with the local mean value (V/V) is plotted in
Figure 5 in four different wall-normal locations. Three different Stokes numbers are compared for
the case without gravity. The computed distributions are compared with the distribution obtained for
randomly distributed particles, and a deviation from this distribution is an indication of preferential
concentration. Particles with St = 1 behave almost like tracers in most of the channel except close
to the wall where there is noticeable preferential concentration also for St = 1. Also for the other
Stokes numbers the largest deviation from randomness appears to be at y+ = 1. Increasing Stokes
number increases the preferential concentration at all four wall-normal locations.

Tagawa et al.16 fitted the probability density functions of the Voronoı̈ volumes in homogeneous
turbulence with gamma distributions. Using a two-parameter distribution to fit the data is, when
suitable, very convenient because it means that the standard deviation is a sufficient measure of the
deviation from randomness, and thus also a sufficient measure of preferential concentration. For

a gamma distribution V(V − V)3 = 2(V − V)2
2

holds, which means that the extent to which this
identity holds is a measure of the suitability of the gamma distribution. This is tested in Figure 6 for
all the different Stokes numbers and across the channel. The gamma distribution is seen to be a good
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FIG. 6. Measure of suitability of gamma distribution for Stokes numbers 1 through 100 in downward flow (dashed line),
upward flow (dotted line), and flow without gravity (solid line), and compared with randomly seeded particles (grey line). A
value equal to unity indicates that the first three moments behave as if governed by a gamma distribution.

fit for the randomly distributed particles, as suggested by Ferenc and Néda,30 where the plotted ratio
is equal to 0.94. This strongly suggests that it is suitable to compare our results to previous three-
dimensional studies, despite the fact that we are using fairly thin wall-normal slices. Thus we are
expecting to find gamma distributions as observed by Tagawa et al.16 in a three-dimensional Voronoı̈
analysis, and not the lognormal distributions found by Monchaux, Bourgoin, and Cartellier15 based
on a two-dimensional analysis. We have also tested a lognormal fit for our data (not shown) but
found it to be unsuited.

While a gamma distribution is a good fit for St = 1, it cannot be generally said to be a suitable
probability distribution for the other Stokes numbers, and even less so in the centre of the channel.
This is surprising as one would expect the preferential concentration to behave closest to that
seen in homogeneous isotropic turbulence in the centre of the channel. Comparisons between the
probability distributions displayed in Figure 5 and gamma distributions (not shown) lead us to the
same conclusion.

It is often assumed that preferential concentration of particles in the centre of a channel or pipe
flow is similar to what is observed in homogeneous isotropic turbulence.4 In our results, however,
we find probability density functions in the centre of the channel that are more different from those
observed in homogeneous turbulence, than those found close to the walls are. There are several
factors at play here. First, the centre of a channel flow is neither homogeneous nor isotropic, so it is
not unreasonable to expect that the clustering in the centre of a channel flow is different from that
seen in homogeneous isotropic turbulence. Second, the Taylor microscale Reynolds numbers used
by Tagawa et al.16 were 75 and 180, while the streamwise Taylor microscale Reynolds number in
the centre of our channel flow is 51. Considering the lower Reynolds number, it is not guaranteed
that we would have found the same type of probability density function, even if the flow had been
homogeneous and isotropic. It is not possible to determine if the observed discrepancy is primarily
an effect of Reynolds number or an effect of inhomogeneity and anisotropy, without doing a channel
flow simulation at a higher Reynolds number.
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FIG. 7. Normalised variance of the Voronoı̈ volume for particles with (a) St = 5, (b) St = 15, (c) St = 30, and (d) St = 100,
for downward flow (dashed line), upward flow (dotted line), and flow without gravity (solid line), and compared with randomly
distributed particles (grey line).

Particle clustering in a turbulent channel flow is too complex to be measured solely by the two
first moments of the Voronoı̈ volume distribution, but the variance should nevertheless provide a
reliable measure of the degree of preferential concentration. The normalised variance is plotted in
Figure 7, across the channel width. The variance has local maxima close to the wall and around the
centre of the channel, indicating that the strongest clustering is found at these locations. The variance
reaches its highest values for St = 30, suggesting that maximum preferential concentration is found
around this Stokes number. This also corresponds with the Stokes number at which the maximum
number of particles are transported to the walls (see Figure 3).

Once again gravity has significant effects in the centre of the channel. In the downward flow
there is an increase in variance, indicating that preferential concentration is more prominent. This
effect is strong for both St = 30 and 100.

It has been shown that the variance of the Voronoı̈ distribution is affected by the particle
density.15–18 Because we observe an increase in particle density in the centre of the channel in
downward flow (see Figure 3), it is possible that the differences in variance observed in Figure 7 are
caused in part by the difference in particle density. To test this, the Voronoı̈ analysis has not only been
conducted on the full set of particles, but also on sets subjected to random thinning. Particle numbers
from Np/32 to Np have been used, and the results are shown in Figure 8 for y+ = 300. While it is
clear that the variance does depend on the particle density, the effect is not strong enough to explain
the differences observed in Figure 7. It is therefore made clear that there is a significant difference
between the degree of preferential concentration in the core region of a downward channel flow and
a channel flow without gravity. The largest difference is observed for St = 100.

The most common understanding of clustering, that heavy particles are thrown out of vortices,2, 4

would predict that the increased decorrelation between particle and fluid velocity caused by gravity
should lead to less clustering. Thus, the observed increased clustering in downward flow is unex-
pected. Strong gravity was also shown to decrease preferential concentration in a cellular flow by
Maxey and Corrsin.1 However, it is also known31 that gravity will cause particles to accumulate in
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FIG. 8. Normalised variance under random thinning at y+ = 300 for particles with (a) St = 5, (b) St = 15, (c) St = 30, and
(d) St = 100, for downward flow (dashed line), upward flow (dotted line), and flow without gravity (solid line).

downward moving fluid; the particles will preferentially populate the regions of high streamwise
velocity in a downward flow. This could in cases of weak gravity lead to increased clustering.

If we instead understand clustering in terms of the effect of “caustics”9, 32, 33 a mechanism
explaining our results is revealed. Preferential particle concentration is possible also in flows without
semi-coherent vortex structures. When inertial particles move in a non-constant velocity field, faster
particles will overtake the slower particles and the particle distribution “folds over itself” and a
higher particle concentration occurs in certain regions.32 As seen in Figure 4 more particles move
towards the centre in a downward flow. The wall-normal drift makes caustic clustering more likely
because faster moving particles overtake the slower ones, an effect which is also much more likely
to occur when there is a negative velocity gradient in the direction of the mean velocity. This effect
is most prominent in the beginning of the simulation when the wall-normal velocities are highest,
but particle clusters can be long-lasting. When the particles get close together they are exposed
to the same fluid velocity, and are thus likely to stay together. In the point-particle framework
we employ there is nothing that prevents the particles from essentially occupying the same space.
Tagawa et al.16 showed that the lifetime of clusters of heavy particles was much longer than the
lifetime of the fluid structures responsible for forming them. The additional effect of particles
preferentially concentrating in regions of high streamwise velocity also increases the probability of
particle-overtaking and the following clustering to occur in the streamwise direction.

IV. CONCLUSION

We have studied the motion of inertial particles in vertical channel flow, and tried to determine
the extent to which they tend to cluster. A direct numerical simulation at Reτ = 395 has been
performed with particles ranging from Stokes numbers 1 to 100, and in both upward and downward
flows, and flow without gravity. The preferential concentration in channel flow takes two distinct
forms: a global preferential concentration causing higher particle density in the near-wall region
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and a local preferential concentration causing particles to cluster under the effect of the local flow
structures.

As expected there is a drift of particles towards the wall, and this effect is most prominent for
Stokes numbers 15 and 30. Gravity alters this drift such that in an upward flow more particles are
transported to the walls, and in a downward flow more particles move towards the centre of the
channel. We believe this is partly because particles in a downward flow move with a velocity that
is closer to that of adjacent vortices on the core side than on the wall side, which gives the former
vortices more time to sweep the particles towards the centre.

We use Voronoı̈ diagrams to analyse the preferential concentration of particles in the channel.
Probability density functions for the Voronoı̈ volume deviate considerably from the gamma distribu-
tions used as approximations in homogeneous isotropic turbulence by Tagawa et al.,16 particularly
in the centre of the channel. It is not clear if this represents a real physical difference between the
clustering in the centre of a channel flow and in homogeneous isotropic turbulence, or if it is because
the Taylor microscale Reynolds number is lower in the channel.

We are primarily concerned with the effect of gravity and observe that gravity increases the
degree of preferential concentration in the centre of the channel in a downward flow, for Stokes
numbers 30 and 100. This is indicated by higher values of the variance in the core region, and
confirmed to be a real physical effect by showing that it is not caused indirectly by a change in
particle density. Increased clustering is believed to be caused by the effect of caustics; fast particles
overtaking slower particles and causing local increases in particle density. In the downward flow, a
wall-normal drift of particles towards the centre of the channel and the resultant velocity gradient
gives fast wall-normal moving particles overtaking the slower ones and causing clustering. In addition
to this, particles in a downward flow are more likely to be located in the regions of high streamwise
velocity due to their preference for downward moving fluid.

As we have seen in several examples, the effects of gravity are far from insignificant and some-
times quite surprising, and ignoring gravity in simulations could in some cases lead to unphysical
conclusions. Increased preferential concentration in downward flow means that growth of aggregates
and coalescence of droplets are more likely to occur in downward flow for heavy particles. In denser
suspensions the rheological properties will vary across the channel in both upward and downward
flows, but even more so in the latter case.
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We use synthetic turbulence simulations to study how inertial particles cluster in a turbulent
flow, for a wide range of Stokes numbers. Two different types of synthetic turbulence are used: one
Gaussian, where the time evolution of the velocity field is a simple phase shift, and one non-Gaussian,
where convection is used to evolve the velocity field in time. In both flow types we observe significant
particle clustering over a wide range of scales and Stokes numbers. The clustering found at low
Stokes numbers can be attributed to the vortex centrifuge effect, where heavy particles are expelled
from regions dominated by vorticity. This mechanism is much more effective in the non-Gaussian
turbulence, because local flow structures are convected with the particles. The preferential sampling
of regions with low vorticity, is almost negligible in the Gaussian turbulence. At higher Stokes
numbers, caustics are formed in a very similar manner in both Gaussian and non-Gaussian synthetic
turbulence. In non-Gaussian turbulence, heavy particles cluster in regions of low fluid kinetic energy,
while the opposite is true in Gaussian turbulence. Our results show that synthetic simulations cannot
correctly predict how the particle clustering correlates with local fluid flow properties, without
including convection.

I. INTRODUCTION

We study the motion of N inertial spherical
particles in a domain Ω. The particles are character-
ised by their position vectors Xi ∈ R

3, i = 1, . . . , N
and velocity vectors V i. The probability of finding
a randomly chosen particle at time t inside Φ ⊂ Ω,
is

∫
Φ
f(x, t) dx , where f is the probability density

function (p.d.f.) for the particle position. If f is the
continuous uniform distribution, f = 1/

∫
Ω
dx , we

say that the particles are randomly or uniformly dis-
tributed. If not, the particles are clustered in some
way. For particles with finite inertia, clustering is the
expected condition.

Particle clustering in turbulent flows is often re-
ferred to as preferential concentration [1, 2] and the
topic has attracted considerable attention since it was
first observed that settling particles followed prefer-
ential paths [3, 4]. The most common explanation to
this phenomenon is that inertial particles are thrown
out of vortices as if in a centrifuge, and that this
causes heavy particles (particle density greater than
the fluid density) to cluster in regions dominated by
strain [2]. Light particles will on the other hand
cluster in regions dominated by vorticity.

The N particles moving in a turbulent velocity field
u(x, t) are all assumed to have sufficiently small ra-
dius r to be modelled as point particles. Assuming
also that the particle density ρp is much greater than
the fluid density ρ, the motion of each single particle
is governed by the equation

dV

dt
=

1

τp
(u(X(t), t)− V (t)), (1)

∗ research@christophernilsen.no

when gravity and Brownian diffusion are neglected.
The particle relaxation time τp = 2r2ρp/(9ρν) (where
ν is the kinematic viscosity of the fluid) is a measure of
how fast the particle is able to adjust to the local fluid
velocity. We can define a non-dimensional particle
time scale, the Stokes number, as St = τp/τf where
τf is a fluid time scale characteristic of the small-scale
turbulent motion.

When τp is small, the particle velocity can be ap-
proximated as V ≈ u−τpa, which gives a unique Eu-
lerian particle velocity field as a function of the fluid
velocity u and the fluid acceleration a = Du/Dt. The
divergence of this velocity field is then ∇·V ≈ −τp∇·
a = 2τpQ, where Q = −(1/2)(∂ui/∂xj)(∂uj/∂xi) is
the second invariant of the velocity gradient tensor
∇u [5]. Q is a measure of the balance between vorti-
city and shear strain, and that the velocity field con-
tracts (∇·V < 0) in regions of negative Q, is consist-
ent with the notion that particles cluster in regions
dominated by shear [2].

The “centrifuge effect” is an intuitive explanation
of why particles with finite but low inertia cluster.
It does, however, require the existence of finite-time
vortex structures and thus cannot explain the exist-
ence of clustering in velocity fields with white noise
time dependence [6, 7]. It is possible for strongly in-
ertial particles to detach from the flow and be thrown
a significant distance. This causes regions of high
particle density, but also significant velocity differ-
ences over arbitrarily short distances. These regions
of increased particle density do not necessarily correl-
ate with local fluid vorticity, because the fluid struc-
tures that caused the effect can be significantly re-
moved in both time and space. Falkovich et al. [8]
called this the “sling effect”, while others have de-
scribed the mechanism as “caustics” [6, 7, 9]. The
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caustics are regions where fast particles have caught
up with the slower particles, causing a local increase
in particle density.

We will use a synthetic turbulent velocity field
u(x, t) in our study of particle clustering. Synthetic
turbulence makes it possible to study the motion of
millions of particles in a turbulence-like velocity field
without having to solve the Navier-Stokes equations.
Because the presence of large-scale sweeping of smal-
ler scales is believed to be integral to the dispersion
of both fluid particles [10] and solid inertial particles
[11], we include two methods for generating synthetic
turbulence. The first method is a standard type of
kinetic simulation, where large-scale sweeping is ab-
sent. The second method retains the convection op-
erator in the Navier-Stokes equations and therefore
includes large-scale sweeping. A detailed description
of both kinds of synthetic turbulence is given in sec-
tion II.

We study two different mechanisms causing particle
clustering in turbulent flow: the vortex centrifuge ef-
fect and caustics. By including two very different
types of synthetic turbulence, we can assess the im-
portance of convection in the formation of particle
clusters. In section III we measure the amount of
clustering to determine at which Stokes numbers and
length scales the strongest clustering is observed. In
section IV we discuss the vortex centrifuge mechan-
ism and in section V we discuss caustics. Conclusions
are drawn in section VI.

II. SYNTHETIC TURBULENCE
SIMULATION

Synthetic turbulence simulations [10, 12, 13] are of-
ten used as a simple method of generating turbulence-
like velocity fields, satisfying the most fundamental
requirements of incompressibility and an energy spec-
trum resembling real turbulence. Particle clustering
is studied in two different types of synthetic turbu-
lence, one Gaussian and one non-Gaussian. We use
the energy spectrum

E(k) = Cε2/3k−5/3 exp(−Cη(ηk)
2) (2)

in both synthetic turbulence methods. The wavenum-
ber k is the length of the wavenumber vector k in
Fourier space, ε is the rate of dissipation, η is the
Kolmogorov length scale, and C and Cη are con-
stants. This particular form of the energy spectrum
has no energy-containing range and an exp(−k2) high
wavenumber roll-off, to extend the k−5/3 range.

The method involves generating a velocity field
u(x) on a three-dimensional periodic box with uni-
form grid with n nodes in each direction. The discrete
Fourier transform F(u) = û(k) has an energy at each

wavenumber k = |k| which can be computed as

E(û; k) =
∑
|p|=k

û · û∗. (3)

Generating a Gaussian synthetic turbulence field
involves three simple steps. We first generate a set of
random Fourier modes ζ̂(k) on the n3 grid, satisfying
the conjugate symmetry required to make the inverse
transform real, and with (�(ζ̂),�(ζ̂)) ∼ N (0,1).
N (0,1) is the multivariate standard normal distri-
bution. The field is then made divergence free by the
projection

ξ̂ = ζ̂ − k · ζ̂
k · kk, (4)

and rescaled to obtain the correct energy spectrum

u = F−1

⎡⎣ξ̂(
E(k)

E(ξ̂; k)

)1/2
⎤⎦ , (5)

before being transformed to real space. This velocity
field is then evolved a time Δt using a simple phase
shift

û(k, t+Δt) = û(k, t) exp(iω(k)Δt). (6)

The time scales associated with large-scale sweeping
of smaller scales are Uk [14] and we use ω(k) = CωUk,
to closely match the timescales of real turbulence,
even though there is no such sweeping in the phase-
shifted synthetic turbulence. Cω is a constant that
determines how fast the velocity field is evolving in
time.

Rosales and Meneveau [15, 16] used a pure con-
vection equation to create a multi-scale Lagrangian
map. We will also use convection to distort the ve-
locity field. If we wanted to solve the incompress-
ible Navier-Stokes equations, we could use a split-
ting scheme. Applying a common first-order splitting
scheme to the Navier-Stokes equations gives a solu-
tion algorithm consisting of three steps: convection

v = u(xd, t), (7)

xd = x−Δtu

(
x− Δt

2
u(x, t), t

)
, (8)

incompressible correction

w = v − Δt

ρ
∇p(t+Δt) (9)

and viscous correction

u(t+Δt) = w + νΔt∇2u(t+Δt). (10)

Here we use a semi-Lagrangian treatment of convec-
tion, and xd is the departure point of a fluid particle
arriving at x at time t+Δt.
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Figure 1. Probability density function of ∂u/∂x in Gaus-
sian (solid line) and non-Gaussian (dashed line) turbu-
lence. The symbols represent a Gaussian probability dis-
tribution.

Based on this solution procedure we can create a
synthetic turbulence evolution method consisting of
three steps: convection

v̂ = F(u(xd, t)), (11)

xd = x−Δtu

(
x− Δt

2
u(x, t), t

)
, (12)

incompressible projection

ŵ = v̂ − k · v̂
k · kk (13)

and viscous correction

u(t+Δt) = F−1

[
ŵ

(
E(k)

E(ŵ; k)

)1/2
]
. (14)

We use a Gaussian synthetic turbulence field as the
initial condition.

The results in this paper are from two different
simulations, one with the Gaussian turbulence and
one with the non-Gaussian turbulence. In both cases
we use n = 128, Cε2/3 = 1, Cηη

2 = 100/k2max and
Δt = 10−3. The use of Cηη

2 = 100/k2max is very con-
servative and ensures that accurate fluid velocity in-
terpolation can be achieved without using full Fourier-
summation. The time evolution of the Gaussian syn-
thetic turbulence is matched to the non-Gaussian tur-
bulence by choosing CωU = 47.5, such that the Taylor
time scale λ = 0.033 in both cases. We use the do-
main Ω = (0, 1)× (0, 1)× (0, 1).
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Figure 2. Probability density function of Q in Gaussian
(solid line) and non-Gaussian (dashed line) turbulence.

Before we move on to the particle statistics, we will
briefly discuss some fundamental differences between
the statistics of the Gaussian and non-Gaussian syn-
thetic turbulence. Simulations of both types of syn-
thetic turbulence are run, starting from the same ini-
tial conditions, until the non-Gaussian turbulence has
reached a steady state. Afterwards, the statistics are
gathered over a total of 10 time units.

Figure 1 shows the probability density function of
∂u/∂x for both types of synthetic turbulence. We ob-
serve that the p.d.f. for the Gaussian synthetic tur-
bulence is Gaussian, as expected. The non-Gaussian
turbulence has negative skewness for the ∂u/∂x p.d.f.,
which is a well known feature of real turbulence. In
addition to this, we see in figure 2 that the non-
Gaussian turbulence has a significant widening of the
tails of the p.d.f. of Q (the second invariant of ∇u),
which means that very large values of strain or vorti-
city are more likely in the non-Gaussian turbulence.
As the value of Q is highly relevant for the distribution
of particles (as discussed in the introduction), the dif-
ferences in the tails of Q are likely to in some way also
be reflected in the spatial distribution of particles.

Eulerian time spectra are plotted in figure 3 to com-
pare the temporal evolution of Gaussian and non-
Gaussian turbulence. The time spectra are very
similar for values of the non-dimensional frequency
ωλ > 10−1, but with large differences at the lowest
frequency. There is significantly more energy in the
low-frequency modes in the non-Gaussian turbulence
than in the Gaussian turbulence. The difference in
low-frequency energy will undoubtedly influence how
the particles are transported by the flow, especially
when the Stokes number is high.

In these flows, N = 2 · 106 particles with time
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Figure 3. Time spectrum ψ(ω) (
∫∞
0

ψ dω = 1
2
u · u) for

Gaussian (solid line) and non-Gaussian (dashed line) syn-
thetic turbulence, plotted as function of non-dimensional
frequency ωλ.

scale τp are released and tracked by integrating equa-
tion 1 using the standard fourth-order Runge-Kutta
method and a time step equal to 2Δt. Third-order
polynomial interpolation is used to obtain the fluid
velocities at the particle locations. In order to accur-
ately investigate the effect of particle Stokes number
St = τp/λ, we approximate the τp parameter space us-
ing high-order polynomials. A total of 15 values of τp
between 10−3 and 0.5 are used, and chosen such that
log τ

(j)
p , j = 1, . . . , 15 are Chebyshev nodes trans-

formed using an affine transformation. Fluid tracers
are also included for a total of 16 different particle
types and 32 · 106 particles.

After a steady state has been reached for the
particles, statistics are gathered over a total of 10
time units. We use angular brackets, 〈·〉, to denote
the average of a fluid or particle quantity sampled on
the particle paths.

III. PARTICLE DENSITY

To describe the particles’ spatial distribution, we
approximate the probability density f(x, t). We will
use kernel density estimation [17], a non-parametric
probability density estimation method with better
convergence properties than histograms, and the con-
venience of providing a smooth functional approxim-
ation. The probability density f at position x is ap-
proximated as a sum of density kernels using a band-
width parameter h. The approximate density f̃ for a

bandwidth h is

f̃(x;h) = N−1h−3
N∑
i=1

K((x−Xi)/h), (15)

where K(x) is the Gaussian kernel

K(x) = (2π)−3/2 exp

(
−1

2
x · x

)
. (16)

There are many different methods for choosing the
bandwidth h [17], and with the right choice of band-
width, the density estimate f̃ should converge to the
true density f . Instead of trying to find an optimal
bandwidth, we will use a wide range of bandwidth
values to see how the particles are clustered at dif-
ferent scales. The density estimate f̃(x, h) will then
approximate the result of applying a Gaussian filter
with bandwidth h to the true density.

Kernel density estimation makes it easy to com-
pute the local probability density for each particle,
i.e. f̃(Xj ;h) for j = 1, . . . , N . This might seem like a
very costly operation to perform, however, since the
Gaussian kernel is very close to zero outside 5h, we
only need to include the contribution from particles
closer than 5h and an O(N logN) divide-and-conquer
[18] algorithm can be used. The divide-and-conquer
algorithm also allows for a natural implementation of
the periodic boundary conditions, that are necessary
to ensure that

∫
Ω
f̃ dx = 1.

We can measure the extent to which the particles
are clustered by comparing f̃ to a uniform particle
distribution. If f is a uniform distribution then we
expect the density estimate f̃ to follow

h3〈f̃〉 − (2π)−3/2N−1 = h3, (17)

which means that

φ(h) = (h3〈f̃〉 − (2π)−3/2N−1)1/3 − h, (18)

can be used to measure the degree of clustering. This
measure is almost identical to the one based on the
well-known Ripley’s K-function [19], with the excep-
tion that we are using a smooth Gaussian kernel to
estimate the density. Using different values of h, one
can get a good impression of how the particles cluster
at different scales.

Figure 4 shows a St-h contour plot of φ which allows
us to determine at which Stokes numbers and at which
scales the particle clustering is most prominent. We
observe particle clustering over a wide range of scales
and Stokes numbers, in both types of synthetic tur-
bulence The maximum clustering is found for Stokes
numbers around unity and at length scales around
10−2. Significant clustering is found at very small
scales (h < 10−3) for particles with Stokes numbers
around 10−0.5 ≈ 0.3, and very large scales (h > 10−1)
for particles with Stokes numbers greater than 101.
The most noticeable difference between Gaussian and
non-Gaussian turbulence is that the clustering is gen-
erally stronger for the non-Gaussian turbulence.
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Figure 4. Degree of particle clustering measured using
1000φ for (a) Gaussian synthetic turbulence and (b) non-
Gaussian synthetic turbulence.

IV. LOW STOKES NUMBER CLUSTERING

We established in section III that clustering is a
phenomenon that occurs over a wide range of scales
and Stokes numbers. We will now explore some of
the mechanisms behind this multiscale phenomenon,
starting with how clustering occurs for particles with
finite but small Stokes numbers.

We showed in section I, that the divergence of the
particle velocity field can (assuming a unique field can
be constructed) be approximated as ∇ · V ≈ 2τpQ.
This suggests that the particles will concentrate in re-
gions of negative Q. By studying probability density
functions of Q sampled on the particle locations, we
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Figure 5. Probability density function of Q in non-
Gaussian synthetic turbulence sampled on the particle
paths for fluid tracer particles (solid line), particles with
St = 0.067 (dashed line) and particles with St = 0.19
(dotted line).

can determine if this is observed in the simulations. In
figure 5, p.d.f.’s of Q are compared for three different
particle types in non-Gaussian synthetic turbulence.
It is clear that particles with low Stokes numbers are
more likely to be found in regions of negative Q, as
predicted by the perturbation approximation.

We use the skewness SQ of the particle sampled
p.d.f. of Q to measure the extent to which particles
are clustered in regions of negative Q. A comparison
of skewness in Gaussian and non-Gaussian turbulence
is shown in figure 6 for all the simulated Stokes num-
bers. There is clearly a tendency for the particles
to cluster in regions of negative Q, and the effect is
strongest for St ≈ 0.2, in both types of turbulence.
Thus a mechanism where particles are ejected from
regions of positive Q, where vorticity is dominant,
explains the small-scale clustering observed for low
Stokes numbers in figure 4. The same mechanism can-
not explain the clustering observed for large St, where
SQ is very close to the value obtained for tracers.

While the particles show an attraction to regions of
negative Q in both Gaussian and non-Gaussian syn-
thetic turbulence, the effect is far more pronounced
in non-Gaussian turbulence, as seen from the negat-
ive values of SQ in figure 6. The variation in SQ in
Gaussian turbulence is very small compared to what
is found in the non-Gaussian turbulence. For Stokes
numbers around 0.2, close to 70% of the particles
reside in regions with Q < 0, in the non-Gaussian
turbulence, while the number is no more than 56%,
in the Gaussian turbulence. In both cases, roughly
54% of the tracer particles are in regions with Q < 0.
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Figure 6. Skewness of p.d.f. for Q sampled on particle
paths for Gaussian synthetic turbulence (solid line, circles)
and non-Gaussian synthetic turbulence (dashed line,
squares). The symbols mark the simulated values, and
the lines are interpolants. Horizontal dotted lines mark
the skewness of Q for fluid tracers in Gaussian (lower line)
and non-Gaussian (upper line) turbulence.

It is possible that the increased probability of very
high or very low values of Q, as observed in figure 2, is
part of the reason why particles in non-Gaussian tur-
bulence exhibit a much stronger preferential sampling
of low-Q regions. The main reason, however, is most
likely the time the particles have to adjust to the local
fluid flow structures.

The Lagrangian autocorrelation of Q along particle
trajectories will reveal how long the flow structures re-
main correlated along the particle trajectories. This
tells us how long time the particles have to ad-
just to the local Q. We define the Lagrangian
autocovariance of Q along particle trajectories as
〈Q(X(t0), t0)Q(X(t0 + t), t0 + t)〉 = 〈QQ′〉, and the
autocorrelation as 〈QQ′〉/〈Q2〉. The autocorrelation
is plotted in figure 7 for three different particle types
in non-Gaussian synthetic turbulence. As the Stokes
number is increased, the autocorrelation is seen to fall
more rapidly towards zero, but never quite reaching
zero. Because of the preferential concentration of the
particles, Q remains correlated even as t → ∞ for
moderate Stokes numbers.

From the Lagrangian autocorrelation we can define
a Lagrangian integral time scale as

∫∞
0

〈QQ′〉/〈Q2〉 dt .
This definition would in our case lead to infinite values
because 〈QQ′〉/〈Q2〉 does not go to zero as t → ∞.
We therefore instead define the Lagrangian integral
time scale for Q as

TQ =

∫ ∞

0

〈QQ′〉 − 〈QQ′〉∞
〈Q2〉 − 〈QQ′〉∞

dt , (19)
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Figure 7. Lagrangian autocorrelation of Q along particle
trajectories for fluid tracers (sold line), particles with St =
0.11 (dashed line) and St = 1.3 (dotted line), in non-
Gaussian synthetic turbulence.
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Figure 8. Lagrangian integral time scale for Q along
particle trajectories in Gaussian (solid line, circles) and
non-Gaussian (dashed line, squares) synthetic turbulence.
The horizontal (dotted) lines represent the integral time
scales for fluid tracers in Gaussian (lower line) and non-
Gaussian (upper line) turbulence.

which is computed using values at t = 0.5 to approx-
imate t → ∞. The integral time scale is plotted in fig-
ure 8 in both Gaussian and non-Gaussian turbulence.
Not only are the numerical values of TQ different, the
Stokes number dependence is also very different.

In the non-Gaussian turbulence, both the particles
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and the fluid structures are convected by the velocity
field. This means that particles with low inertia will
tend to stay together with certain fluid structures as
they are swept through the flow. The longest correl-
ation time is seen for particles exactly following the
flow, i.e. the fluid tracers. As the Stokes number
increases, the particle trajectories will deviate from
the fluid tracer trajectories and TQ is reduced. This
reduction is seen for low St in figure 8.

In the Gaussian turbulence, there is no convection
of fluid structures, and Q is no more correlated along
particle tracers, than in any other direction. Thus
the integral time scale TQ along fluid tracers, is much
smaller than in the non-Gaussian turbulence. TQ re-
mains close to constant up to St ≈ 1, unlike what is
observed for non-Gaussian turbulence.

In both types of turbulence, we see an increase in
TQ at Stokes numbers greater than unity, where there
is very little preferential concentration in regions of
low Q (as seen in figure 6). A possible explanation
for this is that as the particles get heavier, they get
increasingly stationary and TQ will be more and more
like an Eulerian time scale.

V. HIGH STOKES NUMBER CLUSTERING

In section IV we defined an integral time scale from
the Lagrangian autocorrelation of Q along particle
trajectories. The integral time scale for the fluid
velocity, is T (u) =

∫∞
0

〈u · u′〉/〈u · u〉 dt ; and for
the particle velocity, the integral scale is T (V ) =∫ ∞
0

〈V · V ′〉/〈V · V 〉 dt . At low Stokes numbers,
the particles follow the flow almost like tracers and
T (V ) ≈ T (u). At very high Stokes numbers, the
particles move ballistically and T (V ) ≈ τp � T (u).
Plots of V · V (not shown) reveal that particle ve-
locities decrease as

√
V · V ∼ St−1/2, as shown by

Abrahamson [20]. This implies that at large Stokes
numbers, particles can travel distances proportional
to St1/2, while retaining their velocity.

When particles can travel significant distances in
the flow without adjusting to the local velocity field,
fast particles are overtaking slower particles and form-
ing caustics. Caustics formation is characterised by
the existence of relatively large particle velocity differ-
ences over short distances, and we can use structure
functions to identify this. We use the longitudinal
particle velocity structure function of order p, which
is defined as

Sp(r) = 〈[(V (x+ r)− V (x)) · r/r]p〉
= 〈[ΔV (r)]p〉. (20)

Plots of Sp(r) (not shown) reveal power laws
Sp(r) ∼ rξp in the dissipative range, i.e. for low val-
ues of r. For a smooth velocity field we expect to find
ξp = p. The first order exponent ξ1 is plotted in figure
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Figure 9. Power-law exponent of first order particle velo-
city structure function in the dissipative range, in Gaus-
sian (solid line, circles) and non-Gaussian (dashed line,
squares) synthetic turbulence.

9 for the full range of Stokes numbers. At the lowest
Stokes numbers we get ξ1 ≈ 1, indicative of a smooth
velocity field. The value of ξ1 then decreases smoothly
for Stokes numbers around unity to ξ1 ≈ 0 at the
highest Stokes numbers. In this ballistic range of St,
the average velocity difference between two particles
is almost independent of the distance between them,
for separations in the dissipative range. The Stokes
number dependence of ξ1 seen in figure 9 is very sim-
ilar to what was observed by Bec et al. [21] in dir-
ect numerical simulations of homogeneous isotropic
turbulence. The only discernible difference between
Gaussian and non-Gaussian turbulence in figure 9, is
a slightly earlier transition to the ballistic behaviour
in non-Gaussian turbulence.

In figure 10 we also include higher order struc-
ture functions (p = 1, 2, 3) for non-Gaussian turbu-
lence. A similar figure for the Gaussian turbulence
(not shown) looks almost identical and any comments
made about figure 10 will also apply in Gaussian tur-
bulence. Again we see ξp ≈ p for the lowest Stokes
numbers (St < 0.1), ξp ≈ 0 for the highest Stokes
numbers (St > 1.0) and a relatively sharp transition
region in the middle.

The curves for ξ2 and ξ3 overlap almost completely
for St > 0.1 indicating saturation to an exponent ξ∞.
All three curves overlap for St > 0.2, which shows that
the saturation occurs at orders lower than 1, as seen
by Bec et al. [21]. It was also suggested by Bec et al.
[21] that ξ∞(St) should follow a logarithmic function
in a certain range of St. In figure 10, it does seem
like ξ∞ could follow a logarithmic function for 0.2 <
St < 1, but the low number of Stokes numbers in this
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Figure 10. Power-law exponent ξp of particle velocity
structure function in the dissipative range, for p = 1 (solid
line), p = 2 (dashed line) and p = 3 (dotted line) in non-
Gaussian turbulence. Dash-dot line is −0.5 log St.
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Figure 11. Average fluid kinetic energy sampled on the
particle paths, for Gaussian (solid line, circles) and non-
Gaussian (dashed line, squares) turbulence. The hori-
zontal dotted line marks the kinetic energy sampled for
fluid tracers.

range makes this highly speculative.
In figure 11, we plot the average particle-sampled

fluid kinetic energy 〈u · u〉/2. At low Stokes num-
bers, particles preferentially sample regions of high
kinetic energy. This effect is maximised around the
values of St, where sampling of negative Q is maxim-
ised. At higher Stokes numbers, the particles in non-

10−2 10−1 100 101 102

St

0

200

400

600

800

1000

〈|Δ
V
|/
r〉

Figure 12. Average velocity gradient 〈|ΔV |/r〉 for r <
10−3 in Gaussian (solid line, circles) and non-Gaussian
(dashed line, squares) synthetic turbulence.

Gaussian turbulence start to preferentially sample re-
gions of low kinetic energy, while the particles in
Gaussian turbulence always preferentially sample re-
gions of high kinetic energy. In non-Gaussian turbu-
lence, the transition occurs around the same Stokes
numbers where caustics start to emerge. This sug-
gests that caustics cause clustering in low energy re-
gions in non-Gaussian turbulence, and high energy
regions in Gaussian turbulence.

We have seen that caustics create a highly intermit-
tent particle velocity field for both Gaussian and non-
Gaussian turbulence, with structure function scaling
exponents saturating at low orders. However, we also
know that the average particle velocity should de-
crease as the Stokes number increases, and therefore
that in the limit St → ∞ the particles will not move
at all. From this it is reasonable to infer that the
maximum possible dissipation range velocity differ-
ences, are found at some intermediate Stokes num-
ber. To test this, we use the average velocity gradient
〈|ΔV |/r〉, where ΔV is the longitudinal velocity dif-
ference.

Figure 12 illustrates how the short range velocity
differences depend on the Stokes number. At the low-
est Stokes numbers 〈|ΔV |〉 ∼ r and 〈|ΔV |/r〉 ap-
proaches a constant value. As the Stokes number
is increased, caustics form and very high values of
the velocity gradient become possible. Due to the
decrease in particle kinetic energy as St → ∞, the
average close range velocity gradient takes its max-
imum value at St ≈ 5 in both the Gaussian and non-
Gaussian turbulence.

Substantially larger values of the gradient 〈|ΔV |/r〉
are found in non-Gaussian turbulence than in Gaus-
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sian turbulence. The intermittency of the non-
Gaussian turbulence itself is likely part of the explan-
ation for the differences observed. It is also likely
that the convective mechanism included in the non-
Gaussian turbulence, is much more efficient at sweep-
ing heavy particles along to form caustics.

VI. CONCLUSION

A comparison of the clustering of inertial particles
in a phase-shifted Gaussian synthetic turbulence and
a convected non-Gaussian synthetic turbulence, re-
veals many similarities and some important differ-
ences. In both types of turbulence, we find clustering
over a wide range of scales and Stokes numbers, with
the maximum clustering found at intermediate scales
and Stokes numbers of order unity.

We use Q, the second invariant of ∇u, sampled on
the particle locations, to study the extent to which
particles concentrate in regions of low vorticity. In
both Gaussian and non-Gaussian turbulence there is
a tendency for the particles to gather in regions of low
Q, although this tendency is much more pronounced
in non-Gaussian turbulence. At most, close to 70% of
the particles in non-Gaussian turbulence, reside in re-
gions where Q < 0. In Gaussian turbulence, this num-
ber is less than 56%. It is shown that the sweeping
of fluid structures in non-Gaussian turbulence, gives
the local fluid vortical structures much more time to
throw out the particles. This vortex ejection mechan-
ism is most effective at St ≈ 0.2.

The formation of caustics causes large particle ve-
locity differences at short distances, which we ob-
serve for Stokes numbers greater than unity in both

types of turbulence. Structure function scaling ex-
ponents in the dissipation range reveal highly inter-
mittent particle velocities, and surprisingly modest
differences between Gaussian and non-Gaussian tur-
bulence. The scaling exponents up to order three are
not significantly affected by the intermittency in the
non-Gaussian velocity field. In non-Gaussian turbu-
lence, the caustics cause preferential sampling of re-
gions of low fluid kinetic energy, while the opposite is
true in Gaussian turbulence. In both types of turbu-
lence, the average dissipation range velocity gradient
is maximised for St ≈ 5, but the values are higher in
non-Gaussian turbulence.

The clustering maps in figure 4 show that maximum
clustering occurs when both preferential sampling of
low Q and caustics are in effect, for Stokes numbers
around unity. These clustering maps are remarkably
similar in Gaussian and non-Gaussian turbulence. In
both cases we see that the vortex centrifuge effect
causes small-scale clustering at low Stokes numbers,
and caustics are responsible for creating the, mostly
large-scale, clustering at high Stokes numbers. While
the extent to which particles are clustered is not very
different in the two flows, the preferential sampling of
vorticity and kinetic energy is crucially dependent on
convection. It is important to include convection in
the flow, in order to be able to predict how the particle
clustering correlates with local flow properties.
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On wall-normal particle drift and clustering in
a turbulent channel flow
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Technology, N-7491 Trondheim, Norway
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Preferential concentration of particles in a turbulent channel flow takes two distinct forms:
wall-normal particle drift and local clustering. We use direct numerical simulations at
shear Reynolds numbers 180 and 395 to study these two effects. The wall-normal particle
drift is maximised at viscous Stokes numbers around 20 at both Reynolds numbers, but
significantly higher values of the mean wall-normal particle velocity are found at the
highest Reynolds number. Instead of a turbulence gradient law, we find that the mean
wall-normal particle velocity is almost proportional to the wall-normal fluid RMS velocity,
for a wide range of particle Stokes numbers. Local particle clustering is observed over a
wide range of scales and Stokes numbers, both in the buffer layer and the centre of the
channel. There is strong preferential sampling of low vorticity regions also in the core
region, and this effect is maximised for Kolmogorov Stokes numbers around unity. At
Kolmogorov Stokes numbers greater than unity we also observe caustics in the centre of
the channel. We find strongly intermittent dissipation range structure functions for the
particle velocity in the core region.

1. Introduction
If a swarm of inertial particles are released in a turbulent channel flow, they will tend

to move towards the walls. This causes large gradients in the particle density close to
the wall, and extensive particle deposition even without the assistance of gravity. Ca-
poraloni et al. (1975) and later Reeks (1983) described a mechanism causing particles in
inhomogeneous turbulence to drift in the direction of negative gradient of the turbulent
velocity fluctuations. They referred to this as a “turbophoretic” velocity, due to how the
mechanism is reminiscent of thermophoresis. More recently, detailed studies of the wall-
normal drift of particles have been performed using direct numerical simulation in both
Newtonian (Sardina et al. 2012) and non-Newtonian (Nowbahar et al. 2013) flows.

This is just one example of what is commonly referred to as preferential concentra-
tion (Maxey 1987; Squires & Eaton 1991), which causes particles to prefer to reside in
certain regions of the flow. Also in homogeneous turbulence, strongly inhomogenous spa-
tial particle distributions are found (Squires & Eaton 1991), and heavy particles (particles
with density greater than the fluid density) accumulate in strain-dominated regions (Eaton
& Fessler 1994). The particles preferentially concentrate in regions dominated by strain
because they are being thrown out of vortices acting as small centrifuges.

In a turbulent channel flow, however, the non-random spatial distribution of particles
was not found to be significantly correlated with the local flow topology by Rouson &
Eaton (2001), except in the near-wall region, where the particles preferentially concentrate
in the low-speed streaks. Mechanisms explaining the accumulation in low-speed streaks,
as well as the strong wall-normal flux of particles, were discussed in detail by Marchioli
& Soldati (2002), with special emphasis on the importance of sweeps and ejections.

† Email address for correspondence: research@christophernilsen.no
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The “centrifuge mechanism” is most effective at low to moderate Stokes numbers, while
there are other mechanisms causing clustering at the highest Stokes numbers. Strongly
inertial particles can retain their velocity while traveling significant distances in the flow.
This makes it possible for fast particles to overtake slower particles and cause signific-
ant velocity differences over arbitrarily small distances. When this happens the particle
velocity field “folds over itself”, causing regions of increased particle density (Falkovich
et al. 2002; Wilkinson & Mehlig 2005; Duncan et al. 2005; Gustavsson et al. 2012). These
“folds” in the particle velocity field are referred to as “caustics”, and caustic clustering has
been identified at Stokes numbers greater than unity in homogeneous isotropic turbulence
(Bec et al. 2010).

We use direct numerical simulations of turbulent channel flow with suspended spherical
particles to investigate preferential concentration. We focus on both the mean wall-normal
flux of particles and the formation of local clustering. Experimental or computational stud-
ies of particle dispersed turbulent channel flows are often limited to a fairly low number
of particle Stokes numbers (usually three to five). This makes it difficult to draw clear
conclusions about the effect of particle inertia. A well resolved Stokes number parameter
space and a large number of particles, should help us bring more clarity to the specific
effect of particle Stokes number. We will also use two different channel flow Reynolds
numbers to identify possible Reynolds number effects.

The numerical methods used for performing the simulations and computing particle
statistics, are presented in section 2. Results are presented and analysed in section 3,
with a focus on wall-normal particle drift in 3.1 and clustering in 3.2. Conclusions are
drawn in section 4.

2. Methodology
2.1. Direct numerical simulation

We use direct numerical simulations to study the motion of particles in turbulent channel
flows. Two different simulations are used, one at friction Reynolds number Reτ = uτh/ν =
180 and one at Reτ = 395. Most previous studies of particle clustering in channel flow
use Reτ ≤ 180 (Rouson & Eaton 2001; Marchioli & Soldati 2002; Sardina et al. 2012).
The wall-normal height of the channel is 2h, ν is the kinematic viscosity of the fluid
and uτ is the friction velocity, when ρu2

τ is the wall stress and ρ is the fluid density.
Periodic boundary conditions are used in the streamwise (x) direction and spanwise (z)
direction, while no-slip velocity boundary conditions are used in the wall-normal (y)
direction. We use a spectral element method to find an approximate solution for the
velocity u = (u, v, w) and the pressure p to the incompressible Navier-Stokes equations
with constant density and viscosity. The flows are driven by a constant mean streamwise
pressure gradient.

The Navier-Stokes equations are solved numerically using a dual splitting scheme sim-
ilar to the one suggested by Karniadakis et al. (1991), but with auxiliary semi-Lagrangian
convection treatment (Maday et al. 1990). A third-order backwards differentiation method
is used for the Stokes operator and a fourth-order Runge-Kutta method is used for the con-
vection operator. Consistent third-order Neumann pressure boundary conditions (Karni-
adakis et al. 1991) are used for a resulting temporal accuracy of order three. This splitting
scheme requires the solution of one Poisson equation for the pressure and three Helmholtz
equations for the velocity components, in addition to the integration of the convection
operator, each time step.

The spatial discretisation uses a Galerkin formulation and is similar to the discretisation
presented by Rønquist (1988). A solution is found on a domain Ω which is the union of E
smaller deformed hexahedral elements. Within each element the solution is approximated
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using a nodal tensor-product basis of one-dimensional Lagrangian interpolants through
the n+1 Gauss-Lobatto-Legendre nodes. C0 continuity is enforced on the element bound-
aries. A small amount of spectral vanishing viscosity is used to stabilise the simulation
(Xu & Pasquetti 2004), and the convective form (u · ∇u) of the convection operator is
used. The discretised Poisson and Helmholtz equations form symmetric positive definite
systems that are solved using the preconditioned conjugate gradient method.

In the simulation at Reτ = 180, a domain size of Lx × Ly × Lz = 15h × 2h × 7h is
discretised using 18×8×12 elements, while the simulation with Reτ = 395 uses 12×8×9
elements and a domain size of 10h× 2h× 5h. The domains are larger than those used by
Moser et al. (1999) to avoid some of the small-domain effects observed by Sardina et al.
(2012). The elements are non-uniformly deformed in the wall-normal direction, such that
the centres of the elements are positioned on a set of Chebyshev nodes between 0 and 2h.
A polynomial order n = 17 is used for Reτ = 180 and n = 30 is used for Reτ = 395. The
low Reynolds number simulation use a viscous time step of Δt = 2 · 10−4h/uτ and two
convection time steps per viscous time step, and for the high Reynolds number simulation
Δt = 1 · 10−4h/uτ and three convection steps per viscous step are used.

Large swarms of tiny spherical particles are tracked in the channel flow simulation.
These particles are assumed to be so much smaller than the smallest fluid scales that their
motion can be accurately approximated using a point-particle approximation. Specifically,
we can say that we assume a+ = auτ/ν � 1, when a is the particle radius. The particles
do not interact with each other and they do not affect the flow. The N particles follow
the particle paths Xi = (Xi, Yi, Zi), i = 1, . . . , N with velocities V i = (Ui, Vi,Wi), i =
1, . . . , N . When we also assume that the particle density ρp is much greater than the
fluid density ρ and that gravitational and Brownian forces are negligible, the equation of
motion for a single particle is

dV

dt
=

1

τp
(u(X(t), t)− V (t)). (2.1)

The particle relaxation time τp = 2a2ρp/(9ρν) is used to define the Stokes number St =
τp/(ν/u

2
τ), which measures the particle inertia. No drag-correction or other finite-radius

effects are included, and the particles bounce back elastically when they hit the walls
(Y < 0 or Y > 2h). The reason to neglect all finite-radius effects is to make sure that the
assumption auτ/ν � 1 is consistently applied, and to avoid a two-dimensional parameter
space for the particles.

Equation 2.1 is integrated in time using a fourth-order Runge-Kutta method and a time
step equal to 2Δt. Fourth order Lagrangian interpolation is used to approximate u(X).
The particle integration is done in the reference variables internal to each element, and
a non-linear iterative method is used to identify the time and location a particle crosses
over into another element.

In the Reτ = 180 simulation we use N = 2 · 106 particles for each Stokes number and
in the Reτ = 395 simulation we use N = 8 · 106. In both cases we use the 12 different
Stokes numbers St(j) = 101+ξj , j = 1, . . . , 12, where ξj are the Gauss-Lobatto-Legendre
nodes. This particular choice of Stokes numbers allows us to approximate the continuous
Stokes number space between 1 and 100 using high-order polynomial interpolation. We
can also compute a Stokes number StK = St/τ+K based on the centreline Kolmogorov
time scale τ+K = τK/(ν/u2

τ ), which is 13.7 for Reτ = 180 and 19.6 for Reτ = 395. The
Kolmogorov time scale is smaller closer to the wall, and a Stokes number based on the
local Kolmogorov time scale could be used. Instead, we use the viscous Stokes number St
in the near-wall region.

The particles are randomly (uniformly) distributed in the channel after the turbulent
channel flow has reached a statistically steady-state condition. After the particles are in-
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Figure 1. Comparison of (a) mean velocity and (b) normal components of Reynolds stress
tensor from simulation with Reτ = 395 (solid lines) with results by Moser et al. (1999) (circles).
Curves in (b) are, from top to bottom, u′2, w′2 and v′2. The circles represent values at every
third grid-point used by Moser et al. (1999), to avoid excessive clutter. Our results are averaged
in the two homogeneous directions and over the whole simulation time span.

troduced in the velocity field, the simulations are run from t = 0 and until t = 63.2h/uτ =
11376ν/u2

τ for Reτ = 180, and t = 22.2h/uτ = 8769ν/u2
τ for Reτ = 395. We will mostly

use the non-dimensional time t+ = tν/u2
τ , when referencing time variation.

As a validation of the Navier-Stokes solution procedure, we compare statistics obtained
for the mean streamwise velocity (u) and normal Reynolds stress components (u′2, v′2,
w′2) with results published by Moser et al. (1999) at Reτ = 395 in figure 1. Our results
show good agreement with the results from the reference simulation. Statistics for Reτ =
180 (not shown) look similar, but with values slightly closer to the corresponding results
of Moser et al. (1999).

2.2. Particle statistics
If we define a particle probability density function f(x), such that the probability of
finding a particle inside Φ ⊂ Ω is

∫
Φ
f(x) dx and

∫
Ω
f dx = 1, then the particle density

is Nf . We use kernel density estimation (Wand & Jones 1995), which is an efficient
non-parametric probability density estimation method, to find an estimate of f .

We know the position vectors Xi, i = 1, . . . , N of the particles and can approximate
the true density f with the kernel estimate f̂ using

f̂(x;σ) = N−1σ−d
N∑
i=1

K((x−Xi)/σ), (2.2)

in d-dimensional space. We use a Gaussian kernel function,

K(x) = (2π)−3/2 exp

(
−1

2
x · x

)
, (2.3)

and a bandwidth σ. The bandwidth defines the scale of investigation, and we can vary σ to
find how the particles are clustered at different scales. Instead of using a three-dimensional
density estimate, we use two-dimensional density estimates f̂xz in planes parallel with the
walls and a one-dimensional density estimate f̂y in the wall-normal direction.

Because of the strong density gradients close to the walls, we use a coordinate trans-
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Figure 2. Particle probability density in channel flow with Reτ = 395 at times t+ = 0 (dash–
dotted), 1975 (dotted), 3950 (dashed) and 7900 (solid), for particles with (a) St = 4.0 and (b)
St = 25.1.

formation (Wand et al. 1991) when finding the one-dimensional density estimate f̂y, i.e.

f̂y(y) = N−1σ−1
N∑
i=1

g′λ(y)K((gλ(y)− gλ(Yi))/σ), (2.4)

with

gλ(x) =

{
xλ x < 1

2− (2− x)λ x > 1
, (2.5)

and λ = 0.15. The mean wall-normal particle velocity is similarly approximated as

〈V 〉y(y) =
∑N

i=1 Vig
′
λ(y)K((gλ(y)− gλ(Yi))/σ)∑N

i=1 g
′
λ(y)K((gλ(y)− gλ(Yi))/σ)

. (2.6)

3. Results
3.1. Wall accumulation

All particles included in the simulations are observed to migrate towards the walls, and
accumulate in the near wall region. This, by necessity, causes a depletion of particles
in the channel core region. In figure 2, we show the particle probability density f̂y (the
density is symmetric and only half is included), which is an estimate of the probability
of finding a randomly chosen particle at wall-normal coordinate y at time t. The large
number of particles and the good convergence properties of the kernel density estimation
method, make it possible to also study the time variation of f̂y.

For both of the Stokes numbers included in figure 2, the density reaches its maximum
value very close to the wall (y+ < 1) and its minimum value around y+ ≈ 100. When
St = 25.1, the maximum density value is almost four orders of magnitude greater than the
minimum density, at time t+ = 7900. The position of maximum density moves closer to
the wall as time progresses, and at increasing Stokes numbers. The slow shift of the point
of maximum density was also observed by Marchioli & Soldati (2002), and explained to
be the result of a two-stage process where particles are first transported to the near-wall
region by turbulent motion, and then slowly drift toward the wall. Particle densities in
the Reτ = 180 simulation are very similar to the ones shown in figure 2.

The value at maximum density f̂y,max is plotted in figure 3 for the whole range of Stokes
numbers, and at both Reynolds numbers. In this and similar figures, the symbols mark
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Figure 3. Maximum value of particle probability density in channel flow with (a) Reτ = 180,
at times 1980 (solid), 3960 (dashed), 7920 (dotted) and 11160 (dash-dotted); and with (b)
Reτ = 395, at times 1975 (solid), 3950 (dashed) and 7900 (dotted).

the actual simulated Stokes numbers and the lines are high-order polynomial interpolants.
At both Reynolds numbers the maximum density, and thus the wall accumulation, is
maximised for St ≈ 20. The shapes of the curves in figure 3 suggest that wall accumulation
of particles will be a significant effect also at Stokes numbers much higher than 100.

The increase seen in log f̂y,max in figure 3 is close to constant for the successive doublings
in t. This suggests that f̂y,max increases close to linearly with time. Plots of probability
density f̂y as a function of time (not shown) do indeed show that f̂y ∝ t in the near wall
region, for the entire time span included in the simulations: t+ < 11376 for Reτ = 180
and t+ < 8769 for Reτ = 395. There is nothing to suggest that a steady state particle
density will be reached anytime soon. Marchioli et al. (2008) did find an approximately
steady state near-wall particle density, but only after t+ had reached approximately 20000
and with the help of a finite-radius collision model. It is not certain that a steady state
particle distribution, apart from one where all the particles are at the walls, can be reached
without a finite-radius collision model.

The accumulation of particles close to the walls is caused by a non-zero mean wall-
normal particle velocity 〈V 〉y , which is plotted in figure 4 for Stokes numbers 4.0 and 25.1
at Reynolds number 395 (same as figure 2). At St = 25.1 the particle velocity does not
change much between t+ = 1975 and t+ = 7900, suggesting it is close to steady.

In the turbophoretic drift theory presented by Caporaloni et al. (1975), the turbophor-
etic velocity VTF should be proportional to the gradient of the RMS velocity squared,
i.e. VTF = −τpdv′2/dy. Nowbahar et al. (2013) showed, using a simple perturbation ap-
proximation, that the drift velocity 〈V 〉y could be approximated as the sum of the mean
particle-sampled fluid velocity 〈v〉y and the turbophoretic drift velocity −τpd〈v′2〉y/dy
(now using gradient of particle-sampled RMS velocity), for low values of τp. Neither the
shape of 〈V 〉y in figure 4 nor f̂y in figure 2, can be explained from a turbulence gradient
law. Particle transport towards lower values of turbulence intensity should lead to a net
influx of particles to the channel core region, which is not observed.

The mean particle wall-normal velocity 〈V 〉y takes its minimum value (maximum ab-
solute value) for y+ around 50 to 100, which is close to the position of maximum v′2 in
figure 1. The shape of 〈V 〉y seen in figure 4 also suggests that 〈V 〉y is closer to being

proportional to v′2 or
√
v′2, than to the gradient. In figure 5, we plot 〈V 〉y/〈V 〉y,min
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Figure 4. Particle mean wall-normal velocity in channel flow with Reτ = 395 at times t+ = 0
(dash-dotted), 1975 (dotted), 3950 (dashed) and 7900 (solid), for particles with (a) St = 4.0 and
(b) St = 25.1. Each of the particle velocity curves (except for t+ = 0) are averaged over five time
samples 39.5 time units apart centred at the specified values of t+.
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Figure 5. Normalised wall-normal particle velocity versus wall-normal fluid RMS velocity for
St between 7.3 and 100 for (a) Reτ = 180 and t+ = 3960, and (b) Reτ = 395 and t+ = 3950.

versus
√
v′2/(v′2)max, at both Reτ = 180 and Reτ = 395. We see that the particle drift

velocity is close to proportional to −
√
v′2 for y < yvm and

(√
(v′2)max −

√
v′2

)
for

y > yvm, where yvm is the position of maximum v′2. This is particularly true at the
highest Reynolds number.

The minimum value of the wall-normal velocity 〈V 〉y is plotted in figure 6, showing
that the wall-normal particle drift is maximised at St ≈ 20 (as suggested in figure 3). The

approximate proportionality between 〈V 〉y and −
√
v′2 could be used to approximate the

evolution of particle density, using only information about fluid statistics. With a Stokes
number dependent coefficient, determined from figure 6, it should be possible to obtain
reasonable predictions of the particle density.
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Figure 6. Minimum value of wall-normal particle velocity in channel flow with (a) Reτ = 180
at times 1980 (solid), 3960 (dashed), 7920 (dotted) and 11160 (dash-dotted); and with (b)
Reτ = 395, at times 1975 (solid), 3950 (dashed) and 7900 (dotted). Each of the particle ve-
locity curves are averaged over five time samples (a) 36.0 and (b) 39.5 time units apart, centred
at the specified values of t+.

3.2. Local particle clustering
In addition to accumulating at the walls, the particles also collect in local clusters. We
use the two-dimensional density estimate f̂xz(σ) in a plane parallel with the walls, to
measure the extent to which particles are clustered at scale σ. If the particles are uniformly
distributed in the plane we expect to get

LxLz(σ
2〈f̂xz〉 − (2πN)−1) = σ2, (3.1)

where 〈f̂xz〉 denotes the density sampled on the particle locations. The function

φ(h) = [LxLz(σ
2〈f̂xz〉 − (2πN)−1)]1/2 − σ (3.2)

is then a measure of how clustered the particles are at scale σ. This clustering measure is
similar to Ripley’s L-function (Ripley 1976), a well-known measure of spatial homogeneity.

In figures 7 and 8, we plot φ as a function of h and St, in planes in the middle of the
buffer layer and in the centre of the channel. In both cases we observe significant clustering
over a wide range of scales and Stokes numbers. Similar plots at Reτ = 180 (not shown)
are also produced to determine (St, σ) coordinates of maximum clustering. In the centre
of the channel maximum clustering is found for St = 18.4 (StK = 1.3) and σ+ = 18.6
(σ/ηK = 5.0) with a value of φ = 0.035, at Reτ = 180; and St = 28.8 (StK = 1.5) and
σ+ = 29.2 (σ/ηK = 6.6) with a value of φ = 0.024, at Reτ = 395. In the buffer layer
maximum clustering is found for St = 15.2 and σ+ = 20.3 with a value of φ = 0.042, at
Reτ = 180; and St = 10.9 and σ+ = 20.3 with a value of φ = 0.019, at Reτ = 395.

The clustering in the buffer layer occurs at lower values of the Stokes number, most
likely because of the smaller fluid time scales in this region of the flow. In the centre
of the channel, an increase in Reynolds number shifts the point of maximum clustering
towards higher Stokes numbers and larger scales. The most noteworthy Reynolds number
effect observed in these numbers, is the clear reduction in φ, and therefore clustering, at
the higher Reynolds number. This is a little surprising, but is most likely caused by the
increased wall-normal particle velocity seen in figure 6. When the particles move faster
towards the walls, there is less time to form local clusters.

The most common explanation for particle clustering is that particles are ejected from
regions of high vorticity. We use Q = −(1/2)(∂ui/∂xj)(∂uj/∂xi), the second invariant of
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Figure 7. Contour plot of clustering function 100φ(σ) for particles with wall-normal coordinate
19 < Y + < 21 in channel flow with Reτ = 395, averaged between t+ = 3950 and t+ = 7900.
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Figure 8. Contour plot of clustering function 100φ(σ) for particles with wall-normal coordinate
393 < Y + < 395 in channel flow with Reτ = 395, averaged between t+ = 3950 and t+ = 7900.
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Figure 9. (a) Mean particle sampled Q and (b) likelihood ratio αQ for particles located in the
wall-parallel slice 18 < y+ < 22 averaged over time samples between t+ = 3960 and t+ = 7920
for Reτ = 180 (solid line, circles), and between t+ = 3950 and t+ = 7900 for Reτ = 395 (dashed
line, squares).
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Figure 10. (a) Mean particle sampled Q and (b) likelihood ratio αQ for particles located in
the wall-parallel slice (Reτ − 10) < y+ < Reτ averaged over time samples between t+ = 3960
and t+ = 7920 for Reτ = 180 (solid line, circles), and between t+ = 3950 and t+ = 7900 for
Reτ = 395 (dashed line, squares).

the velocity gradient tensor ∇u, to test this explanation. Q represents the local balance
between vorticity and shear strain, and we expect particles to gather in regions of negative
Q (where shear is dominating). We use two Q-related measures: the particle sampled mean
value 〈Q〉 and the likelihood ratio αQ. The ratio αQ is the fraction of particles located in
regions with Q < 0 divided by the corresponding fraction for fluid tracers, i.e. αQ is how
many times more likely it is to find a randomly chosen particle in a region of Q < 0 than
it would be for fluid tracers.

Both 〈Q〉 and αQ are plotted for particles in a section of the buffer layer in figure
9, and a section in the core region in figure 10. In the buffer layer we see the particles
preferentially sampling regions of the flow with Q < 0, as previously observed by Rouson
& Eaton (2001). This mechanism is most effective at fairly low Stokes numbers, and both
〈Q〉 and αQ take their extreme values at St ≈ 2. Since the clustering in the buffer layer
is maximised at a significantly higher Stokes number (see figure 7), there must be other
effects causing clustering. An increase in the probability and intensity of strong gradients
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Figure 11. Structure function power law exponents ξp for r in the dissipative range (r < ηK),
for (a) p = 1 and (b) p = 1, 2, 3. In (a) both Reτ = 180 (solid line, circles) and Reτ = 395 (dashed
line, squares) are included. The dotted line in (b) is the logarithmic function 0.8− 0.5 log St.

leads to significantly higher absolute values of 〈Q〉 at the highest Reynolds number, but
measured with αQ the magnitude of the preferential sampling is roughly equal for the
two Reynolds numbers, at all Stokes numbers.

Unlike in the near-wall region, Rouson & Eaton (2001) did not find that the particle
distribution was significantly correlated with local flow topology in the centre of the
channel. They suggested that this was because the clustering in that part of the channel
was created close to the walls and transported to the core region. We find in figure 9 that
also in the centre of the channel there is significant preferential sampling of Q < 0 regions.
Although the absolute values of 〈Q〉 are much lower than in the buffer layer, because of
the much lower values of Q2, the likelihood ratio αQ takes higher values in the centre of
the channel. At most, close to 80% of the particles in the centre of the channel, reside in
regions with Q < 0. The maximum absolute value of 〈Q〉 is found for StK ≈ 0.5, while αQ

takes its maximum value at StK ≈ 0.7. Also here we find almost completely overlapping
αQ curves, suggesting that the extent to which particles cluster in regions of negative Q,
does not depend on Reynolds number. If the majority of the particle clusters in the core
region were created close to the wall (as suggested by Rouson & Eaton (2001)) one would
expect a stronger Reynolds number dependence.

The vortex centrifuge mechanism is not the only explanation of why particles cluster,
and figure 10 can not explain the clustering observed at very large values of St in figure
7. Caustics have been shown to be a significant effect for Stokes numbers greater than
unity in homogeneous turbulence (Bec et al. 2010), and it would be reasonable to expect
similar effects in the channel flow. Because caustics are associated with large close-range
velocity differences, we use the longitudinal velocity structure function of order p, Sp(r),
defined as

Sp(r) = 〈[(V (x+ r)− V (x)) · r/r]p〉, (3.3)
for a separation vector r. We use the structure functions to study particle velocities in
the slice (Reτ − 10) < y+ < (Reτ + 10) in the centre of the channel.

For distances r in the dissipation range (r < ηK), Sp(r) is expected to follow the
power law rp for a smooth velocity field. In plots of Sp(r) (not shown) we observe power
laws Sp(r) ∝ rξp in the dissipation range. The values of the exponents ξp are plotted
in figure 11 for p = 1, 2, 3. The exponent ξ1 transitions from a value close to 1 at low
Stokes numbers to a value close to 0 at high Stokes numbers, in much the same way as
previously observed in homogeneous turbulence (Bec et al. 2010). A power law exponent
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close to zero means that the velocity difference is almost independent of distance (in the
dissipation range), indicating a highly intermittent velocity distribution. That ξ2 and ξ3
overlap for a range of Stokes numbers in figure 11, shows that the power law exponents
saturate at large orders. Bec et al. (2010) proposed that the saturation exponent ξ∞ could
be approximated with a logarithmic function for a certain range of Stokes numbers. The
comparison with a logarithmic function in figure 11 indicates that this could also be true
in our case, but the modest number of Stokes numbers in the relevant range makes it
difficult to conclude.

The ξ1 curves for Reτ = 180 and Reτ = 395 are overlapping for the whole range of
StK . This is also true for ξ2 and ξ3, which is why only the results for Reτ = 395 are
included. There does therefore not seem to be any significant Reynolds number effects,
however it is impossible to know if this also holds true at much higher Reynolds numbers.
Bec et al. (2010) did not observe any significant Reynolds number effects in homogeneous
turbulence either.

4. Concluding remarks
We have studied the preferential concentration of inertial point-particles in turbulent

channel flow, using direct numerical simulation. There is a significant drift of particles
towards the walls at both Reynolds numbers Reτ = 180 and Reτ = 395, and for particles
with Stokes numbers between 1 and 100. The maximum particle density is found very
close to the wall (y+ < 1) and the value increases approximately linearly with time. The
wall-normal flux is maximised for St ≈ 20 at both Reynolds numbers, but the mean wall-
normal velocity is higher at Reτ = 395. A turbulence intensity gradient drift law can not
explain the mean wall-normal particle velocity observed. Instead we find that the particle
velocity is almost proportional to the wall-normal RMS fluid velocity

√
v′2.

In addition to the wall-normal particle flux, we observe local particle clustering over
a wide range of scales and Stokes numbers in both the buffer layer and the core region.
Significantly stronger clustering is found at the lowest Reynolds number, which we believe
to be the result of the increased wall-normal drift at the highest Reynolds number. The
particles have less time to collect in local clusters along their path to the wall.

Preferential sampling of regions of low Q is found in both the buffer layer and in the core
region. In the buffer layer, this is a mechanism which is most effective at very low Stokes
numbers, significantly lower than the Stokes number at which clustering is maximised. In
the centre of the channel, maximum preferential sampling of negative Q is found when
the Kolmogorov Stokes number StK is around unity. The correlation with local fluid
structures in the centre of the channel suggests that the particle clusters are formed in
the centre of the channel, and not primarily transported from the walls. For StK around
unity, close to 80% of the particles in the centre of the channel reside in regions with
Q < 0.

By studying dissipation range particle velocity structure functions in the core region,
we also find strong intermittency, indicative of caustics, at higher Stokes numbers. The
clustering observed in the centre of the channel is the result of the combined effects of
preferential sampling of negative Q and clustering caused by caustics.

Although both the wall-normal drift velocity and the clustering are different at the two
Reynolds numbers, the two mechanisms that are believed to cause the clustering are not.
Neither the preferential sampling of negative Q, nor the particle velocity intermittency,
exhibit any significant Reynolds number dependence. This suggests that it is the change in
the wall-normal flux that causes the Reynolds number dependence of the clustering, and it
emphasises the strong connection between wall-normal particle drift and local clustering,
in the turbulent channel flow.
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