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Sammendrag 
Denne masteroppgaven tar for seg tre deloppgaver i forbindelse med ikke-stasjonær drift av 

våtgasskompressorer. 

Den første oppgaven etablerer en dynamisk simuleringsmodell for våtgass-kompressorriggen på 

NTNU. Modellen er utviklet i programvaren «HYSYS Dynamics» og er designet for å kunne simulere 

tørr- og våtgass kompressorrespons ved tripp av driver. Det er foretatt en validering av modellytelsen 

under stasjonære forhold. Med unntak av ett testpunkt avviker modellen mindre enn 1% for målt 

polytropisk løftehøyde og volumstrøm på innsugsiden. 

Den andre deloppgaven validerer modellytelse ved tripp av driver for både tørr- og våtgass. Avvik 

mellom simuleringsmodell og testing i rigg blir evaluert i forhold til rotasjonshastighet, polytropisk 

løftehøyde og volumstrøm på innsugssiden. Det er svært lite avvik mellom simulert 

rotasjonshastighet og målt rotasjonshastighet. 

På det meste avviker den simulerte polytropiske løftehøyden med 7.21% i forhold til løftehøyden 

utregnet fra testresultater. Imidlertid skyldes mye av avvikene en systematisk forskyvning av 

kurvene. Det forventes derfor at avviket kan reduseres ved kurvetilpasning. 

Den simulerte volumstrømmen på innsugssiden avviker til dels kraftig fra utregnet volumstrøm 

basert på testresultater. Dette gjelder også de første sekundene etter tripp, noe som er uheldig med 

tanke på modellens evne til å forutsi surge ved lave strømningsrater. Maksimalt avvik er 8.68%. 

Den siste deloppgaven tar for seg avvik mellom tørr og våt gass ved et valgfritt men representativt 

ikke-stasjonært driftsscenario. Det ble valgt å undersøke kompressorrespons ved 

hastighetsopptrapping fra 9 000 rpm til 11 000 rpm for både tørr og våt gass. Scenarioene ble også 

testet i kompressorriggen. 

Simuleringen indikerer en mer langsom økning av rotasjonshastighet ved våtgass sammenliknet med 

tørrgass. Testresultater tilbakeviser dette, da målt rotasjonshastighet øker helt likt for tørr- og 

våtgass. Forøvrig avslører testresultatene at den dynamiske modellen ikke gjengir den transiente 

responsen til kompressorriggen på en nøyaktig måte ved hastighetsopptrapping. 
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Abstract 
This master thesis considers three subtasks related to transient operation of wet gas compressors. 

HYSYS Dynamics is used to establish a dynamic simulation model in the first subtask. The model is 

designed to predict transient behavior of the compressor test facility at NTNU during dry and wet gas 

trip scenarios. Its steady state performance has been validated against test data. The deviation of 

polytropic head and suction volume flow is less than 1% for all test points but one. 

Dry and wet gas model performance during trip is validated in the second subtask. The deviation is 

evaluated in terms of rotational speed, polytropic head and suction volume flow. Minimal deviation 

is observed for rotational speed.  

The polytropic head prediction deviates up to 7.21% compared to values calculated from test data. 

The deviation is partly due to consistent offset between the predicted and calculated curves. Curve 

fitting is expected to significantly reduce the polytropic head deviation. 

The predicted suction volume flow deviates severely from the values based on test data. This is also 

evident during the first seconds of trip, which is unfortunate in terms of surge behavior prediction. 

The maximum deviation is 8.68% 

The last subtask considers deviation between dry and wet compressor behavior during a 

representative transient operating scenario. It was decided to investigate compressor response 

during speed ramp-up from 9 000 rpm to 11 000 rpm for dry and wet gas. The scenarios are also 

performed in the lab facility. 

The simulations suggest a slower increase in rotational speed for wet gas compared to dry gas. This is 

not confirmed by test results which indicate no difference between wet and dry gas. The dynamic 

model is not able to accurately predict the transient behavior of the compressor test facility during 

speed ramp-up. 
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1. Introduction 

1.1. Motivation 
Natural gas accounts for more than 20% of the global energy demand. Current trends along with 

future prospects suggest natural gas to become even more important as an energy source in years to 

come. 

 

Figure 1-1 - Historical production of oil and gas, and prognosis for production in coming years (Ministry of Petroleum and 
Energy 2014) 

Since oil production started on the Norwegian shelf in 1971, the majority of the large oil fields in the 

North Sea have been developed. To obtain production, attention has been shifted to gas/condensate 

fields, as well as smaller and more remote areas. These areas require new and cost effective 

technology to achieve profitability. 

Subsea gas compression is considered a key element in future development of new gas/condensate 

fields. Utilization of such new technology allows for: 

 Increased recovery at tail end production in depleted fields 

 Reduced investment and operational cost of production facilities 

 Development of more remote areas 

 Reduced impact on environment 

Dynamic simulations can be a powerful tool in the process of designing subsea compressor systems. 

Design and verification of control systems is a central area for such simulations. Control of multiple 

compressors in series or parallel is another. Other applications where transient behavior is important 

include (Patel, Feng et al. 2007): 

 Compressor startup, shutdown and turndown 

 Equipment failure 

 Anti-surge protection 

 Driver size selection 

Typical use of dynamic simulations through a project development can be (Patel, Feng et al. 2007): 
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 Driver size selection in early phase of project 

 Sizing of recirculation valves and coolers, startup power requirements and robustness of 

control system in the engineering phase 

 Evaluation of possible system modifications during operation phase 

This work will investigate the ability to predict dry and wet gas compressor behavior 

.  
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1.2. Structure and layout of the report 
Background 

This work is the result of a Master thesis in thermal energy at Department of Energy and Process 

Engineering from January to June 2014. The title of the assignment is «Wet Gas Compressor 

Transients». L.E. Bakken is the supervisor of the work. The co-supervisors are H. Nordhus and T. 

Bjørge. 

The objective of this master thesis is divided into three subtasks: The first objective is to establish a 

dynamic simulation model for the compressor test facility at NTNU. Model shortcomings and 

functionality are included. The simulation tool HYSYS Dynamics by Aspentech is used to develop the 

model. HYSYS is a well-tested and reliable process simulation software used extensively in the 

industry. HYSYS Dynamics is an operation mode which allows steady state models to easily be 

converted into dynamic scenarios. Both development of actual compressor characteristic and 

validation of steady state performance are considered part of the model establishment. 

The second objective is to validate the dynamic model against dry and wet gas trip scenarios. 

Attention is given to its ability to correctly predict rotational speed, polytropic head and suction 

volume flow during driver trip. Challenges related to accurate transient rig measurements are also 

evaluated. 

The third objective is to establish a representative transient operating scenario and predict deviation 

between dry and wet gas compressor behavior. The author has taken initiative to run the operation 

scenario in the compressor lab in order to validate the dynamic model prediction. For this reason the 

choice of representative transient operating scenario was somewhat limited by the current 

compressor lab facility. 

Layout and structure of report 

The report is structured into seven chapters. The first chapter is an introduction to the report which 

presents the main objectives and guides the reader through the chapters to follow. 

The second chapter presents the fundamental theory forming the basis of the assignment. 

The NTNU wet gas test facility is documented in the third chapter. Both main layout and all relevant 

sensors are described in detail. The chapter includes a process flow diagram of the compressor rig. 

The forth chapter presents the work related to development of simulation models. Both a steady 

state model used for test data analysis and a dynamic model used for transient performance 

prediction are thoroughly described. The chapter also includes compressor characteristic 

development and tuning of orifice pressure drop prediction. Instability challenges related to HYSYS 

Dynamics and the shortcomings of the dynamic model is presented in Section 4.7. 

Chapter five presents the results of three different test activities: 

 Steady state performance of dynamic model 

 Dry and wet gas trip scenarios 

 Speed ramp-up testing 
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Each testing activity consists of both predicted performance from the dynamic model and actual test 

data from the compressor test facility. The chapter also includes discussions and conclusions based 

on the results. 

Chapter six contains the conclusion of the work. The three subtasks from the assignment text are 

addressed in this chapter. 

The last chapter is suggestions to further work. A reference list is provided at the end. 

Challenges and limitations 

The most severe challenge through the work of this Master thesis has been the functionality of 

HYSYS Dynamics. The current software is based on a user friendly drag-and-drop interface which 

enables models to be developed in an intuitive and graphical manner. Experience from the 

simulation tool has however revealed major instability problems related to compressor systems. It 

has not succeeded to identify the triggering factors for the instability, but the challenges seem 

related to low pressure ratio compression of wet gas.  

The instability problems of HYSYS Dynamics are the main reason why piping in the test rig is not 

represented with any physical volume in the dynamic model. It also resulted in the model 

development being very time consuming. 

The last subtask of the assignment text encourages the student to seek a representative transient 

operating scenario to identify deviation between dry and wet gas compressor behavior. In order to 

support any findings, it was determined that it should be possible to run the scenario in the current 

compressor test facility. 

The compressor rig is open-looped and has manually operated valves for water flow rate and 

discharge air. This significantly limits the opportunities to perform repeatable experiments in the lab. 

It was chosen to perform compressor speed ramp-up testing which can completely be executed via 

the compressor control system. The test results did however reveal minimal deviation between dry 

and wet gas. 
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2. Theory 

2.1. Introduction 
This chapter presents some important theory which forms the basis for the assignment. The chapter 

consists of six sections plus the introduction. Some text is extracted from (Owren 2013). 

The first section presents the most fundamental theory related to centrifugal compressors and 

compression theory. 

The next section briefly documents the wet gas impact of compression processes. 

Section 2.4 describes compressor trip and related challenges mainly based on experience from Troll-

Kollsnes. 

Orifice plates including relevant equations are presented in Section 2.5. This section contains 

fundamental relations used for design of both the steady state and dynamic HYSYS models. 

Section 2.6 presents energy balances for rotating parts. The derived relations are used in the motor 

spreadsheet of the dynamic model in order to calculate transient response of the compressor. 

The last section documents the system functionality of HYSYS Dynamics in order to model wet gas 

compression. 
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2.2. Compression fundamentals 
Centrifugal compressor 

The centrifugal compressor has traditionally been dominant in oil and gas applications due to its 

robustness and capability to handle relatively large volume flows (Brenne, Bjørge et al. 2008) 

Prospects for future technology needs combined with promising test results have led to considerable 

interest in the centrifugal compressors capability to handle wet gas. 

The centrifugal compressor consists essentially of a rotating impeller and a stationary diffuser. The 

impeller accelerates the incoming fluid to high velocity as well as increasing the pressure. The 

diffuser consists of diverging passages through which the fluid is decelerated, providing the final 

pressure increase. A common design criterion is that half of the pressure increase is done in the 

impeller, while the rest is provided by the diffuser. Because the diffuser is stationary, all the work is 

done on the fluid passing through the impeller. A centrifugal compressor with integrated motor is 

shown in Figure 2-1. 

In HYSYS the user can chose between a reciprocating or centrifugal compressor. The latter enables 

compressor characteristics to be used as a specification in the model. 

 

Figure 2-1 - Siemens Demag Delaval ECOII centrifugal compressor with integrated motor (Brenne, Bjørge et al. 2008) 

Compressor characteristics 

A compressor curve is a plot showing compressor performance versus flow for different rotational 

speeds. It is usually assumed that the compressor performance is completely described by plotting 

two set of compressor curves. It is convenient to plot polytropic head as an equivalent to pressure 

rise, and polytropic efficiency as an equivalent to temperature rise. 
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Figure 2-2 – Polytropic head for a centrifugal compressor 

Figure 2-2 shows the polytropic head for a centrifugal compressor for three different speeds. The 

surge line is indicated left in the diagram. In this area the speed curves are at their maximum value 

for polytropic head. Any further reduction in volume flow will induce a phenomenon known as 

surging. Low gas velocities cause flow separation in the compressor. Increased losses make the 

compressor unable to generate the head required by the system. Surging is associated with rapid 

drop in delivered pressure and can create damaging pressure pulsations in the machine. High 

temperatures due to declining efficiency may damage internal or surrounding equipment. Control 

mechanisms to avoid operation in the surge area are a key element for viable compressor operation. 

Rotating stall is another cause of instability and reduced compressor performance. Local unstable 

flow may be deflected in such a way that it induces flow breakdown in neighboring channels. 

Rotating instability along the compressor circumference causing damaging vibrations and poor 

performance may be observed. Rotating stall can contribute to surge, but may even appear in the 

nominally stable operating range (Saravanamutto, Rogers et al. 2009). 

The choke line is indicated to the right. Beyond this line the head decreases rapidly with little or no 

change in volume flow. Increased losses are due to compressibility effects as the fluid approaches 

sonic velocity. At some point the flow cannot be increased any further for the given rotational speed, 

in which the compressor is choked. 
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Figure 2-3 – Polytropic efficiency for a centrifugal compressor 

Figure 2-3 shows the polytropic efficiency for a centrifugal compressor for three different rotational 

speeds. The efficiency varies with flow rate similar to the polytropic head. The point of maximum 

polytropic efficiency is however fairly constant for the curves. If the compressor can be controlled in 

terms of rotational speed, it is possible to operate close to the maximum obtainable efficiency for a 

wide range of flow rates. 

Compressor characteristics have been used as input specification for the compressor operator in the 

dynamic model through this work. The characteristics presented in Section 4.4 are developed from 

actual compressor performance in the lab facility. 

Compression process 

Compressor performance can be calculated with either isentropic or polytropic analysis. This section 

will briefly explain the very fundamentals. Figure 2-4 shows a compression process in an enthalpy – 

entropy diagram with isobars indicated. 
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Figure 2-4 - Isentropic and polytropic compression process 

The isentropic process is an ideal compression at constant entropy. HYSYS Dynamics uses the term 

«adiabatic» for isentropic processes. No heat exchange is taking place. An isentropic process is 

indicated with a blue line in Figure 2-4 and is defined:  

              (2-1) 
 

For basic isentropic analysis, the isentropic exponent k is defined by the ratio of specific heats: 

    
  
  

 (2-2) 

 

Because the isobars in Figure 2-4 are diverging [(dh/ds)p = T], two identical compressors operating 

under different suction pressure will give different isentropic head and efficiency (Hundseid, Bakken 

et al. 2008). By assuming a polytropic process, this effect is taken into account. 

A polytropic process is defined: 

              (2-3) 
 

It relates to many infinite small isentropic compression processes along the actual path of 

compression, indicated with a red line in Figure 2-4. 

For ideal gases, the polytropic exponent n is related to the isentropic exponent k through the 

following expression: 

    

 
 

   

    
 

(2-4) 
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The isentropic efficiency is given by: 

 
   

  

 
 

(2-5) 

 

The polytropic efficiency is given by (2-6), were Hp is the polytropic head (not indicated in Figure 2-4) 
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(2-6) 

 

Because the polytropic process follows the actual path of compression, the polytropic efficiency will 

be higher than the isentropic efficiency for a given path of compression. 

Section 2.7 documents the equations HYSYS use for polytropic calculations. 

Wet gas 

Gas containing liquid up to 5% on a volume basis is defined as wet gas (Hundseid and Bakken 2006, 

Brenne, Bjørge et al. 2008, Hundseid, Bakken et al. 2008). Two important parameters are gas volume 

fraction (GVF) and gas mass fraction (GMF): 

 
     

  

     
 

(2-7) 

 

      
  

     
 (2-8) 

 

Due to significant differences in phase densities, a small content of liquid on a volume basis may 

consist of large quantities of liquid in terms of mass. 

HYSYS assumes homogenous flow for two-phase applications. A single fluid model is used for wet gas 

calculations, documented in Section 2.7. 

Affinity laws 

Affinity laws can be used to express the relationship between volume flow, head and power for 

different rotational speeds or diameters of turbo machines. For a centrifugal compressor of constant 

diameter D, the volume flow capacity Q can be expressed as in terms of rotational speed N: 

   

  
 

  

  
 

(2-9) 

 

The polytropic head H is proportional to the square of the rotational speed: 

   

  
  

  

  
   

(2-10) 
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The consumed power P is proportional to the cube of the rotational speed: 

   

  
  

  

  
   

(2-11) 

 

These relations assume constant polytropic efficiency  : 

            (2-12) 

 

Affinity laws are sometimes referred to as fan laws. The wet gas validity of affinity laws is discussed in 

Section 4.4. 
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2.3. Wet gas impact 
The presence of a liquid phase in gas compressing significantly affects the performance. This section 

will briefly present the wet gas impact based on available literature.  

Wet gas performance testing was performed at Kårstø north of Stavanger in 2003 and 2004. Two 

papers have been published presenting the test results: (Brenne, Bjørge et al. 2005) and (Hundseid, 

Bakken et al. 2008) 

The test variables are summarized in Table 2-1. 

Variable Range Unit 

Gas volume fraction (GVF) 0.97 – 1.00 [-] 

Gas volumetric flow rate 1600 – 2400 [m3/h] 

Compressor speed 9651, 10723 [rpm] 

Suction pressure 30, 50, 70 [bar] 

Pressure ratio ~ 1.12 – 1.19 [-] 

Test gas Natural gas [-] 

Test liquid Stabilized condensate, 
Water 

[-] 

Table 2-1 - Tables for Kårstø wet gas performance testing 

The tested compressor was a single stage centrifugal compressor dated 1986. It was built to handle 

dry hydrocarbon gas, which suggests the design may not be optimal for wet gas service. 

The purpose of the testing was to establish and verify wet gas correction methods (Hundseid, Bakken 

et al. 2008), and to initially verify boosting capabilities of a centrifugal compressor and provide data 

to compare the performance with other available wet gas concepts (Brenne, Bjørge et al. 2005). The 

low pressure ratios and the rather stable sales gas / condensate mixture utilized in the test may not 

reveal the true extent of multiphase behavior for subsea compressors. 

Figure 2-5 and Figure 2-6 are taken from (Hundseid, Bakken et al. 2008) and shows how specific head 

varies with GVF, inlet pressure and liquid composition for a compressor operating under wet gas 

conditions. The figures have actual volumetric flow at compressor inlet plotted along the abscissa. 

The y-axis represents the specific polytropic head, which is the produced work per mass unit of flow 

through the compressor.  
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Figure 2-5 - Specific polytropic head versus suction volumetric flow (Hundseid, Bakken et al. 2008) 

 

Figure 2-6 - Specific polytropic head versus suction volumetric flow (Hundseid, Bakken et al. 2008) 



16 

Figure 2-7 shows how polytropic efficiency varies with GVF, inlet pressure and liquid composition for 

a compressor operating under wet gas conditions (Hundseid, Bakken et al. 2008).  

 

Figure 2-7 - Polytropic efficiency versus suction volumetric flow (Hundseid, Bakken et al. 2008) 

It is obvious that GVF, inlet pressure and liquid properties have a significant influence on compressor 

performance. The reduction in head and efficiency is explained by an increase in mass flow due to 

the high density of the liquid phase. Low inlet pressures imply a high density ratio between gas and 

liquid due to the incompressibility of the latter. Correspondingly, water has high density compared to 

condensate, which gives the same effect (Hundseid, Bakken et al. 2008). 

The test results reveal that wet gas compressor performance cannot easily be represented as single 

lines of constant speed in compressor characteristic diagrams, as of the procedure for dry gas 

applications. Compressor performance calculations need to compensate for wet gas effects. 

Three different speed curves are used to specify the compressor unit in the dynamic model in this 

work. The curves are based on experimental data at 11 000 rpm and GMF-values of 1.00, 0.80 and 

0.70. 
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2.4. Compressor trip 
Dry and wet gas compressor trip testing has been performed in the compressor facility at NTNU 

during this work. This section presents results from former dry gas trip testing at Troll-Kollsnes. 

Experience from these tests formed the basis for both execution and discussion of the current trip 

testing and simulation. 

Electrical drivers provide a promising alternative for future subsea compressor power supply. 

Electrical motors connected to an external power grid may trip if the voltage supply decreases below 

80% of design value (Bakken, Bjørge et al. 2002, Tveit, Bakken et al. 2004, Tveit, Bjørge et al. 2005). 

Experience from Troll-Kollsnes has shown that during driver trips, the compressor may be forced into 

the surge and rotating stall area. Heavy vibrations and internal damage may occur, impairing the 

compressor seals. 

Trip scenarios are divided into process trips and driver trips. Severe process system upsets can cause 

shut down, but in such events the driver shutdown can be delayed until the compressor protection 

systems are activated. For trips caused by the driver itself, no protective actions can be initiated prior 

the trip. This makes driver trips the most severe of all trip incidents (Tveit, Bakken et al. 2004). 

Polar inertia and power decay rate 

The tendency for a system to enter surge during trip is affected by driver inertia and the driver power 

decay. Low polar inertia entails fast compressor speed deceleration and forces the operating point 

into the surge area. An electric drive typically has high polar inertia compared to gas turbine drivers 

of similar application, for which reason electrical drivers require less stringent compressor protection 

systems. Figure 2-8 shows the rundown characteristics of a compressor trip for three different polar 

inertias. The two systems with lower inertia clearly enter an operating region beyond the surge line. 

The high inertia line is inside the normal operating area during trip. 

 

Figure 2-8 - Run down characteristics of different polar inertia (Tveit, Bakken et al. 2004) 

The power decay rate has major impact on compressor rundown characteristics. While the electric 

motor power decay is instantaneous, the gas turbine decay is slower due to fuel valve shut-in time of 

approximately 100 ms (Tveit, Bakken et al. 2004). Slow power decay reduces the speed reduction 
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and stabilizes the compressor run down. Figure 2-9 shows the rundown characteristics of four 

different power decay rates. Even small changes in decay rate clearly show a large impact on the 

tendency to enter surge.  

 

Figure 2-9 - Run down characteristics of different power decay rate (Tveit, Bakken et al. 2004) 

An electric driver is favorable in terms of polar inertia, while the gas turbine driver has the advantage 

of slower power decay. For the Troll-Kollsnes case presented in (Tveit, Bakken et al. 2004), the two 

tendencies are equally effective, and the rundown characteristics of an electrical or gas turbine 

driven compressor are quite similar as shown in Figure 2-10. For subsea applications, electrical 

drivers are currently being used for power supply. 

 

Figure 2-10 - Run down characteristics of different drives (Tveit, Bakken et al. 2004) 
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Pipe volumes and protection valves 

Gas compression systems usually include an anti-surge system. Such systems recycle the flow from 

the high pressure side to the suction side of the compressor to increase the volume flow and reduce 

head requirement. For high volume flow applications, an anti-surge capacity has to be increased 

beyond normal limits to protect the compressor from surge during trip (Tveit, Bjørge et al. 2005). To 

improve the run down characteristics a hot or cold bypass valve may be introduced parallel to the 

anti-surge. The bypass valve is only activated during trip. A fast response of the bypass valve is 

critical. At Troll-Kollsnes a time delay from 150 to 300 ms makes the bypass system unable to protect 

the compressor from entering the surge area. 

Piping layout affects transient compressor performance. A large compressor discharge volume will 

give a slow pressure ratio reduction during trip. The operating point will be forced into the surge 

area. Figure 2-11 shows how the run down characteristics change when the discharge volume is 

increased (case 2.2) from the base case at Troll-Kollsnes. A slow discharge pressure reduction will 

increase the tendency of surge. 

 

Figure 2-11 - Impact of suction and discharge volume on run down characteristics (Tveit, Bjørge et al. 2005) 

In case 2.3 a check valve is installed which makes the cold gas bypass system increase the suction 

pressure more rapidly. The resulting run down characteristic becomes more favorable. 

In order to reduce challenges related to surge during trip the discharge volume should be kept 

minimal. Anti-surge protective systems are more efficient if the suction volume is small. 

Trip testing at NTNU compressor rig 

Note that the above presented figures and results are based on the Troll-Kollsnes pipeline 

compressors. The equipment is located onshore, compressing treated natural gas at high volume 

flow and pressure ratio. The actual behavior of a given plant may vary considerably, especially for 

wet gas applications. Subsea applications may involve very different system layout. Still the data 

from Troll-Kollsnes provides general expected behavior in terms of polar inertia, piping volumes and 

surge protection systems. 
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The NTNU wet gas compressor rig operates with air and water at low pressure ratio. The facility does 

not include an anti-surge protective system. During this work, both dry and wet gas trip test has been 

performed from an operating point close to the surge line. The purpose was to investigate the 

tendency for the compressor to enter the surge area during wet gas operation. 
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2.5. Orifice plate 
Calculation of flow rate by measuring the differential pressure across a restriction is the most 

commonly used measurement technique in industrial applications (Crane Co. 2011). The calculations 

are based on Bernoulli’s principles, and their accuracy has been extensively documented over the 

years. 

 

Figure 2-12 - Orifice plate (Crane Co. 2011) 

The orifice plate consists of a thin plate with a concentric hole in the middle. The mass flow through 

the plate is given by (2-13) 
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The flow coefficient c is given by (2-14) 

                               (2-14) 
 

Y is the expansion factor given by (2-15) 

 
    

         

    
               

(2-15) 

 

The parameter ρ is the fluid density at the orifice inlet. dorifice is the diameter of the orifice inner hole. 

Δporifice is the differential pressure across the orifice plate and should not be confused with the non-

recoverable pressure loss. Sometimes referred to as constant pressure loss, it is the difference in 

static pressure before the impact of the pipe restriction and the section downstream the pipe where 

the static pressure recovery can be considered completed. 

The isentropic exponent k is defined in (2-2). The beta ratio β is defined as 
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dpipe is the pipe flow diameter at orifice location. A relation for the non-recoverable pressure loss 

(                 ) is necessary to model the orifice plate in the dynamic model. Such a relation is 

provided in (Urner 1997): 

 
                  

√        

√        
           

(2-17) 

 

More comprehensive relations exist to determine the mass flow rate through orifice plates based on 

differential pressure and inlet thermal properties. Many of these involve iterative algorithms. The 

accuracy of the above presented equations is considered to satisfy the exactness requirements for 

the current dynamic simulation application. 

  



23 

2.6. Energy balance for rotating parts 
The kinetic energy of rotating parts in a compressor and driver system is given by (2-18). 

 
               

 

 
    

(2-18) 

 

  is the total inertia of compressor, coupling and driver. ω is the angular velocity. 

The compressor and driver are assumed directly coupled without gearing. The energy balance 

becomes 
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Pdriver is the power delivered to the system. Pfluid is the power absorbed by the fluid. The rotational 

speed is given by (2-22) 

 
  

    

  
 

(2-22) 

 

The change in rotational speed is given by (2-23) 

 
 ̇  

                

   
  

  

   
   

(2-23) 

 

(2-24) gives the rotational speed of the compressor and driver system. This numerical relation has 

proven to be quite accurate for the compressor rig despite its simple nature. 

           ̇      (2-24) 
 

   is the calculation time step. 

The above presented procedure forms the basis for determining the rotational speed in HYSYS 

Dynamics. The relations are included in the compressor unit operator, and HYSYS will automatically 

calculate the unknown parameters depending on the input specifications. 

Through this work the compressor energy and speed calculations is performed externally in a 

spreadsheet in the dynamic model. This is done to ensure easy monitoring and access to all the 

variables during simulation. This will be documented in Section 4.3. 
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2.7. HYSYS Dynamics 
This section will present fundamental theory regarding HYSYS Dynamics general ability to perform 

wet gas compression calculations. The functionality of the specific model developed through this 

work is documented in Chapter 4. The following section should be considered introductory. For 

further reference consult (Owren 2013). 

HYSYS is a process simulation software made by Aspentech. HYSYS Dynamics is an operating mode 

integrated in the simulation tool. As HYSYS is used for stationary simulation cases, the dynamic mode 

allows non-steady state simulations. 

HYSYS Dynamics has been chosen as the dynamic simulation software for three main reasons: 

 HYSYS Dynamics system functionality was investigated in the project thesis, so its main 

principles of operation are known. 

 HYSYS Dynamics is intuitive and easy to use. 

 HYSYS is currently used extensively in the industry. The idea of easily converting existing 

steady state models into dynamic cases appears promising 

Conservation relationships 

The conservation relationships in HYSYS Dynamics are similar to steady state balances, except for an 

accumulation term. This term allows output to vary over time. Mass balance is given by the following 

relation: 

                              
                        
                          

(2-25) 

 

Similar for component balance, except that components can also be formed by reaction: 

                                    
                                    
                                      
                                              

(2-26) 

 

For the energy balance, additional two terms are added: 

                                      
                                       
                                         

                             
                                           
                                      

(2-27) 

 

Solution method 

HYSYS uses Implicit Euler Method to solve ordinary differential equations. Volume (pressure-flow), 

Energy and Composition relations are solved at different frequencies in order to save calculation 



25 

time. By default in HYSYS, the relations are solved every first, second and tenth time step 

respectively. The procedure can be altered by the user. 

Pressure Flow relations 

Pressure and flow in the flow sheet is mainly based on two basic equations: 

 Volume balance equations 

 Resistance equations 

For volume balance equations, the underlying principle is that the physical volume of the units does 

not change in time. The balance can be expressed as follows: 

                               
                            

                                  
                                    

   

(2-28) 

 

Resistance equations calculate flow rates based on pressure differences of the surrounding units. For 

a valve the resistance term can be based on flow coefficients. For a compressor the heat flow and 

work define the pressure flow relation. 

Lumped model 

Most unit operators in HYSYS use a lumped model. That is, the thermal and component 

concentration gradient in space is ignored. This enables use of ordinary differential equations to 

describe the process, saving calculation time compared to a distributed model. Columns and pipes 

are examples of unit operations in HYSYS which can include gradients in performance calculations. 

The compressor operator is lumped however. 

The lack of gradients in space implies that some physical phenomena cannot be modeled. Two areas 

of particular interest are: 

 Thermal non-equilibrium 

 Flow regimes 

Consequently, their influence on compressor performance will be neglected. This includes liquid film 

formation, droplet deposition and heat transfer. Compressor inlet flow regime is another variable 

which HYSYS does not include in its model.  

Compressor test results suggest that the inlet flow regime is not of vital importance for a wet gas 

compressor. The compressor inlet acts as mixer making internal flow of the compressor independent 

of inlet flow regime (Brenne, Bjørge et al. 2005) 

Polytropic calculations 

In HYSYS the compressor operation uses work to increase pressure of an inlet gas stream. Steady 

state calculations on design point are based on either adiabatic (isentropic) or polytropic approach. 
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The system needs to be fully specified, but the user is free to choose input parameters. HYSYS will 

calculate the unknown values.  

In the user manuals Aspentech states that the general calculation procedure for polytropic head is 

based on ASME methods given by (Schultz 1962). Three different polytropic calculation methods for 

compressor head are available in HYSYS, see Figure 2-13 

 Schultz 

 Huntington 

 Reference 

However, the polytropic method selection is not covered in the user manuals, and it is not obvious 

how the Huntington and Reference method are implemented. The only information from Aspentech 

regarding the two polytropic methods is given in (Aspen Engineering 2009). In this text, the reader is 

referred to (Huntington 1985) for approaches of the polytropic head calculations. It is stated that the 

Huntington method and Reference method is only supported in steady state mode, and for the 

latter, a constant value for the polytropic efficiency has to be provided. 

 

Figure 2-13 - Polytropic method selection in HYSYS 

Nøvik evaluated the Reference method in his master thesis (Nøvik 2013). Due to the lack of insight in 

HYSYS calculation procedures he was not able to conclude how HYSYS had implemented the method 

in the software. A comparison between Schultz (HYSYS), Reference (HYSYS) and his self-developed 

direct integration model, strongly suggested that HYSYS has not implemented the method according 

to referred literature. Uncertainty about calculation procedures is a major drawback when using a 

simulation tool. Very small deviations in discharge temperature may provide large impact on 

calculated efficiencies. 

For wet gas compression a calculation procedure utilizing a «direct integration» method is clearly 

favorable (Hundseid, Bakken et al. 2006). Unlike Schultz procedure, the Reference method allows 

thermodynamic and fluid properties to be updated along the compression path. In this way, heat and 

mass transfer effects can be included in compressor performance analysis. 

However, in dynamic mode only Schultz procedure can be chosen, and the reliability of the 

Reference method has been questioned. It is not known whether these problems are solved in HYSYS 

Dynamics version 8. 

Compressor performance 

For off design calculations, performance of the compressor cannot be set to a constant value. Instead 

speed curves should be used. With speed curves specified, the adiabatic or polytropic head and 

efficiency are fixed for a given rotational speed and volume flow. HYSYS can interpolate and 
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extrapolate the values of the compressor characteristics if the operating point does not match the 

provided curves. 

Compressor internal geometry is not a part of HYSYS Dynamics functionality. The consequence is that 

HYSYS Dynamics has no means to evaluate change in compressor map due to change in operating 

conditions. However, in the option «curve input parameter» the user can choose between different 

methods to specify variation in compressor characteristics. 

 

Figure 2-14 - Curve Input Option in HYSYS 

The multiple IGV option allows the user to enter different collection of compressor curves for various 

IGV positions. Although designed for a variable inlet guide vane (IGV) feature, this option gives the 

user freedom to control the curve selection according to own preferences. The curve selection is 

based on a current IGV-position which is specified by the user. If the user has information about 

compressor performance which is not covered by HYSYS Dynamics calculation procedure, the 

multiple IGV option allows implementation of such effects in the compressor curves. 

The multiple IGV feature is of special interest as it can be used to correct for wet gas performance 

effects. By inserting a curve collection for different GMF labeled to different IGV-positions, a 

controller can be used to choose the appropriate set of curves. However, this solution is based on the 

assumption that wet gas impact on compressor characteristics is solely a function of GMF. Challenges 

arise due to the fact that wet gas compressor performance also depends on suction pressure and 

fluid characteristics as discussed by (Brenne, Bjørge et al. 2005, Brenne, Bjørge et al. 2008, Hundseid, 

Bakken et al. 2008) 

An alternative strategy for compressor curve implementation in HYSYS is to import compressor 

curves from a spreadsheet operator. This feature provides large flexibility in terms of customizing the 

curves to the respective operating conditions. While the multiple IGV option allows the user to insert 

known compressor characteristics corresponding to any given scenario, the use of spreadsheet 

allows continuous modification of the compressor curves. By the use of correction methods, wet gas 

compressor maps for any given conditions may automatically be generated from dry gas curves. 

The use of compressor curves in dynamic mode is made difficult by a restriction in HYSYS Dynamic 

mode: The program does not allow changes to be made in the compressor curves while the simulator 

is running. In other words, the compressor map cannot continuously be changed to match variation 

in operating conditions. In his master thesis, Aguilera solved this problem by using excel and a Visual 

Basics Application code to automatize the procedure of correcting and activating the compressor 

curves. For further reading, consult (Aguilera 2013). 
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Single fluid model 

The compressor operation in HYSYS uses a single fluid model to model compressor performance. The 

model calculates polytropic head and exponent based on averaged specific volumes: 
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(2-30) 

 

The specific volume is based on homogeneous flow: 

 
    

 

                 
 

(2-31) 

 

f is the polytropic head factor. It ensures that the calculated polytropic head is identical to the 

enthalpy difference for an isentropic compression: 
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(2-32) 

 

The single fluid model assumes multiphase flow to behave as a single phase. An alternative 

polytropic performance model is the two phase model, which calculates the contribution to the 

polytropic head separately for the two phases. This model is not included in the compressor 

operation in HYSYS. 
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Where fluid quality and polytropic exponent is defined as follows: 
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(2-35) 

 

For a typical compression path, phase change is partly taken into account by the reduction in 

discharge temperature due to the liquid phase. A reduced temperature implies a lower specific 
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volume, which affects the polytropic exponent. However, in the two phase model it is possible to 

include phase exchange as a separate term: 

                                (2-36) 

 

Test results from K-lab suggest that the calculated difference between the single fluid model and two 

phase model is insignificant (Brenne, Bjørge et al. 2005, Hundseid, Bakken et al. 2008). These tests 

were performed at low pressure ratios, with a two phase fluid consisting of sales gas and stabilized 

condensate. The content of propane and butane was low compared to unprocessed hydrocarbons. 

Due to the low pressure rise and fluid composition, any impact from phase exchange was neglected 

for both tests. 

A subsea compressor will typically be required to operate with wet gas at higher pressure ratios, 

quite different from conditions tested on K-lab. For such applications, contribution from phase 

transition cannot be neglected, and the single phase model may not be a good approximation. For 

correct prediction of compressor performance, a model which explicitly includes phase exchange will 

most likely be necessary. 

All testing through this work is performed with very low pressure ratios. The single fluid model is 

considered to satisfy the accuracy requirements. 
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3. NTNU wet gas test facility 

3.1. Introduction 
This chapter presents the wet gas compressor test facility at NTNU. The first section describes the 

main layout and dimensions of the system. The next section presents the sensors which are used for 

performance documentation through this work. A process flow diagram with all sensors indicated is 

provided at the end. 

3.2. Main layout 
The NTNU wet gas compressor test facility is located in the basement floor of Varmeteknisk 

laboratory in Trondheim. The rig consists of a single stage centrifugal compressor, working with 

atmospheric air and water in an open-loop layout. 

Air at atmospheric conditions is sucked into a steel pipe of 250 mm inner diameter. Temperature, 

pressure and relative humidity is measured in close proximity to the inlet. A bell mouth of 500 mm 

diameter is mounted at the pipe entrance to obtain stable flow. Figure 3-1 shows the air intake 

section with the bell mouth and the ambient pressure, temperature and relative humidity sensors 

hanging to the left. 

 

Figure 3-1 - The air intake section 

The volumetric flow rate is measured with an orifice plate 5000 mm downstream the air intake. The 

beta value of the plate is 0.64. A differential pressure meter is installed over the orifice plate, which 

also supplies the static pressure at the orifice inlet. A temperature sensor is installed 690 mm 

upstream the orifice. 

The water injection module is positioned 1150 mm downstream the orifice section. The injection 

module consists of 16 circularly mounted nozzles. Each nozzle has a manually operated valve. The 

water is fed from a large tank with a variable speed water pump. A volumetric flow meter and a 

manually operated valve are mounted on the water pipe. Figure 3-2 shows the orifice plate to the 

left and the injection module with the nozzles to the right. The water is entering the system via the 

water flow meter at the top. 



32 

 

Figure 3-2 - Orifice plate and injection module 

A rigid frame holds the compressor block, coupling and electric motor. Power is supplied from a 

variable speed drive, and is capable of delivering 450 kW at 11 000 rpm. A torque transducer is 

mounted on the coupling to the compressor block. The test facility is designed to handle different 

impeller geometries and diffuser widths. 

The impeller has a direct axial inlet. No instrumentation is installed between the injection module 

and the compressor inlet. Plexiglas configuration at the compressor inlet and on sections on the 

compressor block itself enables visual inspection of flow pattern at inlet and through the impeller. A 

detailed picture of the multiphase flow can be obtained by the use of stroboscopic lamps during wet 

gas testing. 
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Figure 3-3 - The manually operated discharge valve 

A 200 mm inner diameter steel pipe is connected to the radial compressor discharge. Pressure and 

temperature sensors are mounted on the pipe. The flow rate is controlled by a manually operated 

discharge valve 2270 mm downstream the compressor, shown in Figure 3-3. Water can be injected to 

the flow after the valve to reduce the exit temperature and hence limit the rise in room temperature 

during dry gas testing. The flow terminates in two atmospheric tanks where the liquid water is 

drained and the air re-enters the ambient. 
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3.3. Sensors 
Existing sensors of the lab facility 

The logging system of the compressor test facility is set up with 47 different channels. 19 of these 

sensors are being used through this work, presented in Table 3-1. All other sensors mounted on the 

test rig will not be further described. 

Sensor label Sensor name Unit Sensor description 

ST-1.1 Compressor speed rpm  

PT-3.1 dP Orifice mbar The differential pressure over the orifice plate 

PT-1.1 IM Pressure mbar Pressure at injection module inlet.  

TT-5.1 Orifice inlet temperature C Temperature at orifice inlet 

PT-3.3 Orifice inlet pressure mbar Pressure at orifice inlet 

PT-3.5 Discharge pressure mbar Pressure at compressor discharge 

FT-1.5 Water flow rate l/s  

XT-3.1P Ambient pressure Pa Measured at bell mouth 

XT-3.1T Ambient temperature C Measured at bell mouth 

XT-3.1R Relative humidity % Measured at bell mouth 

TT-500.16 to 19 Inlet temperature C Temperature at injection module inlet 

TT-500.20 to 23 Discharge temperature C Temperature at discharge pipe 

TT-500.24 Water temperature C Temperature at upstream injection module 
Table 3-1 - List of sensors used for evaluation of experimental compressor rig 

Note that the inlet temperature and discharge temperature are average readings from four different 

inlet temperature sensors and four different discharge temperature sensors. 

A process flow diagram with the sensors and main equipment indicated is provided in Figure 3-4. 

Senor measurements are stored as TDMS-files in the lab control system. The files can be opened in 

MS Excel. The sampling time interval can be set by the user. During steady state testing for 

development of compressor curves the logging frequency was set to 2 Hz. During transient 

operation, the logging interval was set to 1000 Hz. 

Sensor functionality for dynamic analysis 

Strict sensor requirements are necessary in order to perform accurate dynamic analysis. Fast sensor 

response is the key feature of dynamic measuring equipment. The current temperature sensors of 

the lab are able to perform very accurate readings, but the response time is very slow. This makes 

the discharge temperature sensors unable to represent the compressor behavior during trip. The 

inlet temperature does not change dramatically, for which reason the readings are still considered 

acceptable. The discharge pressure sensors are satisfying in terms of response time. 

Challenges related to accurate measurements for the specific trip tests results are documented in 

Section 5.5. 

Lab facility control system 

It should be noted that the calculation procedures of the compressor facility control system in some 

instances differs from relations used in this work. This is most evident for compressor rotational 

speed and GMF-values during wet gas testing. When the compressor speed is set to 11 000 rpm in 
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the control system, the real speed is typically between 10 840 rpm and 10 900 rpm.  Similarly for 

GMF the calculation procedures used in the HYSYS models will predict a GMF value slightly lower 

compared to the value entered into the control system. This is due to the evaporation of liquid water 

into the non-saturated air which is taken into account in the model but not in the lab control system. 

All results, calculations and discussions through this work are based on the actual sensor readings 

processed by the steady state HYSYS model of the compressor rig. The control system of the lab 

facility is only used for control purposes. 
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Figure 3-4 - Process flow diagram of the compressor test facility 
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4. HYSYS and HYSYS Dynamics 

4.1. Introduction 
The simulation software HYSYS including the dynamic simulation package HYSYS Dynamics has been 

the key tool for evaluation and prediction of both steady state and dynamic compressor behavior 

through this work. Two models have been developed to represent the wet gas test facility at NTNU: 

 Steady state model for evaluation of test data 

 Dynamic model for prediction of transient behavior 

Even though the respective flow sheet of each model appears quite similar, the two models are 

based on very different approaches to determine the physical properties. Great care should be taken 

to understand how the two models calculate pressure, flow and temperatures for the unit operators. 

The next two sections describe the steady state model and the dynamic model respectively. 

Section 4.4 presents the compressor characteristics developed from steady state testing in the 

compressor lab facility. 

It was necessary to tune the dynamic model in order to accurately predict the pressure loss over the 

orifice plate. The calculations and modified orifice relations are presented in Section 4.5. 

Section 4.6 documents challenges related to stability of the HYSYS Dynamics simulation tool. 

Problems related to software functionality during of wet gas compression simulations have been a 

major challenge through this work. 

The last section of the chapter documents the shortcomings of the dynamic model. 
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4.2. HYSYS Steady state model 
Introduction 

Test data from the compressor lab at NTNU are mainly extracted as pressure and temperature 

readings from the instrumentation sensors presented in Table 3-1. In order to evaluate the results in 

terms of polytropic head, suction flow rate and polytropic efficiency, the data must be analyzed 

according to compression theory. The HYSYS steady state model is used for this purpose.  

Through this work, the model was first used to develop compressor characteristics which were then 

used as specifications for the compressor unit in the dynamic model. Later the steady state model 

was used to evaluate data from the transient tests performed in the lab. 

Model layout 

Appendix A shows the layout of the steady state model. It consists of three main parts from left to 

right: 

 Inlet section 

 Orifice section 

 Injection module and compressor section 

The following text describes each section in detail. 

Inlet section 

 

Figure 4-1 - Inlet section of the steady state model 

The inlet section (Figure 4-1) consists of three units: 

 Input spreadsheet operator 

 Ambient air stream 

 Sat air stream 
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All input parameters to the model are specified in the input spreadsheet operator. The values 

inserted in the cells are the only parameters that change during testing in the lab. All other 

parameters used in the model are related to facility geometries or fixed relations that do not change 

with operating conditions. 

 

Figure 4-2 - Input spreadsheet operator 

Figure 4-2 shows the input spreadsheet operator. The input variables are specified in column C in the 

same order as they appear in the TDMS-test results file. Each value in column C is exported to one or 

multiple unit operators or streams in the flow sheet. By inserting values in the 13 cells in column C, 

an operating point is fully specified. 

The stream Ambient air represents the intake air to the compressor rig. The pressure and 

temperature is defined by XT-3.1P (ambient pressure) and XT-3.1T (ambient temperature) 

Relative humidity for air is not a specification which directly can be used as an input parameter in 

HYSYS. The unit «saturate with water» in the custom ribbon can be used for this purpose. It is 

however chosen to explicitly perform the relative humidity calculations in the input spreadsheet in 

order to obtain a simple and transparent model. An imaginary stream called Sat air is established as 

an aid to determine the relative humidity of the Ambient air. The pressure and temperature of the 

Sat air stream is defined by XT-3.1T (ambient temperature) and XT-3.1P (ambient pressure). The 

composition is set to 50% mole fraction water and 50% mole fraction air. This is done to ensure that 

the vapor phase of the Sat air stream will be saturated with water. The water mole fraction of the 

vapor phase is multiplied with the relative humidity from XT-3.1R (Relative humidity) and exported to 

the stream Ambient air. The corresponding mole fraction of air is set to unity minus the mole fraction 

of water. The composition of Ambient air is now specified. 
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Orifice section 

 

Figure 4-3 - Orifice section of the steady state model 

The orifice section (Figure 4-3) consists of four units: 

 Orifice spreadsheet operator 

 Orifice inlet stream 

 Orifice valve operator 

 Orifice discharge stream 

The Orifice inlet stream composition is identical to the one of Ambient air. The pressure and 

temperature are defined by PT-3.3 (Orifice inlet pressure) and TT-5.1 (Orifice inlet temperature) 

 

Figure 4-4 - Orifice spreadsheet operator of the steady state model 

The main objective of the orifice spreadsheet operator (Figure 4-4) is to calculate the mass flow of 

air. The calculations are based on the differential pressure of the orifice plate (PT-3.1) and 

thermodynamic properties of the orifice inlet stream according to equation (2-13) to (2-16). 
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It should be noted that the mass flow of air is based on experimental readings of the PT-3.1 (dP 

Orifice) and that the valve pressure drop is specified by the upstream and downstream pressure 

readings of sensor PT-3.3 (Orifice inlet) and PT-1.1 (IM-inlet) The relations for orifice recovery 

pressure drop as of (2-17) along with built-in relations for temperature change through the valve 

provides no impact on steady state model performance. 

Injection module and compressor section 

 

Figure 4-5 - Injection module and compressor section of the steady state model 

The injection module and compressor section (Figure 4-5) calculates the main performance 

parameters in the steady state model. It consists of the following streams and operators: 

 IM-inlet stream 

 Water stream 

 Injection module mixer 

 Compressor inlet stream 

 K-Compressor operator 

 Compressor discharge stream 

 Q-Compressor energy stream 

 GMF spreadsheet  

 Calculations spreadsheet 

The pressure and temperature of the IM-inlet stream are defined by PT-1.1 (IM pressure) and TT-

500.16-19 (Inlet temperature). The molar composition is imported from the Ambient air stream. The 

mass flow is imported from the Orifice inlet stream. 

The temperature and flow rate of the Water stream are defined from TT-500.24 (Water 

temperature) and FT-1.5 (Water flow rate). At the test facility, the water is injected into the air 

through nozzles in the injection module. This is modeled by setting the water pressure equal to the 

IM-inlet pressure (PT-1.1) at all times, disregarding the velocity of the water flow. 
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The IM-inlet and Water streams are mixed in the Injection module mixer unit, which outlet is the 

Compressor inlet stream. Due to the lack of sensors between the Injection module and impeller inlet 

in the lab, the module is assumed to be without pressure loss or heat loss. The pressure of the 

Compressor inlet stream is hence equal to the IM-inlet stream. The temperature is calculated by 

HYSYS as an energy balance in the mixer, assuming equilibrium at the outlet. 

The assumption of equilibrium at the outlet is mandatory when simulating in HYSYS as most of the 

units, including compressor operator, is not designed to handle non-equilibrium flow. It is outside the 

scope of this Master thesis to determine the accuracy of this assumption. It should be observed 

however that the predicted inlet temperature is dramatically changed through mixing of non-

saturated air and water. This is also true for the values of relative humidity, temperatures and flow 

rates experienced in the lab facility. It is further assumed thermal equilibrium at compressor 

discharge, a statement which experience from literature suggests being incorrect (Hundseid and 

Bakken 2006). 

 

Figure 4-6 - GMF spreadsheet operator of the steady state model 

The GMF spreadsheet operator (Figure 4-6) calculates the actual GMF and GVF of the compressor 

inlet stream. Due to evaporation of liquid water to the non-saturated ambient air in the mixer, the 

GMF and GVF have to be calculated based on stream properties downstream the injection module. 

The GMF and GVF are explicitly included as a stream property in HYSYS under the name Phase 

Fraction [Mass Basis] and Phase Fraction [Act. Vol. Basis] respectively. Calculation of GMF and GVF in 

the spreadsheet operator is thus redundant in the steady state model. However, in the dynamic 

model the GMF is exported to the compressor control system as an input parameter, for which a 

spreadsheet operator is necessary. 

The pressure and temperature of the compressor discharge stream is defined by PT-3.5 (Discharge 

pressure) and TT.500.20-23 (Discharge temperature). The mass flow rate and composition is equal to 

the compressor inlet which is defined by the injection module mixer operator. 

Because pressure and temperature is specified both upstream and downstream the compressor 

operator, its only purpose is to calculate polytropic head and efficiency. The reader should take great 

care to understand that the compressor calculates polytropic head and efficiency based on 

surrounding stream conditions as opposed to the dynamic model where downstream properties are 

determined based on compressor characteristics. 
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Figure 4-7 - Calculations spreadsheet operator of the steady state model 

The Calculations spreadsheet operator (Figure 4-7) includes all the output parameters. The volume 

flow, polytropic head and polytropic efficiency are imported from the compressor unit operator. The 

GMF is imported from the GMF spreadsheet operator, while the compressor speed is imported 

directly from the input compressor spreadsheet. The calculations spreadsheet operator thus contains 

all the variables necessary to construct compressor characteristics in terms of compressor speed and 

GMF. 

Simulation workbook 

The steady state model was used to analyze data from trip scenarios performed in the test facility. In 

order to obtain detailed knowledge of the transient behavior of the system, it is necessary to 

perform polytropic calculations for thousands of time steps during the run down of the impeller. It 

would not be possible to manually insert the sensor readings into the input spreadsheet operator, 

activate the software, and export the polytropic calculations for each operational point of the 

transient scenario. During this work, Aspen Simulation Workbook was used to obtain an automatic 

analysis of test data from the lab facility. 

Aspen Simulation Workbook is a tool which connects a HYSYS model to a Microsoft Excel 

spreadsheet. It exports values from an excel spreadsheet to stream or unit properties in the HYSYS 

flow sheet, runs the simulation, and exports the output variables back to the spreadsheet. Once 

initiated, it allows large amount of operational points to be calculated without the user interfering 

with the HYSYS interface at all. 

In this work, the polytropic head and efficiency, volume flow and GMF was automatically calculated 

directly from the data files of sensor readings exported from the lab facility. 
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4.3. HYSYS Dynamics model 
Introduction 

This section describes the dynamic model developed in HYSYS Dynamics. The description loosely 

follows the flow sheet along the path of flow from left to right. The model is however rather 

complicated in terms of control, and multiple cross references are required to understand the 

architecture. This is especially true for mass flow calculation and orifice pressure drop. 

Model background 

In order to predict transient compressor behavior, a dynamic model was developed in HYSYS 

Dynamics. The model is based on the steady state model described in Section 4.2. The user interfaces 

of the models are similar, but it should be emphasized that the calculation procedures for which the 

thermal properties are determined differs significantly. 

Figure 4-8 shows the layout of the dynamic model. It consists of two main parts from left to right: 

 Inlet section 

 Main section 

Inlet section 

The inlet section of the dynamic model is similar to the steady state model. Its purpose is to import 

values to define the system, and to calculate the composition of the inlet air in terms of relative 

humidity. It consists of three units: 

 Input spreadsheet operator 

 Sat air stream 

 Ambient inlet air stream 

The input spreadsheet operator includes all sensor readings presented in Table 3-1 in the same order 

as for the steady state model. This is convenient as it enables the same set of readings to be used in 

both models. Table 4-1 presents the application for each variable in the dynamic model. Four of the 

variables are not utilized. This is related to the architecture of the model which does not define 

stream properties beyond the boundary conditions. The pressure and flow of the internal streams 

are defined by unit operators in the flow sheet. 
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Figure 4-8 - Layout of HYSYS Dynamic model 
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Sensor ID Sensor name Used for 

ST-1.1 Compressor speed Control of IC-VSD  

PT-3.1 dP Orifice Control of IC-Flow controller 

PT-1.1 IM pressure Not used 

TT-5.1 Orifice inlet 
temperature 

Boundary condition 

PT-3.3 Orifice inlet pressure Boundary condition 

PT-3.5 Discharge pressure Not used 

FT-1.5 Water flow rate Boundary condition 

XT-3.1P Ambient pressure Boundary condition 
Composition of orifice inlet stream 

XT-3.1T Ambient temperature Boundary condition 
Composition of orifice inlet stream 

XT-3.1R Relative humidity Boundary condition 
Composition of orifice inlet stream 

TT-500.16-
19 

Inlet temperature Not used 

TT-500.20-
23 

Discharge 
temperature 

Not used 

TT-500.24 Water temperature Boundary condition 
Table 4-1 - Input parameters for the dynamic model 

An Ambient air stream and a Sat air stream are included in order to determine the inlet air 

composition based on reading for relative humidity. The set-up is identical to the steady state model, 

and the reader is referred to Section 4.2 for further information. 

Dynamic specifications and boundary conditions  

A list of the dynamic specification and boundary conditions for the main section is given in Table 4-2. 

Pressure is used as the dynamic specification for the inlet and discharge air. The work done by the 

compressor provides the flow, which is limited by the resistance in the orifice plate and discharge 

valve. The water stream is specified in terms of mass flow rate in the dynamic model, defined by the 

sensor reading of FT-5.1 (Water flow rate). In reality the water flow rate is controlled by the water 

pump speed and nozzle position of the injection module in the lab.  

The general strategy for the model development was to build the model as simple as possible. For 

this reason the system boundary of the inlet air is set to the orifice inlet. This is done to eliminate the 

potential source of error by modelling the initial pipe section. Experience has shown non-consistency 

between the ambient and orifice inlet pressure and temperature readings. 
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Name Type Dynamic 
specification 

Other 
specifications 

Comment 

Orifice inlet Stream Pressure Temperature 
Composition 

- 

VLV-orifice Valve Delta P - Pressure loss calculated in 
SPRDSHT-Orifice 

Water Stream Mass flow Temperature 
Composition 

Temperature and composition 
specified as input parameters 

MIX-Injection 
module 

Mixer Equalize 
pressure 

- - 

K-compressor Compressor Speed Compressor 
characteristics 

Speed calculated in SPRDSHT-
Motor 

VLV-Discharge 
valve 

Valve Pressure flow 
relation 

- Valve opening controlled by IC-
flow controller 

Ambient 
discharge air 

Stream Pressure - The air flow downstream the 
discharge valve. Pressure set 
equal to ambient (XT.3.1P) 

Table 4-2 - Boundary conditions and dynamic specifications for the dynamic model 

Orifice plate  

A spreadsheet operator and a valve unit are used to predict the pressure drop over the orifice plate 

in the dynamic model. 

The orifice inlet pressure and temperature are defined by sensor PT-3.3 (Orifice inlet pressure) and 

TT-5.1 (Orifice inlet temperature). The composition of the stream is set identical to the Ambient air 

stream similar to the steady state model. Note that the Orifice inlet stream is the system boundary of 

the main section. 

The SPRDSHT-Orifice operator calculates the differential pressure across the orifice valve based on 

the mass flow according to equation (2-13). The recovery pressure drop is calculated according to 

(2-17) but the relation is modified to match experimental data as will be shown in Section 4.5. The 

pressure drop is exported to the VLV-orifice valve as a pressure drop specification. Note that the 

pressure and temperature of the IM-inlet stream is defined by the pressure and temperature change 

in the valve, not readings from sensor PT.1.1 (IM pressure) and TT-500.16-19 (Inlet temperature) as 

for the steady state model. Also note that the differential pressure readings across the orifice plate 

(PT-3.1) is not used for the orifice calculations. Unlike the steady state model, the differential 

pressure is calculated based on mass flow through the orifice. The differential pressure reading is 

however used as a set point for the flow controller as will be shown later. 
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Figure 4-9 - Process flow diagram showing differences in mass flow and pressure drop calculation. 

Figure 4-9 shows a simple process flow diagram which visualizes the fundamental difference of mass 

flow and pressure drop calculations between the steady state model and the dynamic model. 

Injection module 

The injection module is modelled with a mixer. The mixer equalizes the pressures of the inlet and 

outlet, and is simplified to be without pressure drop. The outlet temperature is calculated by HYSYS 

as an energy balance in the mixer, assuming thermal equilibrium of the Compressor inlet. 

The temperature of the water stream is defined by sensor TT-500.24 (Water temperature). The flow 

rate of water is used as a boundary condition defined by FT-1.5 (water flow rate). The pressure is not 

specified in order to obtain the correct degree of freedom. 

The SPRDSHT-GMF spreadsheet operator calculates the actual GMF of the compressor inlet stream. 

The unit is similar to the GMF spreadsheet of the steady state model. The calculated GMF value is 

exported as a specification to the compressor operator. 

Compressor 

The compressor is modelled with four main operators: 

 K-Compressor operator 

 SPRDSHT-Motor spreadsheet 

 SPRDSHT-Speed Transfer spreadsheets 

 IC-VSD controller 

The SPRDSHT-Motor spreadsheet is shown in Figure 4-10. The spreadsheet calculates the difference 

between the available power and the shaft power, and determines a new compressor speed 
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according to (2-23) and (2-24) of Section 2.6. The new speed is temporarily stored in the SPRDSHT-

Speed transfer spreadsheet before it is exported to the compressor operator in the next time step. 

The SPRDSHT-Motor spreadsheet is based on an existing model of the NTNU lab facility received 

from co-supervisor H. Nordhus at Statoil. 

The IC-VSD controller is used to adjust the available power such that the compressor speed reaches a 

desired set point. The current model assumes the compressor block to be adiabatic, but it is possible 

to insert relations for heat loss to the surroundings. A compressor trip can be activated by setting the 

value of cell B3 (trip) to zero. The available power will be set to zero, and the calculated compressor 

speed will be reduced as a function of shaft power and inertia. 

 

Figure 4-10- Motor spreadsheet of the dynamic model 

The compressor operator is specified in terms of compressor curves. Each curve is labeled with 

compressor speed and IGV-position. The latter is a number between 0.7 and 1.0 and represents the 

GMF of the compressor inlet stream. The compressor speed is imported from the SPRDSHT-Speed 

transfer spreadsheet and the IGV-position is imported from the SPRDSHT-GMF spreadsheet. By 

evaluating the current inlet and discharge pressure, the suction volumetric flow through the 

compressor is given by the curves. Figure 4-11 shows the rating tab of the compressor operator. The 

curves are sorted into curve collections for three different GMF values. Each collection contains 

curves for different rotational speeds. The compressor operator automatically interpolates between 

different speed and GMF-values.  
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Figure 4-11 - Compressor operator rating tab of the dynamic model 

Discharge valve 

The discharge valve is modelled with a valve operator and a flow controller. The flow controller 

represents the manual adjustment of the discharge valve position performed by the operator in the 

lab. When the discharge valve position is altered, the mass flow rate will be changed by the pressure-

flow relations in the flow sheet. Any change in mass flow will also affect the orifice differential 

pressure and consequently the non-recoverable pressure loss of the orifice plate. 

 

Figure 4-12 - Process flow diagram showing mass flow and pressure drop calculation of the dynamic model 

The IC-flow controller is used to achieve a specific differential pressure over the orifice plate. By 

adjusting the pressure drop in the discharge valve, the mass flow of the dynamic model will be 

identical to test data. When activated, the IC-Flow controller adjusts the discharge valve position 

until the calculated orifice differential pressure in the SPRDSHT-Orifice reaches the set point defined 
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by the PT-3.1 (dP Orifice) in the SPRDSHT-Input. When the desired operational point is achieved, the 

flow controller is deactivated. Figure 4-12 indicates the principal calculation procedure of mass flow 

and pressure drop when the IC-Flow controller is activated. 
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4.4. Compressor characteristics 
Introduction 

The dynamic model requires actual compressor characteristics to predict performance. These curves 

were developed based from testing in the current lab facility. The test results were evaluated with 

the steady state model. Complete test data is provided in Appendix B. 

Polytropic head 

 

Figure 4-13 - Polytropic head of test points and fitted curve 

Figure 4-13 shows the polytropic head for different volume flows and GMF at 11 000 rpm. The 

triangles represent test points performed in the lab. The solid lines are curve fits of the test points. 

Appendix B includes the curve-fit polynomials. Affinity laws are assumed to be valid also for wet gas 

compression, and were used to evaluate performance at other rotational speeds. 

Wet gas compressor performance is severely affected by the liquid phase. Evaporative heating and 

cooling, heat transfer, liquid entrainment and deposition and film formation may significantly alter 

the compressor performance. Any change in these wet gas effect are not taken into consideration 

when using affinity laws to predict performance at other rotational speeds. 

The accuracy of affinity laws for wet gas compression is not further investigated. Development of 

compressor characteristics based on lab facility testing at other rotational speeds is recommended as 

further work. 

  



55 

Polytropic efficiency 

 

Figure 4-14 - Polytropic efficiency of test points and fitted curve 

Figure 4-14 shows the polytropic efficiency for different volume flows and GMF at 11 000 rpm. 

Affinity laws were used to evaluate performance at other rotational speeds. The triangles represent 

test points performed in the lab. The solid lines are curve fits of the test points. 

Deviation between test points and fitted curve 

The operational points are fitted to a polynomial of second order. The largest deviation of the fitted 

curves is located at 1.12m3/s and GMF 0.8. The deviation is shown in Table 4-3. The curve fitting will 

reduce the accuracy of the dynamic model. A deviation up to 3% for the polytropic head is very 

unfavorable in terms of overall accuracy. 

 Test point Curve fit Deviation 

Volume flow 1.12[m3/s] 1.12 [m3/s] - 

GMF 0.8 [-] 0.8 [-] - 

Polytropic head 2049.28 [m] 2110.78 [m] 3.0% 

Polytropic efficiency 52.57% 54.50% 3.7% 
Table 4-3 - Deviation of curve fit at 1.12m

3
/s and GMF0.8 

Still it is preferable to convert the test point to a polynomial of second degree, as experience has 

shown instability challenges in HYSYS Dynamics when non-smooth curves are introduced into the 

compressor operator. The curve fitted polynomials are included in Appendix B. 
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4.5. Tuning of orifice non-recoverable pressure loss 
Introduction 

The non-recoverable pressure loss over the orifice plate needs to be predicted in order to model the 

compressor lab in HYSYS Dynamics. A relation was given in Equation (2-17). Early experience revealed 

this relation to be highly inaccurate for the current lab facility. Further investigation suggested the 

non-recoverable pressure loss and the differential pressure of the orifice plate to be proportional, as 

indicated by (2-17). The constant of proportionality could however not be determined from the 

equation.  

An experimental investigation was initiated to determine an appropriate relation non-recoverable 

pressure loss. 

Experimental data 

Six points of operation was investigated, shown in Table 4-4. The orifice differential pressure is the 

average sensor readings of PT-3.1 (dP Orifice) during steady state compressor operation. The non-

recoverable pressure loss is the average difference of sensor PT-3.3 (Orifice inlet pressure) and PT-

1.1 (IM-Pressure). 

 dp orifice [mbar] GMF [-] Non-recoverable pressure loss [mbar] 

Dry gas surge 32.2 1.00 27.0 

Dry gas BEP 95.2 1.00 69.3 

Dry gas open valve 184.1 1.00 130.8 

Wet gas surge 40.7 0.7990 30.5 

Wet gas BEP 100.2 0.7941 70.9 

Wet gas open valve 153.6 0.7958 107.1 
Table 4-4 - Test points for development of non-recoverable pressure loss in orifice plate 

The differential pressure of the orifice plate and the non-recoverable pressure loss is plotted in 

Figure 4-15. A curve fit through the test points was performed in Excel. The linear function is defined 

           (4-1) 
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Figure 4-15 - Non-recoverable pressure drop versus orifice differential pressure for a selection of test points 

Conclusion 

By using the experimental data, a new pressure loss relation for the orifice plate was determined. 

The new relation will be used in the orifice spreadsheet operator of the dynamic model to predict the 

non-recoverable pressure loss in the orifice valve. The relation is given as: 

                                 

 

(4-2) 

Equation (4-2) replaces Equation (2-17) from Section 2.5. 
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4.6. Instability challenges in HYSYS Dynamics 
Introduction 

During development of the dynamic model, severe challenges related to simulation stability in HYSYS 

Dynamics occurred. It has not succeeded to determine the exact cause and effect of the problems. 

The experienced instability is however limited to wet gas compression applications. 

This section will briefly present two representative scenarios where the system functionality of 

HYSYS Dynamics was severely challenged by unstable and random behavior. 

Great efforts have been made to identify and solve the functionality defects. HYSYS Dynamics is 

based on an intuitive and graphical interface. The software is easy to use, but user access to 

calculation procedures is limited. No similar challenges have been found in literature. 

Instable behavior during trip 

The main source of instability has proven to be the inclusion of volumes between the compressor 

unit and discharge valve. The actual compressor lab is equipped with 2420 mm piping of inner 

diameter 200 mm between the compressor block and the discharge valve. Attempts to include a 

representative volume into the model failed. All efforts to model piping geometry resulted in similar 

unstable behavior as indicated in Figure 4-16. Volumes have been tried represented both by pipe 

segments, gas pipe segments, tank operators and separator operators. 

The presence of sufficient small volumes does not seem to affect the calculation stability. As the 

volume is gradually increased it suddenly reaches a critical size and the simulation starts predicting 

very large fluctuations in pressure and volume flow. Figure 4-16 shows an example of the operational 

point oscillating beyond physical behavior during a trip test in the early stage development of the 

dynamic model. In this example a representative discharge volume is modelled. The red point shows 

the operating point. Its current location appears to be random, without any link to the previous time 

step at the bottom of the fluctuating run down characteristic. 
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Figure 4-16 - Instable behavior of HYSYS Dynamics during early stage model development 

It has failed to identify the cause of the instability. Experience suggests the challenges to increase as 

the downstream volume is increased and the compressor pressure ratio is reduced. Wet gas 

compression has proven more problematic compared to dry gas simulation. 

Similar unstable behavior has even occurred without any volume included in the model. This will be 

shown in the open valve wet gas trip simulations in Section 5.4. Regardless of great efforts, the 

simulation scenario has not been completed as seen in Figure 5-24. 

Mixing of non-saturated air and water 

Air with relative humidity less than 100% are mixed with water in the mixer-unit. Under certain 

circumstances the mixing led to severe instability in the compressor operator. Despite great effort is 

has not succeeded to identify the mechanisms which trigger the instability. Figure 4-17 shows such 

instable operation in a head-volume flow diagram. Note that both the head and volume flow 

alternates severely for each time step.  
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Figure 4-17 - Instability in HYSYS Dynamic during mixing of non-saturated air and water 

The dynamic model was not able to validate the wet gas performance at low volume flow. This was 

due to instabilities related to mixing of non-saturated air and water. As a consequence the current 

scenario had to be simulated with relative humidity of 100%, shown in Section 5.2. Note that the wet 

gas trip close to surge was successfully performed. The wet gas low volume flow validation was the 

only activity related to humidity-related instabilities presented in this work. 

Conclusion 

It has been shown that HYSYS Dynamics under certain circumstances predicts very unstable 

operation. The triggering mechanisms have not been identified. The unstable behavior is considered 

random and not related to actual behavior of the compression system. The most evident common 

factor of unstable prediction is associated with wet gas and low pressure ratio compression 

scenarios. 

Dry gas simulation scenarios are not subject for instabilities as described above. All instabilities are 

eliminated in simulation cases which do not include compressor units. 

  



61 

4.7. Shortcomings of HYSYS Dynamics model 
Introduction 

A number of simplifications are performed in order to obtain a simple and reliable dynamic model. 

The general strategy for the model development was to avoid complex modelling of phenomena that 

cannot be validated against test results for the current lab facility. The shortcomings considered to 

be most severe are presented in the text below. Model functionality is also addressed in Chapter 5 

during discussion of test results. 

This following text does only consider the main shortcomings of the current dynamic model. For 

further reference to the general system functionality of HYSYS dynamic, consult (Owren 2013). 

Piping 

The dynamic model does not include any pipe segments or other units which contain physical 

volume. This is chosen partly due to the instability challenges discussed in Section 4.6, but also to 

avoid complex system behavior which cannot be investigated with the current lab facility. 

Separator or tank unit operators can be used to simulate volumes in the simulation flow sheet. This is 

advantageous as it allows the effect of compressed gas to me modelled, but eliminates the need to 

perform complex and time consuming pipe-flow calculations. Experience revealed that these units 

also induced instable behavior of the system, and were hence omitted too. 

The lack of piping or similar equipment implies that some phenomena present in the actual lab 

facility will not be subject to evaluation in the dynamic model: 

Pressure loss 

The only units restricting flow in the dynamic model is the orifice plate and the discharge valve. 

Steady state pressure loss upstream the orifice plate is taken into account as the system boundary is 

specified in terms of orifice inlet pressure and temperature. Pressure loss in other piping and 

injection module is however omitted. 

For the current lab facility the pressure loss over the injection module is not known due to lack of 

pressure sensors. The same applies for the piping between the compressor outlet and discharge 

valve. Any known pressure drop relation could easily be modelled with a valve operator. 

Heat loss 

The dynamic model is entirely adiabatic. The real heat loss is considered insignificant due to the small 

temperature differences involved in the low pressure rate compression. 

Compressor surge 

Section 2.4 documents compressor trip behavior from literature. As seen in Figure 2-11 the 

compressor response of trip close to surge can strongly be influenced by the upstream and 

downstream volumes. These effects will unfortunately not be included in the dynamic model, even 

though they are expected to influence the transient response of the current compressor rig. 
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Boundary conditions 

The air intake side of the system is specified in terms of orifice inlet pressure and temperature. The 

composition is set on the basis of the ambient pressure, temperature and relative humidity. All these 

values are considered constant for each test scenario. Any actual change in inlet conditions during a 

trip test will not be evaluated in the dynamic model calculations. 

Experience from the lab reveals minor change in orifice inlet pressure and temperature during trip. 

The relative humidity has a tendency to vary quite a bit, especially during dry gas testing. For dry gas 

BEP trip the highest measured relative humidity was 46.0% while the lowest was 42.1% giving a 

variation of approximately 9%. These values were measured over a period of less than 18 seconds. 

Expansion factor of orifice calculations 

The dynamic model calculates the differential pressure of the orifice plate based on mass flow and 

the expansion factor Y as of (2-13) and (2-15). As the expansion factor is a function of the differential 

pressure, an iteration process is required to accurately determine the expansion factor with every 

change in differential pressure. This is however not feasible for a dynamic model where an iteration 

would create an artificial system response. For this reason the expansion factor is fixed to the initial 

steady state value prior to the trip. As the volume flow is reduced during trip, the actual increased 

value of the expansion factor is not taken into account in the dynamic model. 

Phase and thermal non-equilibrium 

The model uses the single fluid model for calculations. Phase and thermal equilibrium is assumed at 

all times in the flow sheet. Mixing of non-saturated air and water along with wet gas compression 

may be considered two area of application where assumption of thermal equilibrium is especially 

unfortunate. The compressor inlet temperature is strongly affected by the water evaporation rate in 

the mixer unit. The high heat capacity of the liquid water may create non-thermal equilibrium at the 

compressor discharge. 

The actual senor configuration of the compressor lab is however not capable of measuring non-

equilibrium temperatures. If the model were able to include non-equilibrium in its calculation, the 

results could still not be validated by the current lab facility. 

Conclusion 

The main shortcoming of the dynamic model is the lack of piping representation. Compared to the 

total system accuracy, the current shortcomings of the dynamic model are expected to be within 

acceptable limits. Deviation due to lack of model functionality will be addressed at appropriate 

sections during discussion of test results.  
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5. Results and discussion 

5.1. Introduction 
This chapter will present and discuss the results related to three different testing activities: 

 Validation of steady state performance of dynamic model 

 Dry and wet gas trip scenarios 

 Speed ramp-up tests 

The first activity is related to the establishment of a dynamic simulation model as of subtask one in 

the assignment text. 

The second activity validates dry and wet compressor behavior addressing the second subtask of the 

assignment text. Main challenges related to accurate transient measurements during trip testing are 

documented in Section 5.5. 

The last activity is a representative transient operating scenario related to subtask three of the 

assignment text. 

All testing presented in this chapter are both simulated in the dynamic model and performed in the 

compressor test facility.  
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5.2. Validation of steady state performance of dynamic model 
Introduction 

The dynamic model is designed to predict transient compressor behavior. The model should however 

calculate similar results as the steady state model during non-transient operation scenarios. A 

selection of six points from steady state operation in the wet gas test facility was evaluated with both 

models. The test points are presented in Table 5-1. All points are at 11 000 rpm. Complete results 

from the testing are provided in Appendix C. 

Test point name dP orifice [mbar] Water flow rate [l/s] 

Dry gas low volume flow 32.16 0.00 

Dry gas BEP 95.23 0.00 

Dry gas high volume flow 184.11 0.00 

Wet gas low volume flow 40.67 0.3185 

Wet gas BEP 100.17 0.5024 

Wet gas high volume flow 153.64 0.6037 
Table 5-1 - List of test points for steady state validation of dynamic model 

Testing procedure 

The test points are a selection of the operational points used for compressor curves development in 

Section 4.4. The wet gas test data consist of steady state sampling at two Hz for five minutes or 

more. The dry gas test data consist of approximately two minutes of steady state testing sampled at 

20 000 Hz. All sensor readings are averaged for each operational point and inserted into the dynamic 

model. The flow controller is used to adjust the discharge valve such that the calculated orifice 

differential pressure becomes identical to the measured value in the lab. After steady state occurs, 

the results are extracted from the calculations spreadsheet. 

When analyzing the complete results in Appendix C please refer to Table 4-1. The sensors market 

«boundary conditions» contain identical values for the steady state and dynamic model. The «not 

used» values are calculated by HYSYS Dynamics and are subject to comparison between the steady 

state and dynamic model. 

Dry gas performance 

The dry gas steady state performance of the dynamic model is presented in Table 5-2, Table 5-3 and 

Table 5-4. The boundary conditions of the dynamic model are defined identical to the steady state 

model implying no deviation in inlet conditions or compressor speed. 

 Steady state model Dynamic model Deviation [%] 

GMF [-] 1.000 1.000 0.00% 

Volume flow [m3/s] 1.003 1.000 -0.32% 

Polytropic head [m] 2807 2788 -0.68% 

Polytropic efficiency [%] 76.77 76.47 -0.39% 
Table 5-2 - Steady state validation of dry gas low volume flow 
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 Steady state model Dynamic model Deviation [%] 

GMF [-] 1.000 1.000 0.00% 

Volume flow [m3/s] 1.773 1.777 0.19% 

Polytropic head [m] 2653 2654 0.03% 

Polytropic efficiency [%] 85.59 85.32 -0.31% 
Table 5-3 - Steady state validation of dry gas BEP 

 

 Steady state model Dynamic model Deviation [%] 

GMF [-] 1.000 1.000 0.00% 

Volume flow [m3/s] 2.565 2.577 0.49% 

Polytropic head [m] 1837 1833 -0.19% 

Polytropic efficiency [%] 72.48 72.83 0.48% 
Table 5-4 - Steady state validation of dry gas high volume flow 

Orifice differential pressure 

The dynamic model is able to adjust the discharge valve such that the orifice differential pressure in 

the dynamic model is equal to the corresponding sensor reading in lab. An equal orifice differential 

pressure entails identical mass flow given similar inlet conditions, given by (2-13). 

Orifice pressure drop 

The dynamic model predicts a slightly lower non-recoverable pressure loss in the orifice plate for the 

low volume flow. For the BEP the pressure drop is close to identical, while the dynamic model 

predicts a slightly higher pressure drop for high volume flow. The deviation is due to inaccuracy in 

the experimentally determined pressure drop relation of Section 4.5. 

Orifice temperature drop 

The dynamic model predicts almost no change in temperature over the orifice plate. Lab results 

suggest the temperature to drop 0.17 to 0.68 degrees over the orifice plate. This may be related to 

sensor accuracy and calibration. 

Volume flow 

The deviation in pressure and temperature change over the orifice plate causes a different gas 

density at the compressor inlet. The resulting deviation in suction volume flow varies from 0.19% to 

0.49%, which can be considered minor. 

Polytropic head and efficiency 

The predicted polytropic head depends on current suction volume flow and the shape of the 

compressor curve. Any deviation in suction volume flow will move the operational point along the 

compressor curve, affecting the delivered head. The shape of the compressor curve is based on a 

curve fit from experimental data. Any deviation between the actual head and the fitted curve will 

cause a deviation between the dynamic and steady state model. The dry gas polytropic head still 

deviates with 0.68% or less for the dynamic model, which is considered minor. 

The polytropic efficiency will be affected similar to the polytropic head. The deviation is less than 0.5 

percent. 
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Wet gas performance 

The wet gas steady state performance of the dynamic model is presented in Table 5-5, Table 5-6 and 

Table 5-7. The boundary conditions of the dynamic model are defined identical to the steady state 

model implying no deviation in inlet conditions of compressor speed. The low volume flow test point 

is simulated with a relative humidity of 100% due to instability challenges described in Section 4.6. 

 Steady state model Dynamic model Deviation [%] 

GMF [-] 0.7990 0.7967 -0.28% 

Volume flow [m3/s] 1.120 1.128 0.71% 

Polytropic head [m] 2049 2034 -0.74% 

Polytropic efficiency [%] 52.57 54.50 3.67% 
Table 5-5 - Steady state validation of wet gas low volume flow 

 

 Steady state model Dynamic model Deviation [%] 

GMF [-] 0.7941 0.7941 0.00% 

Volume flow [m3/s] 1.801 1.805 0.22% 

Polytropic head [m] 1954 1906 -2.45% 

Polytropic efficiency [%] 59.78 58.18 -2.68% 
Table 5-6 - Steady state validation of wet gas BEP 

 

 Steady state model Dynamic model Deviation [%] 

GMF [-] 0.7958 0.7959 0.01% 

Volume flow [m3/s] 2.278 2.290 0.52% 

Polytropic head [m] 1535 1540 0.37% 

Polytropic efficiency [%] 53.30 53.73 0.81% 
Table 5-7 - Steady state validation of wet gas high volume flow 

Orifice differential pressure 

The dynamic model is able to tune the discharge valve such that the orifice differential pressure is 

close to equal in the two models. Consequently the mass flow of the two models will be equal 

according to (2-18). This is not the case for the low volume flow test where the composition of the 

dynamic model deviates due to the saturated intake air. 

Orifice pressure drop 

The dynamic model predicts a slightly lower non-recoverable pressure loss in the orifice plate for the 

low volume flow case. The pressure drop is slightly higher for the BEP and high volume flow case. The 

deviation is due to deviation between the fitted curve and real test data described in Section 4.4. 

Orifice temperature drop 

The dynamic model predicts almost no change in temperature over the orifice plate. Lab results 

suggest a temperature drop of 0.20 to 0.47 degrees over the orifice plate. This may be related to 

sensor accuracy and calibration. 

Volume flow 

The deviation in pressure and temperature change over the orifice plate causes a different gas 
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density at the compressor inlet. The resulting deviation in suction volume flow varies from 0.22% to 

0.71% which is considered minor. 

GMF 

The dynamic model is not able to predict correct GMF values for the wet gas low volume flow case. 

This is due to the relative humidity of the inlet air, which is set to 100% for the dynamic model. The 

actual value was 73.58%. Thus none of the water flow of the dynamic model will evaporate into the 

air, resulting creating a lower GMF value. The GMF prediction is accurate for the BEP and high 

volume flow test point. 

Polytropic head and efficiency 

A large deviation of 2.45% is found for the polytropic head at the BEP test point. The deviation is 0.74 

or less for the high and low volume flow. The deviation is due to three main reasons: 

 Curve fitting 

 Linear interpolation 

 GMF offset 

The compressor curves are developed based on a second degree polynomial curve fit of the test 

points as described in Section 4.4. This is done to ensure smooth curves in the HYSYS Dynamics 

compressor operator. Experience reveals the compressor operation may become unstable if the test 

points are directly imported to the operator. The polynomial is used to calculate compressor curve 

points which is exported to the compressor unit in the flow sheet. Figure 5-1 shows the test data 

points in red, the fitted curve in black and the compressor curve points in blue.  

 

Figure 5-1 - Deviation in polytropic head due to curve fit and linear interpolation 

The fitted curve may deviate from the actual test point. An example is indicated with the letter «B» 

in Figure 5-1. This deviation is addressed in Section 4.4. 

The dynamic model performs a linear interpolation between the operational points of the speed 

curves. It would have been more accurate if the compressor unit used a polynomial to determine the 
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polytropic properties. This could be approached by specifying the compressor curves with a large 

number of compressor curve points. The linear interpolation may give small offsets, marked with the 

letter «A» in Figure 5-1. 

During development of wet gas speed curves, each test point was labeled to a GMF value of exactly 

0.80 or 0.70. The actual GMF value of the test points typically deviates slightly from the labeled 

value. As an example the wet gas BEP test point had an actual GMF value of 0.7931. When the same 

test point is evaluated with the dynamic model, the compressor operator will interpolate the 

polytropic head from the GMF0.8 and GMF0.7 curves because 0.7931 is in between. This creates a 

small offset as the real head value is the exact same as the initial test point. 

An unfavorable combination of these three effects causes the polytropic head to deviate severely for 

the BEP test point. 

The polytropic efficiency will be affected similar to the polytropic head. A large deviation is observed 

for the BEP due to challenges as for the polytropic head. The efficiency also deviates for the low 

volume flow test point, but in this scenario the polytropic head prediction is quite good. An 

inspection of the compressor curves shows the deviation is most likely addressed to the curve fit, as 

the experimental data and fitted curve deviates quite heavily for the efficiency curves of GMF 0.8. 

For the wet gas low volume flow case the steady state model predicts a compressor inlet 

temperature of 22.3 degrees. The corresponding relative humidity is 73.58%. The dynamic model 

calculated the performance with 100% relative humidity of the intake air due to instability 

challenges. The corresponding compressor inlet temperature is 23.35 degrees. The temperature is 

higher because no liquid evaporates into the gas. 

For compressor performance analysis this error would strongly affect the polytropic performance. If 

the relative humidity is set to 100% in the steady state model, the polytropic efficiency increases to 

74.4%. Because the steady state model calculates the efficiency based on the measured temperature 

difference over the compressor, any change in inlet temperature will cause great impact of the 

polytropic efficiency. The dynamic model is however not specified in terms of discharge temperature. 

Any increase in inlet temperature will be represented by an increased discharge temperature and 

hence not change the efficiency in the same manner as for the steady state model. 

Suggestions for model improvement 

The accuracy is expected to increase with the number of experimental test point used to specify the 

compressor characteristics. As a result, the curve fit offset could be eliminated. 

Some of the imprecision is due to the orifice valve and orifice spreadsheet in the dynamic model. The 

prediction of pressure and temperature change over the orifice valve is not without deviation. The 

orifice relations of Section 4.5 may be individually tuned to each specific test case to obtain a higher 

accuracy. Heat loss relations or a cooler could be implemented to take into account the temperature 

drop through the orifice. 
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Conclusion 

Based on steady state testing of the dynamic model, some numbers regarding accuracy of prediction 

is given in Table 5-8. The table presents the maximum deviation for the tested cases. Larger 

deviations may occur at other operational points. For dry gas the dynamic model is able to predict 

compressor performance quite accurate. For wet gas a deviation of at least 2.45% may be present 

even before transient calculations are introduced. 

 Dry gas Wet gas 

Volume flow [m3/s] 0.49% 0.71% 

Polytropic head [m] 0.68% 2.45% 

Polytropic efficiency [-] 0.48% 3.67% 
Table 5-8 - Maximum deviation of dynamic model 
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5.3. Trip test scenarios 
Introduction 

Task two of the assignment text is to validate the dynamic simulation model against dry and wet trip 

scenarios. Three dry gas and three wet gas trip tests have been performed in the lab. The same 

scenarios were later simulated in the dynamic model based on actual operating conditions. 

This chapter presents and discusses the results from dynamic trip simulations and trip testing in lab. 

The main objective is to analyze the performance of the dynamic model related to real compressor 

behavior. Attention will be given to the dynamic models ability to handle wet gas compared to dry 

gas. The general performance deviation of dry and wet gas compression is not investigated in this 

section. 

Testing procedure 

Table 5-9 presents the six operational points from where trips were performed. The desired test 

points were obtained in the lab by adjusting the water pump speed and manually adjusting the 

discharge valve. The logging system was activated when stable operation was reached, logging all 

sensor readings at a frequency of 1000 Hz. A trip signal was sent to the compressor control system 

after one minute of stable operation. The controlled ramp down function of the driver system was 

deactivated, and the compressor spun freely from 11 000 rpm to 100 rpm where the test was 

stopped. 

Name dP Orifice [mbar] Water flow rate 
[l/s] 

Suction volume 
flow [m3/s] 

GMF [-] 

Dry gas open 
valve 

181.46 [-] 2.522 1 

Dry gas BEP 96.65 [-] 1.777 1 

Dry gas surge 32.32 [-] 1.005 1 

GMF0.8 open 
valve 

158.10 0.637 2.266 0.7930 

GMF0.8 BEP 90.00 0.478 1.660 0.7952 

GMF0.8 surge 31.97 0.282 0.9669 0.7992 
Table 5-9 - Test points for trip scenarios 

The gathered data was analyzed with the steady state model using HYSYS Active workbook. I order to 

save calculation time, the polytropic analysis was performed every 10th time step (0.01 seconds 

interval). As seen in Section 2.4, challenges related to driver trips are expected to appear within the 

first few seconds. The test data was analyzed from five seconds prior the trip until the compressor 

reached 7000 rpm. Total length of analyzed data was less than 20 seconds for each case. 

The six trip tests were simulated in the dynamic model. The sensor readings from the last five 

seconds prior to the trip were averaged and exported to the input spreadsheet of the dynamic 

model. Five seconds of steady state operation was simulated before a compressor trip was activated. 

The simulation was stopped when the compressor reached 7000 rpm. 
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5.4. Trip test results 
Introduction 

This section presents the results from the trip tests and trip simulations for the six scenarios. Each 

trip is illustrated with four charts: 

 Compressor speed versus time 

 Polytropic head versus time 

 Suction volume flow versus time 

 Polytropic head versus suction volume flow 

The maximum deviation of the trip test and dynamic simulation is given for compressor speed, 

polytropic head and suction volume flow. The stated deviation is a maximum average value over five 

subsequent time steps in order to reduce the effect of fluctuations in the test results. 

The results are presented in the following order: 

1. Dry gas BEP 

2. Wet gas BEP 

3. Dry gas surge 

4. Wet gas surge 

5. Dry gas open valve 

6. Wet gas open valve 

Wet gas trip tests and dry gas simulations are presented in red color. 

Dry gas trip tests and wet gas simulations are presented in blue color. 

The results are discussed in Section 5.5. 
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Dry gas trip test BEP 

Results from dry gas trip test at BEP along with predicted performance of the dynamic model are 

provided below. 

 

Figure 5-2 - Compressor speed versus time for dry gas BEP trip 

Figure 5-2 shows the compressor speed reduction. The speed reaches 7 000 rpm 12.24 seconds after 

the trip signal. The maximum deviation is 0.41% after approximately five seconds. 

 

Figure 5-3 - Polytropic head versus time for dry gas BEP trip 

Figure 5-3 shows the polytropic head during trip. The maximum deviation is 2.49% both prior to the 

trip and towards the end. 
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Figure 5-4 - Suction volume flow versus time for dry gas BEP trip 

Figure 5-4 shows the compressor suction volume flow. The dynamic model deviates 4.70% the first 

five second after the trip. After 10 seconds the test data and dynamic model curves coincide. 

 

Figure 5-5 - Polytropic head versus suction volume flow for dry gas BEP trip 

Figure 5-5 shows the run down characteristics of the system in a polytropic head and volume flow 

diagram. The initial deviation is due to the inaccurately predicted volume flow during the first 

seconds of the trip. The curves coincide towards lower volume flow. 
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Wet gas trip test BEP 

Results from wet gas trip test at BEP along with predicted transient performance of the dynamic 

model are provided below. 

 

Figure 5-6 - Compressor speed versus time for wet gas BEP trip 

Figure 5-6 shows the compressor speed reduction. It takes 9.16 seconds for the compressor to reach 

7 000 rpm. The deviation of the dynamic model grows larger with time to a maximum value of 0.70% 

at 7 000 rpm.  

 

Figure 5-7 - Polytropic head versus time for wet gas BEP trip 

Figure 5-7 shows the polytropic head during trip. The deviation grows in time similar to the rotational 

speed to a maximum deviation of 7.21% approximately 8 seconds after the trip signal. 
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Figure 5-8 - Suction volume flow versus time for wet gas BEP trip 

Figure 5-8 shows the compressor suction volume flow during wet gas trip from BEP. The dynamic 

model deviates up to 8.17% the first five second after the trip. The deviation in volume flow 

decreases with time, but does not quickly converge to the experimental values as quick as the dry gas 

scenario. 

 

Figure 5-9 - Polytropic head versus suction volume flow for wet gas BEP trip 

Figure 5-9 shows the run down characteristics of the system in a polytropic head and volume flow 

diagram. The dynamic model does in general predict too low polytropic head for a given volume 

flow. The deviation decreases towards low volume flows. 
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Dry gas trip test surge 

Results from dry gas trip testing close to surge along with predicted transient performance of the 

dynamic model are provided below.  

 

Figure 5-10 - Compressor speed versus time for dry gas surge trip 

Figure 5-10 shows the compressor speed reduction. It takes 16.29 seconds for the compressor to 

reach 7 000 rpm. The dynamic model deviates 0.69% about eight seconds after the trip signal. 

 

Figure 5-11 - Polytropic head versus time for dry gas surge trip 

Figure 5-11 shows the polytropic head during trip. The largest deviation is 3.05% which occur prior to 

the trip signal. The largest deviation during trip is 2.42%. 
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Figure 5-12 - Suction volumetric flow versus time for dry gas surge trip 

Figure 5-12 shows the compressor suction volume flow during dry gas trip close to surge. The 

predicted volume flow is 3.90% too low during the first seconds from trip. The predicted volume flow 

does not seem to converge toward the test results. At 7000 rpm the dynamic model predicts 5.64% 

higher volume flow than the test results suggests. 

 

Figure 5-13 - Polytropic head versus suction volume flow for dry gas surge trip 

Figure 5-13 shows the run down characteristics of the system in a polytropic head and volume flow 

diagram. The dynamic model does not predict the actual run down characteristics accurately. 

  



80 

Wet gas surge trip test 

Results from wet gas trip testing close to surge along with predicted transient performance of the 

dynamic model are provided below. This scenario was simulated with compressor curves for dry gas 

and GMF0.7. The curves for GMF0.8 were not used in order to avoid instabilities in the dynamic 

model. 

 

Figure 5-14 - Compressor speed versus time for wet gas surge trip 

Figure 5-14 shows the compressor speed reduction. It takes 12.53 seconds for the compressor to 

reach 7 000 rpm. The maximum deviation of the dynamic model is 0.67% just after the trip signal. 

 

Figure 5-15 - Polytropic head versus time for wet gas surge trip 

Figure 5-15 shows the polytropic head during trip. The largest deviation is 3.77% at approximately 

7 000 rpm. 
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Figure 5-16 - Suction volume flow versus time for wet gas surge trip 

Figure 5-16 shows the compressor suction volume flow during wet gas trip from surge. The dynamic 

model deviates up to 5.05% the first five second after trip. The volume flow prediction does not seem 

to converge toward test data. At 7000 rpm the volume flow prediction is about 4.79% too high. 

 

Figure 5-17 - Polytropic head versus suction volume flow for wet gas surge trip 

Figure 5-17 shows the run down characteristics of the system in a polytropic head and volume flow 

diagram. The initial deviation is due to the inaccurately predicted volume flow.  
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Dry gas trip test open valve 

Results from dry gas trip test at open valve along with predicted transient performance of the 

dynamic model are provided below. 

 

Figure 5-18 - Compressor speed versus time for dry gas open valve trip 

Figure 5-18 shows the compressor speed reduction. It takes 11.5 seconds for the compressor to 

reach 7 000 rpm. The largest deviation is 1.10% at approximately 7 000 rpm. 

 

Figure 5-19 - Polytropic head versus time for dry gas open valve trip 

Figure 5-19 shows the polytropic head during trip. The dynamic model initially predicts too low 

polytropic head. The largest deviation is 5.78% 1.5 seconds after the trip signal. During run down the 

predicted head curve crosses the test data, and a large deviation of 5.68% is found at 7 000 rpm.  
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Figure 5-20 - Suction volume flow versus time for dry gas open valve trip 

Figure 5-20 shows the compressor suction volume flow during dry gas trip from open valve. The 

dynamic model deviates up to 5.44%. The deviation is fairly constant. 

 

Figure 5-21 - Polytropic head versus suction volume flow for dry gas open valve trip 

Figure 5-21 shows the run down characteristics of the system in a polytropic head and volume flow 

diagram. 
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Wet gas trip test open valve 

The dynamic model was not able to successfully predict the wet gas trip from an open valve point of 

operation. Severe stability problems occur as the compressor speed decreases below 8250 rpm. 

 

Figure 5-22 - Compressor speed versus time for wet gas open valve trip 

Figure 5-22 shows the compressor speed reduction. It takes 8.07 seconds for the compressor to 

reach 7 000 rpm. The dynamic model is stopped 5.36 seconds after trip where severe instability 

problems already have occurred. The compressor speed prediction is however rather accurate, with 

a maximal deviation of 0.32% after about 3 seconds. 

 

Figure 5-23 - Polytropic head versus time for wet gas open valve trip 

Figure 5-23 shows the polytropic head during trip. The maximum deviation during the first 5.28 

seconds of run down is 5.98%. After 5.28 seconds the models becomes unstable with very high 

deviations. HYSYS automatically stops the integrator 5.43 seconds after the trip signal. 
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Figure 5-24 - Suction volume flow versus time for wet gas open valve trip test 

Figure 5-24 shows the suction volume flow during trip. Maximum deviation during the first 5.28 

seconds of run down is 8.68% after about two seconds. After 5.28 seconds the model becomes 

unstable with very high deviations. 

 

Figure 5-25 - Polytropic head versus suction volume flow for wet gas open valve trip 

Figure 5-25 shows the rundown characteristics from the wet gas open valve operational point. Due to 

inaccuracies in the suction volume flow prediction, the dynamic model predicts too high polytropic 

head for a given volume flow. The deviation is however rather constant until the simulation becomes 

unstable at approximately 8250 rpm. 
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Maximum deviation of trip simulation in dynamic model 

Table 5-10 shows the maximum deviation of the predicted performance of the dynamic model. 

 Compressor speed [%] Polytropic head [%] Suction volume flow [%] 

Dry gas BEP 0.41 2.49 4.70 

Wet gas BEP 0.70 7.21 8.17 

Dry gas surge 0.69 3.05 5.64 

Wet gas surge 0.67 3.77 5.05 

Dry gas open valve 1.10 5.78 5.44 

Wet gas open valve 0.32* 5.98* 8.68* 

*During first 5.28 seconds after trip 
Table 5-10 - Maximum deviation of dynamic trip simulation 
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5.5. Challenges related to accurate transient measurements 
Introduction 

This section will document the most important challenges related to accurate transient 

measurements in the lab facility. 

Performance fluctuations 

The sensor readings from the compressor lab facility fluctuate severely. For the wet gas open valve 

test, the polytropic head varies with up to 84 m between two subsequent time steps. In percentage 

this corresponds to a difference of 15%. This makes distinction of actual deviation from random 

fluctuations challenging. 

In order to reduce the effect of random fluctuations, the maximum deviation between the dynamic 

model and the test data is averaged over five time steps as described in Section 5.4. 

Temperature readings 

The compressor performance prediction is very sensitive to the temperature readings. This is 

especially true for wet gas compression which has very low temperature rise through the 

compression process. As documented by (Nøvik 2013), it is not likely that current standards for dry 

gas performance evaluation is satisfying for wet gas applications. 

Experience has revealed the time response of the temperature sensors to be very slow. In general 

the measured discharge temperature cannot be applied to transient calculations. Through this work 

evaluation of transient polytropic efficiency is omitted partly due to the expected lack of dynamic 

accuracy. The dynamic temperature performance could be improved by installing smaller thermal 

elements. Torque measurements could also be used to determine the compressor power and 

efficiency. 

Volume flow delay 

The flow through the compressor is calculated based on the differential pressure of the orifice plate. 

The calculated mass flow in the orifice spreadsheet is assumed valid for the compressor inlet at the 

current time step. The orifice plate is however placed 1.77 meter upstream the compressor block 

implying the measured value in the orifice plate to be delayed due to the travel time. 

At 7 000 rpm the volume flow of the wet gas surge trip is just 0.619m3/s, implying the gas to use 0.14 

seconds to flow from orifice plate to compressor inlet, corresponding to 14 time steps. During dry gas 

open valve testing the corresponding travel time is just 0.034 seconds. 
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Figure 5-26 - Travel time for different suction volume flow 

Figure 5-26 shows the travel time for air from orifice plate to compressor inlet as a function of 

suction volume flow. The minimum flow value is set to 0.61 m3/s which corresponds to the wet gas 

surge trip case at 7 000 rpm. The maximum value is set to 2.6 m3/s representing the dry gas open 

valve case prior to trip.  
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5.6. Discussion of trip scenarios 
Introduction 

The following section discusses the observed deviation of the dynamic model compared to test data 

in terms of suction volume flow, polytropic head and compressor speed. Behavior related to surge 

along with overall accuracy is given special attention. 

Suction volume flow 

The poorest performance of the dynamic model is by far the suction volume flow prediction. By 

inspection of Figure 5-4, Figure 5-8, Figure 5-12, Figure 5-16, Figure 5-20 and Figure 5-24 it is evident 

that the trip test data deviates from the trip simulation in three ways: 

 The reduction in suction volume flow is delayed 

 The trip test curve is wavy 

 The lines are not parallel 

The dynamic model calculates the flow based on affinity laws which suggest the suction volume flow 

to be proportional to the compressor speed. As a consequence the dry gas speed curves and suction 

volume flow curves should be identical of shape. The wet gas volume flow curves will deviate slightly 

due to the shift in compressor characteristics with GMF. 

The initial delayed reduction of suction volume flow for the trip test may be addressed to the air 

traveling distance from orifice to compressor inlet. For the dry gas BEP case the steady state 

volumetric flow rate is 1.777m3/s. The distance from the orifice plate is 1.77 m, and the pipe 

diameter is 0.25m. The resulting traveling time equals less than 0.05 seconds and may be disregarded 

as the main cause of delay at trip. The traveling time may become more significant at lower 

rotational speeds as discussed in Section 5.5. 

It is suggested that the wavy nature of the suction volume flow is most likely related to slow pressure 

response of the differential pressure meter of the orifice plate. 

Detailed investigation of the suction flow pattern is considered to be outside the scope of this work. 

As no similar behavior is observed for the polytropic head and compressor speed, the phenomenon is 

suspected to be a result of measurement shortcomings or unfavorable calculation procedures. An 

evaluation of the above presented measurements representing actual compressor behavior could be 

a subject for further research.  

The compressor characteristics used in the dynamic model is solely based on test data for 11 000 

rpm. In Section 5.2 the maximum deviation in volume flow was 0.71%. The large deviations in volume 

flow at lower rotational speeds (up to 8.68% at 7 000 rpm) may be due to the real compressor 

behavior. In reality the compressor rig may not follow the affinity laws which the dynamic model is 

based. 

Polytropic head 

The predicted curves for polytropic head are similar of shape to the actual performance. Still some 

consistent offset is observed between the simulation and test data. This is especially true for the dry 

gas open valve trip scenario (Figure 5-19). During five seconds prior to the trip the dynamic model 



90 

predicts 3.01% lower polytropic head compared to test data. The actual volume flow of this test 

point is 2.52m3/s. 

Table 5-4 of Section 5.2 presents the deviation of the dynamic model for an operational point of 

2.56m3/s and 11 000 rpm. The deviation in this test point is just 0.19% for the polytropic head. This 

value is based on testing related to development of compressor characteristics. It is inconsistent that 

the dynamic model predicts a deviation of 3.01% at an almost identical operational point during trip 

testing a month later. The compressor characteristics developed from test data at an early state does 

not accurately predict performance during later trip testing at a similar operational point. This 

example suggests individual tuning of the compressor curves for each trip scenario in order to 

improve accuracy. 

Compressor speed 

The compressor speed prediction is very accurate with a maximum deviation of 1.10%. The 

compressor speed measurements are quite reliable with minimal fluctuations. The overall impression 

is that the actual compressor lab facility follows the simplified energy equations given in (2-23) of 

which the dynamic model is based. 

Surging 

A central challenge during trip is the tendency for the compressor to enter the surge area. Two trip 

tests were performed near surge in this work. Figure 5-13 and Figure 5-17 shows the run down 

characteristics for the two tests. During the first seconds the polytropic head falls quickly at almost 

constant suction flow rate. This behavior differs significantly from the trip scenarios from Troll-

Kollsnes (Figure 2-8, Figure 2-10 and Figure 2-11) where the suction flow rate is quickly reduced at 

high polytropic head, forcing the operational point into the surge area. 

The reason for which the compressor rig at NTNU does not enter surge during driver trip is related to 

low pressure ratios and small downstream volumes. The dynamic model contains no units which 

includes physical volumes, such as pipe segments. This is due to instability challenges described in 

Section 4.6. Consequently the dynamic model cannot predict surging due to evacuation of 

downstream compressed gas. For the test data at hand however, no such surge behavior is observed. 

If the dynamic model is to be used for other compressor systems, inclusion of volumes must be 

assessed to ensure performance reliability. 

Overall accuracy 

The compressor speed prediction is very accurate. The polytropic head prediction deviates up to 

7.21%, but the shape of the curves are very similar to test data. The accuracy of the polytropic head 

prediction is expected to be considerably improved by performing some minor tuning of the 

compressor characteristics to eliminate the consistent offset especially seen in the open valve tests. 

The predicted suction volume flow deviates from the values suggested by test data. The difference is 

most pronounced during the first seconds after trip. This is the most critical phase in terms of surge 

behavior (Bakken, Bjørge et al. 2002, Tveit, Bakken et al. 2004, Schjølberg, Hyllseth et al. 2008)  The 

predicted curve is not similar of shape as test data, but it is not confirmed if the error is associated 

with limitations in rig instrumentation or shortcomings of dynamic model. 
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Conclusion 

The compressor speed prediction is very accurate with a maximum deviation of just 1.10%. The 

polytropic head prediction is less accurate with a maximum deviation of 7.21%. The polytropic head 

curves are similar as the measured curves in terms of shape. It is expected that the polytropic head 

prediction can be tuned to reduce the deviation significantly. The predicted volume flow is worse 

with 8.68% maximum deviation. The predicted curve does not match the performance calculated by 

the steady state model. The measured volume flow does not follow the affinity laws during trip. 

The polytropic head and the suction volume flow are calculated in the steady state model based on 

sensor readings. Because the measurements are taken from a transient operating scenario, the 

calculated values may not represent actual compressor behavior. 
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5.7. Speed ramp-up scenarios 
Introduction 

The final task of the assignment text is to establish a representative transient operating scenario and 

predict deviation between dry and wet compressor behavior. It is desirable to choose a scenario 

which may be performed in the compressor lab facility in order to validate the prediction. As trip 

testing was performed in subtask two, a logical advancement is to investigate the compressor 

behavior during speed ramp-up. 

A speed ramp-up test will not only reveal any liquid phase impact, but it may also provide some 

information regarding the accuracy of the motor representation in the dynamic model. 

It should be noted that the scope of this section is to predict deviation between dry and wet 

compressor behavior. The specific performance of the dynamic model to the actual compressor 

performance is not emphasized in the same comprehensive manner as for the trip tests. 

Other possible transient scenarios 

It would have been interesting to investigate the system response to change in upstream or 

downstream pressure and temperature. Unfortunately the open-loop nature of the compressor test 

facility leaves the operator very limited means to control these parameters. Inlet temperature, 

pressure and relative humidity are dictated by current room conditions. 

Another possibility is to explore compressor response to variation in discharge valve position. This 

option was also disregarded due to the manual operation of the valve which would challenge the 

prospect of performing repeatable testing. It is difficult to accurately recreate a manual transient 

valve adjustment in the dynamic simulation tool. The current set up demands an operator to fine-

tune the valve position during steady state to obtain a specific operational point. 

Liquid surge waves was presented as an operational challenge for subsea compressor in (Owren 

2013). The liquid flow rate can be altered through the lab-control system which allows repeatable 

testing. Challenges are however related to the water pump being positioned a long distance from the 

injection module, with wandering piping in between. Similarly the water flow meter is positioned a 

distance upstream of the injection module, with vertical piping in between. For steady state 

operation, the water entering the compressor will be identical to the flow meter reading, but for 

transient scenarios the distance to the flow meter and water pump would challenge the accuracy of 

the water amount actually entering the compressor at a given time. 

Compressor speed ramp-up tests enables both repeatable testing in lab, and can be accurately 

performed with identical conditions in the dynamic model. 

Testing procedure 

One dry and one wet BEP ramp-up test from 9 000 rpm to 11 000 rpm were performed in the lab. 

The operational points were established by adjusting the discharge valve and water pump. When 

stable operation was obtained, 60 seconds were logged at a frequency of 1000 Hz. Then the speed 

was changed instantly to 11 000 rpm in the lab control system. The logging was stopped 60 seconds 

after the ramp-up signal. The two test points are given in Table 5-11. 
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Name dP orifice [mbar] Water flow rate [l/s] GMF [-] 

Dry gas BEP speed ramp-up 62.99 [-] 1 

Wet gas BEP speed ramp-up 62.90 0.406 0.795 
Table 5-11 - Test points for speed ramp-up test 

The test results were analyzed with the steady state model. The analysis started 5 seconds prior to 

the ramp-up signal and ended 20 seconds after the trip signal. Every 10th time step (0.01 seconds 

interval) was analyzes in order to save calculation time. 

Average values of the steady state operation 60 seconds prior to the ramp-up were imported to the 

dynamic model. The discharge valve was adjusted by the flow controller to obtain correct differential 

pressure over the orifice plate. Five seconds prior to ramp-up plus 20 seconds after the ramp-up was 

then simulated in the dynamic model. 
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5.8. Speed ramp-up results 
Introduction 

The result section is divided into two parts. First the predicted deviation between dry and wet gas 

compressor behavior is documented in terms of rotational speed, polytropic head and suction 

volume flow. The next part documents actual prediction between dry and wet gas in terms of 

rotational speed, polytropic head and suction volume flow based on experimental test results from 

the compressor rig. 

Deviation between dry and wet gas are addressed in terms of time to reach 95% and 99% of 

respective steady state values. The time is measured from ramp-up signal until the first time step 

with values equal or greater than the stated values. 

The tests revealed minimal differences between dry and wet gas. 

Prediction of dry and wet gas deviation 

 

Figure 5-27 - Compressor speed versus time for dry and wet ramp-up simulation 

Figure 5-27 shows the predicted speed ramp-up for dry and wet gas. The curves are almost 

coincided. The maximum deviation is 0.38% after approximately five seconds. 

 Steady state speed 
[rpm] 

95% speed 
[rpm] 

99% speed 
[rpm] 

Time to  95% 
speed [s] 

Time to 99% 
speed [s] 

Dry gas ramp-up 
simulation 

10913.86 10368.16 10804.72 2.47 4.79 

Wet gas ramp-up 
simulation 

10914.07 10368.37 10804.93 2.57 5.23 

Table 5-12 - Time to reach 95% and 99% of steady state speed for ramp-up simulation 

Table 5-12 shows the time duration from ramp-up signal for the predicted compressor speed to 

reach 95% and 99% of the steady state value. The wet gas simulation is the slower. 
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Figure 5-28 - Polytropic head versus speed for dry and wet gas ramp-up simulation 

Figure 5-28 shows the predicted polytropic head for dry and wet gas ramp-up. The curves are similar 

of shape, but the produced head is lower for the wet gas scenario. 

 Steady state polytropic 
head [m] 

95% 
polytropic 
head [m] 

99% 
polytropic 
head [m] 

Time to  95% 
polytropic 
head [s] 

Time to 99% 
polytropic 
head [s] 

Dry gas ramp-up 
simulation 

2689.28 2554.82 2662.39 3.60 5.39 

Wet gas ramp-up 
simulation 

2072.85 1969.21 2052.12 3.90 6.08 

Table 5-13 - Time to reach 95% and 99% of steady state polytropic head for ramp-up simulation 

Table 5-13 shows the time duration from ramp-up signal for the predicted compressor speed to 

reach 95% and 99% of the steady state values. The wet gas simulation is the slower. 

 

Figure 5-29 - Suction volume flow versus time for dry and wet ramp-up simulation 

Figure 5-29 shows the suction volume flow of the dry and wet gas ramp-up simulation. The shapes of 

the curves are similar, but the wet gas scenario has lower volumetric flow rate. 
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 Steady state 
volume flow 
[m3/s] 

95% volume 
flow [m3/s] 

99% volume 
flow [m3/s] 

Time to 95% 
volume flow 
[s] 

Time to 99% 
volume flow 
[s] 

Dry gas ramp-up 
simulation 

1.7314 
 

1.6448 
 

1.7141 
 

2.47 4.76 

Wet gas ramp-
up simulation 

1.6969 1.6121 1.6799 2.56 5.24 

Table 5-14 - Time to reach 95% and 99% of steady state suction volume flow for ramp-up simulation 

Table 5-14 shows the time duration from ramp-up signal for the predicted suction volume flow to 

reach 95% and 99% of the steady state value. The wet gas simulation use longer time to reach the 

steady state values. 

Actual deviation between dry and wet gas 

 

Figure 5-30 - Compressor speed versus time for dry and wet gas ramp-up test 

Figure 5-30 shows the test speed ramp-up for dry and wet gas. The curves are almost coincided. The 

maximum deviation is less than 0.1% 

 Steady state speed 
[rpm] 

95% speed 
[rpm] 

99% speed 
[rpm] 

Time to  95% 
speed [s] 

Time to 99% 
speed [s] 

Dry gas ramp-up 
test 

10913.86 10368.16 10804.72 1.99 2.58 

Wet gas ramp-up 
test 

10914.07 10368.37 10804.93 1.99 2.58 

Table 5-15 - Time to reach 95% and 99% of steady state speed for ramp-up test 

Table 5-15 shows the time duration from ramp-up signal for the predicted compressor speed to 

reach 95% and 99% of the steady state value. No deviation is observed for dry and wet gas. 
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Figure 5-31 - Polytropic head versus time for dry and wet gar ramp-up test 

Figure 5-31 shows the predicted polytropic head for dry and wet gas ramp-up test. The curves are 

similar of shape, but the produced head is lower for the wet gas scenario. 

 Steady state polytropic 
head [m] 

95% 
polytropic 
head [m] 

99% 
polytropic 
head [m] 

Time to  95% 
polytropic 
head [s] 

Time to 99% 
polytropic 
head [s] 

Dry gas ramp-up 
simulation 

2726.966 2590.62 2699.70 2.33 2.70 

Wet gas ramp-up 
simulation 

2111.15 2005.59 2090.04 2.46 2.90 

Table 5-16 - Time to reach 95% and 99% of steady state polytropic head for ramp-up test 

Table 5-16 shows the time duration from ramp-up signal for the polytropic head to reach 95% and 

99% of the steady state value. The wet gas test use longer time to reach the steady state polytropic 

head. 

 

Figure 5-32 - Suction volume flow versus time for dry and wet ramp-up test 
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Figure 5-32 shows the suction volume flow of the dry and wet gas ramp-up test. The shapes of the 

curves are similar, but the wet gas scenario has lower volumetric flow rate. 

 Steady state 
volume flow 
[m3/s] 

95% volume 
flow [m3/s] 

99% volume 
flow [m3/s] 

Time to 95% 
volume flow 
[s] 

Time to 99% 
volume flow 
[s] 

Dry gas ramp-up 
test 

1.7746 1.6859 1.7569 3.50 4.32 

Wet gas ramp-
test 

1.7361 1.6493 1.7188 3.78 4.01 

Table 5-17 - Time to reach 95% and 99% of steady state suction volume flow for ramp-up test 

Table 5-17 shows the time duration from ramp-up signal for the suction volume flow to reach 95% 

and 99% of the steady state value. In this scenario the wet gas reaches the 99% steady state value 

before the dry gas. 

Polytropic head versus suction volume flow 

 

Figure 5-33 - Test and simulation results in a polytropic head versus suction volume flow diagram 

Figure 5-33 shows both test data and simulation results in a polytropic head versus suction volume 

flow diagram. The initial values are down to the left. The final steady state values are at the top right 

side of the diagram. The initial prediction is quite accurate both for suction volume flow and 

polytropic head. The final steady state prediction is good for polytropic head, but deviates for suction 

volume flow. 
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5.9. Discussion of speed ramp-up results 
Introduction 

The following section will discuss the speed ramp-up results. The main objective is to address the 

predicted deviation between dry and wet gas, but the simulation results will also be subject to 

comparison with test data from compressor lab. 

Rotational speed 

The dynamic model predicts the wet gas speed ramp-up to reach 95% of its steady state value 4.05% 

later compared to dry gas. 99% of its steady state value is reached 9.19% later for the wet gas. The 

rotational speed is dictated by the VSD-output which is determined by the PI-controller «IC-VSD». It 

adjusts the delivered power based on the current difference in rotational speed and the set point. As 

a result, the controller will increase the delivered power similarly for the dry and wet gas case. The 

wet gas does however have a larger flow in terms of mass due to the liquid phase, and the resulting 

speed acceleration is slower. 

The maximum available power from the VSD is 450kW in the dynamic model. The speed controller 

never exceeds 38% of maximum delivered power, which implies the compressor behavior to be a 

function of the control configuration, not limited by motor rating. 

The ramp-up test reveals the actual compressor rig to behave different than predicted by the 

dynamic model. The speed increases virtually linearly, with no deviation between dry and wet gas. 

The ramp-up time to 95% of steady state value is 24% slower for the dry gas simulation and 29% 

slower for the wet gas simulation compared to the actual behavior. To 99% of steady state value the 

simulated results deviates with 86% and 103% respectively for dry and wet gas. 

It is evident that the control system of the dynamic model does not represent actual compressor lab 

behavior in terms of speed control. It is not within the scope of this work to obtain in-detail 

knowledge of the lab facility control parameters. 

Polytropic head 

The predicted polytropic head for the wet gas ramp-up reaches 95% of its steady state value 8.33% 

slower compared to the dry gas simulation. For the 99% steady state value the deviation is 12.80%. A 

longer time is required to reach the steady state values for polytropic head relative to rotational 

speed, for which reason the deviation between dry and wet gas is larger. Because the dynamic model 

contains no units with physical volume, there is no time delay due to pressure build up. The 

polytropic head is directly given by the current speed according to affinity laws (2-10). The larger 

time duration is a result of the polytropic head which has to be increased more relative to its initial 

value to reach the 95% and 99% steady state values compared to the rotational speed. This is evident 

by referring to the affinity laws (2-10) which states the polytropic head to be proportional to the 

speed squared. In theory, the polytropic head will reach its 99% steady state value when the speed 

reaches 0.995% of its steady state value. 

The deviation of the wet gas polytropic head increases less between the 95% and 99% steady state 

value compared to rotational speed. This is partly due to the increase in GMF as the volumetric flow 

rate is increased while the water flow rate is held constant. As a consequence the compressor 
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characteristics for the wet gas ramp-up moves towards dry gas and associated faster system 

response. 

As for the rotational speed the test data reveals ramp-up behavior which is more linearly of nature. 

An interesting observation is the deviation of dry and wet gas. As opposed to the rotational test 

results, the polytropic head shows a distinct deviation in the time required to reach the 95% and 99% 

steady state values. The reason is most likely the wet gas polytropic head which has to be increased 

more relative to its initial value to reach the 95% and 99% steady state values. 

Suction volume flows 

The dynamic model predicts the wet gas suction volume flow to reach 95% of its steady state value 

3.64% slower compared to the dry gas simulation. For the 99% steady state value the deviation is 

10.08%. Affinity laws in equation (2-9) states the suction volume flow to be proportional to the 

rotational speed, which implies the deviation for suction volume flow should be identical to the 

rotational speed deviation. The deviations are not equal however, which may be explained by 

rounding errors in the dynamic model. Inspection of Table 5-12 and Table 5-14 reveals time 

differences of just 0.01 seconds, or one time step. The small nature of the differences in time may 

suggest the time step being too large. Rounding errors can induce significant inaccuracy when 

evaluating the time response of the dynamic model. 

The ramp-up test results from the lab facility reveal the time duration to reach 95% of steady state 

value to be slower than predicted by the dynamic model. This is non-consistent with results for 

rotational speed and polytropic head which states opposite behavior. It is further observed that the 

99% steady state value is reached by the wet gas ramp-up quicker compared to the dry gas ramp-up, 

which is also non-consistent with the initial observed behavior. 

The suction volume flows of the ramp-up tests are subject to a similar delay of action as described 

for the trip tests in Section 5.6. This is the reason why the ramp-up simulations predicts a quicker 

volume flow build up to 95% of the steady state value. 

The latter phenomenon is explained by the curvy behavior of the suction volume flow curve. The 99% 

steady state value point is by random positioned at the end of a flat segment of the dry gas ramp-up 

test. For the wet gas ramp-up test, the 99% steady state value point is located at the end of a steep 

part of the curve. As discussed in Section 5.6, it is not confirmed if the wavy curves represent real 

compressor lab behavior. 

Polytropic head versus suction volume flow 

The objective of the last subtask was to predict deviation between dry and gas transient behavior. 

Still Figure 5-33 has been included to illustrate deviation between the dynamic model and test results 

from the lab facility. The initial prediction for head and suction volume flow is accurate. The final 

prediction for polytropic head is also quite good. The steady state prediction for suction volume flow 

is clearly lower than the measured value. 

The dynamic model is however not able to predict the path of the operational point during ramp-up. 

For the test data the polytropic head start to increase before the volume flow. The polytropic head 

approaches its steady state value while the volume flow still increases. As a result the curves are 
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bow-shaped. The dynamic model on the other hand predicts the suction volume flow and polytropic 

head to increase simultaneously. The predicted curve appears linear but is actually slightly curved the 

opposite way compared to the test data. This is related to the suction volume flow being 

proportional to the rotational speed while the polytropic head is proportional to the speed squared.  

Conclusion 

The predicted deviation between dry and wet gas during compressor speed ramp-up has been 

discussed. The ramp-up behavior is mainly dictated by the speed controller configuration in the 

dynamic model. The polytropic head and volume flow prediction is determined in the dynamic model 

based on affinity laws. 

A longer time is required to approach steady state for the wet gas case compared to the dry gas case. 

This is mainly due to the increased mass flow of the wet gas. Because the liquid flow rate into the 

compressor is constant, the GMF will be reduced as the speed increases. This causes the wet gas 

deviation to decrease at higher volume flows. 

Ramp-up testing revealed the compressor to behave quite different than predicted by the dynamic 

model. The deviation is mainly related to the control system configuration. 
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6. Conclusion 
A dynamic simulation model for the compressor test facility has been developed in HYSYS Dynamics. 

The model performance is based on actual equipment specifications. Compressor curves developed 

from experimental data for the current impeller are used to determine polytropic head and volume 

flow. The model includes wet gas impact, but does not include any representation of the piping 

layout or associated pressure drop and heat exchange. 

The steady state performance of the dynamic model has been validated against dry and wet test 

results. The performance is considered good. The non-transient polytropic head and suction volume 

flow prediction deviates less than 1% for all operational points but one. 

Six trip scenarios have been investigated both in the dynamic model and in the lab facility. The trip 

behavior was analyzed from five seconds prior to the trip signal until the compressor reached 7 000 

rpm. The dynamic model predicts the rotational speed accurately with a maximum deviation of 

1.10%. The polytropic head predictions follow the test data closely. Some consistent offset is present 

making the prediction deviate up to 7.21%. It is expected that the predicted head curves can be fitted 

to eliminate the offset. 

The dynamic model is not able to predict similar behavior as suggested by test data in terms of 

suction volume flow. The predicted volume flow is reduced according to affinity laws. The volume 

flow calculated from the test results suggest an initial delay of the volume flow reduction along with 

a different decay rate. It is not known whether the deviation is due to dynamic model performance 

or related to inaccurate measurement readings in the compressor lab. 

Due to instability challenges in HYSYS Dynamics, it did not succeed to simulate the wet gas trip from 

open valve. The wet gas low volume flow operational point was not completed during validation of 

steady state performance of the dynamic model. Instability challenges have proven to be a major 

drawback of HYSYS Dynamics functionality. 

A representative operating scenario has been established. Due to limitations in compressor test 

facility it was chosen to perform dry and wet gas speed ramp-up scenarios. The scenarios were both 

simulated in the dynamic model and tested in the compressor facility. The results revealed that the 

ramp-up behavior is dictated by the speed control configuration. The dynamic model predicts a 

slower system response while operating under wet gas conditions. This is not confirmed by the ramp-

up tests which suggest no difference in compressor speed ramp-up. 

Ramp-up testing revealed the compressor to behave quite different than predicted by the dynamic 

model. The deviation is mainly related to the control system configuration. 
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7. Further work 
In order to investigate pressure drop and pressure build-up/relief-effects the dynamic model should 

be developed further to include lab facility piping. The dynamic model could also include more 

accurate representation of the motor and speed control system in order to simulate a larger range of 

transient scenarios. 

More steady state testing should be performed in order to develop compressor characteristics at 

other rotational speeds and hence reduce the use of affinity laws to predict wet gas performance. 
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Appendices 
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A. Steady state model layout 
The architecture of the steady state model is shown below. 
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B. Test data for development of compressor curves 
All test points are for rotational speed 11 000 rpm. The polytropic head and efficiency are calculated 

with the HYSYS Steady state model 

Dry gas test points 

Volume flow [m3/s] Polytropic Head [m] Polytropic efficiency [%] 

0.85 2713.08 71.91 

0.89 2741.42 73.34 

0.96 2789.76 75.53 

1.00 2806.64 76.77 

1.06 2817.25 78.20 

1.12 2821.76 79.55 

1.25 2825.11 81.83 

1.38 2792.67 82.98 

1.59 2733.19 84.33 

1.77 2652.95 85.59 

2.17 2352.83 82.23 

2.56 1836.53 72.48 

2.57 1861.91 73.71 

 

Dry gas curve fit 

Hp = -542.062889830395*Q2+1334.76841964278*Q+1995.81373687385 

np =-17.1107725532974*Q2+58.9190479041182*Q+34.6500127344494 

GMF0.8 test points 

Volume flow [m3/s] Polytropic Head [m] Polytropic efficiency [%] 

0.83 2110.05 50.41 

1.12 2049.28 52.57 

1.44 2095.29 58.31 

1.80 1953.60 59.78 

2.07 1787.22 58.36 

2.28 1534.50 53.30 

 

GMF0.8 curve fit 

Hp =-437.928239744768*Q2+1012.86043469647*Q+1532.55634918422 

np =-13.5616445747628*Q2+45.8623595629536*Q+20.3606355742364 

  



iv 

GMF0.7 test points 

Volume flow [m3/s] Polytropic Head [m] Polytropic efficiency [%] 

0.83 1838.93 41.88 

1.09 1793.35 43.83 

1.38 1756.57 46.34 

1.77 1601.17 46.23 

2.18 1337.76 42.36 

 

GMF0.7 curve fit 

Hp = -269.794013918072*Q2+451.068988831204*Q+1641.19186753439 

np = -9.60874213966929*Q2+29.6474996948213*Q+23.5610671110359 

  



v 

C. Steady state validation of dynamic model 
Steady state validation of dry gas performance, low volume flow 

Sensor Name Unit Steady state model Dynamic model Deviation 

ST-1.1 Compressor speed rpm 10899 10899 0.00% 

PT-3.1 dP Orifice mbar 32.16 32.16 0.00% 

PT-1.1 IM Pressure mbar 984 987 0.38% 

TT-5.1 Orifice inlet temperature C 27.70 27.70 0.00% 

PT-3.3 Orifice inlet pressure mbar 1011 1011 0.00% 

PT-3.5 Discharge pressure mbar 1328 1330 0.16% 

FT-1.5 Water flow rate l/s 0.00 0.00  

XT-3.1P Ambient pressure Pa 100180 100180 0.00% 

XT-3.1T Ambient temperature C 27.74 27.74 0.00% 

XT-3.1R Relative humidity % 27.60 27.60 0.00% 

TT-500.16-19 Inlet temperature C 27.53 27.70 0.60% 

TT-500.20-23 Discharge temperature C 63.39 63.45 0.10% 

TT-500.24 Water temperature C 20.20 20.20 0.00% 

      

 Compressor speed rpm 10899 10899 0.00% 

 GMF - 1.00 1.00 0.00% 

 Volume flow m3/s 1.00 1.00 -0.32% 

 Polytropic head m 2807 2788 -0.68% 

 Polytropic efficiency - 76.77 76.47 -0.39% 

  



vi 

Steady state validation of dry gas performance, BEP 

Sensor Name Unit Steady state model Dynamic model Deviation 

ST-1.1 Compressor speed rpm 10898 10898 0.00% 

PT-3.1 dP Orifice mbar 95.23 95.23 0.00% 

PT-1.1 IM Pressure mbar 936 936 0.03% 

TT-5.1 Orifice inlet temperature C 29.08 29.08 0.00% 

PT-3.3 Orifice inlet pressure mbar 1005 1005 0.00% 

PT-3.5 Discharge pressure mbar 1245 1244 -0.02% 

FT-1.5 Water flow rate l/s 0.00 0.00  

XT-3.1P Ambient pressure Pa 100171 100171 0.00% 

XT-3.1T Ambient temperature C 28.30 28.30 0.00% 

XT-3.1R Relative humidity % 33.44 33.44 0.00% 

TT-500.16-19 Inlet temperature C 28.39 29.06 2.35% 

TT-500.20-23 Discharge temperature C 58.77 59.54 1.31% 

TT-500.24 Water temperature C 19.96 19.96 0.00% 

      

 Compressor speed rpm 10898 10898 0.00% 

 GMF - 1.00 1.00 0.00% 

 Volume flow m3/s 1.77 1.78 0.19% 

 Polytropic head m 2653 2654 0.03% 

 Polytropic efficiency - 85.59 85.32 -0.31% 

  



vii 

Steady state validation of dry gas performance, high volume flow 

Sensor Name Unit Steady state model Dynamic model Deviation 

ST-1.1 Compressor speed rpm 10898 10898 0.00% 

PT-3.1 dP Orifice mbar 184.11 184.11 0.00% 

PT-1.1 IM Pressure mbar 869 867 -0.29% 

TT-5.1 Orifice inlet temperature C 28.65 28.65 0.00% 

PT-3.3 Orifice inlet pressure mbar 1000 1000 0.00% 

PT-3.5 Discharge pressure mbar 1061 1057 -0.36% 

FT-1.5 Water flow rate l/s 0.00 0.00  

XT-3.1P Ambient pressure Pa 100180 100180 0.00% 

XT-3.1T Ambient temperature C 27.94 27.94 0.00% 

XT-3.1R Relative humidity % 33.31 33.31 0.00% 

TT-500.16-19 Inlet temperature C 28.03 28.62 2.09% 

TT-500.20-23 Discharge temperature C 52.87 53.29 0.79% 

TT-500.24 Water temperature C 19.93 19.93 0.00% 

      

 Compressor speed rpm 10898 10898 0.00% 

 GMF - 1.00 1.00 0.00% 

 Volume flow m3/s 2.56 2.58 0.49% 

 Polytropic head m 1837 1833 -0.19% 

 Polytropic efficiency - 72.48 72.83 0.48% 

  



viii 

Steady state validation of wet gas, low volume flow: 

Sensor Name Unit Steady state model Dynamic model Deviation 

ST-1.1 Compressor speed rpm 10839 10839 0.00% 

PT-3.1 dP Orifice mbar 40.67 40.67 0.01% 

PT-1.1 IM Pressure mbar 961 962 0.11% 

TT-5.1 Orifice inlet temperature C 25.92 25.92 0.00% 

PT-3.3 Orifice inlet pressure mbar 992 992 0.00% 

PT-3.5 Discharge pressure mbar 1274 1270 -0.35% 

FT-1.5 Water flow rate l/s 0.32 0.32 0.00% 

XT-3.1P Ambient pressure Pa 98860 98860 0.00% 

XT-3.1T Ambient temperature C 26.04 26.04 0.00% 

XT-3.1R Relative humidity % 73.58 100.00 35.91% 

TT-500.16-19 Inlet temperature C 25.72 25.92 0.76% 

TT-500.20-23 Discharge temperature C 32.68 34.76 6.37% 

TT-500.24 Water temperature C 15.06 15.06 0.00% 

      

 Compressor speed rpm 10839 10839 0.00% 

 GMF - 0.80 0.80 -0.28% 

 Volume flow m3/s 1.12 1.13 0.71% 

 Polytropic head m 2049 2034 -0.74% 

 Polytropic efficiency - 52.57 54.50 3.67% 

 

  



ix 

Steady state validation of wet gas, BEP 

Sensor Name Unit Steady state model Dynamic model Deviation 

ST-1.1 Compressor speed rpm 10840.70 10840.70 0.00% 

PT-3.1 dP Orifice mbar 100.17 100.18 0.00% 

PT-1.1 IM Pressure mbar 916.75 915.08 -0.18% 

TT-5.1 Orifice inlet temperature C 25.94 25.94 0.00% 

PT-3.3 Orifice inlet pressure mbar 987.61 987.61 0.00% 

PT-3.5 Discharge pressure mbar 1202.74 1192.52 -0.85% 

FT-1.5 Water flow rate l/s 0.50 0.50 0.00% 

XT-3.1P Ambient pressure Pa 98875.37 98875.37 0.00% 

XT-3.1T Ambient temperature C 26.09 26.09 0.00% 

XT-3.1R Relative humidity % 79.72 79.72 0.00% 

TT-500.16-19 Inlet temperature C 25.58 25.93 1.35% 

TT-500.20-23 Discharge temperature C 31.09 31.08 -0.04% 

TT-500.24 Water temperature C 14.61 14.61 0.00% 

   

    Compressor speed rpm 10840.70 10840.70 0.00% 

 GMF - 0.79 0.79 0.01% 

 Volume flow m3/s 1.80 1.81 0.22% 

 Polytropic head m 1953.60 1905.75 -2.45% 

 Polytropic efficiency - 59.78 58.18 -2.68% 

 

  



x 

Steady state validation of wet gas, high volume flow 

Sensor Name Unit Steady state model Dynamic model Deviation 

ST-1.1 Compressor speed rpm 10841 10841 0.00% 

PT-3.1 dP Orifice mbar 153.64 153.64 0.00% 

PT-1.1 IM Pressure mbar 878 874 -0.47% 

TT-5.1 Orifice inlet temperature C 25.55 25.55 0.00% 

PT-3.3 Orifice inlet pressure mbar 985 985 0.00% 

PT-3.5 Discharge pressure mbar 1088 1083 -0.40% 

FT-1.5 Water flow rate l/s 0.60 0.60 0.00% 

XT-3.1P Ambient pressure Pa 98886 98886 0.00% 

XT-3.1T Ambient temperature C 25.83 25.83 0.00% 

XT-3.1R Relative humidity % 80.63 80.63 0.00% 

TT-500.16-19 Inlet temperature C 25.05 25.52 1.87% 

TT-500.20-23 Discharge temperature C 28.87 28.88 0.05% 

TT-500.24 Water temperature C 13.86 13.86 0.00% 

      

 Compressor speed rpm 10841 10841 0.00% 

 GMF - 0.80 0.80 0.01% 

 Volume flow m3/s 2.28 2.29 0.52% 

 Polytropic head m 1535 1540 0.37% 

 Polytropic efficiency - 53.30 53.73 0.81% 

 


